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Abstract

Because the physical world is complex, ambiguous, and unpredictable, autonomous
agents must be engineered to exhibit a human-level degree of flexibility and generality
— far beyond what we are capable of explicitly programming. Such realizations of
autonomy are capable of not only reliably solving a particular problem, but also
anticipating what could go wrong in order to strategize, adapt, and continuously learn.
Achieving such rich and intricate decision making requires rethinking the foundations
of intelligence across all stages of the autonomous learning lifecycle.

In this thesis, we develop new learning-based approaches towards dynamic, re-
silient, and robust decision making of autonomous systems. We advance robust de-
cision making in the wild by addressing critical challenges that arise at all stages,
stemming from the data used for training, to the models that learn on this data, to
the algorithms to reliably adapt to unexpected events during deployment. We start
by exploring how we can computationally design rich, synthetic environments capable
of simulating a continuum of hard to collect, out-of-distribution edge-cases, amenable
for use during both training and evaluation. Taking this rich data foundation, we
then create efficient, expressive learning models together with the algorithms neces-
sary to optimize their representations and overcome imbalances in under-represented
and challenging data. Finally, with our trained models, we then turn to the de-
ployment setting where we should still anticipate that our system will be faced with
entirely new scenarios that they have never encountered during training. To this end,
we develop adaptive and uncertainty-aware algorithms for estimating model uncer-
tainty, and exploiting its presence to realize generalizable decision making, even in
the presence of unexpected events.
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Title: Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Com-
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Chapter 1

Introduction

1.1 Motivation

In recent years, deep neural networks (NNs) have enabled breakthrough performances

across a wide range of high-dimensional and high-complexity applications such as

object detection (Szegedy et al., 2013a; Redmon et al., 2016; Zhao et al., 2019), facial

recognition (Balaban, 2015; Farfade et al., 2015), speech recognition (Graves et al.,

2013; Chorowski et al., 2015; Schneider et al., 2019), time-series forecasting (Qiu

et al., 2014; Rangapuram et al., 2018), and natural language processing (Otter et al.,

2020). Inspired by these successes on modular tasks, there has been increasing interest

in building end-to-end learning models in areas of autonomous navigation (Bojarski

et al., 2016; Smolyanskiy et al., 2017), robot control (Levine et al., 2016), machine

translation (Vaswani et al., 2017), and strategic game play (Mnih et al., 2015; Silver

et al., 2017). These approaches aim to bypass rigid intermediate definitions of modular

components, and thereby push the limits of flexibility within learning-based decision

making systems.

Despite these empirical successes of NNs to date, state-of-the-art solutions that

are ultimately deployed into the wild remain crippled by extreme brittleness. Most

notably, even small, carefully chosen changes to their inputs can have catastrophic

effects on the performance of the model and yield arbitrarily incorrect errors in the

system (Szegedy et al., 2013b; Goodfellow et al., 2014). These perturbations, referred
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to as adversarial attacks, are often imperceptible to human vision systems despite

having such a profound impact on their artificial counterparts. In more practical

settings, it has been shown that real-world realizations of these failure modes also

exist through the form of 3D modifications of the environment (Kurakin et al., 2018;

Athalye et al., 2018), basic image perturbations (Engstrom et al., 2018), distribution

shift (Koh et al., 2021), and even susceptibility to algorithmic bias (Buolamwini and

Gebru, 2018).

Unlike artificial NN systems, natural learning systems excel at generalizing learned

skills beyond the original data distribution (Hassabis et al., 2017) and reasoning

about the underlying causal structure of the task (Peters et al., 2017). At their core,

machine learning systems rely on key statistical assumptions about the data they

encounter during deployment. Namely, an underlying assumption to machine learning

is that the data observed during testing is drawn from the same, independent and

identically distributed dataset (i.i.d.) as the training data (James et al., 2013). When

deploying end-to-end decision making systems within closed-loop feedback settings,

this assumption is rarely respected, thereby resulting in unreliable performance and

an overall lack of guarantees during deployment.

To this end, prior works have targeted improving the robustness of end-to-end

learning based systems for decision making at a variety of different stages of the

learning process, ranging from the data that are used for training, to the model repre-

sentations that are learned, to the algorithms for understanding trust and uncertainty

at deployment time. Data augmentation techniques attempt to bridge the train-test

gap by applying perturbations to training data in order to increase their coverage

space (Perez and Wang, 2017; Shorten and Khoshgoftaar, 2019). Such perturbations

are commonly simple transformations of the data (Cubuk et al., 2019) with limited

geometric grounding of reality and of the task at hand, thereby limiting their utility

for broad generalization capabilities. Modular decomposition of the learning problem

in to differentiable components (Karkus et al., 2019) aims to inject structure and ex-

pressivity into the model but fails to effectively communicate failure modes from one

component to the remainder. Existing approaches to uncertainty estimation (Gal and

24



Ghahramani, 2015; Lakshminarayanan et al., 2017) aim to quantify these notions of

trust during deployment but present inflexible solutions that do not respect compute

constraints of real-time deployment settings.

Overall, we currently lack a unified approach to building robust decision making

agents for deployable autonomy in the wild. To this end, we are motivated by the vi-

sion of advancing the science of engineered autonomy through theoretically-grounded

technical advancements for new capabilities and realizations of the theory through

robust and rigorous experiments.

1.2 Vision

Autonomous agents are uniquely capable of expanding the reach of humans deep into

extreme, safety-critical environments through exploration, adaptation, and decision

making. Because the physical world is complex and unpredictable, autonomous agents

must learn to exhibit a human-level degree of flexibility and generality – far beyond

what we are capable of explicitly programming. Achieving such rich and intricate

control requires rethinking the foundations of intelligence across all stages of the

learning lifecycle of an autonomous agent: from the data it perceives, to the models

underlying its perception and behavior, to its deployment in the wild.

However, today’s leading statistical learning algorithms were largely conceived

within the confines of restrictive datasets and thus provide narrow and unsustain-

able solutions to predictive tasks. As a result, these approaches fail to deliver safe,

generalizable, and robust decision-making in intricate, dynamic, and uncertain envi-

ronments. Unlike other forms of learning which have been tailored for passive, static,

and supervised datasets, learning capable machines in a closed-loop world presents

a unique set of research challenges. As an agent executes actions, its decisions have

a direct impact on its future observations, creating a dynamically evolving dataset,

and thus requiring learning beyond an isolated static framework.

The objective of this thesis is to contribute towards advancing the science and

engineering of autonomy and advance its application to safe decision making for au-
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tonomous agents (Figure 1-1). These settings require dynamic and resilient autonomy

for general reasoning and robustness: solutions that not only reliably solve the partic-

ular problem, but also anticipate what could go wrong in order to strategize, adapt,

and continuously learn. Realizing such properties requires new methods for machine

learning, planning, and autonomy that fundamentally and directly connect data to

decisions in a robust and reliable way.

1.3 Challenges

In order to achieve our vision of robust decision making in the wild, we have to

overcome fundamental challenges at the intersection of machine learning and robotics.

Below, we discuss key technical challenges that this thesis aims to tackle.

1.3.1 Edge-cases and Rare Events

Modern artificial intelligence (AI) and machine learning (ML) algorithms rely on op-

timizing “average-case” performance on a fixed dataset. Unfortunately, in the vast

majority of dynamic autonomy problems the most safety-critical predictions occur on

the least common parts of the data, and not the most common scenarios where the

majority of the data is collected. Because AI models are optimized based on their

average performance, these low-density regions of the training data will be overshad-

owed by the common and repetitive portions of the data. Importantly, ML models

trained on very large datasets can easily get stuck in local minima where they over-

optimize performance on the most common datapoints and divert attention away

from potentially more challenging under-represented samples. Since these samples

are lower density, incurring worse performance on them is not catastrophic in the

global optimization view, especially if the model diverts that lost learning capacity

to the over-represented examples. The low-density samples of interest are commonly

referred to as “edge-cases” as they fall on the edge of the data distribution.

It is often difficult and prohibitively costly to obtain high accuracy and perfor-

mance on the edge-cases on the long tail of a data distribution. This ultimately
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presents a foundational training and testing problem in ML. Because edge-cases of-

ten correspond to rare events, it is challenging to train a robust and performant model

with very few examples of these events. When testing the model, diagnosing gaps

in the model’s knowledge space is again fundamentally flawed without sufficient test

data of these edge-cases to evaluate performance on. This results in ML models that

can silently fail and be brittle on the most challenging examples, without practitioners

easily being able to diagnose the problem before deployment.

In order to overcome such gaps in the data distribution, the most common ap-

proach is to collect a larger training dataset, with the hope that as we increase the

training dataset size, we encounter more of these edge cases that can be used for learn-

ing. The fundamental issue underlying this approach is that by blindly increasing our

dataset size, we not only mine more edge cases, but we also further increase the data

on the already over-represented regions as well. Furthermore, in many safety critical

situations, it is prohibitively dangerous and expensive to collect data on edge cases.

For example, to train an autonomous vehicle to drive, it is critical to have training

examples of the vehicle recovering from near-crash and collision situations. Collecting

such data in reality is not practical as it would directly conflict with the safety of the

surrounding environment. Instead, we need to consider approaches to overcome this

limitation through (1) principled data generation and simulation; and/or (2) improved

model representations capable of generalizing to under-represented edge-cases.

1.3.2 Bridging the Sim-to-Real Gap

Generating new data in under-represented and challenging regions of the training

data distribution is a promising approach to overcome the central challenge of mining

edge cases and effectively learning from the long tail of the data. This approach

requires firstly identifying and parameterizing regions of under-representation where

we need more data. This can be achieved through density estimation approaches

on our dataset, which shifts the challenge now to generating novel and diverse data

in these regions of interest that are sufficiently relevant to learning. Simulation is a

common tool to tackle this problem and aims to synthesize data based on a set of
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parameters of our environment and desired scenario. However, because simulators do

not perfectly reflect the physical world where our models will ultimately be deployed,

this approach incurs the infamous sim-to-real gap, where our model is not able to

transfer knowledge acquired from simulated data back into reality during eventual

deployment.

Sim-to-real refers to the idea of transferring skills learned within a simulation

engine to the real world. Solving sim-to-real is a grand challenge in robotics and

learning because it opens up the potential for infinite data generation in simulation

while not incurring the safety costs that we have for data collection in the real world.

Equally as important, unlocking simulation as a viable data source allows for extensive

validation of our models after training and before deployment, to effectively evaluate

them and score their performance on edge-cases before unleashing them into the wild.

Solving sim-to-real for high-dimensional and complex data sources such as per-

ception data is a grand challenge in the community. Traditional simulation engines

rely on defining a model of the world (including the physics, other agents, and their

environment) that approximates reality. Despite extensive resources devoted to devel-

oping high-fidelity simulation engines over many decades, we still have not achieved

simulators of the quality needed to bridge the sim-to-real gap. Furthermore, it is also

debatable if reaching such a level is possible, as perfectly modeling the real-world

through simulation could be viewed as an “AI-complete” task (i.e., solving this task

is equivalent to solving the central AI problem of making computers as intelligent

as people). In this thesis, we seek to create new approaches to data generation and

synthesis which do not rely on manually crafting simulation environments but instead

are built directly from real world data. Such an approach has the potential to by-

pass traditional sim-to-real challenges that plague robot learning problems while still

enabling targeted generative collection of novel edge-case data that can be used for

training and evaluation.
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1.3.3 Interpretability and Decomposability

Even with ideal datasets and evaluation environments, deep NNs still present a lack

of provable training guarantees. This has led them to be regarded as “black box”

systems that fail to provide explanations of their internal workings. Building systems

that not only perform well, but also can be trusted for full scale deployment is a key

challenge of modern AI. While model interpretability is typically seen as a possible

solution to this problem, many works do not present a clear definition of what it

means to be interpretable nor the concrete principles of how their methods enable

greater interpretability. Achieving trustworthy AI through interpretability can be

characterized into two categories. Firstly, we can develop models that are inherently

more interpretable (i.e., by enforcing sparsity, monotonicity, bio-inspiration, or other

structure). Secondly, we can build a set of algorithms for probing the underlying

mechanism to interpret existing complex models.

There exist many works focused on visual and/or textual interpretations of the

decision process. These range from highlighting regions of the input which maximally

contribute to the output (Selvaraju et al., 2016; You et al., 2016; Bojarski et al.,

2016), to building additional generative models to infer linguistic interpretations of

the decision (Harwath and Glass, 2017). While these approaches are empirically

powerful, the need for mathematically grounded formulations of system explainability

and models that posses these capabilities are still needed.

Unlike interpretability and explainability, which focus on the output decision of

the system, decomposability focuses on understanding the underlying internal pro-

cesses or mechanisms of a given model to answer questions like: “how does this model

work? ”. Specifically, if a complex model can be systematically decomposed into in-

terpretable components where all or a subset of all inputs, features, and operations

can be understood intuitively, then the AI system, as a whole, becomes more trust-

worthy as well. Decomposing the system into smaller interpretable pieces allows us

to also understand if mismatched objectives (i.e., the system is not optimizing the

true objective) or hidden biases (i.e., imbalances during learning) are present.
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In this thesis, we aim to formulate a set of foundational principles of model inter-

pretability and develop new computational models that are decomposable into more

compact neural processing units to enable greater robustness and trustworthiness.

1.3.4 Generalization to Challenging Scenarios

When building a robust decision making system, we require not only diverse datasets

that capture edge-cases and expressive models that are reliable, but also the learning

and optimization algorithms to combine these pieces together to compile a trained

model capable of generalizing to deployment scenarios. The main goal of generaliza-

tion is to ensure that the AI systems that we develop are able to perform well even

on unseen test data that may be different from their training distribution.

Learning a model capable of generalizing is a central challenge in machine learning

as a whole. The challenge is exacerbated by the fact that many state-of-the-art ML

models (i.e., deep NNs) are highly overparameterized and, for many tasks, have

enough capacity to completely overfit their data even when the labels are replaced

with complete random noise (Zhang et al., 2021). Building a generalizable neural-

based model ultimately reduces down to injecting the correct priors into the learning

model and algorithm in order to help guide and constrain the search space of possible

solutions.

Furthermore, challenges brought on through data imbalance and long-tailed train-

ing distributions lead to manifestations of failed generalization in the form of algo-

rithmic bias and predictive brittleness. These issues move beyond traditional gen-

eralization challenges as they are also rooted in train-test distributional shifts (i.e.,

when the deployment and testing environment does not match the distribution of the

training environment). Building learning based systems that are able to adaptively

inspect their own weaknesses and training flaws to adjust and guide their learning pro-

cedure is critical to achieve robustness and generalization of learned decision making

in practice.
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1.3.5 Quantifying Trust in AI

Perhaps at the root of building a robust AI decision making system in the wild

lies in the ability to quantify model confidence and, consequently, one’s trust in the

model. While traditional machine learning algorithms such as linear regression, sup-

port vector machines, or even Bayesian classifiers have clear and intuitive definitions

of uncertainty, similar algorithms for estimating uncertainty of deep NNs, which have

billions or even trillions of parameters, remains a largely unsolved problem.

There have been significant advances in Bayesian deep learning, where NNs are

probabilistically reformulated using Bayes rule by placing a prior distribution over ev-

ery network weight. Model uncertainty is then defined as the likelihood of observing

the current set of weights given the training data. In practice, analytically evaluating

this posterior is intractable, but works have explored approximations through Monte

Carlo sampling (Gal and Ghahramani, 2016b, 2015), variational inference (Graves,

2011), and ensemble methods (Lakshminarayanan et al., 2017). However, a key chal-

lenge of uncertainty calibration remains. We aim to build the computational methods

capable of not only estimating a relative measure of uncertainty, but also generating

calibrated absolute measures that can be used to compare across multiple models,

neural networks, and tasks.

Achieving a reliable metric of model confidence is only one level of this grand

challenge. While this metric allows us as humans to inspect the system post hoc (i.e.,

after real-time execution), it is unclear how to propagate and build these quantifiable

metrics back into the learning algorithm or downstream computational systems, which

may not be learning-based or data-driven. This raises key questions in how we can

develop new algorithms capable of ingesting these measures of upstream confidence

and adaptively changing their own decision-making capabilities online, after training

and during deployment. This requires reasoning about the task environment and

predictive uncertainties in a principled manner to achieve this level of flexibility and

adaptation during deployment.
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1.4 Contributions

This thesis proposes to address these challenges through theoretically-grounded tech-

nical advancements in end-to-end machine learning and realizations of the theory

through robust and rigorous experiments on autonomous agents deployed in the wild

– ultimately moving closer towards a world with adaptive autonomous agents capa-

ble of learning to interact in complex, uncertain, and extreme scenarios, supporting

people with cognitive and physical tasks (Figure 1-1). This thesis advances the vision

of end-to-end learning to control by:

[Aim 1] Data : Computationally designing rich synthetic environments with a

range of realistic attributes amenable for high-fidelity data generation;

[Aim 2] Model : Creating efficient, expressive, and interpretable learning models

and algorithms that are robust against unseen perturbations and distributional shifts;

[Aim 3] Deploy : Developing adaptive, uncertainty-aware, and grounded end-

to-end control algorithms for robust deployment.

By exploiting the interdependence of these contributions, this thesis advances

towards realizing generalizable autonomy and decision making in the physical world

(Figure 1-1). In the following subsections, each of the above contributions are outlined

in greater detail.

1.4.1 Data: High-fidelity synthetic environments for data gen-

eration

Collecting the necessary amount of rich and complex data amenable to learning is

often both prohibitively costly as well as too dangerous for most practical real-world

autonomous systems. The curation of synthetic, yet photorealistic, learning environ-

ments presents a promising approach for safely exposing agents to challenging and

dangerous edge cases. Through the creation of data-driven simulation engines ca-

pable of synthesizing entire virtual worlds directly from real-data, we have enabled
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closed-loop training and direct real-world transfer of autonomous controllers learned

entirely within our simulation platform. We initially focus on autonomous driving

and summarize our contributions as follows:

1. VISTA, an open-source photorealistic, scalable, data-driven simulator for syn-

thesizing a continuum of new perceptual inputs locally around an existing

dataset of stable human collected driving data;

2. A framework for translating real-world multi-modal data (i.e., 2D RGB im-

ages, 3D LiDAR pointclouds, asynchronous event-based streams) to a simulated

perception-control API spanning a diversity of compatible environments with

varying complexity, lighting, weather, and road types;

3. An end-to-end learning pipeline for training autonomous lane-stable controllers

using only visual inputs and sparse reward signals, without explicit supervision

using ground truth human control labels; and

4. Experimental validation that agents trained in VISTA can be deployed di-

rectly into the real world with zero-shot policy transfer and achieve more robust

recovery compared to previous state-of-the-art learning-based models.

These results are based on the following papers:

• (Amini et al., 2020a): A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko,

R. Banerjee, S. Karaman, and D. Rus. Learning robust control policies for

end-to-end autonomous driving from data-driven simulation. IEEE Robotics

and Automation Letters, 5(2):1143–1150, 2020a

• (Amini et al., 2021): A. Amini, T.-H. Wang, I. Gilitschenski, W. Schwarting,

Z. Liu, S. Han, S. Karaman, and D. Rus. VISTA 2.0: An open, data-driven

simulator for multimodal sensing and policy learning for autonomous vehicles.

In Proceedings of the International Conference on Robotics and Automation

(ICRA), 2021
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• (Wang et al., 2021): T.-H. Wang, A. Amini, W. Schwarting, I. Gilitschenski,

S. Karaman, and D. Rus. Learning interactive driving policies via data-driven

simulation. In Proceedings of the International Conference on Robotics and

Automation (ICRA), 2021

Full code release for the VISTA data-driven simulation engine and all code asso-

ciated to these contributions are available here: vista.csail.mit.edu.

Results for this contribution are presented in Chapter 3.

1.4.2 Model : Robust representations for decision making

In order to reason in the presence of ambiguous decisions, environmental noise, or

imperfect sensing, autonomous agents need to learn representations that are both

highly expressive and robust. By incorporating greater structure and priors within

learned representations, we have created robust models capable of learning directly

from human demonstrations, adapting on the fly based on their surroundings, and

handling new unseen scenarios that are encountered. These contributions can be

summarized as follows:

1. A new class of time-continuous recurrent neural network models which exhibit

stable and bounded behavior, yield superior expressivity within the family of

neural ordinary differential equations, and give rise to improved performance

on time-series control tasks;

2. Demonstration of these neural systems scaling to complex learning tasks in real-

world autonomous driving and flight, and improving generalizability, causality,

and robustness compared with orders-of-magnitude larger black-box learning

systems; and

3. A tunable learning algorithm which estimates underlying latent distributions

to improve the quality of representations on under-represented edge-cases by

adjusting the respective sampling probabilities of low-density samples.

These results are based on the following papers:
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• (Amini et al., 2018b): A. Amini, W. Schwarting, G. Rosman, B. Araki, S. Kara-

man, and D. Rus. Variational autoencoder for end-to-end control of autonomous

driving with novelty detection and training de-biasing. In 2018 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS), pages 568–

575. IEEE, 2018b

• (Amini et al., 2019b): A. Amini, A. P. Soleimany, W. Schwarting, S. N. Bhatia,

and D. Rus. Uncovering and mitigating algorithmic bias through learned latent

structure. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,

and Society, pages 289–295, 2019b

• (Hasani et al., 2020a): R. Hasani, M. Lechner, A. Amini, D. Rus, and R. Grosu.

Liquid Time-constant Networks. In Proceedings of the Seventeenth AAAI Con-

ference on Artificial Intelligence, 2020a

• (Lechner et al., 2020a): M. Lechner, R. Hasani, A. Amini, T. A. Henzinger,

D. Rus, and R. Grosu. Neural circuit policies enabling auditable autonomy.

Nature Machine Intelligence, 2(10):642–652, 2020a

• (Vorbach et al., 2021): C. Vorbach, R. Hasani, A. Amini, M. Lechner, and

D. Rus. Causal navigation by continuous-time neural networks. Advances in

Neural Information Processing Systems, 34, 2021

Results for this contribution are presented in Chapter 4, 5, and 6.

1.4.3 Deploy : Uncertainty-aware autonomy for robust deploy-

ment

In reality, autonomous systems will routinely be placed in scenarios where they lack

sufficient knowledge or potentially are even uncertain about their existing knowledge.

Achieving safe autonomy that effectively interfaces with humans requires agents that

are aware of their own uncertainties and can intelligently introspect to resolve ambi-

guities. This thesis presents new scalable methods for uncertainty estimation in deep
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neural networks and leverages these methods to design uncertainty-aware controllers

capable of self-reflecting on their own uncertainty to guide and improve decisions.

These contributions can be summarized as follows:

1. A novel and scalable method for learning epistemic and aleatoric uncertainty

on regression problems, without sampling during inference or training with out-

of-distribution data;

2. Robustness and calibration evaluation of learned uncertainties on out-of-distribution

and adversarially perturbed test input data;

3. An uncertainty-aware fusion algorithm that directly learns prediction uncertain-

ties and adaptively integrates predictions from neighboring frames to achieve

robust autonomous control;

4. Deployment of our system on a full-scale autonomous vehicle and demonstra-

tion of navigation and improved localization despite noisy inputs as well as

robustness in the presence of entirely out-of-distribution sensor failures.

These results are based on the following papers:

• (Amini et al., 2019a): A. Amini, G. Rosman, S. Karaman, and D. Rus. Vari-

ational end-to-end navigation and localization. In 2019 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2019a

• (Amini et al., 2020c): A. Amini, W. Schwarting, A. Soleimany, and D. Rus.

Deep Evidential Regression. In Conference on Neural Information Processing

Systems (NeurIPS), 2020c

• (Liu et al., 2021): Z. Liu, A. Amini, S. Zhu, S. Karaman, S. Han, and D. Rus.

Efficient and robust lidar-based end-to-end navigation. In IEEE International

Conference on Robotics and Automation (ICRA), 2021

Results for this contribution are presented in Chapter 7 and 8.
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1.5 Thesis Outline

End-to-End Learning for Robust Decision Making

Part I: 
Data

Part II: 
Model

Part III:
Deploy
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Multi-agent 
Interactions

Expressive 
& 

Compact Neural 
Models

Adaptive 
Learning 
on Edge 
Cases

Fast &
Calibrated 
Uncertainty 
Estimation

Robust 
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Making in the 
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Figure 1-1: Thesis overview. An overview of the thesis research, which is organized
around three key components of the autonomous learning lifecycle.

The ultimate aim of this thesis is to contribute towards advancing the science and

engineering of learned autonomy and advance its application to safe, robust decision

making for autonomous agents. This thesis is structured according to the outline

shown in Figure 1-1. We develop solutions to key challenges at each stage of the

autonomous learning and decision making lifecycle, ranging from the data that is

used for training, to the models that are learned, to algorithms that ensure robust

deployment.

In Part I, we develop new data-driven approaches for large-scale synthesis of chal-

lenging edge-cases which are infeasible to safely collect prior to training. Chapter 3

introduces a novel data-driven simulation engine that can construct entire virtual

worlds for mining such edge-cases and building more comprehensive training dataset

that bridge the gap to reality.

In Part II, we focus on designing more expressive models and learning algorithms

capable of ingesting these rich datasets and distilling them into actionable represen-
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tations. In Chapter 4, we focus on the development of a class of highly-expressive

continuous-time neural networks. In Chapter 5, we explore their ability to scale to

high-complexity tasks while maintaining compactness. Given this data and model

framework, we then transition in Chapter 6 to developing adaptive learning algo-

rithms capable of overcoming persistent imbalances in the representational capacity

and achieve algorithmic debiasing.

In Part III, we finally turn to developing algorithms for our trained models as

they enter the deployment phase, where they need to account for sudden and un-

expected events on which they may not have been explicitly trained to handle. In

Chapter 7, we design a single-shot uncertainty estimation technique for quantifying

the uncertainty of data-driven models in order to efficiently and reliably identify out-

of-distribution events and untrustworthy predictions. In Chapter 8, we demonstrate

how these learned confidences can be integrated back into the model’s decision mak-

ing process in order to build uncertainty-awareness and ultimately overcome these

types of unexpected events that may occur during deployment.

Finally, in Chapter 9, we summarize the contributions of this thesis, provide per-

spectives on remaining limitations as well as lessons learned, and discuss potential

future directions to overcome these limitations.
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Chapter 2

Related Work

2.1 Learning Autonomous Control Policies

2.1.1 Policy Learning

Traditional planning and control approaches for navigation (Alcalá et al., 2020; Car-

rau et al., 2016; Galceran et al., 2017; Liniger and Lygeros, 2019; Schwarting et al.,

2018) typically do not make use of high dimensional inputs and use game-theoretic

approaches for interaction modelling (Schwarting et al., 2019b; Williams et al., 2017;

Liniger and Lygeros, 2020; Schwarting et al., 2019a). End-to-end navigation ap-

proaches can learn driving policies from image inputs; however, in the context of

driving using real-world data, past works are largely restricted to imitation learning

(IL) (Bojarski et al., 2016; Xu et al., 2017; Amini et al., 2019a; Lechner et al., 2020a;

Hawke et al., 2020).

Imitation learning describes the task of learning an observation-action mapping

from human demonstrations (Schaal, 1999). This objective can either be achieved via

behavior cloning, which directly learns from observation-action pairs, or indirectly

via inverse reinforcement learning (Ng et al., 2000) which first constructs a reward

function from an optimal policy. The most dominant behavior cloning paradigm is

based on the DAgger framework (Ross et al., 2011), which iterates over the steps of

expert data collection, supervised learning, and cloned policy evaluation. State-aware
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imitation learning (Schroecker and Isbell, 2017) further adds a secondary objective

to the learning task to bias the policy towards states where more training data is

available. Recently, imitation learning methods have been adapted to domains where

the environment dynamics of the expert and learned policy mismatch (Desai et al.,

2020).

More recent imitation learning one-shot methods pre-train policies via meta-

learning to adapt to a task, such that task-specific behavior can be cloned with as

little as a single demonstration (Duan et al., 2017; Yu et al., 2018). Alternatively,

generative adversarial imitation learning phrases the behavior cloning problem as a

min-max optimization problem between a generator policy and discriminator classi-

fier (Ho and Ermon, 2016). (Baram et al., 2017) extended the method by making the

human expert policy end-to-end differentiable. The method has been further adapted

to imperfect (Wu et al., 2019) and incomplete demonstrations (Sun and Ma, 2019).

2.1.2 Mapless and Multimodal Navigation

Map-based navigation of autonomous vehicles relies heavily on pre-collected high-

definition (HD) maps using either LiDAR (Burgard et al., 2008; Levinson and Thrun,

2010) and/or vision (Wolcott and Eustice, 2014) to precisely localize the robot (Leonard

and Durrant-Whyte, 1991; Montemerlo et al., 2002). These HD maps are expensive

to create, large to maintain, and difficult to process efficiently. Recent works on

“map-lite” approaches (Ort et al., 2018, 2019) require only sparse topometric maps,

which are orders of magnitude smaller and publicly available (Haklay and Weber,

2008). However, these approaches are largely rule-based and do not leverage modern

advances in end-to-end learning of control representations. Our work builds on the

advances of end-to-end learning of reactionary control (Bojarski et al., 2016; Xu et al.,

2017) and navigation (Amini et al., 2019a; Codevilla et al., 2018; Hawke et al., 2020),

and furthermore extends beyond 2D sensing. Recent works have investigated multi-

modal fusion of vision and depth to improve control (Xiao et al., 2020b; Patel et al.,

2017; Bohez et al., 2017). However, these approaches project 3D data onto 2D depth

maps to leverage 2D convolutions, thereby losing significant geometric information.

40



2.2 Simulation and Learning in Robotics

Learning in simulation allows for greater algorithmic flexibility ranging from IL (Rhine-

hart et al., 2018; Xiao et al., 2020a; Codevilla et al., 2018), to reinforcement learning

(RL) (Pan et al., 2017; Dosovitskiy et al., 2017; Amini et al., 2020a; Wang et al., 2021;

Fuchs et al., 2021), and guided policy learning (GPL) (Levine and Koltun, 2013; Chen

et al., 2020).

2.2.1 Model-based Simulation

The use of simulation for learning and robotics has exploded in recent years. Model-

driven simulators rely on predefined models of scenery and underlying physics (Coumans

and Bai, 2016–2021; Tassa et al., 2020; Todorov et al., 2012a; Tedrake and the Drake

Development Team, 2019; Wymann et al., 2000). Most simulation engines for rein-

forcement learning and robotics focus on modelling the underlying physics (Coumans

and Bai, 2016–2021; Tassa et al., 2020; Todorov et al., 2012a). Recently, simulators

based on video-game engines (e.g . CARLA (Dosovitskiy et al., 2017), AirSim (Shah

et al., 2017), TDW (Gan et al., 2020), or FlightGoggles (Guerra et al., 2019)) also

offer a high-fidelity stream of visual data mainly focusing on navigation tasks.

However, training agents with these model-based simulation engines without sac-

rificing real-world performance and robustness is a long-standing goal in many areas

of robotics (Andrychowicz et al., 2018; Mahler et al., 2019; Sadeghi and Levine, 2016;

Bewley et al., 2018). Several works have demonstrated transferable policy learning us-

ing domain randomization (Tobin et al., 2017) or stochastic augmentation techniques

(Bruce et al., 2018) on smaller mobile robots.

However, synthetically generated images are typically still insufficient to enable

zero shot transfer of learned policies and require techniques such as domain ran-

domization (Loquercio et al., 2020; Tobin et al., 2017) to actually achieve real-world

testing deployment. Style transformation, such as adding realistic textures to syn-

thetic images with deep generative models, has been used to facilitate transfer of

learned policies from model-based simulation engines into the real world (Pan et al.,
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2017; Bewley et al., 2018). While these approaches can successfully transfer low-level

details such as textures or sensory noise, they are unable to capture and transfer the

critical higher-level semantic complexities (such as vehicle or pedestrian behaviors)

required to train robust autonomous controllers.

2.2.2 Data-driven Simulation

A philosophically different approach for achieving the goal of visually and physically

realistic simulators is using real-world data for building the simulator. This is in-

spired by elaborate data augmentation (Abu Alhaija et al., 2018), weakly-supervised

learning (Remez et al., 2018), and generative video manipulation (Menapace et al.,

2021) techniques. Typically this sacrifices some of the environment editing abilities

in favor of maintaining photorealism. Improving learning for autonomous driving (Li

et al., 2019) is one of the main applications of these ideas focusing on individual sen-

sors such as camera (Chen et al., 2021) or LiDAR (Manivasagam et al., 2020; Wang

et al., 2020). Simulators such as those in Gibson (Xia et al., 2018), Habitat (Savva

et al., 2019), or RoboTHOR (Deitke et al., 2020) offer reconstructed real-world en-

vironments for embodied AI research. The work presented in Chapter 3 follows the

philosophy of data-driven simulation to develop a modular, scalable data generation

engine that produces photorealistic and dynamic synthetic environments ultimately

enabling zero-shot policy transfer to real-world platforms.

2.2.3 Cross-Sensor Transfer

Numerous works consider augmenting sensing modalities and simulating different

modalities via, often learned, sensor fusion. Monocular Depth Prediction trains a

neural network to act as a depth sensor using monocular image data (Godard et al.,

2017; Fu et al., 2018). Similarly, Depth Completion combines cameras with sparse

depth from LiDAR to simulate a dense depth sensor (Xu et al., 2019; Zhao et al.,

2021).

In event-based vision, recent work combines the use of classical and event-based
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cameras for simulating higher frame-rate cameras (Tulyakov et al., 2021) and depth

predictions (Hidalgo-Carrió et al., 2020; Gehrig et al., 2021), or focuses on translating

between these two modalities (Rebecq et al., 2018, 2019; Gehrig et al., 2020a; Paredes-

Valles and de Croon, 2021). VISTA provides unified simulation framework that

jointly simulates a diverse set of sensors while supporting novel view synthesis for

each sensor modality.

2.3 Time-Continuous Neural Models

2.3.1 Time-Continuous Models

Time-continuous networks have become unprecedentedly popular. This is due to the

manifestation of several benefits such as adaptive computations, better continuous

time-series modeling, memory, and parameter efficiency (Chen et al., 2018a). A large

number of alternative approaches have tried to improve and stabilize the adjoint

method (Gholami et al., 2019), to use neural ODEs in specific contexts (Rubanova

et al., 2019; Lechner et al., 2019), and to characterize them better (Dupont et al.,

2019; Durkan et al., 2019; Jia and Benson, 2019; Hanshu et al., 2020; Holl et al.,

2020; Quaglino et al., 2020). In this thesis, we build on this line of research with

expressive neural ODEs and propose a new ODE model to improve the expressivity

and performance of time-continuous models.

2.3.2 Measures of Expressivity

Many works have tried to address why deeper networks and particular architectures

perform well in particular settings in order to assess the boundary between the approx-

imation capability of shallow versus deep networks. In this context, previous works

proposed counting the linear regions of NNs as a measure of expressivity (Montufar

et al., 2014; Pascanu et al., 2013b), showed that there exists a class of radial functions

that smaller networks fail to produce (Eldan and Shamir, 2016), and studied the ex-

ponential expressivity of NNs by transient chaos (Poole et al., 2016). These methods
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are compelling; however, they are bound to particular weight configurations of a given

network in order to lower-bound expressivity (Serra et al., 2017; Gabrié et al., 2018;

Hanin and Rolnick, 2018, 2019; Lee et al., 2019a). The work in (Raghu et al., 2017)

introduced an interrelated concept which quantifies expressivity by trajectory length.

2.3.3 Causal Learning

The dominant approach toward learning causal models are graphical methods (Russell

and Norvig, 2002; Ruggeri et al., 2007), which try to model cause-effect relationships

as a directed graph (Pearl, 2009; Pearl et al., 2009). Bayesian networks further com-

bine graphical models with Bayesian methods (Ruggeri et al., 2007; Kemp et al., 2010)

to decompose the learning problem into a set of Bayesian inference sub-problems.

(Weichwald et al., 2020) showed the effectiveness of such an approach for learning

causal structures in nonlinear time-series via a set of linear models. Continuous-time

Bayesian networks further adapted the idea to modeling cause-effect relationships in

time-continuous processes (Nodelman et al., 2002, 2003; Gopalratnam et al., 2005;

Nodelman, 2007). A different approach for causal modeling of time-continuous pro-

cesses is to learn ODEs, which under certain conditions imply a structured causal

model (Rubenstein et al., 2016). In the work presented in Chapter 4, we describe

a class of continuous models that has the ability to account for interventions and

therefore captures the causal structures from data.

2.4 Underrepresentation and Bias

Learning in the presence of data imbalance (e.g ., class or feature imbalance; under-

represented edge cases) is one of the key challenges underlying all machine learning

systems. Interventions that seek to address this challenge and thereby improve fair-

ness into ML pipelines generally fall into one of three categories: those that use data

pre-processing before training, in-processing during training, and post-processing af-

ter training (Friedler et al., 2018).
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2.4.1 Resampling for Class Imbalance

Resampling approaches have largely focused on addressing class imbalances (Chawla

et al., 2002; More, 2016; Zhou and Liu, 2006), as opposed to biases within individ-

ual classes. For example, over-sampling the minority class with a nearest-neighbors

based approach (Chawla et al., 2002) and duplicating instances of the minority class

as in (Lu et al., 1998) have been used as pre-processing steps for mitigating class

imbalance, yet are not capable of running adaptively during training itself. Further,

applying these approaches to debiasing variabilities within a class would require a

priori knowledge of the latent structure to the data, which necessitates manual an-

notation of the desired features. Instead we seek to debias variability within a class

automatically during training with a model that learns the latent structure from

scratch in an unsupervised manner. We present this approach in Chapter 6.

2.4.2 Generating Debiased Data

Recent approaches have utilized generative models (Sattigeri et al., 2018) and data

transformations (Calmon et al., 2017) to generate training data that is more ‘fair’

than the original dataset. For example, (Sattigeri et al., 2018) used a generative

adversarial network (GAN) to output a reconstructed dataset similar to the input

but more fair with respect to certain attributes. Preprocessing data transformations

that mitigate discrimination, as in (Calmon et al., 2017), have also been proposed, yet

such methods are not learned adaptively during training nor do they provide realistic

training examples. In contrast to these works, our approach (Chapter 6 does not

rely on artificially generated data, but rather uses a resampled, more representative

subset of the original dataset for debiasing.

2.4.3 Clustering to Identify Bias

Supervised learning approaches have also been used to identify underrepresented re-

gions and characterize biases in imbalanced data sets. Specifically, 𝑘-means clustering

has been employed to identify clusters in the input data prior to training and to inform
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resampling the training data into a smaller set of representative examples (Nguyen

et al., 2008). However, this method does not extend to high dimensional data like

images or to cases where there is no notion of a data ‘cluster’, and relies on significant

pre-processing. We seek to overcome these limitations by learning the latent structure

using an unsupervised variational approach.

2.5 Uncertainty in Deep Learning

We build on a large history of epistemic uncertainty estimation (Kendall and Gal,

2017; Papadopoulos and Haralambous, 2011; Osband et al., 2016; Hafner et al., 2020;

Lakshminarayanan et al., 2017; Gal and Ghahramani, 2016a) and modelling proba-

bility distributions using NNs (Nix and Weigend, 1994; Bishop, 1994; Gilitschenski

et al., 2019; Kingma et al., 2015). Studies across domains have demonstrated the

importance of focusing explicitly on epistemic uncertainty (Soleimany et al., 2021);

here, we contextualize our contributions in new methods for estimating epistemic

uncertainty.

2.5.1 Bayesian Deep Learning

In Bayesian deep learning, priors are placed over network weights, and distributions

over network weights are estimated using variational inference (Kingma et al., 2015),

due to the fact that exact computation of the associated posterior is intractable. As

a result, approximations via dropout (Gal and Ghahramani, 2016a; Molchanov et al.,

2017; Gal et al., 2017; Amini et al., 2018c), ensembling (Lakshminarayanan et al.,

2017; Pearce et al., 2018), or other approaches (Blundell et al., 2015; Hernández-

Lobato and Adams, 2015) have been derived. However, all these methods rely on

expensive sampling to estimate predictive variance, limiting their utility for iterative

active learning procedures, scans of very large sensory datasets, and in simulation.

In contrast, training a deterministic NN to place uncertainty priors directly over the

predictive distribution itself would require only a single forward pass to estimate

uncertainty.
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2.5.2 Sampling-based Approaches

Sampling-based approaches, such as model ensembling (Lakshminarayanan et al.,

2017) and dropout sampling (Gal and Ghahramani, 2016a), are broadly accepted

as state of the art for epistemic uncertainty quantification in NNs. These methods

are model agnostic, easy to implement, and generalizable to a range of settings and

model types. Briefly, these sampling-based approaches yield estimates of epistemic

uncertainty by generating a set of predictions (e.g., across models in an ensemble),

and then considering the variance across those predictions to estimate model uncer-

tainty (Lakshminarayanan et al., 2017; Gal and Ghahramani, 2016a). However, these

approaches only generate approximations to the underlying uncertainty functions via

stochastic sampling, incurring computational costs and runtimes that are routinely

an order of magnitude higher than those of single models. As we demonstrate in

Chapter 7, evidential learning can address these limitations in their ability to di-

rectly learn grounded representations of epistemic uncertainty without the need for

sampling (Sensoy et al., 2018; Malinin and Gales, 2018).

2.5.3 Prior Networks and Evidential Models

While neural networks have been trained to output probabilities, for example with

Softmax goodfellow2016softmax for classification or Gaussian distributions (MVE) (Nix

and Weigend, 1994) for regression, these approaches estimate the probability of an

output but neglect the model’s uncertainty (i.e., the epistemic uncertainty) associ-

ated with that output. Existing Bayesian and evidential learning methods attempt to

tackle the question of epistemic uncertainty estimation in NNs. For example, a large

focus within Bayesian inference is on placing prior distributions over hierarchical mod-

els to estimate uncertainty (Gelman et al., 2006, 2008). Our methodology, presented

in Chapter 7, relates to evidential deep learning for classification (Sensoy et al., 2018)

and prior networks (Malinin and Gales, 2018, 2019), which place Dirichlet priors over

discrete classification predictions. However, these works either rely on regularizing

divergence to a fixed, well-defined prior (Sensoy et al., 2018; Tsiligkaridis, 2019), re-
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quire OOD training data (Malinin and Gales, 2018; Malinin, 2019; Chen et al., 2018b;

Hafner et al., 2020), or can only estimate aleatoric uncertainty by performing den-

sity estimation (Gast and Roth, 2018; Gurevich and Stuke, 2020). We tackle these

limitations with a particular focus on continuous regression learning tasks where this

divergence regularizer is not well-defined.
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Part I

Data
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Chapter 3

High-fidelity Synthetic Environments

for Data Generation

3.1 Introduction

End-to-end (i.e., perception-to-control) trained neural networks for autonomous con-

trol have shown great promise, for example in lane stable driving for autonomous

vehicles (Pomerleau, 1989; Bojarski et al., 2016; Amini et al., 2019a). However, these

methods require vast amounts of training data that are time consuming and expen-

sive to collect, and are furthermore limited in their ability to learn robust models

at scale. In autonomous driving, learned end-to-end control policies and modular

perception components in a driving pipeline require capturing training data from all

necessary edge cases, such as recovery from off-orientation positions or even near colli-

sions. This is not only prohibitively expensive but also potentially dangerous (Kendall

et al., 2018). Training and evaluating robotic controllers in simulation (Dosovitskiy

et al., 2017; Tedrake and the Drake Development Team, 2019; Shah et al., 2018) has

emerged as a potential solution to the need for more data and increased robustness to

novel situations, while also avoiding the time, cost, and safety issues of current meth-

ods for real world data collection. However, transferring policies learned in simulation

into the real world still remains an open research challenge.

This section describes an end-to-end simulation and training engine capable of
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Figure 3-1: Training and deployment of policies from data-driven simula-
tion. From a single human collected trajectory our data-driven simulator (VISTA)
synthesizes a space of new possible trajectories for learning virtual agent control poli-
cies (A). Preserving photorealism of the real world allows the virtual agent to move
beyond imitation learning and instead explore the space using methods like reinforce-
ment learning with only sparse rewards and guided policy learning. Learned policies
not only transfer directly to the real world (B), but also outperform state-of-the-art
end-to-end methods trained using imitation learning.

training real-world autonomous lane-stable controllers agents entirely in simulation,

without any prior knowledge of human driving or post-training fine-tuning. We

demonstrate trained models can then be deployed directly in the real world, on roads

and environments not encountered in training. Our engine, termed VISTA: Virtual

Image Synthesis and Transformation for Autonomy, synthesizes a continuum of driv-

ing trajectories that are photorealistic and semantically faithful to their respective

real world driving conditions (Figure 3-1), from a small dataset of human collected

driving trajectories. VISTA allows a virtual agent to not only observe a stream

of sensory data from stable driving (i.e., human collected driving data), but also

from a simulated band of new observations from off-orientations on the road. Given

visual observations of the environment (e.g ., camera images), our system learns a

lane-stable control policy over a wide variety of different road and environment types,

as opposed to current end-to-end systems (Bojarski et al., 2016; Amini et al., 2019a;
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Codevilla et al., 2018; Bewley et al., 2018) which only imitate human behavior. This

is a major advancement as there does not currently exist a scalable method for train-

ing autonomous vehicle control policies that go beyond imitation learning and that

generalize to previously unseen road and complex, near-crash situations.

VISTA synthesizes training data for a broad range of vehicle positions and

orientations from real driving data; performs data generation across three distinct

sensor modalities –RGB cameras, LiDAR sensors, and event-based cameras; and pro-

vides in-painted ado vehicles for learning robust driving policies that involve multi-

agent encounters and interactions. The engine is capable of generating a continuum

of novel, photorealistic trajectories and environmental states. This variety ensures

agent policies learned in VISTA benefit from autonomous exploration of the feasi-

ble driving space, including scenarios in which the agent can recover from near-crash

off-orientation positions. Such positions are a common edge-case in autonomous driv-

ing and are difficult and dangerous to collect training data for in the real world.

Using VISTA, we demonstrate that learned policies derived directly from simu-

lation can be directly transferred to a full-scale autonomous vehicle. We demonstrate

the ability to train and test perception-to-control policies across each of the sensor

types and to deploy them onboard a full-scale autonomous vehicle. The policies

learned in VISTA exhibit sim-to-real transfer without modification and greater ro-

bustness than those trained exclusively on real-world data.

In this chapter, we present the key capabilities of VISTA , summarized as:

1. A photorealistic, scalable, data-driven engine for synthesizing a continuum of

new perceptual inputs locally around an existing dataset of stable human col-

lected driving data;

2. End-to-end pipelines for learning autonomous control policies across three dis-

tinct sensor modalities, for both lane-stable control and interactive driving

tasks;

3. Experimental validation that agents trained in VISTA can be deployed directly

in the real-world and achieve improved robustness compared to previous state-
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of-the-art imitation learning models trained exclusively on real data.

3.2 Data-Driven Simulation for Robot Learning

3.2.1 Building Virtual Worlds from Data

Simulation engines for training robust, end-to-end autonomous vehicle controllers

must address the challenges of photorealism, real-world semantic complexities, and

scalable exploration of control options, while avoiding the fragility of imitation learn-

ing and preventing unsafe conditions during data collection, evaluation, and deploy-

ment. Our data-driven simulator, VISTA, synthesizes photorealistic and semanti-

cally accurate local viewpoints as a virtual agent moves through the environment

(Figure 3-2). VISTA uses a repository of sparsely sampled trajectories collected by

human drivers. For each trajectory through a road environment, VISTA synthesizes

views that allow virtual agents to drive along an infinity of new local trajectories

consistent with the road appearance and semantics, each with a different view of the

scene.

Upon receiving an observation of the environment at time 𝑡, the agent commands

a desired steering curvature, 𝜅𝑡, and velocity, 𝑣𝑡 to execute at that instant until the

next observation. We denote the time difference between consecutive observations as

∆𝑡. VISTA maintains an internal state of each agent’s position, (𝑥𝑡, 𝑦𝑡), and angular

orientation, 𝜃𝑡, in a global reference frame. The goal is to compute the new state

of the agent at time, 𝑡 + ∆𝑡, after receiving the commanded steering curvature and

velocity. First, VISTA computes the changes in state since the last timestep,

∆𝜃 = |𝑣𝑡 ·∆𝑡| · 𝜅𝑡,

∆𝑥̂ = (1− cos (∆𝜃)) /𝜅𝑡, (3.1)

∆𝑦 = sin (∆𝜃) /𝜅𝑡.

VISTA updates the global state, taking into account the change in the agent’s orien-
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Figure 3-2: Simulating novel viewpoints for learning. Schematic of an au-
tonomous agent’s interaction with the data-driven simulator (A). At time step, 𝑡, the
agent receives an observation of the environment and commands an action to execute.
Motion is simulated in VISTA and compared to the human’s estimated motion in
the real world (B). A new observation is then simulated by transforming a 3D repre-
sentation of the scene into the virtual agent’s viewpoint (C).

tation, by applying a 2D rotational matrix before updating the position in the global

frame:

𝜃𝑡+Δ𝑡 = 𝜃𝑡 +∆𝜃, (3.2)⎡⎣𝑥𝑡+Δ𝑡

𝑦𝑡+Δ𝑡

⎤⎦ =

⎡⎣𝑥𝑡
𝑦𝑡

⎤⎦+

⎡⎣cos(𝜃𝑡+Δ𝑡) − sin(𝜃𝑡+Δ𝑡)

sin(𝜃𝑡+Δ𝑡) cos(𝜃𝑡+Δ𝑡)

⎤⎦⎡⎣∆𝑥̂
∆𝑦

⎤⎦ .
This process is repeated for both the virtual agent who is navigating the environment

and the replayed version of the human who drove through the environment in the real

55



world. Now in a common coordinate frame, VISTA computes the relative displace-

ment by subtracting the two state vectors. Thus, VISTA maintains estimates of the

lateral, longitudinal, and angular perturbations of the virtual agent with respect to

the closest human state at all times (Figure 3-2B).

3.2.2 Multi-sensor Simulation

RGB Image Camera

VISTA is scalable as it does not require storing and operating on 3D reconstruc-

tions of entire environments or cities. Instead, it considers only the observation col-

lected nearest to the virtual agent’s current state. Simulating virtual agents over real

road networks spanning thousands of kilometers requires several hundred gigabytes

of monocular camera data. Figure 3-2C presents view synthesis samples. From the

single closest monocular image, a depth map is estimated using a convolutional neural

network using self-supervision of stereo cameras (Godard et al., 2017). Using the esti-

mated depth map and camera intrinsics, our algorithm projects from the sensor frame

into the 3D world frame. After applying a coordinate transformation to account for

the relative transformation between virtual agent and human, the algorithm projects

back into the sensor frame of the vehicle and returns the result to the agent as its next

observation. To allow some movement of the virtual agent within the VISTA envi-

ronment, we project images back into a smaller field-of-view than the collected data

(which starts at 120∘). Missing pixels are inpainted using a bilinear sampler, although

we acknowledge more photorealistic, data-driven approaches (Liu et al., 2018) that

could also be used. VISTA is capable of simulating different local rotations (±15∘)

of the agent as well as both lateral and longitudinal translations (±1.5m) along the

road. As the free lateral space of a vehicle within its lane is typically less than 1m,

VISTA can simulate beyond the bounds of lane-stable driving. Note that while we

focus on data-driven simulation for lane-stable driving, the presented approach is

also applicable to end-to-end navigation (Amini et al., 2019a) learning by stitching

together collected trajectories to learn through arbitrary intersection configurations.
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LiDAR Pointcloud

LiDAR sensors play a central role in modern autonomy pipelines due to their ac-

curacy in measuring geometric depth information and robustness to environmental

changes like illumination. Unlike cameras which return structured grid-like images,

the LiDAR sensor captures a sparse pointcloud of the environment. Here, every point

is represented by a 4-tuple: (𝑥, 𝑦, 𝑧, 𝑖), where (𝑥, 𝑦, 𝑧) is the position of the point in

3D Cartesian space and 𝑖 is the intensity feature measurement of that point. Given a

virtual agent’s position in the environment, along with a relative transformation (ro-

tation 𝑅 ∈ R3×3 and translation 𝑡 ∈ R3) to the nearest human collected pointcloud,

Ψ, the goal of VISTA is to synthesize a novel LiDAR pointcloud, Ψ′, which appears

to originate from the virtual agent’s relative position.

Since Ψ is represented in 3D Cartesian space, a naive solution would be to directly

apply the relative transformation of the agent (𝑅, 𝑡) to Ψ as a rigid transformation:

Ψ′ = 𝑅Ψ + 𝑡. However, this approach will fail for several reasons. The pointcloud

obtained from a LiDAR sensor has a specific ring pattern pattern originating at the

sensor’s optical center. Applying a rigid transformation to the points will not only

transform the individual points, but in doing so, also transform and break the ring

structure inherently defining the sensor’s location. Instead, to preserve the sensor

structure we must recast LiDAR rays, from the new sensor location, into the scene

and estimate new readings. Furthermore, the naively transformed pointcloud will

very likely have points which may have been visible in the original scan, but become

occluded in the new viewpoint and thus need to be rejected to maintain line-of-sight

properties of the sensor. To overcome these issues, we (1) cull the now occluded

points, (2) create a dense representation of the sparse pointcloud, and (3) sample

from the dense representation according to a sensor-specific prior. We outline the

algorithm below in detail.

First, we implement a GPU-accelerated culling technique to operate on our sparse

transformed pointcloud, Ψ′. We start by projecting Ψ′ into 2D polar coordinates,
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𝛼 = arctan

(︂
Ψ′

𝑦

Ψ′
𝑥

)︂
; 𝛽 = arcsin

(︂
Ψ′

𝑧

𝑑

)︂
; 𝑑 = ‖Ψ′‖2 (3.3)

where (𝛼, 𝛽) are the yaw and pitch angles of the rays connecting each of the points,

and 𝑑 are the distances along each ray. Now, the entire pointcloud, Ψ′ is represented

as a sparse 2D image (without loss of information) over (𝛼, 𝛽) with 𝑑 being the color

or value of each pixel. To cull out points within our image, the distance of each pixel

is compared to the average distance of its surrounding “cone” of neighboring rays. If

the average distance of neighboring rays is less than the depth of the current pixel,

the point is occluded and is removed from the sparse image. Figure 3-3 visualizes

the large effect of our culling algorithm and the qualitative improvement it has on

transformed pointclouds.

A. Raw 
sparse depth

B. Densify
(no culling)

C. Densify
(with culling)

1

1

2

2

1 2 2

Zoom in

no culling with culling no culling with culling

1

Figure 3-3: Culling occluded points. Transformed sparse scenes (A) will have
points which should be rejected (culled) before rendering to avoid blending of
foreground and background (B). Our culling algorithm (C) is lightweight, GPU-
accelerated, and does not rely on raycasting a scene mesh.

With our sparse and culled pointcloud, we need to build a dense representation of

the scene to sample a new cast of LiDAR rays and generate the novel viewpoint. To

densify our sparse representation we train a UNet architecture (Ronneberger et al.,

2015) to learn a dense output of the scene. Training data for our densification network
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is generated using a 2D linear interpolator. We found that using a data-driven ap-

proach to densification yielded smoother, more natural qualitative results over strict

rule-based interpolation (scipy.interpolate). Furthermore, the resulting model is

easily GPU-parallelizable to achieve significant speedups (∼ 100× faster).

Finally, we sample sparse points from our dense representation to form the novel

view pointcloud. To determine sampling locations we can construct a prior, Ω, over

the existing ray cast angles of the sensor in our dataset. The ray vectors for the sensor

are largely fixed over time, as they are built into the hardware of the sensor, but can

have some slight variations or drops based on the environment. Sampling 𝜔 from the

prior yields a collection of rays, {(𝛼𝑖, 𝛽𝑖)}, to cast and collect point readings from.

Furthermore, the prior, Ω, will respect several desirable properties of the sensor which

can also be user specified such as the quantity and density of the LiDAR rays. Since

we are still operating in polar coordinate image space, 𝜔 is equivalent to a binary

mask image denoting where in our dense image should be sampled. With our new,

sampled polar image we can invert the transform in Eq. 3.3 to represent our data

back in the desired 3D Cartesian space. Figure 3-4 visualizes the different stages in

the rendering pipeline, through the dense representation of the scene (A,B) as well

as the result after sampling and reprojecting back to 3D cartesian space (C).

A. Synthesized
depth

B. Synthesized
intensity

C. Rendered
pointcloud

(height & intensity)

Figure 3-4: LiDAR novel view-synthesis. Simulating a lateral translation of 1m
off the road. Dense representations of depth (A) and intensity (B) are estimated
from the sparse transformation. Sparse pointclouds (C) are rendered by sampling the
dense representation according to the sensor prior.
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Event-based Camera Stream

Event-based cameras are asynchronous, continuous-time sensors that detect bright-

ness changes of the scene. An event is emitted when brightness change exceeds a

certain threshold at a pixel location, and is described as a 4-tuple of pixel coordinate,

timestamp, and polarity. The polarity is a binary value that indicates whether bright-

ness change is positive or negative. Conceptually, event camera data can be viewed

as the derivative of regular RGB camera data with additional advantages of much

higher operating frequency (> 10, 000Hz) and dynamic range. Given its similarity to

RGB cameras, event data can be simulated by taking the derivative with respect to

time over interpolated RGB frames (Rebecq et al., 2018; Gehrig et al., 2020b). Our

proposed method extends prior work to additionally handle (1) non-aligned camera

projection across RGB and event cameras; and (2) novel view synthesis according

to vehicle’s ego-motion. Simulating events from RGB instead of event data allows

applying VISTA to existing datasets which mostly contain RGB sequences but not

event data (Figure 3-5).

RGB space: Event space:

Figure 3-5: Different pixel spaces for event generation. Events can be generated
by estimating brightness change in RGB camera image space or virtual event camera
image space.

To capture the instantaneous change of pixel intensity, we need to first construct a

continuous representation of RGB image stream. Given two consecutive RGB frames

𝐼𝑡1 , 𝐼𝑡2 and bidirectional optical flow 𝐹𝑡1→𝑡2 , 𝐹𝑡2→𝑡1 , this can be achieved by arbitrary-
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time frame interpolation (Jiang et al., 2018),

𝐼𝑡1+𝑘Δ𝑡 = 𝑓interp(𝐼𝑡1 , 𝐼𝑡2 , 𝐹𝑡1+𝑘Δ𝑡→𝑡1 , 𝐹𝑡1+𝑘Δ𝑡→𝑡2) (3.4)

𝐹𝑡1+𝑘Δ𝑡→𝑡1 = −(1− 𝑘∆𝑡)𝑘∆𝑡𝐹𝑡1→𝑡2 + (𝑘∆𝑡)2𝐹𝑡2→𝑡1 (3.5)

𝐹𝑡1+𝑘Δ𝑡→𝑡2 = (1− 𝑘∆𝑡)2𝐹𝑡1→𝑡2 − 𝑘∆𝑡(1− 𝑘∆𝑡)𝐹𝑡2→𝑡1 (3.6)

where 𝑘 ∈ [0, 𝑡2−𝑡1
Δ𝑡

] and 𝑘∆𝑡 specifies the time interval to be simulated in between.

The arbitrary-time flow is derived from temporal consistency going forward (𝑡1 →

𝑡1 + 𝑘∆𝑡) and backward (𝑡2 → 𝑡1 + 𝑘∆𝑡) in time with local smoothness assumption.

The interpolation function 𝑓interp is implemented by a neural network that handles

visibility issue from both directions. We refer the reader to (Jiang et al., 2018) for

more details.

With this, we now apply an event generation model (Mueggler et al., 2017; Gallego

et al., 2017),

(p, 𝑡𝑘, 𝜌) if 𝜌
(︀
ln 𝐼(p, 𝑡𝑘)− ln 𝐼(p, 𝑡𝑘 −∆𝑡)

)︀
≥ 𝑐𝑘 (3.7)

where p is the pixel coordinate, 𝜌 ∈ {−1, 1} is polarity and 𝑐𝑘 ∼ 𝒩 (𝜇𝑐, 𝜎𝑐) is the

contrast threshold sampled from a Gaussian to simulate noise. The temporal granu-

larity of event generation is determined by ∆𝑡, which yields more accurate simulation

with smaller values until saturating at subpixel displacement of optical flow. Further-

more, adaptive sampling (Rebecq et al., 2018) is used to jointly achieve accuracy and

efficiency,

∆𝑡 =
𝑡2 − 𝑡1

min{max
p

max{𝐹𝑡1→𝑡2(p), 𝐹𝑡2→𝑡1(p)} − 1,∆𝑡max}
(3.8)

where ∆𝑡max sets an upper bound to computational resources required for simulation.

Thus far, the only thing yet to be defined is the space that pixel coordinate p lives

in. It can be image space of either RGB camera (input) or novel-view event camera
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(output), which are related by reprojection,

p𝑒𝑣𝑒𝑛𝑡 = 𝐾𝑒𝑣𝑒𝑛𝑡𝑇
𝑛𝑜𝑣𝑒𝑙
𝑒𝑣𝑒𝑛𝑡𝑇

𝑒𝑣𝑒𝑛𝑡
𝑟𝑔𝑏 𝐷(p𝑟𝑔𝑏)𝐾

−1
𝑟𝑔𝑏p𝑟𝑔𝑏 (3.9)

where 𝐾𝑒𝑣𝑒𝑛𝑡, 𝐾𝑟𝑔𝑏 are intrinsics for event and RGB cameras, 𝐷 is depth, and 𝑇

is transformation across two poses. We explicitly factorize 𝑇 𝑒𝑣𝑒𝑛𝑡
𝑟𝑔𝑏 since the control

commands reference at existing sensors in the dataset. In event generation model

(3.7), using p𝑟𝑔𝑏 involves generating events in RGB image space from the dataset and

reprojecting pixel coordinates to event image space. We implement a bilinear sampler

with thresholding to handle non-integer pixels after reprojection. On the other hand,

using p𝑒𝑣𝑒𝑛𝑡 renders the scene based on RGB dataset in event camera space and

generate events without pixel reprojection. We argue that p = p𝑒𝑣𝑒𝑛𝑡 may be a better

option since it casts the subpixel issue of reprojection (3.9) from interpolating in pixel

coordinate space as in p = p𝑟𝑔𝑏 to interpolating in color/intensity space of meshes

during RGB image rendering. The comparison can be seen in Figure 3-5.

3.2.3 Multi-agent Interaction

Multi-agent Rendering

VISTA supports the rendering of multiple agents in a simulated environment in order

to enable studies and exploration of multi-agent interactions and dynamics (Figure 3-

6). Every agent’s current state is associated with a pre-collected frame according to

the closest distance from its pose to the pose of the data-collection vehicle. We com-

pensate for the local transform between the data and the agent leveraging the camera

extrinsics during rendering combined with the use of approximate depth information.

We project the image from the data coordinate frame, i.e. the data viewpoint 𝑝𝑠, to

the agent’s viewpoint 𝑝𝑡,

𝑝𝑡 = 𝐾𝑇𝑣2→𝑡𝑇𝑣1→𝑣2𝑇𝑠→𝑣1𝐷𝑠(𝑝𝑠)𝐾
−1𝑝𝑠, 𝑇𝑠→𝑣1 = 𝑇−1

𝑣2→𝑡, (3.10)
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Full Scene

Plain +Lighting +Harmonization

Style
Type

A. Scene Rendering B. Agent Library

Figure 3-6: Multi-agent rendering. (A) Example simulated scene with an oncom-
ing agent. Different levels of rendering compare the effect of lighting and harmoniza-
tion. (B) A variety of agents are available during simulation with different styles,
body material, specularity, and color.

where 𝐾 is the camera intrinsic, 𝐷𝑠(𝑝𝑠) is the depth of the data at point 𝑝𝑠, 𝑇𝑠→𝑣*

is the transform from camera to vehicle body, and 𝑇𝑣1→𝑣2 is the transform from the

vehicle body of the data to that of agent. We explicitly model the transform using

vehicle body 𝑇𝑣1→𝑣2 since it simplifies placing new meshes in the scene and checking

for collisions among meshes. Note that the yaw difference in 𝑇𝑠→𝑣* may induce a bias

of how the mesh is placed towards the left or right, which is of great importance with

other agents’ present in the scene.

Each agent is embodied by a mesh randomly sampled from a parametrizable ve-

hicle mesh library, which allows randomization over different car models, a set of

physically-realistic diffuse color, specular color, specular highlight, metalness, and

roughness of car body material, as shown in Figure 3-6B. The mesh is configured at

the beginning and remains the same throughout an entire episode. We place the mesh

based on the relative transform between the corresponding agent and the egocentric

viewpoint for rendering. For lighting, we cast ambient light based on the average

color of the scene and directional light from the egocentric viewpoint infinitely far

away. For postprocessing in image space, we run image harmonization (Sofiiuk et al.,

2021) with the rendered images and the foreground mask.
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Multi-agent Objectives and Tasks

VISTA enables end-to-end policy learning with multi-agent data-driven simulation.

We showcase these capabilities on two autonomous driving tasks, car following and

overtaking, focusing on the latter as it is more challenging. Both tasks involve two

agents in the scene, the ego car and the front car. The front car is randomly initialized

at some distance along the forward direction of the ego car with random speed, lateral

shift, and heading with respect to the road curvature. The objective of car following

is to keep track of the front car while the front car may perform lane changes. The

ego car is initialized to the random speed of the front car so that the ego car never

loses the front car in its viewpoint and has sufficient information to perform tracking.

In overtaking, the ego speed is randomly set to be faster than the front car, enabling

an overtaking action. The goal of the ego car is to pass the front car without collision

while performing lane stable maneuver. The front car of both tasks use pure pursuit

controller to trace out trajectories automatically generated based on road curvature,

while the ego car commands steering.

3.3 Learning within Simulation

In this section, we discuss different techniques to effectively learn an optimal policy for

decision making and control. We aim to learn an autonomous policy, 𝑓 , parameterized

by 𝑤 which estimates an optimal action, 𝑎̂𝑡, at time 𝑡 from the current state, 𝑠𝑡:

𝑎̂𝑡 = 𝑓(𝑠𝑡;𝑤). (3.11)

There are many considerations to take into account when learning a policy from data

that effect the ultimate policy attained. Policy learning algorithms can be offline

(learned from a fixed pre-collected dataset) or online (learned as the dataset is built

and jointly guides the collection process).

When considering dynamic decision making scenarios like autonomous control, it

is also critical to consider the effect of compounding errors on the policy. If a model
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incurs a minor error on every output its overall average error rate may naively appear

to be very small. However, because the errors have a direct impact on the future states

that the agent sees, the errors quickly compound and cause the inputs to rapidly

diverge from the original training distribution. In practice, this phenomenon causes

a severe degradation of performance when offline (open-loop) policies are deployed

into reality (with closed-loop feedback) and is critical in designing an effective policy

learning algorithm.

3.3.1 Supervised Learning

The simplest method for policy learning follows a supervised learning framework.

We assume we have access to a dataset of 𝑛 observed state-action pairs (𝑠𝑡, 𝑎𝑡)
𝑛
𝑖=1

from expert demonstration. For example, a human driver can collect a stream of

image-control pairs while driving and exhibiting safe (optimal) behavior on the road.

In supervised learning, the agent outputs a deterministic action by minimizing the

empirical error,

𝐿(𝑤) =
𝑛∑︁

𝑖=1

(𝑓(𝑠𝑡;𝑤)− 𝑎𝑡)2. (3.12)

Our empirical error 𝐿(𝑤) can be minimized through stochastic gradient descent

(SGD) or other similar non-convex optimization techniques:

𝑤* = argmin
𝑤

𝐿(𝑤). (3.13)

However, because the agent’s predicted action has a direct impact on future input

state’s that are observed during execution, this violates a crucial assumption made

by supervised learning - which is that the inputs to the system are independent and

identically distributed (i.i.d.). Intuitively this is realized by a compounding of errors,

where as soon as the policy makes a mistake, it begins to encounter observations that

are out-of-distribution from the expert training data, which in turn feedback to cause

errors of greater and greater magnitude.

For example, in autonomous driving because our expert training data will only
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demonstrate how to drive while in the center of the lane, the policy will not be able

to recover from any off-orientation perturbations (i.e., slightly translated off-center,

or rotated with respect to the curvature of the road). Any small errors in the nominal

policy will cause the vehicle to shift slightly into an off-orientation, out-of-distribution

position on the road where the policy will know know how to recover from.

Thus, it is necessary to also train our policies to exhibit reliable behavior not only

when in the nominal data regimes of deployment, but also during these challenging

off-orientation edge-cases situations. In efforts to mitigate this issue with supervised

learning, it is desirable to collect the necessary off-orientation recovery data. However,

for safety-critical scenarios such as robotics, one cannot collect this edge-case data

(e.g . near-crash scenarios, in driving) in order to sufficiently train our model to recover

from these situations. Thus, simulation becomes critical to generate the necessary

edge-case data which still maintaining a high level of safety during training.

3.3.2 Guided Policy Learning

With VISTA we are able to simulate and generate novel viewpoints in arbitrary

environments and multi-agent interactions. Now we discuss a method for taking a

data generation technique such as VISTA and building full datasets amenable for

policy learning while overcoming the fundamental challenges associated with vanilla

supervised learning. Guided policy learning (GPL) is an algorithm for bridging this

gap and injecting privileged information into the data generation process so we can

learn how to sufficiently recover from off-orientation position during deployment.

The fundamental insight of GPL is to combine our original supervised learning

dataset together with a privileged controller which will label novel viewpoints that

we generate prior to training. Specifically, using VISTA we have a method for

generating the sensory data (camera, LiDAR, events) from novel viewpoints and

near crash positions; however, we need to associate this sensory data (inputs) with

their corresponding action (outputs) which are needed for training. Our privileged

controller provides these labels which closes the loop in our data generation procedure.

Note that the privileged controller, since it is running prior to training and within
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simulation, has access to substantially more information than our final deployment-

time policy (which only observes raw sensory data). On the other hand, the privileged

controller may have complete information on the state of the vehicle to augment its

labelling process and produce the highest quality labels for training. For example, we

can provide full state information of the agent (lateral and longitudinal displacement,

curvature of the road, location and speed of other agents in the scene, etc). With this

full (privileged) view of the world, we can generate high quality labels for training

our policy.

Algorithm 1 describes data generation in VISTA and downstream GPL. First,

the simulator is reset with random initialization (e.g., off-center position and heading).

The simulator is stepped with control commands from the privileged controller and

iteratively generates sensor measurements and optimal control labels for supervising

policy learning. While there are no restrictions on the optimal controller used for

the privileged agent, we use a pure-pursuit controller in our experiments to smoothly

guide the agent back to the center position and heading of the road within some

look-ahead distance. We use a shuffled buffer to approximately ensure i.i.d. training

samples. Before adding data into the buffer, rejection sampling is used to balance the

label distributions (Amini et al., 2018b, 2019a,b).

Finally, we introduce a branching step that locally branches out from stepping

the simulator with privileged control (e.g., turning right instead of left as instructed).

This is extremely important to policy learning with event cameras since event data

captures changes in the scene and thus conflates the vehicle’s ego-motion with its own

control. This means that a policy can accurately correlate control to the motion of the

scene instead of attending to the road. While not presenting an obvious issue during

open-loop evaluation (Maqueda et al., 2018), these policies will fail catastrophically

on a closed-loop test. However, by branching with arbitrary control, we effectively

disentangle ego-motion and scene information in event patterns.

GPL provides a systematic approach to training a policy on a sequential decision

making task by combining an expert demonstration dataset with a simulator and

privileged controller to label novel expert trajectories for recovery. However, one

67



Algorithm 1 Data generation and training in VISTA
for 𝑘 ← 1 to 𝑁 do

while ! buffer.full() do
if VISTA.done() then

VISTA.reset()
end if
𝑥← VISTA.readSensorBuffer()
if useBranching then

VISTA.randomStep()
𝑦 ← privilegedController(VISTA.getState())
revertState(VISTA, privilegedController)

else
𝑦 ← privilegedController(VISTA.getState())

end if
VISTA.step(𝑦)
if ! rejectSample(𝑥, 𝑦) then

buffer.add(𝑥, 𝑦)
end if

end while
buffer.shuffle()
trainModel(buffer.next())

end for

disadvantage of GPL is the original requirement of expert demonstrations and in

some cases defining a high performance privileged controller. In several situations

it is desirable to learn only by providing high level reward signals and learning the

controller that can achieve as much reward as possible. This eliminates the need to

do any collection of data or manually define a privileged controller.

3.3.3 Reinforcement Learning

In the reinforcement learning (RL) setting, the agent has no explicit feedback of

the expert human actuated command, 𝑎𝑡. Instead, it receives a reward 𝑟𝑡 for every

consecutive action that does not result in an intervention and can evaluate the return,

𝑅𝑡, as the discounted, accumulated reward,

𝑅𝑡 =
∞∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘, (3.14)
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where 𝛾 ∈ (0, 1] is a discounting factor. In other words, the return that the agent

receives at time 𝑡 is a discounted distance traveled between 𝑡 and the time when

the vehicle requires an intervention. As opposed to in supervised learning, the agent

optimizes a stochastic policy over the space of all possible actions: 𝜋(𝑎|𝑠𝑡;𝑤). Since

the steering control of autonomous vehicles is a continuous variable, we parameterize

the output probability distribution at time 𝑡 as a Gaussian, (𝜇𝑡, 𝜎
2
𝑡 ). Therefore, the

policy gradient, ∇𝑤𝜋(𝑎|𝑠𝑡;𝑤), of the agent can be computed analytically:

∇𝑤𝜋(𝑎|𝑠𝑡;𝑤) = 𝜋(𝑎|𝑠𝑡;𝑤)∇𝑤 log (𝜋(𝑎|𝑠𝑡;𝑤)) . (3.15)

Thus, the weights 𝑤 are updating in the direction ∇𝑤 log (𝜋(𝑎|𝑠𝑡;𝑤)) · 𝑅𝑡 during

training (Williams, 1992; Sutton et al., 2000).

We train RL agents in various simulated environments, where they only receive

rewards based on how far they can drive without intervention. Compared to super-

vised learning, where agents learn to simply imitate the behavior of the human driver,

RL in simulation allows agents to learn suitable actions which maximize their total

reward in that particular situation. Thus, the agent has no knowledge of how the

human drove in that situation. Using only the feedback from interventions in simu-

lation, the agent learns to optimize its own policy and thus to drive longer distances

(Algorithm 2).

While there is no limitation for RL algorithms to be applied in our simulator,

we adopt proximal policy optimization (PPO) (Schulman et al., 2017) for its sim-

plicity and ubiquity across robot learning tasks, from land (Guan et al., 2020) and

aerial (Bøhn et al., 2019) vehicles to humanoid walking (Schulman et al., 2017). PPO

is an on-policy algorithm that maximizes the following objective

E
𝑠,𝑎∼𝜋𝑘

[︁
min(

𝜋𝑘−1(𝑎|𝑠)
𝜋𝑘(𝑎|𝑠)

𝐴𝜋𝑘(𝑎|𝑠), clip(𝜋𝑘−1(𝑎|𝑠)
𝜋𝑘(𝑎|𝑠)

, 1− 𝜖, 1 + 𝜖)𝐴𝜋𝑘(𝑎|𝑠))
]︁
, (3.16)

where 𝜋(𝑎|𝑠) is the policy’s action distribution given observation 𝑠, 𝐴𝜋𝑘(𝑎|𝑠) is

advantage function which estimates how good an action is, and 𝜖 is a hyperparameter.
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Algorithm 2 Policy Gradient (PG) training in VISTA
Initialize 𝜃 ◁ NN weights
Initialize 𝐷 ← 0 ◁ Single episode distance
while 𝐷 < 10km do

𝑠𝑡 ← VISTA.reset()
while VISTA.done = False do

𝑎𝑡 ∼ 𝜋(𝑠𝑡;𝜃) ◁ Sample action
𝑠𝑡+1 ← VISTA.step(𝑎𝑡) ◁ Update state
𝑟𝑡 ← 0.0 if VISTA.done else 1.0 ◁ Reward

end while
𝐷 ← VISTA.episode_distance
𝑅𝑡 ←

∑︀𝑇
𝑘=1 𝛾

𝑘𝑟𝑡+𝑘 ◁ Discounted return
𝜃 ← 𝜃 + 𝜂

∑︀𝑇
𝑡=1∇𝜃 log 𝜋(𝑎𝑡|𝑠𝑡;𝜃)𝑅𝑡 ◁ Update

end while
return 𝜃

The intuition is to maximize task performance, measured by the advantage function,

while making sure the new policy 𝜋𝑘 does not deviate too much from the old policy

𝜋𝑘−1 by bounding the ratio 𝜋𝑘−1/𝜋𝑘 to a small interval, 𝜖. In our case, the policy

takes observation 𝑠 as images and outputs action 𝑎 as steering angle.

Multi-agent Reward Objectives

We can formulate our end-to-end policy learning as a RL problem given its gen-

eralizability across a wide variety of tasks. Setting up a RL environment requires

definitions of environment dynamics, terminal conditions, and the reward function.

The simulator defines how the scene dynamically evolves after receiving an agent’s

action. Due to the nature of the simulator rendering, a default set of terminal con-

ditions is exceeding a threshold maximum translation or rotation, as discussed in

(Amini et al., 2020a, 2021). Another terminal condition occurs when there is col-

lision among agents, determined by the overlap of polygons with shape as vehicle

dimension exceeding certain threshold. Besides, given how a new observation is syn-

thesized based on a local transform with respect to the data in the simulator and all

autonomous driving tasks involving lane following, it is natural to define the reward

function based on the rotational, lateral, and longitudinal components of vehicle pose
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with respect to the data (center line). Namely we have:

⎡⎢⎢⎢⎣
𝑞𝑙𝑎𝑡

𝑞𝑙𝑜𝑛𝑔

𝑞𝑟𝑜𝑡

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos 𝜃𝑠 − sin 𝜃𝑠 0

sin 𝜃𝑠 cos 𝜃𝑠 0

0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑥𝑡 − 𝑥𝑠
𝑦𝑡 − 𝑦𝑠
𝜃𝑡 − 𝜃𝑠

⎤⎥⎥⎥⎦ , (3.17)

where (𝑥𝑡, 𝑦𝑡, 𝜃𝑡) and (𝑥𝑠, 𝑦𝑠, 𝜃𝑠) are the poses of the virtual agent and corresponding

human reference respectively.

With this notation, the two aforementioned terminal conditions can be written as

1𝑞𝑙𝑎𝑡>𝑍𝑙𝑎𝑡
and 1𝑞𝑟𝑜𝑡>𝑍𝑟𝑜𝑡 , where 𝑍* is the threshold that triggers termination. Thus, we

can formally define a lane following reward as

𝑅𝑙𝑎𝑛𝑒 = 1−
(︂
𝑞𝑙𝑎𝑡
𝑍𝑙𝑎𝑡

)︂2

. (3.18)

For car following, we can simply adapt the lane reward by changing the center line to

the trajectory traced out by the front car. In overtaking, additional to lane reward,

we define a pass reward based on comparing the distances traced out by both cars,

𝑅𝑝𝑎𝑠𝑠 = 1

[︂∫︁ √︀
𝑥̇𝑒(𝑡) + 𝑦̇𝑒(𝑡)−

∫︁ √︁
𝑥̇𝑓 (𝑡) + 𝑦̇𝑓 (𝑡) ≥ 𝑍𝑝𝑎𝑠𝑠

]︂
, (3.19)

where subscripts *𝑒 and *𝑓 denote ego and front car respectively, and 𝑍𝑝𝑎𝑠𝑠 is hyper-

parameter.

Finally, to provide more learning signal for collision avoidance, we dilate the poly-

gon of the ego car and compute its overlap with other agents,

𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = −|Dilate(𝑃𝑒𝑔𝑜) ∩ 𝑃𝑜𝑡ℎ𝑒𝑟|
|𝑃𝑒𝑔𝑜|

, (3.20)

where 𝑃 denotes a vehicle’s polygons. In both tasks, we add a comfort reward that

is computed as the negative second derivative of steering 𝑅𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = −𝛿 to reduce

jittering.
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3.3.4 Sim-to-real Transfer Techniques

We train imitation learning models with real-world data and multi-camera viewpoint

augmentation and refer to these models as IMIT-AUG (Figure 3-7A). Alternatively,

we can synthesize new viewpoints using a simulation engine.

Because VISTA is a fully data-driven simulation engine, its resulting simulated

views are naturally high fidelity and photorealistic. On the other hand, model-based

simulation presents a large amount of modularity benefits but suffers from poor photo-

realism and semantic mismatch. While tremendous effort has been placed into making

model-based environments (Figure 3-7B) as photorealistic as possible, a simulation

gap still exists. For example, as opposed to the data-driven VISTA simulator, the

autonomous driving simulator CARLA (Dosovitskiy et al., 2017) is model-based, like

many other autonomous driving simulators. The CARLA simulator can be used to

evaluate the performance of end-to-end models using sim-to-real transfer learning

techniques. We found that end-to-end models trained solely in CARLA were unable

to transfer to the real world. Therefore, we evaluated the following two techniques

for bridging the sim-to-real gap in CARLA.

Domain Randomization

We test the effect of domain randomization (DR) (Tobin et al., 2017) on learning

within model-based simulation. DR attempts to expose the learning agent to many

different random variations of the environment, thus increasing its robustness in the

real-world. In our experiments, we randomized various properties throughout the

environment (Figure 3-7C), including the sun position, weather, and hue of each of

the semantic classes (i.e. road, lanes, buildings, etc). Like IMIT-AUG we also

train DR models with viewpoint augmentation and thus refer to these models as

DR-AUG.
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A

B

C

Figure 3-7: Training images from various comparison methods. Samples
drawn from the real-world (IMIT-AUG; A) and the model-based simulator CARLA
(B-C). Domain randomization (DR-AUG; C) illustrates transformations of a single
location for comparison.

Domain Adaptation

We evaluate a model that is trained with both simulated and real images to learn

shared control. Since the latent space between the two domains is shared (Bewley

et al., 2018), the model can output a control from real images during deployment

even though it was only trained with simulated control labels during training. Again,

viewpoint augmentation is used when training our sim-to-real baseline, S2R-AUG.

3.4 Experimental Setup

Learned controllers were deployed directly onboard a full-scale vehicle (2020 Lexus

RX 450H or 2015 Toyota Prius V) retrofitted for full autonomous control (Naser

et al., 2017). The primary perception sensors for control are a LI-AR0231-GMSL

camera (120 degree field-of-view), operating at 30Hz, a 10Hz Velodyne VLS-128 Li-

DAR sensor, and a Prophesee Gen3 event-based camera. Data is serialized with h264
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encoding with a resolution of 1920× 1208. At inference time, images are scaled down

approximately 3× fold for performance. Also onboard are inertial measurement units

(IMUs), wheel encoders, and centimeter-level accurate OxTS global positioning sys-

tem (d-GPS) for evaluation. An NVIDIA Drive PX2 and NVIDIA 2080Ti GPU for

accelerated computing. To standardize all model trials on the test-track, a constant

desired speed of the vehicle was set at 20 kph, while the model commanded steering.

3.4.1 Data Collection

We collect data from multiple sensors (RGB camera, LiDAR, event camera) with

vehicle speed 30-60 kph in a wide variety of environments, including different time of

day (daytime/night), weather conditions (sun/rain), and road types (urban/rural).

The entire dataset contains roughly 3 hours of driving data. RGB images, LiDAR

point cloud, event data, and curvature feedback are used for VISTA simulation,

policy learning, and evaluation. GPS data is only used for evaluation.

3.4.2 Test Environment

The model’s generalization performance was evaluated on previously unseen roads.

That is, the real-world training set contained none of the same areas as the testing

track (spanning over 3km) where the model was evaluated.

Agents were evaluated on all roads in the test environment. The track presents a

difficult rural test environment, as it does not have any clearly defined road boundaries

or lanes. Cracks, where vegetation frequently grows onto the road, as well as strong

shadows cast from surrounding trees, cause classical road detection algorithms to fail.

3.5 Results

3.5.1 Offline Lane-stable Policy Learning

In this section, we present results on learning end-to-end control of autonomous ve-

hicles entirely within VISTA, under different weather conditions, times of day, and
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road types. Each environment collected for this experiment consisted of, on average,

one hour of driving data from that scenario.

We started by learning end-to-end policies in different times of day (Figure 3-8A).

As expected, we found that agents learned more quickly during the day than at night,

where there was often limited visibility of lane markers and other road cues. Next,

we considered changes in the weather conditions. Environments were considered

“rainy” when there was enough water to coat the road sufficiently for reflections to

appear or when falling rain drops were visible in the images. Comparing dry with

rainy weather learning, we found only minor differences between their optimization

rates (Figure 3-8B). This was especially surprising considering the visibility challenges

for humans due to large reflections from puddles as well as raindrops covering the

camera lens during driving. Finally, we evaluated different road types by comparing

learning on highways and rural roads (Figure 3-8C). Since highway driving has a
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Figure 3-8: Reinforcement learning in simulation. Autonomous vehicles placed
in the simulator with no prior knowledge of human driving or road semantics demon-
strate the ability to learn and optimize their own driving policy under various different
environment types. Scenarios range from different times of day (A), to weather con-
dition (B), and road types (C).
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tighter distribution of likely steering control commands (i.e., the car is traveling

primarily in a nearly straight trajectory), the agent quickly learns to do well in this

environment compared to the rural roads, which often have much sharper and more

frequent turns. Additionally, many of the rural roads in our database lacked lane

markers, thus making the beginning of learning harder since this is a key visual

feature for autonomous navigation.

In our experiments, learned agents iteratively explore and observe their surround-

ings (e.g. trees, cars, pedestrians, etc.) from novel viewpoints. On average, the

learning agent converges to autonomously drive 10km without crashing within 1.5

million training iterations. Thus, when randomly placed in new locations with simi-

lar features to data encountered during training, the agent is able to use its learned

policy to navigate. While demonstration of learning in simulation is critical for de-

velopment of autonomous vehicle controllers, we also evaluated the learned policies

directly on-board our full-scale autonomous vehicle to test translation and general-

ization to the real world.

3.5.2 Online Evaluation in the Real World

Next, we considered models trained in VISTA against baseline models, deployed

them into the real world, and evaluated their performance. First, we note that models

trained solely in CARLA did not transfer, and that training with data viewpoint

augmentation (Bojarski et al., 2016) strictly improved performance of the baselines.

Thus, we compare against baselines with augmentation. Each model is trained 3

times and tested individually on every road on the test track. At the end of a road,

the vehicle is restarted at the beginning of the next road segment. The test driver

intervenes when the vehicle exits its lane. The mean trajectory of the three trials

are shown in Figure 3-9A, with intervention locations drawn as red points. Road

boundaries are plotted in black for scale of deviations.

IMIT-AUG yielded highest performance out of the three baselines, as it was

trained directly with real-world data from the human driver. Of the two models

trained with only CARLA control labels, S2R-AUG outperformed DR-AUG re-
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quiring an intervention every 700m compared to 220m. Even though S2R-AUG only

saw control labels from simulation, it received both simulated and real perception.

Thus, the model learned to effectively transfer some of the details from simulation

into the real-world images allowing it to become more stable than purely randomiz-

ing away certain properties of the simulated environment (i.e. DR-AUG). VISTA

exhibited the best performance of all the considered models and never required any

interventions throughout the trials (totaling > 10km of autonomous driving). The

variance across trials is visualized in Figure 3-9B-C (line color in (B) indicates vari-

ance at that location). For each baseline, the variance tended to spike at locations

that resulted in interventions, while the variance of VISTA was highest in ambiguous

situations such as approaching an intersection, or wider roads with multiple possible

correct control outputs.

We also initiated the vehicle from off-orientation positions with significant lateral

and rotational offsets to evaluate robustness to recover from these near-crash scenarios

(Figure 3-10). A successful recovery is indicated if the vehicle is able to successfully

maneuver and drive back to the center of its lane within 5 seconds. We observed that

agents trained in VISTA were able to recover from these off-orientation positions on

real and previously un-encountered roads, and also significantly outperformed mod-

els trained with imitation learning on real world data (IMIT) or in CARLA with

domain transfer (DR-AUG and S2R-AUG). On average, VISTA successfully re-

covered over 2× more frequently than the next best, IMIT-AUG. The performance

of IMIT-AUG improved with translational offsets, but was still significantly outper-

formed by VISTA models trained in simulation by approximately 30%. All models

showed greater robustness to recovering from translations than rotations since rota-

tions required significantly more aggressive control to recover with a much smaller

room of error. In summary, deployment results for all models are shown in Table 3.1.

3.5.3 Augmenting Control Learning with Novel Viewpoints

Figure 3-11 demonstrates real-world policy deployment of IL and GPL policies. For

each policy, we run the vehicle autonomously (controlled by the policy) for 3 trials
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Figure 3-9: Evaluation of end-to-end autonomous driving. Comparison of
simulated domain randomization (Tobin et al., 2017) and adaptation (Bewley et al.,
2018) as well as real-world imitation learning (Bojarski et al., 2016) to learning within
VISTA (left-to-right). Each model is tested 3 times at fixed speeds on every road
on the test track (A), with interventions marked as red dots. The variance between
runs (B) and the distribution of deviations from the mean trajectory (C) illustrate
model consistency.

Table 3.1: Real-world performance comparison. Each row depicts a different
performance metric evaluated on our test track. Bold cells in a single row represent
the best performers for that metric, within statistical significance.

DR-AUG
(Tobin et al. (Tobin et al., 2017))

S2R-AUG
(Bewley et al. (Bewley et al., 2018))

IMIT-AUG
(Bojarski et al. (Bojarski et al., 2016))

VISTA
(Ours)

HUMAN
(Gold Std.)

Lane
Following

# of Interventions 13.6± 2.62 4.33± 0.47 3.00± 0.81 0.0± 0.0 0.0± 0.0
Dev. from mean [m] 0.26± 0.03 0.31± 0.06 0.30± 0.04 0.29± 0.05 0.22± 0.01

Near Crash
Recovery

(rate)

Trans. R (+1.5m) 0.57± 0.03 0.6± 0.05 0.71± 0.03 1.0± 0.0 1.0± 0.0
Trans. L (+1.5m) 0.51± 0.08 0.51± 0.08 0.67± 0.09 0.97± 0.03 1.0± 0.0
Yaw CW (+30∘) 0.35± 0.06 0.31± 0.11 0.44± 0.06 0.91± 0.06 1.0± 0.0
Yaw CCW (−30∘) 0.37± 0.03 0.33± 0.05 0.37± 0.03 0.93± 0.05 1.0± 0.0

in the outerloop of the test track (total distance of all trials is 45km). Figure 3-

11 shows interventions throughout multiple trials. Figure 3-12 shows percentage of

deviation from center smaller than a range of thresholds, where larger area below the

line means more stable lane keeping maneuvers. The performance of GPL policies for

RGB and LiDAR are significantly better than IL policies. This is highly aligned with
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Translation R. Translation L.

Yaw CCW Yaw CW

Figure 3-10: Robustness analysis. We test robustness to recover from near crash
positions, including strong translations (top) and rotations (bottom). Each model
and starting orientation is repeated at 15 locations on the test track. A recovery is
successful if the car recovers within 5 seconds.

our observation from closed-loop testing in VISTA, further motivating its efficacy

for policy evaluation, considering the time and safety costs of real-world testing.

Imitation
(real)

Guided
Policy
(VISTA)

A.  RGB B.  LiDAR C.  Event

200m 200m 200m

200m 200m 200m

Figure 3-11: Real-world deployment interventions. Policy trajectories (n=3;
45km total) and crash locations (red dots) for RGB (A), LiDAR (B), and Event (C)
sensors.

For event cameras, while the GPL policy also exhibits superior performance

in terms of number of interventions, it deviates more from the center compared to

IL policy and suffers from much frequent intervention compared to RGB and LiDAR
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GPL policies. This is due to the fact that event cameras can only see the component

of the road boundary non-parallel to the vehicle’s ego motion, while RGB and LiDAR

sensors provide sufficient information at every step for lane following. Such properties

highlight the potential utility of fusing event sensing with RGB and LiDAR for greater

benefits. We observed a swirling maneuver along straight roads with event policies

(8x more jittery than RGB measured by squared second derivative of curvature).

However, we found that our method of branched learning for preventing ego-motion

conflating the scene understanding (Algorithm 1) is highly effective in real-world tests

to reduce the number of interventions: 28.0 ± 3.6 (IL), 18.0 ± 1.0 (GPL), 6.5 ± 3.8

(GPL with branching). To further highlight the efficacy of GPL policies, we conduct

a robustness test by initializing the car with ±30∘ rotation and ±2𝑚 translation from

the lane center and measure the success rate of recovery, as shown in Table 3.2.

Recovery Rate RGB LiDAR Event

IL 0.27± 0.13 0.16± 0.11 0.00± 0.00
GPL 0.90± 0.13 0.83± 0.22 0.90± 0.15

Table 3.2: Robustness test. GPL policies trained in VISTA significantly outper-
form real-world IL at recovering from edge cases.

 Deviation from center

Sensor

RGB LiDAR Event

Using Sim

Yes (GPL) No (IL)
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Figure 3-12: Real-world deployment deviations with VISTA. Cumulative dis-
tribution of deviations from the center shows the benefit of training in VISTA.
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3.5.4 Multi-agent Deployment Evaluation

To further verify the performance of end-to-end policies learned from VISTA, we

deploy the learned model onto our full-scale autonomous vehicle and evaluate perfor-

mance in multi-agent obstacle avoidance and overtaking scenarios. We carry out 63

experimental trials with over 2 hours autonomously. In Table 3.3, we show overall

performance for different multi-agent scenarios. The front car being dynamic poses

a more challenging task in comparison to being static and results in more interven-

tions. In comparison to offline tests, minimal clearance, maximal deviation, and yaw

are larger, since the agent was placed in a more challenging setting by initializing

at either extreme side of the road and starting the ego car immediately behind it.

We also find the intervention frequency and minimal clearance to be biased towards

overtaking from the right side. Our hypothesis is that the yaw difference between the

camera and vehicle slightly drifts along time between the real car at test time and the

camera calibration for the simulator. Even 1 degree of drift can cause ∼9cm lateral

shift for objects 5m in the front of the camera.

Scenario Average
Intervention �

Minimum
Clearance �

Maximum
Deviation �

Maximum
Yaw �

Front
Car

Static 0 / 33 (0.00) 1.092 1.341 0.783
Dynamic 3 / 30 (0.10) 1.063 1.453 0.332

Overtake
From

Left 0 / 32 (0.00) 1.410 1.961 0.573
Right 3 / 31 (0.09) 0.735 0.809 0.563

Table 3.3: Closed-loop testing with multi-agent interactions. Results of online
(real-car) active tests in multi-agent object avoidance and overtaking scenarios.

We perform clearance analysis in Figure 3-13. We show the histogram of steps

with clearance less than 2m across all episodes. The peak is at 1m, which is good for

safe maneuvering. Observing the local maximum at very small clearance, we evaluate

the normalized cumulative trials that recall different clearance thresholds. The small

initial slope indicates that most low clearance steps are contributed by a very small

proportion of trials. Besides, the largest slope occurs roughly close to 0.8m, indicating

that most trials have clearance at such distance.

In Figure 3-14, we demonstrate qualitative results of multi-agent overtaking, with
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Figure 3-13: Clearance analysis in real-world tests. Histogram of clearance
across steps (left). Recall of normalized cumulative trials at clearance (right).

two trials showing successful overtaking and one trial involving intervention. The first

trial (first row) shows how the end-to-end learned policy can avoid the moving front

car and recover to the lane. In the second row, we further showcase the capability of

our policy to make a challenging turn, where the road curves toward the right while

the ego car can only overtake from the left. In the last row, we conduct a case study

involving intervention. At the first two timesteps 𝑡1 and 𝑡2, the policy did manage to

avoid the front car, while at 𝑡3, it cut back too early since the front car is lost in the

view and the speed of the ego car is too slow for the recurrent model to memorize

there was a car some time ago in the left. Augmenting more cameras on the side of

the autonomous vehicles may help address this issue.

3.6 Discussion

Simulation has emerged as a potential solution for training and evaluating autonomous

systems on challenging situations that are often difficult to collect in the real world.

However, successfully transferring learned policies from model-based simulation into

the real-world has been a long-standing field in robot learning. In this chapter,

we present VISTA, an end-to-end data-driven simulator for training autonomous

vehicles for deployment into the real-world. VISTA supports multimodal sensor

synthesis, including 2D RGB cameras, 3D LiDAR, and event-based cameras, and

multi-agent rendering for mobile agents. VISTA is entirely data-driven and can

82



synthesize high-fidelity sensor measurement sufficient for policy learning and evalua-

tion.

VISTA supports training agents anywhere within the feasible band of trajec-

tories that can be synthesized from data collected by a human driver on a single

trajectory. We showcase the sim-to-real ability by directly deploying policies learned

in VISTA on a full-scale autonomous vehicle for each sensor and demonstrate consis-

tent results between closed-loop evaluation in simulation and real-world tests as well

as improved robustness in recovery from near-crash scenarios. We evaluate learned

policies across several multi-agent tasks with increasing levels of complexity and con-

duct extensive empirical analyses in these multi-agent scenarios within simulation as

well as the real world.
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Figure 3-14: Qualitative real-world inspection. Rows correspond to individual
trials from different locations on on the test track. GPS tracking data is visualized
(left) along with timepoints tagged. For each timepoint, the corresponding image
view is provided (right) along with a semantic description.
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3.7 Scope and Limitations

VISTA is an open-source, data-driven platform for the generation of synthetic en-

vironments for training and evaluation of autonomous vehicle controllers. The mod-

ularity and scalability of VISTA provides a generalizable platform for simulation of

embodied agent perception and closed-loop control learning directly from real-world

data.

The work described in this chapter opens several opportunities for future work.

Potential future directions include, but are not limited to, more complicated tasks that

involve situational awareness from multi-agent interaction; edge-case generation by

evaluation with adversaries (Lee et al., 2019b); and learning more complex policies

with ambiguities such as point-to-point navigation (Codevilla et al., 2017; Amini

et al., 2019a; Hawke et al., 2020). This work opens up a new avenue for leveraging

high-fidelity data-driven simulation in robotics and represents a major step towards

enabling the direct, real world deployment of end-to-end learning of autonomous

vehicle controllers. Further, we believe the public release of VISTA will create new

research opportunities for perception and control of autonomous vehicles.

To achieve robust data-driven autonomy and decision making, the fidelity of data

we use to train and evaluate our systems is of critical importance. VISTA focuses

on this key challenge of the pipeline. By synthesizing edge cases and challenging

scenarios directly from real-world data, we bypass model-based sim-to-real limita-

tions while achieving a significant improvement of robustness of the learned models

during handling of these scenarios. However, it is insufficient to solely consider the

data aspect of this problem and ignore other parts of the pipeline. Namely, how do

the models, the inductive biases that we build into their architectures, as well as the

learning processes themselves affect decision making ability in the wild? Autonomous

decision making is a fundamentally dynamic problem, as agents live within respon-

sive environments which continuously evolve as a function of the decisions they take

and behaviors they execute. This requires the ability to build rich and expressive

representations from such complex and dynamic data as well as new optimization
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approaches for learning models capable of building these representations.

In Chapter 4, we begin to explore this through the lens of developing liquid time

constant neural units, expressive and causal neural models for continuous-time mod-

eling, and scaling their learning ability to high complexity autonomous control tasks

in Chapter 5.
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Chapter 4

Expressive Neuron Models for

Continuous-time Decision Making

4.1 Introduction

The safety-critical nature of end-to-end control places the demand that learned con-

trol models are able to gracefully handle rare events, have interpretable dynamics, and

generalize to unforeseen and uncertain scenarios. Chapter 3 described a data-centric

method to begin to address these challenges: VISTA, a data-driven engine for gen-

eration of synthetic, photorealistic driving environments. We additionally described

how control policies could be trained end-to-end in VISTA, entirely in simulation,

and demonstrated their translation to real world settings.

The successful end-to-end neural network (NN) autonomous-control approaches

to lane-keeping described in Chapter 3, and more generally (Bojarski et al., 2016; Xu

et al., 2017; Amini et al., 2018a; Fridman et al., 2019) (Figure 4-1), rely solely on deep

convolutional neural network architectures (LeCun et al., 1990), steering a vehicle at

a time 𝑡, based on the most recent camera frame (Amini et al., 2019a) (Figure 4-

2a). While such feedforward models can properly drive the vehicle in case of ideal

input-data, they often fail if the data is noisy. This is because they do not exploit the

temporal nature of the task, enabling them to filter out transient disturbances. As a

result, temporary corruptions of the input stream (i.e., sudden sunlight, as illustrated
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Figure 4-1: End-to-end driving. The process starts by collecting a considerable
amount of human driving experiences, in a car that is equipped with camera/s and
in-car computing units. The diverse set of training samples are then edited (the green
boxes) and are labeled by their corresponding steering angle. An end-to-end training
algorithm trains and validates an artificial neural network agent, in a supervised
learning fashion to directly turn camera inputs into steering decisions. The obtained
network is then deployed on the high-performance computing units mounted inside
the car to drive the car autonomously in real unseen environments.

in Figure 4-2a), lead to unstable predictions.

On the contrary, recurrent neural networks (RNNs) (Hochreiter, 1991; Bengio

et al., 1994), are a class of artificial neural networks that take into account past obser-

vations at a current output-decision through a feedback mechanism. This “memory”

is retained within an internal state of the RNN, commonly referred to as the “hidden

state”. Because autonomous control is fundamentally a dynamic process, these archi-

tectures hold the potential to define more robust end-to-end controllers (Figure 4-2b).

In the discrete time setting, RNNs are trained over finite-length labeled training se-

quences by the backpropagation algorithm (Rumelhart et al., 1986) applied to their

unfolded feed-forward representation (Bengio et al., 1994) (Figure 4-2c,d). These

architectures have been extended to the continuous time setting, wherein the RNN

hidden state is defined in continuous-time according to ordinary differential equations

(ODEs).

One such derivative architecture is the neural ODE. The state of a neural ODE,

x(𝑡) ∈ R𝐷, is defined by the solution of this equation (Chen et al., 2018a): 𝑑x(𝑡)/𝑑𝑡 =

𝑓(x(𝑡), 𝑡, 𝜃), where the function 𝑓 is a neural network parameterized by weights 𝜃. One

can then compute the state using a numerical ODE solver and train the network by
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Figure 4-2: Recurrent network modules are essential for the lane-keeping
tasks. a, A feedforward CNN network computes its output, 𝑃 (𝑦𝑡|𝐼𝑡) by relying solely
on the current observation, 𝐼𝑡. Consequently, inputs that are corrupted by transient
perturbations (bottom), will result in high output variance, and faulty decisions b,
An RNN has access to past observations at a current driving step, enabling it to
filter out transient corruptions that are present in the input stream c, Training RNNs
by unrolling their state in time d, Then, applying back-propagation through time in
an unfolded RNN. Purple derivatives indicate the dependency of the loss function’s
derivative with-respect-to an RNN’s state-weights to the evolution of the RNN’s state,
𝑥(𝑡) in time. Blurred images depict weaker attention of the RNN, when computing a
current decision.
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performing reverse-mode automatic differentiation (Rumelhart et al., 1986), either by

gradient descent through the solver (Lechner et al., 2019) or by considering the solver

as a black box (Chen et al., 2018a; Dupont et al., 2019; Gholami et al., 2019) and

applying the adjoint method (Pontryagin, 2018).

Alternatively, rather than defining the derivatives of the hidden state directly by

a neural network 𝑓 , one can determine a more stable continuous-time recurrent neu-

ral network (CT-RNN) by the following equation (Funahashi and Nakamura, 1993):
𝑑x(𝑡)
𝑑𝑡

= −x(𝑡)
𝜏

+ 𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃), in which the term −x(𝑡)
𝜏

assists the autonomous sys-

tem to reach an equilibrium state with a time-constant 𝜏 . x(𝑡) is the hidden state,

I(𝑡) is the input, t represents time, and 𝑓 is parameterized by 𝜃.

To achieve more expressive representation learning in the continuous-time setting

for autonomous control, we propose an alternative formulation: the liquid time con-

stant (LTC) neuron. In this chapter, we discuss the LTC neuron model, characterize

its features, and demonstrate its benefits in time series modeling.

4.2 Liquid Time-constant (LTC) Neurons

First we formulate the state equation for the LTC neuron. Let the hidden state

flow of a network be declared by a system of linear ODEs of the form: 𝑑x(𝑡)/𝑑𝑡 =

−x(𝑡)/𝜏 + S(𝑡). Let S(𝑡) ∈ R𝑀 represent the following nonlinearity determined by

S(𝑡) = 𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃)(𝐴− x(𝑡)), with parameters 𝜃 and 𝐴. Then, by plugging in S

into the hidden state equation, we obtain:

𝑑x(𝑡)
𝑑𝑡

=−
[︁1
𝜏
+ 𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃)

]︁
x(𝑡) + 𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃)𝐴. (4.1)

Equation 4.1 manifests a novel time-continuous unit instance, which we term the

liquid time constant (LTC) neuron. In this section, we discuss the following properties

of LTC neurons:

1. The Liquid Time Constant: In LTC neurons, a neural network 𝑓 not only

determines the derivative of the hidden state x(𝑡), but also serves as an input-
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dependent varying time-constant for the learning system:

𝜏𝑠𝑦𝑠 =
𝜏

1 + 𝜏𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃)

This property enables single elements of the hidden state to identify special-

ized dynamical systems for input features arriving at each time-point. In Sec-

tion 4.2.1, we introduce an ODE solver for implementing LTCs.

2. Reverse-Mode Automatic Differentiation: LTCs realize differentiable com-

putational graphs and can be trained via gradient-based optimization. We use

a vanilla backpropagation through time (BPTT) algorithm to optimize LTCs

and motivate this choice in Section 4.2.2.

3. Bounded Dynamics and Stability: In Section 4.2.3, we show that the state

and the time-constant of LTCs are bounded to a finite range. This property

assures the stability of the output dynamics and is desirable when inputs to the

system relentlessly increase.

4. Expressivity: In Section 4.2.4, we analyze the approximation capability, uni-

versality, and expressivity of LTCs. Specifically we consider the trajectory

length (Raghu et al., 2017) of network activations in a latent trajectory rep-

resentation and benchmark to other time-continuous models.

5. Causal Structure: In Section 4.3, we show how LTCs form a causal structure,

specifically as a dynamic causal model, and discuss the real-world implications

of this for learning control policies for autonomous flight.

4.2.1 LTCs Forward Pass by a Fused ODE Solver

Here we provide an approach for the forward pass through LTC neurons, which are

defined by the state equation provided in Equation 4.1. Solving Equation 4.1 ana-

lytically is non-trivial due to the nonlinearity of the LTC semantics. The state of

the system of ODEs, however, at any time point 𝑇 , can be computed by a numerical
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ODE solver that simulates the system starting from a trajectory 𝑥(0), to 𝑥(𝑇 ). An

ODE solver breaks down the continuous simulation interval [0, 𝑇 ] to a temporal dis-

cretization, [𝑡0, 𝑡1, . . . 𝑡𝑛]. As a result, a solver’s step involves only the update of the

neuronal states from 𝑡𝑖 to 𝑡𝑖+1.

The ODE of LTCs realizes a system of stiff equations (Press et al., 2007). This

type of ODE requires an exponential number of discretization steps when simulated

with a Runge-Kutta (RK) based integrator. Consequently, ODE solvers based on

RK, such as Dormand–Prince (default in torchdiffeq (Chen et al., 2018a)), are not

suitable for LTCs. Therefore, we design a new ODE solver that fuses the explicit and

implicit Euler methods. Our discretization method results in greater stability and

numerically unrolls a given dynamical system of the form 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥) by:

𝑥(𝑡𝑖+1) = 𝑥(𝑡𝑖) + ∆𝑡𝑓(𝑥(𝑡𝑖), 𝑥(𝑡𝑖+1)). (4.2)

In particular, we replace only the 𝑥(𝑡𝑖) that occur linearly in 𝑓 by 𝑥(𝑡𝑖+1). As a

result, Equation 4.2 can be solved for 𝑥(𝑡𝑖+1) symbolically. Applying the fused solver

to the LTC representation and solving it for x(𝑡+∆𝑡), we get:

x(𝑡+∆𝑡) =
x(𝑡) + ∆𝑡𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃)𝐴

1 + ∆𝑡
(︀
1/𝜏 + 𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃)

)︀ . (4.3)

Equation 4.3 computes one update state for an LTC network.

Correspondingly, Algorithm 3 shows how to implement an LTC network, given

a parameter space 𝜃. 𝑓 is assumed to have an arbitrary activation function (e.g .

for a 𝑡𝑎𝑛ℎ nonlinearity 𝑓 = tanh(𝛾𝑟x + 𝛾I + 𝜇)). The computational complexity

of the algorithm for an input sequence of length 𝑇 is 𝑂(𝐿 × 𝑇 ), where 𝐿 is the

number of discretization steps. Intuitively, a dense version of an LTC network with

𝑁 neurons and a dense version of a long short-term memory (LSTM) (Hochreiter and

Schmidhuber, 1997) network with 𝑁 cells would be of the same complexity.
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Algorithm 3 LTC update by fused ODE Solver
Parameters: 𝜃 = {

𝜏 (𝑁×1) = time-constant
𝛾(𝑀×𝑁) = weights
𝛾
(𝑁×𝑁)
𝑟 = recurrent weights
𝜇(𝑁×1) = biases
𝐴(𝑁×1) = bias vector

}
Let: 𝐿 = # of unfolding steps, ∆𝑡 = step size, 𝑁 = # of
neurons
Inputs: 𝑀 -dimensional Input I(𝑡) of length 𝑇 , x(0)
Output: Next LTC neural state x𝑡+Δ𝑡

Function: FusedStep(x(𝑡), I(𝑡), ∆𝑡, 𝜃)
x(𝑡+∆𝑡)(𝑁×𝑇 ) = x(𝑡) + Δ𝑡𝑓(x(𝑡),I(𝑡),𝑡,𝜃)⊙𝐴

1+Δ𝑡
(︀
1/𝜏+𝑓(x(𝑡),I(𝑡),𝑡,𝜃)

)︀
◁ 𝑓(.), and all divisions are applied element-wise.
◁ ⊙ is the Hadamard product.
end Function
x𝑡+Δ𝑡 = x(𝑡)
for 𝑖 = 1 . . . 𝐿 do

x𝑡+Δ𝑡 = FusedStep(x(𝑡), I(𝑡), ∆𝑡, 𝜃)
end for
return: x𝑡+Δ𝑡

4.2.2 Training LTC Networks by BPTT

Neural ODEs were suggested to be trained by a constant memory cost for each layer

in a neural network 𝑓 by applying the adjoint sensitivity method to perform reverse-

mode automatic differentiation (Chen et al., 2018a). The adjoint method, however,

comes with numerical errors when running in reverse mode. This phenomenon hap-

pens because the adjoint method forgets the forward-time computational trajectories,

which was repeatedly denoted by the community (Gholami et al., 2019; Zhuang et al.,

2020).

On the contrary, direct backpropagation through time (BPTT) trades memory for

accurate recovery of the forward-pass during the reverse mode integration (Zhuang

et al., 2020). Thus, we set out to design a vanilla BPTT algorithm to maintain a

highly accurate backward-pass integration through the solver. For this purpose, a
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Vanilla BPTT Adjoint

Time 𝑂(𝐿× 𝑇 × 2) 𝑂((𝐿𝑓 + 𝐿𝑏)× 𝑇 )
Memory 𝑂(𝐿× 𝑇 ) O(1)
Depth 𝑂(𝐿) 𝑂(𝐿𝑏)

FWD acc High High
BWD acc High Low

Table 4.1: Complexity of the vanilla BPTT compared to the adjoint method,
for a single layer neural network 𝑓 . Note: 𝐿 = number of discretization steps, 𝐿𝑓 = L
during forward-pass. 𝐿𝑏 = L during backward-pass. 𝑇 = length of sequence, Depth
= computational graph depth.

given ODE solver’s output (a vector of neural states), can be recursively folded to

build an RNN and then apply Algorithm 4 to train the system. Algorithm 4 uses

a vanilla stochastic gradient descent (SGD). One can substitute this with a more

performant variant of the SGD, such as Adam (Kingma and Ba, 2014), which we use

in our experiments.

Algorithm 4 Training LTC by BPTT
Parameter: Loss func 𝐿(𝜃), initial param 𝜃0, learning rate
𝛼, Output w = 𝑊𝑜𝑢𝑡, and bias = 𝑏𝑜𝑢𝑡
Inputs: Dataset of traces [𝐼(𝑡), 𝑦(𝑡)] of length 𝑇 , RNNcell
= 𝑓(𝐼, 𝑥)
for 𝑖 = 1 . . . number of training steps do

(𝐼𝑏,𝑦𝑏) = Sample training batch, 𝑥 := 𝑥𝑡0 ∼ 𝑝(𝑥𝑡0)
for 𝑗 = 1 . . . 𝑇 do

𝑥 = 𝑓(𝐼(𝑡), 𝑥), 𝑦(𝑡) = 𝑊𝑜𝑢𝑡.𝑥 + 𝑏𝑜𝑢𝑡, 𝐿𝑡𝑜𝑡𝑎𝑙 =∑︀𝑇
𝑗=1 𝐿(𝑦𝑗(𝑡), 𝑦𝑗(𝑡)), ∇𝐿(𝜃) =

𝜕𝐿𝑡𝑜𝑡

𝜕𝜃

𝜃 = 𝜃 − 𝛼∇𝐿(𝜃)
end for

end for
return: x𝑡+Δ𝑡

Table 4.1 summarizes the complexity of our vanilla BPTT algorithm compared

to an adjoint method. We achieve a high degree of accuracy on both forward and

backward integration trajectories, with similar computational complexity, at large

memory costs.
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4.2.3 Bounds on 𝜏 and the Neural State of LTCs

LTCs are represented by an ODE which varies its time constant based on inputs. It is

therefore important to see if LTCs stay stable for unbounded arriving inputs (Hasani

et al., 2019; Lechner et al., 2020b). The time constant and state of LTC neurons are

bounded to a finite range, as described in Theorems 1 and 2, respectively.

Theorem 1. Let 𝑥𝑖 denote the state of a neuron 𝑖 within an LTC network identified

by Equation 4.1, and let neuron 𝑖 receive 𝑀 incoming connections. Then, the time-

constant of the neuron, 𝜏𝑠𝑦𝑠𝑖, is bounded to the following range:

𝜏𝑖/(1 + 𝜏𝑖𝑊𝑖) ≤ 𝜏𝑠𝑦𝑠𝑖 ≤ 𝜏𝑖. (4.4)

A stable varying time-constant significantly enhances the expressivity of this form

of time-continuous RNNs, as we discover more formally in Section 4.2.4.

Theorem 2. Let 𝑥𝑖 denote the state of a neuron 𝑖 within an LTC, identified by

Equation 4.1, and let neuron 𝑖 receive 𝑀 incoming connections. Then, the hidden

state of any neuron 𝑖, on a finite interval 𝐼𝑛𝑡 ∈ [0, 𝑇 ], is bounded as follows:

𝑚𝑖𝑛(0, 𝐴𝑚𝑖𝑛
𝑖 ) ≤ 𝑥𝑖(𝑡) ≤ 𝑚𝑎𝑥(0, 𝐴𝑚𝑎𝑥

𝑖 ), (4.5)

Theorem 2 illustrates a desired property of LTCs, namely state stability which

guarantees that the outputs of LTCs never explode even if their inputs grow to infinity.

4.2.4 On the Expressive Power of LTCs

Understanding the impact of a NN’s structural properties on their computable func-

tions is known as the expressivity problem. The very early attempts on measuring

expressivity of NNs include theoretical studies based on functional analysis. They

show that NNs with three layers can approximate any finite set of continuous mapping

with any precision. This is known as the universal approximation theorem (Hornik

et al., 1989; Funahashi, 1989; Cybenko, 1989). Universality was extended to standard
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RNNs (Funahashi, 1989) and even continuous-time RNNs (Funahashi and Nakamura,

1993). By careful considerations, we can also show that LTCs are also universal ap-

proximators.

Theorem 3. Let x ∈ R𝑛, 𝑆 ⊂ R𝑛 and ẋ = 𝐹 (x) be an autonomous ODE with

𝐹 : 𝑆 → R𝑛 a 𝐶1-mapping on 𝑆. Let 𝐷 denote a compact subset of 𝑆 and assume that

the simulation of the system is bounded in the interval 𝐼 = [0, 𝑇 ]. Then, for a positive

𝜖, there exist an LTC network with 𝑁 hidden units, 𝑛 output units, and an output

internal state u(𝑡), described by Equation 4.1, such that for any rollout {x(𝑡)|𝑡∈ 𝐼}

of the system with initial value 𝑥(0)∈𝐷, and a proper network initialization,

𝑚𝑎𝑥𝑡∈ 𝐼 |x(𝑡)−u(𝑡)|<𝜖 (4.6)

The proof defines an 𝑛-dimensional dynamical system and place it into a higher

dimensional system. The second system is an LTC. The fundamental difference of the

proof of LTC universality to that of CT-RNNs (Funahashi and Nakamura, 1993) lies

in the distinction of the semantics of both systems where the LTC network contains

a nonlinear input-dependent term in its time-constant module which makes parts of

the proof non-trivial.

The universal approximation theorem broadly explores the expressive power of a

neural network. However, the theorem does not yield a concrete measure on where

the separation is between different neural network architectures. Therefore, a more

rigorous measure of expressivity is demanded to compare models, specifically those

networks specialized in spatiotemporal data processing, such as LTCs. The advances

made on defining measures for the expressivity of static deep learning models (Pascanu

et al., 2013b; Montufar et al., 2014; Eldan and Shamir, 2016; Poole et al., 2016; Raghu

et al., 2017) could help measure the expressivity of time-continuous models, both

theoretically and quantitatively, which we explore in the next section.
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Measuring Expressivity by Trajectory Length

A measure of expressivity has to take into account what degrees of complexity a

learning system can compute, given the network’s capacity (depth, width, type, and

weights configuration). A unifying expressivity measure of static deep networks is the

trajectory length introduced in (Raghu et al., 2017). In this context, one evaluates

how a deep model transforms a given input trajectory (e.g., a circular 2-dimensional

input) into a more complex pattern, progressively.

We can then perform principle component analysis (PCA) over the obtained net-

work’s activations. Subsequently, we measure the length of the output trajectory in

a 2-dimensional latent space to uncover its relative complexity (Figure 4-3). The

trajectory length is defined as the arc length of a given trajectory 𝐼(𝑡), (e.g . a circle

in 2D space) (Raghu et al., 2017): 𝑙(𝐼(𝑡)) =
∫︀
𝑡
‖𝑑𝐼(𝑡)/𝑑𝑡‖ 𝑑𝑡. By establishing a lower-

bound for the growth of the trajectory length, one can set a barrier between networks

of shallow and deep architectures, regardless of any assumptions on the network’s

weight configuration (Raghu et al., 2017), unlike many other measures of expressivity

(Pascanu et al., 2013b; Montufar et al., 2014; Serra et al., 2017; Gabrié et al., 2018;

Hanin and Rolnick, 2018, 2019; Lee et al., 2019a).

We set out to extend the trajectory-space analysis of static networks to time-

continuous (TC) models, and to lower-bound the trajectory length to compare models’

expressivity. To this end, we designed instances of Neural ODEs, CT-RNNs, and

LTCs with shared 𝑓 . The networks were initialized by weights ∼ 𝒩 (0, 𝜎2
𝑤/𝑘), and

biases ∼ 𝒩 (0, 𝜎2
𝑏 ). We then perform forward-pass simulations by using different types

of ODE solvers, for arbitrary weight profiles, while exposing the networks to a circular

input trajectory 𝐼(𝑡) = {𝐼1(𝑡) = sin(𝑡), 𝐼2(𝑡) = cos(𝑡)}, for 𝑡 ∈ [0, 2𝜋]. By looking at

the first two principle components (with an average variance-explained of over 80%)

of hidden layers’ activations, we observed consistently more complex trajectories for

LTCs.

Figure 4-4 gives a glimpse of our empirical observations. All networks are im-

plemented by the Dormand-Prince explicit Runge-Kutta(4,5) solver (Dormand and
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Figure 4-3: LTC trajectory length as a measure of model expressivity. Tra-
jectory’s latent space becomes more complex as the input passes through hidden
layers.

Prince, 1980) with a variable step size. We observe the following:

1. Exponential growth of the trajectory length of Neural ODEs and CT-RNNs

with Hard-tanh and ReLU activations (Figure 4-4A) and unchanged shape of

their latent space regardless of their weight profile.

2. LTCs show a slower growth-rate of the trajectory length when designed by

Hard-tanh and ReLU, with the compromise of realizing great levels of complexity

(Figure 4-4A, C, and D).

3. Apart from multi-layer time-continuous models built by Hard-tanh and ReLU

activations, in all cases, we observed a longer and a more complex latent space

behavior for the LTC networks (Figure 4-4B-D).

4. Unlike static deep networks (Figure 4-3), we witnessed that the trajectory length

does not grow by depth in multi-layer continuous-time networks realized by tanh

and sigmoid (Figure 4-4E).

Conclusively, we observed that the trajectory length in TC models varies by a

model’s activations, the variance of the weight and bias distributions, the network
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Figure 4-4: Trajectory length deformation A) in network layers with Hard-tanh
activations, B) as a function of the weight distribution scaling factor, C) as a function
of network width (ReLU), D) as a function of width (Hard-tanh), and E)in network
layers with logistic-sigmoid activations.

width, and network depth. We presented this more systematically in Figure 4-5.

Specifically, we observe:

1. Trajectory length is reluctant to the choice of ODE solver (Figure 4-5A).

2. Trajectory length grows linearly with a network’s width (Figure 4-5B). We note

the logarithmic growth of the curves in the log-scale Y-axis.

3. The growth is considerably faster as the variance of the weight distribution

grows (Figure 4-5C).

4. Trajectory length is reluctant to the layer identifier (Figure 4-5D).

Finally, across Figure 4-4 and Figure 4-5, we note that activation functions diver-

sify the complex patterns explored by the TC system, where ReLU and Hard-tanh
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Figure 4-5: Dependencies of the trajectory length measure. A) trajec-
tory length vs different solvers (variable-step solvers). RK2(3): Bogacki-Shampine
Runge-Kutta (2,3) (Bogacki and Shampine, 1989). RK4(5): Dormand-Prince ex-
plicit RK (4,5) (Dormand and Prince, 1980). ABM1(13): Adams-Bashforth-Moulton
(Shampine, 1975). TR-BDF2: implicit RK solver with 1st stage trapezoidal rule and
a 2nd stage backward differentiation (Hosea and Shampine, 1996). B) Top: trajec-
tory length vs network width. Bottom: Variance-explained of principal components
(purple bars) and their cumulative values (solid black line). C) Trajectory length vs
variance of the weights distribution. D) Trajectory length vs layers.

networks demonstrate higher degrees of complexity for LTCs. A key reason is the

presence of recurrent links between each layer’s cells.

Theoretical Bounds on the Trajectory Length

To formulate bounds on the trajectory length growth of CT networks, we first define

the computational depth L. For one hidden layer of 𝑓 in a CT network, 𝐿 is the

average number of integration steps by the solver for each incoming input sample.

Note that for an 𝑓 with 𝑛 layers we define the total depth as 𝑛×𝐿. These observations

allow us to formulate lower bounds on the trajectory length growth of CT networks.

Theorem 4. Trajectory Length Growth Bounds for Neural ODEs and CT-RNNs.

Let 𝑑𝑥/𝑑𝑡 = 𝑓𝑛,𝑘(x(𝑡), I(𝑡), 𝜃) with 𝜃 = {𝑊, 𝑏}, represent a Neural ODE and 𝑑x(𝑡)
𝑑𝑡

=

−x(𝑡)
𝜏

+ 𝑓𝑛,𝑘(x(𝑡), I(𝑡), 𝜃) with 𝜃 = {𝑊, 𝑏, 𝜏} a CT-RNN. 𝑓 is randomly weighted with

Hard-tanh activations. Let I(𝑡) be a 2D input trajectory, with its progressive points

(i.e. 𝐼(𝑡+ 𝛿𝑡)) having a perpendicular component to I(𝑡) for all 𝛿𝑡, with 𝐿 = number

100
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of solver-steps. Then, by defining the projection of the first two principle components’

scores of the hidden states over each other, as the 2D latent trajectory space of a

layer 𝑑, 𝑧(𝑑)(I(𝑡)) = 𝑧(𝑑)(𝑡), for Neural ODE and CT-RNNs respectively, we have:

E

[︃
𝑙(𝑧(𝑑)(𝑡))

]︃
≥ 𝑂

(︃
𝜎𝑤
√
𝑘√︁

𝜎2
𝑤 + 𝜎2

𝑏 + 𝑘
√︀
𝜎2
𝑤 + 𝜎2

𝑏

)︃𝑑×𝐿

𝑙(𝐼(𝑡)), (4.7)

E

[︃
𝑙(𝑧(𝑑)(𝑡))

]︃
≥ 𝑂

(︃
(𝜎𝑤 − 𝜎𝑏)

√
𝑘√︁

𝜎2
𝑤 + 𝜎2

𝑏 + 𝑘
√︀
𝜎2
𝑤 + 𝜎2

𝑏

)︃𝑑×𝐿

𝑙(𝐼(𝑡)). (4.8)

Next, we define a lower bound for the LTC networks based on trajectory length.

Theorem 5. Growth Rate of LTC Trajectory Length. Let Equation 4.1 determine

an LTC with 𝜃 = {𝑊, 𝑏, 𝜏, 𝐴}. With the same conditions on 𝑓 and 𝐼(𝑡), as in Theorem

4, we have:

E

[︃
𝑙(𝑧(𝑑)(𝑡))

]︃
≥ 𝑂

(︃(︁ 𝜎𝑤
√
𝑘√︁

𝜎2
𝑤 + 𝜎2

𝑏 + 𝑘
√︀
𝜎2
𝑤 + 𝜎2

𝑏

)︁𝑑×𝐿

×

(︁
𝜎𝑤 +

⃦⃦
𝑧(𝑑)
⃦⃦

min(𝛿𝑡, 𝐿)

)︁)︃
𝑙(𝐼(𝑡)).

(4.9)

As expected, the bound for the Neural ODEs is very similar to that of an 𝑛

layer static deep network with the exception of the exponential dependencies to the

number of solver-steps, 𝐿. The bound for CT-RNNs suggests their shorter trajectory

length compared to neural ODEs, according to the base of the exponent. This results

consistently matches our experiments presented in Figure 4-4 and Figure 4-5.

Figure 4-4B and Figure 4-5C show a faster-than-linear growth for LTC’s trajectory

length as a function of weight distribution variance. This is confirmed by LTC’s lower

bound shown in Equation 4.9. The lower bound of LTCs also depicts the linear growth

of the trajectory length with the width, 𝑘, which validates the results presented in

Figure 4-5B. V) Given the computational depth of the models 𝐿 in Table 4.2 for

Hard-tanh activations, the computed lower bound for neural ODEs, CT-RNNs, and

LTCs justify a longer trajectory length of LTC networks in subsequent validation
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experiments.

Computational Depth
Activations Neural ODE CT-RNN LTC

tanh 0.56 ± 0.016 4.13 ± 2.19 9.19 ± 2.92
sigmoid 0.56 ± 0.00 5.33 ± 3.76 7.00 ± 5.36
ReLU 1.29 ± 0.10 4.31 ± 2.05 56.9 ± 9.03
Hard-tanh 0.61 ± 0.02 4.05 ± 2.17 81.01 ± 10.05

Table 4.2: Computational depth of models. Note: # of tries = 100, input
samples’ ∆𝑡 = 0.01, 𝑇 = 100 sequence length. # of layers = 1, width = 100, 𝜎2

𝑤 = 2,
𝜎2
𝑏 = 1.

4.3 Causal Modeling with LTCs

Here we discuss the causal structure of LTCs, beginning by describing the concepts

necessary to show that LTCs form causal models. In a structural causal model (SCM),

given a set of observable random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛, as vertices of a directed

acyclic graph (DAG), we can compute each variable from the following assignment

(Schölkopf, 2019):

𝑋𝑖 := 𝑓𝑖(PA𝑖, 𝑈𝑖), 𝑖 = 1, . . . , 𝑛. (4.10)

Here, 𝑓𝑖 is a deterministic function of the parents of the event, 𝑋𝑖, in the graph (PA𝑖)

and of the stochastic variable, 𝑈𝑖. One can intuitively think of the causal structure

framework as a function estimation problem rather than in terms of probability dis-

tributions (Spirtes et al., 2000). Direct causation is implied by direct edges in the

graph through the assignment described in Equation 4.10. The stochastic variables

𝑈1, . . . , 𝑈𝑛 ensure that a joint distribution 𝑃 (𝑋𝑖|PA𝑖) is constructed as a general

objective (Pearl, 2014; Schölkopf, 2019).

The SCM framework enables us to explore through the known physical mecha-

nisms and functions to build flexible probabilistic models with interventions, replacing

the epistemic probabilities, 𝑃 (𝑋𝑖,PA𝑖) (Pearl, 2009; Schölkopf, 2019). Interventions

can be formalized by the SCM framework as operations that alter a subset of proper-

ties of Equation 4.10. For instance, modifying 𝑈𝑖, or replacing 𝑓𝑖 (and as a result 𝑋𝑖)
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(Karimi et al., 2020), constitutes an intervention. Moreover, by assuming joint inde-

pendence of 𝑈𝑖s, we can construct causal conditionals known as causal (disentangled)

factorization, as follows (Schölkopf, 2019):

𝑝(𝑋1, . . . , 𝑋𝑛) =
𝑛∏︁

𝑖=1

𝑝(𝑋𝑖|PA𝑖). (4.11)

Equation 4.11 stands for the causal mechanisms by which we can model all statistical

dependencies of given observables. Accordingly, causal learning involves the iden-

tification of the causal conditionals, the function 𝑓𝑖, and the distribution of 𝑈𝑖s in

assignment Equation 4.10.

4.3.1 Modeling Causal Structures

Physical dynamics can be modeled by a set of differential equations (DEs). DEs allow

us to predict the future evolution of a dynamical system and describe its behavior as

a result of interventions. Their coupled time-evolution enables us to define averaging

mechanisms for computing statistical dependencies (Peters et al., 2017). A system

of differential equations enhances our understanding of the underlying physical phe-

nomenon, explains its behavior, and dissects its causal structure.

For instance, consider the following system of DEs: 𝑑x
𝑑𝑡

= 𝑔(x), x ∈ R𝑑, with

initial values at 𝑥0, where 𝑔 is a nonlinear function. The Picard-Lindelöf theorem

(Nevanlinna, 1989) states that a differential equation of the form above would have

a unique solution as long as 𝑔 is Lipschitz. Therefore, if we unroll the system to

infinitesimal differentials using the explicit Euler method, we get: x(𝑡+ 𝛿𝑡) = x(𝑡) +

𝑑𝑡𝑓(x). This representation under the uniqueness condition shows that the near future

events of 𝑥 are predicted using its past information, thus forming a causal structure.

Thus, a DE system is a causal structure that allows us to process the effect of

interventions on the system. On the other side of the spectrum of causal modeling

(Peters et al., 2017), pure statistical models allow us to learn structures from data with

little insight about causation and associations between epiphenomena. Since causality

aims to bridge this gap, we propose to construct causal models with continuous-time
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neural networks.

We first explain how a continuous-time model identified by a standalone neural

ODE with state 𝑑x
𝑑𝑡

= 𝑓(x(𝑡), 𝑡, 𝜃), where the function 𝑓 is a neural network pa-

rameterized by weights 𝜃, cannot satisfy the causal structure properties even under

Lipschitzness of its network (Peters et al., 2017). We then show that the class of

liquid time-constant (LTC) networks can achieve causal modeling.

4.3.2 Dynamic Causal Models

Neural ODEs are not causal models.

Let 𝑓 be the nonlinearity of a continuous-time neural network. Then the learning

system defined by the following neural ODE state equation, 𝑑x
𝑑𝑡

= 𝑓(x(𝑡), 𝑡, 𝜃), where

the function 𝑓 is a neural network parameterized by weights 𝜃, cannot account for

interventions (change of the environment conditions), and therefore does not form a

causal structure even if 𝑓 is Lipschitz-continuous.

To describe this in detail, we unfold the ODE by infinitesimal differentials as

follows:

x(𝑡+ 𝛿𝑡) = x(𝑡) + 𝑑𝑡𝑓(x, 𝜃). (4.12)

If 𝑓 is Lipschitz continuous, based on Picard-Lindelöf’s existence theorem, the trajec-

tories of this ODE system are unique and thus invertible. This means that, at least

locally, the future events of the system can be predicted by its past values. Since the

transformation is invertible, this setting is also true if we run the ODE backward in

time (i.e. during the training process).

When the ODE system is trained by maximum likelihood estimation, given an

initial weight distribution, the statistical dependencies between the system’s vari-

ables might emerge from data. The resulting statistical model can predict in i.i.d.

setting and learn from data, but it cannot predict under distribution shift or im-

plicit/explicit interventions. Furthermore, the system cannot answer counterfactual

questions (Mooij et al., 2013).1 Although Neural ODEs in their generic representation

1A counterfactual question describe a causal relationship of the form: "If X had not occurred, Y
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cannot form causal models, their other forms can help design a causal model.

LTCs are dynamic causal models.

LTCs described by Equation 4.1 resemble the representation of a simple Dynamic

Causal Model (DCM) (Friston et al., 2003) with a bilinear Taylor approximation

(Penny et al., 2005). DCMs aim to extracting the causal architecture of a given

dynamical systems. DCMs represent the dynamics of the hidden nodes of a graphical

model by ODEs, and, unlike Bayesian neural networks, allow for feedback connectivity

structures (Friston et al., 2003). A simple DCM can be designed by a second-order

approximation (bilinear) of a given system such as 𝑑x/𝑑𝑡 = 𝐹 (x(𝑡), I(𝑡), 𝜃), as follows

(Friston et al., 2003):

𝑑x/𝑑𝑡 = (𝐴+ I(𝑡)𝐵)x(𝑡) + 𝐶I(𝑡) (4.13)

𝐴 =
𝜕𝐹

𝜕x(𝑡)

⃒⃒⃒
𝐼=0

, 𝐵 =
𝜕2𝐹

𝜕x(𝑡)𝜕I(𝑡)
, 𝐶 =

𝜕𝐹

𝜕I(𝑡)

⃒⃒⃒
𝑥=0

, (4.14)

where I(𝑡) is the inputs to the system, and x(𝑡) is the nodes’ hidden states.

A fundamental property of a DCM representation is its ability to capture both

internal and external causes on the dynamical system (interventions). Matrix A

stands for a fixed internal coupling of the system. Matrix B controls the impact of

the inputs on the coupling sensitivity among the network’s nodes (controlling internal

interventions). Matrix C embodies the external inputs’ influence on the state of the

system (controlling external interventions).

DCMs can be extended to a universal framework for causal function approximation

by neural networks through the LTC neural representation (Hasani et al., 2020a):

Proposition 1. Let 𝑓 be the nonlinearity of a given LTC network identified by Equa-

tion 4.1. Then the learning system identified by Equation 4.1 can account for internal

and external interventions by its weight parameters 𝜃 = {𝑊 (𝐷×𝐷)
𝑟 ,𝑊 (𝐷×𝑚), 𝑏(𝐷×1)},

for 𝐷 LTC cells, and input size 𝑚 and 𝐴(𝐷×1), and therefore, forms a dynamical

causal model, if 𝑓 is Lipschitz-continuous.
would not have occurred (Molnar, 2020)"
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Proof. To prove this, we need to show two properties of LTC networks: 1) uniqueness

of their solution, and 2) existence of intervention coefficients.

Uniqueness. By using the Picard-Lindelöf theorem (Nevanlinna, 1989), it was

previously shown that for an 𝐹 : R𝐷 → R𝐷, bounded 𝐶1-mapping, the differential

equation:

𝑥̇ = −(1/𝜏 + 𝐹 (𝑥))𝑥+ 𝐴𝐹 (𝑥), (4.15)

has a unique solution on [0,∞).

Intervention coefficients. Let 𝑓 be a Lipschitz-continuous activation function such

as tanh, then 𝑓(x(𝑡), I(𝑡), 𝑡, 𝜃) = 𝑡𝑎𝑛ℎ(𝑊𝑟x + 𝑊 I + 𝑏). If we set 𝑥 = 0, in Equa-

tion 4.1, then the external intervention coefficients 𝐶 in Equation 4.13 for LTCs can

be obtained by:
𝜕𝐹

𝜕I

⃒⃒⃒
𝑥=0

= 𝑊 (1− 𝑓 2)⊙ 𝐴 (4.16)

The corresponding internal intervention coefficients 𝐵 of Equation 4.13, for LTC

networks becomes:

𝜕2𝐹

𝜕x(𝑡)𝜕I(𝑡)
= 𝑊 (𝑓 2 − 1)⊙

[︀
2𝑊𝑟𝑓 ⊙ (𝐴− 𝑥) + 1

]︀
(4.17)

This shows that by manipulating matrices 𝑊 , 𝑊𝑟, and 𝐴 one can control internal and

external interventions to an LTC system which gives the statement of the proposition.

Proposition 1 shows that LTCs are causal models in their forward pass, and by

manipulation of their parameters, one can gain insights into the underlying systems.

We next show that the LTC backward pass also gives rise to a causal model. A

core finding is that LTCs trained from demonstration via reverse-mode automatic

differentiation (Rumelhart et al., 1986) can give rise to a causal model.

4.3.3 Training LTCs to Yield Causal Models

The uniqueness of the solution of LTCs allows any ODE solver to reproduce a for-

ward pass trajectory with backward computations from the end point of the forward
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pass. This property enables us to use the backpropagation algorithm, either by using

the adjoint sensitivity (Pontryagin, 2018) method or backpropagation through time

(BPTT), to train an LTC system. Formally, for a forward pass trajectory of the

system states x(𝑡) of an LTC network from 𝑡0 to 𝑡𝑛, we can compute a scalar value

loss, 𝐿 at 𝑡𝑛 by:

𝐿(x(𝑡𝑛)) = 𝐿
(︁
x(𝑡0) +

∫︁ 𝑡𝑛

𝑡0

𝑑x
𝑑𝑡
𝑑𝑡
)︁
. (4.18)

Suppose we use the adjoint method for training the network, then the augmented state

is computed by 𝑎(𝑡) = 𝜕𝐿
𝜕x(𝑡) , whose kinetics are determined by 𝑑𝑎

𝑑𝑡
= −𝑎𝑇 (𝑡)𝜕𝐿𝑇𝐶𝑟ℎ𝑠

𝜕x(t)

(Chen et al., 2018a). To compute the loss gradients with respect to the parameters,

we run the adjoint dynamics backwards from gradients 𝑑𝐿
𝑑x(𝑡𝑛) and states x(𝑡𝑛), while

solving a third integral in reverse as follows: 𝑑𝐿
𝑑𝜃

= −
∫︀ 𝑡0
𝑡𝑛
𝑎𝑇 (𝑡)𝜕𝐿𝑇𝐶𝑟ℎ𝑠

𝜕𝜃
𝑑𝑡. All integrals

can be solved in reverse-mode by a call to the ODE solver.

Based on Proposition 1, for an LTC network at each training iteration, the internal

and external interventions not only help the system learn statistical dependencies

from data but also facilitate the learning of the causal mapping. These results bridge

the gap between pure physical models and causal structural models to obtain better

learning systems.

4.4 Results

In this section, we perform extensive experimental evaluations to assess the perfor-

mance of LTCs in time-series modeling and dynamic control tasks. First, we assess

performance on a series of time-series benchmarking tasks. Second, we evaluate our

method in the context of visual-control learning of aerial drones over a series of

complex tasks, ranging from short- and long-term navigation, to chasing static and

dynamic objects through photorealistic environments. Through these experiments

we aim to validate our theoretical results on the performance and properties of LTC

models.
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4.4.1 Time-series Benchmarking

We evaluate the performance of LTCs against state-of-the-art RNN and neural ODE

models in a series of time-series benchmarks.

Time Series Predictions

We evaluated the performance of LTCs realized by the proposed fused ODE solver

against the state-of-the-art discretized RNNs, LSTMs (Hochreiter and Schmidhuber,

1997), CT-RNNs (ODE-RNNs) (Funahashi and Nakamura, 1993; Rubanova et al.,

2019), continuous-time gated recurrent units (CT-GRUs) (Mozer et al., 2017), and

neural ODEs (constructed by a 4𝑡ℎ order Runge-Kutta solver as suggested in (Chen

et al., 2018a)), in a series of diverse real-life supervised learning tasks. The results are

summarized in Table 4.3. We observed between 5% to 70% performance improvement

achieved by LTCs compared to other RNN models in four out of seven tasks and

comparable performance in the other three (Table 4.3).

Dataset Metric LSTM CT-RNN Neural ODE CT-GRU LTC (ours)
Gesture (accuracy) 64.57% ± 0.59 59.01% ± 1.22 46.97% ± 3.03 68.31% ± 1.78 69.55% ± 1.13
Occupancy (accuracy) 93.18% ± 1.66 94.54% ± 0.54 90.15% ± 1.71 91.44% ± 1.67 94.63% ± 0.17
Activity recognition (accuracy) 95.85% ± 0.29 95.73% ± 0.47 97.26% ± 0.10 96.16% ± 0.39 95.67% ± 0.575
Sequential MNIST (accuracy) 98.41% ± 0.12 96.73% ± 0.19 97.61% ± 0.14 98.27% ± 0.14 97.57% ± 0.18
Traffic (squared error) 0.169 ± 0.004 0.224 ± 0.008 1.512 ± 0.179 0.389 ± 0.076 0.099 ± 0.0095
Power (squared-error) 0.628 ± 0.003 0.742 ± 0.005 1.254 ± 0.149 0.586 ± 0.003 0.642 ± 0.021
Ozone (F1-score) 0.284 ± 0.025 0.236 ± 0.011 0.168 ± 0.006 0.260 ± 0.024 0.302 ± 0.0155

Table 4.3: Time series prediction with LTCs. Mean and standard deviation,
n=5 trials

Human Activity Dataset

We next used the “Human Activity” dataset described in (Rubanova et al., 2019) in

two distinct frameworks. The dataset consists of 6554 sequences of human activities

(e.g . lying, walking, sitting), with a period of 211 ms. We designed two experimental

frameworks to evaluate models’ performance.

In the first setting, the baselines are the models described before, and the input

representations are unchanged (details in Appendix). LTCs outperform all models

and in particular CT-RNNs and neural ODEs with a large margin (Table 4.4. Note
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that the CT-RNN architecture is equivalent to the ODE-RNN described in (Rubanova

et al., 2019), with the difference of having a state damping factor 𝜏 .

Algorithm Accuracy

LSTM 83.59%± 0.40
CT-RNN 81.54%± 0.33
Latent ODE 76.48%± 0.56
CT-GRU 85.27%± 0.39
LTC (ours) 85.48%± 0.40

Table 4.4: Person activity performance with LTCs, 1st setting, n=5.

Algorithm Accuracy

RNN ∆𝑡
* 0.797± 0.003

RNN-Decay* 0.800± 0.010
RNN GRU-D* 0.806± 0.007
RNN-VAE* 0.343± 0.040
Latent ODE (D enc.)* 0.835± 0.010
ODE-RNN * 0.829 ± 0.016
Latent ODE(C enc.)* 0.846 ± 0.013
LTC (ours) 0.882 ± 0.005

Table 4.5: Person activity performance, 2nd setting, n=5 trials. Accuracy for
algorithms indicated by *, are taken directly from (Rubanova et al., 2019) with: RNN
∆𝑡 = classic RNN + input delays, D-enc. = RNN encoder C-enc = ODE encoder.
RNN-Decay = RNN with exponential decay on hidden states (Mozer et al., 2017).
GRU-D = gated recurrent unit + exponential decay + input imputation (Che et al.,
2018).

In the second setting, we carefully set up the experiment to match the modifica-

tions made by (Rubanova et al., 2019) to obtain a fair comparison between LTCs and

a more diverse set of RNN variants discussed in (Rubanova et al., 2019). LTCs show

superior performance with a high margin compared to other models. The results are

summarized in Table 4.5.

Half-Cheetah Kinematic Modeling

We then evaluated how well continuous-time models can capture physical dynam-

ics. To perform this, we collected 25 rollouts of a pre-trained controller for the
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Figure 4-6: Half-cheetah physics simulation

Algorithm MSE
LSTM 2.500± 0.140
CT-RNN 2.838± 0.112
Neural ODE 3.805 ± 0.313
CT-GRU 3.014± 0.134
LTC (ours) 2.308± 0.015

Table 4.6: Half-cheetah dynamical sequence modeling with LTCs, n=5 trials.

HalfCheetah-v2 gym environment (Brockman et al., 2016), generated by the Mu-

JoCo physics engine (Todorov et al., 2012b). The task is then to fit the observation

space time-series in an autoregressive fashion (Figure 4-6). To increase the difficulty,

we overwrite 5% of the actions by random actions. The test results are presented

in Table 4.6 and demonstrate the superior performance of LTCs compared to other

models.

4.4.2 Causal Navigation in Autonomous Flight

Here we show how continuous-time LTC models can be designed as causal structures

to perform more interpretable real-world autonomous control. We consider a simple

drone navigation task in which the objective is for the drone to navigate from posi-

tion A to a target position B while simultaneously avoiding obstacles. We designed

photorealistic visual navigation tasks of aerial drones with varying memory horizons

including (1) navigating to a static target, (2) chasing a moving target, and (3) hiking

with guide markers (Figure 4-7).

In this setting, the agent is asked to infer high-level control signals directly from
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Figure 4-7: Visual drone navigation tasks. A) Navigation to a static target, B)
Chasing a moving target, C) Hiking with a set of markers in the environment

visual inputs to reach the target goal. Even the simplest vision-based deep model can

accomplish this task in passive open-loop settings (Lechner et al., 2020a). However,

completion in a closed-loop environment while inferring the true causal structure

of the task is significantly more challenging. For instance, where should the agent

attend to for taking the next action? With what mechanisms does the system infer

the objective of the task? And accordingly, how robust are the decisions of the learned

policy? We conduct experiments to begin to answer the aforementioned questions.

Experimental setup

We designed tasks in Microsoft’s AirSim (Madaan et al., 2020) and Unreal Engine.

To create data for imitation learning, we use greedy path search with a Euclidean

heuristic over unoccupied voxels to obtain knot points for cubic spline interpolation,

which is then followed via a pure pursuit controller. This strategy is modified for each

specific task.

Baselines. We evaluate NCP networks (Lechner et al., 2020a) against a set of

baseline models. This includes ODE-RNNs (Rubanova et al., 2019) which are the

recurrent network version of neural ODEs (Chen et al., 2018a), long short-term mem-

ory networks (LSTMs) (Hochreiter and Schmidhuber, 1997), and CT-GRU networks

(Mozer et al., 2017), which are the continuous equivalent of GRUs (Chung et al.,
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2014). These baselines are chosen to validate our theoretical results. Critically, we

note that not all continuous-time (CT) models are causal models. Similarly, while

discretized RNN models, such as LSTMs, perform well on tasks with long-term de-

pendencies, they are not causal models.

In Section 4.3, we showed that sparse neural networks built based on LTC neurons

(Hasani et al., 2020a) (i.e., LTC networks) are dynamical causal models. Therefore,

they can learn the true causal structure of a given task. In our experiments, camera

images are perceived by convolutional layers and are fed into a downstream network

that acts as a controller. For a fair comparison, the number of trainable parameters

of all models is within the same range, and they are all trained by Adam optimizer

(Kingma and Ba, 2014) with a cosine similarity loss.

Navigation to Static Target with Occlusion

In this task, the drone navigates to a target marker that is less than 25 meters away

and visible to it. We place a red cube on a random unoccupied voxel in the environ-

ment to function as the target marker. We constrain the target marker to appear in

the drone’s viewing frustum for most cases. Occlusions create temporal dependencies,

and thus there may be occlusion of the target upon random repositioning of the drone

in the environment.

Table 4.7 shows that in both neighborhood and forest environments, all agents

learn the task with a reasonable validation loss in a passive imitation learning set-

ting. However, once these agents are deployed with closed-loop control, we observed

that the success rates for LSTM and ODE-RNNs drop to only 24% and 18% of 50

attempted runs. CT-GRU managed to complete this task in 40% of the runs, whereas

NCPs completed the tasks in 48% of the runs.
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Table 4.7: Validation on short-term navigation. Cosine similarity loss [-1, 1]

(smaller is better), n=5.

Algorithms Environments

RedWood Forest Neighborhood

LSTM -0.823 ± 0.006 -0.838 ± 0.019

ODE-RNN -0.815 ± 0.043 -0.855 ± 0.019

CT-GRU -0.855 ± 0.001 -0.877 ± 0.002

LTC network (ours) -0.859 ± 0.035 -0.855 ± 0.008

To understand these results better, we used the Visual-Backprop algorithm (Bo-

jarski et al., 2018) to compute the saliency maps of the learned features in the input

space. Saliency maps would show us where the attention of the network was when

taking the next navigation decision. As shown in Figure 4-8, we observe that the LTC

network has learned to attend to the static target within its field of view to make a fu-

ture decision. This attention profile was not present in the saliency maps of the other

agents. For example, LSTM agents are sensitive to lighting conditions compared to

the CT models. This experiment supports our theoretical results on the ability of

LTC-based models and suggests that they indeed learn causal representations.

Chasing a Moving Target

In this task, the drone follows a target marker along a smooth spline path. Using a

generate and test method, we create a path for the drone to follow by using a random

walk with momentum to find knot points for fitting a spline.

Table 4.8 shows that all agents were able to learn to follow their targets in a passive

open-loop case. However, similar to the previous experiment, we witnessed that not all

models can successfully complete the task in a closed-loop setting where interventions

play a big role. LTC networks were 78% successful at completing their task, while

LSTM in 66%, ODE-RNNs in 52%, and CT-GRU in 38% were successful. Once again,

we looked into the attention maps of the models, illustrated in Figure 4-9. We see
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Figure 4-8: Navigation to a static target in closed-loop environments. LTC-
networks (NCPs) are the only models that can capture the causal structure of the
tasks directly from visual data.

that CT-GRU networks did not learn to attend to the target they follow. LSTMs

again show sensitivity to lighting conditions. ODE-RNNs keep a close distance to the

target, but they occasionally lose the target. In contrast, LTC networks have learned

to attend to the target and follow them as they move in the environment.

Table 4.8: Chasing objects. Validation performance with co-sine similarity loss

(smaller is better), n=5.

Algorithms Environments

RedWood Forest Neighborhood

LSTM -0.943 ± 0.028 -0.947 ± 0.008

ODE-RNN -0.967 ± 0.009 -0.953 ± 0.011

CT-GRU -0.958 ± 0.017 -0.979 ± 0.003

LTC networks (ours) -0.936 ± 0.022 -0.975 ± 0.012

Hiking Through an Environment

In this task, the drone follows multiple target markers which are placed on the surface

of obstacles within the environment (Figure 4-7C). This task is significantly more
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Figure 4-9: Chasing a moving target in closed-loop environments. LTC net-
works (left, NCPs) are the only models that can capture the causal structure of the
tasks directly from visual data.

complex than the previous tasks, especially when agents are deployed directly in

the environment. This is because the agents have to learn to follow a much longer

time-horizon task, by visual cues, in a hierarchical fashion.

Table 4.9: Hiking. Validation performance with cosine similarity loss (smaller is
better), n=5.

Algorithms Environments

Redwood Forest Neighborhood

LSTM -0.273 ± 0.388 -0.781 ± 0.030
ODE-RNN -0.896 ± 0.026 -0.710 ± 0.003
CT-GRU -0.359 ± 0.073 -0.725 ± 0.086
LTC network (ours) -0.676 ± 0.192 -0.711 ± 0.013

Interestingly, we see most agents learn a reasonable degree of validation loss during

the learning process as depicted by Table 4.9. Even ODE-RNNs realize excellent

performance in the passive setting. However, when deployed in the environment,

none of the models other than the LTC network could perform the task completely

in 50 runs. LTC networks could perform 30% of runs successfully, which we in part

assign to their causal structure.

In Table 4, we summarize the success rate of CNNs in all tasks when deployed in
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Table 4.10: Closed-loop evaluation of trained policies on various navigation and
interaction tasks. Agents and policies are reinitialized randomly at the beginning of
each trial (n=50). Values correspond to success rates (higher is better).

Static Target Chasing Hiking

Model Clear Fog Light Rain Heavy Rain Occlusion Clear Fog Light Rain Heavy Rain Clear
LSTM 24% 22% 22% 4% 20% 66% 62% 56% 44% 2%
ODE-RNN 18% 10% 18% 2% 24% 52% 42% 62% 44% 4%
CT-GRU 40% 8% 60% 32% 28% 38% 36% 48% 42% 0%
LTC network (ours) 48% 40% 52% 60% 32% 78% 52% 84% 54% 30%

closed-loop. As expected, we observe that when temporal dependencies in the tasks

appear (i.e. the Occlusion or Hiking tasks), as well as when the input images are highly

perturbed (i.e. heavy rain or fog), the performance of CNNs drastically decreases.

This observation validates that having a memory component is very beneficial across

all these tasks.

4.5 Discussion

This chapter introduced liquid time-constant (LTC) neurons and networks. We

showed that they could be implemented by arbitrary variable and fixed step ODE

solvers and be trained by backpropagation through time. We demonstrated their

bounded and stable dynamics, superior expressivity, and superseding performance in

supervised learning time-series prediction tasks, compared to standard and modern

deep learning models.

Furthermore, we provided theoretical evidence for the capability of different rep-

resentations of continuous-time neural networks in learning causal structures. We

then performed a set of experiments to confirm the effectiveness of continuous-time

causal models in high-dimensional and visual drone navigation tasks with different

memory-horizons compared to other methods. We conclude that the class of liq-

uid time-constant networks has the great potential of learning causal structures in

closed-loop reasoning tasks where other advanced RNN models cannot perform well.
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4.6 Scope and Limitations

We have demonstrated that a special presentation of continuous-time neural models,

based om liquid time-constant (LTC) neurons, can realize dynamic causal models

and thereby significantly enhance the expressivity of decision making in an example

control setting of autonomous drone flight. Despite this promise, notable limitations

remain, and the theoretical foundations and first experiments described here open

several avenues for future investigation.

First, similar to many variants of time-continuous models, LTCs express the van-

ishing gradient phenomenon (Pascanu et al., 2013a; Lechner and Hasani, 2020) when

trained by gradient descent. Although the model shows promise on a variety of time-

series prediction tasks, they would not be the obvious choice for learning long-term

dependencies in their current format. Second, neural ODEs are remarkably fast com-

pared to more sophisticated models such as LTCs. Nonetheless, they lack expressivity.

Our proposed neural model, in its current format, significantly enhances the expres-

sive power of TC models at the expense of elevated time and memory complexity

which must be investigated in the future. This is a significant consideration for on-

line autonomy and decision-making applications in which time and memory efficiency

is a significant consideration.

Given the causal properties of LTCs, they hold great promise for the control of

robots in continuous-time observation and action spaces where their causal structures

can help improve robustness and reasoning (Lechner et al., 2020a). While here we

perform preliminary experiments in simulated autonomous flight, the ability of LTC-

based neural models for real-world autonomous control has yet to be established.

Achieving full-scale autonomous control onboard physical platforms, such as vehicles

or drones, will require significant scaling of LTC-based neural models, as well as

systematic verification of their abilities to enhance the robustness and expressivity

of learned control policies. Chapter 5 directly tackles these challenges. There, we

describe an LTC-based neural control model, termed a Neural Circuit Policy (NCP),

for robust, auditable, and expressive autonomous vehicle control.
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Chapter 5

Scaling Neural Circuit Policies for

Auditable Autonomy

5.1 Introduction

To achieve performant and robust autonomous control, an agent must learn a coher-

ent representation of its world from multidimensional sensory information; establish

an auditable, causal mapping of learned sensory representations to control policies;

and utilize these representations and models to generalize well in unseen scenarios.

Surprisingly, animals as small as the nematode Caenorhabditis elegans have mas-

tered such an ability, in order to perform locomotion (Kato et al., 2015), motor

control (Stephens et al., 2008), and navigation (Gray et al., 2005), through their

near-optimal nervous system structure (Yan et al., 2017; Cook et al., 2019) and their

harmonious neural information processing mechanisms (Kaplan et al., 2019).

Inspired by these structures and functional abilities, we set out to design a brain-

inspired intelligent agent that learns to control an autonomous vehicle directly from

its camera inputs (i.e. end-to-end learning to control (Lecun et al., 2004; Bojarski

et al., 2016)). In complex real world scenarios, for instance autonomous driving, such

neural computation inspiration (LeCun et al., 2015; Hassabis et al., 2017) can lead to

more expressive artificial intelligence agents: models that are simultaneously accurate

and auditable (Rudin, 2019). In Chapter 4, we presented liquid time-constant (LTC)
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neurons, a new continuous-time processing unit with expressive and provably causal

structure, and used simulation experiments to explore the potential of these models

for control learning. In this chapter, we scale this approach to achieve autonomous

vehicle control onboard a full-scale physical platform while preserving the model’s

robustness, causality, and auditability properties–an outcome uniquely enabled by

LTCs.

Specifically, we formulate neural models termed Neural Circuit Policies (NCPs),

which implement LTC neurons within a neural architecture based on the circuit di-

agram of C. elegans (Yan et al., 2017; Cook et al., 2019). We demonstrate that

NCPs meet key representation learning challenges of end-to-end control. First, the

safety-critical nature of the task demands auditable and interpretable dynamics of

the controllers. Additionally, it is desirable that agents learn the true causal struc-

ture (Pearl, 2009; Peters et al., 2017) between the observed driving-scenes and their

corresponding optimal-steering commands (the specific task of the agent). Ideally, for

a lane-keeping task, we wish that the agent implicitly learns to attend to the road’s

horizon when taking a current steering decision, while maintaining an attractive per-

formance. Finally, within the processing pipeline of the high-dimensional data-stream

input, the agent has to incorporate a short-term memory mechanism capturing tem-

poral dependencies. We demonstrate that for the autonomous vehicle lane keeping

task, very small NCP networks–with a control compartment consisting of only 19

neurons–in combination with compact convolutional neural networks (CNNs) (LeCun

et al., 1990) for feature extraction, achieved superior performance and robustness in

learning how to steer a vehicle directly from high-dimensional visual inputs.

5.2 Designing Neural Circuit Policies

To address the representation learning challenges and the complexity of autonomous

lane keeping, we design a new end-to-end learning system that perceives the inputs

by a set of convolutional layers (LeCun et al., 1989), to capture image structures, and

performs control by a novel RNN structure, termed a neural-circuit policy (NCP).
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The network structure of NCPs is inspired by the wiring diagram of the C. elegans

nematode (Wicks et al., 1996). Many neural circuits within the nematode’s nervous

system are constructed by a distinct 4-layer hierarchical network topology (Figure 5-

1). They receive environmental observations through sensory neurons. These are

passed on to interneurons and command neurons which generate an output decision.

Finally, this decision is passed to the motor neurons to actuate its muscles. The

wiring diagram of C. elegans achieves a sparsity of around 90% (Yan et al., 2017),

with feedforward connections from sensors to intermediate neurons, highly recurrent

connections among interneurons and command neurons, and feedforward connections

from command neurons to motor neurons. This specific topology was shown to have

attractive computational advantages, such as efficient distributed control, requiring

a small number of neurons (Yan et al., 2017), hierarchical temporal dynamics (Ka-

plan et al., 2019), robot-learning capabilities (Lechner et al., 2019), and maximal

information propagation in sparse flow networks (Hasani et al., 2020b).

5.2.1 The Neural Model

The neural dynamics of NCPs is given by continuous-time ordinary differential equa-

tions (ODEs), originally developed to capture the dynamics of the nervous system

of small species, such as C. elegans (Hasani et al., 2020a) (Figure 5-1a). At their

core, NCPs possess a nonlinear time-varying synaptic transmission mechanism that

improves their expressive power in modeling time series data, relative to their deep

learning counterparts. The foundational neural building blocks of NCPs are liquid

time-constant (LTC) neurons (Hasani et al., 2020a), each with state dynamics 𝑥𝑖(𝑡),

represented as follows, when connected through an input synapse to a neuron 𝑗:

𝑥̇𝑖 = −
(︀ 1
𝜏𝑖

+
𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖(𝑥𝑗)
)︀
𝑥𝑖 +

(︀𝑥𝑙𝑒𝑎𝑘𝑖
𝜏𝑖

+
𝑤𝑖𝑗

𝐶𝑚𝑖

𝜎𝑖(𝑥𝑗)𝐸𝑖𝑗

)︀
, (5.1)

where 𝜏𝑖 =𝐶𝑚𝑖
/𝑔𝑙𝑖 is the time-constant of the neuron 𝑖 with a leakage conductance of

𝑔𝑙𝑖 , 𝑤𝑖𝑗 is a synaptic weight from neuron 𝑖 to 𝑗, 𝐶𝑚𝑖
is the membrane capacitance,

𝜎𝑖(𝑥𝑗(𝑡)) = 1/(1 + 𝑒−𝛾𝑖𝑗(𝑥𝑗−𝜇𝑖𝑗)), 𝑥𝑙𝑒𝑎𝑘𝑖 is the resting potential and 𝐸𝑖𝑗 is a reversal
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Figure 5-1: Designing NCP networks with the LTC neural model. a Repre-
sentation of the neural state, 𝑥𝑖(𝑡), of a postsynaptic LTC neuron 𝑖 receiving input
currents from presynaptic neuron, 𝑗. The neural state is determined by the aggrega-
tion of the inflows/outflows to/from the cell. Synaptic currents are set by an input
dependent nonlinearity 𝑓 which is a function of the presynaptic neural state, 𝑥𝑗(𝑡)
and its synaptic parameters (See Methods for further details). b Representation of an
end-to-end NCP network. The network perceives the camera inputs that are trans-
formed by a set of convolutional layers to a latent representation which is exploited
by the designed NCP (based on the steps described in c) to produce control actions.
c NCP design procedure based on rules 1 to 4.
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synaptic potential that defines the polarity of the synapse. An LTC neuron’s overall

coupling sensitivity (i.e. its time-constant) is defined by:

𝜏𝑠𝑦𝑠𝑡𝑒𝑚𝑖
=

1
1
𝜏𝑖
+

𝑤𝑖𝑗

𝐶𝑚𝑖
𝜎𝑖(𝑥𝑗)

. (5.2)

This variable time-constant determines the reaction speed of a neuron during a

decision-making process, and holds true for the LTC neurons in the autonomous

driving NCP.

Numerical Implementation of the NCP Network

To learn the parameters of an NCP circuit, we transform it into a differentiable rep-

resentation. After modeling the circuit as a system of ordinary differential equations

of LTC neurons, we employ a numerical ODE solver to obtain its computable form.

A solving method suitable for our purpose has to comply with the following three

constraints.

First, the solver is applied to a real-time system that puts a hard limit on worst-

case executing time. Hence, the solver uses a fixed step-size (Press et al., 2007).

Secondly, the ODE model of an NCP is stiff (Press et al., 2007; Hasani et al., 2020a).

Consequently, to avoid numerical instabilities, we adopt a semi-implicit method (Press

et al., 2007). Lastly, during the training phase, we compute partial derivatives by

backpropagating through the solver. Similar to the stability arguments in the forward

path, we need to monitor the error magnitude in the backward phase. In particular,

a suitable solving method must not result in an exploding or vanishing gradient. To

comply with these constraints, we employed a simple Euler approach. As a result,

in summary, for each neuron, we adopt a semi-implicit Euler approach with a fixed

step-size of the form:

𝑥𝑖(𝑡+∆) :=
𝑥𝑖(𝑡)𝐶𝑚𝑖

/∆+ 𝑔𝑙𝑖𝑥𝑙𝑒𝑎𝑘𝑖
∑︀

𝑗∈𝐼𝑖𝑛 𝑤𝑖𝑗 𝜎𝑖(𝑥𝑗(𝑡))𝐸𝑖𝑗

𝐶𝑚𝑖
/∆+ 𝑔𝑙𝑖 +

∑︀
𝑗∈𝐼𝑖𝑛 𝑤𝑖𝑗 𝜎𝑖(𝑥𝑗(𝑡))

. (5.3)

The set 𝐼𝑖𝑛 represents the set of neurons that are presynaptic to neuron 𝑖. This
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equation was derived from the basic Euler formula (Press et al., 2007):

𝑥(𝑡+∆) := 𝑥(𝑡) + ∆𝑓
(︁
𝑥(𝑡+ 𝜏), 𝑢(𝑡+ 1)

)︁
(5.4)

by setting 𝜏 = ∆ for all 𝑥(𝑡 + 𝜏) that appear linear in 𝑓 , and setting 𝜏 = 0 for all

other occurrences. Note that the well-known explicit (forward) Euler method can

be obtained from Equation 5.4 by setting 𝜏 = 0. Likewise, the implicit (backward)

Euler method is realized by Equation 5.4 by setting 𝜏 = ∆ and solving the resulting

non-linear equation for 𝑥(𝑡+∆). RNNs usually process their incoming input stream

at a fixed sampling frequency (e.g ., 30 Hz in the described end-to-end driving tasks).

To achieve a decent precision–a computation complexity trade-off–we simulated the

ODE at a frequency six times higher than the input sampling rate; jat os. we packed

6 ODE solver steps into one RNN step. In both the training and testing phases, we

initialized states of the ODE/RNN by zeros.

5.2.2 Wiring Design Principles

The architecture of an NCP network is determined by the design principles introduced

in rules 1-4, corresponding to the steps presented in Figure 5-1c, as follows:

1. Insert four neural layers — 𝑁𝑠 sensory neurons, 𝑁𝑖 interneurons, 𝑁𝑐 command

neurons, and 𝑁𝑚 motor neurons (Figure 5-1c-1).

2. Between every two consecutive layers — ∀ source neuron, insert 𝑛𝑠𝑜−𝑡 synapses

(𝑛𝑠𝑜−𝑡 ≤ 𝑁𝑡), with synaptic polarity ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝2), to 𝑛𝑠𝑜−𝑡 target neurons,

randomly selected ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑠𝑜−𝑡, 𝑝1) (Figure 5-1c-2).

3. Between every two consecutive layers — ∀ target neuron 𝑗 with no synapse,

insert 𝑚𝑠𝑜−𝑡 synapses (𝑚𝑠𝑜−𝑡 ≤ 1
𝑁𝑡

∑︀𝑁𝑡

𝑖=1, 𝑖̸=𝑗 𝐿𝑡𝑖), where 𝐿𝑡𝑖 = the number of

synapses to target neuron 𝑖, with synaptic polarity ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝2), from 𝑚𝑠𝑜−𝑡

source neurons, randomly selected from ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚𝑠𝑜−𝑡, 𝑝3) (Figure 5-1c-3).

4. Recurrent connections of command neurons — ∀ command neuron, insert 𝑙𝑠𝑜−𝑡

synapses (𝑙𝑠𝑜−𝑡 ≤ 𝑁𝑐), with synaptic polarity ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝2), to 𝑙𝑠𝑜−𝑡 target
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command neurons, randomly selected from ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑙𝑠𝑜−𝑡, 𝑝4) (Figure 5-1c-

4).

Applying the NCP design principles above results in very compact and sparse net-

works of LTC neurons. The learning system corresponding to the lane-keeping task

consists of the convolutional feature extraction front end stacked with the NCP net-

work control head (Figure 5-1b). This system is trained in an end-to-end, supervised-

learning fashion. Given a designed NCP network, we apply a semi-implicit ODE-

solver in order to obtain a numerically accurate and stable solution of the sys-

tem (Hasani et al., 2020a). We then recursively fold the ODE-solver call into an

RNN cell and prepare the system’s training pipeline. From the gradient propagation

perspective, our approach gives rise to a vanishing gradient phenomenon, which, as

described in Figure 4-2d, is the preferable setting for learning a real-world autonomous

vehicle (AV) control.

5.3 Experimental Methods

To build and train the autonomous driving NCP, a large-scale selection of labeled

training data was collected by recording the observations and actions of a human

driver. End-to-end driving is a feedback control problem, where the control actu-

ated by the agent proprioceptively affects future observations. However, during the

supervised training phase, this feedback mechanism is utterly disregarded.

All data used to train networks was collected on a Toyota Prius 2015 V retrofitted

with perception sensors (a forward-facing Leopard Imaging LI-AR0231-GMSL cam-

era), inertial measurement unit (Xsens MTi 100-series IMU), GPS, and drive-by-wire

steering (Naser et al., 2017). All data logging was done directly on an NVIDIA Drive

PX2, the in-car high-performance computing platform. The IMU was used to record

rotation of the vehicle’s rigid body frame and thus compute the curvature of the ve-

hicle’s traversed path. Specifically, given a yaw rate 𝛾𝑡 (𝑟𝑎𝑑𝑠/𝑠𝑒𝑐), and the speed of
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the vehicle, 𝑣𝑡 (𝑚/𝑠𝑒𝑐), we compute the curvature of the path as:

𝑦𝑡 =
1

𝑟𝑡
=
𝛾𝑡
𝑣𝑡

(5.5)

where 𝑟𝑡 is the radius of the traversing circle.

Ultimately, for the networks learned in this paper, we consider the problem of

directly learning a control command from the human traversed road curvature (𝑦𝑡)

instead of the steering wheel angle (𝛼𝑡). This is because 𝛼𝑡 is a nonlinear function of

both 𝑦𝑡 and 𝑣𝑡 and depends on the tire slip angle, road surface, weather conditions,

and vehicle dynamics. Hence, simply learning the steering wheel angle (i.e. what the

human commanded) is not sufficient for autonomous navigation. Instead, we require

knowledge of the traversed road curvature (i.e. where the human drove). We can

compute the steering wheel angle online by using a bicycle model approximation to

control the car at the inference time:

𝛼𝑡 = 𝐾 arctan(𝐿𝑦𝑡) (5.6)

where 𝐾 is the steering ratio (i.e. the ratio between steering and tire angle), and 𝐿

is the vehicle length.

5.3.1 Offline Data Collection

For passive evaluation experiments, we collected approximately five hours of driving

data throughout diverse regions of the Boston metropolitan area during dry, wet, and

snowy weather conditions on the highway, local, and residential roads. We processed

the data by removing ambiguous segments such as lane switches, crossings, and con-

gestion. We split the data into ten non-overlapping sets of equally sized chunks for the

cross-testing procedure. We trained a model on the union of the remaining nine sets

for each of the ten sets, then evaluated the performance of the model on the withhold

test set. The number of training epochs was optimized based on a validation set,

which we separated from the union of the nine sets before training.
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Table 5.1: Results of the passive lane-keeping 10-fold cross-testing eval-
uation. As the squared errors on the test set are determined by large outliers we
reported squared and absolute error. Sparse LSTM models are trained with projected
gradient descent to enforce a 95% sparsity level. All tested NCP architectures are
composed of 19 neurons.

Model Training square error Test squared error
CNN 1.41 ± 0.30 4.28 ± 4.63

Vanilla RNN 0.14 ± 0.05 3.39 ± 4.39
CT-GRU 0.19 ± 0.05 3.63 ± 4.61

CT-RNN (19 units) 0.44 ± 0.14 3.62 ± 4.35
CT-RNN (64 units) 0.23 ± 0.09 3.43 ± 4.55

Sparse CT-RNN (19 units) 0.77 ± 0.35 4.03 ± 4.80
Sparse CT-RNN (64 units) 0.40 ± 0.43 3.72 ± 4.71

GRU 1.25 ± 1.02 5.06 ± 6.64
LSTM (64 units) 0.19 ± 0.05 3.17 ± 3.85
LSTM (19 units) 0.16 ± 0.06 3.38 ± 4.48

Sparse LSTM (19 units) 1.05 ± 0.57 3.68 ± 5.21
Sparse LSTM (64 units) 0.29 ± 0.14 3.25 ± 3.93

NCP 0.43 ± 0.26 3.22 ± 3.92
NCP (randomly wired) 2.12 ± 2.93 5.19 ± 5.43
NCP (fully-connected) 2.41 ± 3.44 5.18 ± 4.19

We observed that such a train-test discrepancy led to situations where a trained

neural network model that performs exceptionally well on the labeled sequences in an

offline testing environment (Table 5.1) fails to steer the car safely in a real testing case.

Modern RNNs are particularly vulnerable to these scenarios, as their decision-making

process heavily relies on past observations. Hence, to properly assess performance,

we chose the architectures that worked well during offline testing and evaluated them

actively on a real car.

5.3.2 Training Procedure

Here we describe the training procedure of the models. If not stated otherwise, this

description applies to the passive and active test scenarios. We formulated the end-

to-end autonomous driving control problem as a regression task. Hence, we adopted

the squared error as the training loss function. As recordings of curves and turns are

underrepresented in the training data, we multiplied a weighting factor to the loss

127



value of each sample. This weighting factor 𝑤(𝑦) := exp(|𝑦|𝛼) depends on the target

curvature 𝑦 exponentially and thus assigns a higher priority to samples containing

road-curves and turns. As the test track is located in a forest area where trees cast

shadows with variable profiles on the road, we implemented a shadow augmentation

data technique during training. In essence, we draw a semi-transparent black or

white line over each training image. The location, orientation, and width of lines are

randomly sampled from uniform distributions.

We trained all models, except the feedforward CNN, on sub-sequences of 16 time-

steps, which correspond to 0.53 real-time seconds. The neural state of standard

CT-RNN and LSTM implementations are unbounded, which may lead to instabili-

ties during closed-loop testing, as they are only trained on finite sequences. To avoid

the internal states of the controller to grow indefinitely, i.e., a phenomenon known

in control theory as wind-up (Bohn and Atherton, 1995), we apply a clipping oper-

ation to the states of the CT-RNN and LSTM to keep the values within the range

[−5, 5]. We used Adam (Kingma and Ba, 2014) as the optimization algorithm in all

experiments.

The convolutional layers’ architecture for all RNN models are listed in Table 5.2.

After the last convolutional layer, we applied four per-channel linear layers to obtain

8×4 = 32 latent features serving as sensory inputs to the RNN control compartment.

We empirically tuned the learning rates and the convolutional layers’ hyperparameters

and evaluated them on the passive dataset. We observed that the NCP model took

advantage of a lower learning rate for the convolutional layers and a higher learning

rate for the RNN compartment. We apply a per-image whitening filter to the images

before feeding them into the networks.

To perform a fair comparison, we equipped all RNN models with the same convo-

lutional head that reduces the dimensionality of the input image to a more compact

latent representation to be fed into the RNN compartments (Table 5.2). We trained

and evaluated the networks with the following architectures: 64-neurons LSTM, 64-

neurons continuous-time (CT) RNN, and19-neurons NCP. Moreover, we compared

these recurrent agents to the state-of-the-art feedforward CNN model for autonomous
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Table 5.2: Convolutional head. Specifications of the convolutional head used for
extracting driving features.

Layer Filters Kernel size Strides
1 24 5 2
2 36 5 2
3 48 3 2
4 64 3 1
5 8 3 1

vehicle control (Bojarski et al., 2016).

5.3.3 Closed-loop Evaluations

We conducted the active driving experiments on a private road system. To prepare

the models, we collected approximately 94 minutes of data by maneuvering the vehicle

through the test track. We split the data into a training and a validation set based

on a 3:1 ratio. The number of training epochs was selected based on the lowest error

on the validation set achieved during training. We tested each trained model 5 times

around the test track, without input perturbations, and two times while the input

was disrupted by a zero-mean Gaussian distribution with variances 0.1, 0.2, and 0.3

(two times per perturbation magnitude).

Each evaluation consists of driving the car, in the counterclockwise direction,

around one cycle of the outermost path of the track.

We started an evaluation by placing the vehicle at a designated initial location,

accelerating the car up to a constant speed of 4.47 m/s, and delegating the steering

system’s control to the neural network. Every time the vehicle was maneuvered off

the road, we manually steered the car back on track and reported an intervention

(i.e. crash).

5.3.4 Saliency Maps

Saliency maps are interpretation methods to visualize the inner workings of a trained

neural network by highlighting parts of the input image that contributed most to the

decision of a network. We employed saliency maps to analyze qualitatively what our
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networks have learned to attend to. In particular, we were interested in how layers

that are common to all tested architectures evolve differently during training. Conse-

quently, we narrow our analysis to the convolutional layers in the feature extraction

head at the beginning of the network. We additionally adopted VisualBackProp (Bo-

jarski et al., 2018), which has been developed deliberately for autonomous driving

research, to compute the saliency maps presented. This method leverages the prop-

erty of the ReLU activation in that that the value of each neuron in the feature map

is either positive or zero.

Algorithm 5 Compute Saliency Map
Inputs: Convolutional feature maps ℎ1, ℎ2, . . . ℎ𝑁
𝑠 := average-over-channel-dimension(ℎ𝑁)
for i from N-1 to 1 do

𝑧 := average-over-channel-dimension(ℎ𝑖)
𝑠 := 𝑧 ⊙ deconvolution-to-size-of(𝑠,𝑧)

end for
return 𝑠.

In Algorithm 5, ⊙ represents the element-wise multiplication, and deconvolution

to-size-of function scales the first argument to the dimension of the second argument

by applying a deconvolution operation.

Structural Similarity Index

Structural Similarity Index (SSIM) is a method to compare quality of given im-

ages (Wang et al., 2004). It is computed as the product of three comparison criteria,

the luminance 𝑙, contrast 𝑐, and structure 𝑠 for given images 𝑥 and 𝑦, as follows

(Wang et al., 2004):

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼.[𝑐(𝑥, 𝑦)]𝛽.[𝑠(𝑥, 𝑦)]𝛾, (5.7)

where:

𝑙 =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1

, 𝑐 =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2

, 𝑠 =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

. (5.8)
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Here, 𝐶1,𝐶2, and 𝐶3 are the regularisation constants, 𝜇𝑥 and 𝜇𝑦 are the means of 𝑥 and

𝑦, 𝜎𝑥 and 𝜎𝑦 are standard deviations, and 𝜎𝑥𝑦 is the cross-covariance of 𝑥 and 𝑦. We

computed the SSIM for pairs of saliency maps at each time-frame (overall 200 frames),

between a noise-free version as reference and a perturbed one resulted from input

noise injections. We set the exponents 𝛼 = 𝛽 = 𝛾 = 1, the regularisation components

𝐶1 = (0.01𝐿)2, 𝐶2 = (0.03𝐿)2, and 𝐶3 = 𝐶2/2, with 𝐿 = 255 corresponding to the

dynamics range of the input image values.

5.4 Results

5.4.1 Compactness

A full-stack NCP network is 63 times smaller than the CNN network that established

the state-of-the-art of end-to-end driving (Bojarski et al., 2016). Its control-network

is 970 times sparser than that of LSTM and 241 times than CT-RNN. An NCP’s

RNN compartment possesses 233 times smaller trainable parameter-space than that

of LSTM, and 59 times lower than CT-RNN. Interestingly, the performance achieved

by such a compact neural representation is superior to that of other models in multiple

aspects of an ideal autonomous mobile robot controller, discussed as follows.

5.4.2 Robustness to Perturbations

As outlined in Figure 4-2, an ideal model should incorporate temporal information

to allow the filtering of any form of perturbation. To demonstrate this, we simply

used an additive zero-mean Gaussian noise, because such noise was not present in the

date used for the training process, and it requires a minimal assumption on the form,

shape, and severity of the perturbation signal. Compared to all learning systems

under-test, NCPs are significantly more robust in avoiding crashes (going off road)

which are caused by raising the pixel-wise input perturbations (Figure 5-2a). The

reason for their noise resiliency is that their continuous-time model serves as a filter

(Equation 5.1). Note that the primary objective of this experiment was to identify
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Figure 5-2: Robustness analysis. a Number of crashes (steering commands with
tendency to drive the vehicle off-road) for four RNN types, as the input noise variance
increases, in active driving test (n=3) b Variation of the structural sensitivity index
of the saliency maps for four RNN topologies as the input noise variance increases
(see Methods for computational details), A higher value of SSIM is preferable (n=3) c
Maximum Lipschitz constant (an indicator of smoothness and stable dynamics) of the
activity of every single neuron (sorted by the amplitude of the max Lipschitz constant
on the horizontal axis) (n=5), Lower values are preferable. de Example of the saliency
maps before a crash event caused by LSTM and CNN, in the presence of input
perturbations, and how it was handled by CT-RNN and NCP. ee A second example
of a crash incident caused by LSTM and CNN. Videos of the driving performance
with no input perturbations: NCP, LSTM, CT-RNN and CNN; and with a 𝜎2 = 0.3
input perturbation: NCP, LSTM, CT-RNN and CNN.

how differently each model relies on its memory for making a prediction.

We quantified the influence of the input perturbations on the attention maps (the

learned causal structure), by computing their structural similarity index (SSIM), rep-

resented in Figure 5-2b. SSIM indicates how much the structure of the attention

maps gets distorted when the incoming inputs are perturbed. The closer SSIM is

to 1, the less distorted is the attention. Thus the network can handle input noise

more robustly. The closer the SSIM index is to 0, the more distorted the network’s

attention is, which results in the increased uncertainty of the network when making a
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correct driving decision. Under different levels of input perturbations, NCPs consis-

tently maintain a higher SSIM compared to the other models, therefore, reducing its

output decision’s uncertainty (Figure 5-2b). Figure 5-2d-e depict examples of crash

incidents that happened at the locations shown on the map, when the inputs to the

networks were heavily perturbed by an input noise. These figures also illustrate how

the attention of each intact network is disrupted by the input noise and caused LSTM

and CNN networks to drive the vehicle off-road.

5.4.3 Smoothness and Stability

We quantitatively measured the maximum steepness of the neural dynamics derivative

(maximum local Lipschitz constant) for all neurons in the system. The limitation on

the speed of change of a function can be computed by the Lipschitz continuity criteria

(|𝑓(𝑡2) − 𝑓(𝑡1)| ≤ 𝐿|𝑡2 − 𝑡1|). The smaller the Lipschitz constant (𝐿), the smoother

the transitions of function 𝑓 are.

Algorithm 6 Compute Maximum Lipschitz Constants
Inputs: 𝑋(𝑁×𝑇 ) 𝑁 = number of neurons, 𝑇 = length of the
test episode
for n from 1 to N do

for 𝑡 from 1 to 𝑇 − 1 do
𝐿(𝑛, 𝑡) = 𝑑𝑋

𝑑𝑡
≈ 𝑋(𝑛, 𝑡+ 1)−𝑋(𝑛, 𝑡)/∆𝑡, ∆𝑡 = 1

end for
end for
𝐿
(𝑁×1)
𝑚𝑎𝑥 = max(𝐿(𝑁,𝑇 )

Return 𝐿𝑚𝑎𝑥𝑠𝑜𝑟𝑡𝑒𝑑
= sort(𝐿𝑚𝑎𝑥).

We compute the maximum Lipschitz constants for neural state activity of RNNs

𝑋(𝑡), for an episode of active testing for all RNN types (Algorithm 6) reported in Fig-

ure 5-2c. We observed that the local decision-making process in NCPs is remarkably

smoother than those of other network types.
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5.4.4 Interpretability and Attention Analysis

Interpretation is the process of providing explanations to humans. Although no formal

definition for interpretability exists (Molnar, 2020), we define a model to be more in-

terpretable, if its causal mapping between input observations and output decisions, as

well as its global hidden-state dynamics, are more comprehensible to humans (Hasani,

2020).

In this regard, we conduct quantitative interpretability analysis by explaining the

attention maps of the convolutional layers, and by computing the global network

dynamics of the recurrent network compartment of the models. We then explain

cell-level contributions through visualization techniques. For the driving task, we

find that there is a close relationship between the geometry of the environment, the

specific driving task, and the network nodes responsible for the required behavior,

This is a consequence of defining the function of each neuron by differential equations.

Accordingly, we experimented with the learned lane-keeping networks to measure their

interpretability in three distinct ways.

Given an input image (Figure 5-3a), (Figure 5-3b-e represent sample attention

maps of the convolutional parts of the networks during live testing (Figure 5-3).

We have observed that the attention patterns are exclusive to the choice of network

architecture (e.g . CNN, LSTM, CT-RNN, NCP), and the explanations are invariant

to the choice of hyperparameters (e.g . network size).

For instance, the convolutional layers in the NCP networks predominantly attend

to the road’s horizon to make a driving decision Figure 5-3e). This is very desirable

in the lane-keeping task. In contrast, a CNN network looks at the roadside to make a

driving decision and ignores the road itself (Figure 5-3d). LSTM forced its perception

network to learn to attend to the roadside in most scenarios. However, lighting

conditions, as well as road profiles, can significantly alter the network’s attention

portfolio (Figure 5-3b). CT-RNN’s attention is inconsistent and is heavily influenced

by the variations of the road’s lighting conditions (Figure 5-3c). These maps give an

intuitive insight into the decision-making process of a task-specific network within a
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Figure 5-3: Global network dynamics. a, A sequence of input camera images
during the active testing. b to e present a set of saliency maps computed to obtain
the attention of the convolutional layers of the trained networks while driving (See
Methods "Saliency maps computation" for details). b, LSTM learned to attend to
the roadsides in most scenarios; however, lighting conditions significantly affect its
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The black line indicates the cumulative variance explained. j, First PC’s variance-
explained for all models. k to n shows the projection of the first (top) and the
second (bottom) PC’s score (The score of the 𝑛𝑡ℎ PC is computed by 𝑃𝐶
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𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑃𝐶(𝑛)), over the driving trajectory for k, LSTM, l, CT-RNN,
m, CNN, and n, NCP. (Click on networks’ names to watch their driving performance.)
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full-stack autonomous driving system. This insight could help in further safety and

robustness analysis.

5.4.5 Global Network Dynamics

To measure how concisely the networks learned the primitives of driving (straight

roads, handling curves, and road jitters), we performed a principal component anal-

ysis (PCA) and reported its variance in Figure 5-3f-i. PCA is conducted over the

activations of the hidden neurons (without the inclusion of the output signal) of the

RNN compartments of the driving networks, collected during live-testing. The anal-

ysis demonstrated that the first principal component (PC) of NCP’s neural dynamics

concisely learned the global driving features (explaining 92%), as shown in Figure 5-3j,

while the second PC learned fine-grained decisions. The conciseness was less apparent

in networks with LSTM and CT-RNN recurrent compartments, and therefore it is

more challenging to associate their behavior to intuitive explanations.

To motivate this phenomenon further, we plotted the first and the second PC

scores over the driving trajectory in Figure 5-3k-n. NCP is the only model among

the others that allocated distinct PC1 activation regimes to the main driving primi-

tives, while fine-grained control decisions have been largely captured by PC2. Other

baseline networks require at least two to three PCs to capture the driving profile up

to 90%, as shown in Figure 5-3f-i. Consequently, the added value of these results for

a more complex autonomous control system is that the global dynamics of a learned

agent can be interpreted and used for further improvements on the task-specific net-

works.

5.4.6 Cell-level Auditability

The neural state (the amplitude of a neuron’s output) and the coupling sensitivity

(how a neuron adjusts its reaction speed when interacting with the environment) of

LTC cells comprising an NCP network (Figure 5-4a), can help to understand how an

LTC network’s decision is made. Figure 5-4b-d illustrate the activity of five selected
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neurons from the NCP driving agent, projected over the driving trajectory. The motor

neuron’s activity illustrates how the inferred motion primitives correspond to various

driving situations (Figure 5-4b left). Its coupling sensitivity demonstrates that the

neuron tends to become more reactive during turns (setting smoother dynamics) while

keeping its reaction speed at a relatively constant-rate during straight motions.

Interneuron 1 learned to activate during left-turns (Figure 5-4c top-left) while

adjusting its dynamics to react faster at left-turning events (Figure 5-4c top-right).

Interneuron 2, on the other hand, learned to rapidly get more active during right-

turns (Figure 5-4c bottom). Command neuron 1 is consistently activated during

straight driving with a sensitive reaction speed while it is switched off on left-turns

(Figure 5-4d top). Command neuron 2 is biased at lower membrane potentials and

tunes to road jitters when the vehicle drives on a straight path (Figure 5-4d bottom).

This degree of immediate interpretation of dynamics is generalizable to every single

cell within an NCP (Figure 5-5). As the number of computational elements of an

NCP system is considerably lower than that of state-of-the-art neural networks, such

a degree of access to each cell dynamics could potentially be beneficial for designing

fault-test and corner-case analysis to improve the safety of the deployed autonomous

system.

5.5 Discussion

Neural circuit policies (NCPs) are, to the best of our knowledge, the smallest task-

specific neural network agents that can proficiently control a vehicle on previously-

unseen roads, while at the same time being robust to input artifacts, taking advantage

of causality, and realizing interpretable dynamics. NCPs are beneficially used within

full-stack autonomous control frameworks (Figure 5-6. They are designed to improve

the performance and transparency of black-box compartments om such complex full-

stack autonomous control systems.

A vision-based full-stack autopilot has to incorporate many different tasks for the

incoming image-streams (Figure 5-6a). In contrast, current state-of-the-art functional
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Figure 5-4: Intuitive comprehension of NCP’s cells activity while driving.
a, An NCP network trained end-to-end for autonomous lane-keeping. b to d depict
examples of neural activities projected over the road-trajectory on which the car was
driven. The neural state (representing the amplitude of a neuron’s dynamics) and
the coupling sensitivity (representing how a neuron adjusts its reaction speed) are
plotted in each subsection. b, Neural activity of the motor neuron. c, Neural activity
of two interneurons 1 and 2. d, Neural activity of two command neurons 1 and 2.
An immediate explanation of the cell-level dynamics for the NCP network is achieved
and extends to every internal element of the network.
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Figure 5-5: Neural activity of all NCP neurons presented in Fig. 5-4
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vehicle engine. a Camera input and examples of tasks. b An overview of Hydra-nets
of Tesla Autopilot (Tesla, 2020) redesigned from Tesla at PyTorch 2019 (Karpathy,
2019). c The overall structure of a vision-based full-stack AV system redesigned from
Tesla at PyTorch 2019 (Karpathy, 2019).

AV systems (Tesla, 2020) typically share a convolutional backbone network, with

many task-specific networks (Karpathy, 2019) upstream (Figure 5-6b). We made sure

that NCPs maintain compositionality within full-stack AVs, by enabling an end-to-

end training pipeline that can backpropagate errors through the NCPs to the static

CNN-based backbone. The resulting task-specific NCPs (e.g . for the lane-keeping

task) improve many aspects of the contemporary neural control modules in use.

Real-world application domains, such as autonomous driving, are surrounded by

environmental artifacts and uncertainty and thus demand robust real-time decision

making. Moreover, similar to autonomous driving tasks, many applications–such

as avionics, service robots, and medicine–deal with complex, high-dimensional input-

output spaces that become safety-critical when deployed in the real world. The success

of NCPs in task-specific AVs indicates that tackling the complexity of real-world

problems does not necessarily require learning very large neural networks that are

hard to comprehend.
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5.6 Scope and Limitations

A central goal of artificial intelligence in high-stakes decision-making applications is

to design a single algorithm that simultaneously expresses generalizability by learning

coherent representations of their world and interpretable explanations of its dynamics.

We combine brain-inspired neural computation principles and scalable deep learning

architectures to design compact neural controllers for task-specific compartments of

a full-stack autonomous vehicle control system. We discover that a single algorithm

with 19 control neurons, connecting 32 encapsulated input features to outputs by

253 synapses, learns to map high-dimensional inputs into steering commands. This

system shows superior generalizability, interpretability, and robustness compared with

orders-of-magnitude larger black-box learning systems. The obtained neural agents

enable high-fidelity autonomy for task-specific parts of a complex autonomous system.

The compactness, auditability, and robustness of NCPs opens the door to new,

tailored computing architectures for low-power, high-performance neural inference in

a variety of applications. Indeed, real-world decision making demands the ability to

make those decisions in real time, often under limited computational resources, and

guarantees on both the performance and robustness of those decisions. The properties

of NCPs makes these architectures attractive candidates for these types of settings, for

example in edge computing or embedded biocomputing (i.e. from biometric signals).

Furthermore, the unique architecture of NCPs raises the possibility of a tailored chip

or processor for efficient, sustainable in-memory neural computation using NCPs.

Future work to evaluate the performance of NCPs in low-power settings, assess their

generalizability to various decision making tasks, and develop new computing and

hardware platforms for NCPs will be critical to meet these goals.

More generally, NCPs provide one example of how the design of the model archi-

tecture itself can improve robustness and generalizability in learning to control. This

chapter describes how we achieve this by developing a learning-based models that is

decomposable into more compact neural processing units with improved auditabil-

ity. When learning a robust decision making system, not only must the base model
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architecture be expressive and reliable, but the associated learning and optimization

algorithms that train such models must also be well-equipped to generalize to chal-

lenging scenarios in order to further guarantee robustness. In Chapter 6 we present

a step towards this goal and describe an algorithmic approach to improve learning

from underrepresented and edge-case scenarios.
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Chapter 6

Learning Algorithms to Generalize to

Underrepresented Edge-cases and

Mitigate Bias

6.1 Introduction

Robots operating in human-centric environments have to perform reliably in unantici-

pated situations. While deep neural networks (DNNs) offer great promise in enabling

robots to learn from humans and their environments (as opposed to hand-coding

rules), substantial challenges remain (Schwarting et al., 2018). For example, previous

work in autonomous driving has demonstrated the ability to train end-to-end a DNN

capable of generating vehicle steering commands directly from car-mounted video

camera data with high accuracy so long as sufficient training data is provided (Bo-

jarski et al., 2016). But true autonomous systems should also gracefully handle sce-

narios with insufficient training data.

A society where autonomous systems are safely and reliably integrated into daily

life demands agents that are aware of scenarios for which they are insufficiently

trained. To date, many such systems have been trained with datasets that are either

biased or contain class imbalances, due to the lack of labeled data. This negatively im-
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pacts both the speed and accuracy of training and thus the downstream performance

of the autonomous system.

These considerations extend more generally beyond the setting of autonomy and

robotics. Indeed, as machine learning (ML) systems are increasingly making decisions

in safety-critical and human-centric applications throughout society, it is critical to

ensure the development and deployment of fair and unbiased AI systems in order

to achieve the long-term acceptance of these algorithms (Miller, 2015; Courtland,

2018). For example, ML and artificial intelligence (AI) are already being used to

determine if a human is eligible to receive a loan (Khandani et al., 2010), how long

a criminal should spend in prison (Berk et al., 2016), the order in which a person

is presented the news (Nalisnick et al., 2016), or even diagnoses and treatments for

medical patients (Mazurowski et al., 2008).

While deep learning based systems have been shown to achieve state-of-the-art

performance on many of these tasks, it has also been demonstrated that algorithms

trained with imbalanced or biased data lead to algorithmic discrimination (Bolukbasi

et al., 2016; Caliskan et al., 2017). Even the seemingly simple task of facial recog-

nition (Zafeiriou et al., 2015; Ranjan et al., 2017) has been shown to be subject to

extreme amounts of algorithmic bias among select demographics (Buolamwini and

Gebru, 2018). For example, (Klare et al., 2012) analyzed the face detection system

used by the US law enforcement and discovered significantly lower accuracy among

dark women between the age of 18-30 years old. This is especially concerning since

these facial recognition systems are often not deployed in isolation but rather as part

of a larger surveillance or criminal detection pipeline (Abdullah et al., 2017). Recent

benchmarks quantifying discrimination (Kilbertus et al., 2017; Hardt et al., 2016) and

even datasets specifically created to evaluate the fairness of these algorithms (Buo-

lamwini and Gebru, 2018) have emerged. However, the problem of severely imbal-

anced training datasets and the question of how to integrate debiasing capabilities

into AI algorithms for autonomous systems and decision-making pipelines still remain

largely unsolved.

This chapter presents an algorithmic approach that tackles these challenges by
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integrating debiasing capabilities directly into a model training process that adapts

automatically and without supervision to the shortcomings of the training data. Our

approach features an end-to-end deep learning algorithm that simultaneously learns

the desired task (e.g ., autonomous vehicle control, facial detection) as well as the

underlying latent structure of the training data. Learning the latent distributions

in an unsupervised manner enables us to uncover underrepresented edge cases and

hidden or implicit biases within the training data. We then leverage the learned latent

structure to adaptively resample the dataset as training progresses. Our algorithm,

which is built on top of a variational autoencoder (VAE), is capable of identifying

underrepresented examples in the training dataset and subsequently increases the

probability at which the learning algorithm samples these data points.

We first describe the effects of underrepresentation on algorithmic bias and discuss

methods for learning the latent structure of a dataset. We then formulate an algorithm

for automated debiasing based on learned latent structure. This provides two key

methodological contributions:

1. A novel, tunable debiasing algorithm which utilizes learned latent variables

to adjust the respective sampling probabilities of individual data points while

training; and

2. A semi-supervised model for simultaneously learning a debiased classifier as well

as the underlying latent variables governing the given classes.

Next, we demonstrate two concrete applications of this method:

1. Facial detection, in which we show how our algorithm can be used to debias a

facial detection system trained on a biased dataset;

2. Autonomous driving, in which we demonstrate how this method can identify

underrepresented edge cases to improve training efficiency and predictive per-

formance.
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6.2 Uncovering and Mitigating Algorithmic Bias

6.2.1 The Effect of Underrepresentation on Bias

We first consider the problem of binary classification in which we are presented with

a set of paired training data samples 𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑥(𝑖),𝑦(𝑖))}𝑛𝑖=1 consisting of features

𝑥 ∈ R𝑚 and labels 𝑦 ∈ R𝑑. Our goal is to find a functional mapping 𝑓 : 𝑋 → 𝑌

parameterized by 𝜃 which minimizes a certain loss ℒ(𝜃) over our entire training

dataset. In other words, we seek to solve the following optimization problem:

𝜃* = argmin
𝜃

1

𝑛

𝑛∑︁
𝑖=1

ℒ𝑖(𝜃) (6.1)

Given a new test example, (𝑥,𝑦), our classifier should ideally output 𝑦 = 𝑓𝜃(𝑥)

where 𝑦 is “close” to 𝑦, with the notion of closeness being defined from the original

loss function.

Now, assume that each datapoint also has an associated continuous latent vector

𝑧 ∈ R𝑘 which captures the hidden, sensitive features of the sample. We can formalize

the notion of a biased classifier as follows:

Definition 6. A classifier, 𝑓𝜃(𝑥), is biased if its decision changes after being exposed

to additional sensitive feature inputs. In other words, a classifier is fair with respect

to a set of sensitive latent features, 𝑧, if:

𝑓𝜃(𝑥) = 𝑓𝜃(𝑥, 𝑧) (6.2)

For example, when deciding if an image contains a face or not, the skin color,

gender, or even age of the individual are all underlying latent variables and should

not impact the classifier’s decision.

To ensure fairness of a classifier across these various latent variables, the dataset

should contain roughly uniform samples over the sensitive latent space. In other

words, the training distribution itself should not be biased to overrepresent a certain

category while under-representing others. Note that this is different than claiming
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that our dataset should be balanced with respect to the classes (i.e., include roughly

the same number of faces as non-faces in the dataset). Namely, we are saying that

within a single class the unobserved latent variables should also be balanced. This

would promote the notion that all instances of a single class will be treated fairly by

the classifier such that, even if a latent variable was changed to the opposite extreme

(e.g . skin tone from light to dark), the accuracy of the classifier would not be changed.

Furthermore, given a labeled test set across the space of sensitive latent variables,

𝑧, we can measure the bias of the classifier by computing its accuracy across a set of

sensitive categories (e.g . dark vs. light skinned faces). While the overall accuracy of

the classifier is simply the mean of the accuracies for each sensitive class, the bias can

be estimated as the variance in accuracies across classes. For example, if a classifier

performs equally well no matter the realization of a specific sensitive latent variable

(e.g . skin tone), it will have a variance in accuracy equal to zero, and thus be called

unbiased. On the other hand, if some realizations of the latent variable cause the

classifier to perform better or worse, the variance in the accuracies will increase, and

thus, so will the overall bias of said classifier.

While it is possible to use a set of human defined sensitive variables to ensure

fair representation during training, this requires time-intensive manual annotation

of each variable over the entire dataset. Additionally, this approach is subject to

potential human bias in the selection of which variables are deemed sensitive or not.

Our method addresses this problem by learning the latent variables of the class in

an entirely unsupervised manner and proceed then using these learned variables to

adaptively resample the dataset while training. In the following subsection, we will

outline the architecture used to learn the latent variables.

6.2.2 Learning the Latent Structure of a Dataset

We propose an extension of the variational autoencoder (VAE) network architecture

(Kingma and Welling, 2013; Rezende et al., 2014) which we use for both unsupervised

learning of the latent training structure and debiasing. We refer to this architecture

as a debiasing variational autoencoder (or DB-VAE). An overview of the network
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Figure 6-1: Debiasing Variational Autoencoder. Architecture of the semi-
supervised DB-VAE for binary classification (blue region). The unsupervised latent
variables are used to adaptively resample the dataset while training.

architecture is shown in Figure 6-1. At a high level, the goal is to learn the ex-

planatory factors, i.e., the latent variables 𝑧, that underlie the data distribution.

The encoder portion of the VAE learns an approximation 𝑞𝜑(𝑧|𝑥) of the intractable

posterior, the true distribution of the latent variables given a data point. However,

as opposed to classical VAE architectures, we also introduce 𝑑 additional output

variables corresponding to the dimension of our output 𝑦. With 𝑘 latent variables

and 𝑑 output variables, the encoder outputs 2𝑘 + 𝑑 activations corresponding to

𝜇 ∈ R𝑘, Σ = 𝐷𝑖𝑎𝑔[𝜎2] ≻ 0, which are used to define the distribution of 𝑧, and the

𝑑-dimensional output, 𝑦.

Note that, in order to still learn our original supervised learning task we assign and

explicitly supervise the 𝑑 output variables. This, in turn, transforms our traditional

VAE model from an entirely unsupervised model to a semi-supervised model, where

some latent variables are implicitly learned by trying to reconstruct the input and the

others are explicitly supervised for a specific task (e.g. classification). For example, if

we originally wanted to train a binary classifier (i.e., 𝑦 ∈ {0, 1}), our DB-VAE model

would learn a latent encoding of 𝑘 latent variables (i.e., {𝑧𝑖}𝑖∈{1,𝑘}) as well as a single

variable specifically for classification: 𝑧0 = 𝑦.

A decoder network mirroring the encoder is then used to reconstruct the input

back from the latent space by approximating 𝑝𝜃(𝑥|𝑧). VAEs utilize reparameterization
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to differentiate the outputs through a sampling step, where we sample 𝜖 ∼ 𝒩 (0, (𝐼))

and compute 𝑧:

𝑧 = 𝜇(𝑥) +Σ
1
2 (𝑥) ∘ 𝜖 (6.3)

This decoded reconstruction enables unsupervised learning of the latent variables dur-

ing training, and is thus necessary for automated debiasing of the data corresponding

to the learned latent variables.

We train the network end-to-end using backpropagation with a three component

loss function comprising of a supervised latent loss, a reconstruction loss, and a latent

loss for the unsupervised variables. For comparison, the baseline model used for the

desired task would have a similar architecture as the DB-VAE, without the unsuper-

vised latent variables and decoder network. It would be trained according to only the

supervised loss function.

The supervised loss in binary classification, for example, could be simply given by

the cross-entropy loss:

ℒ𝑦(𝑦, 𝑦) = −
(︀
𝑦 log(𝑦) + (1− 𝑦) log(1− 𝑦)

)︀
(6.4)

When training the unsupervised section of the network, the reconstruction loss is

given by the 𝐿𝑝 norm between the input and the reconstructed output. This is used

to train the decoder and is given by:

ℒ𝑥(𝑥, 𝑥̂) =
1

𝑛

𝑛∑︁
𝑖=1

‖𝑥𝑖 − 𝑥𝑖‖𝑝 (6.5)

where 𝑥𝑖 is an input and 𝑥𝑖 is the decoded reconstruction of that input.

The latent loss is given by the Kullback-Liebler (𝐾𝐿) divergence between the

latent variables and a specified distribution (Kingma and Welling, 2013; Rezende

et al., 2014). This regularizes the latent space and, for Gaussian distributions, has

the form:

ℒ𝐾𝐿(𝜇, 𝜎) =
1

2

𝑘−1∑︁
𝑗=0

(𝜎𝑗 + 𝜇2
𝑗 − 1− log(𝜎𝑗)) (6.6)
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Finally, the total loss is simply a weighted combination of these three losses:

ℒ𝑇𝑂𝑇𝐴𝐿(·) = 𝑐1ℒ𝑦(𝑦, 𝑦) + 𝑐2ℒ𝑥(𝑥, 𝑥̂) + 𝑐3ℒ𝐾𝐿(𝜇, 𝜎) (6.7)

where 𝑐1, 𝑐2, 𝑐3 are the weighting coefficients to impact the relative importance of each

of the individual loss functions. Note that special care needs to be taken when feeding

training examples from classes which you do not want to debias. For example, in the

facial detection problem, we primarily care about ensuring that our positive dataset

of faces is fair and unbiased, and less about debiasing the negative example where

there is no face present. For these negative samples, the gradients from the decoder

and latent space should be stopped and not backpropogated. This effectively means

that, for these classes, we only train the encoder to improve the supervised loss.

6.2.3 Algorithm for Automated Debiasing

In this section, we present the algorithm for adaptive resampling of the training data

based on the learned latent structure by our DB-VAE model. By dropping over-

represented regions of the latent space according to their frequency of occurrence, we

increase the probability of selecting rarer data for training. This is done adaptively as

the latent variables themselves are being learned during training. Thus, our debiasing

approach accounts for the complete distribution of the underlying features in the

training data.

The training dataset is fed through the encoder network, which provides an esti-

mate 𝒬(𝑧|𝑋) of the latent distribution. We seek to increase the relative frequency

of rare data points by increased sampling of under-represented regions of the latent

space. To do so, we approximate the distribution of the latent space with a histogram

with dimensionality defined by the number of latent variables, 𝑘:

𝒬̂(𝑧|𝑋) ∝ 𝒬(𝑧|𝑋) (6.8)

To circumvent the high-dimensionality of the histogram when the latent space be-
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comes increasingly complex, we simplify this approximation further and use indepen-

dent histograms to approximate the joint distribution, 𝒬̂(𝑧|𝑋). Specifically, we define

an independent histogram, 𝒬̂𝑖(𝑧𝑖|𝑋), for each latent variable 𝑧𝑖. Thus, we make the

approximation:

𝒬̂(𝑧|𝑋) ∝
∏︁
𝑖

𝒬̂𝑖(𝑧𝑖|𝑋) (6.9)

This allows us to neatly approximate 𝒬(𝑧|𝑋) based on the frequency distribution of

each of the learned latent variables. Finally, we introduce a single parameter, 𝛼, to

tune the degree of debiasing introduced during training. We define the probability

distribution of selecting a datapoint 𝑥 as𝒲(𝑧(𝑥)|𝑋), parameterized by the debiasing

parameter 𝛼:

𝒲(𝑧(𝑥)|𝑋) ∝
∏︁
𝑖

1

𝒬̂𝑖(𝑧𝑖(𝑥)|𝑋) + 𝛼
(6.10)

We provide pseudocode for training the DB-VAE in Algorithm 7. At every epoch

all inputs 𝑥 from the original dataset 𝑋 are propagated through the model to evaluate

the corresponding latent variables 𝑧(𝑥). The histograms 𝑄̂𝑖(𝑧𝑖(𝑥)|𝑋) are updated

accordingly. During training, a new batch is drawn by keeping inputs, 𝑥, from the

original dataset, 𝑋, with likelihood 𝑊 (𝑧(𝑥)|𝑋). Training on the debiased data batch

now forces the classifier into a choice of parameters that work better in rare cases

without strong deterioration of performance for common training examples. Most

importantly, the debiasing is not manually specified beforehand but instead based on

learned latent variables.

Intuitively, we can think of the parameter 𝛼 as tuning the degree of debiasing.

As 𝛼 → 0, the subsampled training set will tend towards uniform over the latent

variables 𝑧. As 𝛼 → ∞, the subsampled training set will tend towards a random

uniform sample of the original training dataset (i.e., no debiasing).

6.3 Results

With this foundation, we next demonstrate the utility of our algorithm for identifying

underrepresented regions and mitigating algorithmic balance in two concrete real-
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Algorithm 7 Adaptive re-sampling for automated debiasing of the
DB-VAE architecture
Input: Training data {𝑋, 𝑌 }, batch size 𝑏

Initialize weights {𝜑, 𝜃}
for each epoch, 𝐸𝑡 do

Sample 𝑧 ∼ 𝑞𝜑(𝑧|𝑋)

Update 𝒬̂𝑖(𝑧𝑖(𝑥)|𝑋)
𝒲(𝑧(𝑥)|𝑋)←

∏︀
𝑖

1

𝒬̂𝑖(𝑧𝑖(𝑥)|𝑋)+𝛼

while 𝑖𝑡𝑒𝑟 < 𝑛
𝑏

do
Sample 𝑥𝑏𝑎𝑡𝑐ℎ ∼ 𝒲(𝑧(𝑥)|𝑋)
𝐿(𝜑, 𝜃)← 1

𝑏

∑︀
𝑖∈𝑥𝑏𝑎𝑡𝑐ℎ

ℒ𝑖(𝜑, 𝜃)
Update: [𝑤 ← 𝑤 − 𝜂∇𝜑,𝜃ℒ(𝜑, 𝜃)]𝑤∈{𝜑,𝜃}

end while
end for

world applications: (1) facial detection and recognition, and (2) autonomous driving.

6.3.1 Facial Detection and Recognition

Problem Setup

In order to validate our debiasing algorithm on a real-world problem with significant

social impact, we attempt to learn a debiased facial detector using potentially biased

training data. We demonstrate that our method can identify underrrepresented ex-

amples in the training dataset and subsequently increase the probability at which the

learning algorithm samples these data points (Figure 6-2) In this section, we define

the facial detection problem, describe the datasets used, and outline model training,

debiasing, and evaluation procedures.

For the facial detection problem, we are given a set of paired training data samples

𝒟𝑡𝑟𝑎𝑖𝑛 = {(𝑥(𝑖),𝑦(𝑖))}𝑛𝑖=1, where 𝑥(𝑖) are the raw pixel values of an image patch and

𝑦(𝑖) ∈ {0, 1} are their respective labels, indicating the presence of a face.

Our goal is to ensure that the set of positive examples used to train a facial de-

tection classifier is fair and unbiased. The positive training data may potentially be

biased with respect to certain attributes such as skin tone, in that particular instances

of those attributes may appear more or less frequently than other instances. Thus, in
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Figure 6-2: Batches sampled for training without (left) and with (right)
learned debiasing. The proposed algorithm identifies, in an unsupervised manner,
under-represented parts of training data and subsequently increasing their respective
sampling probability. The resulting batch (right) from the CelebA dataset shows
increased diversity in features such as skin color, illumination, and occlusions.

our experiments, we train a full DB-VAE model to learn the latent structure under-

lying the positive (face) images and use the adaptive resampling approach outlined

in Algorithm 7 to debias the model with respect to facial features. For negative ex-

amples (images of non-faces), we only train the encoder portion of our network. We

evaluate the performance of our debiased models relative to standard, biased clas-

sifiers on the Pilot Parliaments Benchmark (PPB) dataset (Buolamwini and Gebru,

2018) and provide estimates of the precision and bias of each model as performance

metrics.

Datasets

We train our classifiers on a dataset of 𝑛 = 4 × 105 images, consisting of 2 × 105

positive (images of faces) and negative (images of non-faces) examples, split 80% and

20% into training and validation sets, respectively. The positive examples were taken

from the CelebA dataset (Liu et al., 2015). Aligned CelebA images were cropped to

a square based on the annotated face bounding box and resized to 64× 64. Negative

examples were taken from the ImageNet dataset (Deng et al., 2009), from a wide

variety of non-human categories, including but not limited to cars, houses, textures,
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landscapes, non-human primates, dogs, and tools. Both full images and random crops

of the negative examples were resized to 64× 64 to improve network generalizability.

After training, we evaluate our debiasing algorithm on the PPB test dataset (Buo-

lamwini and Gebru, 2018), which consists of images of 1270 male and female parlia-

mentarians from three African countries and three European countries. Images are

consistent in pose, illumination, and facial expression, and the dataset exhibits parity

in both skin tone and gender. The gender of each face is annotated with the sex-based

“Male” and “Female” labels. Skin tone annotations are based on the gold standard

Fitzpatrick skin type classification system (Fitzpatrick, 1988), with each image la-

beled as “Lighter” (Fitzpatrick score I-III) or “Darker” (Fitzpatrick score IV-VI).

Learned Latent Structure of Facial Databases

In order to interpret the features which the DB-VAE is debiased against on the

CelebA dataset, we analyzed the latent space of the learned by the encoder using

pertubation analysis. Beginning with a mean sampled latent vector, we perturb a

single latent variable by slowly increasing/decreasing its magnitude. We feed the

resulting vector through the decoder to visualize the reconstructed output face. The

results of this analysis for five representative latent variables are shown in Figure 6-3.

Qualitative and interpretable meanings deduced from each variable are labeled on the

left of each row. We observed that the DB-VAE is able to learn facial features such

as skin tone, presence of hair, and azimuth, as well as other features such as gender

and age (Figure 6-3). This supports the hypothesis that our DB-VAE algorithm

is capable of debiasing against such features since the resampling probabilities are

directly defined based on the probability distributions of individual learned latent

variables (Algorithm 7).

Automated Debiasing of Facial Detection Systems

In this section, we explore the output of the debiasing algorithm for facial detec-

tion and provide extensive evaluation of our learned models on the Pilot Parliaments

Benchmark (PPB) dataset (Buolamwini and Gebru, 2018). We consider the resam-
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Skin Color
(Light to Dark)

Gender
(Female to Male)

Hair
(Hair to Bald)

Age
(Young to Old)

Azimuth
(Left to Right)

Figure 6-3: Learned latent variables. Examples of faces generated by perturbing
(left to right) a single latent variable. The DB-VAE is able to learn classical sensitive
features such as skin color, gender, hair, age, and even face heading.

pling probabilities that arise from learning a debiased model. These probabilities

are defined by the distribution 𝒲(𝑧(𝑥)|𝑋). As shown in Figure 6-4A, as the prob-

ability of resampling increases, the number of data points within the corresponding

bin decreases, suggesting that those images more likely to be resampled are those

characterized by ‘rare’ features.

Indeed, as the probability of resampling increases, the corresponding images be-

come more diverse, as evidenced by the four sample faces from each frequency bin

in Figure 6-4A. This observation is further validated by considering the ten faces in

the training data with the lowest and highest resampling probabilities (Figure 6-4B,C

respectively). The ten faces with the lowest resampling probability appear quite uni-

form, with consistent skin tone, hair color, forward gaze, and background color. In

contrast, the ten faces with the highest resampling probability display rarer features

such as headwear or eyewear, tilted gaze, shadowing, and darker skin. Taken together,

these results imply that our algorithm identifies and then actively resamples those

data points with rarer, more diverse features based on a learned latent representation.

To evaluate the performance of our debiasing approach, we utilized classification

accuracy (positive predictive value) as a metric, and tested our models on the PPB

dataset. For this evaluation, we extracted patches from each image using sliding
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Figure 6-4: Sampling probabilities over the training dataset. Histogram over
the resampling probabilities showing four sample faces from each bin (A). The top
ten faces with the lowest (B) and highest (C) probabilities of being sampled.

windows of varying dimension, and fed these extracted image patches to our trained

models. We output a positive match of a face if the classifier identifies a face in any

one of the subpatches within the image. We formalize this as follows.

Let {̃︀𝑥p} be the set of extracted patches for a given image ̃︀𝑥 in the test dataset,

where ̃︀𝑥p corresponds to an individual patch. The probability that a given patch

contains a face is given by the output of the encoder network:

𝑦p = 𝑞𝜑(𝑦 = 1|̃︀𝑥p). (6.11)

The predicted classification for an image, ̃︀𝑥, in the test dataset is then given by

𝑦 =
[︀[︀
(max 𝑦p) >

1
2

]︀]︀
.

To address whether our approach could effectively debias against specific sensitive

features, we quantified classification performance on individual demographics. Specif-

ically, we considered skin tone (light/dark) and gender (male/female). We denote 𝒜

as the set of classification accuracies of a model on each of the four intersectional

classes. We compared the accuracy of models trained with and without debiasing on

both individual demographics (race/gender) and the PPB dataset as a whole, and

provide results on the effect of the debiasing parameter 𝛼 on performance (Figure 6-

5). Recall that no debiasing corresponds to the limit 𝛼 → ∞, where we uniformly

sample over the original training set without learning the latent variables. Con-

versely, 𝛼 → 0, corresponds to sampling from a uniform distribution over the latent
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space. Error bars (standard error of the mean) are provided to visualize statistical

significance of differences between the trained models.

As shown in Figure 6-5, as we increased debiasing power (decrease 𝛼) classification

accuracy significantly increased on "Dark Male" subjects. This is consistent with the

hypothesis that adaptive resampling of rare instances (e.g ., dark faces) in the training

data results in less algorithmic discrimination. This also suggests that our algorithm

can effectively debias for a qualitative feature like skin tone, which has significant

social implications for its utility in improving fairness in facial recognition systems.

Dark Male Dark Female Light Male Light Female Overall
80

85

90

95

100

Ac
cu

ra
cy

 (%
)

No debiasing
α = 0.1

α = 0.01
α = 0.05

α = 0.001

Figure 6-5: Increased performance and decreased categorical bias with DB-
VAE. Models were evaluated on the PPB dataset to demonstrate increased perfor-
mance and decreased categorical bias with increased debiasing.

In contrast to the trend observed with dark male subjects, the classification accu-

racy on "Light Male" faces remained nearly constant for both the biased and debiased

models. Additionally, the accuracy on light male subjects was higher than the three

other groups, consistent with previous reports (Buolamwini and Gebru, 2018). This

suggests that our debiasing algorithm does not significantly sacrifice performance

on categories which already have high precision. Importantly, the high, near con-

stant accuracy suggests that an arbitrary classification model trained on the CelebA

dataset may be biased towards light male subjects, and further supports the need for

approaches that seek to reduce such biases.

Although the DB-VAE models improved accuracy on dark males significantly,

they never reached the accuracy of light males. Despite the fact that we debias our

training data with respect to latent variables such as skin tone, there are inherently

fewer examples of dark males in the dataset. Thus, our model is simply limited by
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Table 6.1: Accuracy and bias on PPB test dataset.
E[𝒜]
(Precision)

𝑉 𝑎𝑟[𝒜]
(Measure of Bias)

No Debiasing 95.13 28.84
𝛼 = 0.1 95.84 25.43
𝛼 = 0.05 96.47 18.08
𝛼 = 0.01 97.13 9.49
𝛼 = 0.001 97.36 9.43

infrequency of these examples. Increasing the overall size of our training dataset may

further mitigate this effect.

We summarize the key trends in overall performance with DB-VAE in Table 6.1.

As confirmed by Figure 6-5, the overall precision, E[𝒜], increased with increased

debiasing power (decreasing 𝛼). Additionally, we observed a decrease in the variance

in accuracy between categories, indicative of decreased bias with greater debiasing.

Together, these results suggest effective debiasing with DB-VAE.

6.3.2 Autonomous Driving

Problem Setup

We consider end-to-end autonomous driving, where a steering control command is

predicted from only a single input image. We start from the end-to-end model frame-

work. In this framework we observe 𝑛 training images, 𝑋 = {𝑥1, . . . , 𝑥𝑛}, which are

collections of raw pixels from a front-facing video camera. We aim to build a model

that can directly map our input images, 𝑋, to output steering commands based on

the curvature of the road 𝑌 = {𝑦1, . . . , 𝑦𝑛}.

We formulate a DB-VAE model in which one particular latent variable is explic-

itly supervised to predict steering control, and combined with the remaining latent

variables to reconstruct the input image. The model accepts as input a 66× 200× 3

RGB image in mini-batches of size 𝑛 = 50. We use a convolutional network encoder,

comprised of convolutional and fully connected layers, to compute 𝑄(𝑧|𝑋), the dis-

tribution of the latent variables given a data point. The latent space has the encoder
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outputting 2𝑘 activations corresponding to 𝜇 ∈ R𝑘,Σ = 𝐷𝑖𝑎𝑔[𝜎] ≻ 0 used to define

the distribution of 𝑧. We additionally supervise one of the latent variables to take on

the value of the curvature of the vehicle’s path. We represent this modified variable

as 𝑧0 = 𝑧𝑦 = 𝑦. The DB-VAE is trained using the three-component loss provided in

Equation 6.7. We found that 𝑐1 = 0.033, 𝑐2 = 0.1, 𝑐3 = 0.001 yielded a nice trade off

in importance between steering control, reconstruction, and 𝐾𝐿 loss, wherein no one

individual loss component overpowers the others during training.

A majority of driving data consists of straight road driving, while turns and curves

are vastly underrepresented. End-to-end control network (Bojarski et al., 2016) train-

ing often handles this by resampling the training set to place more emphasis on the

rarer events (i.e. turns). We generalize this notion to the latent space of a VAE model,

better exploring the space of both control events and nuisance factors, for not only

the steering command but all other underlying features. As with facial detection, by

feeding the original training data through the learned model, we estimate the training

data distribution 𝑄(𝑧|𝑋) in the latent space. We approximate 𝑄(𝑧|𝑋) as a histogram

𝑄̂(𝑧|𝑋), where 𝑧 is the output of the Encoder NN corresponding to the input images

𝑥 ∈ 𝑋, and further simplify by utilizing independent histograms 𝑄̂𝑖(𝑧𝑖|𝑋) for each

latent variable 𝑧𝑖 and approximate 𝑄̂(𝑧|𝑋) ∝
∏︀

𝑖 𝑄̂𝑖(𝑧𝑖|𝑋).

Naturally, we would like to train on a higher number of unlikely training examples

and drop many samples over-represented in the dataset. We therefore train on a

subsampled training set 𝑋sub including datapoints 𝑥 with probability 𝑊 (𝑧(𝑥)|𝑋) ∝∏︀
𝑖 1/(𝑄̂𝑖(𝑧𝑖(𝑥)|𝑋) + 𝛼), following Algorithm 7. This procedure yields a subsampled

dataset 𝑋sub. Training on the subsampled data 𝑋sub now forces the model into a

choice of parameters that work better in rare cases without strong deterioration of

performance for common training examples. Most importantly, the debiasing is not

manually specified beforehand but based on learned latent variables.

Uncovering Latent Biases in Driving

In this subsection, we analyze the resulting latent space that our DB-VAE model

learned. We start by gauging the underlying meaning of each of the latent variables,
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Figure 6-6: Latent variable perturbation. A selection of six learned latent vari-
ables with associated interpretable descriptors (left labels). Images along the x-axis
(from left to right) were generated by linearly perturbing the latent vector encoding
along that single latent dimension. While steering command (top) was a supervised
latent variable, all others (bottom five) were entirely unsupervised and learned by the
model from the dataset.

performing the same style of perturbation experiment as Figure 6-3. The results for

an exemplary set of latent variables. for a DB-VAE trained on driving data for the

steering wheel control task, is shown in Figure 6-6. By identifying latent variable

representations, we can immediately observe what the network sees and explain how

the corresponding steering control is derived. We observe that the network is able

to generate intuitive representations for lane markings and additional environmental

structures, such as other surrounding vehicles and weather, without ever actively

being told to do so.

Debiasing End-to-end Driving Models

We evaluate the effect of debiasing during training by training two models, one with-

out debiasing the dataset for inherent latent imbalances and once again now subsam-

pling our dataset to reduce these over-represented (i.e. biased) samples. On every

epoch we sample only 50% of the dataset for training while the remaining data is

discarded. Figure 6-7 illustrates the loss evolution throughout both training schemes.

We note that the loss is computed on the original data distribution (and not the
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Figure 6-7: Accelerated training with debiasing. Comparison of training loss
evolution with/without automated debiasing.

subsampled distribution), since we ultimately only care about our performance on

the original data. Debiasing the training pipeline allows the model to focus on events

that are typically more rare and inherently more difficult to learn from since they

occur less frequently. This debiasing procedure results in training that is more data

efficient, using only 50% of the data, and also faster than standard training. Fig-

ure 6-7 shows a minimum loss of 20 achieved after roughly half as many training

iterations compared to training on the original data distribution. These results high-

light that our algorithm enables more efficient training and debiasing of end-to-end

driving models.

6.4 Discussion

We have developed a novel, tunable debiasing algorithm to adjust the respective sam-

pling probabilities of individual data points while training. By learning the underly-

ing latent variables in an entirely unsupervised manner, we can scale our approach to

large datasets and debias for latent features without ever hand labeling them in our

training set. We demonstrate results of our algorithm on two real-world applications:

mitigating bias in facial detection systems and handling underrepresented examples

in autonomous driving.

In facial detection, given a biased training dataset, our debiased models show

increased classification accuracy and decreased categorical bias across race and gen-
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der, compared to a standard classifier. In autonomous driving, we demonstrate that

adaptively sampling the dataset effectively removes overrepresented latent regions

and results in 2× training speedups in empirical tests.

Safety-critical applications of AI, such as facial detection and autonomous driving,

demand the ability to learn effectively from underrepresented regions as well as guar-

antees on the fairness of these algorithms. We envision that the proposed approach

will serve as a tool to enhance the generalizability, robustness, and fairness of machine

learning algorithms for safety-critical decision making and autonomous control.

6.5 Scope and Limitations

Our algorithm provides a generalizable method for automatically uncovering repre-

sentation disparities in the feature space and mitigating biases that may consequently

result. We envision that this method will be widely applicable across predictive tasks

and safety-critical applications, including those in autonomous control, as presented

here. There are several lines of future work that warrant further investigation.

First, while here we utilize a VAE architecture to learn the latent structure of a

dataset, the modularity of our algorithm allows for incorporation of other methods for

density estimation. Different density estimation methods may prove more performant

or more amenable to different tasks or applications, for example in considering time-

series models or learning from discrete feature sets. In addition, future analysis is

required to systematically assess the susceptibility of the method to nuisance variation

that may be underrepresented in the data and in the latent space. Finally, while here

we utilize the learned latent distributions to perform data resampling during training,

future efforts could utilize this information to guide data generation for the purpose

of training set augmentation.

Fundamentally, the work described in this chapter provides a mechanism for as-

sessing feature representation disparities, identifying rare events, and then adapting

the training process itself based on this information. Underrepresented regions and

rare events are instances in which we expect the model to be less confident in its
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prediction; the debiasing algorithm presented here attempts to lessen the uncertainty

around these predictions (i.e., increase confidence) by upsampling these instances in

training. This concept underscores the importance of grounded methods to identify

sources of uncertainty in deep learning models and to ultimately adjust learning, infer-

ence, or deployment procedures to handle those uncertainties effectively. Chapter 7

explores this aim systematically, wherein we describe a novel algorithm for calibrated

single-shot uncertainty quantification in deep neural networks for regression tasks.
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Deploy
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Chapter 7

Probabilistic Modeling and

Uncertainty Awareness

7.1 Introduction

Neural networks (NNs) are being deployed in safety critical domains, where calibrated,

robust, and efficient measures of uncertainty are crucial for wide-scale adoption.

Namely, regression-based NNs are prominent in several domains including computer

vision (Godard et al., 2017) to robotics and control (Amini et al., 2019a; Bojarski

et al., 2016). Furthermore, precise and calibrated uncertainty estimates are useful

for interpreting confidence, capturing domain shift of out-of-distribution (OOD) test

samples, and recognizing when the model is likely to fail.

There are two axes of NN uncertainty that can be modeled: (1) uncertainty in

the data, called aleatoric uncertainty, and (2) uncertainty in the prediction, called

epistemic uncertainty. While metrics of aleatoric uncertainty can be derived directly

from data, there exist several approaches for estimating epistemic uncertainty, such as

Bayesian NNs, which place probabilistic priors over network weights and use sampling

to approximate output variance (Kendall and Gal, 2017). However, Bayesian NNs

face several limitations, including the intractability of directly inferring the posterior

distribution of the weights given data, the requirement and computational expense

of sampling during inference, and the question of how to choose a weight prior.
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In contrast, evidential deep learning formulates learning as an evidence acquisi-

tion process (Sensoy et al., 2018; Malinin and Gales, 2018). Every training example

adds support to a learned higher-order, evidential distribution. Sampling from this

distribution yields instances of lower-order likelihood functions from which the data

was drawn. Instead of placing priors on network weights, as is done in Bayesian NNs,

evidential approaches place priors directly over the likelihood function. By training

a neural network to output the hyperparameters of the higher-order evidential dis-

tribution, a grounded representation of both epistemic and aleatoric uncertainty can

then be learned without the need for sampling.

To date, evidential deep learning has been targeted towards discrete classification

problems (Sensoy et al., 2018; Malinin and Gales, 2018; Joo et al., 2020) and has either

required a well-defined distance measure to a maximally uncertain prior (Sensoy et al.,

2018) or relied on training with OOD data to inflate model uncertainty (Malinin and

Gales, 2018; Malinin, 2019). In contrast, continuous regression problems present

the complexity of lacking a well-defined distance measure to regularize the inferred

evidential distribution. Further, pre-defining a reasonable OOD dataset is non-trivial

in the majority of applications; thus, methods to obtain calibrated uncertainty on

OOD data from only an in-distribution training set are required.

We developed a novel approach that models the uncertainty of regression networks

via learned evidential distributions (Figure 7-1). Specifically, we present:

1. A novel and scalable method for learning epistemic and aleatoric uncertainty

on regression problems, without sampling during inference or training with out-

of-distribution data;

2. Formulation of an evidential regularizer for continuous regression problems, nec-

essary for penalizing incorrect evidence on errors and OOD examples;

3. Evaluation of epistemic uncertainty on benchmark and complex vision regres-

sion tasks along with comparisons to state-of-the-art NN uncertainty estimation

techniques; and
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Figure 7-1: Evidential regression simultaneously learns a continuous target along
with aleatoric (data) and epistemic (model) uncertainty. Given an input, the net-
work is trained to predict the parameters of an evidential distribution, which mod-
els a higher-order probability distribution over the individual likelihood parameters,
(𝜇, 𝜎2).

4. Robustness and calibration evaluation on OOD and adversarially perturbed test

input data.

7.2 Modelling uncertainties from data

7.2.1 Preliminaries

We consider the following supervised optimization problem. Given a dataset, 𝒟, of

𝑁 paired training examples, 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1, we aim to learn a functional mapping

𝑓 , parameterized by a set of weights, 𝑤, which approximately solves the following

optimization problem:

min
𝑤

𝐽(𝑤); 𝐽(𝑤) =
1

𝑁

𝑁∑︁
𝑖=1

ℒ𝑖(𝑤), (7.1)

where ℒ𝑖(·) describes a loss function. We focus on deterministic regression problems,

which commonly optimize the sum of squared errors, ℒ𝑖(𝑤) = 1
2
‖𝑦𝑖 − 𝑓(𝑥𝑖;𝑤)‖2. In

doing so, the model is encouraged to learn the average correct answer for a given

input, but does not explicitly model any underlying noise or uncertainty in the data
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when making its estimation.

7.2.2 Maximum likelihood estimation

One can approach this problem from a maximum likelihood perspective, where we

learn model parameters that maximize the likelihood of observing a particular set

of training data. In the context of deterministic regression, we assume our targets,

𝑦𝑖, were drawn i.i.d. from a distribution such as a Gaussian with mean and variance

parameters 𝜃 = (𝜇, 𝜎2). In maximum likelihood estimation (MLE), we aim to learn

a model to infer 𝜃 that maximize the likelihood of observing our targets, 𝑦, given by

𝑝(𝑦𝑖|𝜃). This is achieved by minimizing the negative log likelihood loss function:

ℒ𝑖(𝑤) = − log 𝑝(𝑦𝑖|𝜇, 𝜎2⏟ ⏞ 
𝜃

) =
1

2
log(2𝜋𝜎2) +

(𝑦𝑖 − 𝜇)2

2𝜎2
. (7.2)

In learning 𝜃, this likelihood function successfully models the uncertainty in the data,

also known as the aleatoric uncertainty. However, our model is oblivious to its pre-

dictive epistemic uncertainty (Kendall and Gal, 2017).

In this section, we present a novel approach for estimating the evidence supporting

network predictions in regression by directly learning both the aleatoric uncertainty

present in the data as well as the model’s underlying epistemic uncertainty. We

achieve this by placing higher-order prior distributions over the learned parameters

governing the distribution from which our observations are drawn.

7.3 Evidential uncertainty for regression

7.3.1 Problem setup

We consider the problem where the observed targets, 𝑦𝑖, are drawn i.i.d. from a

Gaussian distribution, as in standard MLE (Section 7.2.2), but now with unknown

mean and variance (𝜇, 𝜎2), which we seek to also probabilistically estimate. We

model this by placing a prior distribution on (𝜇, 𝜎2). If we assume observations are
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Figure 7-2: Normal Inverse-Gamma distribution. Different realizations of our
evidential distribution (A) correspond to different levels of confidences in the param-
eters (e.g. 𝜇, 𝜎2). Sampling from a single realization of a higher-order evidential
distribution (B), yields lower-order likelihoods (C) over the data (e.g. 𝑝(𝑦|𝜇, 𝜎2)).
Darker shading indicates higher probability mass. We aim to learn a model that
predicts the target, 𝑦, from an input, 𝑥, with an evidential prior imposed on our
likelihood to enable uncertainty estimation.

drawn from a Gaussian, in line with assumptions Section 7.2.2, this leads to placing a

Gaussian prior on the unknown mean and an Inverse-Gamma prior on the unknown

variance:

(𝑦1, . . . , 𝑦𝑁) ∼ 𝒩 (𝜇, 𝜎2)

𝜇 ∼ 𝒩 (𝛾, 𝜎2𝜐−1) 𝜎2 ∼ Γ−1(𝛼, 𝛽). (7.3)

where Γ(·) is the gamma function, 𝑚 = (𝛾, 𝜐, 𝛼, 𝛽), and 𝛾 ∈ R, 𝜐 > 0, 𝛼 > 1, 𝛽 > 0.

Our aim is to estimate a posterior distribution 𝑞(𝜇, 𝜎2) = 𝑝(𝜇, 𝜎2|𝑦1, . . . , 𝑦𝑁).

To obtain an approximation for the true posterior, we assume1 that the estimated

distribution can be factorized (Parisi, 1988) such that 𝑞(𝜇, 𝜎2) = 𝑞(𝜇) 𝑞(𝜎2). Thus, our

approximation takes the form of the Gaussian conjugate prior, the Normal Inverse-

1In practice, we can empirically measure how limiting this assumption is by looking at the ability
to fit samples from the true posterior (e.g ., obtained from Deep Ensembles, etc.) to the approximated
posterior 𝑞(𝜇, 𝜎2)).
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Gamma (NIG) distribution:

𝑝(𝜇, 𝜎2⏟ ⏞ 
𝜃

| 𝛾, 𝜐, 𝛼, 𝛽⏟  ⏞  
𝑚

) =
𝛽𝛼
√
𝜐

Γ(𝛼)
√
2𝜋𝜎2

(︂
1

𝜎2

)︂𝛼+1

exp

{︂
−2𝛽 + 𝜐(𝛾 − 𝜇)2

2𝜎2

}︂
. (7.4)

A popular interpretation of the parameters of this conjugate prior distribution is in

terms of “virtual-observations” in support of a given property (Jordan, 2009). For

example, the mean of a NIG distribution can be intuitively interpreted as being esti-

mated from 𝜐 virtual-observations with sample mean 𝛾, while its variance is estimated

from 𝛼 virtual-observations with sample mean 𝛾 and sum of squared deviations 2𝛽.

Following from this interpretation, we define the total evidence, Φ, of our evidential

distributions as the sum of all inferred virtual-observations counts: Φ = 2𝜐 + 𝛼.

Drawing a sample 𝜃𝑗 from the NIG distribution yields a single instance of our

likelihood function, namely 𝒩 (𝜇𝑗, 𝜎
2
𝑗 ). Thus, the NIG hyperparameters, (𝛾, 𝜐, 𝛼, 𝛽),

determine not only the location but also the dispersion concentrations, or uncertainty,

associated with our inferred likelihood function. Therefore, we can interpret the NIG

distribution as the higher-order, evidential distribution on top of the unknown lower-

order likelihood distribution from which observations are drawn.

For example, in Figure 7-2A we visualize different evidential NIG distributions with

varying model parameters. We illustrate that by increasing the evidential parame-

ters (i.e., 𝜐, 𝛼) of this distribution, the p.d.f. becomes tightly concentrated about

its inferred likelihood function. Considering a single parameter realization of this

higher-order distribution (Figure 7-2B), we can subsequently sample many lower-

order realizations of our likelihood function, as shown in Figure 7-2C.

Our evidential deep learning algorithm uses neural networks to infer, given an

input, the hyperparameters, 𝑚, of this higher-order, evidential distribution. This ap-

proach presents several distinct advantages. First, our method enables simultaneous

learning of the desired regression task, along with aleatoric and epistemic uncer-

tainty estimation, by enforcing evidential priors and without leveraging any out-of-

distribution data during training. Second, since the evidential prior is a higher-order

NIG distribution, the maximum likelihood Gaussian can be computed analytically
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from the expected values of the (𝜇, 𝜎2) parameters, without the need for sampling.

Third, we can effectively estimate the epistemic uncertainty (i.e., model uncertainty)

associated with the network’s prediction by simply evaluating the variance of our

inferred evidential distribution.

7.3.2 Prediction and uncertainty estimation

The aleatoric uncertainty, also referred to as statistical or data uncertainty, is rep-

resentative of unknowns that differ each time we run the same experiment. The

epistemic (or model) uncertainty, describes the estimated uncertainty in the predic-

tion. Given a NIG distribution, we can compute the prediction, aleatoric uncertainty,

and epistemic uncertainty as

E[𝜇] = 𝛾⏟  ⏞  
prediction

, E[𝜎2] = 𝛽
𝛼−1⏟  ⏞  

aleatoric

, Var[𝜇] = 𝛽
𝜐(𝛼−1)⏟  ⏞  

epistemic

. (7.5)

Note that Var[𝜇] = E[𝜎2]/𝜐, which is expected as 𝜐 is one of our two evidential

virtual-observation counts.

7.3.3 Learning the evidential distribution

Having formalized the use of an evidential distribution to capture both aleatoric and

epistemic uncertainty, we next describe our approach for learning a model to output

the hyperparameters of this distribution. For clarity, we structure the learning process

as a multi-task learning problem, with two distinct parts: (1) acquiring or maximizing

model evidence in support of our observations and (2) minimizing evidence or inflating

uncertainty when the prediction is wrong. At a high level, we can think of (1) as a

way of fitting our data to the evidential model while (2) enforces a prior to remove

incorrect evidence and inflate uncertainty.

(1) Maximizing the model fit. From Bayesian probability theory, the “model

evidence”, or marginal likelihood, is defined as the likelihood of an observation, 𝑦𝑖,

given the evidential distribution parameters 𝑚 and is computed by marginalizing
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over the likelihood parameters 𝜃:

𝑝(𝑦𝑖|𝑚) =
𝑝(𝑦𝑖|𝜃,𝑚)𝑝(𝜃|𝑚)

𝑝(𝜃|𝑦𝑖,𝑚)
=

∫︁ ∞

𝜎2=0

∫︁ ∞

𝜇=−∞
𝑝(𝑦𝑖|𝜇, 𝜎2)𝑝(𝜇, 𝜎2|𝑚) d𝜇 d𝜎2 (7.6)

The model evidence is, in general, not straightforward to evaluate since computing

it involves integrating out the dependence on latent model parameters. However,

in the case of placing a NIG evidential prior on our Gaussian likelihood function an

analytical solution does exist:

𝑝(𝑦𝑖|𝑚) = St
(︂
𝑦𝑖; 𝛾,

𝛽(1 + 𝜐)

𝜐 𝛼
, 2𝛼

)︂
. (7.7)

where St (𝑦;𝜇St, 𝜎
2
St, 𝜐𝑆𝑡) is the Student-t distribution evaluated at 𝑦 with location 𝜇St,

scale 𝜎2
St, and 𝜐𝑆𝑡 degrees of freedom. We denote the loss, ℒNLL

𝑖 (𝑤), as the negative

logarithm of model evidence

ℒNLL
𝑖 (𝑤) = 1

2
log
(︀
𝜋
𝜐

)︀
− 𝛼 log(Ω) +

(︀
𝛼 + 1

2

)︀
log((𝑦𝑖 − 𝛾)2𝜐 + Ω) + log

(︁
Γ(𝛼)

Γ(𝛼+ 1
2
)

)︁
(7.8)

where Ω = 2𝛽(1 + 𝜐). This loss provides an objective for training a NN to output

parameters of a NIG distribution to fit the observations by maximizing the model

evidence.

(2) Minimizing evidence on errors. Next, we describe how to regularize train-

ing by applying an incorrect evidence penalty (i.e., high uncertainty prior) to try to

minimize evidence on incorrect predictions. This has been demonstrated with suc-

cess in the classification setting where non-misleading evidence is removed from the

posterior, and the uncertain prior is set to a uniform Dirichlet (Sensoy et al., 2018).

The analogous minimization in the regression setting involves 𝐾𝐿[ 𝑝(𝜃|𝑚) || 𝑝(𝜃|𝑚̃) ],

where 𝑚̃ are the parameters of the uncertain NIG prior with zero evidence (i.e.,

{𝛼, 𝜐} = 0). Unfortunately, the KL between any NIG and the zero evidence NIG prior

is undefined. Furthermore, this loss should not be enforced everywhere, but instead

specifically where the posterior is “misleading”. Past works in classification (Sensoy

et al., 2018) accomplish this by using the ground truth likelihoood classification (the
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one-hot encoded labels) to remove “non-misleading” evidence. However, in regression,

it is not possible to penalize evidence everywhere except our single label point esti-

mate, as this space is infinite and unbounded. Thus, these previous approaches for

regularizing evidential learning are not applicable.

Formulation and implementation of the evidential loss for regression

To address these challenges in the regression setting, we formulate a novel evidence

regularizer, ℒR
𝑖 , scaled on the error of the 𝑖-th prediction,

ℒR
𝑖 (𝑤) = |𝑦𝑖 − E[𝜇𝑖]| · Φ = |𝑦𝑖 − 𝛾| · (2𝜐 + 𝛼). (7.9)

This loss imposes a penalty whenever there is an error in the prediction and scales with

the total evidence of our inferred posterior. Conversely, large amounts of predicted

evidence will not be penalized as long as the prediction is close to the target. A naïve

alternative to directly penalizing evidence would be to soften the zero-evidence prior

to instead have 𝜖-evidence such that the KL is finite and defined. However, doing so

results in hypersensitivity to the selection of 𝜖, as it should be small yet 𝐾𝐿 → ∞

as 𝜖 → 0. In the remainder of this chapter, we will demonstrate the added value

of our evidential regularizer through ablation analysis (Section 7.4.1), establish the

limitations of the soft KL regularizer

The total loss, ℒ𝑖(𝑤), consists of the two loss terms for maximizing the model fit

and regularizing evidence, scaled by a regularization coefficient, 𝜆:

ℒ𝑖(𝑤) = ℒNLL
𝑖 (𝑤) + 𝜆ℒR

𝑖 (𝑤). (7.10)

Here, 𝜆 trades off uncertainty inflation with model fit. Setting 𝜆 = 0 yields an over-

confident estimate while setting 𝜆 too high results in over-inflation. In practice, our

NN is trained to output the parameters, 𝑚, of the evidential distribution: 𝑚𝑖 =

𝑓(𝑥𝑖;𝑤). Since 𝑚 is composed of 4 parameters, 𝑓 has 4 output neurons for every

target 𝑦. We enforce the constraints on (𝜐, 𝛼, 𝛽) with a softplus activation (and
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Figure 7-3: Toy uncertainty estimation. Aleatoric (A) and epistemic (B) un-
certainty estimates on the dataset 𝑦 = 𝑥3 + 𝜖, 𝜖 ∼ 𝒩 (0, 3). Regularized evidential
regression (right) enables precise prediction within the training regime and conserva-
tive epistemic uncertainty estimates in regions with no training data. Baseline results
are also illustrated.

additional +1 added to 𝛼 since 𝛼 > 1). Linear activation is used for 𝛾 ∈ R.

7.4 Experiments

7.4.1 Predictive accuracy and uncertainty benchmarking

We first qualitatively compare the performance of our approach against a set of base-

lines on a one-dimensional cubic regression dataset (Figure 7-3). Following (Hernández-

Lobato and Adams, 2015; Lakshminarayanan et al., 2017), we train models on 𝑦 =

𝑥3 + 𝜖, where 𝜖 ∼ 𝒩 (0, 3) within ±4 and test within ±6. We compare aleatoric

(A) and epistemic (B) uncertainty estimation for baseline methods (left), evidence

without regularization (middle), and with regularization (right). Gaussian MLE (Nix

and Weigend, 1994) and Ensembling (Lakshminarayanan et al., 2017) are used as re-

spective baseline methods. All aleatoric methods (A) accurately capture uncertainty

within the training distribution, as expected. Epistemic uncertainty (B) captures

uncertainty on OOD data; our proposed evidential method estimates uncertainty
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RMSE NLL Inference Speed (ms)
Dataset Dropout Ensembles Evidential Dropout Ensembles Evidential Dropout Ensemble Evidential
Boston 2.97 ± 0.19 3.28 ± 1.00 3.06 ± 0.16 2.46 ± 0.06 2.41 ± 0.25 2.35 ± 0.06 3.24 3.35 0.85
Concrete 5.23 ± 0.12 6.03 ± 0.58 5.85 ± 0.15 3.04 ± 0.02 3.06 ± 0.18 3.01 ± 0.02 2.99 3.43 0.94
Energy 1.66 ± 0.04 2.09 ± 0.29 2.06 ± 0.10 1.99 ± 0.02 1.38 ± 0.22 1.39 ± 0.06 3.08 3.80 0.87
Kin8nm 0.10 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 -0.95 ± 0.01 -1.20 ± 0.02 -1.24 ± 0.01 3.24 3.79 0.97
Naval 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -3.80 ± 0.01 -5.63 ± 0.05 -5.73 ± 0.07 3.31 3.37 0.84
Power 4.02 ± 0.04 4.11 ± 0.17 4.23 ± 0.09 2.80 ± 0.01 2.79 ± 0.04 2.81 ± 0.07 2.93 3.36 0.85
Protein 4.36 ± 0.01 4.71 ± 0.06 4.64 ± 0.03 2.89 ± 0.00 2.83 ± 0.02 2.63 ± 0.00 3.45 3.68 1.18
Wine 0.62 ± 0.01 0.64 ± 0.04 0.61 ± 0.02 0.93 ± 0.01 0.94 ± 0.12 0.89 ± 0.05 3.00 3.32 0.86
Yacht 1.11 ± 0.09 1.58 ± 0.48 1.57 ± 0.56 1.55 ± 0.03 1.18 ± 0.21 1.03 ± 0.19 2.99 3.36 0.87

Table 7.1: Benchmark regression tests. RMSE, negative log-likelihood (NLL),
and inference speed for dropout sampling (Gal and Ghahramani, 2016a), model en-
sembling (Lakshminarayanan et al., 2017), and evidential regression. Top scores for
each metric and dataset are bolded (within statistical significance), 𝑛 = 5 for sam-
pling baselines. Evidential models outperform baseline methods for NLL and inference
speed on all datasets.

appropriately and grows on OOD data, without dependence on sampling.

Additionally, we compare our approach to baseline methods for NN predictive un-

certainty estimation on real world datasets used in (Hernández-Lobato and Adams,

2015; Lakshminarayanan et al., 2017; Gal and Ghahramani, 2016a). We evaluate

our proposed evidential regression method against results presented for model en-

sembles (Lakshminarayanan et al., 2017) and dropout (Gal and Ghahramani, 2016a)

based on root mean squared error (RMSE), negative log-likelihood (NLL), and infer-

ence speed. Table 7.1 indicates that even though, unlike the competing approaches,

the loss function for evidential regression does not explicitly optimize accuracy, it

remains competitive with respect to RMSE while being the top performer on all

datasets for NLL and speed. To give the two baseline methods maximum advantage,

we parallelize their sampled inference (𝑛 = 5). Dropout requires additional multi-

plications with the sampled mask, resulting in slightly slower inference compared to

ensembles, whereas evidence only requires a single forward pass and network.

7.4.2 Monocular depth estimation

After establishing benchmark comparison results, in this subsection we demonstrate

the scalability of our evidential learning approach by extending it to the complex,

high-dimensional task of depth estimation. Monocular end-to-end depth estimation

is a central problem in computer vision and involves learning a representation of depth

directly from an RGB image of the scene. This is a challenging learning task as the
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target 𝑦 is very high-dimensional, with predictions at every pixel.

Our training data consists of over 27k RGB-to-depth, 𝐻×𝑊 , image pairs of indoor

scenes (e.g. kitchen, bedroom, etc.) from the NYU Depth v2 dataset (Nathan Sil-

berman and Fergus, 2012). We train a U-Net style NN (Ronneberger et al., 2015)

for inference and test on a disjoint test-set of scenes. The final layer outputs a single

𝐻×𝑊 activation map in the case of vanilla regression, dropout, and ensembling. Spa-

tial dropout uncertainty sampling (Amini et al., 2018c; Tompson et al., 2015) is used

for the dropout implementation. Evidential regression outputs four of these output

maps, corresponding to (𝛾, 𝜐, 𝛼, 𝛽), with constraints according to Section 7.3.3.

We evaluate the models in terms of their accuracy and their predictive epistemic

uncertainty on unseen test data. Figure 7-4A visualizes the predicted depth, ab-

solute error from ground truth, and predictive entropy across two randomly picked

test images. Ideally, a strong epistemic uncertainty measure would capture errors

in the prediction (i.e., roughly correspond to where the model is making errors).

Compared to the gold-standard methods for epistemic uncertainty estimation in NN,

namely dropout sampling and model ensembling, the evidential methods captures the

depth errors while providing clear and localized predictions of confidence. In general,

dropout drastically underestimates the amount of uncertainty present, while ensem-

bling occasionally overestimates the uncertainty. Figure 7-4B shows how each model

performs as pixels with uncertainty greater than certain thresholds are removed. Evi-

dential models exhibit strong performance, as error steadily decreases with increasing
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Figure 7-4: Epistemic uncertainty in depth estimation. (A) Example pixel-
wise depth predictions and uncertainty for each model. (B) Relationship between
prediction confidence level and observed error; a strong inverse trend is desired. (C)
Model uncertainty calibration (Kuleshov et al., 2018); (ideal: 𝑦 = 𝑥). Inset shows
calibration errors.
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Figure 7-5: Uncertainty on out-of-distribution (OOD) data. Evidential mod-
els estimate low uncertainty (entropy) on in-distribution (ID) data and inflate un-
certainty on OOD data. (A) Cumulative density function (CDF) of ID and OOD
entropy for tested methods. OOD detection assessed via AUC-ROC. (B) Uncertainty
(entropy) comparisons across methods. (C) Full density histograms of entropy esti-
mated by evidential regression on ID and OOD data, along with sample images (D).
All data has not been seen during training.

confidence.

Figure 7-4C additionally evaluates the calibration of our uncertainty estimates.

Calibration curves are computed according to (Kuleshov et al., 2018), and ideally

follows 𝑦 = 𝑥 to represent, for example, that a target falls in a 90% confidence interval

approximately 90% of the time. Again, we see that dropout overestimates confidence

when considering low confidence scenarios (calibration error: 0.126). Ensembling

exhibits better calibration error (0.048) but is still outperformed by the proposed

evidential method (0.033).

In addition to epistemic uncertainty experiments, we also evaluate aleatoric un-

certainty estimates, with comparisons to Gaussian MLE learning. Since evidential

models fit the data to a higher-order Gaussian distribution, it is expected that they

can also accurately learn aleatoric uncertainty (as is also shown in (Sensoy et al.,

2018; Gurevich and Stuke, 2020)). Therefore, we focus the remainder of the results

on evaluating the harder task of epistemic uncertainty estimation in the context of

out-of-distribution (OOD) and adversarially perturbed samples.

7.4.3 Out-of distribution testing

A key use of uncertainty estimation is to understand when a model is faced with

test samples that fall out-of-distribution (OOD) or when the model’s output can-
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not be trusted. In this subsection, we investigate the ability of evidential models

to capture increased epistemic uncertainty on OOD data, by testing on images from

ApolloScape (Huang et al., 2018), an OOD dataset of diverse outdoor driving. It is

crucial to note here that related methods such as Prior Networks in classification (Ma-

linin and Gales, 2018, 2019) explicitly require OOD data during training to supervise

instances of high uncertainty. Our evidential method, like Bayesian NNs, does not

have this limitation and sees only in distribution (ID) data during training.

For each method, we feed in the ID and OOD test sets and record the mean

predicted entropy for every test image. Figure 7-5A shows the cumulative density

function (CDF) of entropy for each of the methods and test sets. A distinct positive

shift in the entropy CDFs can be seen for evidential models on OOD data and is

competitive across methods. Figure 7-5B summarizes these entropy distributions as

interquartile boxplots to again show clear separation in the uncertainty distribution

on OOD data. We focus on the distribution from our evidential models in Figure 7-5C

and provide sample predictions (ID and OOD) in Figure 7-5D. These results show

that evidential models, without training on OOD data, capture increased uncertainty

on OOD data on par with epistemic uncertainty estimation baselines.

Robustness to adversarial samples

Next, we consider the extreme case of OOD detection where the inputs are adver-

sarially perturbed to inflict error on the predictions. We compute adversarial pertur-

bations to our test set using the Fast Gradient Sign Method (FGSM) (Goodfellow

et al., 2014), with increasing scales, 𝜖, of noise. Note that the purpose of this exper-

iment is not to propose a defense for state-of-the-art adversarial attacks, but rather

to demonstrate that evidential models accurately capture increased predictive uncer-

tainty on samples which have been adversarily perturbed. Figure 7-6A confirms that

the absolute error of all methods increases as adversarial noise is added. We also

observe a positive effect of noise on our predictive uncertainty estimates in Figure 7-

6B. Furthermore, we observe that the entropy CDF steadily shifts towards higher

uncertainties as the noise in the input sample increases (Figure 7-6C).
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The robustness of evidential uncertainty against adversarial perturbations is visu-

alized in greater detail in Figure 7-6D, which illustrates the predicted depth, error, and

estimated pixel-wise uncertainty as we perturb the input image with greater amounts

of noise (left to right). Not only does the predictive uncertainty steadily increase with

increasing noise, but the spatial concentrations of uncertainty throughout the image

also maintain tight correspondence with the error. These results demonstrate that

evidential deep learning for regression can effectively capture uncertainty linked to

adversarial perturbation and, furthermore, that these uncertainties are calibrated to

the degree of perturbation.

7.5 Discussion

We have developed a novel method for learning uncertainty in regression problems

by placing evidential priors over the likelihood output. We first formulate these

higher-order evidential distributions and formulate derivations of the target predic-

tion, aleatoric uncertainty, and epistemic uncertainty from the moments of the asso-
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ciated evidential distribution. We demonstrate that our algorithm enables combined

target prediction together with direct aleatoric and epistemic uncertainty estimation,

scales to complex vision tasks, and achieves calibrated uncertainty estimates on OOD

data and adversarially-perturbed inputs. A key advantage of our method is its ef-

ficiency, as it does not require sampling, as well as its flexibility to operate with

existing task datasets, as it does not rely on augmented OOD training data to cal-

ibrate uncertainty. The efficiency, scalablity, and calibration of our approach could

enable the precise and fast uncertainty estimation required for robust NN deployment

in safety-critical prediction domains.

7.6 Scope and Limitations

Our algorithm provides a generalizable uncertainty estimation method widely ap-

plicable across regression tasks, including temporal forecasting (Greff et al., 2016),

property prediction (Soleimany et al., 2021), and control learning (Amini et al., 2019a;

Levine et al., 2016). While evidential deep learning provides key advantages over ex-

isting methods for uncertainty quantification in neural models deployed for regression

tasks, there are several considerations that motivate opportunities for future work.

First, our method’s primary limitations are in tuning the regularization coefficient

and in effectively removing non-misleading evidence when calibrating the uncertainty.

While dual-optimization formulations (Zhao et al., 2018) could be explored for balanc-

ing regularization, we believe further investigation is warranted to discover alterna-

tive ways to remove non-misleading evidence. In addition, future analysis using other

choices of the variance prior distribution, such as the log-normal or the heavy-tailed

log-Cauchy distribution, will be critical to determine the effects of the choice of prior

on the estimated likelihood parameters. Finally, while here we have established the

foundations of a new method for epistemic uncertainty quantification in NNs deployed

for regression tasks, we have yet to demonstrate the utility of the evidential method

to guide learning, inform decisions at test time, or create uncertainty-aware mod-

els capable of identifying and gracefully handling out-of-distribution or unexpected
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events at deployment.

Indeed, this last consideration underscores the critical need for systematic uncer-

tainty estimation methods to be placed and evaluated in larger decision and control

systems, where predictive errors can pose immediate threats to downstream tasks.

This is especially true for systems deployed in safety-critical domains, such as in

autonomous vehicle control (Amini et al., 2018b) – these systems must not only

be accurate and efficient, but also highly robust. For example, in the control set-

ting, capturing the model’s uncertainty associated with each prediction could enable

greater robustness by accounting for potential ambiguities in future behavior as well

as unexpected out-of-distribution events.

The work described in this chapter provides a foundational algorithm, deep ev-

idential regression, for uncertainty estimation in neural networks. Moving forward,

it will be critical to assess the broad utility of this evidential learning algorithm for

robust, uncertainty-aware decision making. Autonomous control systems must be

able to deal with high amounts of uncertainty in their environment, sensory data,

and decision-making. To this end, uncertainty estimation and probabilistic reason-

ing methods must be systematically synergized with control learning algorithms to

increase the robustness of autonomous systems, for example to environmental pertur-

bations, to unexpected sensor failures, or in the face of observational noise. Chapter 8

furthers this aim and presents the development of novel uncertainty-aware decision-

making and control algorithms that incorporate metrics of uncertainty or probabilistic

reasoning to achieve greater robustness in challenging control scenarios.
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Chapter 8

Algorithms for Uncertainty-aware

Decision Making

8.1 Introduction

Humans have an innate ability to reason about the high-level structure of their en-

vironment even under severe uncertainty and limited observation. They use this

ability to relate high-level instructions to concrete control commands, as well as to

better localize themselves even without concrete localization information. Inspired

by these abilities, we aim to build a learning engine that enables a robot agent to

learn how propagate its own uncertainties–both in its sensory system and predictive

processes–to resolve ambiguities and achieve more reliable and robust decision mak-

ing. Specifically, we focus on the problems of navigation, localization, and temporal

control within an end-to-end autonomous driving system.

For navigation and localization, coarse grained maps afford us a higher-level of

understanding of the environment, both because of their expanded scope, but also

due to their distilled nature. This allows for reasoning about the low-level control

within a hierarchical framework with long-term goals (Sutton et al., 1999), as well

as localizing, preventing drift, and performing loop-closure when possible. We note

that unlike much of the work in place recognition and loop closure, we are looking

at a higher level of matching, where the vehicle is matching intersection and road
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patterns to the coarse scale geometry found in the map. This offers the potential

to handle different appearances and small variations in the scene structure, or even

unknown fine-scale geometry, as long as the overall road network structure matches

the expected structures.

While end-to-end control learning (Bojarski et al., 2016) holds promise due to its

easily scalable and adaptable nature, it has a limited capability to handle long-term

plans, relating to the nature of imitation learning (Codevilla et al., 2017; Shalev-

Shwartz et al., 2016). Some recent methods incorporate maps as inputs (Wei et al.,

2017; Hecker et al., 2018) to capture longer term action structure, yet they ignore

the uncertainty maps inherently allow us to address – uncertainty about the location,

and uncertainty about the longer-term plan.

Real-world deployable robotic systems must not only be accurate and efficient,

but also highly robust. End-to-end models typically predict instantaneous control and

generally suffer from the high sensitivity to perturbations (e.g ., noisy sensory inputs).

To address this, a plausible solution is to integrate several consecutive frames as in-

put (Xu et al., 2017). However, this is neither efficient in the 3D domain nor effective

in closed-loop control settings, since it requires either modeling recurrence (Hochreiter

and Schmidhuber, 1997) or applying 4D convolutions (Choy et al., 2019) to process

multiple input frames, which is not computationally affordable nor effective at learn-

ing causal control representations (Lechner et al., 2020a). Instead, by training a model

to additionally predict future control and apply odometry-corrected fusion, actuation

commands could potentially be stabilized. Explicit modeling of uncertainty is critical

because (1) predictions from the past are usually less confident due to the ambiguity

of the future; and (2) unexpected out-of-distribution (OOD) events (e.g ., sensor fail-

ure) can completely invalidate the model’s prediction. Modeling and fusing control

predictions using uncertainty could provide increased stability overall and resilience

on OOD events.

In this chapter, we address these limitations by developing novel uncertainty-aware

deployment algorithms for navigation, localization, and temporal control. First, we

develop a method for integrating navigational information with raw sensory data into
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a single end-to-end variational network, and do so in a way that preserves reasoning

about uncertainty. This allows the system to not only learn to navigate complex

environments entirely from human perception and navigation data, but also under-

stand when localization or mapping is incorrect, and thus correct for the pose. Our

model processes coarse grained, unrouted roadmaps along with forward facing camera

images to produce a probabilistic estimate of the different possible low-level steering

commands which the robot can execute at that instant, thus reasoning about ambigu-

ity and uncertainty in the environment. Second, we develop a model that integrates

estimates of epistemic uncertainty directly into the predictive process of the system

and thus quantifies how much trust we can place in any predicted decision. We formu-

late a novel algorithm for integrating single-shot uncertainty estimates back into the

controller of the agent to achiever robustness in the face of entirely out-of-distribution

events and surprises during deployment.

8.2 A Variational Model for Navigation and Local-

ization

8.2.1 Control Mixture Model

In this section, we formulate the end-to-end navigation problem and describe the

model used in our approach. We use a variational neural network, which takes raw

camera images, 𝐼, and an image of a noisy, unrouted roadmap, 𝑀𝑈 , as input. At

the output we attempt to learn a full, parametric probability distribution over road

curvature or steering (𝜃𝑠) to navigate that instant. We use a Gaussian Mixture Model

(GMM) with 𝐾 > 0 modes to describe the possible steering control command, and

penalize the 𝐿1/2 norm of the weights to discourage extra components. Empirically,

we chose 𝐾 = 3 since it captured the majority of driving situations encountered.

Additionally, the model will optionally output a deterministic control command if

a routed version of the map is also provided as input. The overall network can be

written separately as two functions, representing the probabilistic (unrouted) and
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Deterministic Control

Routed Map

Optional output if routed map 
is provided as input

Figure 8-1: Model architecture overview. Raw camera images and noisy
roadmaps are fed to parallel convolutional pipelines, then merged into fully-connected
layers to learn a full parametric Gaussian Mixture Model (GMM) over control. If a
routed map is also available, it is merged at the penultimate layer to learn a deter-
ministic control signal for navigation along a provided route. Green rectangles denote
the image region provided as input to the network.

deterministic (routed) parts respectively:

{(𝜑𝑖, 𝜇𝑖, 𝜎
2
𝑖 )}𝐾𝑖=1 = 𝑓𝑆(𝐼,𝑀𝑈 , 𝜃𝑝), 𝜃𝑠 = 𝑓𝐷(𝐼,𝑀𝑅, 𝜃𝑝),

where 𝜃𝑝 = [𝑝𝑥, 𝑝𝑦, 𝑝𝛼] is the current pose in the map (position and heading), and

𝑓𝑆(𝐼,𝑀𝑈 , 𝜃𝑝), 𝑓𝐷(𝐼,𝑀𝑅, 𝜃𝑝) are network outputs computed by cropping a square re-

gion of the relevant map according to 𝜃𝑝, and feeding it, along with the forward facing

images, 𝐼, to the network. 𝑀𝑈 denotes the unrouted map, with only the traversible

areas marked, while 𝑀𝑅 denotes the routed map, containing the desired route high-

lighted. The deterministic control command is denoted as 𝜃𝑠. We refer to steering

command interchangeably as the road curvature: the actual steering angle requires

reasoning about road slip and control plant parameters that change between vehi-

cles, making it less suitable for our purpose. Finally, the parameters (i.e. weight,

mean, and variance) of the GMM’s 𝑖-th component are denoted by (𝜑𝑖, 𝜇𝑖, 𝜎
2
𝑖 ), which

represents the steering control in the absence of a given route.

The overall network structure is given in Figure 8-1. Each camera image is pro-

cessed by a separate convolutional pipeline similar to the one used in (Bojarski et al.,

2016). Similarly, the cropped, non-routed, map patch is fed to a set of convolutional

layers before concatenation to the image processing outputs. However, here we use
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fewer layers for two main reasons. First, the map images contain significantly fewer

features and thus don’t require a complex feature extraction pipeline. Second, we

wish to avoid translational invariance effects often associated with convolutional lay-

ers and subsampling, as we are interested in the pose on the map. The output of the

convolutional layers is flattened and fed to a set of fully connected layers to produce

the parameters of a probability distribution of steering commands, forming 𝑓𝑆. As a

second task, we the previous layer output along with a convolutional module process-

ing the routed map, 𝑀𝑅, to output a single deterministic steering command, forming

𝑓𝐷. This network structure allows us to handle both routed and non-routed maps,

and later affords localization and driver intent, as well as driving according to high

level navigation (i.e. turn-by-turn instruction).

We learn the weights of our model using backpropogation with the loss defined

as:

E

⎧⎨⎩ ℒ
(︁
𝑓𝑆(𝐼,𝑀, 𝜃𝑝), 𝜃𝑠

)︁
+ ‖𝜑‖𝑝+∑︀

𝑖 𝜓𝑆(𝜎𝑖) +
(︁
𝑓𝐷(𝐼,𝑀, 𝜃𝑝)− 𝜃𝑠

)︁2
⎫⎬⎭ (8.1)

where 𝜓𝑆 is a per-component penalty on the standard deviation 𝜎𝑖. We chose a

quadratic term in log-𝜎 as the regularization,

𝜓𝑆(𝜎) = ‖ log 𝜎 − 𝑐‖2. (8.2)

ℒ
(︀
𝑓𝑆(𝐼,𝑀, 𝜃𝑝, ), 𝜃𝑠

)︀
is the negative log-likelihood of the steering command according

to a GMM with parameters {(𝜑𝑖, 𝜇𝑖, 𝜎𝑖)}𝑁𝑖=0 and

𝑃 (𝜃𝑠|𝜃𝑝, 𝐼,𝑀) =
∑︁

𝜑𝑖𝒩 (𝜇𝑖, 𝜎
2
𝑖 ). (8.3)

8.2.2 Localization via End-to-end Networks

The conditional structure of the model enables updates to the posterior belief about

the vehicle’s pose, based on the relation between the map and the road topology

seen from the vehicle. For example, if the network is provided visual input, 𝐼, which
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appears to be taken at a 4 way intersection, we aim to compute 𝑃 (𝜃𝑝|𝐼,𝑀) over

different poses on the map to reason about where this input could have been taken.

Note that our network only computes 𝑃 (𝜃𝑠|𝜃𝑝, 𝐼,𝑀), but we are able to estimate our

pose given the visual input through double marginalization over 𝜃𝑠 and 𝜃𝑝. Given a

prior belief about the pose, 𝑃 (𝜃𝑝), we can write the posterior belief after seeing an

image, 𝐼, as:

𝑃 (𝜃𝑝|𝐼,𝑀) = E𝜃𝑠𝑃 (𝜃𝑝|𝜃𝑠, 𝐼,𝑀)

= E𝜃𝑠

[︂
𝑃 (𝜃𝑝, 𝜃𝑠|𝐼,𝑀)

𝑃 (𝜃𝑠|𝐼,𝑀)

]︂
(8.4)

= E𝜃𝑠

[︃
𝑃 (𝜃𝑝, 𝜃𝑠|𝐼,𝑀)

E𝜃𝑝′
𝑃 (𝜃𝑠|𝜃𝑝′ , 𝐼,𝑀)

]︃

= E𝜃𝑠

[︃
𝑃 (𝜃𝑠|𝜃𝑝, 𝐼,𝑀)

E𝜃𝑝′
𝑃 (𝜃𝑠|𝜃𝑝′ , 𝐼,𝑀)

𝑃 (𝜃𝑝)

]︃
,

where the equalities are due to full probability theorem and Bayes theorem.

The posterior belief can therefore be computed via marginalization over 𝜃𝑝, 𝜃𝑠.

While marginalization over two random variables is traditionally inconvenient, in two

cases of interest, marginalizing over 𝜃𝑝 becomes easily tractable: a) when the pose is

highly localized due to previous observations, as in the case of online localization; and

b) where the pose is sampled over a discrete road network, as is done in mapmatching

algorithms. The algorithm to update the posterior belief is shown in Algorithm 8. In-

tuitively, the algorithm computes, over all steering angle samples, the probability that

a specific pose and images/map explain that steering angle, with the additional loop

required to estimate the partition function and normalize the distribution. We note

the same algorithm can be used with small modifications within the map-matching

framework (Bernstein and Kornhauser, 1998; Newson and Krumm, 2009).
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Algorithm 8 Posterior Pose Estimate from Driving Direction
Input: 𝐼, 𝑀, 𝑝(𝜃𝑝)
Output: 𝑃 (𝜃𝑝|𝐼,𝑀)

for 𝑖 = 1...𝑁𝑠: do
Sample 𝜃𝑠
Compute 𝑃 (𝜃𝑠|𝜃𝑝, 𝐼,𝑀)
for 𝑗 = 1...𝑁𝑝: do

Compute 𝑃 (𝜃𝑠|𝜃𝑝′ , 𝐼,𝑀)
Aggregate E𝜃𝑝′

𝑃 (𝜃𝑠|𝜃𝑝′ , 𝐼,𝑀)
end for
Aggregate E𝜃𝑠

[︂
𝑃 (𝜃𝑠|𝜃𝑝,𝐼,𝑀)

E𝜃𝑝′
𝑃 (𝜃𝑠|𝜃𝑝′ ,𝐼,𝑀)

𝑃 (𝜃𝑝)

]︂
end for
Output 𝑃 (𝜃𝑝|𝐼,𝑀) according to Equation 8.4.

8.3 Adaptive Decision Making under Predictive Un-

certainty

8.3.1 Uncertainty-aware Temporal Control Model

In the previous section, we formulated how we can build an end-to-end model to

perform “reactive” control without any high-definition localization input, for instan-

taneous execution. By training the model to additionally predict control commands

at steps into the future, we can ensemble and fuse these predictions once the robot

reaches those points, thereby stabilizing control. This section takes this idea even

further and intelligently fuses the control predictions according to the model’s uncer-

tainty at each point, in order to deal with sudden unexpected events or an ambiguous

future environment (i.e., highly uncertain events).

LiDAR sensors provide complementary benefits to vision data from cameras.

Specifically LiDAR can provide more accurate distance (depth) information and

greater robustness to environmental changes like illumination. Thus to robustly

handle sudden unexpected events or ambiguities in the environment, we develop a

LiDAR-based end-to-end navigation system capable of achieving efficient and robust

control of a full-scale autonomous vehicle using only raw 3D point clouds and coarse-
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grained GPS maps.

Given a raw LiDAR point cloud 𝐼L, and a rendered bird’s-eye view image of the

noisy, routed roadmap 𝐼M, our objective is to learn an end-to-end neural network

𝑓𝜃 to directly predict the control signals that can drive the vehicle as well as the

corresponding epistemic (model) uncertainty:

{(𝑥𝑘, 𝑒𝑘)}𝐾−1
𝑘=0 = 𝑓𝜃(𝐼L, 𝐼M), (8.5)

where the network outputs 𝐾 predictions, each pair of 𝑥𝑘 and 𝑒𝑘 corresponding to a

control predictions with future lookahead distance of 𝑘 [m] from the current frame: 𝑥𝑘

is the predicted control value (which can be supervised by the recorded human control

𝑦𝑘), and 𝑒𝑘 are the hyperparameters to estimate the uncertainty of this prediction.

In principle, we can depend on the current control 𝑥0 alone to drive the vehicle.

However, the remaining 𝑥𝑘’s with 𝑘 > 0 might also be used to improve the robustness

of the model with uncertainty-weighted temporal fusion (using 𝑒𝑘’s); learning these

additional 𝑥𝑘’s also provides the model with a sense of planning and predicting the

future.

We illustrate an efficient and robust LiDAR-only end-to-end neural network in

Figure 8-2. The following subsections describe our training and deployment method-

ology in two parts. First, we describe how we learn efficient representations directly

from input point cloud data 𝐼L and a rough routed map 𝐼M (following Amini et al.

(2019a)). These perception (LiDAR) and localization (map) features are combined

and fed to a fully-connected network to predict our control and uncertainty esti-

mates. Next, in Section 8.3.2, we describe how our network can be optimized to learn

its uncertainty and present a novel algorithm for leveraging this uncertainty during

deployment to increase the robustness of the autonomous system.

8.3.2 Hybrid Evidential Fusion

Figure 8-2 illustrates that one of our model’s output branches directly predicts the

control values {𝑥𝑘}, which can simply be supervised with the 𝐿1 loss: ℒMAE(𝑥𝑘, 𝑦𝑘) =
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Figure 8-2: Hybrid Evidential Fusion for Control. (A) Raw LiDAR point clouds
(the visualized colors are based on heights and intensities) and noisy roadmaps are
fed to the model and navigation feature extractor, and integrated to learn both a
deterministic control value as well as the parameters of a higher-order evidential dis-
tribution capturing the underlying predictive distribution. Output control predictions
can be (B) instantaneously executed or (C) uniformly fused with odometry-corrected
past predictions. (D) Uncertainty estimation using our evidential outputs enables
intelligently weighting our predictions to increase the robustness, especially on out-
of-distribution (OOD) events, or through increased uncertainty on ambiguous future
time steps.

‖𝑥𝑘 − 𝑦𝑘‖1. During deployment, we use the predictions from both current and odometry-

corrected previous frames to improve stability. For each frame, we keep track of its

absolute travelled distance 𝑑 and denote its corresponding predictions as {𝑥(𝑑)𝑖 }𝐾−1
𝑖=0 .

As the accuracy of 𝑑 is important only locally (within the 𝐾 lookahead distances), we

estimate 𝑑 from odometry based on an Extended Kalman Filter (Julier and Uhlmann,

2004). We can then fuse

𝒳 (𝑑) =
{︁
𝑥
(𝑑)
0 , 𝑥

(𝑑−1)
1 , 𝑥

(𝑑−2)
2 , . . . , 𝑥

(𝑑−𝑖)
𝑖 , . . .

}︁
(8.6)

to obtain the estimated control for the current frame, as they are all estimates of this

frame. One straightforward way of fusion is to directly average all predictions in 𝒳 (𝑑),

including the current instantaneous prediction, as well as previous future predictions.

However, this approach neglects the uncertainty of the predictions. This is important

because (1) predictions from the past are usually less accurate due to ambiguity; and

(2) out-of-distribution (OOD) events (e.g ., sudden changes, sensor failures) can make
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the current prediction extremely important or completely wrong.

To address this issue, our model additionally learns to estimate the epistemic

uncertainty of every prediction, rather than relying on the rule-based fusion. This is

accomplished by training an additional branch of the network to output an evidential

distribution (Amini et al., 2020c; Sensoy et al., 2018) for each prediction. We follow

the evidential learning method described in Chapter 7. Evidential distributions

aim to capture the evidence (or confidence) associated to any decision that a network

makes, thus allowing us to intelligently weigh less-confident predictions by the network

less than those which are more confident. We assume that our control labels, 𝑦𝑑, are

drawn from an underlying Gaussian Distribution with unknown mean and variance

(𝜇, 𝜎2), which we seek to probabilistically estimate. As for regression targets, like

robotic control problems, we place priors over the likelihood variables to obtain a

joint distribution, 𝑝(𝜇, 𝜎2|𝛾, 𝜐, 𝛼, 𝛽) with

𝜇 ∼ 𝒩 (𝛾, 𝜎2𝜐−1), 𝜎2 ∼ Γ−1(𝛼, 𝛽). (8.7)

Our network is trained to output the hyperparameters defining this distribution,

𝑒𝑘 = (𝛾𝑘, 𝜐𝑘, 𝛼𝑘, 𝛽𝑘), by jointly maximizing model fit (ℒNLL) and minimizing evidence

on errors (ℒR):

ℒNLL(𝑤𝑘, 𝑦𝑘) =
1
2
log
(︁

𝜋
𝜈𝑘

)︁
− 𝛼𝑘 log(Ω𝑘)

+
(︀
𝛼𝑘 +

1
2

)︀
log
(︀
(𝑦𝑘 − 𝛾𝑘)2𝜈𝑘 + Ω𝑘

)︀
+ log

(︁
Γ(𝛼𝑘)

Γ(𝛼𝑘+1/2)

)︁
ℒR(𝑤𝑘, 𝑦𝑘) = |𝑦𝑘 − 𝛾𝑘| · (2𝛼𝑘 + 𝜈𝑘)

(8.8)

where Ω𝑘 = 2𝛽𝑘(1 + 𝜈𝑘). We refer the readers back to Chapter 7 and to Amini et

al . (Amini et al., 2020c) for more details about evidential regression.

Finally, all losses are summed together to compute the total loss:

ℒ(·) =
∑︁

𝑘

(︀
𝛼ℒMAE(·) + ℒNLL(·) + ℒR(·)

)︀
(8.9)

where 𝛼 = 1000 for weighting scale differences. After optimization, the epistemic
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uncertainty can be directly computed as Var[𝑥𝑘] = 𝛽𝑘/(𝜈𝑘(𝛼𝑘 − 1)) without sam-

pling (Amini et al., 2020c). During deployment, we can collect the deterministic

prediction 𝑥𝑘 as well as the corresponding evidential uncertainty Var[𝑥𝑘] from pre-

vious frames. We can then use the uncertainty to evaluate a confidence-weighted

average of our predictions according to the procedure outlined in 9.

Algorithm 9 Uncertainty-aware deployment
Given: policy 𝑓𝜃, inputs (𝐼L, 𝐼M), and fusion method
{(𝑥𝑘, 𝛾𝑘, 𝜐𝑘, 𝛼𝑘, 𝛽𝑘)} ← 𝑓𝜃(𝐼L, 𝐼M) ◁ Inference
for 𝑘 ∈ {0, 1, . . . , 𝐾 − 1} do

Var[𝜇𝑘]← 𝛽𝑘/(𝜐𝑘(𝛼𝑘 − 1)) ◁ Compute uncertainty
𝜆𝑘 ← 1 /Var[𝜇𝑘] ◁ Compute confidence
Λ(𝑑+𝑘) ← Λ(𝑑+𝑘) ∪ {𝜆𝑘} ◁ Store confidence
𝒳 (𝑑+𝑘) ← 𝒳 (𝑑+𝑘) ∪ {𝑥𝑘} ◁ Store prediction

end for
Λ(𝑑) ← Λ(𝑑)/

∑︀
𝜆∈Λ(𝑑) 𝜆 ◁ Normalize confidence

switch fusion do
case none: ◁ Instantaneous (no fusion)

return 𝑥
(𝑑)
0

case uniform: ◁ Uniform fusion
return (

∑︀
𝑗 𝒳

(𝑑)
𝑗 )/

⃦⃦
𝒳 (𝑑)

⃦⃦
case evidential: ◁ Evidential fusion

return (
∑︀

𝑗 𝒳
(𝑑)
𝑗 Λ

(𝑑)
𝑗 )/

⃦⃦
𝒳 (𝑑)

⃦⃦

8.4 Results

8.4.1 Reducing Localization Uncertainty in the Wild

We demonstrate how our control mixture model, described in Section 8.2.1, can be

used to localize the vehicle based on the observed driving directions using Algorithm 8.

We investigate in our experiments the reduction of pose uncertainty, and visualize

areas which offer better types of pose localization.

For our first experiments, we began with the pose obtained from the GPS and
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assumed an initial error in this pose with some uncertainty (Gaussian over the spatial

position, heading, or both). We compute the posterior probability of the pose as given

by Algorithm 8, and look at the individual uncertainty measures or total entropy of

the prior and posterior distributions. If the uncertainty in the posterior distribution

is lower than that of the prior distribution, we can conclude that our learned model

was able to increase its localization confidence after seeing the visual inputs provided

(i.e. the camera images). In Figure 8-3 we show results on the training (A) and

testing (B) datasets. Note that the roads and intersections in both of these datasets

were entirely disjoint; the model was never trained on roads/intersections from the

test set.

For the test set, we overlaid the individual GPS points on the map and colored

each point according to whether our algorithm increased (blue) or decreased (orange)

posterior uncertainty. When looking at uncertainty reduction, it is important to note

which degrees of freedom (i.e. spatial vs. angular heading) localize better at different

areas in the road network. For this reason, we visualize the uncertainty reduction

heatmaps four times individually across (1) spatial variance, (2) angular variance, (3)

overall pose variance, and (4) overall entropy reduction (Figure 8-3).

While header angle is corrected easily at both straight driving and more complex

areas (turns and intersections), spatial degrees of freedom are corrected best at rich

map areas and corrected poorly at linear road segments. This is expected and is

similar to the aperture problem in computer vision (Marr and Ullman, 1981) – the

information in a linear road geometry is not enough to establish 3-degrees-of-freedom

(3DOF) localization.

If we focus on areas preceding intersections (∼ 20 meters before), we typically

see that the spatial uncertainty (prior uncertainty of 2𝑚) is reduced right before

the intersection, which makes sense given that after passing through the intersection

our forward facing visual inputs are not able to capture the intersection behind the

vehicle. Looking in the vicinity of intersections, we achieved an average reduction

of 0.31𝑛𝑎𝑡𝑠. For the angular uncertainty, with initial uncertainty of 𝜎 = 0.8 radians

(45∘), we achieved a reduction in the standard deviation 𝜎 of 0.2 radians (11∘).
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Testing Set 

Training Set

Decrease Increase/No Change

Spatial Variance Angular Variance

Total Variance Total Entropy

A

B

Figure 8-3: Evaluation of posterior uncertainty improvement. (A) A roadmap
of the data used for training with the route driven in red (total distance of 25km). (B)
A heatmap of how our approach increases/decreases four different types of variance
throughout test set route. Points represent individual GPS readings, while the color
(orange/blue) denotes the absolute impact (increase/decrease) our algorithm had on
its respective variance. Decreasing variance (i.e. increasing confidence) is the desired
impact of our algorithm.

We quantify the degree of posterior uncertainty reduction around intersections

in Figure 8-4. Specifically, for each of the degrees of uncertainty (spatial, angular,

etc) in Figure 8-3, we present the corresponding numerical uncertainty reduction as

a function of the prior uncertainty in Figure 8-4. Note that we obtain reduction

of both heading and spatial uncertainty for a variety of prior uncertainty values.
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Figure 8-4: Pose uncertainty reduction at intersections. The reduction of
uncertainty in our estimated posterior across varying levels of added prior uncer-
tainty. We demonstrate improvement in (A) spatial 𝜎2(𝑝𝑥) + 𝜎2(𝑝𝑦), (B) angular:
𝜎2(𝑝𝛼), (C) sum of variance over 𝑝𝑥, 𝑝𝑦, 𝑝𝛼, and (D) entropy in 𝑝𝑥, 𝑝𝑦, 𝑝𝛼, Gaussian
approximation. Note that we observe a “positive” improvement over all levels of prior
uncertainty (averaged over all samples in regions preceding intersections).

Additionally, the averaged improvement over intersection regions is always positive

for all prior uncertainty values indicating that, on average, localization does not

worsen after using our algorithm.

8.4.2 Coarse Grained Localization

We evaluate our model’s ability to distinguish between significantly different locations

without any prior on pose. For example, imagine that you are in a location without

GPS but still want to perform rough localization given your visual surroundings. We

seek to establish correspondences between the map and the visual road area for coarse

grained place recognition.

In Figure 8-5 we demonstrate how we can identify and disambiguate a small set

of locations, based on the map and the camera images’ interpreted steering direc-
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Figure 8-5: Coarse Localization from Perception. Five example locations from
the test set (image, roadmap pairs). Given images from location 𝑖, we compute
the network’s probability conditioned on map patch from location 𝑗 in the confusion
matrix. Thus, we demonstrate how our system can establish correspondences between
its camera and map input and even determine when its map pose has a gross error.

tion. Our results show that we can easily distinguish between places of different road

topology or road geometry, in a way that should be invariant to the appearance of

the region or environmental conditions. Additionally, the cases where the network

struggles to disambiguate various poses is understandable. For example, when trying

to determine which map the image from environment 4 was taken, the network selects

maps A and D where both have upcoming left and right turns. Likewise, when trying

to determine the location of environment 5, maps B and E achieve the highest prob-

abilities. Even though the road does not contain any immediate turns, it contains a

large driveway on the left hand side which resembles a possible left turn (thus, jus-

tifying the choice of map B). However, the network is able to correctly localize each

of these five cases to the correct map location, as indicated by the strong diagonal of

the confusion matrix (Figure 8-5).

8.4.3 Uncertainty-aware Deployment

We next evaluated the performance of the LiDAR-only models. To test our system’s

robustness to out-of-distribution (OOD) events, we also manually trigger sensor fail-

ures of LiDAR every 50 meters and evaluated the number of resulting interventions

197



Deterministic Hybrid Hybrid Hybrid
Instantaneous Instantaneous Uniform Fusion Evidential Fusion

Model
Control

N
o 

se
ns

or
 fa

ilu
re

s 
(id

ea
l)

W
ith

 s
en

so
r f

ai
lu

re
s

(5
0 

m
et

er
s)

A B C D

0.00

0.05

0.10

-0.10

0.15

-0.15

-0.05

 A
ut

on
om

ou
s 

C
ur

va
tu

re

0.00

0.05

0.10

-0.10

0.15

-0.15

-0.05

 A
ut

on
om

ou
s 

C
ur

va
tu

re

Takeovers per km Takeovers per km Takeovers per km Takeovers per km

Takeovers per kmTakeovers per kmTakeovers per kmTakeovers per km

Figure 8-6: Real-world evaluation of LiDAR-only models. Performance of
learning models (deterministic or hybrid) and fusion strategies (instantaneous, uni-
form, or evidential) in scenarios without (top) or with (bottom) sensor failures. In-
terventions are marked by red circles, and vehicle path colored predicted curvature.
Trials repeated twice at fixed speeds on the test track.

(Figure 8-6). In comparing our method to baseline model control algorithms, we

observed that the model deployed with evidential fusion yields drastically improved

performance with and without OOD sensor failures (Figure 8-6). This model is the

most effective at not only reliably estimating high uncertainty on the OOD events,

but also in ensuring that the associated outputs will not be propagated downstream

to the controller after the fusion, as evidenced by the decreased number of resulting

interventions relative to the evluated baselines (Figure 8-6D). On the other hand,

the model with uniform fusion (Figure 8-6C) also obtains increased performance over

instantaneous models (Figure 8-6A, B) without sensor failures, but in the presence

of failures propagates the failed response to the controller and amplifies the error by

fusing it over multiple time points. Here, deterministic (A) and hybrid (B) models

are compared as an ablation analysis to verify roughly similar performance regardless

of output parameterization if not considering uncertainty.

All models in Figure 8-6 are trained with data augmentations strategies. We also

test to disable the rotation augmentation in to see its effect (Figure 8-7). Without

rotation augmentation, the model is not able to control the vehicle to recover from
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Figure 8-7: Rotation augmentation teaches the model to recover from off-center
views. When deployed with the model trained without rotation augmentation, the
vehicle crashes frequently.

off-center views because they are not encountered during data collection.

To test the recovery robustness, we start the controller in manually distorted

orientations on the road and measure the network’s ability to recover (Table 8.1).

A successful recovery is marked if the vehicle returns to a stable position within

10 seconds. We noticed that both evidential fusion and uniform fusion outperform

others. All models have a better performance recovering from CCW than CW since

LiDAR is not occluded by the far side of the road on a CCW turn, while the near

side is occluded in a CW turn.

Model CW CCW Average

PointNet 0.12 ± 0.17 0.00 ± 0.00 0.06 ± 0.08
Deterministic 0.80 ± 0.13 0.92 ± 0.10 0.86 ± 0.08
Hybrid 0.80 ± 0.13 0.90 ± 0.11 0.85 ± 0.08
Uniform 0.84 ± 0.16 0.94 ± 0.10 0.89 ± 0.07
Evidence 0.86 ± 0.10 0.92 ± 0.10 0.89 ± 0.07

Table 8.1: Performance of recovering from near-crash positions. Here, CW
denotes the success rate of recovering from clockwise rotation, and CCW denotes
counter-clockwise.

8.5 Discussion

In this chapter, we developed a probabilistic variational model for incorporating

coarse-grained localization information together with raw perceptual data to directly

learn control of autonomous agent. We demonstrate estimation of the likelihood of
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different possible control commands, as well as localization correction and place recog-

nition based on the map. We formulate a concrete pose estimation algorithm using

our learned network to reason about the localization of the robot within the environ-

ment and demonstrate reduced uncertainty (greater confidence) in our resulting pose.

Our method allows for reasoning about control even under the presence of highly im-

perfect localization information, and more critically, leveraging priors about control

to adaptive improve the agent’s noisy localization online, live during deployment.

In addition to increasing uncertainty-awareness of the input sensory data, we also

propose an algorithm for principled integration of epistemic uncertainty estimation di-

rectly into the predictive model to guide control based on predictive confidences. Our

approach leverages deep evidential regression, described in Chapter 7, to achieve

single-shot uncertainty estimation. In comparison to other state-of-the-art uncer-

tainty estimators, this means that our method is able to estimate uncertainty with

only a single model and single inference pass through that model. Our approach

fuses predictions from multiple frames together while taking their uncertainties into

consideration. Our framework has been evaluated on a full-scale autonomous vehicle

and demonstrates lane-stable as well as navigation capabilities. Our proposed fusion

algorithm significantly improves robustness and reduces the number of takeovers in

the presence of out-of-distribution events such as sensor failures.

8.6 Scope and Limitations

We have demonstrated the critical importance and potential power of a principled

approach towards uncertainty modeling and infused uncertainty-awareness within an

autonomous system. Physical systems that operate in real time will inevitably be

faced with scenarios they are ill equipped to handle and have not been sufficiently

trained for. These events are not discrete or binary events, but rather exist on a

continuous spectrum of how much trust we can place into our model’s decision making

process. Despite the promise of integrating a sense of uncertainty awareness into

the decision making system, notable limitations remain. The algorithms and first
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experiments described in this chapter highlight the importance of this direction and

open several avenues for future investigation.

Firstly, the approaches described in this chapter provide algorithms which target

improved robustness through uncertainty-awareness at singular stages in the decision

making pipeline (e.g ., localization, scene understanding, control, etc.). In the future,

there exists enormous potential to scale these results to online settings and to prop-

agate uncertainty-awareness throughout the decision making process. When dealing

with multimodal sensory inputs or modular predictive pipelines, we can now begin to

craft algorithms for extracting uncertainties of the features obtained by each of these

components instead of exclusively late stage control predictions. There also exists po-

tential for more theoretically-grounded fusion of uncertainties in such a framework.

Existing approaches are limited to either aleatoric or epistemic modeling in isolation,

but our work in Chapter 7 decouples this information within a single-shot estimation

method. However, we still require algorithms for taking such decoupled information

and learning how to effectively fuse these together into the decision making system

depending on the situation or scenario.
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Part IV

Conclusions
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Chapter 9

Perspectives and Future Directions

9.1 Summary

In this thesis, we present multiple avenues towards engineering robust autonomy

solutions for decision making in the wild. We take a holistic approach to tackling

this grand vision by considering all stages of the autonomy lifecycle – from data that

the autonomous agents are trained on, to their underlying decision-making models,

to the algorithms that ultimately enable deployment in the real world. We achieve

this by developing theoretically-grounded technical advancements for new capabilities

and realizations of the theory through robust and rigorous experiments.

We contribute a powerful framework for data-driven generation of synthetic envi-

ronments to produce challenging edge-cases synthetically and demonstrate that such a

simulation platform provides a flexible testbed for training and evaluating autonomous

agents (Part I). Our results are showcased specifically in the context of autonomous

driving; however, the algorithms developed in this section, and the concept of ad-

vancing data-driven simulation, are broadly generalizable to other decision-making

scenarios. Moreover, our approach can serve as a modular and flexible proving tech-

nique for various types of autonomy and decision making settings.

We then move forward in the learning pipeline, from data to the models, to develop

new architectures and learning algorithms for improved robustness and generalizabil-

ity of NNs and learning-based systems (Part II). To this end, we develop compact and
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expressive neural architectures for auditable autonomy, and demonstrate they have

provably causal structures, critically important for dynamic control. We build upon

this theme of robustness in the model to design a learning algorithm for identifying

and improving learning from underrepresented regions and rare events. We find that

these approaches lead to more efficient, performant, and robust learning models in

practice, again with a focus on the practical autonomy and robotic control setting.

Finally, we consider what algorithmic changes are necessary to ultimately deploy

end-to-end learning for autonomous decision making into the wild (Part III). One of

the most significant considerations rests in the assumption that data-driven statistical

models require their testing distribution to be equal to their training distribution, as

well as more generally being able to handle uncertainty and ambiguity in the real

world. To address this challenge, we develop new algorithms for calibrated, single-shot

uncertainty quantification in NNs for regression tasks. Critically, we do not simply

develop the estimation method, but more importantly extend beyond to consider how

these uncertainties are actually useful in deployment. To that end we formulate novel

algorithms leverage and flexibily integrate predictive uncertainties into our systems

in order to achieve more robust decision making, first through probabilistic reasoning

and then through handling data out-of-distribution edge cases.

Our work tackles critical challenges throughout the stages of the autonomy pipeline

and provides theoretically-grounded solutions to overcoming outstanding challenges

that plague ML within dynamic autonomy and decision making settings. Together,

these contributions advance an end-to-end vision of learning to reliable execute deci-

sions in the wild. We envision this provides a generalizable framework for increasing

the robustness end-to-end learning for important and safety-critical applications.
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9.2 Lessons Learned

Practical Realization of Results

The most important lesson learned throughout my PhD has been on the importance

of realizing and evaluating research in the context of a practical, real-world system.

While much of the machine learning field is fixated on extremely optimized datasets or

clean simulations, the real-world is noisy, unstructured, and messy. Datasets can serve

as interesting testbeds to benchmark problems on unified structures; however, they

should not serve as the measuring stick to design new methodologies and algorithms.

Just as a machine learning algorithm can overfit to its data, I believe we are currently

at a stage where the community itself is overfitting its own research objectives tailored

to artificial datasets that do not scale or advance practical achievements.

A great deal of effort was spent at all stages of this thesis to not only scale results

on-board physical hardware, but also to identify fundamental algorithmic challenges

that were exposed through the process of real-world experimentation and evaluation.

Almost all of these challenges would have been obscured without explicit deployment

into reality. Some of these challenges were hardware and engineering specific (e.g .,

low-level control interfaces to control autonomous systems). However, the vast ma-

jority of these challenges were much more generally algorithm-centric, and caused by

fundamental limitations of machine learning that are either minimized or overlooked

all-together (e.g ., generalization, train-test mismatches, etc.).

Method-first vs. Problem-first Engineering

I have learned that in developing impactful engineering advances, a mixture of method-

first combined with problem-first research has the potential to enable the most ex-

citing advances. Throughout this thesis I broadly adopt two mentalities in design

research aims. Firstly, a method-first mentality where we seek to develop a new foun-

dational method to solve a broad challenge and then identify impactful applications

which can benefit from such a method. Or alternatively, a problem-first approach
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where we identify a foundational problem or challenging application area and let this

domain guide our design of a computational or algorithmic solution.

This thesis has benefit from both mentalities, frequently complementing each other

and often times in a cyclical fashion. The overall vision of this thesis has been driven

by the dream of achieving robust learning-based agents that can make decision in

the wild. This grand vision put forth a series of fundamental challenges which in

turn inspired concrete methodological advances. Other the other hand, we have

also been motivated to create concrete methodological advances (e.g ., single-shot

uncertainty estimation algorithms), which we later applied broadly to impact a variety

of broad applications ranging from computer vision (Amini et al., 2020c), medical drug

discovery Soleimany et al. (2021), autonomous driving (Liu et al., 2021), and robotic

manipulation Amini et al. (2020b). Critically, both approaches have been invaluable

to effectively and principally build toward grand visions while both exploring and

exploiting technological advances.

Societal Implications of AI

Over the course of my research, I have seen a remarkable evolution of AI solutions

rapidly permeating through lab and development environments and into reality, in-

teracting directly with humans on critical decision making tasks. The wide-scale

adoption of AI presents the potential for very significant societal impact. Neural

networks are increasingly being trained as black-box predictors and being placed in

larger decision systems where errors in their predictions can pose immediate threat

to downstream tasks. Systematic methods for training robust models and calibrated

uncertainty estimators, like those developed in this thesis, are necessary but not suffi-

cient. This is especially true for systems that are deployed in safety critical domains,

such for autonomous vehicle control (Lechner et al., 2020a), medical diagnosis (Shen

et al., 2019), or in settings with large dataset imbalances and bias such as crime

forecasting (Kang and Kang, 2017) and facial recognition (Amini et al., 2019b).

Recent studies have shown that AI systems are severely vulnerable to widespread

algorithmic bias, particularly towards instances that are underrepresented in training
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data. This realization shaped several aspects of this thesis ranging from the develop-

ment of new auditable neuron models with greater levels of interpretability, to new

debiasing algorithms to uncover and mitigate the bias of AI systems. We believe this

is of critical importance to advance this field further to achieve significant impact.

We must aim to move beyond training deep learning systems to be solely performance

optimized – but instead, usher in a new age of jointly performant and ethical agents

that are trained using fair, auditable, and debiased learning.

9.3 Future Directions

9.3.1 Dynamically Evolving Environments for Robust Learn-

ing

To be effectively deployed into society, autonomous systems must be able to perceive,

react, and interact with humans at timescales ranging from short, subtle cues to

long-term behavioral patterns. Learning to control within such dynamic environments

requires either (1) training agents directly in reality or (2) synthesizing such behaviors

offline, training, and then transferring learned knowledge into reality. However, real-

world exposure comes with impractical experimental costs and the risk of dangerous

interactions, while simulations today typically consist of pre-defined trajectories which

inevitably lead to repetitive behaviors that do not translate to reality.

There is enormous potential to create scalable, data-driven, and dynamically

evolving environments required to maximize learning-to-control performance. A first

aim is to advance data-driven simulation for learning to control by integrating multi-

agent behavioral models within synthetic environments to design dynamic and inter-

active scenarios. We will develop frameworks that enable the agent and environment

to iteratively and mutually improve each other: agents learn to control and also inform

the design of challenging synthetic scenarios, which will in turn enable generalization

of control. Once the agent is deployed into reality, it becomes an embodied extension

that will be physically able to collect data from natural interactions in order to feed
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back into and further improve the data-driven environments in which it was trained.

This research will develop a research platform for data-driven simulation that will

enable a tight coupling of perception, interaction, and control through an agent’s

iterative learning and deployment lifecycle.

9.3.2 Generalization and Extrapolation for Trustworthy Deci-

sion Making

Humans can facilitate robot learning in complex environments by providing task

demonstrations using rich, multimodal sensory inputs. However, current approaches

for multimodal learning are not flexible, as they are often limited to a small, predefined

set of modalities and are unable to reason when a subset of information is noisy,

corrupted, or missing. Further, existing methods rely on a brute force concatenation

of learned features, and thus are prohibitively sample inefficient to scale to larger

numbers of sensing modalities and task specifications.

In the future, I will build learning-based agents capable of ingesting a fluid sen-

sory stream of information and simultaneously self-reflecting on their own learned

representations in order to realize generalizable control in extremely rich sensory en-

vironments. We will achieve these capabilities by developing new technologies for (1)

learning shared intermediate spaces across sensing modes; (2) building self-attention

across sensory features; and (3) propagating learned uncertainty through shared rep-

resentations to make more intelligent and robust decisions. By learning to associate

different sensory modes into a reusable, shared intermediate space, agents could cope

with a dynamically changing number of sensors as well as incomplete data. With

multiple sources of information being represented in a common embedding space,

we will build agents with self-attention across the components of this space to dis-

cover the most salient aspects for learning control. Finally, we will create learned

reasoning techniques to propagate uncertainty throughout this entire pipeline: from

uncertainty-aware neural representations in the shared embedding space, to attention

mechanisms that will systematically leverage uncertainty to guide the model’s focus
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away from noisy or corrupt sensing modalities.

9.3.3 Human-friendly and Interpretable Decision Making

A central challenge of learning to control is that the reward signals in the real world

are often too delayed, sparse, and ambiguous for complex task specifications — where

even massive datasets still produce unstainable models and uninterpretable decisions.

Existing end-to-end approaches impose minimal structure or prior task knowledge

on the learning model, causing learned policies to suffer from sample inefficiency,

lack reasoning abilities when placed in novel scenarios, and appear “artificial” by not

reflecting natural human intuition. In order to fully deploy and integrate learning-

based control in the wild, agents must be guided towards solutions that not only

solve the tasks, but also integrate seamlessly with humans in society, even in the

most challenging scenarios.

Future directions include the design of new learning algorithms for guiding models

towards control solutions that reflect human priors in order to both (1) facilitate natu-

ral interactions with humans and (2) achieve generalization to extreme scenarios. We

will explore ways in which priors are structured both in abstract forms from human

demonstrations, but also through semantic and geometric instruction to effectively

convey intent in higher-level symbolic spaces. Integration of prior information is crit-

ical in control, as deployed agents may be faced with situations in the wild that are

completely different from anything in their training data, far beyond distributional

shifts. While my work in principled uncertainty estimation has enabled reliable iden-

tification of such scenarios, combining these uncertainties with intuitive priors and

implementing them within the decision process will empower autonomous agents to

achieve robust and flexible control, even in completely unknown environments.
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