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Abstract

Electromechanical systems provide the world’s backbone for generating and using
energy. Electromechanical systems can also experience an innumerable set of failures,
causing induced wear and wasted energy, or eventually a complete failure of a critical
piece of equipment or system. Degradation or other faults are often associated with
subtle but observable changes in electrical consumption. A nonintrusive load monitor
(NILM) is a convenient tool for electrical monitoring, in which all loads connected
downstream of an electrical panel are monitored with a single set of current and
voltage sensors. If collated in a useful way, nonintrusive electrical data can make
diagnostic information more easily attainable and improve the efficient operation of
critical machines.

Ensuring correct nonintrusive identification of load operation is a challenge in
varying operating conditions and fault scenarios. Most nonintrusive load monitor-
ing research assumes that data is static over time. Also, ground truth labels are
a scarce resource in industrial scenarios. Thus, a pattern classifier must train on
a limited dataset not representative of long-term operation. This thesis employs
an understanding of the physics and time-dependency behind changing load behav-
ior to inform pattern classification. New statistical feature extraction techniques are
presented for loads with time-varying operation. Results are demonstrated with labo-
ratory experiments and case-studies from NILM installations onboard various marine
microgrids.
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Chapter 1

Introduction

Climate change mitigation and emissions reduction rely on three central aspects: de-

carbonizing power generation, reducing aggregate energy demand, and electrification

of sectors currently dominated by the direct use of fossil fuels [1, 2]. We must funda-

mentally redefine how we generate, control, and consume energy. At the same time,

we must ensure the reliability and stability of the electric grid during this transfor-

mation. A key component in all aspects of this transformation is the monitoring and

efficient operation of electromechanical systems. Electromechanical systems provide

the world’s backbone for generating and using energy. They harness the wind to

make electricity. They provide heating, cooling, and ventilation to buildings. They

manufacture everything from vaccines to vans. Electromechanical systems can also

experience an innumerable set of failures, causing induced wear and wasted energy,

or eventually a complete failure of a critical piece of equipment or system.

Many electromechanical systems operate under some form of closed-loop or feed-

back control, which work to maintain an environmental or operating set point, such

as temperature, pressure, or tank level [3]. These system operating points are main-

tained even as system health experiences a gradually evolving “soft fault” e.g., loss of

refrigerant, slipping belts, clogged ventilation systems, and so on. As the performance

of a critical component in a system degrades, an automatic controller will compensate

to maintain commanded output levels by altering run times and net energy consump-

tion. By design, feedback control works to mask the effect of soft faults. Soft faults
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degrade operation and can persist for an expensively long time period without caus-

ing a full system failure; however, left undetected, a soft fault can eventually turn

into a “hard fault,” or the complete failure of a piece of equipment or system. Soft

faults are often associated with subtle but observable changes in electrical energy

consumption [4]. If collated in a useful way, electrical data can make diagnostic infor-

mation more easily attainable and improve the efficient operation of critical machines.

It can enable operators and consumers to make more informed decisions for system

maintenance and flexible energy management.

1.1 Nonintrusive Load Monitoring Background

A nonintrusive load monitor (NILM) is a convenient and economical tool for electrical

monitoring since all loads connected downstream of an electrical subpanel are moni-

tored with a single set of current and voltage sensors [5]. Transient behavior in the

power stream, such as when a load energizes or changes state, is identified in order

to keep a record of load activity. The process of accelerating a rotor, for example,

is distinct from the process of booting a computer, and these differences appear as

useful patterns or signatures in the power data. There exists an abundance of phys-

ical features that reveal information about load behavior and are valuable for load

identification. These features can include, for example, the fundamental real power

and reactive power changes in steady-state and inrush characteristics, such as peak,

duration, and shape [5,6]. The physical task of the load may also create higher-order

harmonics. Power electronics create higher-order harmonics at multiples of the line

frequency [7]. Induction motors can produce current harmonics related to the slip

frequency that are not multiples of the line frequency [8].

A schematic overview of a typical NILM installation used in this research is shown

in Fig. 1-1. The NILM meter contains the analog circuitry and the data acquisition

(DAQ) hardware. An analog-to-digital converter (ADC) samples the current and

voltage signals at 8 kHz. The NILM software runs on a Linux-based personal com-

puter or laptop, where the data is stored in NilmDB [5]. The current and voltage
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Figure 1-1: Schematic overview of a typical NILM installation.

data is prepossessed into real power, reactive power, and higher-order harmonics at

an output frequency equal to the line frequency (i.e., 60 Hz) [9]. This processing

compresses the high-rate raw current and voltage data while maintaining the rich-

ness of the original signal. After load identification, actionable information such as a

timeline of individual load operation and diagnostic metrics is presented to the end-

user with the NILM Dashboard [10]. The NILM Dashboard allows users to quickly

select and view indicators that draw awareness to unusual or unacceptable operating

parameters, including too frequent or infrequent operation, excessive power demand,

excessive or inadequate duration of operation, and so forth.

Most nonintrusive load monitoring research is focused on incrementally improving

various accuracy metrics for one or several residential (i.e., home electrical appliances)

datasets, often a percentage of load operation or power consumption identified in an

aggregate power stream [11–18]. However, nonintrusive load monitoring is funda-

mentally ad hoc and conjectural. The application matters [19]. Different approaches

for nonintrusive disaggregation allow a trade-off between computational complexity

in monitoring, accuracy in determining necessary information for a given applica-

tion, and flexibility in dealing with changing load compositions. For example, energy

scorekeeping in residential homes differs substantially from system diagnostics in an

industrial facility. This thesis focuses on applying nonintrusive load monitoring for

energy scorekeeping, condition-based maintenance and diagnostics of mission-critical
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equipment onboard marine vessels and other industrial facilities. Ships present an

application which requires reliability and minimized down-time of systems especially

while the vessel is at sea.

The challenge in load identification and diagnostics is ensuring correct results even

amidst changing operating conditions and fault scenarios. Most nonintrusive load

monitoring research assumes that training data is forever representative of new data.

However, real data is not static, referred to in many domains as concept drift [20–22].

That is, load transient events are prone to drift over time. A load’s power character-

istics extracted at load transient events (e.g., steady-state and inrush transient peak)

can vary; some variations are normal, while others signify impeding faults. Many

of the features useful for identification are also prone to variation and drift. For a

healthy load, variability can arise from the power system itself, such as variations in

turn-on angle and voltage amplitude. Mechanical loads have reasonably varying fea-

tures during different operating conditions, such as cold-starting versus warm-starting

a motor. Loads also experience feature variability over time due to changing environ-

mental conditions, machinery aging and wear, or an underlying fault condition.

Evolving electrical characteristics can complicate load identification. However, if

drifting features due to degradation can be tracked, it can serve as a useful diagnostic

indicator. For many machine learning classifiers, the boundaries in a feature space are

not readily explainable or based in physical understanding. Thus, machine learning

applications typically rely on large, generalizable data sets. Open-access datasets for

nonintrusive load monitoring are generally restricted to healthy residential appliances

[23,24]. These datasets cannot generalize to the vast amount of loads and associated

fault conditions in industrial and commercial sites. As a result, the training data for a

practical nonintrusive load monitoring classifier needs to be collected from the specific

system of interest. In active industrial facilities, different operating conditions and

fault scenarios cannot be purposefully introduced. Thus, a practical pattern classifier

will need to train with limited training data which is likely not representative of long-

term operation. This is further complicated since ground truth labels are a scarce

resource in industrial nonintrusive load monitoring scenarios. To nonintrusively track
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the evolution of a soft fault from the aggregate power stream, this thesis uses an

understanding of the physics and time-dependent nature of load behavior to inform

feature space selection improvements and load identification.

Some useful information for condition monitoring and energy disaggregation oc-

curs during load operation and cannot be extracted from the on and off transients.

That is, not all loads have a constant power demand during their entire operation.

Even if the turn-on transient of a load can be identified, it may not tell the full story

of the load’s operation. Information remains “hidden” with conventional nonintrusive

load monitoring techniques. For instance, energy estimation of individual loads typ-

ically relies on relatively well-defined transient signatures and discrete steady-state

levels. Many loads exhibit non-constant power demand in response to dynamic load-

ing conditions; for example, machines like routers and mills have power demand that

depends on cutting conditions. This thesis introduces new statistical techniques for

these loads. Soft faults can also result in slow changes in power during load operation.

That is, for loads that operate for days or even weeks at a time, it is not feasible to

rely on the load on and off events to track the degradation. In these cases, other fea-

tures, such as induction machine slot harmonics, can be used in tandem with power

stream data to track motor or system health.

1.2 Shipboard NILM Installations

To demonstrate the ideas presented in this thesis, power monitoring data has been

collected from various marine microgrids. A typical installation monitors all or part

of the main engineering space. Field installations of NILM systems have been con-

ducted on several United States Coast Guard (USCG) and Navy vessels, including

USCG Cutters (USCGCs) Spencer, Escanaba, Marlin, and Thunder Bay, and United

States Ship (USS) Indianapolis. These ships are shown in Fig. 1-2. An example of

the NILM hardware installation on the ships is shown in Fig. 1-3. Fig. 1-3a shows

the NILM all-in-one (AIO) box mounted next to the monitored electrical subpanel

on USCGC Thunder Bay. The AIO box contains the NILM meter, CPU, and touch-
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(a) USCGC Spencer. (b) USCGC Escanaba.

(c) USS Indianapolis. (d) USCGC Marlin.

(e) USCGC Thunder Bay.

Figure 1-2: Ships with NILM installations analyzed in this thesis.

screen interface. Fig. 1-3b shows the electrical subpanel interior of USCGC Marlin

with installed hardware for current and voltage sensing. Fig. 1-3c shows the NILM

Dashboard on USCGC Spencer, which was installed overlooking the engine room.

Data from the installations on these five vessels are analyzed in this thesis. This sec-

tion introduces the shipboard NILM installations. The presented examples illustrate

the value and challenges of nonintrusive load monitoring in industrial settings. For
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(a) NILM AIO box installation on
USCGC Thunder Bay.

(b) Panel interior of USCGC Marlin
showing voltage and current sensing.

(c) NILM Dashboard display onboard USCGC Spencer,
overlooking the engine room.

Figure 1-3: Installed NILM hardware.

reference, detailed descriptions of the installations are presented in Appendix A.

1.2.1 USCGCs Spencer and Escanaba

Our longest installations provided observations for over five years from USCGCs

Spencer and Escanaba, two 270-ft. medium endurance cutters (MEC), homeported

in Boston, Massachusetts. When these vessels are at sea, power is provided by two
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Figure 1-4: MEC engine room systems and monitored loads: A. MPDE lube oil
heater, B. MPDE jacket water heater, C. MPDE prelube pump, D. SSDG jacket
water heater, E. SSDG lube oil heater, F. controllable pitch propeller pump, G. inport
auxiliary saltwater pump, H. fuel oil purifier centrifuge and feed pump, I. graywater
pump [25].

ship service diesel generator (SSDG) sets. When in-port, power is provided by ei-

ther an aft or forward connection to utility shore power. The generator sets, along

with the main propulsion diesel engines (MPDEs) propelling the ship, are located in

the ship’s engine room. The SSDGs and MPDEs require auxiliary equipment, e.g.,

pumps and heaters, to maintain operational readiness when in standby mode. Two

electrical subpanels, port and starboard, which power these loads along with several

other engine room loads critical for ship operation, were monitored by NILM systems

on both ships. These various NILM systems, installed between 2014 and 2017, con-

sisted of two boxes, one for the NILM CPU and one for the NILM meter hardware. A

conceptual diagram of the engine room loads on the monitored subpanels are shown

in Fig. 1-4.

An interactive interface for the crew was added in July 2018 on USCGC Spencer,
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as the first prototype of the NILM Dashboard graphical user interface (GUI). This

allowed the crew to navigate through different loads on the port and starboard panels

to plot on the Dashboard to verify operation. Additionally, at the request of the

ship’s crew, a NILM was installed in January 2019 to monitor the power panel in

the main auxiliary room of USCGC Spencer. This panel supplies power to auxiliary

equipment critical to ship operation.

1.2.2 USS Indianapolis

In February 2020, three all-in-one (AIO) NILMs were installed to monitor power

panels on USS Indianapolis, a Freedom-class littoral combat ship (LCS) in Mayport,

Florida. These NILMs were installed on subpanels in the auxiliary machine room,

water jet machinery room, and machine shop. When USS Indianapolis is at sea,

power is provided by four SSDG sets. For propulsion, the vessel uses a combined

diesel and gas turbine plant coupled with four water jets. The vessel uses the diesel

engines for cruising speeds and the gas turbines for high-speed transits. The SSDGs

and propulsion system require electrical equipment both while operating and during

standby.

1.2.3 USCGC Marlin

In August 2020, two AIO NILMs were installed on USCGC Marlin, a 87-ft. patrol

boat homeported in Boston, Massachusetts. The two monitored panels, port and

starboard, monitor the entire ship, with the exception of two steering pumps. Similar

to the MECs, USCGC Marlin has two SSDG sets and two MPDEs. This installa-

tion included the first field installation of new data acquisition hardware, as will be

described in this thesis.

1.2.4 USCGC Thunder Bay

In February 2021, two AIO NILMs were installed on USCGC Thunder Bay, a 140-

ft. icebreaking tug homeported in Rockland, Maine. The two monitored electrical
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Figure 1-5: Graywater system.

panels include one in the engine control center (ECC) and one in the engine room.

USCGC Thunder Bay is one of few Coast Guard assets powered by a diesel electric

propulsion plant, with two MPDEs driving two main propulsion generators (MPG),

which in turn provide power to the main propulsion motor that drives the ship’s single

propulsion shaft. The monitored ECC panel provides power to loads primarily related

to the electric propulsion machinery, including the field exciters for the propulsion

motor and propulsion generators. The monitored engine room panel supplies auxiliary

equipment primarily related to the two MPDEs and two SSDGs.

1.2.5 Equipment Condition Monitoring

The nominally rated 3.7 kW graywater pumps on the USCG MECs are presented here

to highlight the applicability of electrical monitoring for detecting load cycling faults.

The graywater pump is part of the graywater disposal system. The graywater system

and conceptual diagram are shown in Fig. 1-5. The system is designed to transfer,

retain, process, and dispose of the relatively clean waste water from showers, sinks,

and other appliances to a holding tank in the main engine room. When the holding

tank is full, the graywater pump discharges the water from the holding tank either

overboard or to a larger storage tank. There are two pumps (for redundancy) which

alternate each cycle to empty the tank. The graywater pumps operate based on
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Figure 1-6: Graywater pump power observed by a NILM on USCGC Spencer.

water-level sensors. Normally, a pump turns on and begins discharging when water

reaches the “high-level” sensor set point (92-gallon mark), and the pump turns off

when water reaches the “low-level” sensor set point (13-gallon mark).

During monitoring, the graywater system on USCGC Spencer experienced two

faults (not at the same time). The first fault was a failed high-level sensor and the

second was a failed check valve. Both types of faults went unnoticed by the crew for

extended periods as the graywater disposal system still performed its job of collecting

and disposing graywater. However, both these faults caused significantly more pump

runs, causing undue stress and mechanical wear on the system [26]. The high-level

sensor failure, due to solid residue shorting the sensor, resulted in constant high-

level readings. This caused the pumps to short-cycle. The graywater events were

short, typically only a few seconds or less since the tank was essentially empty. The

power streams for a five-minute window showing one example healthy pump run and

several runs during the high-level sensor failure are shown in Fig. 1-6a and Fig. 1-6b,

35



Figure 1-7: Scatter plot of graywater pump run duration versus time since last run.

respectively. The broken check valve fault allowed water to flow backwards from the

storage tank to the holding tank. The pumps had to run almost continuously to keep

the holding tank from overflowing. There is also a slightly longer pump run duration,

because of the backflow. For example, power streams for two-hour windows of normal

operation and a system with a broken check valve are shown in Fig. 1-6c and Fig. 1-

6d, respectively. In this example, there are approximately 65 minutes between the

two runs during normal operation, whereas with a broken check valve, the pump is

cycling approximately every 7 to 8 minutes.

A NILM can keep a running scatter plot, for each detected observation of graywa-

ter pump operation, that locates an event on a plot of “duration of pump run” versus

“time since last pump run.” Healthy pump runs might be expected, generally, to fall

in a bubble of “normal operation.” Various faults are likely to create pump run events

that consistently fall outside of this region. Fig. 1-7 shows a scatter plot of data

from USCGC Spencer for the two described fault scenarios as well as during healthy

operation. During the high-level sensor failure the runs were sometimes too short for

the load to reach steady-state. As a result, the NILM ignored these transients and

the actual “time since last run” for the labelled events were likely even shorter than

the recorded values.
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Figure 1-8: Controllable pitch propeller (CPP) pump. (a) Example of five turn-on
transients from September 2016 and five turn-on transients from March 2018. (b)
Steady-state power and operating pressure over time.

Next, the controllable pitch propeller (CPP) pumps from the MECs are used to

highlight two challenges: 1) the drift of load power characteristics over time due to

changes in operating condition and 2) non-constant power demand due to dynamic

loading conditions. Controllable pitch propellers allow operators to adjust the amount

of thrust generated by a propulsor while maintaining a fixed rotational speed [27].

The pitch of the propeller blades is altered via a hydraulic control system that runs

from the engine room to the propellers through the center of the propulsion shaft.

By changing pitch, the speed and direction of ship movement are controlled. On

the MECs, the CPP system consists of three primary hydraulic pumps that provide

pressurized oil to the system in order to maintain hydraulic control pressure at the

propeller. The ‘A’ pump is a gear-driven pump that is powered by the propulsion

system’s reduction gear. The pressure and flow provided by the ‘A’ pump is dependent

on propeller shaft speed. The ‘B’ and ‘C’ pumps are electric hydraulic pumps that

supplement the pressure and flow provided by the gear driven pump. NILMs on

USCGCs Spencer and Escanaba monitor both the port and starboard CPP ‘C’ pumps,

which are rated at 7.5 kW.

A NILM detected changes in the monitored CPP ‘C’ pump’s steady-state power

consumption, as shown in Fig. 1-8 for the port-side pump on USCGC Spencer. Fig. 1-

37



10 20 30 40 50 60 70
Time (min)

0

5

10

15

20

25

30

P
ow

er
(k

W
)

62 64 66 68 70 72 74
6

8

10

12

Figure 1-9: Power draw of an example run of the CPP pump with a zoom-in on power
“surging.”

8a shows five time-domain on-transients from September 2016 and five on-transients

from March 2018, showing significantly different steady-state levels. Fig. 1-8b shows

the calculated real steady-state power (𝑃𝑠𝑠) for a four-year period, where each data

point represents a single on-event. The steady-state values were calculated as the

difference between the median values over 0.5 second length windows before and after

each identified event. This change in steady-state power correlates with the operating

fluid temperature normalized by temperature (as obtained from the ship logs), as

shown on the right axis in Fig. 1-8b. In February 2018, after replacement of the

hydraulic control valves, there was a large increase in both the normalized operating

pressure and the power draw. Then, as the normalized operating pressure slowly

decreased over time, the power draw also decreased. This demonstrates how a load’s

power characteristics can drift over time due to operating condition. Furthermore, it is

likely a pattern classifier would only be trained on a limited data set collected shortly

after installation. That is, much of the long-term operation will not be represented

in the training dataset.

The steady-state values in Fig. 1-8b represent the steady-state power shortly after

the load energizes. However, the power consumption of the CPP pump can also

change during operation due to varying pressure demand. Between an on-event and
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(a) Heater mounted between two
pistons on the engine block.

(b) New heater and degraded heaters with
holes 1 cm and 5 cm from base, respectively.

Figure 1-10: Main propulsion diesel engine jacket water heater.

subsequent off-event, the load does not always consume a constant amount of power.

For instance, Fig. 1-9 shows the real power of one example run of a monitored CPP

pump. There are “surges” in power, as highlighted by the zoomed-in window. These

surges are a result of the electric CPP pump compensating for the extra pressure

required during the changes in command of the pitch of the propeller blades as the

operator is maneuvering the ship. Detection of these surges in power can provide

insights into ship operation, since throttle commands that alter propeller blade pitch

require greater system pressure and places a greater demand on the system.

As a final example, the MPDE jacket water (JW) heaters of the MECs are pre-

sented here to illustrate changes in steady-state power consumption that are due to

load degradation. Both the port and starboard subpanels of USCGCs Spencer and

Escanaba supply power to a MPDE JW heater system, consisting of two symmetrical

delta-connected 4.5 kW heaters on either side of the engine block. The JW heaters

are part of the MPDE keep-warm system, used when the engine is not running to

minimize time to reach engine standard operating temperature upon start up. Fig. 1-

10a shows a heater mounted between two pistons on the engine block, where the
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Figure 1-11: USCGC Spencer port-side MPDE JW heater turn-on events, starting
healthy and after various stages of degradation.

heater experiences considerable stress due to heat and vibration while the engine is

running. Inspection of the various degraded JW heaters revealed significant corrosion

and damage to heating elements. Fig. 1-10b shows a comparison of a new heater and

two degraded heaters.

The two heaters are activated in tandem, so a NILM sees the heater pair as

drawing 9 kW under normal operation. An open-circuit failure can occur on any

of the six heating elements. That is, only after the sixth consecutive failed heating

element will the JW heating system have a complete system failure. These events are

insidious, as the JW heating system can still use its operational heating element or

elements to warm the jacket water. The heaters may also operate longer, but this is

invisible to the ship’s watchstander as it is a fully automated system. As a heating

element fails, it leads to changes in the associated power waveform. For instance,

Fig. 1-11 shows the real power turn-on transient for four different measured scenarios

of the port-side MPDE JW heater system on USCGC Spencer. The leftmost plot is

of two healthy heaters. The subsequent plots have one, two, and four failed heating

elements, respectively. Early detection of these failures can prevent service delays

and electrical safety hazards.

40



1.3 Contributions and Organization

This thesis makes contributions in six areas for fault detection, diagnostics, and ad-

vanced power monitoring. Each of these contributions relate to a main step of non-

intrusive load monitoring and will be presented in the thesis as a chapter:

• Power system measurement and preprocessing: This chapter examines the

advantages and trade-offs of spectral envelope preprocessing for use in power mon-

itoring, fault detection, and diagnostic applications. Then, details are presented

of new data acquisition hardware that filters out the fundamental utility compo-

nent, and enables inspection of subtle higher-order harmonics. Signal processing

techniques for the application of nonintrusive load monitoring in non-radial power

distribution systems, such as ring distribution systems, are provided.

• Physics-informed feature extraction and selection: Next the relevant fea-

tures for load identification and diagnostics need to be extracted and selected.

Various examples of load variability are characterized using laboratory demonstra-

tions and field data. A method is presented for assessing a possible feature space

to find a set of electrical characteristics that provide adequate separability between

classes.

• Adaptation for classification and drift detection: Once a feature space is

selected, a classifier needs to be trained. This chapter presents a multi-level frame-

work of classification for problems facing concept drift, limited training data, and

extreme verification latency, as is often the case for a practical nonintrusive load

monitoring scenario.

• Energy estimation for stochastic power behavior: The next step after load

identification is energy disaggregation. For loads with approximately discrete steady

state levels, this is a reasonably straightforward step. However, energy disaggrega-

tion is more difficult for loads that do not have unique power consumption levels or

a fixed number of states. This chapter presents an energy estimation method for

loads that have dynamic power consumption due to changes in physical loading.
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• Fault detection and diagnostics: Once individual loads and their power con-

sumption have been identified from the aggregate stream, patterns in load behavior

can be analyzed for faulty behavior. This chapter presents methods for detecting

fault conditions that manifest as changing power characteristics by incorporating

additional physics-based features.

• Dashboard user interface: The final step is for the data to be presented as

an intuitive decision aid for users. This chapter presents the NILM Dashboard

and its easy-to-understand visual displays with demonstrations from various ship

installations.

These six areas encompass a complete NILM system from data collection to data

presentation. Laboratory experiments and case-studies are presented from NILM

installations onboard the described marine microgrids. The applicability of nonintru-

sive load monitoring is demonstrated for making diagnostic information more easily

attainable and improving the efficient operation of critical machines. Hardware, soft-

ware, and signal processing techniques are presented.
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Chapter 2

Power System Measurement and

Preprocessing

This chapter makes contributions in several areas of power system measurement and

preprocessing. First, background is presented for data preprocessing of power sys-

tem measurements using spectral envelopes. Then the advantages and limitations of

spectral envelope preprocessing for power measurements are examined. Data acqui-

sition hardware is presented that can automatically track and reject carrier (utility)

frequency content in a nonintrusive current measurement, permitting the resolution

of subtle higher harmonic content with the full range of an available analog-to-digital

converter (ADC). This data acquisition hardware was made compatible with the

NILM software suite, enabling measurement of three-phase current and voltage data

and filtered current data with the fundamental component removed. The hardware

and software was demonstrated with a field installation on USCGC Marlin. Finally,

this chapter provides signal processing techniques for the application of nonintrusive

load monitoring in non-radial power distribution systems, such as ring distribution

systems.
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2.1 Data Preprocessing

The shipboard field installations presented in this thesis are monitoring three-phase

distribution systems. For a three-phase distribution system with harmonic-free volt-

ages (i.e., containing only the fundamental component), the line-to-neutral voltages

can be represented as:
𝑣𝑎(𝑡) = 𝑉𝑎 cos (𝜔𝑡+ 𝜃𝑎)

𝑣𝑏(𝑡) = 𝑉𝑏 cos (𝜔𝑡−
2𝜋

3
+ 𝜃𝑏)

𝑣𝑐(𝑡) = 𝑉𝑐 cos (𝜔𝑡+
2𝜋

3
+ 𝜃𝑐)

(2.1)

where 𝑉𝑎, 𝑉𝑏, and 𝑉𝑐 are the peak magnitudes and 𝜃𝑎, 𝜃𝑏 and 𝜃𝑐 are the phase angles.

For a balanced system, 𝑉𝑎 = 𝑉𝑏 = 𝑉𝑐 = 𝑉𝑝𝑘 and 𝜃𝑎 = 𝜃𝑏 = 𝜃𝑐 = 0. For a single

frequency component, the voltages can be represented in phasor notation. The line-

to-neutral and line-to-line voltages are:

va = 𝑉

vb = 𝑉 𝑒−𝑗
2𝜋
3

vc = 𝑉 𝑒𝑗
2𝜋
3

vab =
√
3𝑉 𝑒𝑗

𝜋
6

vbc =
√
3𝑉 𝑒−𝑗

𝜋
2

vca =
√
3𝑉 𝑒𝑗

5𝜋
6

(2.2)

where 𝑉 is the rms line-to-neutral voltage (i.e., 𝑉 = 𝑉𝑝𝑘/
√
2). The line currents at

line-frequency harmonic 𝑘 can be represented as:

𝑖𝑎𝑘(𝑡) = 𝐴𝑎𝑘 cos (𝑘𝜔𝑡+ 𝛿𝑎𝑘)

𝑖𝑏𝑘(𝑡) = 𝐴𝑏𝑘 cos (𝑘(𝜔𝑡−
2𝜋

3
) + 𝛿𝑏𝑘)

𝑖𝑐𝑘(𝑡) = 𝐴𝑐𝑘 cos (𝑘(𝜔𝑡+
2𝜋

3
) + 𝛿𝑐𝑘)

(2.3)

where 𝐴𝑎𝑘, 𝐴𝑏𝑘, and 𝐴𝑐𝑘 are the peak magnitudes, 𝛿𝑎𝑘, 𝛿𝑏𝑘 and 𝛿𝑐𝑘 are the phase

angles, and 𝜔 is the angular frequency.

The discrete current signal for each phase is 𝑖𝜓[𝑛], where 𝜓 ∈ {a, b, c}. Given a

sampling frequency 𝑓𝑠 and line frequency 𝑓0, one period is length 𝑁 = 𝑓𝑠/𝑓0 samples.

To detect transient behavior, the currents are first converted to spectral envelopes,
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i.e., a measure of harmonic content averaged over every ac line cycle [9,28]. Spectral

envelops are good representations of signals assuming they are locally periodic over

one ac line cycle. Spectral envelopes of the currents are computed over sliding windows

of the input signal phase-aligned with a reference voltage, 𝑣[𝑛] = 𝑉𝑝𝑘 sin (2𝜋𝑛/𝑁).

By assuming the voltages are relatively “stiff” and harmonic-free, a single measured

voltage is used as the phase reference. For a general current 𝑖[𝑛], the in-phase and

quadrature components of the rms current envelope at line frequency harmonic 𝑘,

assuming the current is phase-aligned with the reference voltage, is:

𝐼𝐼𝑘 =

√
2

𝑁

𝑁−1∑︁
𝑛=0

𝑖 [𝑛] sin

(︂
𝑘
2𝜋𝑛

𝑁

)︂
(2.4)

𝐼𝑄𝑘 = −
√
2

𝑁

𝑁−1∑︁
𝑛=0

𝑖 [𝑛] cos

(︂
𝑘
2𝜋𝑛

𝑁

)︂
. (2.5)

These are equivalent to the imaginary and real components, respectively, of the dis-

crete Fourier transform (DFT) of 𝑖[𝑛], scaled by −
√
2/𝑁 . The DFT transforms some

signal 𝑥[𝑛] into 𝑋𝑘:

𝑋𝑘 = ℱ(𝑥[𝑛]) =
𝑁−1∑︁
𝑛=0

𝑥[𝑛] · 𝑒−𝑗𝑘2𝜋𝑛/𝑁

=
𝑁−1∑︁
𝑛=0

𝑥[𝑛] ·
(︂
cos

(︂
𝑘
2𝜋𝑛

𝑁

)︂
− 𝑗 · sin

(︂
𝑘
2𝜋𝑛

𝑁

)︂)︂
.

(2.6)

For three-phase systems, the measured voltage used as the phase reference can either

be the line-to-neutral voltage or line-to-line voltage, depending on availability and

access of measurements, as long as the correct phase rotation corrections are applied.

A correcting rotation of 𝑘𝜑0 can be applied to the complex DFT coefficient 𝑋𝑘 as

𝑋𝑘 · 𝑒𝜑0·𝑗𝑘. When the voltages are measured line-to-neutral, phase rotations of 0∘,

120∘, and 240∘ should be applied when computing spectral envelopes corresponding

to 𝑖𝑎[𝑛], 𝑖𝑏[𝑛], and 𝑖𝑐[𝑛], respectively. When the voltages are measured line-to-line,

phase rotations of 30∘, 150∘, and 270∘ should be applied. In the line-to-line case, it

is also possible for there to be a phase shift of 180∘ of the voltages with respect to
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Figure 2-1: Conceptual diagram of signal acquisition and preprocessing system.

the currents. In which case, phase rotations of 210∘, 330∘, and 90∘ should be applied

instead. The in-phase and quadrature spectral envelopes for each phase 𝜓 ∈ {a, b, c}

are represented as 𝐼𝐼𝜓𝑘 and 𝐼𝑄𝜓𝑘, respectively. The fundamental current component is

used to calculate the real power (𝑃 ) and reactive power (𝑄) streams for each phase:

𝑃𝜓 = 𝑉 𝐼𝐼𝜓1, 𝑄𝜓 = 𝑉 𝐼𝑄𝜓1. (2.7)

A conceptual diagram of the signal acquisition and preprocessing system is shown in

Fig. 2-1. Fig. 2-2 shows an example current stream and computed real power using

Eq. (2.7) with rms voltage 𝑉 = 120V.

2.2 Resolution Analysis

This section provides in-depth analysis of the benefits and limitations of spectral

envelope preprocessing for use in power monitoring. The work in this section was in

collaboration with Aaron Langham and is presented in [29].

A wealth of information about the operation of electromechanical devices lies hid-

den in measurable signals. Many of these signals can be characterized as being locally

periodic. That is, at some resolution or level of accuracy, a signal exhibits periodicity,

but contains nonperiodic characteristics when observed on a longer time scale. Aver-

aging techniques can increase the accuracy and fidelity of acquisition of these types of

signals. Oversampling, both with direct quantization and with noise shaping, can im-
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Figure 2-2: Example current stream and real power stream.

prove resolution at the expense of sample rate, in a form of averaging [30]. Ensemble

averaging can make use of analog or “prequantization” noise to reduce quantization

error and improve resolution across ensembles of periods [31]. An averaging technique

that is particularly useful for the monitoring of electromechanical equipment is spec-

tral envelope preprocessing, as was briefly described in Section 2.1, which allows for

compression of signals sampled at a high sampling rate while retaining salient infor-

mation about the signal’s harmonic content [9]. Spectral envelopes are particularly

useful for power monitoring, where extraction of in-phase and quadrature components

is desirable to approximate real and reactive power, respectively.

The analysis presented in this section uses the fundamental (𝑘 = 1) in-phase

component (𝑃 ) as the preprocessor output without loss of generality due to the or-

thogonality of sine and cosine. 𝑃 is given by:

𝑃 =
𝑉𝑝𝑘
𝑁

𝑁−1∑︁
𝑛=0

𝑖[𝑛] · sin(2𝜋𝑛/𝑁). (2.8)

For loads with a non-zero phase angle or with harmonic content, similar analysis can
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be done for 𝑄 and higher-order harmonics that will yield the same insights. Since

spectral envelope preprocessing averages or sums over many time points, the number

of possible power values is larger than the number of current sample levels that are

resolvable with an input quantizer of 𝐵 bits [9]. However, similar to the quantization

artifacts that a quantizer introduces, this averaging is associated with its own set of

artifacts and distortions present in the resulting downsampled output signal. The

extra preprocessor output values are not evenly spaced across the range of input

amplitudes. Thus, the preprocessor’s ability to resolve loads (i.e., to both detect and

accurately measure step changes), varies based on the input signal. When using a

preprocessor output as an input to a feature extraction system for training a classifier,

as in the case of nonintrusive load monitoring, it is highly undesirable to have training

data that contains biases or inaccuracies, even if, or perhaps especially if, they only

predominantly affect certain ranges of input signal values.

This section examines advantages of spectral envelope preprocessing for power

measurements [29]. Design techniques are presented for optimizing the resolution

and linearity of spectral envelope data for power monitoring, fault detection, and

diagnostic applications. These design techniques are illustrated by contrasting the

performance of two different hardware preprocessors, the one that will be described

in Section 2.3 and the LabJack UE9. The effects of noise on the power system and

introduced by data acquisition hardware are included. A new measure of the effective

number of bits or power resolution is developed for the output of a preprocessing sys-

tem in the presence of prequantization noise, which is illustrated with data collected

on USCGC Marlin. A design guide is developed for the construction or modification

of a data acquisition system using a spectral envelope preprocessor, with relevant

trade-offs and considerations for parameter choices.

2.2.1 Noise-free Preprocessor Performance

Spectral envelope preprocessing increases output resolution by averaging over 𝑁 sam-

pled data points over one or more periods of a quasi-periodic input signal [9]. We

begin by considering a noise-free system with a stiff, sinusoidal voltage. A sinusoidal,
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in-phase current with amplitude 𝐴 produces a fundamental frequency spectral enve-

lope associated with real power proportional to 𝐴. Quantized sampling results in a

discrete number of possible values, 2𝐵, for each current sample 𝑖[𝑛], where 𝐵 is the

number of input quantizer bits. Therefore, over an observation window, there is a

finite number of unique sampled waveforms of the current signal, denoted as 𝑈 [9].

In calculating spectral envelopes, the DFT, shown in Eq. (2.6), maps each unique

input current signal to a corresponding sequence of unique frequency-domain out-

puts, creating the same number 𝑈 of unique preprocessor outputs. Effectively, the

preprocessor can discern 𝑈 different waveforms corresponding to different values of

𝐴. As derived in [9], the total number of unique preprocessor outputs is:

𝑈 = 2𝐵−1 +

𝑁
4
−1∑︁

𝑛=1

⌊︂
(2𝐵−1 − 1) · sin

(︂
2𝜋𝑛

𝑁

)︂
+

1

2

⌋︂
. (2.9)

This number of outputs can be characterized in terms of bits by taking log2 𝑈 . For

example, for preprocessors with input bits 𝐵 = 12 and 𝐵 = 16 averaged over 𝑁 = 133

data points, the number of output bits are approximately 15 and 19, respectively.

Clearly, there are practical resolution benefits from averaging. Current measure-

ments are quantized in a stair-step fashion, with equal spacing between each bit level.

The averaging inherent to the preprocessor smooths this quantization. However, the

preprocessor “transfer characteristic,” the mapping between actual input power and

the preprocessor output level, is nonlinear.

Consider a range of resistive loads powered by a 120 V rms sinusoidal source.

Observed current amplitude is swept from approximately 35 mA to 471 mA, cor-

responding to a sweep in power consumption from 3 W to 40 W. To illustrate the

nonlinearity of the spectral envelope calculation, contrast the outputs of two different

preprocessors, one operating with 12-bit (𝐵 = 12) input sampling and the other oper-

ating with 16-bit (𝐵 = 16) sampling, both with 𝑁 = 160 and a maximum quantizable

current 𝐼𝑚𝑎𝑥 = 300 A (corresponding to approximately 25.5 kW for this system). All

examples use a current sampling rate of 8 kHz; this preprocessor with 𝑁 = 160 thus
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(a) 12-bit preprocessor.
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(b) 16-bit preprocessor.

Figure 2-3: Preprocessor transfer characteristics for a sinusoidal input current.

outputs at 50 Hz. The resulting computations for 𝑃 from Eq. (2.8) are shown in

Fig. 2-3. The 12-bit preprocessor in Fig. 2-3a shows visible “bumps” and sharp edges

forming nonlinearities in the transfer characteristic. The width of the first bump in

the plot approximately corresponds to the difference in input power for one least sig-

nificant bit (LSB) of quantized input current. Fig. 2-3b shows a 16-bit preprocessor

that appears more linear at the same scaling. However, the nonlinearities are still

present, as shown in the inset of Fig. 2-3b. The deviation of each “bump” from an

ideal linear transfer characteristic is most noticeable at the lower end of the input

power range. The transfer characteristic becomes more linear as the input amplitude

is increased. Thus, for measurement of small loads or for preprocessors with relatively

few input quantization bits, these nonlinearities or distortions can cause an appre-

ciable bias of the preprocessor output away from the correct value, both for single

readings and measured differences in readings.
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(a) 12-bit preprocessor.
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(b) 16-bit preprocessor.

Figure 2-4: Simulation of preprocessor nonlinearity for a 5 W load cycling on top of
a 10 W base load.

Deviations from the ideal linear transfer characteristic can introduce significant

error in estimating the actual power associated with a load. For example, Fig. 2-4

shows the outputs of the 12- and 16-bit preprocessors for a 5 W resistive load cycling

on top of a 10 W base load. The 12-bit preprocessor output is inaccurate at every

point in Fig. 2-4a. The step change shows a difference of 2.27 W, significantly different

than the actual 5 W load demand. That is, even a simple event detector looking at

changes in steady-state power demand would not find the expected 5 W change. The

16-bit preprocessor’s output, shown in Fig. 2-4b, is much more accurate. The output

value for the base load is 10.01 W, and the output power of the base load and cycling

load together is 15 W.

The 12-bit preprocessor is unable to adequately resolve a 5 W difference with the

10 W base load. However, in regions where the slope of the preprocessor output to

preprocessor input is approximately linear, the differential change would be closer

to the actual 5 W change, even if the measurement at any single point is incorrect.

This can be seen in Fig. 2-5 for a base load of 7.45 W. The values before and after

the first step change in Fig. 2-5a are incorrect, at 8.53 W and 13.65 W respectively,

but the difference is close to actual, at 5.12 W. For the 16-bit preprocessor, as shown

in Fig. 2-5b, both the single and differential output measurements are close to the
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(b) 16-bit preprocessor.

Figure 2-5: Preprocessor simulation showing correct differential measurements.

actual values. The values before and after the first step change are 7.5 W and 12.47 W

respectively, and the difference is 4.97 W. In a noise-free, idealized environment, the

preprocessor’s ability to make accurate measurements, both single and differential,

depends on the value of the signal being measured.

2.2.2 Practical Preprocessor Performance

Linearity can be improved by increasing the input bit resolution. However, in a

practical system, there are also other factors, such as noise at different stages in the

signal processing chain, that can impact the preprocessor performance. Any practical

system will contain some non-zero amount of prequantization noise. Due to the un-

certainty in each measurement, noise reduces the number of meaningful preprocessor

output values. However, prequantization noise can be either a detriment or a ben-

efit to system performance, depending on the amount of noise and the preprocessor

parameters.

2.2.2.1 Prequantization Noise

Analog distortions in the current signal prior to the quantization stage produce pre-

quantization noise. Prequantization noise arises from many sources, including the
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Figure 2-6: Preprocessor output standard deviation and mean value for several inter-
vals of shipboard data.

thermal noise in the amplifiers of the signal processing chain of the data acquisition

(DAQ) hardware [32]. Distortions can also result from electromagnetic coupling in

sensors and connections external to the DAQ. Another source of distortion is high-

frequency current components from the physical operation of other loads on the line,

such as nonlinear loads and inductive loads [33, 34]. While not noise in the strict

sense, these fluctuations in power drawn by other loads can affect the preprocessor

calculations and resolution.

The microgrid of USCGC Marlin serves as a demonstration. Preprocessor hard-

ware was used to monitor the aggregate current of a subpanel which powers approx-

imately half of the ship. The variance in the preprocessor output for real power

(computed as the sum of three phases of real power envelopes) tracks with the mean

value of the preprocessor output in steady state. Fig. 2-6 shows a scatter plot of

standard deviation versus mean of real power spectral envelopes for the aggregate

shipboard power in steady-state operation. Low-variance values in the bottom left of

the scatter plot include resistive loads like heaters. Steady-state windows with higher

variance include the operation of loads with significant harmonics or large fluctua-

tions in power draw. An important component of the preprocessor output variance

in this industrial environment arises from these fluctuations.
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Figure 2-7: Preprocessor outputs as histograms for calculated input power values plus
Gaussian noise, for a 12-bit quantizer.

These sources of prequantization noise are modeled as uncorrelated additive Gaus-

sian white noise (AGWN). The amount of noise introduced into a system is charac-

terized using a signal-to-noise ratio (SNR). Consider a system with a maximum quan-

tizable current of 𝐼𝑚𝑎𝑥 and an rms current noise of 𝜎𝐺. The maximum quantizable

sinusoidal current has rms value 𝐼𝑟𝑚𝑠 = 𝐼𝑚𝑎𝑥/
√
2, and the SNR is defined as:

SNR = 20 log10
𝐼𝑟𝑚𝑠
𝜎𝐺

= 20 log10
𝐼𝑚𝑎𝑥

𝜎𝐺
√
2
. (2.10)

2.2.2.2 Transfer Characteristic Linearization

Adding or exploiting a small amount of Gaussian white noise, that is, dither, into an

analog-to-digital converter or quantization system linearizes the mean output value

of the quantizer [35]. The beneficial dithering effect can improve the accuracy of

an acquired current signal, and can decrease error in the preprocessor output [9].

The dithering benefit of prequantization noise “propagates” through the preprocessor

system, and as a result, the relationship of the mean output versus input gradually

becomes more linear as noise is added to the system. This effect is shown in Fig. 2-

7, where prequantization noise is gradually added to a system with 𝐵 = 12 and

𝑁 = 160. Here, the preprocessor transfer characteristic is shown as a series of vertical

histograms for a range of input values, with the average of each histogram forming an

“average transfer characteristic.” The highly nonlinear average transfer characteristic
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Figure 2-8: Histogram of preprocessor outputs for an input power of 18.6 W with the
same parameters as Fig. 2-7c.

of Fig. 2-7a becomes more linear when a small amount of prequantization noise is

added in Fig. 2-7b, and becomes even more linear when sufficient noise is added in

Fig. 2-7c. The preprocessor average transfer characteristic becomes linear at an rms

noise value of approximately one half of the least significant bit of the input quantizer.

In Fig. 2-8, a vertical cross-section of Fig. 2-7c is shown for an input power of 18.6 W,

corresponding to a point where the transfer characteristic is highly nonlinear in the

noise-free preprocessor of Fig. 2-3a. A Gaussian distribution is fit with the calculated

mean and standard deviation. As can be seen in the plot, the mean output from

this preprocessor is approximately equal to the input power of 18.6 W. However, the

correct mean value does not come without drawbacks. The variance from the noise

increases the uncertainty in measurement, as evident by the higher vertical spread of

the histograms of Fig. 2-7b and Fig. 2-7c. Measurements of the preprocessor output

will therefore appear to be “noisy.”

The same load cycle as in Fig. 2-4 is simulated again, but this time 80 mA rms

of Gaussian current noise is added, for an SNR of 68.5 dB (the same amount of

noise as in Fig. 2-7c). The resulting 𝑃 streams are shown in Fig. 2-9. For the 12-

bit preprocessor in Fig. 2-9a, the average value before the step change is around

10.14 W and the average value after the first step change, between 1 and 2 seconds,
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(a) 12-bit preprocessor.
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Figure 2-9: Simulation of preprocessor linearity from noise for a small load while a
base load is running.

is around 14.76 W. The differential measurement is much closer to 5 W, the true

power consumption of the load, than the result in Fig. 2-4a. The noise linearizes

the transfer characteristic and leads to more accurate average single and differential

measurements. For the 16-bit preprocessor in Fig. 2-9b these values are around 10.06

W and 15.24 W respectively. Here, the average single and differential measurements

are similar to those observed in Fig. 2-4b. The noise-free 16-bit preprocessor transfer

characteristic was already close to linear. Thus, adding noise did not significantly

change the average, but it did create more uncertainty in any single output power

measurement.

2.2.2.3 Effective Number of Bits

A reasonable level of input prequantization noise helps linearize the preprocessor per-

formance. More than this level degrades the output estimates with undesirable noise.

To quantify the effect of prequantization noise on resolution ability, the system’s “ef-

fective number of bits” is examined. Per IEEE standard 1057 [36], effective number

of bits (ENOB) is defined as the number of bits of a theoretical quantizer whose rms

quantization noise equals the rms noise of the system in question. For some system
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yielding output 𝑥, the ENOB is:

ENOB = log2

(︂
𝑥𝑝𝑘−𝑝𝑘

𝜎𝑥
√
12

)︂
, (2.11)

where 𝑥𝑝𝑘−𝑝𝑘 is the full range of the system output and 𝜎𝑥 is the rms noise and

distortion of 𝑥. A liberal use of this definition will allow a derivation of the ENOB

of the spectral envelope preprocessor output, given some amount of prequantization

noise. With the results of this derivation, the effect of noise on the performance of

the preprocessor in terms of its number of meaningful “bits” can be examined.

The goal is to find both 𝑃𝑝𝑘−𝑝𝑘, the full-scale swing possible in preprocessor output,

and 𝜎𝑃 , the standard deviation in the preprocessor output due to input noise. For

this derivation, 𝜎𝑃 is assumed to be constant across all input power levels. The

input current signal is now treated as a random process, 𝐼[𝑛]. The equation for the

fundamental real power spectral envelope (𝑃 ), for a window size of 𝑁 , is given in

Eq. (2.8). It is further assumed that the input noise, represented here as 𝐼𝑔[𝑛], is

white and Gaussian, and has zero mean and some variance 𝜎2
𝐺. In order to show the

effect of current signal quantization on the preprocessor input, another assumption is

made that the distortion from quantization, represented as 𝐼𝑞[𝑛], can be approximated

as white uniform noise with zero mean and variance 𝜎2
𝑄 [30]. For a quantizer that

operates between −𝐼𝑚𝑎𝑥 and +𝐼𝑚𝑎𝑥:

𝜎2
𝑄 =

∆2

12
, ∆ =

𝐼𝑚𝑎𝑥
2𝐵−1

, (2.12)

where ∆ is the size of the least significant bit. These approximations are suitable

when the average preprocessor transfer characteristic is well-approximated as linear,

such as in Fig. 2-7c. For convenience in derivation, the sum of 𝐼𝑔[𝑛] and 𝐼𝑞[𝑛] will

be represented as 𝐼𝑜[𝑛], which will also be white noise with zero mean and variance

𝜎2
𝑜 = 𝜎2

𝐺 + 𝜎2
𝑄 (since 𝐼𝑔[𝑛] and 𝐼𝑞[𝑛] are assumed to be independent). Thus, the full

representation of 𝐼[𝑛] is as follows:

𝐼[𝑛] = 𝑖𝑜[𝑛] + 𝐼𝑔[𝑛] + 𝐼𝑞[𝑛] = 𝑖𝑜[𝑛] + 𝐼𝑜[𝑛], (2.13)
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where 𝑖𝑜[𝑛] is the deterministic input current signal. Since 𝑃 is now a random variable,

its variance, 𝜎2
𝑃 can be computed as 𝐸{𝑃 2} − 𝐸{𝑃}2, where 𝐸{·} represents the

expected value of a random variable [37]. Due to the linearity of the expected value

operator and the fact that 𝐼𝑜[𝑛] is zero-mean, 𝐸{𝑃}2 can be computed as:

𝐸{𝑃}2 =
𝑉 2
𝑝𝑘

𝑁2

(︃
𝑁−1∑︁
𝑛=0

sin

(︂
2𝜋𝑛

𝑁

)︂
𝑖𝑜[𝑛]

)︃2

. (2.14)

Next, 𝐸{𝑃 2} can be found by taking the expected value of the expansion of 𝑃 2 and

recognizing that the expected value of the random cross term will be zero, since it

is zero-mean. The expected value of the deterministic square term will be the value

of 𝐸{𝑃 2} found in Eq. (2.14). Thus, 𝜎2
𝑃 will simply be the expected value of the

random square term. By rewriting it as a product of sums with different indices and

combining the sums, the following expression for 𝜎2
𝑃 can be found:

𝜎2
𝑃 =

𝑉 2
𝑝𝑘

𝑁2

𝑁−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

sin

(︂
2𝜋𝑚

𝑁

)︂
sin

(︂
2𝜋𝑛

𝑁

)︂
𝐸{𝐼𝑜[𝑚]𝐼𝑜[𝑛]}. (2.15)

Because 𝐼𝑜[𝑛] was assumed to be white noise, the autocorrelation of 𝐼𝑜[𝑛] is zero

except for the zero-shift case, and 𝐸{𝐼𝑜[𝑚]𝐼𝑜[𝑛]} becomes 𝜎2
𝑜𝛿[𝑚 − 𝑛]. Through the

filtering property of the delta function, the 𝑚 summation and the delta function can

be discarded and 𝑚 can be set equal to 𝑛:

𝜎2
𝑃 =

𝑉 2
𝑝𝑘 · 𝜎2

𝑜

𝑁2

𝑁−1∑︁
𝑛=0

sin2(2𝜋𝑛/𝑁). (2.16)

Using the power reduction identity and Lagrange’s trigonometric identity [38], it can

be shown that for any integer 𝑁 > 2, the sum above will simplify to 𝑁/2. Thus, the

expression for 𝜎𝑃 becomes the following, since 𝑉𝑟𝑚𝑠 = 𝑉𝑝𝑘/
√
2:

𝜎𝑃 =
𝑉𝑟𝑚𝑠 · 𝜎𝑜√

𝑁
=
𝑉𝑟𝑚𝑠

√︁
𝜎2
𝐺 + 𝜎2

𝑄√
𝑁

, 𝑁 > 2. (2.17)

This implies that for some input current noise, the corresponding preprocessor output
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noise will be the product of the rms voltage and the rms current noise, but reduced

as the number of averaging points increases. This makes intuitive sense, as in many

statistical contexts variance tends to decrease in proportion to the number of samples

(𝑁) and the standard deviation tends to decrease proportionally with
√
𝑁 . Next, it

is assumed that the full-scale preprocessor swing, 𝑃𝑝𝑘−𝑝𝑘, is approximately equal to

𝑉𝑝𝑘 ·𝐼𝑚𝑎𝑥, i.e. twice the maximum real power observable, occurring when there is zero

phase angle between the voltage and current.

With 𝜎𝑃 and 𝑃𝑝𝑘−𝑝𝑘 obtained, these quantities can be used in the equation for

effective number of bits given in Eq. (2.11). In order to characterize noise as the

third parameter in the preprocessing system (alongside 𝐵 and 𝑁), a new parameter

𝐺 is defined as the linear form of the quantizer’s signal-to-noise ratio, as defined in

Eq. (2.10),

𝐺 =

(︂
𝐼𝑟𝑚𝑠
𝜎𝐺

)︂2

=
1

2

(︂
𝐼𝑚𝑎𝑥
𝜎𝐺

)︂2

= 10SNR/10. (2.18)

𝐺 is then substituted into Eq. (2.17). 𝜎𝑄 can be substituted out of this equation and

replaced with ∆/
√
12 due to the assumption made previously about the character of

the quantization noise. Since ∆ = 𝐼𝑚𝑎𝑥/2
𝐵−1 from Eq. (2.12), it can be substituted

out of the equation for ENOB. The product and quotient rules for logarithms can also

be used, and terms can be cancelled and rearranged to obtain the final representation

of the effective number of bits of the preprocessor for a given 𝐵, 𝑁 , and 𝐺:

ENOB = 𝐵 +
1

2
log2

𝑁

2
− 1

2
log2

(︂
3 · 4𝐵
2𝐺

+ 1

)︂
, 𝑁 > 2. (2.19)

This equation shows that for the effective number of bits of the preprocessor, the

number of bits from the quantizer (𝐵) is the baseline, and then some benefit is ob-

tained from increasing the number of averaging points (𝑁), but only logarithmically.

If there is no noise, that is, if 𝐺 =∞ (infinite SNR), then the third term goes to zero,

meaning that there is no penalty in the effective number of bits from prequantization

noise. However, if there is prequantization noise, it will lower the effective number of

bits of the preprocessor approximately logarithmically.
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2.2.3 Demonstration with Hardware

Spectral envelope preprocessors using two different data acquisition boards are exam-

ined in this section. The first is the LabJack UE9 data acquisition hardware, which

obtains data at a 12-bit input resolution. The second is the data acquisition hard-

ware which will be presented in Section 2.3, which obtains data at a 16-bit input

resolution. Both boards sample voltage and current signals at a 8 kHz sampling rate,

for each phase of the power system. One period is used for the spectral envelope

window with no window overlap, so the output stream has a sampling rate equal to

the line frequency (60 Hz). Thus, the average value of 𝑁 is 133.3̄, or approximately

133. Both DAQs’ signal processing chains introduce approximately half an LSB rms

of prequantization noise into their preprocessors, resulting in linear average transfer

characteristics. Due to the difference in number of bits, this means that the 16-bit

DAQ contains less noise than the 12-bit DAQ. The current sensor hardware is the

LEM LF-305 which can measure a current of up to 300 A. The quantizer is chosen

such that its maximum quantizable value, referred to here as 𝐼𝑚𝑎𝑥, is aligned with

the maximum value of the sensor (i.e., 𝐼𝑚𝑎𝑥 = 300 A). If 𝐼𝑚𝑎𝑥 is larger than the

maximum sensor value, there will be a degradation in resolution since the LSB will

be unnecessarily large. If 𝐼𝑚𝑎𝑥 is smaller than the maximum sensor value, there will

be clipping in the input signal if a value over 𝐼𝑚𝑎𝑥 is acquired.

In Fig. 2-10, the simulated ENOB for the preprocessor output versus signal-to-

noise ratio, as derived in Eq. (2.19), has been plotted for the case of 12- and 16-bit

preprocessors with 𝑁 = 133. Three operating points are marked. The leftmost

operating point is for both the 12- and 16-bit DAQs monitoring the starboard-side

aggregate shipboard power of USCGC Marlin (in this context, aggregate refers to

metering the entire panel and its collection of loads, as opposed to submetering a

smaller branch of the power delivery system). For this point, the ENOB of the

preprocessor output was obtained by approximating the standard deviation of the

steady-state preprocessor output. Since there is so much noise, the calculated ENOB

of both of these DAQs is approximately 10.4, meaning the 16-bit DAQ holds no
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aggregate (i.e., metering the entire subpanel) and submetered (i.e., meterng a smaller
subset of the panel) environment.

0 2 4 6 8
Time (s)

16750

17000

17250

R
ea

l
P

ow
er

(W
)

B = 12

(a) A 200 W load on the aggregate power
stream (12-bit DAQ).

0 2 4 6 8
Time (s)

17000

17250

17500

R
ea

l
P

ow
er

(W
)

B = 16

(b) A 200 W load on the aggregate power
stream (16-bit DAQ).

0 2 4 6 8
Time (s)

16950

17000

17050

17100

17150

17200

R
ea

l
P

ow
er

(W
)

B = 12

(c) A 15 W load on the aggregate power
stream (12-bit DAQ).
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Figure 2-11: 12- and 16-bit preprocessor outputs in an aggregate shipboard microgrid
for 200 W and 15 W loads.

significant advantage here. A comparison of the two DAQs’ power streams can be

seen in Fig. 2-11 for the starboard-side subpanel of USCGC Marlin. In Fig. 2-11a

and Fig. 2-11b, for the 12- and 16-bit DAQs, respectively, an approximately 200 W
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resistive load is energized on top of the aggregate shipboard power (at different times,

hence at different base loads), turning on at around 𝑡 = 0.5 s and cycling three times

for one second on and two seconds off. The load is equally resolvable for both the 12-

bit and 16-bit DAQs. In Fig. 2-11c and Fig. 2-11d, an approximately 15 W resistive

load is energized on top of the aggregate shipboard power, for the 12- and 16-bit

DAQs, respectively. The 15 W resistive load cycles three times, as in the previous

scenario, however it is not visible for either DAQ, because of the large fluctuations in

power drawn by other loads.

In Fig. 2-10, moving rightward from the leftmost operating point, as the amount

of noise decreases (SNR increases), the ENOB of each preprocessor increases essen-

tially linearly until it reaches a point of saturation. For the 12-bit DAQ, the ENOB

saturates at around 15 bits, and for the 16-bit DAQ, the ENOB saturates at around

19 bits. Note that these saturated values approximately match the values calculated

in Section 2.2.1 using the formula provided in [9]. A second shipboard setup was con-

figured to monitor an individually submetered outlet with the same 12-bit and 16-bit

DAQs used previously. In this case, the dominant prequantization noise is thermal

noise in the analog processing chain, since no other load currents are being metered.

The middle operating point in Fig. 2-10 is for the 12-bit DAQ in a submetered envi-

ronment with internal noise of 𝜎𝐺 ≈ 80 mA (SNR ≈ 68.5 dB). The rightmost point is

for the 16-bit DAQ in a submetered environment, with internal prequantization noise

of 𝜎𝐺 ≈ 5 mA (SNR ≈ 92.6 dB). The prequantization noise values can be used to

obtain the ENOB using Eq. (2.19). The middle and rightmost operating points yield

an ENOB of approximately 14 and 18, respectively. These are only slightly lower

than the maximum saturated value, due to the low amount of noise.

2.2.4 Design Guide

Design of a spectral envelope preprocessing system requires consideration of three

parameters: number of quantization bits, 𝐵; window length, 𝑁 ; and signal-to-noise

ratio, SNR. The minimum resolvable load of the target application is another param-

eter that is either tunable or fixed for a given system. The minimum resolvable load
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can expressed either with ENOB or with a ratio of minimum to maximum resolvable

powers. This section guides the design of a spectral envelope preprocessing system

based on parameters that are either tunable or fixed for a particular system.

2.2.4.1 Measuring System Noise

The preprocessor quantizer’s SNR is the ratio of the square of the rms maximum

quantizable input current (𝐼2𝑟𝑚𝑠) to the variance of the prequantization noise in the

current signal (𝜎2
𝐺), as defined in Eq. (2.10). To determine the SNR, the distribution

of the noise is approximated as a zero-mean Gaussian, whose variance must be either

acquired or designed. If the variance is not known a priori, it can be approximated

in multiple ways. If the current signal can be measured with no loads drawing power,

the standard deviation of this signal can be computed over a window. If current

signal data is only available for an energized system, a window of the current signal

for steady-state power consumption can be obtained, and then a three-parameter

sine-wave fitting algorithm can be applied [39]. The generated sinusoid can then be

subtracted from the current signal and the standard deviation obtained from this

resulting difference signal. This method has the advantage that if the monitored

system contains variance that is not independent of the loads energized, such as

that in Fig. 2-6, it can find an approximation of the standard deviation for any load

configuration. Finally, if the preprocessor transfer characteristic can be assumed

to be linear due to sufficient prequantization noise, the standard deviation of the

preprocessor output (𝜎𝑃 ) over a window can be calculated. The standard deviation

of the quantized current signal (𝜎𝐺) can be approximated by rearranging Eq. (2.17):

𝜎𝐺 =

√︃
𝜎2
𝑃𝑁

𝑉 2
𝑟𝑚𝑠

− 𝜎2
𝑄. (2.20)

2.2.4.2 Choosing the Number of Bits

As shown previously in Fig. 2-11, increasing the number of quantizer bits in the

presence of excessive noise may be fruitless. Thus, when designing a system to operate
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(d) 16-bit DAQ truncated to 12 bits.

Figure 2-12: Comparison of four different preprocessors for a nominal 7.5 W load
turn-on on an approximately 2.5 W base load.

in noisy conditions, the knowledge of the SNR and window length 𝑁 can be used

with Eq. (2.19) to compare various candidate values for 𝐵, and assess whether the

marginal change in effective number of bits of the preprocessor is worth the extra

expense of the increase in 𝐵. Due to the approximations made in the derivation of this

equation, it should only be used when the preprocessor average transfer characteristic

can be assumed to be approximately linear due to sufficient prequantization noise.

For the case when the preprocessor transfer characteristic is nonlinear, increasing 𝐵

will result in an appreciable benefit in the preprocessor’s ability to resolve small loads

by reducing the size of the nonlinear regions.

For example, Fig. 2-12 shows a comparison of four different preprocessors for a

nominal 7.5 W load energized on top of an approximately 2.5 W base load (corre-

sponding to the smart plug used for cycling the load) in the submetered environment

on USCGC Marlin. Fig. 2-12a shows the resulting power stream for the 12-bit DAQ.

The prequantization noise linearizes the average preprocessor output, leading to a

difference in the average steady state values of 7.06 W, close to the correct value.

Using the 16-bit DAQ, as shown in Fig. 2-12b, the steady-state and difference in

steady-state power values are correct. The difference in steady-state when the load
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turns on is approximately 7.5 W. Then, the number of bits is artificially reduced

through truncation for both DAQs. Fig. 2-12c shows the power stream for the 12-bit

DAQ downquantized to 𝐵 = 10. In this case, the load becomes barely visible. Re-

ducing the 16-bit DAQ to 𝐵 = 12 results in a deterioration of accuracy, as shown in

Fig. 2-12d. Due to low noise, the transfer characteristic of this case is nonlinear and

the difference in power values when the load is turned on is approximately 10.8 W,

which is clearly incorrect.

2.2.4.3 Choosing the Sampling Rate

The parameter 𝑁 governs the number of data points in the spectral envelope averag-

ing window. For the case of a window length of one period, 𝑁 is the ratio of sampling

frequency to operating frequency. Broadly, 𝑁 controls the shape and smoothness of

the transfer characteristic nonlinearities compared to the “stair-step” transfer charac-

teristic of a simple quantizer. However, the marginal benefit of increasing 𝑁 drops off

logarithmically. If the sampling frequency is not an integer multiple of the operating

frequency, then 𝑁 will alternate between different values for each spectral envelope

calculation window. For example, for a sampling frequency of 8 kHz and an operating

frequency of 60 Hz, every third window will have an 𝑁 of 134, and two out of every

three windows will have an 𝑁 of 133, resulting in an average 𝑁 of 133.3̄. As a result

of inconsistent window sizes, the preprocessor output for this situation will appear to

have “spikes” every third sample, even for what should be a constant value. This can

be removed by using a rolling average of length three, at the expense of smoothing

the transients and potentially reducing the ability to identify load transients. These

fluctuations may be inconsequential if there is a high amount of variance in the signal.

Another consideration is that the line frequency is not always at a consistent 60 Hz,

especially for systems with a limited generation capacity. By utilizing the tracked

line frequency [9], the actual fundamental component can be better determined. The

line frequency output can be used as input to the generalized Goertzel algorithm [40],

which computes the 𝑘th DFT coefficient, where 𝑘 can be a non-integer value.

𝐵 and 𝑁 are typically not independent for a given ADC hardware. Thus, it
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is also important to consider the relationship between 𝐵 and 𝑁 given the specific

hardware constraints. As shown, for a given hardware with a fixed 𝐵, oversampling

and averaging via spectral envelopes can increase the ENOB. Eq. (2.19) shows that

there is benefit to increasing𝑁 . On the other hand, increasing the sampling frequency,

and consequently 𝑁 , may involve a loss of precision depending on the ADC hardware.

2.2.4.4 Ability to Resolve Small Loads

For a given system installation, there exists some minimum load power consumption

that can be resolved. Spectral envelope preprocessing introduces two issues that

impact the ability of a system to resolve small loads. First, the nonlinearity of the

noise-free preprocessor transfer characteristic results in a reduction of resolution at

certain input values, as shown in Fig. 2-4. Second, significant prequantization noise

reduces the number of meaningful output values even with an increase in number of

quantizer bits. For both cases, it is useful to examine the preprocessor’s ability to

differentiate a small load event given values for 𝐵, 𝑁 , and some base load.

If the prequantization noise is sufficient to linearize the average preprocessor trans-

fer characteristic, the minimum resolvable power will be independent of any base load

value. The minimum power that can be resolved by the preprocessor, 𝑃𝑚𝑖𝑛, can be

estimated as 𝜎𝑃 . The linear signal-to-noise ratio 𝐺 from Eq. (2.18) can be related

to 𝜎𝑃 from Eq. (2.17). 𝐼𝑚𝑎𝑥/
√
2𝐺 can be substituted for 𝜎𝐺 and 𝐼𝑚𝑎𝑥/(2

𝐵−1
√
12)

for 𝜎𝑄. Since the maximum power detectable by the system can be approximated as

𝑃𝑚𝑎𝑥 = 𝑉𝑟𝑚𝑠 · 𝐼𝑟𝑚𝑠, where 𝐼𝑟𝑚𝑠 = 𝐼𝑚𝑎𝑥/
√
2, the following equation for 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥 can

be derived:

𝑃𝑚𝑖𝑛
𝑃𝑚𝑎𝑥

=

√︃
1

𝑁

(︂
1

𝐺
+

2

3 · 4𝐵
)︂
. (2.21)

For example, this can be calculated for the USCGC Marlin example in Fig. 2-

11b over a window between 𝑡 = 1.75 s and 𝑡 = 3.25 s. The standard deviation of

the real power preprocessor output is computed to be approximately 22.7 W, which

will be used as 𝑃𝑚𝑖𝑛. Since the rms voltage is 254 V and the maximum quantizable
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current signal is 300 A, 𝑃𝑚𝑎𝑥 is found to be 53881.5 W. Thus, the ratio of 𝑃𝑚𝑖𝑛 to

𝑃𝑚𝑎𝑥 is 1 : 2374. This implies that all other parameters being constant, increasing

the maximum observable power (likely by changing 𝐼𝑚𝑎𝑥) will increase the minimum

observable load power by the same factor, providing a heuristic for the range of

observable values. 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥 can be related to ENOB through the following equation:

ENOB = − log2

(︂√
3 · 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥

)︂
. (2.22)

Either 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥 or ENOB can be used to quantify the ability of a system to resolve

small loads.

If prequantization noise does not linearize the average preprocessor transfer char-

acteristic, the system’s resolution will be lower at the nonlinear regions of the transfer

characteristic. For example, in Fig. 2-3a, between an input power of approximately

12 W to 18 W, there will be very little difference in the output value assigned. What

counts as “resolvable” is application-specific. For example, consider a correlation

matching algorithm with a set tolerance [5]. If a match tolerance of 20% is chosen,

a load event is considered to be resolvable if the difference in preprocessor outputs is

within 20% of the actual load value. Considering the base and small load scenario,

different base load values can be iterated, and for each, the minimum small load

value is found that yields a preprocessor output difference within the desired toler-

ance. Finding a closed-form solution for this value for any given match tolerance is

not tractable, but in general, the worst case is at the first inflection point, when the

preprocessor output becomes non-zero (e.g., at approximately 6.2 W in the Fig. 2-3a).

For power monitoring applications, it is unlikely that the preprocessor would operate

in this nonlinear situation, as only approximately half of an LSB of rms noise current

signal is required to linearize the average transfer characteristic.

2.2.4.5 Design Scenarios

The presented techniques can inform system design. Given three fixed or desired

parameters, Eq. (2.21) can be used to solve for the variable of interest. In the first
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scenario, 𝑁 and SNR are fixed and there is some requirement on the minimum re-

solvable load, which fixes 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥. This scenario could be brought about by design

of data acquisition hardware at some required sampling frequency in an environment

with a known amount of noise. Here, solving for 𝐵 will yield the number of input

quantization bits necessary to meet the resolution requirement. However, it is not

always possible to meet the desired requirements by only tuning 𝐵, as there is no

realizable value of 𝐵 that will yield a 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥 of less than
√︀
1/(𝑁𝐺). In the sec-

ond scenario, 𝑁 and 𝐵 are fixed, perhaps due to use of specified data acquisition

hardware, and 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥 is set to some desired value. Solving for the minimum SNR

for such a resolution requirement allows a system designer to evaluate potential sen-

sor placements. That is, can a sensor be placed “upstream” to monitor a larger and

most likely noisier system, or are multiple “downstream” sensors required? Similar to

the first scenario, 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥 is lower bounded. In this scenario, the lower bound is√︀
2/(3 · 4𝐵 ·𝑁), so even an infinite SNR will not meet every requirement. Finally,

in the third scenario, 𝑁 and 𝐵 are again fixed due to prespecified hardware. SNR is

also fixed in this scenario, which may be due to unavoidable noise in the installation

environment. By solving for 𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥, the designer can understand which loads can

and cannot be resolved in this installation. That is, the ratio of minimum resolvable

power to maximum resolvable power can be derived for the preprocessor configuration

to describe the system’s ability to resolve small loads.

2.3 Measurement Hardware

As was shown, the ac utility effectively creates a substantial “carrier frequency” com-

ponent at the utility frequency that indicates real and reactive power demand. Valu-

able information for diagnostics, control, and energy scorekeeping may be found over

a range of frequencies and amplitudes in utility waveforms. Other frequency content,

for example, in the current waveforms demanded by a load, can serve as important

tell-tale signatures for identifying loads and recognizing operating state and fault con-

ditions. The additional frequency content may be at harmonic multiples of the utility
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frequency, or distributed in other ways, for example, as a multiple or function of both

utility frequency and slip frequency in a motor. The relative amplitude of signals like

current at the utility frequency versus motor slot harmonic frequencies may vary over

several orders of magnitude. This creates a significant practical problem in achieving

an adequate dynamic range to observe all signals of interest. The problem is com-

pounded by normal variations in the utility frequency, which complicates the design

of data acquisition instrumentation for making complete measurements of interest.

Knowledge of shaft speed assists with many control and monitoring applications

for electric machines [41–46]. Using intrusive approaches for speed estimation adds

sensors to machines, adding complexity and cost. Installation of the sensors, cables

for power and communication, and interface circuits requires additional work and

space. Nonintrusive, sensorless speed monitoring can reliably estimate speed with

varying approaches and effort. For induction machines, motor speed can be deter-

mined from observed electrical waveforms by tracking slot harmonics [47]. However,

three problems challenge efforts to implement practical nonintrusive speed sensors for

electric machines. First, slot harmonic signals are much smaller in size and located in

higher frequency bands when compared with the fundamental component of current.

Notch filters have been applied to attenuate the line frequency component and am-

plify the high-frequency harmonics [47]. Subtle variations in the utility frequency can

defeat the efficacy of this approach as utility waveforms slide out of the stopband of

a tightly tuned filter. Second, as shaft speed changes with mechanical load, the slot

harmonic frequencies change with changing machine slip. Complex circuit solutions

can phase-lock to these changes, but digital signal processing methods permit more

flexible implementations assuming a reliable measurement of slot harmonics can be

made. Third, because an electric machine typically generates a family of harmonics,

tracking applications can become confused by coincident changes in utility frequency

and higher harmonics, for example, slip-related frequency [47,48].

This section presents a custom design for data acquisition hardware that can

automatically track and reject carrier (utility) frequency content in a nonintrusive

current measurement, permitting the resolution of subtle higher harmonic content
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with the full range of an available analog-to-digital converter (ADC). This new in-

strumentation design automatically tracks variations in utility frequency and adapts

to ensure reliable measurements of relatively small signals which are present in the

waveform of interest. The hardware was designed by Kahyun Lee and Łukasz Huchel

and presented in [49]. This hardware was made compatible with the NILM soft-

ware suite, as detailed in this section. Demonstrations of the hardware are presented

from a field installation on USCGC Marlin. The hardware is further demonstrated

in Section 6.1 with a proposed nonintrusive speed estimation method. The proposed

instrumentation and harmonic tracking algorithm permit enhanced nonintrusive load

monitoring. A shipboard system provides challenges such as a multi-motor environ-

ment and changing supply frequencies while at sea. The data acquisition board with

an automatically tunable notch filter tracks utility frequency and provides high resolu-

tion measurements of higher harmonics as the utility frequency experiences inevitable

variations.

2.3.1 Frequency Signatures

Most impedance loads draw current signatures with frequency content beyond the

utility frequency. Induction motors, an industry workhorse, for example, have rotor

slots that create harmonics that affect phase currents, voltages, and machine fluxes.

These can be observed at frequencies:

𝑓ℎ = 𝑓𝑠

[︂
(𝑘𝑅± 𝑛𝑑)

1− 𝑠
𝑝
± 𝑣
]︂
, (2.23)

where 𝑓𝑠 is the supply frequency, the non-zero integer 𝑘 is the order of rotor slot

harmonics, 𝑅 is number of rotor slots, 𝑝 is the number of pole pairs in the motor

(the number of poles divided by two), the non-negative integer 𝑛𝑑 is the order of

rotor eccentricity or decentering as it rotates with respect to the stator, 𝑠 is the

rotor slip, and the odd integer 𝑣 is the order of stator magneto-motive force (MMF)
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harmonics [49, 50]. Rotor slip, 𝑠, is calculated as:

𝑠 =
𝑛𝑠 − 𝑛
𝑛𝑠

, (2.24)

where 𝑛𝑠 is the synchronous speed in rpm and 𝑛 is the measured rotor speed. For a

mechanically ideal motor (𝑛𝑑 = 0) that is fed with a pure sinusoidal supply (𝑣 = 1)

the harmonic content in the line current demanded by the machine is expected to be

distributed around the principle slot harmonic (PSH) at 𝑘 = 1:

𝑓𝑝𝑠ℎ = 𝑓𝑠

[︂
𝑅

𝑝
(1− 𝑠)± 1

]︂
. (2.25)

However, if the motor is not mechanically ideal as is generally the practical situation,

there will also be harmonic content at slot harmonic frequencies for different values

of 𝑛𝑑. As shown in Eq. (2.23), three factors are involved in the creating of slot

harmonics: rotor slots, rotor eccentricity, and stator MMF harmonics. Harmonics at

different frequencies are generated by different combinations of 𝑘, 𝑛𝑑, and 𝑣. Fig. 2-13

shows a measured example of the current spectrum of a three-phase induction motor

with a 60 Hz supply. The frequency spectrum was obtained by the DFT of the motor

current data sampled for 10 seconds. The test motor with 18 rotor slots and 2 pole

pairs was running at 1657.7 rpm. There are several peaks at different frequencies,

with labels indicating where a current harmonic is present.

Often, as seen for the test motor, the PSH has the largest amplitude. With 𝑅 and

𝑝 fixed by the motor structure, the frequency of the PSH depends only on the rotor

slip and the supply frequency. Thus, tracking PSH is an effective way to estimate the

rotor slip:

𝑠 = 1− 𝑝

𝑅

(︃
𝑓𝑝𝑠ℎ − 𝑓𝑠

𝑓𝑠

)︃
, (2.26)

which typically ranges for practical induction machines between 0% and 5%. The PSH

is therefore an example of a valuable harmonic that can be measured, in principle,

by a nonintrusive power monitor to track machine operation and to differentiate the

activity and operation of several machines on the same power service. Unfortunately,
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Figure 2-13: Slot harmonics of the test motor at 1657.7 rpm.

the PSH may be several orders of magnitude smaller in amplitude than the utility

frequency fundamental current. It is therefore difficult to locate. This problem is

exacerbated by any variations in the utility frequency, which happen frequently, and

which complicates the design of a filter to reject fundamental frequency current.

2.3.2 Data Acquisition, Processing, and Filtering

To improve the detectability of rotor slot harmonics, this section gives an overview

of the architecture of a data acquisition, processing, and filtering board that can

selectively and adaptively reject larger signal components in favor of much smaller

harmonics. Fig. 2-14 shows a block diagram of the design, which provides eight-

channels of simultaneously sampled data at sampling rates as high as 24 kHz. Two

key features offered by the design include a zero-crossing detector for line frequency

estimation and a switched capacitor (SC) notch filter with tunable center frequency.

A microcontroller coordinates the operation of the SC filter and data sampling. One

of the eight input channel signals is selected for the slot harmonic detection by the

microcontroller using an 8:1 multiplexer. Fig. 2-15 shows the acquisition system, with

different functional regions of the board identified.

The zero-crossing detector allows the microcontroller to detect the frequency of
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Figure 2-14: Block diagram of the data acquisition, processing, and filtering board.

(a) Top view.

(b) Bottom view.

Figure 2-15: Data acquisition board.
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the dominant (e.g., utility frequency) fundamental component in the chosen signal. It

consists of op-amp circuits for scaling and biasing, and a hysteresis comparator. The

front-end lowpass filter eliminates input noise that can cause undesirable transitions

in the comparator output and also attenuates harmonics other than the fundamen-

tal. Then, the comparator generates a pulse signal from which the microcontroller

estimates the fundamental frequency of the signal. A hysteresis comparator with ad-

justable hysteresis band helps ensure accurate zero-crossing detection with a potential

phase delay that does not affect fundamental frequency estimation.

The real-time estimates of frequency are used to center or tune a switched-

capacitor (SC) notch filter to eliminate utility frequency current. Considering that

the SC notch filter is a discrete-time filter, a second-order low-pass filter is applied

before the SC filter as an antialiasing filter to restrict the bandwidth of the input sig-

nal [30]. The cutoff frequency of the antialiasing filter is set to 3.1 kHz, much higher

than the input frequency band of interest, allowing for a tradeoff between aliasing

and bandwidth. Then, the SC notch filter is implemented with a cascade of two

second-order notch filters constructed using the LTC 1060 from Linear Technology.

The center frequencies are adjustable with an external clock provided by the micro-

controller. The microcontroller adapts the clock frequency to follow the fundamental

signal, and therefore allows the notch filter to effectively attenuate the line frequency

component even if the line frequency changes.

A total of eight signals are selected for analog-to-digital conversion, based on user

configuration. They are scaled and biased to fit the input range of the ADC, an

ADS131A04 from Texas Instruments, which allows simultaneous sampling of four

channels at high data rates. Two ADCs are daisy chained to perform simultaneous

sampling of all eight channels of data. Serial digital data are passed to the microcon-

troller using the Serial Peripheral Interface (SPI) connection at 16-bit resolution and

8-kHz sampling rate for our experiments. The prototype board allows the user to re-

ceive data via Ethernet, USB, UART, or I2C. In our experiments, six of the available

eight channels sample the three-phase voltages and currents and one channel is for a

filtered current waveform with the fundamental removed. This filtered waveform can
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be inspected for subtle harmonics.

2.3.3 Integration with NILM

The data acquisition board was designed to have the same form factor as the LabJack

UE9 [51], which is the data acquisition board that has typically been used for NILM

installations. Thus, the new data acquisition board can be installed in the existing

NILM meter box. The data acquisition board was integrated with the NILM software

suite, which automates the data acquisition and processing. In a configuration file,

users can specify which data acquisition hardware to use (either the new described

hardware, referred to as “NerdJack,” or the LabJack UE9, referred to as “LabJack”).

If using the new data acquisition board, users can easily specify the channel (one of

the three current streams or three voltage streams) to use for notch filtering. An

example snippet of the relevant settings of the configuration file is shown below:

meter1:

type: contact

enabled: true # set to true or false

daq_type: nerdjack # labjack or nerdjack

ip_address: 192.168.1.209 # default LJ or NJ address

phases: 3 # 1 - 3

sensors:

voltage:

sensor_indices: [3,4,5] # maps to phase A,B,C

sensor_scales: 0.0919 # built -in constant

sinefit_phase: A # [A,B,C] voltage

nominal_rms_voltage: 120 # used to scale prep to W

current:

sensor_indices: [0,1,2] # maps to phase A,B,C

sensor_scales: 0.00156402587 # set by resistors and LEM

sinefit_rotations: [240 ,0 ,120]

filter:

enabled: true

filter_index: 0 # filter index 0 - 5
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Here, the additional “filter” setting was added. After the user runs the nilm configure

command, the relevant configuration files are created to capture and process data with

the Joule data processing pipeline [52]. The Joule data processing framework, devel-

oped by John Donnal, is used to streamline the capturing and preprocessing stages.

This tool models the data pipeline as a series of processing “modules,” with formally

defined “streams” of information passing between them. Data flows between modules

through efficient memory pipes, without needing to access the database as an inter-

mediary. The data capture and processing has two main modules, meter capture

and meter process. The meter capture module calls either EthstreamCapture or

NerdjackCapture, for the LabJack and NerdJack, respectively. NerdjackCapture

was added for the NerdJack as the analogous code of EthstreamCapture for the Lab-

Jack. The output of the meter capture module is the stream /meter/sensor. This

contains the raw 8 kHz sensor data (three currents, three voltages, and the notch filter

output, if configured). The meter process module takes as input /meter/sensor,

and outputs three streams, /meter/IV, /meter/sinefit, and /meter/prep. The

meter process module is a composite module, which runs the full filter pipeline,

instead of running each process individually. This composite module runs

nilm-reconstructor, nilm-sinefit, and nilm-prep. The nilm-reconstructor

process takes as input /meter/sensor and applies the specified scale factors to out-

put the 8 kHz currents and voltages to the IV stream. The nilm-sinefit process

takes as input the IV stream and outputs the sinefit stream containing the calcu-

lated frequency, amplitude, and offset of the reference voltage stream, timestamped

at the zero-crossings. The nilm-prep process takes as input both the IV and sinefit

streams and outputs the prep stream. The prep stream contains spectral envelopes

for the fundamental, third, fifth, and seventh order harmonics for each phase.

The data acquisition board was installed in the field as part of a NILM installation

on USCGC Marlin, and collected data from August 2020 to January 2022. The notch

filtered data was saved for a portion of this period. Fig. 2-16 shows ten days of data

collection on USCGC Marlin, showing the real and reactive power on three phases

on the left axis and the notch filtered output of one of the current streams on the
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Figure 2-16: Ten days of data collection on USCGC Marlin using the described
hardware. The left axis is the power streams in watts and the right axis is the filter
stream in ADC counts.

Figure 2-17: Filter performance as a load energizes on USCGC Marlin. Ch3 is the
current stream and Ch7 is the filter stream.

right axis. The data is plotted with the Lumen visualization interface [53], in which

the data is decimated, such that the mean value is plotted with the minima and

maxima used to plot signal envelopes as a lighter shade. Fig. 2-17 shows the raw

sensor data for a current stream (Ch3) and the filter response (Ch7) when a load

on USCGC Marlin energizes. Fig. 2-18 shows the power stream and filter response

as a different load turns on. The filter response in both these examples show that

the fundamental frequency signal is quickly attenuated. The applicability of this

hardware is demonstrated in Section 6.1 for diagnostics of ventilation systems.
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Figure 2-18: Filter performance as a load energizes on USCGC Marlin. The left axis
is the power stream in watts and the right axis is the filter stream in ADC counts.

2.4 Beyond Radial Distribution Networks

Another important piece for power system measurement and preprocessing is the

placement of NILM sensors in a power distribution network. All of the NILM in-

stallations described in Chapter 1 are monitoring radial distribution networks. In a

radial power-distribution network, a source delivers power from the “root” of a collec-

tion of loads organized in a tree structure. Protection is relatively straightforward,

typically based on calculation of available short circuit current calculated using line

and system impedances. Load monitoring is also relatively easy: since power flows

“out” from the source to a network of loads, one sensor on the “trunk” of the tree

nonintrusively captures all power events.

Alternative distribution architectures are desirable in situations with diverse sources

and a requirement for high-reliability, fault-tolerant operation. For example, the in-

crease in distributed energy resources has increased the interest in dc ring micro-

grids, which provide increased reliability and efficiency by reducing power conversion

stages [54–56]. Many naval vessels employ ring bus distributions to provide redun-

dancy and protection in the event of a failure [57]. Ring distribution loops the service

from a source (or several different sources) through a collection of loads and back to

the source. The ring can support ac or dc distribution, and can combine sources with

differing types and capacities. Interlocking rings can be separated or joined to form a
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larger network or microgrid with enhanced flexibility for interconnecting power. Since

a ring bus can provide power in any direction on the ring or rings, a fault can be iso-

lated while preserving services for vital loads. The variety of power transfer paths

offers significant flexibility for maintenance, fault protection, and failure response.

Path multiplicity complicates automatic relaying or protection on a multi-ring

system [58–61]. Therefore, complex monitoring systems may be necessary for mission-

critical ring microgrids to measure ring voltages and currents in order to identify and

isolate faults [60]. Unfortunately, this instrumentation does not naturally provide

power consumption information for loads or systems, as the power provided to a

load may arrive over multiple paths. Additional load monitoring hardware (such as

a NILM) is typically installed on service panels at the root of radial networks fed by

the ring [62].

These extra sensors for load monitoring should be unnecessary. With data from a

fully instrumented ring bus, it is simple in principle to apply Kirchoff’s Current Law

(KCL) on the known grid architecture to determine the current flowing into radial

distribution service panels further down the grid. However, the time-alignment of

each meter’s data must be ensured to accurately reconstruct load power consumption.

This is especially important for capturing load transients over hundredths or tenths

of a second. Transient signatures serve as fingerprints that permit the recognition

and disaggregation of load behavior. Power to a load delivered from multiple paths

must be reconstructed from multiple measurements. Synchronization errors in data

collection will distort transient shapes.

Clock synchronization is a challenging and heavily researched task for applica-

tions requiring meaningful sensor fusion, such as phasor measurement units (PMUs)

[63–65]. Device-level time synchronization of PMUs typically relies on a reliable syn-

chronizing signal like a clock derived from the Global Positioning System (GPS) [66].

In many smart meter applications it is assumed that the measurements are synchro-

nized. However, unlike PMUs, many smart meter measurements are not actually

perfectly synchronized [67]. In practice there may be significant time differences

which reduces the quality of the desired output [68]. Weak signal reception makes
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GPS and other wireless signals difficult to apply indoors [64]. For example, wireless

synchronization solutions may be effectively impossible on small microgrids serving

metal-hulled marine vessels [69, 70]. Synchronization is further complicated by drift

due to temperature, EMI (electromagnetic interference), and vibration, all of which

can affect the accuracy of digital clocks [65]. A wired and shared clock signal can

synchronize different measurement systems, but this approach may be expensive to

retrofit.

Reliable time alignment signals can be derived from the power system itself. This

section explores nonintrusive load monitoring on a ring-bus microgrid similar to that

found on many marine vessels. Techniques are developed for time-aligning and re-

solving the KCL sums in any part of the network. These techniques make it possible

to nonintrusively monitor collections of loads strictly from measurements made along

the ring bus. That is, signals that are likely already available for protection and

relaying on the ring can be used to monitor the grid loads in detail. Demonstrations

of the proposed algorithms are presented on hardware. The work in this section was

in collaboration with Brian Mills and is presented in [71].

2.4.1 Ring Bus: Shipboard Examples

The monitoring methods discussed in this chapter apply to any electrical distribution

system with path multiplicity. Marine microgrids serve to illustrate our hardware and

algorithms. Ships use a variety of ring distribution systems to power vital loads such

as fire pumps, communications, and emergency lighting. For most commercial ships,

simply having multiple generators can satisfy redundancy requirements and system

monitoring can be performed by meters on each generator. However, for many vessels,

interconnected switchboards are required to prevent loss of power from a failure.

On a naval vessel, ring bus distribution provides protection in the event of fail-

ures of entire switchboards or machinery rooms [57]. Vital loads are fed from two

different switchboards via Automatic Bus Transfers (ABTs). Because a switchboard

or vital load can receive power through more than one path, power continuity and

reliability is increased [72]. An example ring bus similar to that found on USCG Na-
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Figure 2-19: Shipboard ring bus example marked with monitoring locations [71].

tional Security Cutters is shown in Fig. 2-19. Larger ring buses can be formed. For

example, the Italian aircraft carrier Cavour uses eight circularly-connected generators

and switchboard installations [73]. The US Navy uses an architecture called a Zonal

Electric Distribution System (ZEDS) on newer large ships. The ZEDS, a series of

interconnected rings, provides additional ability to isolate different elements during a

fault [74,75]. Zonal systems, typically use both a port and starboard bus running the

length of the ship, with cross-ties at multiple points that form multiple rings. Each

zone of the ship has at least one load center (LC) from each bus. The load center

powers a radial subnetwork of loads.

Monitoring capabilities often already exist onboard ships for oversight of the ring

distribution system, but not necessarily for monitoring the status and health of in-

dividual pieces of equipment. Dual-use could be made of the monitoring equipment

already in place. For example, the ZEDS onboard US Navy DDG-51s uses Multi-

Function Monitors (MFMs) for automated failure response. The MFMs observe the

current and voltage at each switchboard bus tie and generator breaker, and commu-

nicate via a dedicated information network with each other to execute a coordinated
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shunt response to system faults [76,77]. The voltage and current data collected by one

MFM is translated to events or flags and is not used directly in calculations by any

other MFM, thus avoiding time-alignment challenges [78]. Adding a time-alignment

capability would allow MFM hardware, or other sensors already in place, to function

as a load monitor.

For demonstration, a ring bus distribution system was constructed with a delta-

configured bus. Each “meter,” shown as blue circles in Fig. 2-19, consists of a data

acquisition (DAQ) device fed by three LA-55 current sensors and three voltage con-

nections, one for each phase. All seven DAQs communicate with a single computer

that collates and time aligns this data to calculate power consumption for each switch-

board. With meters positioned to monitor all sources of power and all paths between

switchboards, the power demand of each switchboard can be uniquely determined.

Treating each switchboard as a “node,” we construct the KCL matrix for the power

system and sensor arrangement. Accounting for the polarity of the sensors shown in

Fig. 2-19, a preprocessing matrix transforms measured ring bus currents into switch-

board currents and also total current provided by all of the generators to the ship.

The monitoring system performs these calculations for each phase 𝜓 ∈ {a, b, c}:

⎡⎢⎢⎢⎢⎢⎢⎣
𝑖swbd1,𝜓

𝑖swbd2,𝜓

𝑖swbd3,𝜓

𝑖ship,𝜓

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 −1 1 1

1 0 −1 0 1 0 0

0 1 1 1 0 −1 0

1 1 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑖𝑀𝑒𝑡𝑒𝑟1,𝜓

𝑖𝑀𝑒𝑡𝑒𝑟2,𝜓

𝑖𝑀𝑒𝑡𝑒𝑟3,𝜓

𝑖𝑀𝑒𝑡𝑒𝑟4,𝜓

𝑖𝑀𝑒𝑡𝑒𝑟5,𝜓

𝑖𝑀𝑒𝑡𝑒𝑟6,𝜓

𝑖𝑀𝑒𝑡𝑒𝑟7,𝜓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.27)

where 𝑖𝑀𝑒𝑡𝑒𝑟1,𝜓 . . . 𝑖𝑀𝑒𝑡𝑒𝑟7,𝜓 are the individual line currents of Meter 1 through Meter

7 in this example. Since the power entering a node equals the power leaving that

node, Eq. (2.27) can be applied for the 𝑃 and 𝑄 for each phase. The matrix reflects

the orientation and placement of the sensors and distribution system. If the system

includes ring transformers that change voltage, appropriate entries of the matrix
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can be scaled by the transformer turns ratio prior to applying KCL. A matrix can

be built for both delta and wye configurations, provided all sensors are measuring

entirely either delta or wye wires. In the case of a system using a delta-wye or wye-

delta transformer, each measured wye line current is related to a delta phase current,

which is associated with two measured delta line currents, and all measurements must

be converted to a uniform wye or delta set prior to applying KCL. The same wye-

delta conversion will also be applied to each meter’s 𝑃 and 𝑄 measurements prior

to summing. For four-wire wye systems, a neutral current sensor is unnecessary, as

the neutral current in a wye system is only a result of phase current imbalances and

does not change the power calculations. The neutral current can be calculated by

summing the individual line currents.

2.4.2 Synchronization

DAQs collecting sensor measurements operate with an internal clock for sampling

data. However these clocks have limited accuracy and the actual frequency of the

clock may not precisely match a specified frequency. A time offset can appear between

different DAQs. This causes drift in the KCL calculations that grows over time if left

uncorrected. That is, if the meter sampling rates differ slightly, there also exists a

time offset error that integrates over time. This offset must be continually corrected.

This complicates applying Eq. (2.27) to recreate the ship total or switchboard powers.

The DAQ used for testing, a LabJack UE9, has a rated maximum clock error of ±30
ppm [51]. Thus, the total error in one day can be up to 2.6 seconds. A test was

run on the ring bus setup in Fig. 2-19 with all power sources paralleled and the ring

intact (and thus all seven meters reading a portion of the power stream), in which a

resistive load on Switchboard 3 was cycled multiple times at the start of the test and

again 24 hours later. At the start of the test (Fig. 2-20a) all the meters are aligned

within a few samples of the 60 Hz sample points; however after one day (Fig. 2-20b)

the meters have drifted, the furthest two being 2.3 seconds apart.

These time offsets between meters cause errors when computing KCL with Eq.

(2.27), in particular creating “artificial” transients (i.e., numerical artifacts due to
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(a) At start of data capture. (b) After 24 hours.

Figure 2-20: Readings from all meters at beginning of data capture and after 24
hours.

time-alignment errors that could be misinterpreted as transient events) or distorted

transients in the calculated switchboard power waveforms. Artificial and distorted

transients are especially pronounced during load events, e.g., when a load turns on

or off, and during changes in the generator configuration. If misaligned, a load event

on a switchboard will be distorted and possibly unrecognizable in the KCL recreated

power stream. The same load event also results in artificial transients in the other

switchboards in the system with common meters. In one demonstration, for example,

power is provided to the ring from two paralleled sources, Gen 1 and Shore, while a

250 W resistive load cycles on Switchboard 1 and a constant 90 W heater operates

on Switchboard 2. Fig. 2-21a and Fig. 2-21b show the reconstructed switchboard

aggregate power without and with correction for the time shift, respectively. Without

time-alignment, both the on and off transient on Switchboard 1 is distorted. At

the same time, the time misalignment causes power to be incorrectly attributed to

Switchboard 2 and Switchboard 3 when KCL is performed. In contrast, when correctly

aligned, Switchboard 2 and Switchboard 3 show correct, constant steady-state values

of 90 W and 0 W, respectively, and Switchboard 1 shows a clean on and off transient.

84



(a) Without time alignment. (b) With time alignment.

Figure 2-21: Transient distortion and artificial transients in misaligned power streams.

2.4.3 Alignment Methods

An obvious solution is to use an external signal to precisely align the DAQ meter data.

Wireless alignment signals, e.g., from GPS or a local substitute, may be difficult to

transmit reliably on a ship, and a wired alignment signal may not be retrofittable

to existing sensors. When an external time-alignment signal is not practical, the

power system itself can be used to align the data. Several different approaches can

be used to “zero in” the alignment of the utility frequency cycles across the DAQs.

Four methods are explored here. The first uses the voltage waveform zero-crossings

to continuously track the time drifts. This method requires the initial time delay to

be known. The other three methods can determine this delay, and can also be used

independently, rerun periodically to realign DAQs as they drift. Methods are first

explained individually, but can be used together as detailed in Section 2.4.3.5.

2.4.3.1 Zero-Crossing Delay Tracking

The voltage waveform on an ac utility is a classic source for a time reference; motorized

wall clocks, for example, have been constructed for decades to take advantage of a

reasonably controlled utility frequency for timekeeping. The zero-crossings of the
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Figure 2-22: DAQ sample offset drift continuously tracked with voltage zero-crossings.

utility voltage waveform can be used to continuously track and correct the DAQ

time offset. Each positive zero-crossing is marked and timestamped using the Sinefit

algorithm [9], but because of individual DAQ inaccuracies, the timestamps themselves

drift. Although each meter may have a slightly different sample rate, the zero-crossing

event occurs consistently across all meters, making this an ideal “mile marker” for

aligning the data. By simply maintaining a count of the zero-crossings, the time

offsets between meters can be determined and the power streams combined perfectly.

Fig. 2-22 shows the calculated DAQ sample offset drift of each of the meters in the

testbed power system relative to Meter 1. These drifts can be corrected by updating

the timestamps.

The primary obstacle to using voltage zero-crossings for DAQ alignment arises

from the ambiguity in the precise 60 Hz cycle being observed by a DAQ. We require an

approach, analogous to a “home pulse” on a rotary encoder, that establishes the initial

time delays between DAQs for correct relative counting of the different observed DAQ

line cycles. There are many possible approaches for establishing the initial alignment

for zero-crossings.
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2.4.3.2 Voltage Correlation Alignment

Regardless of power flow through each meter, the voltage waveform is universally

visible by all of the DAQs. Even a healthy electrical grid will not maintain a perfectly

“stiff” voltage at all times, resulting in variations in both voltage amplitude and

frequency. Microgrids are particularly susceptible to disturbances. These variations

can be used as serendipitous events and patterns that provide alignment markers.

The voltage frequency and amplitude are automatically calculated by the Sinefit

algorithm [9], which uses successive 4-parameter sine wave fitting to fit an observed

voltage to the functional form:

𝑣[𝑛] = 𝐴 · sin
(︂
2𝜋𝑛

𝑓0
𝑓𝑠

+ 𝜑0

)︂
+ 𝐶, (2.28)

where 𝐴 is the amplitude, 𝑓0 is the line frequency, 𝑓𝑠 is the sampling frequency, 𝜑0

is the phase angle, and 𝐶 is the offset. For example, Fig. 2-23 shows the voltage

frequency and amplitude data collected by two independent meters installed onboard

USCGC Spencer, monitoring two separate subpanels (port and starboard). This data

is taken while the ship is underway and the ship’s grid is being powered by a ship

service diesel generator. Because of the limited generation capacity and finite inertia

of a shipboard microgrid, there are frequently small fluctuations in supply frequency.

A readily apparent time offset exists between the sample streams of these two meters.

The ring bus demonstrator used for our laboratory testing draws power from a

terrestrial grid, operating with a relatively stiff voltage waveform, but even still, there

are small voltage amplitude and frequency fluctuations as a result of changing loads on

the grid. These “events” in voltage frequency and amplitude can be used to time-align

the DAQ data. Fig. 2-24 shows the voltage frequency for two meters on the ring bus

demonstrator; the pattern can be matched by cross-correlation. The time window

chosen for cross-correlation needs to be large enough for these patterns to become

visible. For a “stiffer” grid, the noise (shown in Fig. 2-24b) in the frequency stream

may dominate over smaller time windows and cause a loss of precision. Alignment

of the ring bus demonstrator using the grid was able to identify all meter delays to
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Figure 2-23: Voltage frequency and amplitude from USCGC Spencer while underway.

(a) Frequency pattern over 10 minute
window.

(b) Frequency pattern zoomed to 1
minute window.

Figure 2-24: Patterns visible in utility voltage frequency used for time alignment.

within 1 sample of the correct delay value. This precision may vary for different grids,

thus this method should be tested on the specific utility voltage waveform prior to

use.

For a signal 𝑠[𝑛] observed by at least two DAQs, e.g., a utility voltage waveform,

the measurement from the two meters 𝑥[𝑛] and 𝑦[𝑛] can be described as,

𝑥[𝑛] = 𝑠[𝑛] + 𝑛1[𝑛]

𝑦[𝑛] = 𝑠[𝑛−𝐷] + 𝑛2[𝑛] 1 ≤ 𝑛 ≤ 𝑁 (2.29)

where 𝐷 is the unknown delay, 𝑛1[𝑛] and 𝑛2[𝑛] are the noise of the two meters (as-

sumed to be uncorrelated), and 𝑁 is the number of samples. To time-align these
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meters, or a larger collection of DAQ meters, one stream is chosen as the base stream

𝑥[𝑛] and the delay 𝐷 must be found for the remaining six meters with respect to

𝑥[𝑛]. The estimated delay �̂� is where the cross correlation of 𝑥[𝑛] and 𝑦[𝑛] is maxi-

mized [79]:

�̂� = max
𝜏

𝑅𝑥𝑦(𝜏), 𝑅𝑥𝑦(𝜏) =
𝑁∑︁
𝑛=1

𝑥[𝑛]𝑦[𝑛+ 𝜏 ], (2.30)

where 𝜏 is the time shift applied to the shifting meter 𝑦[𝑛] during the correlation

process and ranges across the correlation window (𝜏 = 1...𝑁).

2.4.3.3 Adjacent Power Event Alignment

Observed load on and off events in the power stream can be used for time-alignment.

Transient events in the power stream are generally much larger and easier to detect

than voltage variations. This approach requires identifying events in different meter

power streams that are a result of the same physical event. Power flow is not uniformly

or consistently distributed across all meters because different bus configurations shift

the direction and amounts of power flowing around the ring bus. Thus, because it

is not guaranteed that each meter is seeing all of the same events and because the

power seen by each meter is not the same, the correlation-based method for voltage

correlation alignment cannot be used here. Instead, an edge detector or change-of-

mean detector is used to find the locations of on and off events in each power stream,

and corresponding events between each meter are used to calculate the needed time-

alignment shift. To determine corresponding events between meters, an assumption

needs to be made about the maximum time shift that can occur between two meters.

For example, if alignment is conducted immediately after the DAQs are activated,

the maximum drift is bounded, e.g., to 10 samples, or 1/6th of a second, based on the

known DAQ hardware drift.

Using an edge detector to find the locations of all transient peaks in a given time

window, a meter has a set of detected events 𝐸 = {𝐸1...𝐸𝑀} with corresponding

sample indices {𝑚1...𝑚𝑀} and a second meter has a set of detected events 𝐹 =

{𝐹1...𝐹𝑁} with corresponding sample indices {𝑛1...𝑛𝑁}. The goal is the find the
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intersection of events, 𝐸 ∩ 𝐹 . For each event in 𝐸 with index 𝑖 the distance to the

closest event in 𝐹 is calculated:

𝑑𝑖 = min(𝑚𝑖 − 𝑛𝑗), 𝑗 = 0...𝑁. (2.31)

The delay is estimated as the mean distance 𝑑 using all 𝑑𝑖 ≤ 𝐵, where 𝐵 is the

bounded maximum drift (10 samples in our testing):

�̂� = mean(𝑑𝑖), ∀ 𝑖 where |𝑑𝑖| ≤ 𝐵. (2.32)

It is assumed that when 𝑑 > 𝐵 the event in 𝐸 has no corresponding event in 𝐹 ,

and that event is discarded. To minimize this discarded data, the meter with the

maximum number of events provides the reference set of events 𝐸.

2.4.3.4 System Power Reconstruction

Alignment can also be performed by focusing on the end goal: no “artificial transients”

in the calculated switchboard power stream. One meter is chosen as the reference

meter, and data from the other meters surrounding that switchboard are shifted in

time across a range of delay values 𝜏 . For each combination of delays the estimated

switchboard power stream is calculated by combining the meter power streams, using

the relevant part of Eq. (2.27). Taking each recreated switchboard power stream 𝑃 ,

a first order difference filter is applied to generate an event stream:

∆𝑃 [𝑛] = 𝑃 [𝑛]− 𝑃 [𝑛− 1]. (2.33)

If the meters are aligned, individual physical events seen by each meter will overlap

in the reconstructed switchboard event stream, showing as a “single” event. However,

if the meters are not aligned, individual physical events from each meter will be

distanced from each other, appearing as “multiple” events in the switchboard event

stream.

The four meters surrounding Switchboard 3 are used as an example here. A
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(a) Incorrect delay values (𝜏); all four
meter events misaligned.

(b) Correct delay values (𝜏); all four me-
ter events aligned.

Figure 2-25: Reconstructed switchboard event stream used for alignment by minimiz-
ing data points outside threshold.

resistive load is cycled on and off, which results in a large positive peak at turn

on followed by a large negative peak as inrush current fades, and a negative peak

at the turn-off event. Fig. 2-25a shows the event stream when the four meters of

Switchboard 3 are not aligned. The four meters all see the same event, but summing

the misaligned streams creates four separate peaks for the on-event and four separate

peaks for the off event in the event stream. In contrast, Fig. 2-25b shows that the

time-aligned meters results in a single on-event and off-event. The event stream with

the correct alignment will have the fewest event peaks. Choosing an appropriate

threshold to filter out the noise (5 W in Fig. 2-25), the number of samples that fall

outside this threshold is counted. The delay values yielding the minimum number of

samples outside the threshold yields the correct alignment.

For example, for a three-meter system, the reference stream is given as 𝑤[𝑛] and

streams 𝑥[𝑛] and 𝑦[𝑛] have unknown delays 𝐷𝑥 and 𝐷𝑦. Then, 𝐶 is calculated as the

number of event stream samples outside the threshold 𝛾 for a range of delay values.
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Figure 2-26: Count of event stream samples outside threshold for two meters shifted
by time delays (𝜏𝑥, 𝜏𝑦). Minimum lines appear in the color plot where each meter
aligns with the base meter (A and B), as well as with each other (C).

The estimated delays 𝐷𝑥 and 𝐷𝑦 are the delay values (𝜏𝑥, 𝜏𝑦) that minimize 𝐶:

�̂�𝑥, �̂�𝑦 = min
(𝜏𝑥,𝜏𝑦)

𝐶, 𝐶 =
∑︁
𝑛

⎧⎪⎨⎪⎩1, |∆𝑃(𝜏𝑥,𝜏𝑦)[𝑛]| > 𝛾

0, |∆𝑃(𝜏𝑥,𝜏𝑦)[𝑛]| ≤ 𝛾

. (2.34)

The values of 𝐶 for a three-meter alignment over a 40 sample delay window is

shown as a color plot in Fig. 2-26. Each axis represents the delay applied to each

meter, shown as the number of samples one meter is shifted. The color plot makes

clearly identifiable lines appear where two of the three meters align. In Fig. 2-26, A

shows the minimum line where the 𝑥 meter aligns with the 𝑤 meter, B shows where

the 𝑦 meter aligns with the 𝑤 meter, and C shows where the 𝑥 meter aligns with the

𝑦 meter. These three lines all cross at the absolute minimum point where all three

meters align, which in this example is the point (𝜏𝑥, 𝜏𝑦) = (6, 2). This tells us that
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the x-axis meter is offset by 6 samples and the y-axis meter is offset by 2 samples.

This method is not limited to aligning three meters; additional meters simply add

more dimensions. The largest number of meters aligned in our lab testing was four,

as both Switchboard 3 current/power and total ship current/power calculations re-

quire up to four meters to reconstruct. The computation increases as larger windows

and more meters are aligned as 𝑂(𝑚𝑛−1), where 𝑚 is the range of time delays tested

and 𝑛 is the number of meters being aligned. Distribution systems with more me-

ters involved in reconstruction calculations will require drastically more computation.

While this method will work for large offsets, it is preferable to use this method in

smaller windows where meters are already known to be in close alignment to keep 𝑚

low. Further research could optimize computations by searching for local minimums

along several rows and columns, finding these partial alignment lines to point towards

the complete alignment at the global minimum.

Once the meters surrounding each switchboard have been aligned with their neigh-

bors, each switchboard can be aligned with the other switchboards by using common

meters. The meters on the bus ties between switchboards are used in both switch-

board alignment calculations, and serve as intermediaries to calculating the total

alignment of the system. Each bus tie meter reveals the delay of one switchboard

relative to another switchboard, allowing all meters to be adjusted to align with one

base meter. Alternatively, inter-switchboard alignment can be found by performing

this method using the meters of all online generators, reconstructing the total ship

power instead of switchboard power. This will align all three switchboards only if all

three generators are paralleled.

2.4.3.5 Method Choice

Each of these time-alignment methods have strengths and weaknesses when aligning

several meters, and can be combined to achieve greater certainty. The zero-crossing

method can perfectly track the time-drift, but relies on knowing the initial offset,

which must be found through the other methods. The voltage correlation alignment

method can be used to determine the offsets even in the absence of load transients.
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Voltage correlation alignment can also be used to quickly recover from large offsets,

and can be run periodically to maintain alignment throughout changing generator

and bus configurations.

When load transient observations are available, the transient or power-based meth-

ods can be used. Adjacent power event alignment relies on having a known small

offset, otherwise physical events can no longer be correlated between different meters.

When the offset is bounded, from either zero-crossing tracking or voltage correlation

alignment, the power stream events can be used for finding the exact cycle-count

integer offset. Another way to keep the offset small is to periodically restart the

data capture. The system power reconstruction can recover from large offsets, but

computation time increases as the alignment window grows.

Particularly when used in combination, these methods provide strong data in-

tegrity for alignment. Prolonged periods without power transients reduce opportu-

nities for employing some of the methods, but precise alignment of meters is only

necessary when transients occur, as performing KCL using steady-state levels will

not produce “artificial” transients.

2.4.4 Experimental Verification

To demonstrate the monitoring capability of switchboards fed by a ring bus, a ring

bus demonstrator was built and tested (see Fig. 2-27) following the USCG National

Security Cutter schematic of Fig. 2-19. The test system emulates three ship service

generators and a shore power connection, spliting incoming three-phase power into

four different paths [80]. Relays serve as generator ties and breakers on the ring bus.

A collection of L22-30 receptacles represent the switchboards, capable of providing

power to load centers.

The time-correction methods were tested on the shipboard ring bus demonstra-

tor. A four minute test was run with a three-phase variable-speed motor operating

on Switchboard 1, a 250 W resistive load and an axial fan on Switchboard 2, and a

250 W resistive load and a centrifugal fan on Switchboard 3. Various generator con-

figurations were used to simulate different ship configurations. The various generator
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Figure 2-27: Shipboard ring bus demonstrator. Incoming power (H) splits into four
power sources, Gen 1 (A), Gen 2 (B), Gen 3 (C), and Shore Power (D), which feed
three switchboards, Swbd 1 (E), Swbd 2 (F), and Swbd 3 (G). Current measurements
are from the blue LA-55 current sensors.

Table 2.1: Line cycle sample offsets.

Meter2 Meter3 Meter4 Meter5 Meter6 Meter7
APE 2 0 N/A 4 -3 4
SPR 2 0 N/A 4 -3 4
VCF 2 0 2 4 -3 4
VCA 2 0 3 4 -3 4

configurations are shown in Fig. 2-28a. For convenient visual display, the power is

plotted as the total apparent power provided by each generator tie. DAQ time delays

were calculated using the adjacent power event (APE) method, system power recon-

struction (SPR) method, and voltage correlation amplitude (VCA) and frequency

(VCF) methods. Using Meter 1 as the reference stream, the relative line cycle offsets

for Meter 2 through Meter 7 are shown in Table 2.1. All of these methods calculated

the same offsets for all active meters. Shore power (Meter 4) was not paralleled dur-
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(a) Generator power streams.

(b) Calculated switchboard streams.

Figure 2-28: Generator streams and calculated switchboard power streams.

ing this test, thus the methods that rely on load transients in the power stream (i.e.,

adjacent power event alignment and system power reconstruction) did not identify an

offset value for Meter 4. However, the meter still recorded system voltage, allowing
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(a) Without time alignment.

(b) With time alignment, with a zoomed-in view of a region.

Figure 2-29: Calculated power of Switchboard 1 compared to measured.

the offsets to be determined using voltage correlation alignment. Voltage amplitude

and frequency alignment methods calculated a 2 sample and 3 sample offset, respec-

tively, for Meter 4. Since Meter 4 observed no power flow and no load transients,

the offset for Meter 4 does not affect switchboard reconstruction. The Meter 4 offset

would be correctly computed when load events are present.

Fig. 2-28b shows the calculated power for each of the three switchboards using

the calculated sample offsets. For this test, an additional NILM meter was installed

directly upstream of each switchboard so that the KCL-calculated power can be com-

pared and cross-validated to directly measured switchboard power. Fig. 2-29a and
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(a) Switchboard 2. (b) Switchboard 3.

Figure 2-30: Calculated power of Switchboards 2 and 3 compared to measured.

Fig. 2-29b show the calculated power for Switchboard 1 compared to the measured

power without and with time-alignment, respectively. For the non-aligned scenario

in Fig. 2-29a, there are many “artificial transients.” These are a result of sample

offsets between the meters causing power from Switchboard 2 and Switchboard 3 to

be incorrectly attributed to Switchboard 1 when KCL is performed. In contrast, the

calculated waveform in Fig. 2-29b matches closely with the measured power. Fig. 2-

30a and Fig. 2-30b show the calculated power with time-alignment compared to the

measured power for Switchboards 2 and 3, respectively. The root mean squared error

(RMSE) calculation errors in apparent power for Switchboards 1, 2, and 3 are 3.99

VA, 10.10 VA, and 25.37 VA, respectively. Without time-alignment, the RMSE for

the three switchboards are 28.44 VA, 32.74 VA, and 37.37 VA, respectively.

Next a longer 25 minute test was conducted to simulate multiple generator con-

figurations and cycling loads on all switchboards. The generator power streams and

recreated switchboard power streams are shown in Fig. 2-31. On Switchboard 1 there

is a 250W light cycling in a one second on, two second off pattern. On Switchboard

2 there is a three-phase variable-speed motor. On Switchboard 3 there is a 1 hp

centrifugal fan and a 150 W variable speed axial fan. Fig. 2-32 shows the generator

streams and estimated switchboard streams as the configuration goes from three to
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(a) Power source streams.

(b) Calculated switchboard streams.

Figure 2-31: Generator streams and calculated switchboard power streams for 25
minute test.
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(a) Power source streams. (b) Estimated switchboard streams.

Figure 2-32: Power streams for scenario in which Gen1 and Gen3 are brought offline
(at about 19.84 minutes).

(a) Power source streams. (b) Estimated switchboard streams.

Figure 2-33: Power streams for scenario in which generators are put into split plant
configuration (at about 17.8 minutes).

one generators. Fig. 2-33 shows the generator streams and estimated switchboard

streams as the configuration transitions from three parallel generators to the split-

plant configuration. In split plant configuration, each generator supplies power to one
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switchboard. These tests demonstrate the ability to accurately recreate the switch-

board power streams during generation re-configurations.

2.5 Chapter Summary

This chapter presented several advancements for power system measurement and pre-

processing. First, the chapter presented an analysis of spectral envelope preprocessing

in the presence of prequantization noise. Spectral envelope preprocessing can enhance

system resolution beyond that of the input quantizer. It was shown that prequantiza-

tion noise can be either a benefit or a drawback depending on the amount introduced.

A lack of prequantization noise will result in a nonlinear preprocessor transfer charac-

teristic. An excessive amount of prequantization noise will cause preprocessor systems

with different numbers of input quantization bits to operate at similarly poor effec-

tive resolutions. By adapting the concept of effective number of bits to the spectral

envelope preprocessing system, this effect can be evaluated quantitatively for a pro-

posed preprocessor design given the number of quantizer bits, number of points in the

averaging window, and signal-to-noise ratio. The ratio of minimum resolvable power

to maximum resolvable power can be derived for the preprocessor configuration to

describe the system’s ability to resolve small loads.

Next, new data acquisition hardware was presented, custom tailored to the needs

of nonintrusive power monitoring on the ac utility. This hardware can automatically

track and reject utility content in a nonintrusive current measurement. This hardware

was integrated with the NILM software suite and installed on USCGC Marlin for slot

harmonic tracking and speed estimation.

Finally, the chapter presented signal processing techniques for time-alignment of

nonintrusive power measurements on ring distribution networks. Perhaps surpris-

ingly given its familiarity, performing a practical KCL calculation is a challenge that

requires precise time-alignment of sensor readings to avoid both distorted and arti-

ficial transients. Experimental results from the ring bus test bed demonstrate the

feasibility and capability of a power monitoring system to track complex power dis-
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tribution systems and loads without external time-alignment signals. Sources of po-

tential time-alignment errors were identified and analyzed. The applicability of the

time-alignment methods depend on several factors, such as if the initial time offset

is known, the bounds of the time offset, the “stiffness” of the power system, and the

occurrence of load transients. Evaluation showed that the combination of multiple

time-alignment methods can provide greater data integrity. These time-alignment

methods allow dual use of existing grid sensors or use of unmodified independent

DAQs to feed data to a computer, which then calculates power flows around the grid

and identifies loads via their on and off transients. The proposed monitoring system

adds value to the management of energy resources and grid monitoring, collecting

data for condition-based maintenance, fault detection, and failure response.
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Chapter 3

Physics-Informed Feature Extraction

and Selection

After preprocessing of measured currents and voltages into power spectral envelopes,

the relevant features for load identification and diagnostics need to be extracted and

selected. This chapter presents a multi-scale framework for organizing the signal pro-

cessing for nonintrusive load monitoring. The framework separates out loads that op-

erate on different time-scales. Then, feature space variability examples are presented

using laboratory demonstrations and field data. Finally, a method is presented for

evaluating load separability in a feature space prior to the application of a pattern

classifier.

3.1 Multi-scale Framework

In an electrical system there are four main behaviors of loads: On/Off, Finite State

Machine (FSM), continuously variable, and continuously on [81]. Both On/Off loads

and FSM loads have sequences of changes of state that are discrete changes in power,

and consume an approximately constant amount of power at each state or operating

mode. An On/Off load has only two states, on or off, while a FSM load has several

operating states due to its complex operation. The load transient, i.e., when the power

quickly changes when transitioning between states, acts as a load signature allowing
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NILM algorithms to identify the state of the loads. A continuously on load can be on

for days, or even weeks at a time. These loads can be identified if the initial on event

is observed or with the use of optimization techniques [82]. Finally, a continuously

variable load has a continuously changing power demand, and does not have a fixed

number of states for the entirety of load operation. Accordingly, it is much more

difficult to identify and track the operation of variable power loads with the same

techniques used for loads that can be fully characterized with discrete levels. Loads

can have variable power due to dynamic loading conditions. For example, machines

like routers and mills have changing power demand based on cutting conditions,

such as workpiece material and depth of cut [83]. Loads can also have changing

power demand due to control by power electronics, including variable frequency drives

(VFDs) and dimmable lighting. The use of power electronics enables many loads to

operate over a wide variable power range; thus there may not be a unique power

consumption pattern.

The multi-scale framework presented in this section is presented in [6]. The frame-

work is focused on the fundamental physical features of the energy consumption of

each load. Do transients vary over time? Are they randomly distributed or repeat-

able? Do they present harmonic content to the utility? These features and others

form the foundation for nonintrusive load identification. The framework is struc-

tured around data acquisition, scale, and variability of power consumption. First,

time-series electrical signals are collected that give insight into the physics of load

behavior. Second, scales of events are examined, since events can occur on different

time-scales. Finally, transients and steady-state power consumption can be variable,

ranging in almost deterministic in their predictability to practically stochastic, which

leads to differing approaches for load disaggregation. The framework is shown in

Fig. 3-1. The main stages of the identification process are labelled, and include:

1. Data Acquisition and Preprocessing extracts the physical characteristics

of energy consumption.

2. Event Scale Separation determines the scales for events.
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3. Event Detection determines load “signatures” for detected events.

4. Event Mapping matches events to loads.

5. Event Confirmation checks constraints between load events.

This section gives a high-level overview of event scale separation, event detection,

event mapping, and event confirmation. In-depth examples of the application of

these techniques are presented in Chapter 4, Chapter 5, and Chapter 6.
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Figure 3-1: Diagram for multi-scale, multi-algorithmic framework.
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Figure 3-2: Diagram for separating short-scale versus long-scale loads, for 𝑁 different
length median filters, 𝑀𝐹 . 𝑃𝑅 is the residual stream and 𝑃𝑀 is the median filtered
stream.

3.1.1 Event-scale Separation

Load events can occur on different time-scales. To detect events on different time-

scales, a rolling median filter is used on the power stream. A median filter eliminates

small fluctuations while preserving sharp edges [84]. Thus, a long median filter pre-

serves the longer transient, but removes the events that occur at a smaller time-scale,

such as the graywater pump. Subtracting the medianed stream (𝑃𝑀) from the orig-

inal data stream (𝑃 ) results in the residual stream (𝑃𝑅). Now the medianed stream

contains the longer-scale events and the residual stream contains the smaller-scale

events. Various length median filters can by employed if there are multiple time-

scales present in a data stream. At each time-scale, there are median streams and

residual streams. This decomposition is represented in Fig. 3-2.

3.1.2 Event Detection and Feature Extraction

The application of a multi-scale filter for event-scale separation enables the detection

of different scale events. This thesis distinguishes between three types of events that

occur at different time-scales: “geometric,” “statistical,” and “continuous.” Examples
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for these three types of events are shown in Fig. 3-3. The main load on and off events,

as well as discrete transitions between states of a load are referred to as “geometric”

events, since the salient features are extracted from the shape of the transient. There

is always a steady-state change after a geometric event. For example, Fig. 3-3a

shows an example run of the graywater pump from USCGC Spencer. A zoomed-

in window shows the on-transient. The transient events for geometric events are

typically only fractions of a second to a few seconds long. In contrast, fluctuating

power variations, for example due to dynamic loading conditions, are referred to in

this paper as “statistical” events. Statistical events do not necessarily indicate that the

load has transitioned to a different steady-state level. The identification of statistical

events enables the disaggregation of power during the event itself and the detection

of any change in steady state as a result of the event. For example, Fig. 3-3b shows

the fluctuations in power of a controllable pitch propeller (CPP) pump from USCGC

Spencer. These fluctuations in power occur on longer time-scales and do not have

consistent changes in steady state. These fluctuations are viewed as an ensemble and

modelled as stochastic processes. Finally, “continuous” events have smoothly varying

power demand, for example, due to changing demand of variable frequency drives

(VFDs). The load’s power consumption can not be strictly identified by turn-on and

turn-off events because they do not have a repeatable power consumption pattern.

For example, Fig. 3-3c shows the anchor windlass VFD from USS Indianapolis. This

VFD is used to control anchor windlass speed while raising and lowering the anchor

or adjusting and working mooring lines. A continuous event can also include loads

that are continuously on, but experience changes in power due to degradation in

system health or changes in operating condition. This section presents an overview

of feature extraction for these three methods. Classification using geometric and

statistical methods are presented in detail in Chapter 4 and Chapter 5, respectively.

3.1.2.1 Geometric Methods

There exists an abundance of physical features that reveal information about load

behavior and are valuable for load identification. When a load energizes or changes
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Figure 3-3: Real power streams of events suited for geometric, statistical, and con-
tinuous methods.

state it manifests in the power streams as transient behavior. This transient behavior

can be detected with an edge detector or change-of-mean detector [85] and features

can be extracted. A median filter can be applied to the power streams prior to edge

detection in order to preserve sharp edge events, while removing noise [84]. The

edge detector applied in this research uses the apparent power (𝑆) stream, calculated

as, 𝑆 =
√︀
𝑃 2 +𝑄2. Converting to apparent power simplifies load detection to a

single data stream. There are many approaches to edge detection. One option is to

look for large peaks in the first-order difference of the stream. Another option is to

convolve the stream against the Laplacian of a Gaussian [86] kernel to compute the

smoothed second-derivative. This effectively maps step changes in apparent power

to zero-crossings for easier detection. An empirically-determined threshold should

then be set to remove zero-crossings that are due to small variations of the resulting

convolution. A zero-crossing detector is then used to find the location of the events.

After a transient event is detected, the power streams for each phase are examined

to calculate a set of features. An on event produces a change in steady state and a

transient which can be characterized by its peak, duration, and shape. The peak is

due to the in-rush current as a load turns on. The duration of the transient is the time

it takes for the load to reach steady-state. For example, Fig. 3-4 shows an example

load turn-on transient, representative of any power stream (e.g., 𝑃 , 𝑄, or 𝑆) or higher-
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Figure 3-4: Steady-state, peak, and transient time features for an example load turn-
on transient.

order harmonic current envelope. The maximum (peak) power at inrush, steady-state

power, and transient time are labelled. Changes in steady state powers after a load

turns on can be calculated as the difference between the median (or alternatively, the

mean) values over ∆𝑡𝑀 length windows before and after the transient. The length of

∆𝑡𝑀 is determined empirically based on the rate of event generation at the site to

establish a reasonable steady state time. The maximum power at inrush is defined

as the difference between the maximum value of the transient and the median (or

alternatively, the mean) value of a ∆𝑡𝑀 length window before the transient. The

transient time (i.e., the duration of the start-up transient) is effectively the time it

takes for the load to reach steady-state. To determine the transient time, first a

short (e.g. 10 point) moving average should be applied to the first-order difference

stream of apparent power. If there is a first-order difference less than a set threshold

(e.g. -500 W), indicating a large negative slope, the steady state is determined to

be after this value. Then if the rolling mean of the first difference stream is less

than a threshold (e.g. 5 W), it indicates that the apparent power stream has reached

steady state. Since there is no transient peak when a load turns off, an off event is

only characterized by its change in steady state. Changes in steady state after a load

turns off are defined as the difference between the median (or alternatively, the mean)
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Figure 3-5: Correlation metric for transient matching.

values over ∆𝑡𝑀 length windows, before and after the off event.

In addition to these features, the transient events can be characterized using a

correlation algorithm. The correlation algorithm matches the shape of the input data

to known exemplars, and is fully described in [5]. Consider two sampled waveforms 𝑓

and 𝑔, where 𝑓 is an observation or input signal and 𝑔 is a load exemplar or example

waveform. First, 𝑓 and 𝑔, which are the mean of 𝑓 and 𝑔, respectively, are subtracted

from the original signals 𝑓 and 𝑔, in order to remove the dc offsets. This is given as:

𝑓 [𝑚] = 𝑓 [𝑚]− 𝑓 (3.1)

𝑔[𝑚] = 𝑔[𝑚]− 𝑔. (3.2)

Then the correlation metric is computed over sliding windows of input data, given

the full waveform 𝑓 is longer than 𝑔:

𝑀 [𝑘] =

∑︀
𝑚

𝑓 [𝑚]𝑔[𝑚− 𝑘]∑︀
𝑚

(𝑔[𝑚])2
. (3.3)
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Here, we are computing the cross-correlation (or sliding dot product) of 𝑓 and 𝑔 and

dividing by the squared magnitude of 𝑔. When M approaches 1, this indicates that

the exemplar and observation match in both shape and amplitude. Fig. 3-5 shows

example observation data, an exemplar, and the resulting correlation metric as the

exemplar window slides across the observation data. A peak-finding algorithm is used

to locate the local maxima. The value of the peak is used to find the correlation score,

where a score of 0 indicates a perfect match:

𝐶 =
⃒⃒⃒
1−max

𝑘
𝑀 [𝑘]

⃒⃒⃒
. (3.4)

These geometric features are further characterized in Section 3.2 and Section 3.3, and

demonstrated with an adaptive classifier in Chapter 4.

3.1.2.2 Statistical Methods

Loads can exhibit variable power demand in response to dynamic loading conditions.

Fig. 3-6 shows the real power stream as a CNC router makes a cut through the shown

wooden board. The vertical position of the router cutting tool is held constant. The

contour of the workpiece changes the axial depth of cut. When the cutting tool is

freely rotating and not engaged in the workpiece, there is an approximately steady

power consumption level. However, when the cutting tool engages the wood, the

power varies significantly, and clearly resembles the workpiece contour. There is no

obvious way to disaggregate this fluctuating power behavior when other loads are also

present.

Power fluctuations due to changing load demand occur in response to understand-

able physical behavior; however, these fluctuations appear as unpredictable events in

the power stream. The fluctuating power behavior of these loads can be modelled

with stochastic processes. Just as the identification of geometric events relies on an

event detector and a feature extractor, there is an analogous event detector and fea-

ture extractor for statistical events. That is, the event detector is used to find events.

At each event, a set of extracted features is used for load classification. To simplify
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Figure 3-6: Power stream of a CNC router showing power fluctuations corresponding
to the cutting of areas highlighted in the wood board.

the computational effort of identifying statistical events, the apparent stream is used

for event detection. To provide greater load separation in the feature space, the fea-

ture vector for classification uses features extracted from the real and reactive power

streams.

First a seven-point rolling median filter is run on each of the power streams (i.e., 𝑃 ,

𝑄, and 𝑆) to reduce noise. Then a longer rolling median filter, typically on the order

of seconds or minutes, is run on each of the power streams. This median filter length

should be set by the user based on the expected time-scale of power fluctuations. The

median streams are subtracted from the original streams. The resulting streams are

referred to as the residual streams, which contain the statistical events. For example

Fig. 3-7 shows the real power stream and residual streams for two loads. The CNC

router, as shown in Fig. 3-7a uses a 10 second rolling median filter. The bilge and

ballast pump, as shown in Fig. 3-7b uses a 30 second rolling median filter.

Residual streams are extracted from a rolling window of input data. The window

size and overlap are parameters that the user can set. The window size is selected

to be larger than the expected duration of variable load activity. In the case studies

presented in this thesis, the rolling window length was set equal to the median filter

size. The standard deviation, denoted here as 𝜎, is calculated for the middle 50%
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Figure 3-7: Real power streams and residual streams.

of each residual apparent power (𝑆𝑟) stream window. This decreases the likelihood

that large fluctuations occur only on the edges of the window. If 𝜎 is greater than

a user-defined threshold, it indicates significant activity of interest (i.e., a statistical

event is detected) and further statistical feature extraction is performed. For feature

extraction, any stream that relates to the physics of load behavior can be used. This

can include, for example, real power residual stream (𝑃𝑟), reactive power residual

stream (𝑄𝑟), first-order difference of the real power residual stream (𝑃 ′
𝑟) and first-

order difference of the reactive power residual stream (𝑄′
𝑟). Other power streams

could be relevant in some scenarios, such as the higher-order harmonic current spectral

envelope streams when multiple power-electronic loads are monitored.

Two statistical features are presented here. The first is a zero-crossing metric, and

the second uses the empirical cumulative distribution function (ECDF). For the zero-

crossing metric, the window is detrended by subtracting out the mean, which allows

for analysis on the variations around zero. The zero-crossing metric is the number of

zero-crossings for each detrended waveform normalized by the length of the signal 𝑁 ,

i.e.,

𝑍𝐶 =
# of zero-crossings

𝑁
. (3.5)

The magnitude of power fluctuations may depend on load and operational condi-
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tion. The fluctuation variance can change based on factors such as the steady-state

power consumption of the load or the type of material being cut by a CNC machine.

That is, the magnitude of fluctuating power may not be a reliable feature. If the

data is normalized to a constant range, the stochastic behavior can be evaluated in-

dependent of the change in overall fluctuation magnitudes. Min-max normalization is

performed on each data stream individually for each window. The range of the data

is transformed into [0, 1] for each stream 𝑥 through the transformation,

𝑥𝑛 =
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
. (3.6)

For each window, the ECDF is computed on the normalized residual stream, 𝑥𝑛 by

creating a histogram of data values, and then applying a cumulative sum. Just as a

histogram is the empirical estimate of a probability density function (PDF), an ECDF

is the empirical estimate of a cumulative distribution function (CDF). A number of

bins should be chosen by the user. The value of the ECDF for a given bin 𝑏, denoted

as 𝐹𝑏, is given as the relative frequency of all observed values of 𝑥𝑛 being less than

or equal to the value of 𝑥𝑛 represented by bin 𝑏 (denoted as 𝑥𝑏 in Eq. (3.7)). This is

given by the following for each data window of length 𝑁 :

𝐹𝑏 =
1

𝑁

𝑁∑︁
𝑖=1

𝐼(𝑥𝑖 ≤ 𝑥𝑏), (3.7)

where 𝐼 is the indicator function, given by

𝐼(𝑥𝑖 ≤ 𝑥𝑏) =

⎧⎪⎨⎪⎩1, if 𝑥𝑖 ≤ 𝑥𝑏

0, if 𝑥𝑖 > 𝑥𝑏

. (3.8)

For the ECDF statistic, two nonparametric, distribution-free tests to measure the

equality of one-dimensional probability distributions are considered: 1) the Kolmogorov-

Smirnov (KS) test and 2) the Cramer-von Mises (CvM) test [87]. Both tests compare

the distance between the ECDF of a sample and reference ECDF distribution. The

KS test statistic, 𝐷, represents the least upper bound (or maximum) of the pointwise
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difference between the sample distribution function, 𝐹𝑛(𝑥) and the known theoretical

distribution function, 𝐹0(𝑥),

𝐷 = max
𝑥

⃒⃒⃒
𝐹𝑏(𝑥)− 𝐹0(𝑥)

⃒⃒⃒
. (3.9)

Alternatively, the Cramer-von Mises (CvM) criterion, 𝑤2, uses the integration of the

squared value of the difference between 𝐹𝑏(𝑥) and 𝐹0(𝑥),

𝑤2 =

∫︁ ∞

−∞
(𝐹𝑏(𝑥)− 𝐹0(𝑥))

2𝑑𝐹0(𝑥). (3.10)

When comparing two empirically observed distributions, it can be observed that

the KS test corresponds to the 𝑙∞ norm and the square root of the CVM criterion

corresponds to the Euclidean distance or 𝑙2 norm. These metrics are demonstrated

in Chapter 5.

3.1.2.3 Continuous Methods

Tracking the operation of continuously variable loads that demand ever-changing

power arises for VFDs, light dimmers, and other loads controlled by power electron-

ics. For example, VFDs are often used to optimize and control energy consumption,

speed, and torque of induction motors. These loads do not always have repeatable

transient behavior or power consumption pattern. However, the current waveforms

of these loads consist of structural features that can be identified in both the time

and frequency domains [7]. The power electronics contribute to nonsinusoidal cur-

rent waveforms, and thus higher order harmonics for these loads. This thesis does

not present in-depth methods for tracking continuous events due to VFDs, which can

instead be found in [7, 88]. References [7] and [88] use a waveform-based estimator

using the fundamental and higher harmonic current waveforms to disaggregate the

power consumption of these loads from that of constant-power loads. Continuous

events can also arise when continuously on loads have slow changes in power from

changes in operating conditions or a degradation in system performance. For in-
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stance, in ventilation systems, clogs or leaks in the system manifest as changes in

power. However, these changes in power are difficult to associate with a particular

machine in the aggregate stream. Fans in a ventilation system are typically driven

by induction motors. Thus, using rotor slot harmonics can serve as indicators of fan

blade speed. In the typical operating region of an induction motor, speed is closely

linked to power. The use of power monitoring and slot harmonic tracking for fan and

motor fault detection is demonstrated in Chapter 6.

3.1.3 Event Mapping and Event Confirmation

The features extracted for each event are then mapped to a specific load, using one of

various pattern recognition approaches. Event mapping is demonstrated for geometric

and statistical events in Chapter 4 and Chapter 5, respectively. After an initial

mapping, constraints need to be checked to ensure a correct output. The first check

is to ensure that two consecutive on events or off events are not outputted for a given

load. This would indicate that either an event was missed, an event was misclassified,

or a nonevent was classified as an event. In the case of misclassification, the process

goes back to the event mapping and reclassifies or determines that it is not an event.

This is represented by the feedback arrows in Fig. 3-1. In the case of a missed event,

a decision is made about which event to display. Depending on the application, the

decision can be made to either reduce the possibility of incorrectly displaying that a

load is on or to reduce the possibility of incorrectly displaying that a load is off.

Constraints are also checked to be used for procedural oversight. The operation of

FSM loads and interdependent loads are checked for standard operating procedures,

ensuring that equipment or systems that go through multiple stages of operation are

sequenced properly. That is, if loads are operating in the wrong sequence, it can

alert operators to deviation from standard operating procedure. If a load is missing

from the sequence, it can either be a deviation from standard operating procedure or

indication of a missed load event due to load degradation. That is, it is possible that

the load event did occur, but it is operating in a degraded state and the classifier did

not identify the load.
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(a) PL pump, LO heater,
and JW heater.

(b) LO heater and JW
heater.

(c) JW heater.

Figure 3-8: On-transients of MPDE system loads.

For instance, the MPDE jacket water (JW) heater, lube oil (LO) heater, and

prelube (PL) pump frequently turn on and off either simultaneously or in a specific

sequence. The PL pump and LO heater work in tandem and are served by the same

controller. The controller is activated automatically when the engine speed falls below

150 rpm. When the controller is activated, the PL pump comes online and the LO

heater enters automatic mode. In automatic mode, the heater energizes when the oil

temperature falls below 90° F and secures when the oil temperature goes above 120°

F. If the controller is activated when the engine is already cold, the PL pump and

LO heater will activate simultaneously. If the engine is warm, the PL pump will run

by itself until the engine temperature falls below the threshold and the LO heater

comes online. The JW heater is activated from a separate controller and thermostat.

However, the JW heater also runs automatically based on 90° F and 120° F setpoints,

and lube oil and jacket water temperature typically track closely together. Fig. 3-8

shows the on-transients for a healthy JW heater operating alone and in tandem with

the other MPDE system loads. Since these three loads often operate in tandem or in

sequence, the identification of two of these loads without the third is indication of a

possible missed load event. For instance, the JW heater was shown in Section 1.2 to

operate in a faulty state with a reduced steady-state power. If an event was missed,

the classification process then goes back to the event mapping step and determines if

there is an event that could be the faulty JW heater.
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3.2 Transient Space Characterization

The presented geometric features are useful for load identification but are prone to

drift in the feature space. The electrical characteristics of a load can change over time

with aging and degradation. These changes create observation variability within the

feature space that may make it difficult for a NILM to recognize a load. At the same

time, this variability may be a useful diagnostic indicator. Some variability may even

be present for a healthy load, depending on features of the power system itself, like

turn-on angle and voltage amplitude, or depending on reasonably varying features of

mechanical load operation [89]. Successful recognition of healthy and faulted loads re-

quires an informed choice of features. In some scenarios, load variability can be tested

for with laboratory or on-site testing. Laboratory testing of loads was conducted to

characterize load variability due to factors such as turn-on phase angle, operating con-

ditions, and environmental factors. Other times, the variability needs to be recorded

on-site. Examples are presented of load variability of monitored shipboard loads.

3.2.1 Voltage Phase Angle

Many electrical loads, such as lighting, induction motors, and power supplies, can

draw large inrush currents, which in some cases may exceed ten times the steady-state

power. The magnitude and characteristics of the inrush are dependent on the physical

operation of the load. Load transients often serve as the “fingerprint” for identifying

loads. One factor affecting the inrush transient is the utility line cycle. The phase

angle of the electric utility affects the inrush current size, duration, and shape for

some loads. Thus, characterizing a load’s inrush current transient at various voltage

turn-on angles can allow for load identification and can further be used for diagnostic

evaluation of equipment. This implies that knowledge of the actuation mechanism

can also aid in determining if changes in transient shape are due to natural variations

or due to an underlying fault condition. If the load is activated with a mechanical

switch or an instantaneous/random solid state relay, the load can turn on at any point

in the voltage line cycle. Contrarily, if the load were actuated with a solid-state relay
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(a) Centrifugal fan. (b) Electronically commutated motor fan
(at maximum speed).

Figure 3-9: Inrush current transients at various voltage turn-on angles.

with zero-crossing detection, the variability in the transient behavior would become

significantly smaller, and a large variation in the transient peak would be a sign of a

possible anomaly.

Using a TRIAC-based phase controlled switch, built by Erik Saathoff [89], loads

can be turned on at a desired phase-angle of the utility voltage, permitting sweeps

over the turn-on angle. Testing was conducted on two fans, a 1-hp induction mo-

tor centrifugal fan and an electronically commutated motor (ECM) variable speed

fan, to demonstrate how the turn-on voltage angle can affect the inrush transient.

The phase-controlled switch started the loads at a selection of phase angles: 0°, 60°,

90°, 120°, and 180°. The resulting inrush currents are shown in Fig. 3-9. Like most

inductive loads, the centrifugal fan’s worst case current is near the voltage zero cross-

ings. During startup, the core inductance of the machine significantly impacts the

inrush current. The turn-on angle that can maximize the volt-second integral on the

induction-machine model will generate the largest current, which happens when start-

ing near a zero-crossing. However, the series capacitor will shift the position of the

worst case somewhat. The electric variable speed fan presents significantly different

inrush behavior. The ECM motor uses a full-bridge rectifier to convert the ac input

to dc. For testing consistency, the fan was run at its maximum speed. In contrast

to the centrifugal fan in which the current peaks at the voltage zero-crossings, the

variable speed fan’s current inrush is highest when the voltage nears the peak, i.e.,

when the turn on angle is close to 90° or 270°. When the turn-on angle is 0° or 180°,
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(a) Centrifugal fan. (b) Electronically commutated motor fan
(at maximum speed).

Figure 3-10: Inrush power peak at various voltage turn-on angles.

the initial voltage is zero and the current rises steadily from zero without any spiking.

After the initial inrush, the fan continues to consume power in pulses during each half

line cycle. The 0° and 180° cases look very similar, with the latter being delayed by

half a line period and inverted. Any load that does not have line voltage polarity

dependence, such as this variable speed fan, will behave similarly. The inrush current

for a turn-on angle of 𝛼 will be the same as 𝛼 + 𝑛180°.

It is also useful to use spectral envelopes to view the power consumed by the load

averaged over an ac line cycle with rather than the pulsing current itself. Each fan

was energized ten times for each turn-on angle from 0° to 180° in increments of 10°.

For the ECM variable speed fan, the region between 60° to 90° contained large first

derivatives. This region was retested with smaller 3° increments. Fig. 3-10 shows

the peak inrush power of both fans as the average of ten activations for each turn-on

angle. As expected from the current waveforms, these two fans have different inrush

power behavior. For the centrifugal fan, the maximum power at inrush is at 0°. For

the variable speed fan, the maximum power at inrush is near 90°.

As shown, the initial inrush changes based on the turn-on angle. Thus, by using

the phase-controlled switch to keep the phase angle constant, the effects of other

operating or environmental conditions can be tested. By changing how a load is

cycled on or off, the turn-on waveform changes and provides more information about

the load. For the variable speed fan, the mechanical inertia, combined with the speed

controller, causes different power draw signatures as the fan approaches steady state.
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Figure 3-11: Power of the variable speed fan with varying off-time between load
activations.

Fig. 3-11 shows the full turn-on transient after variable times between an off-event

and the next load activation. These tests are performed at a turn-on angle of 75°. In

each test, the transient starts with a large peak as the dc buffer capacitor is charged.

Afterward, the speed controller draws a variable level of power depending on the

starting conditions of the fan, e.g. the initial rotation speed of the fan. As the time

between load activations increases, the time to reach stead state increases. This effect

stops when the off-time exceeds 30 s, as this is the time required for rotational velocity

to reach zero. Unlike the other cases, the 1 s off-time case does not drop to low power

after the initial inrush spike, and instead consumes more than steady state power.

The speed controller likely has both soft-start and running modes. In the 1 s case, the

fan doesn’t slow down enough to reach soft-starting territory, so the speed controller

tries to quickly return to the correct speed.

3.2.2 Fault Conditions

Loads experiences changes in their overall power consumption due to degradation of

system components. For example, with knowledge about the type of fan, a NILM
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Figure 3-12: Experimental setup for variable speed fan in ventilation system.

Figure 3-13: Inrush power peak versus steady state for the variable speed fan with
varying filter blockage levels.

can detect when a ventilation system has a leaky duct or clogged filter by observ-

ing changes in the fan’s power consumption. The variable speed fan was used in a

ventilation set-up to explore the relationship between filter blockage and power con-

sumption. The ventilation setup is shown in Fig. 3-12. To emulate blockages in an

air ventilation system, 0.5 inch polyester plastic filters, rated to Minimum Efficiency

Reporting Values (MERV) 5, or 3 micron permeability, are introduced on the intake

side of the system. Complete obstruction of the fan inlet was also emulated, effec-

tively reducing air flow to zero. At each blockage level, the fan is run once at each

turn-on angle from 0° to 360° in increments of 10°. Fig. 3-13 shows the inrush peak

real power versus the steady-state power level for each run at various blockage levels.

This fan is a constant rpm electronically commutated motor (ECM), which means

that the the blades will spin at the same speed regardless of external static pressure

changes. Based on the fan pressure curve, a small decrease in flow rate caused by the
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first two filters will cause a sharp increase in static pressure, increasing the torque

on the motor shaft and raising the overall power consumption. However, the curve

quickly flattens, resulting in lower torque for further flow restrictions. As more filters

are added and the flow rates drops toward zero, the fan is no longer producing effective

work. The shaft is only loaded by drag, causing the power consumption to decrease.

The inflection point of the power curve, and the power difference between zero and

full blockage, are dependent on the fan design. Constant flow rate ECM fans produce

similar results, but their variable rpm operation can make the curve more exaggerated

[90]. Despite the steady-state power changing as the blockage level increases, the range

of peak power values does not change. This range of values is consistent with the peak

power characterization in Fig. 3-10b. The inrush transient of this load is dominated

by the charging of the large internal dc capacitance, and this process is completed

before a blockage can affect the fan blades. This series of tests, performed with the

phase-controlled switch, confirms that a blockage fault does not affect the variability-

space peak-power axis for this type of fan. Thus, a load identification algorithm

focused on the inrush transient can recognize this load even as it experiences this

type of fault without any additional training. It can further be used to diagnose the

fault condition by observing the changing steady-state power levels.

3.2.3 Environmental Factors

Investigation of a load’s feature space can also extend into the environmental vari-

ables, such as temperature. A 0.7-hp single-phase axial fan driven by an induction

motor is used in the same ventilation set-up as the variable speed fan. A perma-

nent split capacitor motor, such as this axial fan, does not have a speed controller

to maintain a constant rpm. Thus, normally when the external static pressure of

the system changes it leads to power changes based on the fan’s characteristic fan

curve [91]. However, this system does not exhibit significant changes in steady-state

power based on filter blockage. Instead, the fan’s power draw exhibits a significant

temperature dependence. A majority of loads do not operate under strict temper-

ature control and their temperature may change with both the ambient and with
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Figure 3-14: Peak inrush and steady state power consumed by an axial fan at various
blockage levels. Temperature decreases as points move up and to the right.

internal heating. Motors generate heat from various losses, which will slowly increase

their temperature until they reach steady state with the ambient. A high thermal

mass leads to long thermal time constants, and thus investigating inrush at different

temperatures is useful. Since the rotor bars in an induction machine change conduc-

tivity with temperature, the power consumed should also change during a turn-on

transient.

An experiment is performed in which the axial fan ventilation setup is subjected

to colder temperatures, then starts with a random turn-on angle for 27 runs each

at various filter blockage levels. Fig. 3-14 shows the inrush peak power versus the

steady-state power level for each run. There is no clear dependence of the steady-

state power level on filter blockage, as is the case for the variable speed fan, as

shown in Fig. 3-13. Instead, both the steady-state and peak power depend on the

temperature, as shown in Fig. 3-15. Here, the temperature is measured at the outlet

of the ventilation system. As the system warms up, the steady-state and inrush power

both decrease. This additional information can improve load identification algorithms

by including new extremes on expected operating behavior. In addition, the lack of

dependence on blockage contrasts with the previous ventilation example, indicating
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Figure 3-15: Axial fan steady state real power (left) and peak inrush real power
(right) versus temperature.

that correlations between load variables are not necessarily universal and must be

characterized for each load. Incorrectly applying assumptions to this duct fan can

result in mistakenly attributing a decrease in power to a leaky duct, rather than a

hot motor. The temperature dependence can also be used as a diagnostic indicator of

the associated temperature control system or the fan itself, as increased temperature

can indicate a winding short, failed bearing, or other lossy faults.

3.2.4 Shipboard Load Variability

Domain knowledge about how loads drift in a physically-informed feature space is

necessary to guide the characterization of this drift for separability testing. Two

shipboard loads are presented as examples for characterizing load behavior, a fuel

oil purifier (FOP) centrifuge and a controllable pitch propeller (CPP) pump. For

illustrative purposes, consider steady-state real power (𝑃𝑠𝑠) and steady-state reac-

tive power (𝑄𝑠𝑠), where the steady-state power was extracted from load on-events,

calculated for 0.5 seconds after each event. In a 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature space, the

drift is likely to occur along a single major axis. Fig. 3-16a shows the normalized
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(b) CPP pump.

Figure 3-16: Normalized histograms of steady-state real power (𝑃𝑠𝑠) for two cruises
at a time. Gaussians are fitted with labelled means and standard deviations.

histograms of the FOP centrifuge’s 𝑃𝑠𝑠 for five different periods in time. The data is

divided into “cruises,” where each cruise represents a period of one to three months

in which the vessel is mostly underway at-sea. There is a break in data collection

during the vessel’s in-port periods after each cruise. Each subplot shows two cruises

of data, e.g., the first row is the first and second cruise, the second row is the third

and fourth cruise, and so on. A Gaussian probability density function was fit to each

dataset with the mean (denoted as 𝜇) and standard deviation (denoted as 𝜎) from

the data, as shown in the labels on the plots. The mean of the FOP centrifuge’s

steady-state real power increases as time progresses. Although this example shows

only one dimension having a Gaussian distribution, a similar trend can be seen in

the steady-state reactive power. In Fig. 3-17, the Gaussian-like distribution of 𝑃𝑠𝑠

and 𝑄𝑠𝑠 over the entire dataset of ten cruises can be observed for the FOP centrifuge.

The increase in power can likely be attributed to load aging and wear.
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Figure 3-17: 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 for the FOP centrifuge after ten cruises of data plotted
with the normalized probability density for each axis.

A plot of normalized histograms over five periods in time for the CPP pump is

shown in Fig. 3-16b. These are the same time periods as for the FOP centrifuge’s

histograms in Fig. 3-16a. It can be observed that unlike the FOP centrifuge for which

𝑃𝑠𝑠 generally trends in one direction over time, the CPP pump’s power first drifts

higher before drifting back to a similar power level as its original state. Intuition for

the drift of the CPP pump is provided by examining the change in operating condition.

The drift in the pump’s steady-state real power and reactive power consumption over

the monitored four-year period correlates with the operating fluid pressure normalized

by temperature, as was shown in Section 1.2 and plotted again in Fig. 3-18a. There

was a large increase in both the power draw and the normalized operating pressure

in February 2018, after the replacement of the hydraulic control valves. Then, as the

normalized operating pressure decreased over time, the power draw also subsequently

decreased. At the same time, the variability in the peak inrush power (𝑃𝑝𝑒𝑎𝑘), as

shown in Fig. 3-18b, does not correlate with the operating pressure. Similar to the

laboratory example previously presented, this variability is due to the time instant
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Figure 3-18: CPP pump characteristics over time.

with respect to the voltage line cycle that the load turns on.

These two loads demonstrate that with a limited dataset in time it is difficult to

determine how much of the load’s total distribution is accounted for. Accordingly,

the NILM feature selection process should take all known data into account when

evaluating the suitability of a feature space. As operating conditions change or faults

occur and are fixed, a load can return to a previously observed region in the feature

space. Although not all loads appear perfectly Gaussian, a Gaussian approximation

still can provide a sufficient characterization while being easy to compute and describe.

With this assumption of load characterization, the following section presents the

hyperellipsoid characterization for checking load separability.

3.3 Feature Space Evaluation

As shown, a load’s electrical characteristics are prone to variation and drift. The

applicability and utility of pattern classifiers for fault detection and diagnostics relies

on having a well-chosen or “informed” feature space with predictable characteristics

for recognizing observations that arise outside of initial training data. That is, the

accuracy of any classifier depends on the separability of the data. In this context, a

separable feature space is one that, regardless of classifier choice, permits classification

128



of load events, even with future load variability. Since many classification techniques

are not readily interpretable, their classification decision is unclear and potentially

inaccurate as more data is collected. This is compounded when the underlying dis-

tribution of new data is different than the distribution of the training data, known

as concept drift. A load may drift to an entirely different region of the feature space

than the classifier expected, and may become unseparable from other loads. It is

difficult to determine the optimal separator for future data because there are likely

many large-margin, low-density separators that can accurately classify the training

dataset [92]. That is, concept drift can cause performance degradation, regardless of

classifier choice. Load features will change with changing operating conditions, ma-

chinery aging and wear, or abnormal load behavior. In evaluating feature spaces for

separability, the question becomes: is the data uniquely recognizable, and are there,

or will there be, unresolvable overlaps in the feature space now or as equipment ages

and operating conditions change? With physically-informed assumptions made on

the character of the concept drift, the feature space should be assessed to find the

most meaningful set of electrical characteristics that provide adequate separability

between classes. The scope of this section assumes the drift in electrical behavior is

gradual, analogous to incremental concept drift [21].

Several methods exist to evaluate feature importance in a given feature space.

Neighborhood component analysis and minimum redundancy maximum relevance

have been used in the context of nonintrusive load monitoring, due to their physical

interpretability [93]. Other methods such as random forest variable importance anal-

ysis, recursive feature elimination, and Boruta [94] are effective in ranking feature

importance. Techniques for evaluating class separability based on distance measures

include interclass distance, intraclass distance, the Fisher ratio, and scatter matri-

ces [95, 96]. However, these methods do not allow for the possibility that a load’s

behavior in the feature space will adapt over time.

This section provides a check for electromechanical load separability to inform

the decision of adding features to the feature space. The work in this section was in

collaboration with Aaron Langham. The separability check seeks to determine if a
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classifier trained on a dataset limited in time will be reliable in the future. The separa-

bility check does not assume that the data is independent and identically distributed

(i.i.d.) or that classes are balanced. The separability check is independent of the type

of classifier used, and does not prescribe any particular classification methodology.

Using every feature available can increase data separability, but can result in overly

fit, non-generalizable decision boundaries due to the sparsity of training data [97]. In

addition, adding extra features may incur extra costs if they require additional sen-

sors or signal processing development. Thus, it is desirable to start with a compact

set of features and only add features when necessary.

The proposed separability check is based on geometric overlap using hyperellip-

soidal regions. An initial feature space is selected based on known electromechanical

load behaviors. This feature space is then assessed by applying the load separability

check to a limited set of labelled data, which defines regions of load behavior within

the feature space. The presence of overlapping regions indicates current or future re-

gions of uncertainty for a potential NILM classifier. As more labelled data is obtained,

this check can be periodically run to re-evaluate the feature space for potential con-

flicts. The proposed load separability check is demonstrated with a dataset of loads

collected from USCGC Spencer.

3.3.1 Feature Space Evaluation

The existence of concept drift in load behavior leads to the question: how can feature

spaces be evaluated for their ability to provide separability as loads undergo faults

or changing operating conditions? With an understanding of load behavior based

on prior observations and knowledge of specific operating patterns, a preliminary set

of features can be selected. However, prior to selecting and training a classifier and

establishing a diagnostic process within this feature space, the selected features should

be evaluated. Even if data is linearly separable, the proposed separability check will

identify loads that may become ambiguous in the future if drift occurs. This can

inform feature space modification. The separability check is given as an overlap test

of geometric characterization regions for each load. An ideal characterization region
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must be able to represent trends in the load data and anticipated drift, but still be

physically reasonable and fairly compact to the region occupied by the load events.

Finally, there must be a well-defined and computationally tractable test for overlap

between two characterization regions. For illustrative purposes, this method is shown

with two-dimensional feature spaces of steady-state real power (𝑃𝑠𝑠) and steady-state

reactive power (𝑄𝑠𝑠). However, this method can be used to assess 𝑁 -dimensional

feature spaces [98].

The features in the presented examples use units of power. However, for features

that do not have common units, it is necessary to apply some form of feature scaling

such as standardization or normalization [99]. When using the separability check, it

is imperative that the dataset in consideration be correctly labelled, such that even

points that appear to be outliers can be assumed to represent actual load behavior

and not incorrect labelling.

3.3.1.1 Separability Check

For loads that do not drift in the feature space, such as a healthy heater, their distri-

butions in the feature space typically can be characterized as multivariate Gaussians

with constant mean and variance. The probability density function (PDF) of a mul-

tivariate Gaussian distribution with an 𝑁 -dimensional random vector 𝑋, is given

as:

𝑓𝑋(𝑥1, ..., 𝑥𝑁) =
1√︀

(2𝜋)𝑁 |Σ|
· exp

(︂
−1

2
(𝑥− 𝜇)𝑇Σ−1(𝑥− 𝜇)

)︂
, (3.11)

where Σ is the covariance matrix of 𝑋, |Σ| is the determinant of the covariance ma-

trix, and 𝜇 is the 𝑁 -dimensional mean vector of 𝑋 [100]. The covariance matrix and

mean can be approximated with the covariance and mean calculated from collected

data. When a load exhibits drift, it often resembles a multivariate Gaussian distribu-

tion with non-constant mean and covariance. That is, for some subset of data in time,

the data can be approximated as Gaussian. However, over time the distribution may

change. With this assumption, the load separability check is performed by first fitting

an 𝑁 -dimensional hyperellipsoid to each load’s data. 𝑁 -dimensional hyperellipsoids
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are able to represent variance in several orthogonal axes and are the equiprobability

contours of a multivariate Gaussian distribution. A hyperellipsoid region of arbitrary

dimension can be represented by:

(x−m)𝑇E(x−m) ≤ 1 (3.12)

where m is an N x 1 vector representing the centroid of the hyperellipsoid and E is a

real symmetric positive-definite 𝑁×𝑁 matrix representing the shape and orientation

of the hyperellipsoid. Any point x, that satisfies the inequality in Eq. (3.12) is either

inside or on the surface of the hyperellipsoid [101].

In order to generate the parameters of a hyperellipsoid region enclosing a load’s

range of behavior within the feature space, principal component analysis (PCA) is

used to generate a new set of axes from the feature space axes. This expresses the

most variance in the data possible in each generated principal component axis [102].

The variance (denoted as 𝜎2) of the data in each of the principal component axes

is computed. The standard deviation (denoted as 𝜎) of the data in each principal

component axis is obtained by taking the positive square root of these variances.

PCA can be computed using eigendecomposition of the covariance matrix or with

singular value decomposition [102]. A component matrix is yielded with rows equal

to the principal component axes, which can be used as a “transformation matrix” from

the feature axes to the principal component axes. The 𝑁 -dimensional hyperellipsoid’s

radii are obtained by multiplying the principal component standard deviations, sorted

in descending order, by a user-defined parameter, 𝛼. The choice of 𝛼 is described

below. The hyperellipsoid’s centroid is obtained by taking the mean of the data

points in the feature space. Finally, the hyperellipsoid’s rotation is represented using

the transformation matrix obtained from PCA. Hyperellipsoidal regions are created

in this way for each load in a chosen feature space. These regions are then subjected

to a test for overlap, as will be later described. Overlapping regions indicate that a

feature space will not be robust at separating the given loads.

One strategy for choosing the hyperellipsoid size involves taking a constant number
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of standard deviations in each principal component direction. For example, three

standard deviations will cover 99.7% of all hypothetical data, assuming a normal

distribution. A disadvantage of this approach, however, is that it is not responsive

to the number of load events obtained. Instead, the number of standard deviations

for each hyperellipsoid, denoted as 𝛼, should be selected based on the amount of

confidence in the underlying class distribution. As the number of load events 𝑀

for a class increases, the confidence that the data is representative of the underlying

distribution also generally increases. There is more uncertainty in potential load drift

for smaller 𝑀 . By adjusting 𝛼 based on class size, this method is able to handle class

sizes that are different between loads. Classes that do not have many load events

have more uncertainly in their underlying distribution and as a result are assigned

a looser hyperellipsoid. The proposed method for selecting 𝛼 adds an exponentially

decaying term to shrink the region size as more load events are collected:

𝛼 = 3 · (1 + 𝑒−𝑀/𝐾), (3.13)

where 𝐾 is a tunable parameter. For any choice of 𝐾, the number of standard

deviations 𝛼, is bounded between three and six. When 𝑀 is zero, then 𝛼 is six.

When 𝑀 approaches infinity, the exponential term goes to zero and 𝛼 approaches

three. When 𝛼 is close to three there is high confidence that the load has been

well-characterized and will no longer drift in the feature space.

By adjusting the parameter 𝐾, the rate at which the exponential decays can be

adjusted. As 𝐾 increases, the rate of decay of the exponential decreases, and 𝛼 will

converge to three slower. One consideration for the choice of 𝐾 is the availability

of extra features. If there are abundant features that can be added to the feature

space, a larger hyperellipsoid (and thus larger 𝐾) can be used in order to give a

greater chance of detecting problematic drift. There will also be a greater chance of

overlapping regions of non-drifting loads. If additional features are easily obtained,

these overlaps can be resolved by adding these additional features to the feature

space. However, if additional useful features are not available or are expensive to
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(b) CPP pump.

Figure 3-19: Hyperellipsoids in the 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature space for two loads at
various points in time.

obtain, overlap detection from non-drifting loads should be avoided in order to avoid

unnecessarily adding features. Thus, smaller hyperellipsoids (and thus smaller 𝐾)

should be used. With smaller hyperellipsoids, problematic drift will be detected later

than with larger hyperellipsoids.

The two presented shipboard loads from Section 3.2.4 are used as an example.

Using 𝐾 = 500 in the 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature space, the fuel oil purifier (FOP) cen-

trifuge and controllable pitch propeller (CPP) pump data points and hyperellipsoids

are shown in Fig. 3-19a and Fig. 3-19b, respectively. The hyperellipsoids are drawn

after various number of cruises to show the evolution of the hyperellipsoid characteri-

zation regions as the number of load events increases and as 𝛼 subsequently decreases.

The FOP centrifugal motor starts with 57 labelled load events after the first cruise.

Its hyperellipsoid region is created with 5.68 standard deviations (noted as 5.68𝜎 in

the figure), which is on the upper end of possible values for 𝛼. After ten cruises there

are 1131 load events. The new hyperellipsoid region uses 3.31 standard deviations,

which is now on the lower end of possible values for 𝛼. For the CPP pump, after

one and ten cruises, there were 48 and 561 labelled load events, respectively. Thus,

the hyperellipsoid regions were created with 5.73 and 3.98 standard deviations, re-

spectively. For both loads, the rotation of the hyperellipsoid is approximately the
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same after one cruise as it is after ten cruises, meaning the drift has continued along

approximately the same major axis.

3.3.1.2 Test for Overlap

To check for overlap of the hyperellipsoid regions, the approach of [103] is used, in

which the overlap condition is developed as a root-counting problem of a convex

polynomial 𝐾(𝜆). This polynomial represents the hypothetical circumscribing hyper-

ellipsoid appearing in the region between the two hyperellipsoids under consideration.

𝐾(𝜆) is generated using the shape and center of both hyperellipsoids, where E and m

from Eq. (3.12) represent the shape and center, respectively. For two hyperellipsoids

with shapes A and B, and centers c and d, respectively, every point, x, in the union

of both hyperellipsoids must satisfy

𝜆(x− c)𝑇A(x− c) + (1− 𝜆)(x− d)𝑇B(x− d) ≤ 1, (3.14)

where 𝜆 ∈ [0, 1]. This inequality is then transformed into the following representation

of a hypothetical hyperellipsoid with shape E𝜆 and center m𝜆 that circumscribes the

region of intersection of the two hyperellipsoids:

(x−m𝜆)
𝑇E𝜆(x−m𝜆) ≤ 𝐾(𝜆), (3.15)

where

E𝜆 = 𝜆A+ (1− 𝜆)B. (3.16)

The convex polynomial 𝐾(𝜆) is given as:

𝐾(𝜆) = 1− (d− c)𝑇
(︂

1

1− 𝜆B
−1 +

1

𝜆
A−1

)︂−1

(d− c). (3.17)

A necessary and sufficient condition for the two hyperellipsoids to not overlap or touch

is for there to be a value of 𝜆 in (0, 1) such that 𝐾(𝜆) < 0. Since 𝐾(𝜆) is convex, all

that is required is to count the roots of 𝐾(𝜆) on (0, 1). If there are two such roots,

135



the hyperellipsoids do not overlap or touch; otherwise, the hyperellipsoids will either

overlap or be tangent. Rather than using symbolic math to solve for the roots of𝐾(𝜆),

[103] presents an algorithm to compute 𝑃 (𝜆) = det(E𝜆) ·𝐾(𝜆), which is also convex

and has the same roots in (0, 1) as 𝐾(𝜆). Using Sturm’s theorem as described in [104],

the number of roots of this polynomial in (0, 1) can be efficiently computed. Sturm’s

theorem is used to generate a “Sturm sequence” of polynomials using polynomial

differentiation and division. By counting the number of sign alternations in these

sequences, the number of polynomial roots in the given interval can be computed.

This method works as long as A−B is invertible. It is assumed that this will be

the case since the radii of two given hyperellipsoids are very unlikely to be exactly the

same. With this overlap test defined for two hyperellipsoids, several load characteri-

zations can be checked for overlap two at a time. Detecting overlap between a set of

loads will require at most 𝐿(𝐿− 1)/2 overlap checks, where 𝐿 is the number of loads.

An advantage of the hyperellipsoid region is that its overlap check does not depend

on the number of load observations. That is, the overlap test is computed with the

𝑁 -dimensional hyperellipsoid parameters, not with individual points. As a result, the

computational power required for this check does not increase as the number of load

events increases.

Fig. 3-20 shows the hyperellipsoid characterization regions for the FOP centrifu-

gal motor and CPP pump from Fig. 3-19a and Fig. 3-19b, respectively. After one

cruise, even though the two loads are clearly linearly separable, the hyperellipsoid

characterization regions are overlapping. The FOP centrifuge and CPP pump data

points have high enough variability for the separability check to anticipate future

misclassification of the CPP pump and FOP centrifuge. The hyperellipsoid regions

continue to overlap for subsequent cruises.

3.3.2 Separability Check Demonstration

To validate the utility of the separability check on a larger dataset of loads, nine loads

from USCGC Spencer are presented, including the FOP centrifuge, FOP feed pump,

MPDE jacket water heater, MPDE lube oil heater, MPDE prelube pump, SSDG
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Figure 3-20: Hyperellipsoids in the 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature space for the FOP centrifuge
and CPP pump at various points in time.

jacket water heater, CPP pump, graywater pump, and bilge and ballast pump. A

dataset was assembled from the first two underway cruises of the vessel after instal-

lation of the NILM, from August 2016 to March 2017. The hyperellipsoid boundaries

are plotted in Fig. 3-21a and Fig. 3-21b for the nine loads after the first cruise and

second cruise of data collection, respectively. After only one cruise, the CPP pump

overlaps with the FOP centrifuge region, as was previously described. Also after only

one cruise, the bilge and ballast pump region overlaps with the graywater pump,

MPDE prelube pump, and FOP feed pump regions. This shows that the output

of a given classifier is highly unpredictable for these four loads. The drifts of the

MPDE prelube pump and graywater pump are not significant enough after one cruise

to fail the overlap test. However, after two cruises the ensuing load drift results in

the regions overlapping. The three heater loads do not overlap with any other loads,

indicating that the feature space provides sufficient separability for these three loads.

Two classifiers were trained with the dataset from the first two cruises to vali-
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Figure 3-21: Hyperellipsoids in the 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature space for nine loads after
one and two cruises of data collection.
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(a) Linear SVM.

(b) DNN.

Figure 3-22: 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 boundaries, trained with a linear SVM and DNN using
the first two underway cruises of data collection. The data points for eight later
cruises are plotted.
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date the problematic overlap identified by the separability check. A linear support

vector machine (SVM) and deep neural network (DNN) were chosen as examples to

demonstrate how concept drift can cause performance degradation for both linear

and non-linear classifiers. Different classifiers may have slightly different results. The

data was split into 80% training and 20% validation, with data stratification to al-

locate load events evenly based on class frequency. The trained models had perfect

classification accuracy for all load events in the validation dataset for both classifiers.

That is, without any consideration for load drift, this would appear to be a sufficient

feature space. However, when the model was then tested on the data collected for the

eight later cruises (from April 2017 to September 2020), drift of several loads in the

feature space resulted in significantly reduced accuracy. Fig. 3-22 shows the decision

boundaries (from the models trained on the first two cruises) and the data points

from the last eight cruises. Fig. 3-23 shows the normalized confusion matrices for all

loads that did not have an perfect accuracy. For both classifiers, as anticipated by the

separability check, the CPP pump is often misclassified as the FOP centrifugal motor,

the MPDE prelube pump is often classified as the graywater pump, and the bilge and

ballast pump is often misclassified as the FOP feed pump. Also as expected from the

separability check, the three loads that do not show any degradation in classification

performance are the SSDG JW heater, MPDE JW heater, and MPDE LO heater.

After two cruises of data, although the trained classifiers showed that the data was

classifiable at the time, the classifiers were not reliable as more data was collected. The

problematic drift is anticipated by the separability check. In fact, the hyperellipsoids

for two cruises of data and ten cruises of data are relatively similar even with further

load drift and with a large difference in number of load events. For example, Fig. 3-24

shows the hyperellipsoids (as solid lines) and data points after ten cruises of data for

the six loads that did not have perfect accuracy. Also plotted are the hyperellipsoids

(in dashed lines) of the hyperellipsoids after two cruises of data, the same as in Fig. 3-

21b. As shown, the drift is relatively well characterized after only two cruises since

the hyperellipsoids are drawn with a higher number of standard deviations for fewer

load events.
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Figure 3-23: Normalized confusion matrices for linear SVM and DNN classifiers
trained on the first two cruises of data and tested on the eight later cruises.
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Figure 3-24: Hyperellipsoids (solid) and data points in the 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature
space for six loads after ten cruises of data collection. Hyperellipsoids (dashed) are
also drawn from the first two cruises of data.
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3.4 Chapter Summary

This chapter presented the tools for physics-informed feature extraction and selection.

A multi-scale framework was presented which separates events into three categories:

geometric, statistical, and continuous. Example feature extraction techniques for the

three methods were given. The remainder of the chapter focused on transient space

characterization and selection for geometric events. Electromechanical load behavior

and the resulting geometric features extracted may change due to normal variation,

such as inherent mechanical variability or changes in operating condition. Changes

in load behavior could also be indicative of an underlying fault or degradation of var-

ious internal mechanisms that may require repair or replacement. For a nonintrusive

load monitoring classifier, this manifests as concept drift that can reduce classifica-

tion performance on future data or even make the load completely indistinguishable.

Understanding the physics and time-dependency behind changing load behavior can

inform feature space selection improvements, enabling the applicability of nonintru-

sive monitoring for equipment health monitoring and diagnostics. A separability

check was presented for ensuring the selection of a physically-informed feature space

that allows for load disaggregation, even when loads drift over time. This is especially

important for isolated, microgrid, and generation-constrained systems, where system

reliability is critical.
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Chapter 4

Adaptive Classification and Drift

Detection

After selecting a feature space, detected events need to be classified as the correct load.

This chapter presents a classification framework for geometric events that adapts to

drifting load behavior. The work in this chapter was in collaboration with Aaron

Langham and Rebecca Agustin.

Many pattern classifiers fail to account for the time-evolution or dynamic behavior

of observed data [105–107]. Concept drift can obliterate the effectiveness of a classifier

trained on a static dataset [21, 108]. The order of observations and the relationship

between the timing and the evolution of trends contain valuable information. A lack

of representative training data in an otherwise tractable domain exacerbates these

problems, as data often cannot be assumed to be independent and identically dis-

tributed (i.i.d.) or stationary. Decision boundaries in a feature space are frequently

not readily explainable or based in physical understanding. Power monitoring of

electromechanical loads is an illustrative stream learning problem with practical in-

dustrial applications. Effective nonintrusive load monitoring requires accurate load

signatures and load identification, i.e., the identification of individual loads from the

aggregate power stream.

Nonintrusive identification of geometric events is fundamentally a non-stationary

problem exhibiting concept drift. Changes in load behavior can be related to various
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forms of concept drift. A load’s electrical behavior may change over time, potentially

due to load aging and degradation. As shown in Section 3.2, variability is expected

even for a healthy load, arising from normal mechanical variation, changing oper-

ating conditions, and environmental factors. A sudden change in machine health is

analogous to sudden concept drift. A slow change over time is a form of incremental

concept drift. A return to a previous health condition or operating state is similar

to recurring concept drift. The challenge in load identification is ensuring correct

results even amidst changing operating conditions and fault scenarios. Most nonin-

trusive load monitoring research assumes training data is forever representative of

new data, without regard to changing load behavior [109].

Many machine learning applications, such as image recognition, rely on large, gen-

eralizable datasets. The training data for a practical nonintrusive load monitoring

classifier will likely need to be collected by a NILM on the system of interest. Non-

intrusive load monitoring is therefore an example of few-shot learning [110]. At its

extreme, it becomes a one-shot learning problem, in which the model must train start-

ing with only a single example for each load [111]. The few-shot nature of the problem

means that the limited training data is not likely to be representative of the load’s

long-term operation. As such, deep learning models are prone to overfitting [112].

Many concept drift detection methods use error rates to detect drift using la-

belled data [113, 114]. This is an unrealistic constraint for real-time nonintrusive

load monitoring, as it would require periodic manual labelling of data. Instead, ex-

treme verification latency (i.e., ground-truth labels are never received after the initial

dataset) must be assumed. Relatively little work has addressed semi-supervised or

unsupervised drift detection and adaptation [21]. An automated solution is desired.

This chapter introduces a multi-level framework of classification techniques appli-

cable to machine learning problems facing the following challenges: 1) concept drift,

2) one-shot or few-shot learning, and 3) extreme verification latency. In order to

be robust to outliers, the proposed method is designed to handle incremental and

recurring concept drift, whereas sudden concept drift is out of the scope. “Coarse”

and “fine” classification levels enhance existing pattern classifiers’ abilities. Given the
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scarcity of training data and few-shot nature of the problem, coarse classifiers use

extracted features and physically realistic boundaries to avoid overfitting and remain

robust to load concept drift. Fine classifiers use higher-dimensional data to resolve

any ambiguities in the extracted course classifier feature space. An online clustering

algorithm provides drift metrics to enable continual load identification and diagnostics

even in the presence of concept drift. These steps work together to ensure confidence

in classification, given that ground-truth labels are not available after initialization.

Experimental results are presented on real-world, non-stationary data. Power data

was collected over four years aboard USCGC Spencer and used for framework evalu-

ation.

4.1 Previously Reported Techniques

Drift detection algorithms can generally be divided into error rate-based and data

distribution-based [21, 115]. Ensemble methods incorporate multiple classifiers. Er-

ror rate-based approaches focus on tracking some error-related metric and form the

largest category of algorithms [21]. Common methods include the Drift Detection

Method (DDM) [116] and Early Drift Detection Method (EDDM) [108, 117], which

signal that drift has occurred when there is a statistically significant change in

the error rate or distance between classification errors, respectively. The drift de-

tection method for online class imbalance (DDM-OCI) [118] uses the reduction in

minority-class recall to detect drift, thus staying more robust to class imbalance.

Data distribution-based methods use a distance metric to quantify the dissimilarity

between the distribution of historical data and new data [21,115]. A drift is signaled

when the dissimilarity is proven to be statistically significant.

All error rate-based methods and most data distribution-based methods are super-

vised approaches which assume that an instance’s ground-truth class label is available

immediately after prediction. However, this is an unrealistic constraint in many real-

world applications. Labelling data is often a costly process that involves manual

labelling by domain experts. With this motivation, some semi-supervised and unsu-
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pervised drift detection algorithms have been proposed [113]. One semi-supervised

approach is the Semi-Supervised Adaptive Novel Class Detection and Classification

(SAND) algorithm [119]. This method bases drift detection on classifier confidence.

When drift is detected, a new model is created, using predicted labels for instances

with high confidence. True labels are requested for instances with low classifier con-

fidence. Another approach is the Dynamic Selection Drift Detector algorithm which

bases drift detection on a pseudo-error rate [120]. It requests true labels for instances

that are near a set warning level. Both of these methods request labels for a subset

of data after concept drift is detected.

For nonintrusive load monitoring, it is not realistic to assume that even a subset

of labelled data will be available when requested. Extreme verification latency must

be assumed. A semi-supervised framework that handles drifting environments with

extreme verification latency is proposed in [121], referred to as Compacted Object

Sample Extraction (COMPOSE). It uses a base classifier trained on the labelled data

at the initial step, then extracts core supports from the classified data to retrain the

classifier. The core supports represent the geometric center of each class distribution

to serve as labelled instances. Different core support shapes have been proposed

such as an 𝛼-shape [121] and Gaussian mixture models [122], while in [123], all the

classified samples are used instead of core support extraction. For affinity-based

COMPOSE [124], an affinity matrix is formed between the labelled and unlabelled

samples and those with high similarity scores are classified and used to retrain the

classifier. While these methods do address extreme verification latency, they are

not applicable for one-shot or few-shot learning. The methods assume a good base

classifier without mentioning how to choose such a classifier. The choice of base

classifier and its resulting decision boundaries has a large affect on any subsequent

classification, especially if it overfits the limited initial data. To the best of our

knowledge, there is no work in literature that simultaneously addresses incremental

and recurring concept drift, one-shot or few-shot learning, and extreme verification

latency.

146



4.2 Classification and Drift Detection

The framework consists of four steps for classifying and detecting drift. This multi-

level framework ensures a high level of confidence in labelled events since ground-truth

labels are assumed to not be available. Events that do not pass the multi-level check

are determined unclassifiable. A one-vs-all check, referred to as the “preliminary”

check, is used first as a “negative” classifier that eliminates the classification of phys-

ically implausible events. This first step appeals to the physical expectations for

load behavior to ensure physically realistic boundaries. Next, classification operates

with two levels of granularity. The two levels are designed to improve classification

while gradually increasing dimensionality as needed. The first, “coarse” level exam-

ines high-level features extracted from the waveform (e.g., features such as peak and

steady-state power) to avoid overfitting due to the few-shot nature of the problem.

The second, “fine” classification step uses a more in-depth examination of sampled

data (e.g., time-domain shape recognition). That is, the coarse classifier uses ex-

tracted features from the power waveform, whereas the fine classifier uses windows of

the time-domain power waveform directly. Finally, load drift is detected and tracked

using “drift clusters” to characterize evolving load behavior and concept drift. The

concept of an “exemplar” is defined as a load event that is representative of a load’s

short-term behavior. Each load has an “initial exemplar,” i.e., the initial load event.

Each load also has an “active exemplar,” which is updated to represent the most

recent operation state based on the drift clusters.

4.2.1 Framework Overview

The framework process is presented in Algorithm 4.1. To initialize the framework,

a list of all load classes is obtained and denoted as 𝐿. Initial data is collected and

the initial exemplar is set for each load to be the load’s first event. During the

initialization step, if there is only a single event for each load, the active exemplar

is set to be the initial exemplar. Otherwise, the drift clustering algorithm is run on

the load’s initial data to determine the active exemplar. Then, the preliminary and
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Algorithm 4.1 Algorithm for organizing classifiers.
1: 𝐿← list all loads
2: for each 𝑙 ∈ 𝐿 do
3: Set initial exemplar
4: Set active exemplar
5: Set up preliminary and coarse boundaries
6: end for
7:
8: while True do
9: 𝑥← incoming feature vector

10:
11: 𝑀 ← PreliminaryCheck(𝑥, 𝐿)
12: if 𝑀 is empty then
13: Determine 𝑥 as unclassifiable
14: continue
15: end if
16:
17: 𝑁 ← CoarseClassifier(𝑥, 𝑀)
18: if 𝑁 contains only one load then
19: Classify 𝑥 as the load in 𝑁
20: TrackDrift(𝑥)
21: continue
22: end if
23:
24: 𝑃 ← FineClassifier(𝑥, 𝑁)
25: if 𝑃 contains only one load then
26: Classify 𝑥 as the load in 𝑃
27: TrackDrift(𝑥)
28: continue
29: end if
30: Determine 𝑥 as unclassifiable
31: end while
32:
33: function TrackDrift(𝑥)
34: Update drift clusters with 𝑥
35: Update active exemplar
36: Update preliminary and coarse boundaries
37: end function

coarse boundaries are drawn in the feature space. When features that do not have

common units are used in this framework, min-max normalization is performed so

that Euclidean distances in the feature space are well-defined. For each feature axis,
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𝑖, the range of the data is transformed into [0, 1] through the transformation,

𝑥𝑖𝑠 =
𝑥𝑖 − 𝑥𝑖𝑚𝑖𝑛
𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛

. (4.1)

Min-max parameters are obtained using the initialization data. As a result, it is

possible that incoming data may be scaled outside [0, 1].

Once initialization is complete, every incoming feature vector is initially examined

via the preliminary check. A list of loads that pass the check is generated and denoted

as 𝑀 . There are two high-level possibilities that could occur: 1) 𝑀 is empty, indicat-

ing the feature vector falls outside any known load preliminary boundaries, and 2) 𝑀

contains at least one load. If 𝑀 is empty, the event is considered unclassifiable. That

is, the event does not go through the remaining checks, and the procedure moves on

to the next incoming feature vector. This is represented in Algorithm 4.1 with the

continue statement. If 𝑀 is not empty, the loads that passed the preliminary check

are passed to the coarse classifier.

With a power sampling rate of 60 Hz, a transient can easily have a dimensionality

on the order of several hundreds. The few-shot nature of the problem implies that

working with such a high-dimensionality feature space may lead to overfitting, also

known as the curse of dimensionality [97]. Thus, the coarse classifier operates on the

lower-dimensionality feature space of extracted features. The coarse level performs

classification using one-vs-all classifiers for each load. This permits overlapping load

decision boundaries and allows for the possibility that a load’s decision boundaries

can change over time independent of other loads. The coarse classifier returns a list

of loads denoted as 𝑁 . There are three possible outcomes for the coarse classifier:

1) 𝑁 is empty, indicating that the feature vector falls outside any known load coarse

boundaries (but still within a preliminary boundary), 2) 𝑁 contains exactly one load,

and 3) 𝑁 contains more than one load, indicating overlap of the coarse boundaries.

When a feature vector is inside a single load coarse boundary, it is classified as that

load without running the fine classifier. If 𝑁 contains zero loads, the fine classifier is

run on the 𝑀 loads that passed the preliminary check. If 𝑁 contains more than one
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Figure 4-1: CPP pump preliminary boundary, coarse boundary, and drift clusters for
the 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature space.

load, the fine classifier is run on those 𝑁 loads.

The fine classifier uses the higher-dimensionality transients if the coarse classi-

fier is unable to confidently identify one load. The fine classifier returns a list 𝑃 ,

which either contains a single load or is empty. If 𝑃 contains a single load, the

event can be classified as that load. Otherwise, the event is considered unclassifiable.

When an event is classified, a clustering algorithm is run using geometric distances

in an easily-conceivable extracted feature space. This makes possible the tracking

of drifting power signatures and designation of the active exemplar. The prelimi-

nary boundaries, coarse classifiers, and fine classifiers are adapted as necessary to

track diagnostic changes and ensure accurate load recognition. Example preliminary

boundaries, coarse boundaries, and drift clusters are shown in a two-dimensional fea-

ture space for two shipboard loads, the controllable pitch propeller (CPP) pump and

graywater pump, in Fig. 4-1 and Fig. 4-2, respectively.

4.2.2 Preliminary Check

Decision boundaries created by classifiers are not guaranteed to be compact or phys-

ically realistic. Thus, it is necessary to establish which loads an incoming feature
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Figure 4-2: Graywater pump preliminary boundary, coarse boundary, and drift clus-
ters for the 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 feature space.

vector could plausibly belong to before attempting classification. For the domain

of power monitoring and incremental concept drift, it is reasonable to assume that

features that are physically relevant to the load’s drift will change gradually. As

a result, an extracted feature space-based “preliminary check” rules out loads that

are physically implausible candidates for a given load event. An 𝑁 -dimensional hy-

perellipsoid boundary is created for each load in the feature space, where 𝑁 is the

number of dimensions of the feature space. The hyperellipsoid can represent a spread

of points with a small number of parameters [100]. As demonstrated in Section 3.3,

a hyperellipsoidal region can be represented by

(x−m)𝑇E(x−m) ≤ 1, (4.2)

where m is an N x 1 vector representing the centroid of the hyperellipsoid and E is a

real symmetric positive-definite 𝑁×𝑁 matrix representing the shape and orientation

of the hyperellipsoid. For the preliminary check, any point x, satisfying the inequality

in Eq. (3.12), is either inside or on the surface of the hyperellipsoid [101]. Estimates

of variance in observed load behavior can define a loose hyperellipsoidal boundary

where load observations can be expected to be located with high confidence. Using
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principal component analysis (PCA) [102], the variance of the data can be obtained

in each of the principal component directions, as well as the mean in each feature

dimension. PCA also yields a “transformation matrix” whose rows are each principal

component axis. The standard deviations of the data in each principal component

axis are obtained as the positive square root of the variances. A tunable number of

standard deviations, denoted here as 𝐴, is chosen by the user to generate the radii

for the hyperellipsoid. For the USCG vessel, 𝐴 = 28 standard deviations has proven

effective for construction of hyperellipsoidal boundaries for the preliminary check.

Since PCA cannot be reliably used with few data points, the implementation does

not set up a given load’s PCA hyperellipsoid until 10 events have been recorded for

the load. Before then, a provisional preliminary boundary is used, consisting of an

unrotated 𝑁 -dimensional hyperellipsoid whose radius in axis 𝑖 is equal to max(0.2, 𝑥𝑖),

where 𝑥𝑖 is the initial feature vector’s value in that axis (using min-max normaliza-

tion). By setting a minimum axis value of 0.2, events close to a feature axis (e.g.,

heaters that consume no reactive power) are not assigned impractically small prelim-

inary boundaries.

Only loads whose preliminary boundaries contain the incoming event’s feature

vector are considered as candidate loads for the following coarse classifier. If no loads

pass the preliminary check, then the load event is considered unclassifiable. Every

time a new event is classified to the load, the load’s preliminary boundary fits a new

PCA hyperellipsoid to the load data.

4.2.3 Coarse Classifier

Coarse boundaries drawn in the feature space can further reduce the number of can-

didate loads and potentially perform final classification. Since drift in the feature

space can result in load feature vectors occupying the same general space, the coarse

classifier is chosen to be a one-vs-all rather than multiclass classifier. Once a list of

candidate loads has been obtained from the preliminary check, each candidate load’s

coarse boundary is checked as to whether it contains the incoming feature vector. If

only one candidate load’s boundary contains this feature vector, the incoming event
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Figure 4-3: Coarse boundaries drawn in the 𝑃𝑠𝑠, 𝑆𝑝𝑒𝑎𝑘 and 𝑄𝑠𝑠 feature space for the
CPP pump, air compressor, and graywater pump.

is classified to that load. If multiple loads’ coarse boundaries contain this feature

vector, then there is not yet sufficient information to classify the event. These con-

taining loads are retained as candidate loads for the fine classifier. If no loads’ coarse

boundaries contain the feature vector, then no classification is made, and the same

list of candidate loads are used as the input for the fine classifier.

The coarse classifier should be chosen such that it yields a binary result. Classi-

fiers such as deep neural networks (DNN) and random forests (RF) provide nonlinear

boundaries that can take on complicated shapes. Another option is to use the 𝑁 -

dimensional standard deviation hyperellipsoid described earlier, but with a much

smaller number of standard deviations. This is the method demonstrated in this

work, using 7 standard deviations. Eq. (3.12) is used to determine which hyper-

ellipsoids contain a given feature vector. This method has the advantage that the

hyperellipsoid can likely be obtained faster than a DNN or RF can be trained, and

only uses data from the load in question (as opposed to the DNN and RF, which

require other load data to train for binary classification).
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Just as for the preliminary boundaries, some amount of data must be collected

until a coarse classifier can be trained. Until 10 events have been recorded for a load,

the same technique used for the provisional preliminary boundaries is used, but here

the radii of the 𝑁 -dimensional hyperellipsoids are set to max(0.05, 0.25 · 𝑥𝑖) (using

min-max normalization). Fig. 4-3 shows an example three-dimensional feature space

with three shipboard loads and hyperellipsoidal coarse boundaries for demonstration.

If an event is within only a single load coarse boundary, such as a point inside the

graywater pump coarse boundary, it can be classified as that load. If an event is

within multiple load coarse boundaries, such as a point that is inside both the CPP

pump and air compressor coarse boundaries, that event goes to the fine classifier. If an

event is not within any coarse boundaries, but is still within a preliminary boundary,

it also goes to the next and final classifier. Using hyperellipsoids as coarse classifiers

involves fitting a new PCA hyperellipsoid to the load data every new event for that

load.

4.2.4 Fine Classifier

For feature vectors that were in multiple coarse load boundaries or were not in any

coarse load boundaries, but were within at least one preliminary load boundary,

a multiclass fine classifier is run as the final classification step. The fine classifier

operates on higher-dimensional data than the coarse classifier in order to resolve

overlap in the extracted feature space. The fine classifier relies on having an accurate

representation of recent load operation through the active exemplar and drift clusters.

This work uses six seconds of the real and reactive power time-domain transients

associated with the incoming event as the fine classifier feature space. For fine, time-

series classifiers, this work demonstrates both a correlation matching algorithm [5] and

gated recurrent units (GRUs) [125].

Using a correlation matching algorithm requires only a single exemplar transient

for each load, i.e., that of the active exemplar. This method can be used for one-

shot learning, in which only a single event is available for each load. The initial

exemplar is used as the active exemplar until the drift clustering algorithm identifies
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a new active exemplar. To resolve a set of loads using the correlation matching

algorithm, the incoming load event’s transient is matched to each of the candidate

loads’ active exemplars’ transients, and a correlation score (from Eqs. (3.1)-(3.4))

is generated for each. When the correlation score from (3.4) approaches zero, this

indicates that the exemplar and observation transients match in both shape and

amplitude. The minimum correlation score for the candidate loads is found. If it is

less than a tunable threshold, the event is classified to the corresponding load. For

events within multiple coarse boundaries, the threshold is 0.25. If an event is not

within any coarse boundaries and the fine classifier uses candidate loads from the

preliminary check, a lower maximum correlation score of 0.10 is used, since there was

originally less confidence in the candidates.

When using a GRU, the initial training cannot be done on a single event. For

these classifiers, it is assumed that there is sufficient data to train an initial classi-

fier. As shown in Section 4.3, an adaptive GRU approach is demonstrated for this

work. The initial multiclass model is implemented with a GRU layer with 50 ReLU-

activated neurons, then a densely connected layer with 30 ReLU-activated neurons,

and finally a softmax-activated layer. The training approach used Adam-optimized

backpropagation with a learning rate of 0.001 and categorical crossentropy as the loss

function. The initial data was split into 80% training and 20% validation with data

stratification. A batch size of 64 was used for mini-batch gradient descent. Valida-

tion loss was used for early stopping, such that after fifteen epochs of no significant

improvement, training was stopped.

After an initial multiclass GRU model is trained, the model must be incrementally

retrained in order to learn the detected load drift. However, models retrained using

only recent data often suffer from “catastrophic forgetting,” that is, the degradation

of performance on previous tasks when learning new tasks [105, 126]. One approach

to prevent catastrophic forgetting is the replay-based or rehearsal approach, in which

some of the previous samples are stored and repeatedly reused when the model is

retraining on new data [105, 127, 128]. Another approach is regularization-based,

in which a penalty consolidates the important weights, and selectively slows down
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learning on those weights [129]. The third approach is dynamic architecture-based,

which iteratively updates the network architecture by network masking or network

pruning [130]. In this work, the first method is applied, in which a memory buffer is

used to store a limited number of transients. For each load, the thirty most recent

transients are stored in a temporary memory buffer. Every time a new drift cluster is

formed for a given load, the twenty most recent transients are stored in a permanent

memory buffer. This is analogous to storing the active exemplar for the correlation

matching technique, assuming that the load drift is incremental. Every time a new

drift cluster is formed, backpropagation is run on the model using every load’s tem-

porary and permanent memory buffer of transients. A learning rate of 0.0001 is used.

This is smaller than the learning rate of the initial classifier to ensure only incremen-

tal improvements are being made. The same data stratification split is used as for

the initial classifier. Training is stopped after five epochs of no improvement in the

validation loss.

For each load the number of transients stored is at most 30+20 ·𝑥, where 𝑥 is the

number of drift clusters for that load. Using the same size temporary memory buffer

for each load helps prevent biasing the classifier towards the class with the must

abundant number of recent events. A GRU classifier uses the output score of the

softmax output layer associated with each candidate load to perform classification.

Specifically, for the list of candidate loads in multiple coarse boundaries, the event

is classified as the load with the maximum softmax output score. If an event is not

within any coarse boundaries, the event is classified with the load with the maximum

softmax output score, as long as the score is greater than 0.5.

4.2.5 Drift Clusters

Over time, as a load ages or operating conditions change, load observations may drift

away from the initial exemplar, for both the coarse classifier and the fine classifier.

Keeping track of load concept drift and distribution changes serves an important

role for classification. It is especially important due to the few-shot nature of the

problem, as the initial dataset likely does not capture a load’s possible drift. In
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Algorithm 4.2 Algorithm for drift clustering.
Input: 𝑟0: micro-cluster radius
Input: 𝛾: density threshold
Output: ST: short-term drift metric
Output: LT: long-term drift metric
1: 𝐸 ← incoming event
2: 𝑑𝑚𝑖𝑛 ← distance of 𝐸 to closest micro-cluster center
3: if 𝑑𝑚𝑖𝑛 ≤ 𝑟0 then
4: Add 𝐸 to nearest micro-cluster
5: Set active exemplar as nearest micro-cluster exemplar
6: if 𝑑𝑚𝑖𝑛 ≤ 𝑟0

2
then

7: Update micro-cluster center
8: end if
9: else

10: Add 𝐸 to outliers
11: 𝑦 ← outlier with most outliers within distance 𝑟0
12: 𝑍 ← outliers within distance 𝑟0 of 𝑦
13: if Z contains at least 𝛾 points then
14: New micro-cluster ← 𝑍
15: New micro-cluster center ← mean of 𝑍
16: New micro-cluster exemplar ← 𝐸
17: Set 𝐸 as active exemplar
18: end if
19: end if
20: 𝑆𝑇 ← distance from 𝐸 to active exemplar
21: 𝐿𝑇 ← distance from 𝐸 to initial exemplar
22: return ST, LT

the framework, drift is tracked by designating certain load events as representative

exemplars. Furthermore, the distance in the feature space between an observation

and an exemplar serves as an important metric for diagnostics [131].

A density-based online clustering algorithm is used in order to determine the

representative exemplars. Example density-based clustering algorithms include clus-

tering online data in arbitrary shapes clusters (CODAS) and clustering evolving data

streams into arbitrary shapes (CEDAS) [132, 133]. These algorithms both use the

concept of a micro-cluster, which is formed based on local density. In this context,

each micro-cluster represents a load drift cluster. When a new micro-cluster is formed,

a new exemplar is designated to represent it.

The density-based clustering can be focused on the features that are most signif-
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icant for recognizing load drift. As an illustrative example, steady-state power level

changes (𝑃𝑠𝑠 and 𝑄𝑠𝑠) often indicate an underlying gradual shift in load performance.

Since these features both use power units, min-max normalization is not used for

this clustering process. The clustering and drift tracking process is summarized in

Algorithm 4.2. Each load’s initial exemplar is set as its first event. Until a load’s

first drift cluster is formed, the load’s active exemplar it its initial exemplar. After

every new data sample labelled by the preliminary check, coarse classifier, and fine

classifier, as outlined above, the clustering algorithm is run. A micro-cluster is formed

when an area in the feature space reaches a fixed density threshold, 𝛾, in this work

fixed to five points for all loads. The density threshold should be chosen based on

an estimate for when events can be deemed a repeatable occurrence. For example, in

power monitoring, a single event would not be enough to declare a new drift state. If

a load has energized five times in the same area in the feature space, it is more likely

to be a repeatable event. The micro-cluster radius, 𝑟0 is calculated for each load as

max(0.5 kW, 𝑃𝑠𝑠/10), where 𝑃𝑠𝑠 is the steady-state real power of the first load event.

The micro-cluster radius should be chosen based on expected normal variation. For

power monitoring, we set a minimum radius of 0.5 kW so that loads with small steady-

state values are not assigned impractically small micro-cluster radii. For larger loads,

we select 10% of the steady-state value to represent incremental drift. When the

criteria for creating a micro-cluster are met, the most recent event is selected as the

exemplar to represent the load state for events that belong to the micro-cluster. For

example, Fig. 4-4 shows the drift clusters and representative exemplars for the port-

side CPP pump on USCGC Spencer. The numbering of the drift clusters correspond

to the chronological order in which they were formed.

In the original CEDAS algorithm, a decay rate is used to remove defunct micro-

clusters. However, in our modified approach, each of the previously active micro-

clusters is maintained. This is necessary for continued load diagnosis and to take

into account recurring concept drift. That is, the micro-clusters are never removed,

merged, or split once identified. The micro-cluster center is updated when a new

event is added that is within half the radius of the micro-cluster. In addition to
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Figure 4-4: CPP pump drift clusters and representative exemplars.

keeping all previous active exemplars, a short-term and long-term distance metric

are calculated, where the distance is defined as the Euclidean distance within the

steady-state feature space. The short-term metric is the distance from an incoming

event’s feature vector to the active exemplar’s feature vector and should remain small

for incremental drift. The long-term metric is the distance from the incoming event’s

feature vector to the initial exemplar’s feature vector. This metric is useful for load

diagnostics, as an increasing long-term drift metric provides indication of possible

load degradation. These drift metrics are demonstrated in Section 4.4.

4.2.6 Unclassifiable Loads

The framework is designed with the assumption that ground-truth labels will never be

available. The four-step process ensures high confidence in those that are classified,

in order to prevent the cascading result of an incorrect label. There are several

underlying reasons for why an event could be unclassifiable. First, it could simply be

the result of an imperfect event detector, and the detected event may not correspond

to an actual load event. It is important that the model not use these events, so as to
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not be impacted by noisy data. Second, if a feature vector is in multiple coarse load

boundaries and is further unidentifiable by the fine classifier, it likely means both

the extracted feature space and transient features need more dimensions in order to

increase separability. Third, the event could be an instance of a new or unknown

load class. Although out of the scope of this work to automatically identify a new

load class, a human operator can identify and label a new load that was added to the

system, or that was not accounted for during the NILM installation. The new load

would then be added to the load list, 𝐿, and initialized as described in Algorithm 4.1

by setting the initial and active exemplars and preliminary and coarse boundaries

for the load. When using adaptive correlation matching as the fine classifier, drift

clusters can be used to identify the exemplar for correlation matching. When using

an adaptive GRU, the GRU can be incrementally trained with the new labelled data.

Finally, it is possible that the unclassifiable load is the result of a load experiencing

a sudden fault leading to a sudden concept drift. If the fault causes its events to

be outside the load’s feature space boundaries and also unrecognizable by the fine

classifier, it is an instance of sudden concept drift, and operator supervision will

again be necessary to identity the faulty load.

4.3 Experimental Results

The framework was tested on a nonintrusive load monitoring dataset containing ob-

servations from three sub-panels on USCGC Spencer: the port-side engine room sub-

panel, starboard-side engine room sub-panel, and auxiliary room sub-panel. Data

was collected over the course of four years, with gaps in the data during some of the

in-port periods. Many of the loads are part of larger controlled systems, including

the port-side main propulsion diesel engine (MPDE) keep-warm system, the port-

side ship service diesel generator (SSDG) keep-warm system, and the fuel oil purifier

(FOP) system. The remaining loads are additional engine room loads and auxiliary

room loads. Table 4.1 lists the individual loads, their rated powers, and the number

of events in the dataset. For the graywater pump, a random subset of 2000 events
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Table 4.1: Loads from USCGC Spencer in dataset.

System Equipment Rated # of
Power Events

Port-side MPDE
keep-warm system

Jacket water heater 9.0 kW 117
Lube oil heater 12.0 kW 278
Prelube pump 2.2 kW 242

Port-side SSDG
keep-warm system

Jacket water heater 7.5 kW 1178
Lube oil heater 1.3 kW 2732

Fuel oil purifier
system

Centrifugal motor 9.5 kW 1131
Feed pump 2.6 kW 341

Additional engine
room loads

Controllable pitch propeller pump 7.5 kW 561
Graywater pump 3.7 kW 2000
Bilge and ballast pump 5.6 kW 213

Auxiliary room loads Air compressor 7.5 kW 1390
Air conditioner 17.0 kW 74

from the dataset was used to keep the event count on the same order as the remain-

ing loads. Fig. 4-5 shows the initial time-domain transients for each of the loads.

Since the data collection for the auxiliary room panel was started later than the port

and starboard sub-panels, the data was aligned such that the start of data for each

sub-panel was set to 𝑡 = 0.

The extracted features for the preliminary check and coarse classifier include the

real power steady-state (𝑃𝑠𝑠), reactive power steady-state (𝑄𝑠𝑠), the maximum ap-

parent power at inrush (𝑆𝑝𝑒𝑎𝑘), and transient time. Changes in steady-state levels are

calculated as the difference between the median values over 0.5 s windows before and

after an identified event. The maximum power at inrush is defined as the difference

between the maximum value of the transient and the median value of a 0.5 s window

before the transient. For transient time, first a ten-point rolling mean is applied to

the first difference stream of apparent power. If there is a first difference of −500 W

or less, indicating a large negative slope, the steady state is determined to be after

this value. Then, if the rolling mean of the first difference stream is less than 5 W,

it indicates that the apparent power stream has reached steady state. The feature

axes are normalized with min-max normalization. The fine classifier features are six

seconds of the 𝑃 and 𝑄 waveforms, centered at the detected transient.
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Figure 4-5: Zoomed-in view of the initial time-domain transients for each of the loads
in the dataset.
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4.3.1 Two-Dimensional Static Classifier

First, a subset of these loads are used in a two-dimensional feature space of 𝑃𝑠𝑠 and

𝑄𝑠𝑠 as illustration of the reduced performance of a static classifier due to changing load

behavior over time. A deep neural network (DNN) is trained and used as a classifier

for six loads from USCGC Spencer. A limited dataset is used for training consisting

of the first month of data after installation of the NILM. This is a practical scenario

for nonintrusive load monitoring classifiers, as algorithms may need to be trained on

data as it arrives in time. Ideally, the end user will not need to wait for years of

data collection before the utility of NILM can be realized for energy scorekeeping

and fault detection. The DNN was implemented with two hidden layers of 50 and

then 30 ReLU-activated neurons, followed by a softmax-activated layer. The DNN

was trained with Adam-optimized backpropagation and categorical crossentropy as

the loss function. The data was split into 80% training and 20% validation with data

stratification. Mini-batch gradient descent was used with a batch size of 64. The

validation loss was used as a stopping criterion, such that training was stopped after

fifteen epochs in which the validation loss did not significantly improve.

For these six loads, the fuel oil purifier (FOP) centrifuge, controllable pitch pro-

peller (CPP) pump, graywater pump, FOP feed pump, main propulsion diesel engine

(MPDE) prelube pump, and bilge and ballast pump, the trained model had perfect

classification for all load events in the validation dataset. The limited set and the

resulting decision boundaries are shown in Fig. 4-6a. When the model was tested

on the rest of the data collected on the USCG vessel (from October 2016 through

September 2020) there was significantly reduced performance due to the drifting in

the feature space of several loads. Fig. 4-6b shows the decision boundaries from the

model trained on the training data with the data points from October 2016 through

September 2020 plotted. The CPP pump has drifted into the FOP classification re-

gion, the MPDE PL pump has drifted into the FOP feed pump and graywater pump

classification regions, and the bilge and ballast pump has drifted into the graywater

pump, MPDE prelube pump, and FOP feed pump classification regions. This perfor-
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(a) Limited dataset plotted.

(b) Full dataset plotted.

Figure 4-6: 𝑄𝑠𝑠 versus 𝑃𝑠𝑠 decision boundaries, trained on a limited dataset.

mance degradation is due to the fact that with limited data, there is usually more than

one large-margin low-density separator that can accurately classify the load points.

There could be many separators that are consistent with the limited labelled data,

but are very diverse with respect to the feature space [134]. It is difficult to determine

164



the optimal separator based on the limited data alone.

4.3.2 Framework Verification

Two main scenarios are tested with the adaptive framework. In the first, classifica-

tion with the framework starts with only a single event for each load, also known

as one-shot learning [111]. In the second scenario, classification with the framework

begins after one month of data has been collected by the NILM and all events have

been hand-labelled. To use the framework in the first scenario, with only a single ex-

emplar for each load, provisional preliminary and coarse boundaries are implemented

in the four-dimensional feature space, as described in Section 4.2. Each load’s ini-

tial exemplar is set to be that load’s active exemplar for the correlation matching

fine classifier, to start with. For each load, after 10 events have been classified, the

preliminary and coarse boundaries are updated by fitting PCA hyperellipsoids to the

classified load data. Algorithm 4.2 is used to identify and update the active exemplar.

For the second scenario, the preliminary and coarse boundaries are implemented as

PCA hyperellipsoids and the two fine classifiers described in Section 4.2.4 are tested:

correlation matching and a gated recurrent unit (GRU) classifier. The correlation

matching algorithm is deterministic, so it is only run once. Since the GRU training

is stochastic, the test using the GRU fine classifier is run ten times and averaged.

Several static techniques are also trained and tested. Since the static techniques

cannot be trained well using only a single data point for each load, these classifiers

are only used for the second scenario, i.e., after one month of data has been collected.

A DNN classifier and support vector machine (SVM) classifier are trained using the

same four-dimensional feature space that the preliminary checks and coarse classifiers

use: 𝑃𝑠𝑠, 𝑄𝑠𝑠, 𝑆𝑝𝑒𝑎𝑘, and transient time. A GRU classifier is trained using the same

fine feature space as the fine classifier, six seconds of 𝑃 and 𝑄. For all three models,

the data was split into 80% training and 20% validation, with data stratification to

allocate samples evenly based on sample class. For the SVM classifier, a radial basis

function kernel is used with a regularization parameter of one. The kernel coefficient

is one over the number of features times the variance of the training data. Both the
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DNN and GRU were trained with Adam-optimized backpropagation with a learning

rate of 0.001 and categorical crossentropy as the loss function. The validation loss

was used as a stopping criterion, such that training was stopped after fifteen epochs

of no significant improvement. The DNN was implemented with two hidden layers of

50 and then 30 ReLU-activated neurons, followed by a softmax-activated layer. The

GRU was implemented with a GRU layer with 50 ReLU-activated neurons, then two

densely connected layers with 30 ReLU-activated neurons each, and finally a softmax-

activated layer. For the DNN and GRU, ten different models were trained and the

results were averaged. The tests are summarized below:

• Starting with a single event for each load (one-shot)

– Adaptive correlation matching

• Starting with one month of data

– Adaptive correlation matching

– Adaptive GRU

– Static SVM

– Static DNN

– Static GRU

The precision, recall, and 𝐹1-score are calculated for each load,

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹1-score = 2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
,

(4.3)

where 𝑇𝑃 is the number of true positives, 𝐹𝑃 is the number of false positives, and

𝐹𝑁 is the number of false negatives [135]. Precision is the proportion of reported

events that are correct. Recall is the proportion of load events that are reported. The

𝐹1 score is the the harmonic mean of precision and recall. Precision and recall values

of one indicate perfect performance in identifying a specific class, leading to “perfect”

𝐹1 scores equal to one. Lesser values indicate imperfect classification. The results

for the one-shot scenario and one month scenarios are presented in Table 4.2 and
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Table 4.2: Accuracy of classifying on-events (one-shot).

One-Shot
Adaptive

Correlation
Matching

Equipment # of Events 𝐹1 score
MPDE jacket water (JW) heater 116 0.991

MPDE lube oil (LO) heater 277 0.993
MPDE prelube pump 241 0.966

SSDG jacket water (JW) heater 1177 1.0
SSDG lube oil (LO) heater 2731 0.999

FOP centrifuge 1130 0.714
FOP feed pump 340 0.974

CPP pump 560 0.991
Graywater pump 1999 0.999

Bilge and ballast pump 212 0.990
Air compressor 1389 0.996
Air conditioner 73 0.993

Table 4.3, respectively. The adaptive classifiers show improved performance over the

static classifiers for several loads, including the CPP pump, MPDE prelube pump, and

bilge and ballast pump. The one-shot scenario using adaptive correlation matching

performs suboptimally on only the FOP centrifugal motor, due to an abnormal load

operating pattern described in the following section. Fig. 4-7 shows two normalized

confusion matrices to compare the adaptive versus static classifiers starting with one

month of data. Fig. 4-7a shows the results of adaptive correlation matching and Fig. 4-

7b shows the results of the static SVM. For the static SVM, the CPP pump is often

misclassified as the FOP centrifuge, the MPDE prelube pump is often misclassified

as the graywater pump, and the bilge and ballast pump is often misclassified as

the MPDE prelube pump and graywater pump. These results are consistent with

the demonstration in the previous two-dimensional demonstration of Fig. 4-6. The

separability issues persist even in higher dimensions.
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Table 4.3: Accuracy of classifying on-events (one month initial dataset).

Trained with One Month of Data
Adaptive Static

Correlation
Matching GRU SVM DNN GRU

Equipment # of Events 𝐹1 score
MPDE jacket
water (JW)

heater
91 0.978 0.997 0.995 0.991 0.830

MPDE lube oil
(LO) heater 268 0.992 0.996 0.998 0.995 0.980

MPDE prelube
pump 241 0.998 0.998 0.884 0.903 0.675

SSDG jacket
water (JW)

heater
956 1.0 1.0 1.0 1.0 0.993

SSDG lube oil
(LO) heater 2705 0.999 0.999 0.999 0.999 0.992

FOP centrifugal
motor 1103 0.994 0.996 0.968 0.972 0.934

FOP feed pump 329 1.0 1.0 0.953 0.910 0.814
CPP pump 530 0.982 0.971 0.925 0.934 0.830
Graywater

pump 1965 0.999 0.999 0.990 0.990 0.944

Bilge and
ballast pump 208 0.998 0.972 0.838 0.791 0.540

Air compressor 229 0.983 0.954 0.977 0.986 0.874
Air conditioner 39 0.987 0.997 1.0 0.996 0.920

4.4 Physical Interpretation of Results

The improved performance of the adaptive framework over the static classifiers can

be explained by analyzing the physical operation of these loads over time. Load

electrical characteristics are sometimes dependent on changing operating conditions.

These conditions are manifested in the feature space as concept drift, which the

adaptive methods seek to cope with. For instance, the steady-state power of the CPP

pump was shown in Fig. 1-8 to vary based on operating pressure. Other loads also

have drifting steady-state power behavior, as shown with example turn-on transients

of the ballast pump and MPDE prelube pump in Fig. 4-8a and Fig. 4-8b, respectively.
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Figure 4-7: Normalized confusion matrices rounded to two decimal points with one
month of training data.
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Figure 4-8: Example turn-on transients demonstrating drifting steady-state values.

This section gives provides analysis for this behavior. The drift metrics tracked by

the framework are also useful diagnostic indicators, for tracking both short-term and

long-term behavior.

4.4.1 Bilge and Ballast Pump

The bilge and ballast pump is used for emptying machinery space bilges of excess

water and for taking on ballast water for stability purposes [27]. The bilge and ballast

pump electrical signature is highly variable, likely due to air pockets within the bilge

and ballast pumping system. When pumping bilges and ballast tanks, operators try

to get the tanks and bilges to the lowest level possible. As a result, the pump takes

in a mixture of air and water. After the pump is turned off and suction is shifted

to a new tank, the air remains in the system, resulting in a prolonged start sequence

in which the pump draws a variable amount of power. The variable nature of the

power consumption results in drift in the feature space. Over time, six micro-clusters

are formed in the drift tracking process, as shown in Fig. 4-9a. The representative

exemplars for these six micro-clusters are shown in Fig. 4-9b.
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Figure 4-9: Bilge and ballast pump drift clusters and representative exemplars.

Fig. 4-8a shows the first five transients of the bilge and ballast pump, correspond-

ing to the first month of data, showing that in each of these transients, the pump

quickly reaches steady state. Each of these transients are within the first drift cluster.

Also shown in Fig. 4-8a are five subsequent transients for the most extreme case, in

which the pump draws approximately one-fifth of the power of the initial transients.

These transients are all within the leftmost drift cluster. Because there are no in-

stances of load drift in the first month of data, it would not be possible to predict this

variable nature of the pump, even if synthetic data was added to the first month’s

training and validation data. All of the static classifiers have poor performance on the

bilge and ballast pump, due to misclassification of the bilge and ballast pump as other

loads. The large number of false negatives can be demonstrated by viewing a graph

of the bilge and ballast pump recall over time, as shown in Fig. 4-10. The recall value

is calculated at every load event for all the data up to that time index. Although the

recall is initially poor for this load, it improves over time for the adaptive classifiers.
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Figure 4-10: BP cumulative recall for six classifiers run on the full dataset.

4.4.2 Controllable Pitch Propeller Pump

As was detailed in Section 1.2, the NILM detected changes in the monitored CPP ‘C’

pump’s steady-state power consumption (𝑃𝑠𝑠) for over a four-year period. The change

was slow; however, at its worst the difference in real-power steady state between two

different turn-on events is more than 4 kW. As the power of the CPP pump increases,

the radii of the preliminary and coarse boundaries for this load also increase. Over

time, six micro-clusters are formed in the drift tracking process, which was shown in

Fig. 4-4a. Fig. 4-11 shows the cumulative recall for the CPP pump to analyze the

performance of both the static and adaptive classifiers over time as the load drifts,

in particular the false negatives of the static classifiers. As noticed by the large

negative slope in the recall, the static classifiers show a reduction in performance

starting at around the 259th CPP pump sample. This corresponds to February 2018,

when the CPP pump showed an increase in power after replacement of the hydraulic

control valves. When the CPP pump’s electrical characteristics begin to drift back

to its initial state, the performance of the static classifiers begin to improve. This

improvement begins at around the 395th CPP pump sample (August 2018) for the
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Figure 4-11: CPP pump cumulative recall values for six classifiers run on the full
dataset.
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Figure 4-12: CPP pump long-term and short-term distance metrics.

static classifiers.

In contrast, the adaptive classifiers do not exhibit this trend of its performance

being correlated with the load drift. Potential errors of the static classifier are revealed

by examining the long-term and short-term drift metrics. As shown in Fig. 4-12, the

long-term metric increases at around the 259th CPP pump sample point, the same

time that the static classifiers show a reduction in performance. However, the short-
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Figure 4-13: CPP pump cumulative recall for three GRU implementations.

term drift metric remains relatively small, corresponding to small changes between

load events, indicating an incremental concept drift. Thus, the adaptive framework

can still accurately identify and track the CPP pump. Then, the long-term metric

can be used as an indicator of changing machine behavior.

The behavior of the CPP pump is used to demonstrate the proposed framework’s

ability to avoid catastrophic forgetting in the presence of recurring concept drift.

For demonstration, an alternative GRU adaption scenario is tested, such that the

framework was kept identical to before except for the implementation of the GRU

retraining. In this alternative adaptive implementation, the GRU was retrained after

the formation of every drift cluster, as before, except this time the memory for each

load is the twenty most recent transients. Over time, the GRU will not have access

to the older data when retraining. This test was run ten times and averaged, with

the recall values labelled “Forgetting” shown in Fig. 4-13. Although this alternative

adaptive implementation is able to produce a high recall score until around the 479th

sample (July 2019), after this point the performance decreases drastically, presumably

because it has no memory of this previously known state anymore. For the static GRU
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Figure 4-14: MPDE prelube pump drift clusters and representative exemplars.

classifier, in the plot labelled “Static,” the score improves when the load drifts back to

the initial state, since this is the state the model was trained on. Both the adaptive

GRU classifier with only recent memory (“Forgetting”) and the static GRU classifier

(“Static”) exhibit many false negatives. In contrast, the proposed adaptive GRU

implementation, labelled “Adaptive,” has high recall values for the entire duration,

even during recurring drift when the load drifts back to the initial state.

4.4.3 Main Propulsion Diesel Engine Prelube Pump

The main propulsion diesel engine (MPDE) prelube pump ensures adequate lubri-

cating oil distribution during startup and shutdown of the engine. The pump is

manually energized prior to engine startup and operates automatically during engine

shutdown. The MPDE prelube pump steady-state power showed similar trends to

the CPP pump. The control valves of the MPDE prelube pump were replaced at

the same time as for the CPP pump, and there was subsequently a similar increase

in the power of the MPDE prelube pump in February 2018, and a similar decrease

in power over time afterwards. Fig. 4-8b shows an example of five transients in the

time domain from March 2018 and five transients from August 2020. Over time, four
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Figure 4-15: MPDE prelube pump cumulative recall values for six classifiers run on
the full dataset.

micro-clusters are formed in the drift tracking process, as shown in Fig. 4-14a. The

representative exemplar for each of these micro-clusters is shown in Fig. 4-14b. As the

load drifts away from its initial state, the MPDE prelube pump is misclassified by the

static classifiers, leading to an increasing number of false negatives. This is shown in

the plot of recall over time in Fig. 4-15. The steep decrease in recall at about the 80th

MPDE prelube sample correlates exactly to February 2018. Meanwhile, the adaptive

classifiers all show almost perfect performance. The short-term and long-term drift

metrics are shown in Fig. 4-16, showing an increase in long-term metric also at the

80th sample point. The short-term metric briefly increases at the time, but quickly

returns to a relatively small distance.

4.4.4 Fuel Oil Purifier

A shipboard fuel oil purifier (FOP) presents an example of a sudden change in op-

erating condition. The FOP is run frequently while underway to clean the diesel

oil before use in the MPDEs or SSDGs. The FOP consists of a feed pump, which
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Figure 4-16: MPDE prelube pump long-term and short-term distance metrics.

draws fuel from various storage tanks around the ship and a motor-driven centrifugal

separator system [27]. Observations showed two distinct operating conditions for the

FOP centrifuge, a cold-start and a warm-start. Under normal operating conditions,

the feed pump will energize, followed shortly by the centrifuge. The centrifuge ener-

gizes in the cold-start condition; that is, the motor is starting up after being off for a

sufficiently long period. Large current is needed to begin rotation of the motor shaft.

Often, while the feed pump is still energized, the centrifugal system’s motor cycles.

This means the centrifugal system’s motor turns off, then re-energizes shortly after in

a warm-start condition, often only a few seconds after turning off. It is likely that the

motor shaft is still spinning, so the inrush current is significantly smaller. This faulty

scenario puts unnecessary wear on the centrifugal system’s motor, as these warm-

starts do not have any function for the system. Example cold-start and warm-start

transients are shown in Fig. 4-17.

Fig. 4-18 shows the recall and precision scores for the FOP centrifuge. The de-

creasing recall for the one-shot adaptive classifier is because the warm-start events

were deemed unclassifiable. The first instance of the FOP centrifuge was in the cold-

start condition. The warm-start condition acts as a sudden concept drift. Although

the warm-start instances lead to an increase in false negatives for the FOP centrifuge,

it is significant that they did not become false positives for another load. By identi-

fying the instances as unclassifiable, an operator could then identify the unclassified
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of the fuel oil purifier centrifuge motor.
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Figure 4-18: Cumulative recall and precision values for six classifiers run on the full
dataset for the fuel oil purifier centrifuge motor.

events as the centrifuge operating in a faulty warm-start condition. For the adaptive

correlation matching which started with one month of data, because there was an

example of the warm-start condition in the training data, the classifier was able to

correctly identify both the cold-start and warm-start conditions.

Unlike the adaptive framework, which is robust to outlier load events, the static

classifiers will label every incoming load event. This means every false negative of
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one load results in a false positive in another load. This is illustrated by examining

the precision score over time of the FOP centrifuge. The steep decrease in precision

starting at about the 408th FOP centrifuge sample is in February 2018. As expected,

this is exactly when the CPP pump recall starts to decrease, because the CPP pump is

being misclassified as the FOP centrifuge. The precision begins to improve at around

the 630th FOP centrifuge sample (August 2018), the same time that the CPP pump

recall begins to improve.

4.5 Chapter Summary

An adaptive classification framework was presented in this chapter to simultaneously

address incremental and recurring concept drift, one-shot or few-shot learning, and

extreme verification latency. The results of running the framework on a collection

of shipboard loads demonstrate the ability of the framework to accurately detect

load geometric events even as they drift in the feature space over time. Because the

classifiers are physically informed, they are effective in both one-shot and few-shot

scenarios, while allowing for adaptation as data is collected in real time. For loads

with time-dependent changes in steady state, the drift metrics present an indicator

of possible load degradation. This information can be utilized by a watchstander as

a condition-based maintenance aid, so equipment and systems can be repaired or re-

placed before complete failure occurs. Using the proposed semi-supervised framework,

a dataset that includes drifting load behavior can be built that will make supervised

training more effective.
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Chapter 5

Energy Disaggregation of Stochastic

Power Behavior

The advantage of nonintrusive load monitoring relies on the ability to disaggregate

the energy consumption of individual loads from the aggregate power stream. For

some loads, accurate identification of geometric events is sufficient for accurate energy

estimation. The energy consumption of these loads can be computed by identifying

steady-state power changes during transient behavior, i.e., when the power usage of a

system quickly changes when transitioning between states, and tracking the operating

duration. That is, a constant steady-state value can be assumed for the entirety of

load operation. However, for many loads this is not the case. Many loads have

continuously changing power demand (i.e., continuously variable loads) [7]. Loads

with continuously changing power demand do not have unique power consumption

levels or a fixed number of states for the entirety of load operation. Accordingly, it is

much more difficult to identify and track the operation of continuously variable loads

with the same techniques used for loads that can be fully characterized with distinct,

relatively repeatable power consumption transients.

Power electronic loads such as variable frequency drives (VFDs) and light dim-

mers may exhibit smoothly variable power demand. References [7] and [88] present

identification methods for power electronic loads. These methods rely on significant

higher-order current harmonics to distinguish the fundamental component power con-
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sumption of power electronic loads from that of loads with constant steady-state power

demand. Both methods assume that only a single variable load is present in the ag-

gregate stream, and both methods rely on higher harmonic signatures that are not

always present for all loads.

As was shown in Section 3.1.2.2, some loads have non-constant power demand that

varies with loading conditions. These loads, such as computer-controlled machine

tools, remain stubbornly resistant to conventional nonintrusive electrical monitoring

methods. The power behavior of these loads can be modelled as stochastic processes.

Fluctuating power demands, e.g., in a CNC machine tool, can also correspond to

loaded conditions and mechanical processes that introduce wear into the system.

Fortunately, the fluctuations typically have certain statistical properties characteristic

of the load operation. New statistical features for stochastic power behavior were

introduced in Section 3.1.2.2 and are demonstrated in this chapter.

Advances in pattern classification and deep learning have enabled automated fea-

ture extraction and classification on high-dimensional data. On the surface, identi-

fication of stochastic power behavior using their statistical features would appear to

be an ideal problem domain for such deep classifiers. Classifiers such as convolutional

neural networks can extract features and “learn” the stochastic behavior of the loads of

interest. However, these approaches require a relatively large amount of training data

and effort to obtain high generalization [97]. A practical NILM in industrial sites will

likely need to collect its own training data, making training data a scarce resource.

Rather than use high-dimensional time-domain data for classification, the proposed

system extracts lower-dimensional features that describe the observed distributions

of the power values. This makes it possible to avoid the burdens of requiring large

training datasets and long training times associated with deep learning classifiers.

This chapter presents a method for the disaggregation of fluctuating power be-

havior in an aggregate power stream. New techniques are presented that estimate

individual load energy consumption. These techniques are also useful for load con-

dition monitoring. Laboratory and field results are presented from two case studies:

machining equipment and load operation on a shipboard microgrid. The work in this
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section was in collaboration with Aaron Langham.

5.1 Statistical Feature Extraction

As was shown, variations in power draw can occur at multiple time-scales as a result

of different mechanical processes [6]. The power variations of interest in this chapter

occur on slower time-scales than the main load on and off events, but at faster time-

scales than smoothly varying power demand from VFDs. The fluctuating power

variations, referred to in this thesis as “statistical” events, do not necessarily indicate

that the load has transitioned to a different steady-state level. This section presents

a method for disaggregating statistical events of multiple loads from an aggregate

power stream.

For feature extraction, the examples presented in this chapter use four streams:

real power residual stream (𝑃𝑟), reactive power residual stream (𝑄𝑟), first-order dif-

ference of the real power residual stream (𝑃 ′
𝑟) and first-order difference of the reactive

power residual stream (𝑄′
𝑟). After the ECDFs are computed with the process de-

scribed in Section 3.1.2.2, the ECDFs are used as a feature vector representation of

the statistical properties of the window of interest. This work uses the 𝑘-nearest

neighbors (𝑘-NN) classifier, since many distance metrics are applicable. The feature

vector used as input to the 𝑘-NN classifier in this work is a concatenation of four

ECDF curves, computed for 𝑃𝑟,𝑛, 𝑄𝑟,𝑛, 𝑃 ′
𝑟,𝑛, and 𝑄′

𝑟,𝑛. The classification process in-

volves finding the 𝑘 nearest training data points to the input feature vector, using

the Euclidean distance (𝑙2 norm). An alternate choice of vector norm could be used

if desired, e.g. the 𝑙∞ norm. The classification process involves finding the 𝑘 nearest

training data points to the input feature vector, using the Euclidean distance. The

input is classified to the class whose points makes up the plurality of these 𝑘 nearest

neighbors. Typically, choosing a larger value of 𝑘 makes the classifier less likely to

overfit, but ignores more local patterns in the data [136]. A larger value of 𝑘 will

also require more computation in searching for the neighbors of an input point. For

binary classification (i.e., there are only two classes), choosing 𝑘 to be odd results
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Figure 5-1: Process for calculating ECDF curves for two example windows of the
CPP pump.

in there never being a tie between classes. Neighbors can also be weighted based

on the distance to the input feature. This work assumes that statistical regions of

multiple loads do not overlap. The overlap condition could be handled by adding

classes representing each overlap combination.

The feature extraction process is demonstrated for two scenarios. First, it is

demonstrated for two windows of the controllable pitch propeller (CPP) pump, shown

in Fig. 5-1. Fig. 5-1a shows two 30-second windows of the original 𝑃 stream of the

CPP pump. As was shown in Section 1.2, the steady state power of the CPP pump is

correlated with the normalized system operating pressure. The two windows in Fig. 5-

1a shows two significantly different steady state values. Generally, as the steady state

increases, the magnitude of the fluctuations in power decreases. That is, because the

pump is already at a higher power and pressure, it does not need to “surge” as much

to compensate to reach the required demand. However, with min-max normalization,

these smaller, but still indicative surges in power have similar statistical characteristics

to the larger surges. Fig. 5-1b shows the resulting normalized residual streams (𝑃𝑟,𝑛)

using a 30-second median filter. Fig. 5-1c shows the histograms with 100 bins for
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Figure 5-2: Process for calculating ECDF curves for an example window of the CPP
and BP.

the two windows in Fig. 5-1b. Finally, Fig. 5-1d shows the ECDF curves for the two

windows. Even though the overall magnitudes of the fluctuations are different, the

ECDF curves are similar using the normalized data.

The next comparison is of an example CPP pump window and an example bilge

and ballast pump (BP) window, as shown in Fig. 5-2. The residual real power streams

using a 30-second median filter are shown in Fig. 5-2a. Then, the normalized residual

streams are shown in Fig. 5-2b. Fig. 5-2c shows the histograms with 100 bins for the

two windows. Finally, Fig. 5-2d shows the ECDF curves for the two windows. There

is a large separation between these two ECDF curves.

5.2 Energy Estimation

Large fluctuations in power draw need to be attributed to the correct load for accurate

energy estimates. These large fluctuations are not accounted for when using event-

based algorithms that assume approximately discrete steady-state levels [16,18]. Us-

ing the proposed statistical features, once the stochastic behavior has been classified,
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Figure 5-3: Power stream of a shipboard bilge and ballast pump with stochastic
behavior in the transition between steady states.

the original power stream in the windows of interest can be numerically integrated to

estimate the energy of each load. In addition, loads can exhibit stochastic behavior

in the transition between steady states. By identifying the difference in steady-state

power consumption for the load exhibiting stochastic behavior, its steady-state power

can be updated in real time. As an example, consider the shipboard bilge and ballast

pump shown in Fig. 5-3, with identified stochastic behavior labelled. The steady-state

real power levels before and after the stochastic behavior are significantly different.

This new steady-state value can be tracked and assigned to this load so that an

incorrect steady-state value is not used in energy estimation.

The proposed algorithm to process the power stream into windowed events is

given in Algorithm 5.1. This algorithm calls the function described in Algorithm 5.2

in order to disaggregate the energy for each load in the stream. A rolling window of

user-defined length is run through the power stream, and geometric and statistical

event detectors are run. The geometric event detector is responsible for identifying

load turn-on and turn-off events, as well as transitions between discrete states. Here,

it is assumed a geometric event classifier has already been trained. Although not in the

scope of this chapter, many geometric event detectors are applicable. The statistical

event classifier, described in Section 5.1, is responsible for identifying regions with

186



Algorithm 5.1 Algorithm for processing power stream into windowed events.
Input: power_stream
Input: load_list
Input: window_length
Input: geometric_length
Input: statistical_increment
1: 𝑛 ← window_length
2: while 𝑛 ≤ length(power_stream) do
3: window ← power_stream[𝑛 - window_length:𝑛]
4: if CheckForGeometricEvent(window) then
5: event_load ← GeometricClassifier(window)
6: Update event_load.ss
7: 𝑖← geometric_length
8: else if CheckForStatisticalEvent(window) then
9: event_load ← StatisticalClassifier(window)

10: Update event_load.ss
11: 𝑖← statistical_increment · window_length
12: end if
13: 𝑖← 1
14: EnergyEstimation(event_load, 𝑖) ◁ Run Algorithm 5.2
15: 𝑛 += 𝑖
16: end while

Algorithm 5.2 Energy estimation algorithm.
Input: event_load (can be None)
Input: 𝑖, amount to increment window
1: if event_load is None then
2: for load in loads do
3: if only load is operating then
4: load.energy += Trap(power_stream, 𝑖)
5: else
6: load.energy += Rect(load.ss, 𝑖)
7: end if
8: end for
9: else

10: for load in loads except event_load do
11: load.energy += Rect(load.ss, 𝑖)
12: event_load.energy −= Rect(event_load.ss, 𝑖)
13: end for
14: event_load.energy += Trap(power_stream, 𝑖)
15: end if
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large load power fluctuations. Throughout the stream, the algorithm keeps track of

the current steady-state real power of each load (denoted as load.ss in Algorithms 5.1

and 5.2). This value is updated for a given load whenever a geometric or statistical

event from that load is detected. For geometric events, the steady state after an on-

event is calculated as the change in mean value of a user-defined length window (e.g.,

0.2 seconds) at the end and start of the geometric window. Turn-off events detected by

the geometric event detector are assumed to change the load’s steady-state power to

zero, rather than using the difference computed across the window. An assumption

is made that the stochastic behavior occurs in superposition with the steady-state

power consumption of all other energized loads and that the steady-state power of

the other loads has remained constant. That is, the steady state after a statistical

event is the aggregate power at the end of the window (i.e., the mean of last 0.2

seconds of the window) minus the stored steady-state values of the other energized

loads. The statistical event detector will only classify and update the steady state if

the classified load does not currently have a steady-state power of zero.

The energy estimation algorithm uses a combination of rectangular and trape-

zoidal integration [137], denoted in Algorithms 5.1 and 5.2 as Rect() and Trap(),

respectively. In this chapter, only real power is integrated, so that the result has

physical meaning as useful work done by the system. However, reactive and apparent

power could also be integrated with the same process. When there is only one load

operating, trapezoidal integration is performed, and the resulting energy is added

to the operating load’s total energy. When a statistical window is identified as a

specific load, all other loads’ energies are calculated with rectangular integration of

their steady-state real power (i.e., load.ss). Trapezoidal integration is performed and

the result is added to the load’s total energy. The sum of the energy calculated for

the other loads with rectangular integration is subtracted from the identified load’s

energy total, to remove the contribution of the other loads added in the trapezoidal

step. In all other cases, rectangular integration uses each load’s stored steady-state

real power. An instantaneous estimate of disaggregated power can be computed sim-

ilarly. For each window, each load’s power is assumed to be its current steady-state
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Figure 5-4: Demonstration of tracking steady state after statistical events in energy
estimation algorithm.

power, unless it was responsible for a geometric or statistical event in the window.

In this case, its power over the window is assumed to be the power stream over the

window minus the sum of the current steady-state powers of the other loads. The

total duration of statistical event operation for each load can be tracked using the

identified statistical event windows.

An example of this process is illustrated in Fig. 5-4, in which there are two loads

operating, a controllable pitch propeller (CPP) pump and a bilge and ballast pump

(BP). In the figure, the CPP is the base load with a steady state indicated as “CPP.ss.”

Since there are multiple loads energized and no CPP geometric or statistical events in

this window, the CPP steady state is assumed constant and its energy is calculated

using rectangular integration. For the BP, the area indicted by the shaded region has

been identified as statistical event windows. The steady state of the BP prior to the

statistical event region is indicated by “Previous BP.ss.” The steady state of the BP

after the statistical event region is indicated by “New BP.ss” and was calculated by

taking the mean of the last 0.2 seconds of the statistical region, as highlighted with

the zoomed-in inset, and subtracting CPP.ss. Energy estimation of the BP statistical
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region is calculated using trapezoidal integration.

5.3 Machining Equipment

Monitoring the energy consumption of machining equipment is useful for efficiency,

energy reduction, and condition-based maintenance in the manufacturing industry

[83,138]. This section uses a CNC router and an industrial bench grinder to demon-

strate the utility of the proposed statistical event detector and energy disaggregation

method. CNC machining is a manufacturing process where automated machines re-

move raw material with cutting tools. The power draw of CNC cutting machine

operation varies based on cutting conditions such as the workpiece material, cutting

speed, feed rate, and depth of cut [83]. Industrial grinders are used for sharpen-

ing cutting tools and shaping objects. The power draw of a grinder depends on the

required load of the grinding operation.

The CNC machine uses a Bosch 2.25 hp router motor, set to a fixed speed of

21,500 rpm. A CNC router was used to make a straight line cut through a piece of

wood of various heights, as shown in Fig. 3-6. The major factors contributing to the

total energy consumption are labelled on the power stream. There is an inrush up to

1700 W as the spindle accelerates (not fully shown). It then reaches a steady state of

approximately 300 W while air-cutting. In this example, as the router cutting tool

engages the wood, the power increases up to 500 W. A geometric event detector would

likely only identify the spindle acceleration and deceleration as events and calculate

the steady-state power for a short window before and after the event. However, this

steady state would only correspond to air cutting, and not actual wood-cutting. The

wood-cutting events and the large energy consumed during them would go undetected.

The industrial bench grinder used for testing was a Dayton 0.5 hp grinder with

a six-inch grinding wheel, set to 1,800 rpm. An example power stream of machine

operation is shown in Fig. 5-5. In this example, the startup and idle (baseline)

operation is shaded blue, while the extra power required during grinding operation is

shaded in gray. The base load of the unloaded grinding wheel (analogous to air-cutting
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Figure 5-5: Power stream of industrial bench grinder.

of the CNC) is approximately 50 W. Grinding operations imitated burr removal and

edge beveling in preparation for welding of mild steel flat stock. During grinding

operation the power increased up to 300 W in this example. Integration of the shaded

areas in Fig. 5-5 revealed that more than half of the total energy consumed in the

example grinder stream is contained in the large fluctuations during loaded grinding

operation (i.e., the area shaded gray). However, only the start and end of the base

load operation would likely be identified as events by a geometric edge detector. A

majority of the energy consumed would be “invisible” using purely geometric event-

based disaggregation.

To demonstrate the statistical classifier, the CNC and grinder were both run

individually with several runs of normal cutting and grinding operation, respectively.

Statistical windows were detected from the data streams using a rolling window and

median filter both with length of 20 seconds. The rolling window to generate training

and testing data had an 80% overlap. The standard deviation threshold was set to

𝜎 = 20 W. In total, the dataset consisted of 21 and 68 windows of statistical activity

for the CNC machine and grinder, respectively. The ECDFs for the dataset are

shown in Fig. 5-6, for the 𝑃𝑟,𝑛, 𝑄𝑟,𝑛, 𝑃 ′
𝑟,𝑛, and 𝑄′

𝑟,𝑛 streams. The lines represent the
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Figure 5-6: ECDF curves of the normalized CNC and grinder streams. The lines
represent the average of all statistical windows in the dataset.

average of all the statistical windows in the dataset. These windows were randomly

split into 60% training and 40% testing with data stratification to allocate samples

evenly based on sample class. A 𝑘-NN classifier was trained with 𝑘 = 3 without

weighting. The dataset split and training was run 10 times for verification, with the

results for the testing sets averaged and shown in Table 5.1. The results are presented

as the average 𝐹1, precision, and recall scores, with 𝜎𝐹1 , 𝜎𝑃𝑟, and 𝜎𝑅𝑒 showing the

standard deviation of the runs. Precision, recall, and 𝐹1 scores of 1 indicate perfect

performance in identifying a specific class. The high scores for the grinder and CNC

can largely be explained by the behavior of the 𝑄𝑟,𝑛 stream, as evident with the large

separation of the average grinder and CNC ECDFs in Fig. 5-6b. The grinder appears

capacitive and has negative reactive power during grinding operation. The CNC

router appears inductive and has a positive reactive power which increases during

cutting. This difference is because the two loads have different motor types. As a

result, the histograms of the normalized reactive power stream will skew right for the

grinder and skew left for the CNC.

To demonstrate the statistical classifier incorporated with the energy estimation

algorithm, the CNC and grinder were run in an aggregately monitored environment.
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Table 5.1: Machining equipment statistical event classification.

Equipment # of
F1 (𝜎F1) Pr (𝜎Pr) Re (𝜎Re)Windows

CNC router 9 0.97 (0.03) 1.00 (0) 0.94 (0.06)
Grinder 27 0.99 (0.01) 0.98 (0.01) 1.00 (0)

Table 5.2: Machining equipment energy estimation.

Method Estimated (Wh) Total Error
CNC Grinder Total Percent RMSE

Proposed 36.519 8.259 44.777 0.33% 5.64 W
Rectangular 37.232 5.481 42.713 -4.30% 80.51 W

The overlap for rolling statistical windows was set to 75%. The aggregate power

stream is shown in Fig. 5-7a, with labels indicating main geometric and statistical

events. Fig. 5-7b shows the estimated disaggregated power streams of the CNC and

grinder. Table 5.2 shows the resulting energy estimates for the individual loads. The

sum of the estimated individual loads’ energy is used to estimate the total energy.

The results are compared to rectangular integration, in which the detected steady

state at the load on-event is the assumed steady state for the entire duration of load

operation. The error in total energy is shown as both percent error and root-mean-

square error (RMSE) compared to the ground truth aggregate stream. For percent

error, the estimated energy is compared to the ground truth energy computed with

trapezoidal integration. RMSE was calculated as the root-mean-square difference

between the ground truth total power stream and the sum of the estimated power

streams of each load. The proposed method closely matches the measured ground

truth, whereas the rectangular integration method results in an underestimate of total

energy. This underestimate is due to the large underestimate of the grinder’s energy

during grinding operation.

The tracked durations of grinder and CNC statistical events were 95 and 90 sec-

onds, respectively. This corresponds to the amounts of time that the grinding wheel

was being loaded and the CNC router bit was cutting. The methods described in this

chapter enable NILM systems to perform cumulative cutting time-based tool condi-

tion monitoring (TCM) of various machines from an aggregate point. Cumulative
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(b) Disaggregated power streams of the CNC router and industrial benchtop grinder.

Figure 5-7: Machine shop energy estimation.

time TCM methods are commonly used to estimate cutting tool health and remain-

ing useful life [139]. Non-uniform tool-life and loading conditions present challenges
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for cumulative time TCM. However, with the techniques presented, a NILM could

“weight” cutting time by equipment power consumption and account for non-uniform

wear or use power consumption as a proxy for tool condition.

5.4 Shipboard Loads

On the monitored subpanels of USCGC Spencer, there are two loads that have

stochastic behavior: the bilge and ballast pump (BP) and controllable pitch pro-

peller (CPP) pump. The BP is used for emptying machinery space bilges of excess

water in an emergency and for taking on ballast water for stability purposes [27].

When pumping bilges and ballast tanks, operators try to get the tanks and bilges to

the lowest level possible, and as a result, the pump takes in a mixture of air and water.

After the pump is turned off and suction is shifted to a new tank, the air remains in

the system, resulting in a prolonged start sequence in which the pump draws a vari-

able amount of power. It was shown in Section 4.3 that the initial steady state can

be as small as one-fifth of the expected steady-state level. As shown in Fig. 5-3, the

pump typically reaches the expected steady state, but it may take time on the order

of minutes. This large discrepancy complicates energy disaggregation using purely

geometric methods. As previously described, the monitored CPP pump is an electric

hydraulic pump that supplements a separate gear driven pump in order to provide

pressurized hydraulic oil to the CPP system and maintain hydraulic control pressure

at the propeller. Hydraulic control valves maintain system operating pressure based

on demand. As shown in Fig. 1-9, there are “surges” in power during operation of the

CPP pump, as highlighted in the zoomed-in window. These surges are a result of the

CPP pump compensating for the extra pressure required during ship maneuvering.

These two loads are on the starboard subpanel. For these loads, the median filter

length and window length were both set to 30 seconds. For training, instances of

individual operation of the CPP pump and BP were used. Rolling windows with

80% overlap were used with a standard deviation of 𝜎 = 200 W as the threshold for

identifying windows with statistical activity for training and testing. In total, the
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Figure 5-8: ECDF curves of the normalized CPP and BP streams. The lines represent
the average of all statistical windows in the dataset.

Table 5.3: Shipboard loads statistical event classification.

Equipment # of
F1 (𝜎F1) Pr (𝜎Pr) Re (𝜎Re)Windows

CPP 184 0.97 (0.006) 0.97 (0.006) 0.97 (0.009)
BP 235 0.98 (0.004) 0.98 (0.007) 0.98 (0.005)

dataset has 460 windows of the CPP and 586 windows of the BP. The ECDFs for

the dataset are shown in Fig. 5-8 for the 𝑃𝑟,𝑛, 𝑄𝑟,𝑛, 𝑃 ′
𝑟,𝑛, and 𝑄′

𝑟,𝑛 streams. The lines

represent the average of all the statistical windows in the dataset. The data was

randomly split into 60% training data and 40% testing data with data stratification.

A 𝑘-NN classifier was trained with 𝑘 = 3 without weighting. The dataset split and

training was run 10 times for verification, with the results for the testing sets averaged

and shown in Table 5.3.

The uniqueness of stochastic behavior can be explained by the physical mecha-

nisms. For instance, for the 𝑃 ′
𝑟,𝑛 streams, as shown in Fig. 5-8c, the mean value of the

BP ECDF (represented by the orange dashed line) corresponds to larger min-max

magnitudes than the mean value of the CPP ECDF (the blue solid line). Fig. 5-

9 shows example time-domain windows for both the CPP and BP. Fig. 5-9a shows
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(a) Normalized residual streams (𝑃𝑟,𝑛).
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(b) Normalized first-order difference of residual streams (𝑃 ′
𝑟,𝑛).

Figure 5-9: Normalized CPP and BP streams.

the normalized residual stream (𝑃𝑟,𝑛) and Fig. 5-9b shows the normalized first-order

difference of the residual stream (𝑃 ′
𝑟,𝑛). The CPP surge events have a sudden large

increase in power but a slower decrease back to steady state. That is, most of the

large first difference values are positive. Due to these large positive “spikes,” the

average after min-max normalization will be less than 0.5. In contrast, the rapid

fluctuations of the BP generally results in larger “spikes” in the negative direction,

indicating many large magnitude negative first difference values. The average after

min-max normalization is generally greater than 0.5.

The statistical classifier and energy estimation algorithm were run for a two-hour

window of the starboard subpanel aggregate NILM stream in which the CPP and

BP were both energized. The overlap for rolling statistical windows was set to 75%

with threshold set to 𝜎 = 100 W. The aggregate power stream is shown in Fig. 5-10a.

Fig. 5-10b shows the estimated disaggregated power streams of the CPP and BP.
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(b) Disaggregated power streams of the CPP and BP.

Figure 5-10: Shipboard load energy estimation.

Table 5.4 shows the resulting energy estimates for the individual loads and the total

energy. Again, the results are compared to rectangular integration. The proposed

algorithm has excellent agreement with the aggregate ground truth for total energy.

In contrast, there is a large underestimation of total energy when using rectangular

integration. This is due to the large underestimation of the energy of the BP, since

with the rectangular method the steady-state power is not updated after statistical

events. This is better illustrated with a zoomed-in 30 minute view shown in Fig. 5-11.

Here, it is clear to see that when the BP turns on, it is initially at a low steady-state

value of approximately 1 kW. Then, about five minutes later it reaches a steady state

of 5 kW after a period of stochastic behavior. This behavior was accurately identified
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Table 5.4: Shipboard loads energy estimation.

Method Estimated (kWh) Total Error
CPP BP Total Percent RMSE

Proposed 13.600 4.392 17.992 0.13% 0.206 kW
Rectangular 13.987 1.839 15.827 -11.92 % 1.846 kW
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(b) Disaggregated power streams of the CPP and BP.

Figure 5-11: Shipboard load energy estimation zoomed-in view.

with the new statistical techniques.

The tracked durations of CPP and BP statistical events were 13.00 and 8.63 min-

utes, respectively. The duration of the CPP pump statistical events represents the

working time of the relief valves in the hydraulic manifold. The relief valves regulate

system pressure based on demand. Throttle commands that alter propeller blade
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pitch require greater system pressure and places a greater demand on the system.

During periods of low demand with no changes in pitch, hydraulic oil interacts with

and opens the low pressure relief valve. During periods of high demand, the hydraulic

oil alternatively interacts with and opens the higher pressure relief valve; correspond-

ing to the observed statistical events. Estimates of valve working time could aid in

maintenance decisions. Currently, CPP hydraulic system relief values are tested on a

fixed five-year cycle. BP statistical event detection could provide insight into pump

health. With time, pump performance will inevitably deteriorate, for example, due to

impeller wear. Decreased pump performance will cause changes in the time required

to empty and fill storage tanks, and prime and clear air from the pump and associated

piping. These changes will likely correspond to longer BP statistical events.

5.5 Chapter Summary

The results presented in this chapter demonstrate the ability to disaggregate stochas-

tic power behavior using statistical features in real time. Statistical events are distinct

from the main load on or off events and provide indication of changing load demand.

Tracking statistical events can create an “automatic logbook” of power system be-

havior that was previously invisible using conventional nonintrusive monitoring tech-

niques. The presented case studies showcase the applicability of the proposed method

in different industrial sectors. Using both geometric and statistical classification tech-

niques together can enhance load disaggregation abilities.
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Chapter 6

Fault Detection and Diagnostics

Once individual loads have been identified from the aggregate stream, load behavior

can be analyzed for fault detection and condition monitoring. Industrial loads and

processes rely on materials that are susceptible to aging, corrosion, and mechani-

cal failure [140, 141]. Since many systems operate under closed-loop control, subtle

problems often go undetected. These problems, however, can increase energy con-

sumption, impose excessive wear on electromechanical systems, and eventually result

in complete failure. Some faults result in changes in run-time and run-frequency

metrics, such as the graywater pump faults presented in Section 1.2. Sometimes,

the power characteristics of a load can also change. The detection and tracking of

drifting on-events was presented in Chapter 4. However, slow changes in power are

difficult to track using the aggregate power stream if the load is continuously on. For

example, gradual clogging or leaking in a ventilation system results in slow changes

in power; however, these systems are often on for extended periods. With the ad-

ditional information provided by slot harmonic tracking, the changes can be tracked

and provide an indication of system health, as demonstrated in this chapter. Other

times, the power characteristics of a load will change abruptly, such as the MPDE

JW heater presented in Section 1.2. Abrupt changes may make it difficult to classify

an event as the correct load, even with the adaptive tracking presented in Chapter 4.

Additional features can inform classification. This chapter presents examples of fault

scenarios in three-phase systems that can be characterized based on an understanding
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of imbalances in the system.

6.1 Ventilation System Diagnostics

This section uses the custom nonintrusive power monitoring hardware presented in

Section 2.3 and new signal processing techniques to disaggregate the slot harmonics

of a collection of motors powered from a common electrical service. Signal processing

identifies the harmonics associated with particular machines. Speed estimates devel-

oped from the observed slot harmonics can be used, with appropriate fan models, to

estimate air flow in real time and identify blockages and leaks in air handling sys-

tems. This permits a single electrical monitor to evaluate the diagnostic condition of

a collection of fans on a common electrical service. Field results are presented from

USCGC Marlin. The work in this section was in collaboration with Joseph O’Connell

and is presented in [142].

Ventilation systems provide fresh air and remove stagnant air for both habitable

spaces and also machine processes like combustion cycles [143–145]. Efficient ven-

tilation improves air quality and reduces disease transmission. Close environments

require timely and effective maintenance. Degradation of airflow quantity or qual-

ity can occur for many reasons, including filter clogging, duct leakage, failed control

devices like dampers or variable air volume plenums, and ingestion of foreign ob-

jects [143, 146]. Faults in ventilation systems not only degrade airflow quality, but

can also lead to wasted energy. For example, the study in [147] found that 42% of the

examined HVAC units had blockages or other interferences with airflow. Correcting

the airflow brought 10% energy savings. Mission critical air handling systems may

require sensors for pressure and flow not only for control but also for diagnostics.

However, FDD techniques can be expensive due to the required number of sensors,

and may still have difficulty in identifying root causes of faults [148].

Ventilation fans have performance curves that relate quantities like pressure and

flow. System curves relate pressure and flow for proposed ventilation duct systems.

During design, these curves inform decisions for selecting components. For example,
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a fan’s operating point can be determined by the intersection between the system

curve and fan pressure curve [149]. Many fault identification and detection schemes

therefore employ rule-based methods that tabulate steady-state values for pressures

and temperatures that indicate faults [147,150]. The electrical consumption of motors

in an air handler can be observed and evaluated as a proxy that replaces many sensors

for FDD applications. Rotor slot harmonics from motors in air handling systems can

be used to track rotor speeds [47,50].

6.1.1 Fan Physics

A fan curve relates shaft power to volume air flow. Therefore, a fan curve can be

used to characterize power consumption changes that indicate faults like leaks or

clogs. Because fans are often driven by induction motors, rotor slot harmonics can

serve as indicators of fan blade speed. Since an induction motor’s torque-speed curve

determines shaft power at any particular operating speed, fan speed is an effective

practical metric for determining ventilation system health, and can be correlated

with blockages and leaks through examination of a fan curve. In the typical slip

or speed operating regime of an induction motor, power consumption and speed are

monotonically correlated. That is, for an induction machine, low slip (high speed)

operation consumes less power than high slip (lower speed) operation in the typical

operating range of an induction motor. Motor or fan speed can therefore be used to

identify a variety of system air flow faults. This interconnection between a fan and a

motor and its utility for diagnostics are examined below.

6.1.1.1 Mechanical Characteristics

Ventilation systems are designed to supply specific air flow volume and pressure. Sys-

tem losses generate a system curve which relates pressure to airflow. The intersection

between the system curve and a pressure-flow curve for the fan (“fan curve”) indi-

cates an equilibrium operating point. The Air Movement and Control Association

(AMCA) standard 210 describes how to generate the pressure-flow and power curves
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Figure 6-1: Characteristic fan power curves for various fans.

for a fan [151]. An analytical relationship links power 𝐻 and air flow:

𝐻 = 𝑄𝑃𝑡𝐾 (6.1)

where 𝑄 is the volumetric flow rate, 𝑃𝑡 is total pressure, and 𝐾 is a thermodynamic

inefficiency [91]. Flow 𝑄 and pressure 𝑃𝑡 are non-linearly related. The simplicity

of Eq. (6.1) hides the complex theoretical and real fan behaviors. Practical fan

operation is understood not only with Eq. (6.1) but also using fan curves. Different

types of fans have characteristic power curves, whose shapes are determined by the

physical process employed to generate flow [152]. Three example power curves are

shown in Fig. 6-1. There are two major categories of fans, centrifugal and axial,

which are then divided further by blade type and shrouding. This section focuses on

forward centrifugal and tube axial fans because they are common in commercial and

industrial settings, including onboard USCGC Marlin.

For different fans operating at various points along their respective fan curves,

leaky ducting or filter clogs have physically different effects. The impact of these
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Table 6.1: Fault characteristics.

Fan Normal Leaky Duct Clogged Filter
Type Operating Point Power Impact Power Impact

Backward
centrifugal

Right of power peak Decrease Increase
At power peak Decrease Decrease

Left of power peak Increase Decrease
Forward
centrifugal Any power Increase Decrease

Tube and
vane axial

Any power (outside of
stall region) Decrease Increase

faults on observed performance depends on the type of fan. Fan shaft power does not

necessarily vary monotonically with flow rate. Leaky ducts tend to increase volume

flow, and clogged filters tend to impede volume flow. The effects of these faults on

shaft power can be determined from the fan power curves. Table 6.1 summarizes

expected power changes for induction motors based on the fan curves for axial and

centrifugal fans under flow changes.

Axial fans move air parallel to the axis of rotation. Due to their smaller sizes and

lower costs, axial fans are frequently installed in small HVAC systems. Flow analysis

reveals that the pressure across the impeller of these fans is driven by the decrease in

relative velocity and a rise in absolute velocity [149]. The three main types of axial

fans are propeller, tube axial, and vane axial. Some axial fans have a dip in their

pressure-airflow curve, indicating a stall or surge region. This region is unstable and

operation in this region can lead to failure [149]. Table 6.1 assumes that the axial fan

is not operating in the stall region.

Centrifugal fans operate with air entering axially through inlets on either side of

the main rotating vane drum, usually either open to atmosphere or inside of a duct.

Inlet air is accelerated by the blades and discharged radially. Compared to axial fans,

centrifugal fans are typically more efficient and produce high static pressure, however

they are also more expensive. Centrifugal fans have different fan curves based on

the blade type. For forward-curved blades, air flow and power rise in lockstep, with

maximum power corresponding to maximum airflow. For backward-curved blades

and airfoil-type centrifugal fans, the pressure curve peaks at the point of highest
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efficiency, with a resulting peak in the power curve.

6.1.1.2 Electrical Tracking

The electrical characteristics of a motor driving a fan can be measured and used as

an indicator of a fan’s operating point and system health. For example, for induction

machine drives without speed control, slip is usually restricted to a relatively small

operating range. In this range, the shaft power level varies directly with slip for most

induction motors. That is, a slower induction motor shaft speed usually corresponds

to a higher shaft power and vice versa. Since shaft power varies directly with slip,

motor speed indicates both shaft power and therefore volume flow as indicated by the

fan curve for a fan driven by the motor.

Motor speed can be determined from observed electrical waveforms by tracking

slot harmonics [47]. With the custom data acquisition hardware presented in Sec-

tion 2.3, it is possible to track the slot harmonics of several different motors on a

single aggregate electrical service. As was described in Section 2.3, slot harmonics

are caused by rotor slots that create magnetic harmonics that effect phase currents,

voltages and machine fluxes. The DAQ can be used to find these harmonics in ob-

served current waveforms even though the harmonics are small compared to the base

utility frequency currents feeding the motor or motors.

The use of both streams expands the possibilities for nonintrusively monitoring

a collection of fan motors on a single electrical service. Power measurements or

power changes may be due to a change in fan load and a fault. However, it may be

difficult to associate a particular power change with a specific motor in a collection

of machines. If the machines are different in other ways, for example, number of

rotor bars, eccentricity, or nominal slip, then tracking slot harmonics can prove to

be a valuable measurement for detecting a motor’s speed uniquely in a collection

of motors. The two approaches, power monitoring and speed tracking, offer some

complimentary and some distinct advantages depending on the monitoring situation.

The next two subsections examine the utility of power monitoring and slot harmonic

tracking for fan and motor fault detection.
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6.1.2 Fault Detection Through Power Consumption

Leaky ducting and clogged filters result in changes in power consumption. As a

demonstration of the example predictions in Table 6.1 based on the example fan

curves, a variety of fans were tested under different system conditions while monitor-

ing power consumption and average air speed. All fans tested had an anemometer at

their outlet to measure airflow. This section demonstrates these results and the utility

of understanding fan curves and expected power changes for diagnostic monitoring.

An axial fan was tested in a duct ventilation system which introduced a system curve

or loss, while a forward-curved centrifugal fan was tested as a standalone air mover.

To emulate blockages in the air system, filters were introduced on the intake side of

the system. The filter elements consisted of varying stacks of a 1/2 inch polyester

plastic filter, rated to MERV 5, or 3 micron permeability. Complete obstruction of

the fan inlet was also emulated.

An SHT-30 ventilator, consisting of a tube axial fan and induction motor, was

selected for its similarity in construction to the engine room exhaust and supply fans

on USCGC Marlin. After completing gradual blockage with incremental additions of

up to ten filters per intake, the fan was subjected to a complete obstruction. Fig. 6-

2 shows average observed fan electrical power versus the average air speed for two

minutes of fan operation. Error bars at each filter level show two standard deviations

in both the increasing and decreasing directions. As expected for an axial fan, power

increases as airflow decreases.

A second test fan was made on a forward centrifugal fan, chosen because it closely

resembles USCGC Marlin’s installed primary ventilation fan. The fan was operated

for ten minutes at varying filter levels after which the fan was subjected to a complete

obstruction. Fig. 6-3 plots the average steady state power versus the average air speed

at each blockage level. As expected for a forward centrifugal fan, as airflow decreases

the power also decreases. It is worthwhile to note that the two standard deviation

error bars on the centrifugal fan are much smaller than the axial fan, due to lower

levels of turbulence.
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Figure 6-2: Axial fan power curve.

Figure 6-3: Centrifugal fan power curve.

6.1.3 Fault Detection Using Slot Harmonic Tracking

The slip for an induction machine is monotonically related to shaft power in the

typical region of operation for a healthy motor operating from a utility with fixed

frequency and voltage amplitude. Shaft speed is therefore a proxy for shaft power in

these situations. Observed rotor slot harmonics in the current fed to a motor indicates

operating speed, and can therefore serve as an indicator of the operating state of a

shaft connected fan. In situations where several motors are present on an aggregate

electrical service, motors and their mechanical state can be tracked if slot harmonics
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can be identified that are unique to the machine of interest. Two challenges must be

handled to enable nonintrusive slot harmonic tracking: compensation for variations in

utility frequency and reliable identification of slot harmonics for a machine of interest

in a “forest” of slot harmonics created by other machines on the utility service. Shifts

in slot harmonics can be used to track changes in the mechanical fan system load,

and also can be used to identify problems in the induction motor drive including

broken rotor bars and other mechanical damage to the motor [153,154]. This section

presents a slot harmonic tracking algorithm applicable even when monitoring several

motors. Then, experimental results are presented using an Agilent 6384B power

supply. Using this controlled ac power supply permitted flexible experimentation

with utility frequency variations.

6.1.3.1 Speed Estimation

The PSH frequency moves in a band limited by the minimum and maximum oper-

ating values for motor slip. For larger, efficient induction motors, slip is typically

within a practical range of 5 to 10 percent [49]. Lower power machines, particularly

in a fan application with plenty of air flow, may tolerate larger operating slips. Prior

knowledge of the slip operating range is helpful to characterize an appropriate fre-

quency window for finding relevant slot harmonics [8]. Various methods for rotor slot

harmonic based speed estimation are reviewed in [155]. These include a frequency de-

modulation method [44], a maximum covariance method [45], and a short time least

square Prony’s method [46]. However, all of these methods only consider a single

induction machine, and are not applied in a multi-machine environment. Nonintru-

sive monitoring scenarios are likely to involve several motors operating from a single

aggregate electrical service.

The DAQ developed for this work rejects large utility frequency components of

current and permits the full resolution of an ADC fed by a high-gain amplifier to

search for slot harmonic currents. A fast Fourier transform (FFT) analysis of observed

electrical currents can be used to search for slot harmonics. However, because the

resolution of the frequency discrimination and resulting speed estimation depends on

209



the size of the FFT bins, the accuracy of frequency estimation grows as the length of an

observation window increases. This poses a dilemma. Long recording times provide

extended data records that improve FFT frequency resolution. Shorter recording

times are more likely to catch a quasi-static period of fan operation when the fan speed

is essentially constant and free of mechanical disturbances. The method presented

in [47] and [49] provides a balance of time and frequency resolution by finding a

best-fit sinusoid within the FFT magnitude spectrum of relatively short windows

of observed current. This section builds on this method for applicability in multi-

machine environments.

This approach minimizes the sum of squared errors (SSE) between the FFT mag-

nitude spectrum of a candidate sinewave and the observed FFT magnitude spectrum

of the notch-filtered motor current in an observation window. Let the candidate

sinewave be defined as 𝑠(𝑡) = sin(2𝜋𝑓𝑛𝑡) with frequency 𝑓𝑛 and unity amplitude. The

independent variable is the frequency 𝑓𝑛, which ranges from 𝑓1 to 𝑓2. For a frequency

window of length 𝑁𝑓 , the vector of candidate frequencies is defined as:

𝑓𝑛 = 𝑓1 +
𝑛

𝑁𝑓

(𝑓2 − 𝑓1) . (6.2)

Increasing 𝑁𝑓 increases the frequency resolution for finding the best-fit sinusoid.

An exhaustive search is performed over all 𝑓𝑛 and the frequency that minimizes the

SSE is the best estimate in a squared-error sense for the location of the actual ob-

served slot harmonic, and therefore the associated rotor speed. That is, the estimated

principal slot harmonic frequency 𝑓𝑝𝑠ℎ (or more generally the slot harmonic frequency

𝑓ℎ) is where the SSE is minimized:

𝑓𝑝𝑠ℎ = argmin
𝑓𝑛

SSE(𝑓𝑛). (6.3)

For 𝑓𝑛 ranging from 𝑓1 to 𝑓2 and corresponding frequency indices 𝑘 ranging from 𝑘1

to 𝑘2, the SSE is defined as:
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SSE (𝑓𝑛) =

𝑘2∑︁
𝑘=𝑘1

|𝐶 (𝑓𝑛) · |𝑋𝑠,𝑘 (𝑓𝑛) | − |𝑋𝑖,𝑘||2 (6.4)

where 𝑋𝑖,𝑘 is the FFT spectrum of the notch-filtered motor current, 𝑋𝑠,𝑘 is the FFT

spectrum of a unity amplitude sine wave candidate of frequency 𝑓𝑛, and 𝐶 is a nor-

malizing scale factor given as:

𝐶 (𝑓𝑛) =

√︃ ∑︀
𝑘 |𝑋𝑖,𝑘|2∑︀

𝑘 |𝑋𝑠,𝑘 (𝑓𝑛)|2
. (6.5)

So far, this method has assumed that the slot harmonic of interest is the largest

peak in the window. This assumption may not hold in a multi-motor environment.

Because the power information from a NILM detects when each and every motor in

an installation is energized, the NILM is aware of the operation of multiple motors.

In this situation, a multi-peak detection algorithm is proposed that builds on the

SSE method in Eqs. (6.2)-(6.5). First, the minimum SSE sinusoid with a candidate

sinewave as described above is determined with frequency 𝑓𝑚. This is the location

of the slot harmonic of the machine with the largest peak in the window. Then, for

a two-machine environment, to find the location of the slot harmonic of the second

machine, a candidate signal is defined as the sum of two sinusoids,

𝑠(𝑡) = 𝐴sin(2𝜋𝑓𝑛𝑡) + sin(2𝜋𝑓𝑚𝑡), 𝐴 ≤ 1, (6.6)

where 𝐴 is a scale factor that is less than one. The location of the slot harmonic of the

second motor is defined as the frequency that minimizes the SSE, with 𝑋𝑠,𝑘 from Eq.

(6.4) and Eq. (6.5) being the FFT spectrum of Eq. (6.6). If a window contains the

slot harmonics of more than two motors, this process can be repeated with candidate

signals defined as the sum of three (or more) sinusoids, as necessary. This enhanced

method is demonstrated in field testing in Section 6.1.4. From the estimated PSH

frequency 𝑓𝑝𝑠ℎ the rotor speed and slip can be estimated. The estimated rotor speed

in rpm is:

�̂�𝑟𝑝𝑚 =
60

𝑅

(︁
𝑓𝑝𝑠ℎ − 𝑓𝑠

)︁
. (6.7)
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The estimated slip (also described in Section 2.3) is:

𝑠 = 1− 𝑝

𝑅

(︃
𝑓𝑝𝑠ℎ − 𝑓𝑠

𝑓𝑠

)︃
. (6.8)

6.1.3.2 Speed Estimation with Filter Blockages

To demonstrate fan speed estimation using motor slot harmonics, the centrifugal fan

system was observed with various filter blockages when operating from a nominal

60 Hz utility frequency. The Agilent 6384B power supply was configured for 120 V

rms output and 10 A rms current limit. The motor powering the centrifugal fan is

a single-phase permanent split-capacitor (PSC) motor [156, 157]. PSC motors are

commonly used in residential and commercial air handling unit blowers [158]. Speed

selection is implemented with a tapped armature winding method, in which the stator

winding serves as an autotransformer [157]. The lowest speed operation was selected

to provide the greatest slip for the machine and therefore the greatest challenge to

the speed estimation window algorithm. In this low-speed setting, the line voltage

is applied to the full number of turns on the motor armature, producing the lowest

machine flux and operating speed. When running at “low” speed the fan operates at

roughly 30% slip.

Strictly for cross-validation and initial setting of the slot harmonic search window

location in frequency, the fan speed was measured with a tachometer. Using the

measured rotational speed, slip was calculated using Eq. (2.24). Slot harmonics for

different values of 𝑣 from Eq. (2.23) differ by 2𝑓𝑠, making 2𝑓𝑠 a good window size for

locating the slot harmonic of interest [47]. Because of the high slip of this machine,

filter blockages have a large effect on the motor speed. For these high slip machines,

a window of length 2𝑓𝑠 that is centered on the nominal slot harmonic was used to

begin the slot harmonic search:

𝑓1 = 𝑓𝑝𝑟𝑒𝑣 − 𝑓𝑠 ≤ 𝑓 ≤ 𝑓𝑝𝑟𝑒𝑣 + 𝑓𝑠 = 𝑓2 (6.9)

where 𝑓𝑝𝑟𝑒𝑣 is the frequency of the initial or last detected slot harmonic location.
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Table 6.2: Centrifugal fan speed at 60 Hz.

Measured Estimated Error

Filters 𝜔𝑟𝑝𝑚 𝑠 𝑓𝑝𝑠ℎ (Hz) �̂�𝑟𝑝𝑚 𝑠
𝜔𝑟𝑝𝑚

(%)
0 1196.4 0.335 1016.8 1196.0 0.336 0.03
1 1262.4 0.299 1064.3 1255.4 0.303 0.56
2 1292.6 0.281 1094.3 1292.9 0.282 0.02
3 1319.4 0.267 1115.5 1319.4 0.267 0.00
4 1351.6 0.249 1138.5 1348.1 0.251 0.26
5 1353.2 0.248 1142.3 1352.9 0.248 0.02
6 1386.6 0.230 1170.6 1388.3 0.229 0.12
7 1408.6 0.217 1186.3 1407.9 0.218 0.05

This adjustable window and Eqs. (6.2)-(6.5) were used to track slot harmonics on

one-second length windows with 𝑁𝑓=1200 (0.1 Hz frequency resolution). The initial

window center for the test motor was 1020 Hz, which was the approximate observed

slot harmonic location. Then Eqs. (6.7) and (6.8) were used to calculate the estimated

speed and slip, respectively, with results presented in Table 6.2. The estimated speed

was then compared with the measured tachometer speed for cross-validation, as shown

in Table 6.2 as absolute percentage error. The estimated speed and estimated slip

closely match those calculated from the measured tachometer speed, demonstrating

that slot harmonics were accurately tracked and fan speed can be reasonably measured

using slot harmonics. For this centrifugal fan, the fan speed increases as expected as

the system experiences progressive vent blockages, and the slot harmonic approach

can clearly detect faults such as vent blockage and duct leaks.

6.1.3.3 Speed Estimation With Varying Supply Frequencies

Particularly on microgrids with limited generation capacity and finite inertia, as are

found in marine environments, there are potentially significant fluctuations in supply

frequency. While these fluctuations may not affect the overall operation of the mi-

crogrid, the slot harmonic Eq. (2.23) effectively applies a “gain” to the utility base

frequency as a function of the slip and construction of the induction motor. Rela-

tively small variations in utility base frequency will therefore shift the location of slot
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Table 6.3: Centrifugal fan speed with variable supply frequency.

Measured Estimated Error

𝑓𝑠 𝜔𝑟𝑝𝑚 𝑠 𝑓𝑝𝑠ℎ (Hz) �̂�𝑟𝑝𝑚 𝑠
𝜔𝑟𝑝𝑚

(%)
59.5 1214.6 0.319 1031.2 1214.0 0.320 0.05
59.6 1212.8 0.322 1027.8 1209.8 0.323 0.25
59.7 1211.8 0.324 1027.3 1209.1 0.325 0.22
59.8 1208.6 0.326 1025.2 1206.5 0.327 0.17
59.9 1206.6 0.329 1025.2 1206.5 0.329 0.01
60.0 1205.2 0.330 1023.3 1204.1 0.331 0.09
60.1 1204.4 0.332 1022.7 1203.4 0.333 0.09
60.2 1202.0 0.334 1019.3 1199.1 0.336 0.24
60.3 1200.4 0.336 1019.8 1199.8 0.337 0.05
60.4 1199.6 0.338 1017.7 1197.1 0.340 0.21
60.5 1196.2 0.341 1015.6 1194.5 0.342 0.14

harmonics, and complicate efforts to track motor speed. These frequency shifts, if not

accounted for can be misinterpreted as faults. It is therefore essential to track sup-

ply frequency and incorporate the real time utility frequency into the slot harmonic

calculations.

To explore the impacts of slight variations in supply frequency, the Agilent power

supply energizing the fan motor was varied from 59.5 to 60.5 Hz in 0.1 Hz steps. The

NILM operating with the enhanced DAQ uses its observations of voltage to provide

a running estimate of utility frequency on a cycle-to-cycle basis. This estimate is

used to compensate the slot harmonic search. The slot harmonics were tracked on

one-second length windows with a frequency window of length 2𝑓𝑠 centered at 1020

Hz and 𝑁𝑓=1200 (0.1 Hz frequency resolution). Results from these experiments are

shown in Table 6.3, with measured tachometer motor speed, slip, observed PSH,

estimated speed, estimated slip, and absolute percentage error of speed. The results

indicate that NILM slot harmonic tracking can effectively monitor fan rotor speed

at different supply frequencies. Additional information, such as power consumption

and equipment status from the NILM, can also be used to evaluate if a ventilation

system is degraded. Since a fan’s power consumption is relatively independent of

small changes in the variable supply frequency, and as demonstrated in Section 6.1.2
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can be used to detect ventilation blockages, this information can be examined in

tandem with slot harmonic shifts to determine HVAC health.

6.1.3.4 Multi-Motor Frequency Space Speed Estimation

Nonintrusive monitoring scenarios are likely to involve several motors operating from

a single aggregate electrical service. This situation is common, for example, with

microgrids on ships. Searching for slot harmonics has proven to be of great utility in

distinguishing the operation of different motors on a common electrical service. To

illustrate, the previously discussed centrifugal fan was operated on the same electrical

service with a three-phase axial fan and a secondary single phase centrifugal fan

(bathroom fan). All three machines were powered from the Agilent ac power supply,

and the observed slot harmonics were used to approximate rotor speed on all operated

machines. These comparison tests were conducted at 59.5, 60.0 and 60.5 Hz to emulate

the anticipated changes in supply frequency onboard a marine microgrid.

The motors inject a family of harmonics on to the line according to the slot har-

monic equations and the inevitable imbalances in the machines that excite eccentricity

harmonics. For this demonstration, the three motors were tracked with harmonics

intentionally chosen relatively close to one another to reflect a potential “worst-case”

scenario, in which two machines produce similar harmonics, increasing the potential

for incorrect identification. With knowledge of the machine constructions, the ma-

chines can be tracked and their operation distinguished from the background loads.

This can be seen in Fig. 6-4, which shows the harmonics of the three fans shifting

in frequency from 59.5 Hz to 60.0 Hz to 60.5 Hz. In this scenario the harmonics

maintain sufficient frequency separation such that no overlap occurs.

Fig. 6-4 also shows how different types of induction machines may react differently

to changes in supply frequency. The centrifugal fan slows down as supply frequency

increases while the secondary centrifugal fan and three-phase fan both increase speed.

The centrifugal fan is powered by a single-phase capacitor run induction machine, and

the shift in supply frequency alters the torque-speed curve, such that the constant

torque applied by the fan blades counteracts the shift in the new endpoint. Despite
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Figure 6-4: Frequency space with three induction machines at various supply frequen-
cies.

variations in the supply frequency and differences in the torque-speed behaviors, the

observed slot harmonics for each machine remain in distinct windows that can be reli-

ably used to track motor operation. Specific knowledge of slot harmonic location and

physical attributes of the motor can be leveraged to differentiate between harmonics,

even as a power grid experiences frequency shifts or induction machines change speed

due to mechanical operating conditions.

It is important to note that slot harmonic tracking in a multi-machine environ-

ment relies on the slot harmonic current signals being present in the NILM current

measurements. Since the NILM is remote from any particular load, the current sig-

nals measured by a NILM depend on connected loads and the source impedance. It

is possible for a parallel load to provide a low-impedance path at the slot harmonic

frequency, attenuating the slot harmonic signal measured by a NILM. For example,

passive single-tuned and double-tuned filters are commonly used for reducing specific

harmonic currents. These filters are typically placed close to the harmonic producing

loads, such as power-electronic loads. Thus, passive filters can shunt the slot har-

monics of interest away from a NILM. It is important to be aware when such loads
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are online, so that correct conclusions can be drawn.

6.1.3.5 Rotor Bar Damage

Finally, we observe that slot harmonic information can also be used to diagnose faults

in the motor itself, distinct from changes in the fan system. For example, rotor bar

cracking [159] can occur due to thermal cycling of a motor or mechanical stress under

starting [160]. It is important to distinguish gradual shifts in slot harmonics that are

due to a gradually leaking duct or clogging filter versus a change due to a broken

rotor bar. To demonstrate the utility of slot harmonics observations in distinguishing

different faults, two identical fans were tested, one healthy and one with a single

cracked rotor bar. The tachometer-measured motor speed of the healthy motor was

1069.2 rpm, which gives a slip of 0.406. With a broken rotor bar, the expected location

of the slot harmonic for the motor moves, and can be predicted by:

𝑓𝑏𝑟𝑏 = 𝑓𝑠

[︂
(𝑘𝑅 + 𝑛𝑑)

1− 𝑠
𝑝

+ 𝑣 − 2𝑠

]︂
, (6.10)

which indicates a predicted slot harmonic at 2𝑓𝑠𝑠 lower than the healthy slot harmonic

location [159]. Using Eq. (6.10) and the slip, the predicted shift in the slot harmonic

is 48.7 Hz, essentially identical to the observed shift of 48.5 Hz shown in Fig. 6-5. A

nonintrusive monitor with the enhanced DAQ for tracking slot harmonics, aware of

the activity of a motor from power traces, can detect the slot harmonic shift due to

a broken rotor bar.

6.1.4 Field Testing on USCGC Marlin

This section demonstrates speed estimation and diagnostics onboard USCGC Marlin.

There are two different scenarios in terms of frequency stability: in-port (connected to

land based shore-power) and at sea (on generator power). The frequency for a typical

day in-port and a typical day at sea are compared in Fig. 6-6. In this comparison,

the in-port and at sea frequencies had ranges of 0.15 Hz and 2.42 Hz, respectively.

USCGC Marlin has two primary ventilation systems installed, one for the engine
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Figure 6-5: Slot harmonic location shift due to rotor bar damage.

Table 6.4: Marlin supply fan speed estimates at various blockage levels

Blockage 𝑓𝑝𝑠ℎ (Hz) �̂�𝑟𝑝𝑚 𝑠
No Blockage 1354.5 3530.46 0.0193

1 Filter 1354.5 3530.46 0.0193
2 Filters 1354.6 3530.73 0.0192
3 Filters 1354.7 3531.00 0.0192

1 Inlet Blocked 1355.6 3533.46 0.0185
2 Inlets Blocked 1358.6 3541.64 0.0162

room and the other for living spaces. Testing was conducted on the supply system for

the primary habitable space. This fan system uses a belted centrifugal fan drawing air

from both the weatherdeck and the internal superstructure. Fig. 6-7 shows the supply

fan on USCGC Marlin. Speed estimation during ventilation blockage and a multi-

motor environment are demonstrated while the ship is connected to shore power.

Then, speed estimation is demonstrated while the ship is at sea with a changing

supply frequency.

6.1.4.1 Primary Supply Fan

The primary supply fan employs a two-pole induction motor with 22 rotor bars rated

for 3530 rpm at 60 Hz. To test the primary supply fan, filters were introduced simul-
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Figure 6-6: Supply frequency for typical day at sea on generator power and in-port
on land-based utility power.

Figure 6-7: Supply fan on USCGC Marlin.

taneously on both the weatherdeck “fresh” air intake and the internal re-circulation

intake. Full blockage on the system caused the steady-state power of the motor to

drop noticeably, as expected from Table 6.1. The motor PSH shifts as well, indi-

cating a motor speed increase. This is similar to the observed behavior of the lab

tested centrifugal fan. The SSE slot harmonic detection method in Eqs. (6.2)-(6.5)
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Figure 6-8: Measured power and estimated speed for the supply fan with various
blockage levels.

were used to nonintrusively track motor speed. Table 6.4 shows the estimated PSH

location and motor speed and slip from the slot harmonic estimation with one-second

long windows and search parameters 𝑓1 = 1335 Hz, 𝑓2 = 1375 Hz and 𝑁𝑓=300 (0.1

Hz frequency resolution).

Fig. 6-8 shows the aggregate three-phase real power stream and the estimated

speed as blockages are subsequently removed. Under normal shipboard operations this

supply fan is infrequently energized/secured and any clogs or leaks would happen as

the fan is operating. Although the inlet blocked conditions are visible in the aggregate

power stream, it would be difficult to attribute the changes in power to the supply

fan when other loads are energized and consuming power. Tracking the motor PSH

unambiguously identifies clogging on the ship.
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Figure 6-9: Marlin multi-motor environment.

6.1.4.2 Marlin’s Multi-Motor Environment

In addition to the primary supply fan on Marlin, there is a hydraulic power unit

(HPU) cooling fan, which draws power from the same monitored electrical grid on the

ship. This cooling fan is a three-phase axial fan, similar to the three-phase axial fan

lab-tested in Section 6.1.3. No data was acquired about the construction of the HPU

cooling fan, e.g., number of rotor bars. Instead, the slot harmonics for the cooling

fan were located and tracked by running the HPU cooling fan while introducing filter

blockages to slow down the fan, demonstrating that the slot harmonic tracking can

be configured ad hoc on a field NILM. In contrast to the earlier observed centrifugal

fans, this axial fan slowed down as expected as filters were introduced. This is due to

an increase in torque from larger pressure differentials across the blades [149]. Up to

three layers of 3 micron permeability filters were added, as well as total blockage. To

“train” the NILM to recognize these slot harmonics with no other information about

the machine, the HPU was energized during a period when the ship grid had other

motors “off.” This ability to energize, secure and physically decelerate or accelerate the

fan of interest can serve as a replacement for knowledge regarding the motor’s internal

construction This method illustrates an important second method for identifying

harmonics, when limited information is available about the machine of interest.
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Figure 6-10: FFT current spectrum for the motors for a 10 second window.

Once the slot harmonic window for the HPU cooling fan was identified, a multi-

motor environment was tested, in which both the supply fan and HPU cooling fan

were energized. The supply fan was kept at “healthy” operation, while filter blockages

were introduced for the HPU cooling fan. The slow down of the HPU cooling fan

as filters are introduced causes the slot harmonic to move towards the supply fan’s

slot harmonic. Eventually, the fully blocked axial fan’s slot harmonic travels past

the supply fan’s harmonic location. The frequency spectrum of this multi-motor

environment in various operating conditions is shown in Fig. 6-9. In order to track

the respective slot harmonics of each fan, the multi-peak detection SSE method from

Eq. (6.6) was essential. Here, 𝑓1 = 1335 Hz, 𝑓2 = 1375 Hz and 𝑁𝑓=300 (0.1 Hz

frequency resolution). For Eq. (6.6), 𝐴 is set to amplitudes ranging from 0.4 to 1 in

0.1 increments. Fig. 6-10 shows the spectrum for a ten-second window, with the peak

values. In comparison, Fig. 6-11a shows the spectrum for a one-second window and

the minimum-SSE sinusoid. These detected frequency peaks from the minimum-SSE

sinusoid method match closely with the estimates from the longer ten-second window,

which offered higher frequency resolution. Fig. 6-11b shows the minimum SSE from

using a single sinusoid, versus the multi-peak method with two sinusoids. These

results show that even in a multi-motor environment, slot harmonics for machines of

interest can be detected and tracked. Using transient detection in the NILM power

stream to determine when a load is operating can inform the slot harmonic detection

algorithm as to when multi-motor slot detection is necessary.
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(a) FFT current spectrum for the motors and minimum-SSE sinosoids.

(b) SSEs according to one and two sinusoids.

Figure 6-11: Current spectrum and SSEs for a 1 second window.

6.1.4.3 USCGC Marlin At Sea

USCGC Marlin was observed during an underway period at sea. During this time, the

installed NILM monitored supply frequency and both filtered and unfiltered current

data. The supply fan was energized during the entire underway period, presenting the

fan with various environmental conditions and supply frequencies. The NILM used

the presented algorithms to track the supply fan slot harmonics. Supply frequency

changes can impact the rotor speed as well as slot harmonic location. Fig. 6-12 shows

the estimated speed from the tracked slot harmonic as the supply frequency fluctuates

from a maximum of 60.5 Hz to a minimum of 59.9 Hz, using the same method as

described in Section 6.1.4.1. As observed, the rotor speed decreases slightly from an
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Figure 6-12: USCGC Marlin estimated speed with shifting supply frequency.

estimated 3549 rpm to 3518 rpm as the ship’s grid frequency decreases. Analysis of

this data supports the conclusions drawn in Section 6.1.3, which indicate that slot

harmonics can be tracked with a varying utility frequency when the NILM tracks

utility frequency from the system voltage.

6.2 Three-phase Equipment Condition Monitoring

This section considers additional challenges that arise for load identification and di-

agnostics in three-phase systems, in part due to potential imbalances in the system.

Features particularly useful for FDD in these systems are proposed. With correct

interpretation, data from a NILM can identify healthy versus faulty behavior and

supplement existing protection schemes. Machine learning systems essentially seek

correlations between input data and training classifications or categories [161]. The

presentation of input data characteristics, i.e., the “feature space” used to describe

a problem or data set, can greatly affect training effort, operating speed, and iden-

tification accuracy [162]. The training data for a nonintrusive monitoring classifier

is unlikely to contain instances of possible fault conditions. Given a limited training

dataset, it is crucial for the feature space to be physically-informed. An understand-

ing of the physical mechanisms for possible faults can be used to inform a feature
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space useful for nonintrusive load FDD.

A three-phase system can have an unbalanced generation system (i.e., unbalanced

supply voltages) and unbalanced loads (i.e., loads are not evenly distributed among

the phases). Unbalanced voltages can have detrimental impacts on connected equip-

ment and result in deviations in expected load behavior [163]. An unbalanced load

system is also a power quality concern; however, load imbalance does not necessarily

indicate improper individual load operation. A healthy load is one that is operating

according to design specifications. A healthy load does not imply a balanced load

system, and a balanced load is not necessarily a healthy load. This section presents

analysis for attributing load transient behavior, such as when a load energizes or

changes state, to healthy or faulty load operation. Changes in system balances for

currents, voltages, and harmonic content, particularly during load turn on and turn

off transients, form a particularly useful feature space for FDD. Changes in balances

that occur during transients tend to be associated with the particular load change

under observation and can be distinguished from an arbitrary background imbalance

in the power system. Examples are illustrated with measurements made on several

USCG marine microgrids. Ungrounded delta systems are a common configuration

on shipboard microgrids and other microgrids in which maintaining a high degree of

reliability and continuity is necessary [164,165].

There are various power system configurations, including single-phase, split-phase

(single-phase three wire), and three-phase. Three-phase systems can be three-wire,

four-wire, or five-wire, depending on the neutral and ground connections. There are

also configurations such as a high-leg delta. A NILM can monitor any of these systems.

However, measurements are also limited by physical access and convenience. An

example that illustrates this is a three-wire delta system. For instance, measurements

of phase currents (i.e., the current through the load) of delta-connected loads are

unlikely to be made nonintrusively. It is more likely to have nonintrusive access to

line currents (i.e., the currents in the line conductors). For FDD it is useful to have all

three line currents, e.g., if there are current imbalances or a bonding fault. However,

there is valuable reexamination to be done for considering the feature space that is

225



best suited for connecting measured power and harmonic consumption to physical

performance. The ideas discussed in this section can be generalized to other utility

configurations with a properly configured NILM with relevant nonintrusive electrical

measurements.

6.2.1 Load Imbalance Feature Space

Pattern classifiers need to disaggregate both healthy and faulted loads from the ag-

gregate power stream. An edge detector [85] is used to find load events, such as load

on and off events and transitions between discrete states. At each event, a set of

extracted features is used for load identification [6]. The preprocessing in Section 2.1

computes the power and higher-order current harmonics for each phase (i.e., a, b, c),

based on the line current measurements. Thus, features extracted from the per phase

power and higher-order current harmonics, such as steady-state and inrush charac-

teristics, would be an intuitive choice of features for load identification [6]. However,

when a load experiences gradual degradation or a sudden fault, the following ques-

tions should be considered when assessing the usefulness of a feature space for load

diagnostics:

• How do the changes manifest in the feature space?

• Are the changes in the feature space physically interpretable?

• Is the load still uniquely identifiable?

These questions are especially important in a three-phase system because of the in-

herent imbalances of certain load and fault types. Without a physics-informed feature

space, it is difficult to correctly attribute imbalances to the correct load. In the exam-

ples presented in this section, the loads are connected line-to-line. Thus, the power

consumption on each delta phase (i.e., ab, bc, ca) may be more intuitive for interpret-

ing load changes. Computing the power per delta phase requires knowing the phase

currents. However, from the line currents of a delta-connected system, and without

making any further assumptions, it is not possible to calculate the true delta phase
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Figure 6-13: Conceptual diagrams for three possible load connection types in a delta-
configured system: (a) three delta phases, (b) two delta phases, and (c) single delta
phase, with line currents 𝑖𝑎, 𝑖𝑏, 𝑖𝑐 and phase currents, 𝑖𝑎𝑏, 𝑖𝑏𝑐, and 𝑖𝑐𝑎.

currents. The line currents are governed by the following relationships, where the

matrix has rank two, indicating it is not invertible:⎡⎢⎢⎢⎣
𝑖𝑎

𝑖𝑏

𝑖𝑐

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 −1
−1 1 0

0 −1 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝑖𝑎𝑏

𝑖𝑏𝑐

𝑖𝑐𝑎

⎤⎥⎥⎥⎦ . (6.11)

To resolve the non-uniqueness of possible phase currents, this work proposes a

feature set based on an assumption that loads are connected in one of three ways in the

monitored delta-configured system: three delta phases, two delta phases, or a single

delta phase. Every step change in power can first be evaluated to determine if the

relative balance or imbalance is consistent with that of the expected load connection

types. In this work, a transient that results in imbalances consistent with that of a

load connected across two delta phases is considered a fault condition of three-phase

load, such that one of the delta phases open-circuited. A load identified as connected

on a single delta phase can either be a normally operating single-phase load or a fault

condition of a three-phase load. Conceptual diagrams for examples of these three

connection types are shown in Fig. 6-13. Example line currents are shown in Fig. 6-

14 for resistances of 193.6Ω (corresponding to 1 kW per delta phase on a 440/254 V

system). The three-phase load has three equal magnitude line currents with a 120∘

phase offset between each. The two-phase load has one unaffected line current and
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(a) Three delta phases.
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(b) Two delta phases.
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(c) Single delta phase.

Figure 6-14: Line currents for three different load connections in a delta-connected
system.

two line currents with reduced magnitudes and phase shifts. The single-phase load

has two reduced magnitude line currents which are 180∘ out of phase from each other

and one line current that is zero.

With this assumption, the ratios of fundamental line current spectral envelope

magnitudes can be used to determine the load connection type, and subsequently the

estimated phase currents. The magnitudes of the spectral envelopes are computed
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Figure 6-15: Conceptual diagram of steady-state calculation.

as:

|𝐼𝜓𝑘| =
√︁

(𝐼𝐼𝜓𝑘)
2 + (𝐼𝑄𝜓𝑘)

2. (6.12)

At every detected event, the change in steady-state magnitude, 𝐼𝜓1,𝑠𝑠, is calculated for

each phase as the difference in medians (or alternatively, the means) of ∆𝑡 windows

before and after the event, as illustrated in Fig. 6-15. The relative magnitudes of the

three line currents can now be computed:

[︂ ⃒⃒⃒⃒
𝐼𝑎1,𝑠𝑠
𝐼𝑏1,𝑠𝑠

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝐼𝑏1,𝑠𝑠
𝐼𝑐1,𝑠𝑠

⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝐼𝑐1,𝑠𝑠
𝐼𝑎1,𝑠𝑠

⃒⃒⃒⃒ ]︂
. (6.13)

Alternatively, the ratios can be computed using the apparent power streams (i.e.,

𝑆𝜓 =
√︁
𝑃 2
𝜓 +𝑄2

𝜓) since 𝑃𝜓 and 𝑄𝜓 are scaled versions of 𝐼𝐼𝜓1 and 𝐼𝑄𝜓1, respectively

(using Equation (2.7)). These ratios present a measure of load balance or imbalance.

The next two subsections demonstrate how these ratios, in conjunction with power

consumption, can help distinguish healthy versus faulty behavior.

6.2.2 Balanced Three-Phase Loads

A balanced three phase load is one in which the load currents have equal magnitudes

and phase angles, i.e., 𝐴𝑎𝑏,𝑘 = 𝐴𝑏𝑐,𝑘 = 𝐴𝑐𝑎,𝑘 and 𝛿𝑎𝑏,𝑘 = 𝛿𝑏𝑐,𝑘 = 𝛿𝑐𝑎,𝑘 for every 𝑘 (where

the currents are given in Equation (2.3)). The impedances are 𝑍𝑎𝑏 = 𝑍𝑏𝑐 = 𝑍𝑐𝑎 =

229



va

Ls Rs ia

Ldc idc

C

vb

Ls Rs ib

vc

Ls Rs ic
iload

Figure 6-16: Three-phase uncontrolled diode bridge rectifier with inverter-motor com-
bination modeled as current source.

𝑍𝑒𝑗𝜑, where 𝜑 is the angle of the voltage with respect to the corresponding current

(i.e., 𝜑 = 𝜃− 𝛿). For a balanced load, the relative line current magnitudes are [1,1,1].

There is a one-to-one mapping between the power per phase and power per delta

phase.

6.2.2.1 Balanced Non-Linear Loads

If the load is nonlinear, i.e., has non-sinusoidal current waveforms, the higher-order

current harmonics and their relative magnitudes are also of significance. In a balanced

delta system, the triplen (e.g., third, sixth, and ninth order) components are zero-

sequence. The zero-sequence line currents are equal to 1
3
(𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐) [166]. Given

KCL which requires 𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 0, the zero-sequence line currents must be zero.

That is, they circulate around the delta but do not flow through the lines. The fifth-

order harmonics are typically negative-sequence, while the seventh-order harmonics

are typically positive-sequence. Thus, balanced fifth-order and seventh-order line

current harmonics are expected.

For example, a variable frequency drive (VFD) is a common nonlinear load used

to optimize and control induction motors. A VFD consists of a rectifier, a dc-bus link,

and an inverter. The front-end rectifier draws currents rich with harmonic content.

A VFD was modeled as shown in Fig. 6-16, using a constant current source 𝑖𝑙𝑜𝑎𝑑 to
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Figure 6-17: Line currents of a simulated 1 kW load controlled by a VFD.
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Figure 6-18: Magnitude of third, firth, and seventh harmonic current envelopes nor-
malized by the fundamental of a motor controlled by a VFD.

model the inverter-motor combination [28]. The line currents of a simulated 1 kW

load controlled by a VFD with a balanced source voltage of 𝑉𝑝𝑘 = 170 V are shown

Fig. 6-17. The current is characterized by the double pulses of equal magnitude at

each positive and negative voltage peak. Fig. 6-18 shows the mean magnitude for

the five second simulation of the third, fifth, and seventh harmonic current envelopes,

normalized by the magnitude of the fundamental (i.e., |𝐼𝜓𝑘/𝐼𝜓1|). As expected, the

third harmonics are negligible. There are significant fifth and seventh harmonics,

which are balanced among the phases. The relative line current magnitudes can also

be calculated for each relevant harmonic, 𝑘, which in this example is [1,1,1] for 𝑘 = 5

and 7.
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Figure 6-19: Three-phase fuel oil purifier (FOP) centrifuge over time.

6.2.2.2 Gradual Drift of Balanced Loads

A three-phase load can remain balanced while experiencing slow changes in total

power due to changing environmental conditions, changing operating conditions, or a

degradation in condition due to a “soft fault.” Soft faults, such as loss of refrigerant,

slipping belts, and clogged ventilation systems, can leave the system operating at

reduced efficiency and induce wear on the system. Once the load has been identified

as being balanced, then the total power can be examined for other subtle changes

in load operation [3]. For instance, a NILM on USCGC Spencer revealed the slow

change in steady-state power of a fuel oil purifier (FOP) centrifuge. Fig. 6-19a shows
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Table 6.5: Phase currents based on relative line current magnitudes.

Relative line Phase
current magnitudes currents⃒⃒⃒⃒
𝐼𝑎1,𝑠𝑠
𝐼𝑏1,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑏1,𝑠𝑠
𝐼𝑐1,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑐1,𝑠𝑠
𝐼𝑎1,𝑠𝑠

⃒⃒⃒⃒
𝑖𝑎𝑏 𝑖𝑏𝑐 𝑖𝑐𝑎

Two
delta

phases

√
3 1 1√

3
−𝑖𝑏 0 𝑖𝑐

1√
3

√
3 1 𝑖𝑎 −𝑖𝑐 0

1 1√
3

√
3 0 𝑖𝑏 −𝑖𝑎

Single
delta
phase

0 1 ∞ 0 𝑖𝑏 0
1 ∞ 0 𝑖𝑎 0 0
∞ 0 1 0 0 𝑖𝑐

the relative magnitudes of the FOP centrifuge over a four-year period, where each data

point represents a single on-event with ∆𝑡 = 0.5 seconds for steady-state calculation.

The relative magnitudes stay approximately constant and balanced for the entire

duration. Fig. 6-19b shows the total steady-state power (𝑃𝑠𝑠) of the FOP centrifuge

at each on-event, which varies from approximately 10 kW to 15 kW. This increase in

power over time can likely be attributed to load aging and wear.

6.2.3 Imbalances in Three-Phase Systems

Changes in balance that occur during transients need to be correctly attributed to

healthy or faulty behavior. For a two-phase or single-phase load, the relative current

ratios are predictable, as shown in Table 6.5 for the ideal scenario. Fig. 6-20 shows the

relative magnitudes over time for a single-phase ship service diesel generator (SSDG)

lube oil (LO) heater on USCGC Spencer. Each data point represents a single on-event

with ∆𝑡 = 0.5 seconds for steady-state calculation. Here, the relative magnitudes for⃒⃒⃒
𝐼𝑎1,𝑠𝑠
𝐼𝑏1,𝑠𝑠

⃒⃒⃒
,
⃒⃒⃒
𝐼𝑏1,𝑠𝑠
𝐼𝑐1,𝑠𝑠

⃒⃒⃒
, and

⃒⃒⃒
𝐼𝑐1,𝑠𝑠
𝐼𝑎1,𝑠𝑠

⃒⃒⃒
are generally less than .001, 1±.05, and greater than 1000,

respectively. Using a tolerance for allowable divergence from expected values, this

matches that of a single phase load on phase 𝑏𝑐. If an event is identified as being

connected on two delta phases or a single delta phase, then the phase currents can be

designated as given in Table 6.5. The rms spectral envelopes for 𝑖𝑎𝑏, 𝑖𝑏𝑐, and 𝑖𝑐𝑎 can be

computed with the same process as described in Section 2.1, but with phase rotations
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Figure 6-20: Relative magnitude of single-phase ship service diesel generator (SSDG)
lube oil (LO) heater load on-events over time.

of 0∘, 120∘, and 240∘. The power per delta phase can be calculated by multiplying

by a constant
√
3𝑉 or by the rms spectral envelopes of the line-to-line voltages. If

a step change is detected that does not match the expected relative magnitudes of

either a three-phase, two-phase, or single-phase load, then the phase currents cannot

be estimated. This provides indication of a possible fault condition. This section

presents analysis of both normal and faulty imbalances.

6.2.3.1 Single-Phase Loads

A single phase load inherently imparts an imbalance on the system. For example, the

power per phase of a single-phase induction motor from NILM field data is shown in

Fig. 6-21a. There is an unbalanced amount of 𝑃 and 𝑄 on phases 𝑎 and 𝑏. However,

the imbalance here is normal load behavior. The relative line current magnitudes

for the detected on-event are [1.008, 119.7, 0.008]. These closely match the expected

values for a phase 𝑎𝑏 single phase load. The phase currents were reconstructed and

power per delta phase was computed, as shown in Fig. 6-21b. From the delta phase

power it is now possible to track subtle changes over time for this load.

The delta phase power is useful for diagnostics. However, the per phase power

may still prove useful for load identification. The question arises if the imbalances

have any physical interpretation? The relationship between the power per delta phase

and the power per phase can be determined mathematically. The relationships are

shown in Table 6.6 for a single-phase load on phase 𝑐𝑎 with impedance Zca = 𝑍𝑒𝑗𝜑.
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(a) Measured power per phase of a single-phase inductive load.
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(b) Reconstructed power per delta phase.

Figure 6-21: Power of a single-phase inductive load.

Here, 𝑉 is the rms line-to-neutral voltage. Similar relationships can be derived for

single-phase loads on phase 𝑎𝑏 or 𝑏𝑐. The proportion of real and reactive power on

phases 𝑎 and 𝑐 depends on 𝜑. For example, consider a resistive (i.e., 𝜑 = 0) load with

power on phase 𝑐𝑎 equal to the load’s nominal power 𝑃𝑟, such that 𝑃𝑐𝑎 = 𝑃𝑟 and

𝑄𝑐𝑎 = 0. The real power on each phase is: 𝑃𝑎 = 1
2
𝑃𝑐𝑎, 𝑃𝑏 = 0, and 𝑃𝑐 =

1
2
𝑃𝑐𝑎. The

reactive power on each phase is: 𝑄𝑎 =
1

2
√
3
𝑃𝑐𝑎, 𝑄𝑏 = 0, and 𝑄𝑐 = − 1

2
√
3
𝑃𝑐𝑎. That is,

due to the imbalance imparted on the system, there is equal magnitude but opposite

sign “reactive” power on two of the phases.

This “reactive” power for a resistive load can be related to the fact that standard

definitions of reactive and apparent power are unable to simultaneously characterize

the efficiency of equipment, efficiency of power transmission, and oscillatory character

of power transfer in unbalanced and polyphase systems [167, 168]. Definitions which

235



Table 6.6: Line-to-line single-phase load relationships

Delta phase Per phase

Currents
iab = 0 ia = −ica
ibc = 0 ib = 0

ica =
√
3𝑉
𝑍
𝑒𝑗(

5𝜋
6
−𝜑) ic = ica

Real
Power

𝑃𝑎𝑏 = 0 𝑃𝑎 =
√
3𝑉

2

𝑍
cos(𝜑+ 𝜋

6
)

𝑃𝑏𝑐 = 0 𝑃𝑏 = 0

𝑃𝑐𝑎 = 3𝑉
2

𝑍
cos𝜑 𝑃𝑐 =

√
3𝑉

2

𝑍
cos(𝜑− 𝜋

6
)

Reactive
Power

𝑄𝑎𝑏 = 0 𝑄𝑎 =
√
3𝑉

2

𝑍
sin(𝜑+ 𝜋

6
)

𝑄𝑏𝑐 = 0 𝑄𝑏 = 0

𝑄𝑐𝑎 = 3𝑉
2

𝑍
sin𝜑 𝑄𝑐 =

√
3𝑉

2

𝑍
sin(𝜑− 𝜋

6
)

use different assumptions about the system can provide possible additional features.

For instance, the arithmetic apparent power is the arithmetic sum of the apparent

power of the individual phases, 𝑆𝐴 =
∑︀

𝜓

√︁
𝑃 2
𝜓 +𝑄2

𝜓 [168]. The vector apparent

power is the magnitude of the total vector power, 𝑆𝑉 =
√︁

(
∑︀

𝜓 𝑃𝜓)
2 + (

∑︀
𝜓𝑄𝜓)

2

[168]. The arithmetic and vector power factors are 𝑃𝐹𝐴 = 𝑃𝑡𝑜𝑡𝑎𝑙/𝑆𝐴 and 𝑃𝐹𝑉 =

𝑃𝑡𝑜𝑡𝑎𝑙/𝑆𝑉 . For a resistive single-phase load, 𝑃𝐹𝐴 = 0.866 and 𝑃𝐹𝑉 = 1.0. The

arithmetic power factor is less than one, which is a result of the per phase “reactive”

power. The power per phase and the arithmetic power factor both take into account

imbalances imparted on the system, and can provide a unique load signature for load

identification. However, the delta phase power and vector power factor are more

intuitive metrics for reporting load behavior. The vector power factor represents the

individual load’s power factor, without consideration for any imbalances imparted on

the system. That is, it physically makes sense for a resistive load to have a power

factor close to one.

6.2.3.2 Three-Phase Heater Faults

A delta-connected resistive or heating load consists of three heating elements con-

nected line-to-line. This type of load can experience numerous failures due to the

degradation of materials in industrial environments. Fig. 6-22 shows two examples of

degradation pertaining to a three-phase heater from two different USCG shipboard

microgrids. Specifically, Fig. 6-22a shows deteriorated heating elements and Fig. 6-

236



(a) Significant corrosion and
melted sheathing of heating ele-
ments.

(b) Loose wire connection and degraded
cable insulation.

Figure 6-22: Two degraded three-phase heaters.

Table 6.7: Line-to-line open-circuit fault relationships

Delta phase Per phase

Currents
iab = 0 ia = −ica

ibc =
√
3𝑉
𝑍
𝑒𝑗(−

𝜋
2
−𝜑) ib = ibc

ica =
√
3𝑉
𝑍
𝑒𝑗(

5𝜋
6
−𝜑) ic = 3𝑉

𝑍
𝑒𝑗(

2𝜋
3
−𝜑)

Real
Power

𝑃𝑎𝑏 = 0 𝑃𝑎 =
√
3𝑉

2

𝑍
cos(𝜑+ 𝜋

6
)

𝑃𝑏𝑐 = 3𝑉
2

𝑍
cos𝜑 𝑃𝑏 =

√
3𝑉

2

𝑍
cos(𝜑− 𝜋

6
)

𝑃𝑐𝑎 = 3𝑉
2

𝑍
cos𝜑 𝑃𝑐 = 3𝑉

2

𝑍
cos𝜑

Reactive
Power

𝑄𝑎𝑏 = 0 𝑄𝑎 =
√
3𝑉

2

𝑍
sin(𝜑+ 𝜋

6
)

𝑄𝑏𝑐 = 3𝑉
2

𝑍
sin𝜑 𝑄𝑏 =

√
3𝑉

2

𝑍
sin(𝜑− 𝜋

6
)

𝑄𝑐𝑎 = 3𝑉
2

𝑍
sin𝜑 𝑄𝑐 = 3𝑉

2

𝑍
sin𝜑

22b shows a loose connection and degraded cable insulation. These faults result in

various electrical failure signatures.

The first fault condition considered is a line-to-line open-circuit. This can result

from a failed heating element, for example due to damaged sheathing and corrosion.

A line-to-line open-circuit manifests as a reduction in magnitude and phase shift in

two of the line currents. That is, the three-phase load acts as a two-phase load. Given

a phase 𝑎𝑏 open-circuit such that Zab = ∞, Zbc = 𝑍𝑒𝑗𝜑, and Zca = 𝑍𝑒𝑗𝜑, Table 6.7

presents the relationship between the power per delta phase and the power per phase.

Similar relationships can be derived for a 𝑏𝑐 or 𝑐𝑎 open-circuit. If there is a second

line-to-line open-circuit, it would act as a single-phase load. Fig. 6-23 shows the power

for a simulated 3 kW resistive load with a phase 𝑎𝑏 open-circuit. Fig. 6-23a shows the
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(b) Reconstructed power per delta phase.

Figure 6-23: Load connected across two delta phases.

power as calculated from the line currents. The phase currents are reconstructed and

power per delta phase is computed, as shown in Fig. 6-23b. The power per delta phase

correctly shows 1 kW on both phases 𝑏𝑐 and 𝑐𝑎. The next fault condition considered is

a missing voltage connection to the load, essentially turning a three-phase load into a

single-phase load. This can result from degraded or loose wiring in the terminal box.

Fig. 6-24 shows conceptual diagrams for examples of these two fault scenarios (line-

to-line open-circuit and missing voltage connection), plus the combination of both

faults simultaneously. Here 𝑅 is the resistance of a single heating element. Table 6.8

shows the resulting delta impedances, delta phase power, per phase power, and total

power for these three fault scenarios for a heating load with nominal rating 𝑃𝑟 = 9𝑉
2

𝑅
.

With a missing voltage connection, the heater draws one-half of its nominal power.

With an open-circuited heating element, the heater draws two-thirds of its nominal
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Figure 6-24: Delta-connected heater under various fault conditions.

Table 6.8: Delta-connected heating load fault conditions.

Scenario Delta Delta Per phase Total
impedances phase power power power

No 𝑣𝑏
connection Zca =

2
3
𝑅 𝑃𝑐𝑎 =

1
2
𝑃𝑟

𝑃𝑎 =
1
4
𝑃𝑟 𝑄𝑎 =

1
4
√
3
𝑃𝑟 1

2
𝑃𝑟

𝑃𝑐 =
1
4
𝑃𝑟 𝑄𝑐 = − 1

4
√
3
𝑃𝑟

𝑏𝑐 open-
circuit

Zab = 𝑅 𝑃𝑎𝑏 =
1
3
𝑃𝑟 𝑃𝑎 =

1
3
𝑃𝑟 𝑄𝑎 = 0

2
3
𝑃𝑟Zbc = ∞ 𝑃𝑏𝑐 = 0 𝑃𝑏 =

1
6
𝑃𝑟 𝑄𝑏 =

1
6
√
3
𝑃𝑟

Zca = 𝑅 𝑃𝑐𝑎 =
1
3
𝑃𝑟 𝑃𝑐 =

1
6
𝑃𝑟 𝑄𝑐 = − 1

6
√
3
𝑃𝑟

𝑏𝑐 open-
circuit and
no 𝑣𝑎
connection

Zbc = 2𝑅 𝑃𝑏𝑐 =
1
6
𝑃𝑟

1
6
𝑃𝑟

𝑃𝑏 =
1
12
𝑃𝑟 𝑄𝑏 = − 1

12
√
3
𝑃𝑟

𝑃𝑐 =
1
12
𝑃𝑟 𝑄𝑐 =

1
12

√
3
𝑃𝑟

power. These two faults combined, depending on which voltage is missing and which

heating element is open-circuited, results in the heater drawing either one-sixth (the

scenario shown in Fig. 6-24c) or one-third of its nominal power. The heater will also

draw one-third of its nominal power if it has two open-circuited heating elements.

These fault scenarios have been observed with NILMs on various USCG shipboard

microgrids. Fig. 6-25 shows the per-phase power streams of the nominal 12 kW main

propulsion diesel engine (MPDE) jacket water (JW) heater on USCGC Thunder Bay

in these various fault states. The baseline power has been subtracted out for easier

visual display. The port-side MPDE JW heater in Fig. 6-25a is drawing a total of

6 kW, due to a missing 𝑣𝑏 voltage connection. It appears as a single-phase load in

this faulty state, with relative line current magnitudes, [653.54, 0.0015, 0.9913]. This
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(a) Port-side heater with a missing voltage connection.
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(b) Stbd-side heater with a line-to-line open-circuit.
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(c) Stbd-side heater with a line-to-line open-circuit and a missing
voltage connection.

Figure 6-25: Real and reactive power for USCGC Thunder Bay MPDE JW heater in
various fault scenarios.

matches that of a phase 𝑐𝑎 single-phase load. The starboard-side MPDE JW heater

in Fig. 6-25b is drawing 8 kW. This is due to an open-circuited phase 𝑏𝑐 heating
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(b) Reactive power.

Figure 6-26: Per-phase real power and reactive power of the USCGC Spencer port-side
MPDE JW heater turn-on events, starting healthy and after the heater underwent
various stages of degradation.

element. The relative line current magnitudes for this load, [1.7315, 0.9995, 0.5778],

matches that of a two-phase load on phases 𝑎𝑏 and 𝑐𝑎. This heater previously had

no 𝑣𝑎 voltage connection due to corroded wiring [see Fig. 6-22b]. Combined with the

line-to-line open-circuit, the heater was only drawing 2 kW, as shown in Fig. 6-25c.

The relative current magnitudes in this state, [0.0004, 0.9977, 239.92], matches that of

a phase 𝑏𝑐 single-phase load. The per-phase power for these three scenarios matches

the expected values from Table 6.8.

On USCGCs Spencer and Escanaba, degradation of the 4.5 kW MPDE JW heaters
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Figure 6-27: Two delta-connected heaters operating in tandem.

Table 6.9: Two delta-connected heaters operating in tandem.

Scenario Delta Delta Per phase Total

impedances phase power power power

Two
healthy
heaters

Zab = 1
2
𝑅 𝑃𝑎𝑏 =

2
3
𝑃𝑟 𝑃𝑎 =

2
3
𝑃𝑟 𝑄𝑎 = 0

2𝑃𝑟Zbc =
1
2
𝑅 𝑃𝑏𝑐 =

2
3
𝑃𝑟 𝑃𝑏 =

2
3
𝑃𝑟 𝑄𝑏 = 0

Zca =
1
2
𝑅 𝑃𝑐𝑎 =

2
3
𝑃𝑟 𝑃𝑐 =

2
3
𝑃𝑟 𝑄𝑐 = 0

One 𝑏𝑐
open-
circuit

Zab = 1
2
𝑅 𝑃𝑎𝑏 =

2
3
𝑃𝑟 𝑃𝑎 =

2
3
𝑃𝑟 𝑄𝑎 = 0

5
3
𝑃𝑟Zbc = 𝑅 𝑃𝑏𝑐 =

1
3
𝑃𝑟 𝑃𝑏 =

1
2
𝑃𝑟 𝑄𝑏 =

1
6
√
3
𝑃𝑟

Zca =
1
2
𝑅 𝑃𝑐𝑎 =

2
3
𝑃𝑟 𝑃𝑐 =

1
2
𝑃𝑟 𝑄𝑐 = − 1

6
√
3
𝑃𝑟

One 𝑏𝑐
and one 𝑐𝑎
open-
circuit

Zab = 1
2
𝑅 𝑃𝑎𝑏 =

2
3
𝑃𝑟 𝑃𝑎 =

1
2
𝑃𝑟 𝑄𝑎 = − 1

6
√
3
𝑃𝑟

4
3
𝑃𝑟Zbc = 𝑅 𝑃𝑏𝑐 =

1
3
𝑃𝑟 𝑃𝑏 =

1
2
𝑃𝑟 𝑄𝑏 =

1
6
√
3
𝑃𝑟

Zca = 𝑅 𝑃𝑐𝑎 =
1
3
𝑃𝑟 𝑃𝑐 =

1
3
𝑃𝑟 𝑄𝑐 = 0

was observed, as described in Section 1.2. Each NILM monitors two heaters in tan-

dem. Thus, the heater pair draws 9 kW under normal operation. A NILM can detect

an open-circuit failure of any of the six heating elements. Open-circuiting of the

heating elements has been observed on both ships, with the observed time between

consecutive open-circuit failures ranging from hours to months. For example, Fig. 6-

26 shows the real and reactive power on-transient for four different measured scenarios

of the port-side MPDE JW heater system on USCGC Spencer. The leftmost plot is

of two healthy heaters. The step-change in power when the load turns on is approxi-
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Table 6.10: Relative line current magnitudes of MPDE JW heater system.

Expected Observed⃒⃒⃒⃒
𝐼𝑎1,𝑠𝑠
𝐼𝑏1,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑏1,𝑠𝑠
𝐼𝑐1,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑐1,𝑠𝑠
𝐼𝑎1,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑎1,𝑠𝑠
𝐼𝑏1,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑏1,𝑠𝑠
𝐼𝑐1,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑐1,𝑠𝑠
𝐼𝑎1,𝑠𝑠

⃒⃒⃒⃒
Two healthy heaters 1 1 1 1.002 0.9955 1.002

One 𝑏𝑐 open-circuit 1.309 1 0.764 1.310 1.003 0.761

One 𝑏𝑐 and one 𝑐𝑎
open-circuit 1 1.528 0.655 1.002 1.483 0.672

Two 𝑏𝑐 and two 𝑐𝑎
open-circuits 1 ∞ 0 0.9980 1678.23 0.0006

mately 3 kW of real power and zero reactive power on each phase. The second plot

has a single degraded 𝑏𝑐 heating element. The third plot has two degraded heating

elements: one 𝑏𝑐 element and one 𝑐𝑎 element. The rightmost plot has four degraded

heating elements: both 𝑏𝑐 elements and both 𝑐𝑎 elements. In this final state, only two

of the six heating elements are operational and the heating system is only drawing

one-third of the rated power.

Fig. 6-27 shows conceptual diagrams corresponding to the first three scenarios,

where 𝑅 is the resistance of a single heating element. Table 6.9 shows the resulting

delta impedances, delta phase power, per phase power, and total power for these three

scenarios, where 𝑃𝑟 is the nominal power of a single three-phase heater (e.g., 4.5 kW

for the USCGC Spencer MPDE JW heater). As shown, two healthy heaters have

a total power of 2𝑃𝑟. Each failed heating element reduces the total power by 1
3
𝑃𝑟.

The expected and observed relative current magnitudes for these four scenarios are

shown in Table 6.10, showing excellent agreement. The first scenario has the expected

relative magnitudes for a balanced three-phase load. In the second and third scenario,

the heating system is acting as an imbalanced three-phase load, so it does not match

the relative current magnitudes of a balanced three-phase load. Instead, the expected

relative magnitudes are determined using the apparent powers calculated from the

per-phase real and reactive powers in Table 6.9. Finally, the fourth scenario matches

that of a load only across phases 𝑎 and 𝑏.
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These events are difficult for watchstanders to detect, as the heater uses its op-

erational heating element(s) to still warm the jacket water. For a single heater, only

after three heating elements open-circuit or two loose voltage connections will the

heating system have a complete system failure. For two heaters in tandem, only after

six failed heating elements will the system have a complete failure. Automatic con-

trollers alter run times to ensure jacket water temperatures are regulated. Only in the

extremely degraded state of Fig. 6-25c was the heater not able to produce the heat

output necessary, even when the heater was operating with an approximately 100%

duty cycle. These failures indicate that the heater may be at risk for other damaging

failures with potentially dangerous operating conditions. Thus, the degraded heater

should be detected as early as possible. As was shown, these failure signatures are

predictable. Thus, a NILM pattern classifier can be trained to recognize these fail-

ure events using simulated degraded load transients. That is, training provided by a

simulation may fill gaps in systems where, for example, faults cannot be purposely

introduced.

6.2.3.3 Arcing Fault

Degraded materials can lead to damaged sheathing or exposed wiring and can cause

arcing, effectively a dangerous electrical short between the phases. Two arcing events

were observed on USCGC Spencer. These arcing events are attributed to the degra-

dation of the copper sheathing of a 4.5 kW MPDE JW heater, since the currents

return to normal levels with the turn-off of the heater. Both events clipped at the

300 A limit of the NILM current sensors. The currents and voltages of the first event

are shown in Fig. 6-28. The arcing event lasted for about six line cycles and oc-

curred while the heater was drawing the nominal 4.5 kW. All three phases experience

a large current spike. Using curve fitting on the clipped current data to estimate the

true current magnitude, it was estimated that the current on phase 𝑏 was greater

than that of phases 𝑎 and 𝑐. Arcing is known to cause distortions in the voltage

waveform [169,170], as is evident in Fig. 6-28. The second arcing event occurred ap-

proximately nine hours later. In the interval between these arcing events, two heating
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Figure 6-28: Currents and voltages during the first arcing event, in which all three
line currents spike.

elements open-circuited. Thus, during the second arcing event only the 𝑐𝑎 element is

operating and only phases 𝑐 and 𝑎 experience spikes in current. This event lasted for

about 22 line cycles. Fig. 6-29 shows the current stream for the entire arc duration.

Fig. 6-30 shows the current and voltage streams for the beginning of the arc event,

showing the evident distortions in the voltage waveform.

The heater is supplied from a 15 A breaker with an instantaneous trip rating of

180 to 750 A rms. The trip rating depends on both the current magnitude and event

duration. From curve fitting on the clipped current data, it was estimated that both

events fell between the breaker’s minimum and maximum clearing times. An exact

magnitude cannot be determined because of the clipping and distortions around the

zero-crossing, but the estimate indicates that the breaker likely did not trip during
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Figure 6-29: Currents during the second arcing event, in which phases 𝑎 and 𝑐 show
current spikes.

these events. This was corroborated by speaking with watchstanders onboard the

vessel and confirmed that they had no indication that these arcing events occurred or

of any breakers having tripped. The standard protection and relaying on this power

system failed to catch the dangerous arcing that was easily observed by the NILM.

A NILM can alert watchstanders to any unusually high power events as indication of

arcing. Removal of the heater after the arcing event in Fig. 6-29 revealed significant

damage and melted sheathing [see Fig. 6-22a].

6.2.3.4 High Impedance Ground Fault

The sheathing of the presented JW heaters are grounded. Thus, damaged sheathing

and a damaged heating element may lead to a ground fault. The detection and lo-

cation of ground faults are necessary for power utilization safety. The monitored

shipboard systems are nominally ungrounded systems. However, an ungrounded

system is in reality capacitively grounded through the parasitic, or natural capac-

itances of three-phase conductors and other distribution equipment to ground (e.g.,

the ship’s hull). This creates an inherent capacitive current [171]. The capacitive

impedances of ungrounded systems limits the ground fault current and makes them

“high-impedance faults.” As a result, the normal overcurrent protection devices may
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Figure 6-30: Zoomed-in view of currents and voltages during the second arcing event,
in which phases 𝑎 and 𝑐 show current spikes.

not detect and clear these faults which may be similar in magnitude to those of nor-

mal loads [172, 173]. Instead, detection of a ground fault is often performed with a

zero sequence voltage relay. Locating ground faults requires the manual sequential

opening of branch circuits until the fault disappears. As will be described, a ground

fault manifests as a unique power signature. Thus, a NILM can detect ground faults

and supplement existing protection schemes.

Fig. 6-31 shows a diagram for an ungrounded power system with parasitic capac-

itances, 𝐶0, between each phase and ground, and a phase 𝑎 fault to ground. For

an unfaulted scenario and assuming balanced voltages as given in Eq. (2.2), the
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Figure 6-31: Ungrounded power system with a phase-𝑎 fault to ground. The system is
parasitically grounded through the capacitances between the three-phase conductors
and ground.

capacitive currents are: ⎡⎢⎢⎢⎣
iCa

iCb

iCc

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝜔𝐶0V𝑒

𝑗 𝜋
2

𝜔𝐶0V𝑒
−𝑗 𝜋

6

𝜔𝐶0V𝑒
−𝑗 5𝜋

6

⎤⎥⎥⎥⎦ . (6.14)

The parasitic capacitances are the only current return path during a ground fault.

Given a phase 𝑎 solid ground fault, the line-to-ground voltages and capacitive currents

are: ⎡⎢⎢⎢⎣
va

vb

vc

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

√
3V𝑒−𝑗

5𝜋
6

√
3V𝑒𝑗

5𝜋
6

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
iCa

iCb

iCc

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

√
3𝜔𝐶0V𝑒

−𝑗 𝜋
3

√
3𝜔𝐶0V𝑒

−𝑗 2𝜋
3

⎤⎥⎥⎥⎦ . (6.15)

In this case, the faulted phase and ground potential are equated and the voltage of

the two unfaulted phases to ground are raised from 𝑉 to
√
3𝑉 [171]. The line-to-line

voltages do not change with a ground fault. That is, a single line-to-ground fault

does not cause any service disruptions. Instead, a shifting of the neutral occurs.

Using KCL, the fault current is three times the original capacitive current from each
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phase to ground. Ground faults often occur with some resistance, 𝑅𝑓 , associated with

the fault, which affects the line-to-ground voltage shift and fault current magnitude.

Ignoring line impedances, the line-to-ground voltage for a phase 𝑎 fault to ground is:

va = V
𝑗3𝜔𝐶0𝑅𝑓

1 + 𝑗3𝜔𝐶0𝑅𝑓

. (6.16)

The total phase 𝑎 fault current is:

ifault = 𝑗3𝜔𝐶0V
1 + 𝑗𝜔𝐶0𝑅𝑓

1 + 𝑗3𝜔𝐶0𝑅𝑓

. (6.17)

The proportion of the fault current that gets measured in the line current of the

faulted phase is the current through the fault resistance, which can be solved for by

current division:

iRf
=

𝑗3𝜔𝐶0V

1 + 𝑗3𝜔𝐶0𝑅𝑓

. (6.18)

If 𝑅𝑓 is zero, the current as measured by the NILM is three times the original capaci-

tive current from each phase to ground. As 𝑅𝑓 increases, the change in line-to-ground

voltage decreases and the fault current decreases. In terms of power (using the the

definition in Eq. (2.7) which assumes a constant voltage, 𝑉 ), if 𝑅𝑓 is zero, a nega-

tive reactive power will be added to the aggregate power stream. If 𝑅𝑓 is nonzero,

the ground fault also adds a positive real power to the faulted phase. For example,

with a parasitic capacitance 𝐶0 = 6.25 µF, the real and reactive power as would be

measured by a NILM on the faulted phase for fault resistances ranging from 0Ω to

200Ω is shown in Fig. 6-32.

Two line-to-ground fault events were observed on USCGC Spencer. These events

were likely due to the damaged sheathing and degraded heating elements of the MPDE

JW heaters. Fig. 6-33a and Fig. 6-33b show the aggregate power during the first

ground fault. There is a ground fault on phase 𝑐 at 𝑡 = 0.6min, appearing as a step

change in 𝑃𝑐 and 𝑄𝑐 of approximately 109 W and −437 VAR, respectively. There

is no significant change in power on the other two phases. The relative line current

magnitudes for this observed fault are [2.462, 0.005, 74.060], which do not match any
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Figure 6-32: Ground fault power on the faulted phase for different fault resistances.

of the expected values for a relatively balanced three-phase load, two-phase load, or

single-phase load. A similar ground fault was observed several months later on phase

𝑏, as shown in Fig. 6-34a and Fig. 6-34b. At 𝑡 = 0.35min, there is a step change

in 𝑃𝑏 and 𝑄𝑏 of approximately 88 W and −448 VAR, respectively. Similar to the

first ground fault, there is no significant change in power on the two healthy phases.

The relative current magnitudes of this ground fault are [0.003, 34.334, 9.343]. A

ground fault also leads to third-harmonic line current in the faulted phase [173]. As

mentioned, third-harmonic currents are typically zero-sequence components. With a

ground fault, a low impedance path is provided for the zero-sequence components.

Fig. 6-33c and Fig. 6-34c show the rms third-harmonic current envelopes for the two

ground faults, with a 12-point rolling mean applied.

The nature of the high-impedance ground fault has meaningful implications for

using a NILM to detect these faults. Even though the step change in power is similar

in magnitude to those of normal loads, the way it manifests as increased line currents

on only a single phase, both fundamental and third-harmonic, is likely unique. All

the load connection types described will have line currents on at least two of the

lines. The relative line current magnitudes can also provide indication of a ground

fault. The relative line current magnitudes for a ground fault will contain a 0 and

∞ (realistically just a large value), similar to a single-phase load. The third value

depends on the step changes of the line currents of the two healthy phases, which are

both close to zero, so it is unlikely for the ratio to be exactly 1. If the ground fault
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Figure 6-33: Phase 𝑐 ground fault at 0.6min immediately followed by an open-circuit
of the 𝑏𝑐 heating element

is due to faulty load behavior, the location can be narrowed down to the energized

equipment as identified by a NILM classifier.

These ground faults were both immediately followed by the open-circuit of a 𝑏𝑐

heating element of a MPDE JW heater. As shown in Fig. 6-33 and Fig. 6-34 the

ground faults were followed by a slow change in power until about 𝑡 = 2.4min and

𝑡 = 1.4min, respectively, as a result of the open-circuit. This heater is nominally
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Figure 6-34: Phase 𝑏 ground fault at 0.35min immediately followed by an open-circuit
of the 𝑏𝑐 heating element.

4.5 kW, so as expected, the open-circuited heating elements result in a decrease of

about 750 W on phases 𝑏 and 𝑐, and a split of about 433 VAR on those phases. The

root-cause analysis for the MPDE JW heater faults is presented in Appendix B.
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Table 6.11: Relative line current magnitudes of unbalanced VFD⃒⃒⃒⃒
𝐼𝑎𝑘,𝑠𝑠
𝐼𝑏𝑘,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑏𝑘,𝑠𝑠
𝐼𝑐𝑘,𝑠𝑠

⃒⃒⃒⃒ ⃒⃒⃒⃒
𝐼𝑐𝑘,𝑠𝑠
𝐼𝑎𝑘,𝑠𝑠

⃒⃒⃒⃒
k=1 0.84 0.91 1.30
k=3 0.36 1.34 2.07
k=5 0.86 0.93 1.25
k=7 0.83 0.93 1.29

6.2.3.5 Unbalanced Nonlinear Loads

For the purposes of this section so far, ideally balanced and sinusoidal voltages have

been assumed. However, unbalanced supply voltages may be especially prevalent on

some systems such as on marine microgrids [174] and on grids with high penetration

of distributed energy resources such as photovoltaics [175]. For a VFD, even small

voltage imbalances can cause significant variation in line current waveforms [176]. As

the voltage imbalance increases, the same amount of power still needs to be supplied,

resulting in current peak increases. This means an increased current through the

diodes and increased stress on the components. With a large enough supply volt-

age imbalance, the balanced double-pulse line current waveform eventually becomes

a single pulse waveform. As described in Section 6.2.2, for a balanced non-linear

load, triplen components are zero-sequence. More generally, the third harmonic line

currents are:

𝑖𝑎3(𝑡) = 𝐴𝑎𝑏3 cos (3𝜔𝑡+ 𝛿𝑎𝑏3)− 𝐴𝑐𝑎3 cos (3𝜔𝑡+ 𝛿𝑐𝑎3)

𝑖𝑏3(𝑡) = 𝐴𝑏𝑐3 cos (3𝜔𝑡+ 𝛿𝑏𝑐3)− 𝐴𝑎𝑏3 cos (3𝜔𝑡+ 𝛿𝑎𝑏3)

𝑖𝑐3(𝑡) = 𝐴𝑐𝑎3 cos (3𝜔𝑡+ 𝛿𝑐𝑎3)− 𝐴𝑏𝑐3 cos (3𝜔𝑡+ 𝛿𝑏𝑐3).

(6.19)

When the third harmonic phase current magnitudes and phase angles are not equal,

third harmonic line currents will be measured. That is, the uneven current distribu-

tion in the rectifier can cause uncharacteristic positive-sequence triplen harmonics in

the line currents [177,178].

A three-phase motor controlled by a VFD was tested using the laboratory grid
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Figure 6-35: Unbalanced line currents for a motor controlled by a VFD.
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Figure 6-36: Power envelopes of a motor controlled by a VFD.
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Figure 6-37: Magnitude of third, fifth, and seventh harmonic current envelopes nor-
malized by the fundamental of a motor controlled by a VFD.

voltage. The line currents and per phase power are shown in Fig. 6-35 and Fig. 6-36,

respectively. The line-to-line voltages during the testing period averaged 𝑉𝑎𝑏 = 292.3
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V, 𝑉𝑏𝑐 = 295.6 V, and 𝑉𝑐𝑎 = 295.5 V. Even these small voltage imbalances resulted

in an asymmetric current conduction. Fig. 6-37 shows the average current harmonic

magnitudes normalized by the fundamental for the load duration shown in Fig. 6-36.

Unlike the balanced case of Fig. 6-18, there are significant third harmonic line cur-

rents. The unbalanced line currents also result in relative line current magnitudes

that deviate from the expected values of [1,1,1], as shown in Table 6.11 for the fun-

damental, third, fifth, and seventh harmonics. These values were calculated at the

detected on-event with ∆𝑡 = 1 s for steady-state calculation. Since the line currents

are not balanced, the true phase currents cannot be determined. However, the im-

balanced line currents and presence of third harmonic currents are a telling sign of

increased stress on components and possible power quality issues.

6.3 Chapter Summary

This chapter presented example case-studies of applying nonintrusive load monitoring

for fault detection and diagnostics. The first case-study involved tracking the health

of an HVAC system. Ventilation systems play important roles in residential, commer-

cial, industrial, and transportation systems. They are critical energy consumers and

generate substantial electrical waste when run under faulted conditions. Combining

knowledge of physical characteristics of installed fans with their respective signatures

enables a NILM to effectively monitor fans and their motors, providing a method or

additional method for detecting and diagnosing faults. The methods presented are

especially valuable for aggregate monitoring of microgrids with highly-variable supply

frequency. The value of power monitoring for detection of filter clogging and leaking

was demonstrated. If a fan is infrequently energized and secured, clogs or leaks need

to be detected while the fan is operating. Thus, slot harmonic tracking is employed to

correlate specific individual fan behavior with power consumption. Fan speed estima-

tion and filter clogging detection was demonstrated via slot harmonics. The presented

experiments demonstrated that supply frequency needs to be tracked so that clogging

or other fault conditions can be distinguished from shifts in supply frequency. The
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algorithms and hardware were demonstrated in a field microgrid on USCGC Marlin,

both in-port and at sea. The in-port experiments, which occurred with a relatively

stable utility frequency, demonstrated how power and slot harmonic information can

be used in tandem to track ventilation health in the field. Furthermore, testing on

USCGC Marlin confirmed that these methods work well in a practical multi-machine

environment served by a common electrical source. The motivation for and the ap-

plicability of the multi-peak SSE algorithm was demonstrated in this multi-machine

environment. The results from USCGC Marlin at sea confirmed that motor speed

can be tracked even with a highly variable supply frequency on an isolated microgrid.

The laboratory and ship results together demonstrate that with a combination of

equipment operation history, power consumption, and slot harmonic tracking, it is

possible for a NILM system to identify fans and monitor HVAC systems for fan and

motor health and speed.

This chapter then presented fault detection and diagnostics in three-phase sys-

tems, using ungrounded delta-configured systems as an example. A three-phase sys-

tem presents additional challenges for monitoring due to potential imbalances in the

system, some of which are inherent to specific loads, but are other times indicative

of a fault scenario. As was demonstrated, abrupt faults are associated with chang-

ing electrical consumption and often evolve in a predictable way. Electrical analysis

unveiled degraded shipboard loads, revealing corrosion and degradation of critical

equipment. Monitoring these systems is important for ensuring efficient and safe

operation. A practical three-phase system is never perfectly balanced. Changes in

system balances for currents, voltages, and harmonic content during transients can

inform load identification and diagnostics. Nonintrusive load monitoring can be used

as a condition-based maintenance aid, by using power stream data to detect load or

system degradation before complete failure occurs.
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Chapter 7

Dashboard User Interface

For a nonintrusive load monitoring system to be an effective condition based main-

tenance tool, the data needs to be presented as an intuitive decision aid for users.

This chapter presents diagnostic metrics that have proven useful for the shipboard

case-studies. Then the NILM Dashboard and its easy-to-understand visual displays

are presented.

7.1 Diagnostic Indicators

Nonintrusive load monitoring records the electrical signature and the operating sched-

ule for a piece of equipment, allowing for a broad range of fault diagnostic methods.

It is crucial to select the appropriate parameters for condition-monitoring to create

a useful tool that provides actionable information for the end-user. To this end, the

following six parameters were selected for equipment diagnostics:

• Power: Steady-state real power.

• Power factor: The ratio of real power to apparent power.

• Average run duration: Time between activation and shutdown.

• Total run time: Total time the equipment is online over a 24-hour period.

• Daily actuations: Number of discrete operations per day.

• Duty cycle: Total run time divided by total time period (24-hours).
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These parameters work well for the equipment monitored on the marine micro-

grids, but other metrics may be useful in other environments. The equipment in

this work consists largely of motors, pumps, and heaters. All of these metrics may

be useful for detecting material degradation of equipment, such as mechanical wear

and corrosion. A change in power demand may indicate a worn motor bearing, or a

change in power factor could be a sign of corroded heating elements. Many of the

heaters and pumps monitored by the NILMs in this work are controlled by closed-loop

automated systems such as tank-level sensors or thermostats. Thus, the average run

duration, total run time, daily actuations, and duty cycle track equipment behavior

and are useful for finding sensor and automation faults that might cause equipment

to run too frequently or not enough. As was shown, a broken tank level indicator

or failed thermostatic controller can, for example, cause equipment to activate in

repeated short-cycles or run for excessively long periods. As equipment experiences

material degradation, feedback control may also alter average run duration, total run

time, daily actuations, and duty cycle. For instance, for the MPDE JW heater, as

the heating elements successively fail, the duty cycle of the heating system increases

in order to maintain the heat output. Finally, it is important to note that a single

extended pump run or even a few frequent runs is not necessarily a cause for concern.

These may occur during manual operation or maintenance. This is accounted for by

tracking the average over 24 hours for averaged parameters, i.e., power, power fac-

tor, average run duration, and duty cycle, and the total over 24 hours for summated

parameters, i.e., total run time and daily actuations. The 24-hour window serves to

help prevent falsely displaying an alarm as the result of a brief anomaly. The 24-hour

period can easily be adjusted for different applications where loads activate less or

more frequency, or tighter controls are required.

Condition-based maintenance parameters are communicated on the NILM Dash-

board via “green-yellow-red” diagnostic gauges, as demonstrated below. The green

region represents healthy operation, the yellow region represents a trouble warning,

and the red region is a more definitive fault alarm. Determining the proper threshold

for each region on the gauges is crucial to making it a useful, actionable tool for the
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ship’s crew. A variety of methods has been proposed to determine fault thresholds

for industrial applications [179]. For this work, a statistical process control (SPC)

method is implemented. Effective SPC attempts to differentiate between natural

variations and variations that are due to process failure [180]. Deviation from the

historical data for any parameter is evidence of a possible fault. SPC provides a

method to determine exactly how much deviation is acceptable and when a deviation

should trigger a fault warning. The SPC method consists of determining a centerline,

an upper control limit (UCL) and a lower control limit (LCL). Warnings are issued

when a parameter reaches the upper or lower control limits.

First consider a continuous variable, in which the variable can fall anywhere within

a particular range of values, such as power, power factor, average run duration, total

run time, and duty cycle. Considering the standard normal distribution, SPC uses

the arithmetic mean (𝜇) of the parameter as the centerline [180]. The UCL and LCL

are defined as,

𝑈𝐶𝐿 = 𝜇+ 𝑛𝜎, 𝐿𝐶𝐿 = 𝜇− 𝑛𝜎, (7.1)

where 𝜎 is the standard deviation and 𝑛 is an integer that sets the distance of the

control limits. For a parameter with a normal distribution, 𝑛 = 3 is the accepted

industry standard for a fault warning [180,181], and corresponds to the red region on

the gauges. The choice of control limits affects the risks of Type I or Type II errors,

where Type I errors refer to incorrectly reported faults and Type II errors refer to

missed faults. By widening the control limits, the risk of Type I errors decreases;

however there is an increased risk of Type II errors as more data points will fall

within the control limits and be viewed as normal. Contrarily, if the control limits

are narrowed, there is an increased risk of Type I errors and decreased risk of Type II

errors, as more data points will fall outside the control limits and will be classified as

fault conditions. The “3-sigma” rule is conservative and designed to minimize the risk

from false alarms. However, analysts often suggest using two sets of limits; action

limits at “3-sigma” and warning limits at “2-sigma” [180]. For this application the

intermediate control at 𝑛 = 2 corresponds to the yellow region on the gauge. Addition
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Figure 7-1: Probability density function of a normal distribution showing progressive
thresholds for fault detection. Colors correspond to the red, yellow, and green regions
on the dashboard gauges.

of the intermediate control limit provides more rapid detection of faults. Figure 7-1

shows how SPC maps the probability density function (PDF) of a normal distribution

to the green, yellow and red regions of the gauges. The percentages in each region

correspond to the likelihood that the variable falls within that particular range of

values. The quantile values displayed at the bottom of Fig. 7-1 correspond to the

probability that some variable, 𝑋, is less than or equal to some value, 𝑥, where 𝑥 is

the centerline and control limits. This can be written as a cumulative distribution

function (CDF),

𝐹 (𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥). (7.2)

The inverse cumulative distribution function (ICDF), or quantile function,

𝐹−1(𝑝) = 𝑥, (7.3)

solves for the 𝑥 value that would make 𝐹 (𝑥) return some probability, 𝑝.

The SPC process can be adapted if the normal distribution does not properly fit

the data. For example, the Weibull distribution is often used in machinery reliability

applications [181]. The PDF for a two-parameter Weibull function is:

𝑓(𝑥) =

(︂
𝛽

𝛼

)︂(︁𝑥
𝛼

)︁𝛽−1

𝑒(
−𝑥
𝛼 )

𝛽

(7.4)
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where 𝛼 is the scale parameter and 𝛽 is the shape parameter. To create the gauge

regions for a non-normal distribution, the probability quantiles (𝑝) should match the

red, yellow, and green regions of the normal distribution in Fig. 7-1. The ICDF

function for a Weibull distribution is:

𝑥 = 𝐹−1(𝑝|𝛼, 𝛽) = 𝛼(−𝑙𝑛(1− 𝑝)) 1
𝛽 . (7.5)

Therefore, the centerline can be found by setting 𝑝 equal to 0.50 and solving for 𝑥.

The upper and lower yellow threshold levels can be found by setting 𝑝 to 0.977 and

0.023, respectively. Similarly, the upper and lower red threshold levels can be found

by setting 𝑝 to 0.999 and 0.001, respectively. This ensures that the probability of

an alarm detection is the same regardless of the PDF selected for modeling. Each

parameter monitored by the NILM Dashboard can be analyzed individually and the

gauges adjusted to provide diagnostic warnings at appropriate levels.

Next consider a discrete variable, in which the variable has finite values, such

as the number of daily actuations. Because these can only occur as integer values,

the CDF is not continuous and increasing; thus the generalized inverse distribution

function will be used instead of the ICDF [182]. The generalized inverse distribution

function can be expressed as,

𝑥 = 𝐹−1(𝑝) = inf{𝑥 ∈ R : 𝐹 (𝑥) ≥ 𝑝}, (7.6)

where inf is the infimum, or the greatest lower bound. Similar to a continuous func-

tion, centerline and upper and lower limits can be determined by setting 𝑝 to the

appropriate values and solving for 𝑥.

The statistical process control method was used on historical NILM data from

USCGC Spencer. Histograms for each metric were created. Then, probability densi-

ties were fit to the data. For continuous functions, the histograms are modeled with

multiple probability density functions (PDF), while a discrete function is modeled

with probability mass functions (PMF), and the best fit function is selected. Note

that the model for daily actuations is only for if the load ran that day. If there were
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no runs for a given day, that is demonstrated with a grayed out gauge. Depending on

the PDF or PMF selected, the fault detection thresholds are set as shown in Fig. 7-1

or using a quantile function as described in Equations (7.5) and (7.6). This process

was repeated to determine control limits for each of the monitored loads. This infor-

mation was communicated to the ship’s crew using the NILM Dashboard graphical

user interface.

If a user knows that a piece of equipment should be operating, but the NILM

Dashboard shows the load has not been operational, this would alert the user to a

possible fault. There are several reasons the daily actuations parameter could drop

to zero, even if the load should be operating. First, it could be indicative of a broken

sensor, such as a tank-level sensor or temperature sensor, resulting in the load not

turning on even when it should be. Second, it could be indicative of a complete

failure of a piece of equipment. Alternatively, it could be due to a degraded piece of

equipment, resulting in a load signature that has changed to the point where load

identification accuracy is reduced.

7.2 Dashboard Overview

After disaggregating individual load events, the NILM Dashboard software indicates

to watchstanders when pieces of machinery are energized or secured [10]. After addi-

tional historical data is collected the Dashboard can perform historic diagnosis and

fault detection [10]. The Dashboard consists of three main views: Timeline, Metrics,

and Historic.

7.2.1 Timeline View

The “Timeline” view provides a live view of equipment status, allowing the user to

see loads energized and secured in real-time. The user can monitor the entire plant

or hide certain equipment from view, allowing for increased attention on select loads.

The time window can be adjusted to the user’s choosing, either through zoom/pan

functions or by selecting a date range. The timeline tool provides the user with a
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Figure 7-2: Power stream displayed above. NILM Dashboard timeline view displayed
below, where colored blocks indicate periods where a load is energized.

compact picture of plant operations and the ability to easily investigate any apparent

anomalies. For example, Fig. 7-2 shows an example two-hour power stream from USS

Indianapolis time-aligned with the NILM Dashboard timeline view. Colored blocks

indicate periods where a load is energized.

7.2.2 Metrics View

The “Metrics” view provides the user with a set of diagnostic indicators for a selected

piece of equipment. These include the metrics presented in Section 7.1, including real

power, power factor, total run duration, average run duration, daily actuations, and

duty cycle. Each metric is displayed as a gauge with green, yellow, and red sections.

The colored sections are derived from nameplate data, known usage patterns and

statistics from previous normal operation. Green indicates normal operations, while

yellow and red indicate increasing likelihood of a fault. The gauge needle is the
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average metric value for the last 24 hours. The Metrics view provides an analysis of

individual equipment health and helps direct initial troubleshooting efforts.

7.2.3 Historic View

The “Historic” view provides short- and long-term trend data to supplement the

analysis from the Metrics view. This tool allows the user to select a single load

and any of the six metrics. The Historic View is presented as a bar graph, where

each bar represents one day. The Historic view is designed to give the user the

ability to assess trend data, track behavior over time, and make informed decisions

for condition-based maintenance.

7.3 USCGC Spencer Demonstration

On USCGC Spencer, the first prototype of the NILM Dashboard graphical user inter-

face was installed in July 2018 as was shown in Fig. 1-3c, overlooking the engine room.

The crew could navigate through different loads on the port and starboard panels to

plot on the Dashboard to verify operation. The two computers were connected via

Ethernet, such that one Dashboard interface could display the detected events from

both subpanels from a single location. The load identification was performed in real-

time as data was collected on the ship using the multi-scale identification framework

from Section 3.1. The Joule [52] data processing framework was utilized to perform

load identification using the /meter/prep streams as input.

To demonstrate the ability of Dashboard metrics to provide indication of fault

conditions, the metrics view is shown in Fig. 7-3 for three scenarios of the graywater

pump: healthy condition, failed high-level tank sensor, and failed check valve. The

graywater system and these fault conditions were introduced in Section 1.2. Each

row in Fig. 7-3 shows one metric for a sample day in each of the scenarios, with

healthy operation on the left, the failed high-level sensor in the middle, and the failed

check valve on the right. The gauge needle is the average metric value for that day

of operation. The red region of the gauge will expand accordingly if the value for

264



(a) Power.

(b) Power factor.

(c) Average run duration.

(d) Total run time.

(e) Daily actuations.

Figure 7-3: Metrics for various conditions of graywater pump operation: healthy
(left), failed high-level tank sensor (middle), and check valve failure (right).
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that day places it outside the gauge limits visible on a “normal” day. In Fig. 7-3a and

Fig. 7-3b, the power and power factors are relatively healthy for all three scenarios.

This is expected, since these two fault scenarios do not have an effect on the steady-

state power consumption of the load. Fig. 7-3c shows that both the high-level sensor

fault and check value fault result in the average run duration to be in the red region.

However, these two faults have opposite behaviors. The high-level sensor fault results

in an average run duration which is much shorter than normal and the check valve

failure results in an average run duration which is higher than normal. Due to the

almost continuous flow of water into the holding tank, the pump would have to run

for longer as it would attempt to empty the tank. Typically the average run time

is within a narrow band, so the approximately ten second increase in run duration

during the check valve failure was significant. Fig. 7-3d shows that the total run time

for the high-level sensor fault was still in the green region, whereas the the check valve

failure was in the red region. Finally, Fig. 7-3e shows that the daily actuations for

both the failed high-level tank sensor fault and check valve failure are much greater

than normal. These examples demonstrate the ability of the average run duration,

total run time, and daily actuations metrics to diagnose load cycling fault conditions.

7.4 USS Indianapolis Demonstration

After collecting data from USS Indianapolis and verifying individual load transients,

load identification was run on historical data streams. Fig. 7-4 shows eight days of the

Dashboard timeline view, with equipment listed vertically on the left side, and colored

blocks representing time equipment is energized. The shown equipment include the

splitter gear control oil (CO) pump, hydraulic power pack (HPP) booster pump, HPP

cooling pump, splitter gear lube oil (LO) pump, ship service diesel generator (SSDG)

lube oil (LO) pump, SSDG jacket water (JW) pump, and SSDG heater unit.

Along with displaying equipment operational status, metrics about load opera-

tional history can provide insight for condition-based maintenance and fault detec-

tion. Here the duty cycle is demonstrated, providing a diagnostic metric of operating
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Figure 7-4: Dashboard timeline view of equipment from two sub-panels for eight days
of operation.

Table 7.1: Load duty cycles.

Equipment In-Port Underway
SSDG Skid Heater .4543 .6140
SSDG LO Pump .0359 .1850
SSDG JW Pump .4543 .6140

Splitter Gear LO Pump .1157 .6899
Splitter Gear CO Pump 0 .8837

HPP Booster Pump 0 1.0
HPP Cooling Pump 0 1.0

time. The duty cycle is calculated as 𝐷 = 𝑇𝑜𝑛/𝑇 , where 𝑇𝑜𝑛 is the time the load is

energized during the time period of interest, 𝑇 . It is important to characterize the

duty cycle based on the status of the ship, because ship status drives the frequency of

equipment use. Table 7.1 takes seven of the loads observed on LCS and presents the

calculated duty cycle for in-port (i.e., the generator is on standby) and underway (i.e.,

the vessel is at-sea on generator power) periods. In-port duty cycles were calculated

for a 3 day period, from February 8, 2020 to February 10, 2020. Underway duty cy-

cles for the auxiliary machine room subpanel were calculated for a 14-day period from

February 11, 2020 to February 24, 2020, and duty cycles for the water jet machinery

room subpanel were calculated for a 5-day period from February 11, 2020 to Febru-
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(a) Duty cycle.

(b) Daily actuations.

Figure 7-5: Historical view of the splitter gear LO pump.

ary 15, 2020. These duty cycles provide valuable insight into equipment operation.

The splitter gear LO pump, splitter gear CO pump, HPP booster pump, and HPP

cooling pump have different characteristic behaviors for different ship statuses, with

clear delineations between underway and in-port.

From the calculated metrics, a historical view was generated to view daily trend

data. To illustrate, historic views of the splitter gear LO pump are presented. The

splitter gear for the propulsion system contains both a LO pump and CO pump. The

splitter gear LO pump is energized at certain shaft speed ranges while the ship is

underway, with the lubrication oil being circulated by an attached gear-driven pump
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Figure 7-6: Timeline view of two days of operation of the SSDG auxiliary skid while
the vessel is in-port.

when the shaft speed permits. Fig. 7-5 shows historic views of the daily duty cycle

and daily actuations for the splitter gear LO pump. On February 24, the pump

was energized for 96% of the day, in the range expected for underway operations.

However, by viewing the number of daily actuations, it becomes clear the splitter gear

was cycling more often than usual, with 27 actuations. This cycling of the splitter

gear LO pump indicates that the separate gear-driven pump is not able to maintain

the required lubrication oil pressure, most likely a result of lower ship speeds. This

situation occurs when vessel speed is right above the separate gear-driven pump’s

“take-off” rpm, or the required shaft speed for the gear-driven pump to provide the

required lubrication oil pressure. Long periods of operation in this state can be

detrimental to the electric pump, as short cycling can add additional stress and strain,

wearing down the pump and shortening its useful life.

The timeline view, in conjunction with the historical view can provide additional

insight into ship operation. Here, the auxiliary skid on USS Indianapolis will serve

as an example. USS Indianapolis is equipped with four ship service diesel generators

(SSDGs). These generators have a skid attached to the free-end of the engine, which

provides the auxiliaries required to run the generator. The auxiliary skid includes two
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Figure 7-7: Timeline view of two days of operation of the SSDG auxiliary skid while
the vessel is underway.

pumps and two heaters: one pump circulates lube oil and the other circulates jacket

water throughout the SSDG. Both heaters actuate simultaneously, and are rated to

draw a combined 12 kW. Furthermore, the SSDG jacket water (JW) pump, which is

rated at 1.12 kW, runs simultaneously with the heating elements. The SSDG lube

oil (LO) pump is rated at 1.5 kW. Fig. 7-6 and Fig. 7-7 show the timeline view of

the SSDG auxiliary skid for two days of in-port operation and two days of underway

operation, respectively. From the timeline view, it is clear that these loads have

different behaviors when comparing the two time periods. For the SSDG LO pump,

the total on duration is much higher in Fig. 7-7. For the SSDG JW pump and SSDG

heater unit, the total on duration looks similar, but the number of actuations is much

higher in Fig. 7-6.

These behaviors can be more closely examined by viewing the historical view

plots. Fig. 7-8a shows the historical view daily duty cycle for the SSDG LO pump.

When the vessel is in-port (and the generator is in standby), the SSDG LO pump

exhibits a very low duty cycle, of approximately 0.04 for the period before February

15. On February 16 and 17, the duty cycles are very high, at approximately 0.9 and

0.6, respectively. The SSDG JW pump exhibits a small increase in duty cycle at this
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(a) SSDG lube oil pump.

(b) SSDG jacket water pump.

Figure 7-8: Daily duty cycle of the SSDG lube oil pump and jacket water pump.

time, with duty cycles on February 16 and 17 of 1.0, as shown in Fig. 7-8b. This

is in agreement with the SSDG’s auxiliary skid circulating lube oil and jacket water

to maintain engine block temperatures for immediate operation. Contrasting this is

February 20, during which both the SSDG LO pump and JW pump have a duty

cycle of zero. There are two operating states, which are in stark contrast with each

other, that present this duty cycle profile. First is when the the generator is in “cold

iron” status with the auxiliary skid not energized to maintain block temperature for

immediate operation. This is typically done during maintenance and repair activities
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or when there is no immediate need to run the generator. Second, a duty cycle of

zero will also occur if the generator is in continuous operation, because attached gear

driven pumps will provide jacket water and lubricating oil circulation rendering the

auxiliary skid pumps and heaters unnecessary. In discussions with the vessel’s crew,

it was determined that the latter condition is what has been observed in the data

stream. However, having a complete set of power streams from all generators would

also enable the actual operation of the SSDG to be determined.

7.5 Chapter Summary

This chapter demonstrated NILM Dashboard for providing real-time diagnostics to

the end-user. The platform was successfully tested on power stream data from

USCGC Spencer and USS Indianapolis. The Dashboard platform was installed for

real-time monitoring on USCGC Spencer. Examples were presented for each of the

three proposed views, Timeline, Metrics, and Historic. With accurate detection of

faults and anomalous behavior prior to a ship’s deployment, servicing and replace-

ment of equipment can be better scheduled. That is, if presented accurately and in

an intuitive way, power stream data can serve as a metric for conducting condition

based maintenance, rather than recurring preventative maintenance.
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Chapter 8

Conclusion

Nonintrusive load monitoring has widespread applicability for monitoring of electronic

and electromechanical systems and has been a widely researched topic for more than

three decades [14,62,183]. The work presented in this thesis builds upon the decades

of previous NILM research and advancements. Most research has focused on absolute

accuracy of total load disggregation, but not computational complexity, usability, or

concrete applications focused on mission needs [6]. No nonintrusive load monitor will

be perfect under all conditions. Load classification algorithms depend on the type

and number of target loads in any given data set and the features associated with the

loads. This thesis aims to provide tools that can be tailored for different application-

specific end goals. A non-exhaustive summary of contributions in this thesis includes

the following content in each of the cited chapters. Chapter 2 presents advancements

for power system measurement and preprocessing. Work in this chapter builds on

previous work on spectral envelopes for power monitoring [9], and expands the prac-

tical limits of spectral envelopes for detecting load transients. The data acquisition

hardware presented in the chapter offers a first application that can automatically

track and reject utility content in nonintrusive current measurements. This chapter

also offers a first look at techniques for extending nonintrusive monitoring to ring dis-

tribution networks. Chapter 3 presents tools for physics-based feature extraction and

selection. A multi-scale framework is presented that separates events based on time-

scale into geometric, statistical, and continuous events. This framework was designed
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based on the USCG field data described in this thesis, but also previous field demon-

strations, such as at a school [184] and research facility building [185]. Variation due

to both healthy and faulty operation illustrates the necessity for adaptive classifica-

tion techniques. A separability check is introduced for evaluating the reliability of a

feature space in the presence of gradual load drift. Chapter 4 presents an adaptive

classification and drift detection framework for geometric events. This framework

can start with a limited initial dataset, while remaining robust to load features drift-

ing over time and without requiring further ground-truth labelled data. Chapter 5

demonstrates load disaggregation for statistical events, building on the techniques pre-

sented with the multi-scale framework. The techniques are demonstrated with several

loads that exhibit non-constant power demand. The chapter demonstrates that the

combination of geometric and statistical event classification allows for more accurate

energy estimation and condition tracking than either technique alone. Chapter 6

presents case-studies for applying nonintrusive electrical monitoring for fault detec-

tion and diagnostics. The chapter introduces techniques for slot harmonic tracking in

a multi-machine environment. The chapter expands nonintrusive fault detection and

diagnostics in three-phase systems by introducing a feature space based on changes

in system balances. Finally, Chapter 7 describes NILM Dashboard, which displays

data as an intuitive decision aid for end-users. NILM Dashboard was successfully

installed and demonstrated on a shipboard microgrid, providing interaction with the

ship’s crew.

There are several directions for future research. The feature extraction techniques

presented in Chapter 3 are focused on finding physically-informed features that en-

sure load separability. However, there are scenarios that may arise in which power

stream data from a single NILM is not sufficient for accurate identification and di-

agnostics. For instance, the question may arise: how can we distinguish two or more

identical loads on a common electrical service? That is, a NILM may be monitor-

ing an electrical panel that is supplying power to multiple loads of the same model,

for example, in a manufacturing center. This may also occur on a ship that has its

port and starboard loads supplied from a single panel, and not on separate port and

274



starboard panels. This is the case for the engine room subpanel on USCGC Thunder

Bay. Furthermore, some relevant diagnostic measurements cannot be derived from

the power stream. These include, but are not limited to, vibration, acoustic, and

temperature data. If the data from these extra sensors can be collated in a central

location, such as at the NILM computer, it can enhance the capabilities for diagnostic

monitoring. Next, the adaptive classification framework presented in Chapter 4 can

be improved upon by using unsupervised techniques to allow for clustering of uniden-

tified loads. Clusters that form from the unidentified events could potentially be a

fault condition of a load or a new load added to the system. Then user input could

be requested to label any new clusters. The adaptive classifier can also be tested

on additional shipboard datasets, such as on data from USCGC Marlin and USCGC

Thunder Bay. These datasets currently only have labels from the initial installation

and sparse labelling afterwards. The adaptive classifier can be used to help ease the

burden of creating a labelled dataset. Another area of future work is to expand on

the statistical techniques presented in Chapter 5 for use in other case-studies. For

instance, USCGC Thunder Bay has a diesel electric propulsion plant. The monitored

subpanel in the engineering control center (ECC) provides power to loads primar-

ily related to the electric propulsion machinery. Changes in throttle position during

driving and icebreaking operation are visible in the power stream. These fluctuations

in power are well suited for analysis with the demonstrated statistical techniques.

The analysis presented in Chapter 6 can be used for training a NILM to detect fault

conditions using simulated data, since it is assumed the fault conditions cannot be

purposefully introduced into the real system. It is hoped that the tools presented in

this thesis can be used to provide actionable information for energy management and

condition-based maintenance at more facilities and sites.
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Appendix A

Shipboard Installations

A typical NILM installation onboard a ship monitors all or part of the main engineer-

ing space. Field installations of NILM systems have been conducted on several USCG

and US Navy vessels. This appendix gives an overview of the various shipboard NILM

installations and monitored loads relevant for this thesis. More specific details on the

installations, mounting, and monitored loads can be found in [25,27,186–188].

A.1 USCGCs Spencer and Escanaba

Our longest installations provided data for over five years from two US Coast Guard

(USCG) 270-ft. medium endurance cutters (MECs), Spencer and Escanaba, home-

ported in Boston, Massachusetts. Installations on both USCG Cutter (USCGC)

Spencer and Escanaba were monitoring the port and starboard subpanels of the main

engine room. These installations consisted of two boxes, one for the NILM CPU and

one for the NILM meter hardware. The engine-room port-side installation of USCGC

Spencer is shown in Fig. A-1a. USCGC Spencer has a radial ac electrical distribu-

tion. When at sea, power is provided by two ship service diesel generator (SSDG) sets.

When in-port power is provided by either an aft or forward connection to utility shore

power. The generator sets, along with the main propulsion diesel engines (MPDE)

propelling the ship, are located in the ship’s engine room. The SSDGs and MPDEs

require auxiliary equipment, e.g., pumps and heaters, to maintain operational readi-
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(a) (b)

Figure A-1: USCGC Spencer installations: (a) Engine-room install with separate
NILM software box on the left and NILM meter box on the right and (b) Auxiliary
room install with NILM CPU, NILM meter, and touchscreen monitor all in a single
box.

ness when in standby mode. Two electrical subpanels, port and starboard, which

power these loads along with several other engine room loads critical for ship opera-

tion, are depicted in Fig. A-2. USCGC Spencer was additionally monitoring a power

panel in the main auxiliary room, beginning in January 2019. The auxiliary room

installation, as shown in Fig. A-1b, was the first prototype which contained the CPU,

NILM meter, and touchscreen interface all in a single box. This was designed for a

more consolidated installation. On USCGC Spencer, the first prototype of the NILM

Dashboard graphical user interface (GUI) was installed. The crew could navigate

through different loads on the port and starboard panels to plot on the Dashboard

to verify operation. Fig. A-3 shows a conceptual diagram of the NILM installation

locations on USCGC Spencer. This section has details on the shipboard systems and

monitored electrical loads.

A.1.1 Main Diesel Propulsion Engine System

Both the port and starboard subpanels contain loads that service the main diesel

propulsion engine (MPDE). While the vessel is at sea, one or both MPDEs will be

energized. The NILMs monitor three auxiliaries of the MPDE: electric lube oil (LO)

heater, electric jacket water (JW) heater, and electric prelube pump. While the engine
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Figure A-2: Partial schematic of radial electrical distribution onboard USCGC
Spencer, with details on the port and starboard subpanels [189].

Figure A-3: NILM installation locations on USCGC Spencer.

is secured, the engine requires lubricating oil flow to ensure engine components are

continuously lubricated and ready to operate. For this purpose, a 2.2 kW prelube

pump operates in automatic mode to energize upon engine shutdown and turn off

when the engine starts. Working in tandem with the prelube pump, a 12 kW lube oil
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heater maintains the desired lubeoil viscosity and temperature (within 90∘ to 120∘ F).

A 9 kW jacket water heater helps keep the engine warm during cold temperatures to

ensure that the engine does not reach “cold iron” status, i.e., completely cold. If the

engine has not been run for some time (e.g. after an in-port period), the MPDE goes

through a “blow-down.” During a blow-down, the jacket water and lube oil heaters

will turn-off and re-energize shortly after.

A.1.2 Ship Service Diesel Generator System

Ship power is provided by two generator sets. While at sea, power is provided by

one or both of these ship service diesel generators (SSDGs), depending on the ship’s

power demand. During time of high demand, both are used in parallel to ensure power

delivery. The NILM monitors two of the SSDG support systems: the lube oil (LO)

heater and jacket water (JW) heater. Similar to the MPDE LO heater, the SSDG

LO heater is operated in automatic mode to ensure lubricating oil temperature is

between set points. The SSDG LO heater is a 1.32 kW single-phase line-to-line load.

An electric lubricating pump, which is not monitored by a NILM, is used to circulate

oil when the engine is secured. The 7.5 kW, three-phase SSDG JW heater works

similar to the MPDE JW heater, maintaining the temperature of the jacket water to

ensure the generator is ready to start.

A.1.3 Fuel Oil Purification System

Before diesel fuel oil can be used by the MPDE or SSDG, it is purified and transferred

by the fuel oil purifier (FOP). The FOP system takes in diesel fuel and outputs

purified diesel, water, and sludge (a mixture of dirty fuel and dirty water). The flow

is manually adjusted by an operator, depending on the purity of the fuel. The purifier

system draws fuel from various storage tanks around the ship via a feed pump, and

processes the fuel using a motor-driven centrifugal separator system. The NILM

monitors the 5.6 kW centrifugal motor and 2.6 kW feed pump that makes up the

FOP. The purifier is run frequently when the ship is underway.
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Figure A-4: CPP system conceptual diagram.

A.1.4 Controllable Pitch Propeller Pump

The controllable pitch propeller (CPP) system allows the operator to adjust the

amount of thrust generated at a propulsor while maintaining a fixed rotational speed

[6]. This provides the vessel greater maneuverability and prevents the underloading

of diesel engines while operating at slow speeds. The CPP system consists of three

primary hydraulic pumps that provide pressurized hydraulic oil to the CPP system

in order to maintain hydraulic control pressure at the propeller. The ‘A’ pump is a

gear driven pump that is powered by the propulsion system’s reduction gear. The

pressure and flow provided by the ‘A’ pump is dependent on propeller shaft speed.

The ‘B’ and ‘C’ pumps are electric hydraulic pumps that supplement the pressure

and flow provided by the gear-driven pump. Hydraulic control valves maintain system

operating pressure based on demand. A simplified line diagram of the system in shown

in Fig. A-4. After leaving the pumps, hydraulic oil passes through a filter bank to

remove contaminants. The cleansed oil then enters a directional control manifold that

directs oil to the oil distribution (OD) box or returns it to the reservoir based on a

user’s pitch command. Oil that enters the OD box is sent through ports within the

propeller shaft to actuators within the hub that adjust blade pitch. NILM systems
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monitor both the port and starboard CPP ‘C’ pumps, which are rated at 7.5 kW.

A.1.5 Graywater Pumps

The graywater pumps operate based on water-level sensors. The graywater pump

is part of the graywater disposal system, designed to transfer, retain, process, and

dispose of the relatively clean waste water from showers, sinks, and other appliances

to a holding tank in the main engine room. When the holding tank is full, the

graywater pump discharges the water from the holding tank either overboard or to a

larger storage tank. There are two pumps (for redundancy) which alternate each cycle

to empty the tank. Normally, a pump turns on and begins discharging when water

reaches the “high level” sensor set point (92-gallon mark), and the pump turns off

when water reaches the “low level” sensor set point (13-gallon mark). The graywater

pumps are rated at 3.7 kW.

A.1.6 In-port Auxiliary Saltwater Pump

The in-port auxiliary saltwater pump is powered by a 7.5 kW three-phase motor. The

pump is energized when the vessel is in port and turns off when the vessel departs

for sea. The pump provides saltwater cooling for A/C and refrigeration units while

the vessel in in port.

A.1.7 Bilge and Ballast Pump

The bilge and ballast pump is used for emptying machinery space bilges of excess

water in an emergency and for taking on ballast water for stability purposes. The

bilge and ballast pump is powered by a 5.6 kW motor. When pumping bilges and

ballast tanks, operators try to get the tanks and bilges to the lowest level possible,

and as a result, the pump takes in a mixture of air and water. After the pump is

turned off and suction is shifted to a new tank, the air remains in the system, resulting

in a prolonged start sequence in which the pump draws a variable amount of power.
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A.1.8 Auxiliary Room Loads

The auxiliary room panel provides power to an air compressor, air conditioning unit

compressor, hydraulic watertight door, and auxiliary seawater cooling pump. The

ship’s service air compressor provides medium pressure air (450 psi) to the cutter for

various uses, including the pressurized air necessary for pneumatic pumps and tools,

as well as start and control air for the engines in the main engineering plant. The

system consists of a 7.5 kW electric motor that is belted to the air compressor. The

auxiliary subpanel also feeds one of the air conditioning (A/C) unit compressors. The

A/C compressor compresses low pressure gaseous refrigerant to a higher pressure for

use in the HVAC loop. Between the main engine room and the auxiliary machinery

room is a hydraulically actuated watertight door. This allows easy passage between

the two spaces when inport, while providing watertight integrity between the two

engineering spaces when the cutter is underway.

A.2 USS Indianapolis

In February 2020, the second prototype AIO box was installed on three power panels

on USS Indianapolis, a Freedom-class littoral combat ship (LCS) in Mayport, Florida.

This was the first field installation of the new AIO box. These installations demon-

strated the capability of the new AIO box with minimal installation time. These

NILMs, as shown in Fig. A-5, collected over a month of data. Several loads of in-

terest are monitored on the three installed NILMs in the auxiliary machinery room,

water jet machinery room, and machine shop. Specifically, the loads include the an-

chor windlass variable speed drive, No. 2 splitter gear lube oil and control oil pumps,

No. 3 SSDG auxiliary loads, chill water pumps, and the hydraulic power pack cooling

and booster pumps.

The microgrid on USS Indianapolis is a delta-configured 60 Hz, 450 V system.

When at sea, there are four ship service diesel generators (SSDGs) providing power

to the ship’s microgrid. For propulsion, USS Indianapolis uses a combined diesel and

gas (CODAG) turbine plant coupled with four water jets, as seen in the conceptual
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Figure A-5: NILM installs on USS Indianapolis (LCS 17).

diagram in Fig. A-6. The CODAG system uses diesel engines for cruising speeds

and gas turbines for high-speed transits. To achieve the required gear ratios and

shaft speeds the gas turbines’ and propulsion diesels’ outputs are combined in a

combining gear. This shaft is then subsequently split using a splitter gear to power

two water jets. The SSDGs and propulsion system require electrical equipment both

while operating and during standby in order to maintain operational status. The

splitter gear requires a lubrication pump and a control pump for the lubrication and

control oil, respectively. The splitter gear electric lube oil pump is energized at certain

shaft speed ranges while USS Indianapolis is underway, with the lubrication oil being

circulated by an attached pump when the shaft speed permits. The SSGGs each have

a skid attached to the free-end of the engine, which provides the auxiliaries required

to run the generator. The power for the skid and for the generator control comes from

the local operating panel. The auxiliary skid consists of two pumps and two heaters:

one pump circulates lube oil and the other circulates jacket water throughout the

SSDG.

A.2.1 Anchor Windlass VFD

Variable frequency drives (VFD) are often used to optimize and control energy con-

sumption, speed and torque of induction motors. The anchor windlass on the machine

shop subpanel is powered by a VFD. The VFD provides up to 111 kW to control an-

chor windlass speed while raising and lowering the anchor or adjusting and working
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Figure A-6: USS Indianapolis propulsion schematic.

mooring lines.

A.2.2 Splitter Gear

The splitter gear for the propulsion system, as seen in the conceptual diagram in

Fig. A-6, contains both a lubrication oil pump and control oil pump. The splitter gear

electric lube oil (LO) pump, which is monitored by a NILM, is energized at certain

shaft speed ranges while the USS Indianapolis is underway, with the lubrication oil

being circulated by an attached gear-driven pump when the shaft speed permits.

The splitter gear is used to divide the output of the combining gear to power two

separate water jets. To clutch in and out this gear uses high pressure oil, which is

supplied and pressurized by an 18.6 kW electric control oil pump and an attached

gear-driven pump (a pump that is hard mounted into the gear and operates based on

shaft speed). The control oil provides the splitter gear pressure to clutch in, which

must be maintained above a specific threshold for the gears to properly mesh. At a

“high” propulsion shaft speed the attached pump provides all the required pressure.

The electric pump secures when the attached pump provides sufficient pressure for

clutch operation, which corresponds to a specific propulsion shaft speed. However,

at lower shaft speeds, both the electric and attached pump are necessary to provide
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the required pressure. If the attached pump is providing a significant portion of the

load and the shaft speed drops due to mechanical interference (e.g., high speed, wave

action, weather, maneuvering, etc.) the electric pump will pick up the load to ensure

the gear remains clutched in. The electric pump is required to “surge” to compensate

for the attached pump.

A.2.3 Ship’s Service Diesel Generator No. 3 Auxiliary Skid

USS Indianapolis is equipped with four ship service diesel generators (SSDGs). These

generators have a skid attached to the free-end of the engine, which provides the aux-

iliaries required to run the generator. The power for the skid and for the generator

control comes from the Local Operating Panel (LOP), which is fed by one of the

monitored panels. The auxiliary skid includes two pumps and two heaters: one pump

circulates lube oil and the other circulates jacket water throughout the SSDG. Both

heaters actuate simultaneously, and are rated to draw a combined 12 kW. Further-

more, the SSDG jacket water pump, which is rated at 1.12 kW, runs simultaneously

with the heating elements. The SSDG lube oil (LO) pump is rated at 1.5 kW.

A.2.4 Chill Water Pumps No. 2 and No. 3

The chill water system onboard USS Indianapolis is responsible for providing chilled

water to all electronic equipment and for providing air handlers with cooling water

for air conditioning. There are three chill water pumps onboard, two of which (No. 2

and No. 3) were monitored by the NILM system, with a minimum of one running at

all times. The pumps are rated at 22.3 kW, operate at 3535 rpm, and are remotely

operated by watchstanders via the machinery control system (MCS).

A.2.5 Hydraulic Power Pack Cooling and Booster Pumps

The propulsion system onboard USS Indianapolis utilizes four water jets, two of

which are hydraulically controlled. This control system enables the ship to maneuver

by directing the thrust vector of two of the water jets, eliminating the need for a
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(a) (b)

Figure A-7: NILM installations on (a) USCGC Marlin and (b) USCGC Thunder Bay.

traditional rudder system. This hydraulic system consists of a hydraulic power pack

(HPP) cooling pump and booster pump. The port-side system’s cooling pump and

booster pump are both powered via the monitored subpanel in the water jet machinery

room. The HPP cooling pump is rated at 2.2 kW. The booster pump for the water

jet’s hydraulic control system enables the movement of the large water jets. This

pump pressurizes the hydraulic fluid which is then used to position the water jets.

This pump is rated for 55.9 kW.

A.3 USCGC Marlin

In August 2020, two AIO NILMs were installed on USCGC Marlin, a 87-ft. patrol

boat homeported in Boston, Massachusetts. This Marine Protector class cutter is

typically underway for several days at a time off of New England conducting search

and rescue, fisheries regulation, and law enforcement. The monitored subpanels, port

and starboard, effectively monitors the entire ship with the exception of the steering

pumps. The NILMs installed on USCGC Marlin are shown in Fig. A-7a. Fig. A-8

shows the high-level overview of monitored loads on USCGC Marlin. There are also

several other loads further downstream on various subpanels. Here, an overview of

several loads of interest that are relevant in this thesis are presented.
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Figure A-8: USCGC Marlin loads.

A.3.1 Engine Room Exhaust and Supply Fans

USCGC Marlin’s engine room is ventilated by two fans, one supply and one exhaust

fan. Both are controlled by variable frequency drives (VFDs), enabling the crew

to determine the supply and exhaust levels. Under typical operation these fans are

running at over 50%.

A.3.2 Heating Ventilation Air Conditioner

The heating ventilation air conditioner (HVAC) controller is a power electronic control

system that has various settings depending on the ambient conditions. It incorporates

the ship’s A/C plant, space heaters, and fan ventilation to produce desired livable

environments inside the habitable compartments. The primary system is segregated

into supply and exhaust; with supply drawing air from the weatherdeck and internally

for re-circulation. The supply side is driven by a single centrifugal fan, and supplies
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air to all habitable spaces. The exhaust system is similarly designed, however it

draws from most compartments and utilizes a much smaller centrifugal fan, moving

stagnant internal air outside. The air is filtered prior to the fan and is subjected to

a multi-stage heating process. Due to the nature of the HVAC system, the system

is always running under normal ship operation and is shutdown only for emergency,

maintenance, or in the case of power loss.

A.3.3 Steering Hydraulic Power Unit Cooling Fan

The hydraulic power unit (HPU) cooling fan is a tube axial 3-phase fan mounted in

the aft portion of the engine compartment. The flow is oriented to cool the steering

HPU under longer periods of operation. Additionally, the fan serves as re-circulation

for the engine compartment. The HPU cooling fan is rated at 0.37 kW.

A.4 USCGC Thunder Bay

In February 2021, two AIO NILMs, as shown in Fig. A-7b, were installed on USCGC

Thunder Bay, a 140-ft icebreaking tug homeported in Rockland, Maine. USCGC

Thunder Bay’s primary mission involves breaking ice within navigable New Eng-

land waterways during the winter months. Breaking ice can place large amounts of

stress on a ship’s hull and various subsystems, and being able to accurately monitor

these systems for faults and failures is critical to maintaining operational capability.

USCGC Thunder Bay is one of few Coast Guard assets powered by a diesel electric

propulsion plant, with two main propulsion diesel engines (MPDE) driving two main

propulsion generators (MPG), which in turn provide power to the main propulsion

motor that drives the ship’s single propulsion shaft. There are also two separate ship

service diesel generators (SSDGs) that are used to power the remainder of the ship’s

loads. Icebreakers and other vessels that have a large variation in operation profile

were among the first to adopt electric propulsion due to the significant torque and

constant load variations while traveling at low speeds [190]. A conceptual diagram of

the layout of the ship’s propulsion system is shown in Fig. A-9.
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Figure A-9: Conceptual diagram of USCGC Thunder Bay propulsion system.

A NILM system is installed on panel 1-66-2, located in the aft section of the engine

control center (ECC). The monitored subpanel provides power to loads primarily

related to the electric propulsion machinery. The two dc propulsion generators are

each rated at 1,000 kW, 900 V, and 850 rpm. There are three propulsion generator

exciters (one exciter for each propulsion generator, plus an additional standby exciter),

which provide the source of main shunt field excitation for the generators. The

exciters use 450 Vac, 3-phase, 60 Hz input power, as supplied from the ship service

switchboard. The ac input power is converted to a variable controlled maximum

output of 360 Vdc and 80 A. The propulsion motor is a separately-excited dc motor

rated at 2,500 hp. For motor control, there are two exciters: a main propulsion

motor field exciter and a standby propulsion motor field exciter. Each of the discrete

throttle positions corresponds to a commanded motor field current, diesel engine

speed, and dc propulsion generator and motor armature voltage. The control uses

these three commands to establish the motor field excitation, diesel engine speed, and

generator field excitation, respectively. For throttle inputs between 0 and 90%, the

motor field current is commanded to a constant 48.3 A and 39.0 A for one-engine and

two-engine mode, respectively. Only at the maximum throttle position of 100% does

the motor field current command increase. That is, except for the throttle position at

100%, changes to the throttle position only changes the commanded diesel speed and

generator field excitation. The NILM is monitoring both the generator and motor

field exciters. Changes in throttle position are visible in the power stream. Other
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loads on the panel include the main motor cooling pump NR 1 and main motor cooling

pump NR 2.

The other NILM system is installed on panel 2-32-1, located in the forward section

of the engine room. The loads on the engine room panel are primarily related to the

two MPDEs and two SSDGs. The monitored loads related to the MPDEs are the

crankcase blowers, pre-lube pumps, lubeoil heaters, lubeoil circulation pumps, jack-

etwater heaters, and jacketwater circulation pumps. Other monitored loads include

the SSDG jacketwater heaters, engine room supply fans, and a gray water pump.
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Appendix B

Jacket Water Heater Fault Analysis

This appendix provides root-cause analysis for the observed main propulsion diesel

engine (MPDE) jacket water (JW) heater faults on USCGCs Spencer and Escanaba.

The electrical analysis presented in Section 6.2 showed that a NILM can detect failures

related to the MPDE JW heater, such as open-circuits, arcing, and high-impedance

ground faults. The electrical signatures are effective in identifying degraded heater

operation, but cannot fully explain what is causing the faults. After detection of

degraded power signatures, inspection of the heaters revealed significant corrosion and

damage, including arcing, melting, and cracking of the heating elements. Material

and vibration analysis of the observed field failures are presented to demonstrate the

connection between observed electrical failure signatures and root-cause failure and

degradation mechanisms. The root-cause analysis presented here was in collaboration

with Devin Quinn, Samuel Madden, and Peter Lindahl.

Industrial processes rely on materials that are susceptible to corrosion and me-

chanical failure [140, 191, 192]. For instance, heat exchangers in industrial facilities

often exploit the high thermal conductivity of copper. In high-stress environments,

copper structures are susceptible to corrosion and cracking. The copper sheathing of

a heating element can degrade to the point of failure and expose the electrically active

heating elements. Prior to complete system failure, degradation can lead to arcing

and water intrusion. Early detection can prevent service delays and hazards like elec-

trical fires. However, the detection and evaluation of corrosion in critical structures
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remains a significant maintenance and repair challenge [193]. Electrical monitoring

can provide noninvasive means to spot these failures before they become disasters.

The typical construction of large marine diesel engines incorporates a jacket water

(JW) system to provide engine cooling while operating. The JW acts as a heat

absorbing medium that removes heat from engine components and releases it to the

environment through a heat exchanger. Thermostatic valves often regulate the flow

of JW through the heat exchanger based on engine temperature. While the engine

is not running, the JW system also plays a significant role in maintaining uniform

engine temperature by circulating water through resistive heaters. This minimizes

time to reach standard operating temperatures upon start up. The USCG 270-ft

medium endurance cutter fleet uses copper-sheathed heaters in the main propulsion

diesel engine (MPDE) JW system [27].

Per manufacturer recommendations, the USCG conducts semi-annual visual and

electrical state examination of the three-phase JW heaters and control systems used

on the MPDE. Identification of degraded transient signatures enables the use of nonin-

trusive electrical monitoring for detecting incipient failures and permitting condition-

based, instead of scheduled maintenance [194].

B.1 Material Analysis

To assist with failure root-cause evaluation a material analysis of failed JW heaters

was conducted. The post-mortem analysis of failed heating elements revealed signifi-

cant corrosion, both general and pitting, as well as possible stress corrosion cracking

(SCC) of the copper sheathing. Computed tomography (CT) of a heater showed sig-

nificant material loss in addition to through-wall cracking as shown in Fig. B-1. The

area highlighted in the CT analysis was on a sheath section that did not appear to

have been directly involved in a shorting event. Neighboring sections of sheathing

experienced significant melting and material loss. These areas were avoided in the CT

analysis due to the expected material damage and the desire to observe the condition

of the copper prior to an arcing event. The analyzed area would have been thermally
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Figure B-1: Top Left - degraded JW heater from USCGC Escanaba. Top Right -
CT scan of heater, 3D volume reconstruction, high density materials appear bright in
contrast. Lower Left - virtual cross section showing through wall crack at 3 o’clock.
Lower Right - virtual unrolling of sheathing showing branched network of cracking.
Dashed lines - plane of cross section and unrolling.

isolated from the short by the JW it was submersed in.

The copper heating element sheath is electrically isolated from the iron chrome

aluminum (FeCrAl) heating wire by magnesium oxide (MgO) powder. A breach

in the sheathing by through-wall pitting and cracking can cause infiltration of the

insulating MgO powder with JW. One contributing factor in the cracking of the

copper sheathing may actually have been in the selection of corrosion inhibitor for

the JW. An additive rich in nitrites was used to inhibit corrosion, with concentrations
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Figure B-2: ESCANABA JW chemistry from March 2017 to May 2021.

hovering around 1000 ppm, as shown in Fig. B-2. Scientific literature demonstrates

that copper exposed to nitrites may induce SCC [195,196]. The loss of wall thickness

and the presence of large pits shown in Fig. B-1 suggests that cracking is one possible

route for JW to enter the insulator. In our analysis the cracked regions were the only

areas, outside of the obvious arc locations, in which through-wall perforations in the

sheathing were observed.

To further evaluate the possibility of SCC, a model of the JW heater was generated

and assessed using Autodesk’s finite element event simulator. This analysis assumed

ideal geometry of a new heater and used an adaptive triangular mesh. Accelerometer

measurements of a JW heater while installed on a running MPDE were used to develop

an impulse event for the analysis. This event was sinusoidal in nature, cycled at 1640

Hz, and reached a max amplitude of 44.3 N. For the simulation this impulse was

applied perpendicular to the element’s arched plane at its center of mass. To emulate

the submerged condition of an installed heater, a hydro-static pressure equivalent

to 3m of water was placed over the heating elements. Simulation results at the

moment of peak impulse are shown in Fig. B-3a. The simulation found that induced

stresses from engine excitation are greatest at the base of the heating element and

diminish along the element’s length. A maximum induced stress of 11.8 MPa was
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(a) Stress simulation results, color gradient in MPa.

(b) Holes observed at approximately 1 cm and 5 cm from the heater’s
base.

Figure B-3: Finite element stress simulation and observed damage.

observed approximately 1mm from the heater’s base. Table B.1 contains induced

stress magnitudes and percentage of maximum stress at various distances from the

heater’s base. These findings align with observed holes that typically occurred within

5 cm of the heater’s base, as shown for two example heaters in Fig. B-3b.

As mentioned, through-wall pitting and cracking of the sheathing may allow JW

into the insulating MgO powder. The result of JW ingress into the insulator was
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Table B.1: Induced stress magnitudes - CAD model

Dist. From Induced % of Max
Base (cm) Stress (MPa) Stress

0.1 11.8 100%
1 9.26 78.8%
5 4.40 37.4%
10 0.563 4.79%
20 0.190 1.62%

Figure B-4: SEM/EDS of the interior surface of the sheathing showing preferential
growth of a copper rich phase (green/middle box) towards the energized heating
element.

observed in scanning electron microscopy (SEM) and energy-dispersive X-ray spec-

troscopy (EDS) which is shown in Fig. B-4. The dark void through the copper

sheathing in Fig. B-4 is the crack from Fig. B-1. Preferential deposition of copper

through the insulating MgO powder towards the energized heating element was ob-

served. Continued growth of the copper phase through the insulator could explain the

shorting experienced and the significant arc damage observed in the failed heating el-

ements. The development of SCC can be partially attributed to continuous exposure

to high concentrations of nitrites, but excitation at the heater’s natural frequency

may induce resonance that could accelerate the process. To evaluate this potential

the heater’s natural frequency was determined, as detailed in the following section.
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B.2 Natural Frequency Determination

To further investigate the possibility of stress corrosion cracking (SCC) found during

the material analysis, the heater’s natural frequency was estimated and compared

to the MPDE’s operating speed. The JW heater consists of a housing and three

heating elements. The housing threads directly into the MPDE block. The heating

elements resemble a set of cantilever beams or prongs of a tuning fork and react

similarly to disturbances or impulses. The natural frequency of the JW heater was

predicted with the measurement of physical parameters and analytic equations, then

was verified experimentally.

First, physical parameters of the JW heater were measured using a deflection

experiment. The deflection experiment was conducted on a single heating element

with known weights and a dial indicator. The shape of the heating elements compli-

cates separate calculation of the second moment of area, 𝐼, and Young’s modulus of

elasticity, 𝐸. Instead, the product 𝐸𝐼 was determined with,

𝐸𝐼 =
𝐹𝑙3

3𝛿
, (B.1)

where 𝐹 is the applied force, 𝑙 is the length, and 𝛿 is the deflection [197] [198]. This

is the deflection equation for a cantilever beam (boundary conditions fixed-free) with

a point load applied at the free end. Point loads ranging from 1.7 to 4.5 N were

applied 26 cm from the fixed end of the heating element. This resulted in an average

𝐸𝐼 value of 62.2 N·m2. It was ensured that loading of the heating element remained

within the elastic region of the component’s stress-strain curve by verifying it returned

to its neutral position after removing the applied load. Deflection from the heating

element’s own weight was deemed negligible, as it was calculated to be less than 1%

of the total deflection.

For determining the natural frequency of the element, its own mass must be

considered. Based on CT scanning and EDS performed during the material analysis,

the heating element’s mass per unit length was determined to be 0.33 kg/m and

was confirmed by cutting and weighing a small section of the heating element. The
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(a) (b)

Figure B-5: Natural frequency modelling using finite element analysis: (a) finite
element mesh, (b) natural frequency simulation, color gradient indicating relative
displacement.

natural frequency, 𝑓 , of a heating element was calculated with,

𝑓 = 0.56

√︃
𝐸𝐼

𝑞𝑙4
, (B.2)

where 𝑞 is the mass per unit length [197]. This provided a predicted first order

natural frequency of 93.6 Hz for a single heating element. Due to the rigidity of

the housing, mounting configuration, and overall slenderness of individual elements,

higher order modulations and interactions between elements were not considered.

To further evaluate these considerations, a CAD model was generated and assessed

using Autodesk’s finite element modal frequency analysis. This analysis assumed ideal

geometry of a new heater. A scaled triangular mesh based on 10% of component size

with more than 175,000 elements was used and is shown in Fig. B-5a. Results of the

analysis indicated a primary natural frequency at 96.8 Hz with the center heating
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Figure B-6: DFTs to determine JW heater natural frequency in damped and un-
damped conditions.

element oscillating in the same plane as the outer two, as shown in Fig. B-5b.

To verify the predicted natural frequency values generated from the physical pa-

rameter calculations and the finite element analysis, an impulse impact experiment

was conducted. The experiment was conducted for two scenarios, an undamped case,

i.e., an unsubmerged heater, and a damped case, i.e., a heater submerged in water.

The damped case simulates the actual operating condition of the heater. The vibra-

tion of the heater was measured using a single axis accelerometer affixed to the side

of the heater housing and data acquisition device discussed in reference [199]. The

accelerometer used has a sensitivity of 505 mV/g and output range of 0 to 5 V. An

impulse impact was used to excite the system [200], and the DFT of the responses are

shown in Fig. B-6. For the undamped system the response shows a peak at 97.3 Hz.

This result closely matches predicted values and verifies the deflection experiment

and analytic formulation. For the damped system the response shows a smaller, but

still prominent peak at 91.3 Hz. The natural frequency as predicted by the deflection

experiment, CAD model, and impulse impact tests are summarized in Table B.2.

The impulse impact method was also used on JW heaters with visible signs of

deterioration. The DFT of the responses are shown in Fig. B-7. For the corroded

heater without holes, the primary response shows a peak at 90.9 Hz and 96.8 Hz in
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Table B.2: New heater natural frequency

Method Frequency
Deflection Experiment 93.6 Hz

CAD Model 96.8 Hz
Hammer Impact (Undamped) 97.3 Hz
Hammer Impact (Damped) 91.3 Hz

Figure B-7: DFTs to determine corroded JW heater natural frequency in damped
and undamped conditions.

the damped and undamped conditions, respectively. These closely resemble the peaks

of the new heater. However, smaller peaks are also present around 36 Hz and 153 Hz.

For the corroded heater with holes there is a more prominent shift in DFT peaks. In

the damped condition there is no longer a primary peak around 90 to 98 Hz. Instead,

there are small peaks at 36 Hz and 153 Hz. In the undamped condition there are

substantial peaks at 87.2 Hz and 69.3 Hz, with minor peaks around 36 Hz, 53 Hz,

and 153 Hz. These varying results are anticipated because any imperfections in the

heating element caused by corrosion or heating will impact the structure’s natural

frequency.

Field vibration measurements were gathered while the MPDE was idling at 440

rpm. These measurements were used to investigate possible excitation of the heaters

during operation. An accelerometer was attached to the heater housing as shown in

Fig. B-8, in the same manner as in the laboratory hammer impact experiment. Mea-
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Figure B-8: Configuration for monitoring vibration of installed JW heater.

surements were also taken with the accelerometer attached directly to the MPDE

block. Both measurements present a vibration spectrum that is rich in content due

to phenomena such as cylinder firing, shaft rotation, possible imbalances, misalign-

ment, and other non-idealities associated with mechanical systems. However, the

spectrum is dominated by the fundamental engine order of 3.67 Hz and its subse-

quent harmonics. A peak was also observed at 97 Hz in measurements from both the

JW heater and MPDE block. Based on vibration measurements gathered directly

from the engine’s turbo, this peak was determined to be a harmonic of the turbo’s

rotational speed. The DFT of a JW heater measurement is shown in Fig. B-9. It

is suspected that the impulses imparted by the MPDE onto the JW heater near the

calculated natural frequency values presented previously [see Table B.2], are likely to

trigger heater resonance excitation. For a healthy heater, with undamaged copper

sheathing, resonant excitation due to engine vibration is unlikely to cause failure.

However, if the copper sheathing is weakened due to corrosion or a manufacturer

defect, resonant excitation could exacerbate structural pathologies and induce stress

corrosion cracking.
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Figure B-9: DFT of monitored vibration of JW heater with MPDE idling.

B.3 Conclusion

Electrical analysis with nonintrusive load monitoring unveiled degraded MPDE JW

heater power signatures, arcing, and high impedance ground faults. Diagnostic signa-

tures developed for electrical monitoring can be used to detect material degradation

and structure failure. Subsequent removal and inspection of the heaters in our field

tests revealed corrosion, arcing, melting, and cracking of the heating elements. Mon-

itoring the JW heaters for corrosion and related damage is critical for ensuring the

efficient and safe operation of the JW keep-warm system. Power monitoring can

alert watchstanders to corroded heating elements and prevent progressively worsen-

ing safety hazards. It can also be used to streamline maintenance activities, by using

power stream data as a metric for conducting condition based maintenance, rather

than recurring preventative maintenance.
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Appendix C

NILM Software Documentation

This manual will guide a user through the process of setting up and using the NILM

software stack. This starts with building a bootable NILM Ubuntu disk image (ISO)

and putting the ISO on a USB drive. Then, the custom NILM Ubuntu operating

system and software can be installed on a computer. Once installed, the configurations

need to be set up for data capture. For backup, data can be copied to an external

hard drive. A demonstration can be set up and displayed with NILM Dashboard.

This documentation was co-written with Aaron Langham.

C.1 Customizing Installable NILM Ubuntu ISO

To create a NILM Ubuntu ISO file, the software Cubic can be used, which provides

a graphical user interface (GUI) for customizing Ubuntu ISOs. From an Ubuntu

system, Cubic can be installed via terminal as follows:

Command Line:

$> sudo add -apt -repository ppa:cubic -wizard/release

$> sudo apt update

$> sudo apt install cubic

We will be adding customization to the Wattsworth/Joule/NILM ISO provided by

Prof. John Donnal. The additional capabilities include NILM Dashboard, NILM
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configuration and setup files, and cron jobs for checking the status of data capture

and storage.

Once Cubic is installed the custom NILM Ubuntu ISO is created with the following

steps:

1. Launch Cubic and select a directory for the project. Click Next.

2. Select the Ubuntu ISO to be customized. Click Next.

3. After the original ISO has been opened, an embedded terminal window will be

displayed in either a chroot environment or virtual environment. Drag and drop
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the folder with the installation files (e.g., “nilmbuntu20_installation_files_jan2022”).

The install_iso.sh and install.sh files are in Appendix C.9.

4. Click the Copy button to copy the files.

5. Within the Cubic virtual environment, run the following commands, where cd

should point to the installation folder copied in the previous step. This should

finish without error and say “Install Complete.”

Command Line:

$> cd nilmbuntu20_installation_files

$> ./install -iso.sh

6. There should now be options for changing the packages and kernel. Click the

Next button, possibly several times (no changes need to be made).
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7. Select the compression option of choice (or simply keep the default), then click

Generate. Cubic will now generate the customized disk image.

8. Once the ISO has been generated, click Close.
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9. Copy the ISO file to a USB drive by running the following commands, where

ISO_NAME is the full name and location of the ISO and /dev/sdX is the

location of the USB drive:

Command Line:

$> sudo dd if=/dev/zero of=/dev/sdX bs=1k count =2048

$> sudo dd if=ISO_NAME of=/dev/sdX bs=1M

The first line erases all data on the drive located at /dev/sdX . The drive

may need to be unmounted (both in software with the umount command and

physically) and then physically remounted after this step. Then the second line

copies a bootable version of the ISO to the drive.

WARNING: Double-check that you use the correct drive location. You

do not want to erase the incorrect drive. It will have the format /dev/sdX,

where X is a letter. You can check a list of all drives by running the lsblk

command.
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C.2 NILM Computer Setup

C.2.1 Installing the ISO

C.2.1.1 Acer

For Acer installations, the NILM Ubuntu operating system can either be installed

on the standalone laptop, or while it is in an “all-in-one” (AIO) box. Follow the

appropriate steps below to boot from a USB drive containing the NILM Ubuntu ISO.

1. Plug in ac power to the Acer. Insert the bootable NILM Ubuntu USB drive. If

installing with the Acer in the AIO box, plug in an external USB keyboard.

2. Power on the Acer. As soon as it starts booting, press the F2 button to launch

the BIOS setup utility.

3. Once in the BIOS setup utility, navigate to the Boot page with the right arrow

key.

4. On the Boot page, locate the USB drive that was inserted. Scroll down to

highlight it and increase its boot priority to 1 using the F6 key.

5. Navigate to the Exit page with the right arrow key and choose “Exit Saving

Changes.”

C.2.1.2 GK41

1. Plug in power to the AIO box, and make sure that the GK41 is powered off.

Insert the bootable NILM Ubuntu USB drive. Plug in an external USB key-

board.

2. Turn on the GK41. While doing so, press ESC while the GK41 is booting to

launch the BIOS setup utility.

3. Once in the BIOS setup utility, navigate to the boot page.

4. Change the boot priority of the USB device to 1.
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5. Exit the BIOS setup utility, saving changes.

Now, the system should boot from the USB drive and proceed to the Ubuntu instal-

lation dialog. Select “Install Ubuntu” and follow the guided setup. Erase any other

operating system installed. If the computer for the installation uses UEFI instead

of BIOS, it is necessary to connect to the internet during installation and to allow

for updates by selecting “Install Updates.” After the installation is complete and

the computer is able to boot to the installed NILM Ubuntu operating system, the

BIOS/UEFI settings can be changed to the previous boot priority order so that the

drive with the NILM Ubuntu operating system has first boot priority.

C.2.2 Initial Setup

Once installed, follow the steps outlined in the NILM_README file located on the

Desktop, which are elaborated on here:

1. Authorize local user access to the Joule server:

Command Line:

$> sudo -E joule admin authorize

2. Connect Joule to the local Lumen server:

Command Line:

$> joule master add lumen 127.0.0.1

Enter the desired credentials information, which will be used for the Wattsworth

data viewer app.

3. To configure data capture, edit meters.yml on the Desktop and run the fol-

lowing command. This command must be run any time meters.yml has been

updated. More details about setting up a meters.yml file are in the next two

subsections, for contact and noncontact meters, respectively.
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Command Line:

$> sudo nilm configure

4. Restart Joule:

Command Line:

$> sudo service joule restart

5. Check that data capture and process modules are running:

Command Line:

$> joule module list -s

The output should look similar to the following:

If the entries for CPU % and Mem % have dashes instead of numbers, there is

an error with the corresponding module. The logs for a specific module can be

viewed by running the following command. This can help with debugging any

errors.

Command Line:

$> joule module logs "ModuleName"
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C.2.3 Setting up a Contact Meter

Connect to the contact meter to the NILM computer using wired Ethernet. Once

physically connected, go to the Wired settings in the Network settings. Manually set

up an IPv4 connection. Set the Address to an IPv4 address of the form 192.168.X.Y,

as long as this address is not the same as the IP address of the LabJack or NerdJack.

The default IP address of both the LabJack and NerdJack is 192.168.1.209. Assuming

the default IP is used, an example of a valid IP address for the NILM computer is

192.168.1.201. Set the subnet mask (“Netmask”) to 255.255.0.0 (or 16). Click Apply.

The settings should look similar to the following:

An example meters.yml file is shown below for a contact meter:
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meters.yml

meter1:

type: contact

enabled: true # set to false to disable

daq_type: nerdjack # labjack or nerdjack

ip_address: 192.168.1.209 # default LJ or NJ address

phases: 3 # 1 - 3

sensors:

voltage:

sensor_indices: [3,4,5] # maps to phase A,B,C

sensor_scales: 0.0919 # built -in constant

sinefit_phase: A # [A,B,C] voltage

nominal_rms_voltage: 120 # used to scale prep to W

current:

sensor_indices: [0,1,2] # maps to phase A,B,C

sensor_scales: 0.00156402587 # set by resistors and LEM

sinefit_rotations: [240 ,0 ,120]

filter:

enabled: false

#filter_index: 0 # filter index 0 - 5

streams:

sinefit:

decimate: true

keep: 1m

iv:

decimate: true

keep: 1w

prep:

decimate: true

keep: 3w

nshift: 1

goertzel: true

sensor:

decimate: true

keep: 1w
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The sensors must be scaled correctly to convert the measurements to volts and amps.

The voltage scale factor is set in hardware to 0.0919. The current scale factor depends

on the load resistance set by the channel DIP switches and the conversion ratio found

on the LEM datasheet. The load resistance, 𝑅, should be set according to the DIP

switches as below, and the corresponding current conversion factor ( sensor_scales in

the meters.yml file) can be calculated, where 𝛼𝐿𝐸𝑀 is the conversion ratio obtained

from the LEM datasheet:

For shipboard installations, 𝑅 is typically set to 35 Ω. Typically deployed LEMs

are the LF 305-S (with maximum measurable current of 300 A) and LF 505-S (with

maximum measurable current of 500 A). In the lab, 𝑅 is typically set to 100 Ω,

with the LA-55P LEMs (with maximum measurable current of 50 A). The current

conversion ratios for these setups are listed in the table below.

𝛼𝐿𝐸𝑀 R Current conversion factor

LA 55-P 1000 100 Ω 0.001564026

LF 305-S 2000 35 Ω 0.008937291

LF 505-S 5000 35 Ω 0.02234323

Different LEMs and different 𝑅 values will yield different current conversion factors.

Typically these values should be set such that 𝑅 is within the allowable maximum

load resistance as specified in the LEM datasheet, while also using the full voltage

range of the DAQ without clipping (usually ±5 V). For instance, for the LA 55-P
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setup described, the voltage range is ±50 · 1
1000
· 100 = ±5 V. The above assumes that

a closed loop current transducer with current output is used. An open loop current

transducer with voltage output has also been tested, which has a split core for easy

mounting. The tested sensor, LEM HTR 300-SB has an output voltage of ±4 V. For

this sensor, a resistance greater than 10 kΩ should be used (i.e., one of the resistors

set by the DIP switch will need to be replaced).

Additional notes about the meters.yml file:

• The sinefit_rotations will need to be updated by cycling a known load and

viewing the prep streams. For a wye-configured contact box, the sinefit rotations

will be some permutation of [0, 120, 240] degrees. For a delta-configured contact

box, the sinefit rotations will be either a permutation of [30, 150, 270] degrees

or [90, 210, 330] degrees. This comes about because it is possible for there to

be a phase shift of 180 degrees in the voltages with respect to the currents.

• For each of the streams, a time duration can be specified for how much data to

keep (h for hours, d for days, m for months, or y for years).

• If using the notch filter of the NerdJack, the filter: enabled should be set to

true. The filter_index should be uncommented and the desired filter index

specified.

IMPORTANT: Enabling the NerdJack filter results in a sensor stream with

seven columns. Using a NerdJack with the filter disabled or using a LabJack

results in a sensor stream with six columns. These cannot be combined. A new

meter will need to be created (e.g., meter2) if switching between LabJack and

NerdJack or disabling and enabling the NerdJack filter.

C.2.4 Setting up a Noncontact Meter

To calibrate a noncontact meter, first set up the meters.yml file. An example

meters.yml file is shown:
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meters.yml

meter3:

type: noncontact

enabled: true

serial_number: meter1002 # found on the meter case

phases: 3 # 1 - 3

sensors:

voltage:

sensor_index: 0 # electric field sensor

digitally_integrate: true # if true , integrate using

FIR filter

nominal_rms_voltage: 120 # scale the electric field

current:

sensor_indices: [1,3,5,7] # D-Board with 4 A-Boards

calibration:

duration: 30 # calibration time (seconds)

on_duration: 1 # load on duration

off_duration: 2 # load off duration

watts: 205 # power of calibration load

has_neutral: true # [false] if the system has

no neutral bus

streams:

sinefit:

decimate: true

keep: 1m

iv:

decimate: true

keep: 1w

prep:

decimate: true

keep: 3w

nshift: 1 # output freq = nshift *60

goertzel: true # if [false] uses fft

sensor:

keep: false
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Make sure to double-check the serial_number and the information about the cali-

bration load under calibration . The duration is the total calibration time (for each

phase), on_duration is the on time of the calibration load, off_duration is the off

time of the calibration load, and watts is the steady-state power of the calibration

load.

The calibration procedure is given below:

1. Stop Joule:

Command Line:

$> sudo service joule stop

2. (OPTIONAL) You may want to nilm scope the meter before starting calibra-

tion to check the signal:

Command Line:

$> sudo nilm scope meterX -c 0 1

The -c, --channel argument indicates which channel(s) to plot. An example

nilm scope output for a single-phase non-contact sensor with channel argument

0 1 is shown:
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3. Run nilm calibrate for the corresponding meter in the meters.yml file:

Command Line:

$> sudo nilm calibrate meterX

4. Double-check the calibration settings. If correct enter y and press ENTER.

5. Follow the instructions given for calibrating each phase.

6. Save calibration results when prompted.

IMPORTANT: The default calibration pattern is 1 second on and 2 seconds

off. This can be changed by connecting to the smart plug through USB.

To change the calibration pattern, plug in the smart plug, then connect to it with

the following command:

Command Line:

$> nilm -plug --cli /dev/ttyACM0

Note that the location of the device might be different. The location can be found by

running the following command and finding the device corresponding to the smart

plug (on the Acer laptops it usually starts with ttyACM):

Command Line:

$> ls /dev/tty*

Connecting to the smart plug will open the plug command line interface. If successful,

the light on the smart plug should turn blue, and the output should look like the
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following:

Once in the smart plug command line interface, the calibration pattern can be set

with the following command:

Command Line:

$> calibrate start on_time_ms off_time_ms

The on and off times should be in milliseconds (e.g., for a 1 second on and 2 seconds

off pattern, it should be set to 1000 and 2000, respectfully).

C.3 Data Backup

For redundancy, it is helpful to store data both on the computer’s hard drive and

on an external hard drive for easy access and retrieval. To do so, the Linux rsync

command is used to copy data from the primary NilmDB database at /opt/data

to a secondary NilmDB database at /opt/secondary . The first step is to create an

/opt/secondary directory. This only has to be done once:

Command Line:

$> sudo mkdir /opt/secondary

C.3.1 External Drive Setup

To set up an external drive as /opt/secondary , it first must be formatted correctly,

as outlined in the steps below.

1. When the drive is plugged in, if it has a mount point (e.g., /media/nilm/... ),

unmount it with the umount command.
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2. Format the drive using GParted, which can be installed with the following:

Command Line:

$> sudo apt update

$> sudo apt install gparted

Once GParted is installed, run GParted:

Command Line:

$> sudo gparted

3. Now, select the correct drive for formatting. For example:

WARNING: Make sure you select the correct drive. It will have the

format /dev/sdX, but it will NOT always be /dev/sdb.

4. Select Device > Create Partition Table. Select msdos in the “Select new parti-

tion table type:” dropdown and click Apply.

5. Create a new partition by selecting Partition > New. In the menu options,

make sure to select ext4 for the File system. Click Add.
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6. To apply all of these settings, click the green check mark, as shown below:

7. Once the partitioning is complete, exit GParted.

C.3.2 Manually Mounting /opt/secondary

Every drive should be manually mounted and tested to make sure everything is op-

erating correctly, as outlined below:

1. Make sure the external drive is unmounted.

2. Mount it in command line. For example, if the external drive is located at

/dev/sdb1 :

Command Line:

$> sudo mount /dev/sdb1 /opt/secondary
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3. Give the nilm user ownership of /opt/secondary :

Command Line:

$> sudo chown -R nilm:nilm /opt/secondary

4. Remove lost+found files from /opt/secondary :

Command Line:

$> rm -rf /opt/secondary/lost+found

IMPORTANT: These steps should proceed without error. The external drive

is now set up and formatted correctly. The external drive will not be mounted

by default when the computer is rebooted.

C.3.3 Automatically Mounting /opt/secondary

For a more permanent solution, a cron job can be created to automatically mount

/opt/secondary and make sure it remounts if it ever disconnects or the computer

reboots. cron is a Linux tool to schedule commands to be run at user-designated

time intervals. The universally unique identifier (UUID) of the drive will be used to

automatically mount it. To find the UUID of the external drive, use the command

sudo blkid . Once you have the UUID, the following file should be created, where

XX is the UUID of the external drive:

/etc/cron.d/mount_secondary

*/15 * * * * root mount UUID=XX /opt/secondary && chown -R

nilm:nilm /opt/secondary

IMPORTANT: Mare sure the drive has already been manually formatted with-

out error. Make sure you are using the correct UUID.

An example file is stored in /home/nilm/Desktop/example_cron_jobs/

mount_secondary .
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C.3.4 Copying Data to External Drive

To copy the data to the external drive, the rsync command can be used:

Command Line:

$> rsync -av --delete /opt/data/ /opt/secondary/

To do this automatically at a set interval, a cron job can be used by creating the

following file:

/etc/cron.d/rsync_external

*/15 * * * * nilm rsync -av --delete /opt/data/ /opt/secondary/

An example file is stored in /home/nilm/Desktop/example_cron_jobs/rsync_external .

C.3.5 Change External Drive UUID

For easy data access, it is convenient to be able to swap out the external drive without

needing to change any configurations. This can be achieved by using two (or more)

external drives with the same UUID. The new drive will automatically be mounted

by the cron job given in Appendix C.3.3.

Select one drive and find its UUID by running the following command:

Command Line:

$> sudo blkid

Once you have the UUID that you would like the other drives to have, unmount and

unplug the original drive. Plug in the new drive whose UUID is to be changed. Run

the following command with the desired UUID, where /dev/sdXY is the partition on

the new drive:

Command Line:

$> tune2fs -U <UUID > /dev/sdXY
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C.3.6 Check NilmDB Connection

By creating the following file, a cron job will periodically run the check_nilmdb.py

script to check the NILM’s connection to NilmDB and Joule:

/etc/cron.d/check_nilmdb

*/15 * * * * nilm /usr/bin/python3 /home/nilm/Desktop/

example_cron_jobs/check_nilmdb.py

Unlike the other cron jobs, this one is already set up by default. The script

check_nilmdb.py checks the connection to NilmDB and Joule. If it cannot connect

to Joule or if there is no data in the specified stream (the script automatically selects

the stream of interest using the enabled stream in the meters.yml file), then Joule

is restarted. Every time Joule restarts this way it is logged in the check_nilmdb.txt

file on the Desktop for user reference and debugging.

C.4 Fix NilmDB on Startup

Whenever the NILM computer reboots suddenly, there is a chance that NilmDB

will be corrupted. This can be automatically fixed using a startup script. This is

particularly helpful for NILM computers that do not run on a battery backup. To set

this up, create the following file, changing DATABASE to the location of the NilmDB

database ( /opt/data by default):

/home/nilm/fix-nilmdb.sh

#!/ bin/bash

service joule stop

service nilmdb stop

nilmdb -fsck DATABASE --fix -n > /home/nilm/nilmdb -log.txt

service nilmdb restart

service joule restart

echo "Fixed nilmdb at $(date)." >> /home/nilm/nilmdb -log.txt

Next, open “Startup Appliations” and click Add:

325



Set Name to be Fix NilmDB and Command to the following:

sudo /home/nilm/fix -nilmdb.sh

Click Add. The new entry should show up in the list as shown below:

Finally, in the terminal, run sudo visudo . A file similar to the following should be

brought up for editing:
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Add the following line to the end of the file that is brought up for editing:

nilm ALL=(ALL:ALL) NOPASSWD :/home/nilm/fix -nilmdb.sh

Save and exit the file.

WARNING: Anything in /home/nilm/fix-nilmdb.sh will be automatically

run with root privileges whenever the system starts up. For this reason, be

very careful when modifying this file.

C.5 NILM Dashboard Demo

For demonstration, a NILM Dashboard demo can be set up. This demo will use

an event detector to identify loads with known rated real power. The event detec-

tor script for this demo is in Appendix C.10. The event detector is a Joule mod-

ule which takes a NilmDB prep stream as input. The stream of interest should be

specified in the Joule configuration file, similar to the following example (located at

/home/nilm/Desktop/dashboard-settings/example_module/event_detector.conf ).
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event_detector.conf

[Main]

name = Demo Event Detector

exec_cmd = python3 /opt/nilm -dashboard -v2/example/event_detector

.py --config /home/nilm/Desktop/dashboard -settings/

development.yml

[Inputs]

input = /meter1/prep

The configuration file for the event detector Joule module can be created and edited

using the following command:

Command Line:

$> sudo nano /etc/joule/module_configs/event_detector.conf

The event detector does not output to NilmDB. Instead, it outputs the detected

events to a SQL database. The database file for the demo has already been created

(as an empty file), and it is located at /opt/nilm-dashboard-v2/demoDB.db .

C.5.1 Server Configuration Files

Dashboard has several configuration files. The first two, /opt/nilm-dashboard-v2/

config/development.yml and /opt/nilm-dashboard-v2/adev_vars.sh have already

been set up. These are shown below for reference. If the name of the SQL database

changes, the /opt/nilm-dashboard-v2/config/development.yml file should be up-

dated to reflect the change.
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development.yml

# Database connection information in DSN notation

# See https :// docs.sqlalchemy.org/en/13/ core/engines.html#

database -urls

database_dsn: ‘sqlite ://// opt/nilm -dashboard -v2/demoDB.db’

# IP address and port , ignored by the adev server , see adev_vars

.sh

host: 127.0.0.1

port: 8080

adev_vars.sh

# To run the development server change to the dashboard

directory then source this file:

# $> cd dashboard/

# $> source adev_vars.sh

# $> adev runserver

# Configuration file location

export DASHBOARD_CONFIG =/home/nilm/Desktop/dashboard -settings/

development.yml

# For information on all development server settings run

# $> adev runserver --help

export AIO_PORT =8080

export AIO_HOST =127.0.0.1

C.5.2 Configuring library.yml

There is a user-configurable file located in /home/nilm/Desktop/dashboard_settings

/library.yml . This lets the user add loads for detection. There are general settings,

starting with enabled . This should be set to true or false. For input , the prep

stream for performing identification should be specified. For phases either 1 or 3

should be specified, indicating the number of phases of the power system (not the
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load). For each load, there is a name field which is the name that is displayed on

Dashboard. Each load should have a unique number in the index field. The power

is the expected real power consumption for the load. An example file is shown below:

library.yml

# This file lists the appliances for this NILM #

demo:

enabled: true

input: /meter1/prep

phases: 3

loads:

appliance1:

enabled: true # true or false

name: 270 W Light # name of appliance

index: 0 # index of appliance

power: 270 # rated wattage

appliance2:

enabled: true # true or false

name: 210 W Light # name of appliance

index: 1 # index of appliance

power: 210 # rated wattage

appliance3:

enabled: true # true or false

name: 60 W Light # name of appliance

index: 2 # index of appliance

power: 60 # rated wattage

C.5.3 Running Dashboard Server

Once all configurations are set up, the server can be run as follows:

Command Line:

$> cd /opt/nilm -dashboard -v2

$> python3 dashboard/main.py --config ./ config/development.yml
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NILM Dashboard can now be accessed at localhost:8080 on a web browser.

C.5.4 Example Dashboard Views

Dashboard has four pages: Home, Timeline, Historic, and Metrics. This section

summarizes these four views.

C.5.4.1 Home Page

The Home page displays the status of NilmDB and Joule. If NilmDB and Joule are

operating properly, both are shown as green. If there is no connection to NilmDB,

the NilmDB Status is shown as red. Likewise, if there is no connection to Joule,

the Joule Status will be shown as red. The Home page also shows the NilmDB disk

space remaining and used so far, so that the user knows how much space is left. Also

displayed are the first and last timestamps of the prep stream. Dashboard uses the

meters.yml file to automatically select which meter’s prep stream to look at. If the

last timestamp is not the current time, there is a problem with the data capture.

Finally, the Joule module logs are displayed for all running modules. If there are

problems in the data capture, they will likely be displayed in the logs. The Home

page automatically refreshes every 10 seconds. An example Home page is displayed

below:
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C.5.4.2 Timeline Page

The Timeline page provides a live view of equipment status, displaying colored blocks

to represent periods when each load is energized. There is an “Automatic Refresh”

option in the lower-right side that, when selected, automatically refreshes the page

every five seconds. It keeps the view to the last five minutes of operation. When

“Automatic Refresh” is not selected, the user can zoom in and out and pan. An

example Timeline page is displayed below:

C.5.4.3 Historic Page

The Historic page provides short- and long-term trend data. The user can select a

single load and single metric from the dropdown menus. The six metrics are power,

power factor, total duration, average duration, daily actuations, and duty cycle. The

Historic view is presented as a bar graph, where each bar represents one day of

operation. An example Historic page is displayed below:
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C.5.4.4 Metrics Page

The Metrics page provides the user with six metrics for a selected piece of equipment

as a set of gauges. Each metric is displayed as a gauge with green, yellow, and red

sections. Green indicates normal operations, while yellow and red indicate increasing

likelihood of a fault. The colored sections are derived from statistics of previous load

operation. However, this may need to be changed if there is other known information

about normal operation. The gauge needle position represents the value for the

previous 24 hours of operation. An example Metrics page is displayed below:

333



C.6 Useful Joule and NILM Commands

Stop, start, restart, or check status of Joule:

Command Line:

$> sudo service joule [stop|start|restart|status]

Stop, start, restart, or check status of NilmDB:

Command Line:

$> sudo service nilmdb [stop|start|restart|status]

Get information about NilmDB server, such as used and available storage space:

Command Line:

$> nilmtool info

List active Joule modules (the -s flag includes memory and CPU statistics):

Command Line:

$> joule module list -s

List all Joule streams:

Command Line:

$> joule stream list

Additional options include:

-l, --layout: include stream layout

-s, --status: include stream status

-i, --id: show IDs
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IMPORTANT: The Joule IDs are necessary when using nilm-copy to copy

data streams, as NilmDB stores the streams as /joule/1, joule/2, etc.

List all NilmDB streams:

Command Line:

$> nilmtool list -Enl

-E: shows extended stream information, such date range of data

-n: skips decimation streams

-l: show layout of data streams

List Joule logs for a particular module:

Command Line:

$> joule module logs "NAME"

To copy data using Joule to another Joule node or to a NilmDB URL:

Command Line:

$> joule data copy [OPTIONS] SOURCE DESTINATION

SOURCE and DESTINATION are the Joule stream names.

Additional options include:

-s, --start: timestamp or descriptive string

-e, --end: timestamp or descriptive string

-d, --destination-node: node name or NilmDB URL

--source-url: copy from a NilmDB URL

Alternatively, data can be copied using nilm-copy :

Command Line:

$> nilm -copy -u <source URL > -U <dest URL > SOURCE DESTINATION

SOURCE and DESTINATION are NilmDB stream names.
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Additional options include:

-s, --start: timestamp or descriptive string

-e, --end: timestamp or descriptive string

-F, force metadata changes, sometimes required if metadata in source and destination

do not match

To download data using nilmtool extract :

Command Line:

$> nilmtool -u <source URL > extract [OPTIONS] path

Additional options include:

-s, --start: timestamp

-e, --end: timestamp

C.7 Repairing NilmDB

In the event of abrupt power loss, NilmDB will likely need to be fixed. To do so, first

stop Joule and NilmDB:

Command Line:

$> sudo service joule stop

$> sudo service nilmdb stop

Next, run the nilmdb-fsck command as follows, where DATABASE is the location

of the NilmDB server ( /opt/data by default):

Command Line:

$> sudo nilmdb -fsck DATABASE -fn

Omitting the -n flag will check and fix the database row by row. This is very time-

consuming and often not necessary when NilmDB is corrupted by a sudden loss of

power. Once NilmDB has been fixed, start NilmDB and Joule:
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Command Line:

$> sudo service joule start

$> sudo service nilmdb start

C.8 Known Issues

• If an incorrect monitor refresh rate is set, this may lead to burn-in on the

external monitor used in the AIO box. Ensure that the correct refresh rate, 60

Hz, is set in Settings > Displays.

C.9 Installation Files

The following are the scripts for customizing an installable NILM Ubuntu ISO.

Listing C.1: install-iso.sh� �
1 #!/bin/bash
2
3 set -e
4
5 bash ./ install.sh
6
7 echo -en "$COL_GREEN"
8 cat <<EOF
9

10 ----------Install Complete -------------
11
12 EOF
13 echo -e "$COL_RESET"� �

Listing C.2: install.sh� �
1 #!/bin/bash
2
3 set -e
4 # Colors
5
6 ESC_SEQ="\x1b["
7 COL_RESET=$ESC_SEQ"39;49;00m"
8 COL_RED=$ESC_SEQ"31;01m"
9 COL_GREEN=$ESC_SEQ"32;01m"

10 COL_YELLOW=$ESC_SEQ"33;01m"
11 COL_BLUE=$ESC_SEQ"34;01m"
12 COL_MAGENTA=$ESC_SEQ"35;01m"
13 COL_CYAN=$ESC_SEQ"36;01m"
14
15 # Make sure only root can run our script
16 if [[ $EUID -ne 0 ]]; then
17 echo -en "$COL_RED"
18 cat <<EOF
19 Error: This script must be run as root
20 $ sudo bash install.sh
21 EOF
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22 echo -e "$COL_RESET"
23 exit
24 fi
25
26 echo -en "$COL_YELLOW"
27 cat <<EOF
28 *******************************************
29 * MIT NILM Installer *
30 * Updated January 2022 *
31 *******************************************
32
33 EOF
34 echo -en "$COL_RESET"
35
36 #----------------------------
37 # Set up the system
38 #----------------------------
39 echo -en "$COL_BLUE"
40 cat <<EOF
41 A. Add [nilm] user Configuring System
42 EOF
43 echo -en "$COL_RESET"
44 #add the nilm user if it doesn’t exist
45 if ! id -u nilm > /dev/null 2>&1; then
46 useradd --shell /bin/bash --user -group --home /home/nilm -m nilm
47 echo nilm:nilm | chpasswd #set password to nilm
48 mkdir -p /home/nilm/Desktop
49 chown nilm:nilm /home/nilm/Desktop
50 usermod -a -G sudo nilm
51 fi
52
53 python3 -m pip install --upgrade pip > /dev/null
54
55 #------------------------------
56 # install nilm config files
57 #------------------------------
58
59 echo -en "$COL_BLUE"
60 cat <<EOF
61 B. NILM Config Files
62 EOF
63 echo -en "$COL_RESET"
64
65 # Install the stub meters.yml file
66 cp scripts/meters.yml /opt/configs/meters.yml
67
68 # Link the meters file to the desktop
69 ln -sf /opt/configs/meters.yml /home/nilm/Desktop/meters.yml
70 chown nilm:nilm /home/nilm/Desktop/meters.yml
71
72 # Install the example meters file
73 cp scripts/example_meters.yml /home/nilm/Desktop/example_meters.yml
74 chown nilm:nilm /home/nilm/Desktop/example_meters.yml
75
76 # Copy the configuration README
77 cp scripts/NILM_README /home/nilm/Desktop/NILM_README
78 chown nilm:nilm /home/nilm/Desktop/NILM_README
79
80 # Make folder for example cron jobs
81 mkdir -p /home/nilm/Desktop/example_cron_jobs
82
83 #copy cron job for check_nilmdb
84 cp scripts/check_nilmdb /etc/cron.d/
85 cp scripts/check_nilmdb.py /home/nilm/Desktop/example_cron_jobs/check_nilmdb.py
86 chown nilm:nilm /home/nilm/Desktop/example_cron_jobs/check_nilmdb.py
87
88 # copy all cron jobs to examples folder #
89 cp scripts/check_nilmdb /home/nilm/Desktop/example_cron_jobs/
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90 cp scripts/mount_secondary /home/nilm/Desktop/example_cron_jobs/
91 cp scripts/rsync_external /home/nilm/Desktop/example_cron_jobs/
92 chown -R nilm:nilm /home/nilm/Desktop/example_cron_jobs
93
94 cp scripts /20 _nilm /etc/sudoers.d/20 _nilm
95
96 # copy NILM wallpaper and set as default
97 cp img/NILM_Wallpaper.png /usr/share/backgrounds/
98 mv /usr/share/backgrounds/warty -final -ubuntu.png /usr/share/backgrounds/warty -

final -ubuntu -old.png
99 mv /usr/share/backgrounds/NILM_Wallpaper.png /usr/share/backgrounds/warty -final -

ubuntu.png
100
101 #------------------------------
102 # install nilm dashboard
103 #------------------------------
104
105 echo -en "$COL_BLUE"
106 cat <<EOF
107 C. Install NILM Dashboard
108 EOF
109 echo -en "$COL_RESET"
110
111 # clone the source to /opt
112 git clone nilm -dashboard -v2 /opt/nilm -dashboard -v2
113 URL=$(git -C nilm -dashboard -v2 config remote.origin.url)
114 git -C /opt/nilm -dashboard -v2 config remote.origin.url $URL
115
116 groupadd dashboard
117 usermod -a -G dashboard nilm
118 usermod -a -G dashboard joule
119
120 chown -R nilm:dashboard /opt/nilm -dashboard -v2/
121
122 # install nilm -dashboard
123 cd /opt/nilm -dashboard -v2
124 pip install -r requirements.txt > /dev/null
125 python3 setup.py develop > /dev/null
126 cd - > /dev/null
127
128 cp scripts/development.yml /opt/nilm -dashboard -v2/config/development.yml
129 cp scripts/adev_vars.sh /opt/nilm -dashboard -v2/adev_vars.sh
130
131 mkdir -p /home/nilm/Desktop/dashboard -settings
132 ln -sf /opt/nilm -dashboard -v2/config/development.yml /home/nilm/Desktop/dashboard -

settings/
133 ln -sf /opt/nilm -dashboard -v2/adev_vars.sh /home/nilm/Desktop/dashboard -settings/
134 ln -sf /opt/nilm -dashboard -v2/example/library.yml /home/nilm/Desktop/dashboard -

settings/
135
136 touch /opt/nilm -dashboard -v2/demoDB.db
137
138 # copy example conf file #
139 mkdir -p /home/nilm/Desktop/dashboard -settings/example_module
140 cp scripts/event_detector.conf /home/nilm/Desktop/dashboard -settings/

example_module/
141
142 chown -R joule:dashboard /opt/nilm -dashboard -v2/
143 chmod -R g+w /opt/nilm -dashboard -v2/
144 chown -R nilm:nilm /home/nilm/Desktop/dashboard -settings/
145
146 # set default Firefox pages #
147 cp scripts/syspref.js /etc/firefox/syspref.js� �

339



C.10 Demo Event Detector

Listing C.3: event_detector.py: An example event detector implemented as a Joule

module and compatible with NILM Dashboard.� �
1 from joule import FilterModule
2 import asyncio
3 import numpy as np
4 import yaml
5 from scipy import signal
6 from scipy.signal import medfilt
7 import sys
8
9 from sqlalchemy import create_engine

10 from sqlalchemy.orm import Session
11 from typing import List
12
13 from dashboard.models.meta import Base
14 from dashboard.models.load import Load
15 from dashboard.models.event import Event
16 from dashboard.settings import parse_configs
17
18 from datetime import datetime
19
20 appliance_file = "/home/nilm/Desktop/dashboard -settings/library.yml"
21
22 def find_ss_on(pstream ,ind_start ,trans_end ,ind_end ,pos):
23 return np.median(pstream[trans_end:ind_end ]) - np.median(pstream[ind_start:pos

- 1])
24
25 def find_ss_off(pstream ,ind_start ,ind_end ,pos):
26 return np.median(pstream[ind_start:pos - 1]) - np.median(pstream[pos + 1:

ind_end ])
27
28 def cycling_load_on(load_id: int , power: float , power_factor: float , num_runs ,

on_times , states) -> List[Event]:
29 events = []
30 for i in range(num_runs):
31 events.append(Event(load_id=load_id , power=power[i], power_factor=

power_factor[i],type=Event.EventType.ON , start_time=on_times[i],state=states[i
]))

32 return events
33
34 def cycling_load_off(load_id: int , power: float , power_factor: float , num_runs ,

off_times , states) -> List[Event]:
35 events = []
36 for i in range(num_runs):
37 events.append(Event(load_id=load_id , power=power[i], power_factor=

power_factor[i],type=Event.EventType.OFF , start_time=off_times[i],state=states
[i]))

38 return events
39
40 def cycling_load_run(load_id: int , power: float , power_factor: float , num_runs ,

times , states) -> List[Event]:
41
42 ind = np.argsort(times , axis =0)
43 power = power[ind]
44 power_factor = power_factor[ind]
45 times = times[ind]
46 states = states[ind]
47
48 for i in range(num_runs -1):
49 events = []
50 if states[i] == 1 and states[i+1] == 2:
51 events.append(Event(load_id=load_id , power=power[i+1], power_factor=

power_factor[i+1], type=Event.EventType.RUN , start_time=times[i], end_time=
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times[i+1]))
52 return events
53
54 class Demo_Detector(FilterModule):
55 " Detects and classifies resistive loads and outputs to sql database "
56
57 def __init__(self):
58 self.stop_requested = False
59 self.description = "Classifies resitive loads with a known steady state

power"
60 self.help = "Classifies resitive loads with a known steady state power"
61
62 with open(appliance_file , ’r’) as f:
63 appliances = yaml.safe_load(f)
64
65 settings = appliances[’demo’][’loads’]
66
67 self.num_of_phases = appliances[’demo’][’phases ’]
68 self.num_of_loads = 0
69 self.power_levels = []
70 self.index = []
71 self.load_name = []
72 for key , my_appliance in settings.items ():
73 self.power_levels.append(int(my_appliance[’power’]))
74 self.index.append(my_appliance[’index’])
75 self.load_name.append(my_appliance[’name’])
76 self.num_of_loads +=1
77
78 def custom_args(self , parser):
79 parser.add_argument("-c", "--config", help="configuration file", required=

True)
80
81 async def run(self , parsed_args , inputs , outputs):
82 stream_in = inputs["input"]
83
84 config = parse_configs(parsed_args.config)
85 if config is None:
86 exit (1) # error
87
88 engine = create_engine(config.database_dsn)
89 Base.metadata.create_all(engine)
90 db = Session(bind=engine)
91
92 while(not self.stop_requested):
93 sarray_in = await stream_in.read()
94
95 time = sarray_in[’timestamp ’]
96 data_in = sarray_in[’data’]
97
98 # minimum length of data block
99 if(len(sarray_in) < (300)):

100 await asyncio.sleep (1)
101 continue
102
103 # length of data block
104 array_length = len(sarray_in)
105 WINDOW_SIZE = 11
106
107 if self.num_of_phases == 3:
108
109 PA = data_in [:,0]
110 PB = data_in [:,8]
111 PC = data_in [: ,16]
112
113 QA = data_in [:,1]
114 QB = data_in [:,9]
115 QC = data_in [: ,17]
116
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117 # median filter to smooth
118 PA_filt = medfilt(PA,WINDOW_SIZE)
119 QA_filt = medfilt(QA,WINDOW_SIZE)
120 PB_filt = medfilt(PB,WINDOW_SIZE)
121 QB_filt = medfilt(QB,WINDOW_SIZE)
122 PC_filt = medfilt(PC,WINDOW_SIZE)
123 QC_filt = medfilt(QC,WINDOW_SIZE)
124
125
126 PQA_filt = np.hstack (( PA_filt[:,None],QA_filt[:,None]))
127 PQB_filt = np.hstack (( PB_filt[:,None],QB_filt[:,None]))
128 PQC_filt = np.hstack (( PC_filt[:,None],QC_filt[:,None]))
129
130 PQ_filt = np.hstack (( PA_filt[:,None],QA_filt[:,None],PB_filt[:,

None],QB_filt[:,None],PC_filt[:,None],QC_filt[:,None]))
131
132 elif self.num_of_phases == 1:
133 P = data_in [:,0]
134 Q = data_in [:,1]
135 P_filt = medfilt(P,WINDOW_SIZE)
136 Q_filt = medfilt(Q,WINDOW_SIZE)
137
138 PQ_filt = np.hstack (( P_filt[:,None],Q_filt[:,None]))
139
140 f_line = 60
141
142 # thresold for minimum P_total or Q_total
143 min_on = 10
144
145 min_ind_between = 15 #events cannot be less 0.25 seconds apart
146
147 # window width for steady -state change calculations
148 ss_med = 0.2 # seconds
149 ss_med = int(round(ss_med*f_line)) # indices
150
151 if self.num_of_phases == 3:
152
153 dPA_filt = np.diff(PA_filt)
154 dPA_filt = np.append(dPA_filt , [0])
155
156 dPB_filt = np.diff(PB_filt)
157 dPB_filt = np.append(dPB_filt , [0])
158
159 dPC_filt = np.diff(PC_filt)
160 dPC_filt = np.append(dPC_filt , [0])
161
162 dP = np.hstack (( dPA_filt[:,None],dPB_filt[:,None],dPC_filt[:,None

]))
163
164 dP_max_ind = np.argmax(dP,axis = 1)
165 dP_min_ind = np.argmin(dP,axis = 1)
166
167 dP_max = np.amax(dP ,axis = 1)
168 dP_min = np.amin(dP ,axis = 1)
169
170 ind = np.zeros(len(dPA_filt))
171 ind[dP_max > min_on] = 1
172 ind[dP_min < -min_on] = -1
173
174 # remove extra turn on indices
175 for i, j in enumerate(ind):
176 if j == 1 or j == -1:
177 ind[i+1:i+min_ind_between] = 0
178
179 ind_locations = np.nonzero(ind)[0]
180 ind = ind[ind_locations]
181 dP_max_ind = dP_max_ind[ind_locations]
182 dP_min_ind = dP_min_ind[ind_locations]
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183 num_of_ind = len(ind)
184
185 elif self.num_of_phases == 1:
186
187 dP_filt = np.diff(P_filt)
188 dP = np.append(dP_filt ,[0])
189
190 ind = np.zeros(len(dP))
191 ind[dP > min_on] = 1
192 ind[dP < -min_on] = -1
193
194 for i, j in enumerate(ind):
195 if j == 1 or j == -1:
196 ind[i+1:i+min_ind_between] = 0
197
198 ind_locations = np.nonzero(ind)[0]
199 ind = ind[ind_locations]
200 num_of_ind = len(ind)
201
202 # pre -allocating
203 time_new = np.zeros(num_of_ind ,dtype=time.dtype)
204 index_on = np.zeros(num_of_ind)
205 index_off = np.zeros(num_of_ind)
206 data_ss = np.zeros ((num_of_ind , 2), dtype=float)
207 data_peak = np.zeros((1, 2), dtype=float)
208
209 good_window = 20 # plus/minus window for steady state value
210
211 for y in range(num_of_ind):
212 x = int(ind_locations[y])
213
214 # ON EVENTS #
215 if ind[y] == 1:
216
217 ind_start = x - ss_med
218 trans_end = x + 15
219 ind_end = trans_end + ss_med
220
221 if ind_start < 0:
222 ind_start = 0
223
224 time_new[y] = time[x]
225
226 if self.num_of_phases ==3:
227 phase_ind = dP_max_ind[y]
228
229 data_ss[y,0] = find_ss_on(PQ_filt[:,phase_ind *2],ind_start

,trans_end ,ind_end ,x)
230 data_ss[y,1] = find_ss_on(PQ_filt[:,phase_ind *2+1] ,

ind_start ,trans_end ,ind_end ,x)
231
232 for i in range(self.num_of_loads):
233 min_thres = self.power_levels[i] - good_window
234 max_thres = self.power_levels[i] + good_window
235
236 # Threshold for steady state power
237 if data_ss[y,0] > min_thres and data_ss[y,0] <

max_thres:
238 index_on[y] = self.index[i] + 1
239
240 elif self.num_of_phases ==1:
241 data_ss[y,0] = find_ss_on(PQ_filt [:,0],ind_start ,trans_end

,ind_end ,x)
242 data_ss[y,1] = find_ss_on(PQ_filt [:,1],ind_start ,trans_end

,ind_end ,x)
243
244 for i in range(self.num_of_loads):
245 min_thres = self.power_levels[i] - good_window
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246 max_thres = self.power_levels[i] + good_window
247
248 # Threshold for steady state power
249 if data_ss[y,0] > min_thres and data_ss[y,0] <

max_thres:
250 index_on[y] = self.index[i] + 1
251
252 # OFF EVENTS #
253 if ind[y] == -1:
254
255 ind_start = x - ss_med
256 ind_end = x + ss_med
257
258 if ind_start < 0:
259 ind_start = 0
260
261 time_new[y]= time[x]
262
263 if self.num_of_phases ==3:
264
265 phase_ind = dP_min_ind[y]
266
267 data_ss[y,0] = find_ss_off(PQ_filt[:, phase_ind *2],

ind_start ,ind_end ,x)
268 data_ss[y,1] = find_ss_off(PQ_filt[:, phase_ind *2+1],

ind_start ,ind_end ,x)
269
270 for i in range(self.num_of_loads):
271 min_thres = self.power_levels[i] - good_window
272 max_thres = self.power_levels[i] + good_window
273
274 # Threshold for steady state power
275 if abs(data_ss[y,0]) > min_thres and abs(data_ss[y,0])

< max_thres:
276 index_off[y] = self.index[i] + 1
277
278 elif self.num_of_phases ==1:
279
280 data_ss[y,0] = find_ss_off(PQ_filt [:,0],ind_start ,ind_end ,

x)
281 data_ss[y,1] = find_ss_off(PQ_filt [:,1],ind_start ,ind_end ,

x)
282
283 for i in range(self.num_of_loads):
284 min_thres = self.power_levels[i] - good_window
285 max_thres = self.power_levels[i] + good_window
286
287 # Threshold for steady state power
288 if data_ss[y,0] > min_thres and data_ss[y,0] <

max_thres:
289 index_off[y] = self.index[i] + 1
290
291 P_total = data_ss [:,0]
292 Q_total = data_ss [:,1]
293
294
295 # only keep if the steady -state is greater than the min threshold
296 good_ind = np.where( (abs(P_total) > min_on) | (abs(Q_total) > min_on)

)
297
298 P_total = P_total[good_ind]
299 Q_total = Q_total[good_ind]
300 S_total = np.sqrt(P_total **2 + Q_total **2)
301 power_factor = P_total / S_total
302
303 index_on = index_on[good_ind]
304 index_off = index_off[good_ind]
305
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306 load_ids = []
307 load_names = []
308
309 # look for existing Loads in sql database #
310 for load in db.query(Load).all():
311 load_ids.append(load.id)
312 load_names.append(load.name)
313
314
315 for i in range(0,self.num_of_loads):
316
317 load_on_ind = np.where( index_on == i + 1 )
318 load_off_ind = np.where( index_off == i + 1 )
319
320 num_on_events = np.count_nonzero(index_on == i + 1)
321 num_off_events = np.count_nonzero(index_off == i + 1)
322
323 # if load from applianace file does NOT exist in sql db , add it#
324 if self.load_name[i] not in load_names:
325 pump = Load(name=self.load_name[i], type = Load.LoadType.

CYCLING)
326 db.add(pump)
327
328 # checking load ids and load names in sql database #
329 for load in db.query(Load).all():
330 if load.id not in load_ids:
331 load_ids.append(load.id)
332 load_names.append(load.name)
333
334 # setting load_id #
335 if self.load_name[i] in load_names:
336 load_id = load_ids[load_names.index(self.load_name[i])]
337
338 # adding ON events to sqldb #
339 if num_on_events > 0:
340
341 load_time_on = time_new[load_on_ind]
342 on_times = [datetime.fromtimestamp(time*1e-6) for time in

load_time_on]
343 load_S_on = S_total[load_on_ind]
344 load_pf_on = power_factor[load_on_ind]
345 on_states = np.ones(num_on_events)
346 db.add_all(cycling_load_on(load_id=load_id ,
347 power=load_S_on ,
348 power_factor=load_pf_on ,
349 num_runs=num_on_events ,
350 on_times=on_times ,
351 states = on_states))
352
353 # adding OFF events to sqldb #
354 if num_off_events > 0:
355 load_time_off = time_new[load_off_ind]
356 off_times = [datetime.fromtimestamp(time*1e-6) for time in

load_time_off]
357 load_S_off = S_total[load_off_ind]
358 load_pf_off = power_factor[load_off_ind]
359 off_states = 2*np.ones(num_off_events)
360 db.add_all(cycling_load_off(load_id=load_id ,
361 power=load_S_off ,
362 power_factor=load_pf_off ,
363 num_runs=num_off_events ,
364 off_times = off_times ,
365 states = off_states))
366
367
368 db.commit ()
369
370 stream_in.consume(len(sarray_in) -60)
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371
372 db.close ()
373
374 def stop(self):
375 self.stop_requested = True
376
377 if __name__ == "__main__":
378 r = Demo_Detector ()
379 r.start()� �
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C.11 NerdJack Code Changes

The code changes to make NerdJack compatible with the NILM software suite are

documented here. Changes were made to nerdjack.c to add binary output mode for

Nerdjack and to update the Nerdjack packet size for 12 channel transmission. For

nerdjack.c , the first change was to add the int variables NERDJACK_PACKET_SIZE

= 2148 and NERDJACK_NUM_SAMPLES = 1080. The data is also declared as, signed

short data[1080].

Then the unsigned short is changed to a uint16_t. Specifically, unsigned short

dataline[numChannels] is changed to uint16_t short dataline[numChannels]

Now NERDJACK_PACKET_SIZE = numChannelsSampled * 90 and

NERDJACK_NUM_SAMPLES = NERDJACK_NUM_SAMPLES * 2 + 8.

An unsigned short is changed to a uint16_t. Specifically, (unsigned short)(datapoint

- INT16_MIN) is changed to (uint16_t)(datapoint - INT16_MIN)
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Then, the binary output mode is added. To do this, the goto bad statement for

the condition if (printf("\n") < 0) is removed from all switch (convert) cases.

Instead it is added to the cases: case CONVERT_VOLTS, case CONVERT_HEX, and

case CONVERT_DEC (these are all the cases there originally). Then we add the case

CONVERT_BINARY.
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Listing C.4: nerdjack_capture.py: Added for the NerdJack as the analogous code

of ethstream_capture.py for the LabJack.� �
1 import asyncio
2 import numpy as np
3 import logging
4 import sys
5
6 from joule.utilities import (timestamp_to_human ,
7 seconds_to_timestamp , time_now)
8
9 from .errors import CaptureError

10 from nilm.meter import meter
11
12 class NerdjackCapture ():
13
14 def __init__(self , ip_address , filter_index):
15 # tunable constants
16 self.data_ts_inc = 1e6 / 8000.0 # 8KHz sampling
17
18 self.ip_address = ip_address
19 self.stop_requested = False
20
21 if(filter_index == None):
22 self.num_channels = 6
23 else:
24 self.num_channels = 7
25 self.filter_index = int(filter_index) + 6
26
27 self.ROW_BYTES = self.num_channels * 2 # num channels , 2 byte ints
28 self.ROWS_PER_BLOCK = 8000 # read ~8 blocks per second
29 self.BLOCK_SIZE = self.ROW_BYTES * self.ROWS_PER_BLOCK
30
31 async def run(self , output ,
32 max_gap =10,
33 align=True ,
34 nrows =0):
35 process = await self._start_meter ()
36 data_pipe = process.stdout
37 rows_processed = 0
38 # convert gap to microseconds
39 self.max_gap = seconds_to_timestamp(max_gap)
40 # set up timestamps
41 self.clock_ts = time_now ()
42 self.data_ts = self.clock_ts
43 try:
44 while(not self.stop_requested):
45 if(align):
46 self._align_clock ()
47 data = await data_pipe.readexactly(self.BLOCK_SIZE)
48 np_data = self._parse(data)
49 await output.write(np_data)
50 rows_processed += len(np_data)
51 if(nrows > 0 and rows_processed >= nrows):
52 self.stop_requested = True
53 except asyncio.streams.IncompleteReadError:
54 if(not self.stop_requested):
55 logging.error("short read from ethstream , exiting")
56 finally:
57 try:
58 process.terminate ()
59 except ProcessLookupError:
60 pass # already terminated ethstream proc
61 await output.close()
62
63 def stop(self):
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64 sys.stderr.flush ()
65 self.stop_requested = True
66
67 async def _start_meter(self):
68
69 if(self.num_channels == 6):
70 cmd = ["ethstream",
71 "-a", self.ip_address ,
72 "-r", "8000",
73 "-C", "0,1,2,3,4,5",
74 "-N", "-B", "-o"]
75
76 elif(self.num_channels == 7):
77 cmd = ["ethstream",
78 "-a", self.ip_address ,
79 "-r", "8000",
80 "-C", "0,1,2,3,4,5,%i"%self.filter_index ,
81 "-N", "-B", "-o"]
82
83 create = asyncio.create_subprocess_exec(
84 *cmd ,
85 stdin=asyncio.subprocess.DEVNULL ,
86 stdout=asyncio.subprocess.PIPE)
87
88 return await create
89
90 def _parse(self , raw):
91 if len(raw) != self.BLOCK_SIZE:
92 raise CaptureError("short read from ethstream process")
93 # parse from string: 2 byte units in big endian
94 data = np.frombuffer(raw , dtype=np.uint16)
95 rows = len(raw) // self.ROW_BYTES
96 # give the array the proper shape
97 data.shape = (rows , self.num_channels)
98 # calculate timestamps
99 top_ts = self.data_ts + rows * self.data_ts_inc

100 ts = np.array(np.linspace(self.data_ts , top_ts ,
101 rows , endpoint=False), dtype=np.uint64)
102 ts.shape = (rows , 1)
103 self.data_ts = top_ts # update the timestamp for the next run
104
105 # add timestamps
106 ts_data = np.hstack ((ts, data))
107 # now ts_data is the form
108 # [ts, d0, d1 , d2 , d3 , ...]
109 # [ts, d0, d1 , d2 , d3 , ...]
110 # ...
111 return ts_data
112
113 def _align_clock(self):
114 self.clock_ts = time_now ()
115 if (self.data_ts - self.max_gap) > self.clock_ts:
116 print("Data is coming in too fast: data time "
117 "is %s but clock time is only %s" %
118 (timestamp_to_human(self.data_ts),
119 timestamp_to_human(self.clock_ts)))
120 exit (1) # can’t recover
121
122 if (self.data_ts + self.max_gap) < self.clock_ts:
123 print("Skipping data timestamp forward from "
124 "%s to %s to match clock time\n" % (
125 timestamp_to_human(self.data_ts),
126 timestamp_to_human(self.clock_ts)))
127 self.data_ts = self.clock_ts
128
129 def close(self):
130 pass # nothing to do� �
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