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Abstract

This research focuses on the Gen3 (3rd generation) solar tower CSP (concentrated so-
lar power) variant. A methodology is introduced to evaluate two different approaches
to deploying this technology - one is the conventional "build large" approach and
the other is a "build modular" approach. Performance and cost models of the two
different approaches are built and validated against industry data and then the two
different approaches compete across three locations (Daggett CA, New Orleans LA,
and Boston MA) and three different capacity factors (20%, 30%, and 40%). For these
nine cases, the comparison between the two different approaches is first done with
deterministic inputs and then with stochastic inputs for selected variables.

The results show that when the "build large" approach is compared against the
"build modular" approach using deterministic inputs, the "build large" approach"
is favored and has a NPV that is 5%-15% higher than that of the "build modular"
approach for most of the nine cases, which aligns with the current industry belief that
the "build large" approach is better due to economies of scale. However, when the
same approaches are compared using stochastic inputs, the "build modular" approach
is preferred over the "build large" approach. The ENPVs for the "build modular"
approach are 20% higher than that of the "build large" approach while requiring 50%
less initial capital than the "build large" approach. This reversal is driven primarily
by the flexibility and the learning rate inherent to the "build modular" approach. By
employing a "build modular" approach for this technology, a firm that is entering
the CSP market could gain a competitive advantage over other firms in the CSP and
renewable energy markets.
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Thesis Supervisor: Richard de Neufville
Title: Professor of Engineering Systems

3



4



Acknowledgments

This document marks the conclusion of a journey that I started 13 years ago. The

past few years at MIT have been everything I originally hoped for and more. MIT’s

System Design and Management program has been a transformative experience for

me.

Thank you to my wife, Rubini, and our baby boy, Aadhav. Rubini, thank you

for all of the support, it would not have been possible without you, and that is

no platitude - the fact we have made it through while both staying employed and

welcoming a new member to our family is an accomplishment in itself. Aadhav, if

you’re reading this in the future, I love you. You were born here, on a cold day in

January! Thank you for adapting to our small but cozy apartment in the Westgate

high-rise. I will forever remember our time here at MIT as the first place we lived as

a family.

Thank you to my mom and dad, Sasiprabha and Kanniah. I love you both always.

You have always been there and supported me in every way since I was born. It was

a long journey to get here and you were behind me through all of the ups and downs.

You have been the biggest factor in my successes, and I will forever be grateful for

everything you have done for us. I would not be where I am today without you both.

Thank you to my brother, Senthil. I always appreciated the spirited advice you’ve

given me and the conviction with which you gave it. I look forward to more of that.

I will always be here for you.

Thank you to my advisors, Professors Olivier de Weck and Richard de Neufville,

for guiding me on my thesis journey - I definitely started at square one and learned a

lot along the way. Your classes were my absolute favorite and your love for teaching

really showed through.

Finally, thank you to Bryan Moser, SDM’s Academic Director, and Joan Rubin,

SDM’s Executive Director, for welcoming me to the SDM family and for guiding me

through the program. I showed up in the summer of 2019 with almost zero background

and you helped me find my place and thrive at MIT.

5



6



Contents

1 Introduction 19

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Thesis Objectives and Approach . . . . . . . . . . . . . . . . . . . . . 21

1.3 Key Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Literature Review 25

2.1 The current state of CSP . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 About solar tower CSP . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Literature about modeling a Gen3 solar tower CSP system . . . . . . 32

2.3.1 Data to parameterize the components in the plant . . . . . . . 34

2.3.2 Data to estimate the cost of components in the plant . . . . . 37

2.3.3 Data to perform a financial analysis of a particular plant con-

figuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Methodology 43

3.1 Definition of plant sizes, locations, and capacity factors used for both

approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Plant model implementation for both approaches in Modelon Impact 46

3.2.1 DNI input to the Sun model . . . . . . . . . . . . . . . . . . . 47

3.2.2 Sun model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Heliostat field . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.4 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7



3.2.5 Hot Silo and Cold Silo . . . . . . . . . . . . . . . . . . . . . . 50

3.2.6 Particle Lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.7 Particle Medium . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.8 sCO2 Power Block . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.9 Plant Master Control Block . . . . . . . . . . . . . . . . . . . 66

3.3 Validation of the plant model implementation in Modelon Impact . . 69

3.3.1 10 MW𝑒 plant validation . . . . . . . . . . . . . . . . . . . . . 69

3.3.2 100 MW𝑒 plant validation . . . . . . . . . . . . . . . . . . . . 70

3.4 Plant costing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Plant costing validation . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 NPV calculation with deterministic inputs . . . . . . . . . . . . . . . 73

3.7 NPV calculation with stochastic inputs . . . . . . . . . . . . . . . . . 77

4 Results 81

4.1 Plant model implementation results . . . . . . . . . . . . . . . . . . . 81

4.1.1 Simulation speed and computational resource demand . . . . . 81

4.1.2 Annual power generated profile . . . . . . . . . . . . . . . . . 81

4.2 Plant cost model implementation results . . . . . . . . . . . . . . . . 84

4.3 Results of the NPV calculation with deterministic inputs . . . . . . . 86

4.4 Tornado chart based on the NPV calculation with deterministic inputs 90

4.5 Results of the NPV calculation with stochastic inputs . . . . . . . . . 92

4.5.1 Specifying the number of starting modules . . . . . . . . . . . 92

4.5.2 Comparing stochastic ENPVs and deterministic NPVs . . . . . 94

4.5.3 Comparing ENPVs for "build large" and "build modular" . . 96

4.5.4 Results for Daggett, CA . . . . . . . . . . . . . . . . . . . . . 96

4.5.5 Results for New Orleans, LA . . . . . . . . . . . . . . . . . . . 98

4.5.6 Results for Boston, MA . . . . . . . . . . . . . . . . . . . . . 100

5 Conclusion 103

5.1 Revisiting the key research questions . . . . . . . . . . . . . . . . . . 103

5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8



List of Figures

1-1 High level block diagram of the approach . . . . . . . . . . . . . . . . 22

2-1 The cumulative installed capacity of solar PV is orders of magnitude

higher than that of CSP to date. Data from IRENA [2] . . . . . . . . 25

2-2 Conceptual stages along the S-Curve of a technology [10] . . . . . . . 26

2-3 The form of solar PV hasn’t changed much in over 100 years. . . . . . 26

2-4 Four of the most well known variants of CSP, with their approximate

installed ratios in 2018 from [22] and images from [35]. . . . . . . . . 27

2-5 Solar towers (the diamonds) have only become more common fairly

recently, and even then only a few have thermal energy storage above

8 hours. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2-6 The TRL measurement system developed by NASA [41] . . . . . . . 31

2-7 A schematic showing the major components of a Gen3 CSP plant [29] 32

2-8 At the same power delivered, the sCO2 turbine is much smaller than

the steam turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2-9 Layouts of two different types of sCO2 cycles . . . . . . . . . . . . . . 36

2-10 None of the lines fits the data exactly, but it appears that the learning

rate could be anywhere between 0.14 and 0.23 in this data set from [1]. 41

2-11 When filtered for Gen2+ CSP, the data set from [1] is much smaller,

and the learning rate that matches the start and the end is 0.3. . . . 42

3-1 The three approximate locations of interest. Data from the NSRDB

data viewer with the 2019 PSM Full Disc DNI data overlaid. [32] . . 44

9



3-2 Global weighted-average utility-scale capacity factors by technology,

2010-2020 [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-3 At a high level, the architecture of both plants is similar. The differ-

ences lie in the parameterization of the components. . . . . . . . . . . 46

3-4 The TMY DNI for Daggett is consistently high, but there are times

when the DNI for New Orleans is higher, especially in the early and

late months. As expected, the DNI for Boston is lower than the others

[33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3-5 The required heliostat area is lowest and generally linear against CF in

Daggett for both plants. The required heliostat areas for New Orleans

and Boston are higher and show superlinearity against CF especially

at the higher CFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3-6 Specific heat of CARBO HSP 40/70 by Georgia Tech [39] . . . . . . . 52

3-7 Thermal conductivity of CARBO HSP 40/70 by Chung et al [7] . . . 52

3-8 The representation of the sCO2 power block at the plant model level

is a simple lookup table . . . . . . . . . . . . . . . . . . . . . . . . . 53

3-9 Cycle efficiency across the range of particle flow rates for both cycles 54

3-10 Wrapper for the sCO2 cycle models that specifies the particle boundary

conditions. The sCO2 cycle model is the replaceable graphic on the

right of the image above. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3-11 LCOE Pareto fronts of 10 different sCO2 cycle variants. The simple

recuperated variant is the "01" cycle, the recompression variant is the

"05" cycle [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3-12 A TIT of 550 ∘C is Pareto optimal for a power block with a net effi-

ciency between 36% and 42% [21] . . . . . . . . . . . . . . . . . . . . 57

3-13 Pressure ratio and isentropic efficiency maps with 5 speed lines using

Dyreby’s methodology [13]. The nominal compressor shaft speed at

the design point is 24,000 rpm. . . . . . . . . . . . . . . . . . . . . . 60

3-14 The full 10 MW𝑒 sCO2 cycle. Values shown are at design point. . . . 60

3-15 10 MW𝑒 sCO2 cycle at the 4 MW𝑒 off-design point . . . . . . . . . . 61

10



3-16 Main compressor pressure ratio and isentropic efficiency maps with 5

speed lines using Dyreby’s methodology [13]. The nominal shaft speed

at the design point is 8,500 rpm. . . . . . . . . . . . . . . . . . . . . . 64

3-17 Recompressor pressure ratio and isentropic efficiency maps with 5 speed

lines using Dyreby’s methodology [13]. The nominal shaft speed at the

design point is 13,000 rpm. . . . . . . . . . . . . . . . . . . . . . . . . 64

3-18 The full 100 MW𝑒 sCO2 cycle. Values shown are at design point. . . . 65

3-19 100 MW𝑒 sCO2 cycle at the 50 MW𝑒 off-design point . . . . . . . . . 66

3-20 Plant master control block for a Gen3 solar tower CSP plant . . . . . 68

3-21 LCOE of CSP plants between 2010 and 2020. In the last few years,

the LCOE of CSP plants has been between $0.11/kWh to $0.21/kWh.

[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3-22 The cost of the nth 10 MW𝑒 module if the learning rate is 10% and

the first module costs $52.7 million. . . . . . . . . . . . . . . . . . . . 74

3-23 Electricity price trends in Daggett, Boston, and New Orleans. The

New Orleans data is on a separate graph because the timeframe of

the available data is different, because this data came from a different

source. The linear regressions are used for extrapolation to year 10

demands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3-24 Renewable energy surcharge and demand versus time for the Daggett,

CA and 30% CF case. The demand is on the left axis, and the re-

newable energy surcharge is on the right axis. The renewable energy

surcharge is inversely related to the demand, by design. . . . . . . . . 76

3-25 Volatility in electricity price. The blue trend is the deterministic price

trend, with a trend upwards over time. The orange trend represents one

possible outcome of simulating each point on the blue trend varying

between +25% and -25% from its "base value" on the deterministic

price trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3-26 DNI annual spatial COV for a 3x3 cell matrix (upper) and a 5x5 cell

matrix (lower). From [48] . . . . . . . . . . . . . . . . . . . . . . . . 80

11



4-1 Cumulative electrical energy produced (MWh) over the course of a year

for 10 MW𝑒 Gen3 solar tower CSP plants in Daggett, Boston, and New

Orleans. The CFs are all the same at 30%. . . . . . . . . . . . . . . 82

4-2 Profile of electrical power generated by a 10 MW𝑒 plant in Daggett, CA 82

4-3 Profile of electrical power generated by a 10 MW𝑒 plant in New Orleans,

LA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4-4 Profile of electrical power generated by a 10 MW𝑒 plant in Boston, MA 83

4-5 Cumulative electrical energy produced (MWh) over the course of 1.5

hours for 10 MW𝑒 Gen3 solar tower CSP plants in Daggett, Boston,

and New Orleans. The CFs are all the same at 30%. . . . . . . . . . . 84

4-6 Color legend for the doughnut cost breakdown graphs . . . . . . . . . 85

4-7 Cost breakdowns for all of the 10 MW𝑒 plants in all three locations

and three CFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4-8 Cost breakdowns for all of the 100 MW𝑒 plants in all three locations

and three CFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-9 Heat map of NPV using deterministic inputs for the "build modular"

approach with a varying number of starting modules for different CFs

and locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4-10 Bar graphs for each of the 9 cases showing how the number of starting

modules affects the deterministic NPV of the modular approach. . . . 89

4-11 Tornado chart for the "build modular" approach for a 30% CF in Daggett. 91

4-12 Heat map of ENPVs using stochastic inputs for selected variables in the

"build modular" approach with a varying number of starting modules

for different CFs and locations. . . . . . . . . . . . . . . . . . . . . . 93

4-13 Bar graphs for each of the 9 cases showing how the number of starting

modules affects the stochastic ENPV of the modular approach. . . . . 94

4-14 Target curve for NPV for Daggett, CA. The "build modular" approach

CF curves are in shades of blue, while the "build large" approach CF

curves are in shades of green. . . . . . . . . . . . . . . . . . . . . . . 97

12



4-15 Multidimensional evaluation of the "build large" and "build modu-

lar" approaches for different CFs in Daggett, CA. Preferred values are

shown highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4-16 Target curve for NPV for New Orleans, LA. The "build modular"

approach CF curves are in shades of blue, while the "build large" ap-

proach CF curves are in shades of green. . . . . . . . . . . . . . . . . 99

4-17 Multidimensional evaluation of the "build large" and "build modular"

approaches for different CFs in New Orleans, LA. Preferred values are

shown highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4-18 Target curve for NPV for Boston, MA. The "build modular" approach

CF curves are in shades of blue, while the "build large" approach CF

curves are in shades of green. . . . . . . . . . . . . . . . . . . . . . . 100

4-19 Multidimensional evaluation of the "build large" and "build modular"

approaches for different CFs in Boston, MA. Preferred values are shown

highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5-1 In deterministic conditions, the "build large" approach is favored. . . 104

5-2 When uncertainty is introduced, the "build modular" approach is favored.106

13



14



List of Tables

2.1 Efficiency and TRL for the three solar tower CSP variants . . . . . . 31

2.2 Heliostat field efficiency from azimuth and elevation . . . . . . . . . . 35

2.3 Cost correlations for Gen3 solar tower CSP plant components . . . . 37

3.1 Different capacity factors applied to 10 MW𝑒 and 100 MW𝑒 plants . . 46

3.2 Latitudes of the three different locations referenced in this work . . . 48

3.3 10 MW𝑒 plant required heliostat areas by location . . . . . . . . . . . 49

3.4 10 MW𝑒 plant required heliostat areas by location . . . . . . . . . . . 49

3.5 Cycle efficiency, particle exit temperature, and power generated vs

particle flow for the 10 MW𝑒 cycle . . . . . . . . . . . . . . . . . . . . 53

3.6 Cycle efficiency, particle exit temperature, recompression fraction and

power generated vs particle flow for the 100 MW𝑒 cycle . . . . . . . . 54

3.7 Heliostat field area required for 20% and 30% CFs in Daggett, CA and

New Orleans, LA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Year 1 and Year 10 demands for different CFs . . . . . . . . . . . . . 75

4.1 Plant costs in different locations and different CFs . . . . . . . . . . . 84

4.2 NPV comparison of both approaches across CFs and locations . . . . 90

4.3 Data used to build the tornado chart . . . . . . . . . . . . . . . . . . 91

4.4 NPVs vs ENPVs for the "build modular" approach . . . . . . . . . . 95

4.5 NPVs vs ENPVs for the "build large" approach . . . . . . . . . . . . 96

4.6 ENPVs for the "build large" and "build modular" approaches . . . . 96

15



Acronyms

CF Capacity factor

CSP Concentrating solar power

DCF Discounted cash flow

DNI Direct Normal Irradiance

ENPV Expected net present value

Gen1 1st generation, referring to a solar tower-based CSP design

Gen2 2nd generation, referring to a solar tower-based CSP design

Gen3 3rd generation, referring to a solar tower-based CSP design

GHG Greenhouse gases

LCOE Levelized cost of electricity (typically USD/kWh)

LCOS Levelized cost of storage (typically USD/kWh)

LMTD Log mean temperature difference

LR Learning rate

NASA National Aeronautics and Space Administration

NPV Net present value

NREL National Renewable Energy Laboratory

NSRDB National Solar Radiation Database

16



PI Proportional - integral

PID Proportional - integral - derivative

PR Progress ratio

PV Photovoltaics

SAM System Advisor Model

sCO2 Supercritical carbon dioxide

TES Thermal energy storage

TIT Turbine inlet temperature

TMY Typical meteorological year

TRL Technology Readiness Level

TTD Terminal temperature difference, or Tℎ𝑜𝑡𝑠𝑖𝑑𝑒,𝑜𝑢𝑡-T𝑐𝑜𝑙𝑑𝑠𝑖𝑑𝑒,𝑖𝑛 as defined by [21]

17



18



Chapter 1

Introduction

1.1 Motivation

Due to the increasing effects of human-made climate change, there has never been a

greater need for sources of renewable energy that can both support society’s global

energy demands and substantially reduce (or even eliminate) GHG emissions. In order

for these sources of renewable energy to displace existing conventional hydrocarbon-

based sources of energy such as coal and natural gas, renewable energy must not only

be economically competitive with conventional sources but also be able to match the

ability of conventional sources to generate power around the clock.

Out of the many different renewable energy technologies under development today,

the highest profile technologies that have shown the most growth in installed capacity

in recent years are wind and solar PV. Between 2012 and 2021, the worldwide electrical

generation capacity from wind energy tripled while solar PV octupled [2]. The rapid

growth in installed capacity for these two technologies correlates well with significant

reductions in the LCOE of wind and solar PV over the same period. Today, relative

to conventional sources, wind and solar PV are already competitive and are starting

to become outright cheaper on a LCOE basis [1].

However, the LCOE does not account for the ability to provide power around

the clock. Unfortunately, wind and solar PV are not yet able to generate power

around the clock in a cost-effective manner. For solar PV, when the cost of storage
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is included, the LCOS increases to values that are not competitive with conventional

sources [25]. The reason for this is that both wind and solar PV convert energy (wind

and solar, respectively) directly into electricity. Except for a few unique areas on the

Earth, neither does the sun shine nor the wind blow at high speeds for 24 hours per

day year-round. Therefore in order to provide power around the clock, the electricity

needs to be stored, and the current technologies to do so are very expensive. This

causes both wind and solar PV to be noncompetitive with fossil fuels once the cost

of electricity storage is included.

There is still a need for a source of renewable energy that can generate power

around the clock while remaining competitive with conventional sources. One po-

tential promising technology that has the potential to meet both conditions is CSP.

CSP is similar to solar PV in that both utilize solar energy. However, while solar

PV converts solar energy directly to electricity using the photovoltaic effect, CSP ini-

tially converts solar energy into thermal energy. Then, depending on the application,

either the thermal energy is used as-is to generate products like steam or it can be

converted into other valued products such as electricity. By converting solar energy

into thermal energy first, CSP can make use of inexpensive technologies designed to

store heat instead of expensive technologies to store electricity.

Although CSP has the inherent advantage of cheaper energy storage over solar

PV, it has not taken off nearly as fast as solar PV. Between 2012 and 2021, the

worldwide electrical energy capacity of CSP increased by 2.5x. However, in 2021, the

worldwide electrical generation capacity of solar PV was 843 GW vs 6.4 GW for CSP,

a difference of 132x [2].

There are two reasons why there is such a large disparity between the installed

capacities of solar PV and CSP to date. The first is that there have been tremendous

improvements to the cost and performance of solar PV panels in the last 20 years

as evidenced in the rapid reduction in LCOE of solar PV over this time period [1].

Note that while battery technology has also improved, it is still too expensive to cost

effectively store electrical power for use around the clock at a large scale. Second, CSP

has historically been built as large utility-scale installations. As a result, the amount

20



of engineering and capital investment required for CSP plants has been much higher

than that of solar PV plants for similar electricity generation capacity, if the ability

to produce around the clock is disregarded. This has discouraged the proliferation of

CSP capacity relative to solar PV capacity, which has been installed from the utility

scale to the residential household scale. As a result of these two reasons, CSP has

largely been neglected except at a limited implementation in a handful of countries

while solar PV is nearly ubiquitous across the world.

One factor to note that may contribute to the two reasons mentioned above is the

fact that CSP is not architecturally stable yet compared to solar PV. With solar PV,

even through the internals and their performance have changed over time, the form

is consistent - panels of varying size. However, with CSP, although the principle of

converting solar energy to thermal energy is consistent, the forms this technology can

take vary significantly. This will be covered in detail in section 2.1.

In the end, the fight against climate change is still in need for a renewable energy

source that can be economically competitive with conventional sources while being

able to generate power around the clock. Although CSP has been passed up initially

in favor of solar PV and wind, it may yet still be able to meet this need first. As to

whether CSP is on a track to meet this need or not, the first question is whether CSP

can achieve the same rate of improvement that solar PV has in the past years. The

second question is whether the historical practice of building CSP in large utility-scale

installation still makes sense or if a new approach is needed.

1.2 Thesis Objectives and Approach

The purpose of this research is to contrast the current approach to CSP, which is

to build large plants, with a more modular approach. Before system models can be

generated, a particular variant of CSP is selected, a Gen3 CSP plant (see section

2.1). Then, to perform this comparison, system models of Gen3 CSP plants will be

developed to estimate the performance characteristics of the different approaches. A

literature review will be conducted to collect realistic design parameters and rules of
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thumb to inform the selection of parameters that govern the behavior of the different

components in the system models. Outputs from the system model will be used

to estimate the cost of the Gen3 CSP plants, drawing on correlations available in

literature. The cost and performance characteristics of the Gen3 CSP plant (from

the system model and the cost) will then be used as inputs to calculate NPV using

a DCF approach and deterministic inputs. Finally, in recognition of the significant

uncertainty in the design, cost, and other system parameters for CSP plants in general,

the NPV calculation will be done using stochastic inputs for selected variables to

account for the uncertainties. Using the outputs of the stochastic NPV calculation,

a multidimensional comparison between the current "build large" approach and a

"build modular" approach will be performed for the Gen3 solar tower CSP variant.

The calculation of NPV using a DCF approach using deterministic and stochastic

inputs follows the methodology proposed by de Neufville and Scholtes [9].

Figure 1-1: High level block diagram of the approach

The equipment costing and NPV calculations will be performed in Excel. The

system model will be done in Modelon Impact. Modelon Impact is a commercial im-

plementation of Modelica and it has several advantages over other platforms. First,

Modelon Impact comes with a set of libraries that serve a wide range of industries

and are continuously validated and vetted by Modelon, the parent company. Open-

Modelica, a free version of Modelica, also has libraries, but these are developed by

users and may not be vetted to the same degree as the Modelon Impact libraries.

Compared to other system simulation tools, Modelon Impact has the ability to simu-

late the transient behavior of both hardware and software (i.e. control logic), which

is important for keeping track of the states of the components in the CSP plant over
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the course of the simulation. In addition to the components provided in the libraries,

Modelon Impact/Modelon come with the ability to design custom components based

on equations or correlations. The ability to design custom components is important

for modeling CSP plants, where some components are specialized and not very well

known outside of the CSP industry. Lastly, Modelon Impact has a graphical user in-

terface, which is very helpful for visualizing, building, and modifying a system model

with multiple interlinked components.

1.3 Key Research Questions

• Under what conditions is a "build modular" approach to CSP better than a

"build large" approach for a Gen3 solar tower CSP plant?

• Is the "build modular" approach better than the "build large" approach in three

different locations in the US?

• What are the most important uncertainties in a technoeconomic evaluation

(using NPV) of a Gen3 solar tower CSP plant?

• What is the expected performance and cost of a Gen3 solar tower CSP plant

given a location and design parameters available in literature?

1.4 Thesis Structure

• Chapter 1 - Introduction: This chapter summarizes the motivation for the re-

search in this work, and the importance of this research to the CSP industry. It

defines the research objectives, the approach, and key questions to be address

by the research.

• Chapter 2 - Literature review: This chapter summarizes the current state of

CSP and more specifically Gen3 solar tower CSP in literature. It also identifies

approaches and assumptions in literature to modeling the performance of Gen3

solar tower CSP plants and where there are potential gaps.
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• Chapter 3 - Methodology: This chapter defines the "build large" and "build

modular" approaches and the different cases over which they are compared. It

describes the process of building and validating performance models and cost

models of Gen3 solar tower CSP plants. It also describes the process of a NPV

analysis with both deterministic and stochastic inputs.

• Chapter 4 - Results: This chapter describes the outputs of the Gen3 solar tower

CSP plant performance models and cost models. The results of the comparison

between the "build large" and "build modular" approaches for different cases

are presented in visuals and discussed.

• Chapter 5 - Conclusion: This chapter summarizes the insights and takeaways

from Chapter 4 - Results from the perspective of a firm that wants to enter

the CSP market and is deciding between choosing a "build large" or a "build

modular" approach. Areas of opportunity for future work are also introduced.
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Chapter 2

Literature Review

2.1 The current state of CSP

CSP has been around for hundreds, if not thousands of years [8], but it is still a

relatively immature technology compared to solar PV. Although this is a subjective

assessment, one marker to support this assessment is compare total installed electric-

ity generation capacity to date between the two sources:

Figure 2-1: The cumulative installed capacity of solar PV is orders of magnitude
higher than that of CSP to date. Data from IRENA [2]

.
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The installed capacity of solar PV has been increasing exponentially over the past

decade, while the installed capacity of CSP has not. If both technologies were put on

a conceptual S-curve as per below,

Figure 2-2: Conceptual stages along the S-Curve of a technology [10]
.

then it makes the most sense to classify solar PV as either in the "Takeoff" or "Rapid

Progress" stages, while CSP is likely close to the incubation section of the curve. For

a technology like CSP that is still close to the incubation section of the curve, it is

reasonable to expect that the technology is not very stable architecturally. This is

indeed the case for CSP. As a reference point, compare how solar PV panels have

changed from 1884 to 2022 in figure 2-3.

(a) Solar panels in New York City in 1884 [27] (b) Solar array on a house in 2022 [27]

Figure 2-3: The form of solar PV hasn’t changed much in over 100 years.

However, with CSP, there are at least four different variants, as shown in figure 2-4.
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The difference between the four variants is best characterized by how the heat transfer

Figure 2-4: Four of the most well known variants of CSP, with their approximate
installed ratios in 2018 from [22] and images from [35].

medium moves and where the electrical power is generated (while CSP can be used

to generate other forms of power, the majority of CSP installations to date have been

used to generate electricity).

• Parabolic dish - the heat transfer medium is contained within a receiver for

each reflector. Power is generated immediately adjacent to the receiver using a

miniature Stirling or Brayton cycle engine. As a result, the generation of power

for a field of reflectors is distributed across all of the reflectors. This type of CSP

system is capable of attaining high temperatures immediately at the receiver

because the heat transfer medium does not need to travel very far. However,

since everything is located within the space of each reflector, there is no way to

store thermal energy.

• Parabolic trough - the heat transfer medium, typically a thermal oil, is pumped

from a central location to each trough and back to the central location. Power is
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generated at the central location, typically by transferring the heat from the oil

to a conventional steam cycle to generate electricity. The heat transfer medium

travels to and from the central location to all of the troughs. Thermal energy

storage is possible at the central location. This is the most common type of

CSP plant.

• Solar power tower (or solar tower for short) - the heat transfer medium is con-

tained in a central tower and only travels vertically within the tower. Power is

generated centrally within the tower. At the top of the tower, the heat transfer

medium is heated, and falls towards the bottom of the tower where it transfers

its heat to a power cycle. The cold heat transfer medium is elevated back up

to the top of the tower to repeat the cycle. Thermal energy storage is possible

in the tower. This is the second most common type of CSP plant.

• Linear fresnel - similar to the long arrays of the parabolic trough, however these

mirrors are flat rather than curved. Just like the parabolic trough concept, the

heat transfer medium is pumped from a central location through a pipe that

above the mirrors. The heat transfer medium is heated as it passes through

the pipe before returning to a central location where its heat is transferred to

a cycle (typically steam) to generate electricity. Just like the parabolic trough

concept, thermal energy storage is possible at the central location.

The solar tower concept is of particular interest for this work because the power is

generated at a central location and doesn’t require the movement of the heat transfer

medium across long horizontal distances to each of the reflectors/mirrors (especially if

the plant is designed to produce power at the megawatt level and above). As a result,

the solar tower concept can operate at high temperatures without worrying about

thermal losses incurred from the horizontal transport of the heat transfer medium and

the high costs of materials required to minimize these thermal losses. Furthermore,

with a centralized power generation point, the solar tower can take advantage of

economies of scale in cost and efficiency in the power generation subsystem, since the

costs of the equipment in the power generation subsystem scale sublinearly with the
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performance of the equipment. Last but not least, it is capable of thermal energy

storage in the tower.

Despite these advantages, the majority of installed CSP capacity over the past

decade has been parabolic trough as seen in figure 2-5. The solar tower concept has

only recently become relatively more popular. Note also the majority of projects

shown in the figure have thermal energy storage for only up to 8 hours.

Figure 2-5: Solar towers (the diamonds) have only become more common fairly re-
cently, and even then only a few have thermal energy storage above 8 hours. [1]

.

2.2 About solar tower CSP

Even within the solar tower concept, there are multiple variants. These variants are

distinguished by the choice of heat transfer medium.

• Solar tower CSP Gen1 - The first generation uses water as the heat transfer
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medium. The maximum temperature achievable for the Gen1 cycle is around

550 ∘C, referencing the maximum temperature at the Ivanpah Solar Power Fa-

cility [47]. On the plus side, the steam cycle used in this variant is familiar to

most utility operators, but the cost of the plant is expensive due to the materials

required to contain water at these temperatures.

• Solar tower CSP Gen2 - The second generation uses molten salts as the heat

transfer medium. The maximum temperature available for the Gen2 cycle is

around 565∘C, referencing the maximum temperature at the Crescent Dunes

Solar Energy Plant [28]. The maximum temperature is slightly improved over

the Gen1 cycle and the molten salts offer some better heat transfer properties

than water, but there are still expenses in managing the corrosivity of the molten

salts and the systems required to keep the salts molten.

• Solar tower CSP Gen3 - The third generation uses particles, which are similar

to sand, as the heat transfer medium. The Gen3 cycle is capable of a maximum

temperature of 800+∘C [37]. These particles are relatively easy to store and

manage compared to the Gen2 variant and also do not require high pressures like

the Gen1 variant. However, this variant has not been implemented commercially

yet.

One dimension by which these variants can be compared is by their maximum

temperature. Since the heat transfer fluid is used to provide heat to the power gen-

eration subsystem, it follows that the higher the maximum temperature of the heat

medium, the higher the maximum temperature of power generation subsystem. The

approximate effect of increasing the maximum temperature of the power generation

subsystem on the efficiency of the cycle can be determined using an estimated effi-

ciency derived from the formula for the efficiency of a Carnot cycle:

𝜂 = 1−
√︃
𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥

Where 𝜂 is the cycle efficiency, T𝑚𝑖𝑛 is the minimum temperature (in Kelvin) in the
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cycle where the heat is rejected, and T𝑚𝑎𝑥 is the maximum temperature (in Kelvin)

in the system. As a simplification, T𝑚𝑖𝑛 is assumed to be the standard sea level

temperature (20∘C = 293.15 K).

A second dimension by which to compare these variants is the TRL. The TRL

is a measurement system developed by NASA used to assess the maturity level of a

particular technology and can be summarized in figure 2-6.

Figure 2-6: The TRL measurement system developed by NASA [41]
.

With the dimensions established, the comparison of the three solar tower CSP

variants follows: The Gen3 variant is more efficient by several points compared to the

Variant Cycle efficiency TRL Comments

Gen1 40.0% TRL 7-9 Based on installations like Ivanpah [47]
Gen2 40.9% TRL 7-9 Based on installations like Crescent Dunes [28]
Gen3 47.7% TRL 5-7 Based on the Sandia G3P3 project [37]

Table 2.1: Efficiency and TRL for the three solar tower CSP variants

Gen1 and Gen2 variants. However, the Gen1 and Gen2 variants have already been
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implemented commercially, but the Gen3 variant is still in a pilot plant testing and

de-risking mode at this time. So far, the approach taken with the Gen1 and Gen2

solar tower CSP variants has been to build large, utility-scale installations, such as

Ivanpah and Crescent Dunes in the US and more recently Shouhang Yumen, Power

China Qinghai Gonghe, and SUPCON Delingha [17] all within the last couple of years

in China. The question of whether the Gen3 variant should be built large or built

modular will be explored in this work.

2.3 Literature about modeling a Gen3 solar tower

CSP system

A Gen3 solar tower CSP plant is composed of the following components, as shown in

figure 2-7. The components are as follows:

Figure 2-7: A schematic showing the major components of a Gen3 CSP plant [29]
.

• Solar (or heliostat) field - composed of multiple heliostats. The heliostats are

mirrors that are mechanically actuated to track the sun to reflect and focus the

solar energy on each mirror onto a small area (the receiver) at the top of the

tower.

• Particle receiver - the particle receiver is what the heliostats are aiming at. The
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function of this component is to transfer the focused solar energy coming from

the heliostats to the heat transfer fluid, which are particles in a Gen3 solar

tower CSP plant.

• Particle loop (within the tower) - the particle loop is composed of the hot silo,

the cold silo, the particle side of the particle heat exchanger, and a cold particle

lift. After being heated in the particle receiver, the particles fall into the hot

silo where they are either stored for future use, immediately sent to the particle

heat exchanger, or a combination of both. In the particle side of the particle

heat exchanger, the particles transfer heat to the power generation block, which

has its own heat transfer medium. After leaving the particle heat exchanger,

the cooled particles are collected in a cold silo. To close the cycle, a cold particle

lift vertically lifts the cooled particles up to the top of the tower where they can

enter the receiver and the particle loop is complete.

• Power generation block - the power generation block is composed of the other

half of the particle heat exchanger and a thermodynamic cycle that is capable of

converting the thermal energy coming from the particles into electrical energy.

The cycle of particular interest in this work is a closed Brayton cycle using sCO2

as the heat transfer medium. In its most simple form, the closed Brayton sCO2

cycle has the following components, however there are more complex forms that

are covered later.

– Turbine - the turbine expands hot sCO2 exiting the particle heat exchanger,

generating shaft work to power a generator which produces electricity for

the grid and drives the compressor.

– Heat rejection - heat from the low pressure sCO2 exiting the turbine is

rejected to atmosphere to reduce the volumetric flow into the compressor.

– Compressor - the compressor compresses the cool, low pressure sCO2 into

high pressure sCO2.

– sCO2 side of the particle heat exchanger - the high pressure sCO2 is heated
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before flowing into the turbine.

In order to build a model of a Gen3 solar tower CSP plant in Modelon Impact

that can estimate the power generated by the plant at any given time during the year

for use in a financial analysis based on performance, the following data is necessary

for the approach used in this work:

1. Data to parameterize the components in the plant, including the components

listed above

2. Data to estimate the costs of the components, to be summed into a total plant

cost

3. Data to perform a financial analysis of a particular plant configuration

Each of these is addressed in the following subsections.

2.3.1 Data to parameterize the components in the plant

This section includes the data that was referenced to build the model of the Gen3

solar tower CSP plants in Modelon Impact. If a component is not mentioned here,

then there were assumptions created to model that component and those will be

covered in the Methodology section of this work.

Sun

A sun model is necessary to understand the behavior of the solar energy supplied to

the plant. At the level of fidelity used for this work, there are three outputs needed

from the sun model: DNI, azimuth, and elevation. The DNI value is the total solar

energy per unit area available at a given time and a given location, while the azimuth

and elevation are used to calculate the efficiency of the heliostat field. DNI data for

locations in the US can be downloaded from the NSRDB via NREL’s SAM software

[33]. Sun azimuth (az) and elevation (el) for a given latitude are obtained through

equations provided in [11] in the sun component in Modelon Impact.
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Heliostat field

The heliostat field model takes solar azimuth and elevation from the sun model as an

input and returns field efficiency. A rigorous heliostat field model was out of scope for

this work. Rather, the heliostat field model uses the characteristics of the heliostat

field described in [14] in the heliostat field component in Modelon Impact. In this

0 0 0.0873 0.2618 0.4363 0.7854 1.1345 1.5621
0 0 0.3014 0.5087 0.6195 0.6886 0.7052 0.7184

0.5236 0 0.3014 0.5075 0.6159 0.6862 0.7029 0.7184
1.0472 0 0.2931 0.4968 0.6052 0.6778 0.6993 0.7184
1.309 0 0.3348 0.5003 0.6016 0.6719 0.6957 0.7184
1.5708 0 0.2776 0.4813 0.5909 0.6671 0.6933 0.7184
1.9199 0 0.3181 0.4825 0.5849 0.66 0.6886 0.7184
2.2689 0 0.3228 0.4765 0.579 0.6952 0.685 0.7184

Table 2.2: Heliostat field efficiency from azimuth and elevation

table, the efficiency values are looked up (or interpolated) from the azimuth and the

elevation. The azimuth values are in the first column and the elevation values are in

the first row.

Receiver

An assumption for the annual efficiency of a particle receiver for a Gen3 solar tower

CSP plant is provided in [21].

sCO2 power generation block

Power generation blocks based on sCO2 as the working fluid have the potential to

yield higher thermal efficiencies at lower capital cost than state-of-the-art steam-based

power cycles [16]. Compared to steam, sCO2 has a higher energy density at typical

operating conditions. The required volumetric flowrate of the working fluid is lower

for sCO2 than it is for steam, which reduces the size and cost of equipment required

for a sCO2 cycle compared to a steam cycle. The magnitude of the size difference

involved can be visualized in figure 2-8. There are many different variants of sCO2
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(a) The size of a 300 MW(𝑒) steam turbine
compared to a person [34]

(b) The size of a 300 MW(𝑒) sCO2 turbine
compared to a person [34]

Figure 2-8: At the same power delivered, the sCO2 turbine is much smaller than the
steam turbine

cycles, which generally trade complexity with efficiency. In this work, two cycles

were chosen for simulation: Both are Brayton cycles. The recuperated cycle is less

(a) A recuperated sCO2 cycle [51] (b) A recompression sCO2 cycle [51]

Figure 2-9: Layouts of two different types of sCO2 cycles

complex than the recompression cycle, since it only has a single recuperator, main

compressor and a turbine. The recompression cycle has an additional recuperator

and a recompressor. By virtue of having less equipment, the recuperated cycle is less

expensive than the recompression cycle, but the recuperated cycle is also less efficient

than the recompression cycle.
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Although there are more complex sCO2 cycles in development, these two vari-

ants were selected because they have the lowest LCOE per Heller et al [21]. In the

same study, Heller et al also describe optimum parameters for sCO2 cycles, including

turbine inlet pressure, compressor inlet pressure, heat exchanger performance (heat

transfer and pressure drops), and recompression fraction (for the recompression cycle

only). For a cycle efficiency between 37% and 42%, the LCOE is lowest for turbine

inlet temperatures of 550∘C. The only remaining parameter to be specified is the op-

timum compressor inlet temperature, which is assumed to be 32∘C for a wet-cooled

system per Dyreby et al [12].

In addition to the modeling the design point, it is also necessary to model off-

design points as the available heat input to the sCO2 cycle from a Gen3 solar tower

CSP plant varies hourly. Dyreby provides a methodology for modeling the behavior

of turbomachinery at design and off-design points for a 10 𝑀𝑊𝑒 sCO2 Brayton cycle

[13]. The implementation of these models is discussed in the Methodology section.

2.3.2 Data to estimate the cost of components in the plant

The following table summarizes the correlations used to estimate the cost of each

component to roll up into a total plant cost. Cost correlations exist for each of the

Component Cost formula Units of 𝑥 Validity range of 𝑥 Source Comments
Heliostat field 160 * 𝑥 𝑚2 NS [33] -

Tower incl. vert transport 560, 000 + 913 * 𝑥1.66 𝑚 NS [21] -
Receiver 33 * 𝑥 𝑘𝑊𝑡ℎ NS [21] -

Particle inventory 1.1 * 𝑥 kg NS [21] -
TES system 6.27 * 𝑥 𝑘𝑊𝑡ℎ NS [21] -
Particle HX 3, 266 * 𝑥0.66 𝑊𝑡ℎ/𝐾 NS [21] [6] 𝑇𝑚𝑎𝑥 ≤ 550∘𝐶
Recuperator 49.45 * 𝑥0.7544 𝑊𝑡ℎ/𝐾 1.6e5-2.15e8 W/K [45] -

Cooler 32.88 * 𝑥0.75 𝑊𝑡ℎ/𝐾 8.6e5-7.5e7 W/K [45] -
Turbine (radial) 406, 200 * 𝑥0.8 𝑀𝑊𝑠 8-35 [45] 𝑇𝑚𝑎𝑥 ≤ 550∘𝐶
Turbine (axial) 182, 600 * 𝑥0.5561 𝑀𝑊𝑠 10-750 [45] 𝑇𝑚𝑎𝑥 ≤ 550∘𝐶

Compressor (centrifugal) 1, 230, 000 * 𝑥0.3992 𝑀𝑊𝑠 1.5-200 [45] -
Motor (open drip-proof) 399, 400 * 𝑥0.6062 𝑀𝑊𝑒 0.00075-37 [45] -

Generator 108, 900 * 𝑥0.5463 𝑀𝑊𝑒 4-750 [45] -
Piping and valves 0.15 * 𝑥 Power block cost ($) NS [20] -

Table 2.3: Cost correlations for Gen3 solar tower CSP plant components

major components in the Gen3 solar tower CSP plant, allowing for an estimate of

the total cost of the plant once the costs are rolled up. Note that the power block
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equipment costs are provided as equipment-only costs, while the other equipment

costs are total installed costs. However, there is only a limited number of sources to

corroborate these values, which isn’t surprising given that the Gen3 solar tower CSP

concept is at a low TRL relative to Gen1, Gen2, or the other CSP plant designs.

Notably, Heller et al refer to power block costs from a simulation tool provided by

STEAG Energy Services GmbH, but these costs are confidential and could not be

used in this work [21].

Combined with the fact that there isn’t a validity range for all of the component

cost correlations, this implies that there is a high level of uncertainty in the total cost

of the plant. Weiland et al provide an uncertainty range of -28% to +35% for the

cost of a 10 𝑀𝑊𝑒 plant. However, given that costs of components and equipment

are usually higher rather than lower, especially for low TRL equipment, it seems

optimistic to assume that a cost of -25% of the reference value is nearly equally

as likely as +25%. The assumption for uncertainty in this work is covered in the

Methodology section.

2.3.3 Data to perform a financial analysis of a particular plant

configuration

There are three parameters in the financial analysis used for the NPV calculation

that are independent of the location of the plant or the size of the plant:

• Discount rate

• Yearly operating costs

• Learning rate

A discount rate assumption of 9% can be found in NREL’s SAM [33] for Gen2 solar

tower CSP plants. Given that discount rates are inherently subjective, this seems

to be a reasonable starting assumption for Gen3 solar tower CSP plants. Yearly

operating costs are estimated to be 2% of the installed capital for Gen3 solar tower

CSP plants per [21], which also seems to be a reasonable starting assumption.
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The learning rate describes how the cost of the 𝑛th unit relates to the cost of

the first unit. In this form, the expression for the cost of the 𝑛th unit follows the

functional relationship proposed by Wright which describes how the cost of the 𝑛th

unit is a function of the cumulative production up to the 𝑛th unit [49].

𝑦 = 𝑎𝑥𝑏

Where y is the cumulative average cost per unit, x is the cumulative number of

units produced, a is the cost of the first unit, and b is a function of the learning rate.

Since the learning rate is only meaningful when there are multiple units, it applies

only in the modular build approach, where many Gen3 solar tower CSP plant modules

are built over time rather than one single large Gen3 solar tower CSP plant (which

wouldn’t benefit from a learning rate).

Given that the Gen3 variant is at a low TRL, the learning rate warrants some

additional scrutiny. First, to define the learning rate, LR, as it relates to the progress

ratio, PR:

𝐿𝑅 = 1− 𝑃𝑅

Then the cost of the 𝑛th unit is:

𝑐𝑛 = 𝑐1 * (
𝑛

1
)
𝑙𝑜𝑔𝑃𝑅
𝑙𝑜𝑔2

Where 𝑐𝑛 is the cost of the 𝑛th unit, 𝑐1 is the cost of the first unit and 𝑛 is the number

of the 𝑛th unit.

For CSP, there are multiple sources stating that the learning rate LR is between

10-12% [5] [30] [23] [42] [24] [36]. This is typically portrayed in comparison to solar

PV, which has studied extensively and a learning rate in the low 20s% has been

corroborated by multiple sources [5] [40]. Therefore, one could conclude that CSP

doesn’t show as much potential as solar PV to reduce costs quickly over time in the

race to supplant conventional hydrocarbon-based sources of energy.

However, there is reason to doubt this conclusion. First, solar PV has been archi-

39



tecturally stable for many decades, while CSP has not. There are not only different

forms of CSP (solar tower, parabolic trough, etc.) but also different variants of these

forms as well (e.g. Gen1, Gen2, etc.). Due to the ubiquity of solar PV in recent years,

there is a lot of data on the performance of solar PV from the utility to the residen-

tial scale, and since solar PV has been architecturally stable, it is straightforward to

directly compare iterations of solar PV over time. However, CSP has not grown in

capacity like solar PV, as per figure 2-1. The data set on CSP as a whole is therefore

limited compared to PV, and the data set is even further limited once the different

types of CSP are taken into account as per figure 2-1. It does not seem reasonable

to compare cost data of a parabolic trough installation with no thermal storage with

the cost of a power tower with thermal storage. Lastly, since there is more interest

in solar PV than CSP, the learning rate of CSP is not covered in academic work as

heavily as solar PV. These references [30] [23] [42] [24] [36] where the learning rate of

CSP is quoted in the relatively tight range of 10-12% are at minimum 7 years old at

the time of this writing.

All of this implies there is high uncertainty in the learning rate of CSP as a whole,

especially when considering a particular variant such as a Gen3 solar tower CSP plant

that has a low TRL and there is not enough data available on it to fix a learning rate

to a tight range. Lilliestam et al explore CSP learning rates in [26] but do not draw

any conclusions for solar tower technology. Using capital cost data from IRENA

as shown in figure 2-5 [1], different estimates of the learning rate can be obtained

in figure 2-10. When considering the data set includes all forms of CSP (parabolic

trough, solar tower, linear fresnel), all with varying amounts of storage, then the data

could be filtered to just look at power tower applications with 10+ hours of thermal

storage in figure 2-11. The points shown are mainly Gen2 (molten salt) solar tower

CSP plants that have been built in China in recent years. Although there are only

3 data points and it might seem foolish to draw a conclusion about the learning rate

from this limited set of data, these 3 data points represent the closest analog to a

Gen3 solar tower CSP plant.

The concluding point is that there is significant uncertainty in the learning rate of
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Figure 2-10: None of the lines fits the data exactly, but it appears that the learning
rate could be anywhere between 0.14 and 0.23 in this data set from [1].

CSP. It could be as low as 10%, as per most of academic literature, or it could be up

to 30%, or somewhere in between. Until there is a preponderance of data available

on the learning rate of Gen3 solar tower CSP plants, the actual learning rate realized

by a firm in the CSP market will depend on the approach they take to CSP.
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Figure 2-11: When filtered for Gen2+ CSP, the data set from [1] is much smaller,
and the learning rate that matches the start and the end is 0.3.
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Chapter 3

Methodology

A 5-step process for comparing the viability of a "build large" approach with a "build

modular" approach for a Gen3 solar tower CSP installation is described in this chap-

ter.

1. Definition of plant sizes, locations, and capacity factors used for both ap-

proaches.

2. Plant model implementation for both approaches in Modelon Impact.

3. Cost estimates of both approaches in Excel.

4. NPV calculation in Excel for both approaches using deterministic inputs.

5. NPV calculation in Excel for both approaches using stochastic inputs for spec-

ified variables.

3.1 Definition of plant sizes, locations, and capacity

factors used for both approaches

The "build large" approach was assumed to be a single 100 MW𝑒 plant. This is

similar to the 110 𝑀𝑊𝑒 nominal capacity of the most recent CSP plant in the United

States, a Gen2 solar tower plant with thermal storage called the Crescent Dunes Solar
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Energy Project [46]. It also matches the nominal capacity of Gen2 solar tower CSP

plants with thermal storage recently being built in China - the Shouhang Yumen 100

MW Tower CSP Project and the Shouhang Dunhuan Phase II - 100 MW Tower CSP

Project, which are both under construction as of December 5, 2021. [17]. For the

"build modular" approach, the module size was assumed to be 1/10th of the 100 MW𝑒

plant used for the "build large" approach, or 10 MW𝑒. This matches the nominal

capacity of the sCO2 cycle that Dyreby created nondimensional turbomachinery maps

for [13]. It also matches the capacity of the Gen2 solar tower CSP project Solar Two

that was the precursor to the commercial Gen2 implementations.

Three locations of interest were chosen to perform the evaluation, as follows:

• Daggett CA is in the Mojave Desert in southern California. It is in the region

that has the highest solar irradiance in the United States and is close to Los

Angeles county, a large population center. It has a desert climate.

• New Orleans LA is in an area of the United States where there is a lot of

industry (chemical plants, refineries, etc.) with hard-to-abate CO2 emissions.

It is in a subtropical climate zone.

• Boston MA is in a major population center in the United States. It is in a

temperature climate zone.

Figure 3-1: The three approximate locations of interest. Data from the NSRDB data
viewer with the 2019 PSM Full Disc DNI data overlaid. [32]
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Lastly, three different capacity factors were chosen. The capacity factor is a dimen-

sionless quantity that is an important metric for renewable power technologies. It

describes the ratio of the actual power produced by a system over a chosen time

period divided by the power that would have been produced by the system if it was

operating at maximum capacity continuously for the same time period.

The three capacity factors chosen were 20%, 30%, and 40%. Their significance is as

follows:

• 20% CF is currently at the upper edge of what solar PV can deliver, per figure

3-2.

• 30% CF is what Ivanpah, a Gen1 solar tower CSP plant, was originally designed

to deliver [4].

• 40% CF is what current Gen2 solar tower CSP plants are targeting, per figure

3-2.

Figure 3-2: Global weighted-average utility-scale capacity factors by technology, 2010-
2020 [1]
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The following table shows how these three capacity factors correspond to annual

electricity production:

Capacity factor 10 MW𝑒 plant 100 MW𝑒 plant

20% 17,520 MWh/year 175,200 MWh/year
30% 26,280 MWh/year 262,800 MWh/year
40% 35,040 MWh/year 350,400 MWh/year

Table 3.1: Different capacity factors applied to 10 MW𝑒 and 100 MW𝑒 plants

3.2 Plant model implementation for both approaches

in Modelon Impact

In this section, the implementation for each of the components in the 10 MW𝑒 and

100 MW𝑒 plants in Modelon Impact is described.

(a) 10 MW𝑒 plant in Modelon Impact (b) 100 MW𝑒 plant in Modelon Impact

Figure 3-3: At a high level, the architecture of both plants is similar. The differences
lie in the parameterization of the components.
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3.2.1 DNI input to the Sun model

The DNI input is a table of 8,760 rows (the number of hours in a year) corresponding

to the DNI data in the TMY data file for the selected location. There is a separate

TMY file for each location (Daggett, New Orleans, Boston). The TMY data comes

from the NSRDB via NREL’s SAM tool [33]. The table is configured to interpolate

using a modified Akima spline which ensures the first derivative of the DNI is con-

tinuous. A plot of the data is shown in figure 3-4. The trends are "spiky", which is

expected because the sun rises and sets every day.

Figure 3-4: The TMY DNI for Daggett is consistently high, but there are times
when the DNI for New Orleans is higher, especially in the early and late months. As
expected, the DNI for Boston is lower than the others [33]

3.2.2 Sun model

The sun model is a component that comes with Modelon Impact. Given a latitude, it

can return DNI, azimuth and elevation based on the "clear sky" model documented by

Duffie and Beckman [11]. However, for this plant model, the calculated DNI output

feature is turned off and it uses the DNI coming from the selected location-specific
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TMY data file instead. The azimuth and elevation are still calculated, and along with

the "pass-through" DNI input from the TMY data file, are passed to the heliostat

field block. The latitudes used as input into the azimuth and elevation calculation

are shown in the following table:

Location Latitude input to Sun model

Daggett, CA 34.6853 deg
New Orleans, LA 29.9506 deg

Boston, MA 42.3589 deg

Table 3.2: Latitudes of the three different locations referenced in this work

3.2.3 Heliostat field

The heliostat field is also a component that comes with Modelon Impact. It has a

2D matrix that looks up an interpolated efficiency given the azimuth and elevation

outputs from the preceding sun model. The 2D matrix used comes from Ehrhart

and Gill [14] and is described in this work in section 2.3.1. Three mirror-specific

parameters are as follows:

• Mirror reflectivity - 0.9

• Mirror cleanliness - 0.95

• Mirror absorptivity - 0.94

Each of these factors serves to moderate the total power delivered to the receiver, as

expected. For example, a mirror that is not completely clean will not deliver as much

power to the receiver as a clean mirror if all other parameters are equal.

The last parameter is the area of the heliostat field in 𝑚2. These are determined

by manual iteration - once the system model is complete, the heliostat field area is

adjusted until the system delivers the desired power for a given location. A table of

the heliostat field areas used for the 10 MW𝑒 plant is as follows: For the 100 MW𝑒

plant, the same table is as follows: The trends for each location versus capacity factor

can also be visualized in a graph:
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10 MW𝑒 plant location 20% CF 30% CF 40% CF

Daggett, CA 55,000 𝑚2 77,000 𝑚2 100,000 𝑚2

New Orleans, LA 83,000 𝑚2 117,000 𝑚2 186,000 𝑚2

Boston, MA 90,000 𝑚2 135,000 𝑚2 235,000 𝑚2

Table 3.3: 10 MW𝑒 plant required heliostat areas by location

100 MW𝑒 plant location 20% CF 30% CF 40% CF

Daggett, CA 510,0000 𝑚2 706,000 𝑚2 900,000 𝑚2

New Orleans, LA 770,000 𝑚2 1,060,000 𝑚2 1,510,000 𝑚2

Boston, MA 845,000 𝑚2 1,197,500 𝑚2 1,830,000 𝑚2

Table 3.4: 10 MW𝑒 plant required heliostat areas by location

(a) 10 MW𝑒 plant required heliostat areas by
location

(b) 100 MW𝑒 plant required heliostat areas by
location

Figure 3-5: The required heliostat area is lowest and generally linear against CF in
Daggett for both plants. The required heliostat areas for New Orleans and Boston
are higher and show superlinearity against CF especially at the higher CFs.

3.2.4 Receiver

The receiver is a custom component built for this work in Modelon Impact. It consists

of a pseudoreceiver whose efficiency is not calculated rigorously, but rather uses a fixed

constant value of 86.7% as assumed by Heller et al [21] as the annual average efficiency

of a receiver. No other dynamics are modeled.
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3.2.5 Hot Silo and Cold Silo

The hot silo and cold silos are components that come with Modelon Impact. The heat

transfer parameterization for both silos is the same across all cases and as follows:

• Total thermal resistance of the tank wall - 20,000 K/W

• Specific heat of the tank wall - 1060 J/(kg-K)

The silo dimensions are the same between the hot silo and the cold silo but vary with

the type of plant - 10 MW𝑒 or 100 MW𝑒. The rules of thumb used to parameterize

the silos are as follows:

• The hot silo has the same dimension as the cold silo.

• The silo diameter is half of the silo height.

• The maximum working inventory of the silo is 80% of the total volume.

• The silos are sized to hold 16 hours of particle flow at the turndown flow rate

through the power block (the turndown flow rate is described in detail in in the

power block subsection). The intent behind this rule of thumb was to design

the plant such that it was capable of delivering power for a 16 hour night if the

hot silo was filled to the maximum working inventory during the daytime while

the sun was out.

After applying the assumptions below, the silos were sized as follows:

• 10 MW𝑒

– Height - 16.3 m

– Diameter - 8.15 m

• 100 MW𝑒

– Height - 38.2 m

– Diameter - 19.1 m
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Finally, the silos were set to initialize with the hot silo virtually empty and the cold

silo at 90% of its total volume.

3.2.6 Particle Lift

The particle lift is a custom component built for this work in Modelon Impact. It

consists of an idealized flow controller that takes input from the plant master control

block. One of the functions of the plant master control block (described in full in

a later subsection) is to control the flow rate between the cold silo and the hot silo

through the receiver, and the particle lift component is what implements the signal

from the plant master control block.

The power requirements and the heat loss for the particle lift are not modeled.

Both are assumed to be negligible.

3.2.7 Particle Medium

The particle medium does not appear directly on the flowsheet, but it is present in

all of the components that see particle flow. In this work, the particles are assumed

to be a particular type called CARBO HSP 40/70 and modeled as a pseudofluid, so

fluid properties like flow regimes or frictional losses are not modeled. Instead, the

only two properties that are modeled are specific heat as a function of temperature

(see figure 3-6) and thermal conductivity as a function of temperature (see figure 3-7).

The density of the particle pseudofluid is assumed to be constant at 2125 kg/m3.

3.2.8 sCO2 Power Block

Implementation in the plant model

The sCO2 block representation on the plant model level is a custom component built

for this work. On the holistic plant model level, the representation of the sCO2 power

block is a simple lookup table calculation. This approach was chosen to minimize

the runtime of the plant model while still capturing the important dynamics of the
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Figure 3-6: Specific heat of CARBO HSP 40/70 by Georgia Tech [39]

Figure 3-7: Thermal conductivity of CARBO HSP 40/70 by Chung et al [7]

sCO2 power block - namely, operational turndown limits, particle exit temperature,

and cycle efficiency as a function of particle flow rate. The lookup value for the table

is the particle flowrate, and the table returns an interpolated cycle efficiency. The

power block component also calculates the total power generated using the particle

flow rate, the particle inlet temperature, and the cycle efficiency. The power generated

is integrated across the entire simulation timespan to return the cumulative MWh of

electricity generated.

A schematic of the sCO2 power block representation in the plant model is shown

in figure 3-8. There are two cycle tables - one for the 10 MW𝑒 plant and one for the
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Figure 3-8: The representation of the sCO2 power block at the plant model level is a
simple lookup table

100 MW𝑒 plant. The cycle table for the 10 MW𝑒 plant follows:

Particle flow (kg/s) Cycle efficiency (%) Particle exit temperature (∘C) Corresponding power (MW)

0 0 194.5 -
25 0 194.5 -

25.1 27.1 194.5 4
30.1 29.6 219.6 5
35.3 31.7 244.8 6
41 33.5 271 7

47.5 35.0 299.2 8
55.1 36.4 330 9
64.2 37.6 363.9 10

Table 3.5: Cycle efficiency, particle exit temperature, and power generated vs particle
flow for the 10 MW𝑒 cycle

The cycle table for the 100 MW𝑒 plant follows, which has an added dimension of

recompression flow fraction due to the choice of the cycle modeled. The efficiency of

both cycles across their range of operations is juxtaposed in figure 3-9.

One feature of the sCO2 lookup table approach is the ability to manually force the cy-
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Particle flow (kg/s) Cycle efficiency (%) Particle exit temperature (∘C) Corresponding power (MW) Recompression fraction

0 0 282.3 - -
323.3 0 282.3 - -
323.4 31.1 282.3 50 0.374
386 33.0 308.6 60 0.368

455.9 34.7 336.1 70 0.363
538.5 36.1 365.8 80 0.358
636.4 37.3 397.5 90 0.353
752.9 38.6 430.4 100 0.350

Table 3.6: Cycle efficiency, particle exit temperature, recompression fraction and
power generated vs particle flow for the 100 MW𝑒 cycle

(a) 10 MW𝑒 cycle efficiency vs particle flow
rate

(b) 100 MW𝑒 cycle efficiency vs particle flow
rate

Figure 3-9: Cycle efficiency across the range of particle flow rates for both cycles

cle efficiency to zero when the power goes below the assumed minimum turndown. If

the sCO2 cycle was fully represented in the plant model rather than as an abstraction,

the simulation stability and runtime would suffer when the heat input stopped to the

sCO2 cycle at night because the sCO2 pressures and temperatures could transition

between the supercritical regime and other regimes. This is not realistic for a real

Gen3 solar tower CSP plant which would likely shut the sCO2 cycle down rather than

attempt to keep it running, but this implementation of the system model does not

allow for the ability to shut down and start up the cycle. For the 10 MW𝑒 cycle, the

minimum electrical power production is assumed to be 4 MW𝑒 (40% of the rated elec-

trical power production), and for the 100 MW𝑒 cycle, the minimum electrical power

production is assumed to be 50 MW𝑒 (50% of the rated electrical power production).

The basis behind these numbers is covered in the following subsections.
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Creating the lookup tables

The lookup tables are generated by independent models of the 10 MW𝑒 and 100 MW𝑒

sCO2 cycles. These cycles are designed with the particle boundary conditions defined

externally in the wrapper as shown in figure 3-10. The particle inlet temperature is

Figure 3-10: Wrapper for the sCO2 cycle models that specifies the particle boundary
conditions. The sCO2 cycle model is the replaceable graphic on the right of the image
above.

specified at a fixed 750 ∘C, the nominal temperature of the particles in the hot silo.

The mass flow rate is set by a PID controller that receives the calculated net cycle

power as an input and has a user-entered value for the setpoint. For example, for the
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10 MW𝑒 cycle, the setpoint corresponding to the design point would be 10. On the

exit side, the particle outlet mass flow rate is fixed to be equal to the particle inlet

mass flow rate due to the conservation of mass and the temperature is determined

by the performance of the particle heat exchanger contained within the sCO2 cycle

model. Using this wrapper, the setpoints for the net cycle power can be varied to

generate a table of particle mass flow rate and the corresponding values for particle

exit temperature and cycle efficiency that are used in the sCO2 lookup table.

The 10 MW𝑒 sCO2 cycle model

The 10 MW𝑒 sCO2 cycle, associated with the 10 MW𝑒 "build modular" approach, was

assumed to be the simple recuperated variant. The layout of the simple recuperated

variant is shown in figure 2-9a. This cycle was chosen because it appears to have the

lowest LCOE of the 10 variations studied by Heller et al, owing to its competitive

efficiency with minimal capital requirements because it only has two main turboma-

chines and three heat exchangers [21]. Due to the simplicity of the cycle, it seemed

to be well suited to the "build quick, cheap and efficient" approach espoused by the

"build modular" approach. With the simple recuperated sCO2 cycle variant selected,

Figure 3-11: LCOE Pareto fronts of 10 different sCO2 cycle variants. The simple
recuperated variant is the "01" cycle, the recompression variant is the "05" cycle [21].
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the medium specified for simulating the properties of CO2 is the Span and Wagner

EOS [38], a prebuilt component in Modelon Impact. Then, the pressure profile for

the cycle and the exchanger performance is as follows:

• The turbine inlet pressure was assumed to be 260 bar per Heller et al [21].

• The TIT was assumed to be 550 ∘C per Heller et al. Although higher inlet

temperatures were studied, the optimum TIT was determined to be 550 ∘C

[21], Furthermore, the correlations for costing cycle equipment, particularly the

particle heat exchanger, at TITs above ∘C were marked as confidential and were

therefore unavailable for use.

Figure 3-12: A TIT of 550 ∘C is Pareto optimal for a power block with a net efficiency
between 36% and 42% [21]

.

• Exchanger pressure and heat transfer performance. Since heat exchanger ge-

ometry isn’t known, the exchangers were designed using a eps-NTU approach

where only the area is specified. The source for the assumptions is Heller et al

[21] unless otherwise specified:

– For the recuperator, the pressure drop on the high pressure pass was as-

sumed to be 3% and 2% for the low pressure pass. It was sized to achieve

a 10 ∘C TTD at the design point, corresponding to a heat transfer area

of 158 𝑚2. The heat transfer coefficients on both sides (both sCO2) were
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automatically calculated using a Reynolds-based correlation prebuilt in

Modelon Impact.

– For the particle heat exchanger, the pressure drop on the sCO2 pass was

assumed to be 2%. It was sized to achieve a 50 ∘C TTD at the design

point, corresponding to a heat transfer area of 920 𝑚2. The heat transfer

coefficient on the sCO2 pass was automatically calculated using a Reynolds-

based correlation prebuilt in Modelon Impact. The particle heat transfer

coefficient was assumed to be 300 𝑊/(𝑚2 −𝐾) per Albrecht and Ho [3].

– For the cooler, the pressure drop on the sCO2 pass was assumed to be

0.6%. The cooler wasn’t modeled rigorously as a heat exchanger in the

cycle model for the purposes of simplicity, so the LMTD was assumed to

be 7.2 ∘C with the hot end approach of 5 ∘C, and an air inlet temperature

of a constant 22 ∘C.

• The compressor inlet pressure was assumed to be 75 bar.

• The compressor inlet temperature was assumed to be 32 ∘C per Dyreby et al

[12].

The turbine and compressor were designed and parameterized using the following

process:

1. The isentropic efficiency of the turbine was assumed to be a constant 0.91, and

the efficiency of the connected generator was assumed to be 0.987 per [21]. Using

these values and the cycle pressure profile (specifically turbine inlet pressure,

TIT and turbine outlet pressure) specified above, the turbine outlet temperature

and the power generated by the turbine+generator at varying mass flow rates

through the turbine can be calculated.

2. The isentropic efficiency of the compressor was assumed to be 0.87 at the design

point, and the efficiency of the connected motor was assumed to be 0.97 per

[21]. Using these values and the cycle pressure profile (specifically compressor

inlet pressure, compressor inlet temperature, and compressor outlet pressure)
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specified above, the compressor outlet temperature and the power consumed by

the compressor+motor at varying mass flow rates through the turbine can be

calculated.

3. The mass flows through the turbine and compressor are set equal and the mass

flow is manually iterated until the net power (the sum of the power generated

by the turbine+generator and the power consumed by the compressor+motor)

matches the design point, in this case 10 MW𝑒.

4. The compressor speed at design point is manually iterated to achieve a specific

speed Ns of approximately 60 and a specific diameter Ds of 2.5 assuming that

specific speed Ns is 𝑠𝑝𝑒𝑒𝑑*𝑉 0.5

ℎ0.75 , the specific diameter Ds is 0.95*154
𝑁𝑠

, and the com-

pressor rotor diameter D is calculated as 𝐷𝑠*𝑉 0.5

ℎ0.25 using the Ns-Ds methodology

published by Nichols [31].

5. The compressor maps are built for 5 speed lines using the nondimensional

methodology proposed by Dyreby [13], where 𝜑* is a function of mass flow

rate, 𝜂 is a function of isentropic efficiency, and 𝜓 is a function of isentropic

enthalpy rise:

𝜑* =

𝑚
𝜌𝜋𝐷2/4

𝑁𝜋𝐷𝜑𝑠𝑐𝑎𝑙𝑒

𝜂 = (−0.7069+168.8𝜑*−8089(𝜑*)2+182725*(𝜑*)3−1638000(𝜑*)4)*𝜂𝑚𝑎𝑥/0.6838

𝜓 = (0.04049 + 54.7𝜑* − 2505(𝜑*)2 + 53224(𝜑*)3 − 498626(𝜑*)4) * 𝜓𝑚𝑎𝑥/0.4816

𝜑𝑠𝑐𝑎𝑙𝑒 is goalseeked to set ensure the peak efficiency 𝜂 is at the design point, and

both 𝜂𝑚𝑎𝑥 and 𝜓𝑚𝑎𝑥 are goalseeked to match the desired outlet pressure and

outlet temperature at the design point mass flow rate calculated in step 3. The

map design process yields the following in figure 3-13:

With the turbomachinery parameterized, the entire cycle can now be modeled at

the design point (10 MW𝑒) in figure 3-14. The final element of the cycle required

to automatically resolve off-design points is the control system. The cycle control

system uses a PID controller to reduce the speed of the compressor to control the
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(a) 10 MW𝑒 compressor pressure ratio map (b) 10 MW𝑒 compressor isen. efficiency map

Figure 3-13: Pressure ratio and isentropic efficiency maps with 5 speed lines using
Dyreby’s methodology [13]. The nominal compressor shaft speed at the design point
is 24,000 rpm.

Figure 3-14: The full 10 MW𝑒 sCO2 cycle. Values shown are at design point.

compressor suction pressure at 75 bar, so that the CO2 stays in the supercritical

regime. Without this PID controller in place, the compressor suction pressure would

drop below 75 bar when there is a reduction in the particle mass flow rate to the

system resulting in a reduction in heat input to the system, causing a reduction

in volumetric flow rate through the cycle. The effect of this control system when

the desired power output from the cycle is only 4 MW𝑒 is shown below, with the

compressor shaft speed displayed: With the hardware and software models required

for simulating design and off-design points in place, the lookup table for the 10 MW𝑒

cycle can be generated. The minimum operating point of this cycle is assumed to
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Figure 3-15: 10 MW𝑒 sCO2 cycle at the 4 MW𝑒 off-design point

40%, i.e. the cycle can not produce less than 4 MW𝑒 net power. This assumption is

in place mainly because surge was not accounted for in the compressor model.

The 100 MW𝑒 sCO2 cycle model

The 100 MW𝑒 sCO2 cycle, associated with the 100 MW𝑒 "build large" approach, was

assumed to be the recuperated recompression variant. The layout of the this variant

is shown in figure 2-9b. This cycle was chosen because it is on the Pareto frontier

for LCOE for a power block with a net efficiency between 39% and 41% in figure

3-11. Although it is more complicated than the simple recuperated cycle, it is more

efficient because the recuperators are split up to ensure better matching between the

heat transfer properties of the cold fluid and the hot fluid. Although it has more

equipment (one additional compressor and heat exchanger) compared to the simple

recuperated variant, it seemed to be better suited to a "build large" theme of higher

initial capital for better system performance at scale than the simple recuperated

variant. For this cycle, much of the same assumptions used for the 10 MW𝑒 cycle in

the previous subsection were used:

• The turbine inlet pressure was assumed to be 260 bar.

• The TIT was assumed to be 550 ∘C.
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• Exchanger pressure and heat transfer performance

– Both the high temperature recuperator and low temperature recuperator

have the same assumptions on pressure drops - 3% on the high pressure

side, 2% on the low pressure side. Both are also designed for a 10 ∘C TTD

at the design point, and the resulting areas are 850 𝑚2 and 500 𝑚2 for

the high temperature and low temperature recuperators respectively. The

same Reynolds-based correlation in Modelon Impact was used.

– For the particle heat exchanger, the 2% pressure drop assumption on the

sCO2 pass remained, along with the 50 ∘C TTD heat transfer performance

which corresponded to a heat transfer area of 8500 𝑚2. The heat transfer

coefficient methodology for the sCO2 side and the particle side are the

same as what was used for the 10 MW𝑒 case.

– The cooler has the same 0.6% pressure drop on the sCO2 pass with the

same LMTD of 7.2 ∘C.

• The main compressor’s inlet pressure was assumed to be 75 bar.

• The main compressor’s inlet temperature was assumed to be 32 ∘C.

The introduction of the recompressor introduces a new degree of freedom, the recom-

pression flow fraction. Instead of the main compressor doing all of the compression

work in the simple recuperated cycle, the recompressor handles some of the flow in

the recompression variant. The recompression flow fraction was assumed to be 0.35

at the design point per Heller et al [21].

With the addition of a third turbomachine, the recompressor, to the pre-existing

turbine and main compressor, the procedure for designing and parameterizing these

components is similar to the process used for the 10 MW𝑒 cycle components with a

few differences:

1. The isentropic efficiency of the turbine is still 0.91 and the efficiency of the

connected generator is still 0.987. With these values and the cycle pressure
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profile, the turbine outlet temperature and the power generated by the tur-

bine+generator at varying mass flow rates through the turbine can be calcu-

lated.

2. Now, the isentropic efficiency of the main compressor is still 0.87 at the design

point, and the efficiency of the attached motor is 0.97. With the addition of the

recompressor, the recompressor isentropic efficiency is assumed to be 5 points

lower, or 0.82 at the design point, and the efficiency of the attached motor is

0.97. Using these values, the assumption on recompression flow fraction, and

the cycle pressure profile, the power consumed by the main compressor+motor

and the recompressor+motor at varying total sCO2 mass flow rates can be

calculated.

3. The mass flow through the turbine and the combined mass flow through the

main compressor and recompressor are set equal and the mass flow is manu-

ally iterated until the net power (the sum of the power generated by the tur-

bine+generator, the power consumed by the main compressor+motor and the

power consumed by the recompressor+motor) matches the design point, in this

case 100 MW𝑒.

4. Both the recompressor and compressor speeds at design point are manually

itereated to achieve a specific speed Ns of approximately 60 and a specific di-

ameter Ds of 2.5.

5. The main compressor and recompressor maps are built for 5 speed lines using

the same nondimensional methodology referenced in the parameterization of

the 10 MW𝑒 compressor. The map design process yields the following in figure

3-16 for the main compressor and figure 3-17 for the recompressor.

With the turbomachinery parameterized, the entire cycle can now be modeled at the

design point (100 MW𝑒) in figure 3-18. The final element of the cycle required to

automatically resolve off-design points is the control system. Similar to the 10 MW𝑒
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(a) 100 MW𝑒 main compressor pressure ratio
map

(b) 100 MW𝑒 main compressor isen. efficiency
map

Figure 3-16: Main compressor pressure ratio and isentropic efficiency maps with 5
speed lines using Dyreby’s methodology [13]. The nominal shaft speed at the design
point is 8,500 rpm.

(a) 100 MW𝑒 recompressor pressure ratio map (b) 100 MW𝑒 recompressor isen. efficiency
map

Figure 3-17: Recompressor pressure ratio and isentropic efficiency maps with 5 speed
lines using Dyreby’s methodology [13]. The nominal shaft speed at the design point
is 13,000 rpm.

cycle, part of the 100 MW𝑒 cycle control system uses a PID controller to simultane-

ously reduce the speed of the compressor and proportionally reduce the speed of the

recompressor to control the main compressor’s suction pressure at 75 bar, to achieve

the same goal of keeping the CO2 in the supercritical regine. The proportion that the

recompressor is reduced by is the ratio of the design speed of the recompressor (13,000

rpm) to the design speed of the main compressor (8,500 rpm), or approximately 1.53.

The other part of the cycle control system uses a PID controller to increase the re-

compression flow fraction as the net power generated by the cycle drops, under the

assumption that high recompression flow fractions are favored at turndown. A valve

at the suction to the recompressor opens to admit more flow as the net power gen-
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Figure 3-18: The full 100 MW𝑒 sCO2 cycle. Values shown are at design point.

erated by the cycle reduces. The effect of the 100 M𝑒 cycle control system when

the desired power output is 50 MW𝑒 is shown below, with the main compressor and

recompressor shaft speed displayed.

The cycle control system uses a PID controller to reduce the speed of the com-

pressor to control the compressor suction pressure at 75 bar, so that the CO2 stays in

the supercritical regime. Without this PID controller in place, the compressor suction

pressure would drop below 75 bar when there is a reduction in the particle mass flow

rate to the system resulting in a reduction in heat input to the system, causing a

reduction in volumetric flow rate through the cycle. The effect of this control system

when the desired power output from the cycle is only 4 MW𝑒 is shown below, with the

compressor shaft speed displayed. With the hardware and software models required

for simulating design and off-design points in place, the lookup table for the 100 MW𝑒

cycle can be generated. The minimum operating point of this cycle was originally

assumed to 40% following the assumption used for the 10 MW𝑒 cycle, but the cycle

would not converge below a 50% operating point. Therefore, the minimum turndown

of this cycle is 50%, so the minimum power level is 50 MW𝑒.
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Figure 3-19: 100 MW𝑒 sCO2 cycle at the 50 MW𝑒 off-design point

3.2.9 Plant Master Control Block

The plant master control block is the software that controls the hardware represented

by the different component models. At an abstract level, its job is to control the plant

to meet the plant’s objectives, including keeping the different components within

specified constraints.

For the Gen3 solar tower CSP plants modeled in this work, the main objective is

to attempt to generate power around the clock year-round and therefore minimize the

amount of time when the plant isn’t generating any power. Note that this selected

objective is in conflict with other valid objectives - an objective to only generate power

at the maximum possible efficiency (i.e. design point operation only) would necessar-

ily incur more time when the plant isn’t generating power. The other objectives this

system is trying to meet are as follows:

• Keep the particles exiting the receiver at a constant temperature. If the tem-

perature of the particles exiting the receiver were allowed to vary significantly,

the performance of the sCO2 power block could suffer and asset damage to the

power block could result (however, this consequence wasn’t modeled). Further-
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more, the approach for abstracting the sCO2 cycle into a lookup table would

become significantly more complicated.

• Do not overfill the hot silo. In a real plant, if the hot silo were overfilled,

hot (nominally 750 ∘C) particles could escape containment and either cause

personnel injury or asset damage.

• Do not allow the cold silo to run empty. In a real plant, if the cold silo ran

empty, there wouldn’t be enough particles to lift and flow through the receiver

to keep the receiver below 750 ∘C. If that occurred in a real plant, the heliostat

field would have to be defocused off the receiver to avoid melting the receiver

and other equipment in the proximity.

These objectives are the same for the 10 MW𝑒 and 100 MW𝑒 plants.

The block diagram for the plant control is shown in figure 3-20. The different control

loops are as follows:

1. Field power control loop - The field power control loop moderates the power

delivered to the receiver from the heliostat field. First, it does a logic check to

ensure the power from the field is greater than 1 kW. If the power from the field

is not greater than 1 kW then the heliostat field is considered defocused and

the power to the receiver is set to zero. Next, the hot silo is checked to see if it

is at 90% level or higher. If the hot silo is below 90%, the power to the receiver

isn’t moderated in any way, but if the hot silo is above 90%, the power to the

receiver is forced to zero.

2. Particle receiver exit temperature control loop - the particle exit temperature

loop moderates the flow of particles from the cold silo to the hot silo via the

particle lift, passing through the receiver on the way. The PI controller that

performs this task has a setpoint of 750 ∘C (or 1023.15 K) and senses the

temperature of the particles exiting the receiver. By nature, it is an inverse

controller because the sensed variable (the temperature of the particles exiting

the receiver) decreases when the output of the controller (the flow of particles
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Figure 3-20: Plant master control block for a Gen3 solar tower CSP plant

to the receiver) increases. It is limited to a maximum flow of 3x the particle

flow rate at the design point through the sCO2 power block. For example, if

the particle flow rate through the 10 MW𝑒 power block is 64.2 kg/s at the 10

MW𝑒 design point, then the maximum flow allowable through the particle lift

is 192.6 kg/s.

3. Particle flow rate through the power block control loop - this loop moderates

the flow of particles from the hot silo to the cold silo pssing through the power

block. The PI controller that performs this task has a setpoint of 80% and

senses the current level in the hot silo. This is also an inverse controller because

the sensed variable (the level in the hot silo) decreases when the output of
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the controller (the flow of particles to the power block and cold silo) increases.

The PI controller is initially constrained between the nominal particle flow rate

through the power block at the design point and the particle flow rate through

the power block at maximum turndown. For example, for the 10 MW𝑒 sCO2

power block, the particle flow rate at the nominal 10 MW𝑒 design point is 64.2

kg/s and the flow rate at maximum turndown is 25.1 kg/s, so the output of this

first PI controller is constrained between 25.1 kg/s and 64.2 kg/s - no lower or

higher. Before the signal is sent to the flow controller between the hot silo and

the cold silo, there is a check to ensure the hot silo is at least 10% full. As long

as the hot silo is at least 10% full, the signal to the flow controller between the

hot silo and the cold silo is unaffected. However, if the hot silo is less than 10%

full, the signal to the flow controller is forced to zero.

All of the PI controllers in the aforementioned control loops were tuned manually to

minimize overshoot while maintaining an adequate response time to disturbances.

3.3 Validation of the plant model implementation in

Modelon Impact

Since there are no Gen3 solar tower CSP plants to directly validate either the 10

MW𝑒 or the 100 MW𝑒 plant model implementations against, validation of the plant

model implementations must be done against Gen1 and Gen2 solar tower CSP plants

with similar capacity factors.

3.3.1 10 MW𝑒 plant validation

The Planta Solar 10 CSP plant in Spain is a Gen1 solar tower CSP plant (water

as the heat transfer fluid with a steam power generation block) with a nominal 11

MW𝑒 power generation capacity, 1 hour of storage, an expected generation rate of

23.4 GWh/year (23,400 MWh/year) and a solar field aperture area of 75,000 𝑚2 [17].
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This resolves to a CF of approx. 24%. It is located in Andalusia, Spain which receives

6.0-6.5 kWh/sq.m/day according to METEOSAT satellite data [32].

The 10 MW𝑒 plant studied in this report is a Gen3 solar tower CSP plant with

a nominal 10 MW𝑒 power generation capacity and 16 hours of storage (at minimum

turndown). The CF that most closely matches to an expected generation rate of

23,400 MWh/year is between 20% (17,520 MWh/year) and 30% (26,280 MWh/year).

Out of the 3 locations of interest (Boston, New Orleans, Daggett), Andalusia is

between Daggett (7.5-8.0 kWh/sq.m/day) and New Orleans (5.0-5.5 kWh/sq.m.day).

According to this table which was modified from an earlier part of this chapter, a

10 MW𝑒 plant location 20% CF 30% CF

Daggett, CA 55,000 𝑚2 77,000 𝑚2

New Orleans, LA 83,000 𝑚2 117,000 𝑚2

Table 3.7: Heliostat field area required for 20% and 30% CFs in Daggett, CA and
New Orleans, LA

CF between 20% and 30% and in between Daggett and New Orleans would require

on the order of magnitude of between 70,000 𝑚2 and 90,000 𝑚2 of heliostat area.

Considering that the Planta Solar 10 CSP plant has an actual heliostat field area of

75,000 𝑚2, this is within the 70,000 𝑚2 and 90,000 𝑚2 quoted. Therefore, despite

having to make a comparison between a Gen1 and a Gen3 solar tower CSP plant it

can be assumed that the 10 MW𝑒 plant model implementation in Modelon Impact

described in this work is a reasonable approximation for a solar tower CSP plant.

3.3.2 100 MW𝑒 plant validation

The validation of the 100 MW𝑒 plant model implementation in Modelon Impact is

somewhat more straightforward because there are more benchmarks for 100 MW𝑒

CSP plants than 10 MW𝑒 plants.

The Crescent Dunes CSP plant in the US is (or was) a Gen2 solar tower CSP plant

(molten salt as the heat transfer fluid with a steam power generation block). It has

a nominal 110 MW𝑒 power generation capacity, 10 hours of storage, and an expected

70



generation rate of 500 GWh/year (500,000 GWh/year) for a solar field aperture area

of 1,197,148 𝑚2 [18]. This resolves to a CF of approx. 52%. It is located in Tonopah,

Nevada which receives 7.5-8.0 kWh/sq.m/day according to GOES satellite data [32].

The 100 MW𝑒 plant studied in this report is a Gen3 solar tower CSP plant with

a nominal 100 MW𝑒 power generation capacity and 16 hours of storage (at mini-

mum turndown). Out of the 3 locations of interest (Boston, New Orleans, Daggett),

Daggett is a near exact DNI match for Tonopah, Nevada at 7.5-8.0 kWh/sq.m/day.

While this work did not cover a CF of 50%, a one-off simulation was run to estimate

the heliostat field area required for the 100 MW𝑒 plant for a 50% CF in Daggett, CA.

The required heliostat field area was 1,180,000 𝑚2, which is an almost exact match to

the Crescent Dunes CSP plant’s heliostat field area of 1,197,148 𝑚2. Despite needing

to compare a Gen2 and a Gen3 solar tower CSP plant, it can be assumed that the

100 MW𝑒 plant model implementation in Modelon Impact described in this work is

a reasonable approximation for a solar tower CSP plant.

3.4 Plant costing

Cost estimates of each plant component are obtained using the correlations in table

2.3. The values of 𝑥 (𝑊𝑡ℎ/𝐾, 𝑀𝑊𝑠, etc.) are reported in the Modelon Impact plant

model simulation results. The resulting values are rounded to 3 significant figures in

recognition of the level of uncertainty around costs for a low TRL technology like the

Gen3 solar tower CSP variant.

3.5 Plant costing validation

NPV is the method by which financial performance of CSP plants is evaluated in

this work, but industry data on CSP is provided in terms of LCOE, rather than

NPV. Furthermore, the data on the LCOE of CSP is primarily derived from "large

approach" i.e. utility scale 100+ MW𝑒 plants.

Therefore, to validate the plant cost correlations, the LCOE will be calculated for
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a specific variant (100 MW𝑒, with a 30% CF, in Daggett, CA) and the results will be

compared to industry data to see if the LCOE falls within the expected range that

other utility-scale CSP plants are in.

The approximate cost of a 100 MW𝑒 plant with a 30% CF in Daggett, CA is $322

million using the plant costing methodology described previously. The formula for

LCOE in [21] is

𝐿𝐶𝑂𝐸 =
𝐹𝐶𝑅 * 𝑐𝑜𝑠𝑡+𝑂&𝑀𝑎

𝐸𝑒,𝑎

Where FCR is 9.37% for a project lifetime of 25 years and an annual interest rate of

8%, the cost is the initial plant cost, O&M𝑎 is the annual operations and maintenance

costs which are assumed to be 2% of the initial plant cost, and 𝐸𝑒,𝑎 is the annual power

produced in kWh, which is 262,800,000 kWh (for a 100 MW𝑒 plant with a 30% CF).

Using this methodology, the LCOE is $0.14/kWh, which is well within a reasonable

range for recent LCOE of CSP systems at the utility scale ($0.11/kWh -$0.21/kWh),

as per IRENA in figure 3-21. Therefore, it can be assumed that the cost correlations

and methodology described in this work is a reasonable approximation of the costs

of a solar tower CSP plant.

Figure 3-21: LCOE of CSP plants between 2010 and 2020. In the last few years, the
LCOE of CSP plants has been between $0.11/kWh to $0.21/kWh. [1]
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3.6 NPV calculation with deterministic inputs

To compare the "build large" approach with the "build modular" approach for Gen3

solar tower CSP plants, this work uses NPV as the primary metric and follows the

methodology proposed by de Neufville and Scholtes [9]. Although much of the lit-

erature uses LCOE to assess the financial performance of CSP and other renewable

energy technologies, the LCOE approach involves the use of annuities that do not

always include the time-value of money (expressed as the discount rate). The ability

to model the time-value of money is critical for evaluating the performance of a "build

modular" approach where capital is spent over time rather than all at once. The first

part of the analysis compares the NPV of the two approaches using only determin-

istic inputs across three locations (Daggett CA, New Orleans LA, and Boston MA)

and three CFs (20%, 30%, 40%), for a total of nine cases. The fixed inputs to the

evaluation, which apply to all nine cases, are as follows:

• Time horizon - assumed to be 25 years, in line with Heller er al [21]. In years

1 to 10, the electricity demand, electricity prices, and number of modules are

allowed to vary. From years 11 to 25, these parameters are frozen at the year

10 values to calculate the terminal NPV.

• Yearly operating costs - assumed to be 2% of cumulative capital installed, in

line with Heller et al [21].

• Discount rate - assumed to be 9% per NREL’s SAM software for molten salt

(Gen2) CSP plants [33].

• Learning rate - only applicable to the modular approach, this was assumed to

be 10% per the low end of the 10-12% range quoted by [5]. The cost of the

nth module is a function of the learning rate and the cumulative production, in

accordance with Wright’s curve. An example is shown in figure 3-22 below.

• Building time for a module - assumed to be one year. Although this hasn’t

been demonstrated yet, the SUPCON Delingha 10 MW Tower CSP Project was
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Figure 3-22: The cost of the nth 10 MW𝑒 module if the learning rate is 10% and the
first module costs $52.7 million.

started in 2010 and entered operations in 2013 (3 years from start of building

to operations), then the Shouhang Dunhuang Phase I - 10 MW Tower CSP

Project was started in 2014 and entered operation in 2016 (2 years from start

of building to operations) [17], so assuming a one year build time for a module

starting in 2022+ may be realistic.

• For the large approach, the large plant is always built and paid for by year 0 so

that its full capacity is available in year 1.

The variable inputs to the evaluation that are dependent on the selection of the case

(either CF, location, or both) are as follows:

• Demand for electricity - assumed to be the annual electricity production (in

MWh/year) of the 100 MW𝑒 plant in year 10. The demand in year 1 is arbi-

trarily assumed to be 40% of the year 10’s demand, and the demand is assumed

to be a function of time and increases linearly from year 1 to year 10. From

years 11 to 25, the demand is static at the year 10 value to calculate the terminal

NPV. The underlying assumption is that the demand for electricity increases

over time as the population in the area grows. Since the demand for electric-

ity is related to the annual electricity production of the 100 MW𝑒 plant and

the annual electricity production is related to the CF assumed, the profile for

electricity demand varies with the CF of the case but not the location.

• Total electricity price - the total price for electricity is the sum of two parts -

the base electricity price and a renewable electricity surcharge. The presence of
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CF Year 1 demand Year 10 demand

20% 70,080 MWh/year 175,200 MWh/year
30% 105,120 MWh/year 262,800 MWh/year
40% 140,160 MWh/year 350,400 MWh/year

Table 3.8: Year 1 and Year 10 demands for different CFs

the renewable electricity surcharge is to represent the fact that some are willing

to pay more for electricity generated from a renewable source.

– Base electricity price - the base electricity price at year 1 is assumed to

be the most recent residential electricity price in $/MWh. As such, it

varies with the location of the case, but not the CF, and is a function

of time. The base electricity price through year 10 is assumed to be the

linear extrapolation of the best fit linear regression to the data, as shown

in figure 3-23 below. From years 11 to 25, the base electricity price is static

at the year 10 value to calculate the terminal NPV.

(a) Residential electricity prices in Daggett,
CA and Boston, MA with linear regressions.
Data from FRED [44] [43].

(b) Residential electricity prices in New Or-
leans, LA with linear regression. Data from
FindEnergy.com [50].

Figure 3-23: Electricity price trends in Daggett, Boston, and New Orleans. The New
Orleans data is on a separate graph because the timeframe of the available data is
different, because this data came from a different source. The linear regressions are
used for extrapolation to year 10 demands.

• Renewable energy surcharge - the renewable energy surcharge is assumed to a

linear function of demand. The underlying assumption is that initially at year

1, a fraction of people are willing to pay a surcharge for renewable electricity,
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but as the demand increases, the majority will not want to pay a surcharge and

the renewable surcharge is zero at the full year 10 demand. From years 11 to 25,

the surcharge is zero, as such it is not a factor in the terminal NPV. As demand

increases, the renewable energy surcharge falls. The behavior of the renewable

energy surcharge varies with both the location and the CF of the case. The

value of the renewable energy surcharge at year 1 is estimated using a study

showing that some Americans are willing to pay up to $33.72/month more for

renewable energy [19], and data on the electricity consumption in US homes

by region (south, west, northeast, midwest) [15]. An example of the renewable

energy surcharge and demand versus time follows in figure 3-24.

Figure 3-24: Renewable energy surcharge and demand versus time for the Daggett,
CA and 30% CF case. The demand is on the left axis, and the renewable energy
surcharge is on the right axis. The renewable energy surcharge is inversely related to
the demand, by design.

The user-controlled inputs to the evaluation are as follows:

• Decision rule - the decision rule is applied only to the modular approach and

dictates under what conditions modules are built. For this work, the decision

rule assumes that construction on a new module starts if the existing modules

in the current and the past year were at full capacity (i.e. demand is greater

than existing capacity). Additional modules are only built one at a time. Since

it takes one year for a module to be built, a new module is paid for in the

current year but does not actually start generating power until the next year.
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• Starting number of modules - the starting number of modules is also only appli-

cable to the modular approach. The starting number of modules (that are built

and paid for by year 0, such that their full capacity is available by year 1) in this

deterministic evaluation is realistically between 0 and 10 as values above 10 do

not make sense since they would exceed year 10 demand. The actual number

of starting modules is manually iterated to determine the value that results in

the highest NPV. The results of this iteration is shown in the results section for

both the deterministic and stochastic NPV calculations.

3.7 NPV calculation with stochastic inputs

While the NPV calculation using deterministic inputs delivers some useful insights

into the performance of the "build modular" and the "build large" approach for Gen3

solar tower CSP plants, it does not account for uncertainty. Uncertainty is especially

relevant for this low TRL technology with no commercial implementations to date,

especially of the modular approach. Therefore, claiming that all of the inputs into

the NPV calculation are known and deterministic does not reflect reality as well

as incorporating randomness to represent uncertainty in some of the inputs. The

following deterministic inputs to the NPV calculation were replaced with probabilistic

inputs using the methodology proposed by de Neufville and Scholtes [9]:

• Volatility of the base electricity price - although the linear regressions for the

electricity price data over time showed a general slight increasing trend for

Daggett and Boston (and a flat line for New Orleans), by visual inspection

alone it is clear to see that the linear regressions did not match the data exactly.

Year-to-year between years 1 and 10, there are increases and falls in prices, even

if the general trend is an increase over time. For years 11 to 25, the price is fixed

at the year 10 value. This volatility was simulated by taking the deterministic

electricity price data and allowing each point to vary between +25% and -25%

randomly. One such example is shown below in figure 3-25.
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Figure 3-25: Volatility in electricity price. The blue trend is the deterministic price
trend, with a trend upwards over time. The orange trend represents one possible
outcome of simulating each point on the blue trend varying between +25% and -25%
from its "base value" on the deterministic price trend

• Uncertainty in the cost of the first plant - this affects both the "build large" 100

MW𝑒 approach, for which only one plant is built, and the "build modular" x10

MW𝑒 approach, for which multiple 10 MW𝑒 are built. This uncertainty reflects

the fact that the actual cost of building the first plant rarely ever matches the

estimated cost of the first plant. Normally, the cost of the first plant is higher

than the estimated cost, but sometimes it can be lower too. This uncertainty

was simulated by allowing the cost of the first plant to vary between -15%

and +45% randomly. Although Weiland et al indicate an approximate -30%

to +30% [45] in the cost of most equipment, the total 60% range was shifted

upwards by 15%, to -15% and 45%. It is assumed that it is more often that

equipment costs more than expected rather than less than expected.

• Uncertainty in the learning rate - the learning rate is only applied for the "build

modular" approach. This uncertainty is simulated by allowing the learning rate

to vary randomly between 10% and 30%, based on the discussion in Chapter 2

on the learning rate.

• Uncertainty in the rate of demand increase - the demand for electricity could

increase at a faster rate than projected, perhaps owing to a rapid growth in
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population in the area or other factors. This uncertainty was modeled using a

triangular distribution, with the deterministic slope of the demand as both the

mode and minimum value, and the maximum value as double the deterministic

slope of the demand. In doing so, it is assumed that demand is never going to

decrease.

• Uncertainty in the relationship (slope) between the renewable surcharge and the

demand - the renewable surcharge, which is a function of the demand, could

fall at a rate faster than the deterministic slope or be invariant with respect to

the demand. The slope of the renewable surcharge with respect to demand is

allowed to vary between double the deterministic slope (meaning it falls faster

than the deterministic slope) or zero (meaning it is invariant with respect to

the demand.

• Variation in the solar energy resource - the weather from year to year is not

constant and will not always match the TMY. The variation varies with the

region. For the three selected locations, the following data was used with values

approximated from figure 3-26:

– Daggett, CA - 5% volatility

– New Orleans, LA - 3% volatility

– Boston, MA - 1.5% volatility

With the uncertainties incorporated into the calculation, a Monte Carlo simulation

with 2,000 samples is performed. The results are grouped into 50 bins to produce

a cumulative distribution, referred to as a target curve. In the target curve, the

probability of different NPVs is shown. Target curves can be overlaid onto each other

for comparison. In this work, the target curves for the "build large" and "build

modular" approaches are compared. For the "build modular" approach, the number

of starting modules is again varied manually to determine the number of starting

modules that produces the best P50 NPV (or ENPV) result for the purposes of

comparison to the "build large" approach. For the final comparison, a number of
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Figure 3-26: DNI annual spatial COV for a 3x3 cell matrix (upper) and a 5x5 cell
matrix (lower). From [48]

different dimensions are displayed in addition to the P50 to enable a comparison of

the two approaches using multiple dimensions.
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Chapter 4

Results

4.1 Plant model implementation results

4.1.1 Simulation speed and computational resource demand

After completing validation, the plant models in Modelon Impact should generate an

accurate performance of a Gen3 solar tower plant for an entire year. On a typical

desktop computer, the typical runtime and computational resource demand for a

single case (a selected location and a selected CF) is as follows:

• Simulated time - 8,760 hours

• Run time - 70-80 seconds

• Function evaluations - 722,156

This equates to 116.8 hours, or 420,480 simulated seconds per real second.

4.1.2 Annual power generated profile

Using the TMY DNI profiles described in 3-4, the model can generate a profile of the

annual electrical energy generation, as shown below in figure 4-1. Since the same CF

(30%) was used for all three cases, each plant produces the same amount of power in

the same time frame. However, the heliostat area required for the plants to deliver
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Figure 4-1: Cumulative electrical energy produced (MWh) over the course of a year
for 10 MW𝑒 Gen3 solar tower CSP plants in Daggett, Boston, and New Orleans. The
CFs are all the same at 30%.

the specified CF in the different locations is very different, with the Boston plant

requiring 1.6x the area of the Daggett plant, as referenced in tables 3.3 and 3.4.

The location of the plant has a significant impact on the heliostat area required for

the plant. As a result, the performance characteristics of the same 10 MW𝑒 plant in

different locations can be very different. For the three locations, a profile of electrical

power generated over the year for each of the three locations with the same 30% CF

case can be seen in figures 4-2, 4-3, and 4-4. Daggett, CA has a high solar resource

Figure 4-2: Profile of electrical power generated by a 10 MW𝑒 plant in Daggett, CA

so the heliostat area required for this location’s 10 MW𝑒 plant to achieve a 30% CF is

low. With a low heliostat area, the plant actually operates at nominal power output

(10 MW𝑒) for only a small fraction of the year, mainly in the summer. The rest of
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Figure 4-3: Profile of electrical power generated by a 10 MW𝑒 plant in New Orleans,
LA

Figure 4-4: Profile of electrical power generated by a 10 MW𝑒 plant in Boston, MA

the time, it is primarily operating in turndown (4 MW𝑒).

However, for New Orleans and Boston, which have poorer solar resources, the

heliostat areas required for the 10 MW𝑒 plants at these locations to achieve a 30%

CF is high. Put simply, plants in these locations need a large heliostat area to generate

power while the sun is shining, because the sun doesn’t shine as often in these areas

as in Daggett, CA. Therefore, these plants operate at nominal power output for a

larger percentage of the time compared to the same plant in Daggett, CA.

The simulation does not just output electrical power results. Rather, all calculated

variables within the model can be saved and trended for the entire length of the

simulation. The model results are limited in resolution only by the resolution of the

data provided. Since the data was provided in terms of a TMY file with hourly data

for an entire year, the model relies on the Akima spline interpolation technique to
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report sub-hourly results, as seen in figure 4-5.

Figure 4-5: Cumulative electrical energy produced (MWh) over the course of 1.5 hours
for 10 MW𝑒 Gen3 solar tower CSP plants in Daggett, Boston, and New Orleans. The
CFs are all the same at 30%.

4.2 Plant cost model implementation results

The estimated first unit costs (in millions of $) of the 10 MW𝑒 and 100 MW𝑒 plants

across all three CFs and three locations are summarized in the following table 4.1, with

all costs rounded to three significant figures. The cost breakdowns can be visualized

CF Location 10 MW𝑒 plant cost ($M) 100 MW𝑒 plant ($M)

20%
Daggett, CA 47.1 291

New Orleans, LA 51.6 332
Boston, MA 52.7 344

30%
Daggett, CA 50.6 322

New Orleans, LA 57 379
Boston, MA 59.9 401

40%
Daggett, CA 54.3 353

New Orleans, LA 68 451
Boston, MA 75.9 502

Table 4.1: Plant costs in different locations and different CFs

in the following figures 4-7 and 4-8. Both figures use a common legend 4-6.

84



Figure 4-6: Color legend for the doughnut cost breakdown graphs

In the two figures 4-7 and 4-8, the following patterns can be observed:

• Going across the rows (increasing CF), the fraction of plant costs attributed

to the heliostat field increases. This is because the heliostat field needs to get

larger for the plant to operate at increasing CFs.

• Going across the columns (from Daggett, to New Orleans, to Boston), the

fraction of plant costs attributed to the heliostat field increases. This is because

the heliostat field needs to get larger as the quality of the solar resource (or

available solar energy) decreases.

• In the bottom right case for both figures, the cost of the heliostat field is well in

excess of all of the rest of plant costs. This can also be observed as one moves

towards the bottom right in both figures.

• Comparing both sets of figures, it appears that the total power block cost makes
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Figure 4-7: Cost breakdowns for all of the 10 MW𝑒 plants in all three locations and
three CFs

up less of the total cost for the 100 MW𝑒 plants as it does for the 10 MW𝑒 plants.

This is because the cost correlations for the power block equipment incorporate

economies of scale, so the cost of the power block equipment doesn’t scale as

quickly as the cost of the heliostat field and the other plant equipment.

4.3 Results of the NPV calculation with determinis-

tic inputs

Before a table comparing the NPVs of the "build large" (a single 100 MW𝑒 plant) and

"build modular" (multiple 10 MW𝑒 plants) approach can be generated, the starting

number of modules for the "build modular" approach needs to be specified for each

case. The results of sweeping across 11 possible starting number of modules (from 0

to 10 inclusive) over all three CFs and three locations can be found in in the heat map

in figure 4-9 below. The data can also be visualized as a set of 9 bar graphs in figure

4-10. Figures 4-9 and 4-10 show that for the Daggett and Boston cases, starting
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Figure 4-8: Cost breakdowns for all of the 100 MW𝑒 plants in all three locations and
three CFs

with 4 modules yields the highest NPV for the modular approach. This is expected

for the deterministic case because the demand in year 1 is equal to the capacity of 4

modules. It is also expected that the NPV declines for a starting number of modules

less than 4 or greater than 4. When the starting number of modules is less than

4, the demand is higher than the capacity for the first few years and the installed

plants are not able to capture the maximum demand (and therefore revenue) for the

first few years. When the starting number of modules is greater than 4, the installed

generation capacity exceeds the demand for the first few years. As a result, the costs

of both building and maintaining the excess and unutilized generation capacity when

it isn’t needed yet negatively impact the net present value.

For the New Orleans cases, starting with 1 module yields the highest NPV for

the modular approach, but it should also be noted that all of the values are very

negative. For these cases, although the demand in year 1 starts equal to the capacity

of 4 modules just like the Daggett and Boston cases, it is just not worth it to meet

year 1’s demand with 4 modules. This is because of two reasons:
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Figure 4-9: Heat map of NPV using deterministic inputs for the "build modular"
approach with a varying number of starting modules for different CFs and locations.

1. The solar resource in New Orleans is worse than that of Daggett, which means

that a 10 MW𝑒 module designed for any CF will cost more in New Orleans than

in Daggett. Therefore, the cost of each module in New Orleans is relatively

high compared to the same module in Daggett.

2. The typical price of residential electricity in New Orleans ($114/MWh in year

1 [50]) is much lower than the same for Daggett ($262/MWh in year 1 [44])

or Boston ($267/MWh in year 1 [43]). Therefore, the revenue for providing

residential electricity in New Orleans is much lower than the revenue in Daggett

or Boston.

As a result, the optimum number of starting modules in the "build modular" approach

in New Orleans is more about limiting losses than capturing revenue. Therefore the

optimum number of starting modules in New Orleans reflects a strategy of building

a minimum number of modules early and deferring the rest to future years where the

costs are discounted.

After determining the optimum number of starting modules for each case, the

deterministic NPV of the "build modular" approach can be compared with the "build

large" approach. The NPV for the two approaches across all three CFs and three

locations using deterministic inputs are summarized in the following table 4.2, with all

NPVs rounded to three significant figures. From these results, it can be observed that

under deterministic conditions, the "build large" approach has a higher NPV than

88



Figure 4-10: Bar graphs for each of the 9 cases showing how the number of starting
modules affects the deterministic NPV of the modular approach.

the "build modular" approach in most cases, with the exception of the New Orleans

cases and the 30% CF Boston case. This aligns with current CSP industry knowledge

that "bigger is better" under deterministic conditions, as large plants benefit from

economies of scale in the cost of equipment. So far, CSP plants have only been

seriously considered in the southwestern US (e.g. where Daggett is located), so the

behavior of the two approaches for the Daggett cases is more relevant than for the

New Orleans and Boston cases.

For the New Orleans cases where this is not the case, the NPVs are all firmly in

the negative. Although the "build modular" approach outperforms the "build large"

approach here, the location is so unfavorable to CSP plants (due to the middling
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CF Location "Build large" approach NPV ($M) "Build modular" approach NPV ($M)

20%
Daggett, CA 57.4 35.3

New Orleans, LA -239 -194
Boston, MA 13.0 11.2

30%
Daggett, CA 223 206

New Orleans, LA -217 -169
Boston, MA 157 163

40%
Daggett, CA 389 375

New Orleans, LA -224 -178
Boston, MA 249 248

Table 4.2: NPV comparison of both approaches across CFs and locations

quality of the solar resource and the low residential price for electricity) that it does

not seem to be worthwhile for either CSP approach here.

For the Boston cases, where the solar resource is relatively poor but the price of

residential electricity is high, the "build modular" approach performs similarly to the

"build large" approach, and even exceeding it in the 30% CF case. For the 30% CF

case in particular, the performance of the "build modular" approach relative to the

"build large" approach here is likely an anomaly attributed to slight advantage in

turndown the 10 MW𝑒 sCO2 cycle has over the 100 MW𝑒 sCO2 cycle (turndown to

40% versus a turndown to 50%, meaning the 10 MW𝑒 sCO2 can generate power for

more time than the 100 MW𝑒 sCO2 cycle) and the fact that the required heliostat

area for the both plants increases nonlinearly between CFs of 20% and 30% (figures

3-5) due to the poor solar resource.

4.4 Tornado chart based on the NPV calculation

with deterministic inputs

Before introducing uncertainty into the NPV calculation, it is important to under-

stand each variable’s expected range of uncertainty and how the low and high values

of this range affect the NPV calculation. By doing this, the variables that have the

largest effect on the NPV can be identified. The following tornado diagram in figure

4-11 captures both the effect of range and rate of change for selected variables on the
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NPV. In table form, the inputs used to create this tornado chart follow the chart.

Figure 4-11: Tornado chart for the "build modular" approach for a 30% CF in
Daggett.

Variable Initial input Low input High input Low result ($M) High result ($M)
Base electricity price volatility (%) 0% -25% +25% 61.6 351

Cost of the first module ($M) 50.6 43.0 73.4 264 32.0
Renewable electricity surcharge dependence on demand (none) -0.00018 -0.00036 0 128 284

Learning rate (none) 0.1 0.1 0.3 206 340
Actual electricity produced per module per year (MWh/year) 26,280 24,966 27,594 192 215

Demand for electricity at year 10 (MWh/year) 262,800 262,800 525,600 206 184

Table 4.3: Data used to build the tornado chart

Although the tornado diagrams for CFs other than 30% and/or other locations

other than Daggett and/or the "build large" approach might have different values,

the absolute values in the graph aren’t as important as their importance relative

to each other. (Also, the "build large" approach wouldn’t include the learning rate).

Therefore, only 1 tornado chart is shown here for the purposes of showing an example.

From the top down, it can be observed that:

• Volatility in the base electricity price has a large effect on the NPV, which is

expected. Since the volatility is in both directions the effect on the NPV is

centered on the reference NPV value of $206M.

• The next highest effect comes from the cost of the first module, which is lopsided

because it is assumed that it is more likely to cost more than estimated rather

than less than estimated.
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• The renewable electricity surcharge dependence on demand is next as it is an-

other impact on the total electricity price.

• The learning rate, which is specific to the "build modular" approach, is next.

Here, the initial input and the low range input are already equal and match the

most conservative estimates of CSP learning rates in literature. Therefore, the

learning rate can only be equal to or higher than 0.1, and there is only upside

here for the higher values.

• The actual electricity produced per module per year reflects the fact that

weather is variable and Daggett has a DNI variation of +/- 5%.

• Lastly, the demand for electricity at year 10 seems to have the lowest effect.

When the demand is double the initially expected demand in year 10, a higher

number of starting modules is favored (in this case, 9) because the simulation is

constrained to only allow 1 new module to be built per year. The higher number

of starting modules causes high upfront spending that is not discounted, so the

effect of this nondiscounted expense balances out the additional revenue from

the higher demand and as a result the net effect of a higher demand at year 10

is relatively small and actually negative to the NPV.

4.5 Results of the NPV calculation with stochastic

inputs

This section is divided up into multiple subsections.

4.5.1 Specifying the number of starting modules

Similar to the process for the NPV calculation with deterministic inputs, the starting

number of modules for the "build modular" approach needs to be specified for each

case. As before, the following figures 4-12 and 4-13 shows the result of sweeping

across the 11 possible starting number of modules (from 0 to 10 inclusive) over all
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three CFs and three locations. However, this time, the values in the table are P50

NPVs or ENPVs. In the heat map and the bar graphs with results derived from

Figure 4-12: Heat map of ENPVs using stochastic inputs for selected variables in the
"build modular" approach with a varying number of starting modules for different
CFs and locations.

stochastic inputs, there are some similarities and differences with the results in the

same heat map and bar graphs with results derived from deterministic inputs. The

optimum number of starting modules is still 1 for the New Orleans cases just like it

was for the deterministic case. For Daggett and Boston, the ENPVs also approach a

maximum between 0 and 10 starting modules, just like in the deterministic case.

However, in the stochastic results, 4 starting modules is not always the optimum

with respect to ENPV. For several cases such as Daggett CF 30%, Daggett CF 40%,

and others, the optimum number of starting modules is 5, and in some cases the

ENPV for 6 or even 7 starting modules is higher than that of 4 starting modules.

This is likely due to the effect of learning rates higher than 0.1 making the cost of

the nth module much cheaper in multiple Monte Carlo runs, which incentivizes the

construction of more modules as they are now cheaper and more revenue from higher

demand can be captured.

Despite the fact that 5 starting modules technically delivers the highest ENPV, in

a stochastic evaluation there are more metrics to consider than just ENPV alone. For

this reason, the base case is assumed to be 4 starting modules for the Daggett and

Boston cases for two reasons. First, the ENPVs between the range of 4 to 7 starting

modules appears to be relatively tightly clustered, i.e. there is a large difference
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Figure 4-13: Bar graphs for each of the 9 cases showing how the number of starting
modules affects the stochastic ENPV of the modular approach.

between 0 and 4 or 7 and 10, but between 4 and 7 there is not so much difference.

Second, the initial capital spend required for deployment is lower for 4 modules than it

is for 5, much less 6 or 7. In the interest of keeping the initial capital spend low while

also trying to achieve a relatively high ENPV, the base case is 4 starting modules for

Daggett and Boston.

4.5.2 Comparing stochastic ENPVs and deterministic NPVs

Building off a previous table 4.2, now the ENPVs using stochastic inputs can be

compared with the NPVs using deterministic inputs in two different tables, one for

the "build modular approach" and one for the "build large" approach. The first is the
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"build modular" approach table. In general, the "build modular" approach has higher

CF Location "Build modular" approach deterministic NPV ($M) "Build modular" approach stochastic ENPV ($M) %change

20%
Daggett, CA 35.3 70 98

New Orleans, LA -194 -190 -2
Boston, MA 11.2 42.0 275

30%
Daggett, CA 206 255 24

New Orleans, LA -169 -158 -7
Boston, MA 163 212 30

40%
Daggett, CA 375 433 15

New Orleans, LA -178 -164 -8
Boston, MA 248 312 26

Table 4.4: NPVs vs ENPVs for the "build modular" approach

ENPVs using stochastic inputs than the NPVs using deterministic inputs. This is to

be expected because the learning rate was fixed at a low value in the deterministic

case, but in the stochastic case the learning rate is allowed to be anywhere between

the lower value in the deterministic case (0.1) and three times the lower value in

the deterministic case (0.3). The only location where this is not true is for the

New Orleans cases, where the values are basically equal between the stochastic and

deterministic approaches. In these cases, it appears that even higher learning rates

are not capable of reducing module costs enough to offset the poor electricity price

in the region.

For the "build large" approach table below, the ENPVs are all lower than the

NPVs using deterministic inputs. This is to be expected because the cost of the

plant, which in the "build large" approach is fully incurred in year 0, is now typically

115% of the deterministic value (it’s allowed to be between 85% and 145% of the

deterministic value). Although the cost uncertainty was modelled in the same way

for the "build modular" approach, the "build modular" approach had the learning

rate to counteract the cost overrun effect. However, the "build large" approach does

not have any effect to counter the cost overrun effect and as a result the ENPV is

worse than the NPVs using deterministic inputs.
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CF Location "Build large" approach deterministic NPV ($M) "Build large" approach stochastic ENPV ($M) %change

20%
Daggett, CA 57.4 31 -46

New Orleans, LA -239 -293 -23
Boston, MA 13.0 -25 -292

30%
Daggett, CA 223 198 -11

New Orleans, LA -217 -271 -25
Boston, MA 157 120 -24

40%
Daggett, CA 389 368 -5

New Orleans, LA -224 -287 -28
Boston, MA 249 211 -15

Table 4.5: NPVs vs ENPVs for the "build large" approach

4.5.3 Comparing ENPVs for "build large" and "build modu-

lar"

The following table 4.6 compares the ENPVs for the "build large" and "build modu-

lar" approaches. In every case, the "build modular" approach’s ENPV is greater than

the same for the "build large" approach. Excluding the Boston CF 20% case where

the percentage change is high due to the small denominator, the typical percentage

increase in ENPV for the build modular approach relative to the build large approach

is around 20%.

CF Location "Build large" approach stochastic ENPV ($M) "Build modular" approach stochastic ENPV ($M) %change

20%
Daggett, CA 57.4 70 22

New Orleans, LA -239 -190 21
Boston, MA 13.0 42 -223

30%
Daggett, CA 223 255 14

New Orleans, LA -217 -158 27
Boston, MA 157 212 35

40%
Daggett, CA 389 433 11

New Orleans, LA -224 -164 27
Boston, MA 249 312 25

Table 4.6: ENPVs for the "build large" and "build modular" approaches

4.5.4 Results for Daggett, CA

The output of the stochastic simulation is a target curve showing a cumulative dis-

tribution of NPVs and their probability in the following figure 4-14. In the figure,

the "build modular" approaches clearly dominate the "build large" approach at ev-

ery CF. As the CF increases, the curves shift to the right, but the "build modular"

approach target curve beats the "build large" approach target curve in nearly all of
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the selected dimensions. These dimensions are shown in the following figure 4-15. In

this figure 4-15, the "build modular" approach is favorable compared to the "build

large" approach in all dimensions except for the standard deviation, indicating the

"build large" approach is relatively more robust than the "build modular" approach.

Figure 4-14: Target curve for NPV for Daggett, CA. The "build modular" approach
CF curves are in shades of blue, while the "build large" approach CF curves are in
shades of green.
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Figure 4-15: Multidimensional evaluation of the "build large" and "build modular"
approaches for different CFs in Daggett, CA. Preferred values are shown highlighted.

4.5.5 Results for New Orleans, LA

The output of the stochastic simulation is a target curve showing a cumulative dis-

tribution of NPVs and their probability in the following figure 4-16. In the figure,

the "build modular" approaches clearly dominate the "build large" approach at every

CF. As the CF increases, the curves don’t always shift to the right. This is probably

because higher CFs require an exponential increase in heliostat area due to the poor

solar resource, so the cost of the plant increases faster than the additional revenue

generated by operating at a higher CF. Regardless, the "build modular" approach

target curve beats the "build large" approach target curve in every selected dimen-

sion. These dimensions are shown in the following figure 4-17. In this figure 4-17, the

"build modular" approach is favorable compared to the "build large" approach in all

dimensions. However, it should be noted that all of the values are very negative.
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Figure 4-16: Target curve for NPV for New Orleans, LA. The "build modular" ap-
proach CF curves are in shades of blue, while the "build large" approach CF curves
are in shades of green.

Figure 4-17: Multidimensional evaluation of the "build large" and "build modular"
approaches for different CFs in New Orleans, LA. Preferred values are shown high-
lighted.
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4.5.6 Results for Boston, MA

The outputs for Boston, MA share multiple similarities with the results for Daggett,

CA. The output of the stochastic simulation is a target curve showing a cumulative

distribution of NPVs and their probability in the following figure 4-18. In the figure,

the "build modular" approaches clearly dominate the "build large" approach at every

CF. As the CF increases, the curves shift to the right, but the "build modular"

approach target curve beats the "build large" approach target curve in nearly all of

the selected dimensions. These dimensions are shown in the following figure 4-19. In

this figure 4-19, the "build modular" approach is favorable compared to the "build

large" approach in all dimensions except for the standard deviation, indicating the

"build large" approach is relatively more robust than the "build modular" approach.

Figure 4-18: Target curve for NPV for Boston, MA. The "build modular" approach
CF curves are in shades of blue, while the "build large" approach CF curves are in
shades of green.

100



Figure 4-19: Multidimensional evaluation of the "build large" and "build modular"
approaches for different CFs in Boston, MA. Preferred values are shown highlighted.
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Chapter 5

Conclusion

5.1 Revisiting the key research questions

The central focus of this work was to compare the more rigid, conventional "build

large" approach and the yet unproven, more flexible "build modular" approach for the

deployment of hypothetical Gen3 solar tower CSP plants, using NPV as the metric

by which the two approaches are compared.

Detailed performance and cost models were developed to provide inputs into the

NPV analysis. The performance model was done in Modelon Impact and allowed the

state of a Gen3 solar tower CSP plant to be tracked over an entire TMY. This model

not only simulated the performance of the hardware comprisng the plant but also the

performance of the software controlling the plant and ensuring the plant stayed within

reasonable operating constraints during the entire TMY. These models were validated

against real Gen1 and Gen2 solar tower CSP plants to ensure the heliostat field area

required for each case was reasonable. The cost model was done in Microsoft Excel and

used correlations available in public literature to estimate the costs of the components

in the Gen3 solar tower CSP plants. Although detailed cost data for existing CSP

plants is not available to compare directly and Gen3 solar tower CSP plants don’t

exist commercially yet, the cost model was used to generate estimated LCOEs of

the hypothetical Gen3 solar tower CSP plants simulated in Modelon Impact. These

estimated LCOEs were in line with current CSP industry data.
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Under deterministic conditions, the "build large" approach appeared to be more

favored as it generally yielded a higher NPV than the "build modular" approach. This

aligns with most conventional industry knowledge about CSP, solar power plants, and

power plants in general. Although the discount rate and the learning rate directionally

support the "build modular" approach, the effects of these two do not outweigh the

economies of scale for the "build large" approach (see figure 5-1 below). This is

especially the case when the learning rate (0.1) is conservatively assumed to be fixed

at the lower end of what is reported in literature about CSP. In the cost correlations,

the economy of scale exponent 𝛼 ranges between 0.4 and 0.8 for the sCO2 power

block equipment, so "larger" equipment (in the 100 MW𝑒 power block, for example)

is much more cost-effective than equipment in the smaller 10 MW𝑒 power block.

Lastly, because the profile of demand growth is already known in advance in the

deterministic case, there is no value in the flexibility of building additional modules

only when they are needed to meet demand. However, the real world seldom behaves

Figure 5-1: In deterministic conditions, the "build large" approach is favored.

in a deterministic manner where the future behavior of every variable that affects

the performance of a system is known. There is uncertainty in the estimates of how

variables behave in the future. Rather than using deterministic estimates, it is more

useful to describe the future behavior of these variables using a random probability

distribution. In a Gen3 solar tower CSP plant, there is uncertainty in not only

environmental variables (such as how quickly the demand for electricity grows, the

price of electricity, and variability in the solar resource) but also system variables such

as the learning rate for modules and the cost of the plant. For some of variables, such

as the price of variability, it is equally as likely that they are lower than expected as
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they are higher than expected. However, for other variables, such as the cost of the

plant, it is more likely that that the cost is higher than expected as opposed to lower

than expected.

The case of the learning rate deserves special mention. In this work, the learning

rate is one of the variables that is assumed to be more likely to be higher than

expected than lower. Although multiple sources in literature quote values in the

range of a conservative 10% for the learning rate of CSP, several of these studies are

several years old at this point. The learning rate is well known and validated for a

similar solar technology, solar PV, so it is natural to assume that the learning rate

of CSP is known as well. However, there are a few key differences between solar

PV and CSP. First, solar PV appears to be in a "takeoff" stage in terms of the

rate of installed solar PV capacity around the world, but CSP seems to be lagging

significantly behind. Second, the form of solar PV (panels) has been stable for more

than one hundred years, while CSP is comparatively much more unstable - it has

several variants and subvariants, and it is not clear which of these is dominant yet. In

light of these differences, it is possible that a more rapid learning rate is possible, and

data on the rate at which specific capital costs of all types of CSP plants have declined

in the past few years supports this. This work has chosen the Gen3 solar tower CSP

variant, which has been developed within the last few years. The Gen3 solar tower

CSP plant concept has several advantages over competing subvariants and variants,

including a higher theoretical maximum system efficiency and an architecture that

centralizes the components that benefit most from centralizing (the power generation

block and heat transfer fluid movement pathway) and decentralizes the components

that benefit most from decentralizing (the heliostat field).

After incorporating uncertainty into the NPV simulation, the "build modular" ap-

proach is the preferred approach as it yields a higher ENPV, P5 NPV and P95 NPV

than the "build large" approach while also requiring less initial capital investment.

Although the "build large" approach is slightly more robust, the "build modular"

approach is still recommended as it delivers between 10% and 30% more ENPV than

the "build large" approach at 40%-50% less initial capital. The reduction in initial
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capital alone could be highly valuable to firms that want to enter the market for

baseload renewable energy via CSP, so the lowest number of starting modules that

still generated a reasonably high ENPV (but not necessarily the maximum ENPV

possible) was selected for most of the cases. Although the economies of scale still

benefit the "build large" approach, the uncertainty in the cost of the plant diminishes

this potential advantage over the "build modular" approach. For the "build modular"

approach, the learning rate is allowed to be anywhere from 0.1 to 0.3, which greatly

reduces the cost of multiple modules. Furthermore, the flexible build strategy for the

modules allows modules to be built only when the demand calls for them and not

sooner. It is clear that the "build modular" approach has benefited from the introduc-

tion of uncertainty while the "build large" approach has comparatively suffered from

it. As a result, the effect of the variable learning rate, flexibility, and the discount

rate inherent to the "build modular" approach outweigh the economies of scale for the

"build large" approach (see figure 5-2). The pattern of the "build modular" approach

Figure 5-2: When uncertainty is introduced, the "build modular" approach is favored.

outperforming the "build large" approach in most categories of interest was observed

in all three locations of interest in this work: Daggett, Boston, and New Orleans. It

was no surprise that CSP plants had a high NPV in Daggett, CA, given the region’s

high solar resource and higher residential electricity prices. Between New Orleans

and Boston, which have a similar (relatively poor) solar resource, the outcomes were

very different. CSP was not at all favored in New Orleans even with a "build modu-

lar" approach, mainly due to the high cost of the plant (derived from the poor solar

resource) and the low price of residential electricity. Interestingly, Boston, which has

a poor solar resource, showed positive and potentially attractive NPVs despite the
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poor solar resource and high cost of the plant. These negative effects were outweighed

by the higher price of residential electricity in the region, making CSP a potentially

viable option for Boston, especially if the modular approach is adopted.

In summary, for a firm that is looking to enter the CSP industry, a "build modular"

approach is recommended over a "build large" approach, but only under certain

conditions. First, the firm must make an effort to realize a high learning rate for its

CSP technology, including learning by doing and learning by repetition. This requires

an intentional focus on commonality between modules and their components over

time. Without this focus, a CSP technology development and deployment approach

that focused on bespoke or one-off designs in a "build modular" approach would not

only lose on economies of scale relative to a "build large" approach but also would

likely not be able to make a high learning rate a reality. Second, the firm must also

make an effort to realize high flexibility for its CSP technology. The assumption in

this work is that modules can be built and generating power in one year. However,

if modules take longer to build and generate power, then the yearly demand for

electricity cannot be matched so closely leading to either overcapacity for low demand

or undercapacity for high demand - both of which negatively impact the NPV. This

is not only a problem internal to the firm but also external to the firm as well.

If a modular approach is employed, external stakeholders such as local communities,

different levels and branches of government, etc. need to be supportive of the effort to

gradually consume more land over time. In a worst case scenario, a firm could adopt

a modular approach but then be blocked from expanding after year 1 by external

stakeholders.

5.2 Future work

Future work could include the following:

• Performance model - improvements in the performance model would better

estimate the performance of a Gen3 solar tower CSP plant, of which there are

no commercial implementations yet. For example:
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– More accurate component models - for example, receiver efficiency as a

function of variable external temperature, wind speed, and others. Inclu-

sion and more rigorous models of heat losses through equipment like the

silos and the particle lift, etc.

– Heliostat field design - inclusion of more rigorous models of the heliostat

field design and optimization

• Cost model - additional corroboration to Gen3 solar tower CSP plant component

cost models, for which few exist in literature today. One particular opportunity

area is the cost of the PHX and the equipment in the sCO2 power block, both

of which have a significant effect on the total plant.

• NPV model

– Special focus should be on reducing the uncertainty around the learning

rate for CSP, especially Gen3 solar tower CSP. Although there isn’t any

or enough commercial data on this variant, a mechanistic model could be

developed to simulate the learning rate of this technology based on its

components and the connectivity between these components.

– This model was targeted towards the production of residential electricity.

However, other business models could exist, and this approach could be

adapted to simulate these, both deterministically and with uncertainty.
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