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Abstract

Bovine mastitis, lameness, and calving are three major problems in the dairy farming
industry. They lead to economic losses and decreased animal welfare. With the
industrialization of dairy farms, these problems are magnified due to the lack of skilled
labor. This work introduces a design for a wireless sensor network to automate the
health monitoring of every cow on a farm. Through the constant monitoring of health
statistics, we can make a prediction about the early onset of mastitis, lameness, and
calving and therefore reducing the burdens on the farmers. The network architecture
is designed to accommodate a large number of cows (1000s) and the size of dairy farms
(area >1500000 m2) by combining a short-range and a long-range communication
protocol (Bluetooth Low Energy (BLE) and LoRa). This work also explores the use
of IMUs for lameness detection in walking gaits. Taking advantage of the holonomic
constraints of animal limbs, Principal Component Analysis is able to compress the
highly correlated data of locomotion into a smaller dimension in which abnormal gaits
can be differentiated.

Thesis Supervisor: Ian Hunter
Title: George N. Hatsopoulos Professor in Thermodynamics
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Chapter 1

Introduction

1.1 Background

For a typical pasture-based dairy farm in New Zealand, the farm has an area of

1500000 m2 and has an average herd size of 440 cows [21]. With such a large area and

amount of animals to take care of, individual care cannot be provided for every animal.

Plaguing the dairy farming industry are a few persistent and common diseases. As

dairy cows become sick, they become less productive and as a result, the dairy farm

loses out economically. Some of these common and yet curable issues are mastitis,

lameness, and calving.

Bovine mastitis is the cause of the largest economic loss in dairy farming [19].

Mastitis is an inflammatory response at the udder due to physical injuries or infec-

tions [9]. Due to the mammary tissue damage, the disease causes a decrease in milk

production. The disease can be classified with a severity level of clinical and sub-

clinical. In clinical cases, the symptoms are easy to detect: red and swollen udder,

fever, and watery milk [9]. In severe cases, it can be fatal. However, more insidiously

is the subclinical case, there are no visible signs in the udder or milk, but there is

a reduction in milk yield. Overall, the subclinical cases account for more financial

damage for the farms [9].

Lameness is currently one of the primary difficulties of the cattle industry. The

disease includes any conditions on the foot or leg that leads to abnormal walking
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gaits. It has a serious impact on fertility and milk yield [2]. Without early treatment,

the conditions will lead to infection of the bones, tendons, and ligaments. In late

stages, the infections will lead to sepsis and eventually culling of the cow [19]. As

cows become immobile and lie down more, the cow becomes more susceptible to

mastitis. It is estimated that a typical UK dairy herd loses £7,499.30 per year to

this issue. Ideally, medical intervention is required to fix the condition. However,

with the increased industrialization of the dairy farming industry, individual hands-

on treatment per cow is limited. Currently, the only way to detect lameness is through

a visual inspection done with a trained professional [19]. As such, early detection of

the issue is very difficult on a large farm.

Calving is a critical period in a cow’s and calf’s life as both animals become at high

risk for death. Complications during such a period will lead to morbidity or death

[8]. One example complication is Dystocia, awkward positioning of the fetus leading

to a lengthening birthing process. It increases the likelihood of stillborn and the

health of the newborn calf. For any cattle farm, reproduction is an important process

for profitability. Any inefficiencies will reduce economic output. Close monitoring of

the parturition process can alleviate the complications. Traditionally, an experienced

farmer is needed to make careful observations of the farm to find the moment of

calving and provide assistance [8]. However, the industrial scale of modern farms

naturally leads to a lack of skilled labor needed for this process.

1.2 Objectives

For all three of these issues, the common theme is the lack of manpower to provide the

necessary healthcare for the animals. The goal of this thesis is to introduce modern

technology into the dairy farming industry. With constant and automated health

monitoring of every cow on a farm, we can reduce the burdens of these common issues.

In bovine mastitis, with more health signals, we could predict the subclinical cases

by observing for symptoms not easily viewed by a human. The constant monitoring

of health statistics can pick up deviations from a baseline level of health. Instead of
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using a subjective judgment for lameness, we can monitor the walking gaits of every

cow in the herd. Early lameness levels can be detected and will lead to easier and

cheaper treatment. Farmers can be notified of calving behaviors without being in

the field. From a central server, trained professionals can be notified of a parturition

event and be sent to assist.

This thesis introduces a novel wireless sensor network that combines a short-range

and a long-range communication protocol. Through this combination, the sensor

network can be utilized to work in any size of a dairy farm. The network is flexible

enough to handle any type of health metrics. While at the same time, the sensors

are low maintenance. Once installed, upkeep is needed only once a year. Finally,

the thesis looks at how this network can be used to perform lameness detection with

Inertial Measurement Units.

13
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Chapter 2

Literature Review

2.1 Wireless Technology

2.1.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a wireless technology developed by the Bluetooth

Special Interest Group (SIG) as an additional capability of Bluetooth introduced in

the Bluetooth 4.0 update. BLE is designed to be a low-power short-range commu-

nication protocol [12]. In contrast to other low-power wireless solutions like ZigBee,

6LoWPAN, or Z-Wave, BLE provides a single-hop communication solution as op-

posed to multi-hop [11]. In exchange, BLE is capable of 1000 kbps bitrate compared

to the 250 kbps bitrate of the other low-power solutions [11].

The BLE protocol operates on the 2.4 GHz band with 40 channels each with 2

MHz channel spacing. Three channels are defined to be advertising channels while the

rest are used as data channels. Within the 37 data channels, an adaptive frequency

hopping mechanism is used to minimize interference by selecting the most optimal

channel for a given communication interval. The protocol has two different roles

defined, Central and Peripheral. A Central can simultaneously connect to multiple

Peripherals, but each Peripheral can only communicate with one Central. Thus, the

network protocol only allows a star topology network.

One defining characteristic of BLE over the original Bluetooth specification is the
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usage of Generic Attribute (GATT). GATT is a predefined data structure composed of

nested objects: Profiles, Services, and Characteristics. Once a dedicated connection,

GATT defines the data packet that is passed between the two devices. The Bluetooth

SIG has created many predefined GATT profiles like the Asset Tracking Profile, Blood

Pressure Profile, Automation IO Profile, and Environmental Sensing Profile. By

having open standards regarding different application profiles, BLE devices made by

different users can easily interoperate. For example, an application user can use the

Environmental Sensing Profile as their GATT profile. Anyone else can interpret the

data packages once a connection is made thanks to the open standard. The application

user can still choose to define their own custom GATT profile tailor-made to their

use case should it need be.

Figure 2-1: Nested Structure of GATT data structure

With an empirical power measurement, a BLE transmission event sending 31 bytes

of data at a distance of 0.5 m consumes 142 𝜇J [17]. Using a 0.76J battery, a typical

coin cell battery, a Peripheral device sending data every 3 seconds, in theory, can

last for 2 years [11]. These results make BLE an ideal short-range communication

protocol.
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2.1.2 Long Range (LoRa)

Low-Power Wide-Area Network (LPWAN) is a type of wireless communication design

for long-range communication (over 10 kilometers in a rural environment) at a low

bit rate (on the order of 1 kbps). LoRa is one such protocol operating in the 915

MHz band [15]. Developed by Semtech, the proprietary protocol uses Chirp Spread

Spectrum as a modulation scheme [6]. One advantage of this modulation is that the

data size does not affect power consumption. The energy needed for transmission

is only dependent on time on-air (T) and antenna output power. The three main

parameters influencing the time on-air are bandwidth, spreading factor, and code

rate.

Figure 2-2: Example Chirping Signal from 1 to 10 Hz

To understand this modulation scheme, let’s look at one example chirping signal

and how data can be encoded in it. In Figure 2-2, we can observe a chirping signal

that changes from 1 Hz to 10 Hz over 1 second. To encode digital data onto this

chirping signal, we shift the starting frequency of the signal and loop to the lower
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frequency once we hit the upper-frequency limit. For example, we can start the signal

at 2 Hz, increase it to 10 Hz, then shift to 1 Hz again then ramp to 2 Hz. For each

shift, we take that signal as an encode for a specific value.

Figure 2-3: Different modulated data on the same chirping signal

In LoRa, each transmission symbol is modulated on one chirping signal in the

interval (𝑓0 − 𝐵/2𝑓0 + 𝐵/2), where 𝑓0 is the center frequency (915 MHz in the US),

and B is the bandwidth of the signal. LoRa allows for either 125, 250, or 500 kHz as the

bandwidth. By selecting a larger bandwidth, we can send one chirping signal faster

and therefore higher data rate. However, the trade-off is for a lower transmission

range. The spreading factor, SF, determines how fine the frequency shift is and

therefore the size of the transmission symbol. In LoRa, the amount of shift per

encoding (or chips) is calculated to be 2𝑆𝐹 . To accommodate for a higher resolution

of chips, the time it takes to complete one chirp increases. For each increase in

SF, the chirp duration doubles. Increasing SF decreases the overall data rate but

would increase the receiver sensitivity and therefore transmission range. Code rate

defines the amount of error correction data added to the symbols to increase receiver

sensitivity. A higher code rate (CR) would reduce the data rate but would increase

sensitivity. The relationship can be summarized with the following equations (𝑅𝑏 is
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the data rate in bits/sec):

𝑇 = 2𝑆𝐹/𝐵,

𝑅𝑏 = 𝑆𝐹
4

4+𝐶𝑅

2𝑆𝐹

𝐵𝑊

.

With all of these parameters, LoRa can be adjusted to have 300 bit/s up to

5.5 kbit/s data rate [6]. One complication operating LoRa in the US is the FCC

limitation of Time on Air of 400 ms. For each increase in SF value, the Time on Air

doubles, so in practicality, SF is maxed out at 10 for operating in the US. In empirical

measurements, a LoRa end-device consumes 2 mJ to send 10 bytes of data using SF

7 and 3 dBm of output power [6].

LoRa is designed to transmit sensor data to a central server. This is accomplished

by the use of gateways that are connected to the internet. Each LoRa end-devices

send information to a LoRa gateway which will forward data to an internet server.

Results show that given a 3-channels gateway, 5000 end-devices each sending 180

bytes per hour can be supported [1].

2.2 Analysis of Gait

2.2.1 Current Method for Lameness Detection

Lameness is a symptom caused by a variety of diseases and injuries [23]. Identify-

ing the underlying disease is valuable information for management. Currently, the

diversity in methodologies, sample size, and high variance in reported incidence rate

complicate data acquisition and analysis [2]. At this time, detection is most often

based on a visual evaluation using subjective locomotion scoring to recognize changes

in gait patterns. The scale assesses changes in stride, body poses, and abnormal po-

sition of the back resulting in diversity in lameness scoring [3] [24]. The table below

outlines one such subjective visual scoring method [24].
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Lameness

Score

Walking

Speed

Stride Weight

Bearing

Head Backline

0 - Normal Normal Long and

even

Even bear-

ing

Below

backline

Straight

1 - Light

Lameness

Normal Uneven

rhythm

Even bear-

ing

Slightly

bob

Mildly

arched

when

walking

2 - Lame Slow. May

stop when

turning

Shortened

Stride.

Rear-

foot miss

front foot

placement

Uneven Bob up

and down

when

walking

Often

arched

3 - Severe

Lameness

Very Slow.

Cannot

keep up

with herd

Shorten

and un-

even stride

Barely

stand on

the lame

leg

Large mo-

tion when

walking

Arched

while

stand-

ing and

walking

2.2.2 Usage of Sensors for Gait Analysis

Objective quantification of lameness can be characterized into two categories: ki-

netic and kinematic methods [4]. The kinetic methods examine the forces needed

for movement. The kinematic methods look at the motion of body segments during

locomotion.

One type of sensor used for the kinetic method is the force platform. They are

considered the "gold standard" for gait analysis in equine research [4]. The platform

measures the ground reaction forces in three dimensions as limbs exert forces during

the stance phase. The equipment is typically very precise and accurate. However, the

platform’s surface area is limited and cannot measure beyond a few strides from an
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animal. Furthermore, the platform does not lend itself to mass-monitoring of a herd

of many cows. There is a development made in the use of force-measuring shoes, but

they are not widely available for use and robust enough for practical use [16].

For the kinematic method, optical motion capture systems are highly accurate

with an average position error of a few millimeters [4]. They work by putting reflective

markers on the animal of study. Several cameras are mounted in the testing area. As

the animal moves, the system can track the 3D positions of the markers. However,

for a full-body capture of an animal movement, many cameras are needed to give full

coverage of the testing area which leads to a significant cost. Similar to the force

platform, the method does not scale up economically to monitor many animals.

2.2.3 Inertial Measurement Unit (IMU)

One potential alternative to the optical motion capture system is the usage of inertial

measurement units (IMUs). These sensors are attached to the limbs of the subject.

As the animal moves, the IMUs report the acceleration and orientation of the sensors.

IMUs have been extensively used in human motion studies and their performances

have been verified to have comparable performance to optical methods [4]. In recent

years, the price of IMUs has dropped due to their wide adoption in the consumer

markets. Thus, IMUs make a good candidate for our application.

An IMU is composed of three different sensors: accelerometer, gyroscope, and

magnetometer. The accelerometer measures both the acceleration due to Earth’s

gravity and any additional acceleration due to the animal’s motion. However, with

just the data from the accelerator alone, the acceleration generated from the animal’s

motion cannot be decoupled from the Earth’s gravitational acceleration. Additional

information on the orientation of the sensor must be known and hence the additional

usage of the magnetometer and gyroscope.

The gyroscope measures angular velocity, and in theory, it should be enough to

provide the orientation measurement needed to decouple the acceleration measure-

ments. However, it suffers bias instabilities in its construction leading to drifts in its

measurement. To compensate for this error drift, two reference orientations must be
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provided. One reference orientation is the Earth’s magnetic field which always points

North. The magnetometer measures this static magnetic field and its orientation.

The second reference orientation is the Earth’s gravitation force which always points

toward the center of the Earth and can be measured by the accelerometer. These two

references provide enough information to resolve the bias drifts from the gyroscope.

To resolve all of these complex measurements into stable and analyzable data, an

algorithm called Attitude Heading Reference System (ARHS) is used. Measurements

from the accelerometer, magnetometer and gyroscope are combined to provide an

estimate of the object’s orientation, often using a form of the extended Kalman filter.

However, to use a full extended Kalman filter is too computationally intensive to run

in real-time with a microcontroller [18]. Thus, onboard many IMUs, algorithms like

Madgwick or Maghony algorithm are used instead [7].

2.2.4 Principal Component Analysis (PCA)

Based on the current observation method for lameness score, a lame cow will exhibit

an asymmetrical walking rhythm and a bobbing head motion. To fully observe these

behaviors, 5 IMUs are used: one at every metacarpus of each limb, and one at the col-

lar. The sensors placed at the metacarpus will allow observation of the asymmetrical

walking rhythm. The sensor at the collar will track for head bobbing motion.

Each IMU sensor returns seven data points at every timestamp: quaternion (4

points) and linear acceleration (3 points). With 5 IMUs, at each timestamp, we will

observe 35 data points. This high dimensional data set 𝐷 ∈ R𝑁×35 can be remapped

to a smaller dimensional space through Principal Component Analysis. Through this

method, redundant dimensions can be removed with minimal effects on the overall

integrity of the data. Thus, we can study a smaller dataset without sacrificing signal

integrity.

The dataset 𝐷 can be imagined as a point cloud with each point being in 35

dimensions. This point cloud can be fitted with a 35-dimensional ellipsoid. At the

principal axes of this ellipsoid, we can measure the spread or the variance of the

dataset along these axes. The axes with minimal spread do not contribute much to
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describing the dataset and can be eliminated. Thus, we can reduce the dimensions of

the dataset, 𝐷, while still maintaining the integrity of the data. This is the essential

intuition behind Principal Component Analysis [22].

The algotithm can be described as:

1. Calculate the Covariance of the Dataset

(a) Σ = E[(𝑋 − E[𝑋])(𝑋 − E[𝑋])𝑇 ]

(b) The computational complexity of this operation is O(𝑁𝑃 ), where P is the

amount of parameters and N is the amount of data points

(c) We can measure the spread of the dataset in direction 𝑢 with 𝑢𝑇Σ𝑢.

Furthermore, Σ is always a symmetric and positive semi-definite matrix as

the variance of data is always positive

2. Calculate the Spectral Decomposition of the Covariance Matrix

(a) Σ = 𝑃𝐴𝑃 𝑇 ,

i. A is a diagonal matrix with its diagonal entries be the eigenvalues, 𝜆𝑖,

of Σ. The eigenvalues are ordered such that 𝜆1 ≥ 𝜆2 ≥ ...𝜆𝑝.

ii. The columns of P are the eigenvectors, 𝑣𝑖

(b) The eigenvectors are the principal axes of the fitted ellipsoid onto the data

set with its eigenvalue measuring the variance of the data along that axis.

(c) The worst case computational complexity is O(𝑃 3). This step is highly

computationally intensive and is a roadblock for onboard realtime gait

analysis on a microcontroller.

3. Choose a 𝐾 < 𝑃 to select for a lower amount of dimensions to represent the

data

(a) 𝑃𝐾 = [𝑣1,𝑣2, ...𝑣𝑘], where 𝑣𝑖 are the columns of P.

(b) 𝑃𝐾 ∈ R𝑃×𝐾

(c) K is chosen to select for a proportion, 𝛼, of the explained variance.
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i. 𝛼 = 𝜆1+𝜆2+...+𝜆𝑘

𝜆1+𝜆2+...+𝜆𝑝

4. Remap dataset with the new selected dimensions

(a) 𝑌𝑖 = 𝑃 𝑇
𝑘 𝑋𝑖

2.2.5 Usage of PCA in Gait Analysis

PCA is well-known for its usage of high dimensionality reduction. However, the

method has only been recently used in the analysis of animal movements [10]. The

biomechanics of movement is holonomic constraints in nature. Across many mammals

like humans, equines, and cattle, the body is composed of skeletal segments connected

with ligaments creating hundreds of joints moving together.

To describe the complex motions, thousands of variables are needed to describe

the states of each segment. For example, a seven-segments model requires more than

80 variables to describe the linear and rotational velocities and accelerations [10].

However, due to the holonomic constraints of the skeletal segments, the variables are

correlated and act in coordination. Thus, data reductions are possible and allow for

the identification of patterns and domains. Previous works find kinematic properties

of cyclic and arm and leg movements in humans in terms of their phase and frequen-

cies. Furthermore, muscle EMG signal can also be included in the data and reduced

through this method [26].

Once a particular motion has been analyzed with PCA, the principal component

vectors represented the reorientation of the data points onto the new principal axis.

Thus, by examining the principal component vectors, physical interpretations can be

made about the modes of each principal component. By looking at the relevance

of these modes, different gaits can be differentiated based on their mode weights. In

Monaghan et. al works, they examine six dominant components making up 79.15% of

the variance of the walking gait of people with multiple sclerosis [20]. The domains are

identified to be rhythm, variability, asymmetry, anterior-posterior dynamic stability,

and medial-lateral dynamic stability. By looking at the relevance of each of these

domains, they were able to differentiate between the gaits of people with sclerosis
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who has fallen or has not fallen before. Similarly, we can use this technique to

differentiate the walking gaits of normal walking and lamed walking cows.
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Chapter 3

Design and Experimental of Bovine

Sensor Suite

3.1 Design of Wireless Architecture

3.1.1 Functional Requirements

For a typical dairy farm operating under the Fonterra Co-operating Group, the farm

has an area of 1500000 m2 and a herd size of 440 cows [21]. From each individual

cow, we would like to acquire health signals.

Mastitis, an inflammation of the udder, is the most common disease negatively

affecting the economic output of a dairy farm. The udder inflammatory response

leads to a reduction in milk production - on average 11% to 18 % of the gross margin

per cow [9]. Furthermore, the disease is contagious and will spread to the rest of the

herd. Thus, early detection for treatment and isolation is of utmost importance to

a dairy farmer. One particular symptom is an increase in temperature at the udder.

With a temperature sensor at the udder, mastitis can be detected [9]

Calving is a dangerous process for both the cow and its calf [8]. Thus, expert

human care is recommended, but this is unsustainable to watch for calving on a large

farm. There exist a variety of sensing methods for the behavioral and physiological

change of cows that can identify this important period of calving [8]. One such
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behavioral change is in the movement of the cow’s tail. As such, an accelerometer

can measure such motion. Furthermore, there are variabilities in the behavior of

cows that a combination of sensing technologies to increase the accuracy of predicting

parturition.

Given all of these parameters, the wireless sensor network must be able to work

with a wide variety of sensors each with its own data bandwidth requirement and

location placement requirements. The network must be able to support a large num-

ber of cows on a farm on the order of thousands. Furthermore, to keep the economic

cost low, each node on the sensor network must be inexpensive in upfront cost and

maintenance cost. As the size of a free grazing farm can be very large, the range of

the network must encompass on the order of a kilometer range in radius.

Figure 3-1: A hypothetical outline of a 1500000 m2 area dairy farm

3.1.2 Network Architecture

Unfortunately, there is no existing long-range communication protocol working in

the range of 1 kilometer that can simultaneously support high bandwidth data and

low energy consumption. To resolve all of the required parameters for this sensor

wireless network, a combination of both short-range and long-range communication

protocols is selected. For short-range communication, Bluetooth Low Energy is used.
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For long-range communication, LoRa is selected.

Within one cow, many sensors are placed at different locations on the body. In-

stead of connecting each of these sensors together with wires, these sensors communi-

cate with a central node using Bluetooth Low Energy. Not using wires eliminates the

risk of the cow rubbing on other objects and ripping the wires apart. Furthermore,

Bluetooth Low Energy is capable of transmitting 1 Mb/s of data up to a range of 100

meters while only comsumes 0.66 Watts during transmission. With this capability,

high data bandwidth sensors like Inertial Measurement Units or microphones can all

relay their data toward a central unit [17].

Figure 3-2: Peripheral sensors transmitting data to a central node at the cow’s collar.

Once the data arrive at the central node, analyses are done onboard. The LoRa

protocol can support a 10 kb/s data rate at a distance of 1 kilometer in an open

space outdoor environment [15]. During transmission, the protocol only consumes

around 0.3 Watts. The protocol can provide tradeoffs and communicate up to a 300-

kilometer distance at a 0.6 kb/s data rate. The tradeoff for data rate and distance is

logarithmic. After the analyses are done, the central node can communicate with the

LoRa gateway to report the current health statistics of that individual cow. With

this configuration, all metric analysis must be done onboard the central node, and

only the final indicator is sent to the server gateway. The full collected data like the

acceleration measurement cannot be sent through the LoRa network.

Another considered alternative to this network configuration is to only used Blue-

tooth Low Energy. Instead of using the configuration of Central and Peripheral con-

nections, Bluetooth Low Energy supports the creation of a mesh network. Utilizing

the fact that cows are herd animals, they will congregate to be near each other even on

29



Figure 3-3: Each central node on a cow communicates through LoRa to the gateway
located somewhere on the farm

a large farm. Thus, even with short-range communication, data from every cow can

be aggregated and collected to a central server. This configuration will allow all the

collected data to be sent to a central server through the higher throughput capability

of Bluetooth Low Energy. Once the data arrives at a central server, a large processing

capability is enabled leading to more advanced and powerful computational analy-

ses being done. However, the trade-off for this configuration is energy saving. In a

mesh network, each data packet is repeated and retransmitted many times between

each node before the data arrives at a central server (source networking configuration

comparison). In turn, the on-time transmission of Bluetooth is higher and consumes

significantly more energy consumption.

Through using the combination of LoRa and Bluetooth Low Energy, a star topol-

ogy network architecture is selected. In this configuration, each data packet is directly

traveling in the shortest path to the central data server [5]. As such, the on-time trans-

mission is kept minimal and therefore the lowest energy consumption. As mentioned

above, the tradeoff for this configuration requires all data analysis to be onboard

each central node. However, the modern processing power of microcontrollers like the

Arm Cortex M-4 is sufficiently powerful and has energy efficiency. For example, the

nRF52840 System on a Chip that combines both Bluetooth Low Energy technology

with an Arm Cortex M-4 processor is clocked to perform at 64 MHz with only 54
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𝜇A/MHz of energy consumption. Another risk with this network protocol is packet

loss. As each packet is traveling in a direct path to the central server, if the packet

is corrupted or failed to deliver along the way, the data is lost. However, this risk

can be resolved by having each sensor node have onboard storage space. Data loss

can be recovered afterward detection. This is possible as we do not need continuous

and live data on the health signals of each cow. A few health reports of each cow per

day are sufficient. Thus, data integrity can be accomplished before each central node

runs the analyses.

(a) Per cow, there are many sensor nodes and one cen-
tral node.

(b) Round circles are nodes. The triange is the gateway.

Figure 3-4: Star topology of the network

3.2 Prototype of Wireless Network

3.2.1 Hardware Selection

The three main components of the network described above are sensor nodes, central

nodes, and LoRa Gateway. The sensor nodes are selected to be Arduino Nano 33 BLE

31



Sense. The main component of this board is a U-Blox NINA-B306 chip. The chip is a

stand-alone Bluetooth 5 low energy module with an ARM Cortex-M4 processor. Fur-

thermore, the Arduino Nano 33 BLE Sense comes with an IMU (LSM9DS1), micro-

phone (MP34DT05), light (APDS9960), barometric pressure (LPS22HB), and tem-

perature/humidity (HTS221) sensors. Furthermore, a heart rate sensor (MAX32664)

is additionally installed on the Arduino Nano 33 BLE sense board to include a bio-

metric signal. The compact form factor that has Bluetooth Low Energy capability

and a plethora of sensors make this board a good choice as a sensor node for this

experiment.

Figure 3-5: Sensor node

The central node has to support both Bluetooth Low Energy and LoRa communi-

cation protocols. RAKWireless RAK4631 module is selected for this task. The chip

combines a Nordic nRF52840 microcontroller which has a built-in Bluetooth 5 module

with a LoRa transceivers SX126x from Semtech. Furthermore, the module can easily

support a GPS connection. The Nordic nRF52840 also has an ARM Cortex-M4 mi-

crocontroller which has it sufficiently powerful to do simple data analysis tasks. This

makes the chip a convenient choice as the central node.

Finally, the LoRa gateway is selected to be WisGate RAK7249. This gateway

is designed for use in outdoor harsh conditions with built-in backup battery power.

As a gateway, its task is to receive incoming LoRa packets, decipher the message,
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Figure 3-6: Central Node

and forward the data toward a server. For our experiment, to receive incoming data,

an 8dBi Fiberglass Antenna was designed to work with the 915 MHz frequency to

comply with FCC radio regulations. The gateway also has built-in Wi-Fi, ethernet,

and cellular connectivity options for connecting to the internet. One important con-

sideration for LoRa communication is that a direct line of sight is required. Thus,

it’s highly recommended that the gateway be installed up high on top of buildings to

be unobstructed.

3.2.2 Network Functionality Test

To test the functionality of this network, each module of the network is tested at

the MIT campus. A LoRa gateway is placed on top of Building 1 at MIT facing the

Charles River. At this particular location, the LoRa gateway has an unobstructed

view of the walking path along the Charles River.

A user straps one sensor node on one wrist and one central node on the other

wrist. The sensor node is programmed to act as a peripheral Bluetooth Low Energy

module. Following the specifications of the Bluetooth Special Interest Group, the

Generic Attribute Profile of the sensor node is the Environmental Sensing Profile

[14]. By using a predefined attribute profile, the sensor node is able to be a software
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Figure 3-7: LoRa gateway installed on a rooftop

and hardware agnostic device and not specifically tied to only working with this

network architecture. The node is set to only update the central node of new data

every 10 seconds.

On the other wrist, the central node runs a Central GAP profile to connect to the

peripheral sensor node. Specifically, the central node parses the data based on the

Bluetooth Environmental Sensing Profile. Furthermore, being a Central Node does

not prevent the device from collecting data - equipped on the Central Node is a GPS

module. All sensing data are reformatted to LoRa packages which are composed of

a series of 8 bits of data. The data sent is represented in the table below. A total

of 200 bits is sent per transmission. For this experiment, the central node is set to

either send data every 20 seconds while motion is detected or every 1 minute if no

motion is detected.
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Figure 3-8: LoRa gateway is placed to have unobstructed view of the Charles River’s
walkway

LoRa Data Package Encoding

Sensing Data Number of Bits

Lattitude 32

Longitude 32

Altitude 16

Horizontal Dilution of Position 8

Battery Level 8

Speed 16

Tempurature 16

Humidity 16

Pressure 32

Light Intensity 8

Heart Rate 8

Detected Movement 8

To test if the network can fulfill the functional requirements, the subject is in-
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Figure 3-9: Subject wearing a central and a sensor node on each wrist.

structed to walk along the Charles River to a distance at least 1 Kilometer away from

the LoRa gateway. With the constraint of the environment, the subject could only

walk 1.5 kilometers away from the gateway before encountering areas with a high

amount of line of sight obstructions. Furthermore, as noted on the GPS tracking

figure, the signal is lost when there is no direct line of sight when the subject walked

underneath bridges. However, due to the attachment of the heart rate sensor to the

subject, intermittent heart rate data is collected during the walking motion. Thus,

a portion of the collected heart rate is measured as zero when the heart rate sensor

(MAX32664) reported the measurement with low confidence.

With this experimental setup, power consumption measurement is made for the

central node and sensor node. Based on the measurement, for a sensor node to con-

tinuously measure and transmit data for 15 minutes a day, the sensor can run for 178

days or almost 6 months on a Lithium-Ion coin cell. This is also a very conservative

estimate as the sensor does not continuously transmit data through Bluetooth. It

will only communicate with the central node when there is newly available data. As

for the central node, the maximum power consumption is when both Bluetooth and

LoRa transmission is operating at the same time at 39.37 mA. One advantage of the

central node is that the device can be placed anywhere on the body and not limited

to a specific location to collect some health data. The central node can be placed

36



Figure 3-10: GPS tracking of the subject during their walk.

strategically at the cow’s collar to be exposed to sunlight. A small solar panel the

size of 89mm x 113mm can generate a peak current of 180 mA. In combination, this

means the central node can operate indefinitely.

Sensor Node Power Consumption

State Average Current Consumption

Idling 11.81 𝜇A

Sensors Online 8.95 mA

Bluetooth Online 18.30 mA

Bluetooth Transmitting 22.46 mA
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Figure 3-11: Heart rate measurement of the subject during their walk.

Central Node Power Consumption

State Average Current Consumption

Idling 12.81 𝜇A

Bluetooth and LoRa Transmitting 39.37 mA

From these preliminary results, the proposed architecture can sufficiently fulfill all

the functional requirements for the health monitoring of cows on a farm. The design is

flexible enough to work with many types of sensors. Additionally, the wireless nature

of the sensors allows them to be mounted at any location on the cow to properly

capture the desired health signal. With the constraint of the environment, we can

only test the long-range communication of the sensors up to 1.5 kilometers, but they

should be capable to work at a much longer range. However, even at 1.5 kilometers,

the LoRa protocol should be sufficient to work with most fairy farms. The power

consumption from these two low-energy communication protocols is sufficient such

that farmers only have to spend much time swapping batteries on the sensors every

6 months.
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3.3 Proposed Experiment Design for Gait Analysis

on Cows

While the network is designed to work as an overall health monitoring system, in this

work, we focus our effort on only looking at lameness in cows. At this time, detection

is based on subjective locomotion scoring to recognize changes in gait patterns. By

using inertial measurement units, we can develop a more objective and reliable method

for the early detection of lameness. Furthermore, lameness is a condition caused by

many different diseases and injuries. Identification of the underlying cause of the

lameness is valuable for treatment and overall farm management. The more accurate

and systematic measurement may provide a correlation with the underlying causes

of the lameness. Additionally, the computational and data bandwidth requirement

of this problem is most challenging. If this problem can be successfully solved, the

other health monitoring tasks should also be solved

However, due to the extensive regulatory requirements for animal research, we,

unfortunately, could not run the following proposed experiments to collect walking

gait data on cows.

3.3.1 Sensors

Five inertial measurement units (herein referred to as MIT IMUs) will be attached

to each of the 10 cows used in this study. One MIT IMU will be affixed to a collar

worn by the cow while one each of the remaining four will be attached to the lower

aspect of each of the cows’ limbs – more specifically the lower aspect of the metacar-

pus/metatarsus (mid-hand/midfoot bones) respectively. To access the performance

of the MIT IMUs, two cows will also be outfitted with 5 commercially available IMUs

(INERTIA Technology ProMove-mini IMUs – hereafter referred to as PMM IMUs).

The PMM IMUs have been extensively tested for performance in use with other gait

analysis experiments [4][25]. They will also be used to validate the performance of

the self-produced MIT IMUs. Both IMUs are set to collect orientation data and body
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forces acceleration on 3 axes at 200 Hz.

Figure 3-12: MIT IMU sensor compared to a cow metacarpus

3.3.2 Experimental Design

Field Study Site

This study will be carried out at Fairvue Farms in Woodstock, CT. Fairvue is a client

of the Tufts Veterinary Field Service of the Cummings School of Veterinary Medicine

at Tufts University. Prior to beginning any study, the client/owner will need to sign

a TUFT’s IACUC Owner Consent Form for application of the IMUs discussed above.

Acclimation

A total of 10 cows aged 4-5 years with similar body size and parity, if possible, will

be used in this study. Using locomotion scoring, five of the cows will be identified as

having a normal gait (non-lame) and 5 will be identified as being mid to moderately

lame (a score of 2 -mildly lame with back slightly arched when walking or 3 – moder-

ately lame with arched back when both standing and walking and short strides, head

down respectively)[24]. Visual assessment using subjective locomotion scoring will be
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done by a licensed veterinarian from the Cummings School of Veterinary Medicine at

Tufts University who practiced in the field.

All animals will be acclimated, if required, to wearing a collar to which one of

the 5 MIT IMUs ( 25 g; 75 x 25 x 25 mm) will be attached. Of the 4 remaining

MIT IMUs, one each will be strapped to the lower part of each of the cow’s limbs.

Two of the cows designated as non-lame will also be outfitted with 5 PMM IMUs

( 20 g; 51 x 46 x 15 mm), the IMUs being placed on the cow in proximity to the

MIT IMUs. Each system will be attached to the lower limbs using a strap as done

for the pedometers currently worn by the cows. To reduce stress, the devices will be

strapped to and removed from the cows by a member(s) of the farm who routinely

handles the animals.

Pilot studies to assess normal gait

Currently, the cows to be used in this study are housed in a free-stall barn. Three

times a day, they actively walk from the barn to the milking area 100 m distant

wherein they are milked, and then walk back to the barn. This is a well acclimated,

repetitive procedure requiring a total time of approximately 1 hour. We plan to

monitor 5 cows exhibiting normal gait (no lameness) on their way to and from the

milking parlor on two separate occasions. Of the 5 animals, 3 will wear MIT IMUs

and 2 will wear MIT IMUs and PPM IMUs as discussed above. The outcome of this

study should 1) provide a baseline for the kind of data we expect to collect from

non-lame cows and 2) provide some measure of the replicability of the data collected

within and between experiments and IMUs. Ideally, this would be done in a single

day with the 1st and 2nd, 2nd and 3rd, or 1st and 3rd milking periods, each period

representing a single pilot study.

Because we cannot walk alongside the cows, they will be observed at a distance

with data collected saved on board from both the MIT IMUs and the PMM IMUs.

The IMUs will be synchronized to begin collecting data at the same time via a remote

signal from the individual conducting the study. Remote signaling will also be used

to end data collection. At this time, all IMUs will be removed from those animals
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tested at the end of the test day to permit the data collected to be downloaded for

analysis. With the pilot studies, the goal is to verify the robustness of the MIT IMUs

in which we can acquire replicable and analyzable data from the two milking periods.

Figure 3-13: Schematic of Cows Movement During Milking

Gait study to identify lameness

Following successful pilot studies, a follow-up gait study is run. The gait study will

use 10 animals, 5 lame and 5 showing no signs of lameness, to evaluate the ability of

our hardware/software to differentiate lame from non-lame animals. All the animals

will be outfitted with MIT IMUs placed. However, two of the lamed cows will also

be outfitted with the PMM IMUs. The intent is again to provide a set of validation

data from an established commercial product.

Using the walking gait data from this study, we can begin to study how to best

differentiate the abnormal and normal cow walking gaits. Additionally, we could

use the results to identify the best sensor placement locations. While the 5 locations

selected to place the IMUs are based on traditional observation done by veterinarians,

they serve to observe the asymmetric walking motions between the fore and hind legs

and the vertical bobbing motion of the head. However, the data could show that
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sufficient data can be observed from a smaller subset of the 5 IMUs. Thus, this gait

analysis problem can be solved at a lower cost.

3.4 Experiment on Gait Analysis of Abnormal Hu-

man Walking Gait

Without permission to collect data on walking cows, we perform another experiment

to showcase the capability of differentiating between normal and abnormal gait. For

this study, the author uses the sensor nodes to collect data on his own walking gaits.

The analysis method performs here highlights the need to use dimensionality reduc-

tion on multiple IMUs data and the need to use multiple IMU to collect walking gaits.

In Tijssen’s work, they looked at the full spectrum of available data collected from 11

IMUs mounted on a walking cow, the analysis however does not take into account the

highly correlated nature of walking gaits in which joints are under a holonomic con-

straint [25]. This led to a highly tedious feature extraction process to understand the

parameters of cow walking gaits. In Haladjian’s work, they only collected data from 1

IMU mounted at a hind leg [13]. This led to an easier feature extraction process, but

this method does not take into account the symmetrical or asymmetrical nature of

multiple limbs moving. With our experiment, we seek to showcase the possibility to

use multiple IMUs in a data-efficient manner with dimensionality reduction through

the use of Principal Component Analysis and the need to look at the asymmetry of

different limbs movement.

3.4.1 Experimental Design

The IMUs selected for this experiment are the INERTIA Technology ProMove-mini

IMUs. A person wears two IMUs each attached with velcro straps at their inner

ankles. The person is instructed to walk in a straight line for 10 meters under three

different footwear conditions. To represent a normal walking gait, the person walks

while only wearing socks. To represent an abnormal walking gait, the person walks
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with only one shoe - either an only right shoe or a left shoe. For each of the three

footwear conditions, 24 trials are collected. For each trial, the person is instructed to

always start the walk with their right foot. The IMUs collect orientation data and

linear acceleration data at 200 Hz.

Figure 3-14: Schematic of Human Walking Experiment

3.4.2 Data Analysis

Preprocessing

For each trial, the data from the first walking step and last walking step are excluded.

We want to look at the steady-state walking conditions and not at the acceleration

condition from starting to walk and ending the walk of each trial. For each trial,

the first step is taken with the right foot. Thus, to exclude this step, we look at

the accelerating profile of the left foot. We only keep the data at the time stamp

at the first peak acceleration to the second to last peak acceleration. The peak

accelerations correspond to the moment the left foot hit the ground. Thus, by looking

for this timestamp, we eliminate the data from the time of the right foot and left foot

finishing their first full stride. Next, an individual walking stride is exacted using a

peak detection method. Every stride is defined as 250 data points (1.25 seconds of

data) starting from the peak acceleration point on the left foot X-axis acceleration.

The IMUs measure the net acceleration on the device and thus measure both the

body acceleration and gravitational acceleration. In this work, we are only interested

in looking at the body acceleration caused by the movement of the foot and not
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Figure 3-15: Excluding the first and last step of each walking trial. Only the data
between the dash lines are kept.

the acceleration caused by gravity. Using the quaternion orientation data, we can

remove the gravitational bias. Furthermore, the acceleration is linearly rescaled to

be a proportion of the gravitational constant. This scaling allows for a comparable

range between acceleration and quaternion value.

𝑎𝑏𝑜𝑑𝑦 = 𝑅𝑇 (�̇� − 𝑔0).

PCA: Dimensional Reduction

For each IMU, the data collected is the orientation data in the form of quaternion

(𝑞1, 𝑞2, 𝑞3, 𝑞4) and linear acceleration (𝑎𝑥, 𝑎𝑦, 𝑎𝑧). In total, the data set 𝐷 ∈ R𝑁×14. As

14-dimensional data, it’s time-consuming to inspect for features in each dimension.

The computational complexity of such a search would be O(𝑃𝑁), where P is the

number of dimensions (14 in this case). However, to look at the cross-correlation

data between each dimension, the computational complexity would be O(𝑃 2𝑁). This

comes from the fact that to cross-correlate between any 2 of P dimensions would be(︀
𝑃
2

)︀
= 𝑃 2/2− 𝑃/2. To reduce the burden of feature search, a dimensional reduction

can be done with Principal Component Analysis (PCA).
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Figure 3-16: One Stride of the sock wearing condition

Looking at the eigenvalues of the principal components, we can see that for all

three walking conditions only the top 4 principal components are needed to explain

the majority of the variance in the data. For socks-wearing condition, the top 4

principal components explain 93.03% of the variance; for left shoe wearing, 92.05%;

and for right shoe wearing, 92.72%. Thus, we can safely represent the whole data set

with just four dimensions.

PCA orients the data set in a way that will maximize variance per component

direction. The method does not try to preserve any physical meaning during the

reorientation. Even so, we can still look at each of the principal components to make

an interpretation of its physical meaning. Looking at Figure 3-18, we can see how the

weights of each measurement for each component direction. Component 1 emphasizes

the motion of the right foot acceleration - the biggest weight is the right foot y-axis

acceleration. Component 2 emphasizes the motion of the left foot acceleration - the

biggest weights are on the accelerations of the left foot. Component 3 emphasizes the

orientation of the left foot while component 3 looks at the orientation of the right

foot. This phenomenon of pair-wise combinations of left and right foot acceleration

matching and left and right foot orientation matching, agrees with other experimental

results in using PCA to analyze animal location [10]. We use the principal components
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Figure 3-17: The proportion of the explained variance by each principal component

of the socks-wearing condition as the baseline to compare our different gaits. To

differentiate the gaits, we observe the data "spatially" and on the time axis.

Data ’Spatial’ Observation

After we have reduced the dimension of the data to 4, we can create a point cloud from

all of the data points. However, since the data is in 4 dimensions, the presentation

of the data is a challenge. In Figure 3-19, we plot the data in a series of 2D scatter

plots between each of the respective 4 dimensions. For each type of walking gait, we

can see a different point cloud shape.

In particular, between Axis 1 and Axis 3, we can see a linear shift in the shape

of the three point clouds. Following our interpretation of the principal axis, the

comparison between axis 1 and axis 3 is between the right foot acceleration and left

foot orientation. This shift in point cloud indicates an asymmetry changes between

the left and right foot during the walk-in abnormal gaits.

Furthermore, we can see that the point cloud for the left shoe-wearing condition
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Figure 3-18: The weighted scores of each parameter in in the principal axes

is more differentiable to the baseline than the right shoe-wearing condition. For all

the axis comparisons, the left wearing shoe point cloud experiences a bigger linear

shift than the right wearing shoe. This indicates that just wearing a left shoe created

a more abnormal walking gait for this test subject.

Data ’Time’ Observations

A powerful method to observe the time component of the data is through the use of

cross-correlation. By comparing the cross-correlation between each axis, we can find

asymmetrical features in the data. In Figure 3-20, we can observe the same trend

in the "spatial observations". The cross-correlation between axis 2 and axis 3 shows

diverging results between the three footwear conditions (at zero shift, socks = 0.369;

right = 0.684; left = -0.534). A similar trend can be seen on axis 1 & axis 3, axis 1 &

axis 4. The data also indicates that the left shoe-wearing condition generates a more

abnormal walking gait. As seen in the cross-correlation between axis 2 & axis 4, the

cross-correlation for socks and right footwear conditions are similar compared to left
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Figure 3-19: Point cloud data between different axes

footwear condition (at zero shift, socks = 0.31, right = 0.39, left = -0.59).

Extension for Automated Gait Analysis for Cows

The results from this experiment are promising. Using IMUs, we have shown that

normal and abnormal gaits can be differentiated. Furthermore, we could identify the

two different abnormal gaits (left shoe vs right shoe). Should this work be trans-

ferrable to cows’ walking gait, we could identify abnormal walking gaits as the cows

deviate from a normal baseline. Furthermore, we could possibly tell the type of in-

juries and diseases associated with the detected abnormality. However, further work

must be done to allow for the automated prediction of lameness in walking cows.

One difficulty with this method is the spectral decomposition step within PCA.

The computational complexity of this step is O(𝑃 3). Thus, with more IMUs mounted

on the cow, the computation task is exponentially more challenging. One possible

method to reduce this burden is the use of an iterative method for the eigenvalue

problem. Working with the assumption that all cows have similar walking gaits, we
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Figure 3-20: Cross correlation data between different axes

can provide the algorithm with good initial guesses for the eigenvectors. Furthermore,

the iterative method can be used to only find a specific number of highest variance

eigenvectors, so we would not have to perform an exhaustive search for all the principal

axes.

Another challenge is the automated feature extractions and classification. After

the dimensional reduction, we must be able to extract characteristic parameters from

the data set to feed a classification model. One model we could train is the generalized

linear regression. Given a set of feature parameters, we can compute a probability

distribution to predict whether a particular gait is abnormal or not. The challenge of

classification is that we must train the model using a large repertoire of collected data

which cannot be done on the microcontroller on the cow. The onboard computing

system must have a trained classification model. With variation in walking gait

between cows, the risk is that the classification model would have an incorrect baseline

to predict lameness. Further work must be done to explore this problem once data

from walking cows are collected.
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