
Learning to Make Decisions in Robotic Manipulation

by

Siyu Dai

B.S. and B.B.A., Shanghai Jiao Tong University (2016)
S.M., Massachusetts Institute of Technology (2018)

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Mechanical Engineering

April 25, 2022

Certified by. .
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Nicolas G. Hadjiconstantinou

Chairman, Department Committee on Graduate Theses

2

Learning to Make Decisions in Robotic Manipulation

by

Siyu Dai

Submitted to the Department of Mechanical Engineering
on April 25, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

In order for human-assisting robots to be deployed in the real world such as house-
hold environments, challenges in two major scenarios remain to be solved. First,
for common tasks that the robot conducts day-to-day, the execution of motion plans
need to ensure the safety of surrounding objects and humans. Second, to handle
new tasks that some customers might occasionally demand, robots need to be able
to learn novel tasks efficiently with a minimal amount of human supervision. In
this thesis, we show that machine learning methods can be applied to solve chal-
lenges in both scenarios. In the first scenario, we propose learning-based p-Chekov,
a chance-constrained motion planning approach that utilizes data-driven methods to
obtain safe motion plans in real time. By pre-training a collision risk estimation
model off-line instead of conducting online sampling-based risk estimation, learning-
based p-Chekov is able to significantly improve the planning speed while maintaining
the chance-constraint satisfaction performance. In the second scenario of learning
new tasks, we first propose empowerment-based intrinsic motivation, a reinforcement
learning (RL) approach that allows robots to learn novel tasks with only sparse or
binary reward functions. Through maximizing the mutual dependence between robot
actions and environment states, namely the empowerment, this intrinsic motivation
helps the agent to focus more on the states where it can effectively “control” the
environment during exploration instead of the parts where its actions cause random
and unpredictable consequences. Empirical evaluations in different robotic manipu-
lation environments with different shapes of the target object demonstrate that this
empowerment-based intrinsic motivation approach can obtain higher extrinsic task
rewards faster than other state-of-the-art solutions to sparse-reward RL tasks. An-
other approach we propose in the second scenario is automatic curricula via expert
demonstrations (ACED), an imitation learning method that leverages the idea of
curriculum learning and allows robots to learn long-horizon tasks when only pro-
vided with a handful of demonstration trajectories. Through moving the reset states
from the end to the beginning of demonstrations as the learning agent improves its
performance, ACED not only learns challenging manipulation tasks with unseen ini-
tializations and goals, but also discovers novel solutions that are distinct from the

3

demonstrations. In addition, ACED can be naturally combined with other imitation
learning methods to utilize expert demonstrations in a more efficient manner and
allow robotic manipulators to learn novel tasks that other state-of-the-art automatic
curriculum learning methods cannot learn. In the experiments presented in this the-
sis, we show that a combination of ACED with behavior cloning allows pick-and-place
tasks to be learned with as few as one demonstration and block stacking tasks to be
learned with twenty demonstrations.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

4

Acknowledgments

It is hard to believe that this is my sixth year at MIT. This journey has been full

of surprises and challenges, and it also marks a tremendous milestone in my career.

The completion of this thesis is owed to the continuous support and feedback from

my thesis committee, Dr. Andreas Hofmann, Prof. Brian Williams, Prof. Leslie

Kaelbling, Prof. John Leonard and Prof. Alberto Rodriguez, throughout my PhD.

With their help on brainstorming research ideas and shaping thesis directions, I was

able to accomplish the research milestones that laid the foundation for this thesis.

I’m also extremely grateful to all my labmates in MERS who have provided valuable

feedback on my research results and offered insightful research discussions. It was a

great pleasure working with all of you over the past six years, and I deeply hope our

friendship last beyond grad school.

Another person I can’t forget to mention is my former internship supervisor and

collaborator Dr. Wei Xu, who has contributed significantly to the formation of an

essential piece of my thesis research and has guided me to a research direction where

I found my true passion. The completion of this thesis wouldn’t have been possible

without his support. In addition to Dr. Xu, I’m also thankful to all my former intern-

ship supervisors, mentors and collaborators, especially Dr. Yebin Wang, Dr. David

Isele, Dr. Sangjae Bae, Dr. Aaron Parness and Dr. Sisir Karumanchi. Internships

have been a critical part of my PhD experience and they contributed significantly

to the growth of my research skills. I’m very grateful for all the mentorship and

collaboration I received during and after these internships.

The TA experience during the past four years has been an integral part of my PhD.

Teaching is never an easy task, and I’m very grateful for the opportunities for joining

2.003, 8.02, 6.UAR and 2.14 to improve my teaching and supervising skills. My co-TAs

and instructors, including Arkopal Dutt, Rohit Shamshery, Prof. Alberto Rodriguez,

Prof. Thomas Peacock, Prof. Kim Vandiver, Dr. Michelle Tomasik, Schrasing Tong,

Quanquan Liu, Yui Sujichantararat, Prof. Dina Katabi, Prof. Michael Carbin, Prof.

Piotr Indyk, Prof. David Trumper and many others, have all been very nice to work

5

with and I have been constantly feeling empowered by being part of an amazing team.

My experience in 6.UAR especially, which I spent four semester on, is not only helpful

for gaining the skills on supervising research projects, but also for helping me to think

more systematically about my own research and communication skills. The growth I

have obtained throughout the TA experience has been invaluable.

I have met a lot of fantastic friends and had a really great time working at the

student organizations at MIT, including the Graduate Association of Mechanical

Engineers (GAME), Ashdown House Executive Committee (AHEC) and the MIT

Graduate Student Council (GSC). Even though organizing and budgeting for large

events can sometimes be very time consuming, tt was a nice memory to have brought

so many events to fellow graduate students. The people I met throughout these

years are not only colleagues that sit through meetings together, but also friends that

volunteer at event together, party together and hang out together during our free

time. These precious times I spent with the student organization friends will always

be a precious part of my MIT memory.

Last but not the least, I would like to thank my family for their continuous trust

and support. Like many other international students, I have not been able to see

my parents and my extended family throughout my entire PhD. However, I know

deeply in my heart that everyone cares so much about me from across the earth and

supports my career choice despite the separation it has caused us. I can’t wait to see

them again after the COVID-19 pandemic is over. I am also incredibly grateful for

my husband Benjamin Ayton. As the only family member I have by my side over the

past years, he has helped me through many challenges and supported me over tough

times. He has not only taught me to maintain a better work-life-balance and been

my major source of happiness, but also helped me gain confidence and strength. I

would not have become who I am today without him, and I very much look forward

to the future we are going to build together.

6

Contents

1 Introduction 19

1.1 Motivation . 19

1.2 Technical Need . 21

1.2.1 Challenge 1: Fast-Reactive Chance-Constrained Motion Planning 21

1.2.2 Challenge 2: Self-Supervised Learning with Sparse Reward Func-

tions . 22

1.2.3 Challenge 3: Demonstration-Efficient Imitation Learning . . . 24

1.3 Contributions . 25

1.3.1 Learning-based P-Chekov . 25

1.3.2 Empowerment-based Intrinsic Motivation 26

1.3.3 Automatic Curricula via Expert Demonstrations 28

1.4 Thesis Overview . 29

2 Related Work 31

2.1 Chance-Constrained Motion Planning 31

2.1.1 Collision Risk Estimation . 32

2.1.2 Machine Learning in Motion Planning 34

2.2 Reinforcement Learning with Sparse Rewards 34

2.3 Demonstration-Efficient Imitation Learning 36

2.3.1 Curriculum Learning . 36

2.3.2 Learning from Demonstration 37

2.3.3 State Resetting . 38

7

3 Problem Statement 39

3.1 Chance-Constrained Motion Planning 39

3.1.1 Model Definition . 40

3.1.2 Constraint Definitions . 41

3.1.3 Problem Definition . 42

3.1.4 Assumptions . 43

3.2 Reinforcement Learning with Sparse Rewards 44

3.2.1 Markov Decision Process (MDP) 44

3.2.2 Reinforcement Learning (RL) 45

3.2.3 Intrinsic Motivation . 46

3.2.4 Problem Definition . 48

3.3 Curriculum Learning through Demonstrations 49

3.3.1 Curriculum Learning . 49

3.3.2 Learning from Demonstration 50

3.3.3 Problem Definition . 50

4 Learning-based P-Chekov 53

4.1 Preliminaries: Sampling-based P-Chekov 53

4.1.1 The P-Chekov Framework . 53

4.1.2 Quadrature-based Collision Probability Estimation 56

4.2 Learning-based P-Chekov . 59

4.3 Experiment Setup . 63

4.3.1 Environments . 63

4.3.2 Modeling . 64

4.4 Learning-based P-Chekov Experiment Results 70

4.4.1 Comparison between Different Regression Methods 70

4.4.2 Neural Network Learning-based P-Chekov Experiment Results 77

4.4.3 Discussion . 84

5 Empowerment-based Intrinsic Motivation 85

5.1 Background . 85

8

5.1.1 Mutual Information . 86

5.1.2 Conditional Mutual Information 88

5.1.3 Mutual Information Computation 91

5.1.4 Empowerment . 95

5.1.5 Intrinsic Curiosity Module . 97

5.2 Approach: Empowerment-based Intrinsic Motivation 98

5.2.1 Approximations to Simplify Empowerment Calculation 99

5.2.2 Maximizing Empowerment using Mutual Information Lower

Bounds . 101

5.2.3 Combination with ICM to Facilitate Empowerment Computation104

5.3 Empirical Evaluation . 106

5.3.1 Environment Setup . 106

5.3.2 Implementation Details . 107

5.3.3 Experiment Results . 112

5.3.4 Off-Policy Implementation . 117

5.4 Application: Learning a Diverse Set of Skills 117

6 Automatic Curricula via Expert Demonstrations 123

6.1 Preliminaries . 123

6.1.1 Behavior Cloning . 124

6.2 Approach . 124

6.3 Experiment Setup . 129

6.3.1 Implementation Details . 130

6.4 Empirical Evaluation Results . 133

6.4.1 Pick-and-Place Tasks . 133

6.4.2 Block Stacking Tasks . 135

6.4.3 Learning Curves . 138

6.5 Comparison with BC + RL without ACED 140

6.6 Combination with Empowerment-based Intrinsic Motivation 142

6.7 Discussion . 145

9

7 Conclusion 147

7.1 Summary . 147

7.2 Main Contributions . 148

7.2.1 Learning-based P-Chekov . 148

7.2.2 Empowerment-based Intrinsic Motivation 149

7.2.3 Automatic Curricula via Expert Demonstrations 150

7.3 Discussion and Future Work . 151

10

List of Figures

1-1 Example Scenarios . 20

1-2 Thesis Overview . 30

3-1 Agent-environment interaction in an MDP. 45

4-1 System diagram for p-Chekov [33] . 54

4-2 Simulation Environments for Learning-based P-Chekov Evaluation [32] 61

4-3 P-Chekov information flow from nominal trajectories to state proba-

bility distributions. 70

4-4 Minimum loss as a function of hidden layer numbers [31] 75

4-5 Loss and training epoch relationship for networks with 9 hidden layers

with 512 units each [31] . 77

4-6 Learning-based p-Chekov statistics breakdown for feasible cases with

end-effector observation, 0.0044 noise standard deviation and 10% chance

constraint [31] . 81

5-1 Mutual Information Illustration . 88

5-2 Conditional Mutual Information Illustration 90

5-3 Empowerment Intuition . 99

5-4 Overview of the empowerment-based intrinsic motivation approach [34] 105

5-5 The simulation environments used in this section include the Fetch

robot in the Mujoco environment and the PR2 robot in the Gazebo

environment. The robot needs to learn how to interact with objects of

different shapes, including box, cylinder and sphere. 108

11

5-6 Experiment results in the Fetch environment. (a)-(c) compare the per-

formance of the proposed empowerment-based approach (referred to

as empowerment with ICM since ICM is used to help training the em-

powerment prediction networks) with ICM and Disagreement in object

lifting tasks. The solid lines represent the mean, and the shadow areas

represent the 95% confidence intervals. [34] 113

5-7 Experiment results in the PR2 environment comparing the perfor-

mance of the proposed empowerment-based approach (referred to as

empowerment with ICM since ICM is used to help training the em-

powerment prediction networks) with ICM and Disagreement in object

lifting tasks. The solid lines represent the mean, and the shadow areas

represent the 95% confidence intervals. [34] 114

5-8 Experiment results in the Fetch environment comparing the proposed

empowerment-based approach with HER in pick-and-place tasks. The

solid lines represent the mean, the shadow areas represent the 95%

confidence intervals, and the dashed lines in represent the maximum

and minimum values. [34] . 116

5-9 Comparison of off-policy implementation and on-policy implementa-

tion of the empowerment-based intrinsic exploration approach in the

sphere lifting environment. The solid lines represent the mean of 10 ex-

periments with different random seeds, and the shadow areas represent

the 95% confidence intervals. [34] . 118

5-10 Qualitative performance of the proposed empowerment-based intrin-

sic motivation when combined with the diversity-driven DIAYN [41]

approach in the box lifting task with a Fetch robot. (a)-(c) show the

different skills learned when the number of skills in DIAYN is set to

3. [34] From the figures we can see that the robots has learned different

ways of interacting with the object. 120

12

5-11 Qualitative performance of the proposed empowerment-based intrin-

sic motivation when combined with the diversity-driven DIAYN [41]

approach in the box lifting task with a Fetch robot. (a)-(e) show the

different skills learned when the number of skills in DIAYN is set to

5. [34] From the figures we can see that the robots has learned different

ways of interacting with the object. 120

5-12 Different skills learned with DIAYN [41] without the empowerment-

based intrinsic motivation in the box lifting task with a Fetch robot

when the number of skills is set to 5. [34] From the figures we can see

that the skills the robot has learned do not involve interactions with

the object. 121

6-1 ACED Intuition . 125

6-2 Example of demonstration trajectory segmentation: an expert demon-

stration trajectory can be divided into sections where larger section

number indicates being closer to the initial state. The total number of

sections is also called the total number of curricula 𝐶𝑚𝑎𝑥, and in this

example 𝐶𝑚𝑎𝑥 = 3. Normal rollout workers randomly sample an initial

state from the initial state distribution 𝑆0 and a goal state from the goal

state distribution 𝑆𝑔. For curriculum rollout workers, the environments

are reset based on the curriculum number 𝐶: curriculum-𝐶 tasks reset

the environment to a section-𝐶 state on a randomly selected demon-

stration trajectory. ACED starts training with 𝐶 = 1 and gradually

moves reset states towards the beginning of demonstration trajectories

by increasing 𝐶. When ACED switches to normal rollout workers, the

reset states are drawn from the actual 𝑆0 the target task specifies, and

this is when it starts to generalize to unseen initializations. [30] . . . 126

6-3 Simulation environments for ACED evaluation 130

13

6-4 Number of environment steps ACED with BC takes to train pick-and-

place tasks with PPO until convergence with different values of the

number of demonstration trajectories |𝒯 | and the total number of cur-

ricula 𝐶𝑚𝑎𝑥. The bars represent the mean of 10 runs with different

random seeds and the error bars represent the 90% confidence inter-

val. [30] . 132

6-5 Number of environment steps ACED without BC takes to train pick-

and-place tasks with PPO until convergence with different values of

the number of demonstration trajectories |𝒯 | and the total number

of curricula 𝐶𝑚𝑎𝑥. The bars represent the mean of 10 runs with dif-

ferent random seeds and the error bars represent the 90% confidence

interval. [30] . 132

6-6 Visualization of two different stacking policies ACED with BC con-

verged to with different |𝒯 | values. [30] 137

6-7 Learning curves of different algorithms in the pick-and-place environ-

ment with 5 demonstration trajectories. The horizontal axis represents

the number of environment steps during training and the vertical axis

represents the success rate. Expert and BC success rates are repre-

sented by dash lines because they didn’t have training processes and

their success rates remain constant. 139

6-8 Learning curves of ACED with BC, the reverse curriculum method [45],

and the Montezuma’s Revenge method [118] in the block stacking task. 139

6-9 Number of environment steps the combination of ACED with BC and

empowerment-based intrinsic motivation takes to train pick-and-place

tasks with PPO until convergence with different values of the number

of demonstration trajectories |𝒯 | and the total number of curricula

𝐶𝑚𝑎𝑥. The bars represent the mean of 10 runs with different random

seeds and the error bars represent the 90% confidence interval. 143

14

6-10 Number of environment steps ACED with empowerment and ACED

without empowerment take to train pick-and-place tasks with PPO

until convergence with different values of the number of demonstration

trajectories |𝒯 | and the total number of curricula 𝐶𝑚𝑎𝑥. The bars

represent the mean of 10 runs with different random seeds and the

error bars represent the 90% confidence interval. 144

15

16

List of Tables

4.1 Best Parameters in Kernel Ridge Regression and Random Forest Re-

gression [31] . 72

4.2 Comparison of Different Regression Methods [31] 73

4.3 Performance of Neural Network with 9 Hidden Layers with 512 Units

Each [31] . 76

4.4 Learning-based P-Chekov Performance with Noise Level 0.0044 and

Chance Constraint 10% [31] . 82

4.5 Quadrature-based P-Chekov Performance with Noise Level 0.0044 and

Chance Constraint 10% [29] . 83

5.1 Comparison of Mutual Information Estimation Approaches [34] . . . 103

6.1 Pick-and-Place Success Rate [30] . 133

6.2 Block Stacking Performance [30] . 136

6.3 Pick-and-Place Comparison with BC + RL 141

6.4 ACED with Empowerment Success Rate in Pick-and-Place Tasks . . 143

17

18

Chapter 1

Introduction

1.1 Motivation

Imagine a robot factory is trying to manufacture home support robots and sell them all

over the world. Two types of scenarios will likely need to be considered when designing

the decision-making algorithms for the robot. First, there might be common skills

that many customers will demand and the home support robot will need to execute

day-to-day. When the user needs the robot to accomplish common tasks, the robot

should be able to quickly come up with feasible solutions and execute them safely. It

is important that the planning process for these common skills doesn’t take too long

because customers will lose patience if the robot requires a long time to think before it

can complete common daily tasks. Additionally, as robots that interact with human

users frequently, it is essential that the motion plans the robot comes up with can be

executed safely without a high probability of collision to avoid causing injuries. The

second scenario robot designers need to consider while designing the decision making

algorithm is, when the user wants the robot to acquire a new skill, the robot needs

to learn with a minimal amount of human supervision. The ability of acquiring new

skills during deployment is important because it is impossible to pre-train the robot

for all possible future tasks it might be asked to do that can satisfy a wide range of

customers. A successful home support robot product should be able to gain new skills

with a limited amount of supervision, because no customers like a robot that requires

19

Figure 1-1: Example Scenarios

intensive training every time it needs to learn a new skills. Figure 1-1 provides a

visual illustration of the two types of scenarios.

One way to handle the first scenario is to pre-define a set of basic skills that are

hand-coded in the robot’s software system. These skills should be able to incorporate

continuous parameters in initial states and task goals, and come up with waypoints

the robot needs to reach in order to solve the task. In this way, accomplishing these

common tasks is turned into a motion planning problem that tracks a set of waypoints,

and the challenge becomes how to make safe motion plans that satisfy constraints on

collision risks in real time.

As for the second scenario, the robot designers need to consider what types of

supervision can be easily provided and is suitable for a wide range of customers. In

general, the customers will likely not be willing to program a detailed task specifica-

tion or carefully design a set of rewards to guide the robot. What they are more likely

to provide is probably similar to the reward signals they would give while teaching

a human learning agent, including a high-level goal, a handful of demonstrations, or

a combination of both. Therefore, it is important that the robot is able to conduct

self-supervised learning when provided with only a sparse or binary reward function

or a handful of human demonstration trajectories.

20

In order to provide solutions for the above two scenarios, this thesis considers

three major challenges in robotic manipulation: for the first scenario, we consider 1)

how to provide risk-aware motion plans while maintaining short planning times; for

the second scenario, we consider 2) how to conduct effective self-supervised learning

with only sparse or binary reward functions and 3) how to efficiently utilize human

demonstrations and acquire new skills through imitation.

1.2 Technical Need

1.2.1 Challenge 1: Fast-Reactive Chance-Constrained Motion

Planning

Robotic systems deployed in the real world have to contend with a variety of chal-

lenges: wheels slip for mobile robots, lidars do not reflect off glass doors, and humans

in the environment move in unpredictable manners. However, many state-of-the-

art robots, with inevitable uncertainties from various sources including approximate

models of system dynamics, imperfect sensors, and stochastic motions caused by

controller noise, are not yet ready to handle these challenges. Although nowadays

feedback controllers can take care of a large portion of the uncertainties during the

execution phase, the remaining deviations can still be problematic, especially for

robots operating in hazardous environments or systems that collaborate closely with

humans. One representative example is a manipulator mounted on an underwater

vehicle, which faces not only the disturbances from currents and inner waves, but

also the base movements caused by the interaction between manipulators and the ve-

hicle on which they are mounted. A collision accident of such manipulators deployed

in underwater scientific exploration tasks can often cost millions of dollars. Another

typical example is a domestic assistive robot surrounded by elder people and children,

which needs to be very careful about collision avoidance. Therefore, in those tasks,

it is important that the motion planner can take uncertainties into account and can

react quickly to plan interruptions.

21

Fast-reactive risk-aware motion planning for high-dimensional robots like hu-

manoid robots, however, is a very challenging task. Unlike vehicle robots, a typi-

cal robotic manipulator can have seven degrees-of-freedom (DOFs), and this high-

dimensionality makes it extremely difficult to quantify uncertainties into collision

risks and to make safe motion plans in real time. Existing systems that tackle the

risk-aware motion planning problem [136, 80, 91, 126, 22, 8, 81] lack the ability of

efficiently handling high-dimensional robots and non-convex environments. In order

to address these difficulties and provide motion plans that satisfy constraints over the

probability of plan failure, i.e. chance constraints [90], Dai et al. [29, 33] proposed

probabilistic Chekov (p-Chekov), a combined sampling-based and optimization-based

approach that can effectively reason over uncertainties for high-dimensional robots.

However, since the p-Chekov framework presented in [29, 33] uses a quadrature-based

sampling approach to estimate collision risks at each time step in the motion plan, its

application in real-time motion planning tasks for high-dimensional robots is severely

obstructed by the speed of this risk estimation component. Therefore in this the-

sis, we propose learning-based p-Chekov in order to improve p-Chekov’s efficiency

and accuracy in terms of online collision estimation and achieve fast-reactive chance-

constrained motion planning.

1.2.2 Challenge 2: Self-Supervised Learning with Sparse Re-

ward Functions

In order to design robotic agents that can adapt to new environments and learn new

tasks, it is important that they can explore and learn on their own instead of requiring

intensive human supervision. The traditional task and motion planning approach to

robotic manipulation [62] typically requires a significant amount of domain-specific

prior knowledge, and acquiring this knowledge often involves intensive human engi-

neering. On the other hand, reinforcement learning (RL) agents have demonstrated

impressive performances in scenarios with well-structured environment and dense re-

ward signals [73]. Unlike many games that have clear rules and can assign specific

22

reward values to each of the agent’s actions, it is often not intuitive to design this

type of dense reward functions in robotics tasks. For example, if a robot is tasked

with cooking a dish, the most intuitive way for the human user to provide a reward

function is to rate the dish when cooking is finished instead of trying to come up

with a specific reward value for each of the robot’s actions. However, learning-based

approaches to manipulation typically only work well when the reward function is

densely distributed throughout the state space or when a significant amount of ex-

pert demonstrations are available. This is because when the state and action space

is high-dimensional and the reward signal is sparse, the probability of accidentally

bumping into a state the provides non-zero rewards is very low and the RL agents

could potentially spend a long time exploring the state space without getting any

reward signal. Therefore, RL has seen less success in tasks with unstructured en-

vironments like robotic manipulation where the dynamics and task rewards are less

intuitive to model.

Designing task-specific dense reward functions to simplify the sparse-reward RL

problem has been a common solution for manipulation problems, but in most practical

applications, hand designing dense reward functions for every robot in every task and

every environment is infeasible and might bias the agent’s behavior in a suboptimal

way [4]. Inverse reinforcement learning approaches seek to automate reward definition

by learning a reward function from expert demonstrations, but inevitably demand

a significant amount of task-specific knowledge and place considerable expert data

collection burden on the user [116]. Recent advances in meta-learning allow agents to

transfer learned skills to other similar tasks [42, 23], but a large amount of prior meta-

training data across a diverse set of tasks is required, which also becomes a burden

if a lot of human intervention is needed. Therefore, effectively solving sparse reward

problems from scratch is an important capability that will allow RL agents to be

applied in practical robotic manipulation tasks. To tackle these issues, in this thesis,

we propose an empowerment-based intrinsic exploration approach that allows robots

to learn manipulation skills with only sparse extrinsic rewards from the environment

without the requirement on hand-designing dense reward shaping functions for each

23

individual task.

1.2.3 Challenge 3: Demonstration-Efficient Imitation Learn-

ing

A notable cognitive capability humans have is the instinct to learn from expert demon-

strations. Babies learn to walk before they are able to understand language instruc-

tions, and even adult humans often prefer demonstrations than verbal task goals when

learning many new skills. In a lot of tasks in robotics, both a binary reward for tasks

success and a small amount of demonstrations can be provided naturally, so can we

use demonstrations to overcome the challenging exploration problem RL agents face

in these long-horizon sparse-reward tasks?

Imitation learning [57, 107] methods resort to expert demonstrations instead of

hand-designed reward signals and have shown impressive performance, especially in

tasks where the reward functions are tricky to define but demonstrations are easier to

obtain. However, how to efficiently and effectively utilize demonstration trajectories

has been a long-standing challenge for researchers. Behavior cloning [109, 10] ap-

plies supervised learning to train agents that imitate expert behaviors, but inevitably

demands a large amount of demonstrations [11, 138, 111] and its performance of-

ten suffers from data distribution mismatch [117]. Adversarial imitation learning

approaches based on Generative Adversarial Networks (GAN) [57, 5, 107] have effec-

tively scaled to applications with relatively high-dimensional environments, but still

have limited ability to handle long-horizon tasks with complicated environments due

to their unstable training performance. In this thesis, we introduce Automatic Cur-

ricula via Expert Demonstrations (ACED), an RL approach that combines the ideas

of imitation learning and curriculum learning in order to solve challenging robotic

manipulation tasks with sparse reward functions and allow robotic agents to acquire

new skills with only a handful of state-only demonstration trajectories without access

to the demonstration actions. One major advantage of ACED is that it is a intuitive

approach for utilizing expert demonstrations and can be easily combined with most

24

other imitation learning methods to further improve its sample efficiency in terms of

demonstration trajectories.

1.3 Contributions

To provide viable solutions to the three challenges introduced in Section 1.2 respec-

tively, we make three major contributions in this thesis:

1. Learning-based P-Chekov

2. Empowerment-based Intrinsic Motivation

3. Automatic Curricula via Expert Demonstrations

1.3.1 Learning-based P-Chekov

The quadrature-based p-Chekov approach introduced in [29, 33] applies a sampling-

based collision risk estimation approach that mitigates the inaccuracy of random sam-

pling and avoids the difficulty of mapping between C-space and workspace. Although

it can significantly reduce the number of samples required for collision risk estimation

at each time step in the trajectory, its computation time in high-dimensional plan-

ning space still obstructs its application in real-time motion planning tasks. Even

though only two quadrature nodes per dimension are used to estimate the collision

risk for each waypoint, the total number of collision tests conducted online is still

very big when the manipulator have 7 DOFs (27 × 𝑛𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 collision tests for each

nominal trajectory). Additionally, two-node quadratures have very limited ability of

approximating non-smooth functions, whereas the collision functions here are highly

non-smooth. Therefore, quadrature-based p-Chekov inevitably suffers from errors

when approximating the collision risk, and the efficiency and accuracy of risk esti-

mation becomes its bottleneck that restricts its application in uncertainty-sensitive

real-time manipulation planning tasks.

In order to address the aforementioned issues, this thesis introduces machine learn-

ing approaches into the collision risk estimation component of p-Chekov in order to

25

improve its efficiency and accuracy [31]. We hypothesize that if we take enough sam-

ples containing nominal configurations with their probability distributions and risks

of collision from the environment that the robot will be interacting with in order to

train a regression model offline, then this model can act as the collision risk esti-

mation component in p-Chekov in the online planning phase which makes accurate

predictions given a nominal trajectory and the state distributions. In this way, the

time-consuming collision risk estimation component during online planning will be

moved offline, hence the bottleneck of the original p-Chekov approach will break and

the planning speed will likely improve significantly. In order to test this hypothesis,

we analyze the risk estimation performance of three different classes of regressors in

the Scikit Learn [105] package (kernel ridge regressor, random forest regressor, and

Gaussian process regressor) as well as neural networks through the Keras [24] in-

terface with TensorFlow [1] back engine. Preliminary experiments show that neural

networks can outperform all the other supervised learning models and are able to

efficiently train on a large amount of offline collected data and make accurate on-

line risk predictions quickly. We then propose a learning-based p-Chekov approach

that can overcome quadrature-based p-Chekov’s limitations in planning speed and

achieve fast-reaction as well as high chance constraint satisfaction rate for real-world

high-dimensional robotic motion planning tasks. Empirical results show that this

learning-based p-Chekov system can significantly reduce the planning time required

to generate feasible solutions that satisfy the specified chance constraint in practical

manipulation tasks.

1.3.2 Empowerment-based Intrinsic Motivation

Babies are naturally curious about the environment surrounding them and are in-

trinsically motivated to try out different actions and explore ways to interact with

environment objects. Inspired by how human babies learn, intrinsic motivation has

become a popular approach in RL in order to encourage robotic agents to explore

properties of the environment without being directed by external reward functions.

Curiosity-driven intrinsic motivations [100, 101] have seen success in various fields

26

including video games and robotics. However, we argue that curiosity may not be

the most suitable form of intrinsic motivation for many robotic manipulation tasks

where principled and predictable interactions with environment objects are desired.

Imagine a robot is interacting with a box on the table in order to learn how to lift it

up. Intuitively, the undesirable behaviors of knocking the box onto the floor should

generate higher novelty since it will always lead the object to states that haven’t been

previously explored, and a curiosity-driven agent seeking maximum novelty might get

stuck pushing the box off to the floor again and again. Instead, an ideal agent for

object manipulation should prefer actions that control the object instead of ones that

lead it to unpredictable novel states.

Therefore, in this thesis, we propose an empowerment-based intrinsic motivation

approach that addresses the above issues and allows robots to learn manipulation

skills with only sparse extrinsic rewards from the environment [34]. Empowerment

is an information-theoretic concept proposed in an attempt to find local and univer-

sal utility functions which help individuals survive in evolution by smoothening the

fitness landscape [67]. Through measuring the mutual information between actions

and states, empowerment indicates how confident the agent is about the effect of its

actions in the environment. Therefore, using empowerment as an additional reward

encourages the RL agents to learn policies that influences the environment objects

in a predictable way. In contrast to novelty-driven intrinsic motivations which en-

courage the agent to explore actions with unknown effects, empowerment emphasizes

the agent’s “controllability” over the environment and favors actions with predictable

consequences. Despite the well-suited intuition of using empowerment in robotic

manipulation tasks, as a form of conditional mutual information, computing empow-

erment in continuous state space is intractable and it is nontrivial to extend this

concept in high-dimensional robotic environments. We develop practical simplifica-

tions for conditional mutual information computation in order to overcome the chal-

lenges involved in empowerment estimation, and show that this empowerment-based

approach outperforms other state-of-the-art intrinsic exploration methods in manipu-

lation tasks with sparse reward functions, including object lifting and pick-and-place.

27

Although the concept of empowerment has previously been discussed in the context

of RL [83], it was evaluated in a grid world application with low-dimensional discrete

state spaces. To the author’s best knowledge, our approach is the first successful

demonstration of the effectiveness of empowerment in terms of assisting RL agents in

learning complicated robotics tasks with sparse rewards.

1.3.3 Automatic Curricula via Expert Demonstrations

Curriculum learning [14] is a continual learning method that starts training with eas-

ier tasks and gradually increases task difficulty in order to accelerate the learning

progress. Through preparing the learning agent for challenging tasks using easier

step-stone tasks, it has seen success in many applications including language mod-

eling [52], autonomous navigation [82, 61] and robotic manipulation [45]. However,

many curriculum-based methods only involve a small and discrete set of manually

generated task sequences as the curriculum, and the automated curriculum generat-

ing methods often assume known goal states or prior knowledge on how to manipulate

the environment [45, 140] and bias the exploration to a small subset of the tasks [125].

With a well-designed curriculum, RL agents can first solve simpler problems where

rewards are easy to obtain in order to master the skills that can increase their chance

of getting rewards in the challenging tasks, but in many manipulation tasks, designing

curricula can be tricky and tedious. Therefore, how to automatically design effective

and generalizable curricula remains a challenging research problem. Inspired by the

idea of imitation learning, we hypothesize that expert demonstration trajectories can

be utilized to automatically generate a sequence of curricula and help solve challeng-

ing exploration problems in RL.

In order to test this hypothesis, we propose Automatic Curricula via Expert

Demonstrations (ACED), a RL approach which uses states from different sections

along demonstration trajectories as reset states and controls the curriculum by moving

reset states from the end of the demonstrations to the beginning based on the agent’s

performance [30]. Suppose we have a demonstration trajectory 𝜏 = (𝑠0, 𝑠1, . . . , 𝑠𝑇−1, 𝑠𝑇),

where 𝑠0 is the initial state and 𝑠𝑇 is the goal state. If we assume the demonstration

28

trajectory solves the task in a reasonable way without deliberate detours (even though

it could be suboptimal), then it is also reasonable to assume that 𝑠𝑇−1 is closer to

𝑠𝑇 in the task space than 𝑠1, which means an RL agent starting from 𝑠𝑇−1 will likely

have a higher chance of reaching 𝑠𝑇 than an agent starting from 𝑠1 within a limited

time of random exploration. Therefore, among all tasks with binary rewards that are

only given when the goal 𝑠𝑇 is fully reached, the ones with agents initialized at 𝑠𝑇−1

should be easier than the ones with agents initialized at 𝑠1. We hypothesize that

agents who have already learned how to reach 𝑠𝑇 from 𝑠𝑇−1 can enjoy a warm start

while trying to reach 𝑠𝑇 from 𝑠1, and that these tasks starting from different initial

states can form a systematic curriculum for learning challenging long-horizon tasks

with sparse rewards. With this intuition, we evaluate ACED in robotics pick-and-

place tasks and block stacking tasks with only binary rewards, two challenging tasks

in the continuous control domain that haven’t been solved by vanilla RL algorithms,

and analyze the influence of the number of demonstrations and the total number of

sections the demonstrations are divided into on ACED’s performance. An additional

advantage of ACED is that it can be naturally combined with many other methods of

utilizing human demonstrations in order to further improve its performance or reduce

the number of demonstration trajectories needed, and a combination of ACED and

behavior cloning (BC) is demonstrated as an example in this thesis. Empirical results

show that pick-and-place can be learned with as few as 1 demonstration, and block

stacking can be learned with as few as 20 demonstrations.

1.4 Thesis Overview

This thesis is structured as follows. Chapter 2 reviews literature related to the afore-

mentioned three major challenges and compares them with our proposed solutions.

Chapter 3 formally states the three challenges this thesis is proposing solutions to.

Chapter 4 introduces learning-based p-Chekov, a fast-reactive chance-constrained mo-

tion planning approach, and provides extensive empirical evaluation results in simu-

lation environments for practical robotic manipulation scenarios. Chapter 5 describes

29

Figure 1-2: Thesis Overview

empowerment-based intrinsic motivation, a form of intrinsic reward that can be in-

cluded in any standard RL algorithm and guide robots to explore the states that are

beneficial for accomplishing manipulation tasks, and demonstrates its performance in

object lifting tasks and pick-and-place tasks. Chapter 6 presents automatic curricula

via expert demonstrations, an RL approach that combines ideas from imitation learn-

ing and curriculum learning, and provides empirical evaluation results in pick-and-

place tasks and object-lifting tasks. Chapter 7 summarizes the thesis and discusses

potential directions of future work. Figure 1-2 illustrates the overall structure of this

thesis.

30

Chapter 2

Related Work

This chapter reviews the literature related to the three major contributions made

in this thesis respectively. Section 2.1 reviews related work of chance-constrained

motion planning, the contribution made in Chapter 4. Section 2.2 reviews the related

literature of reinforcement learning with sparse rewards, the contribution made in

Chapter 5. Section 2.3 discusses the related work of demonstration-efficient imitation

learning, the contribution made in Chapter 6.

2.1 Chance-Constrained Motion Planning

Existing motion planners that take uncertainties into consideration include two classes:

some are safety-driven and provide motion plans that minimize the collision risks [135,

103, 102, 141], and others, also called chance-constrained motion planners [91], seek

the optimal plans that can satisfy a user-specified constraint over the probability of

collision. In this thesis, we focus on providing chance-constrained motion plans for

high-dimensional robots in real time. Many uncertainty-aware motion planners are

based on Markov Decision Processes (MDPs) [131, 21, 3], and an extension of MDP,

Partially Observable MDP (POMDP), is often applied to address the sensing uncer-

tainties in robotic motion planning tasks [69, 136, 81]. Despite their wide application,

most of them require discretization of the state space. Even for extensions that can

handle continuous planning domains, tractability is still a common issue due to the

31

need of partitioning or approximation of the continuous state space [91].

Another class of probabilistic planners formulates motion planning into an op-

timization problem through approaches such as Disjunctive Linear Program (DLP).

[15] introduced a DLP-based approach that can perform obstacle avoidance under un-

certainties, [16] described a Mixed Integer Linear Programming (MILP) formulation

of the robust path planning problem which approximates chance constraints with a

probabilistic particle-control approach, [91] proposed the probabilistic Sulu planner

(p-Sulu) which performs goal-directed planning in a continuous domain with temporal

and chance constraints, and [71] adopted trajectory optimization in belief space and

formulated collision avoidance constraints using sigma hulls. However, since p-Sulu

encodes feasible regions with linear constraint approximations, it inevitably suffers

from the exponential growth of computation complexity when applied in complicated

3D environments or tasks with multiple agents. Additionally, both linear approxima-

tions and sigma hulls place restrictions on robot and environment geometry and also

introduce inaccuracies in collision probability estimation.

Uncertainty-aware extensions of search-based [72, 22] and sampling-based [79, 18,

80, 78, 126] planners are also popular in the motion and path planning field. However,

their applications are often limited to car-like robots in simplified environments due

to their disadvantages in planning speed and collision probability estimation ability

for high-DOF robots in real-world complex environments. When the robot has high

dimensionality, the collision checking happens in the 3D workspace, whereas the mo-

tion planning happens in the high-dimensional C-space. Mapping the collision-free

workspace into the C-space is nontrivial, which hence becomes another barrier for

high-dimensional risk-aware motion planning.

2.1.1 Collision Risk Estimation

The estimation of trajectory collision probability has been widely investigated in the

motion planning field, yet no perfect solution has been proposed due to its inherent

difficulties. In order to approach this problem, many approximations have been used,

including the discretization of time and the convexification of obstacles [37]. For low-

32

dimensional planning tasks in convex environments, the estimation of collision risks

at discrete waypoints is relatively straightforward. In the p-Sulu planner presented

by [91], each boundary of each obstacle is formulated into a linear constraint, and

the half-spaces that represent those linear constraints form the collision-free regions.

In this way, the waypoint collision probability becomes the probability of violating

any of the linear constraints, and can be solved through linear program (LP) solvers.

A very different idea is to take advantage of confidence intervals, which are ellipses

and ellipsoids for Gaussian distributions [135]. If the configuration space is 2D, then

the maximum factor by which the elliptical confidence interval can be scaled before it

intersects obstacles gives an indication of the collision probability at that configura-

tion, where the scale factor can be computed as the Euclidean distance to the nearest

obstacle in the environment. [104] further investigate this idea and account for the

fact that the collision probability at each step along a trajectory is conditioned on the

previous steps being collision-free. They propose that the a priori state probability

distributions for different waypoints along a trajectory can be truncated to better

reflect the actual collision probabilities.

However, it is nontrivial to extend the aforementioned approaches to high-dimensional

planning tasks. Obstacles defined in workspace can not be directly mapped into a

6-DOF or 7-DOF C-space in closed form [25], hence the feasible region idea [91] and

the confidence interval scaling idea [135] can not be easily applied. [127] pointed

out a key relation between workspace geometry and C-space geometry: configuration

q lies on the boundary of a C-space obstacle if and only if the workspace distance

between the obstacle and the robot configured at q is zero. Based on this relation,

[127] proposed an approach that looks for the point on the boundary of C-space ob-

stacles that is closest to the robot’s mean configuration by calculating the gradient

of the workspace signed-distance field. Although this approach builds an important

bridge between workspace obstacles and C-space obstacles, it relies on the assumption

that the geometries of the C-space obstacles are locally convex. Since p-Chekov aims

at solving high-dimensional motion planning problems in 3D complex environments

where obstacles maintain their original non-convex shapes, we apply regression meth-

33

ods with function approximators to learn risk distributions through offline sampling

and to make predictions during online planning queries.

2.1.2 Machine Learning in Motion Planning

Machine learning approaches are still not widely applied in robotic motion planning.

Existing applications include guiding the exploration of sampling-based motion plan-

ners using nearest neighbor and adaptive sampling [7, 6, 60], accelerating collision

detection through supervised classification [98, 97], and pursuing end-to-end motion

planning through learning from demonstration [139, 108, 53]. To the author’s best

knowledge, learning-based p-Chekov is the first application of learning-based meth-

ods on the collision risk estimation problem for probabilistic motion planning systems.

We explore the real-time collision risk estimation performance of different machine

learning algorithms with different structures in chance-constrained motion planning

tasks for robotic manipulators. It is shown that neural networks with appropriate

structures can efficiently generate accurate predictions on collision risks in the en-

vironments they are trained in. The experiment results in this thesis show that

p-Chekov with neural networks as collision risk estimation component performs sig-

nificantly better than the quadrature-based p-Chekov [33] in terms of planning speed

while maintaining a similar success rate.

2.2 Reinforcement Learning with Sparse Rewards

Reinforcement learning for sparse reward tasks has been been extensively studied from

many different perspectives. Curriculum learning [14] tackles challenging exploration

problems by introducing auxiliary tasks with gradually increasing difficulty in order

to accelerate the learning progress. However, manually designing curricula can be

tricky and tedious, and the automated curriculum generating methods often bias

the exploration to a small subset of the tasks [125]. Through implicitly designing a

form of curriculum to first achieve easily attainable goals and then progress towards

more difficult goals, Hindsight Experience Replay (HER) is the first work that allows

34

complicated manipulation behaviors to be learned from scratch with only binary

rewards [4]. However, when the actual task goal is very distinct from what random

policies can achieve, HER’s effect is limited. As mentioned in [4], HER is unable to

allow manipulators to learn pick-and-place tasks without using demonstration states

during training.

Hierarchal reinforcement learning (HRL) approaches divide the policy into differ-

ent levels in order to better concentrate on different tasks during learning [35, 68, 54].

Temporal abstraction has been applied in the option-critic architecture [9] to scale up

learning and planning for temporally extended tasks, information asymmetry between

different policy levels and probabilistic modeling of the objective function [47, 132, 51]

have been utilized to introduce inductive biases for learning complicated tasks and

transferable skills, mutual information maximization [92, 41] has been applied to find

a diverse set of action modes, and frameworks that combine the learning processes of

multiple different tasks through a high level task selection policy [116, 26] have also

shown effectiveness for sparse reward learning tasks. However, many of the existing

HRL approaches only enable the robot to accomplish one single task without the

ability to transfer the skills to diverse task sets, and among the methods that auto-

matically learn skills, it is still not clear whether a useful and diverse set of skills can

be learned efficiently in complicated robotic manipulation tasks with sparse rewards.

Intrinsic exploration approaches, instead, augments the reward signals by adding

task-agnostic rewards which encourage the agent to explore novel or uncertain states [100,

19, 65, 20]. Many approaches in the theme of intrinsic exploration have been pro-

posed to alleviate the burden of reward engineering when training RL agents: visit

counts and pseudo-counts [129] encourage the agent to explore states that are less

visited; novelty-based approaches [100, 101] motivate the agent to conduct actions

that lead to more uncertain results; reachability-based approaches [119] gives rewards

to the observations outside of the explored states that take more environment steps

to reach; diversity-driven approaches [41, 124] learn skills using a maximum entropy

policy to allow for the unsupervised emergence of diverse skills; and information

gain [83, 59, 64] encourages the agent to explore states that will improve its belief

35

about the dynamics. Ensemble methods with randomized value functions [94, 93, 95]

have also been applied to achieve efficient exploration in reinforcement learning. How-

ever, count-based and uncertainty-based exploration methods often can’t distinguish

between task-irrelevant distractions and task-related novelties, and the high compu-

tational complexity largely restricts the application of existing information-theoretic

methods in practical robotic manipulation tasks. The empowerment-based intrinsic

motivation approach proposed in this thesis falls under the category of information-

theoretic intrinsic exploration, and we provide insight into reasonable approximations

that can make the computation of information-theoretic quantities feasible when the

state and action spaces are continuous and high-dimensional with complex mutual

dependencies. Extensive experiment results demonstrate the effectiveness of these ap-

proximations as well as the superiority of the proposed approach over existing intrinsic

exploration approaches in robotic manipulation scenarios.

2.3 Demonstration-Efficient Imitation Learning

The Automatic Curricula via Expert Demonstrations (ACED) approach proposed in

this thesis achieves demonstration-efficient imitation learning by introducing a se-

quence of curricula from demonstration states. This section reviews literature related

to three major aspects of the ACED approach: curriculum learning, learning from

demonstration and states resetting.

2.3.1 Curriculum Learning

Curriculum learning [14] is a continual learning method that accelerates the learning

progress by gradually increasing the task difficulty. It has seen success in many appli-

cations including language modeling [52], autonomous navigation [82, 61] and robotic

manipulation [45]. However, many curriculum-based methods only involve a small

and discrete set of manually generated task sequences as the curriculum, and existing

automated curriculum generating methods often assume prior knowledge on how to

manipulate the environment [140], or inherit the instability of adversarial methods

36

and bias the exploration to a small subset of the tasks [44, 125]. [45] introduced the

idea of automatically generating initial states closer to the goal state in order to speed

up training, but inevitably face the challenge of infeasible randomly-generated initial

states and can’t be trivially extended to problems where the Euclidean distance to

the goal is not a good indicator of task difficulty. In order to address these issues,

we propose to use states from expert demonstrations as initial states to guarantee

feasibility and provide more accurate indication of task difficulty.

2.3.2 Learning from Demonstration

Learning from demonstration (LfD) is widely used in tasks where the reward function

is hard to define but demonstrations are relatively easier to obtain. Behavior cloning

(BC) [109, 10] is a classical LfD approach that utilizes supervised-learning to train

agents that imitate demonstration behaviors. Although BC has seen success in var-

ious fields including autonomous driving [11, 138] and robotics manipulation [111],

it inevitably demands a large amount of demonstrations and its performance often

suffers from data distribution mismatch [117]. Inverse reinforcement learning [86, 43]

infers the reward function through demonstrations in order to avoid manual reward

engineering, but it is fundamentally challenging due to its ambiguity in solutions

since one trajectory can often be explained by many different reward functions [46].

LfD approaches based on Generative Adversarial Networks (GAN) [57, 5, 107] have

effectively scaled to applications with relatively high-dimensional environments, but

challenges due to unstable GAN training have significantly restricted their success

in long-horizon tasks with complicated environments. Another popular approach to

effectively utilize expert demonstrations is to combine LfD with RL [137, 63, 85]. The

advantage of ACED is that it can easily be combined with many existing LfD meth-

ods for more efficient utilization of expert demonstrations, including BC, GAN-based

methods [57] and methods that add demonstrations in RL replay buffers [137, 85]. In

the empirical evaluation section in Chapter 6 in this thesis, we demonstrate the per-

formance of our approach when combined with BC and show that it provides better

convergence performance compared to using ACED only.

37

2.3.3 State Resetting

State resetting is widely used in RL for introducing expert knowledge, applying cur-

ricula or providing safety guarantees. State resetting techniques include initializing

RL training episodes to specific reset states as well as enforcing intermediate inter-

ventions that reset the states during learning. It allows RL training algorithms to

provide additional information for accelerating learning and to incorporate additional

constraints that simplify the tasks. [4] and [85] reset some training episodes to states

from expert demonstrations to simplify the exploration challenges in long-horizon

tasks. [40] and [142] show that learning both the forward policy and the reset policy

can not only reduce human effort in real-world robotics training but also accelerate

training by automatically forming a curriculum. [134] introduces “teacher’s interven-

tions” via state resetting to avoid costly mistakes during learning in safety-critical

applications. Similar to our proposed approach, [118] and [114] reset the initial states

during training to demonstration states in order to form a sequence of curricula. How-

ever, [118] pointed out its limitations in terms of generalizing to unseen states and

didn’t provide evaluation on continuous control tasks or in-depth analysis on different

component’s influence on the overall performance, whereas [114] used a set of fixed

rules for switching curricula instead of adapting it based on the agent’s performance.

In contrast to [118] and [114] which can only utilize one demonstration trajectory,

ACED allows for arbitrary numbers of demonstrations through trajectory sectioning.

In this thesis, we evaluate ACED on continuous control tasks and analyze the influ-

ence of the number of demonstration trajectories and the number of sections they are

divided into on ACED’s overall performance.

38

Chapter 3

Problem Statement

This chapter formally defines the three challenges tackled in this thesis. Section 3.1

defines chance-constrained motion planning, the problem tackled in Chapter 4. Sec-

tion 3.2 defines reinforcement learning with sparse rewards, the challenge solved in

Chapter 5. Section 3.3 defines curriculum learning through demonstrations, the chal-

lenge tackled in Chapter 6.

3.1 Chance-Constrained Motion Planning

We define a disturbance as an unexpected change to task goals, environment, or robot

state. It may be due to an actual physical change, or a change in the estimated state of

the environment or robot. Here we distinguish between severe disturbances and small

disturbances. Severe disturbances refer to the ones that will cause significant and

qualitative plan changes, such as changes of the planning goal, the movement of some

obstacles that obstructs the original plan, or a strong external force that results in

large deviations from the desired trajectory and the feedback controllers can’t get the

robot back on track due to actuation limits. On the other hand, small disturbances are

mainly caused by process noises and observation noises, and the control inputs within

limit can get the robot back to the desired trajectory. In practice, motion planners

should account for the risk of potential plan failure caused by small disturbances,

and react fast and naturally to severe disturbances which would necessitate plan

39

adjustment.

Learning-based p-Chekov solves robotic motion planning problems under uncer-

tainty with constraints on the success probability, considering temporal, spatial and

dynamical constraints. Under process and observation noises, the collision rate during

plan executions should not exceed a user specified chance constraint. The resulting

motions should be locally optimal or near-optimal according to a specified objective

function, which may optimize a variety of characteristics such as path length or con-

trol effort. Learning-based p-Chekov’s real-time planning feature is key to providing

robots the capability of operating safely and effectively in unstructured and uncertain

environments.

3.1.1 Model Definition

Let 𝒳 = R𝑛𝑥 denote the robot state space and 𝒰 = R𝑛𝑢 the system control input

space, where 𝑛𝑥 and 𝑛𝑢 are the dimensions of the state space and the control input

space respectively. Consider a discretized series of time steps 𝑡 = 0, 1, 2, . . . , 𝑇 with

a fixed time interval ∆𝑇 , where the number of time steps 𝑇 is a finite integer. Let

x𝑡 ∈ 𝒳 denote the robot state at time step 𝑡. We assume applying a control input

u𝑡 ∈ 𝒰 at time step 𝑡 will bring the robot from state x𝑡 ∈ 𝒳 to x𝑡+1 ∈ 𝒳 , according

to a given stochastic dynamics model:

x𝑡 = 𝑓(x𝑡−1,u𝑡−1,m𝑡), m𝑡 ∼ 𝒩 (0,𝑀𝑡), (3.1)

where m𝑡 is the zero-mean Gaussian distributed process noise at time step 𝑡 with a

given covariance matrix 𝑀𝑡. m𝑡 can be modeled based on the prior knowledge about

robot controllers. Function 𝑓 governs the robot dynamics and is assumed to be either

linear or can be well approximated locally by its linearization.

The robot states are observed by taking a measurement at each time step 𝑡,

denoted as z𝑡. We assume that measurements are provided by noisy sensors according

to a stochastic observation model:

40

z𝑡 = ℎ(x𝑡,n𝑡), n𝑡 ∼ 𝒩 (0, 𝑁𝑡), (3.2)

where n𝑡 is the zero-mean Gaussian distributed observation noise at time step 𝑡 with

a given covariance matrix 𝑁𝑡.

For each specific planning task, a start state xstart and a goal state xgoal or a convex

goal region 𝒳 goal will be given. Let x0 ∈ 𝒳 denote the initial state of the robot that

follows a Gaussian distribution with mean xstart and covariance matrix Σx0 :

x0 ∼ 𝒩 (xstart,Σx0). (3.3)

An initial condition is defined as a combination of xstart and Σx0 . A trajectory Π

is defined as a sequence of nominal robot states and control inputs (x*
0,u

*
0, . . . ,x

*
𝑇)

that satisfies the deterministic dynamics model x*
𝑡 = 𝑓(x*

𝑡−1,u
*
𝑡−1, 0) for 0 < 𝑡 ≤ 𝑇 .

We assume that an objective function 𝐽(Π) will be specified for each planning task,

which can implement planning goals such as minimizing trajectory length.

3.1.2 Constraint Definitions

A valid solution provided by learning-based p-Chekov should satisfy temporal con-

straints, chance constraints over collision risks, goal state constraints, control input

constraints, and system dynamics constraints specified by the robot model. A tem-

poral constraint defines an upper bound 𝜏 on the execution duration of a trajectory:

𝑇 ×∆𝑇 ≤ 𝜏. (3.4)

We assume a joint collision chance constraint with bound ∆𝑐 ∈ [0, 1] will be given

for each planning task, which specifies the allowed probability of collision failure.

Let 𝐶𝑖 denote the no-collision constraint for each obstacle 𝑖 = 1, . . . , 𝑁 , then the

probability of colliding with obstacle 𝑖 is P(𝐶𝑖). The collision chance constraint over

an entire trajectory can then be expressed as:

41

P

(︃
𝑁⋁︁
𝑖=1

𝐶𝑖

)︃
≤ ∆𝑐. (3.5)

The control input constraint requires that u*
𝑡 ∈ 𝒰 ,∀𝑡 = 1, . . . , 𝑇 . The system dy-

namics constraints require that the robot states at each time step along the trajectory

are within the robot state space 𝒳 , and the state transitions between adjacent time

steps satisfy the deterministic system dynamics model:

x*
𝑡 = 𝑓(x*

𝑡−1,u
*
𝑡−1, 0) ∈ 𝒳 , ∀𝑡 = 1, . . . , 𝑇. (3.6)

3.1.3 Problem Definition

Problem 1 defines the chance-constrained optimization problem solved by learning-

based p-Chekov. It aims at finding a feasible trajectory Π that minimizes the given

objective 𝐽(Π) while satisfying the chance constraint and temporal constraint. The

solution trajectory Π should satisfy the initial condition and the robot dynamics

model, and the control inputs along the trajectory should fall into the control input

space. If a C-space goal pose xgoal is given, the robot configuration at the final time

step should be at xgoal; on the other hand, if a convex goal region of the workspace

end-effector pose 𝒳 goal is specified, then the end-effector should be in 𝒳 goal at the end

of Π.

42

Problem 1.

minimize
Π

𝐽(Π)

subject to x0 ∼ 𝒩 (x̂0,Σx0)

x𝑡 = 𝑓(x𝑡−1,u𝑡−1,m𝑡), 0 < 𝑡 ≤ 𝑇

z𝑡 = ℎ(x𝑡,n𝑡), 0 < 𝑡 ≤ 𝑇

m𝑡 ∼ 𝒩 (0,𝑀𝑡), 0 < 𝑡 ≤ 𝑇

n𝑡 ∼ 𝒩 (0, 𝑁𝑡), 0 < 𝑡 ≤ 𝑇

x𝑡 ∈ 𝒳 , 0 < 𝑡 ≤ 𝑇

u𝑡 ∈ 𝒰 , 0 < 𝑡 ≤ 𝑇

x*
𝑇 = xgoal or x*

𝑇 ∈ 𝒳 goal

P

(︃
𝑁⋁︁
𝑖=1

𝐶𝑖

)︃
≤ ∆𝑐

𝑇 ×∆𝑇 ≤ 𝜏

(3.7)

3.1.4 Assumptions

In order to achieve the promised performance of p-Chekov, several key assumptions

are made. First, we assume that the collision environments are practical real-world

environments that are not overly complex. Second, we assume that both the pro-

cess noise and observation noise have Gaussian distribution with diagonal covariance

matrices. This assumption is reasonable because in real-world scenarios, noises of-

ten accumulate from inconsistent, random sources, and based on the Central Limit

Theorem [58], Gaussian models are appropriate in these cases. Correlated noise com-

ponents can also be transformed through robot states space coordinate transforma-

tion so that the covariance matrices will become diagonal. With this assumption,

the optimal performance of Kalman filter will be guaranteed [48] and the require-

ment of Linear-quadratic Gaussian (LQG) control will be satisfied. Third, we assume

that both the system dynamics model and the observation model are either linear

or can be well approximated locally by their linearizations. In real-world executions,

43

robot motions will be controlled to closely follow the planned trajectory, thus local

linearizations of the non-linear dynamics are good approximations for robot motions.

3.2 Reinforcement Learning with Sparse Rewards

Reinforcement Learning (RL) is a computational approach that solves sequential de-

cision making problems by interacting with the environment. In this thesis, we model

sequential decision making problems as fully observable Markov decision processes.

3.2.1 Markov Decision Process (MDP)

An MDP is discrete-time stochastic control process that models decision making

problems in which the outcomes are influenced by the actions of the decision maker.

In RL, the goal of the learner is to learn how to best select actions in an MDP in

order to optimize an objective function regarding the outcomes. In MDPs, the learner

or decision maker is called the agent, and the system it interacts with, comprising

everything outside the agent, is called the environment. The interaction between

the agent and the environment happens in a sequence of discrete time steps: 𝑡 =

0, 1, 2, · · · . A typical MDP consists of four elements [128]:

1. State: s ∈ 𝒮, where 𝒮 is the state space.

2. Action: a ∈ 𝒜, where 𝒜 is the action space.

3. Transition function: 𝑃 : 𝒮×𝒜×𝒮 → R. 𝑃𝑡(s
′|s, a) = P(s𝑡+1 = s′|s𝑡 = s, a𝑡 = a)

denotes the probabilistic mapping from the state and action at time step 𝑡 to

the state at time step 𝑡 + 1. 𝑃 specifies a probability distribution that satisfies∫︀
s′∈𝑆 𝑃𝑡(s

′|s, a) = 1

4. Reward: 𝑟 : 𝒮 × 𝒜 → R is typically a nonnegative scalar. 𝑟𝑡(s, a) denotes

the reward the agent receives from the environment when conducting action a

at state s at time step 𝑡. In this thesis, we only consider stationary reward

44

Figure 3-1: Agent-environment interaction in an MDP.

functions, hence 𝑟𝑡(s, a) → 𝑟(s, a). We instead use 𝑟𝑡 to denoted the specific

reward scalar received at time step 𝑡.

The state transitions of an MDP satisfy the Markov property, meaning that given

s𝑡 and a𝑡, s𝑡+1 is conditionally independent of the states and actions at all previous

time steps. Figure 3-1 demonstrates the agent-environment interaction in a typical

MDP.

3.2.2 Reinforcement Learning (RL)

A policy is defined as the mapping from states to the probabilities for selecting actions.

If the agent is following policy 𝜋 at time 𝑡, then 𝜋𝑡(a|s) is the probability that a𝑡 = a

when s𝑡 = s. We only consider stationary policies in this thesis, hence 𝜋𝑡 → 𝜋. The

goal of RL is to find a policy 𝜋 that maximizes an objective function:

𝐽 = E𝜋[
∑︁
𝜏

𝑟(s𝑡, a𝑡)|a𝑡 ∼ 𝜋(s𝑡), s0 ∼ 𝑝0(s)], (3.8)

where 𝜏 denotes the trajectory, 𝑝0(s) denotes the initial state distribution.

In RL, it is common to divide the agent-environment interactions into subse-

quences. For example, a common practice in RL for robotics is to let the robot

interact with the environment for a number of steps, reset the robot and the environ-

ment both to the initial state, and start the interaction sequence again. In this thesis,

45

we refer to each of these subsequences as an episode. Usually there are two ways to

determine the end of an episode: 1) specify a maximum number of time steps and

terminate the episode once the maximum step is reached; 2) specify a set of terminal

states and terminate the episode once a terminal state is reached. In this thesis, we

use a combination of both termination strategies, i.e. the episode is terminated if the

maximum time step is reach or a terminal state is reached. The value function of a

state s under a policy 𝜋, denoted as 𝑣𝜋(s), is the expected return when starting from

state s and following policy 𝜋 until the end of the episode.

This thesis focuses on RL tasks that learn in an episodic manner, i.e. episodic

tasks. In episodic tasks, the environment and the agent are both reset to a state

drawn from an initial state distribution specified by the task at the beginning of each

episode, and the performance of the RL agent is evaluated in terms of the return of

each episode. In this thesis, we consider the undiscounted return defined as follows:

𝑅 =
𝑡=𝑇∑︁
𝑡=1

𝑟𝑡, (3.9)

where 𝑇 denotes the terminal time step of the episode. In Chapter 5, the performance

of RL agents is evaluated using average return, the mean of the returns of all parallel

training episodes.

3.2.3 Intrinsic Motivation

The central idea of RL is to learn by trial-and-error. In contrast to supervised learning,

RL agents are not provided with labeled data and they have to obtain the training

data by interacting with the environment and observing the reward signals. This has

caused a major challenge in RL: the trade-off between exploration and exploitation.

Exploration refers to taking actions with the intention of probing a large portion of

the state space in order to find promising solutions to the task, whereas exploitation

refers to probing a limited (but promising) region of the search space with the hope of

improving a promising solution that the agent already have at hand. In RL problems

with high-dimensional continuous state and action spaces, the exploration challenge

46

has been a major issue researchers face because exhausting the entire state space is

infeasible and intelligent exploration strategy is necessary for RL agents to discover

any solution to the task.

In this thesis, we focus on RL problems with high-dimensional continuous state

and action spaces and sparse reward functions. For a reward function to be sparse, it

needs to only provide a non-zero reward scalar for a very small portion of the state

and action space, whereas for the vast majority of state-action pairs, the RL agent

only receives zero reward. This is to be distinguished from dense reward functions,

where most of the states involve non-zero rewards. A binary reward function is an

example of sparse reward functions. A binary reward function only takes two values:

0 or 1. It only provides 𝑟 = 1 when a goal state is reached, and gives 𝑟 = 0 for all

other states:

𝑟(s𝑡, a𝑡) =

⎧⎪⎨⎪⎩0, if s𝑡 /∈ 𝑆𝑔,

1, if s𝑡 ∈ 𝑆𝑔,

(3.10)

where 𝑆𝑔 is a set of desired goal states. Specifying sparse reward functions is usually

the intuitive way to define a task, and dense reward functions are often designed

through reward shaping. In the robotic manipulation environment we discuss in this

thesis, an example of a sparse reward function is one that only provides the robot

rewards when the objects reach their corresponding goal states, whereas a dense

reward function can include the distance from the robot gripper to the objects and the

distance between the objects and their corresponding goal states. Such dense reward

functions are very task-specific and are considered as a form of reward shaping.

A popular approach for handling challenging exploration problems is using in-

trinsic motivation. Intrinsic motivation refers to exploration strategies that provide

the RL agent with auxiliary intrinsic rewards that are unrelated to the task to be

accomplished in order to explore the environment more effectively and to ultimately

lead to task success. The inspirations for intrinsic motivation methods often come

from the human instinct in psychology to learn and to explore regardless of whether

external rewards are given.

47

The distinction between intrinsic rewards and extrinsic rewards is key to the prob-

lem studied in this thesis. Extrinsic rewards refer to the MDP reward defined in Sec-

tion 3.2.1, i.e. the actual rewards received from the environment. Extrinsic rewards

typically depend on the desired task to be solved, hence they are also often referred to

as the task rewards. The RL objective only maximizes the expected extrinsic rewards

along the trajectory, whereas the intrinsic rewards are purely auxiliary rewards to

help the agent achieve the ultimate objective. Intrinsic rewards are task-agnostic,

meaning that the same intrinsic reward can be used for many different target tasks in

the environment. In order to implement desired exploration strategies, the objective

function is often modified during optimization in order to include intrinsic rewards,

but only the original objective function without intrinsic rewards should be considered

when evaluating the RL agent’s performance in target tasks.

In this thesis, we refer to the reward from the environment as extrinsic reward 𝑟𝑒

and the artificial reward from the algorithm as intrinsic reward 𝑟𝑖, hence the reward

used when computing value functions during the optimization process is 𝑟 = 𝑟𝑒 + 𝑟𝑖.

The sum 𝑟 is used during the learning process, whereas only 𝑟𝑒 is considered when

evaluating the performance of a learning algorithm.

3.2.4 Problem Definition

The problem solved by Chapter 5 Empowerment-based Intrinsic Motivation is a

robotic manipulation task formulated as an episodic RL problem where the envi-

ronment is modeled as a fully-observable MDP and the extrinsic reward function is

sparse. It searches for a policy 𝜋 that optimizes the expectation of the undiscounted

episode return:

𝐽 = E𝜋[
∑︁
𝜏

𝑟𝑒(s𝑡, a𝑡)|a𝑡 ∼ 𝜋(s𝑡), s0 ∼ 𝑝0(s)]. (3.11)

The goal of Chapter 5 is to find a form of intrinsic reward 𝑟𝑖 so that by maximizing

the auxiliary objective function:

48

𝐽𝑎 = E𝜋[
∑︁
𝜏

(𝑟𝑒(s𝑡, a𝑡) + 𝛽𝑟𝑖(s𝑡, a𝑡))|a𝑡 ∼ 𝜋(s𝑡), s0 ∼ 𝑝0(s)], (3.12)

the optimization of the original objective function 𝐽 can be made much easier. Here

𝛽 denotes the intrinsic reward coefficient.

3.3 Curriculum Learning through Demonstrations

The problem tackled in Chapter 6 is also an episodic RL problem where the environ-

ment is modeled as a fully-observable MDP, hence we won’t be repeating concepts

that are already defined in Section 3.2. We instead focus on the definition of cur-

riculum learning and learning from demonstration in this section, and present the

problem statement for the challenge tackled in Chapter 6.

3.3.1 Curriculum Learning

In RL, curriculum learning often refers to the training strategy that divides the entire

training process into multiple stages and presents tasks of increasing difficulties as the

learning agent moves through different stages. We denote the target RL task as 𝑇0.

In this thesis, we define a curriculum as a class of tasks with similar difficulties when

presented to the same learning agent, and we use curriculum numbers 𝐶 to index

these curricula. We use increasing curriculum numbers to represent curricula with

increasingly difficult tasks, and we refer to a task drawn from curriculum-𝐶 as 𝑇𝐶 .

Although each individual curriculum can have different tasks goals and initialization

distributions, task across all curricula should be related to the same target task 𝑇0.

Ideally, training on these curriculum tasks should provide guidance for the learning

agent in terms of how to solve the target task 𝑇0, and agents who have mastered the

curriculum tasks should find 𝑇0 easier than those who are learning from scratch.

49

3.3.2 Learning from Demonstration

Learning from demonstration (LfD) is a broad class of approaches that utilizes demon-

stration trajectories to facilitate learning. In this thesis, we focus only on the LfD

methods that uses demonstrations to assist RL. We define a state-only demonstra-

tion trajectory as a sequence of states at consecutive time steps generated by a roll-

out of an MDP, i.e. 𝜏 = (s0, s1, . . . , s𝑇−1, s𝑇), where 𝑇 denotes the terminal time

step. Similarly, we define a state-action demonstration trajectory as a sequence of

state-action pairs at consecutive time steps generated by a rollout of an MDP, i.e.

𝜏 = (s0, a0, . . . , s𝑡, a𝑡, . . . , s𝑇). In this thesis, the rewards associated with the demon-

stration trajectories are not used. The demonstration trajectories can be generated

either by a human or a robot, and they need to solve the target task 𝑇0 in a reasonable

way without deliberate detours. The demonstration trajectories do not need to be

optimal solutions to the target task 𝑇0.

3.3.3 Problem Definition

The problem solved by Chapter 6 Automatic Curricula via Expert Demonstrations

is a robotic manipulation task 𝑇0 formulated as an episodic RL problem where the

environment is modeled as a fully-observable MDP with a binary reward function.

It searches for a policy 𝜋 that optimizes the expectation of the undiscounted episode

return:

𝐽 = E𝜋[
∑︁
𝜏

𝑟(s𝑡, a𝑡)|a𝑡 ∼ 𝜋(s𝑡), s0 ∼ 𝑝0(s)], (3.13)

where 𝜏 denotes the rollout trajectory. The target task 𝑇0 is challenging so that

vanilla RL algorithms are not able to solve it. The goal of Chapter 6 is to extract

a set of curriculum tasks 𝑇1, · · · , 𝑇𝐶 , · · · from a small amount of demonstration tra-

jectories so that pre-training the RL agents on these curriculum tasks can make the

original target task 𝑇0 solvable in an efficient manner. We consider two different types

of demonstration trajectories in Chapter 6: 1) demonstration trajectories with only

states and no actions, i.e. 𝜏𝑒 = (s0, s1, . . . , s𝑡, . . . , s𝑇−1, s𝑇); 2) demonstration trajec-

50

tories with state-action pairs, i.e. 𝜏𝑒 = (s0, a0, s1, a1, . . . , s𝑡, a𝑡, . . . , s𝑇−1, a𝑇−1, s𝑇).

51

52

Chapter 4

Learning-based P-Chekov

This chapter presents the first contribution of this thesis: learning-based p-Chekov.

Section 4.1 briefly reviews sampling-based p-Chekov, the prior work learning-based

p-Chekov improves upon and compares with. Section 4.2 formally introduces the

learning-based p-Chekov approach, Section 4.3 describes the setup for empirical ex-

periments and Section 4.4 presents the empirical evaluation results.

4.1 Preliminaries: Sampling-based P-Chekov

4.1.1 The P-Chekov Framework

P-Chekov, originally introduced in [29], is a risk-aware motion planning and execution

system that accounts for the potential uncertainties during execution while making

plans and returns solutions that can satisfy user-specified chance constraints over

plan failure. As mentioned in Section 1.2.1, it targets high-dimensional robots such

as robotic manipulators and humanoid robots in environments where collisions can

cause disastrous outcomes. It is composed of a planning phase and an execution

phase, as shown in Figure 4-1. In this thesis, we mainly focus on the planning

phase and will briefly review the execution phase Iterative Risk Allocation (IRA)

procedure. We refer to this original version of p-Chekov as the sampling-based p-

Chekov. The p-Chekov planning phase includes three major components: nominal

53

Figure 4-1: System diagram for p-Chekov [33]

trajectory generation, state distribution estimation, and collision risk estimation. The

main difference between learning-based p-Chekov and sampling-based p-Chekov is the

collision risk estimation component.

The goal in the planning phase is to find a feasible solution trajectory along which

the estimated risk of collision is smaller than or equal to the given joint chance con-

straint ∆𝑐. In p-Chekov, time is discretized into fixed-interval time steps, and the

collision risk at each waypoint is considered separately through risk allocation. Risk

allocation decomposes a joint chance constraint ∆ by allocating risk bounds 𝛿𝑖 to

individual constraints, where
∑︀𝑁

1 𝛿𝑖 = ∆. When the planning phase starts, p-Chekov

first uniformly distributes the joint chance constraint into the allowed collision risk

bounds for each waypoint along the trajectory. Provided with a risk allocation, p-

Chekov then uses the deterministic Chekov approach introduced in [32] to generate

54

a nominal trajectory that is feasible and collision-free under deterministic dynamics.

Given the estimated model of controller and sensor noises during execution, p-Chekov

then computes the a priori probability distribution of robot states along this nom-

inal trajectory. With this state distribution information, p-Chekov estimates the

probability of collision at each waypoint along this trajectory through a quadrature-

based sampling approach and compares the allocated risk bound with the estimated

probability of collision, shown as the “risk test” step in Figure 4-1. If the nominal

trajectory fails to pass the risk test, the robot configurations at the waypoints where

the estimated risk of collision exceeds the allocated risk bound will be viewed as

conflicts. Before p-Chekov goes back to the “plan generating and risk estimation”

stage in Figure 4-1, constraints associated with the conflict configurations and con-

flict waypoints [121] will be added so that collision costs will be triggered when the

planner tries to get to these configurations and waypoints, and deterministic Chekov

can be guided to avoid these configurations and waypoints while finding safer nominal

trajectories.

When the solution trajectory passes the risk test, p-Chekov will transition to the

execution phase, where it optimizes the solution it found in the planning phase while

the robot is executing the trajectory based on the iterative risk allocation (IRA)

algorithm [89, 29]. Through gradually reallocating the risk from inactive constraints

to active constraints, IRA provides less conservative risk allocations and allows for

higher quality motion plans. After that, p-Chekov will go back to the “plan generating

and risk estimation” stage with zero penalty hit-in distance [121], i.e. the collision

cost will hit in only when the configuration reaches the obstacles without using any

buffer, and find a new feasible solution which satisfies the new risk allocation. When it

finds a valid plan, the robot will keep executing based on the updated plan. This risk

reallocation and plan refinement process is conducted iteratively, which will help the

planner to converge to a locally optimal solution if given enough number of iterations.

55

4.1.2 Quadrature-based Collision Probability Estimation

This section briefly reviews how collision risks are estimated in sampling-based p-

Chekov. The main contribution in learning-based p-Chekov is to replace this quadra-

ture sampling-based collision risk estimation component with a learning-based version

which significantly improved p-Chekov’s real-time planning performance, as shown

in 4.2.

Given the state probability distribution around a nominal configuration, the colli-

sion probability can be approximated by sampling from this distribution and checking

the percentage of configurations that are in collision. However, as with all Monte

Carlo methods, this approach would suffer from inaccuracy when the sample size is

small and high computational cost when the sample size is large. [29] proposed a

quadrature-based sampling method that can closely approximate the collision prob-

ability with only a small number of samples.

A Monte Carlo collision probability estimation approach is essentially estimating

the expectation of a collision function:

𝑐(x𝑡) =

⎧⎪⎨⎪⎩0, if x𝑡 is collision free

1, if x𝑡 is in collision

along the distribution x𝑡 ∼ 𝒩 (x̂𝑡,Σx𝑡), where x𝑡 ∈ R𝑛𝑥 is the nominal configuration at

time step 𝑡. Since expectations can be written as integrals, non-random numerical in-

tegration methods (also called quadratures [55]) can be applied to solve this problem.

Assume x𝑡 is 𝑑-dimensional and let 𝑥𝑖
𝑡 denote its 𝑖th component whose distributions

are independent from each other. This assumption is reasonable because correlated

noise components can be transformed through robot state space coordinate transfor-

mation so that the covariance matrices will become diagonal. Since x𝑡 is Gaussian

distributed, we can write 𝑥𝑖
𝑡 ∼ 𝒩 (𝜇𝑖, 𝜎

2
𝑖). Then, based on the conditional distribution

rule of multivariate normal distribution [39], the probability density function of x𝑡

can be expressed as:

56

𝑝(x𝑡) = 𝑝(x1:𝑑
𝑡) = 𝑝(𝑥1

𝑡)𝑝(x2:𝑑
𝑡 |𝑥1

𝑡) = 𝑝(𝑥1
𝑡)𝑝(x2:𝑑

𝑡),

𝑥1
𝑡 ∼ 𝒩 (𝜇1, 𝜎

2
1),

x2:𝑑
𝑡 ∼ 𝒩 (𝜇2:𝑑,Σ2:𝑑),

(4.1)

where 𝜇2:𝑑 and Σ2:𝑑 denote the mean and variance of x2:𝑑
𝑡 respectively. Then we can

write the expectation of the collision function as:

E(𝑐(x𝑡)) =

∫︁ ∞

−∞
𝑝(𝑥1

𝑡)

∫︁
R𝑛𝑥−1

𝑝(x2:𝑑
𝑡)𝑐(x𝑡)𝑑x

2:𝑑
𝑡 𝑑𝑥1

𝑡 . (4.2)

Let 𝑔(𝑥1
𝑡) =

∫︀
R𝑛𝑥−1 𝑝(x2:𝑑

𝑡)𝑐(x𝑡)𝑑x
2:𝑑
𝑡 and apply the probability density function of

Gaussian distributions, we have:

E(𝑐(x𝑡)) =

∫︁ ∞

−∞
𝑝(𝑥1

𝑡)𝑔(𝑥1
𝑡)𝑑𝑥

1
𝑡

=

∫︁ ∞

−∞

1

𝜎1

√
2𝜋

exp
(︁
− (𝑥1

𝑡 − 𝜇1)
2

2𝜎2
1

)︁
𝑔(𝑥1

𝑡)𝑑𝑥
1
𝑡 .

(4.3)

Gauss-Hermite quadrature approximates the value of an integral by calculating

the weighted sum of the integrand function at a finite number of reference points, i.e.

∫︁ ∞

−∞
𝑒−𝑦2ℎ(𝑦)𝑑𝑦 ≈

𝑛∑︁
𝑗=1

𝑤𝑗ℎ(𝑦𝑗), (4.4)

where 𝑛 is the number of sampled points, 𝑥𝑗 are the roots of the Hermite polynomial

𝐻𝑛(𝑥) and the associated weights 𝑤𝑗 are given by [2]:

𝑤𝑗 =
2𝑛−1𝑛!

√
𝜋

𝑛2[𝐻𝑛−1(𝑦𝑗)]2
. (4.5)

A quadrature rule with 𝑛 sampled points is called a 𝑛-point rule.

E(𝑐(x𝑡)) in its form in Equation 4.3 still doesn’t correspond to the Hermite poly-

nomial, therefore we conduct the following variable change:

𝑦1 =
𝑥1
𝑡 − 𝜇1√

2𝜎1

⇔ 𝑥1
𝑡 =
√

2𝜎1𝑦1 + 𝜇1. (4.6)

Applying Equation 4.6 to Equation 4.3 yields:

57

E(𝑐(x𝑡)) =

∫︁ ∞

−∞

1√
𝜋
𝑒−(𝑦1)2𝑔(

√
2𝜎1𝑦1 + 𝜇1)𝑑𝑦1. (4.7)

If we iteratively conduct this Gauss-Hermite quadrature approximation procedure

from 𝑥1
𝑡 through 𝑥𝑑

𝑡 , we will be able to approximate the value of E(𝑐(x𝑡)) through:

E(𝑐(x𝑡)) ≈ 𝜋− 𝑑
2

𝑛1∑︁
𝑗1=1

𝑛2∑︁
𝑗2=1

. . .

𝑛𝑑∑︁
𝑗𝑑=1

(︃
𝑑∏︁

𝑖=1

𝑤𝑖,𝑗𝑖

)︃
𝑔(
√

2𝜎1𝑦1,𝑗1

+ 𝜇1,
√

2𝜎2𝑦2,𝑗2 + 𝜇2, . . . ,
√

2𝜎𝑑𝑦𝑑,𝑗𝑑 + 𝜇𝑑).

(4.8)

This sampling-based approach of estimating the collision probability based on Gauss-

Hermite quadrature theory is summarized in Algorithm 1.

Algorithm 1: GHCollisionProbabilityEstimation
Input:

Π: desired trajectory

𝒟: robot state distribution along desired trajectory

ℛ, ℰ : robot and environment collision models respectively

𝑑𝑜𝑓 : robot degrees of freedom
𝑛: number of samples used in quadrature rule

𝑙𝑢, 𝑙𝑙: upper and lower limits of active joints respectively

Output:

r: collision risk at each waypoint along desired trajectory

1 Initialize r to a list of zeros

2 for 𝑖 = 1, 2, . . ., len(Π) do
3 Initialize 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡 to an empty set

4 for 𝑑 = 1, 2, . . . , 𝑑𝑜𝑓 do

5 (𝜇, 𝜎)← 𝒟[𝑖, 𝑑] /* Draw from 𝒟 at the 𝑖th waypoint 𝑑th joint */

6 (𝑛𝑜𝑑𝑒𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠)← QuadratureSampling(𝜇, 𝜎, 𝑛)
7 for 𝑛𝑜𝑑𝑒 in 𝑛𝑜𝑑𝑒𝑠 do

8 if 𝑛𝑜𝑑𝑒 > 𝑙𝑢[𝑑] then 𝑛𝑜𝑑𝑒← 𝑙𝑢[𝑑]
9 if 𝑛𝑜𝑑𝑒 < 𝑙𝑙[𝑑] then 𝑛𝑜𝑑𝑒← 𝑙𝑙[𝑑]

10 end

11 Append (𝑛𝑜𝑑𝑒𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) to 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡

12 end

13 Estimate r(𝑖) by taking nodes from 𝑁𝑜𝑑𝑒𝐿𝑖𝑠𝑡, checking collision with ℰ ,ℛ, and
averaging the collision number

14 end

In one-dimensional space, a 𝑛-point rule yields 2𝑛 parameters and it is possible to

integrate polynomials of degree up to 2𝑛− 1 without error. For 𝑎 < 𝑥 < 𝑏 and ℎ(𝑥)

58

with 2𝑛 continuous derivatives, the error in a Gauss rule is:

(𝑏− 𝑎)2𝑛+1(𝑛!)4

(2𝑛 + 1)[(2𝑛)!]3
ℎ(2𝑛)(𝑥). (4.9)

Note that although quadrature methods are well tuned to one-dimensional problems,

extending them to multi-dimensional problems through iterated one-dimensional inte-

grals still can’t escape the “curse of dimensionality” [13]. The result of a 𝑑-dimensional

quadrature rule can not be better than the worst of the rules we use in each dimen-

sion. If we use the same 𝑛-point one-dimensional quadrature rule for each of the

𝑑-dimensions, then we need 𝑁 = 𝑛𝑑 function evaluations. If the one-dimensional rule

has error 𝑂(𝑛−𝑟), then the combined rule has error

|𝐼 − 𝐼| = 𝑂(𝑛−𝑟) = 𝑂(𝑁−𝑟/𝑑). (4.10)

Even a modestly large 𝑑 can give a very inaccurate result [96]. Additionally, the

collision function 𝑐(x𝑡) p-Chekov needs to evaluate is not smooth, which adds to the

inaccuracy of the approximations through this quadrature-based sampling method.

Consequently, this quadrature-based collision probability estimation approach is a

relatively rough one.

4.2 Learning-based P-Chekov

The quadrature-based sampling approach introduced in Section 4.1.2 mitigates the

inaccuracy of random sampling and avoids the difficulty of mapping between the

configuration space (C-space) and the workspace, but its computation time in high-

dimensional planning space still obstructs its application in real-time motion planning

tasks. Even though only two quadrature nodes per dimension are used in [29] to esti-

mate the collision risk for each waypoint, the total number of collision tests conducted

online is still very big since the manipulator have 7 DOFs (27×𝑛𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡𝑠 collision tests

for each nominal trajectory). Additionally, two-node quadratures have very limited

ability of approximating non-smooth functions, whereas the collision functions here

59

are highly non-smooth. Therefore, quadrature-based p-Chekov inevitably suffers from

errors when approximating the collision risk, and the efficiency and accuracy of risk

estimation becomes its bottleneck that restricts its application in uncertainty-sensitive

real-time manipulation planning tasks. In this thesis, we introduce supervised learn-

ing approaches into the collision risk estimation component of p-Chekov in order to

improve its efficiency and accuracy [31].

We hypothesize that if we take enough samples containing nominal configurations

with their probability distributions and risks of collision from the environment that

the robot will be interacting with in order to train a regression model offline, then

this model can act as the “Approximate Risk of Collision” component in Figure 4-

1 in the online planning phase which makes accurate predictions given a nominal

trajectory and the state distributions outputted by the “Estimate State Probability

Distributions” component. In this thesis, we evaluate this hypothesis in two tabletop

environments originally introduced in [32] (shown in Figure 4-2). 60000 data points

are collected in each of the tabletop environments, each of which contains a nominal

joint configuration that is randomly sampled from the uniform distribution defined by

the manipulator’s joint limit, a randomly sampled standard deviation whose range is

decided according to the real experiment data from quadrature-based p-Chekov tests,

and a collision risk scalar that is viewed as the “ground-truth” risk associated with this

configuration distribution. This collision risk is estimated using a simple Monte Carlo

method: randomly sample 100000 nodes from the Gaussian distribution defined by

the nominal joint configuration and the standard deviation, and compute the average

collision rate. The nominal configuration together with its standard deviation forms

the input vector to the regression algorithm, and the collision risk is its label.

We compare the performance of three different classes of regressors in the Scikit

Learn [105] package (kernel ridge regressor, random forest regressor, and Gaussian

process regressor) as well as neural networks through the Keras [24] interface with

TensorFlow [1] back engine. Kernel ridge regression combines ridge regression (linear

least squares with 𝑙2-norm regularization) with the kernel trick [84]. It can operate in

a high-dimensional, implicit feature space without ever computing the coordinates of

60

Figure 4-2: Simulation Environments for Learning-based P-Chekov Evaluation [32]

(a) The “tabletop with a pole” envi-

ronment

(b) The “tabletop with a container”

environment

the data in that space, but rather by simply computing the inner products between

the images of all pairs of data in the feature space. It thus learns a linear function in

the space induced by the respective kernel and the data. For non-linear kernels, this

corresponds to a non-linear function in the original space. In kernel ridge regression,

the objective to minimize is:

𝐽 = ||𝑦 − 𝑤𝑇𝑋||2 + 𝛼||𝑤||2, (4.11)

where 𝑋 is the input vector, 𝑦 is the true label, 𝑤 is the weight vector given by the

regressor and 𝛼 is the parameter that determines the regularization strength.

In the kernel ridge regression tests in this chapter, the performance of three differ-

ent classes of kernels are compared: radial basis function (RBF) kernel, polynomial

kernel and Matern kernel. In RBF kernels, each element in the kernel matrix between

datasets 𝑋 and 𝑌 is computed by:

𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(−𝛾||𝑥− 𝑦||2) (4.12)

for each pair of rows 𝑥 in 𝑋 and 𝑦 in 𝑌 . Therefore, the parameter 𝛾 represents how

far the influence of a single training example reaches, with low values meaning “far”

and high values meaning “close”. In polynomial kernels, 𝑑𝑒𝑔𝑟𝑒𝑒 is a parameter that

61

represents the order of polynomials used in the kernel. A 𝑑𝑒𝑔𝑟𝑒𝑒−𝑑 polynomial kernel

is defined as:

𝐾(𝑥, 𝑦) = (𝑥𝑇𝑦 + 𝑐)𝑑, (4.13)

where 𝑐 ≥ 0 is a free parameter trading off the influence of higher-order versus lower-

order terms in the kernel. Matern kernel is defined by:

𝐾(𝑥, 𝑦) =
1

2𝜈−1Γ(𝜈)
(
2
√
𝜈||𝑥− 𝑦||

𝜃
)𝜈𝐻𝜈(

2
√
𝜈||𝑥− 𝑦||

𝜃
), (4.14)

where the length scale parameter 𝜃 is similar to the 𝛾 in RBF kernels, Γ is the Gamma

function, the 𝜈 parameter controls the smoothness of the learned function, and 𝐻𝜈

is the modified Bessel function of the second kind of order 𝜈. When 𝜈 approaches

infinity, the Matern kernel becomes equivalent to the RBF kernel, and when 𝜈 = 0.5

it’s equivalent to the absolute exponential kernel.

Random forest regression [75] constructs an ensemble of decision trees using a

different bootstrap sample of the data for each tree (also called bagging), and selects

a random subsets of the features at each candidate split in the decision tree learning

process. These two main strategies help random forest correct for decision trees’ habit

of overfitting to their training set and make accurate predictions very quickly during

test time. Gaussian process regression [112] defines a collection of random variables,

any finite number of which have a joint Gaussian distribution, and then conducts

probabilistic inference directly in the function space. It can capture the model uncer-

tainty directly and allows users to add prior knowledge by selecting different kernel

functions. Here we choose to use Matern kernels in the Gaussian process regression

tests.

Artificial neural network is another powerful tool for conducting supervised re-

gression on large datasets. Section 4.4 compares the performance of different regres-

sion methods and shows that neural networks with appropriate configurations have

the best performance in this collision risk regression task, thus we apply them to

p-Chekov and compare learning-based p-Chekov’s performance with the quadrature-

62

based p-Chekov described in Section 4.1.

4.3 Experiment Setup

4.3.1 Environments

We evaluate learning-based p-Chekov in the two tabletop environments shown in

Figure 4-2. The “tabletop with a pole” environment, shown in Figure 4-2-(a), is a

simple tabletop pick-and-place task environment, with a slender pole in the middle

of the table and a box on each side of the pole. The “tabletop with a container”

environment is similar, but with a large container on the table with boxes both inside

and outside of it, as shown in Figure 4-2-(b). For each environment, we generate 500

feasible planning queries by randomly sampling start and target end-effector pose

pairs that are collision-free and kinematically feasible. Note that the second tabletop

environment not only has the narrow spaces inside the container which are difficult

for chance-constrained motion planners, but also include difficult test cases where the

robot joints are close to their limits. For each experiment trial, planners are provided

with the starting C-space position and the goal end-effector pose. We specify the goal

in workspace to give planners the opportunity to find different C-space solutions to

the planning problem. We have ensured that all test queries have a feasible solution

by executing five different motion planners on each test case, and re-sampling start

and goal poses when no planner could find a solution. The Baxter robot [115] with

its 7-DOF left manipulator is used as the experiment testbed. Baxter’s specification

indicates that its worst case accuracy of joints is ±0.25 degree, which is about ±0.0044

rad. Controller accuracy for industrial robots can vary, and we use Baxter in this

chapter to demonstrate that our approach can be effective even on robots with high

uncertainties. Hence in the experiments in this chapter, the standard deviation of

noises during execution is set to 0.0044 rad. All the experiments shown in this paper

are conducted on a 10-core Intel i7 3.0 GHz desktop with 64 GB RAM.

63

4.3.2 Modeling

We simplify system dynamics into a discrete-time linear dynamics model and use

accelerations as control inputs at each time step. Note that in highly dynamics robots

like quadcopters, torque inputs would be more appropriate than acceleration inputs.

However, since this work mainly targets at robotic manipulators, a kinematics model

with acceleration inputs is sufficient. We express the system model in terms of the

deviations from the desired trajectory Π = (x*
0,u

*
0, . . . ,x

*
𝑇 ,u

*
𝑇):

x̄𝑡 = x𝑡 − x*
𝑡 ,

ū𝑡 = u𝑡 − u*
𝑡 ,

z̄𝑡 = z𝑡 − ℎ(x*
𝑡 , 0),

(4.15)

where the state x𝑡 includes the joint position and velocity, and the input u𝑡 includes

the joint acceleration. Since robot motions will be controlled to closely follow the

planned trajectory during execution, it is reasonable to linearize the system dynamics

model and observation model as:

x𝑡 =𝑓(x*
𝑡−1,u

*
𝑡−1, 0) + 𝐴𝑡(x𝑡−1 − x*

𝑡−1)

+ 𝐵𝑡(u𝑡−1 − u*
𝑡−1) + 𝑉𝑡m𝑡,

z𝑡 =ℎ(x*
𝑡 , 0) + 𝐻𝑡(x𝑡 − x*

𝑡) + 𝑊𝑡n𝑡,

(4.16)

where

𝐴𝑡 =
𝜕𝑓

𝜕x
(x*

𝑡−1,u
*
𝑡−1, 0)

𝐵𝑡 =
𝜕𝑓

𝜕u
(x*

𝑡−1,u
*
𝑡−1, 0)

𝑉𝑡 =
𝜕𝑓

𝜕m
(x*

𝑡−1,u
*
𝑡−1, 0)

𝐻𝑡 =
𝜕ℎ

𝜕x
(x*

𝑡 , 0)

𝑊𝑡 =
𝜕ℎ

𝜕n
(x*

𝑡 , 0)

(4.17)

are the Jacobian matrices of 𝑓 and ℎ along the desired trajectory Π and z̄𝑡 is the

observation. Using Equation 4.15, we can then express the system models as follows:

64

x̄𝑡 = 𝐴𝑡x̄𝑡−1 + 𝐵𝑡ū𝑡−1 + 𝑉𝑡m𝑡, m𝑡 ∼ 𝒩 (0,𝑀𝑡),

z̄𝑡 = 𝐻𝑡x̄𝑡 + 𝑊𝑡n𝑡, n𝑡 ∼ 𝒩 (0, 𝑁𝑡).
(4.18)

All the joints are assumed to be fully actuated and independent from each other,

corrupted by process noisem𝑡,𝑗 ∼ 𝒩 (0,𝑀𝑡,𝑗), where 𝑗 = 1, 2, . . . , 7 denotes the degree

of freedom (DOF) index, and

𝑀𝑡,𝑗 =

⎡⎣𝜎2
𝑥,𝑗 0

0 𝜎2
𝑣,𝑗

⎤⎦ . (4.19)

Using the linearization from Equation 4.15, we have:

x̄𝑡,𝑗 =

⎡⎣1 ∆𝑇

0 1

⎤⎦ x̄𝑡−1,𝑗 +

⎡⎣∆𝑇 2/2

∆𝑇

⎤⎦ ū𝑡−1,𝑗 + m𝑡,𝑗, (4.20)

where x̄𝑡,𝑗 includes the position and velocity of the 𝑗th joint at time step 𝑡.

Instead of observing the joint configurations, we model our system as partially-

observable by adopting an end-effector observation model. For manipulators mounted

on mobile robots, for example, their head camera is often an important source of

observations. However, unexpected movements of the mobile base caused by arm

movements or external disturbances can often lead to inaccurate estimations of the

relative position between the manipulator and the object to be grasped in a pick-

and-place task. In these cases, the observations of the spatial relationship between

obstacles and the manipulator from cameras mounted on the vehicle will inevitably

be corrupted. As a result, it is of more practical significance to incorporate camera

observations compared to using the fully observable joint configuration observation

model.

Ideally, observations of the whole manipulator should be evaluated. However, this

is nontrivial since it requires modeling the forward kinematics mapping of all the

points on each link. In addition, directly modeling the observation noises for the

relative spatial relationship between the entire manipulator and workspace objects

is also difficult. Thus as a start, an end-effector observation model is used in this

65

thesis to approximate the real-world camera observations. The transformation matrix

between workspace objects and the end-effector can be expressed as:

𝑇 𝑒𝑒
𝑜𝑏𝑗 = 𝑇 𝑐𝑎𝑚

𝑜𝑏𝑗 · 𝑇 𝑒𝑒
𝑐𝑎𝑚, (4.21)

where 𝑇 𝑐𝑎𝑚
𝑜𝑏𝑗 is the transformation from the workspace object to the camera frame, and

𝑇 𝑒𝑒
𝑐𝑎𝑚 is the transformation from the camera frame to the end-effector. Therefore, the

noises for observing 𝑇 𝑒𝑒
𝑜𝑏𝑗 can be transformed into observation noises for 𝑇 𝑒𝑒

𝑐𝑎𝑚 through

the transformation matrix 𝑇 𝑐𝑎𝑚
𝑜𝑏𝑗 . Then 𝑇 𝑒𝑒

𝑐𝑎𝑚 can be transformed into 𝑇 𝑐𝑎𝑚
𝑒𝑒 through

matrix inversion. Therefore, we can approximate the observation noises through

corrupted observations of the end-effector pose from the camera.

The observations of the end-effector can be expressed in C-space through the

nonlinear relationship:

z𝑡 = ℎ(x𝑡,n𝑡), n𝑡 ∼ 𝒩 (0, 𝑁𝑡), (4.22)

where ℎ(x𝑡, 0) is the forward kinematics, n𝑡 is the observation noise, and 𝑁𝑡 is the

covariance matrix of the observation noise. The linearization of this observation model

around a nominal configuration x*
𝑡 can be expressed as:

z𝑡 − ℎ(x*
𝑡 , 0) = 𝐽𝑡(x𝑡 − x*

𝑡) + 𝑊𝑡n𝑡, (4.23)

where

𝐽𝑡 =
𝜕ℎ

𝜕x
(x*

𝑡 , 0). (4.24)

Since ℎ(x𝑡, 0) is the forward kinematics, 𝐽𝑡 is the end-effector Jacobian matrix at

the nominal configuration x*
𝑡 . In this way, the linearized system observation matrix

becomes the Jacobian matrix, which is usually easy to obtain during computation.

Again using the linearization from Equation 4.15, the end-effector pose observation

model given in Equation 4.23 can be rewritten as:

66

z̄𝑡 = 𝐽𝑡x̄𝑡 + 𝑊𝑡n𝑡, n𝑡 ∼ 𝒩 (0, 𝑁𝑡) (4.25)

In p-Chekov, a discrete-time Kalman filter is used, which includes the following

prediction and update phases:

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 :

x̃−
𝑡 = 𝐴𝑡x̃𝑡−1 + 𝐵𝑡ū𝑡−1

𝑃−
𝑡 = 𝐴𝑡𝑃𝑡−1𝐴

𝑇
𝑡 + 𝑉𝑡𝑀𝑡𝑉

𝑇
𝑡

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 :

𝐿𝑡 = 𝑃−
𝑡 𝐻𝑇

𝑡 (𝐻𝑡𝑃
−
𝑡 𝐻𝑇

𝑡 + 𝑊𝑡𝑁𝑡𝑊
𝑇
𝑡)−1

x̃𝑡 = x̃−
𝑡 + 𝐿𝑡(z̄𝑡 −𝐻𝑡x̃

−
𝑡)

𝑃𝑡 = (𝐼 − 𝐿𝑡𝐻𝑡)𝑃
−
𝑡

(4.26)

LQR controllers optimize control inputs by minimizing a quadratic cost function

defined over the execution. In order to keep the robot close to the desired trajectory,

we minimize deviations of robot states and control inputs in the cost function:

𝐽 = E

(︃
𝑡=𝑇∑︁
𝑡=1

(x̄𝑇
𝑡 𝑄x̄𝑡 + ū𝑇

𝑡 𝑅ū𝑡)

)︃
, (4.27)

where 𝑄 and 𝑅 are positive-definite weight matrices.

P-Chekov assumes the system is fully actuated and uses a finite-horizon discrete-

time LQR, where the feedback matrix 𝐾𝑡 can be computed through backward recur-

sion:

𝑆𝑇 = 𝑄,

𝐾𝑡 = −(𝐵𝑇
𝑡 𝑆𝑡𝐵𝑡 + 𝑅)−1𝐵𝑇

𝑡 𝑆𝑡𝐴𝑡,

𝑆𝑡−1 = 𝑄 + 𝐴𝑇
𝑡 𝑆𝑡𝐴𝑡 + 𝐴𝑇

𝑡 𝑆𝑡𝐵𝑡𝐾𝑡.

(4.28)

In LQG, since the true state x̄𝑡 is unknown, the state estimation x̃𝑡 from the

Kalman filter is used to determine the control input at each time step during the

trajectory execution. This is reasonable because the separation theorem tells us that

67

observer design and controller design can be separated into two independent processes

with the guarantee of LQG optimality. Therefore, the optimal control input can be

given by:

ū𝑡 = 𝐾𝑡+1x̃𝑡. (4.29)

During the execution of the whole desired trajectory, optimal state estimations

based on the Kalman filter and optimal control policy computations based on LQR

take turns and cycles until the execution is complete, so as to optimize the execution

and track the desired trajectory.

Based on the Kalman filter and LQR, we can predict the evolution of the true

state x̄𝑡 and the estimated state x̃𝑡 at each time step 𝑡 as follows [135]:

x̄𝑡 = 𝐴𝑡x̄𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1 + 𝑉𝑡m𝑡,

x̃𝑡 = 𝐴𝑡x̃𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1 + 𝐿𝑡(z̄𝑡 −𝐻𝑡(𝐴𝑡x̃𝑡−1

+ 𝐵𝑡𝐾𝑡x̃𝑡−1))

= 𝐴𝑡x̃𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1 + 𝐿𝑡(𝐻𝑡x̄𝑡 + 𝑊𝑡n𝑡

−𝐻𝑡(𝐴𝑡x̃𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1))

= 𝐴𝑡x̃𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1 + 𝐿𝑡(𝐻𝑡(𝐴𝑡x̄𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1

+ 𝑉𝑡m𝑡) + 𝑊𝑡n𝑡 −𝐻𝑡(𝐴𝑡x̃𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1))

= 𝐴𝑡x̃𝑡−1 + 𝐵𝑡𝐾𝑡x̃𝑡−1 + 𝐿𝑡𝐻𝑡𝐴𝑡x̄𝑡−1 + 𝐿𝑡𝐻𝑡𝑉𝑡m𝑡.

+ 𝐿𝑡𝑊𝑡n𝑡 − 𝐿𝑡𝐻𝑡𝐴𝑡x̃𝑡−1

(4.30)

Equation 4.30 can be rewritten into matrix form:

⎡⎣x̄𝑡

x̃𝑡

⎤⎦ =

⎡⎣ 𝐴𝑡 𝐵𝑡𝐾𝑡

𝐿𝑡𝐻𝑡𝐴𝑡 𝐴𝑡 + 𝐵𝑡𝐾𝑡 − 𝐿𝑡𝐻𝑡𝐴𝑡

⎤⎦⎡⎣x̄𝑡−1

x̃𝑡−1

⎤⎦
+

⎡⎣ 𝑉𝑡 0

𝐿𝑡𝐻𝑡𝑉𝑡 𝐿𝑡𝑊𝑡

⎤⎦⎡⎣m𝑡

n𝑡

⎤⎦ ,

(4.31)

where

68

⎡⎣m𝑡

n𝑡

⎤⎦ ∼ 𝒩 (0,

⎡⎣𝑀𝑡 0

0 𝑁𝑡

⎤⎦). (4.32)

If we define

X𝑡 ,

⎡⎣x̄𝑡

x̃𝑡

⎤⎦ ,

𝐸𝑡 =

⎡⎣ 𝐴𝑡 𝐵𝑡𝐾𝑡

𝐿𝑡𝐻𝑡𝐴𝑡 𝐴𝑡 + 𝐵𝑡𝐾𝑡 − 𝐿𝑡𝐻𝑡𝐴𝑡

⎤⎦ ,

𝐹𝑡 =

⎡⎣ 𝑉𝑡 0

𝐿𝑡𝐻𝑡𝑉𝑡 𝐿𝑡𝑊𝑡

⎤⎦ ,

𝐺𝑡 =

⎡⎣𝑀𝑡 0

0 𝑁𝑡

⎤⎦ ,

(4.33)

and initialize the variances for estimate states with 0 and the variances for true states

with Σ0, then the variance matrix 𝐶𝑡 for X𝑡 can be expressed as:

𝐶𝑡 = 𝐸𝑡𝐶𝑡−1𝐸
𝑇
𝑡 + 𝐹𝑡𝐺𝑡𝐹

𝑇
𝑡 , 𝐶0 =

⎡⎣Σ0 0

0 0

⎤⎦ . (4.34)

Therefore, the matrix of true states and estimated states X𝑡 has the distribution:

X𝑡 ∼ 𝒩 (0, 𝐶𝑡). (4.35)

Substitute into Equation 4.15 and Equation 4.16, we can get the a priori distributions

of the true states and control inputs during the execution of the desired trajectory:

⎡⎣x𝑡

u𝑡

⎤⎦ ∼ 𝒩 (

⎡⎣x*
𝑡

u*
𝑡

⎤⎦ ,Λ𝑡𝐶𝑡Λ
𝑇
𝑡), (4.36)

where

69

Figure 4-3: P-Chekov information flow from nominal trajectories to state probability
distributions.

Λ𝑡 =

⎡⎣𝐼 0

0 𝐾𝑡+1

⎤⎦ . (4.37)

With these a priori distributions of robot states, we can then evaluate the proba-

bility of collision along the desired trajectory to find feasible solutions that can satisfy

the given chance constraint. To summarize, the information flow from nominal tra-

jectories to state probability distributions is illustrated in Figure 4-3.

4.4 Learning-based P-Chekov Experiment Results

The results from [29] indicate that the planning time of quadrature-based p-Chekov

will severely constrain its application in real-time planning tasks that require fast-

reaction. In this section, we first compare the training performance of four different

classes of machine learning methods in the same two tabletop environments as shown

in Figure 4-2, and then demonstrate the performance of neural network-based p-

Chekov, the best performer among the four, with 500 feasible test cases in each

environment.

4.4.1 Comparison between Different Regression Methods

In p-Chekov, since the nominal trajectories generated by the deterministic planner

are guaranteed to be collision-free without the presence of noise, the nominal config-

urations inputted into the collision estimator component is more likely to lie in the

collision-free configuration space. Therefore, the 60000 samples in each environment

include two parts: 20000 have their mean configurations sampled from the entire

70

configuration space (referred to as Sample Set 1), and 40000 have their mean con-

figurations sampled purely from the deterministic collision-free configuration space

(referred to as Sample Set 2). 2000 samples are held out for testing in every ex-

periment no matter how large the training size is. Note that even though the mean

configuration is not in collision, the associated collision risk is not necessarily zero if

the standard deviation is nonzero. Having more samples taken from the deterministic

collision-free space can better represent the practical data p-Chekov faces during on-

line planning. All the 60000 samples from both environments are used when training

neural networks, while we only use Sample Set 1 and half of Sample Set 2 to train

Scikit Learn regressors because they get very slow when the data size exceeds 40000.

In order to find the best parameters for the regressors, we conduct grid search

on kernel ridge regressors and random forest regressors, and use gradient descent on

Gaussian process regressors. Table 4.1 shows the best parameters found for different

kernels in kernel ridge regression as well as random forest regression when the training

data have different sizes. Since gradient descent for Gaussian process is applied during

training to maximize the log marginal likelihood, the best parameters are not shown

in Table 4.1. All the experiments in this section use the best parameters we found

for the corresponding data size.

The comparison between different regression methods on different datasets is

shown in Table 4.2. In each dataset, 2000 randomly selected data points are used for

testing and the rest are used for training. Mean squared error (MSE) and 𝑅2 score

are used to measure the test accuracy for different regressors. Given the predicted

value 𝑦𝑖 and the true value 𝑦𝑖 for each test data point, MSE is calculated by:

MSE(𝑦, 𝑦) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2, (4.38)

and the 𝑅2 score is calculated by:

𝑅2(𝑦, 𝑦) = 1−
∑︀𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1 (𝑦𝑖 − 𝑦𝑖)2
, (4.39)

where 𝑦 = 1
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑︀𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1 𝑦𝑖. Here the 𝑅2 scores are computed using the test data,

71

Table 4.1: Best Parameters in Kernel Ridge Regression and Random Forest Regres-
sion [31]

Regressor
8000 training

data
18000 training

data
38000 training

data
RBF Kernel Ridge

Regression
𝛼 = 0.2, 𝛾 = 0.3 𝛼 = 0.2, 𝛾 = 0.3 𝛼 = 0.2, 𝛾 = 0.5

Polynomial Kernel
Ridge Regression

𝛼 = 0.1,
𝑑𝑒𝑔𝑟𝑒𝑒 = 5

𝛼 = 0.1,
𝑑𝑒𝑔𝑟𝑒𝑒 = 6

𝛼 = 0.1,
𝑑𝑒𝑔𝑟𝑒𝑒 = 6

Matern Kernel Ridge
Regression

𝛼 = 0.1,
𝜈 = 2.29,

𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒 =
1.5

𝛼 = 0.01,
𝜈 = 1.14,

𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒 =
2.5

𝛼 = 0.01,
𝜈 = 1.44,

𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑐𝑎𝑙𝑒 =
1.66

Random Forest
Regression

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =
300,

𝑚𝑖𝑛 𝑠𝑝𝑙𝑖𝑡 = 5,
𝑚𝑖𝑛 𝑙𝑒𝑎𝑓 = 3

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =
600,

𝑚𝑖𝑛 𝑠𝑝𝑙𝑖𝑡 = 5,
𝑚𝑖𝑛 𝑙𝑒𝑎𝑓 = 3

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =
600,

𝑚𝑖𝑛 𝑠𝑝𝑙𝑖𝑡 = 4,
𝑚𝑖𝑛 𝑙𝑒𝑎𝑓 = 3

and the MSE scores and standard deviations are computed using cross validation on

the training data.

In terms of the training time performance, Gaussian process regression and Matern

kernel ridge regression are the slowest. Gaussian process regression conducts gradient

descent to search for best parameters during training, and also outputs distributions

instead of single predicted values, which would explain its low training speed. As for

Matern kernel ridge regression, the best 𝜈 parameter found by grid search is not one of

the default values provided by Scikit Learn, and this would incur a considerably higher

computational cost (approximately 10 times higher) since they require to evaluate the

modified Bessel function [123]. In contrast, random forest regressor tends to take a

very short time to train, and its training time also grows relatively slowly as the

size of training data increases. In terms of prediction accuracy, Matern kernel ridge

regression and random forest regression have the best performance when the training

data include Sample Set 1 data, while polynomial kernel shows the worst performance.

RBF kernel ridge regression shows slightly better performance compared to random

forest regression when the training data are purely from Sample Set 2. When provided

with 38000 training data, the MSE error of random forest regressor is relatively

72

Table 4.2: Comparison of Different Regression Methods [31]

Data Size Regression Method
𝑅2

Score
MSE
Error

Std of
MSE

Training
Time (s)

Set 1

10000

Kernel
Ridge

RBF 0.792 0.0217 0.0006 5.30
Polynomial 0.731 0.0314 0.0010 7.37
Matern 0.801 0.0210 0.0006 40.83

Random Forest 0.799 0.0217 0.0007 1.76
Gaussian Process 0.791 0.0221 0.0006 140.15

20000

Kernel
Ridge

RBF 0.842 0.0180 0.0005 31.78
Polynomial 0.783 0.0261 0.0007 58.21
Matern 0.851 0.0172 0.0005 311.11

Random Forest 0.854 0.0166 0.0006 4.80
Gaussian Process 0.844 0.0181 0.0005 1108.75

Set 2

10000

Kernel
Ridge

RBF 0.616 0.0077 0.0003 5.29
Polynomial 0.551 0.0097 0.0004 8.29
Matern 0.629 0.0075 0.0003 79.25

Random Forest 0.593 0.0083 0.0003 5.48
Gaussian Process 0.626 0.0077 0.0003 166.39

20000

Kernel
Ridge

RBF 0.682 0.0066 0.0002 33.27
Polynomial 0.603 0.0085 0.0002 42.73
Matern 0.697 0.0063 0.0002 213.28

Random Forest 0.661 0.0071 0.0002 4.23
Gaussian Process 0.689 0.0066 0.0002 1337.29

Both
Sets

40000

Kernel
Ridge

RBF 0.847 0.0117 0.0002 435.60
Polynomial 0.773 0.0165 0.0002 261.03
Matern 0.855 0.0110 0.0002 1619.93

Random Forest 0.868 0.0107 0.0002 18.08
Gaussian Process 0.849 0.0113 0.0002 8833.86

satisfactory, and a number of manually selected test points showed that the prediction

is very close to the “ground truth” risk value.

If we compare the results between training on Sample Set 1 and training on Sample

Set 2, we can see that Sample Set 2 tests show a smaller MSE error but a lower 𝑅2

score. This is because the Sample Set 2 data points are all sampled from the collision-

free configuration space, which would tend to have lower collision risk than the in-

collision configurations. Therefore, it is reasonable that a lower absolute value leads

to a lower MSE error. However, since 𝑅2 scores measures the relative error compared

to the variance of the original data, it won’t decrease as the absolute values of data

73

points decrease. One hypothesis about why the 𝑅2 score is lower compared to Sample

Set 1 is that Sample Set 2 tends to have “ground-truth” collision risk close to 0, and

there’s not enough variety on the data distribution to ensure that the regressor can

capture the data structure. This conclusion shows that although in practical motion

planning tasks the configurations that p-Chekov needs to predict collision risk for

are more likely to be in the collision-free configuration space, having data from the

entire configuration space helps the regressor to learn the data distribution better

and achieve higher prediction accuracy.

The neural networks used in this paper are fully connected multi-layer perceptron

networks with ReLU activation for the input layer and hidden layers. Adam [66]

optimizer is used, and the batch size is set to 64. Sigmoid is used as the output

layer activation function since the output is collision probability. MSE is used as the

loss function because this regression problem aims at minimizing the prediction error.

All the 60000 data points are used in the neural network experiments: 58000 are for

training and 2000 are for testing. In all the neural networks tested in this paper, the

number of units in the input layer is kept as 1024, and all the output layer have 1 unit

to match the sigmoid output. We compare the networks’ performance with different

numbers of hidden layers in Figure 4-4, where the top figure represents results from

networks with 512 units in each hidden layer and the bottom figure represents the

ones with 216. The vertical axis in these two figures shows the minimum training

and validation losses within 50 training epochs. From Figure 4-4 we can see that

when the number of hidden layers with 512 units lies between 0 and 9, the neural

networks have relatively stable performance, and the minimum loss has a decreasing

trend as the number of layers increases. However, when the number of hidden layer

reaches 10, the neural networks start to have trouble minimizing the MSE loss. One

of the potential reasons for this phenomenon is that when the neural networks get

very deep, the input to the last activation layer, the sigmoid layer, might get very

large. Since sigmoid function has very small gradient when the input is large, this

could potentially cause the optimizer not being able to properly conduct gradient

descent, which then causes high training losses and validation losses. When there

74

Figure 4-4: Minimum loss as a function of hidden layer numbers [31]

75

Table 4.3: Performance of Neural Network with 9 Hidden Layers with 512 Units
Each [31]

Number of
Training
Epochs

Final
Training
Loss

Final
Validation

Loss

Minimum
Validation

Loss

Number of Epoch
for Minimum
Validation Loss

50 0.001371 0.001698 0.001645 49
70 0.001031 0.001519 0.001437 63
100 0.000426 0.001400 0.001302 99

are 216 units in hidden layers, the minimum loss curves show similar trends, but the

networks have a wider range of hidden layer numbers where the optimization is stable

since the layers are narrower. This is potentially related to the fact that when the

width of each layer is smaller, it takes the networks more layers to reach saturation

where the gradient of activation function approaches zero. The minimum validation

loss in the bottom figure of Figure 4-4 is 0.0017, when the number of hidden layers

is 6, and in the top figure the minimum reaches 0.0016, when the number of hidden

layers is 9. Therefore, the optimal network structure among all tested ones has 9

hidden layers with 512 units each, an input layer with 1024 units and an output layer

with one sigmoid activation unit.

Table 4.3 and Figure 4-5 show the performance of the optimal structure network, 9

hidden layers with 512 units each, when more training epochs are provided. Table 4.3

compares their performance in terms of the training and validation loss after the last

epoch’s training (the “Final Training Loss” and “Final Validation Loss” columns), the

minimum validation loss among all epochs (the “Minimum Validation Loss” column),

and the number of epoch where they reach this minimum (the “Number of Epoch

for Minimum Validation Loss” column). As we can see from Table 4.3, both the

training loss and the validation loss are decreasing given more training epochs, but

the improvement for validation loss is much smaller compared to that of training loss.

This means that as we exploit the training data more, although the performance

of neural networks will gradually improve, this improvement is more about better

fitting the training data structure than generalizing to the entire C-space. Therefore,

we would expect very limited improvement or even decreasing validation performance

76

Figure 4-5: Loss and training epoch relationship for networks with 9 hidden layers
with 512 units each [31]

when training more than 100 epochs. Figure 4-5 also shows that the validation loss

decreases drastically in the first 30 epochs and then starts to drop slowly, whereas the

training loss is still decreasing relatively fast and diverges from the validation loss in

the final 30 epochs.

4.4.2 Neural Network Learning-based P-Chekov Experiment

Results

Section 4.4.1 shows that the best performer among all the tested machine learning

methods on this collision risk regression problem is the neural network with 9 hid-

den layers with 512 units in each layer, thus it is used in this section to evaluate the

performance of learning-based p-Chekov. The collision risk of a solution trajectory re-

turned by learning-based p-Chekov is evaluated with 100 noisy executions. To assess

the chance constraint satisfaction performance of p-Chekov, we provide the definition

of chance constraint satisfied test cases. If p-Chekov works perfectly, the 100 indepen-

dent executions for a particular solution trajectory should all have their probability of

77

collision equal to the chance constraint. For example, if the chance constraint allows

for a 10% collision probability, the probability of collision happening during an exe-

cution should be 10%. Then the number of failures out of the 100 executions follows

a binomial distribution with the number of independent experiments 𝑛 = 100 and

the probability of occurrence in each experiment 𝑝 = 0.1. The cumulative probability

distribution function of binomial distributions can be expressed as:

𝐹 (𝑘;𝑛, 𝑝) = Pr(𝑋 ≤ 𝑘) =
𝑘∑︁
𝑖

(︂
𝑛

𝑖

)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖 (4.40)

For 𝑛 = 100 and 𝑝 = 0.1, we can calculate from Equation 4.40 that the probability

of having less than or equal to 10 failures out of 100 executions is only about 56%.

Similarly, if the chance constraint is 5%, then the probability of having less than

or equal to 5 failures in 100 executions is about 59%. However, to better represent

the actual collision risk of solutions returned by p-Chekov, we want the classification

error for chance constraint satisfied test cases to be small, so that we are confident

to say the test case has violated the chance constraint when there are more than the

corresponding number of executions end up in collision. If we define chance constraint

satisfied test cases as the ones where the collision rate out of 100 executions is lower

than or equal to 1.5 times of the chance constraint, Equation 4.40 shows that for

𝑝 = 0.1 the classification accuracy is about 94%, and for 𝑝 = 0.05 the accuracy is

around 86%. Consequently, we decide to use 1.5 times of the chance constraint as the

boundary between chance constraint satisfied cases and chance constraint violated

cases.

We noticed that a lot of test queries where p-Chekov fails have their start or goal

very close to obstacles. In these cases, feasible solutions might not exist if the collision

probability of the start or goal has already exceeded the chance constraint. Therefore,

we introduce a pre-processing procedure before running p-Chekov in order to filter out

these potentially infeasible test queries. We estimate the collision probability of the

start and goal based on the nominal trajectory computed by deterministic Chekov,

and discard the test cases where the collision probability of either the start or goal

78

exceeds 1.5 times of the chance constraint. Although it is possible that some of these

cases might be feasible since our collision probability estimation approach doesn’t

know the ground truth, most of them are highly likely to be infeasible compared to

other cases where the start and goal has low estimated collision probabilities. We

pick 500 test cases that have passed this pre-processing and refer to them as “feasible

cases”.

Since theoretically p-Chekov only has probabilistic guarantees for waypoints in-

stead of the entire trajectory, we distinguish between continuous-time and discrete-

time chance constraint satisfaction performances. If the 100 noisy executions of a

test case shows that the average continuous-time (or waypoint) collision rate is within

1.5 times of the collision chance constraint, then we say this test case satisfies the

continuous-time (or discrete-time) chance constraint. Only the continuous-time satis-

faction is the true criterion for success, but we use discrete-time performance to show

the impact of edge collisions, i.e. the collisions in between waypoints. The test cases

are divided into five groups: (1) chance constraint is satisfied by the initial determinis-

tic Chekov solution, (2) continuous-time collision rate satisfies the chance constraint,

(3) continuous-time collision rate violates the chance constraint but discrete-time col-

lision rate satisfies it, (4) discrete-time collision rate violates the chance constraint but

the p-Chekov algorithm terminated before it hits its iteration number upper bound,

and (5) p-Chekov terminates because it hit the iteration limit.

Figure 4-6 demonstrates the statistics breakdown of the neural network learning-

based p-Chekov experiments with noise standard deviation 0.0044 and chance con-

straint 10%. From Figure 4-6 we can see that the continuous-time chance constraint

is satisfied in 86.8% of the feasible cases in the “tabletop with a pole” environment

and 79.4% of feasible cases in the “tabletop with a container” environment. The per-

centage of cases that satisfy the discrete-time chance constraint but doesn’t satisfy

the continuous-time chance constraint is small in both environments (7.4% in the

“tabletop with a pole” environment and 4.2% in the “tabletop with a container” envi-

ronment), meaning that the influence of edge collisions is not significant. We randomly

selected a number of test cases where learning-based p-Chekov failed due to timeout

79

or discrete-time chance constraint violation to conduct a closer inspection and found

that most of them have either start or goal pose very close to obstacles. This means

a lot of these cases might be infeasible because the start or goal collision probabil-

ity has already violated the chance constraint, which makes the chance-constrained

query infeasible. Compared with the performance of quadrature-based p-Chekov

shown in [29], we can see that the statistics breakdown for learning-based p-Chekov

is similar to that of quadrature-based p-Chekov. Note that the pre-processing here is

conducted with the learning-based collision estimator, which might select slightly dif-

ferent test cases compared to using the quadrature-based collision estimator because

their estimated risk for the same start and goal pose pair might not be exactly the

same. Since the learning-based collision estimation component is less conservative

than the quadrature-based one, it filters out fewer difficult test cases, which could

explain the relatively lower chance constraint satisfaction rate in Figure 4-6.

We present detailed performance of learning-based p-Chekov in the two tabletop

environments in Table 4.4, and show quadrature-based p-Chekov’s performance in

Table 4.5 for comparison. Table 4.4 shows that learning-based p-Chekov significantly

reduced the overall collision rate (averaged over 500 test cases with 100 noisy execu-

tions each) compared to the nominal trajectories provided by deterministic Chekov.

From both tables we can see that the discrete and continuous chance constraint satis-

faction performances are very close, which means edge collisions in these experiments

don’t have significant influence. Comparing learning-based p-Chekov’s performance

in the continuous chance constraint satisfied cases and violated cases, we can see that

the satisfied cases take much fewer iterations than the violated cases and also have

much lower average collision rate. Comparing Table 4.4 with Table 4.5, we can see

that although the collision rate performance and the path length performance of the

two algorithms are similar, learning-based p-Chekov’s planning time is significantly

shorter, especially in the more difficult “tabletop with a container” environment where

it reduced the average planning time by 67%. In the cases where the continuous chance

constraint is satisfied, learning-based p-Chekov is able to achieve an average planning

time of about 6 s. From the “improvement from IRA” section in table 4.4 we can see

80

Figure 4-6: Learning-based p-Chekov statistics breakdown for feasible cases with end-
effector observation, 0.0044 noise standard deviation and 10% chance constraint [31]

81

Table 4.4: Learning-based P-Chekov Performance with Noise Level 0.0044 and Chance
Constraint 10% [31]

Environment
Tabletop
with a
Pole

Tabletop
with a

Container
Planning Time

(s)
deterministic Chekov 1.12 1.22

p-Chekov 8.65 10.15
Overall

Collision Rate
deterministic Chekov 31.05% 42.54%

p-Chekov 11.82% 18.53%
Average Path
Length (rad)

deterministic Chekov 0.51 0.61
p-Chekov 0.71 0.85

P-Chekov
Performance

continuous chance constraint satisfac-
tion rate

86.80% 79.40%

continuous
satisfied
cases

average iteration number 3.49 4.41
average planning time (s) 6.39 7.96
average collision rate 0.11% 0.12%
average risk reduction 0.27 0.33

continuous
violated
cases

average iteration number 10.66 8.82
average planning time (s) 22.96 18.10
average collision rate 86.19% 85.35%
average risk reduction -0.28 -0.09

discrete chance constraint satisfaction
rate

94.20% 83.60%

discrete
satisfied
cases

average iteration number 4.13 4.59
average planning time (s) 8.29 8.58
average collision rate 0.10% 0.16%
average risk reduction 0.22 0.29

discrete
violated
cases

average iteration number 9.03 9.06
average planning time (s) 13.54 17.69
average collision rate 65.82% 79.65%
average risk reduction -0.19 -0.11

Improvement
from IRA (for

non-zero
number of

IRA iteration
cases)

Without
IRA

continuous satisfaction rate 79.94% 72.31%
discrete satisfaction rate 91.22% 78.23%
average path length 0.88 0.96

With
IRA

continuous satisfaction rate 81.82% 71.24%
discrete satisfaction rate 93.42% 77.42%
average path length 0.86 0.97

82

Table 4.5: Quadrature-based P-Chekov Performance with Noise Level 0.0044 and
Chance Constraint 10% [29]

Environment
Tabletop
with a
Pole

Tabletop
with a

Container
Planning Time

(s)
deterministic Chekov 1.10 1.27

p-Chekov 19.34 31.17
Overall

Collision Rate
deterministic Chekov 27.51% 41.04%

p-Chekov 11.39% 16.46%
Average Path
Length (rad)

deterministic Chekov 0.51 0.60
p-Chekov 0.68 0.84

P-Chekov
Performance

continuous chance constraint satisfac-
tion rate

87.60% 82.20%

continuous
satisfied
cases

average iteration number 4.14 5.19
average collision rate 0.08% 0.11%
average risk reduction 0.25 0.33

continuous
violated
cases

average iteration number 10.52 10.35
average collision rate 88.50% 88.02%
average risk reduction -0.44 -0.13

discrete chance constraint satisfaction
rate

94.40% 86.80%

discrete
satisfied
cases

average iteration number 4.82 5.49
average collision rate 0.13% 0.10%
average risk reduction 0.19 0.28

discrete
violated
cases

average iteration number 6.94 10.32
average collision rate 73.39% 86.59%
average risk reduction -0.39 -0.23

Improvement
from IRA (for

non-zero
number of

IRA iteration
cases)

Without
IRA

continuous satisfaction rate 82.16% 76.80%
discrete satisfaction rate 90.35% 82.67%
average path length 0.81 0.94

With
IRA

continuous satisfaction rate 84.21% 77.87%
discrete satisfaction rate 91.23% 83.47%
average path length 0.77 0.88

83

that IRA can slightly improve the planning phase solutions in the “tabletop with a

pole” environment, but it’s not able to make improvement in the more complicated

“tabletop with a container” environment.

4.4.3 Discussion

To summarize, empirical experiments in robotic manipulation simulation environ-

ments in this section shows that learning-based p-Chekov inherits Chekov’s advantage

in reacting fast to plan requests and its ability of generating smooth motion plans.

By applying supervised-learning techniques to the collision risk estimation module,

learning-based p-Chekov moves significant amount of the computation to off-line to

avoid the requirement on-line Monte Carlo sampling and collision risk estimation.

The comparison of a variety of supervised-learning models in the p-Chekov frame-

work led to the conclusion that neural networks are the best performers in terms of

both training performance and testing performance. We demonstrate that learning-

based p-Chekov with neural networks is able to provide smooth motion plans that

satisfy pre-specified chance-constraints while significantly accelerating the planning

speed. The comparison with sampling-based p-Chekov shows that learning-based p-

Chekov can reduce planning time by 50% - 70% while maintaining similar chance

constraint satisfaction rate.

To further reduce the planning time needed for finding the optimal trajectory

that satisfy the chance constraint, future work should focus on reducing the number

of iterations p-Chekov takes during the planning phase. This can be achieved by

using more conservative constraints during the initial deterministic planning phase

so that the initial nominal trajectory is suboptimal but conservative in terms of the

collision risk. The trajectory can then be further optimized to fully utilize the chance

constraint through IRA during the execution phase.

84

Chapter 5

Empowerment-based Intrinsic

Motivation

This chapter presents the second contribution of this thesis: empowerment-based

intrinsic motivation. Section 5.1 introduces the key concepts necessary for under-

standing our approach, Section 5.2 describes the empowerment-based intrinsic moti-

vation approach, and Section 5.3 presents the empirical evaluation results. Section 5.4

demonstrates a potential application of our approach: learning a diverse set of skills

through intrinsic motivation.

5.1 Background

The key concept in the approach proposed in this chapter is empowerment, which is

originally defined as the maximum mutual information between a sequence of actions

and the final states conditioned on the initial states. In this thesis, we found that

various simplifications and approximations are necessary for adapting this concept to

robotic manipulation tasks. In this section, we present the background knowledge

necessary for understanding the definition of empowerment and our approaches to

simplifying it in the robotic manipulation framework. This section first introduces

the concept of mutual information and methods for maximizing the mutual informa-

tion (Section 5.1.1 - Section 5.1.3) since the key concept in our proposed approach,

85

empowerment, is a form of conditional mutual information. We then describe em-

powerment (Section 5.1.4) and intrinsic curiosity module (Section 5.1.5), two key

methods that are utilized in the empowerment-based intrinsic motivation approach.

Our approach makes simplifications to the empowerment definition to make it prac-

tical for robotic manipulation tasks with continuous state space, and also combine it

with intrinsic curiosity module to get a warm start during training.

5.1.1 Mutual Information

Mutual information (MI) is a fundamental quantity for measuring the mutual depen-

dence between random variables. It quantifies the amount of information obtained

about one random variable through observing the other. For a pair of discrete random

variables 𝑋 and 𝑌 , the MI is defined as:

ℐ(𝑋;𝑌) =
∑︁
𝑥,𝑦

𝑃𝑋𝑌 (𝑥, 𝑦) log
𝑃𝑋𝑌 (𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌 (𝑦)
, (5.1)

where 𝑃𝑋(𝑥) and 𝑃𝑌 (𝑦) are the marginal probability mass functions for 𝑋 and 𝑌

respectively, and 𝑃𝑋𝑌 (𝑥, 𝑦) is the joint probability mass function of 𝑋 and 𝑌 . If 𝑋

and 𝑌 are continuous random variables, then the MI between them can be written

as:

ℐ(𝑋;𝑌) =

∫︁∫︁
𝑝𝑋𝑌 (𝑥, 𝑦) log

𝑝𝑋𝑌 (𝑥, 𝑦)

𝑝𝑋(𝑥)𝑝𝑌 (𝑦)
𝑑𝑥 𝑑𝑦

= E𝑋𝑌

[︁
log

𝑝𝑋𝑌

𝑝𝑋𝑝𝑌

]︁
,

(5.2)

where 𝑝𝑋(𝑥) and 𝑝𝑌 (𝑦) are the marginal probability density functions for 𝑋 and 𝑌

respectively, and 𝑝𝑋𝑌 (𝑥, 𝑦) is the joint probability density function of 𝑋 and 𝑌 .

MI is also often expressed in terms of Shannon entropy [99]:

86

ℐ(𝑋;𝑌) = ℋ(𝑋)−ℋ(𝑋|𝑌)

= ℋ(𝑌)−ℋ(𝑌 |𝑋)

= ℋ(𝑋) +ℋ(𝑌)−ℋ(𝑋, 𝑌)

= ℋ(𝑋, 𝑌)−ℋ(𝑋|𝑌)−ℋ(𝑌 |𝑋),

(5.3)

where ℋ(𝑋) and ℋ(𝑌) are the marginal entropies for random variables 𝑋 and 𝑌

respectively, ℋ(𝑋|𝑌) and ℋ(𝑌 |𝑋) are conditional entropies, and ℋ(𝑋, 𝑌) is the

joint entropy of 𝑋 and 𝑌 . Qualitatively, entropy represents the uncertainty inherent

in the random variable’s possible outcomes. The conditional entropy ℋ(𝑋|𝑌) mea-

sures the average uncertainty about 𝑋 after observing a second random variable 𝑌 .

Quantitatively, it is defined as:

ℋ(𝑋|𝑌) = E𝑌 [−E𝑋|𝑌 log 𝑝𝑋|𝑌], (5.4)

where 𝑝𝑋|𝑌 (𝑥|𝑦) ≡ 𝑝𝑋𝑌 (𝑥, 𝑦)/𝑝𝑌 (𝑦) is the conditional probability density function

of 𝑋 given 𝑌 . Therefore, Equation 5.3 shows that MI represents the reduction in

uncertainty about one random variable after observing the other [130]. Figure 5-1

illustrates intuitively the relationship between mutual information and entropies.

Mutual information is also intimately related to the Kullback-Leibler divergence

(KL-divergence) which measures the distance between two distributions. KL-divergence

is defined as

𝐷𝐾𝐿(𝑃 (𝑧)||𝑄(𝑧)) =
∑︁
𝑧

𝑃 (𝑧) log

(︂
𝑃 (𝑧)

𝑄(𝑧)

)︂
(5.5)

for discrete probability distributions 𝑃 (𝑧) and 𝑄(𝑧), and

𝐷𝐾𝐿(𝑝(𝑧)||𝑞(𝑧)) =

∫︁
𝑝(𝑧) log

(︂
𝑝(𝑧)

𝑞(𝑧)

)︂
𝑑𝑧 (5.6)

for continuous probability distributions 𝑝(𝑧) and 𝑞(𝑧). For jointly discrete or jointly

continuous pairs of random variables (𝑋, 𝑌), MI is the KL-divergence between the

joint distribution and the product of the marginal distributions:

87

Figure 5-1: Mutual Information Illustration

ℐ(𝑋;𝑌) = 𝐷𝐾𝐿(𝑝𝑋𝑌 ||𝑝𝑋𝑝𝑌). (5.7)

Intuitively, Equation 5.7 means that MI can represent how close the true joint dis-

tribution is to the independent joint distribution, which allows MI to capture all

dependencies between the two random variables.

5.1.2 Conditional Mutual Information

Conditional MI measures the mutual dependency between two random variables con-

ditioned on another random variable. The conditional MI between discrete variables

𝑋 and 𝑌 conditioned on 𝑍 is defined as:

88

ℐ(𝑋;𝑌 |𝑍) =
∑︁
𝑧

𝑃𝑍(𝑧)
∑︁
𝑥,𝑦

𝑃𝑋,𝑌 |𝑍(𝑥, 𝑦|𝑧) log
𝑃𝑋,𝑌 |𝑍(𝑥, 𝑦|𝑧)

𝑃𝑋|𝑍(𝑥|𝑧)𝑃𝑌 |𝑍(𝑦|𝑧)

=
∑︁
𝑥,𝑦,𝑧

𝑃𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) log
𝑃𝑍(𝑧)𝑃𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧)

𝑃𝑋,𝑍(𝑥, 𝑧)𝑃𝑌,𝑍(𝑦, 𝑧)

=
∑︁
𝑥,𝑦,𝑧

𝑃𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) log
𝑃𝑋|𝑌,𝑍(𝑥|𝑦, 𝑧)

𝑃𝑋|𝑍(𝑥|𝑧)

=
∑︁
𝑥,𝑦,𝑧

𝑃𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) log
𝑃𝑌 |𝑋,𝑍(𝑦|𝑥, 𝑧)

𝑃𝑌 |𝑍(𝑦|𝑧)
,

(5.8)

where 𝑃𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) is the joint probability mass function for random variables 𝑋, 𝑌

and 𝑍, 𝑃𝑋,𝑌 |𝑍(𝑥, 𝑦|𝑧) is the joint probability mass function for 𝑋 and 𝑌 conditioned

on 𝑍, 𝑃𝑋|𝑌,𝑍(𝑥|𝑦, 𝑧) is the conditional probability mass function for 𝑋 conditioned 𝑌

and 𝑍, 𝑃𝑌 |𝑋,𝑍(𝑦|𝑥, 𝑧) is the conditional probability mass function for 𝑌 conditioned

𝑋 and 𝑍, 𝑃𝑋|𝑍(𝑥|𝑧) and 𝑃𝑌 |𝑍(𝑦|𝑧) are the conditional probability mass functions

for 𝑋 and 𝑌 conditioned on 𝑍 respectively. If 𝑋, 𝑌 and 𝑍 are continuous random

variables, then the conditioned MI can be written as:

ℐ(𝑋;𝑌 |𝑍) =

∫︁
𝑧

(︂∫︁
𝑦

∫︁
𝑥

log
(︁ 𝑝𝑋,𝑌 |𝑍(𝑥, 𝑦|𝑧)

𝑝𝑋|𝑍(𝑥|𝑧)𝑝𝑌 |𝑍(𝑦|𝑧)

)︁
𝑝𝑋,𝑌 |𝑍(𝑥, 𝑦|𝑧) 𝑑𝑥 𝑑𝑦

)︂
𝑝𝑍(𝑧)𝑑𝑧

=

∫︁∫︁∫︁
log
(︁𝑝𝑍(𝑧)𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧)

𝑝𝑋,𝑍(𝑥, 𝑧)𝑝𝑌,𝑍(𝑦, 𝑧)

)︁
𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧

=

∫︁∫︁∫︁
log
(︁𝑝𝑋|𝑌,𝑍(𝑥|𝑦, 𝑧)

𝑝𝑋|𝑍(𝑥|𝑧)

)︁
𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧

=

∫︁∫︁∫︁
log
(︁𝑝𝑌 |𝑋,𝑍(𝑦|𝑥, 𝑧)

𝑝𝑌 |𝑍(𝑦|𝑧)

)︁
𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧,

(5.9)

where 𝑝𝑋,𝑌,𝑍(𝑥, 𝑦, 𝑧) is the joint probability density function for 𝑋, 𝑌 and 𝑍, and

𝑝𝑋,𝑌 |𝑍(𝑥, 𝑦|𝑧), 𝑝𝑋|𝑌,𝑍(𝑥|𝑦, 𝑧), 𝑝𝑌 |𝑋,𝑍(𝑦|𝑥, 𝑧), 𝑝𝑋|𝑍(𝑥|𝑧) and 𝑝𝑌 |𝑍(𝑦|𝑧) are conditional

probability density functions.

Conditional MI can also be written in terms of entropies:

89

Figure 5-2: Conditional Mutual Information Illustration

ℐ(𝑋;𝑌 |𝑍) = ℋ(𝑋|𝑍) +ℋ(𝑌 |𝑍)−ℋ(𝑋, 𝑌 |𝑍)

= ℋ(𝑋|𝑍)−ℋ(𝑋|𝑌, 𝑍)

= ℋ(𝑌 |𝑍)−ℋ(𝑌 |𝑋,𝑍).

(5.10)

Figure 5-2 provides an intuitive illustration of the relationship between mutual infor-

mation, conditional mutual information and entropies. The approaches for estimating

general MI described in Section 5.1.1 can also be applied to estimate conditional MI,

but it is much more difficult to get an accurate approximation for conditional MIs,

especially for continuous random variables. This is because when 𝑍 is a continuous

random variable, estimating ℐ(𝑋;𝑌 |𝑍) for all 𝑍 is approximately equivalent to esti-

mating an infinite number of unconditional MIs. Closed form solution for conditional

MI is only available for a very small number of distributions with linear dependencies

whose closed form entropies are known. Neural function approximators have recently

become powerful tools for numerically estimating conditional MIs for continuous ran-

dom variables [83, 12, 64].

90

5.1.3 Mutual Information Computation

In general, the computation of MI is intractable. Exact computation of MI is only

tractable for discrete random variables and a limited family of problems where the

probability distributions are known [12]. Traditional algorithms for mutual infor-

mation maximization, e.g. the Blahut-Arimoto algorithm [27], don’t scale well to

realistic problems with continuous state space because they typically rely on enumer-

ation. Therefore, instead of computing the exact value of MI, a common approach

for mutual information maximization in the deep reinforcement learning community

is to bound MI from below and maximize the lower bound [110].

Many lower bounds of MI has been proposed that are easier to compute than the

exact value of MI. One of the most commonly used lower bound is the variational

lower bound of MI derived from the non-negativity of KL-divergence. Suppose 𝑋 and

𝑌 are the variables that we want to estimate mutual information on, and the true

conditional distribution of 𝑋 conditioned on 𝑌 is 𝑝(𝑥|𝑦), then the variational lower

bound can be derived as follows:

ℐ(𝑋;𝑌) = E𝑋𝑌

[︁
log

𝑝(𝑥|𝑦) · 𝑞(𝑥|𝑦)

𝑝(𝑥) · 𝑞(𝑥|𝑦)

]︁
= E𝑋𝑌

[︁
log

𝑞(𝑥|𝑦)

𝑝(𝑥)

]︁
+ E𝑋𝑌

[︁
log

𝑝(𝑥|𝑦)

𝑞(𝑥|𝑦)

]︁
= E𝑋𝑌

[︁
log

𝑞(𝑥|𝑦)

𝑝(𝑥)

]︁
+ E𝑌

[︁
𝐷𝐾𝐿(𝑝(𝑥|𝑦)||𝑞(𝑥|𝑦))

]︁
≥ E𝑋𝑌

[︁
log

𝑞(𝑥|𝑦)

𝑝(𝑥)

]︁
,

(5.11)

where 𝑞(𝑥|𝑦) is a variational approximation of 𝑝(𝑥|𝑦), and the bound is tight when

𝑞(𝑥|𝑦) = 𝑝(𝑥|𝑦). In most common reinforcement learning (RL) scenarios, the distribu-

tions we are interested in computing MI on are unknown, and we can only approximate

the exact distributions through monte carlo sampling. If we use the approximated

conditional distribution through sampling as 𝑞(𝑥|𝑦), then Equation 5.11 proves that

using 𝑞(𝑥|𝑦) instead of 𝑝(𝑥|𝑦) to estimate the MI provides a lower bound for the true

MI, and the bound is tight when the approximated conditional distribution converges

to the true conditional distribution, i.e. 𝑞(𝑥|𝑦) = 𝑝(𝑥|𝑦). The derivation of Equa-

91

tion 5.11 is based on the fact that the KL-divergence is always non-negative [28], i.e.

𝐷𝐾𝐿(𝑝(𝑥|𝑦)||𝑞(𝑥|𝑦) ≥ 0.

For conditional MI ℐ(𝑋;𝑌 |𝑍), the variational lower bound can be derived as:

ℐ(𝑋;𝑌 |𝑍) = E𝑋𝑌 |𝑍

[︁
log

𝑝(𝑥|𝑦, 𝑧) · 𝑞(𝑥|𝑦, 𝑧)

𝑝(𝑥|𝑧) · 𝑞(𝑥|𝑦, 𝑧)

]︁
= E𝑋𝑌 |𝑍

[︁
log

𝑞(𝑥|𝑦, 𝑧)

𝑝(𝑥|𝑧)

]︁
+ E𝑋𝑌 |𝑍

[︁
log

𝑝(𝑥|𝑦, 𝑧)

𝑞(𝑥|𝑦, 𝑧)

]︁
= E𝑋𝑌 |𝑍

[︁
log

𝑞(𝑥|𝑦, 𝑧)

𝑝(𝑥|𝑧)

]︁
+ E𝑌 |𝑍

[︁
𝐷𝐾𝐿(𝑝(𝑥|𝑦, 𝑧)||𝑞(𝑥|𝑦, 𝑧))

]︁
≥ E𝑋𝑌 |𝑍

[︁
log

𝑞(𝑥|𝑦, 𝑧)

𝑝(𝑥|𝑧)

]︁
.

(5.12)

where 𝑞(𝑥|𝑦, 𝑧) is a variational approximation of 𝑝(𝑥|𝑦, 𝑧), and the bound is tight

when 𝑞(𝑥|𝑦, 𝑧) = 𝑝(𝑥|𝑦, 𝑧).

Other variational lower bounds of MI have also been derived based on a broader

class of distance measures called 𝑓 -divergence [76], of which the KL-divergence is a

special case. The 𝑓 -divergence between two distributions 𝑃 and 𝑄 is defined as:

𝐷𝑓 (𝑃 (𝑧)||𝑄(𝑧)) =

∫︁
𝑓

(︂
𝑑𝑃

𝑑𝑄

)︂
𝑑𝑄

=

∫︁
𝑧

𝑓

(︂
𝑝(𝑧)

𝑞(𝑧)

)︂
𝑞(𝑧) 𝑑𝑧,

(5.13)

where the generator function 𝑓 : R+ → R is a convex, lower-semicontinuous function

satisfying 𝑓(1) = 0. The variational lower bound of 𝑓 -divergences has been derived

in [87] and [88]:

𝐷𝑓 (𝑃 (𝑧)||𝑄(𝑧)) ≥ sup
𝐹∈ℱ

(E𝑧∼𝑃 [𝐹 (𝑧)]− E𝑧∼𝑄[𝑓 *(𝐹 (𝑧))]), (5.14)

where ℱ is an arbitrary class of functions 𝐹 : 𝒵 → R, and 𝑓 * is the convex conjugate

of 𝑓 . Equation 5.14 yields a lower bound because the class of functions ℱ may only

contain a subset of all possible functions, and under mild conditions on 𝑓 [87], the

bound is tight when:

92

𝐹 (𝑥) = 𝑓 ′
(︂
𝑝(𝑧)

𝑞(𝑧)

)︂
. (5.15)

KL-divergence is a special case of 𝑓 -divergence when the generator function 𝑓(𝑢) =

𝑢 log 𝑢 [88]. Therefore, a lower bound of KL-divergence can be derived as [12]:

𝐷𝐾𝐿(𝑃 ||𝑄) ≥ sup
𝑇∈𝒯

E𝑃 [𝐹]− E𝑄[𝑒𝐹−1]. (5.16)

From Equation 5.7 we know that MI can be represented as the KL-divergence between

the joint distribution and the product of the marginal distribution, hence a lower

bound of MI can be derived from Equation 5.16:

ℐ(𝑋;𝑌) ≥ sup
𝐹∈𝒯

E𝑝𝑋𝑌
[𝐹]− E𝑝𝑋𝑝𝑌 [𝑒𝐹−1]. (5.17)

where ℱ is an arbitrary class of functions 𝐹 : 𝒳 × 𝒴 → R. For conditional MI

ℐ(𝑋;𝑌 |𝑍), the KL-divergence lower bound can be written as:

ℐ𝐾𝐿(𝑋;𝑌 |𝑍) ≥ sup
𝐹∈ℱ

E𝑝𝑋𝑌 |𝑍 [𝐹]− E𝑝𝑋|𝑍𝑝𝑌 |𝑍 [𝑒𝐹−1], (5.18)

where ℱ is an arbitrary class of functions 𝐹 : 𝒳 × 𝒴 × 𝒵 → R.

Jensen-Shannon (JS) divergence is another special case of 𝑓 -divergence. It can be

expressed in terms of KL-divergence:

𝐷𝐽𝑆(𝑃 ||𝑄) =
1

2
𝐷𝐾𝐿(𝑃 ||𝑀) +

1

2
𝐷𝐾𝐿(𝑄||𝑀), (5.19)

where 𝑀 = 1/2(𝑃 + 𝑄). JS-divergence represents the mutual information between

a random variable 𝐴 associated to a mixture distribution between 𝑃 and 𝑄 and a

binary indicator variable 𝐵 that is used to switch between 𝑃 and 𝑄. In particular, if

we use 𝑃 to represent the joint distribution 𝑝𝑋𝑌 and use 𝑄 to represent the product

of the marginal distributions 𝑝𝑋𝑝𝑌 , then:

93

𝑝(𝐴|𝐵) =

⎧⎪⎨⎪⎩𝑝(𝑥, 𝑦) if 𝐵 = 0,

𝑝(𝑥)𝑝(𝑦) if 𝐵 = 1.

(5.20)

That is, the random variable 𝐴 is chosen according to the probability measure 𝑀 =

(𝑃 + 𝑄)/2, and its distribution is the mixture distribution. Then the relationship

between JS-divergence and mutual information can be derived as follows [120, 50]:

ℐ(𝐴;𝐵) = ℋ(𝐴)−ℋ(𝐴|𝐵)

= −
∑︁

𝑀 log𝑀 +
1

2
[
∑︁

𝑃 log𝑃 +
∑︁

𝑄 log𝑄]

= −
∑︁ 𝑃

2
log𝑀 −

∑︁ 𝑄

2
log𝑀 +

1

2
[
∑︁

𝑃 log𝑃 +
∑︁

𝑄 log𝑄]

=
1

2

∑︁
𝑃 (log𝑃 − log𝑀) +

1

2

∑︁
𝑄(log𝑄− log𝑀)

= 𝐷𝐽𝑆(𝑃 ||𝑄).

(5.21)

Therefore, if we define the Jensen-Shannon mutual information (JSMI) between two

random variables 𝑋 and 𝑌 as the JS-divergence between their joint distribution and

the product of their marginal distributions, i.e. ℐ𝐽𝑆(𝑋;𝑌) ≡ 𝐷𝐽𝑆(𝑝𝑋𝑌 ||𝑝𝑋𝑝𝑌), then

Equation 5.21 shows that:

ℐ𝐽𝑆(𝑋;𝑌) = ℐ(𝐴;𝐵). (5.22)

The advantage of using JS-divergence is that it is not only symmetric but also

bounded from both below and above [64]. Although different from the commonly

accepted definition of MI, JSMI is closely correlated to MI and can also represent the

mutual dependence between random variables.

It is shown in [88] that JS-divergence is a special case of 𝑓 -divergence when the

generator function 𝑓(𝑢) = −(𝑢 + 1) log((1 + 𝑢)/2) + 𝑢 log 𝑢. We can then derive a

lower bound of the JSMI [56, 64] according to the property of 𝑓 -divergence shown in

Equation 5.14:

94

ℐ𝐽𝑆(𝑋;𝑌) = 𝐷𝐽𝑆(𝑝𝑋𝑌 ||𝑝𝑋𝑝𝑌)

≥ sup
𝐹∈ℱ

E𝑝𝑋𝑌
[log 2− log(1 + 𝑒−𝐹)]− E𝑝𝑋𝑝𝑌 [𝐷*

𝐽𝑆(log 2− log(1 + 𝑒−𝐹))]

= sup
𝐹∈𝒯

E𝑝𝑋𝑌
[−sp(−𝐹)]− E𝑝𝑋𝑝𝑌 [sp(𝐹)] + log 4,

(5.23)

where 𝐷*
𝐽𝑆(𝑢) = − log(2 − exp(𝑢)) is the Fenchel conjugate of JS-divergence, and

sp(𝑢) = log(1 + exp(𝑢)) is the soft plus function. The Jensen-Shannon lower bound

for conditional MI can be written as:

ℐ𝐽𝑆(𝑋;𝑌 |𝑍) = 𝐷𝐽𝑆(𝑝𝑋𝑌 |𝑍 ||𝑝𝑋|𝑍𝑝𝑌 |𝑍)

≥ sup
𝐹∈ℱ

E𝑝𝑋𝑌 |𝑍 [log 2− log(1 + 𝑒−𝐹)]− E𝑝𝑋|𝑍𝑝𝑌 |𝑍 [𝐷*
𝐽𝑆(log 2− log(1 + 𝑒−𝐹))]

= sup
𝐹∈ℱ

E𝑝𝑋𝑌 |𝑍 [−sp(−𝐹)]− E𝑝𝑋|𝑍𝑝𝑌 |𝑍 [sp(𝐹)] + log 4,

(5.24)

where ℱ is an arbitrary class of functions 𝐹 : 𝒳×𝒴×𝒵 → R. Following Equation 5.15

we can then derive that the bound for conditional JSMI is tight when:

𝐹 (𝑥) = 𝑓 ′
(︂

𝑝(𝑥, 𝑦|𝑧)

𝑝(𝑥|𝑧)𝑝(𝑦|𝑧)

)︂
. (5.25)

Note that Equation 5.23 is not a lower bound for the MI we defined in Equa-

tion 5.2, but since the two MIs are closely related, it is also often used to estimate

the MI defined in Equation 5.2. In this thesis, we refer to the variational lower bound

in Equation 5.11 as VLB, the lower bound based on KL-divergence in Equation 5.17

as KLD, and the lower bound for JS-divergence based mutual information in Equa-

tion 5.23 as JSD.

5.1.4 Empowerment

Empowerment is an information-theoretic quantity that measures the value of the in-

formation an agent obtains in the action-observation sequences it experiences during

95

the reinforcement learning process [83]. Empowerment ℰ is defined as the maximum

mutual information between a sequence of 𝐾 actions a and the final state s′, condi-

tioned on a starting state s:

ℰ(s) = max
𝜋
ℐ𝜋(a, s′|s) = max

𝜋
E𝑝(𝑠′|𝑎,𝑠)𝜋(𝑎|𝑠)

[︂
log

(︂
𝑝(a, s′|s)

𝜋(a|s)𝑝(s′|s)

)︂]︂
, (5.26)

where a = {𝑎1, . . . , 𝑎𝐾} is a sequence of 𝐾 primitive actions leading to a final state

s′, 𝜋(a|s) is exploration policy over the 𝐾-step action sequences, 𝑝(s′|a, s) is the 𝐾-

step transition probability of the environment, 𝑝(a, s′|s) is the joint distribution of

actions sequences and the final state conditioned on the initial state s, and 𝑝(s′|s) is

the marginalized probability over the action sequence.

Empowerment indicates the amount of information contained in the action se-

quences a about the future state s′. It provides a well-grounded, task-agnostic mea-

sure of intrinsic motivation for reinforcement learning agents. An empowerment-based

agent generates an open-loop sequence of𝐾 actions into the future according to 𝜋(a|s)

in order to compute the empowerment of its current state. When optimized using

Equation 5.26, 𝜋(a|s) becomes an efficient exploration policy that allows for uniform

exploration of the state space reachable at horizon 𝐾. However, as stated in Mo-

hamed and Rezende [83], this open-loop exploration policy should only be used for

internal planning while computing the empowerment values along the map. When the

agent acts in the world, it should follow a closed-loop policy obtained by a planning

algorithm using the calculated empowerment values.

Mohamed and Rezende [83] proposed to separate the state empowerment com-

putation and the intrinsic motivated learning into two separate phases. Although

this approach might work well in the grid world environments they studied, it would

become infeasible in high-dimensional, continuous state space to compute the em-

powerment values for all states beforehand. Instead, approximations like one-step

empowerment or computing empowerment of a local neighborhood during learning

are needed in most practical robotics manipulation applications in order to utilize

96

this approach. In this thesis, we make various simplifications and approximations

including the one-step action simplification to make this approach work on practical

robotic manipulation tasks.

5.1.5 Intrinsic Curiosity Module

Intrinsic Curiosity Module (ICM) [100] is one of the state-of-the-art novelty-driven

intrinsic exploration approaches that aims at learning new skills by performing actions

whose consequences are hard to predict. The intuition behind ICM is that curiosity

is what drives babies to explore the environment and discover novel skills, hence it

might also be able to facilitate a robotic agent in its learning process as well. In order

to pursue novelty without being distracted by noises in the visual world, ICM learns

a low-dimensional feature representation from the original image input using its two

components: an inverse model that finds the action given the feature representation

of the current state and the next state, and a forward model that predicts the feature

representation of next state based on the current state and the action:

Inverse Model: 𝑎̂𝑡 = 𝑔(𝜑(𝑠𝑡), 𝜑(𝑠𝑡+1));

Forward Model: 𝜑(𝑠𝑡+1) = 𝑓(𝜑(𝑠𝑡), 𝑎𝑡).
(5.27)

ICM trains an inverse model 𝑔 to learn a feature encoding 𝜑 that captures the

parts of the state space related to the consequences of the agent’s actions, so that

the agent will focus on the relevant part of the environment and not get distracted

by other details in the camera observations. It also learns the forward model 𝑓 to

predict the feature encoding in the next time step, and uses the prediction error of

the forward model as the intrinsic reward in order to facilitate the agent to explore

the part of the state space where it can’t predict the consequences of its own actions

very well. ICM has shown its effectiveness in video games including VizDoom and

Super Mario Bros.

In this thesis, we argue that curiosity and empowerment are two opposite con-

cepts that both can be utilized as intrinsic motivations for robot learning. Curiosity

97

seeks novelty in states and prefers actions that generates unpredictable consequences,

whereas empowerment maximizes the amount of information obtained through a se-

quence of actions and favors actions that lead to predictable outcomes. We view a

curiosity-driven agent as an exploring agent, and an empowerment-driven agent as a

controlling agent. We argue that exploration should be prioritized at the beginning

of the learning process and controllability should be prioritized during the late stage

of learning in order to learn specialized skills. In this thesis, we propose a novel

form of intrinsic motivation that achieves superior performance compared to other

state-of-the-art intrinsic exploration approaches through integrating and balancing

empowerment and curiosity.

5.2 Approach: Empowerment-based Intrinsic Moti-

vation

We hypothesize that empowerment would be a good candidate for augmenting the

sparse extrinsic rewards in manipulation tasks because it indicates the amount of

information contained in the action sequence a about the future state s′. Through

maximizing empowerment, we are effectively encouraging the agent to influence the

environment in a predictable way, which is the desired behavior in most manipula-

tion tasks. The intuition behind the concept of empowerment can be illustrated in

a robotic manipulation environment, as shown in Figure 5-3. In the column (a) of

Figure 5-3, the robotic manipulator is moving around without touching the target

object, which means it is not influencing the state of the environment, hence the em-

powerment should be zero in this scenario. In column (b), although the manipulator is

interacting with the target object, the interactions are random and the consequences

are difficult to predict, which means the empowerment value in this scenario will be

low. In comparison, the manipulator is conducting desirable behaviors such as lifting

and pushing in column (c). The influence of the robotic agent’s action on the states

of the environment is more predictable in this scenario, hence the empowerment value

98

Figure 5-3: Empowerment Intuition

should also also higher.

However, as a form of conditional MI for continuous variables, the computation of

empowerment is especially challenging. This is because for conditional MI ℐ(𝑋;𝑌 |𝑍)

with continuous 𝑍, estimating ℐ(𝑋;𝑌 |𝑍) for all 𝑍 is approximately equivalent to

estimating an infinite number of unconditional MIs. In this section, we discuss the

approaches we take to make empowerment a feasible form of intrinsic motivation in

practical robotic manipulation tasks [34].

5.2.1 Approximations to Simplify Empowerment Calculation

[83] suggest that the empowerment at each state in the state space can be calcu-

lated using an exploration policy 𝜋(a|s) that generates an open-loop sequence of 𝐾

actions into the future (Equation 5.26), so that a closed-loop policy can be obtained

by a planning algorithm using the calculated empowerment values. Although [83]

99

demonstrated the effectiveness of this approach in grid world environments, it is in-

feasible to precompute the empowerment values for all states in a high-dimensional,

continuous state space. Therefore, we make a few approximations in order to make

empowerment-based intrinsic motivation a practical approach. First, we use only one

action step instead of an action sequence to estimate empowerment. This means we

will sacrifice the globally optimality while computing empowerment, but it reduces

the dimensionality and simplifies the computation significantly. Second, instead of

constructing a separate exploration policy 𝜋 to first compute empowerment and then

plan a closed-loop policy according to empowerment, we directly optimize the behav-

ior policy 𝜔 using empowerment as an intrinsic reward in an RL algorithm. These

two approximations mean that the agent will only be looking at the one-step reach-

able neighborhood of its current state to find the policy that leads to high mutual

information. Despite sacrificing global optimality, this approach prioritizes the pol-

icy that controls the environment in a principled way so that more extrinsic task

rewards can be obtained compared to using random exploration, which help resolve

the fundamental issue in sparse reward tasks.

In addition to the above two approximations, it is also important to note that in

robotic manipulation tasks, we are typically not interested in the mutual dependence

between robot action and robot states, and we wish to avoid the robot trivially maxi-

mizing empowerment through motion of its own body. Therefore, we assume that the

state space can be divided into intrinsic states s𝑖𝑛 (robot states) and extrinsic states

s𝑒𝑥 (environment states), and only extrinsic states are used as s′ when calculating

empowerment. Namely, the empowerment used in this chapter is defined as:

ℰ(s𝑡) ≈ ℐ𝜔(a𝑡, s
𝑒𝑥
𝑡+1|s𝑡) = ℋ𝜔(a𝑡|s𝑡)−ℋ𝜔(a𝑡|s𝑒𝑥𝑡+1, s𝑡), (5.28)

where 𝜔 is the behavior policy, and the relationship to Shannon Entropy is derived

from Equation 5.3.

100

5.2.2 Maximizing Empowerment using Mutual Information Lower

Bounds

Neural function approximators have become powerful tools for numerically estimating

conditional MIs for continuous random variables [83, 12, 64]. However, in most RL

scenarios, since exact distributions are typically unavailable and numerical estimation

through sampling is required, computation of high-dimensional conditional MI remain

challenging. As mentioned in Section 5.1.3, a common practice is to maximize a

lower bound of MI instead of its exact value. In order to evaluate the performance

of different MI lower bounds and select the appropriate bound for the experiments in

this thesis, we first conduct a unit test on distributions with known conditional MI.

We test the performance of the three MI lower bounds introduced in Section 5.1.3: the

variational lower bound (VLB, shown in Equation 5.11), the lower bound based on

KL-divergence (KLD, shown in Equation 5.17), and the lower bound for JS-divergence

based mutual information (JSD, shown in Equation 5.23).

Unit Tests on Conditional Mutual Information Estimation

Consider random variables 𝑋, 𝑌 and 𝑍, whose distributions can be described as

follows:

𝑍 ∼ 𝒩 (0, 𝜎2
𝑧),

𝑋 = 𝑍 + 𝑒,

𝑌 =

⎧⎪⎨⎪⎩𝑍 + 𝑋 · 𝑍 + 𝑓, if 𝑍 > 0

𝑓, if 𝑍 ≤ 0

𝑒 ∼ 𝒩 (0, 1),

𝑓 ∼ 𝒩 (0, 𝑛2).

(5.29)

In words, random variable 𝑍 is zero-mean, Gaussian distributed, random variable 𝑋

linearly depends on 𝑍 and is subject to a Gaussian-distributed noise 𝑒, and random

variable 𝑌 is a linear combination of 𝑋 and 𝑍 with noise 𝑓 only when 𝑍 > 0. Based

101

on the properties of linear combinations of Gaussian distributions, we can compute

the conditional distributions:

𝑋|𝑍 ∼ 𝒩 (𝑧, 1),

𝑌 |𝑋,𝑍 ∼ 𝒩 (𝑧 + 𝑧 · 𝑥, 𝑛2),

𝑌 |𝑍 ∼ 𝒩 (𝑧 + 𝑧2, 𝑛2 + 𝑧2).

(5.30)

We know that for bivariate Gaussian distributions with correlation coefficient 𝜌,

the mutual information can be computed as [49]:

ℐ = −1

2
log(1− 𝜌2). (5.31)

The conditional distributions 𝑋|𝑍 and 𝑌 |𝑍 can be expressed in terms of bivariate

Gaussian distributions:

⎡⎣𝑋|𝑍
𝑌 |𝑍

⎤⎦ ∼ 𝒩 (

⎡⎣ 𝑧

𝑧 + 𝑧2

⎤⎦ ,

⎡⎣1 𝑧

𝑧 𝑧2 + 𝑛2

⎤⎦). (5.32)

Therefore, we can compute the correlation coefficient between 𝑋|𝑍 and 𝑌 |𝑍:

𝜌 =
𝑧√

𝑧2 + 𝑛2
. (5.33)

Hence, the conditional MI ℐ(𝑋;𝑌 |𝑍) is:

ℐ(𝑋;𝑌 |𝑍) = −1

2
log(1− 𝑧2

𝑧2 + 𝑛2
)

=
1

2
log(1 +

𝑧2

𝑛2
).

(5.34)

With the theoretical conditional MI, we can then evaluate the accuracy of different

estimation approaches.

Equation 5.11, Equation 5.17 and Equation 5.23 in Section 5.1.3 provide three

different approaches to estimate mutual information. Here we refer to them as the

VLB bound, the KLD bound and the JSD bound respectively for convenience. We

conduct tests on the 𝑋, 𝑌 and 𝑍 random variables described above with 𝜎𝑧 = 1

102

Table 5.1: Comparison of Mutual Information Estimation Approaches [34]

Dimension
Theoretical
Average MI

Training
Data Size

Root Mean Square Error (RMSE)
VLB KLD JSD

1 0.2911

20000 0.0713 0.1661 0.1594
40000 0.0424 0.1291 0.1242
60000 0.0502 0.1509 0.1785

2 0.5821

20000 0.0974 0.3745 0.2578
40000 0.1121 0.3517 0.3292
60000 0.0942 0.2139 0.2105

3 0.8732

20000 0.1594 0.4825 0.4573
40000 0.1508 0.4828 0.4573
60000 0.1407 0.4129 0.3176

4 1.1643

20000 0.2222 0.5879 0.5406
40000 0.1665 0.6092 0.4101
60000 0.1611 0.4928 0.4326

and 𝑛 = 0.5. We use a neural network with one hidden layer of 256 units as the MI

estimator for each approach. We compare the performance of the three different esti-

mation approaches given different variable dimensions and different sizes of training

data, and the results are shown in Table 5.1. The performance of each estimation

approach is evaluated based on the root mean square error (RMSE) compared to the

theoretical value of MI computed through Equation 5.34.

From Table 5.1 we can see that VLB has the lowest RMSE in all the test cases on

this random variable set, whereas the KLD bound performs the worst in most cases.

Another finding is that increasing the size of training data generally speaking helps

improve the MI estimation accuracy, however, overfitting might happen when the

dimensionality of random variables is too low and the training data size is too large.

The “Theoretical Average MI” column in Table 5.1 is computed through randomly

sampling 10000 𝑧 values from the 𝑍 distribution and averaging their theoretical MI

values, and it provides a reference when analyzing the RMSE values. From the com-

parison between the RMSE and the absolute values of theoretical average MI we can

see that it is possible to get a relatively accurate approximation of the conditional

MI through numerical estimation when the mutual dependency between random vari-

ables are simple. Despite being promising, this result doesn’t mean that numerical

103

estimations with neural networks can work well with high-dimensional random vari-

ables with complicated dependencies. In terms of estimating the conditional MI of

the continuous random variables we tested on, VLB performs the best in all cases

and KLD performs the worst in most cases. However, there is also no guarantee that

VLB will provide the best estimations for all distributions, but it did indicate the

KLD bound can’t provide a stable and relatively accurate estimation even for simple

distributions. Therefore, in the robotics experiments in this thesis, we consider the

VLB bound and the JSD bound only for mutual information estimation. We noticed

that JSD is the best performer in experiments with the Fetch robot and VLB is the

best performer in experiments with the PR2 robot, hence we will only report the

results with the corresponding best performer in each environment.

5.2.3 Combination with ICM to Facilitate Empowerment Com-

putation

Another challenging issue with empowerment-based RL is that well-balanced data are

not easy to obtain at the beginning of training. If we initialize the RL agent with a

random policy, it will highly likely explore much more of the empty space than regions

with object interactions because the interaction-free part of the state space is often

much larger. However, since a𝑡 and s𝑒𝑥𝑡+1 are independent without interactions, the

training data fed into the empowerment estimation network will be strongly biased

towards the zero empowerment regions, which makes it very difficult to train accurate

estimation models. Therefore, it is crucial that enough training data in the interact-

ing part of the state space can be obtained at the beginning of training in order to

get accurate estimations of empowerment. We achieve this through combining em-

powerment with the forward model of ICM introduced in Section 5.1.5 using adaptive

coefficients, which initially place more weight on ICM rewards to ensure enough well-

balanced data are fed to the empowerment estimation networks, and then switches

more weight to empowerment rewards to encourage the robot to learn controllable

behaviors.

104

Figure 5-4: Overview of the empowerment-based intrinsic motivation approach [34]

105

Figure 5-4 summarizes the proposed empowerment-based intrinsic motivation ap-

proach. The core idea of this approach is to introduce a form of intrinsic reward

𝑟𝑖𝑡 during RL in addition to the extrinsic task reward 𝑟𝑒𝑡 which might be sparse or

binary, so that the reinforcement learning process can be significantly accelerated.

Note that the main difference between intrinsic reward and reward shaping is that

intrinsic rewards are task-agnostic and represent the agent’s motivation to explore the

environment in a certain way, whereas reward-shaping is usually task-specific and it

provides intermediate guidance for the agent to achieve the end goal. We use a hyper-

parameter 𝛽 to represent the intrinsic reward coefficient that trades off the intrinsic

and extrinsic rewards during training. An adaptive coefficient 𝑤𝑡 is determined at

every training step to allocate the intrinsic reward between the empowerment reward

𝑟𝐸𝑚𝑝
𝑡 and the ICM reward 𝑟𝐼𝐶𝑀

𝑡 . 𝑤𝑡 is close to 1 when 𝑟𝐼𝐶𝑀
𝑡 is very small, and is close

to 0 when 𝑟𝐼𝐶𝑀
𝑡 is very large.

5.3 Empirical Evaluation

In this section, we present empirical evaluations of the empowerment-based intrinsic

motivation approach in different robotic manipulation environments with different

shapes of the target object. Experiment results demonstrate that this empowerment-

based intrinsic motivation can outperform other state-of-the-art solutions to sparse-

reward RL tasks and achieve higher extrinsic task rewards faster during learning. In

addition, we also combine this approach with diversity-driven intrinsic motivation and

show that the combination is able to encourage the manipulator to learn a diverse set

of ways to interact with the object, whereas with the diversity-driven rewards alone

the manipulator is only able to learn how to move itself in different directions.

5.3.1 Environment Setup

In order to evaluate the performance of the proposed empowerment-based intrinsic

motivation approach in robotic manipulation tasks, we created four object-lifting

tasks with different object shapes in OpenAI Gym [17] and Gazebo, as shown in

106

Figure 5-5, and compare the performance of our approach with other state-of-the-art

intrinsic motivation approaches including Intrinsic Curiosity Module (ICM) [100] and

Self-supervised Exploration via Disagreement [101] (referred to as the Disagreement

method in this thesis). We also compare our approach with Hindsight Experience

Replay (HER) [4] and vanilla RL without intrinsic motivation. The Gym environment

uses a Fetch robot with a 25D state space (including the poses and velocities of the

end-effector, the gripper and the object) and a 4D action space (including the actions

of the end-effector and gripper), and the Gazebo environment uses a PR2 robot with

a 38D state space (including the poses and velocities of all joints and the object) and

an 8D action space (including the actions of manipulator joints). We also use the

FetchPickAndPlace-V1 task provided in Gym in order to compare with HER because

HER requires a goal-conditioned environment.

In the four object-lifting tasks, the goal is to lift up the object, and the extrinsic

reward is only given when the object’s height is above a threshold. In the pick-and-

place task, the reward is given when the distance of the object to the goal pose is

within a threshold. Our approach can be easily integrated with any standard RL

algorithm, but in this thesis, we use Proximal Policy Optimization (PPO) [122] as

the RL agent for all experiments to demonstrate its performance. Experiments on the

Fetch robot use 60 parallel environments for training, and PR2 experiments use 40

due to its higher CPU requirement. An implementation of HER is directly adopted

from OpenAI Baselines [38], and the implementation details of the other algorithms

including hyperparameters and task rewards are provided in Section 5.3.2.

5.3.2 Implementation Details

For the experiments shown in this chapter, we implemented the proposed empowerment-

based intrinsic motivation approach, the ICM approach and the Disagreement ap-

proach as intrinsic rewards with an on-policy implementation of PPO. We use a three

hidden-layer fully-connect neural network with (128, 64, 32) units in each layer and

softsign as the activation function for both the policy network and the value network,

and set 𝛾 = 0.99 and 𝜆 = 0.95 in the PPO algorithm. We use the Adam optimizer

107

(a) Fetch with a box (b) Fetch with a cylinder

(c) Fetch with a sphere (d) PR2 with a box

Figure 5-5: The simulation environments used in this section include the Fetch robot
in the Mujoco environment and the PR2 robot in the Gazebo environment. The robot
needs to learn how to interact with objects of different shapes, including box, cylinder
and sphere.

108

with learning rate 2e−4. All experiments shown in this chapter are conducted on a

10-core Intel i7 3.0 GHz desktop with 64 GB RAM and one GeForce GTX 1080 GPU.

ICM Implementation In the experiments in this chapter, since we assume pose

estimations are available and do not directly take in image inputs, the inverse model

of ICM is not necessary. In the ICM implementation, we train the forward model 𝑓

by minimizing the forward loss:

ℒ𝑓
𝑡 =

1

2
||𝑓
(︀
s𝑒𝑥𝑡 , a𝑡

)︀
− s𝑒𝑥𝑡+1||22. (5.35)

To compute the forward loss in the ICM approach, we use one 256-unit hidden layer

in the network, and we didn’t compute inverse loss because the observations in this

chapter are poses instead of images. The value of the forward loss ℒ𝑓
𝑡 is also used as

the ICM intrinsic reward:

𝑟𝐼𝐶𝑀
𝑡 = ℒ𝑓

𝑡 , (5.36)

and we normalize 𝑟𝐼𝐶𝑀
𝑡 using running average before summing it up with the extrinsic

reward to get the final reward for training the RL agent:

𝑟𝑡 = 0.01𝑟𝐼𝐶𝑀
𝑡 + 𝑟𝑒𝑡 . (5.37)

Disagreement Implementation In the Disagreement approach, we use the same

network structure as in ICM and use five of these networks as the ensemble to compute

the disagreement reward. We compute the forward losses for each of the five forward

models in the same way as Equation 5.35, and sum up the five forward losses as the

total loss to train the forward models. The intrinsic reward is calculated as:

𝑟𝐷𝑖𝑠
𝑡 = 𝑣𝑎𝑟{ŝ𝑒𝑥,1𝑡+1 , . . . , ŝ

𝑒𝑥,5
𝑡+1 }, (5.38)

where ŝ𝑒𝑥,1𝑡+1 through ŝ𝑒𝑥,5𝑡+1 are the forward predictions made by the five forward models.

We also use running average to get the normalized disagreement intrinsic reward 𝑟𝐷𝑖𝑠
𝑡

109

and then sum it up with the extrinsic reward to get the final reward for training the

RL agent:

𝑟𝑡 = 0.01𝑟𝐷𝑖𝑠
𝑡 + 𝑟𝑒𝑡 . (5.39)

Empowerment Implementation For the neural network that makes empower-

ment prediction in the PR2 environment, we apply Gated Linear Units (GLU) [36]

to improve performance. We use a neural network with four GLU layers with 256

gates each and two hidden fully-connected layers with (128, 64) units to predict

𝑝(a𝑡|s𝑒𝑥𝑡+1, s𝑡), and calculate empowerment with the variational lower bound. Namely,

we use

𝑟𝐸𝑚𝑝
𝑡 = log 𝑝(a𝑡|s𝑒𝑥𝑡+1, s𝑡)− log 𝑝(a𝑡|s𝑡) (5.40)

as the empowerment intrinsic reward so that in expectation, the empowerment reward

being maximized is equivalent to the empowerment defined in Equation 5.28. In the

Fetch environment, we use a neural network with six hidden fully-connected layers

with (512, 512, 216, 128, 64, 32) units to approximate the 𝑇 function in Equation 5.24

and calculate empowerment with the JS-Divergence approximation. In order to ap-

proximate the supremum in Equation 5.24, we use the following loss function in order

to train 𝑇 network:

ℒ𝐸𝑚𝑝
𝑡 = sp(−𝑇 (a𝑡, s𝑡, s

𝑒𝑥
𝑡+1)) + sp(𝑇 (ã𝑡, s𝑡, s

𝑒𝑥
𝑡+1))− log 4, (5.41)

where a𝑡 is the true action executed at time step 𝑡 and ã𝑡 is sampled from the policy.

The empowerment intrinsic reward in the Fetch environment is:

𝑟𝐸𝑚𝑝
𝑡 = 𝑇 (a𝑡, s𝑡, s

𝑒𝑥
𝑡+1). (5.42)

In our empowerment-based intrinsic motivation implementation, empowerment

reward and ICM reward are combined through weight coefficients to ensure that

the agent can collect enough data in the nonzero empowerment region to train the

110

empowerment network well before it is used as the intrinsic reward. The weight

coefficients used in this chapter are:

𝑤𝐼𝐶𝑀
𝑡 = 0.5× (1− tanh(200(𝑟𝐼𝐶𝑀

𝑡 − 0.12))),

𝑤𝐸𝑚𝑝
𝑡 = 1− 𝑤𝐼𝐶𝑀

𝑡 ,
(5.43)

where 𝑟𝐼𝐶𝑀
𝑡 is the forward prediction error (computed through Equation 5.35 and

5.36) averaged from all the parallel environments at time step 𝑡. These weight coef-

ficients make sure that at the beginning of training when the robot don’t have much

interaction with the object, the coefficient for ICM reward is near 1 and the coefficient

for empowerment reward is near 0. After the average ICM reward reaches a certain

threshold, which means the robot have learned to interact with the object and the

empowerment network can obtain enough meaningful data to get well trained, the

coefficient for ICM reward switches to near 0 and the coefficient of the empowerment

reward switches to near 1. Then this intrinsic reward and extrinsic task reward are

combined as the RL algorithm reward:

𝑟𝑖𝑡 = 𝑤𝐼𝐶𝑀
𝑡 𝑟𝐼𝐶𝑀

𝑡 + 𝑤𝐸𝑚𝑝
𝑡 𝑟𝐸𝑚𝑝

𝑡 ,

𝑟𝑡 = 0.01𝑟𝑖𝑡 + 𝑟𝑒𝑡 ,
(5.44)

where 𝑟𝐼𝐶𝑀
𝑡 and 𝑟𝐸𝑚𝑝

𝑡 are normalized using running average.

Extrinsic Task Rewards In the box-lifting task and the pick-and-place task in

the Fetch environment, the object is a cube with 0.05 m edges. In the cylinder-lifting

environment, the height of the cylinder is 0.1 m and the radius is 0.03 m. In the

sphere-lifting environment, the radius of the sphere is 0.04 m. In both the box-lifting

and sphere-lifting task, the task reward is given as Equation 5.45 under the condition

that the center of the grippers is less than 0.01 m away from the center of the object.

In the cylinder-lifting task, the condition for giving task reward is the same, but the

reward is given as Equation 5.46. In the pick-and-place task, the task reward is 1

when the object pose is within 0.05 m of the target pose, and 0 otherwise.

111

Fetch with box or sphere: 𝑟𝑒𝑡 = 50 · (ℎ− 0.01), (5.45)

Fetch with cylinder: 𝑟𝑒𝑡 = 500 · (ℎ− 0.01), (5.46)

In the box-lifting task in the PR2 environment, the object is a cube with 0.06 m

edges, and the task reward is given as Equation 5.47 under the condition that both

grippers are in contact with the object and the object height is at least 0.012 m above

the tabletop.

PR2 with box: 𝑟𝑒𝑡 = 500 · (ℎ− 0.012). (5.47)

5.3.3 Experiment Results

In this section, we provide experiment results that compare the proposed empowerment-

based intrinsic motivation approach with other state-of-the-art algorithms, including

ICM [100], exploration via disagreement [101] (referred to as Disagreement in this

thesis) and HER [4]. We use our implementation of ICM and Disagreement, and use

the OpenAI Baselines implementation [38] for HER. In both ICM and Disagreement,

we also make the same assumption as in the empowerment implementation that the

state space can be divided into intrinsic states and extrinsic states, and only the pre-

diction error or variance of the extrinsic states contribute to the intrinsic rewards. We

run HER with 2 MPI processes with 30 parallel environments each to make sure it

is equivalent to the 60 parallel environments in other experiments. Other parameters

for HER are set to default. All the results in the Fetch environment are averaged

over 10 different random seeds, and the results in the PR2 environment are averaged

over 8 random seeds.

Figure 5-6(a)-(c) compare the performance of our approach with ICM, Disagree-

ment, and PPO without any intrinsic reward in the object-lifting tasks with a Fetch

robot, and Figure 5-7 compares our approach with ICM and Disagreement in box-

lifting tasks with a PR2 robot. In the Fetch environment, the cylinder lifting task is

112

(a) (b)

(c)

Figure 5-6: Experiment results in the Fetch environment. (a)-(c) compare the perfor-
mance of the proposed empowerment-based approach (referred to as empowerment
with ICM since ICM is used to help training the empowerment prediction networks)
with ICM and Disagreement in object lifting tasks. The solid lines represent the
mean, and the shadow areas represent the 95% confidence intervals. [34]

113

Figure 5-7: Experiment results in the PR2 environment comparing the performance
of the proposed empowerment-based approach (referred to as empowerment with ICM
since ICM is used to help training the empowerment prediction networks) with ICM
and Disagreement in object lifting tasks. The solid lines represent the mean, and the
shadow areas represent the 95% confidence intervals. [34]

114

much more difficult compared to box lifting and sphere lifting, thus we use a larger

scale 𝛼 for extrinsic lifting reward. Similarly, we also use a larger 𝛼 for the box-lifting

task with the PR2 robot since this environment is much higher-dimensional and hence

more difficult for an RL agent. From Figure 5-6(a)-(c) we can see that the reward

curve for PPO without any intrinsic reward remains almost zero, which proves that

sparse reward tasks are very challenging for vanilla RL algorithms. In all four envi-

ronments, our empowerment-based approach is able to help the robot achieve higher

lifting rewards faster than other approaches we compared with. The Disagreement

approach is able to perform better in the box lifting task with the Fetch robot after

training for a long time, but it performs much worse than the other two intrinsic moti-

vations in the cylinder and sphere lifting tasks. Another finding from Figure 5-6(a)-(c)

is that the advantage of the empowerment-based intrinsic motivation is much more

obvious in the cylinder and sphere lifting tasks compared to the box lifting tasks. We

hypothesize that this is because the ability of “controlling” the object is much more

important when there are round surfaces, since these objects are more difficult to pick

up and also more likely to randomly roll around when novelty is the only intrinsic

motivation. In fact, in the cylinder lifting task, our empowerment-based intrinsic

motivation is the only approach that allows the agent to learn to directly pick up the

cylinder from the top without knocking it down first, whereas agents trained with ICM

will knock down the cylinder and then pick up radially. Videos of this behavior can

be found at https://sites.google.com/view/empowerment-for-manipulation/.

In Figure 5-7, although the confidence intervals are wider due to the smaller num-

ber of runs, we can still get the similar conclusion that our approach shows the best

performance in the box lifting task in the PR2 environment.

Figure 5-8 compares the empowerment-based intrinsic motivation with HER in

the Fetch pick-and-place environment. We can see that although the average success

rate of HER goes up much faster, it stays at about 0.5 even after a long time of

training. In fact, the maximum value dashed line in Figure 5-8 shows that none of

the 10 runs of HER has reached a success rate of 0.6 or above. In contrast, although

the empowerment approach is slower in the initial learning phase, in 3 out of 10 runs

115

Figure 5-8: Experiment results in the Fetch environment comparing the proposed
empowerment-based approach with HER in pick-and-place tasks. The solid lines
represent the mean, the shadow areas represent the 95% confidence intervals, and the
dashed lines in represent the maximum and minimum values. [34]

116

it has learned to lift up the object and reach the goals in the air accurately and

quickly, and the success rate stays at about 1 in these tests. This is because in the

Gym FetchPickAndPlace-V1 task, half of the goals are sampled from on the table

and half are sampled in the air, thus agents that only learned to push can still reach

the goals close to the tabletop and receive a success rate of about 0.5, but only agents

that actually learned to pick and place will reach a success rate of 1.0.

5.3.4 Off-Policy Implementation

Our algorithm can also be used on off-policy RL algorithms but requires additional

adaptation. This is because intrinsic rewards are not “ground truth” rewards and

their values are not very meaningful until the neural networks are trained to predict

intrinsic rewards well. Since the estimation of conditional mutual information is

very challenging and the empowerment networks typically take a long time to get

well trained, mixing up experiences with reward values predicted at different training

steps in the same replay buffer will influence the overall performance and makes

off-policy training very tricky. Therefore, we implemented an off-policy version by

recomputing the intrinsic reward values with the updated network parameters every

time the algorithm draws experiences from the replay buffer. We demonstrate its

performance in the sphere lifting environment in Gym in Figure 5-9 and show that

the off-policy implementation is much more sample-efficient.

5.4 Application: Learning a Diverse Set of Skills

Besides its advantage in solving sparse reward RL tasks, another driving force for

research on intrinsic motivation is its potential in unsupervised skill discovery. Many

Hierarchical Reinforcement Learning (HRL) frameworks allow RL agents to learn

policies of different levels so that high-level policies only need to focus on the skill-

space that low-level controllers provide instead of the raw state-space. However, the

skills an end-to-end HRL system can learn are limited and they often require guid-

ance from human-designed “curricula” [9, 116, 26]. In contrast, skills discovered by

117

Figure 5-9: Comparison of off-policy implementation and on-policy implementation
of the empowerment-based intrinsic exploration approach in the sphere lifting envi-
ronment. The solid lines represent the mean of 10 experiments with different random
seeds, and the shadow areas represent the 95% confidence intervals. [34]

118

intrinsic motivations can reduce HRL frameworks’ dependence on human engineer-

ing and potentially enable them to learn more complicated tasks. Ultimately, we

hope the empowerment-based intrinsic motivation proposed in this chapter can also

be incorporated into a HRL framework and contribute to the learning of compli-

cated manipulation skills, such as opening a container and stacking objects inside.

In order to see what type of skills an agent can learn with our approach, we pro-

vide preliminary qualitative results combining empowerment and the Diversity is

All You Need (DIAYN) approach [41] in the “Fetch with a box" environment. We

evaluate this combination with two different numbers of skills in DIAYN: 3 skills

shown in Figure 5-10 and 5 skills shown in Figure 5-11. In order to show the ad-

vantage of using our empowerment-based intrinsic motivation during unsupervised

skill discovery, we also evaluate the performance of DIAYN only in the same task

for comparison and show the results in the 5 skills scenario in Figure 5-12. From

Figure 5-11 and 5-12 we can compare the skills learned by combining empowerment

and DIAYN as the intrinsic reward and the skills learned with only DIAYN as the

intrinsic reward. From Figure 5-12 we can see that without an intrinsic motiva-

tion that drives the agent to control the object, the skills learned through a purely

diversity-driven approach are not meaningful in terms of solving manipulation tasks

because they don’t involve interactions with the object. In comparison, Figure 5-

11 demonstrates the potential of this combined intrinsic reward in terms of learning

a set of meaningful manipulation skills, including pushing the object to different

directions and lifting the object up. Videos of the learned skills can be found at

https://sites.google.com/view/empowerment-for-manipulation/.

119

(a) (b) (c)

Figure 5-10: Qualitative performance of the proposed empowerment-based intrinsic
motivation when combined with the diversity-driven DIAYN [41] approach in the
box lifting task with a Fetch robot. (a)-(c) show the different skills learned when the
number of skills in DIAYN is set to 3. [34] From the figures we can see that the robots
has learned different ways of interacting with the object.

(a) (b) (c)

(d) (e)

Figure 5-11: Qualitative performance of the proposed empowerment-based intrinsic
motivation when combined with the diversity-driven DIAYN [41] approach in the
box lifting task with a Fetch robot. (a)-(e) show the different skills learned when the
number of skills in DIAYN is set to 5. [34] From the figures we can see that the robots
has learned different ways of interacting with the object.

120

(a) (b) (c)

(d) (e)

Figure 5-12: Different skills learned with DIAYN [41] without the empowerment-based
intrinsic motivation in the box lifting task with a Fetch robot when the number of
skills is set to 5. [34] From the figures we can see that the skills the robot has learned
do not involve interactions with the object.

121

122

Chapter 6

Automatic Curricula via Expert

Demonstrations

This chapter presents the third contribution of this thesis: Automatic Curricula via

Expert Demonstrations (ACED). Section 6.1 explains the key concepts necessary for

understanding the ACED approach, and Section 6.2 introduces the ACED algorithm.

Section 6.3 describes the empirical evaluation environments and the implementation

details, Section 6.4 presents the empirical evaluation results of ACED in a block pick-

and-place task and a block stacking tasks, and Section 6.5 compares ACED with a

simple combination of behavior cloning and reinforcement learning to demonstrate

the significance of curriculum learning. In Section 6.6, we propose a combination of

ACED and empowerment-based intrinsic motivation and evaluate it in block pick-

and-place tasks.

6.1 Preliminaries

ACED aims at solving robotic manipulation tasks by providing a small number of

demonstration trajectories and formulating a sequence of curriculua by creating RL

tasks using demonstration states. The ACED approach presented in this Chapter can

work with any standard RL algorithm, though in this thesis we only demonstrate its

performance using Proximal Policy Optimization (PPO) [122] with multiple parallel

123

rollout workers.

6.1.1 Behavior Cloning

Given expert demonstration trajectories 𝒯 = {𝜏1, . . . , 𝜏𝑁} where each trajectory in-

cludes state-action pairs, i.e. 𝜏𝑒 = (s0, a0, . . . , s𝑡, a𝑡, . . . , s𝑇−1, a𝑇−1, s𝑇), the objective

of Behavior Cloning (BC) is to learn a mapping from states to actions through super-

vised learning in order to imitate expert behaviors. Due to BC’s demand for a large

amount of demonstrations and its poor generalization performance in unseen states,

it is often used to pre-train the policy network for other imitation learning or RL

approaches as a warm start instead of as a standalone imitation learning approach.

The ACED method introduced in this chapter can also be combined with BC by

using it to pre-train policy networks, and we present this combination in Section 6.2.

We compare the performances of ACED with or without BC in Section 6.4. Note

that demonstration trajectories with state-action pairs are only required by BC, and

if ACED is used without BC, then demonstration trajectories with only states are

sufficient.

6.2 Approach

In order to solve long-horizon manipulation tasks with binary rewards, ACED con-

structs a curriculum by sampling states from expert demonstration trajectories as

initializations for each training episode, where the samples initially come from near

the end of the demonstration trajectories and gradually move forward as the agent

improves its performance [30].

The intuition of ACED is shown in Figure 6-1 with a block stacking example. The

robot is trying to stack a yellow block on top of a green block at a pre-specified location

on the tabletop, and it has received a demonstration trajectory that accomplished the

task. From the demonstration trajectory we can see that the world state is moving

closer and closer towards the goal state as time passes despite the back-and-forth in the

Euclidean space, and states towards the end of the demonstration trajectory are closer

124

Figure 6-1: ACED Intuition

to the goal state within the task space compared to the states towards the beginning.

In other words, if the green block is already placed at its goal and the yellow block

is already in the robot’s hand, then the robot is solving a much easier task compared

to the ones trying to accomplish the same task with randomly placed blocks to start

with. Therefore, if we take the states along this demonstration trajectory to initialize

training episodes, then we can naturally form a set of curricula with increasing task

difficulties if we start RL training with states closer to the end of demonstration and

move towards the beginning as the RL agent improves its performance. This is the

key intuition behind the ACED approach proposed in this chapter.

In ACED, we first collect a set of expert demonstration trajectories 𝒯 and rep-

resent each trajectory 𝜏𝑒 ∈ 𝒯 as a discrete sequence of states at each time step:

𝜏𝑒 = (s0, s1, . . . , s𝑡, . . . , s𝑇−1, s𝑇), where the initial state s0 is randomly sampled

from the initial state distribution 𝑆0 and the final state s𝑇 has a probability of

𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 to reach a goal state randomly sampled from the goal distribution 𝑆𝑔, i.e.

P(s𝑇 = s𝑔) = 𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠, s𝑔 ∈ 𝑆𝑔. We refer to 𝑝𝑠𝑢𝑐𝑐𝑒𝑠𝑠 as the expert success rate. Each

trajectory 𝜏𝑒 is then evenly divided into 𝐶𝑚𝑎𝑥 sections, where section-𝐶𝑚𝑎𝑥 denotes

the section at the beginning of 𝜏𝑒 (near s0) and section-1 denotes the one at the end

(near s𝑇). 𝐶𝑚𝑎𝑥 is a hyperparameter referred to as the total number of curricula.

Figure 6-2 provides an illustration of an example demonstration trajectory and its

125

Figure 6-2: Example of demonstration trajectory segmentation: an expert demon-
stration trajectory can be divided into sections where larger section number indicates
being closer to the initial state. The total number of sections is also called the total
number of curricula 𝐶𝑚𝑎𝑥, and in this example 𝐶𝑚𝑎𝑥 = 3. Normal rollout workers
randomly sample an initial state from the initial state distribution 𝑆0 and a goal state
from the goal state distribution 𝑆𝑔. For curriculum rollout workers, the environments
are reset based on the curriculum number 𝐶: curriculum-𝐶 tasks reset the environ-
ment to a section-𝐶 state on a randomly selected demonstration trajectory. ACED
starts training with 𝐶 = 1 and gradually moves reset states towards the beginning of
demonstration trajectories by increasing 𝐶. When ACED switches to normal rollout
workers, the reset states are drawn from the actual 𝑆0 the target task specifies, and
this is when it starts to generalize to unseen initializations. [30]

segmentation. In Figure 6-2, a demonstration trajectory is divided into three seg-

ments, which corresponds to a total number of curricula of 𝐶𝑚𝑎𝑥 = 3. Section-1

represents the section closest to the goal state distribution 𝑆𝑔 and Section-3 repre-

sents the one closest to the initial state distribution 𝑆0. A key assumption made in

ACED is that all expert demonstrations are reasonable solutions to the problem and

don’t contain unnecessary detours, which guarantees that two states that are close in

the demonstration trajectory are also close in the task space.

We consider two different versions of the ACED algorithm: ACED with BC and

ACED without BC. Algorithm 2 describes the overall framework of ACED with BC.

Given the expert demonstration set 𝒯 = {𝜏1, . . . , 𝜏𝑁}, we can pretrain the network

parameters of the policy 𝜋 of the RL algorithm with BC (line 1). We refer to this ver-

sion of the algorithm as ACED with BC, and if Algorithm 2 is executed without line 1,

then we call it ACED without BC. The performances of the two versions are compared

in pick-and-place tasks in Section 6.4.1. We use a set of parallel environments to gen-

126

erate rollout data for RL training. We refer to the original environment that resets to

initial states sampled from 𝑆0 as the normal rollout worker, and the curriculum-based

environment that resets to demonstration states the curriculum rollout worker. At

every environment step, the normal rollout workers simply take as input the action

predicted by the policy network 𝜋(s𝑡) and returns the state at the next time step s𝑡+1

after simulating for one step. Details of the curriculum rollout worker is described

in Algorithm 3. The main difference between the curriculum rollout workers and the

normal rollout workers is that, at the beginning of each episode, curriculum rollout

workers initialize the environment to states sampled from demonstration states, and

normal rollout workers initialize the environment with states sampled from the initial

state distribution 𝑆0.

At the beginning of training, all parallel environments are set to be curriculum

rollout workers (as shown in Algorithm 2 line 3), and the switch from curriculum

rollout workers to normal rollout workers are controlled by curriculum number 𝐶 ∈

{1, 2, . . . , 𝐶𝑚𝑎𝑥}. At each iteration, Algorithm 2 will collect training data using rollout

workers and optimize the policy using the RL algorithm of choice (line 6 - 8). 𝐶 is

initialized to be 1, and every 𝑡 iterations the algorithm will check the average return

from the most recent 𝑛 episodes and compare it with a threshold 𝜑 (line 9 - 15).

When the average return exceeds the threshold 𝜑, we add 1 to the current curriculum

number 𝐶 if it hasn’t reached 𝐶𝑚𝑎𝑥, or switch to the normal rollout worker if 𝐶 has

reached 𝐶𝑚𝑎𝑥.

At each rollout, as shown in Algorithm 3, the curriculum rollout worker will first

randomly select a demonstration trajectory 𝜏𝑒 and divide it into 𝐶𝑚𝑎𝑥 sections with

equal number of states (line 3). Based on the current curriculum number 𝐶, the

curriculum rollout worker resets the environment to a randomly selected state from

section-𝐶 on the demonstration trajectory 𝜏𝑒 (line 4 and 5). It will then rollout a tra-

jectory using the current policy and return it to Algorithm 2. In our implementation,

each rollout worker keeps track of its own curriculum number and the switch from

a curriculum rollout worker to a normal rollout worker is independent from other

parallel workers’ 𝐶 value.

127

Algorithm 2: Automatic Curriculum Learning with Demonstrations
Input:

𝑇 : number of iterations

𝐶𝑚𝑎𝑥: number of curricula

𝒯 = {𝜏1, . . . , 𝜏𝑁}: demonstration trajectories

𝜑: curriculum switching threshold for average return

𝑡: period for checking average return

𝑛: number of episodes used to compute average return

Output:

𝜋: policy
1 Initialize policy parameters with Behavior Cloning Algorithm

2 Initialize curriculum number 𝐶 ← 1
3 Initialize rollout worker 𝑊 ← CurriculumRolloutWorker

4 Initialize experience ℰ ← {}
5 for 𝑖 = 1, 2, . . . , 𝑇 do

6 𝜏 ←𝑊.rollout(𝐶,𝐶𝑚𝑎𝑥, 𝒯 , 𝜋)
7 Add 𝜏 to ℰ
8 Send ℰ to RL Algorithm and update 𝜋
9 if 𝑖 mod 𝑡 == 0 then

10 𝑅← Evaluate the average return on the most recent 𝑛 episodes

11 if 𝑅 > 𝜑 then

12 if 𝐶 < 𝐶𝑚𝑎𝑥 then

13 𝐶 ← 𝐶 + 1
14 else

15 𝑊 ← NormalRolloutWorker

16 end

17 end

18 end

19 end

128

Algorithm 3: CurriculumRolloutWorker
Input:

𝐶: current curriculum number

𝐶𝑚𝑎𝑥: total number of curricula

𝒯 = {𝜏1, . . . , 𝜏𝑁}: demonstration trajectories

𝜋: current policy
Output:

𝜏 : rollout trajectory
1 Randomly select a trajectory from demonstrations 𝜏𝑒 ∈ 𝒯
2 𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 = len(𝜏𝑒)− 1 /* Make sure to not sample the goal state */

3 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = RoundDown(𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠/𝐶𝑚𝑎𝑥) /* Divide the demonstration

trajectory 𝜏𝑒 into 𝐶𝑚𝑎𝑥 intervals */

4 𝑖𝑛𝑑𝑒𝑥 = RandInt(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) + 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × (𝐶𝑚𝑎𝑥 − 𝐶) /* Randomly select a state

from the segment of the demonstration trajectory corresponding to the

current curriculum 𝐶 */

5 s𝑖𝑛𝑖𝑡 = 𝜏𝑒[𝑖𝑛𝑑𝑒𝑥]
6 𝜏 = Rollout(𝑒𝑛𝑣, s𝑖𝑛𝑖𝑡, 𝜋)

6.3 Experiment Setup

We evaluate the ACED approach on two tasks in the Fetch environment in OpenAI

Gym [17]: a pick-and-place task and a block stacking task, as shown in Figure 6-

3. The pick-and-place task is adapted from Gym directly and the block stacking

task is adapted from [70]. The goal of the pick-and-place task is to move a block

randomly placed on the tabletop to a goal pose that could be either in the air or on

the tabletop, and the goal of the stacking task is to move two randomly placed blocks

to their corresponding goal pose where the yellow block is stacked on top of the green

block on the tabletop. The majority of results presented in this section use Proximal

Policy Optimization (PPO) [122] as the RL algorithm, and we demonstrate ACED’s

off-policy performance with Deep Deterministic Policy Gradient (DDPG) [77] in the

pick-and-place task. In the experiments in this section, we compare the performance

of ACED with BC, ACED without BC, RL + BC without ACED, and other state-

of-the-art automatic curriculum generation approaches [45, 118]. We refer to the

approach presented in [45] the reverse curriculum method, and the one presented

in [118] the Montezuma’s Revenge method.

The demonstration trajectories in our experiments are generated from a hand-

129

(a) Fetch pick-and-place environment (b) Fetch block stacking environment

Figure 6-3: Simulation environments for ACED evaluation

coded straight-line policy, i.e. the robot is instructed to follow a straight-line trajec-

tory to reach the object, grasp the object and then follow a straight-line trajectory

to reach the goal. For both tasks, we use a binary reward function, where 𝑟 = 1 in-

dicates all blocks are within the distance threshold to their corresponding goal poses

and 𝑟 = 0 otherwise. The episode is terminated immediately if 𝑟 = 1 is obtained even

if the maximum episode length hasn’t been reached. Additional implementation de-

tails are presented in Section 6.3.1. In the results presented in this section, we mainly

focus on the convergence performance and the success rate, but selected examples of

the learning curves are shown in Section 6.4.3.

6.3.1 Implementation Details

All experiments shown in this section are conducted on a 10-core Intel i7 3.0 GHz

desktop with 64 GB RAM and one GeForce GTX 1080 GPU. In our implementation

of the PPO algorithm [122], we use a three hidden-layer fully-connect neural network

with (128, 64, 32) units in each layer for both the policy network and the value

network, and set 𝛾 = 0.99 and 𝜆 = 0.95. We noticed that PPO training can be

unstable due to the frequent curriculum switches especially in the block stacking

environment, and found that in order to prevent collapsing during training, it is very

130

helpful to use a small importance ratio clipping parameter in PPO (denoted as 𝜖 in

[122]) together with an optimizer with small learning rates and gradient clipping. In

pick-and-place tasks, we set 𝜖 = 0.2 and use the Adam optimizer with a learning rate

of 2e-4 without gradient clipping. In stacking tasks, we set 𝜖 = 0.05 and use the

Adam optimizer with a learning rate of 1e-4 and gradient clipping-by-norm with a

clipping factor of 0.05. In our DDPG [77] implementation, the learning rate is set to

2e-4, and the same policy network is used as in the PPO implementation. The target

update period in DDPG is set to 5.

In the ACED algorithm, we use 𝜑 = 0.9 as the curriculum switching threshold

in pick-and-place tasks, and 𝜑 = 0.85 in block stacking tasks. The average return

checking period is set to 𝑡 = 120, and the number of episodes used to compute the

average return is set to 𝑛 = 3. 60 parallel rollout workers are used in both tasks.

In pick-and-place tasks, the threshold for the object’s distance to the goal to assign

reward 𝑟 = 1 is 0.05, and in stacking tasks the threshold is set to 0.04. The maximum

number of steps in an episode is set to 50 in pick-and-place tasks, and 100 in block

stacking tasks. In BC, an Adam optimizer with the learning rate of 2e-4 is used, and

the loss function is negative log likelihood.

In the reverse curriculum [45] implementation, we use 1000 random start states and

a time horizon of 5 time steps for the Brownian motion. 200 old sampled start states

are appended to the new start states at each training step. In the our implementation

of the Montezuma’s Revenge method [118], we randomly select one demonstration

trajectory and set the curriculum switching threshold also to 𝜑 = 0.85. Both the

reverse curriculum method and the Montezuma’s Revenge method are implemented

with the same PPO algorithm as used in the ACED implementation.

131

Figure 6-4: Number of environment steps ACED with BC takes to train pick-and-
place tasks with PPO until convergence with different values of the number of demon-
stration trajectories |𝒯 | and the total number of curricula 𝐶𝑚𝑎𝑥. The bars represent
the mean of 10 runs with different random seeds and the error bars represent the 90%
confidence interval. [30]

Figure 6-5: Number of environment steps ACED without BC takes to train pick-
and-place tasks with PPO until convergence with different values of the number of
demonstration trajectories |𝒯 | and the total number of curricula 𝐶𝑚𝑎𝑥. The bars
represent the mean of 10 runs with different random seeds and the error bars represent
the 90% confidence interval. [30]

132

Table 6.1: Pick-and-Place Success Rate [30]

Algorithm
Number of
Curricula1

Number of Demonstrations
|𝒯 | =
100

|𝒯 | = 50 |𝒯 | = 20 |𝒯 | = 5 |𝒯 | = 1

ACED
with BC

𝐶𝑚𝑎𝑥 = 8 99% 100% 99% 97% 96%
𝐶𝑚𝑎𝑥 = 5 96% 99% 99% 100% 95%
𝐶𝑚𝑎𝑥 = 3 100% 99% 100% 100% 99%
𝐶𝑚𝑎𝑥 = 1 100% 99% 100% 98% 99%
Average2 98.8% 99.3% 99.5% 98.8% 97.3%

ACED
without
BC

𝐶𝑚𝑎𝑥 = 5 100% 95% 100% 93% 97%

BC Policy3 60% 54% 24% 2% 4%
Expert Demonstrations 92% 98% 95% 80% 100%

1 For each set of experiment, we have 10 runs with different random seeds. For each run, we
rollout 10 trajectories with the policy at convergence and compute the success rate, hence each
entry is computed from a total of 100 rollout trajectories.

2 The average success rate for 𝐶𝑚𝑎𝑥 = 8, 𝐶𝑚𝑎𝑥 = 5, 𝐶𝑚𝑎𝑥 = 3 and 𝐶𝑚𝑎𝑥 = 1.
3 The success rate of the initial policy pre-trained by BC evaluated on 100 rollout trajectories.

6.4 Empirical Evaluation Results

6.4.1 Pick-and-Place Tasks

In this section, we compare the performance of ACED with BC and ACED without

BC on pick-and-place tasks in the Fetch environment. In order to study the influence

of the number of demonstration trajectories |𝒯 | and the total number of curricula

𝐶𝑚𝑎𝑥, we test ACED with BC with |𝒯 | = 100, 50, 20, 5, 1 and 𝐶𝑚𝑎𝑥 = 8, 5, 3, 1. ACED

without BC is only tested with |𝒯 | = 100, 50, 20, 5, 1 and 𝐶𝑚𝑎𝑥 = 5, since 𝐶𝑚𝑎𝑥 = 5

is the best performer in ACED with BC experiments in terms of convergence speed.

Here we define convergence as having a training success rate of stably above 90% and

being able to accomplish most tasks during test time. We compare their convergence

performance during training with PPO in Figure 6-4 and Figure 6-5 and their success

rate performance during testing in Table 6.1. We also tested ACED with DDPG with

|𝒯 | = 5 and 𝐶𝑚𝑎𝑥 = 5, and the average steps to convergence is 5.07 million and the

success rate is 100%, proving that ACED can be applied to off-policy RL algorithms

and achieve higher sample efficiency.

133

The horizontal axis in Figure 6-4 and Figure 6-5 represents the number of demon-

stration trajectories |𝒯 | and the total number of curricula 𝐶𝑚𝑎𝑥, and the vertical axis

represents the number of environment steps the training takes to converge averaged

from 10 runs with different random seeds. From Figure 6-4 we can see that for ACED

with BC, |𝒯 | has a significant impact on the number of environment steps it takes

to converge. One potential reason that can cause this is, with a more diverse set of

initializations during the curriculum training phase, ACED will better generalize to

unseen random initial states and goal states after switching to normal rollout worker.

Another potential reason is that BC is usually less prone to overfitting when the

number of demonstrations is large, hence it should be able to generate better initial

policies during pre-training with a larger |𝒯 |. In comparison, the number of total

curricula has less impact on the convergence performance of ACED with BC, but

choosing a reasonable 𝐶𝑚𝑎𝑥 can help accelerate training especially when the number

of demonstrations is small. For the pick-and-place task we tested on, 𝐶𝑚𝑎𝑥 = 5 gen-

erally performs better across different |𝒯 | values in terms of both the mean and the

90% confidence interval.

If we compare the convergence performance of ACED with BC and ACED without

BC in Figure 6-4 and Figure 6-5, we can see that ACED without BC generally takes

longer to converge except for when there is only 1 demonstration trajectory. This

shows that BC pre-training can provide a good initial policy and accelerate ACED

training when sufficient demonstration trajectories are provided. However, when |𝒯 |

is too small, BC pre-training might adversely affect ACED’s performance. Another

observation from Figure 6-5 is that the convergence performance of ACED without

BC does not show a clear trend as |𝒯 | decreases, which means that the increasing

trend we see in ACED with BC experiments is more likely to have been caused

more by BC rather than ACED itself. One explanation for this observation is that,

despite ACED’s better generalization performance when |𝒯 | is large, the curriculum

training phase itself can become more challenging and takes longer to converge with

a larger |𝒯 |. This is because ACED faces a more diverse set of initializations when

there are more demonstration trajectories. Our experiments show that without BC

134

pre-training, ACED actually performs the best with only 1 demonstration in pick-

and-place tasks.

Table 6.1 compares the success rate of ACED during test time with the success

rate of expert demonstrations and behavior cloning. We can see that even though

the expert demonstrations aren’t perfect (i.e. mostly have a success rate of less than

100%), ACED is able to learn the pick-and-place task with better-than-expert per-

formance. This is because our approach doesn’t rely on the expert policy except for

the BC pre-training, and it instead tries to come up with its own policy that reaches

the goal from states along the demonstration trajectories. Therefore, even with sub-

optimal demonstrations, ACED can still achieve better-than-expert performance. On

the other hand, with policies trained only by BC, the success rate is much lower

especially when the number of demonstrations is small, proving that our approach

utilizes expert demonstrations in a much more effective way than BC does. Another

observation from Table 6.1 is that ACED generally achieves higher success rate with

more demonstration trajectories, but it is notable that even with only 1 demonstra-

tion trajectory, it can still achieve a success rate of 96%. This is very encouraging

because unlike many other imitation learning approaches that require a large number

of demonstrations in order to work effectively, ACED can succeed with as few as 1

demonstration.

6.4.2 Block Stacking Tasks

ACED with BC is also evaluated in block stacking tasks with |𝒯 | = 100, 20 and

𝐶𝑚𝑎𝑥 = 12, 8, and its performance is compared with other state-of-the-art automatic

curriculum methods including reverse curriculum [45] and the Montezuma’s Revenge

method [118]. Unfortunately, neither of the baseline approaches are able to success-

fully learn the stacking task (i.e. converge), hence we cannot compare with their

convergence performance. We provide more detailed discussion on the comparison

of their learning progress performance in Section 6.4.3. Table 6.2 presents the av-

erage number of environment steps ACED with BC takes to converge in each set of

experiments, and compares its success rate with the initial policies pre-trained by

135

Table 6.2: Block Stacking Performance [30]

Number of Demonstrations |𝒯 | = 100 |𝒯 | = 20

ACED
with BC1

Total Curriculum
Number

𝐶𝑚𝑎𝑥 =
12

𝐶𝑚𝑎𝑥 = 8
𝐶𝑚𝑎𝑥 =

12
𝐶𝑚𝑎𝑥 = 8

Convergence Env
Steps2

213.08 169.88 143.02 119.79

Success Rate3 100% 100% 96% 100%
BC Policy Success Rate4 0% 0%

Expert Demonstration Success Rate5 84% 85%

1 The performance for each set of experiment for ACED with BC is averaged from 5 runs with
different random seeds.

2 Presented in millions. The training for stacking tasks is more unstable, so we separated the
training process into two sections: 1) use curriculum rollout workers to train until all parallel
workers reach 𝐶 = 𝐶𝑚𝑎𝑥 and 2) set all parallel workers to be normal rollout workers and train
until convergence. The convergence environment steps presented here are the sum of the two
sections.

3 The success rate for ACED with BC is evaluated with 10 rollout trajectories per random seed
(50 rollout trajectories in total).

4 The success rate of the initial policy pre-trained by BC evaluated on 100 rollout trajectories.
5 The demonstrations for stacking have much lower success rates because there are two blocks in
the scene and one block might obstruct the straight line policy the moves the other block to
its goal pose. Since the straight line policies are open-loop, the agent can’t recover from such
failures.

BC and with the expert demonstrations. Interestingly, we observe that the number

of environment steps until convergence is much lower when |𝒯 | = 20 compared to

when |𝒯 | = 100. We believe this is because ACED with BC has converged to two

different policies for the two sets of experiments with different |𝒯 | values. From the

recorded videos we found that in all 10 runs with |𝒯 | = 100 (including 𝐶𝑚𝑎𝑥 = 12 and

𝐶𝑚𝑎𝑥 = 8), the policies ACED with BC converged to are similar to the demonstra-

tions, where the robot first picks up the green block and places it onto the goal, and

then picks up the yellow block and places it onto the green block. However, in all 10

runs with |𝒯 | = 20, the policy ACED with BC converged to takes a different route:

it first places the yellow block on top of the green block, and then picks up the two

blocks together to place them onto the goal. Figure 6-6 illustrates the two different

policies visually by showing two representative frames from each rollout video. This

finding shows that, with a smaller number of demonstrations, ACED with BC has

more flexibility to come up with novel solutions instead of following the demonstra-

136

(a) Solution policy when |𝒯 | = 100

(b) Solution policy when |𝒯 | = 20

Figure 6-6: Visualization of two different stacking policies ACED with BC converged
to with different |𝒯 | values. [30]

tion trajectories. Because the |𝒯 | = 20 solution takes fewer steps, it is easier to train

and is more robust when generalizing to new initial and goal poses. We also observed

that the |𝒯 | = 20 training curves experience less performance drop when switching

from curriculum rollout workers to normal rollout workers. We believe this is why

ACED with BC converges faster when trained with 20 demonstrations.

Another finding from Table 6.2 is that for the block stacking task we tested on,

𝐶𝑚𝑎𝑥 = 8 has better performance than 𝐶𝑚𝑎𝑥 = 12 in terms of both convergence speed

and success rate. Compared to the number of demonstrations, the number of total

curricula has less impact on ACED with BC’s solutions and training performance,

and different 𝐶𝑚𝑎𝑥 numbers didn’t cause the solution policies to differ qualitatively.

137

6.4.3 Learning Curves

In order to show the learning progress and curriculum switches when using ACED,

we use the pick-and-place task with 5 demonstration trajectories as an example to

compare the learning curves of different algorithms, as shown in Figure 6-7. Since

each experiment is terminated after convergence, the lengths of the learning curves

may vary. For each algorithm, we select one run whose convergence environment step

is close to the mean for all 10 runs instead of directly using the mean in order to

clearly show the learning progress and the curriculum switches. From Figure 6-7 we

can see that for all ACED runs with PPO, the first few curricula are usually much

easier than the last few and the majority of training time is spent on training the

last few curricula. Without BC, the performance drop during curriculum switches is

more obvious. If we compare the performance of ACED with DDPG and ACED with

PPO, we can observe that ACED achieves a much higher sample efficiency with the

off-policy DDPG.

All ACED runs are able to converge to almost 100% success rate, whereas vanilla

PPO without ACED is not able to achieve a success rate higher than 10% during

training. In addition to the comparison with vanilla PPO, we also compare ACED

with Hindsight Experience Replay (HER) [4] in the block pick-and-place task. We

use the OpenAI Baseline [38] implementation of HER with 2 MPI processes with 30

parallel environments each to make sure it is equivalent to the 60 parallel environments

in other experiments. Other parameters for HER are set to default. However, all

10 runs with HER are only able to achieve a success rate of about 50%, and we

show one representative learning curve in Figure 6-7. This is because in the Gym

FetchPickAndPlace-V1 task, half of the goals are sampled from on the table and half

are sampled in the air, thus agents that only learned to push can still reach the goals

close to the tabletop and receive a success rate of about 50%, but only agents that

actually learned to pick and place will reach a success rate of 100%.

We show the comparison of ACED with two state-of-the-art automatic curriculum

generation methods [45, 118] in the block stacking task in Figure 6-8. We refer to

138

Figure 6-7: Learning curves of different algorithms in the pick-and-place environment
with 5 demonstration trajectories. The horizontal axis represents the number of
environment steps during training and the vertical axis represents the success rate.
Expert and BC success rates are represented by dash lines because they didn’t have
training processes and their success rates remain constant.

Figure 6-8: Learning curves of ACED with BC, the reverse curriculum method [45],
and the Montezuma’s Revenge method [118] in the block stacking task.

139

the approach presented in [45] the reverse curriculum method, and the one presented

in [118] the Montezuma’s Revenge method. In Figure 6-8, ACED is implemented

with PPO and is provided with 20 demonstrations and BC pre-training. As we

mentioned earlier, neither of the two baseline automatic curriculum methods are

able to converge in the block stacking tasks. In all runs of the reverse curriculum

method, the start state distribution has not moved to the true 𝑆0 after 400 million

environment steps of training, and achieves 0% success rate during testing. In all

runs of the Montezuma’s Revenge method, moving through the curriculum rollout

workers are relatively quick, but the learning curve drops to zero and never goes back

up once it switches to the normal rollout worker. This shows that in challenging

tasks in continuous state space, policies training using a fixed demonstration without

randomization struggle to generalize to the entire initial state distribution 𝑆0 and

goal distribution 𝑆𝑔. Figure 6-8 shows the learning curves of one representative run

for each of the curriculum generation methods.

6.5 Comparison with BC + RL without ACED

In order to further demonstrate the role of curriculum learning in ACED, this section

compares the performance of ACED with an algorithm that only uses BC pre-trained

policies to initialize the RL agent but doesn’t use curriculum learning during RL

training. We referred to the RL algorithm that uses BC to pre-train the policy but

doesn’t use ACED as “BC + RL”. The same PPO algorithm and BC pre-trained policy

initializations as in the ACED experiments are used in all experiments presented in

this section. We summarizes the performance of both ACED with BC and BC + RL

in Table 6.3 for convenient comparison, but the ACED with BC data in Table 6.3 are

the same as the ones presented in Figure 6-4 and Table 6.1. As shown in Table 6.3,

BC + RL only works better than ACED with BC when |𝒯 | = 100, whereas its

performance in terms of both convergence speed and success rate is worse than that

of ACED with BC when |𝒯 | = 50 and |𝒯 | = 20. When |𝒯 | = 5 or |𝒯 | = 1, BC +

RL is not able to learn pick-and-place and none of the runs converged to a success

140

Table 6.3: Pick-and-Place Comparison with BC + RL

Algorithm1 |𝒯 | =
100

|𝒯 | =
50

|𝒯 | =
20

|𝒯 | = 52 |𝒯 | = 12

ACED
with
BC

Convergence
Env Steps
(Million)

𝐶𝑚𝑎𝑥 =
8

2.78 3.40 8.40 24.00 41.21

𝐶𝑚𝑎𝑥 =
5

2.32 3.55 5.97 16.50 38.85

𝐶𝑚𝑎𝑥 =
3

4.15 6.53 7.88 17.67 25.56

Average3 3.08 4.49 7.41 19.39 35.21

Success
Rate

𝐶𝑚𝑎𝑥 =
8

99% 100% 99% 97% 96%

𝐶𝑚𝑎𝑥 =
5

96% 99% 99% 100% 95%

𝐶𝑚𝑎𝑥 =
3

100% 99% 100% 100% 99%

Average3 98.3% 99.3% 99.3% 99% 96.7%
BC +
RL

Convergence Env Steps 2.47 14.66 13.58 (67.67) (61.73)
Success Rate 100% 97% 99% (37%) (53%)

1 For each set of experiment except for BC + RL with |𝒯 | = 5 and |𝒯 | = 1, we have 10 runs with
different random seeds and the entries in the table are averaged from all runs. For BC + RL with
|𝒯 | = 5 and |𝒯 | = 1, we only conducted 3 runs each due to their long training time. For each
run, we rollout 10 trajectories with the policy at convergence, and we compute the success rate by
taking the average of all rollout trajectories for all runs.

2 The entries for BC + RL with |𝒯 | = 5 and |𝒯 | = 1 are in brackets because none of these experiments
have actually converged to a success rate of 100% during training. They instead converged to around
50% because they have only learned to push the block to the goal when the goal pose is on the
tabletop, but they failed to learn how to pick up the block and lift them to the goal poses that are
in the air.

3 The average success rate for 𝐶𝑚𝑎𝑥 = 8, 𝐶𝑚𝑎𝑥 = 5 and 𝐶𝑚𝑎𝑥 = 3.

rate of 100%. Recorded videos show that when |𝒯 | = 5 and |𝒯 | = 1, BC + RL can

only learn to push the block to goal poses that are on the tabletop, but failed to

learn pick-and-place when the goal pose is in the air. Since the goal pose has a 50%

probability of being in the air in the pick-and-place environment, all the runs have

converged to a success rate of around 50% during training.

We also evaluated BC + RL in the block stacking environment, but results show

that none of the runs with |𝒯 | = 100 or |𝒯 | = 20 can converge to a success rate

of 100%. In fact, the training curves remain zero throughout the entire training

progress for all runs with BC + RL. The comparison between ACED with BC and

141

BC + RL shows that ACED is especially helpful in scenarios where the target task

is complicated or the number of demonstrations is small.

6.6 Combination with Empowerment-based Intrinsic

Motivation

In Chapter 5, we proposed an empowerment-based intrinsic motivation approach that

can effectively augment the sparse extrinsic task rewards during learning and allevi-

ate the exploration challenges faced by RL agents in robotic manipulation tasks. In

this section, we investigate if empowerment-based intrinsic motivation is able to fur-

ther improve the RL agent’s performance when expert demonstrations are provided.

Specifically, we evaluate the combination of ACED with BC and empowerment-based

intrinsic motivation in block pick-and-place tasks and compare its performance with

vanilla ACED.

In order to combine ACED with empowerment-based intrinsic motivation, we

preserve all the BC pre-training procedures and the curriculum switching mechanisms

in ACED while augmenting the RL reward with intrinsic rewards shown in Figure 5-

4. The implementation of empowerment rewards and ICM rewards is the same as

Section 5.3.2, with the weight coefficients:

𝑤𝐼𝐶𝑀
𝑡 = 0.5× (1− tanh(200(𝑟𝐼𝐶𝑀

𝑡 − 0.08))),

𝑤𝐸𝑚𝑝
𝑡 = 1− 𝑤𝐼𝐶𝑀

𝑡 .
(6.1)

We present the convergence speed performance of this combination in Figure 6-9,

and the success rate performance in Table 6.4. For easy comparison with Figure 6-4,

we also combined some of the experiment results for ACED with empowerment and

ACED without empowerment in the same bar chart in Figure 6-10. Compared to

the success rate performance shown in Table 6.1, the combination of empowerment-

based intrinsic rewards and ACED shows slightly higher success rate in Table 6.4.

From the comparison between Figure 6-9 and Figure 6-4 we can see that the general

142

Figure 6-9: Number of environment steps the combination of ACED with BC and
empowerment-based intrinsic motivation takes to train pick-and-place tasks with PPO
until convergence with different values of the number of demonstration trajectories
|𝒯 | and the total number of curricula 𝐶𝑚𝑎𝑥. The bars represent the mean of 10 runs
with different random seeds and the error bars represent the 90% confidence interval.

Table 6.4: ACED with Empowerment Success Rate in Pick-and-Place Tasks

Algorithm
Number of
Curricula1

Number of Demonstrations
|𝒯 | =
100

|𝒯 | =
50

|𝒯 | =
20

|𝒯 | = 5 |𝒯 | = 1

ACED with
BC and

Empowerment

𝐶𝑚𝑎𝑥 = 8 99% 99% 99% 99% 97%
𝐶𝑚𝑎𝑥 = 5 100% 100% 99% 100% 99%
𝐶𝑚𝑎𝑥 = 3 100% 100% 100% 99% 98%
𝐶𝑚𝑎𝑥 = 1 99% 100% 100% 100% 98%
Average2 99.5% 99.75% 99.5% 99.5% 98%

1 For each set of experiment, we have 10 runs with different random seeds. For each run, we
rollout 10 trajectories with the policy at convergence and compute the success rate, hence each
entry is computed from a total of 100 rollout trajectories.

2 The average success rate for 𝐶𝑚𝑎𝑥 = 8, 𝐶𝑚𝑎𝑥 = 5, 𝐶𝑚𝑎𝑥 = 3 and 𝐶𝑚𝑎𝑥 = 1.

143

Figure 6-10: Number of environment steps ACED with empowerment and ACED
without empowerment take to train pick-and-place tasks with PPO until convergence
with different values of the number of demonstration trajectories |𝒯 | and the total
number of curricula 𝐶𝑚𝑎𝑥. The bars represent the mean of 10 runs with different
random seeds and the error bars represent the 90% confidence interval.

trends of ACED with empowerment and vanilla ACED are similar as the number of

demonstrations increases. The improvement in terms of convergence speed caused by

the augmented rewards is much more significant when the number of demonstration

trajectories |𝒯 | and the number of curricula 𝐶𝑚𝑎𝑥 are low. When 𝐶𝑚𝑎𝑥 = 8, ACED

with empowerment actually shows a higher number of environment steps until con-

vergence. These findings align with our expectations because empowerment-based

intrinsic motivation is designed for tasks with sparse extrinsic rewards. When the

number of demonstration trajectories and the number of curricula are low, the RL

agents are learning tasks where extrinsic rewards are more difficult to obtain at the

beginning of training, hence augmenting the task rewards with empowerment-based

intrinsic rewards will help accelerate the learning progress. However, when the num-

ber of demonstration trajectories and the number of curricula are high, the RL agents

are initialized with policies that are closer to the task solutions, but are presented with

tasks with much shorter horizons. This means that it is relatively easy for the agents

to obtain extrinsic tasks rewards, hence augmenting them with intrinsic rewards will

actually distract the agent and slow down the learning progress.

144

6.7 Discussion

In this chapter, we presented ACED, an imitation learning method that leverages ex-

pert demonstrations to extract a set of curricula automatically in order to accelerate

learning. We evaluated the influence of the number of demonstrations and the num-

ber of curricula on the performance of the ACED algorithm in a pick-and-place task

and a block stacking task. Experiment results show that ACED can achieve more

than 97% success rate on pick-and-place tasks while learning with only one demon-

strations, whereas other imitation learning methods cannot effectively learn when the

number of demonstrations is so low. We also observed qualitatively different poli-

cies while learning the block stacking task with different numbers of demonstrations,

showing that ACED is not simply imitating the expert strategies and can innovate on

more effective policies on its own. The comparison with other automatic curriculum

learning methods shows that ACED can learn challenging tasks that other state-of-

the-art approaches can’t learn. Additionally, we combined the empowerment-based

intrinsic motivation method proposed in Chapter 5 with ACED and demonstrated in

empirical experiments that the combination is able to achieve higher success rate and

faster convergence compared to ACED alone. One major advantage of ACED is that

it is a very intuitive idea that can be easily combined with most existing learning

from demonstration methods, including adding demonstrations to replay buffers [85]

and introducing GAN-based imitation rewards [57], in order to learn more complex

tasks with higher sample efficiency for expert demonstrations, for example stacking

multiple blocks into block towers or tasks involving tool using.

145

146

Chapter 7

Conclusion

This chapter first reviews the main content of this thesis, then summarizes the main

contributions and discusses the potential directions for future work.

7.1 Summary

This thesis considered the challenges faced by home support robots when solving

manipulation tasks. Specifically, we focus on two different scenarios: accomplishing

known tasks quickly and safely, and learning new tasks with a minimal amount of

human supervision. Both scenarios are often encountered when executing daily tasks

while supporting human customers at home. For example, the robot might need to

fetch the same set of items from a kitchen cupboard everyday, hence knowing how to

complete pick-and-place task and only needing to call a motion planning algorithm

will be very helpful in this case. On the other hand, the robot might need to learn

some new skills when meeting a new customer, for example, cleaning up the living

room or cooking a new dish. In these cases, it is very important that the robot is

capable of learning new tasks quickly and requiring a minimal amount of customer

supervision.

In this thesis, a fast-reactive chance-constrained motion planning approach was

proposed in Chapter 4 to tackle challenges in the first scenario, and two Rein-

forcement Learning (RL) based approaches were proposed in Chapter 5 and Chap-

147

ter 6 to facilitate success in the second scenario. Leveraging a combined sampling-

based and optimization-based deterministic motion planning framework as well as

supervised-learning techniques for collision risk estimation, our motion planning ap-

proach, learning-based p-Chekov, is able to satisfy chance constraints while main-

taining high planning speed in known environments. On the other hand, the two

RL-based approaches this thesis proposed focus on learning from scratch without

human supervision and fast learning with a handful of human demonstrations re-

spectively. In Chapter 5, we introduced empowerment-based intrinsic motivation, a

form of intrinsic motivation which encourages RL agents to explore the sections of the

state space that might contain high rewards when learning robotic manipulation tasks

from scratch. In Chapter 6, we proposed Automatic Curricula via Expert Demonstra-

tions, an imitation learning algorithm that efficiently utilizes human demonstrations

through constructing a sequence of curricula.

7.2 Main Contributions

In this section, we summarizes the three main contributions of this thesis:

1. Learning-based P-Chekov

2. Empowerment-based Intrinsic Motivation

3. Automatic Curricula via Expert Demonstrations (ACED)

7.2.1 Learning-based P-Chekov

Learning-based p-Chekov is a fast-reactive chance-constrained motion planning ap-

proach that can provide safe motion plans for robotic manipulators in known envi-

ronments. It includes a planning phase that generates initial feasible solutions for

the robotic manipulator to execute, and an execution phase where chance-constraints

are reallocated in order to further optimize the planning phase solutions. Learning-

based p-Chekov propagates process noises and observation noises along the nominal

148

trajectory generated by a deterministic motion planner in order to estimate the a

priori probability distribution of robot states, and decomposes the joint chance con-

straint into allowed collision risk bounds at discrete waypoints. The risk estimation

component then predicts the collision risk during execution based on the estimated

state distributions, and then compares them with the allocated risk bounds to extract

“conflicts” where the risk bounds are violated. These conflicts are fed back to deter-

ministic Chekov to guide it to generated safer nominal trajectories. After resolving all

the conflicts, the solution trajectory is passed into execution phase and an Iterative

Risk Allocation (IRA) component will improve the solution through reallocating risk

bounds.

Built on top of a combined sampling-based and optimization-based motion plan-

ning framework Chekov, it inherits Chekov’s advantage in reacting fast to plan re-

quests and its ability of generating smooth motion plans. By applying supervised-

learning techniques to collision risk estimation, learning-based p-Chekov moves sig-

nificant amount of the computation to off-line and improves upon the previously pro-

posed sampling-based p-Chekov which heavily relies on on-line Monte Carlo sampling

and collision risk estimation and requires a large amount of computation even with a

small number of samples per time step. We compare the performance of a variety of

supervised-learning models and conclude that neural networks are the best performers

in terms of both training performance and testing performance. We demonstrate in

empirical experiments in realistic application scenarios that learning-based p-Chekov

with neural networks is able to provide smooth motion plans that satisfy pre-specified

chance-constraints while significantly accelerating the planning speed. The compar-

ison with sampling-based p-Chekov shows that learning-based p-Chekov can reduce

planning time by 50% - 70% while maintaining similar chance constraint satisfaction

rate.

7.2.2 Empowerment-based Intrinsic Motivation

How to efficiently explore the state space in order to learn target tasks with high-

dimensional continuous state and action spaces has been a key challenge in RL.

149

Inspired by how human babies are intrinsically curious about the surrounding en-

vironment, many intrinsic motivation approaches have been proposed to facilitate

the learning process of RL agents. The empowerment-based intrinsic motivation ap-

proach proposed in this thesis leverages recent advances in both mutual information

maximization and intrinsic novelty-driven exploration in order to guide RL agents ex-

plore high-reward regions of the state space when learning robotic manipulation tasks.

Through maximizing the mutual dependence between robot actions and environment

states, namely the empowerment, this intrinsic motivation helps the agent to focus

more on the states where it can effectively “control” the environment instead of the

parts where its actions cause random and unpredictable consequences. Despite the

challenges posed by conditional mutual information maximization with continuous

high-dimensional random variables, we are able to successfully train neural networks

that make reasonable predictions on empowerment with the help of novelty-driven

exploration methods at the beginning of the learning process.

Empirical evaluations in different robotic manipulation environments with differ-

ent shapes of the target object demonstrate the advantages of this empowerment-

based intrinsic motivation over other state-of-the-art solutions to sparse-reward RL

tasks. In addition, we also combine this approach with diversity-driven intrinsic mo-

tivation and show that the combination is able to encourage the manipulator to learn

a diverse set of ways to interact with the object, whereas with the diversity-driven

rewards alone the manipulator is only able to learn how to move itself in different di-

rections. This approach can be easily integrated into any RL algorithm to accelerate

their learning progress, or be combined with approaches like Hindsight Experience

Replay (HER) and imitation learning to further improve their performance.

7.2.3 Automatic Curricula via Expert Demonstrations

A key challenge that constrains imitation learning’s wide application in robotics tasks

is its high demand on human demonstrations. In order to tackle this issue, this thesis

proposes ACED, an RL approach that combines ideas from both imitation learning

and curriculum learning in order to solve challenging robotics manipulation tasks

150

with sparse reward signals. Through resetting the training episodes to states along

demonstration trajectories, ACED is able to control the difficulty of the tasks by

moving the reset states from the end of the demonstration to the beginning based on

the learning progress of the RL agent. This procedure naturally forms a curriculum

and makes challenging exploration problems feasible to learn. One main advantage of

ACED is that it only requires demonstration states and not actions when deployed on

its own. ACED can also be intuitively combined with many existing imitation learn-

ing approaches to utilize expert demonstrations more efficiently, including adding

demonstrations to replay buffers [85], introducing GAN-based rewards [57], and us-

ing behavior cloning to pre-train the policies. In Chapter 6, a version of ACED with

policies pre-trained via behavior cloning is compared with ACED on its own as an

example. We evaluate the performance of ACED on block pick-and-place tasks and

stacking tasks, and show that pick-and-place can be learned with as few as 1 demon-

stration and stacking can be learned with 20 demonstrations. We also analyzed the

impact of the number of demonstration trajectories and the total number of curricula

on ACED’s performance, and discovered that ACED can learn novel solutions that

are very distinct from expert demonstrations when the number of demonstrations is

small.

7.3 Discussion and Future Work

Despite the contributions made in this thesis, many challenges remain to be solved in

order for home support robots to successfully accomplish household tasks requested

by potential customers. In the first scenario described in Section 7.1, in order to turn

common tasks to motion planning problems, a scene understanding approach is also

needed to convert visual observations into simulation environments for the motion

planning as well as to locate the target object’s pose within the global environment.

Many existing scene understanding and pose estimation approaches, such as [74] and

[113], are good candidates for this application. In the second scenario described

in Section 7.1, in addition to a scene understanding approach, sim-to-real transfer

151

algorithms, e.g. [133] and [106], are also necessary for the robot to transfer skills it

learned in simulation to real-world skills.

In future work, the learning-based p-Chekov algorithm can be further improved

by incorporating minor changes to environment objects’ poses during off-line risk es-

timator training. This can be achieved by assigning movable objects and training

conditional collision risk estimators that are conditioned on the actual poses of the

movable objects in the scene. Additionally, the skills discovered using empowerment-

based intrinsic motivation and unsupervised skill discovery approaches can serve as

primitive actions in a HRL framework in order to simplify the learning of long-horizon

complex tasks. ACED can also be extended to utilize semantically meaningful seg-

mentations of expert demonstrations instead of evenly divided sections in order to

better accommodate the RL tasks that are best solved through subtasks with highly

imbalanced lengths of action sequences. Furthermore, since the number of demon-

strations needed for ACED to solve a task highly depends on the complexity of the

task, incorporating an interactive framework where the robot can query for more

demonstrations when the tasks are more challenging to learn is another future work

direction towards user-friendly home support robots.

152

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[2] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions:
with formulas, graphs, and mathematical tables, volume 55. Courier Corpora-
tion, 1964.

[3] Ron Alterovitz, Thierry Siméon, and Kenneth Y Goldberg. The stochastic
motion roadmap: A sampling framework for planning with markov motion
uncertainty. In Robotics: Science and systems, volume 3, pages 233–241, 2007.

[4] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, andWojciech
Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058, 2017.

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In International conference on machine learning, pages
214–223. PMLR, 2017.

[6] Oktay Arslan and Panagiotis Tsiotras. Machine learning guided exploration for
sampling-based motion planning algorithms. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2646–2652. IEEE,
2015.

[7] Anna Atramentov and Steven M LaValle. Efficient nearest neighbor searching
for motion planning. In Proceedings 2002 IEEE International Conference on
Robotics and Automation (Cat. No. 02CH37292), volume 1, pages 632–637.
IEEE, 2002.

153

[8] Brian Axelrod, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Provably
safe robot navigation with obstacle uncertainty. The International Journal of
Robotics Research, 37(13-14):1760–1774, 2018.

[9] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[10] Michael Bain and Claude Sammut. A framework for behavioural cloning. In
Machine Intelligence 15, pages 103–129, 1995.

[11] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning
to drive by imitating the best and synthesizing the worst. In Proceedings of
Robotics: Science and Systems, FreiburgimBreisgau, Germany, June 2019.

[12] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair,
Yoshua Bengio, Devon Hjelm, and Aaron Courville. Mutual information neural
estimation. In International Conference on Machine Learning, pages 530–539,
2018.

[13] Richard Ernest Bellman. Dynamic programming. 1957.

[14] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48. ACM, 2009.

[15] Lars Blackmore, Hui Li, and Brian Williams. A probabilistic approach to op-
timal robust path planning with obstacles. In American Control Conference,
2006, pages 7–pp. IEEE, 2006.

[16] Lars Blackmore, Masahiro Ono, Askar Bektassov, and Brian C Williams. A
probabilistic particle-control approximation of chance-constrained stochastic
predictive control. IEEE transactions on Robotics, 26(3):502–517, 2010.

[17] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[18] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion
planning under uncertainty. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 723–730. IEEE, 2011.

[19] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A. Efros. Large-scale study of curiosity-driven learning. In International
Conference on Learning Representations, 2019.

[20] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration
by random network distillation. In International Conference on Learning Rep-
resentations, 2019.

154

[21] Julien Burlet, Olivier Aycard, and Thierry Fraichard. Robust motion planning
using markov decision processes and quadtree decomposition. In Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference
on, volume 3, pages 2820–2825. IEEE, 2004.

[22] Chao Chen, Markus Rickert, and Alois Knoll. Motion planning under perception
and control uncertainties with space exploration guided heuristic search. In 2017
IEEE Intelligent Vehicles Symposium (IV), pages 712–718. IEEE, 2017.

[23] Rohan Chitnis, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning
quickly to plan quickly using modular meta-learning. In 2019 IEEE/RSJ In-
ternational Conference on Robotics and Automation (ICRA), pages 7865–7871.
IEEE, 2019.

[24] François Chollet et al. Keras. https://keras.io, 2015.

[25] Howie M Choset. Principles of robot motion: theory, algorithms, and imple-
mentation. MIT press, 2005.

[26] Cédric Colas, Pierre-Yves Oudeyer, Olivier Sigaud, Pierre Fournier, and Mo-
hamed Chetouani. Curious: Intrinsically motivated modular multi-goal rein-
forcement learning. In International Conference on Machine Learning, pages
1331–1340, 2019.

[27] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[28] Imre Csiszár, Paul C Shields, et al. Information theory and statistics: A tuto-
rial. Foundations and Trends® in Communications and Information Theory,
1(4):417–528, 2004.

[29] Siyu Dai. Probabilistic motion planning and optimization incorporating chance
constraints. Master’s thesis, Massachusetts Institute of Technology, 2018.

[30] Siyu Dai, Andreas Hofmann, and Brian Williams. Automatic curricula via
expert demonstrations. arXiv preprint arXiv:2106.09159, 2021.

[31] Siyu Dai, Andreas Hofmann, and Brian Williams. Fast-reactive probabilistic
motion planning for high-dimensional robots. SN Computer Science, 2(6):1–39,
2021, Reproduced with permission from Springer Nature.

[32] Siyu Dai, Matthew Orton, Shawn Schaffert, Andreas Hofmann, and Brian C
Williams. Improving trajectory optimization using a roadmap framework. In
Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018.

[33] Siyu Dai, Shawn Schaffert, Ashkan Jasour, Andreas Hofmann, and Brian C
Williams. Chance constrained motion planning for high-dimensional robots. In
Proceedings of the 2019 IEEE/RSJ International Conference on Robotics and
Automation (ICRA), 2019.

155

[34] Siyu Dai, Wei Xu, Andreas Hofmann, and Brian C. Williams. An
Empowerment-based Solution to Robotic Manipulation Tasks with Sparse Re-
wards. In Proceedings of Robotics: Science and Systems, Virtual, July 2021.

[35] Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hi-
erarchical relative entropy policy search. The Journal of Machine Learning
Research, 17(1):3190–3239, 2016.

[36] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language
modeling with gated convolutional networks. In International conference on
machine learning, pages 933–941, 2017.

[37] Charles Dawson, Andreas Hofmann, and Brian Williams. Fast certification of
collision probability bounds with uncertain convex obstacles. arXiv preprint
arXiv:2003.07792, 2020.

[38] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias
Plappert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter
Zhokhov. Openai baselines. https://github.com/openai/baselines, 2017.

[39] Morris L Eaton. Multivariate statistics: a vector space approach. JOHN WI-
LEY & SONS, INC., 605 THIRD AVE., NEW YORK, NY 10158, USA, 1983,
512, 1983.

[40] Benjamin Eysenbach, Shixiang Gu, Julian Ibarz, and Sergey Levine. Leave no
trace: Learning to reset for safe and autonomous reinforcement learning. In
International Conference on Learning Representations, 2018.

[41] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is all you need: Learning skills without a reward function. In International
Conference on Learning Representations, 2019.

[42] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In International Conference on Machine
Learning, pages 1126–1135, 2017.

[43] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep
inverse optimal control via policy optimization. In International conference on
machine learning, pages 49–58. PMLR, 2016.

[44] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic
goal generation for reinforcement learning agents. In International conference
on machine learning, pages 1515–1528. PMLR, 2018.

[45] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. Reverse curriculum generation for reinforcement learning. In Confer-
ence on Robot Learning, pages 482–495, 2017.

156

[46] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adver-
sarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[47] Alexandre Galashov, Siddhant Jayakumar, Leonard Hasenclever, Dhruva
Tirumala, Jonathan Schwarz, Guillaume Desjardins, Wojtek M. Czarnecki,
Yee Whye Teh, Razvan Pascanu, and Nicolas Heess. Information asymmetry in
KL-regularized RL. In International Conference on Learning Representations,
2019.

[48] Arthur Gelb. Applied optimal estimation. MIT press, 1974.

[49] IM Gel’Fand and AM Yaglom. Calculation of amount of information about a
random function contained in another such function. Eleven Papers on Analysis,
Probability and Topology, 12:199, 1959.

[50] Jacob Goldberger and Yaniv Opochinsky. Information-bottleneck based on the
jensen-shannon divergence with applications to pairwise clustering. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 3507–3511. IEEE, 2019.

[51] Anirudh Goyal, Riashat Islam, DJ Strouse, Zafarali Ahmed, Hugo Larochelle,
Matthew Botvinick, Sergey Levine, and Yoshua Bengio. Transfer and explo-
ration via the information bottleneck. In International Conference on Learning
Representations, 2019.

[52] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. Automated curriculum learning for neural networks. In Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70,
pages 1311–1320. JMLR. org, 2017.

[53] Jung-Su Ha, Hyeok-Joo Chae, and Han-Lim Choi. Approximate inference-
based motion planning by learning and exploiting low-dimensional latent vari-
able models. IEEE Robotics and Automation Letters, 3(4):3892–3899, 2018.

[54] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine.
Latent space policies for hierarchical reinforcement learning. In International
Conference on Machine Learning, pages 1846–1855, 2018.

[55] Francis Begnaud Hildebrand. Introduction to numerical analysis. Courier Cor-
poration, 1987.

[56] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. Learning deep representa-
tions by mutual information estimation and maximization. arXiv preprint
arXiv:1808.06670, 2018.

[57] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
Proceedings of the 30th International Conference on Neural Information Pro-
cessing Systems, pages 4572–4580, 2016.

157

[58] Wassily Hoeffding, Herbert Robbins, et al. The central limit theorem for de-
pendent random variables. Duke Mathematical Journal, 15(3):773–780, 1948.

[59] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and
Pieter Abbeel. Vime: Variational information maximizing exploration. In Ad-
vances in Neural Information Processing Systems, pages 1109–1117, 2016.

[60] Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distribu-
tions for robot motion planning. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 7087–7094. IEEE, 2018.

[61] Boris Ivanovic, James Harrison, Apoorva Sharma, Mo Chen, and Marco Pavone.
Barc: Backward reachability curriculum for robotic reinforcement learning. In
2019 International Conference on Robotics and Automation (ICRA), pages 15–
21. IEEE, 2019.

[62] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion
planning in belief space. The International Journal of Robotics Research, 32(9-
10):1194–1227, 2013.

[63] Bingyi Kang, Zequn Jie, and Jiashi Feng. Policy optimization with demon-
strations. In International Conference on Machine Learning, pages 2469–2478.
PMLR, 2018.

[64] Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh
Song. Emi: Exploration with mutual information. In Proceedings of the 36th
International Conference on Machine Learning, pages 3360–3369, 2019.

[65] Youngjin Kim, Wontae Nam, Hyunwoo Kim, Ji-Hoon Kim, and Gunhee Kim.
Curiosity-bottleneck: Exploration by distilling task-specific novelty. In Inter-
national Conference on Machine Learning, pages 3379–3388, 2019.

[66] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[67] Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empower-
ment: A universal agent-centric measure of control. In 2005 IEEE Congress on
Evolutionary Computation, volume 1, pages 128–135.

[68] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrating temporal abstraction and
intrinsic motivation. In Advances in neural information processing systems,
pages 3675–3683, 2016.

[69] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-
based pomdp planning by approximating optimally reachable belief spaces. In
Robotics: Science and systems, volume 2008. Zurich, Switzerland., 2008.

158

[70] John B Lanier, Stephen McAleer, and Pierre Baldi. Curiosity-driven multi-
criteria hindsight experience replay. arXiv preprint arXiv:1906.03710, 2019.

[71] Alex Lee, Yan Duan, Sachin Patil, John Schulman, Zoe McCarthy, Jur Van
Den Berg, Ken Goldberg, and Pieter Abbeel. Sigma hulls for gaussian be-
lief space planning for imprecise articulated robots amid obstacles. In 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5660–5667. IEEE, 2013.

[72] David Lenz, Markus Rickert, and Alois Knoll. Heuristic search in belief space for
motion planning under uncertainties. In 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 2659–2665. IEEE, 2015.

[73] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning Re-
search, 17(1):1334–1373, 2016.

[74] Li-Jia Li, Richard Socher, and Li Fei-Fei. Towards total scene understanding:
Classification, annotation and segmentation in an automatic framework. In
2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
2036–2043. IEEE, 2009.

[75] Andy Liaw, Matthew Wiener, et al. Classification and regression by random-
forest. R news, 2(3):18–22, 2002.

[76] Friedrich Liese and Igor Vajda. On divergences and informations in statis-
tics and information theory. IEEE Transactions on Information Theory,
52(10):4394–4412, 2006.

[77] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[78] Wei Liu and Marcelo H Ang. Incremental sampling-based algorithm for risk-
aware planning under motion uncertainty. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 2051–2058. IEEE, 2014.

[79] Brandon Luders, Mangal Kothari, and Jonathan How. Chance constrained rrt
for probabilistic robustness to environmental uncertainty. In AIAA guidance,
navigation, and control conference, page 8160, 2010.

[80] Brandon D Luders, Sertac Karaman, and Jonathan P How. Robust sampling-
based motion planning with asymptotic optimality guarantees. In AIAA Guid-
ance, Navigation, and Control (GNC) Conference, page 5097, 2013.

[81] Yuanfu Luo, Haoyu Bai, David Hsu, and Wee Sun Lee. Importance sampling
for online planning under uncertainty. The International Journal of Robotics
Research, 38(2-3):162–181, 2019.

159

[82] Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann,
Keith Anderson, Denis Teplyashin, Karen Simonyan, Andrew Zisserman, Raia
Hadsell, et al. Learning to navigate in cities without a map. In Advances in
Neural Information Processing Systems, pages 2419–2430, 2018.

[83] Shakir Mohamed and Danilo Jimenez Rezende. Variational information max-
imisation for intrinsically motivated reinforcement learning. In Advances in
neural information processing systems, pages 2125–2133, 2015.

[84] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[85] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and
Pieter Abbeel. Overcoming exploration in reinforcement learning with demon-
strations. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 6292–6299. IEEE, 2018.

[86] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, volume 1, page 2, 2000.

[87] XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating
divergence functionals and the likelihood ratio by convex risk minimization.
IEEE Transactions on Information Theory, 56(11):5847–5861, 2010.

[88] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training gener-
ative neural samplers using variational divergence minimization. In Advances
in neural information processing systems, pages 271–279, 2016.

[89] Masahiro Ono and Brian Williams. An efficient motion planning algorithm for
stochastic dynamic systems with constraints on probability of failure. 2008.

[90] Masahiro Ono and Brian C Williams. Iterative risk allocation: A new approach
to robust model predictive control with a joint chance constraint. In Decision
and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 3427–3432.
IEEE, 2008.

[91] Masahiro Ono, Brian C Williams, and Lars Blackmore. Probabilistic planning
for continuous dynamic systems under bounded risk. Journal of Artificial In-
telligence Research, 46:511–577, 2013.

[92] Takayuki Osa, Voot Tangkaratt, and Masashi Sugiyama. Hierarchical reinforce-
ment learning via advantage-weighted information maximization. In Interna-
tional Conference on Learning Representations, 2019.

[93] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions
for deep reinforcement learning. In Advances in Neural Information Processing
Systems, pages 8617–8629, 2018.

160

[94] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
exploration via bootstrapped dqn. In Advances in neural information processing
systems, pages 4026–4034, 2016.

[95] Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep explo-
ration via randomized value functions. Journal of Machine Learning Research,
20(124):1–62, 2019.

[96] AB Owen. Monte carlo theory, methods and examples (book draft), 2014.

[97] Jia Pan, Sachin Chitta, and Dinesh Manocha. Probabilistic collision detection
between noisy point clouds using robust classification. In Robotics Research,
pages 77–94. Springer, 2017.

[98] Jia Pan and Dinesh Manocha. Fast probabilistic collision checking for sampling-
based motion planning using locality-sensitive hashing. The International Jour-
nal of Robotics Research, 35(12):1477–1496, 2016.

[99] Liam Paninski. Estimation of entropy and mutual information. Neural compu-
tation, 15(6):1191–1253, 2003.

[100] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-
driven exploration by self-supervised prediction. In International Conference
on Machine Learning, pages 2778–2787, 2017.

[101] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised explo-
ration via disagreement. arXiv preprint arXiv:1906.04161, 2019.

[102] Sachin Patil, Yan Duan, John Schulman, Ken Goldberg, and Pieter Abbeel.
Gaussian belief space planning with discontinuities in sensing domains. In 2014
IEEE International Conference on Robotics and Automation (ICRA), pages
6483–6490. IEEE, 2014.

[103] Sachin Patil, Gregory Kahn, Michael Laskey, John Schulman, Ken Gold-
berg, and Pieter Abbeel. Scaling up gaussian belief space planning through
covariance-free trajectory optimization and automatic differentiation. In Algo-
rithmic foundations of robotics XI, pages 515–533. Springer, 2015.

[104] Sachin Patil, Jur Van Den Berg, and Ron Alterovitz. Estimating probabil-
ity of collision for safe motion planning under gaussian motion and sensing
uncertainty. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 3238–3244. IEEE, 2012.

[105] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2011.

161

[106] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Sim-to-real transfer of robotic control with dynamics randomization. In 2018
IEEE international conference on robotics and automation (ICRA), pages 3803–
3810. IEEE, 2018.

[107] Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine.
Variational discriminator bottleneck: Improving imitation learning, inverse rl,
and gans by constraining information flow. In International Conference on
Learning Representations, 2018.

[108] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Ca-
dena. From perception to decision: A data-driven approach to end-to-end mo-
tion planning for autonomous ground robots. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1527–1533. IEEE, 2017.

[109] Dean A Pomerleau. Efficient training of artificial neural networks for au-
tonomous navigation. Neural computation, 3(1):88–97, 1991.

[110] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker.
On variational bounds of mutual information. In International Conference on
Machine Learning, pages 5171–5180. PMLR, 2019.

[111] Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey
Levine. Vision-based multi-task manipulation for inexpensive robots using end-
to-end learning from demonstration. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 3758–3765. IEEE, 2018.

[112] CE Rasmussen and C Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[113] Xinyi Ren, Jianlan Luo, Eugen Solowjow, Juan Aparicio Ojea, Abhishek Gupta,
Aviv Tamar, and Pieter Abbeel. Domain randomization for active pose estima-
tion. In 2019 International Conference on Robotics and Automation (ICRA),
pages 7228–7234. IEEE, 2019.

[114] Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alexander Peysakhovich,
Kyunghyun Cho, and Joan Bruna. Backplay:" man muss immer umkehren".
arXiv preprint arXiv:1807.06919, 2018.

[115] RethinkRobotics. Baxter http://www.rethinkrobotics.com/baxter/, 2012.

[116] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas
Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg.
Learning by playing solving sparse reward tasks from scratch. In International
Conference on Machine Learning, pages 4341–4350, 2018.

[117] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation
learning and structured prediction to no-regret online learning. In Proceedings

162

of the fourteenth international conference on artificial intelligence and statistics,
pages 627–635. JMLR Workshop and Conference Proceedings, 2011.

[118] Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single
demonstration. arXiv preprint arXiv:1812.03381, 2018.

[119] Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc
Pollefeys, Timothy Lillicrap, and Sylvain Gelly. Episodic curiosity through
reachability. In International Conference on Learning Representations, 2019.

[120] Elad Schneidman, William Bialek, and Michael J Berry. Synergy, redundancy,
and independence in population codes. Journal of Neuroscience, 23(37):11539–
11553, 2003.

[121] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. Finding locally optimal, collision-free trajectories with sequential
convex optimization. In Robotics: science and systems, volume 9, pages 1–10.
Citeseer, 2013.

[122] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[123] Matthias Seeger. Gaussian processes for machine learning. International journal
of neural systems, 14(02):69–106, 2004.

[124] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Haus-
man. Dynamics-aware unsupervised skill discovery. In International Conference
on Learning Representations, 2020.

[125] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur
Szlam, and Rob Fergus. Intrinsic motivation and automatic curricula via asym-
metric self-play. In International Conference on Learning Representations, 2018.

[126] Wen Sun, Sachin Patil, and Ron Alterovitz. High-frequency replanning under
uncertainty using parallel sampling-based motion planning. IEEE Transactions
on Robotics, 31(1):104–116, 2015.

[127] Wen Sun, Luis G Torres, Jur Van Den Berg, and Ron Alterovitz. Safe mo-
tion planning for imprecise robotic manipulators by minimizing probability of
collision. In Robotics Research, pages 685–701. Springer, 2016.

[128] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[129] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen,
Yan Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A
study of count-based exploration for deep reinforcement learning. In Advances
in neural information processing systems, pages 2753–2762, 2017.

163

[130] MTCAJ Thomas and A Thomas Joy. Elements of information theory. Wiley-
Interscience, 2006.

[131] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[132] Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever,
Arun Ahuja, Greg Wayne, Razvan Pascanu, Yee Whye Teh, and Nicolas Heess.
Exploiting hierarchy for learning and transfer in kl-regularized rl. arXiv preprint
arXiv:1903.07438, 2019.

[133] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[134] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh
Agarwal. Safe reinforcement learning via curriculum induction. Advances in
Neural Information Processing Systems, 33, 2020.

[135] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg. Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state information.
The International Journal of Robotics Research, 30(7):895–913, 2011.

[136] Jur Van Den Berg, Sachin Patil, and Ron Alterovitz. Motion planning under
uncertainty using iterative local optimization in belief space. The International
Journal of Robotics Research, 31(11):1263–1278, 2012.

[137] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin,
Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Ried-
miller. Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[138] Dequan Wang, Coline Devin, Qi-Zhi Cai, Fisher Yu, and Trevor Darrell. Deep
object-centric policies for autonomous driving. In 2019 International Conference
on Robotics and Automation (ICRA), pages 8853–8859. IEEE, 2019.

[139] Hongqiang Wang, Jie Chen, Henry YK Lau, and Hongliang Ren. Motion plan-
ning based on learning from demonstration for multiple-segment flexible soft
robots actuated by electroactive polymers. IEEE Robotics and Automation
Letters, 1(1):391–398, 2016.

[140] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-
ended trailblazer (poet): Endlessly generating increasingly complex and diverse
learning environments and their solutions. arXiv preprint arXiv:1901.01753,
2019.

164

[141] Xuesu Xiao, Jan Dufek, and Robin R Murphy. Robot risk-awareness by formal
risk reasoning and planning. IEEE Robotics and Automation Letters, 5(2):2856–
2863, 2020.

[142] Kelvin Xu, Siddharth Verma, Chelsea Finn, and Sergey Levine. Continual
learning of control primitives: Skill discovery via reset-games. Advances in
Neural Information Processing Systems, 33, 2020.

165

