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Abstract

The exploration of planetary bodies such as asteroids can provide insight into the devel-
opment of the solar system and targets for future in situ resource utilization. However,
the current paradigm of using a single, monolithic, spacecraft limits the number of asteroid
visits to one every few years. By using fleets of standardized small spacecraft, the frequency
of asteroid visits could be dramatically increased while simultaneously decreasing the cost
per visit. With the development of miniaturized spacecraft systems beginning to mature,
attention also needs to be given to methodologies for operating these small spacecraft.

Electrospray propulsion is a promising technology for high-∆𝑣 propulsion of small space-
craft due to its mechanical simplicity and scalability. However, methodologies for charac-
terizing the propulsion system thrust on orbit have so far been underdeveloped, and are
required for continued development of electrospray thrusters. In addition, the use of elec-
trospray thrusters during operations around or on an asteroid can have further implications.
First, the low thrust density of electrospray propulsion, relative to monopropellant or cold-
gas propulsion, likely constrains many propulsion architectures to have a single thrust axis
with respect to the spacecraft body, complicating the trajectory design process. Second, the
ability to operate electrospray thrusters in a bipolar configuration opens up new mission
possibilities that leverage intentional charging of the parent vehicle as well as the surface of
the planetary body in order to create electric forces for actuation.

This thesis resolves three technical challenges associated with the application of elec-
trospray thrusters for potential planetary exploration missions. Numerical and analytical
approaches for inferring the thrust output of a propulsion system based on a simple orbital
maneuver are developed. These approaches allow for characterization of the propulsion
system performance including quantification in the uncertainty of the thrust output. The
controllability of an underactuated spacecraft during proximity operations is also resolved,
and an analytical maneuver library is derived in order to guide the spacecraft through dif-
ferent maneuvers. Finally, the application of electric forces for a novel form of actuation
on the surfaces of atmosphere-less planetary bodies is analyzed in order to enable a small
vehicle to anchor the surface of a rotating asteroid or potentially achieve levitation.

Thesis Supervisor: Paulo C. Lozano
Title: M. Alemán-Velasco Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The exploration of asteroids to determine their composition and characteristics could im-

prove our understanding of the development of the solar system and provide targets for

future in-situ resource utilization. Asteroids such as 16 Psyche are hypothesized to be ex-

posed metallic planetary cores [1] whose exploration could provide insight into the formation

of planets such as Earth. Asteroid families, groups of asteroids with similar orbital elements,

are thought to be the collision products of parent asteroids [2]. Exploration of the members

of these families could provide a convenient window into the inside of planetary bodies, but

their sheer number requires the capability to perform asteroid missions at a high frequency.

From an engineering perspective, the exploitation of asteroids through mining could allow

for in situ resource utilization or provide deposits of materials rare on Earth. Carbonaceous-

type (C-type) asteroids may contain water [3] which could be used to support life-support

systems for human exploration of the solar system or as propellant for propulsion systems to

allow for in-flight refueling. It is also believed that metallic-type (M-type) asteroids contain

concentrations of platinum-group metals [4], amongst other precious metals, which could

be mined and transported back to Earth. However, in order to efficiently perform mining

operations, the composition of target asteroids needs to be known a priori, or spacecraft

need the capability to quickly hop between potential targets.

There are over one million known asteroids in the solar system,1 of which only 15 have

been visited.2 The current paradigm of using a single, monolithic spacecraft to explore these

asteroids limits the number of asteroid visits to one every few years. The size, complexity,

1https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/in-depth/
2https://ssd.jpl.nasa.gov/sb/targets.html
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and uniqueness of each of these spacecraft requires the work of a sizable team of scientists

and engineers over long development periods, which creates a bottleneck in terms of how

many missions can be performed. Further costs are incurred from the use of a dedicated

launch vehicle as well as the daily operations in order to track, communicate with, and

ensure the health of the spacecraft.

If instead fleets of standardized small spacecraft were used, the frequency of visits could

be significantly increased while simultaneously decreasing the cost per visit. The standard-

ization of components for nano-spacecraft (1-10 kg),3 through the CubeSat standard [5], has

dramatically decreased the cost of spacecraft development to the point that universities can

launch their own spacecraft. In addition, since these spacecraft are small, relative to the

typical monolithic spacecraft, they can be launched as secondary payloads thereby reducing

the cost of launch. A fleet of identical spacecraft could be launched into orbit on a common

launch vehicle or be deployed in a convenient location, such as in the asteroid belt, by a

mothership. Each spacecraft would then select its own target asteroid, independently propel

itself to the asteroid, and then characterize it.

With miniaturized spacecraft subsystems beginning to mature, the feasibility of realiz-

ing such a fleet of spacecraft is becoming possible. The Mars Cube One (MarCO) mission,4

which traveled to Mars with the InSight lander, demonstrated many of he required subsys-

tems for deep-space missions with micro-spacecraft (10-100 kg).5 The major technology gap

for miniaturized spacecraft subsystems after MarCO’s success is the development of high-∆𝑣

propulsion systems. Since the MarCO spacecraft were able to ride-share to Mars with the

InSight lander, their propulsion systems were cold-gas systems intended only for trajectory

correction and attitude control maneuvers [6]. However, even if the MarCO team wanted a

high-performance (high-∆𝑣) propulsion system, such a system would not have been avail-

able. The majority of propulsion systems currently available for small spacecraft are based

on cold-gas or monopropellant technology and can only provide enough ∆𝑣 for small orbit

changes [7].

Electrospray propulsion is a promising technology for high-∆𝑣 propulsion of nano- and

micro-spacecraft due to its mechanical simplicity and scalability. Of particular interest are

micro-fabricated ionic-liquid electrospray thrusters which are actively under development at

3https://www.nasa.gov/directorates/spacetech/small spacecraft/smallsat tech.html
4https://www.jpl.nasa.gov/cubesat/missions/marco.php
5See footnote 3
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multiple institutions. Micro-fabricated ionic-liquid electrospray thrusters make use of near-

zero vapor pressure ionic liquids that are fed to the thruster with passive, capillary forces.

Such a design eliminates the need for propellant management systems and further reduces

the size and mass of the thrusters such that they are compatible with nano- and micro-

spacecraft. One of the main limitations of micro-fabricated ionic-liquid electrospray thrusters

is their operational lifetime, which limits the throughput, and therefore total impulse, of

the propulsion system. However, improvements in micro-fabrication techniques as well as

methodologies for bypassing lifetime limitations such as staging [8] mean that a deep-space

mission with micro-spacecraft is feasible with current technology [9].

While improvements to miniaturized subsystems have been made, the operation of these

spacecraft has been similar to the operation of a monolithic spacecraft, where commands

are sent from the ground and the autonomy of the spacecraft is limited to running pre-made

procedures. When fleets of spacecraft are involved, the cost and user-time requirements of

tracking and communication can be prohibitively expensive and diminish the advantages of

small spacecraft. Assuming contact with the spacecraft needs to be made once per week,

which may be acceptable during the long-duration transfer to the asteroid, the hourly cost

of using NASA’s Deep Space Network could be over $4,000. Once the spacecraft reaches

the asteroid and enters proximity operations, contact may need to be made daily. During

this period, the hourly cost of using the Deep Space Network could be over $6,500 [10].

Over the course of a mission, the cost of using time on the Deep Space Network would be

comparable to the cost of the entire spacecraft or more. Attention therefore needs to be

given to new methodologies of operating small spacecraft, in particular the shift towards

semi-autonomous operation in order to minimize the required communication with Earth.

In terms of methodologies for autonomous maneuvering of spacecraft, there is a signif-

icant gap between the methods that have been implemented and those that are studied

academically. Implemented methods are often simple, with trajectories described analyti-

cally, while academic methods are often complex and rely on numerical optimization tech-

niques. Numerical techniques are likely beyond the computational capabilities of current

small spacecraft computers. However, even in the future when computational capabilities

are increased, numerical techniques often do not have guarantees on if they will find a solu-

tion or how long it will take to find one. In addition, on a more subjective level, engineers

implementing these methods will not know what trajectory the spacecraft will attempt to
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take until runtime. While this is not an explicit downside to the performance of the nu-

merical methods, it adds complexity to the verification and validation of the spacecraft’s

performance before it is launched.

There are other technical challenges outside of trajectory design that also need to be

addressed in order to fully enable space exploration with autonomous nano- and micro-

spacecraft. Knowledge of the thrust output, including uncertainty quantification, of the

propulsion system will be necessary in order for the spacecraft to design appropriate tra-

jectories. Additionally, surface operations is a domain that is typically not considered for

nano- and micro-spacecraft, but is an important domain to address when considering the

exploration of planetary bodies. The complexity of surface operations will primarily be tied

to operating in the low-gravity environments of small asteroids.

The focus of this thesis will be on addressing three research gaps associated with plane-

tary exploration with electrospray thrusters which serve to answer three questions. The first

question is how do we infer the thrust output of the propulsion system in low-Earth orbit?

Inference of the thrust output will aid both in the development of propulsion systems for

nano- and micro-spacecraft and also in future missions where the thrust may be character-

ized in low-Earth orbit before the spacecraft executes its mission. The second question is

how do we guide and control a spacecraft that uses electrospray thrusters during proximity

operations? The low thrust density of electrospray thrusters will likely cause the spacecraft

to be underactuated and complicate the trajectory design process. The final question is

how do we utilize ionic-liquid ion sources for actuation on the surfaces of atmosphere-less

planetary bodies? The unique characteristics of ionic-liquid ion sources, such as electrospray

thrusters, can enable novel modes of actuation on these atmosphere-less bodies that could

dramatically improve our ability to explore their surfaces.

The remainder of this chapter serves as a brief introduction to electrospray propulsion

in order to provide technical background for the other chapters. Chapter 2 addresses the

question of thrust inference, Chapter 3 addresses the question of proximity operations, and

Chapter 4 address the question of surface operations. Due to the disparity of topics for each

chapter, literature review is conducted on a chapter-by-chapter basis. In addition, due to

the limited number of latin and greek letters, notation is defined on a chapter-by-chapter

basis unless otherwise specified.
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Figure 1-1: Notional diagram of capillary and conical emitters with an extractor grid.

1.1 Electrospray Propulsion

Electrospray thrusters belong to the class of ion engines, where charged particles are accel-

erated through a potential difference in order to produce thrust. In an electrospray thruster,

the charged particles are extracted from an electrically-conductive liquid such as a liquid

metal or ionic liquid. Propellant is fed to an emitter and a potential difference is applied

between the emitter and an extractor grid. The resulting electric field deforms the liquid

and creates a conical meniscus where the upstream pressure, surface tension, and electrical

pressure are all at equilibrium. The sharp tip of the cone enhances the electric field to the

point that charged particles can be extracted from the emitter and accelerated, out through

the extractor grid, to produce thrust.

Figure 1-1 shows notional diagrams of two types of emitter geometries. Capillary emitters

simply act as a pathway for the liquid propellant; the liquid is fed to the end of the capillary

where the conical meniscus is formed and particles can be extracted. Conical emitters can

be used in order to enhance the local electric field and aid in particle extraction. In a conical

emitter, propellant can either be fed along the surface of the emitter (externally-wetted) or

the emitter material can be porous and allow for propellant to be fed through capillary

forces inside the emitter (internally-wetted).

Two regimes of operation can occur. In the pure-ion regime, individual ions are evap-

orated directly from the liquid. In the cone-jet regime, the tip of the meniscus breaks up

into droplets and a jet of droplets is produced. Typically, electrospray thrusters operate in a

mixture of the pure-ion and cone-jet regimes where both individual ions as well as droplets
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are observed. Characteristically, the pure-ion regime exhibits higher efficiencies due to the

higher exhaust velocity of the charged particles, while the cone-jet regime exhibits higher

thrust-to-power due to the lower specific charge of the droplets. For propulsive efficiency,

operation in either the pure-ion or cone-jet regimes is preferred as operation in the mixed

regime implies beam polydispersity and therefore a mixture of exhaust velocities.

Electrospray thrusters designed to operate in the cone-jet regime and have been well

studied [11, 12, 13]. In terms of in-space operation, these types of thrusters have demon-

strated success as high-precision actuators for position and attitude control during the Laser

Interferometer Space Antenna (LISA) Pathfinder mission [14]. However, the specific im-

pulse of these thrusters was only around 250 s which is insufficient for high-∆𝑣 missions.

The power-efficiency of these thrusters is also poor as operating in the pure cone-jet regime

(with no direct ion evaporation) is difficult. Evaporated ions contribute negligibly to the

overall thrust due to their low mass, but can dominate the current draw, and therefore power

draw, of the system. In addition, operation in the cone-jet regime requires active propellant

feed systems with bellows, to provide pressure to move the propellant from the tanks to the

emitters, as well as values, to control the propellant feed rate [15].

For propulsion of small spacecraft, electrospray thrusters that operate in the pure-ion

regime are preferred due to their greater efficiency. In order to reliably achieve the low

flow rates required for operation in the pure-ion regime, externally-wetted and internally-

wetted emitters are often used. Devices that use liquid metal as their propellant have been

considered [16] and developed to the point that they have been operated in space [17].

More recently, ionic liquids have been investigated as a propellant for pure-ion electrospray

thrusters. Ionic liquids hold many advantages that improve the scalability of electrospray

thrusters, especially for nano- and micro-spacecraft. First, ionic liquids remain in the liquid

state at room temperature, and therefore do not require heating like liquid metal propel-

lants. Second, since these liquids are composed of positive and negative ions, they also

do not require any pre-ionization and allow for the thruster to fire in either a positive or

negative mode. In addition, ionic liquids have negligible vapor pressure at the temperatures

experienced by a spacecraft [18, 19], and therefore do not require any form of pressurized

containment. These advantages allow for thrusters to be miniaturized to the point that they

actually need to be scaled up for use on a nano-spacecraft.

The use of passively-fed ionic liquids for electrospray propulsion was first demonstrated
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Figure 1-2: Example of an electrospray thruster designed for use on a small spacecraft.

with externally-wetted tungsten emitters [20, 21]. However, the thrust produced by a sin-

gle emitter is insufficient for main propulsion. In order to produce a device useful for space

propulsion, multiple emitters are multiplexed into an array. Typically, these arrays are man-

ufactured from a single piece of porous material with micro-fabrication techniques, creating

thrusters composed of hundreds of emitters [22, 23, 24]. Since a single emitter is on the

100-micrometer scale, arrays of hundreds of emitters can be created that are on the single-

centimeter scale. Figure 1-2 shows an example of an electrospray thruster designed for use

on small spacecraft [24]. The array contains 480 emitters, has a footprint of approximately

1 cm x 1 cm, and is around 2.5 mm tall. A single thruster still does not produce enough

thrust for main propulsion except for extremely small spacecraft, only around 12.5 𝜇N, but

does have application in precision attitude control [25].

In order to produce enough thrust for main propulsion, arrays of thrusters are used. An

array of eight thrusters can provide approximately 100 𝜇N of thrust which may be sufficient

for main propulsion of nano-spacecraft [26]. Propulsion system architectures that feature

more thrusters can be designed, including those with 36 thrusters [27]. Such a propulsion

system could produce a thrust of approximately 0.45 mN. While this level of thrust still

seems relatively low compared to other electric propulsion devices, given the low mass of

the spacecraft considered, approximately 4 kg for a 3U CubeSat, the net acceleration is

comparable to that of other electric propulsion missions such as Dawn [28].
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1.2 Staging Systems

While ionic-liquid electrospray thrusters are a promising technology for main propulsion

of small spacecraft, their main limitation for application to planetary exploration is their

operational lifetime. The miniaturization of propulsion systems typically results in a deteri-

oration of their lifetime. The larger-scale thrusters used during the LISA Pathfinder mission

were able to consistently demonstrate lifetimes of over 2,400 hours, limited by the length of

the mission, but a cluster of four thrusters had a mass of 14.8 kg [15]. Four microfabricated

ionic-liquid electrospray thrusters, fully fueled, have a mass of 14 g [29] and can produce

a similar amount of thrust compared to the LISA Pathfinder thrusters. However, micro-

fabricated ionic-liquid electrospray thrusters only have reliably-demonstrated lifetimes of a

few hundred hours [24]. While individual tests of single thrusters have demonstrated longer

lifetimes, the reliability of these longer lifetimes needs to be confirmed.

For microfabricated ionic-liquid electrospray thrusters, the two main life-limiting mech-

anisms are propellant accumulation on the extractor grid as well as arcing between isolated

tips on the emitter array and the extractor grid. The beam of ions which is extracted from

an emitter tip leaves in a conical shape with observed half angles of up to 60 degrees [24].

The beam can therefore impact the extractor grid and allow propellant to accumulate on

the extractor grid or backspray onto the emitter array. If enough propellant accumulates,

an ionic-liquid connection can form between the emitter array and extractor grid causing

an electrical short on the thruster and rendering it inoperable [30]. In addition, not all tips

on the emitter array will be identical due to difficulties with repeatable manufacturing and

inherent material non-uniformity [31, 32]. The non-uniformity between emitter tips can lead

to non-uniformity in the emitted current over a particular array [33]. While most emitter

tips will operate as intended, some emitter tips might have unstable menisci [34] which can

lead to erratic liquid emission and occasional electrical discharges between the emitter tip

and extractor grid [35] degrading the thruster over time.

In order to truly enable deep-space missions where a nano- or micro-spacecraft could

independently propel itself from Earth orbit and out into deep space, propulsion systems

based on microfabricated ionic-liquid electrospray thrusters need to reliably demonstrated

lifetimes of 5,000+ hours [36]. Two strategies could be taken: improve the lifetime of individ-

ual thrusters through a better understanding and mitigation of the life-limiting mechanisms
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Figure 1-3: Conceptual image of staging on a 3U CubeSat.

or bypass the lifetime limitations of individual thrusters through an alternative method.

While the former strategy is continuously being explored and will bring lifetime improve-

ments in the future, if an alternative method can be found, high-∆𝑣 capabilities for nano-

and micro-spacecraft with existing ionic-liquid electrospray technology could be enabled.

Staging, analogous to launch vehicle staging, is one such alternative method. Instead of

the propulsion system consisting of a single array of thrusters, multiple arrays of thrusters

are stacked on top of each other. As each array reaches its lifetime limit, it is ejected from the

spacecraft, exposing the next array of thrusters which can then continue the mission. Figure

1-3 shows a conceptual image of staging on a 3U CubeSat. Due to the low mass and vol-

ume of ionic-liquid electrospray thrusters, multiple stages can be used without significantly

increasing the overall mass and volume of the propulsion system.

Staging of ionic-liquid electrospray thrusters, or of space propulsion systems in general,

is a recent idea and was first studied for reducing mission times for lunar missions [8]. More

recently, work has been conducted to analyze the use of staging systems for missions to

near-Earth asteroids [36], demonstrate a staging system in a laboratory environment [37],

develop analytical methodologies for analyzing the use of staging systems [38], determine

the feasibility of a mission to near-Earth asteroids with staging systems and a MarCO-like

spacecraft [9], and provide propulsion system redundancy during the detumbling of small

asteroids [39]. Further studies have investigated the use of analytical low-thrust trajectories

for guidance of a spacecraft with staging systems between circular orbits [40]. All of this work

25



together shows the feasibility of performing a nano- or micro-spacecraft mission to a near-

Earth asteroid, or other destination, with current technology, including some preliminary

work towards autonomous guidance of such a spacecraft. Ongoing work aims to perform an

on-orbit demonstration of a staging system in the near future [41]. Attention now needs to

be given to other technical aspects of such a mission including the thrust inference, proximity

operations, and surface operations. This thesis aims to address these aspects.

1.3 Thesis Contributions

1. Evaluation of the use of the ensemble Kalman update for inferring the thrust of low-

acceleration propulsion systems in low-Earth orbit including the ability to account for

modeling error of the Earth’s gravitational field in low-Earth orbit.

2. Derivation of an analytical linear measurement model for thrust inference of low-

acceleration propulsion systems in low-Earth orbit as well as optimization of measure-

ment timing in order to minimize the posterior uncertainty in the thrust estimate.

3. Application of polynomial chaos expansions for representing modeling error of the

Earth’s gravitational field in low-Earth orbit in order to enable rapid predictions of

the expected uncertainty from thrust inference of low-acceleration propulsion systems.

4. Application of forced-circular motion in order to stabilize an underactuated spacecraft

during proximity operations around a central target and enable the use of low-thrust

propulsion systems for remote inspection.

5. Derivation of an analytical maneuver library for maneuvering of an underactuated

spacecraft during proximity operations around a central target which can incorporate

constraints such as thrust saturation and plume impingement avoidance.

6. Initial feasibility analysis of the use of ionic-liquid ion sources for combined vehicle

and surface charging in order to enable electric forces for actuation on the surfaces of

atmosphere-less planetary bodies.

26



Chapter 2

On-Orbit Thrust Inference

One of the last steps in the development of a propulsion system is an in-space demonstra-

tion. As part of the demonstration, a measurement of the thrust produced by the propulsion

system is usually desired such that the performance in space can be compared to the per-

formance measured in a laboratory environment. Thrust measurements typically rely on

using the propulsion system to induce an angular or linear acceleration on the parent space-

craft and measuring the response. Both of these approaches were demonstrated in the Space

Electric Rocket Test (SERT) missions: SERT-1 configured the propulsion system to produce

torques on the spacecraft and measured the change in the spacecraft’s spin rate [42] while

SERT-2 configured the propulsion system to produce linear accelerations on the spacecraft

and measured the change in the spacecraft’s orbital radius [43]. Both spacecraft also carried

on-board accelerometers in order to take instantaneous measurements of the acceleration

produced by their respective propulsion systems.

In many cases, measurement of thrust through orbital maneuvers may be the desired

approach as it imposes the least amount of requirements on the mission. For missions that

are not dedicated technology demonstration missions, measuring thrust through angular

accelerations by offsetting the thrust vector from the center of mass of the spacecraft requires

gimbaling mechanisms or that multiple thrusters be used throughout the primary mission.

For some spacecraft this is possible with the desired propulsion system architecture for the

mission, as was the case with the Mars Cube One spacecraft [44], but is not always the case.

Direct measurement of the propulsive acceleration through an on-board accelerometer that

can provide precise measurements of the propulsive acceleration takes away from valuable
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payload mass and volume, particularly for low-accelerations (order 1 𝜇g).

These problems are exacerbated for small-spacecraft missions which feature reduced bud-

gets and operational support throughout the mission. Development of propulsion systems

for small spacecraft is also an extremely active research area. Many low-thrust propulsion

systems for small spacecraft such as ionic-liquid electrospray thrusters [24], film-evaporating

water microcapillaries [45], miniaturized ion thrusters [46], and plasma thrusters [47, 48]

are actively in development and likely will have in-space demonstrations in the near future.

Since these propulsion systems are designed for small spacecraft, it is likely that the in-space

demonstration will be conducted on a dedicated technology CubeSat demonstration mission.

The combination of low-thrust propulsion with small spacecraft creates a unique chal-

lenge for in-space thrust measurements. The low cost and size of the spacecraft likely pro-

hibits the use of accelerometers with precision high enough to directly measure the thrust.

Even with a dedicated technology demonstration mission, the small size of the spacecraft

can also present issues for measurements relying on angular accelerations due to uncertainty

in the lever arm of the propulsion system. For a CubeSat, unless the propulsion system

is mounted on an extendable boom, the maximum lever arm will be on the order of a few

centimeters. Therefore, uncertainty in the lever arm of the propulsion system of only a few

millimeters will lead to errors in the thrust measurement on the order of 10%. Uncertainty

in the lever arm can come from many sources including the thruster itself. For example,

spatial variation of emission across an ionic-liquid electrospray thruster [33, 49] could lead

to variations of the center of thrust of the thruster on the order of a few millimeters, placing

an inherent limit on the achievable precision of the thrust estimate.

Due to these limitations, while methods for estimating propulsion system thrust from

orbital maneuvers may be desired for general spacecraft, these methods may be required for

thrust estimation on CubeSats and other small spacecraft. One of the simplest approaches

for estimating thrust from an orbital maneuver is to perform a circular orbit raise. An

analytical approximation for the radial position of the spacecraft can be derived

𝑟(𝑡) = 𝑟(0)

(︂
1− 𝑎p

𝑣(0)
𝑡

)︂−2

(2.1)

where 𝑟 is the spacecraft’s radial position, 𝑣 is the spacecraft’s velocity, 𝑎p is the propulsive

acceleration, and 𝑡 is time [50]. By measuring the spacecraft’s radial position and inverting
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Eq. 2.1, an estimate of the propulsive acceleration can be determined, from which an

estimate of the thrust can be obtained. This approach was used during the SERT-2 mission

[51] and will be further analyzed in Section 2.7. However, there are many limitations of

measuring thrust in this manner. First, it requires that the propulsion system be active for

the entire duration of the maneuver which may not be possible, especially for power-limited

spacecraft such as CubeSats. Second, only a point-estimate of the thrust is obtained and

the uncertainty in the estimate can be difficult to quantify [52]. Last, it is restricted to

maneuvers where the spacecraft starts in a near-circular orbit and cannot be generalized to

other maneuvers. These limitations mean that changes to the spacecraft’s radial position

can be used to check that the thrust is close to what is expected [53], but an alternative

method for estimating thrust from orbital maneuvers is desired.

Augmented Kalman filters have been considered for maneuver detection of uncoopera-

tive satellites [54] and a linear batch filter has been evaluated for estimating thrust from a

low-thrust maneuver [55]. However, both of these approaches require linearizing the space-

craft dynamics in order to propagate the spacecraft’s state over time. Due to the signifi-

cant nonlinearity of orbital dynamics, a linearization of the spacecraft’s dynamics requires

that measurements be taken frequently in order to produce reliable results. Measurement

intervals of 1 s [54] and 30 s [55] are used, which may be difficulty to achieve on resource-

constrained spacecraft such as CubeSats while also powering an electric propulsion system.

Additionally, methods based in linear filtering assume that all uncertainties, such as mea-

surement noise and parameter uncertainty, are Gaussian. While an estimate of the variance

in the parameter estimates is provided, it may not reflect the true uncertainty both in terms

of magnitude as well as the shape of the distribution.

In this work, an inference approach is considered where the thrust is inferred based

on measurements taken over an entire maneuver. Specifically, for a system that can be

parameterized by a parameter vector 𝜓 and produces a measurement vector 𝑦, Bayes’ rule

gives that the posterior probability denisty of the parameter vector given the measurement

vector is proportional to the product of the likelihood of observing the measurement vector

given the parameter vector with the prior knowledge of the parameter vector

𝒫(𝜓|𝑦) ∝ 𝒫(𝑦|𝜓)𝒫(𝜓) (2.2)
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The goal of this inference method is to generate samples from the posterior distribution

𝒫(𝜓|𝑦). By using a sampling-based approach the likelihood probability, 𝒫(𝑦, 𝜓), and prior

probability, 𝒫(𝜓), can be any distribution rather than being restricted to Gaussian distribu-

tions. Additionally, by using an inference approach, measurements over the entire trajectory

are considered simultaneously, allowing the nonlinearities of the spacecraft’s dynamics to be

explicitly accounted for. Although this method is applicable to any level and duration of

thrust, the focus of this work will be on cases with low acceleration as they represent the

more-difficult scenario.

2.1 Research Gap

There currently exists a research gap for on-orbit thrust inference based on using the propul-

sion system to perform an orbital maneuver. Analytical approaches lack the desired accuracy

and precision while methods based in linear filtering require linearization of the dynamics

and relatively high measurement frequencies. In addition, many methods neglect to ac-

count for the possibility of modeling error during simulation, which can cause the resulting

predictions to be overly confident.

This work considers the use of the ensemble Kalman update for inferring the propulsion

system thrust based on measurements of the spacecraft’s position taken during an orbital

maneuver. The ensemble Kalman update provides a flexible numerical approach which can

account for non-Gaussian distributions as well as potential modeling error. In addition, an

analytical formulation of a linear measurement model for thrust inference is derived which

can provide insight into the outputs of the ensemble Kalman update and potentially reduce

the computational complexity of the thrust inference process. Progress towards the solutions

shown here will be published in Refs. [56, 57, 58]. The ensemble Kalman update approach

used here has also been considered for thrust inference on a magnetically-levitating thrust

balance in a laboratory environment [59] and for inferring the spatial uniformity of emission

across an electrospray array [60].

2.2 Ensemble Kalman Update

The ensemble Kalman update [61] is a form of approximate Bayesian inference meaning

that the distribution of samples it generates approximates the true posterior distribution.
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The idea behind the ensemble Kalman update is the same as the update step of a standard

Kalman filter where parameters of inference are updated based on a linear update rule

𝜓 = 𝜓 −𝐾(𝑦 − 𝑦*) (2.3)

where 𝐾 is the Kalman gain, 𝑦 is the vector of simulated measurements based on the cur-

rent estimate of the parameters, and 𝑦* is the vector of observed measurements. For linear-

Gaussian models, the Kalman gain can be calculated analytically based on the measurement

model and prior uncertainty in the parameters. However, for models that contain nonlinear-

ities or non-Gaussian distributions an analytical form of the Kalman gain is generally not

possible to obtain.

Instead, the ensemble Kalman update attempts to approximate the Kalman gain through

Monte Carlo methods. The key idea is that the Kalman gain can be calculated from

𝐾 = Σ𝜓,𝑦Σ
−1
𝑦 (2.4)

where Σ𝜓,𝑦 is the covariance between the parameters and measurements, and Σ𝑦 is the

auto-covariance of the measurements. By generating an ensemble of initial parameter es-

timates, based on the assumed prior distribution of the parameters, the measurements for

each ensemble member can be simulated from a model of the system. With a collection

of parameter estimates and corresponding measurements, Σ𝜓,𝑦 and Σ𝑦 can be numerically

estimated which allows for an estimate of the Kalman gain to be obtained.

Algorithm 1 shows the ensemble Kalman update routine. The ensemble, Ψ, consists of

a collection of parameter vectors. For a given number of ensemble members, each mem-

ber of the ensemble is generated by randomly sampling a parameter vector from the prior

distribution, 𝒫(𝜓). Then, a model of the system, 𝑓(𝜓), is used to generate a simulated mea-

surement vector given the parameter vector for each ensemble member. Given the collection

of parameter vectors and simulated measurement vectors, the covariances Σ𝜓,𝑦 and Σ𝑦 are

estimated which allows a numerical estimate of the Kalman gain to be obtained. With the

estimate of the Kalman gain, the parameter estimates for each ensemble member can be

updated using the linear update rule in Eq. 2.3. The posterior distribution of the parameter

vectors in the ensemble is then an approximation of the true distribution in Eq. 2.2.
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Algorithm 1 Ensemble Kalman update
1: Given observed measurement vector, 𝑦*

2: Initialize ensemble, Ψ
3: Initialize measurement matrix, Υ
4: for each ensemble member 𝑖 do
5: Draw parameter vector from prior, Ψ𝑖 ← 𝒫(𝜓)
6: Simulate measurement vector, Υ𝑖 = 𝑓(Ψ𝑖)

7: Estimate Σ𝜓,𝑦 and Σ𝑦 from Ψ and Υ
8: Estimate Kalman gain, 𝐾 = Σ𝜓,𝑦Σ

−1
𝑦

9: for each ensemble member 𝑖 do
10: Update parameter vector, Ψ𝑖 = Ψ𝑖 −𝐾(Υ𝑖 − 𝑦*)
11: return ensemble, Ψ

2.3 Dynamics Models

Two models of the dynamics in low-Earth orbit are used in this work: a high-fidelity model

for simulating the data that would be collected on-orbit and a low-fidelity model used as

the forward model, 𝑓(𝜓), in the ensemble Kalman update. The high-fidelity model is the

General Mission Analysis Tool [62] and uses a 70 x 70 spherical-harmonics representation

of the Earth’s gravitational field with Joint Gravity Model 3 coefficients [63], the MSISE90

atmospheric model [64], solar radiation pressure, and point-mass representations of the Sun,

Moon, and other planets. This model is only used to simulate the data that would be

collected on-orbit and is not used during the inference step.

The low-fidelity model only accounts for the gravitational field of the Earth and at-

mospheric drag, and does not consider solar radiation pressure or the influence of other

planetary bodies outside of their impact on an Earth-centered, Earth-fixed reference frame,

as they are negligible relative to the gravitational and drag forces. In addition, the spherical-

harmonics representation of the Earth’s gravitational field is truncated to 30 x 30 and the

atmospheric density is assumed to be spatially and temporally constant. In principle, the

high-fidelity model could be used in the inference step. However, the use of a low-fidelity

model offers two advantages: it reduces the computational complexity of the model and

reduces the number of parameters that need to be inferred. In addition, the low-fidelity

model alleviates potential issues over overfitting a particular model to the data, particularly

for modeling the atmospheric drag.

With the low-fidelity model, the acceleration vector of the spacecraft in an Earth-
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centered, Earth-fixed frame becomes

�⃗� = �⃗�(�⃗�) +
𝐹

𝑚
�̂�− 1

2

𝑣2

𝑚
𝜅𝑣 − 2Ω⃗× �⃗� − Ω⃗×

(︁
Ω⃗× �⃗�

)︁
+ �⃗�(𝑡) (2.5)

where �⃗� and �⃗� are the spacecraft’s position and velocity vectors respectively, 𝑣 and 𝑣 are the

magnitude and unit vector of the spacecraft’s velocity, Ω⃗ is the rotational frequency of the

Earth, �⃗� is the local gravitational acceleration, 𝐹 is the propulsion system thrust, 𝑚 is the

spacecraft’s mass, �̂� is the unit vector of the thrust, and 𝜅 is the combined drag coefficient

which accounts for the local atmospheric density, 𝜌, the actual drag coefficient, 𝐶𝐷, and

drag area, 𝐴

𝜅 = 𝜌𝐶𝐷𝐴 (2.6)

It is assumed that the atmosphere rotates with the Earth, therefore the appropriate velocity

for determining the acceleration due to drag is the spacecraft’s velocity in the Earth-centered,

Earth-fixed frame. The final term of the acceleration, �⃗�(𝑡), represented process noise added

to the simulation in order to represent modeling error, and will be discussed further in

Section 2.4.

Only eight parameters are required in order to simulate a trajectory using the acceleration

in Eq. 2.5: the initial position and velocity vectors of the spacecraft, the propulsion system

thrust, and the combined drag coefficient. These parameters are therefore the parameters

of inference and form the parameter vector 𝜓

𝜓 =

⎡⎢⎢⎢⎢⎢⎢⎣
�⃗�(0)

�⃗�(0)

𝐹

𝜅

⎤⎥⎥⎥⎥⎥⎥⎦ (2.7)

The forward model for the ensemble Kalman update is then just a propagation of the

spacecraft’s position and velocity over time for a particular parameter vector 𝜓 given the

acceleration of Eq. 2.5.

Measurements are obtained by taking the spacecraft’s position in Cartesian coordinates

at desired instances in time and adding additive measurement noise. Noise in the mea-
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Table 2.1: Approximate order of magnitude for different sources of modeling error in an
Earth-fixed, Earth-centered reference frame. Note that the expected propulsive acceleration
is of order 10−1 km/hr2.

Source Order of Magnitude [km/hr2]
Earth’s gravitational field truncation 10−1

Atmospheric drag 10−2

Moon gravitational acceleration 10−2

Sun gravitational acceleration 10−3

Solar radiation pressure 10−3

Other planets gravitational acceleration 10−7

surements is assumed to be added to all three axes in Cartesian coordinates with the noise

along each axis independent of the noise in the other axes. This noise model was chosen for

simplicity, but other noise models including those that contain nonlinearities or correlation

between noise in the different axes can be used. Unlike in a filtering scheme, the measure-

ment vector, 𝑦, includes the spacecraft’s position over the entire trajectory rather than at

individual instances in time.

2.4 Model Error

One of the key aspects in inferring the probability distribution for the thrust is the handling

of modeling error. In this problem, modeling error will be caused by errors in the acceleration

applied to the spacecraft from different sources, and will determine the process noise in Eq.

2.5. For the choice of low-fidelity model used in this work, the dominant source of modeling

error will be caused by truncation of the spherical-harmonics representation of the Earth’s

gravitational field. Table 2.1 shows the approximate order of magnitude for different sources

of modeling error in an Earth-fixed, Earth-centered reference frame for a near-circular orbit

with altitude of 410 km. When calculating the acceleration errors due to atmospheric drag

and solar radiation pressure, the spacecraft is assumed to have a drag area of 0.1 m2,

coefficients of drag and reflectivity of 1.0, and mass of 4 kg, representative of a 3U CubeSat.

Figure 2-3 shows the acceleration error in the along-track direction caused by truncating

the spherical-harmonics representation of the Earth’s gravitational field for a 410 km circular

orbit. The magnitude of the acceleration error has some cyclical behavior with period close

to the 90 minute orbital period. However, the error qualitatively appears to be random noise.

34



Figure 2-1: Along-track gravitational acceleration error for a 410 km altitude orbit.

Furthermore, Figure 2-2 shows a histogram of the acceleration error which shows that the

acceleration error is near-Gaussian. These two aspects combined suggest that generating

the process noise for Eq. 2.5 from a Gaussian process may be a reasonable representation of

the modeling error due to truncating the spherical-harmonics representation of the Earth’s

gravitational field.

In order to generate realizations of the process noise from a Gaussian process, the covari-

ance between samples in the process noise needs to be defined. Figure 2-3 shows the sample

autocorrelation between samples of the acceleration error with an exponentiated-quadratic

curve fit

𝜎(∆𝑡) = 𝜏 exp

[︃
−1

2

(︂
∆𝑡

𝐿

)︂2
]︃

(2.8)

where ∆𝑡 is the time between samples or lag, 𝜏 is the scale, and 𝐿 is the length. The expo-

nentiated quadratic is able to represent the sample autocorrelation for a lag of approximately

two minutes and lower, but cannot represent the autocorrelation for longer lags. Instead,

samples that are separated by two minutes or greater are assumed to be uncorrelated. Fu-

ture work will explore the use of different kernels for the Gaussian process in order to better

represent the true sample autocorrelation.

With the scale of the kernel determined from Figure 2-2 and the length of the kernel

determined from Figure 2-3, realizations of the Gaussian process can be generated that

provide a reasonable approximation of the expected modeling error. Figure 2-4 shows one
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Figure 2-2: Probability density of along-track gravitational acceleration error for a 410 km
altitude orbit. Dash-dot line represents a Gaussian fit to the histogram data.

Figure 2-3: Sample autocorrelation of along-track gravitational acceleration error for a 410
km altitude orbit. Solid line represents an exponentiated-quadratic fit to the data.
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Figure 2-4: Realization of Gaussian process for representing along-track gravitational accel-
eration error for a 410 km altitude orbit.

such realization for the along-track acceleration error. Qualitatively, it looks similar to the

true error in Figure 2-1 but with a greater content of high-frequency noise. The increase in

high-frequency noise is caused by the poor representation of the sample autocorrelation for

lags greater than two minutes. Although only the noise in the along-track direction is shown

here, the same process can be applied to the acceleration error in the radial and cross-track

directions to fully represent the process noise.

2.5 Implementation

For this work a simple maneuver is considered where the spacecraft maintains its thrust axis

pointed in the angular direction throughout the entire maneuver

�̂� = ℎ̂× 𝑟 (2.9)

where ℎ̂ is the unit vector of the orbit’s angular momentum vector, calculated in an Earth-

centered inertial frame, and 𝑟 is the unit vector of the spacecraft’s position vector. There

are no restrictions on the direction of the thrust vector in implementation. However, a

thrust vector aligned with either the angular or velocity direction will produce a more

significant change in spacecraft state which will lead to better inference of the thrust value.

The maneuver is also broken into two distinct phases: a powered phase where the propulsion

system maintains a constant thrust and a decay phase where the propulsion system is off and

37



Table 2.2: Initial spacecraft orbital parameters.

Parameter Value
Semi-major axis 6,798.0488 km
Eccentricity 0.0003393
Inclination 51.6441 deg
Right ascension of the ascending node 76.2242 deg
Argument of perigee 119.8379 deg
Mean anomaly 30.2224 deg

the spacecraft’s orbit is allowed to decay due to atmospheric drag. This maneuver is used to

aid in differentiating the effects of atmospheric drag and propulsive thrust. Measurements of

the spacecraft’s position are collected at a fixed interval over the entire trajectory and used to

infer the initial state of the spacecraft, the propulsion system thrust, and the combined drag

coefficient. There is no requirement that measurements have to be taken at a fixed interval,

and the effects of uneven sampling will be explored in Section 2.9. Gaussian measurement

noise with standard deviation of 1/3 m is added to the measurements along each axis to

represent measurements taken by a Global Positioning System antenna.

For all results the true spacecraft trajectory is simulated from the initial orbital param-

eters given in Table 2.2, representative of deployment from the International Space Station.

Unless otherwise specified, the initial spacecraft mass was set to 4 kg, the coefficient of drag

and coefficient of reflectivity were both set to 1.0, while the drag and solar radiation pressure

areas were both set to 0.1 m2. For the MSISE90 atmospheric model, the F10.7 solar flux and

average solar flux were both set to 150 solar flux units while the geomagnetic index was set

to 3. The propulsion system was assumed to provide a constant thrust with a specific im-

pulse of 1000 s. While propellant mass flow was simulated, due to the high specific impulse

and relatively short maneuver lengths, the impact of propellant mass flow on the trajectory

is negligible.

In order to determine the appropriate parameters for the Gaussian processes used to

generate realizations of the process noise, an orbit close to the expected orbit of the spacecraft

is simulated. This orbit does not need to match the actual orbit of the spacecraft, but

should be qualitatively similar such that reasonable estimates of the modeling error can

be determined. Based on the simulation of the nearby orbit, the acceleration error in the

radial, along-track, and cross-track directions due to truncating the spherical-harmonics
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Table 2.3: Gaussian process parameters for representing acceleration error along each axis.

Scale [km2/hr4] Length [min]
Radial 0.00772 0.446
Along-track 0.00381 0.345
Cross-track 0.00385 0.707

Figure 2-5: Radial position of the spacecraft throughout the proposed maneuver. Markers
indicate measurement locations.

representation of the Earth’s gravitational field can be determined. A similar process as

used in Section 2.4 is used in order to determine the scale and length of the respective

kernels. Table 2.3 shows the scale and length of the kernel in all three axes based on a

simulation of a 410 km altitude circular orbit.

2.6 Numerical Results

Figure 2-5 shows the radial position of the spacecraft during a 16-hour maneuver where the

propulsion system is on for the first eight hours with a thrust of 100 𝜇N and off for the last

eight hours. Measurements are taken every 10 minutes for a total of 97 measurement times

throughout the entire maneuver. Figure 2-6 shows the marginal probability density of the

posterior thrust estimate using an ensemble Kalman update with an ensemble size of 2,500.

The posterior distribution is near-Gaussian, represented by the dash-dot line. The posterior

distribution has a mean of 98.53 𝜇N and a standard deviation of 1.12 𝜇N giving a 1.47%

error in the mean value and 3.36% uncertainty in the estimate (3𝜎).
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Figure 2-6: Marginal posterior distribution of the thrust estimate obtained using an ensemble
Kalman update.

In addition to an estimate of the thrust, the ensemble Kalman update provides an esti-

mate of the average combined drag coefficient throughout the trajectory. Figure 2-7 shows

the marginal probability density for the posterior distribution of the combined drag coef-

ficient estimate. The mean of the distribution is approximately 0.476 𝜇g/km which for a

coefficient of drag of 1.0 and a drag area of 0.1 m2 indicates an average atmospheric density

of approximately 4.76 g/km3. This average atmospheric density is reasonably close to the

expected average atmospheric density for a ∼410 km altitude orbit [65]. Figure 2-8 shows a

scatter plot of the thrust and combined drag coefficient for the posterior ensemble members.

There is a clear positive correlation between the thrust and combined drag coefficient esti-

mates which is to be expected; trajectories with a larger combined drag coefficient require

larger thrust values in order to explain the data.

One of the key advantages of using the ensemble Kalman update is that it automati-

cally quantifies uncertainty in the parameter estimates by providing a full estimate for the

probability density of the posterior distribution. As such, the effects of different parameters

of the maneuver can be explored. First and foremost, since the propulsion system alters

the spacecraft’s trajectory by providing an acceleration, the uncertainty in the thrust esti-

mate actually comes from an uncertainty in the acceleration. Therefore, for two different

spacecraft, if the propulsive acceleration is the same then the uncertainty in estimating the

propulsive acceleration should be constant and the difference in uncertainty in the thrust

should be proportional to the difference in mass. To illustrate this, Figure 2-9 shows the
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Figure 2-7: Marginal posterior distribution of the combined drag coefficient estimate ob-
tained using an ensemble Kalman update.

Figure 2-8: Scatter plot of the posterior ensemble showing the correlation between estimates
of thrust and combined drag coefficient.
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Figure 2-9: Marginal posterior distribution of the thrust estimate obtained using an ensemble
Kalman update. Both the thrust and spacecraft mass were increased by a factor of 250 from
previous simulations.

marginal probability density of the posterior thrust estimate for the same scenario as before,

but for a spacecraft mass of 1000 kg and propulsion system thrust of 25 mN. Since both the

mass and thrust are increased by a factor of 250, the propulsive acceleration is the same as

before: 2.55 𝜇g. Previously, for a spacecraft mass of 4 kg and thrust of 100 𝜇N, the posterior

uncertainty in thrust was 1.12 𝜇N which corresponds to an acceleration of 28.5 ng. Here,

the standard deviation of the posterior thrust distribution is 0.278 mN which corresponds

to an acceleration of 28.3 ng.

Since the uncertainty in the thrust estimate is inherently tied to propulsive acceleration,

the trends in posterior uncertainty in the propulsive acceleration are explored versus other

maneuver parameters. Figure 2-10 shows the standard deviation of the marginal posterior

distribution of the propulsive acceleration for different values of the true propulsive acceler-

ation. In all cases the maneuver was fixed to eight hours of thruster firing and eight hours

of decay due to drag with measurements taken every 10 minutes. Within numerical noise,

the standard deviation is constant with propulsive acceleration.

Figure 2-11 shows the standard deviation of the posterior marginal distribution of the

propulsive acceleration for different maneuver durations. For a given maneuver duration, the

propulsion system is active for the first half of the maneuver duration and off for the second

half of the maneuver duration. In all cases, the true propulsive acceleration was fixed to 25

𝜇m/s2 and 50 measurements were taken throughout the maneuver. The standard deviation
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Figure 2-10: Standard deviation of the posterior marginal distribution of the propulsive
acceleration versus true acceleration value.

decreases approximately as 𝑇−0.8 where 𝑇 is the maneuver duration.

Figure 2-12 shows the standard deviation of the posterior marginal distribution of the

propulsive acceleration for different measurement intervals. In all cases the true propulsive

acceleration was fixed to 25 𝜇m/s2 and the maneuver was fixed to eight hours of propulsion

system firing and eight hours of decay due to atmospheric drag. The dependence of the

standard deviation on measurement interval is exceedingly weak, with the dependence cor-

responding to approximately ∆𝑡0.05 until measurement intervals below approximately five

minutes are used.

These trends in the standard deviation of the posterior propulsive acceleration allow re-

sults obtained for one maneuver to be generalized to other cases. In addition, if a particular

standard deviation is observed for a given maneuver it is relatively easy to determine how to

alter the maneuver in order to achieve a desired level of uncertainty. Minor improvements

to the posterior uncertainty can be achieved by taking more measurements throughout the

maneuver through reducing the measurement interval. Alternatively, if a larger decrease in

the posterior uncertainty is required, then it may be better to increase the overall length of

the maneuver. A final method of decreasing the uncertainty in the propulsive thrust would

be to reduce the mass of the spacecraft. Since the posterior uncertainty in propulsive accel-

eration will remain constant for different propulsive accelerations, using the same propulsion

system on a lighter spacecraft will result in decreased uncertainty in the thrust. Potential

explanations for some of the trends observed here will be discussed in Section 2.7.3.
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Figure 2-11: Standard deviation of the posterior marginal distribution of the propulsive
acceleration versus maneuver duration.

Figure 2-12: Standard deviation of the posterior marginal distribution of the propulsive
acceleration versus measurement interval.
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The posterior uncertainty in the propulsive acceleration is driven by the process noise

used to represent modeling error. The theoretical limits in posterior uncertainty for an

ensemble Kalman update can be estimated by using the low-fidelity model to both generate

the observed data and for inference, eliminating the need to introduce process noise as there

is no modeling error. Figure 2-13 shows the standard deviation of the posterior marginal

distribution of the propulsive acceleration for exactly this case. Comparing to Figures 2-

11 and 2-12, a reduction in posterior standard deviation of the propulsive acceleration of

over an order of magnitude is observed. For an uncertainty threshold of 30 ng (1𝜎), a two-

hour maneuver could be used if the inference model perfectly represents the true system

dynamics whereas a 16-hour maneuver was required when the data were generated with the

high-fidelity model.

Another interesting aspect of Figure 2-13 is the rate of convergence in the posterior

standard deviation. Looking at the dependence with maneuver duration, for short maneuver

durations (<0.3 hr) the posterior standard deviation is constant with maneuver duration and

for long maneuver durations (>2 hr) the posterior standard deviation decreases quadratically

with maneuver duration. Between these two regions is a transitional region where the

posterior standard deviation decreases almost linearly with maneuver duration. It is likely

that the constant standard deviation for short maneuver durations is due to the posterior

standard deviation being close to the prior standard deviation. For the dependence with

measurement interval, a clear trend of the standard deviation scaling with
√

∆𝑡 where ∆𝑡 is

the measurement interval can be observed. Potential explanations for these trends will be

further discussed in Section 2.7.3.

2.7 Linear Measurement Model

In order to better understand the outputs of the ensemble Kalman update and improve the

computational efficiency of thrust inference, an analytical approach to the thrust inference

problem is desired. Specifically, a linear measurement model of the form

∆𝑦 = 𝐻∆𝜑+ 𝜈 (2.10)

is sought where ∆𝑦 corresponds to small changes in the measurements, ∆𝜑 corresponds to

small changes in the input parameters, 𝐻 is the sensitivity matrix, and 𝜈 is measurement
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Figure 2-13: Standard deviation of the posterior marginal distribution of the propulsive
acceleration versus maneuver duration and measurement interval with no modeling error.
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noise. The primary goal of this section is to derive an analytical form of 𝐻 which determines

how small changes to the input parameters affect the observed measurements.

In order to derive the sensitivity matrix, a modified form of the thrust inference problem

is used where the measurements are taken to be in a local-vertical, local-horizontal frame

rather than the Cartesian coordinates used previously. Small changes to the measurement

vector are then

∆𝑦 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆𝑟(𝑡1)
...

∆𝑟(𝑡𝑚)

∆𝑠(𝑡1)
...

∆𝑠(𝑡𝑚)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.11)

where ∆𝑟(𝑡) correspond to small changes in the radial position, ∆𝑠(𝑡) correspond to small

changes in the along-track position, and 𝑡1, . . . , 𝑡𝑚 are the discrete measurement locations.

Two parameter vectors will be considered here. One where atmospheric drag is neglected

and the parameters of inference correspond to the initial radial and along-track position and

velocity of the spacecraft as well as a propulsive acceleration. This case will be referred to

as the “one-acceleration” case and small changes in the parameter vector are given by

∆𝜑1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆𝑟0

∆𝑠0

∆𝑣𝑟,0

∆𝑣𝑠,0

∆𝑎p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.12)
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In this scenario, the sensitivity matrix 𝐻1 is

𝐻1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕
𝜕𝑟0
𝑟(𝑡1)

𝜕
𝜕𝑠0
𝑟(𝑡1)

𝜕
𝜕𝑣𝑟,0

𝑟(𝑡1)
𝜕

𝜕𝑣𝑠,0
𝑟(𝑡1)

𝜕
𝜕𝑎p

𝑟(𝑡1)
...

...
...

...
...

𝜕
𝜕𝑟0
𝑟(𝑡𝑚) 𝜕

𝜕𝑠0
𝑟(𝑡𝑚) 𝜕

𝜕𝑣𝑟,0
𝑟(𝑡𝑚) 𝜕

𝜕𝑣𝑠,0
𝑟(𝑡𝑚) 𝜕

𝜕𝑎p
𝑟(𝑡𝑚)

𝜕
𝜕𝑟0
𝑠(𝑡1)

𝜕
𝜕𝑠0
𝑠(𝑡1)

𝜕
𝜕𝑣𝑟,0

𝑠(𝑡1)
𝜕

𝜕𝑣𝑠,0
𝑠(𝑡1)

𝜕
𝜕𝑎p

𝑠(𝑡1)
...

...
...

...
...

𝜕
𝜕𝑟0
𝑠(𝑡𝑚) 𝜕

𝜕𝑠0
𝑠(𝑡𝑚) 𝜕

𝜕𝑣𝑟,0
𝑠(𝑡𝑚) 𝜕

𝜕𝑣𝑠,0
𝑠(𝑡𝑚) 𝜕

𝜕𝑎p
𝑠(𝑡𝑚)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.13)

The second parameter vector considers two accelerations that act on the spacecraft, 𝑎1

and 𝑎2, which can represent the propulsive acceleration and atmospheric drag acceleration

respectively. This case will be referred to as the “two-acceleration” case and small changes

in the parameter vector are given by

∆𝜑1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆𝑟0

∆𝑠0

∆𝑣𝑟,0

∆𝑣𝑠,0

∆𝑎1

∆𝑎2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.14)

In this scenario, the sensitivity matrix 𝐻2 is

𝐻2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕
𝜕𝑟0
𝑟(𝑡1)

𝜕
𝜕𝑠0
𝑟(𝑡1)

𝜕
𝜕𝑣𝑟,0

𝑟(𝑡1)
𝜕

𝜕𝑣𝑠,0
𝑟(𝑡1)

𝜕
𝜕𝑎1

𝑟(𝑡1)
𝜕
𝜕𝑎2

𝑟(𝑡1)
...

...
...

...
...

...
𝜕
𝜕𝑟0
𝑟(𝑡𝑚) 𝜕

𝜕𝑠0
𝑟(𝑡𝑚) 𝜕

𝜕𝑣𝑟,0
𝑟(𝑡𝑚) 𝜕

𝜕𝑣𝑠,0
𝑟(𝑡𝑚) 𝜕

𝜕𝑎1
𝑟(𝑡𝑚) 𝜕

𝜕𝑎2
𝑟(𝑡𝑚)

𝜕
𝜕𝑟0
𝑠(𝑡1)

𝜕
𝜕𝑠0
𝑠(𝑡1)

𝜕
𝜕𝑣𝑟,0

𝑠(𝑡1)
𝜕

𝜕𝑣𝑠,0
𝑠(𝑡1)

𝜕
𝜕𝑎1

𝑠(𝑡1)
𝜕
𝜕𝑎2

𝑠(𝑡1)
...

...
...

...
...

...
𝜕
𝜕𝑟0
𝑠(𝑡𝑚) 𝜕

𝜕𝑠0
𝑠(𝑡𝑚) 𝜕

𝜕𝑣𝑟,0
𝑠(𝑡𝑚) 𝜕

𝜕𝑣𝑠,0
𝑠(𝑡𝑚) 𝜕

𝜕𝑎1
𝑠(𝑡𝑚) 𝜕

𝜕𝑎2
𝑠(𝑡𝑚)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.15)

Both𝐻1 and𝐻2 have in common the sensitivities of the measurements to the spacecraft’s

initial position and velocity. These sensitivities can be determined from linear orbit theory
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[66] and are

𝜕

𝜕𝑟0
𝑟(𝑡) ≈ 4− 3 cos(𝑛𝑡) (2.16)

𝜕

𝜕𝑠0
𝑟(𝑡) ≈ 0 (2.17)

𝜕

𝜕𝑣𝑟,0
𝑟(𝑡) ≈ 1

𝑛
sin(𝑛𝑡) (2.18)

𝜕

𝜕𝑣𝑠,0
𝑟(𝑡) ≈ 2

𝑛
(1− cos(𝑛𝑡)) (2.19)

in the radial direction, and

𝜕

𝜕𝑟0
𝑠(𝑡) ≈ 6(sin(𝑛𝑡)− 𝑛𝑡) (2.20)

𝜕

𝜕𝑠0
𝑠(𝑡) ≈ 1 (2.21)

𝜕

𝜕𝑣𝑟,0
𝑠(𝑡) ≈ 2

𝑛
(cos(𝑛𝑡)− 1) (2.22)

𝜕

𝜕𝑣𝑠,0
𝑠(𝑡) ≈ 1

𝑛
(4 sin(𝑛𝑡)− 3𝑛𝑡) (2.23)

in the along-track direction where 𝑛 is the frequency of the spacecraft’s orbit. The primary

focus of this chapter will be on deriving the sensitivities of the radial and along-track posi-

tions of the spacecraft with respect to along-track accelerations, 𝑎p in the one-acceleration

case and 𝑎1 and 𝑎2 in the two-acceleration case. For the derivation, sensitivities of the space-

craft’s radial and angular position within an orbital plane will be derived. Small changes

in the along-track position of the spacecraft can be related to small changes in the angular

position of the spacecraft through

∆𝑠(𝑡) = 𝑟(𝑡)∆𝜃(𝑡) = (𝑟0 + ∆𝑟(𝑡))∆𝜃(𝑡) ≈ 𝑟0∆𝜃(𝑡) (2.24)

which provides a relation in the sensitivities with respect to a generic acceleration, 𝑎, of

𝜕

𝜕𝑎
𝑠(𝑡) ≈ 𝑟0

𝜕

𝜕𝑎
𝜃(𝑡) (2.25)
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2.7.1 One Acceleration

The specific energy of a spacecraft’s orbit, 𝜖, is given by

𝜖 =
1

2
𝑣2 − 𝜇

𝑟
(2.26)

where 𝑣 is the speed of the spacecraft, 𝜇 is the gravitational parameter of the central body,

and 𝑟 is the radial position of the spacecraft. Assuming that the orbit is circular, then the

specific energy can be written as a function of only the orbital radius as

𝜖 = −1

2

𝜇

𝑟
(2.27)

The time derivative of the specific energy, the specific power, is therefore

𝑑𝜖

𝑑𝑡
=

1

2

𝜇

𝑟2
𝑑𝑟

𝑑𝑡
(2.28)

If the spacecraft carries a propulsion system that produces a constant propulsive accel-

eration, 𝑎p, and assuming that the propulsive acceleration is aligned with the spacecraft’s

velocity vector, then the specific power input to the spacecraft’s orbit from the propulsion

system is given by

𝑝p = 𝑎p𝑣 = 𝑎p

√︂
𝜇

𝑟
(2.29)

Assuming that the only power input to the spacecraft’s orbit comes from its propulsion

system, then Eqs. 2.28 and 2.29 can be equated to give

1

2

𝜇

𝑟2
𝑑𝑟

𝑑𝑡
= 𝑎p

√︂
𝜇

𝑟
(2.30)

which can be rearranged to give an ordinary differential equation for the orbital radius

𝑑𝑟

𝑑𝑡
=

2𝑎p√
𝜇
𝑟3/2 (2.31)

This differential equation can be analytically integrated to give an approximation for the
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orbital radius as a function of time

𝑟(𝑡) =
𝑟0(︁

1− 𝑎p
𝑣0
𝑡
)︁2 (2.32)

where 𝑟0 is the initial orbital radius and 𝑣0 is the initial orbital speed

𝑣0 =

√︂
𝜇

𝑟0
(2.33)

From the approximation of the spacecraft’s radial position over time, the angular position

of the spacecraft in the orbital plane can also be approximated

𝜃(𝑡) = 𝜃0 +

∫︁ 𝑡

0

√︂
𝜇

𝑟3(𝜏)
𝑑𝜏 (2.34)

= 𝜃0 +
1

4

𝑣20
𝑎p𝑟0

[︃
1−

(︂
1− 𝑎p

𝑣0
𝑡

)︂4
]︃

(2.35)

The approximation of the spacecraft’s position within the orbital plane above is well

known and has been presented previously [50]. Given a particular maneuver time, 𝑇 , and

an initial and final radius of the spacecraft, 𝑟0 and 𝑟𝑓 , the propulsive acceleration can be

approximated by inverting Eq. 2.32.

𝑎p ≈
1

𝑇

(︂√︂
𝜇

𝑟0
−
√︂
𝜇

𝑟𝑓

)︂
(2.36)

As mentioned previously, this approach was taken during the SERT-2 mission [51]. However,

the approximation was derived under the assumption that the gravitational field of the Earth

can be approximate as that of a point mass. While this limitation may not be significant

for high-altitude orbits with long maneuver durations, it will certainly be significant for

low-altitude orbits with shorter maneuver durations. In the case of SERT-2, the spacecraft

had an orbital altitude of 1,000 km and maneuver durations of several months which allowed

for application of the analytical approximation [67]. However, for scenarios such as that of

Figure 2-5, the oscillations of the spacecraft’s radial position due to the non-spherical nature

of the Earth’s gravitational field are quite apparent. It is unclear what the initial and final

radii of the spacecraft are, and the magnitude of the oscillations dominate any change in

the spacecraft’s radial position due to the propulsive acceleration.

51



Figure 2-14: Radial position of the spacecraft during an orbit-raising maneuver along with
curve fit of the analytical approximation where the initial radius and propulsive acceleration
are free parameters. Dashed lines show the 95% confidence interval of the fit.

One possible approach for using the analytical approximation on low-altitude and short-

duration maneuvers would be to fit Eq. 2.32 to the obtained data with the initial radius and

propulsive acceleration as the free parameters. Figure 2-14 shows this approach for a 5-hour

maneuver with measurements taken every five minutes. Since Eq 2.32 only accounts for

a single acceleration, atmospheric drag was not simulated for this case and the propulsion

system thrust was 100 𝜇N acting on a 4 kg spacecraft. The solid black line shows the mean

of the fit and the dashed lines show the 95% confidence interval. Looking solely at the

estimated thrust, the mean estimated value was 233.87 𝜇N with a 95% confidence interval

of [-237.78 𝜇N, 705.52 𝜇N]. Comparatively, an ensemble Kalman update can provide a far

better estimate. Modifying the forward model and parameter vector to not account for

atmospheric drag, Figure 2-15 shows the resulting posterior marginal distribution of the

thrust estimate. The mean of the distribution is 100.72 𝜇N with a 95% confidence interval

of [98.52 𝜇N, 102.93 𝜇N].

While the analytical approximation in its original form may not be useful for thrust

estimation in low-Earth orbit, the sensitivities of the spacecraft’s position with respect to

the propulsive acceleration are still valuable. The partial derivative of the radial position

with respective to the propulsive acceleration is

𝜕

𝜕𝑎p
𝑟(𝑡) ≈ 2𝑟0𝑡

𝑣0

(︂
1− 𝑎p

𝑣0
𝑡

)︂−3

(2.37)
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Figure 2-15: Inferred marginal probability distribution for the propulsive thrust in the one-
acceleration case.

Typical parameters are 𝑎p = 25 𝜇m/s2, 𝑡 = 10 hr, and 𝑣0 = 7.4 km/s which gives

𝑎p

𝑣0
𝑡 = 1.2× 10−4 (2.38)

and

(︂
1− 𝑎p

𝑣0
𝑡

)︂−3

= 0.9996 (2.39)

which allows for the sensitivity of the radial position with respect to the propulsive acceler-

ation to be approximated as

𝜕

𝜕𝑎p
𝑟(𝑡) ≈ 2

𝑟0𝑡

𝑣0
(2.40)

using the assumption that 𝑎p𝑡/𝑣0 ≪ 1. For determining the sensitivity of the angular

position with respect to the propulsive acceleration, start by expanding Eq. 2.35 to

𝜃(𝑡) ≈ 𝜃0 +
1

4

𝑣20
𝑟0

[︃
4𝑡

𝑣0
− 6𝑎p𝑡

2

𝑣20
+

4𝑎2p𝑡
3

𝑣30
−
𝑎3p𝑡

4

𝑣40

]︃
(2.41)

The sensitivity of the angular position with propulsive acceleration can be determined from

𝜕

𝜕𝑎p
𝜃(𝑡) ≈ 1

4𝑟0

[︃
−6𝑡2 + 8𝑡2

(︂
𝑎p

𝑣0
𝑡

)︂
− 3𝑡2

(︂
𝑎p

𝑣0
𝑡

)︂2
]︃

(2.42)
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Under the assumption that 𝑎p𝑡/𝑣0 ≪ 1 then

𝜕

𝜕𝑎p
𝜃(𝑡) ≈ −3

2

𝑡2

𝑟0
(2.43)

Figure 2-16 shows the relationship between discrete changes in the spacecraft’s position

within the orbital plane versus discrete changes in the propulsive acceleration. The changes

in the spacecraft’s position are normalized by the sensitivities in Eqs. 2.40 and 2.43 and

random parameters for the propulsive acceleration, time, and initial orbital radius were

used. In both of the plots the data closely follows a line of slope one, indicating that the

sensitivities in Eqs. 2.40 and 2.43 well-predict the actual sensitivities of the spacecraft’s

position in the orbital plane with respect to the propulsive acceleration.

2.7.2 Two Accelerations

The sensitivities for a single acceleration may be useful for high-altitude orbits, such as

that of SERT-2, where the affect of atmospheric drag is negligible. However, in low-altitude

orbits there are two significant accelerations that act on the spacecraft: the propulsive

acceleration and atmospheric drag. Conveniently, both of these accelerations act roughly in

the along-track direction for a near-circular orbit.

In deriving the linear measurement model when both propulsive acceleration and atmo-

spheric drag act on the spacecraft, a general case where two along-track accelerations, 𝑎1

and 𝑎2, act on the spacecraft is considered. It is also assumed that 𝑎1 only acts on the

spacecraft for 𝑡 < 𝑇𝑠 where 𝑇𝑠 is a switching time, and that 𝑎2 acts on the spacecraft for all

time. Physically, 𝑎1 would represent the propulsive acceleration and 𝑎2 would represent the

atmospheric drag. The total acceleration acting on the spacecraft is then

𝑎(𝑡) =

⎧⎪⎨⎪⎩
𝑎1 + 𝑎2 𝑡 < 𝑇𝑠

𝑎2 𝑡 ≥ 𝑇𝑠
(2.44)

The approach for analyzing this scenario is to consider two segments based on if the

time is before or after the switching time, 𝑇𝑠. When 𝑡 < 𝑇𝑠, the scenario is indistinguishable

from the one-acceleration case, but with 𝑎p = 𝑎1 + 𝑎2. Therefore, the radial position of the
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Figure 2-16: Relationship between discrete changes in the spacecraft’s position within the
orbital plane versus discrete changes in the propulsive acceleration for a single acceleration
acting on the spacecraft. Top plot shows the radial position while the bottom plot shows
the along-track position.
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spacecraft can be approximated from

𝑟1(𝑡) ≈
𝑟0(︁

1− 𝑎1+𝑎2
𝑣0

𝑡
)︁2 (2.45)

and the sensitivity of the radial position with respect to both 𝑎1 and 𝑎2 is given by

𝜕

𝜕𝑎1
𝑟1(𝑡) =

𝜕

𝜕𝑎2
𝑟1(𝑡) =

2𝑟0𝑡

𝑣0

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑡

)︂−3

(2.46)

Under the assumption that 𝑎1𝑡/𝑣0 ≪ 1 and 𝑎2𝑡/𝑣0 ≪ 1 then

𝜕

𝜕𝑎1
𝑟1(𝑡) ≈

𝜕

𝜕𝑎2
𝑟1(𝑡) ≈

2𝑟0𝑡

𝑣0
(2.47)

When 𝑡 ≥ 𝑇𝑠 then a new approximation for the radial position of the spacecraft is

required. Under the assumption that the spacecraft is still in a near-circular orbit at 𝑡 = 𝑇𝑠,

then the radial position for 𝑡 ≥ 𝑇𝑠 can be approximated by

𝑟2(𝑡) ≈
𝑟′0(︁

1− 𝑎2
𝑣′0

(𝑡− 𝑇𝑠)
)︁2 (2.48)

where the initial radial position, 𝑟′0, is given by the radial position of the spacecraft at the

end of the first segment

𝑟′0 = 𝑟1(𝑇𝑠) =
𝑟0(︁

1− 𝑎1+𝑎2
𝑣0

𝑇𝑠

)︁2 (2.49)

as is the initial orbital speed

𝑣′0 =

√︂
𝜇

𝑟′0
=

√︂
𝜇

𝑟0

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠

)︂
(2.50)

Substituting Eqs. 2.49 and 2.50 into Eq. 2.48 gives

𝑟2(𝑡) ≈
𝑟0(︁

1− 𝑎1+𝑎2
𝑣0

𝑇𝑠 − 𝑎2
𝑣0

(𝑡− 𝑇𝑠)
)︁2 (2.51)
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The sensitivity of the spacecraft’s radial position with respect to 𝑎1 is then

𝜕

𝜕𝑎1
𝑟2(𝑡) ≈

2𝑟0𝑇𝑠
𝑣0

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠 −

𝑎2
𝑣0

(𝑡− 𝑇𝑠)
)︂−3

(2.52)

Under the assumptions that 𝑎1𝑡/𝑣0 ≪ 1 and 𝑎2𝑡/𝑣0 ≪ 1 then

𝜕

𝜕𝑎1
𝑟2(𝑡) ≈

2𝑟0𝑇𝑠
𝑣0

(2.53)

The sensitivity of the spacecraft’s radial position with respect to 𝑎2 is

𝜕

𝜕𝑎2
𝑟2(𝑡) ≈

2𝑟0𝑡

𝑣0

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠 −

𝑎2
𝑣0

(𝑡− 𝑇𝑠)
)︂−3

(2.54)

Under the assumptions that 𝑎1𝑡/𝑣0 ≪ 1 and 𝑎2𝑡/𝑣0 ≪ 1 then

𝜕

𝜕𝑎2
𝑟2(𝑡) ≈

2𝑟0𝑡

𝑣0
(2.55)

The same approach can be taken for the angular position of the spacecraft in the orbital

plane. For 𝑡 < 𝑇𝑠, the scenario is the same as the one-acceleration case with 𝑎p = 𝑎1 + 𝑎2,

so the angular position of the spacecraft can be approximated from

𝜃1(𝑡) ≈ 𝜃0 +
1

4

𝑣20
𝑟0(𝑎1 + 𝑎2)

[︃
1−

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑡

)︂4
]︃

(2.56)

and the sensitivities of 𝜃1(𝑡) with respect to 𝑎1 and 𝑎2 are given by

𝜕

𝜕𝑎1
𝜃1(𝑡) ≈

1

4𝑟0

[︃
−6𝑡2 + 8𝑡2

(︂
𝑎1
𝑣0
𝑡

)︂
− 3𝑡2

(︂
𝑎1
𝑣0
𝑡

)︂2
]︃

(2.57)

and

𝜕

𝜕𝑎2
𝜃1(𝑡) ≈

1

4𝑟0

[︃
−6𝑡2 + 8𝑡2

(︂
𝑎2
𝑣0
𝑡

)︂
− 3𝑡2

(︂
𝑎2
𝑣0
𝑡

)︂2
]︃

(2.58)

Under the assumptions that 𝑎1𝑡/𝑣0 ≪ 1 and 𝑎2𝑡/𝑣0 ≪ 1 then

𝜕

𝜕𝑎1
𝜃1(𝑡) ≈

𝜕

𝜕𝑎2
𝜃1(𝑡) ≈ −

3

2

𝑡2

𝑟0
(2.59)
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When 𝑡 ≥ 𝑇𝑠 the angular position can be approximated through integration

𝜃2(𝑡) ≈ 𝜃′0 +

∫︁ 𝑡

0

√︂
𝜇

𝑟32(𝜏)
𝑑𝜏 (2.60)

≈ 𝜃′0 +
1

4

𝑣20
𝑟0𝑎2

[︃(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠

)︂4

−
(︂

1− 𝑎1 + 𝑎2
𝑣0

𝑇𝑠 −
𝑎2
𝑣0

(𝑡− 𝑇𝑠)
)︂4
]︃

(2.61)

where the initial angular position, 𝜃′0, is given by the angular position of the spacecraft at

the end of the first segment

𝜃′0 = 𝜃1(𝑇𝑠) = 𝜃0 +
1

4

𝑣20
𝑟0(𝑎1 + 𝑎2)

[︃
1−

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠

)︂4
]︃

(2.62)

Substituting Eq. 2.62 into Eq. 2.61 gives

𝜃2(𝑡) ≈ 𝜃0 +
1

4

𝑣20
𝑟0(𝑎1 + 𝑎2)

[︃
1−

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠

)︂4
]︃

+
1

4

𝑣20
𝑟0𝑎2

[︃(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠

)︂4

−
(︂

1− 𝑎1 + 𝑎2
𝑣0

𝑇𝑠 −
𝑎2
𝑣0

(𝑡− 𝑇𝑠)
)︂4
]︃

(2.63)

In order to determine the sensitivity of the angular position for 𝑡 ≥ 𝑇𝑠, first define

Γ1(𝑡) =
1

4

𝑣20
𝑟0(𝑎1 + 𝑎2)

[︃
1−

(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠

)︂4
]︃

(2.64)

and

Γ2(𝑡) =
1

4

𝑣20
𝑟0𝑎2

[︃(︂
1− 𝑎1 + 𝑎2

𝑣0
𝑇𝑠

)︂4

−
(︂

1− 𝑎1 + 𝑎2
𝑣0

𝑇𝑠 −
𝑎2
𝑣0

(𝑡− 𝑇𝑠)
)︂4
]︃

(2.65)

such that 𝜃2(𝑡) ≈ 𝜃0 + Γ1(𝑡) + Γ2(𝑡). Expanding Γ1(𝑡) gives

Γ1(𝑡) =
1

4

𝑣0
𝑟0

[︂
4𝑇𝑠 −

6(𝑎1 + 𝑎2)𝑇
2
𝑠

𝑣0
+

4(𝑎1 + 𝑎2)
2𝑇 3

𝑠

𝑣20
− (𝑎1 + 𝑎2)

3𝑇 4
𝑠

𝑣30

]︂
(2.66)

which allows for the sensitivity of Γ1(𝑡) with respect to 𝑎1 to be calculated as

𝜕

𝜕𝑎1
Γ1(𝑡) =

1

4

𝑇 2
𝑠

𝑟0

[︂
−6 +

8(𝑎1 + 𝑎2)𝑇𝑠
𝑣0

− 3(𝑎1 + 𝑎2)
2𝑇 2

𝑠

𝑣20

]︂
(2.67)
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Under the assumption that (𝑎1 + 𝑎2)𝑇𝑠/𝑣0 ≪ 1 then

𝜕

𝜕𝑎1
Γ1(𝑡) ≈ −

3

2

𝑇 2
𝑠

𝑟0
(2.68)

Similarly, the sensitivity of Γ1(𝑡) with respect to 𝑎2 is given by

𝜕

𝜕𝑎2
Γ1(𝑡) =

1

4

𝑇 2
𝑠

𝑟0

[︂
−6 +

8(𝑎1 + 𝑎2)𝑇𝑠
𝑣0

− 3(𝑎1 + 𝑎2)
2𝑇 2

𝑠

𝑣20

]︂
(2.69)

Under the assumption that (𝑎1 + 𝑎2)𝑇𝑠/𝑣0 ≪ 1 then

𝜕

𝜕𝑎2
Γ1(𝑡) ≈ −

3

2

𝑇 2
𝑠

𝑟0
(2.70)

In order to analyze the sensitivities of Γ2(𝑡) define

Λ = 1− 𝑎1 + 𝑎2
𝑣0

𝑇𝑠 (2.71)

such that

Γ2(𝑡) =
1

4

𝑣0
𝑟0

(𝑡− 𝑇𝑠)
[︂
4Λ3 − 6Λ2𝑎2(𝑡− 𝑇𝑠)

𝑣0
+ 4Λ

𝑎22(𝑡− 𝑇𝑠)2

𝑣20
− 𝑎32(𝑡− 𝑇𝑠)3

𝑣30

]︂
(2.72)

Since Γ2(𝑡) does not directly depend on 𝑎1 the sensitivity of Γ2(𝑡) with respect to 𝑎1 can be

calculated from

𝜕

𝜕𝑎1
Γ2(𝑡) =

𝜕

𝜕Λ
Γ2(𝑡) ·

𝜕

𝜕𝑎1
Λ (2.73)

=

(︂
−𝑇𝑠
𝑣0

)︂
𝜕

𝜕Λ
Γ2(𝑡) (2.74)

= −𝑇𝑠(𝑡− 𝑇𝑠)
𝑟0

[︂
3Λ2 − 3Λ

𝑎2(𝑡− 𝑇𝑠)
𝑣0

+
𝑎22(𝑡− 𝑇𝑠)2

𝑣20

]︂
(2.75)

Under the assumptions that (𝑎1 + 𝑎2)𝑇𝑠/𝑣0 ≪ 1 and 𝑎2(𝑡− 𝑇𝑠)/𝑣0 ≪ 1 then Λ ≈ 1 and

𝜕

𝜕𝑎1
Γ2(𝑡) ≈ −3

𝑇𝑠(𝑡− 𝑇𝑠)
𝑟0

(2.76)
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The sensitivity of Γ2(𝑡) with respect to 𝑎2 is given by

𝜕

𝜕𝑎2
Γ2(𝑡) =

1

4

𝑣0
𝑟0

(𝑡− 𝑇𝑠)
[︂
12Λ2 𝜕

𝜕𝑎2
Λ− 6Λ2 𝑡− 𝑇𝑠

𝑣0
− 12Λ

𝑎2(𝑡− 𝑇𝑠)
𝑣0

𝜕

𝜕𝑎2
Λ + 8Λ

𝑎2(𝑡− 𝑇𝑠)2

𝑣20

+4
𝑎22(𝑡− 𝑇𝑠)2

𝑣20

𝜕

𝜕𝑎2
Λ− 3

𝑎22(𝑡− 𝑇𝑠)3

𝑣30

]︂
(2.77)

Substituting in

𝜕

𝜕𝑎2
Λ = −𝑇𝑠

𝑣0
(2.78)

then

𝜕

𝜕𝑎2
Γ2(𝑡) =

1

4

𝑣0
𝑟0

(𝑡− 𝑇𝑠)
[︂
−6Λ2 (𝑡+ 𝑇𝑠)

𝑣0
+ 4Λ

𝑎2(𝑡− 𝑇𝑠)(2𝑡+ 𝑇𝑠)

𝑣20

−𝑎
2
2(𝑡− 𝑇𝑠)2(3𝑡+ 𝑇𝑠)

𝑣30

]︂
(2.79)

Under the assumption that (𝑎1 +𝑎2)𝑇𝑠/𝑣0 ≪ 1 which gives Λ ≈ 1, note that all of the terms

inside the brackets can be written as

𝑘
(𝑛𝑡+ 𝑇𝑠)

𝑣0

[︂
𝑎2(𝑡− 𝑇𝑠)

𝑣0

]︂𝑛
; 𝑛 ∈ {0, 1, 2} (2.80)

where 𝑘 is some constant value independent of 𝑎2, 𝑣0, 𝑡, and 𝑇𝑠. Under the assumption that

𝑎2(𝑡− 𝑇𝑠)/𝑣0 ≪ 1 then the dominant term will be that with 𝑛 = 0. Therefore

𝜕

𝜕𝑎2
Γ2(𝑡) ≈

1

4

𝑣0
𝑟0

(𝑡− 𝑇𝑠)
[︂
−6Λ2 (𝑡+ 𝑇𝑠)

𝑣0

]︂
(2.81)

≈ −3

2

𝑡2

𝑟0
+

3

2

𝑇 2
𝑠

𝑟0
(2.82)

Combining all of this information together then the sensitivities of the spacecraft’s an-

gular position with respect to 𝑎1 and 𝑎2 for 𝑡 ≥ 𝑇𝑠 are given by

𝜕

𝜕𝑎1
𝜃2(𝑡) =

𝜕

𝜕𝑎1
Γ1(𝑡) +

𝜕

𝜕𝑎1
Γ2(𝑡) (2.83)

≈ −3𝑇𝑠
𝑟0

(︂
𝑡− 1

2
𝑇𝑠

)︂
(2.84)
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and

𝜕

𝜕𝑎2
𝜃2(𝑡) =

𝜕

𝜕𝑎2
Γ1(𝑡) +

𝜕

𝜕𝑎2
Γ2(𝑡) (2.85)

≈ −3

2

𝑡2

𝑟0
(2.86)

The sensitivities of the spacecraft’s radial position at any time with respect to 𝑎1 and

𝑎2 are given by

𝜕

𝜕𝑎1
𝑟(𝑡) ≈

⎧⎪⎨⎪⎩
2𝑟0𝑡
𝑣0

𝑡 < 𝑇𝑠

2𝑟0𝑇𝑠
𝑣0

𝑡 ≥ 𝑇𝑠
(2.87)

and

𝜕

𝜕𝑎2
𝑟(𝑡) ≈ 2𝑟0𝑡

𝑣0
∀ 𝑡 (2.88)

while the sensitivities of the spacecraft’s along-track position at any time with respect to 𝑎1

and 𝑎2 are given by

𝜕

𝜕𝑎1
𝑠(𝑡) ≈

⎧⎪⎨⎪⎩
−3

2 𝑡
2 𝑡 < 𝑇𝑠

−3𝑇𝑠
(︀
𝑡− 1

2𝑇𝑠
)︀

𝑡 ≥ 𝑇𝑠
(2.89)

and

𝜕

𝜕𝑎2
𝑠(𝑡) ≈ −3

2
𝑡2 ∀ 𝑡 (2.90)

Again, the relation

𝜕

𝜕𝑎1/2
𝑠(𝑡) ≈ 𝑟0

𝜕

𝜕𝑎1/2
𝜃(𝑡) (2.91)

is used. Figures 2-17 and 2-18 show the relationship between discrete changes in the space-

craft’s position within the orbital plane versus discrete changes in 𝑎1 and 𝑎2 respectively.

The changes in the spacecraft’s position are normalized by their sensitivities in Eqs. 2.87

through 2.90 and random parameters for 𝑎1, 𝑎2, time, and initial orbital radius were used.

In all of the plots, the data closely follows a line of slope one, indicating that the sensitivities
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in Eqs. 2.87 through 2.90 well-predict the actual sensitivities of the spacecraft’s position in

the orbital plane with respect to both 𝑎1 and 𝑎2.

2.7.3 Explanations for Numerical Trends

With the sensitivities of the spacecraft’s position in the orbital plane with respect to the

propulsive and atmospheric drag accelerations derived, potential explanations for some of

the trends observed in the results of Section 2.6 can be provided. Here, the focus is on

the two-acceleration case, and specifically on the sensitivities of the spacecraft’s radial and

along-track position in the orbital plane with respect to 𝑎1, which was used to represent the

propulsive acceleration.

The first trend to consider is from Figure 2-10 which shows that the posterior standard

deviation of the distribution for the propulsive acceleration is independent of the true ac-

celeration value. When inferring a distribution for the propulsive acceleration, the variance

in the distribution will be determined based on the variance in the spacecraft’s position

from uncertainty in the inference parameters, modeling error, and measurement noise. Both

the modeling error and measurement noise are independent of the acceleration value, and

from Eqs. 2.87 and 2.89 it can be seen that any changes in the spacecraft’s position due

to changes in the propulsive acceleration are also independent of the acceleration value.

Therefore, it is unsurprising that the posterior standard deviation of the distribution for the

propulsive acceleration is independent of the true acceleration value; the observed variance

in spacecraft position does not contain any information about the actual acceleration.

Trends of the standard deviation with maneuver duration and measurement interval are

more difficult to intuitively explain due to the effect of modeling error. However, in the

case where modeling error is not included, such as in Figure 2-13, potential explanations

can be provided. The dependences of the sensitivities in Eqs. 2.87 and 2.89 with time

indicate that the relative importance of the radial and along-track position will depend on

measurement times. Since the sensitivity of the radial position scales linearly with time

and the sensitivity of the along-track position scales quadratically with time, the sensitivity

of the radial position dominate for shorter times (less than an orbital period) while the

sensitivity of the along-track position will dominate for longer times. When each variable is

dominant, the convergence of the posterior standard deviation should scale at a similar rate

with maneuver duration. This is apparent in Figure 2-13 where the standard deviation scales
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Figure 2-17: Relationship between discrete changes in the spacecraft’s position within the
orbital plane versus discrete changes in 𝑎1. Top plot shows the radial position while the
bottom plot shows the along-track position.
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Figure 2-18: Relationship between discrete changes in the spacecraft’s position within the
orbital plane versus discrete changes in 𝑎2. Top plot shows the radial position while the
bottom plot shows the along-track position.
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linearly for shorter maneuver durations and quadratically for longer maneuver durations.

Finally, the trend in posterior standard deviation with measurement interval can be

explained from the likelihood probability. Since the measurement noise is assumed to be

Gaussian, the likelihood probability in Eq. 2.2 is simply a product of many Gaussian

probability densities, one for each state variable in each measurement. The product of 𝑁

Gaussian probability densities is also Gaussian with standard deviation given by

1

𝜎2
=

𝑁∑︁
𝑖=1

1

𝜎2𝑖
(2.92)

where 𝜎𝑖 is the standard deviation for the 𝑖th probability density. For a maneuver with

𝑀 measurement locations, 𝑀 measurements for the spacecraft position along each axis are

taken for a total of 3𝑀 measurements. The standard deviation of the likelihood probability

density can then be calculated according to

1

𝜎2𝐿
=

3𝑀∑︁
𝑖=1

1

𝜎2𝑝
(2.93)

where 𝜎𝑝 is the standard deviation of the measurement noise in position. Rearranging to

solve for 𝜎𝐿 gives

𝜎𝐿 =
1√
3𝑀

𝜎𝑝 (2.94)

For a given maneuver length, increasing the measurement interval, ∆𝑡, will cause a propor-

tional decrease in the number of measurements, which in turn will result in an increase of

the standard deviation of the posterior distribution that scales with
√

∆𝑡.

The introduction of modeling error will alter the expected trends of the standard de-

viation with maneuver duration and measurement interval discussed above. The modeling

error causes an inflation of the measurement noise that increase with time, which likely is

responsible for the observed reduction in convergence of the standard deviation with maneu-

ver duration from quadratic to 𝑇−0.8. In addition, the increase in measurement noise due to

modeling error will be strongly correlated between different points in time. The strong cor-

relation means that the introduction of additional measurement locations, through reducing

the measurement interval, does not provide as much additional information as it did when
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modeling error was not included. This may be the cause of the negligible dependence of

the posterior standard deviation with measurement interval observed in Figure 2-12. More

rigorous explanations for the observed trends when modeling error is included are beyond

the scope of this thesis, but may be explored in future work.

2.7.4 Numerical Comparison

With the sensitivity matrix relating small changes in the input parameters to small changes

in the measurements derived, the Kalman gain can be analytically calculated from

𝐾 = 𝑃𝐻𝑇
(︀
𝐻𝑃𝐻𝑇 +𝑅

)︀−1 (2.95)

where 𝑃 is the initial covariance of the input parameters and 𝑅 is the covariance of the

measurement noise. Given the Kalman gain, the change in the covariance of the input

parameters after conditioning with the observed measurements can be predicted as

𝑃 = (𝐼 −𝐾𝐻)𝑃 (2.96)

Figure 2-19 shows a comparison of numerical (through the ensemble Kalman update)

and analytical predictions of the posterior standard deviation of the propulsive acceleration

versus maneuver duration for an orbital altitude of 412 km. Importantly, no modeling error

is considered in this initial comparison. In all cases the maneuver duration is split evenly

in half with the propulsion system active for the first half of the maneuver and inactive

for the second half of the maneuver. Measurements are taken at a constant interval with

a total of 50 measurement locations throughout the maneuver duration. For the prior

parameter covariance, the parameters are assumed to be independent with prior variance

in the initial positions of (3.33 m)2, prior variance in the initial velocities of (33.3 mm/s)2,

and prior variance in both accelerations of (100 ng)2. Measurement noise is assumed to be

independent for each measurement with variance of (3.33 m)2. The numerical and analytical

predictions align quite well except for a region close to a maneuver duration of 1.5 hours.

This maneuver duration happens to correspond to the orbital period of the spacecraft, and

may cause the observed discrepancy. Future work will be required in order to explore the

cause of the discrepancy.

While 2.96 provides reliable predictions for the posterior standard deviation of the
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Figure 2-19: Comparison between the ensemble Kalman update prediction and analytical
prediction of the marginal posterior standard deviation of the propulsive acceleration versus
maneuver duration.

propulsive acceleration when there is no modeling error, it requires modification in order to

make comparisons to the results seen in Section 2.6 where there is modeling error. In order

to account for modeling error, first separate the measurement noise, 𝜈, into two terms

𝜈 = 𝜈modeling error + 𝜈sensor noise (2.97)

where 𝜈modeling error corresponds to measurement noise caused by modeling error and 𝜈sensor noise

corresponds to measurement noise caused by sensor noise. By performing this separation,

the covariance of the measurement noise can also be separated into two terms, again corre-

sponding to the modeling error and sensor noise

𝑅 = 𝑅modeling error +𝑅sensor noise (2.98)

In order to account for modeling error, 𝑅modeling error needs to be calculated. Unfortu-

nately, a direct calculation of 𝑅modeling error could not be found. However, several methods

for approximating 𝑅modeling error are possible. The method taken in this work is to gener-

ate samples of the change in the radial and along-track position of the spacecraft caused

by the modeling error. With a method to generate samples, the covariance matrix can be

approximated by generating samples of the radial and along-track position change at the

desired measurement locations and calculating the covariance of the samples. Alternative
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methods such as directly generating a polynomial approximation of the covariance matrix

were explored but were found to be less reliable.

In order to generate samples of the change in the spacecraft’s position caused by the

modeling error, two steps are taken. First, the modeling error is caused by the process

noise which is represented as three Gaussian processes, one for each axis. As such, a pa-

rameterization of the Gaussian process along each axis is developed through a truncated

Karhunen-Loève expansion

𝐾(𝑡) = 𝜇(𝑡) +

𝑃∑︁
𝑖=1

√︀
𝜆𝑖𝛽𝑖(𝑡)𝜉𝑖 (2.99)

where 𝐾(𝑡) is the output of the Gaussian process, 𝜇(𝑡) is the mean of the Gaussian process

over time, 𝜆𝑖 are the 𝑃 largest eigenvalues of the covariance matrix for the Gaussian process,

and 𝛽𝑖 are the corresponding eigenvectors. 𝜉𝑖 are standard-normal random variables which

are used to obtain realizations of the Gaussian process; by generating samples of 𝜉𝑖, different

realizations of the Gaussian process can be generated.

With a truncated Karhunen-Loève expansion for the Gaussian process along each axis,

the process noise can be parameterized by 3𝑃 standard-normal random variables. The sec-

ond step in generating samples of the change in the spacecraft’s position is to develop a

polynomial chaos expansion which relates the standard-normal input parameters for the

Karhunen-Loève expansion to changes in the radial and along-track position of the space-

craft caused by the modeling error. The polynomial chaos expansions for each axis can be

expressed as

∆𝑟(𝑡, 𝜉1, · · · , 𝜉𝑛) ≈
∑︁
�⃗�≥0⃗

𝐶𝑟�⃗�(𝑡)Ψ�⃗�(𝜉1, · · · , 𝜉3𝑃 ) (2.100)

∆𝑠(𝑡, 𝜉1, · · · , 𝜉𝑛) ≈
∑︁
�⃗�≥0⃗

𝐶𝑠�⃗�(𝑡)Ψ�⃗�(𝜉1, · · · , 𝜉3𝑃 ) (2.101)

where �⃗� is a multi-index, 𝐶𝑟 and 𝐶𝑠 are matrices of coefficients, and Ψ(𝜉1, . . . , 𝜉3𝑃 ) are the

multi-dimensional basis functions. Since all of the input parameters are standard-normal,

the mutli-dimensional basis functions are simply a product of Hermite polynomials, one for
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each input parameter

Ψ�⃗�(𝜉1, · · · , 𝜉3𝑃 ) =

3𝑃∏︁
𝑖=1

He�⃗�𝑖
(𝜉𝑖) (2.102)

The final step in generating the polynomial chaos expansion is solving for the coefficients,

𝐶𝑟 and 𝐶𝑠. The approach taken in this work is to calculate the coefficients through a least-

squares fit of the multi-dimensional basis functions to randomly-sampled data. Specifically,

assuming that there are 𝑁 total multi-dimensional basis functions and 𝑚 samples to the

input parameters are generated, a Vandermonde matrix can be formed

𝑉 =

⎡⎢⎢⎢⎣
Ψ�⃗�1

(𝜉11 , · · · , 𝜉1𝑛) . . . Ψ�⃗�𝑁
(𝜉11 , · · · , 𝜉1𝑛)

...
. . .

...

Ψ�⃗�1
(𝜉𝑚1 , · · · , 𝜉𝑚𝑛 ) . . . Ψ�⃗�𝑁

(𝜉𝑚1 , · · · , 𝜉𝑚𝑛 )

⎤⎥⎥⎥⎦ (2.103)

where each row corresponds to a random sample of the input parameters and each column

corresponds to one of the basis functions. The coefficients can then be solved from

𝐶𝑟�⃗�(𝑡) ≈
(︀
𝑉 𝑇𝑉

)︀−1
𝑉 𝑇 𝑓𝑟(𝑡) (2.104)

𝐶𝑠�⃗�(𝑡) ≈
(︀
𝑉 𝑇𝑉

)︀−1
𝑉 𝑇 𝑓𝑠(𝑡) (2.105)

where 𝑓𝑟 and 𝑓𝑠 correspond to the observed changes in the spacecraft’s radial and along-track

position for each set of the input parameters

𝑓𝑟(𝑡) =

⎡⎢⎢⎢⎣
∆𝑟1(𝑡)

...

∆𝑟𝑚(𝑡)

⎤⎥⎥⎥⎦ and 𝑓𝑠(𝑡) =

⎡⎢⎢⎢⎣
∆𝑠1(𝑡)

...

∆𝑠𝑚(𝑡)

⎤⎥⎥⎥⎦ (2.106)

Given the polynomial chaos expansions, 𝑅modeling error can be approximated by gener-

ating samples of the input parameters, 𝜉1, . . . , 𝜉3𝑃 , which allows samples to be generated

for the change in the spacecraft’s radial and along-track position. Given the samples for

the change in the spacecraft’s radial and along-track position, 𝑅modeling error can be approx-

imated by calculating the covariance of the generated samples. Figure 2-20 shows a com-

parison of a semi-analytical prediction of the posterior standard deviation in the propulsive

acceleration versus maneuver duration using a polynomial chaos expansion to approximate
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Figure 2-20: Comparison between the ensemble Kalman update prediction and analytical
prediction of the marginal posterior standard deviation of the propulsive acceleration versus
maneuver duration.

𝑅modeling error and the data generated with an ensemble Kalman update in Figure 2-11. As

in Figure 2-19, a discrepancy between the numerical and analytical predictions exists right

around the orbital period of approximately 1.5 hours. However, for larger maneuver du-

rations the semi-analytical approach provides a good prediction of the posterior standard

deviation that would be obtained with the ensemble Kalman update.

2.8 Uncertainty Predictions

Given the ability to predict the posterior standard deviation of the propulsive acceleration

with the analytically-derived linear measurement model and the semi-analytical approxi-

mation for 𝑅modeling error through a polynomial chaos expansion, rapid predictions for the

posterior standard deviation can be made without the need for any numerical simulation.

These predictions can be used to survey desired orbit and maneuver parameters during pre-

liminary mission design in order to achieve a desired level of the posterior standard deviation.

Figure 2-20 shows that the semi-analytical prediction closely matches a full numerical pre-

diction with a slight discrepancy when the maneuver duration is close to the orbital period.

Table 2.4 shows further comparisons between the numerical and analytical approaches for

an orbital altitude of 400 km where the maneuver duration, measurement interval, and sen-

sor noise are all varied. Again the numerical and analytical predictions agree quite closely,
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Table 2.4: Comparison of numerical and analytical predictions of the posterior standard
deviation in the propulsive acceleration for different maneuver parameters.

Firing Measurement 3𝜎 Sensor 1𝜎 Acceleration Uncertainty Diff.
Time [hr] Interval [min] Noise [m] Numerical [𝜇m/s2] Analytical [𝜇m/s2] [%]

5 10 100 1.0076 1.0361 2.8
2 10 100 2.0836 2.3513 11.4

10 10 100 0.6640 0.6778 2.0
5 5 100 0.9840 1.0422 5.9
5 20 100 1.0294 1.0445 1.4
5 10 10 0.9426 0.9433 0.1
5 10 1000 1.7207 1.7691 2.8

except for when the maneuver duration is close to the orbital period.

Given that the numerical and analytical predictions of the posterior standard deviation

agree quite well, the analytical predictions can be used to rapidly survey different types

of maneuvers in order to provide an uncertainty map. Note from Eqs. 2.87 through 2.90

that the sensitivities of the spacecrafts radial and along-track position only depend on the

orbital radius and various elements of time. Therefore, by picking an orbital radius the

posterior standard deviation can be predicted for different values of the maneuver duration

and measurement interval. Tables 2.5 and 2.6 show posterior standard deviation predictions

for orbit altitudes of 410 km and 700 km respectively. These two orbit altitudes were selected

in order to represent potential deployments either from the International Space Station and

into a polar sun-synchronous orbit respectively, and provide a general guideline for the

predicted posterior standard deviation. Once a particular firing time and measurement

interval are selected, more-detailed analysis through numerical approaches can be used.

2.9 Measurement Timing Optimization

A final advantage of the analytical formulation for the linear measurement model is the

ability to optimize the timing of measurements. In all the previous results, the measure-

ments were assumed to be taken at a constant measurement interval. However, a constant

measurement interval may not be the optimal measurement timing in terms of minimizing

the posterior uncertainty in the propulsive acceleration. This section provides an initial

analysis of minimizing the posterior uncertainty in the propulsive acceleration by altering

the measurement timing.
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Table 2.5: Predicted posterior standard deviation of the propulsive acceleration at a 410 km
altitude orbit for different firing times and measurement intervals. Standard deviations are
given in units of 𝜇m/s2. Firing time is representative of half of the total maneuver duration.

Firing Time [hr]

1 2 3 4 5 6 7 8 9 10

M
ea

su
re

m
en

t
In

te
rv

al
[m

in
]

1 7.789 1.618 1.069 0.854 0.730 0.653 0.593 0.546 0.508 0.476
2 8.942 1.720 1.099 0.866 0.748 0.655 0.598 0.550 0.515 0.479
3 9.551 1.800 1.122 0.877 0.738 0.668 0.602 0.553 0.517 0.484
4 9.950 1.864 1.132 0.880 0.748 0.668 0.603 0.559 0.516 0.482
5 10.169 1.930 1.161 0.886 0.752 0.668 0.605 0.561 0.513 0.486
6 10.358 1.995 1.165 0.893 0.749 0.670 0.605 0.558 0.520 0.486
7 12.488 2.075 1.227 0.907 0.768 0.671 0.609 0.562 0.517 0.487
8 12.604 2.083 1.229 0.902 0.765 0.674 0.613 0.564 0.524 0.489
9 13.524 2.237 1.206 0.927 0.764 0.673 0.617 0.570 0.523 0.493

10 10.801 2.168 1.223 0.918 0.758 0.673 0.614 0.561 0.521 0.488
20 11.457 2.470 1.314 0.949 0.778 0.685 0.619 0.569 0.531 0.494
30 11.897 3.036 1.415 0.997 0.800 0.693 0.622 0.576 0.531 0.491

Table 2.6: Predicted posterior standard deviation of the propulsive acceleration at a 700 km
altitude orbit for different firing times and measurement intervals. Standard deviations are
given in units of 𝜇m/s2. Firing time is representative of half of the total maneuver duration.

Firing Time [hr]

1 2 3 4 5 6 7 8 9 10

M
ea

su
re

m
en

t
In

te
rv

al
[m

in
]

1 8.249 0.682 0.308 0.193 0.148 0.125 0.112 0.103 0.093 0.087
2 9.714 0.892 0.385 0.224 0.162 0.132 0.116 0.105 0.096 0.088
3 10.442 1.047 0.443 0.249 0.174 0.139 0.119 0.106 0.098 0.090
4 10.930 1.173 0.492 0.271 0.185 0.144 0.122 0.109 0.099 0.091
5 11.176 1.279 0.533 0.290 0.195 0.149 0.126 0.111 0.100 0.092
6 11.385 1.371 0.570 0.307 0.203 0.154 0.130 0.113 0.102 0.092
7 13.461 1.481 0.644 0.329 0.219 0.161 0.131 0.115 0.102 0.094
8 13.571 1.529 0.667 0.337 0.225 0.163 0.135 0.116 0.104 0.094
9 14.371 1.687 0.659 0.373 0.231 0.168 0.139 0.118 0.104 0.095

10 11.857 1.656 0.683 0.362 0.233 0.173 0.139 0.119 0.105 0.095
20 12.359 2.118 0.861 0.450 0.285 0.204 0.159 0.131 0.113 0.100
30 13.555 3.010 0.980 0.509 0.325 0.231 0.175 0.140 0.119 0.105
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As in the previous sections, a basic maneuver is considered where for an overall maneuver

duration, 𝑇 , the propulsion system is assumed to be turned on for 𝑡 < 1
2𝑇 and off for

𝑡 ≥ 1
2𝑇 . The specific question addressed in this section is given a maximum number of

possible measurement locations 𝑀 , when should each measurement be taken in order to

minimize the posterior uncertainty of the propulsive acceleration? The linear measurement

model allows such a question to be posed, since from Eq. 2.96 the posterior covariance of

the parameter vector can be analytically computed for a given set of measurement times.

Define Σ𝑎1 as the component on the diagonal of the posterior covariance of the parameters

that corresponds to the marginal variance of 𝑎1, which physically represents the propulsive

acceleration. The optimization problem is then

min
𝜏

Σ𝑎1(𝜏) (2.107)

subject to 𝜏𝑖+1 − 𝜏𝑖 ≥ ∆𝑡min ∀𝑖 ∈ {1, . . . ,𝑀 − 1} (2.108)

and 𝜏𝑀 ≤ 𝑇 (2.109)

where 𝜏 is a 𝑀 × 1 vector corresponding to all of the measurement times. The constraint

of Eq. 2.108 enforces a minimum time between successive measurements and that the

measurement vector is ordered such that the first measurement corresponds to 𝜏1 and the

last measurement corresponds to 𝜏𝑀 . The combination of Eq. 2.109 with Eq. 2.108 enforces

that all measurements will occur within the maneuver period.

The optimization was tested for a maneuver at a 400 km altitude orbit with an overall

duration of 10 hours, 50 measurement locations, and a minimum time between successive

measurements of 5 minutes. Modeling error was not considered during this analysis. As

reference, when the measurements are evenly distributed across the maneuver duration, the

posterior standard deviation of the propulsive acceleration was 1.63 ng. The measurement

vector was optimized using MATLAB’s inbuilt fmincon function with the starting point

being a measurement vector with measurements evenly distributed across the maneuver

duration. Figure 2-21 shows a locally-optimized Kalman gain versus time for the radial and

along-track position errors. The measurement locations have quite clearly clustered around

the times where the Kalman gain for the along-track position errors is high. The posterior

standard deviation for the propulsive acceleration with the locally-optimized measurement

locations is 1.31 ng, representing a 20% decrease in the posterior standard deviation. Future
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Figure 2-21: Kalman gain for the optimize measurement timings. Markers indicate mea-
surement locations while dashed lines represent the underlying trend in the Kalman gain.

work will explore similar optimizations for cases with modeling error.
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Chapter 3

Proximity Operations

Remote inspection of an in-space object allows for an assessment of the condition of the

object’s exterior and can be conducted with ground-based instruments or in proximity to the

object. While not commonly used, remote inspection could be used to determine the health

of high-value spacecraft, such as those with astronauts on board, or assess a piece of debris

prior to attempting to capture it. As the probability of returning astronauts to the Moon or

sending them to deep space increases, along with the advancement of technologies for active

debris removal, the ability to perform remote inspection of in-space objects becomes more

and more valuable.

Different methodologies for remote inspection can be compared based on their ability

to provide coverage of the exterior surface of the target object, the spatial resolution which

can be achieved, as well as their overall risk [68]. Of all the available methods, inspection

with a free-flying small spacecraft is a highly attractive option due to its ability to provide

good coverage and spatial resolution while not incurring significant risk in terms of cost or

human involvement. These free-flying inspectors could either be launched from the target

object, if for instance the target object is a spacecraft, or rendezvous with the target, if the

target is a small near-Earth asteroid.

Although this thesis is concerned with proximity operations around a small asteroid,

proximity operations around another spacecraft is a similar problem. Surveying an asteroid

is similar to inspecting another spacecraft, in both cases the surveyor/inspector spacecraft

needs to circumnavigate the target in order to visually inspect it. Landing on an asteroid is

also similar to docking with another spacecraft. The only difference between the two cases
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is the greater gravitational acceleration in the asteroid case, but for small asteroids the

gravitational acceleration can sometimes be neglected. In addition, the available literature

for proximity operations around another spacecraft is considerably greater than that of

proximity operations around an asteroid.

At the most basic level, remote inspection can be conducted with simple micro-spacecraft

designed for short-term inspection of a target object. Passive CubeSats for spacecraft in-

spection have been proposed where the spacecraft contains no actuation system [68]. This

method minimizes many of the risks associated with free-flying spacecraft such as plume

impingement, but cannot provide good coverage of the entire exterior of the target object

without requiring the use of multiple inspector spacecraft, has limited inspection time before

it drifts too far away from the target, and is not applicable to uncooperative targets such as

a near-Earth asteroid or a piece of debris.

A step above the passive approach is to outfit the inspector spacecraft with a simple

cold-gas propulsion system. The high thrust density of cold-gas propulsion, relative to other

miniaturized propulsion technologies such as electrospray propulsion, means that nozzles

can be placed along each axis of the spacecraft in order to provide linear position dynamics.

The guidance systems for these spacecraft are often quite straightforward and rely on the

linear dynamics in order to simplify the control strategy. Point-to-point maneuvering, where

the spacecraft simply regulates its position to a series of waypoints, is the most basic ma-

neuvering strategy [69]. For targets around a large central body, such as Earth, the natural

orbital dynamics can be leveraged in order to create trajectories based on a series of im-

pulsive maneuvers [70]. Alternatively, the spacecraft can be forced into a circumnavigating

trajectory around the target which costs more propellant, but allows for finer control over

the maneuver [71]. More complex maneuvers that use both natural and forced motion can

be devised that take into account further constraints such as maintaining illumination from

the Sun on the solar panels [72].

These methodologies are appealing due to their simplicity. However, while maneuvers

based in natural orbit motion leverage the dynamics to save fuel and avoid plume impinge-

ment, they are also at the mercy of those same natural dynamics. In particular, the period

of the circumnavigating inspection trajectories will be the same as the orbital period of the

target. For targets in low-Earth orbit this might be acceptable as orbital periods are around

90 minutes. However, in geostationary orbit the orbital period rises to a day and in deep
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space the orbital period is on the order of years. Clearly, for maneuvering strategies that

are applicable to scenarios beyond low-Earth orbit such as surveying a small asteroid, forced

motion is required. The forced circular motion of Ref. [71] is a promising start, but the

range of developed maneuvers is limited and is constrained to fully-actuated systems.

Beyond the desire to increase the number of possible maneuvers, it may also be desired

to use propulsion systems other than cold-gas propulsion. The low efficiency of cold-gas

propulsion restricts its use to missions with low maneuvering requirements. In particular,

cold-gas propulsion can not be used for a reconnaissance spacecraft that travels between

multiple pieces of debris or for long-duration inspection missions where the inspector space-

craft is required to be active over the course of several months. While cold-gas propulsion

dominates the list of CubeSat-compatible propulsion systems with flight heritage, other

propulsion technologies are being developed that could resolve this issue [7]. One such

example is microfabricated electrospray propulsion [22, 24, 30] which has the potential to

provide relatively high thrust density while also not requiring significant amounts of power.

These types of thrusters have also been demonstrated in a laboratory environment for control

of a CubeSat-like test vehicle [25].

The use of propulsion systems other than cold-gas propulsion creates other challenges

for the maneuvering of a free-flying inspector spacecraft, many of which are covered in Ref.

[73]. The exhaust of chemical and electric propulsion systems can be reactive and contam-

inate any surfaces that they impinge on [74, 75]. Furthermore, due to low thrust density

and challenges associated with placing thrusters along multiple axes, the thrust axis for the

propulsion system is usually fixed with respect to the spacecraft body causing the spacecraft

to be underactuated.1 Therefore, maneuvering methodologies that are applicable to propul-

sion systems such as electrospray thrusters need to be able to handle plume impingement

constraints as well as underactuated spacecraft.

For a more expansive set of maneuvers that can handle constraints such as plume im-

pingement and underactuation, mathematical programming, where the trajectory planning

process is expressed as a constrained optimization, is typically used. Mixed-integer linear

1For simplification of terminology, a spacecraft will be considered underactuated if the direction of its
thrust vector is constrained by the spacecraft’s attitude such that the direction of the thrust vector cannot
be arbitrarily set. While limits on thrust magnitude also technically count as underactuation, all practical
systems are underactuated in this manner. In addition, underactuation in terms of thrust direction places
nonlinear constraints on the system dynamics while underactuation in terms of thrust magnitude only places
linear constraints.
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programming allows for a trajectory to be planned that can account for multiple differ-

ent types of constraints such as plume impingement [76] or that the trajectory always be

passively safe [77]. However, this formulation requires that the spacecraft not be underac-

tuated in order to ensure that the dynamics remain linear. Methods that enable contin-

uous constraint satisfaction have also been explored, but for impulsive maneuvers [78]. A

model-predictive control approach has also been considered where the trajectory optimiza-

tion through mathematical programming is used as a feedback controller. However, these

cases again require linear dynamics [79] or that the control law for specific maneuvers be

solved for on the ground [80]. Plume impingement has been considered as a soft constraint

by including it in the cost function, but is omitted during the results as it added too much

complexity to the optimization [81]. Underactuation has also been considered by placing a

quadratic cost on changes to the desired thrust vector [82], but as a result also penalizes

changes to the thrust magnitude in addition to changes in thrust direction.

Other techniques for planning trajectories that are, at least currently, less popular than

mathematical programming include graph search [83], sample-based planning [84], and ap-

plications of the sequential gradient-restoration algorithm [85]. However, these solutions are

too computationally expensive to be performed online, in their current form, by a small

spacecraft and require a solution to be found on the ground. For all of these methods,

including mathematical programming, there is a secondary cost that is usually not consid-

ered. Typically, the goal of the optimization is to minimize propellant cost of the trajectory,

thereby implicitly maximizing the available mass for payload or the number of maneuvers

that can be accomplished. However, the computational cost of performing nonlinear opti-

mization is beyond the capabilities of current small spacecraft computers. As such, in order

to implement these methods, more powerful computers are required which in turn requires

more power and a larger power system as well as better thermal control and a larger thermal

management system. Therefore, it is very likely that the increase for better computation,

power, and thermal systems will outweigh any propellant savings gained by optimization.

Specifically related to plume impingement, alternative methods, outside of trajectory

planning, have been used. For human-in-the-loop maneuvers, the maximum thrust output

of the thrusters facing the target spacecraft was reduced in an attempt to minimize the

effects of plume impingement [86]. Alternative actuation methods such as electromagnetic

forces have also been suggested [87] where any chance of plume impingement is eliminated.
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These approaches are not applicable for this work. Reducing the thrust output can reduce

structural loads created by plume impingement but does not prevent surface contamination.

Electromagnetic actuation does show some promise for formation flight, but requires all

parties involved to be cooperative, a situation that is not necessarily true for spacecraft

inspection and is certainly not true for asteroid surveying.

Proximity operations around asteroids differs from that of around other spacecraft due

to the presence of a notable gravitational field. All asteroids that have so far been visited

are relatively large and therefore have strong enough gravitational pull that a spacecraft

can enter into orbit. However, because of their small size and therefore weak gravitational

pull, relative to planets, asteroids have irregular, non-spherical shapes leading to orbit tra-

jectories that are non-periodic and sometimes unstable. As such, most of the prior research

for proximity operations around small asteroids has focused on station-keeping in order to

maintain orbit stability.

The simplest approach to station keeping is to hover, where the spacecraft is stationary

either in the inertial frame or in a frame rotating with the asteroid. Stability criteria for

hovering near irregularly-shaped asteroids has been studied [88] and a dead-band controller

for state regulation was developed [89]. Both of these solutions require that the spacecraft

is fully actuated as they opt for an impulsive dead-band controller. Underactuation has

also been considered for hovering where the underactuation is caused by the loss of thrust

along one axis [90]. Hovering was successfully implemented during the Hayabusa mission

[91], allowing the spacecraft to approach near to the asteroid’s surface.

Solutions other than hovering attempt to maintain periodic orbits. A nonlinear feedback

control law has been devised that regulates the orbit of a spacecraft around an irregularly-

shaped asteroid to any circular orbit [92] and has application to hovering [93]. However,

this solution controls the orbit geometry and not the actual spacecraft state. While it is

useful for ensuring that coverage is provided to certain regions of the asteroid, it cannot be

used to provide continuous measurements above specific points of the asteroid. A model-

predictive controller has also been considered for binary asteroid systems [94], but requires

a fully-actuated spacecraft and assumes that propulsive input to the spacecraft is applied

impulsively.

Outside of surveying, landing on the asteroid is the other major maneuver that might be

performed during proximity operations. Of all of the asteroids that have been visited by a
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spacecraft, only four have been physically contacted by a spacecraft. The Near-Earth Aster-

oid Rendezvous (NEAR) Shoemaker spacecraft conducted an improvised landing on Eros,

the Hayabusa and Hayabusa2 spacecraft peformed surface sample collection on the asteroids

Itokawa and Ryugu respectively, and the Origins, Spectral Interpretation, Resource Iden-

tification, Security, Regolith Explorer (OSIRIS-REx) spacecraft collected a surface sample

from the asteroid Bennu.

For the most part, landing strategies that have been implemented were essentially con-

trolled free fall. The landing trajectory of the NEAR Shoemaker spacecraft consisted of a

series of pre-timed braking maneuvers designed to minimize impact velocity [95] as well as

provide time to capture high-resolution images of the surface of Eros [96]. The Hayabusa

missions followed a similar strategy [91, 97], except during the sample collection the space-

craft performed touch-and-go maneuvers. In all cases, the descent trajectories relied in the

spacecraft being fully actuated, in order to maintain controllability, and that the contam-

ination from plume impingement on the surface would not be significant. Both Hayabusa

missions also carried small rovers which were deployed above the asteroid and allowed to fall

to the surface with no braking maneuvers. However, this method carries a lot of risk, and

the Micro-Nano Experimental Robot Vehicle for Asteroid (MINERVA) lander deployed by

Hayabusa bounced off of the surface with sufficient energy to escape the gravitational pull

of the asteroid [91].

More advanced landing strategies have been studied academically by solving for point

solutions with calculus of variations [98], using sliding surfaces [99], or using invariant man-

ifolds [100]. However, these methods either rely on an analytical representation of the

gravitational field of the asteroid [98, 99] or at least a very accurate model [100]. Esti-

mation of an asteroid’s gravitational field is a difficult problem and may approaches rely

on reconstruction of the field based on large amounts of flight data. In addition, these

more advanced techniques do not improve on the controlled free fall techniques employed by

NEAR Shoemaker and the Hayabusa missions significantly enough to warrant their added

complexity.
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3.1 Research Gap

A comparison of the maneuvering methods designed for actual spacecraft and maneuver-

ing methods developed in theory show that a technology gap exists between the two. The

former are compatible with spacecraft computers but lack applicability for more complex

maneuvering or underactuated spacecraft architectures while the latter expand the possible

maneuvers and architectures but are incompatible with spacecraft computers. Methodolo-

gies that are able to bridge this gap are required in order to open up the use of high-efficiency

propulsion, such as electrospray propulsion, for use during autonomous remote inspection.

This work presents an analytical library for maneuvering of an underactuated space-

craft around a target object for remote inspection. An analytical maneuver library allows

for a wider range of inspection missions to be accomplished while avoiding the secondary

costs associated with numerical optimization, thereby permitting their implementation on

small spacecraft. These trajectories will allow underactuated spacecraft to be considered

as viable platforms for missions in proximity operations and enable the move towards more

autonomous spacecraft that do not rely on communications with Earth for trajectory design.

The contents of this chapter have been published in Ref. [101].

3.2 Spacecraft Controllability

Figure 3-1 shows a notional spacecraft which operates in a two-dimensional world. The

spacecraft has a propulsion system capable of producing thrust in the positive 𝑦b direction

and a reaction wheel capable of producing torques along the 𝑧 axis. The dynamics of the

spacecraft are given by

�̈� =
𝐹

𝑚
sin𝜑 (3.1)

𝑦 = −𝐹
𝑚

cos𝜑 (3.2)

𝜑 =
𝜏

𝐼
(3.3)

where 𝐹 is the thrust produced by the propulsion system, 𝑚 is the spacecraft’s mass, 𝜑 is the

spacecraft’s heading measured anti-clockwise from the negative-𝑦 direction, 𝜏 is the torque

produced by the reaction wheel, and 𝐼 is the rotational inertia of the spacecraft about the

𝑧 axis.
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Figure 3-1: Notional spacecraft.

Defining

𝑣𝑥 ≡ �̈�; 𝑣𝑦 ≡ 𝑦; 𝜔 ≡ 𝜑 (3.4)

then equilibrium in the inertial frame is given by 𝑣𝑥 = 𝑣𝑦 = 0 and 𝜔 = 0 as well as zero

control input, 𝐹 = 0 and 𝜏 = 0. Linearizing the system about a heading, 𝜑0, then the

linearized dynamics are given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�

�̇�

�̇�𝑥

�̇�𝑦

�̇�

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥

𝑦

𝑣𝑥

𝑣𝑦

𝜑

𝜔

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

sin𝜑0
𝑚 0

− cos𝜑0
𝑚 0

0 0

0 1
𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣𝐹
𝜏

⎤⎦ (3.5)
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The controllability matrix for this system, 𝑀𝑐, is given by

𝑀c =
[︁
𝐵 𝐴𝐵 𝐴2𝐵 · · · 𝐴5𝐵

]︁
(3.6)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 sin𝜑0
𝑚 0 0 · · · 0

0 0 − cos𝜑0
𝑚 0 0 · · · 0

sin𝜑0
𝑚 0 0 0 0 · · · 0

0 − cos𝜑0
𝑚 0 0 0 · · · 0

0 0 0 1
𝐼 0 · · · 0

0 1
𝐼 0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.7)

Since the controllability matrix only has four independent columns, it is rank deficient

and the linearized system is not controllable. Intuitively, the spacecraft cannot respond to

any disturbances along the 𝑥b axis as neither modulating the propulsion system thrust nor

rotating the spacecraft will produce a force along the 𝑥b axis on their own. It is worth noting

that modulating the thrust and rotating the spacecraft simultaneously would produce a force

along the 𝑥b axis but is not a linear response.

The system as defined has further complications beyond just being uncontrollable along

the 𝑥b axis. Since the propulsion system is unable to produce negative thrust, the space-

craft will not be able to respond to disturbances in the positive 𝑦b direction. Both the

controllability and negative thrust problems would be solved if in the equilibrium state the

propulsion system is required to produce a positive thrust. This is possible if the spacecraft

uses its propulsion system to place itself in a circular orbit around the target as shown in

Figure 3-2. In this case, the spacecraft orbits around the target with constant radius 𝑟 and

angular frequency Ω with the required centripetal acceleration, 𝑟Ω2, being provided by the

propulsion system.

The position dynamics for a frame centered on the target, instantaneously aligned with

the inertial frame, but rotating with constant angular frequency Ω⃗ can be calculated from

�⃗�𝑖 = �⃗�𝑟 + 2Ω⃗× �⃗�𝑟 + Ω⃗×
(︁

Ω⃗× �⃗�𝑟
)︁

(3.8)

where �⃗� is acceleration, �⃗� is velocity, and �⃗� is position. Subscript 𝑖 corresponds to coordinates

in the instantaneously-aligned inertial frame while subscript 𝑟 corresponds to coordinates

in the rotating frame. The rotational dynamics of the spacecraft are unaffected by the
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Figure 3-2: Circular orbit used to allow for position control of the underactuated spacecraft
with linear control methods.

coordinate transformation.

Assuming that the only accelerations in the inertial frame are from the propulsion system

�⃗�𝑖 =
𝐹

𝑚

⎡⎢⎢⎢⎣
sin𝜑

- cos𝜑

0

⎤⎥⎥⎥⎦ (3.9)

and that the angular frequency of the rotating frame is in the positive 𝑧 direction

Ω⃗ =

⎡⎢⎢⎢⎣
0

0

Ω

⎤⎥⎥⎥⎦ (3.10)

with constant magnitude Ω, then the dynamics in the 𝑥-𝑦 plane of the rotating frame are

�̈�𝑟 = Ω2𝑥𝑟 + 2Ω𝑣𝑦,𝑟 +
𝐹

𝑚
sin𝜑 (3.11)

𝑦𝑟 = Ω2𝑦𝑟 − 2Ω𝑣𝑥,𝑟 −
𝐹

𝑚
cos𝜑 (3.12)

𝜑 =
𝜏

𝐼
(3.13)

Equilibrium in this rotating frame is again given by 𝑣𝑥,𝑟 = 𝑣𝑦,𝑟 = 0 and 𝜔 = 0 along with

𝜏 = 0. However, for a given position in the rotating frame, the equilibrium input thrust is
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now

𝐹 * = 𝑚Ω2
√︀
𝑥2𝑟 + 𝑦2𝑟 (3.14)

with equilibrium heading

𝜑* = tan−1

(︂
−𝑥𝑟
𝑦𝑟

)︂
(3.15)

Picking the equilibrium position to be 𝑥𝑟 = 0 and 𝑦𝑟 = 𝑟d where 𝑟d is the desired orbital

radius, then the equilibrium thrust is 𝐹 * = 𝑚𝑟dΩ2 with corresponding heading 𝜑* = 0.

Linearizing the system at this equilibrium point gives the linearized dynamics

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�

�̇�

�̇�𝑥

�̇�𝑦

�̇�

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0

0 0 0 1 0 0

Ω2 0 0 2Ω 𝑟dΩ2 0

0 Ω2 −2Ω 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥

𝑦

𝑣𝑥

𝑣𝑦

𝜑

𝜔

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

− 1
𝑚 0

0 0

0 1
𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣𝐹
𝜏

⎤⎦ (3.16)

The controllability matrix for this new system, 𝑀𝑐,𝑟, is given by

𝑀𝑐,𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −2Ω
𝑚 0

0 0 − 1
𝑚 0 0 0

0 0 −2Ω
𝑚 0 0 𝑟Ω2

𝐼 dependent

− 1
𝑚 0 0 0 3Ω2

𝑚 0 columns

0 0 0 1
𝐼 0 0

0 1
𝐼 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.17)

The first six columns of this new controllability matrix are independent, meaning that the

controllability matrix is full rank and that the system is controllable. Therefore, linear

control techniques can be applied in order to regulate the spacecraft’s position to the equi-

librium state in the rotating frame. While this analysis was conducted in two dimensions,

for clarity in the equations, the same results will occur in three dimensions. The spacecraft

will be uncontrollable at the equilibrium state of the inertial frame but is controllable at the
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equilibrium state of the rotating frame.

3.3 Baseline Orbit

The proposed baseline motion of the spacecraft during proximity operations is the circular

orbit shown in Figure 3-2. This circular motion allows linear control methods to be applied

to regulate the spacecraft’s position and allow it to reject external disturbances. This orbit

also has the bonus of implicitly avoiding plume impingement on the central target. Since

the spacecraft has to thrust inwards, towards the target, in order to provide the necessary

centripetal acceleration, the plume of the propulsion system will always be directed away

from the target. In addition, the side of the spacecraft opposite from the propulsion system

will always be pointed towards the target, providing a convenient location for cameras for

visual inspection or other scientific instruments.

While the circular motion allows for linear position control and avoids plume impinge-

ment, it does require a constant acceleration to be provided by the propulsion system,

creating two potential downslides to this strategy. First, the propulsion system needs to

be able to produce the necessary centripetal acceleration in order to maintain the circular

motion. This is indirectly a constraint on the overall time for any inspection maneuvers as

the required acceleration can be made arbitrarily small by decreasing the orbit frequency,

at the cost of slower maneuvers. Second, even in a scenario with zero external disturbances,

the spacecraft will constantly be using propellant. However, the low required centripetal

acceleration and high efficiency of electrospray propulsion mean that the propellant cost is

negligible, even for long-term inspection.

As an example scenario, consider a 3U CubeSat inspector spacecraft with a mass, 𝑚, of

4 kg and an electrospray propulsion system capable of producing a thrust, 𝐹 , of 100 𝜇N.

If the desired inspection radius, 𝑟, is 10 m, then the maximum orbit frequency that can be

maintained is

Ωmax =

√︂
𝐹

𝑚𝑟
(3.18)

and is 1.6 mrad/s. The period of the inspection orbit is therefore 66 minutes, which is

still faster than the 90-minute inspection period that would be allowed by natural orbital

dynamics in low-Earth orbit. Assuming that the propellant mass is negligible relative to the
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overall mass of the spacecraft, the required propellant per orbit can be approximated from

𝑚p =
𝐹

𝐼sp𝑔

2𝜋

Ωmax
=

2𝜋
√
𝐹𝑚𝑟

𝐼sp𝑔
(3.19)

where 𝐼sp is the specific impulse of the propulsion system and 𝑔 is the standard gravitational

acceleration. Typical specific impulses for electrospray thrusters are approximately 1000 s.

In this scenario, the spacecraft would use 41 mg of propellant per orbit and could perform

almost 25 inspection orbits before using a single gram of fuel. Comparatively, for a cold-gas

propulsion system with a specific impulse of 80 s, the propellant used per orbit would be

approximately 506 mg and would allow for almost 2 orbits per gram of fuel.

3.4 Maneuver Library

In order to make use of the baseline orbit for remote inspection, several maneuvers need to

be designed. Most importantly, the spacecraft needs to be able to join the circular orbit

from a stationary position as well as leave the circular orbit back to a stationary position.

Both joining and leaving the circular orbit are the same process just executed in opposite

directions in time, and therefore will be considered a single maneuver. Next, the spacecraft

needs to be able to change the radius of the circular orbit. With these two maneuvers,

joining/leaving the circular orbit and changing the orbit’s radius, the spacecraft will be able

to perform point-to-point maneuvering through a series of waypoints in three dimensions,

circumnavigation maneuvers, as well as landing on or docking to a rotating target.

The remaining maneuvers in the library do not add additional functionality, but rather

simplify the overall mission design. Changing the frequency of the orbit could be accom-

plished by leaving the initial orbit and then joining a new orbit of the desired new frequency.

However, it is relatively simple to design maneuvers to increase or decrease the orbital fre-

quency within the framework developed here. Similarly, translating the orbital plane along

its normal vector could be achieved by a convoluted set of maneuvers, but it is relatively

simple to design a single maneuver to accomplish this task.

All maneuvers are designed by leveraging the differential flatness of the underactuated

spacecraft. In particular, by defining a subset of the spacecraft’s state as well as control

inputs, the entire state of the spacecraft can be determined including the spacecraft’s heading

and rotational velocity with respect to the rotating frame. An additional consideration for
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simplifying the maneuver design is to constrain the coordinate frame such that the 𝑥 and 𝑦

axes always lie in the orbit plane and that the frequency of the rotating frame, Ω, always

points in the positive-𝑧 direction.

For dynamic consistency, any maneuvers that start or end on the circular trajectory

need to have a nadir-pointing attitude such that there are no discontinuities between the

spacecraft’s heading at the boundaries of each maneuver and the baseline circular orbit. In

addition, the rotational velocity of the spacecraft in the rotating frame needs to be zero at

the beginning and end of all maneuvers for the same reason. Figure 3-3 shows the spacecraft

in the rotating frame with the heading of the spacecraft, 𝜑, defined as anti-clockwise rotation

relative to a nadir-pointing attitude. For maneuver, design it is assumed that the spacecraft

is on the positive-𝑦 axis of the rotating frame such that 𝑥 = 0 and 𝑦 > 0, and that the

magnitude of the frequency of the rotating frame, Ω, is varied in order to maintain 𝑥 = 0.

The dynamics in the rotating frame for a variable frequency are

�⃗�𝑖(𝑡) = �⃗�𝑟(𝑡) + 2Ω⃗(𝑡)× �⃗�𝑟(𝑡) +
˙⃗
Ω(𝑡)× �⃗�𝑟(𝑡) + Ω⃗(𝑡)×

(︁
Ω⃗(𝑡)× �⃗�𝑟(𝑡)

)︁
(3.20)

Assuming that Ω⃗ still points purely in the positive-𝑧 direction with magnitude Ω, then the

dynamics in the 𝑥-𝑦 plane are

�̈�(𝑡) = Ω2(𝑡)𝑥(𝑡) + 2Ω(𝑡)�̇�(𝑡) + Ω̇(𝑡)𝑦(𝑡) + 𝑎𝑥(𝑡) (3.21)

𝑦(𝑡) = Ω2(𝑡)𝑦(𝑡)− 2Ω(𝑡)�̇�(𝑡)− Ω̇(𝑡)𝑥(𝑡) + 𝑎𝑦(𝑡) (3.22)

Under the condition that 𝑥 = 0 for all time, then the dynamics become

0 = 2Ω(𝑡)�̇�(𝑡) + Ω̇(𝑡)𝑦(𝑡) + 𝑎𝑥(𝑡) (3.23)

𝑦(𝑡) = Ω2(𝑡)𝑦(𝑡) + 𝑎𝑦(𝑡) (3.24)

Given a particular input acceleration of 𝑎𝑥(𝑡) along the 𝑥 axis and 𝑎𝑦(𝑡) along the 𝑦 axis,

the heading of the spacecraft can be calculated from

tan𝜑(𝑡) = −𝑎𝑥(𝑡)

𝑎𝑦(𝑡)
(3.25)

In situations in which the spacecraft needs to have a nadir-pointing attitude this confirms
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Figure 3-3: Spacecraft in the rotating frame.

the intuition that 𝑎𝑥 = 0 and 𝑎𝑦 < 0, or that the spacecraft is producing an acceleration

towards the center of the circular orbit. The spacecraft’s rotational velocity, 𝜔, can be

calculated by taking the time derivative of both sides of Eq. 3.25 and solving for 𝜔 as

𝜔(𝑡) =
𝑑

𝑑𝑡
𝜑(𝑡) =

1

𝑎2𝑥(𝑡) + 𝑎2𝑦(𝑡)

(︂
𝑎𝑥(𝑡)

𝑑

𝑑𝑡
𝑎𝑦(𝑡)− 𝑎𝑦(𝑡)

𝑑

𝑑𝑡
𝑎𝑥(𝑡)

)︂
(3.26)

Therefore, one way to ensure that 𝜔 = 0 at the beginning and end of each maneuver is to

enforce the constraints

𝑎𝑥(𝑡) = 0 or
𝑑

𝑑𝑡
𝑎𝑦(𝑡) = 0 (3.27)

and

𝑎𝑦(𝑡) = 0 or
𝑑

𝑑𝑡
𝑎𝑥(𝑡) = 0 (3.28)

3.4.1 Joining Orbit from Rest

The goal of the joining-orbit maneuver is to transition the spacecraft from a static position

in the inertial frame to a circular orbit around the target of a desired radius 𝑟d and frequency

Ωd. Since the spacecraft does not start this maneuver on the circular orbit, it is not required

to have a nadir-pointing attitude and can start the maneuver in any desired attitude.

The approach for designing the joining-orbit maneuver is to constrain the radial position
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of the spacecraft to be constant at the desired radial position, 𝑟d. Under this condition, the

dynamics from Eqs. 3.23 and 3.24 become

0 = Ω̇(𝑡)𝑟d + 𝑎𝑥(𝑡) (3.29)

0 = Ω2(𝑡)𝑟d + 𝑎𝑦(𝑡) (3.30)

By selecting the correct profile for 𝑎𝑥(𝑡), Ω(𝑡) is driven from zero to the desired frequency,

Ωd. After solving for Ω(𝑡), 𝑎𝑦(𝑡) can then be solved for from Eq. 3.30 as

𝑎𝑦(𝑡) = −Ω2(𝑡)𝑟d (3.31)

Consider a polynomial profile for 𝑎𝑥(𝑡) of the form

𝑎𝑥(𝑡) = −𝑎1
(︂

1− 𝑡

𝑡p,1

)︂𝑛
(3.32)

where 𝑎1 is a positive constant, 𝑡p,1 is the overall time of the maneuver profile, and 𝑛 is a

free parameter that sets the degree of the profile. By design, 𝑎𝑥(𝑡p,1) = 0 as long as 𝑛 ̸= 0.

Additionally, since

�̇�𝑥(𝑡) =
𝑛𝑎1
𝑡p,1

(︂
1− 𝑡

𝑡p,1

)︂𝑛−1

(3.33)

then �̇�𝑥(𝑡p,1) = 0 as long as 𝑛 > 1. Therefore, the rotational velocity of the spacecraft in the

rotating frame will be zero at the end of the trajectory. As the maneuver will be constructed

such that Ω(𝑡p,1) = Ωd, then the spacecraft will also have a nadir-pointing attitude at the

end of the trajectory since from Eq. 3.31, 𝑎𝑦(𝑡p,1) = −Ω2
d𝑟d.

The frequency of the orbit over time can be solved for as

Ω(𝑡) = − 1

𝑟d

∫︁ 𝑡

0
𝑎𝑥(𝜏)𝑑𝜏 (3.34)

=
𝑎1𝑡p,1

(𝑛+ 1)𝑟d

[︃
1−

(︂
1− 𝑡

𝑡p,1

)︂𝑛+1
]︃

(3.35)
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which, based on Eq. 3.31, gives an acceleration along the 𝑦-axis of

𝑎𝑦(𝑡) = −
𝑎21𝑡

2
p,1

(𝑛+ 1)2𝑟d

[︃
1−

(︂
1− 𝑡

𝑡p,1

)︂𝑛+1
]︃2

(3.36)

At the beginning of the trajectory, it can be seen that 𝑎𝑦(0) = 0. In addition,

�̇�𝑦(𝑡) = − 2𝑎21𝑡p,1
(𝑛+ 1)𝑟d

[︃
1−

(︂
1− 𝑡

𝑡p,1

)︂𝑛+1
]︃(︂

1− 𝑡

𝑡p,1

)︂𝑛
(3.37)

so �̇�𝑦(0) = 0. Therefore, at the beginning of the trajectory the rotational velocity of the

spacecraft in the rotating frame will be zero. Since the rotating frame will have a rotational

frequency of zero at the beginning of the trajectory, this also means that the rotational

velocity of the spacecraft in the inertial frame will also be zero.

The trajectory needs to be correctly sized, by setting 𝑎1 and 𝑡p,1, such that Ω(𝑡p,1) = Ωd.

From Eq. 3.35

Ω(𝑡p,1) =
𝑎1𝑡p,1

(𝑛+ 1)𝑟d
(3.38)

Therefore, the choice of 𝑎1 and 𝑡p,1 must satisfy

𝑎1𝑡p,1 = (𝑛+ 1)𝑟dΩd (3.39)

An additional constraint could be that the required acceleration magnitude does not exceed

the maximum acceleration output of the propulsion system

𝑎2(𝑡) = 𝑎2𝑥(𝑡) + 𝑎2𝑦(𝑡) ≤
(︂
𝐹max

𝑚

)︂2

∀ 𝑡 ∈ [0, 𝑡p,1] (3.40)

From the set profiles for 𝑎𝑥(𝑡) and 𝑎𝑦(𝑡)

𝑎2(𝑡) = 𝑎21

(︂
1− 𝑡

𝑡p,1

)︂2𝑛

+
𝑎41𝑡

4
p,1

(𝑛+ 1)4𝑟2d

[︃
1−

(︂
1− 𝑡

𝑡p,1

)︂𝑛+1
]︃4

(3.41)

To find the maximum acceleration magnitude, the critical points need to be solved for from

𝑑

𝑑𝑡
𝑎2(𝑡) = 0 (3.42)
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where

𝑑

𝑑𝑡
𝑎2(𝑡) = −2𝑛𝑎21

𝑡p,1

(︂
1− 𝑡

𝑡p,1

)︂2𝑛−1

+
4𝑎41𝑡

3
p,1

(𝑛+ 1)3𝑟2d

(︂
1− 𝑡

𝑡p,1

)︂𝑛 [︃
1−

(︂
1− 𝑡

𝑡p,1

)︂𝑛+1
]︃3

(3.43)

Acknowledging that a critical point exists for 𝑡 = 𝑡p,1, then the remaining critical points can

be found by solving

(︂
1− 𝑡

𝑡p,1

)︂𝑛−1

=
2𝑎21𝑡

4
p,1

𝑛(𝑛+ 1)3𝑟2d

[︃
1−

(︂
1− 𝑡

𝑡p,1

)︂𝑛+1
]︃3

(3.44)

Using the substitutions

𝑢 = 1− 𝑡

𝑡p,1
and 𝐴 =

2𝑎21𝑡
4
p,1

𝑛(𝑛+ 1)3𝑟2d
(3.45)

then Eq. 3.44 can be written as

𝑢𝑛−1 = 𝐴
[︀
1− 𝑢𝑛+1

]︀3 (3.46)

There exists exactly one solution to this equation for the range 0 < 𝑢 < 1 since on this

range the left-hand side is monotonically increasing from 0 to 1 and the right-hand side is

monotonically decreasing from 𝐴 to 0. Therefore, on the range 0 < 𝑡 < 𝑡p,1 there is only a

single critical point. Furthermore,

𝑑

𝑑𝑡
𝑎2(0) = −2𝑛𝑎21

𝑡p,1
< 0 (3.47)

which indicates that the critical point cannot be a maxima. If it were a maxima, then

just before the critical point the acceleration magnitude must be increasing. However, for

this to be possible, a local minima must have occurred earlier on in the profile since the

acceleration magnitude is initially decreasing. If this were the case, then the maxima is at

least the second critical point. Since there can only exist a single critical point, no local

maxima can exist.

Since there are no local maxima on the range 0 < 𝑡 < 𝑡p,1, then the maximum acceleration

magnitude of the profile occurs on the boundary: either 𝑡 = 0 or at 𝑡 = 𝑡p,1. The maximum
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acceleration is therefore

max
(︁√︀

𝑎2(𝑡)
)︁

= 𝑎1 or max
(︁√︀

𝑎2(𝑡)
)︁

= Ω2
d𝑟d (3.48)

By design, it has to be that

Ω2
d𝑟d ≤

𝐹max

𝑚
(3.49)

otherwise the spacecraft would not be able to maintain the desired circular orbit. Therefore,

the trajectory can be correctly sized by setting

𝑎1 =
𝐹max

𝑚
(3.50)

Combining Eq. 3.50 with Eq. 3.39, then the total time of the maneuver profile is also set as

𝑡p,1 =
(𝑛+ 1)𝑟dΩd

𝐹max/𝑚
(3.51)

The last remaining state to be solved for is the angular position of the spacecraft in the

orbital plane over time. The change in angular position is

∆𝜃(𝑡) =

∫︁ 𝑡

0
Ω(𝜏)𝑑𝜏 (3.52)

= −
𝑎1𝑡

2
𝑝,1

(𝑛+ 1)𝑟d

(︃
1

𝑛+ 2

[︃
1−

(︂
1− 𝑡

𝑡𝑝,1

)︂𝑛+2
]︃
− 𝑡

𝑡𝑝,1

)︃
(3.53)

which gives a total angular change of the spacecraft over the course of the maneuver of

∆𝜃(𝑡𝑝,1) =
𝑎1𝑡

2
𝑝,1

(𝑛+ 2)𝑟d
=

(𝑛+ 1)2

𝑛+ 2

Ω2
d𝑟d

𝐹max/𝑚
(3.54)

3.4.2 Changing Orbital Radius

Once the spacecraft is on the desired circular orbit, it needs to be able to change the radius

of the circular orbit in order to enable point-to-point maneuvering. The ability to change the

orbit’s radius could also be used to land on or dock to a rotating target by slowly lowering

the orbit’s radius until it matches the radius of the central target.

The changing-radius maneuver can be designed starting from the dynamics given by Eqs.
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3.23 and 3.24, and assuming that the frequency of the rotating frame is held constant at

some desired value, Ωd, throughout the maneuver. This result in the dynamics

0 = 2Ωd�̇�(𝑡) + 𝑎𝑥(𝑡) (3.55)

𝑦(𝑡) = Ω2
d𝑦(𝑡) + 𝑎𝑦(𝑡) (3.56)

For this maneuver, the strategy is to pick 𝑎𝑦(𝑡) in order to drive 𝑦(𝑡), the radius of the orbit,

from the initial radius to the desired radius. Once 𝑦(𝑡) has been solved for, the required

profile for 𝑎𝑥(𝑡) can be solved for from Eq. 3.55, which will hold the frequency of the orbit

constant throughout the maneuver.

Consider a profile for 𝑎𝑦(𝑡) of the form

𝑎𝑦(𝑡) = −Ω2
d𝑦(𝑡) + 𝑎2𝑡(𝑡− 𝑡p,2)(𝑡− 0.5𝑡p,2) (3.57)

where 𝑎2 is a constant and 𝑡p,2 is the overall time of the maneuver. With this profile, the

radial dynamics become

𝑦(𝑡) = 𝑎2𝑡(𝑡− 𝑡p,2)(𝑡− 0.5𝑡p,2) (3.58)

which results in a radial velocity of

�̇�(𝑡) =

∫︁ 𝑡

0
𝑦(𝜏)𝑑𝜏 (3.59)

=
1

4
𝑎2𝑡

2 (𝑡− 𝑡p,2)2 (3.60)

and a radial position of

𝑦(𝑡) = 𝑦(0) +

∫︁ 𝑡

0
�̇�(𝜏)𝑑𝜏 (3.61)

= 𝑦(0) +
1

120
𝑎2𝑡

3
(︀
6𝑡2 − 15𝑡p,2𝑡+ 10𝑡2p,2

)︀
(3.62)

Therefore, for a desired change in radius, ∆𝑟, the parameters 𝑎2 and 𝑡p,2 need to be set such

that

𝑎2𝑡
5
p,2 = 120∆𝑟 (3.63)
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The acceleration profile along each axis is then

𝑎𝑥(𝑡) = −2Ωd�̇�(𝑡) (3.64)

= −1

2
𝑎2Ωd𝑡

2(𝑡− 𝑡p,2)2 (3.65)

and

𝑎𝑦(𝑡) = −Ω2
d𝑦(𝑡) + 𝑎2𝑡(𝑡− 𝑡p,2)(𝑡− 0.5𝑡p,2) (3.66)

= −Ω2
d

[︁
𝑦0 +

𝑎2
120

𝑡3
(︀
6𝑡2 − 15𝑡p,2𝑡+ 10𝑡2p,2

)︀]︁
+ 𝑎2𝑡(𝑡− 𝑡p,2)(𝑡− 0.5𝑡p,2) (3.67)

where 𝑦0 is the initial orbital radius. At the boundaries of the trajectory it is quite clear from

Eqs. 3.65 and 3.67 that 𝑎𝑥(0) = 𝑎𝑥(𝑡p,2) = 0, 𝑎𝑦(0) = −Ω2
d𝑦0, and 𝑎𝑦(𝑡p,2) = −Ω2

d(𝑦0 + ∆𝑟)

which indicate that the spacecraft will have a nadir-pointing attitude at the beginning and

end of the trajectory. The derivative of the acceleration along the 𝑥 axis is,

�̇�𝑥(𝑡) = −2𝑎2Ωd𝑡(𝑡− 𝑡p,2)(𝑡− 0.5𝑡p,2) (3.68)

which gives 𝑎𝑥(0) = 𝑎𝑥(𝑡p,2) = 0 and indicates that the spacecraft will have zero rotational

velocity in the rotating frame at the beginning and end of the trajectory.

As with the joining-orbit maneuver, the acceleration profile should be further constrained

such that the maximum acceleration magnitude required for the profile is less than the

maximum acceleration output of the propulsion system. This would amount to finding the

critical points of the acceleration magnitude by solving

𝑑

𝑑𝑡
(𝑎2𝑥(𝑡) + 𝑎2𝑦(𝑡)) = 0 (3.69)

To the author’s knowledge, these critical points cannot be solved for analytically. Therefore,

an alternative approach to bounding the maximum acceleration magnitude is used. The

maximum magnitude of the acceleration along the 𝑥 axis is

max
𝑡∈[0,𝑡p,2]

⃒⃒⃒⃒
−1

2
𝑎2Ωd𝑡

2(𝑡− 𝑡p,2)2
⃒⃒⃒⃒

=
1

32
Ωd|𝑎2|𝑡4p,2 (3.70)

The acceleration along the 𝑦 axis can be broken into two components. The first is the
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centripetal acceleration which has a maximum magnitude of

max
𝑡∈[0,𝑡p,2]

|𝑎𝑦,centripetal| = Ω2
d max(𝑦0, 𝑦0 + ∆𝑟) (3.71)

The second component is the cubic function added on-top of the centripetal acceleration in

order to change the orbit’s radius. This component has a maximum magnitude of

max
𝑡∈[0,𝑡p,2]

|𝑎2𝑡(𝑡− 𝑡p,2)(𝑡− 0.5𝑡p,2)| =
1

12
√

3
|𝑎2|𝑡3p,2 (3.72)

Therefore, the maximum magnitude of the acceleration is bounded by

max
𝑡∈[0,𝑡p,2]

√︁
𝑎2𝑥(𝑡) + 𝑎2𝑦(𝑡) ≤

1

32
Ωd|𝑎2|𝑡4p,2 + Ω2

d max(𝑦0, 𝑦0 + ∆𝑟) +
1

12
√

3
|𝑎2|𝑡3p,2 (3.73)

which means that by setting

1

32
Ωd|𝑎2|𝑡4p,2 + Ω2

d max(𝑦0, 𝑦0 + ∆𝑟) +
1

12
√

3
|𝑎2|𝑡3p,2 =

𝐹max

𝑚
(3.74)

the maximum acceleration required for the maneuver will be guaranteed to be lower than

the maximum acceleration output of the propulsion system. From Eq. 3.63 it must be that

|𝑎2| =
120|∆𝑟|
𝑡5p,2

(3.75)

which when substituted into Eq. 3.74 results in a profile time of

𝑡p,2 =

15
4 Ωd|∆𝑟|+

√︁
225
16 Ω2

d∆𝑟2 + 40√
3

[︀
𝐹max/𝑚− Ω2

dmax(𝑦0, 𝑦0 + ∆𝑟)
]︀
|∆𝑟|

2
[︀
𝐹max/𝑚− Ω2

dmax(𝑦0, 𝑦0 + ∆𝑟)
]︀ (3.76)

While this profile time does guarantee that the maximum acceleration required will be

within the capabilities of the propulsion system, it is possible for 𝑎𝑦(𝑡) > 0 during some parts

of the maneuver. In those cases the plume of the propulsion system starts to be directed

radially inwards, towards the target. The fact that 𝑎𝑦(𝑡) > 0 for some range of the maneuver

does not necessarily mean that plume impingement will occur, but without any bound on

the value of 𝑎𝑦(𝑡) it cannot be guaranteed that plume impingement will be avoided. For this

reason, it is worth developing an alternative setting of the parameters 𝑎2 and 𝑡p,2 in order to

bound 𝑎𝑦(𝑡). The most convenient bound is to ensure that 𝑎𝑦(𝑡) ≤ 0 for the entire maneuver
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and develop guarantees for avoiding plume impingement based on this constraint. Such a

bound will also match the characteristics of the joining-orbit maneuver where 𝑎𝑦(𝑡) ≤ 0 for

the entire trajectory.

A simple way to guarantee 𝑎𝑦(𝑡) ≤ 0 is to ensure that the maximum magnitude of the

cubic portion of 𝑎𝑦(𝑡) does not exceed the minimum value of the centripetal portion

max
𝑡∈[0,𝑡p,2]

|𝑎2𝑡(𝑡− 𝑡p,2)(𝑡− 0.5𝑡p,2)| ≤ min
𝑡∈[0,𝑡p,2]

|𝑎𝑦,centripetal| (3.77)

which can be ensured by solving

1

12
√

3
|𝑎2|𝑡3p,2 ≤ Ω2

d min(𝑦0, 𝑦0 + ∆𝑟) (3.78)

Solving for the resulting profile time gives

𝑡p,2 =

√︃
10|∆𝑟|√

3Ω2
d min(𝑦0, 𝑦0 + ∆𝑟)

(3.79)

Given the two possible settings for the profile time from Eqs. 3.76 and 3.79, the larger of

the two possible profile times is selected for a given scenario. This ensures that the maximum

acceleration of the propulsion system will not be exceeded and that the radial acceleration

will never be positive. In most cases Eq. 3.79 will constrain the profile time, however in

cases where

𝐹max/𝑚 ≈ Ω2
d max(𝑦0, 𝑦0 + ∆𝑟) (3.80)

then Eq. 3.76 will be the applicable constraint.

3.4.3 Changing Orbital Frequency

Changing the orbit’s rotational frequency is similar to joining the orbit from rest, only that

the spacecraft initial starts on the circular orbit. Starting from the dynamics given by Eqs.

3.23 and 3.24 then the goal is to pick a profile for 𝑎𝑥(𝑡) to drive the frequency of the orbit

from some initial frequency, Ω0, to a desired frequency, Ωd, while maintaining a constant

radius of 𝑟d. Since the spacecraft starts and ends on a circular orbit, the profile must have a

nadir-pointing attitude at the beginning and end of the trajectory. The radial acceleration
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at the beginning and end of the trajectory is known, 𝑎𝑦(0) = −Ω2
0𝑟d and 𝑎𝑦(𝑡p,3) = −Ω2

d𝑟d

where 𝑡p,3 is the overall length of the maneuver. Therefore, to ensure a nadir-pointing

attitude it must be that 𝑎𝑥(0) = 𝑎𝑥(𝑡p,3) = 0. In addition, to ensure that the spacecraft will

have zero rotational velocity in the rotating frame at the beginning and end of the trajectory

it must be that �̇�𝑥(0) = �̇�𝑥(𝑡p,3) = 0. All of this can be accomplished with a quartic profile

𝑎𝑥(𝑡) = −𝑎3𝑡2(𝑡− 𝑡p,3)2 (3.81)

where 𝑎3 is a constant. From inspection it is clear that 𝑎𝑥(0) = 𝑎𝑥(𝑡p,3) = 0. The time

derivative of the 𝑥-axis acceleration is

�̇�𝑥(𝑡) = −2𝑎3𝑡(𝑡− 𝑡p,3)2 − 2𝑎3𝑡
2(𝑡− 𝑡p,3) (3.82)

Again, from inspection it is clear that �̇�𝑥(0) = �̇�𝑥(𝑡p,3) = 0.

With the quartic profile for 𝑎𝑥(𝑡), the change in orbit frequency is given by

∆Ω(𝑡) = − 1

𝑟d

∫︁ 𝑡

0
𝑎𝑥(𝜏)𝑑𝜏 (3.83)

=
𝑎3𝑡

3

30𝑟d

(︀
6𝑡2 − 15𝑡𝑡p,3 + 10𝑡2p,3

)︀
(3.84)

which gives a total change in orbit frequency over the entire maneuver of

∆Ω(𝑡p,3) =
1

30

𝑎3𝑡
5
p,3

𝑟d
(3.85)

Therefore, for a given initial frequency of Ω0 and a final frequency of Ωd, the parameters 𝑎3

and 𝑡p,3 must be selected in order to satisfy

𝑎3𝑡
5
p,3 = 30𝑟d(Ωd − Ω0) (3.86)

The profile for 𝑎𝑦(𝑡) can then be solved for from Eq. 3.24 as

𝑎𝑦(𝑡) = −𝑟d
[︂
Ω0 +

𝑎3𝑡
3

30𝑟d

(︀
6𝑡2 − 15𝑡𝑡p,3 + 10𝑡2p,3

)︀]︂2
(3.87)

As before, the final constraint on the maneuver parameters is to ensure that the maximum

magnitude of the acceleration is within the propulsion system’s capabilities. The square of
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the total acceleration magnitude is

𝑎2(𝑡) = 𝑎2𝑥(𝑡) + 𝑎2𝑦(𝑡) (3.88)

= 𝑎23𝑡
4(𝑡− 𝑡p,3)4 + 𝑟2d

[︂
Ω0 +

𝑎3𝑡
3

30𝑟d

(︀
6𝑡2 − 15𝑡𝑡p,3 + 10𝑡2p,3

)︀]︂4
(3.89)

Taking its time derivative to solve for the critical points gives

𝑑

𝑑𝑡
𝑎2(𝑡) = 4𝑎23𝑡

3(𝑡− 𝑡p,3)4 + 4𝑎23𝑡
4(𝑡− 𝑡p,3)3

+ 4𝑎3𝑟d𝑡
2(𝑡− 𝑡p,3)2

[︂
Ω0 +

𝑎3𝑡
3

30𝑟d

(︀
6𝑡2 − 15𝑡𝑡p,3 + 10𝑡2p,3

)︀]︂3
(3.90)

Acknowledging the two critical points at 𝑡 = 0 and two further critical points at 𝑡 = 𝑡p,3,

then the remaining critical points can be found by solving

𝑎3𝑡(𝑡− 𝑡p,3)(2𝑡− 𝑡p,3) = −𝑟d
[︂
Ω0 +

𝑎3𝑡
3

30𝑟d

(︀
6𝑡2 − 15𝑡𝑡p,3 + 10𝑡2p,3

)︀]︂3
(3.91)

As with the orbital radius change, an analytical expression for the remaining critical points

of the overall acceleration magnitude could not be found. However, the right-hand side of

Eq. 3.91 is simply −𝑟dΩ3(𝑡) which is bounded by −𝑟dΩ3
0 and −𝑟dΩ3

d, and the left-hand side

is a cubic function with roots at 𝑡 = 0, 𝑡 = 0.5𝑡p,3 and 𝑡 = 𝑡p,3. The maximum magnitude

of the left-hand side is

max
𝑡∈[0,𝑡p,3]

|𝑎3𝑡(𝑡− 𝑡p,3)(2𝑡− 𝑡p,3)| =
1

6
√

3
𝑎3𝑡

3
p,3 (3.92)

If the maneuver is designed such that there are no solutions to Eq. 3.91, then there cannot

be any local maxima on the range 𝑡 ∈ (0, 𝑡p,3) and the maximum acceleration magnitude

will occur either at 𝑡 = 0 or 𝑡 = 𝑡p,3. One simple way of ensuring this is to set

1

6
√

3
𝑎3𝑡

3
p,3 < 𝑟d min

(︀
Ω3
0,Ω

3
d
)︀

(3.93)

However, this bound is quite conservative, and better bounds can be found. Note from Eq.

3.86 that 𝑎3 > 0 when Ωd > Ω0. In Eq. 3.91, if 𝑎3 > 0 then the left-hand side will be

positive for 𝑡 ∈ (0, 0.5𝑡p,3) and negative for 𝑡 ∈ (0.5𝑡p,3, 𝑡p,3). The right-hand side of Eq.

3.91 will always be negative since it is equal to −𝑟dΩ3(𝑡) and the problem is constructed such
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that Ω(𝑡) > 0. Therefore, the only portion of the profile where it is possible for Eq. 3.91 to

have any solutions is on the range 𝑡 ∈ (0.5𝑡p,3, 𝑡p,3). Similarly, from Eq. 3.86, 𝑎3 < 0 when

Ωd < Ω0. In this case, the left-hand side of Eq. 3.91 will be negative for 𝑡 ∈ (0, 0.5𝑡p,3) and

positive for 𝑡 ∈ (0.5𝑡p,3, 𝑡p,3). Therefore, the only portion of the profile where it is possible

for Eq. 3.91 to have any solutions is on the range 𝑡 ∈ (0, 0.5𝑡p,3).

This situation is shown graphically in Figure 3-4 for arbitrary maneuver parameters.

When Ωd > Ω0 both sides of Eq. 3.91 have the same sign when 𝑡 ∈ (0.5𝑡p,3, 𝑡p,3), and when

Ωd < Ω0 both sides of Eq. 3.91 have the same sign when 𝑡 ∈ (0, 0.5𝑡p,3). The byproduct of

this result is that better bounds than that of Eq. 3.93 can be found in order to ensure that

Eq. 3.91 does not have any solutions. In particular, note that whenever both sides of Eq.

3.91 share the same sign, the magnitude of the right-hand side is always larger than what

it is at 𝑡 = 0.5𝑡p,3. Therefore, by setting

1

6
√

3
𝑎3𝑡

3
p,3 = −𝑟dΩ3(𝑡p,3/2) (3.94)

it can be guaranteed that Eq. 3.91 does not have any solutions which in turn guarantees that

there are no local maxima for the total acceleration magnitude on the range 𝑡 ∈ (0, 𝑡p,3).

Based on the derived profile for Ω(𝑡)

Ω(𝑡p,3/2) = (Ω0 + Ω𝑑)/2 (3.95)

Combining this result with Eq. 3.86 gives the parameter settings

𝑎3 =
9

160

𝑟d(Ωd + Ω0)

Ωd − Ω0

[︂
1600

3

(Ωd − Ω0)
2

(Ωd + Ω0)6

]︂−1/4

(3.96)

and

𝑡p,3 =

[︂
1600

3

(Ωd − Ω0)
2

(Ωd + Ω0)6

]︂1/4
(3.97)

which guarantee that

max
𝑡∈[0,𝑡p,3]

𝑎(𝑡) = 𝑟d max
(︀
Ω2
0,Ω

2
d
)︀

(3.98)
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Figure 3-4: Graphical representation of functions for determining the critical points of the
changing-frequency maneuver.
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Finally, the angular position of the spacecraft throughout the maneuver is given by

∆𝜃(𝑡) =

∫︁ 𝑡

0
Ω(𝜏)𝑑𝜏 (3.99)

= Ω0𝑡p,3 +
1

60

𝑎3𝑡
4

𝑟d

(︀
2𝑡2 − 6𝑡p,3𝑡+ 5𝑡2p,3

)︀
(3.100)

which gives an overall angular change of the spacecraft for the maneuver of

∆𝜃(𝑡p,3) =
1

2
𝑡p,3(Ω0 + Ωd) (3.101)

3.4.4 Changing Orbital Plane

Changing the orbital plane could have two different goals. The first would be to rotate the

orbital plan around some axis, analogous to an inclination change in orbital dynamics. The

second is to translate the orbital plane along its normal vector. Rotating the orbital plane

is most-easily accomplished by leaving the current circular orbit at the intersection point

between the current orbital plane and the desired orbital plan (the ascending or descending

node) and then joining a new circular orbit in the desired orbital plane. Translating the

orbital plane cannot be accomplished as easily and requires a separate maneuver.

Conveniently, in the chosen coordinate system the 𝑧-axis dynamics are decoupled from

the in-plane dynamics

𝑧(𝑡) = 𝑎𝑧(𝑡) (3.102)

In order to ensure that the spacecraft’s attitude is nadir-pointing and that the rotational

velocity of the spacecraft in the rotating frame is zero at the beginning and end of the

trajectory, it must be that 𝑎𝑧(0) = 𝑎𝑧(𝑡p,4) = 0 and �̇�𝑧(0) = �̇�𝑧(𝑡p,4) = 0 where 𝑡p,4 is the

overall time of the maneuver profile. An additional requirement of �̇�(0) = �̇�(𝑡p,4) = 0 is

needed to ensure dynamic consistency for the 𝑧-axis motion of the spacecraft. All of this

can be accomplished with a quintic acceleration profile

𝑎𝑧(𝑡) = −𝑎4𝑡2(𝑡− 𝑡p,4)2(𝑡− 0.5𝑡p,4) (3.103)

where 𝑎4 is a constant. From inspection it can be seen that 𝑎𝑧(0) = 𝑎𝑧(𝑡p,4) = 0. The time
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derivative of the 𝑧-axis acceleration is

�̇�𝑧(𝑡) = −2𝑎4𝑡(𝑡− 𝑡p,4)2(𝑡− 0.5𝑡p,4)− 2𝑎4𝑡
2(𝑡− 𝑡p,4)(𝑡− 0.5𝑡p,4)− 𝑎4𝑡2(𝑡− 𝑡p,4)2 (3.104)

Again, from inspection in can be seen that �̇�𝑧(0) = �̇�𝑧(𝑡p,4) = 0.

The chosen acceleration profile results in a 𝑧-axis velocity of

�̇�(𝑡) =

∫︁ 𝑡

0
𝑎𝑧(𝜏)𝑑𝜏 (3.105)

= −1

6
𝑎4𝑡

3(𝑡3 − 3𝑡p,4𝑡
2 + 3𝑡2p,4𝑡− 𝑡3p,4) (3.106)

which demonstrates that �̇�(0) = �̇�(𝑡p,4) = 0. The change in 𝑧-axis position is

∆𝑧(𝑡) =

∫︁ 𝑡

0
�̇�(𝜏)𝑑𝜏 (3.107)

= − 1

840
𝑎4𝑡

4(20𝑡3 − 70𝑡p,4𝑡
2 + 84𝑡2p,4𝑡− 35𝑡3p,4) (3.108)

The parameters 𝑎4 and 𝑡p,4 need to be selected in order to change the spacecraft’s 𝑧-axis

position by a desired amount, ∆𝑧(𝑡p,4) = ∆𝑧d

∆𝑧(𝑡p,4) =
1

840
𝑎4𝑡

7
p,4 (3.109)

which places the requirement that

𝑎4𝑡
7
p,4 = 840∆𝑧d (3.110)

The maximum magnitude acceleration can be analytically solved for. The maximum

magnitude of the 𝑧-axis acceleration is

max
𝑡∈[0,𝑡p,4]

|𝑎𝑧(𝑡)| =
1

50
√

5
𝑎4𝑡

5
p,4 (3.111)

while the acceleration in the 𝑥-𝑦 plane is held constant at Ω2
d𝑟d. Therefore, the maximum

magnitude of the acceleration can be correctly constrained by solving

Ω4
d𝑟

2
d +

1

12500
𝑎24𝑡

10
p,4 = (𝐹max/𝑚)2 (3.112)
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Figure 3-5: Worst-case scenario for plume impingement where the radial component of the
acceleration vector is zero.

which results in a profile time of

𝑡p,4 =

√︃
84

5
√

5

[︂
∆𝑧2d

(𝐹max/𝑚)2 − Ω4
d𝑟

2
d

]︂1/4
(3.113)

3.5 Plume Impingement

All maneuvers were designed such that the radial component of the acceleration vector is

never positive. This allows for guarantees regarding plume impingement to be developed.

In the worst-case scenario, the radial component of the acceleration vector is zero, as it

is at the very beginning of the joining-orbit maneuver. Figure 3-5 shows this scenario for

a propulsion system that has a plume half-angle of 𝜓. Assuming that it is desired for the

plume to never intersect a sphere of radius 𝑅 around the target, then limits on the minimum

radius that the spacecraft is allowed to operate in can be developed. This minimum radius

can be solved for from geometry as

𝑟min =
𝑅

cos𝜓
(3.114)

As long as the desired baseline circular orbit of the spacecraft has a radius of 𝑟 > 𝑟min and

the sphere of radius 𝑅 is appropriately selected in order to fully encompass the target (such

as a circumscribing sphere), plume impingement will be avoided.
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3.6 Example Applications

This section shows examples of the analytical maneuver library being used for basic mission

segments. Specifically, point-to-point maneuvering between any two points in space is shown

including situations where the central target is cylindrical and translating the orbit along

its normal vector may be advantageous. In addition, the use of changing the orbit frequency

and changing orbit radius is demonstrated for landing on or docking to a rotating target.

In all cases, the construction of the full maneuver from individual maneuvers in the

library is the same. First, the necessary maneuvers are selected including the addition

of a “coast” maneuver where the spacecraft simply maintains its current circular motion.

The maneuvers are then stitched together at their boundaries in order to form the full

maneuver and the “coast” maneuver is used in order to fill in any necessary gaps in angular

position. Since all maneuvers, with the exception of joining or leaving the circular orbit, were

designed to start and end with a nadir-pointing attitude and with zero rotational velocity

in the rotating frame, stitching different maneuvers from the library together is as simple as

ensuring that they have the same radial and angular position within the orbital plane.

3.6.1 Point-to-Point Maneuvering

Figure 3-6 shows an example of a basic point-to-point maneuver between two waypoints.

The full maneuver is composed of joining the circular orbit, coasting, changing the orbital

radius, and finally leaving the circular orbit. The ordering of coasting and changing orbital

radius can change depending on if the end waypoint is at a greater or lower radius than the

start waypoint. The acceleration required to maintain a circular orbit of a given frequency

increases with orbit radius, so coasting should usually occur at as low of an orbital radius

as possible. In the scenario in Figure 3-6 since the end waypoint is at a greater radius than

the start waypoint, coasting is conducted before increasing the orbit radius.

Figure 3-7 shows the total acceleration magnitude throughout the maneuver. The ac-

celeration magnitude stays within the capabilities of the propulsion system for the entire

maneuver, and only reaches the maximum acceleration output of the propulsion system at

the beginning of joining the circular orbit and at the end of leaving the circular orbit. Figure

3-8 shows the spacecraft’s heading and rotational velocity in the rotating frame through-

out the maneuver. At the boundaries between individual maneuvers, the spacecraft always
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Figure 3-6: Basic point-to-point maneuver.

returns to a nadir-pointing attitude with zero rotational velocity which makes stitching to-

gether the individual maneuvers quite simple. In addition, the spacecraft’s heading in the

rotating frame always remains between ±90∘ which means that the spacecraft’s thrust vector

never points radially outwards.

Since the spacecraft’s heading in the rotating frame remains between±90∘, the conditions

under which plume impingement is guaranteed to be avoided can be determined based on

Eq. 3.114. The lowest radius of the spacecraft is 10 m, the radius of the start waypoint,

which means that for an assumed plume half-angle of 45∘, Eq. 3.114 gives that the plume will

never enter a sphere of radius 7.07 m around the central target. Figure 3-9 shows a plume

impingement map for the maneuver. Regions on the map that would experience plume

impingement at any point during the maneuver are shaded. Darker shading corresponds

to regions that would experience plume impingement for a greater duration of time, while

regions that are unshaded would not experience plume impingement at any point during the

maneuver. Since the thrust vector of the propulsion system predominantly points towards

the center, in order to provide the necessary centripetal acceleration, most of the shading is

on regions that are radially outward from the spacecraft’s trajectory. A circle of radius 7.07

m is marked on the plot, and it can be seen that the plume of the propulsion system does

not enter this circle at any point during the maneuver.
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Figure 3-7: Total acceleration magnitude normalized by the maximum acceleration of the
propulsion system throughout a basic point-to-point maneuver.

3.6.2 Cylindrical Point-to-Point Maneuvering

For cylindrical targets, such as the upper-stage of a booster, the use of the changing-height

maneuver might be advantageous. Although passively-safe trajectories are not explicitly

addressed in this work, around a more spherical target if the propulsion system of the

spacecraft were to fail while the spacecraft is maintaining its circular motion, the spacecraft

would simply drift away from the target with no risk of collision. Around a cylindrical

target, if the normal vector of the orbit is not parallel to the long axis of the target, it is

possible for the orbit to intersect the target. For this reason, it may be better to maintain

circular orbits with their normal vector parallel to the long axis of the target, and use the

changing-height maneuver to move along the target.

Figure 3-10 demonstrates one such application. Although it is possible to connect the

start and end waypoints with a circular trajectory, the circle will end up intersecting the

target, posing a potential collision risk. By using the changing-height maneuver, the space-

craft can move from the start waypoint to the end waypoint on an entirely passively-safe

trajectory; if the propulsion system were to fail at any point of the trajectory, the spacecraft

would drift away from the target with no risk of collision.
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Figure 3-8: Heading and rotational velocity of the spacecraft in the rotating frame through-
out a basic point-to-point maneuver.

108



Figure 3-9: Plume impingement map throughout a basic point-to-point maneuver. Shaded
regions are those that would experience plume impingement with darker regions correspond-
ing the greater plume impingement.

Figure 3-10: Basic point-to-point maneuvering around a cylindrical target.
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Figure 3-11: Landing on or docking to a rotating target in both the inertial and rotating
frames. The rotating frame rotates with the target which is assumed to be in a flat spin.

3.6.3 Landing on/Docking to a Rotating Target

The changing orbital frequency and changing orbital radius maneuvers can be used to land

on or dock to a rotating target in a flat spin. Figure 3-11 shows an example of such a

maneuver in both the inertial frame and in a frame that rotates with the target. It is

assumed that the spacecraft starts in a circular orbit with frequency equal to the rotational

frequency of the target, such that in the rotating frame the spacecraft is initially stationary.

The spacecraft initially starts 30∘ behind its desired landing/docking point. Therefore,

before landing it must first increase its own orbit frequency in order to catch up with the

landing/docking point. This is conducted in three steps. First, the spacecraft increases
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its orbital frequency to some value larger than the target’s rotational frequency. Next, the

spacecraft coasts in order to allow itself to catch up with the desired landing/docking point.

Finally, the spacecraft decreases its orbital frequency back down to the rotational frequency

of the target such that it is hovering directly above the desired landing/docking point. At

this point the spacecraft can lower its orbital radius such that it soft lands on/docks to

the target. Since the maneuver for changing orbital radius was constrained to maintain a

constant orbital frequency, the landing/docking maneuver appears as a straight line in the

rotating frame.

Figure 3-12 shows the total acceleration magnitude throughout the maneuver. As in-

tended, the acceleration magnitude remains within the capabilities of the propulsion system

for the entire maneuver. Figure 3-13 shows the spacecraft’s heading and rotational velocity in

the rotating frame through the maneuver. Again, the spacecraft returns to a nadir-pointing

attitude with zero rotational velocity in the rotating frame at the boundary between each

segment of the maneuver. Finally, Figure 3-14 shows a plume impingement map in the

rotating frame throughout the maneuver. Since the spacecraft’s final orbital radius is equal

to the radius of the target, there are no guarantees regarding plume impingement unless the

propulsion system’s plume has zero width. However, by increasing the profile time beyond

those specified by Eqs. 3.76 and 3.79 plume impingement can still be avoided, as shown in

Figure 3-14.

3.7 Conclusion

This work demonstrates that an underactuated spacecraft can be controlled with linear con-

trol methods and that an analytical maneuver library can be developed in order to maneuver

the spacecraft around a central target without resorting to numerical optimization. In ad-

dition, constraints such as maximum acceleration magnitude as well as plume impingement

can be directly embedded into the maneuver library. The maneuver library developed in

this work is only one possible library that could be created. Other formulations for the ba-

sic trajectories, such as the use of trigonometric functions instead of polynomial functions,

would allow for other libraries to be generated.

An analytical maneuver library could enable the use of high-efficiency but low-thrust

propulsion systems, such as electrospray thrusters, for free-flying small spacecraft inspec-
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Figure 3-12: Total acceleration magnitude normalized by the maximum acceleration of
the propulsion system throughout landing on or docking to a rotating target. Region 1
corresponds to increasing orbit frequency, region 2 corresponds to coasting, and region 3
corresponds to decreasing orbit frequency.

tors. Such spacecraft could be used for long-duration inspection of a target or a single

spacecraft could be used to inspect multiple targets. While the maneuvers in the library

are suboptimal, the degree of sub-optimality is marginal and the trajectories can be com-

puted at a significantly lower computational cost relative to methods that require numerical

optimization.
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Figure 3-13: Heading and rotational velocity of the spacecraft in the rotating frame through-
out landing on or docking to a rotating target. Region 1 corresponds to increasing orbit
frequency, region 2 corresponds to coasting, and region 3 corresponds to decreasing orbit
frequency.
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Figure 3-14: Plume impingement map throughout landing on or docking to a rotating
target. Shaded regions are those that would experience plume impingement with darker
regions corresponding the greater plume impingement.
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Chapter 4

Surface Operations

Under most conditions, an electrically isolated surface exposed to a plasma will accumulate

a negative charge. Assuming a Maxwellian distribution of the particles, the particle flux

across a plane is given by

Γ = 𝑛

√︂
𝑘𝑇

2𝜋𝑚
(4.1)

where 𝑛 is the particle number density, 𝑘 is the Boltzmann constant, 𝑇 is the temperature,

and 𝑚 is the particle mass. In a plasma, the number density of particles is near-equal for

ions and electrons. The temperature of the ions may differ from the temperature of the

electrons, but the main difference between the particle fluxes is that the mass of the ions is

at least three orders of magnitude greater than the mass of the electrons. Therefore, more

electrons will arrive at the surface than ions initially, charging the surface negatively. The

surface will continue to charge negatively until the ion and electron fluxes are equal.

Asteroids, or any atmosphere-less planetary body, lack a strong charge dissipation mech-

anism. When exposed to a plasma, provided by the solar wind, the surface of the asteroid

will charge. Complicating the picture is the possibility of photoelectric emission of electrons.

Incoming photons, from the Sun, can excite electrons to the point that they are emitted

from the surface [102]. The photoelectric emission of electrons charges surfaces positively

and competes with the surface charging from the surrounding plasma. On the Sun-facing

surfaces of atmosphere-less planetary bodies, the photoelectric emission is found to be dom-

inant and the surfaces charge positively [103]. On the night-side of these bodies, due to the

lack of photoelectric emission, the surface charges negatively.
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An additional form of surface charging could be caused by ion bombardment. When

bombarded with positive ions, a surface will lose electrons due to Auger neutralization of

the incoming ions. The potential well created by the incoming ions allows electrons to escape

from the surface and tunnel to the ion, neutralizing it. In addition to the electron lost for

neutralization, further electrons can be lost as secondary emission due to potential ejection;

as the neutralization electron tunnels to the incoming ion, it gives its extra energy to other

electrons in the atom. It is possible for these other electrons to receive sufficient energy

such that they are ejected from the surface. Kinetic ejection, where the kinetic energy from

the incoming ion causes secondary emission, is also possible but is hypothesized to be less

important than potential ejection [104]. This hypothesis is supported by the observation

that secondary emission mostly depends on the ionization energy of the incoming ions and

not their kinetic energy [105]. Negative ions cannot be neutralized from Auger neutralization

but still deposit their charge and cause the emission of secondary electrons. It is likely that

these processes are kinetic, at least for relatively high-energy ions.

For simple modeling, it is fairly safe to assume that incoming ions, whether positive or

negative, will deposit their charge on the surface through some process. Secondary electrons

will be emitted at some ratio depending on the various properties of the ions and the

surface. For positive ion bombardment, since the surface will charge positively and secondary

electrons have fairly low emission energies, the secondary electrons will be attracted back to

the surface and not contribute to the overall charging allowing surfaces to charge close to the

energy of the incoming ions [106]. However, for negative ion bombardment, since the surface

will charge negatively, the secondary electrons will be repelled from the surface and attenuate

the surface charging. The ratio of secondary electrons to incoming negative ions can exceed

one and therefore prevent the surface from charging significantly. This observation has led

to the proposal of using negative ion bombardment during various processes specifically to

avoid surface charging [107].

As mentioned previously, the interaction between the surfaces of atmosphere-less plan-

etary bodies, such as the Moon and asteroids, and the surrounding plasma and radiation

environment can induce surface charging. Due to the low plasma density, this surface charg-

ing allows for electric fields extending up to tens of meters away from the surface. Analysis

of the data from the Suprathermal Ion Detector Experiment on the Apollo missions [108]

and the Electron Reflectometer from the Lunar Prospector mission [109] both confirm the
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presence of surface charging on the Moon and resulting electric fields on the order of 10

V/m. This electric field is large enough to levitate the regolith on the surface of the Moon,

and the Surveyor landers observed ∼10 𝜇m grains of dust levitating 10s of centimeters above

the surface [110].

Although these experiments were conducted on the Moon, surface charging will occur on

any planetary body without a sufficiently strong charge-dissipation mechanism such as an

atmosphere or internal charge dissipation. Theoretical calculations predict surface electric

fields on the order of 10-20 V/m on the Sun-facing surfaces of asteroids in the main asteroid

belt [111]. It is believed that this surface charging is responsible for the transport of dust

on atmosphere-less planetary bodies, which could explain phenomena such as the unusually

smooth surface of Atlas [112], “ponds” of dust on Eros as seen by the NEAR Shoemaker

mission [113], degradation of optical devices on the Moon [114], porosity on the surfaces

of asteroids [115], and emission and redistribution of particles on the comet Churyumov-

Gerasimenko [116, 117]

To support this theory, laboratory experiments have been able to demonstrate the elec-

trostatic transportation of dust particles on dusty surfaces under ultraviolet illumination or

exposure to plasmas [118]. Dust is observed to shed from a conductive sphere when exposed

only to a plasma [119], but required a plasma and electron beam when the dust was placed

on an insulating surface [120, 121]. Other experiments attempted to quantify the charging

on dust particles when exposed to a plasma environment [122]. In experiments more repre-

sentative of asteroid surfaces, shadow boundaries, like what might be seen at the terminator

between the day and night sides of an asteroid, were found to increase dust transport [123],

and the use of ultraviolet illumination in combination with an ambient plasma was found

to induce dust charging and transport [124].

From the observation of the levitation of dust particles, an electrostatic glider concept

was proposed in order to utilize this natural surface charging to provide maneuverability

around a small asteroid [125] including hovering [126]. The electrostatic glider deploys Mylar

wings in order to increase its capacitance such that electrostatic levitation can be achieved.

However, the set of planetary bodies that can be explored with such a concept is limited to

small asteroids due to the relatively low surface electric field. To resolve the issues associated

with low natural surface charging and enable electric levitation on larger planetary bodies,

this work proposes the use of ionic-liquid ion sources to charge the spacecraft body as well
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Figure 4-1: Concept image of an electrically-levitated rover on the surface of the Moon.

as to artificially increase the local surface charge of the planetary body’s surface beyond the

natural limit.

To artificially increase the charging of the planetary body’s surface, an ionic-liquid ion

source could be used to irradiate the surface with ions and increase the local surface charging.

Such a strategy would allow for surface electric fields well in excess of the natural ∼10

V/m on the Sun-facing surface of the planetary body. In this concept, one ion source

ejects negative ions upward from the vehicle to charge it positively while a second first

positive ions downwards into the surface in order to charge the local surface positively and

increase the local electric field. Additional sources, in the form of electrospray thrusters,

could be included to provide translational maneuverability. Since electrospray thrusters

are solid-state devices, such a system could allow for a vehicle that can achieve levitation

and translational movement across and planetary body’s surface with no moving parts. In

addition, as the vehicle is levitating, it has no physical contact with the planetary body’s

surface, potentially allowing it to more easily explore uneven surfaces relative to traditional

wheeled, legged, or hopping vehicles which struggle in such environments [127]. Figure 4-1

shows a concept image of such a rover.
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4.1 Research Gap

Charging of space vehicles as a means of actuation has largely been ignored as most ap-

proaches have tried to minimize spacecraft charging during operations. However, recent

studies linking natural surface charging to the transport of dust particles across the surfaces

of atmosphere-less planetary bodies raises the question of if such an effect could be used for

actuation of a small vehicle. Prior work has considered the use of an electrically-charged

glider for proximity operations around small asteroids that leverages the natural surface

charging. However, this approach is limited due to the relatively low magnitude of the nat-

ural surface charging. An alternative approach would be to supplement that natural surface

charging through ion bombardment, but has yet to be analyzed in any form.

This work is an initial feasibility study on the use of ionic-liquid ion sources for electric

actuation for a small vehicle on the surfaces of atmosphere-less planetary bodies. An im-

portant distinction between the concept developed here and that of Ref. [125], is that the

vehicle is assumed to be deployed directly on the surface of the planetary body, analogous

to a rover, rather than in proximity operations. A low-fidelity analytical model of the charg-

ing process is developed in order to estimate requirements on vehicle and surface charging

for anchoring and levitation on various planetary bodies along with theoretical bounds on

translational velocity and levitation height. In addition, laboratory experiments demon-

strate the capability for ionic-liquid ion sources to induce surface charging on a metal plate

and artificially create a local surface electric field. Measurements of the resulting electric

force show that the experimental results are in reasonable agreement with the low-fidelity

model that describes the fundamental physics of this concept. The contents of this chapter

have been published in Ref. [128].

4.2 Vehicle Charging

Vehicle charging is caused by a net current flow in or out of the vehicle. For spacecraft,

this net current is often from an imbalance in particle flux between electrons and ions in

the surrounding plasma environment, which will cause the spacecraft to charge negatively,

or from photoelectron emission, which will cause the spacecraft to charge slightly positive.

However, the use of electric propulsion devices introduces a new current in the form of

emitted ions. Most electric propulsion devices eject positive ions at currents much greater
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than that of the particle flux or photoelectron emission, causing the parent spacecraft to

charge negatively. If this negative charging is left unchecked, the spacecraft will charge such

that all of the emitted ions are attracted back to the body of the spacecraft and no thrust

will be produced.

To prevent spacecraft charging, neutralizers such as hollow cathodes [129] are used to

both limit the net current flow out of the spacecraft and to neutralize the thruster plume.

Because ionic-liquid electrospray thrusters can emit both positive and negative ions, they

can act as their own neutralizer. Typical operation involves bipolar operation of pairs of

thrusters where one emits positive ions and the other emits negative ions. Ideally, the two

thrusters would emit equal currents. However, small differences in thruster performance

mean that some level of spacecraft charging is unavoidable. Fortunately, the presence of

low-energy ions in electrospray thruster plumes due to fragmentation processes [130] limits

the subsequent spacecraft charging [131] and allows for operation of electrospray thrusters

in a bipolar configuration without the need for an external neutralizer.

In the concept explored in this work, vehicle charging is intentionally introduced by the

use of a single ionic-liquid ion source emitting either positive or negative ions. As the vehicle

charges, lower-energy ions will begin to return to the vehicle, lowering the overall net current.

However, due to the lack of any neutralization scheme, the vehicle will charge close to the

potential of the ions with the highest energy. Figure 4-2 shows a typical energy distribution

for ions in the emitted ion beam of an ionic-liquid ion source measured with a retarding

potential analyzer. Current, normalized by the total current in the beam, is measured

versus retarding potential, normalized by the applied source potential. As the retarding

potential increases beyond the energy of certain ions in the plume, those ions will no longer

be able to reach the detector, and therefore, the measured current will drop. Distinct steps

can be seen in the plot due to low-energy ions created from fragmentation processes external

to the thruster. However, almost half of the ions in the beam have energy close to the source

potential, meaning that the vehicle will charge close to the source potential in free space.

Additionally, even with the presence of external plasma and photoelectron currents, the

output current of an electrospray thruster is approximately 150 𝜇A [24], which is several

orders of magnitude greater than the predicted ∼100 nA of photoelectron current for a small

vehicle with diameter of 10 cm [132], which in turn is large relative to the predicted plasma

current on a planetary body such as the Moon [133]. As such, equilibrium in the presence
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Figure 4-2: Typical energy distribution of ions in the the emitted ion beam from an ionic-
liquid ion source [130].

of external plasma and photoelectron currents will still require that the vast majority of the

ion beam returns to the vehicle, implying that the vehicle will still charge close to the source

potential.

Assuming that the vehicle charges close to the source potential, then the charge on the

vehicle, 𝑞v, can be calculated from

𝑞v ≈ 𝐶v𝑉sc (4.2)

where 𝐶v is the capacitance of the vehicle relative to infinity and 𝑉sc is the source potential.

The capacitance of a small vehicle with characteristic dimension of 10 cm is on the order of 10

pF. It is assumed here that the vehicle is operating directly on the surface of the planetary

body, and therefore cannot deploy wings to increase its capacitance, as is considered in

Ref. [125]. Typical source potentials of ionic-liquid ion sources are on the order of 1-3 kV;

however, the beam could be further accelerated through the use of additional electrodes in

order to increase this value to the order of 10 kV or more. Therefore, the expected charge of

the vehicle is on the order of 100 nC. Electric levitation can be achieved if the electric force

is equal to the weight of the vehicle

𝑚v𝑔 ≈ 𝑞v𝐸 (4.3)
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Table 4.1: Vehicle and planetary body parameters.

Parameter Value
Vehicle mass 1 kg
Vehicle dimension 10 cm
Thruster potential 10 kV
Surface electric field 10 V/m
Planetary body mass density 3.34 g/cm3

where 𝑚v is the mass of the vehicle, 𝑔 is the local gravitational acceleration, and 𝐸 is the

local electric field. For an assumed vehicle mass of 1 kg and local electric field of 10 V/m,

the local gravitational acceleration needs to be on the oder of 1 𝜇m/s2 or lower for levitation

to be possible.

Such a small gravitational acceleration is restricted to very small planetary bodies. As-

suming a spherical planetary body of radius 𝑅 and uniform mass density 𝜌, the gravitational

acceleration on the surface is given by

𝑔 ≈ 4

3
𝐺𝜋𝜌𝑅 (4.4)

where 𝐺 is the universal gravitational constant. Assuming a mass density of 3.34 g/cm3,

the average mass density of the Moon, the approximate order of magnitude for the largest

planetary body where levitation could be achieved with the natural surface charging on the

sun-facing surface is 1 m. Levitation on larger planetary bodies could be achieved on the

night side or at the terminator due to the greater electric field. However, operation on the

night side would be heavily limited by the ability of the vehicle to generate power, and

operation at the terminator restricts the area of the planetary body the vehicle can explore.

Figure 4-3 shows an estimate of the maximum planetary body radius on which levitation

could be achieved versus source potential for the same vehicle and planetary body parameters

as before, summarized in Table 4.1. A source potential of 1 MV would be required to achieve

levitation on a planetary body with a radius of 120 m. Even for planetary bodies with

significant porosity such that their mass density is closer to 1 g/cm3, such as the asteroid

2011 MD [134], the required source potential for levitation will still be of the same order.

These magnitudes would be very challenging to achieve, especially on a compact vehicle.
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Figure 4-3: Required source potential in order to achieve levitation versus planetary body
radius when leveraging the natural surface charging.

4.3 Surface Charging

In order to enable electric levitation for such a small vehicle without requiring impractically

high thruster potentials, the local surface electric field of the planetary body would need

to be artificially increased. Ionic-liquid ion sources could be used to irradiate the surface

directly below the vehicle with ions to charge it, thereby modifying the magnitude of the

local electric field. Initially, with the vehicle at rest on the surface of the planetary body, ions

can be emitted from the vehicle directly into the surface, thereby charging both the vehicle

and the local surface. As with the vehicle charging analysis, the current of an electrospray

thruster is expected to dominate any external currents. Therefore, plasma and photoelectron

currents are neglected during this analysis.

Because the vehicle starts on the surface of the planetary body, it is assumed that all of

the emitted ions either reach the surface or return to the vehicle. In this case, the charge of

the vehicle will be equal but opposite to the charge on the surface

−𝑞v ≈ 𝑞s ≈ 𝑞 (4.5)

where 𝑞s is the charge on the surface. The surface charge densities on the vehicle and surface
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are therefore

𝜎v ≈ −
𝑞

𝐴v
and 𝜎s ≈

𝑞

𝑎s
(4.6)

where 𝐴v and 𝐴s are the surface are of the vehicle and charged surface respectively. The

surface are of the vehicle will typically be the surface area of the body of the vehicle, while

the surface are of the charged surface will depend on what area is irradiated by the ion beam.

This analysis assumes that the charge is evenly distributed on the body of the vehicle. In

reality, the charge distribution will be uneven and depend on the shape of the vehicle.

Because this effect will be unique to different vehicles, it is neglected here.

Approximating the distance between the vehicle and the surface as small with respect

to the extent of 𝐴v and 𝐴s, and the geometry of the vehicle and surface charge to be that

of a flat plate, then the magnitude of the electric field between the vehicle and the surface

is approximately

𝐸 ≈ 𝑞

2𝜖0𝐴s
+

𝑞

2𝜖0𝐴v
(4.7)

where 𝜖0 is the permittivity of free space. The vehicle and surface will continue to charge

until the potential difference between the vehicle and surface is equal to the source potential

𝐸ℎ ≈ 𝑞ℎ

2𝜖0

(︂
1

𝐴s
+

1

𝐴v

)︂
≈ 𝑉sc (4.8)

where ℎ is the distance between the vehicle and the surface. Once this condition is met, no

ions will be able to reach the surface and will all return back to the vehicle. The resulting

equilibrium charge is

𝑞 ≈ 2𝜖0𝑉sc

ℎ

(︂
𝐴s𝐴v

𝐴s +𝐴v

)︂
(4.9)

which produces a local electric field from the surface of

𝐸 ≈ 𝛿(ℎ)
𝑞

2𝜖0𝐴s
≈ 𝛿(ℎ)

𝑉sc

ℎ

(︂
𝐴v

𝐴s +𝐴v

)︂
(4.10)

where 𝛿(ℎ) ∈ (0, 1] accounts for a reduction in the electric field due to 3-D effects. Approx-

imating the local surface charging as a disk, then the electric field along its center axis is
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Figure 4-4: Artificially-created electric field versus vehicle height for different source poten-
tials. Charging areas are assumed to be circular with radius of 5 cm.

given by

𝐸s(ℎ) ≈ 𝐸s,0

(︃
1− ℎ√︀

ℎ2 + 𝑟2s

)︃
(4.11)

where 𝐸s,0 is the electric field of an infinite flat plate and 𝑟s is the radius of the charged

area. The reduction factor, 𝛿(ℎ), can then be estimated as

𝛿(ℎ) ≈ 1− ℎ√︀
ℎ2 + 𝑟2s

(4.12)

which gives an electric field at the height of the vehicle of

𝐸(ℎ) ≈ 𝛿(ℎ)
𝑉sc

ℎ

(︂
𝐴v

𝐴s +𝐴v

)︂
(4.13)

Figure 4-4 shows the resulting electric field for different source potentials and vehicle

heights. For calculating the charging areas, 𝐴s and 𝐴v, it is assumed that the areas are

circular with radius of 5 cm. Note that in all cases the electric field that is created is far

greater than the natural 10 V/m; for a potential of 10 kV and height of 10 cm the resulting

electric field is approximately 5 kV/m. This increase in the local electric field is what will

enable electric actuation to be a viable option for surface anchoring as well as levitation.
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Figure 4-5: Attractive force versus height for different source potentials. Charging areas are
assumed to be circular with radius of 5 cm.

4.4 Surface Anchoring

When the local electric field is artificially increased by irradiating the surface with ions, an

attractive electric force is created between the vehicle and the surface due to the residual

charge left behind on the vehicle. This attractive force could be used to anchor the vehicle

to the planetary body’s surface. The attractive electric force is given by

𝐹a ≈ 𝑞𝐸s(ℎ) (4.14)

where 𝑞 is determined from Eq. 4.9 and 𝐸s(ℎ) is determined from Eq. 4.13 to give

𝐹a ≈ 𝛿(ℎ)
2𝜖0𝑉

2
sc

ℎ2

(︂
𝐴s𝐴

2
v

(𝐴s +𝐴v)2

)︂
(4.15)

Figure 4-5 shows the resulting attractive force for different source potentials and vehicle

heights. Again, the charging areas are assumed to be circular with radius of 5 cm. Due to

the strong dependence on source potential and vehicle height in Eq. 4.15, a wide range of

attractive forces can be created. As an example case, for a source potential of 10 kV and

a vehicle height of 1 cm, the attractive force is approximately 30 mN. While this may not

seem like a notable amount of force, particularly in the context of terrestrial applications,

30 mN can be a considerably useful force in low-gravity environments such as operating on

the surface of a small asteroid.
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One application could be the use of the attractive force for anchoring to the surface of

a rotating asteroid. Known asteroids in the solar system that have been characterized for

their approximate radius and spin rate can be found in a lightcurve database [135]. Given

a radius and spin rate then the required forced in order to anchor a vehicle to the surface

of the asteroid can be approximated from

𝐹anchor ≈ 𝑚𝑅Ω2 (4.16)

where 𝑚 is the vehicle mass, 𝑅 is the asteroid’s radius, and Ω is the asteroids rotational

frequency. Figure 4-6 shows the approximate anchoring force for a small, 1 kg, vehicle on the

surface of several asteroids in the lightcurve database. Each marker on the plot represents a

known asteroid in the solar system. The lower dashed line labeled as “Gravity” represents an

estimate of the gravitational force on the asteroid’s surface assuming that the mass density

of the asteroid is equal to the mass density of S-type asteroids (2.71 g/cm3 [136]). The mass

density for S-type asteroids is assumed as the vast majority of small asteroids (𝑅 ∼ 10 m)

in the lightcurve database are S-type. The apparent dearth of C-type asteroids, which are

the largest family of asteroids in the solar system, may be due to their low albedo, relative

to S-type asteroids, which when combined with the small size of the asteroids surveyed here

makes them difficult to observe [137].

Notably, asteroids with radius greater than 100 m almost always seem to have sufficient

gravitational force in order to enable anchoring on their surfaces. This observation has

led to the conclusion that these asteroids are likely rubble-pile asteroids held together by

gravitational force alone while smaller asteroids with required anchoring force larger than the

surface gravitational force are likely monolithic [138]. For these small asteroids, anchoring

may be possible through the use of electric actuation. The dashed line labeled “Electric”

in Figure 4-6 represents the 30 mN anchoring force calculated previously. For the vast

majority of asteroids, this 30 mN electric force would be sufficient to anchor the vehicle to

the asteroid’s surface. While some asteroids would require larger anchoring forces, likely due

to anomalously high rotational frequencies, the electric force could be increased by using

larger source potentials or larger charging areas.

As specific example cases, consider the asteroids 2006 RH120 [139], 2011 MD [134], and

three fast-rotating asteroids 1999 TY2, 1999 SF10, and 1998 WB2 [140]. Both 2006 RH120
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Figure 4-6: Estimated force required for anchoring to the surfaces of known asteroids in the
solar system versus asteroid radius.

Table 4.2: Required source potential in order to anchor a small, 1 kg, vehicle to the surfaces
of different asteroids. Charging areas are assumed to be circular with radius of 5 cm.

Asteroid Name Radius Rotational Period Required Potential
2006 RH120 1.5 m 2.7 min 2.8 kV
2011 MD 3.5 m 11.6 min 1.0 kV
1999 TY2 40 m 7.3 min 5.4 kV
1999 SF10 30 m 2.5 min 13.7 kV
1998 WB2 60 m 18.8 min 2.5 kV

and 2011 MD have been identified as easily-retrievable objects [141] which could be brought

to the L1 or L2 Lagrange points in the Sun-Earth system at low-∆𝑣 cost. Such objects are

attractive targets for future asteroid redirection missions as they could easily be redirected

to locations near Earth for further study. Table 4.2 shows the source potential required

to anchor a 1 kg vehicle to the surfaces of these asteroids. As before, charging areas are

assumed to be circular with radius of 5 cm. For an asteroid such as 2011 MD, which is

relatively small and has a relatively low rotational frequency, a source potential of only 1.0

kV is required in order to anchor the vehicle. Asteroids such as 1999 SF10 which are slightly

larger but have relatively high rotational frequency require larger source potentials, but even

in the case of 1999 SF10 the required source potential is only 13.7 kV. Such a source potential

is higher than typically used for ionic-liquid ion sources in propulsive applications, but is

still a feasible source potential.
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4.5 Levitation

In order to achieve levitation, the vehicle needs to be charged to the same polarity as

the surface. This can be achieved in a two-step process. First the surface is charged by

irradiating the surface with ions in order to create an electric field given by Eq. 4.13. Then

ions the vehicle emits ions away from the surface, thereby charging the vehicle but not

affecting the surface charge. The magnitude of the vehicle charge will be given by Eq. 4.2

which results in a repulsive electric force of

𝐹r ≈ 𝛿(ℎ)
𝐶v𝑉

2
sc

ℎ

(︂
𝐴v

𝐴s +𝐴v

)︂
(4.17)

For levitation, the electric force needs to overcome the local gravitational force

𝐹r ≥ 𝑚v𝑔 (4.18)

which can be solved for the required source potential

𝑉sc ≈

√︃
𝑚v𝑔ℎ

𝐶v𝛿(ℎ)

(︂
𝐴s +𝐴v

𝐴v

)︂
(4.19)

Figure 4-7 shows the required source potential in order to achieve levitation versus surface

gravitational acceleration for vehicle and planetary body parameters given by Table 4.1, a

distance between the vehicle and surface of 2 cm, and assuming that the radius of the

surface charging is equal to the radius of the vehicle. The thruster potential is shown

both for the case where the natural surface charging is used and for the case where the

surface charging is artificially increased through ion bombardment. As found previously,

achieving levitation with only the natural surface charging would be infeasible; for an object

such as the Moon the required source potential would be approximately 10 GV. The use

of ion bombardment to artificially increase the surface charging causes the required source

potentials to become feasible. For objects such as Phobos with gravitational accelerations

on the order of 1 mm/s2, source potentials of a few kV are required, a level that has already

been demonstrated with electrospray thrusters in space. Moving to slightly larger objects

such as Psyche with gravitational accelerations on the order of 1 cm/s2, source potentials on

the order of 10s of kV are required which are still feasible with current electrospray thrusters.
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Figure 4-7: Required source potential in order to achieve levitation versus surface grav-
itational acceleration when leveraging the natural surface charging and when artificially
increasing the natural surface charging through ion bombardment.

Finally, even for objects as large as the moon with gravitational accelerations on the order

of 1 m/s2, source potentials on the order of 100s of kV are required. These source potentials

are beyond our current capabilities, but may be possible in the near future.

Once levitation has been achieved, the vehicle can modify its charge in order to control

its altitude. However, it is likely that the vehicle will also have to maintain the local surface

charging in order to counter any slow charge dissipation to the surrounding plasma environ-

ment or into the bulk of the planetary body. As such, the maximum operational levitation

height of the vehicle will be limited. If the vehicle levitates too high, then the potential

difference between the vehicle and the surface will be larger than the source potential and

ions will not be able to reach the surface in order to maintain the surface charge. In addi-

tion, as the vehicle traverses across the surface it will have to charge any new, uncharged,

surface it encounters. Therefore, the translational speed of the vehicle will be limited by the

time-scale at which the local surface can be charged to the required surface charge density

for levitation.

4.5.1 Levitation Height

The local surface electric field which enables vehicle levitation also repels ions used to charge

the surface. For a given maximum ion energy, set by the source potential, if the levitation

height is too large then ions will be unable to reach the surface, preventing the required
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surface charging from being maintained in the presence of plasma currents and photoelectron

emission. While the vehicle is not strictly unable to levitate beyond this height, it could

momentarily increase its own body charge in order to levitate higher, it would lose the ability

to control the local surface charge. As such, it is likely that during operations, the vehicle

will maintain a levitation height such that it can control the local surface charge.

The electric field between the vehicle and the surface is a superposition of the electric

field from the vehicle and the electric field from the surface. The magnitude of the surface

electric field required for levitation is given by

𝐸s ≈
𝑚v𝑔

𝐶v𝑉sc
(4.20)

Approximating the vehicle as a disk with uniform charge distribution on the top and bottom

surfaces, then its surface charge density is given by

𝜎v ≈
𝐶v𝑉sc

2𝜋𝑟2v
(4.21)

where 𝑟v is the radius of the vehicle. This surface charge density produces an electric field

with magnitude of

𝐸v ≈
𝜎v

𝜖0
≈ 𝐶v𝑉sc

2𝜖0𝜋𝑟2v
(4.22)

and will have direction opposite to the surface electric field.

In order for ions to reach the surface, the potential difference between the vehicle and

the surface needs to be less than the highest-energy ions emitted by the source. Ions used to

charge the surface will be repelled by the surface and the vehicle. However, repulsion away

from the vehicle aids in “pushing” the ions towards the surface. Therefore, the height of the

vehicle at which ions, accelerated through a source potential of 𝑉sc, will no longer be able

to reach the surface is given by

ℎ* ≈ 𝑉sc

𝐸s − 𝐸v
(4.23)

For cases in which 𝐸s ≤ 𝐸v there is no limitation on the levitation height. However,

this analysis assumes that the levitation height is small relative to the extent of the local
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surface charging and the characteristic dimension of the vehicle, and will be invalid for large

levitation heights due to three-dimensional effects of the electric fields. Substituting in the

surface and vehicle electric fields gives a maximum levitation height of

ℎ* ≈=
2𝜋𝜖0𝑟

2
v𝐶v𝑉

2
sc

2𝜋𝜖0𝑚v𝑔𝑟2v − 𝐶2
v𝑉

2
sc

(4.24)

Approximating the capacitance of the vehicle as that of a finite disk with uniform charge

distribution [142], then

𝐶v ≈ 2𝜋𝜖0𝑟v (4.25)

which allows the maximum operational levitation height to be reduced to

ℎ* ≈ 2𝜋𝜖0𝑟v𝑉
2
sc

𝑚v𝑔 − 2𝜋𝜖0𝑉 2
sc

(4.26)

and leads to a non-dimensional maximum levitation height

ℎ̄ =
ℎ*

𝑟v
≈ 2𝜋𝜖0𝑉

2
sc

𝑚v𝑔 − 2𝜋𝜖0𝑉 2
sc

(4.27)

normalized by the vehicle characteristic dimension.

Figure 4-8 shows the non-dimensional maximum levitation height versus surface gravita-

tional acceleration for vehicle and planetary body parameters given by Table 4.1 including a

thruster potential of 50 kV. For 10 kV, the normalized levitation height for planetary bodies

with surface gravitational acceleration similar to Psyche is around 0.1, potentially enabling

the vehicle to traverse across the surface. If the thruster potential is increased to 50 kV,

similar levitation heights could be maintained on planetary bodies as large as the Moon.

More detailed analysis of the electric field between the vehicle and the surface is required to

fully capture the three-dimensional effects. However, per this initial analysis, maintaining

electric levitation with ionic-liquid ion source should be achievable with current technology.

Plasma shielding due to the surrounding plasma environment will also limit the levitation

height of the vehicle. However, theoretical predictions of the smallest Debye length, due to

photoemission on the Sun-facing surface of the planetary body, are 50+ cm [111]. Therefore,

for levitation heights of a few tens of centimeters, the vehicle will be operating within a Debye
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Figure 4-8: Maximum levitation height normalized by the vehicle’s characteristic dimension
at which the local surface charge can be controlled versus surface gravitational acceleration
for source potentials of 10 kV and 50 kV and assumed vehicle mass of 1 kg.

length of the surface and the surface electric field should not be significantly attenuated. In

addition, the strong surface charging created by ion bombardment should serve to extend

the plasma sheath and further mitigate the effects of plasma shielding.

4.5.2 Translational Speed

As the vehicle traverses across the planetary body surface, any new, uncharged surface it

encounters needs to be charged to the required surface charge density for levitation. If

the required surface charge density is too high, then the vehicle’s translational speed will

be limited in order to ensure proper surface charging is achieved. Assuming that all the

current, 𝐼sc, emitted by the ion source goes into charging the surface below the vehicle, then

the time required to achieve a local charge density is given by

𝑡c ≈
𝜋𝑟2s𝜎s

𝐼sc
≈ 2𝜋𝜖0𝑟

2
s𝐸s

𝐼sc
(4.28)

Typical currents for ionic-liquid electrospray thrusters are 100-200 𝜇A [24]. Figure 4-9

shows the surface charging time if the ion source used to charge the surface is operated at

100 𝜇A versus surface gravitational acceleration for vehicle and planetary body parameters

given by Table 4.1. Even for planetary bodies as large as the Moon, the required surface

charging time is less than 100 ms. This means that the vehicle will not be significantly
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Figure 4-9: Required charging time for vehicle levitation versus surface gravitational accel-
eration. A charging current of 100 𝜇A is assumed for a 1 kg, 10 cm vehicle with capacitance
equal to that of a finite disk with uniform charge distribution.

limited in its ability to traverse across the surface.

The characteristic speed that the vehicle will be able to traverse across the surface while

maintaining the required surface charge density for levitation will scale with

𝑢 =
𝑟s
𝑡c

(4.29)

For the Moon, the characteristic speed is approximately 1.2 m/s, which is comparable to that

of the crewed Lunar Roving Vehicle [143] and two orders of magnitude greater than that of

the Lunokhood rovers [144]. For smaller planetary bodies such as Psyche, the characteristic

speed increases to approximately 33 m/s. While the vehicle would not be operated at such

speeds due to other limitations, such as the navigation system or for collision avoidance, the

magnitude of the characteristic speed demonstrates that the surface charging would not be

the limiting factor for the actual operational speed of the vehicle.

The assumption that all of the emitted current will go into charging the planetary body’s

surface is the main unknown for such a concept. The surface charging will depend not only

on the ion flux from the ion source, but also on the properties of the surface materials,

which can vary between planetary bodies and control secondary charge emission and charge

dissipation. Nevertheless, even if only 10% of the emitted current goes into charging the

surface, the characteristic speed of the vehicle on the Moon would be 0.12 m/s and still
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Table 4.3: Summary of derived parameters for a 1 kg, 10 cm vehicle with capacitance equal
to that of a finite disk with uniform charge distribution. It is assumed that a source current
of 100 𝜇A is used to charge the planetary body surface.

Parameter Psyche (0.06 m/s2) Moon (1.62 m/s2)
Required source potential 10 kV 50 kV
Maximum levitation height 1 cm 1 cm
Surface charging time 3 ms 81 ms
Characteristic vehicle speed 33 m/s 1.2 m/s

allow for efficient surface exploration comparable to that of wheeled rovers.

Also of importance is the time required to charge the vehicle body. Assuming that 200 𝜇A

of current is emitted away from the planetary surface, so as to charge the vehicle but not the

surface, then the new current leaving the vehicle, taking into account the 100 𝜇A of current

used to charge the surface, is 100 𝜇A. The self-capacitance of the vehicle is approximately

10 pF giving a theoretical charging rate of 10 MV/s. Therefore, the vehicle body can be

charged to the required 10 kV potential in ∼50 𝜇s, faster than the time required to charge

the surface until objects smaller than Phobos (𝑔 ≤ 6 mm/s2) are considered. However,

unlike surface charging, charging of the vehicle body only needs to be done once, assuming

minimal charge loss, as the vehicle traverses across the surface.

Table 4.3 summarizes the vehicle characteristic speed as well as previously derived pa-

rameters for a 1 kg, 10 cm vehicle operating on planetary bodies similar to Psyche and the

Moon, with surface gravitational accelerations of 0.06 m/s2 and 1.62 m/s2 respectively. The

required source potential is taken to be the minimum source potential at which the rover

would be able to levitate to 0.1 its characteristic dimension, 1 cm in this case, under the

assumption that the charge distribution on the vehicle can be approximated as that of a

uniformly charged flat disk and that the extent of the surface charging is larger than the

characteristic dimension of the vehicle. The vehicle could levitate to greater heights with

larger source potentials, but more detailed analysis of the charge distribution and three-

dimensional effects are required. Surface charging times and characteristic vehicle speeds

were calculated under the assumption of a source current of 100 𝜇A, representative of current

electrospray thruster capabilities.
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Figure 4-10: Notional diagram of the experimental setup.

Table 4.4: Experimental setup parameters.

Parameter Value
Test vehicle mass 60 g
Test vehicle radius 75 mm
Test vehicle thickness 30 mm
Source potential 1.9-2.4 kV
Source current 100-300 nA
Hovering height 10-15 mm
Equivalent spring constant 10 N/m
Deflection under gravitational load 59 mm

4.6 Experimental Setup

The goal of the experiment was to demonstrate the feasibility of using ionic-liquid ion sources

for combined vehicle and surface charging, and to validate the analytical model. Figure 4-10

shows a diagram of the test setup used in a vacuum chamber operated at pressures of around

10 𝜇Torr and at room temperature. A test vehicle, wrapped in aluminum foil to distribute

charge over the surface and ensure constant potential, is suspended by two springs over an

aluminum base plate. The setup is electrically isolated from the vacuum chamber walls by

a teflon sheet. A tungsten rod is attached at the ends of the springs such that any vertical

movement of the test vehicle due to external forces can be measured as a displacement of

the tungsten rod relative to a marker. Relevant parameters from the experimental setup are

summarized in Table 4.4.
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The test vehicle is a hexagon of mass 60 g, average radius 7.5 cm, and thickness 3 cm and

has five tungsten single-tip ionic liquid ion sources. Four of the sources point downwards

towards the aluminum base plate and can emit positive ions while the last source points

upwards away from the base plate and can emit negative ions. For testing, single-tip source

were used as opposed to fully microfabricated electrospray thrusters in order to simplify the

test setup. Single-tip sources have similar potential characteristics to electrospray thrusters

so experimental results will be indicative of expected performance with full thrusters. For

theoretical analysis, the shape of the test vehicle is approximated as a hollow disk with

radius 7.5 cm and thickness 3 cm.

The ion sources were fabricated from tungsten wire according to Ref. [21] and used

1-Ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) as the ionic liquid. The source

potential was provided by two PICO Electronics 5AV1500 high-voltage DC-DC converters

operated in series to allow source potentials from 0-3 kV and the current was measured

through a 1±0.1 MΩ shunt resistor. As the actual source potential could not be measured

during the experiment, the output of the converters at different input potentials was cali-

brated to within ±10 V prior to the experiment. The source potential could then be inferred

based on the input potential to the high-voltage converter. The input potential to the high-

voltage converter was controlled with an LM317 voltage regulator to attenuate any noise

and allow gradual application of the potential in order to avoid any droplet emission during

the emission startup transient. Both the test vehicle and base plate are electrically isolated

in order to allow their respective potentials to float in response to emitted current from the

ion sources.

During experiments, the sources allows for a limited range of potentials to be tested.

The lower limit of this range is given by the starting potential, which is approximated by

𝑉start ≈
√︂
𝛾𝑅c

𝜖0

(︂
4𝑙

𝑅c

)︂
(4.30)

where 𝛾 is the surface tension of the ionic liquid, 𝑅c is the radius of curvature of the tungsten

emitter tip, and 𝑙 is the distance from the tip to the extractor grid [145]. For the ionic-liquid

ion sources used in this work, the starting potential is approximately 1.9 kV. The upper

limit of the thruster potential range occurs at approximately 2.4 kV, where electrical shorts

between the emitter tip and extractor start to be observed.
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Given a test vehicle mass of 60 g and a thruster potential of 2 kV, Eq. 4.27 gives an

expected levitation height of around 7×10−4 times the characteristic dimension of the test

vehicle which corresponds to levitation heights on the order of 5 𝜇m. This requires that the

base of the test vehicle be suspended 5 𝜇m above the base plate, severely constraining the

test and measurement systems. Therefore, the use of springs to offload the gravitational

force is necessary to get clear measurements of the electrostatic force. Two springs, with

spring constants of 5 N/m and each carrying half of the test vehicle’s weight, are used to

balance the test vehicle’s rotation and suspend it parallel to the base plate. The weight of

the test vehicle and expected electric force are within the limits of the linear regime for the

springs used during experiment.

The displacement of the tungsten rod was measured with a Dino-Lite 720p digital micro-

scope with resolution and magnification such that each pixel corresponded to less than 1 𝜇m

of displacement. At this resolution, errors in determining the displacement of the tungsten

rod due to pixel error will be two orders of magnitude lower than the expected displacement

due to the electric force (of order 100 𝜇m) and correspond to errors in the measured electric

force of 10 𝜇N. Figure 4-11 shows a diagram of the measurement process. With the thrusters

off, the tungsten rod rests at an equilibrium displacement from the marker. When the ion

sources facing the base plate are fired, the test vehicle and base plate charge to opposite

polarities resulting in the test vehicle being attracted towards the base plate. The emitter

firing away from the base plate can also be fired in order to charge the test vehicle and base

plate to the same polarity, resulting in the test vehicle being repelled from the base plate.

The displacement of the tungsten rod, 𝑑, is measured and related to the electric force, 𝐹e,

through the spring constant, 𝑘, as

‖𝐹e‖ = 𝑘𝑑 (4.31)

4.7 Experimental Results

Figure 4-12 shows an example of the measured attractive electric force over time when the

ion sources facing the base plate are fired. In this particular example, a positive potential

of 2.07 kV is applied to the emitters facing the base plate. The resulting current charges

the test vehicle negatively and the base plate positively resulting in the test vehicle being
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Figure 4-11: Diagram of the measurement principle for estimating electric force through
deflection of the tungsten rod.

attracted to the base plate. The measured electric force, represented by the solid line, is

approximately 0.96 mN. The filled region corresponds to the expected attractive force based

on Eq. 4.15 and the parameters of the test setup. Due to the geometry of the test vehicle,

the initial distance between the test vehicle and the base plate is estimated to be 14-15 mm

and causes uncertainty in the estimated force. Therefore, the expected force is shown as a

fill region rather than a single line. Taking the value of the expected force closest to the

measured force gives an expected attractive force of 1.13 mN. Therefore, Eq. 4.15 slightly

over-predicts the attractive force by 0.17 mN (18%). Given the simplicity of the model

used to develop Eq. 4.15, this is quite a remarkable result; the model is fully analytical

and neglects many effects such as the actual distribution of charge on the test vehicle and

surface as well as the possibility for secondary electron emission and other effects.

Figure 4-13 shows an example of the measured repulsive electric force over time when

the ion source facing away from the base plate is fired. The accumulated charge on the base

plate from the attractive force case in Figure 4-12 is left alone and only the test vehicle’s

charge is modified. In this particular example, a negative potential of magnitude 1.8 kV
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Figure 4-12: Comparison of theoretical prediction and experimental measurement for the
attractive force.

is applied to the emitter facing away from the base plate, charging the vehicle positively.

Since the base plate retains its positive charge, this results in the test vehicle being repelled

away from the base plate with an observed repulsive force of approximately 0.29 mN. The

expected force from Eq. 4.17 is again shown as a fill region due to uncertainty in the initial

test vehicle height. The capacitance of the test vehicle is estimated to be that of a finite

disk with uniform charge distribution

𝐶v ≈ 2𝜋𝜖0𝑟v (4.32)

Taking the expected force closest to the measured force gives an expected repulsive force of

0.31 mN. As in the attractive force case, Eq. 4.17 slightly over-predicts the resulting force

magnitude, this time with an error of 0.018 mN (6%). However, the model well predicts

the approximate magnitude of the repulsive force and is also able to capture the expected

asymmetry between the attractive and repulsive forces.

Figure 4-14 shows the measured attractive force as the source potential is varied along

with the expected relationship from Eq. 4.15. For these experiments, the initial distance

between the test vehicle and base plate is estimated to be 11-12 mm. Again the model over-

predicts the attractive force relative to the experimental data. This discrepancy could be due

to further three-dimensional effects from the charge on the test vehicle being spread out over

the vehicle’s surface or the effect of secondary electrons. As ions return to the test vehicle,
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Figure 4-13: Comparison of theoretical prediction and experimental measurement for the
repulsive force.

they can emit secondary electrons. If the test vehicle is charged negatively, as it is during the

attractive force experiments, the secondary electrons can escape the vehicle and be attracted

to the base plate, reducing the overall charge level of both the test vehicle and base plate

and resulting in a corresponding decrease in the electrostatic force. Detailed analysis of

the effects of secondary electron emission requires knowledge of the energy distribution of

the emitted ions, which can vary significantly between different sources and propellants.

However, the low-fidelity model still captures the approximate magnitude of the expected

force and provides insight into the expected trends in the force with parameters such as the

source potential. Such insight would be difficult to obtain with purely numerical models.

Another potential source of error in the test setup is charge leakage to the environment,

either internal to the vacuum chamber or externally along the electronics connections. How-

ever, it is believed that this effect in negligible. Figure 4-15 shows the average measured

electric force over time after the ion sources have been turned off for three different test

runs. Error bars correspond to one standard deviation. The electric force clearly drops over

time which is indicative of charge, either on the test vehicle or base plate, leaking to the

environment. Based on Figure 4-14, the reduction in electric force over 60 s corresponds to a

potential drop on the test vehicle of approximately 400 V. Given the estimated capacitance

of the test vehicle, 4.2 pF, this corresponds to an average leakage current of 28 pA, well

bellow the 100-300 nA of current provided by the ion sources. Coincidentally, the ratio of

source current to leakage current (100 nA/28 pA = 3571) is of the same order of magnitude
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Figure 4-14: Attractive electric force versus source potential along with the expected rela-
tionship based on the low-fidelity model.

as the expected ratio of a full electrospray thruster current to plasma and photoelectron

currents (100 𝜇A/100 nA = 1500) allowing the leakage current observed during experiment

to simulate the effects of plasma and photoelectron currents.

Finally, it is worth comparing the electric force observed during this experiment to the

use of propulsion systems in a traditional manner where reactive forces are generated through

mass ejection in order to demonstrate the efficiency of the electric actuation concept. The

electric force in Figure 4-14 is approximately 1.25 mN for a source potential of 2 kV and

is generated through only around 100 nA of current. The mass of the cation of the ionic

liquid 1-Ethyl-3-methylimidazolium tetrafluoroborate is 111.2 Da which gives a total mass

flow during the experiments of approximately 1.2×10−10 g/s. Therefore, in order to produce

a force of 1.25 mN with the exact same mass flow, a traditional propulsion system would

need a specific impulse on the order of 109 s. Such a specific impulse would be infeasible

for a couple of reasons. First, the exhaust velocity of the emitted ions would have to be 33

times the speed of light. Second, even if you could miraculously emit ions at such a speed,

the power it would take to operate such a system would be approximately 6 MW which is

far beyond the capabilities of small space vehicles. However, when using electric actuation,

the 1.25 mN force is created with only 0.2 mW of power.
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Figure 4-15: Average measured electric force over time after ion sources have been turned
off demonstrating slow charge leakage. Error bars correspond to one standard deviation.

4.8 Conclusion

The use of ionic-liquid ion sources for electric levitation on atmosphere-less planetary bodies

is analyzed and theoretical predictions on the relationship between electrostatic force and

source potential are experimentally verified. A low-fidelity model predicts that levitation

heights of approximately 0.1 the characteristic dimension of a 1 kg vehicle would be possi-

ble with a 10 kV ion source on a planetary body the size of Psyche and with a 50 kV ion

source on a planetary body the size of the Moon, potentially enabling surface maneuver-

ability. Experimental results confirm the qualitative predictions of the low-fidelity model

and demonstrate that a 1.25 mN electrostatic force can be created through charge transport

while only using 0.2 mW of input power.

A metallic base plate is used during experiments in order to allow the angular distribution

of the ionic-liquid ion source plume to be ignored. The surfaces of many planetary bodies

will be highly resistive and further experiments will be required to demonstrate similar

performance with insulating base plates. However, it is expected that performance should

not differ significantly as the insulating surface will allow charge to more easily accumulate

and the angular distribution of the source plume can be tuned in order to achieve a desired

surface charge distribution. In addition, as the surface directly below the ion sources charges,

it will cause the plume to spread and charge much of the surface below the vehicle.

The analytical model developed in this work is low fidelity and ignores effects such as
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the charge distribution of the vehicle and the surface, photoelectron and plasma current,

and secondary electron emission. Of these effects, the distribution of charge is expected

to be dominant. Both the photoelectron and plasma currents will be several orders of

magnitude lower than the current produced by an ionic liquid ion source for a vehicle of the

size considered here (∼10 cm). The effects of secondary electron emission are also expected

to be small as the positively charged surface will prevent them from escaping. Since the

distribution of charge is unique to the vehicle, it cannot be considered here analytically but

will be considered in future work.

Future work will also analyze the interaction of the ion beam with the surface of the

planetary body. While the transfer of charge from the ion beam to the surface has been

demonstrated here, it is unknown what other interactions there may be. It is possible that

mass may be deposited on the surface, or that the ion beam will etch the top layer of the

surface and have a cleaning effect. These effects are worth studying in order to ensure that

there is not any potential contamination of the planetary body’s surface due to irradiation

with the ion beam.

Despite the low fidelity of the model, its close prediction (under 20% error) of the exper-

imental results provides confidence that electrostatic levitation with ionic liquid ion sources

is a feasible concept. Electrostatic levitation aided by ion sources could be used to provide

maneuverability for a spacecraft during proximity operations around a small asteroid as in

Ref. [125] or to develop solid-state surface rovers that can traverse across a planetary body’s

surface with no moving parts. The prospect of a rover that can maneuver across a surface

without any physical contact could allow for easier exploration of uneven surfaces relative

to traditional wheeled and hopper robots. Wheeled mechanisms struggle with overly rough

terrain which is abundant on planetary bodies in the form of rocks, craters, subterranean

tunnels, and other steep terrain. These regions of rough terrain are often also regions of

scientific interest and the ability to access these areas could greatly increase the science

return of future missions.

This work demonstrates, from an actuation standpoint, that such a rover could be pos-

sible with current technology. For planetary bodies with surface gravitation acceleration

of 0.06 m/s2 (representative of a planetary body the size of the asteroid Psyche), a 1 kg

rover could levitate to heights several times its characteristic dimension with ion source po-

tentials on the order of 25 kV. More detailed analysis of the limits on levitation height are
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required for cases where the flat-plate assumption for the local electric field breaks down

or when plasma shielding becomes significant. In addition, design of both the altitude and

attitude controllers for such a rover is required, particularly for cases where the terrain is

not perpendicular to the local gravitational field.

In the case of spacecraft, particularly landers, the use of electric levitation could be

used to re-position the spacecraft after landing, broadening the potential area of the surface

that the lander could analyze. In addition, the electric force could serve to anchor the

spacecraft to the surface of the planetary body. Current methods, such as the harpoon used

in the Philae lander [146], require intricate mechanisms whose performance can depend on

the material composition of the planetary body. The use of ionic-liquid ion sources, such

as electrospray thrusters, could allow for a mechanically-simple anchoring system whose

performance does not vary significantly with surface composition.
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Chapter 5

Conclusion

This thesis addresses three technical challenges associated with the exploration of planetary

bodies with electrospray thrusters: inference of the propulsion system thrust output, guid-

ance and control of an underactuated spacecraft in proximity operations, and the use of

electric charging for actuation on the surface of an atmosphere-less planetary body. While

these challenges were addressed within the context of using electrospray thrusters for as-

teroid missions, the solutions do have broader applications. The developed methodologies

for thrust inference will be applicable to any propulsion system operated in orbit around

any planetary body. The guidance and control methods for operating in proximity to a

small asteroid can also be used for operation in proximity to another spacecraft. Finally,

the charged-particle sources used for charge transfer on the surfaces of atmosphere-less plan-

etary bodies do not need to be ionic-liquid ion sources; other sources of charged particles

such as liquid-metal ion sources and even electron sources can be applied.

The use of the ensemble Kalman update for thrust inference in low-Earth orbit is able

to reduce the posterior uncertainty in the thrust output by multiple orders of magnitude

relative to a commonly-used analytical approach, as demonstrated in Section 2.7.1. Relative

to other numerical approaches based on linear filtering, the methodology developed here is

able to account for potential modeling error and properly quantify the resulting posterior

uncertainty in the thrust output. Many prior approaches neglect to account for the potential

of modeling error and as a result will likely report overly-confident uncertainty bounds for

the thrust estimate. Representing the modeling error is critical for properly determining

the uncertainty, and the ensemble Kalman update allows for simple incorporation of the
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modeling error through representation as process noise.

In addition to the ensemble Kalman update, a linear measurement model for thrust

inference in low-Earth orbit was derived. The core contribution was the extension of linear

orbit theory through the derivation of approximate sensitivities of the spacecraft’s radial and

along-track position with respective to propulsive and atmospheric drag accelerations. The

derivation of the linear measurement model allows for computationally-simple predictions of

the posterior uncertainty in the propulsive acceleration relative to running the full ensemble

Kalman update. In order to account for the modeling error in the linear measurement

model, a polynomial chaos expansion of the measurement noise caused by modeling error

was developed in order to allow for approximation of the observation covariance. Predictions

of the posterior uncertainty with the linear measurement model are approximate, and best

serve as a method of surveying a wide range of maneuver parameters prior to running the

ensemble Kalman update on a limited set of possible maneuvers.

For proximity operations, the work of this thesis resolves two issues. First, it resolves the

issue of controllability for underactuated spacecraft during proximity operations by leverag-

ing a baseline circular orbit; in a frame that rotates with the spacecraft while it is performing

the circular motion, the spacecraft can be controlled through linear control approaches. In

addition, the circular motion aids in mitigating the possibility of plume impingement from

the propulsion system on the central target. Second, an analytical maneuver library was de-

rived in order to leverage the circular motion and guide an underactuated spacecraft during

basic proximity maneuvering such as point-to-point maneuvering and landing on or docking

to a rotating target. The analytical maneuver library helps to resolve some of the issues with

the limited computational capability onboard small spacecraft. Prior approaches typically

rely on some form of nonlinear optimization which may be beyond the capabilities of small

spacecraft computers whereas the analytical trajectories from the maneuver library can be

computed at minimal computational cost.

Finally, opportunities for using ionic-liquid ion sources for novel forms of surface ac-

tuation were investigated. Based on the observation of natural surface charging, which is

hypothesized to cause the transport of dust particles across the surfaces of atmosphere-less

planetary bodies, the use of electric forces was considered in order to anchor a small vehicle

to the surface of an atmosphere-less planetary body or even potentially achieve levitation.

Preliminary analyses show the possibility of anchoring a small, 1 kg, vehicle to the surface
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of known asteroids in the solar system such as 2006 RH120 and 2011 MD which have both

been identified as easily-retrievable objects and may be future targets for asteroid-redirection

missions. Levitation on small planetary bodies such as Phobos and Psyche may also be pos-

sible with current technology, while levitation on larger planetary bodies such as the Moon

may be possible in the future. Basic experiments conducted in a laboratory environment

provide confidence in the simple analytical models developed here, and provide the basis for

continued research on this concept.
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