
More Than Skin Deep: Physical Modeling of Facial Tissue

by

Steven Donald Pieper

B.A., University of California at Berkeley (1984)

Submitted to the Media Arts and Sciences Section
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1989

© Massachusetts Institute of Technology 1989, All Rights Reserved

Signature of Author ...

Certified by

Accepted by

........... -- - -.. -.-.--.-.-

Steven Donald Pieper
edia Arts Sciences Section

anuary 13, 1989

... -.-------------
avid L. Zeltzer

Associate Professor of omputer Graphics
Thesis Supervisor

"V 'Stephen A. Benton
Chairman, Departmental Committee on Graduate Students

FEB 2 4 1989

Rotch

MITL'ibmr-es
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http:/ilibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

More Than Skin Deep: Physical Modeling of Facial Tissue

by

Steven Donald Pieper

Submitted to the Media Arts and Sciences Section
on January 13, 1989, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis describes a computer system for animating human facial tissue using a mathe-
matical model of the stresses and strains caused by deformation of the tissue. The model is
based on networks, the nodes of which represent reference points within the tissue, and the
arcs of which are spring-like constraints which model the mechanical behavior of the tissue
between the reference points. The networks can be assembled to approximate the anatomy
of facial tissue. The system simulates the action of layers of soft tissue as they interact
with underlying hard tissue, internal muscle forces, and external forces such as gravity. The
ability to combine the effect of these forces has been missing in previous animation models
of facial tissue. The system is part of a project to develop real-time animation systems in
which the simulated objects respond as if they were real objects. An application of the
physical model of facial tissue and real-time manipulation of simulated objects includes a
simulator for planning surgery and training plastic surgeons. The techniques described here
can also be used to simulate facial tissue for computer animated human figures and create
more realistic facial expressions than available in previous animation models. The facial tis-
sue simulation system comprises several modules of an interactive simulation environment,
called bolio, which is also briefly described here.

Thesis Supervisor: David L. Zeltzer
Title: Associate Professor of Computer Graphics

2

Contents

1 Introduction 6

2 Background 9
2.1 The Processes to be Modeled 9

2.1.1 Anatomy and Function of Soft Tissue Layers 9
2.1.2 Tissue Mechanics . 11
2.1.3 Plastic Surgery Techniques . 17
2.1.4 Summary of Processes to be Modeled 23

2.2 The Techniques Available for Modeling . 23
2.2.1 Past Computer Animation Facial Models 23
2.2.2 Predictive Models of Deformable Materials 26
2.2.3 Interactive Simulation Systems . 30

2.3 Medical Applications of Computers . 32
2.3.1 Scanning and Reconstruction . 33
2.3.2 A Hand Biomechanics Workstation 33
2.3.3 Physical Simulations of Soft Tissue 35

3 Functionality of an Interactive Tissue Simulator 37
3.1 Ideal Properties of a Simulator . 37

3.1.1 Deformability . 38
3.1.2 Formability . 38
3.1.3 Reformability . 39
3.1.4 Controllability . 39
3.1.5 Interactivity . 40

3.2 The Current Prototype . 42

3.2.1 Deformability . 42
3.2.2 Formability . 48

3.2.3 Reformability . 49

3.2.4 Controllability . 49

3.2.5 Interactivity . 50

4 Implementation of an Interactive Simulation System 51

4.1 What bolio Is 52

4.2 Objects and Viewports . 52

4.3 User Interface: Commands and Scripts . 54

3

4.4 The Manus Constraint System
4.5 Bolio Tools

4.5.1 Core Tools
4.5.2 Glove
4.5.3 Roach
4.5.4 Sa
4.5.5 Pathplan.
4.5.6 Face .
4.5.7 Cam..moves and Moves
4.5.8 Robot

4.6 The Roach 'n' Glove Microworld Demo

5 Implementatio
5.1 Overview
5.2 Force Cons

5.2.1 Sho
5.2.2 Gra
5.2.3 Dra'
5.2.4 Clin

5.3 Elasticity F
5.4 Muscle Con

5.4.1 twi
5.4.2 mus

5.5 Drawing an
5.5.1 bob
5.5.2 upd

5.6 Building FA
5.7 Numerical

n of Dynamic Tissue Simulation 67
. 67
traints . 68
ck . 71
vity . 71
pe . 72
g . 72
'unctions . 73
trol . 73
tch . 73
cle..set . 74
d Interaction Constraints . 74
blot and blotbob . 75
ate-all-face-objects . 75
CE Structures . 76
Integration . 77

6 Results
6.1 Experimental Results. .

6.1.1 Wound Closure .
6.1.2 Draping Over Hard Tissue
6.1.3 Muscles Acting Within Tissue

6.2 Limitations of the Current Model and Directions for Improvement

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Deformability

Formability..
Reformability

Controllability
Interactivity.

7 Conclusion

4

55
58
58
59
60
62
63
64
64
64
65

78
78
78

80
83
98
98

105
105
105
106

108

.

.

.
.
.

A Roach 'n' Glove Microworld Commands 116
A.1 Physical Simulation Commands 116
A.2 Roach Commands 117
A.3 Glove Commands 118
A.4 View Commands 119
A.5 Robot Arm Commands 119
A.6 Pathplanning Commands 120

5

Chapter 1

Introduction

Physical simulations based on mathematical models have become an increasingly important

application of computer technology in fields such as architectural and mechanical design

where the reaction of a given structure to real-world forces is a critical design consideration.

A goal of the research described here is to extend existing physical simulation techniques to

the realm of biological tissue and explore the possibilities of physically-based simulation of

human tissue, particularly the soft tissue of the face, for application in the fields of plastic

surgery and computer animation, which would benefit from a predictive model of tissue

behavior. Biological tissue presents perhaps the ultimate challenge of physical modeling,

since it is at once a complex load-transferring structure and a living system. Living tissue is

highly non-uniform in composition, and its response to forces is influenced by the age and

health of the skin as well as its short- and long-term history of deformation. Conventional

physically-based simulation techniques which were developed to predict the behavior of

construction and manufacturing materials must be extended to model this behavior.

In this thesis, I describe a prototype system for modeling soft tissue (e.g., skin, fat,

muscles, and tendons). The system models the interaction of multiple layers of tissue, the

forces introduced by muscle contraction within layers of tissue, the motion of soft tissue

as it travels over hard tissue (bone), and the effect of external forces such as gravity. The

system uses a model based on networks of interacting force constraints acting on point

masses. The network is arranged in a three layer lattice structure to model the skin surface

and two layers of underlying fascia. Force constraints between the layers model the action

6

of connective tissue and the volumetric effects of fatty tissue.

In addition to the investigation of the mathematical and other representational issues, a

goal of this research has been to explore the implementation of real-time interactive physical

simulation of biological tissues. Real time "human-in-the-loop" computer simulation has

been applied successfully to operator training for land, sea, air, and space craft. In these

systems, the evolving state of the simulation is presented to the user, usually through

computer graphics. The user interacts with the simulation as if it were the real situation,

and the simulator responds with the results of those actions. This thesis describes a real-

time dynamic simulation system which allows a user wearing a DataGlovel to interact with

the mass and spring elements which form the basis of the tissue simulation system. A user

is able to "reach" into the simulated world and "grab" objects; if the grabbed object is

connected to other objects via springs, then the movement is transferred along the springs

to the other objects. The real-time spring example is built using the primitive components

developed for the tissue model. Faster graphics and simulation hardware will extend the

possibilities of real-time interaction to include more complex tissue models.

A future application of real-time interaction with complex biological models will be

a surgical simulator. Such a simulator will allow a surgeon to explore various surgical

techniques and observe the response of the patient's soft tissue. This would be of importance

for plastic and reconstructive surgery, particularly surgery on the face, where the patient's

appearance after surgery is an important measure of success. Since correct functioning

of the face is defined in terms of its deformation under the applied forces of the facial

muscles, gravity, etc., a simulator which models the dynamic behavior of the tissues would

be a valuable tool. An important test of a physical model will be its ability to generate

realistic images of the patient's face in various expressions. If a model of the patient's face

built from scanned data (MIRI, CT, or ultrasound) can be made to mimic the patient's

expressions purely through the action of simulated facial muscles, then the model should be

able to predict the way the same muscle actions will form expressions on the post-operative

'The DataGlove is an instrumented glove made by VPL Research, Inc., which digitizes the wearer's hand

position and orientation as well as the flex angles of the wearer's fingers. Further description of the glove is

given in section 4.5.2.

7

face. Accurate tissue simulation would provide a means of designing an operation for the

maximum benefit of the patient. Since the predicted appearance of the patient would exist

on a computer screen rather than merely in the surgeon's imagination, the patient would

have both an opportunity to choose among possible surgical procedures and have a realistic

idea of the expected results.

This thesis explores the fundamental requirements of a system to satisfy the long-term

goal of developing such a surgical simulator. The remainder of this thesis is organized as

follows:

* Chapter 2 reviews the medical, mathematical, and computational literature in order

to describe the problem of predicting the behavior of soft tissue and the technologies

available to address it;

" Chapter 3 outlines the desirable properties of a simulator, describes a mathemati-

cal model for simulating the behavior of soft tissue, and discusses how the current

prototype addresses the ideal goals;

" Chapter 4 describes bolio, an interactive simulation system which uses a gesture-based

user interface to control real-time simulations. Bolio serves as a testbed for the tissue

simulation system;

* Chapter 5 presents a description of the soft tissue simulation module, how it approx-

imates the action of biological materials, and how it has been added to bolio;

* Chapter 6 contains examples of simulations performed on the system and a comparison

of the results with studies of the behavior of real tissue; and

* Chapter 7 proposes extensions to the model which will lead in the direction of practical

application of this research.

8

Chapter 2

Background

To formulate an engineering solution to a problem, it is necessary to define the requirements

of the problem and the techniques available to address the problem. Predicting the results

of surgery on soft tissue requires an understanding of the properties of the tissue itself, and

of the surgical techniques applied to it. The techniques available to address the problem

include mathematical formulations which model the physical behavior of materials, com-

putational implementations of those models, and interactive computer systems which allow

experimentation with the parameters of the model and display of the results. The literature

relevant to both the problem and the solution techniques is reviewed in this chapter.

2.1 The Processes to be Modeled

This section looks at the physical processes which are to be modeled in a surgical simulator.

The subject matter is broken into three sections: the anatomical structure of soft tissue,

the mechanical response of this tissue to applied loads and deformation, and the types of

surgery which might be simulated.

2.1.1 Anatomy and Function of Soft Tissue Layers

The soft tissue of the body has a complex microstructure of cell types and interacting

networks which form layers over the underlying skeleton and internal organs.1 The relative

'Material in this section is drawn primarily from Gray's Anatomy[23].

9

density of cell types and the thickness of the layers varies considerably over the surface of

the body according to the functional requirements of the tissue in the region, as well as

the age and health of the individual. Aspects of this microstructure and its functions are

reviewed here; chapter 3 describes how much of this detail has been incorporated in the

currently implemented system.

The outer layer of soft tissue on the body is the skin. The skin is divided into the

epidermis or cuticle layer, the dermis or cutis layer, and the subcutaneous cellular tissue. The

skin is a defensive covering which insulates the body from the environment in many ways.

Its functional interactions include limiting evaporation, providing frictional and gripping

properties, providing thermal insulation, and limiting damage from mechanical interaction

with the physical environment, parasites, and predators.

The epidermis is made mainly of keratin, generally in the form of dead cells flattened in

the plane of the surface[21]. In most parts of the body, the epidermis is thin and its cells are

easily separated. On the palms and the soles of the feet, the epidermis is much thicker and

stronger. The epidermis has nerve fibrils in its lower levels in a density depending on the

sensitivity of the region, but is non-vascular (has no internal fluid transport mechanisms).

The dermis is made mostly of bundles of collagen fibers (70-80% of dry weight and up to

30% of wet weight[21]), much like the fibers in tendons, only arranged in a three dimensional

weave. The rest of the dermis includes elastin fibers, numerous blood vessels, lymphatics

(a fluid uptake system), and nerves. Like the epidermis, the thickness of the dermis varies

over the body.

Underneath the dermis lies the superficial fascia (also called the hypodermal layer),

which consists of adipose tissue (fat cells) distributed in a network of connective fibers,

as well as the networks of vessels and nerves traveling near the surface of the body. The

connective tissue is mostly 'collagen arranged in a lattice with fat cells distributed in the

spaces; this structure expands to accommodate growth during fat deposition while retaining

its shape and mechanical properties[13]. The fat in the superficial fascia is a poor conductor

of heat and therefore it insulates the body. Tubes carry fluid from the sweat glands to pores

on the skin surface, and hair follicles serve as ductways for secretions from the subcutaneous

glands. Much of the texture and appearance of the skin is regulated by secretions of subum

10

from the subcutaneous glands which are particularly dense on the forehead and nose. The

glands and hair follicles are embedded in the subcutaneous cellular tissue. The intercellular

fluid is referred to as ground substance.

Beneath the superficial fascia lies the deep fascia which coats the bones. This layer is

mainly formed of aponeuroses, which are flat or ribbon-like tendons, which are made mainly

of collagen. Between these two layers are the muscles. For most of the muscles of the body

- for example, those which move articulated joints - both the origin (which generally

refers to the immobile end of the muscle) and the insertion (the mobile end) connect to

deep fascia tissue. The superficial fascia serves as the connection point for muscles which

move the skin surface, such as the muscles of the face.

The muscles are composed of fasciculi (bundles) of fibers which are themselves composed

of myofibrils, which are bundles of myofilaments. The myofilaments are composed of the

proteins myocin and actin, which move past each other in response to nerve impulses[46].

Sensory receptors detect stretching and tension in the muscle and provide feedback to the

higher level control units of the nervous system which coordinate action.

2.1.2 Tissue Mechanics

The amount and nature of soft tissue deformation under applied loads has been the sub-

ject of a number of biomechanical investigations [28][13][21][62][56]. These investigations

approach the problem of tissue deformation from an engineering point of view similar to

that taken by researchers in Materials Science and Continuum Mechanics[3], but the results

obtained from experiments on living tissue show greater complexity than those on struc-

tural materials for construction and manufacturing, the materials for which much theory

has been developed. These complexities make the application of analytical techniques more

difficult. 2

Skin Mechanics

As a unit, the soft tissue of the skin is viscoelastic in its responses to stress (force or load)

and strain (deformation or stretch), meaning that it has properties of both elastic solids and

2 See section 2.2.2 for a discussion of analytical theories of deformation.

11

z Costal Conilae UgQomenumg flovum~

40
flV4

20 -

0 0 2 04 06 0.8 10
Strain

Fig, 4. Force-deformation relations for a selection of excised human tissues tested in
uniaxial tension. Apart from costal cartilage which is sensibly linear. other tissues
display an initial lax response with a gradual transition into a stiffer. nearly linear
response. The magnitude of strain at the transition is the principal variable.

Figure 2-1: Experimental stress/strain relations.[28]

viscous liquids. The elastic nature of soft tissue refers to its storage of energy and tendency

to return to its rest shape when the load is removed. The relationship between load and

deformation is non-linear, even in the range of deformations commonly encountered in living

subjects. Figure 2-1 shows relationships between stress and strain in soft tissue which are

typical under uniaxial tension. Tissue is viscous in that the internal force generated due to

a deformation is dependent not only on the amount of deformation but also on the rate of

deformation.

Several experimental phenomena display the viscoelastic nature of soft tissue[62][56][28].

Hysteresis refers to a change in the response of the material under cyclic loading and un-

loading such as that shown in figure 2-2.' Stress relaxation is the reduction in the force

opposing a deformation held constant in time; figure 2-3 illustrates this effect. Related to

stress relaxation, creep is the increase in strain over time in a material under the influence

'Figures 2-2 through 2-5 show the results of in vivo measurements of the mechanical properties along a

5cm by 1cm island of piglet skin which remained attached to the subcutaneous tissue[62].

12

300

200

100

0 I I I
.1 .2 .3 .4 .5

Strain
Fig. 4. Loading versus unloading force elongation curves of a

skin island, demonstrating hysteresis with separation of the two
curves.

Figure 2-2: Hysteresis.[62}

E

E
Co

300 ,

200 -

100 -

I T I 1 1

0 20 40 60 80 100

Time in seconds
Fig. 5. Stress relaxation, tension versus time at a constant

strain of .2 in the skin island. A 5 cm length of skin was extended
1 cm, and resulting tension monitored for 100 seconds.

Figure 2-3: Stress relaxation.[62]

13

E

Q.

E
0o

.30

.20-

.10-

0 20 40 60 80 100 120
Seconds

Fig. 6. Creep. Strain versus time measured in a 5 cm skin
island with a constant tension of 100 g/cm.

Figure 2-4: Creep.[62]

1000-

800-

600 -

400-

200-

1
/ -2

-3
\4
5

1 I
.1 .2

I 1
.3 .4 .5

Strain
Fig. 7. Repeated loading curves of a 5 cm skin island,

demonstrating hysteresis.

Figure 2-5: Pre-conditioning.[62]

14

C
C'

C,

E
CL)
U

E
M

of a constant load; figure 2-4 illustrates the creep phenomenon. A phenomenon related

to hysteresis is pre-conditioning, in which repeated applications of the same load result in

different deformation responses as shown in figure 2-5.

In addition to these properties, soft tissue can be distinguished from the materials which

have commonly been the subject of mechanical analysis is that the tissue is, in fact, made

up of living cells and that biological factors influence the mechanical response of tissue in

many ways[28]. The type of tissue and its location on the body must be taken into account,

along with the age and health of the subject.

The mechanical properties of skin are the result of the interaction of the component

cells. The elastic response is thought to have two cellular bases: elastin and collagen. The

behavior of elastin, which is a major component of blood vessels, is very similar to an ideal

rubber[38] with an essentially linear stress/strain curve over a wide range of deformation.

Collagen, the material of tendons, has a much stronger stress response to applied load

and has a more limited range of deformation. The anatomical relationship between these

materials in hypodermal tissue, as described in the last section, might also explain the

experimental stress/stain curves. The low stress response to small strains may be due

purely to the stretching of the elastin, since the collagen is arranged in a deformable lattice

structure. The sudden increase in stress may be due to the stretching of collagen once it is

aligned with the deformation(13. The pattern of the collagen lattice is not symmetric and

tends to form contour lines of fibers with common orientation. These lines correspond to

lines of anisotropic deformation of the skin called Langer's lines[12].

The fat cells and the ground substance, which are composed mostly of water, account for

the viscous properties of skin. They also account for the behavior of tissue under compres-

sion, where the collagen lattice on its own would merely collapse. Instead, since the water

in the fat and ground substance is incompressible, they are forced out perpendicular to the

line of compression; this phenomenon is called the poisson effect. Through this process,

fibers perpendicular to the compression are actually extended and therefore resist the com-

pression. This accounts for the qualitative similarity between experimental stress/strain

curves for compression and extension[28]. Extension of tissue also causes contraction along

the plane perpendicular to the line of extension, which can also be attributed to the volume

15

conserving properties of the fat and ground substance.

The composition of soft tissue of the face changes with age. In the dermis of a newborn,

there is a large amount of collagen compared to the amount of elastin, but this ratio inverts

in old age so that elastin is present in much higher concentrations than collagen(31]. In

addition, the skin becomes thinner with age due to a general loss of adipose tissue (fat)

bringing the skin into contact with the deep layers. Aging also causes the support structures

which hold the shape of the face to retract, and the soft tissue sags as a result. Folds

form along the lines of skin adherence and muscle insertion causing characteristic wrinkle

lines. The overall decrease in volume of the cranial structure and the lack of compensating

structural integrity are visible in the aging face.

Biological and physiological considerations are particularly crucial in the analysis of

wound closure and healing[58]. Typical wound healing involves the generation of collagen

fibroblasts (the precursor of connective tissue) across the wound. The rate of healing and

the type of scar developed depend on the size and shape of the wound, its location on the

body, and its orientation with respect to skin tension lines, as well as the age and health of

the patient, and the method of wound closure. Sutures, skin tapes, skin clips, and wound

adhesives are all used, sometimes in combination, to hold the wound edges together while

healing occurs. The placement of sutures (stitches), on the surface and in the subcutaneous

layers, is a surgical tool for reshaping tension lines of the skin and guiding the healing

process(641.

Muscle Mechanics

Active muscle fibers have a length at which they exert their maximum force for a given

amount of nervous stimulation. The amount of force generated by the muscle falls off if

it is stretched or compresse'd beyond a region of approximately 10% of the length which

generates the maximum force; the force eventually falls off to zero within approximately

70% of the maximal force length[57]. Although the muscles themselves exert an inelastic

force, they are in series with tendons which stretch to absorb the change in length of the

muscle and transfer forces to tissue at the insertion site[66].

Inactive muscles are governed by an exponential stress/strain relationship similar to

16

that shown by collageous soft tissue. Muscles also show a non-linear damping with respect

to shortening velocity[35]. Muscles contract without changing volume.

Sources of Mechanical Data

It should be noted that'obtaining reliable data for living human subjects is obviously difficult

(especially for measures such as skin breaking point!) so experiments are often carried out

on cadavers, laboratory animals, and extra tissue excised during surgical procedures. The

mechanical properties of cadaver tissue are different than living skin[62], perhaps due to

the amount of fluid in the composition of living skin. Mechanical properties are slightly

different in all animals depending on such factors as density of hair, thickness of skin, and

composition of the tissue layers underlying the skin. Piglet skin is similar to human skin

in these respects and has therefore been the subject of research[62][13]. These difficulties

become even more pronounced in obtaining experimental results for new techniques of

surgery, since patients must not be unduly exposed to the risks of new procedures. There

is rarely enough excised skin to test complex surgical procedures.

2.1.3 Plastic Surgery Techniques

Applications of plastic surgery include repairing lesions caused by disease, replacing skin lost

to burns or abrasions, rebuilding features misshapen by birth defects or injury, and removing

excess tissue to reduce the visual effects of aging. 4 The plastic surgery literature provides

a wealth of descriptive material about the structure and properties of facial tissue, as well

as experimental data regarding the types of facial tissue, deformities, and abnormalities in

facial structure and the reaction of tissue to injury and surgery. The rest of this section looks

at some of the most common techniques of plastic surgery and how their implementation

is influenced by mechanical considerations. Even the most minor applications of these

techniques can be surprisingly effective in their ability to recreate the normal appearance

and functioning of body parts.

'The material in this section is drawn mainly from Plastic Surgery, by William Grabb and James

Smith(64].

17

Fig. 1-2. Elliptical excision. If the ellipse is too short
(A), dog ears (arrows) will form at the ends of the
closed wound. The correct method is shown in B.

Figure 2-6: Example elliptical excisions.[64]

Closures and Excisions

A common application of plastic surgery is the removal of skin lesions caused by disease.

The typical method of removing tissue is the double-convex lenticular, or "surgeon's ellipse",

as shown in figure 2-6. The amount of skin which can be removed with the elliptical excision

technique varies widely and depends on the age of the patient and the type of skin. The

stress on the healing wound and the visibility of the resulting scar depend on the orientation

of the major axis of the lenticular with respect to Langer's lines, wrinkle lines, and the

relaxed skin tension lines. Elliptical excisions at right angles to these lines are more likely

to leave a noticeable scar than excisions parallel to these lines.

The removal of tissue and subsequent closure of the opening accomplishes a redistribu-

tion of tissue to replace the diseased section. If this takes place over too small an area, the

tissue being redistributed will bunch up, resulting in "dog ears" around the closure site.

18

A

B

Fig. 1-3. A, two methods of removing a dog ear
caused by making the elliptical excision too short.
B, method of removing dog ear caused by making
orte side of the ellipse longer than the other.

Figure 2-7: Approaches to eliminating dog ear effects.[64]

This problem can be addressed by increasing the length of the major axis, or by removing

some of the tissue which is bunching up. Figure 2-7 shows some approaches to eliminating

dog ear effects.

Other excision techniques may be used depending on the circumstances. Wedge exci-

sions, for example, are performed on free margins of skin such as the ears, lips, nostrils,

and eyelids. Other excision shapes are also used depending on the location and shape of

the lesion.

Grafts

Skin grafting is the process of completely removing a patch of skin from a donor site and

transplanting it to a recipient site to replace skin lost due to lesions or burns. Problems can

arise with skin grafts due to the differences in skin thickness of donor and recipient sites.

19

Grafts of different thicknesses are taken depending on the circumstances. Preauricular (in

front of the the ear), postauricular (behind the ear), supraclavicular (neck), or scalp skin

grafts are often used to repair small facial defects. For larger grafts, skin from the thigh

or abdominal wall can be used. Split thickness grafts of skin from the upper arm are often

used to repair the upper eyelids, because it is pliable enough to fold and unfold as the eyes

are opened and closed.

The pattern for the graft must be determined such that it will fit the recipient site

correctly after the skin has healed. Skin grafts undergo two types of contraction: primary

and secondary. Primary contraction occurs immediately after the graft has been cut from

the donor site. The amount of contraction depends on the thickness of the graft, with

thicker grafts shrinking more than thinner grafts. It is overcome during surgery by strongly

suturing the graft to the recipient site. Secondary contraction occurs as scar tissue forms

between the graft and the recipient site. This contraction also varies with the thickness of

the graft, as well as with the stiffness of the skin at the recipient site.

Flaps

Skin flaps are an alternate method for repairing wounds too large for direct closure. The

technique involves moving tissue from one part of the body to another while maintaining

some attachment which permits blood flow from the donor site. Although grafts are the

simpler technique, flaps are used when the recipient site has poor blood supply, the skin

thickness must be closely matched, or the wound needs to be reopened for later surgery on

underlying structures. The difficulties of flaps arise due to the importance of planning the

continued blood supply and the mechanical stresses placed on the skin due to rearrangement

of large areas of tissue.

Z-plasty

The Z-plasty technique is used to change the length of skin in a desired direction, to change

the direction of a scar so that it lies along a skin line, or to rotate the axis of skin regions in

the manner of a skin flap but without removing tissue. The technique involves exchanging

the triangular wedges formed by a "Z" shaped incision. Each wedge has one edge which lays

20

on a limb of the "Z" and one edge which lays on the central member. When the flaps are

exchanged, the "Z" shape will have been reflected and its central member will be formed

by the two edges which had been on the limbs. The edges which had been on the central

member are now attached to the surrounding tissue, in effect exchanging the length of the

central member with the distance between the terminal ends of the limbs. Note that for this

procedure all three sections of the "Z" must be of equal length. The effect of the Z-plasty

depends on the angle between the central member and the limbs of the "Z". If the angle is

very small, then the distance between terminal ends of the limbs is almost the same as the

length of the central member; if the angle is large, the distance between the terminal points

will be larger than the length of the central member (see figure 2-8).

Face Lifts

Plastic surgery is also applied to counteract the visual effects of the aging process. As

mentioned above, a number of factors contribute to the look of old age, including wrinkles

and a loss of firmness in the skin. The face lift is a surgical technique to address these signs

of age by removing a portion of the skin so that what remains is under greater tension -

flattening the wrinkles and holding in place any sagging skin. The technique described by

Smith[64] involves an incision on each side of the face and around the ear. Tissue (skin and

fat) is excised from the sides of the face.

Another important aspect of face lift surgery is removing any slack from the support

structures of the face. With age, the transmission of muscle action to the skin is impeded

by the loss of tension in the tendons and aponeuroses. A horizontal plication (folding over)

of the support structure in front of the ear is used to increase tension in the underlying

tissues. The superficial musculo-aponeurotic system, or SMAS{59], is a term referring to a

layer of hypodermal tissue iii the lower face and neck made up of fascia, aponeuroses, and

muscles, which is the subject of the plication procedure. The exact anatomical definition

of the SMAS has been disputed in the plastic surgery literature[18][26], but the plication

procedure has proved useful clinically for making the nasolabial fold less deep and for

facilitating the transmission of muscle actions in the lower face[64][32].

21

Limb

60*
Central member

Limb

3C

Fr. 1-40. The classic 60-degree-angle Z-plasty. Inset
ihows method of finding the 60-degree angle by first
dfwing a 90-degree angle, then dividing it in thirds
by sighting. The limbs of the Z must be equal in

Rngth to the central member.

C

A B

D

AB

-CD = Gain

Fig. 1-41. Calculating the theoretical gain in length
of the Z-plasty. The theoretical gain in length is the
difference in length between the long diagonal and
the short diagonal. In actual practice the gain in
length has varied from 45 percent less to 25 percent
more than calculated geometrically, due to the bio-
mechanical properties of the skin [283, 284/.

Table I-1. Z-plasty, Angles, and the
Theoretical Gain in Length

Angles of Z-plasty Theoretical Gain in Length

300-30* 25 percent
450-450 50 percent
600-600 75 percent
75*-75" 100 percent
90*-90* 120 percent

Figure 2-8: Example Z-plasty plans.[64)

22

Other Plastic and Reconstructive Surgery

Beyond the basic procedures described here are advanced techniques to reconstruct damaged

body limbs and facial features. In many of these techniques, the surgeon must reorganize

tissue to restore function, for example, folding over a patch of skin from the forehead to

replace a missing nose or using a rib to replace a cheek bone. Other techniques involve

replacing missing tissue with prosthetic implants, in which case both the implant and the

surgery must be designed according to the details of each case.

Obviously, these procedures are exceedingly complex and require extensive skill and

planning. The surgeon must take into account the patient's unique anatomy, the nature of

their injury or congenital defect, the overall age and health of the patient, and the struc-

tural and mechanical requirements of the reconstructed feature. The ability to successfully

address these issues is a complex skill attained through years of education and experience.

2.1.4 Summary of Processes to be Modeled

It is clear from the material reviewed so far in this chapter that human soft tissue is a

complex composite material consisting of a number of important component substances

(elastin, collagen, and ground substance being the most important) and that its behavior

is non-linear and is influenced by both anatomical factors (from the inhomogeneous mi-

croarchitecture of skin layers to the anisotropic lines of stress in its undeformed state) and

biological factors (such as the changes in structure and composition of the skin with age and

health). It is also clear that all of these factors are important considerations for the success-

ful application of plastic surgery techniques to correct abnormalities in form and function

of the soft tissues. A major goal of this thesis has been to evaluate these complexities and

identify techniques which can address them. The next section looks at how these complex

phenomena can be modeled.

2.2 The Techniques Available for Modeling

The second half of the engineering analysis of the problem is to assess the tools and tech-

niques available to address the problem and to review past efforts to use those tools and

23

techniques in the same or related problem areas. The tools and techniques available to the

problem of soft tissue simulation include computer graphics and animation techniques to

display the resulting shapes of the simulated tissue, the theory of deformable materials, and

the computational techniques through which the theory can be implemented in an interac-

tive animated environment. Past efforts to apply computer tools to medicine have included

recovery of geometric structure from non-invasive scanning, animated display of internal

structure, and surgical simulations using physical modeling.

2.2.1 Past Computer Animation Facial Models

Four major techniques have been applied to the animation of faces. Rotoscoping extracts

the shape and position of facial features from a sequence of images of a real face. While

this approach provides a direct means of describing the tissue deformation, it is difficult to

accurately model the transitions between recorded expressions. Keyframing, the standby

technique of computer animation, is often used to interpolate images between frames of

a rotoscoped sequence or of expressions which are created by hand. Pammeterized facial

models have been developed to deal with the "degrees of freedom problem" encountered

in keyframing approaches. Recent attempts have emphasized muscle parameterization in

an attempt to achieve more realistic movement. The next several sections review relevant

work in facial animation and structural modeling from the computer graphics literature. It

is important to note that while techniques for facial animation and physical modeling have

both been progressing, no work has yet been presented which attempts to combine these

fields. In this thesis, I have attempted to make that combination.

Parke, 1972

In his 1972 report, Fred Parke, a pioneer in the field of facial animation, described a system

he developed at the University of Utah for animating faces[39]. His technique included

extraction of expressions from pairs of photographs of a model with polygons painted on

her face. Data of the model displaying a range of facial expressions were used as keyframes

for Gouraud shaded animations. To simulate inertial drag on the facial features, Parke used

cosine interpolation rather than linear for his keyframing. Another interesting technique he

24

applied was the doubling of polygon vertices to introduce shading discontinuities along the

nasolabial fold.

Parke, 1982

Parke continued his work at The New York Institute of Technology and described many

useful facial animation techniques in 1982[401. Parke separated facial parameters into those

controlling the face's conformation or structure and those controlling the face's expression.

Characters were defined by selecting values of the conformation parameters, and anima-

tions were formed by keyframing the expression parameters. Parke reports that interesting

animations results can be obtained with as few as 15 expressive parameters. He also notes

that viewers expect more realistic motion from graphical models which look more realistic.

Platt and Badler, 1981

Platt and Badler approached the problem of facial animation from the perspective of no-

tation and automatic recognition[43]. Their model is based on the AUs (action units) of

FACS (the facial action coding system). FACS, which was developed by psychologists and

sociologists looking for "universal" facial expressions of emotion, describes 6 basic expres-

sions which are recognizable even by members of remote tribes who have not been exposed

to the media of other cultures[11]. The expressions are described in terms of collections

of muscles (AUs) working together to influence the position of facial features. Platt and

Badler used a spring-based skin model to propagate the effect of muscles to the rest of

the face. Since their system used a one-layer tissue model, it was unable to represent the

volumetric properties of facial tissue under the influence of the muscle actions.

Waters, 1987

Another recent work on facial animation, by Waters at Middlesex Polytechnic in England,

is also based on FACS and was motivated by a desire to create a platform for controlled

experiments in lip reading[61]. Waters developed a muscle model which directly displaces

the nodes on the skin surface as a function of muscle tension. Waters' technique works well

for modeling the action of the jaw and the lips, however it does not accurately model areas

25

which are under the influence of multiple action units.

Magenat-Thalmann, Primeau, and Thalmann, 1988

As part of their "human factory" project, Magenat-Thalmann, Primeau, and Thalmann

have put together a facial animation system based on what they call abstract muscle actions

(AMA)[30]. The vertices of the polygon mesh representing the face are altered by the AMA

procedures in a manner corresponding to an abstraction of the action of muscle groups in

that area of the face. The AMA procedures are unique to the character being animated.

Terzopoulos, Platt, Fleischer, and Barr, 1987

While Terzopoulos et. al. did not work specifically on the problem of facial animation,

their work on elastically deformable models for animation is of particular interest for the

problem of animating facial tissue[541. The model they present uses a simplified version of

elasticity theory which is specialized for isotropic homogeneous materials. They describe

solution techniques for the equations of deformation and motion. Their approach falls in

the category of discrete simulation models which are described in section 2.2.2, and is very

similar to the model used in this thesis.

Unsolved Problems of Facial Animation

Several difficult problems encountered in attempting to generate realistic facial animation

have been described by the researchers listed above and left unsolved in the literature.

These difficulties include modeling the flow of muscles over bone sheets, the influence of jaw

actions, the movement of cartilaginous areas (specifically, the nose), the interactions of the

tongue with the lips and cheeks, the puffing and sucking of the cheeks according to changes

of air pressure in the mouth, the fatiguing of the skin under repeated deformation due to

the viscous and plastic nature of the skin, modeling of facial blemishes, teeth, and hair, and

control of eyeball motion. The physical simulation techniques described in this thesis were

developed to address many of these issues to the extent required to make a simulator for

plastic surgery.

26

2.2.2 Predictive Models of Deformable Materials

The problem of predicting the behavior of deformable materials under the influence of

various loads has been addressed mathematically in two quite different ways. The classical

approach is analytical; the more modern approach is primarily numerical. The former

provides a closed form solution into which are plugged the specific details of a given problem.

The latter provides a method of building a specific instance of the problem out of a set of

generic building blocks which, as a whole, exhibit the behavior described by the former.

These two approaches are outlined below.

Analytical Models from Continuum Mechanics

This approach relies on the tools of mathematical analysis. To model deformations, the

entire body is described by an encompassing set of equations into which are substituted

equations describing the specific instance of the problem.

The two essential measures which describe the deformation of a material are the strain

and the stress[31[2]. Strain refers to the amount of stretch of the material at any given point

and in any given direction and is usually expressed as the ratio of the change in length to

the original length. Stress is the distribution of force per unit area generated to oppose a

given strain, or, inversely, the distribution of force required to obtain a given state of strain.

Both of these measures can be represented as second-order tensor fields over the region

occupied by the body; that is, for any point in the material a second-order tensor is defined.

A second-order tensor is essentially a 3x3 matrix independent of a specific coordinate frame.

Multiplying a direction vector (first order tensor) by these second-order tensors defines the

stress and strain respectively on a surface through the material the normal of which is

defined by that vector.

The physical properties of the material are incorporated into the model by way of the

function which relates stress and strain, which in its general form may be quite complex. If

the material is anisotropic, then the function depends on the orientation of the stresses and

strains with respect to the material. If the material is inhomogeneous, then the function also

depends on the coordinates within the material. If the material is viscous, then the function

depends on the derivatives of the stresses and strains with respect to time. If the material

27

is plastic, then the function depends on the past history of deformation of the material. As

noted in section 2.1.2, experimental results show that the behavior of soft-tissue exhibits all

of these complexities as well as complexities related to its biology, such as regrowth after

injury, and changes in composition with aging.

Since, in the analytical approach, the problem remains in symbolic form through the

course of the solution, simplification techniques can be applied at any stage to take ad-

vantage of any special knowledge about the form of a given problem. The most common

example of this simplification is the restriction that the amount of deformation in a problem

will be small with respect to the size of the object under consideration (the case of infinites-

imal strains). When this assumption can be shown to hold, some terms in the equations

may be dropped or linearized without significant loss of accuracy. Other simplifications

are applied, for example, when all the forces in the problem are known to be parallel to a

given vector, or when the material is assumed to be homogeneous and isotropic. Analytical

infinitesimal theory is an accurate and powerful tool in the analysis of structural materials

for manufacturing and building; however, a simplified model which works well for concrete

is clearly inappropriate for modeling the complex behavior of biological soft-tissue. Formu-

lating an analytical description of this more complex behavior would be extremely difficult,

and the resulting equations are likely to be analytically intractable[1].

Discrete Simulation Models

The discrete simulation approach is an attempt to avoid the formulation difficulties of the

analytical approach and to make problems amenable to solution using digital computers.

The approach describes the properties of individual elements of the material and the inter-

action between elements and their neighbors. To model a specific instance of the problem,

the elements are assembled into the shape of the material to be modeled, and the behav-

ioral properties assigned to the elements reflect the physical properties of the corresponding

material. The behavior of the elements is then simulated to discover the behavior of the

entire system.

This approach is at the core of the Finite Element Method (FEM)[491, in which the

state variables of all the elements and relationships between the elements are assembled

28

in a system of matrices. FEM can be applied to a wide range of problems such as heat

exchange, fluid flow, and distributions of electrical and magnetic fields on surfaces and solids.

By applying a common formulation to these problems, a variety of standard techniques can

be applied to the matrices in order to increase the accuracy and efficiency of the solution.

The choice of solution technique can also be tailored for a given problem type.

Most of the problems with analytical methods that are due to the complex behavior

of soft tissue can be addressed through variations on the finite element method. These

variations make formulation of the problem more difficult and solution less efficient. Two

problems remain, however, which complicate the application of the traditional finite element

method for deformation problems on biological tissue. The first problem is numerical and

is due to the fact that in deformation problems the sample points are moving in relation

to one another (as opposed to problems in thermodynamics, for example, in which the

point samples remain stationary). Because of this, movement estimates of quantities such

as strain, in which the components of stretch are measured with respect to the coordinate

axes, can become inaccurate as the strain becomes large.

The second problem with traditional FEM is computational and is due to the fact that

the elements are assembled into a single linear system which must be solved each time step.

The number of elements grows according to the density of sampling of the material - in

problems relating to solids, the number of uniformly sized elements grows with an inverse

cube relationship to the size of each element - and the size of the state matrix grows in

the square of the number of elements. Since solving the system of equations essentially

requires inverting this matrix - a problem whose complexity grows by the cube of the

size of the matrix in the worst case - it isn't hard to see that this approach can quickly

consume both memory and time resources. Although the matrix describing the connectivity

of the elements is sparse, it is difficult to take advantage of this sparsity. Even when special

sparse matrix techniques are used, the size of the matrices presents serious computational

difficulties.

An alternative to the classical FEM technique is to represent the material in graph form

rather than matrix form. In this formulation, sample points in the material are the nodes

of the graph, and the relations form the arcs. Each additional sample point adds a node

29

to a graph rather than a row and a column to a matrix, and the number of relations also

grows linearly with the number of elements, since each node only relates to its neighbors.

There is a two-stage simulation process in this approach. First, each relation is evaluated

using current states of the point samples and its contribution to the next state of the point

sample is recorded at the node which represents the sample. Second, each node is updated

to a new position based on the influences of all its relations. These two steps are repeated

for each time step of the simulation. The execution time and memory space requirements

for this scheme are linear in the number of point samples plus the number of relations (the

number of relations itself being linear in the number of point samples as noted), resulting in

a more efficient representation of the problem, although choice of a time step and integration

technique are critical to the success of the method. This modeling technique was chosen for.

the research described in this thesis and is described more fully in the section 3.2.1.

2.2.3 Interactive Simulation Systems

The simulation process for animation consists of three stages: designing the model and

setting the initial conditions and any time-varying boundary conditions, simulating the

evolving state of the model, and displaying the results of the simulation. In an interactive

simulation, these stages are iterated at high speed, and the boundary conditions can depend

on user input in addition to'any predefined boundary conditions. Interactive simulation

systems of this type are limited by the amount of computation available for the simulation

and the display of the simulation results.

Interactive simulation has traditionally been associated with flight simulation, where the

user's manipulation of airplane controls is mapped to changes in the view of a simulated

environment. Although some physical simulation is required to determine the plane's path,

the major bottleneck in such a system is the graphical task of continually redisplaying a view

of the world. The existence of this bottleneck for flight simulation (and other applications)

has spurred the development of specialized graphics hardware which greatly reduces the

time spent rendering and/or allows it to go on in parallel with the simulation process.

A recent driving simulation system developed by Evans and Sutherland Corporation(10]

is the most advanced example to date of the combination of complex dynamic simulation

30

Figure 1 - Driving Simulator System

Figure 2-9: The driving simulator system from Evans and Sutherland.[10]

31

and realistic rendering in an interactive environment. Their system was developed in or-

der to provide an accurate and repeatable method of evaluating automotive designs while

minimizing the number of prototypes required. The test driver sits in a car on a motion con-

trolled platform surrounded by a dome onto which are projected realistic shaded graphics

of the simulated environment. The car is equipped with sensors which monitor the driver

and inform the simulation computer of the state of the system, and force-feedback devices

which simulate the feel of the car in the steering wheel, the brake pedal, and the gear shift

lever. The system also generates the sound of the engine, gear whine, and passing traffic.

The dynamic interaction of the engine, drivetrain, transmission, suspension, and tire/road

interaction is all calculated in real-time and in response to the driver's actions by an Alliant

FX/8 eight-processor parallel computer running a recursively formulated articulated rigid

body dynamics simulation optimized for parallel execution.

While the Evans and Sutherland group has built specialized input and output devices

(the instrumented car and domed motion platform), a group at the NASA Ames Research

Center has put together a system which can be used for a variety of simulation tasks[16][17].

The system combines a DataGlove input device5 and a head-mounted stereo display, both

of which track the user's motion. The position and orientation of a head tracker is used

to control the computer graphics views displayed in each of the user's eyes. The hand

tracker provides position, orientation, and flexion values which are used to render the user's

hand in the simulated environment. The input/output system also includes stereo sound

and voice synthesis, as well as voice recognition and gesture recognition to increase the

user's "situational awareness". The applications envisioned by the NASA group include

telerobotics to control remote devices and vehicles in either a high-level supervisory mode

or a telepresence mode, where the operator is provided with sensory feedback to approximate

actual presence at the remoie task site. An example application of telerobotics investigated

by the NASA team is remote control of a surgical robot on a space station or space craft. If

surgery is required during an extended mission, the robot could perform the operation under

the control of an earth-based specialist. Simulators for surgery have also been investigated.

Another application is in information management for control of complex processes such

5See section 4.5.2 for a description of the DataGlove.

32

as functioning of a space station. In this application, process status is presented as objects

in the simulated environment and user actions are used for data manipulation and control

functions.

2.3 Medical Applications of Computers

The vast complexity of biological systems presents a number of difficult tasks to the medical

community for which computer tools are beginning to prove useful. The following sections

look at a few of these techniques which may have application in development of surgical

simulators.

2.3.1 Scanning and Reconstruction

An important application of computer technology in medicine today is the reconstruction

of three dimensional models of patients from collections of scanned slices obtained from CT

(Computerized Tomography) and MR (Magnetic Resonance) scanning. These reconstruc-

tions provide physicians with a non-invasive method of visualizing the structures inside

the body for planning surgeries and monitoring postoperative progress[27][36]. Computer

graphics techniques such as color, translucence, light-source shading, and surface recon-

struction have been used to improve the viewer's appreciation of complex anatomy[29][8}.

Application of these scanning techniques to physical simulation model building is examined

in section 3.1.2.

2.3.2 A Hand Biomechanics Workstation

Thompson et. al.(55] have built an interactive simulation environment for planning hand

surgery. The system uses data derived from CT and MR scans of a patient's hand and

a kinematic model of the interaction between muscles, bones, and tendons to present a

display of the simulated hand. Through menus and knobs, a surgeon can manipulate joint

angles, and observe the resulting tendon and hand movement. The system is not based on

a dynamic physical simulation of hand movement, so it is not possible to pull on a tendon

and observe the resulting movement of the fingers. However, the system does present a

33

graphical representation of the torque acting at the hand joints as the hand is moved. The

Thompson group's work is important because it is an attempt to apply real-time three

dimensional graphics and a simulation model in a clinical setting with real patient data.

From their initial results, they emphasized the following important considerations:

" Tools must be provided for incorporating scanned data into the simulation model.

Their system includes an interactive segmentation tool for extracting the contours of

individual bones from the scanned data.

* The system must be user-friendly. The primary users of their system are surgeons

who are generally not expert computer users, but who need fast, accurate results.

" The system must be real-time. The ability to display three dimensional motion under

user control is invaluable for the accurate perception of anatomy.

Kinematic and Dynamic Analysis of Hip Surgery

The Computer-Aided Surgical Simulation project CASS system being developed by Mann

et. al. addresses osteotomy surgery (hip replacement) by analyzing forces, and torques in

the musculoskeletal system during activities such as walking, running, or jumping[7]. The

system has two components: TRACK and NEWTON. TRACK, records a patient's move-

ment by combining information from infrared camera observing the patient who is wearing

a suit studded with LEDs and from measurements obtained from a force-sensitive plate

in the floor. NEWTON performs inverse-dynamics based on the information supplied by

TRACK, and a model of the masses and inertias of the legs, arms, and other skeletal parts

derived from MRI and CT scans. The combined system is used to predict the effectiveness

of prosthetic hip joints. Thd project has also experimented with in vivo force measurement

of the human hip by installing a hip prosthetic hip with 10 pressure sensors into an os-

teotomy patient. They then recorded the data through the stages of rehabilitation. The

CASS project is an important example of the application of engineering analysis to clinical

problems.

34

'I

Figure 12: A multiple exposure photograph showing the standard
thumb positions which are sequenced through to display a moment
arm summary.

Figure 2-10: Time lapse display of simulated thumb movement.[55

35

2.3.3 Physical Simulations of Soft Tissue

Although the field is still very new, three previous researchers have applied computer sim-

ulation techniques to the analysis of soft tissue mechanics. All previous models are used

to find static equilibrium solutions to wound closure problems. The next chapter describes

the properties of an ideal physical simulation system and the prototype system developed

to test algorithms for tissue simulation. These examples of previous work all illuminate

important aspects of the problem which should be considered in the development of future

systems.

A Finite Element Model of Tissue Deformation, Larrabee, 1988

Larrabee developed a finite element model to describe and predict the deformation of tissue

and correlated it with actual experiments performed on piglets[62]. His system models the

skin as a two dimensional membrane made up of triangular elements in which the vertices

have spring connections (which may be turned off) to fixed points on an immobile base

plane. The triangular elements are governed by linear stress/strain relations from classical

elasticity theory. The equilibrium state of deformation for the model is found through the

solution to the matrix system defined by the finite element technique. The model has been

used to model elliptical wound closures and rectangular flap advancement. The elliptical

closure simulations were compared to the results from piglet studies and showed "a fairly

realistic approximation of a clinical wound closure".

A number of simplifications are inherent in this model. Larrabee points out the following:

linear stress/strain relations, no initial stress in the skin, the model is two-dimensional, and

the model is not viscoelastic.

A Three Dimensional Simulation of Wound Closure, Gordon et. al., 1987

A model developed by Gordon et. al. simulates deformation in a three dimensional grid of

point samples, each of which is connected by springs to its nearest neighbors[20). A discrete

simulation method was used to solve for the movement of the skin elements by calculating

the net force acting on each of the elements and moving the element a small amount in the

direction of that force. Skin incisions are modeled by breaking spring connections between

36

elements, which resulted in the typical elliptical defect. To experiment with placement

of sutures for optimal closure, sutures were simulated by reattaching points on opposite

edges of the wound. The experiments showed that sutures placed closer to the ends of the

incision and further from the wound edge resulted in the most uniform distribution of force.

Separation of underlying layers of tissue in wounds dosed with superficial sutures was also

observed in the experiments.

A Finite Element Analysis of Surgery of the Human Facial Tissues, Deng, 1988

Deng presents a thorough analysis of the application of the finite element method to fa-

cial tissue and a description of surgical simulations performed on scanned patient data91.

A three-layer model of facial tissue is described in terms of the geometrical and mechan-

ical properties which were fed into ADINA (Automatic Dynamic Incremental Nonlinear

Analysis), a standard engineering finite element software package. Deng describes the mea-

surement of mechanical properties of the skin from experimental results and the extraction

of geometric descriptions of the external shapes of faces from a 3D laser digitizer. Simu-

lated surgical procedures included closure of elliptical excisions, removal of tissue to reduce

dog-ear effects, analysis of the effect of Langer's lines on the rest shape of circular puncture

wounds, and removal of excess tissue from a scanned section of cheek.

Deng's work is important because it describes the mathematical basis for application

of FEM analysis to the problems of facial modeling. Deng also demonstrates a method for

capturing patient data to form models which can be used in the analysis stage. Deng does

not address the issue of muscle modeling or dynamic analysis of the face. An important

issue which was not explored in her work is the surgeon's interaction with the simulation

model for defining surgeries and evaluating results.

37

Chapter 3

Functionality of an Interactive

Tissue Simulator

The last chapter looked at the anatomy and behavior of biological soft tissue, simulation

techniques available to model its behavior, and computer systems which allow real-time

interaction with simulated systems. This chapter describes the required functionality of a

system in which simulations of soft tissue elements can be viewed and manipulated inter-

actively; first in terms of the ideal design of such a system, and second in terms of the

prototype system which was built to test these ideas.

3.1 Ideal Properties of a Simulator

In light of the material presented in the last chapter, I propose that a successful facial tissue

simulation system for use as a surgical training and planning tool must have the following

properties:

9 Deformability - to model for shape change under applied forces;

* Formability - to build the model for a specific patient;

e Reformability - to edit the model to simulate surgery;

* Controllability - to model movement due to muscle action; and

38

. Interactivity - to provide timely feedback to changing input.

Each of these requirements will now be examined in more detail.

3.1.1 Deformability

The system must provide an accurate prediction of the movement and deformation of tissue

in response to applied forces. This includes modeling such phenomena as the change in

shape of soft tissue as it stretches across or travels over underlying hard tissue, the bulging

and folding of skin due to resistance to compression when skin is under load, and the internal

forces and deformations due to the action of muscles within the the skin layers. The system

must be able to model these phenomena for anisotropic, inhomogeneous material. Other

tissue behaviors which may be modeled include the formation of wrinkle lines, the movement

of the tongue and its interaction with the cheeks, and the effects of puffing and sucking of

the cheeks.

3.1.2 Formability

An inherently difficult problem in computer graphics systems is the definition of models

which describe the geometric properties of objects for rendering. The problem is typically

addressed by an editor which allows the definition of geometric primitives, collections of

which can be used to define more complex shapes. Simulation systems suffer from a similar

modeling problem, compounded by the need for a description of the physical properties of

an object in addition to geometric properties. The approach taken for structural analysis

in manufacturing is to build the simulation model from the original design specification and

assign physical properties according to the material to be used, often with the help of an

automatic mesh generator tD define the nodes for FEM analysis. For biological simulation,

this problem is more complicated since the geometric structures are highly complex (not

easily generated using a standard geometric editor) and because the material is not of

uniform composition and thus the physical properties vary from point to point.

Ultimately, for surgical planning, a physical simulation of soft tissue must be built which

conforms to the particular patient. Non-invasive scanning techniques such as MR, CT, or

ultrasound can provide a data set of geometric and compositional information about a

39

patient. Automatically generating a physical model from this data is a desirable long-term

goal which will require extensions of machine vision technology to the 3D volume sets derived

from these scanning techniques. More practically in the near future, human operators using

interactive input devices and graphical views of the data can identify key reference points.

These reference points can be used to derive some of the required patient information such as

the shape and thickness of various tissue layers. This geometric data can be combined with

assumptions about the physical properties of tissue types based on biophysical experiments

such as those described in section 2.1.2. Another goal for non-invasive scanning techniques

is to look at the local structure and composition of the tissue which give rise to mechanical

behavior, for example observing the asymmetries in the orientation of the collagen lattice

which give rise to the phenomenon of Langer's lines as described in section 2.2.1.

3.1.3 Reformability

Once a model is available which closely conforms in geometric and physical structure to the

patient, tools must be available to edit the model in a manner which corresponds to the

physical actions performed on the patient. For surgical simulation, this includes:

9 breaking physical connections between simulation elements, as in making an incision

or undermining tissue layers,

* making new physical connections between previously unconnected elements, as in

suturing or plicating,

e moving pieces of simulated material for reconnection, as in flap advancement or graft-

ing, and

e inserting new hard tissue as in reconstructive techniques.

The model might also be reformed to model growth, aging, injury, or the progression of

disease.

3.1.4 Controllability

Since the simulation is a model of a living patient, it should be possible to activate the

simulated muscles and compare the results with activation of real muscles in the patient.

40

If a reliable technique is available for generating a script of muscle actions for the patient,

that script could be used to drive the model. This would serve as a powerful debugging tool

for building the simulation. Electromyograms, which record electrical activity in muscles,

could potentially provide this script of muscle activity, although accurate electromyographic

recording may require insertion of needle electrodes rather than recording from the skin

surface[461. In the face there is the additional problem of distinguishing the action of

individual muscles due to the large numbers of overlapping and interacting muscle groups.

Another approach to controlling muscle actions is to develop standard scripts for muscle

actions based on a logical organization of facial muscles. Such an organization is provided by

the Facial Action Coding System, or FACS, which is a method of describing the contribution

of muscles and muscle groups to the formation of expression. The basic composition and

meaning of these actions have been found to be consistent between individuals and across

cultures[11]. The FACS system has been used successfully in facial animation systems to

control expressions[61][60][43][42), and the same techniques should extend well to facial

animation based on physical simulation.

If either method proves successful at generating a useful script of muscle actions for input

to the simulation, the door is open for a very powerful application of tissue simulation for

surgical planning. By replaying muscle actions in the simulation which models the surgically

altered face, it should be possible to observe the results of the surgery as they will appear in

the patient's everyday life. The dynamic effect of changes in skin tension lines, the thickness

of skin, muscle attachment points, or reshaping of the underlying hard tissue could then

be evaluated and the surgical plan modified to generate the most satisfactory result. Being

able to see how the surgery will affect the patient's ability to form facial expressions will

address one of the most common complaints about face lift surgery. Often the results are

acceptable until the patient-smiles, at which point the results of poor surgical planning are

especially visible.

3.1.5 Interactivity

Reforming the parameters of the simulation model should be reflected in deformation behav-

ior in a timely manner; evolving ultimately the medical version of the Evans and Sutherland

41

driving simulator described in section 2.2.2. Such a system would monitor the actions of

the user (surgeon) and responds with the results of dynamic simulation in real-time. As

noted in section 2.3.2, Thompson et. al.[55 emphasize the importance of a user-friendly

interface to computer applications for clinical settings. A real-time simulation environment

could provide the appropriate ease of use - especially if the reformation commands and

their parameters are obtained by tracking the surgeon, who is going through the motions

that would be used in the case of a real patient. Thus a surgeon might make an incision

by moving the simulated scalpel along the simulated patient. The surgeon would then see

the wound open. The surgeon could perform the appropriate surgical procedure, such as

excising fat or preparing a skin flap, and then specify which wound edges are to be closed

and the attachment points for the sutures.

Force-feedback interface devices may provide an important link for the surgeon's appre-

ciation of the simulation results, just as the force-feedback automotive controls of a driving

simulator give the driver a realistic sense of the car's response. While all the information

required to control force-feedback devices will be available from the physical simulation, the

simulation must be real-time in order to make use of them as input. It may be interesting

to use them in training situations to guide the student through the appropriate motions for

the operation.

To improve the realism of the surgical simulation, the system should go beyond the

mechanical simulation and provide a model of the patient's physiological state during the

course of the operation. Thus the interactive system should allow integration of the results

of various simulations. Interesting types of simulations include the action of the patient's

cardiovascular system, the response of the patient to anesthesia, and the action of complex

surgical tools and instruments.

Another useful property of a surgical simulator would be the ability to provide user

interaction with various data sources. Data from CT, MR, and ultrasound scans of the

patient, as well as information from the medical literature, could be displayed in the same

virtual environment as overlays or windows.

42

3.2 The Current Prototype

The ideal functional properties of a surgical simulator for plastic surgery as outlined in

the last section can serve as goal by which to guide the development of prototype systems.

What follows here is a functional description of the prototype system developed during

the research work for this thesis. This description is in terms of the functional breakdown

presented above. The deformability of the tissue model receives the most attention here both

because it is the most highly developed aspect of the prototype, and because it is a central

design issue for the implementation of a real system. Neither formability nor reformability

can be addressed until the underlying deformable model has been developed, and the choice

of a simulation technique for deformation is central to achieving interactivity in the system.

The underlying deformable model is also important in considering the issue of controllability,

since the muscles used for control must also be incorporated in the deformation model. The

next sections describe the theory behind the implementation of the prototype system.

3.2.1 Deformability

Discretization

The problem of modeling deformation in soft tissue is approached with a discrete simulation

model.1 The soft tissue is represented as a set, P, of reference point samples, pi, and a

set, S, of force constraints between pairs of samples, sj.2 The force constraints represent

the tissue which exists between the reference points. Since each constraint contains local

information about the material properties of the tissue it represents, this technique can

model the anatomy of inhomogeneous and anisotropic material. The individual constraints

'This approach is becoming common in computer graphics and animation applications requiring physical

simulation15][37][22][63]. It can -ie contrasted with the more matrix-intensive approach(54](53].
2In the following discussion, the subscript i is used in referring to point samples in the tissue model and

the subscript j is used in referring to constraints. Temporary variables associated with a point sample or

constraint are not listed in the definitions; they are only used for evaluating intermediate results and are not

stored as part of the soft tissue structure. The F symbol indicates that variable z is a 3 component vector

expressing a direction or a position in world space, and the i symbol indicates that z is a function. The

notion is suggestive of the C language implementation of the model which uses dynamically allocated lists

of reference points and constraints.

43

roughly simulate the behavior of collections of fibers of the tissue, and thus, as a whole,

they model the volumetric effects of tissue as it is stretched or bunched.

Representation

Each point sample stores the point's mass, a flag telling if the point is mobile or fixed, and

vectors representing the point's position, velocity, and the current total force acting on the

point:
Pi = {nassp,obile,position velocity g-for oar}

Each constraint represents a generalized spring and calculates forces which are added to

the pair of total force accumulation vectors of the two point samples it connects. The con-

straint structure stores the geometric and mechanical data about the relationship between

the point samples:

S= {s,*ideA-1,ide-2 original-Jength iclasticity.f unction material.constant viscosity

When invoked, the constraint calculates the force vectors based on the amount the two

points have been stretched relative to their original separation. The current length of the

constraint is:
current-Jength -position -positi)on

s en = length(p , - Psa.ide.

where length() is the standard Euclidian distance function. The normalized vector from

the point on one side of the constraint to the point on the other side - the line of force -

is:
-position -position

-ine-of -f orce _ P*sde.2 Psde..i.1

s Current Jength
S .

If the original length is greater than the current length, the force pushes the two points

together. If it is less, the points are pushed apart.3 The magnitude of the force is determined

by a function which represents the material properties of the constraint. The following ratio

is used as a measure of strain because it is zero when the points are in their rest state, and

3A current length of zero is an error condition which arises if the two points are exactly coincident due

to deformation beyond the range representable by the model.

44

it is symmetric for extension and compression; so that, for example, doubling the distance

between points would have the same strain value as halving it.

max(s'"*ent'Jenth soriginal-ength)
s',"ri" - - 1

min(S"urrententh , original jength 1

The strain is plugged into the elasticity function of the constraint. These functions are

all zero when the points are in their rest configuration. They are also all monotonic. The

currently implemented elasticity functions are of the form:

" lin(strain) = strain

" exp(strain) = et'ai" - 1

* log(strain) = ln(strain + 1)

* square(strain) - strain2

These functions have been used successfully in simulation experiments.

The strain rate is a scalar representing the velocity at which the points are coming

together or moving apart along the line of force:

setrain-rate -- velocity -line-of..force _ -velocity -line-of -force)
s =Paid._ - S psade_2 - sj

The strain rate and the viscosity constant of the constraint describes the force generated in

opposition to velocity along the line of force. The force at the first point sample is increased

by a generalized spring constraint sj as follows:

p-force...o-farnew _ -force-ao-farold
Psaide-1 - Pside.-

+1/2i"* -f~l*'**(s,""'''i"It*c"sS -- io(strain) + v'sCOsitY jtrain-*ate)

The force at the other point, sample is increased as follows:

.force-so-farne... _.orce-so-fara
Pslide-2 "- Pside-2

.3 .1
4ine-of-force material-onstant lasticity..f unction strain+ viscosity strain...rate

If either of the point samples are marked as immobile, p"obse is false, then the 1/2 scale

factor is dropped, and the total force is added to the mobile side. If both are immobile, the

forces are not evaluated.

45

These constraints are designed to model the behavior of collagen and elastin fibers in the

tissue. The behavior of the fat cells and ground substance under compression is modeled

by the arrangement of these generalized springs in a tetrahedral geometry which tends to

mimic the lattice structure found in tissue and, through their resistance to compression,

the poisson effect. Expansion in the plane perpendicular to muscle action can be seen in

the example in figure 6-3.

Additional forces are generated to model the effect of other physical phenomena. Gravity

is represented by a constraint which adds a force to each point sample which is proportional

to its mass. The force function for the gravity field is:

4 orce- o-f arne - 4 orce so f ar d + G p "' a' p '"", . post on

Pi Pi + Gp earth Pearth

where G is the gravitational constant and pearth is a special point sample, representing

the earth, whose position vector is used to store the vector pointing to the center of the

earth, which is assumed to be constant for all p;. For the purposes of tissue simulation, the

inverse square relationship of gravitational force to distance from the center of the earth is

neglected.

Forces are also generated in response to contact between soft tissue and underlying hard

tissue. This is modeled via drape constraints on point samples.4 A drape constraint detects

when a point sample moves into a forbidden region and applies forces to push the point

out of the region. An example of this type of constraint generates a force to keep a point

sample out of the bounding sphere of an object. An instance of a drape constraint is:

d= {*, , terialconstant d'", lasticty_function

The line of force for a drape constraint is the direction which moves the point sample out

of the region:

-'tine...of-force __ o ds
tin- -j2

O tiol)
length(f***" - f"*'s*"

The strain associated with deformation of the forbidden region in a drape constraint is:

d'rain = length(ff**t'" - dpo*tion)

'The drape constraint is so named because it is used to drape tissue samples over obstructions.

46

The effect of the drape constraint on the force accumulation vector of the point sample is:

4orce..ofar.. - 4orce-ao-farld
pi -pi

6, if length(**ioa** - dP**) > d adiu

+1dmaterialIcaan dltCtsflc(dstrasn) dfn.o~oc otherwise

Another force which can be added to the force accumulation vector is a general damping

force. This force is a function of the velocity of a point sample and simulates the effect of

the points moving in a viscous medium, such as the ground substance:

4orceo-farnew = 4orce-so-f Gr.d - dampingyp"*,c*t*

where damping is a constant for all the point samples which is set in order to control the

amount of oscillation in the medium.

Integration

The motion and deformation of soft tissue is simulated by stepping forward by discrete time

steps. For each time step in the simulation, all the force-generating constraints are evalu-

ated, which leaves a sum of the resulting forces in the accumulation vector (frcf"*-of a)

in the point sample structure. The problem in time stepping is to integrate the resulting

total force into a change in position for the time step. The key to this process is, of course,

F = ma

or for this problem,
-forceso-f ar

acceleration _ P

This is Newton's Law which relates the acceleration at a point to the mass at that point

and the total force acting on it.

The acceleration is the change in velocity with respect to time, so the acceleration term

is multiplied by the time step to find the change in velocity within the time step:

-velocityn~w -. velcityad gaccelerationgd
Pi tm Pi +

where dt is the integration time step.

47

The velocity of the point sample is the change in its position with respect to time, so

the velocity term is multiplied by the time step to find the change position for the time

step:

pOitinew = '"*O** + **ve*tydt

The force value for each point sample is an instantaneous value calculated at the begin-

ning of the time step; the integration method just described, referred to as Euler integration,

assumes that the force remains constant during the time step at the value calculated for

the beginning of the time step. This can be inaccurate if the force is actually changing

significantly within the time step, which may of course happen since the point samples are

moving within the time step.

A better estimation of the force to integrate over a time step can be obtained by eval-

uating the force constraints twice per time step - once at the beginning of the time step

and once at the end - and averaging them. Since the positions of the point samples at the

end of the time step are not known (they're the quantities we're trying to compute), the

Euler method is used to estimate them. The force constraints are then reevaluated using

the estimated positions, and the resulting force and velocity values are averaged with the

force and velocity values at the beginning of the time step. These averaged values are then

plugged into the integration equations above to make a more accurate prediction of the

position and velocity at the end of the time step. This integration scheme is a second-order

version of the Runge-Kutta integration technique[49].

Summary of Deformability

The deformable model chosen for the prototype system is a discrete simulation model which

uses a network of force constraints and forward simulation to determine the dynamic be-

havior and rest configuration of a collection of point samples which represent a specimen

of human facial tissue. The system can simulate the behavior of the forces of fibrous at-

tachments between points, viscous damping of movement due to ground substance, collision

forces due to interaction of soft tissue with underlying hard tissue, and gravity.

48

3.2.2 Formability

In the current system, networks of point samples and force constraints are created at run

time, not compiled into the simulation code. There are two methods of creating these

networks: "by hand" or algorithmically . The first method is a command line approach in

which point samples are created, positioned, named, and their parameters set by typing in

the appropriate values at the command line while the program is running (or in a control

script which gets read in at run time). The same interface can be used to create various

force constraints and set their parameters. This method is useful for testing the constraints

and debugging the integration, and for using the dynamics for other simulated environment

applications.

The second method creates simulation networks algorithmically from a source polyhe-

dron. This method builds a set of point samples at the vertices of the polyhedron and

at specified distances from the vertex along the surface normal of the polyhedron at that

vertex. The algorithm also creates spring force constraints to connect the point samples in

a lattice network. This approach provides a tool for experimenting with complex networks

of constraints, the structure of which can be controlled using standard graphical modeling

tools. This method has proven useful for generating test cases such as grids with missing

polygons to model excisions of flesh.

The algorithm creates three layers of point samples in order to model the volumetric

effects of skin as it is bunched and stretched. The top layer represents the epidermal surface

of the skin and is rendered with filled polygons. The bottom layer is the bottom of the deep

fascia or deep fat layer, which may be immobilized to signify connection to the underlying

bone surface or collision detected with a bone surface via the drape constraint. The middle

layer represents the superficial fascia and tendon layer - the SMAS layer - and serves as

an attachment point for muscles, such as those of the face, which act directly on the skin

to deform it (as opposed to the majority of muscles in the rest of the body which connect

from deep fascia to deep fascia). The choice of three layers was made in order to minimize

the amount of computation required to perform simulations and still allow this level of

representation.

Muscles can be added to the network to connect arbitrary pairs of points in any of the

49

layers. The muscle fibers are themselves instances of the spring constraints described above;

these fibers can be collected into muscle units which act together. Each fiber of a muscle

is specified by a single command line which defines the points of attachment, the physical

properties of the spring constraint, and the name of the muscle unit to which the fiber is

to be added. If the named muscle unit does not exist, a new one is created and given the

specified name. Attachment points of the spring constraint can be specified either as a layer

number and an index into the point sample list for that layer or as the nearest point sample

to a specified point in world space.

3.2.3 Reformability

The prototype allows addition and deletion of force constraints via the command line in-

terface. This is used in the prototype system to build and destroy small spring systems for

experimentation. The prototype does not currently provide any high level tools for deleting

force constraints from the algorithmically produced constraint networks. Such high-level

tools can easily be built from the existing commands.

3.2.4 Controllability

The currently implemented control strategy for muscles allows definition of muscle lengths

at key points in time. The length of a muscle unit is defined as a scale value relative to its

original length. Between the specified time points, the scale value is interpolated using a

cosine weighting curve. Cosine interpolation curves qualitatively match movement profiles

recorded for human speech and have been used in several computer animation systems for

movement of facial muscles[61](60]. More accurate descriptions of muscle stimulation over

time did not appear to be available in the literature. The key point method allows groups

of fibers to act collectively over the course of an animation in order to observe resulting

tissue deformation.

For simulations of wound closures, sutures can be attached to the tissue. The sutures

are actually modeled using the muscle structures and control procedures. They can be

attached anywhere in the layers of tissue and can be scaled to near zero length over the

course of the simulation. By connecting point samples on opposite sides of the wound, it is

50

possible to pull the tissue to cover the spot left exposed by an excision.

3.2.5 Interactivity

The fact that the tissue simulation is embedded in an interactive simulation environment

makes it possible to stop the simulation process, examine the current state (for example,

rotate the simulated view) and possibly adjust some parameters before continuing. The

simulation process is currently much too slow to allow real-time dynamic calculations on

large tissue structures, however a major assumption of this thesis is that computer perfor-

mance will continue to increase while the cost goes down. Faster performance can also be

expected if the simulation is distributed over multiple machines. The simulation technique

presented in section 3.2.1 is ideal for implementation on parallel machines due to the local

nature of the computations.

Using current hardware, small constraint networks can be used to control the behav-

ior of objects in a real-time application. Such an application allows experimentation with

various combinations of elasticity functions, damping values, material constants, structural

geometries, etc. The use of the DataGlove as an input device for these simulations allows

very natural control of 3D motion to see how the dynamics will respond. The next chap-

ter describes the interactive simulation system which allows this kind of experimentation

with the tissue simulation. Because the tissue simulation is one of many interactive simula-

tions supported, the system also serves as a prototype for surgical simulation environments

which combine information from a variety of sources. For a surgical application, such a

system could include simulations of various body systems, display of data from the medical

literature, or views of the patient derived from various scanning techniques.

51

Chapter 4

Implementation of an Interactive

Simulation System

The facial tissue simulation code is written as a module of a larger graphics system un-

der development by the Computer Graphics and Animation Group at the MIT Media

Laboratory[6][69][47]. The system, named bolio, allows diverse graphics applications (called

bolio tools, see section 4.5) to share a common run-time environment and to display their

results in a common 3D microworld. Through this system, the tools can also communicate

with each other in a common format. As noted in sections 3.1.5 and 3.2.5, this will be

an important feature of a surgical simulator, since the simulator must be able to mix the

results of a number of independent simulations and possibly data from patient scanning

and monitoring systems. A brief description of the internals of the bolio system will also

clear up many important details for the discussion of the implementation of the facial tissue

simulation in chapter 5.

This chapter reviews some of the internal data structures of bolio, its user interface and

scripting mechanism, and its use of a constraint network architecture to pass information

among the tools. Descriptions of several of the tools demonstrate how bolio's features allow

a variety of simulation techniques to be used together in a real-time test application.

52

4.1 What bolio Is

Bolio is a system which serves as a common base for the development of simulations by

providing an input/simulate/draw loop into which new applications can be incorporated.

Bolio provides an object level interface to a graphics environment. Bolio is implemented in

C on Hewlett-Packard 9000 workstations running the HP-UX operating system, a derivative

of Berkeley Software Distribution UNIX 4.3 and AT&T System V UNIX.1

4.2 Objects and Viewports

The main data structure of interest in bolio is the bolio object, or bOBJECT structure illus-

trated in figure 4-1. This is the generic graphical object structure with fields to describe

attributes (name, transformation matrix, bounding box...) common to all objects appear-

ing in the microworld. The description field of the bOBJECT structure is a generic pointer

to any of the specific object data types recognized by bolio. These data types (including

bPOLYHEDRON, bCAMERA, bLIGHT, and bDEPTHMAP) all have specific data structures referenced

by the description field of the bOBJECT, and which are used when that data type is read

from or written to a file, compiled into displayable format for the rendering hardware, and

other type-specific operations. The bPOLYHEDRON data type, for example, contains lists

of the vertices, polygons, and edges which define the polyhedron. Most bolio commands

operate on objects independent of the data type of their description.

Bolio uses a two stage file format for bOBJECTs which reflects the distinction between the

bOBJECT level and the description level. Generic information about bOBJECTs is stored

in files with a . obj extension. These are ascii text files which contain keyword/value pairs

to define fields such as the object's name, its initial transformation matrix, and the data

type and source file of its description. Since this file is generally very short, the entire text

is kept in memory in a LIST pointed to by the obj.Iile field of the bOBJECT.2 The detail

keyword in the .obj file is followed by the name of a file from which to read the type-specific

'UNIX is a trademark of AT&T Bell Laboratories.
2The LIST data type is a header for an array of generic C pointers. LISTs are used extensively in bolio

to group and order structures independent of data type.

53

typedef struct
char
char

LIST
LIST
Generic
bPOSITION
bORIENTATION
bXFORM
struct limbs
bObjDirt

short

LIST
} bOBJECT;

{
*name;
*f ilename;
*obj file;
*worlds;
*description;

*position;

*orientation;

*xform;

*constraints;

dirty;

visible;

*drobjs;

/*
/*

bobj's unique name
name of .obj file */
text from .obj file */
bOBJ.WORLDs where posted */
description of object */
center, radius, bounding box */
normal, up */
transformation matrix and local origin */
for manus */
bobj fields needing recompilation */
is object visible or not? */
drOBJECTs: device-specific display info *

Figure 4-1: The bOBJECT data structure.

description of the object. The description is read by routines written specifically for that

type. These routines build the appropriate data structure for the type. A pointer to this

data structure is stored in the description field. Example detail file types include . asc

for an ascii representation of an object of type bPOLYHEDRON, .det for a binary description

of an object of type bPOLYHEDRON, and .dm for an object of type bDEPTHMAP.

To make the rendering of device independent graphical objects more efficient, they are

compiled into a format specific to the hardware platform. This device specific data is

stored in structures called drobjs (drawing objects). A bOBJECT structure contains a list of

pointers to the drobjs which define the hardware calls needed to display it on the screen.

These drobjs are created by the compile routine specific to the bOBJECT description and

are in a format dependent on the type of output device to be used for rendering. Currently,

a set of data structures is used which is specific to the Starbase graphics system running on

the Hewlett-Packard 9000 series of workstations[25].

Another important data structure in the bolio system is the VIEWPORT. This structure

describes a portion of the screen and the objects to be rendered there. Each VIEWPORT

contains structures defining its lower left and upper right corners, descriptions of the types

54

and colors of its borders and title bar, and flags describing the type of rendering to be

performed in this viewport (e.g., wireframe vs. shaded graphics). The VIEWPORT also has a

pointer to the bOBJECT which serves as its current camera. The camera object contains a

ViewStruct [48] and a pointer to a bOBJ.WORLD (a bOBJ.WORLD is a named list of bOBJECTS).

Whenever a viewport needs to be redrawn, the viewing transformations and rendering

equations are calculated using the information in the VIEWPORT and the bCAMERA and are

applied to all objects pointed to by the bOBJ.WORLD of the current camera.

Many viewports can be displayed simultaneously at various (possibly overlapping) po-

sitions on the screen, allowing multiple views of a single bOBJ.WORLD or views of different

worlds. For faster screen redrawing, and for making animations directly from the display

screen, a borderless, full-screen viewport is available. A red/green stereo mode is also pro-

vided in the full screen display mode; in this mode the image is drawn twice for each frame,

once in red and once in green, using bCAMERAs the viewpoints of which have been separated

to approximate the interocular distance.

4.3 User Interface: Commands and Scripts

Bolio's user interface combines various modes of input. A mouse or graphics tablet can be

used to select commands and object names from a menu system and provide 2D input and

button events. Alternatively, these same commands, select operations, values, and button

events can be generated as text by the keyboard or from script files. This mixed mode form

of input is achieved because each selection on the menu is associated with a string, which

is placed into an internal string buffer. This string buffer is where bolio commands look to

find their input. Input from the keyboard is also placed in this buffer, along with strings

from script files.

A stack of script file pointers is maintained to control where input comes from when a

new string is required. When the stack is empty, the keyboard is polled for input, otherwise

strings are read from the top file pointer on the input stack. The #include command,

followed by a filename, is used to push a new file pointer onto the stack. This file is then

used for input until it has been read completely, at which point it is popped from the stack.

In this way, script files can be nested to an arbitrary depth.

55

Input can also come from a nine-knob box which is available on the Hewlett-Packard

workstations; it is sampled by bolio and made available through a global structure to all

commands. Commands are available which use the knobs to position objects and change

their optical properties.

The essence of bolio's main loop consists of the following stages: sampling the state

of input devices, executing a command (if any are pending), and redrawing the screen if

it needs to be brought up to date. Bolio operations (bops) are the commands which are

inserted in the main loop. Parameters to bops can be specified on the input line which

invokes them in a manner similar to that used to pass arguments to C programs. bops are

used to either set modes or directly control some internal variable according to the state of

an input device. A bop may remain resident in the main loop, until it reaches a termination

condition. Most bops are written so that if they are invoked with an incomplete set of

parameters, they remain resident and prompt the user for additional input so they can

complete. The visible command, for example, sets the visibility flag for a bOBJECT; if it is

invoked without the name of an bOBJECT on the command line, it invokes a function which

places a menu of selectable bOBJECTS on the screen and remains in the main loop until a

bOBJECT is selected. Once it has the bOBJECT, it modifies the bOBJECT's visibility flag and

removes itself from the main loop.

4.4 The Manus Constraint System

A constraint package was a key element of Sutherland's classic work, Sketchpad[51], and

of Borning's Thinglab[5]. The manus constraint package is similar in spirit to both of

these systems, although both of them were restricted to 2D graphics. All three systems

incorporate rather general inechanisms for defining constraints and constraint satisfaction

methods. However, the two earlier constraint systems incorporate an analysis stage, and

Borning's work included two additional satisfaction techniques beyond one-pass solutions

and relaxation.

Manus was developed initially to handle position and orientation constraints on the

motion of rigid objects, and non-rigid motion of polygonal meshes. Thus, unlike the earlier

Sketchpad and Thinglab systems, which were intended to satisfy multiple, interacting con-

56

straints encountered in geometric and mechanical design problems, bolio does not perform

preliminary analysis of the constraint network. Since relaxation is time-consuming and may

not converge, the purpose of this constraint planning step is to identify constraints that can

be satisfied by simpler, direct means, so that relaxation is invoked only when necessary.

However, since bolio supports an interactive, time-varying virtual environment, perhaps

with active agents whose behavior may not be known a priori, constraint satisfaction has

to proceed in parallel with forward simulation, so that a constraint pre-planning stage may

not be feasible.

The manus constraint network is composed of bOBJECTs in the bolio world connected

by instances of constraints. Each instance of a constraint contains information specific to

the objects it is connected to and pointers to the code necessary to process the constraint.

Thus, constraint instances share procedures but maintain private copies of relevant data

structures.

Each time a constraint instance connects to a bOBJECT which should trigger it, it adds

a pointer to itself into the bOBJECTs who-cares list (part of the constraints structure).

Later, when a constraint instance modifies the bOBJECT, the bOBJECT notifies all constraint

instances in its who-cares list. Those constraints instances then execute, modifying other

bOBJECTs which trigger constraint instances in their who-cares list, etc. This process pro-

ceeds in an orderly manner managed by the manus-renormalize function.

When a bOBJECT triggers constraint instances in its who-cares list, it actually just

puts a pointer to each instance on the end of a global pending constraint instance list

(pending-queue). The manus-renormalize function goes sequentially through the queue

(in effect performing a breadth-first search of the constraint network) invoking constraint

instances as they are pulled from the list. As constraint instances execute, bOBJECTs they

affect place new items at the end of the queue. This procedure continues until the queue is

empty. We use several methods to ensure termination of this process:

a Allow a particular constraint instance to be placed on the queue only once per frame.

This technique is used by the DataGlove constraints3 which only sample the external

device once per frame. Other user interface devices (mouse, knobs) also follow this

3 See section 4.5.2.

57

convention.

" Program constraints such that their instances only modify their dependent bOBJECTs

once per frame, treating all subsequent constraint invocations as interrupts of the

forward simulation of the object's motion, which then instantaneously update the

object's position and orientation. E.g., if the user catches a bouncing ball with the

DataGlove, the glove constraint causes the simulation of the ball's motion to suspend;

the ball is repositioned according to the glove constraint. Constraints are prioritized

in the order in which they are invoked. Communication with the roach module 4 is

also performed using this technique.

" If none of these methods prove flexible enough to handle the interactions of several

constraints which all wish to control a single bOBJECT, the final resort is to express

the constraints in terms of forces and let the solution evolve over time via forward

simulation. This is used, for example, in the case of interpenetration prevention where

several constraint instances may all influence the position of the same bOBJECT. This

is similar to the technique (which has variously been called energy constraints[65],

dynamic constraints[4], or physically-based modeling[54]) in which systems of force

generating constraints are solved each frame to determine the positions of objects

under the influence of multiple constraints.

" Carefully construct constraint networks keeping in mind the action of the constraint

functions so as to avoid dangerous forms of loops.

The manus-renormalization function is invoked at three points within each iteration of

bolio's main loop. Two special constraint structures exist for the start and end of each

iteration, allowing events such as device sampling to be triggered by the start of a new

frame or control of the video tape recorder to be signaled by the end of a frame. The

renormalization operation is performed after each of these signals is sent. Renormalization

is also performed after the command portion of the main loop, between the start and end

of the frame.

4 See section 4.5.3

58

An example mans operation (or mop) is the link constraint. This mop updates the

size and position of a "link" object so that it appears to physically connect two other

objects. The code which satisfies an instance of this constraint looks at the positions of

the two objects and calculates an appropriate transformation matrix for the link object.

When either of the two objects is moved, the mop is re-executed to properly transform

the link object. The constraint instance contains a pointer to the code to calculate the

appropriate transformation for the link object given the positions of the other two objects,

and a structure containing pointers to the object to be used as a link, the two objects to

be linked, and flag telling whether the linking transformation should be volume conserving.

The link constraint allows the creation of graphical "rubberband lines" using any bOBJECT.

4.5 Bolio Tools

Application modules in the bolio system are called bolio tools. At the UNIX level, a

configuration file called BOLIOTOOLS in the bolio directory contains a list of modules to be

included in the version of bolio being compiled. The code for each tool is contained in a

separate subdirectory of the bolio directory. The tool directory has a makefile[24 to build

a library of that tool's code. For each included tool, bolio's compile script executes that

makefile and reads three configuration files from the tool's directory: the bopnames file,

which has a list of the main loop commands included for the tool; the mopnames file, which

has a list of the constraint commands for this tool; and the usrlibs file, which contains a

list of other system libraries which should be linked with the tool library into the executable

bolio. The first two files are used to construct branch tables for the main command parser

and to allow the constraint command parser to map input strings into function calls. The

third file is used to add argyiments to the command which links the executable bolio.

4.5.1 Core Tools

The bolio system includes a range of interactive graphics facilities on which to build appli-

cations. These include utility routines and interactive commands to manipulate the object

and viewport structures described above (e.g. using the available input devices for mov-

59

ing and sizing viewports, changing camera parameters, transforming and changing colors

of objects, positioning lights, etc.) Constraints to build object transformation hierarchies,

substitute objects with a bounding box representation, and form links are also included in

the core tools. These tools are of general use and are therefore included in all executable

versions of bolio.

4.5.2 Glove

The DataGlove is a device which senses the position, orientation, and finger posture of a

human hand (see figure 4-2)[70][50]. It transmits this information through a serial com-

munication line to the Hewlett-Packard workstation, where the data can be sampled when

needed. The glove is incorporated into bolio's main loop as follows. An instance of the

glovepoll constraint is attached to the start-of-frame structure (so that glove code is

given a chance to execute every time through the main loop). This constraint code updates

an internal structure (the struct glovepoll-data) containing the current dataglove val-

ues; instances of other constraints depend on the values in the glovepoll.data structure

and are triggered whenever those values are updated. One of the constraints which can be

dependent on the glovepoll.data structure is the dghand constraint, which transforms a

set of objects so that their screen position matches the position and orientation information

supplied by the DataGlove, thereby providing a screen echo of the hand.

The glovepoll constraint also checks the current glove values against a posture table

and sets a value in the glovepoll.data structure indicating the current hand posture.

Constraint instances triggered by the glovepoll.data structure use the posture number as

well as the position of the hand to perform actions. The link-_near constraint, for example,

stretches an object (draws a rubberband line) from one of the glove objects (usually the

index finger tip) to the neirest in a set of other objects in the scene whenever the glove

enters the appropriate posture. The grabber constraint acts similarly, except that when the

correct posture is detected, it finds the nearest object (if it is within a threshold distance)

and makes it track the location of the grabbing object (again, usually the index finger tip,

whose position is being controlled by the DataGlove through the glovepoll constraint).

Note that moving the object causes any constraint instances dependent on its positions to

60

be signaled and executed. With this set of constraints, it is possible to use the DataGlove

to interact with objects in the virtual world; those bolio tools which use position and

orientation of objects as input are automatically able to make use of the glove as an input

device.

The condition of matching a recorded posture can be used to trigger the execution of an

arbitrary script using the posture..script constraint. A separate script may be associated

with each of the following conditions: entering a posture, during a posture, and leaving

a posture. The scripts can contain arbitrary commands to any of the bolio tools or can

set up or delete instances of constraints. On entering the posture recorded as the glove

view posture, for example, an instance of the vp..track..obj constraint5 is established which

continuously moves the bCAMERA eye point to the current glove position and keeps the

bCAMERA view normal looking at the position of the cockroach. No scripts are executed by

the posture..script constraint while the glove remains in the follow posture (the "during"

phase). Upon leaving the follow posture, the posture..script constraint executes a script

which turns off the vp..track..obj constraint.

Another glove constraint which depends on the sampled data in the glovepoll.data

structure is the glove..cursor constraint. When this constraint detects the appropriate

posture, it maps finger bends into cursor movement up and down the bolio menu. By

making a hand movement, the glove wearer can cause this constraint to pass a button-press

event to the menu code and thereby select the menu item. With this constraint, the entire

system can be controlled through posture and positioning input from the glove rather than

the traditional keyboard and mouse.

The glove tool includes bop commands which print the status of the glove, calibrate

joint angles, set up posture conditions, and reset the glove hardware.

4.5.3 Roach

A control structure for hexapod walking has been implemented based on research into the

neural mechanisms found in cockroaches[191. The control system includes coupled oscillators

to coordinate the action of the legs to form appropriate gait patterns for a given speed. The

'5See section 4.5.8 below.

61

INTERFACE BOARD

Figure 4-2: The DataGlove, developed by VPL Research Inc., provides real-time sampling

of hand movement. The Polhemus sensor, manufactured by Polhemus Navigation Sciences

division of McDonnell Douglas Corporation, detects the position and orientation of the

wrist, while a system of modified fiber-optic cables stretched over the fingers detects the

bend angles of the hand's joints[17].

62

implemented model uses inverse-kinematics to position the leg according to the current

body position and the desired foot position[33][34].

Communication between the bolio environment and the roach module is accomplished

through two constraints. The first constraint is roachwalk, an instance of which is attached

to the start of the frame for each roach in the environment. It queries the roach module for

the transformation matrices defining the positions of the roach's parts (each movable part

is represented by a bOBJECT) for the current frame and triggers any constraint instances

which depend on those bOBJECTs. The other constraint is the roachorient constraint.

It provides a communication path from the rest of the bolio environment to the roach

through the bOBJECT representing the roach's body. Any time the roach's body is moved,

the roachorient constraint sends the information to the roach module, which updates its

internal data structures accordingly. Thus, for example, if the DataGlove picks up the roach

body, the roach module ensures that the roach's legs move too.

The results of simulated physical interactions are also propagated to the roach module

through the roachorient constraint; the dynamic simulation tracks the position of the

roach through a structure constrained to follow the roach's body object and updates the

position of that object according to the forces that affect it such as gravity and ground

forces or the collision force when the roach walks into the wall. It should be noted that

through the constraint structure the dynamic simulation module can incorporate the action

of the roach into the dynamics of the rest of the environment, for example allowing the

roach to push on objects when there is a collision.

Commands coming through bolio's standard input which begin with the word "roach"

are passed to the roach module's input parser. With this it is easy to mix roach initialization

and control commands into the scripts which set up and modify bolio environments.

4.5.4 Sa

Sa is a figure animation system which includes routines for describing and manipulating

jointed figures, an event-driven simulation mechanism, and an animation language for con-

trolling jointed figure motion[68][67]. Like many of the bolio tools, sa was developed as a

standalone program generating its own graphical output. By putting it into bolio, figures

63

sa controls can interact in a graphical environment which includes, for example, hexapods

and the DataGlove. Sa's simulation mechanisms take into account the articulated structure

of a walking figure, the current gait, and the support requirements to place the figure's

limbs in space. The transformation matrices which define the positions of the figure's parts

are copied to the bOBJECT which represents that part. Future work will use manus to

further integrate sa into the simulation environment for control legged locomotion with

inverse-kinematics and dynamics.

4.5.5 Pathplan

The pathplanning problem is one of finding a collision-free path through a cluttered envi-

ronment for a moving agent. 6 A map of the free space in the environment is constructed

by projecting the bounding box of each of the objects onto the ground plane of the envi-

ronment. The generalized bounding boxes are grown by the radius of the agent, so that in

subsequent operations the agent may be thought of as a single point. The map defining the

regions through which the agent may not travel is represented by the pathplan module as

a visibility graph (vgraph). To find a collision free path from current position of the agent

to any other point in the environment, the straight path is first checked for collisions with

objects in the environment, and is used if there are no collisions. If the direct path can't be

used, the vgraph is searched for the shortest alternate route which does not pass through

any objects.

As a preprocessing step, the pathplan module in bolio creates the vgraph from the

bOBJECTs in the current bOBJ..WORLD (with the exception of any bOBJECTs, for example, the

agent's body parts and the object representing the floor, entered in a special pathforbid

list). A data structure representing the vgraph is maintained internally by the pathplan

module and is optionally displayed as a bPOLYHEDRON consisting of polylines. When re-

questing paths, the start and end points may be specified either as numbers or as the

names of bOBJECTs whose world space centers are to be used. The resulting path is output

as a bPOLYHEDRON, the vertices of which are the points along the path. In this way, the

path can be displayed in the world, and modules which use the path to control movement

6 A detailed description of the implementation of pathplanning in bolio may be found in (47].

64

(currently only the roach) can access the resulting bOBJECT without knowledge of the source

of the path.

4.5.6 Face

The facial tissue simulation code described in this thesis is implemented as a boliotool. The

next chapter describes its implementation in detail.

4.5.7 Cam-moves and Moves

The cam..moves and moves bolio tools provide bops and mops for defining the movements of

cameras and objects over a sequence of frames and for defining their motion with respect to

the motion of other objects in the scene. The mv-obj -path constraint and the mv-vp-path

constraint cause a bOBJECT or a bCAMERA respectively to move along a piecewise linear path

defined by the vertices of a bPOLYHEDRON. The vp-track-obj constraint is used to control

the position and orientation of a bCAMERA using bOBJECTs to define one or both of the

following parameters. The eye bOBJECT defines the viewpoint of the object. The lookat

bOBJECT defines the direction for the view normal of the bCAMERA. If the eye bOBJECT is not

specified, the bCAMERA view point remains stationary and the view normal turns to track

the current position of the lookat bOBJECT. If only the eye bOBJECT is specified, then the

view normal is defined by the orientation of the eye bOBJECT. If both the eye and the lookat

are defined, then the bCAMERA position is determined from the eye bOBJECT, and the view

normal is defined by the lookat bOBJECT.

4.5.8 Robot

A set of routines to perform inverse-kinematics on jointed figures are provided by the robot

tool. The routines allow the specification of jointed figures using the Denavit-Hartenberg

(DH) description conventions, which define articulated links in terms of their rotation axes

and lengths[45]. This information is embodied in the Jacobian matrix, which can provide the

joint angle velocities needed to achieve a given end effector velocities through the calculation

of its pseudo-inverse[41][14].

65

The inverse-kinematics constraint in bolio (the ik constraint command) takes as ar-

guments a list of bOBJECTS which will serve as joints for an articulated figure. The DH

description of the figure is calculated based on the current locations of the objects in the

list. The first item on the list is the base and the last item is the end effector. The inverse-

kinematic code to calculate new joint angles is constrained to run any time either the base

object or the end effector object is moved. In this way, the pose of the figure can be ma-

nipulated by any bolio tool (the DataGlove or dynamic simulation) while maintaining the

kinematic relationships of the joints.

4.6 The Roach 'n' Glove Microworld Demo

A more complete example may clarify how these constraints are used, if not details of their

implementation. The roach and glove demo is a set of bolio scripts and menus which make

use of the most advanced features of the system. The next sections describe the simulation

in terms of the commands with which it can be manipulated. The following set of commands

is available at the keyboard or via of pop-up menus (items from the menus can be picked

with the DataGlove or the mouse).

While the simulation is running, it is possible to switch between two displayed scenes.

The first scene, or world, is the roach world which consists of the cockroach and various

objects (cubes and soccer balls) on a grid floor. ' The second world is the spring world,

which consists of only four of the objects from the roach world (three soccer balls and a

cube) which can be connected together via springs. In both worlds, the hand of the user

(who is wearing the DataGlove) moves in space among the objects. By forming the "grab"

posture, the link.near constraint is triggered and a red line is drawn from the current

glove location to the neares.t of the objects in the scene. If the user moves so that the

glove touches an object (moves within a specified distance of the bounding sphere), the

glove's grabber constraint causes the object to track the motion of the glove. This tracking

continues until the user leaves the grab posture.

In the roach world, the cockroach walks around on a ground plane randomly, in response

-Note that the word objects here refers to the cubes and soccer balls, not the floor, roach legs, and dghand

parts, all of which are bOBJECTs.

66

to a "follow" posture, or according to a path generated by the pathplanning module. For

random walking, the roach code merely picks a new point on the plane at random and

walks to it; when that point is reached, a new random point is picked and so on. Random

walking continues until some other roach command is selected. When the user's hand is in

the follow posture, a red line is drawn from the center of the roach to the projection of the

glove on the ground plane and the roach is told to walk along the path of the red line. The

red line and the roach's endpoint are updated every frame as long as the user is in the follow

posture. The last two methods for controlling the roach do not take into account obstacles

in the path. To create a path which avoids obstacles, the pathplanning tool can be invoked.

The first step in using the pathplanner is to build a vgraph (which must be recalculated if

the objects in the scene move) and then to request that a path be found. The roach is used

as the start point of the path, and the projection of the glove on the ground plane is the

end point of the path; the roach is then told to follow the path. It is also possible to pick

up and reposition the roach by moving close enough while in the grab posture.

Appendix A contains a list of the commands available to the user and describes how

they affect the constraint network and the data structures.

67

Chapter 5

Implementation of Dynamic

Tissue Simulation

This chapter presents the implementation details of the deformation model presented in

section 3.2. Just as the bolio animation system described in the last chapter is designed to

serve as a framework for testing interactive simulations, the soft tissue simulation package

described in this chapter is designed to serve as a framework for testing non-rigid dynamic

simulation techniques. A modular approach to this problem is crucial since the development

of the ideal system described in section 3.1 will require continued research.

5.1 Overview

The code for the facial tissue animation system is modularized as follows. The state infor-

mation for the dynamic simulation is stored in a network of structures. Each point sample

structure (a struct blot, see figure 5-1) contains state information for that point and a

pointer to the constraints structure (the same structure as that pointed to by bOBJECTs

as described in chapter 4), which describes its relationship to the other point samples and

structures in the model. The relationships are represented by instances of constraints, each

of which calculates a contribution to the force at the point sample. The most common con-

straint operator is the shock, which represents a generalized spring between two blots. The

constraint operator has a local data structure which encodes state data about the spring

68

struct blot

{ char *name; /* for command line interactions */

float mass; /* mass represented by this point sample */
WorldPoint position; /* pull vectors are relative to here */
WorldPoint velocity; /* movement per unit time */

WorldPoint force..so..far; /* sum of forces */
int mobile; /* if TRUE, blot position can be updated */
struct limbs *constraints; /* constraints acting on this blot */

Figure 5-1: The struct blot.

(see figure 5-2) and has pointers to the two blots which make up the endpoints of the spring.

The simulation time is recorded in a global structure called Time, of type struct timer,

as illustrated in figure 5-3. This structure is used by the numerical integration routines in

the simulate command' to trigger the execution of any force generating constraints acting

on blots.

The FACE structure (figure 5-4) is a set of lists which collect the blots and shocks into

layers. Currently, the FACE structure contains lists for three layers of blots and five layers

of shocks. The FACE structure also contains pointers to bolio polyhedral objects (bOBJECTS

of type bPOLYHEDRON), which are used to render the results of the simulation. The FACE

structure also contains a list of muscle.units (see figure 5-5), each of which is a named

collection of shocks attached to blots in the face.

The MUSCLE structure is a named collection of springs which can be controlled as a unit.

5.2 Force Constraints

The following constraint operators each define contributions to the force at blots given the

current state of the blots. Each instance of a force generating constraint is made dependent

on the start of a time step so that all instances of these constraints are executed once per

time step to calculate the total force acting on each blot. Their mathematical definition

See section 5.8.

69

struct shock.data

{ int elasticity; /* index into ela.funct array of pointers

to elasticity functions */

float constant; /* spring constant for this shock */

float viscosity; /* damping constant for this shock */

float orig-len; /* original length of this connection */

float current-len; /* last length calculated */

float cutoff; /* where the shock cuts off

(only if positive) */

struct blot *side_1, *side.2; /* the two sides of the spring */

Figure 5-2: The struct shock.data.

struct timer
{ float

float

struct

};
extern

now;
then;

limbs

struct timer

/* current time value */

/* last time; dt = now - then */

constraints; / all force constraints are

triggered by this */

Time;

Figure 5-3: The struct timer and the variable Time.

70

typedef struct
{

char
bOBJECT

bOBJECT

bOBJECT

bOBJECT
bOBJECT

bOBJECT
bOBJECT

1*

1*
1*

*name;
*source;
*bones;
*deep.fascia;
*smas;
*sup.fascia;
*skin;

*muscles;

the
the
the
the
the
the
the
the

name of this face */
source geometry of the face */

bone drawing */

deep fat drawing */

the smas drawing */

upper fat drawing */
the skin */

muscle drawing */

/* all the point samples

struct blot */

LIST *bone.blots;

LIST *smas.blots;

LIST *skin.blots;

of the face, lists of pointers to

/* immobile blots of the bottom layer */

/* the superficial musculo-aponeurotic

system layer */

/* the dermal layer */

/* the next four lists are lists of face.shock.entries */

/* springs representing horizontal layers */

LIST *bone.shocks; /* bottom layer of tissue */

LIST *smas.shocks; /* aponeurotic tissue */

LIST *skin.shocks; /* dermal tissue */

/* springs representing vertical and diagonal layers */

LIST *deep-fasciashocks; /* deep fascia */

LIST *sup.fascia.shocks; /* superficial fascia */

/* muscles */

LIST *muscle.units; /* list of muscle structures */

} FACE;

Figure 5-4: The FACE structure.

71

typedef struct
{ char *name; /* the name of this muscle */

LIST *fibers; /* the springs making up the muscle pointers
to face.shock.entries */

struct limbs *arms; /* for hanging constraints (i.e. twitch) */
} MUSCLE;

struct face.shock.entry

{ int from.blot-layer; /* which layer list to use */
int from.blot-number; /* which entry in the layer list */
int to.blot.layer;

int to.blot.number;

struct manus *shock; /* the constraint data structure */

Figure 5-5: The MUSCLE and the struct f ace.shock-entry.

was given in section 3.2.1. This section describes their implementation and data structures.

5.2.1 Shock

The shock constraint, as already mentioned, acts as a generalized spring. Its parameters

are two blots, a spring constant, and an elasticity function. On initialization, it calculates

the distance between the two blots and stores that value as the orig-len. When invoked at

a time step, it compares the current distance (calculated for the time step in current-len)

between the two blots to the original distance. A force is applied to each blot in either the

direction of the other blot (if the current length is greater than the original) or away from

the other blot (if the curreit length is less). The magnitude of the force is the constant

times the value returned by the elasticity function for the shock.

5.2.2 Gravity

The gravity constraint is very similar to the shock constraint, except that the force it

generates is dependent on the masses of the blots it acts between, rather than the distance

72

between them. A blot named "earth" is automatically created and serves as the default

connection point for gravity constraints acting on blots in the FACE structure.

5.2.3 Drape

The drape constraint is basically a collision detection constraint used to keep a blot from

entering through a region. Unlike shock and gravity constraints, this constraint depends

on a blot's position and on a region defined by a bOBJECT. Forces are applied to the blot

to keep it out of a region defined by the bOBJECT and the block.type field of the struct

drape-data structure (see figure 5-6). Two values of block-type are valid for any type of

bOBJECT; they are the block..plane which defines the region above the plane defined by

the world-space z value of the bOBJECT, and the block..sphere which defines the region

inside the world-space bounding sphere of the bOBJECT. The block.depthmap is valid only

for bOBJECTs of type bDEPTHMAP. In this type of drape constraint, the region into which the

blot cannot pass is defined by the values in the array of depth samples in the bDEPTHMAP

and the local-space to world-space transformation matrix of the bDEPTHMAP. To determine

the force on a blot, the inverse of the bDEPTHMAP's transformation matrix is applied to the

blot's position, which puts it into the bDEPTHMAP's local-space. The blot position's x and y

components in this space are used as indices into the bDEPTHMAP array. A weighted average

of the z values at the points surrounding the transformed blot is calculated and compared

with the transformed z value of the blot; if the blot's value is less than the depthmap

sample, a force is calculated to move it toward the surface of the depthmap. This force is

then transformed to world space and scaled by the constant and the weighting returned by

the elasticity function.

5.2.4 Cling

The cling constraint is exactly like the drape constraint, except that it always applies

forces to attract the blot to the surface of a region, independent of whether the blot is

inside or outside the region. The regions are defined just as they are in the case of the

drape constraint.

73

struct drape..data
{ int elasticity; /* index into table of elasticity functions */

float constant; /* material constant for the collision */

float threshold; /* how deep before cutting off */
float distance; /* how far away to start */

int block..type; /* 0 => bobj bounding sphere
1 => bobj world center z value */

Figure 5-6: The struct drape.data.

5.3 Elasticity Functions

All of the force generating constraints described above (except gravity) have as a parameter

an index into a table of elasticity functions. These functions describe how much force will

be generated by a constraint relative to how much the constraint is violated. Each elasticity

function receives as arguments the rest state and the current state of the constraint and

returns a positive real number weighting value. Currently implemented functions were

presented in section 3.2.1.

5.4 Muscle Control

5.4.1 twitch

The twitch constraint implements the key-framed control of muscle actions. Muscle actions

are defined as a list of time/scale pairs. The scale value tells how much each of the muscle

fibers is to be scaled relative to its original length at the specified time. At each time step,

the lengths of the muscle fibers are updated to an interpolated value between the nearest

time samples before and after the current time. Cosine interpolation is used to calculate the

intermediate value. Figure 5-7 shows the struct twitch..data which stores the information

associated with a twitch constraint.

74

struct twitch.data
{ float basetime; /* all times entries are relative to this */

float times, scales; /* time/scale pairs for interpolation */
int nosamples; /* number of time/scale pairs */

int last.sample; /* makes the current entry easier to find */
MUSCLE *muscle; /* which muscle to effect */
float *original-lengths;

/* original lengths of each muscle fiber */
int no.fibers; /* only apply to original number of fibers,

also tells size of original-lengths array */

struct limbs *constraints; /* in case of future constraints which
might relate these parameters to other
variables or to a model of higher control */

Figure 5-7: The struct twitch..data.

5.4.2 muscle-set

The rest lengths of the springs which serve as the fibers of the muscle units can be instan-

taneously set using the muscle-set command. The fibers of a specified muscle can either

be set to a specified length or can be scaled by a specified amount relative to their current

lengths. This command has no effect if the muscle is currently under the influence of a

twitch constraint.

5.5 Drawing and Interaction Constraints

In keeping with the bolio philosophy of modularity, the interaction between the facial tissue

simulation code and other simulation modules is performed through intermediate bOBJECT

structures. This can happen at two different levels. The first level associates a bOBJECT

with a single point sample in the tissue simulation. The second level associates a bOBJECT

with the network of point samples and springs in the FACE structure.

75

5.5.1 bobblot and blotbob

Two symmetric constraints are used to associate the position of point sample with the

position of a bOBJECT. An instance of the bobblot constraint applies a translation to the

matrix of a bOBJECT such that the center of its bounding box in world space is equal to

the position field of the struct blot which it is constrained to follow. The instance of

this constraint is made dependent on the struct blot so that whenever it moves, the

corresponding bOBJECT is updated.

The complementary constraint to the bobblot is the blotbob. An instance of this

constraint sets the position of a struct blot equal to the world space center of the bounding

box of the bOBJECT which it is constrained to follow. The instance of this constraint is made

dependent on the bOBJECT so that whenever it moves, the corresponding struct blot is

updated. This constraint allows the physical simulation to be influenced by manipulation

of bOBJECTs by other simulation or input modules (such as the DataGlove).

bOBJECT/struct blot pairs can be connected by one instance of each of these con-

straints. For example, a bOBJECT ball shape and a struct blot which stores the dynamic

information about the ball can be connected using the combination of the two constraints.

Normally, the position of the ball is controlled by the evolving dynamic simulation - it may

fall under gravity, bounce off the walls, floor, or other objects, or be connected via springs

to other objects in the world. If the position of the ball bOBJECT is changed by something

other than the physical simulation (say the DataGlove), then that new position is taken as

input to the simulation and influences the further evolution of the dynamic system.

5.5.2 update..all-face..objects

The shapes of surfaces and solids represented in the FACE structures are displayed by making

a correspondence between the position fields of the struct blots and the positions of

vertices in the set of bPOLYHEDRON bOBJECTs maintained in the FACE structure for the layers

of the network. This operation is invoked whenever a new drawing of the tissue simulation

is required. It updates the positions of the vertices and recalculates the surface normals for

the polygons representing the skin surface so that an accurate shaded picture can be drawn.

There is currently no high-level way to manipulate the struct blots in the FACE struc-

76

ture through the results of other object positioning modules (e.g., grabbing a handful of

tissue with the DataGlove), because the current simulation and rendering interface is not

fast enough to support that level of interaction.

5.6 Building FACE Structures

The flesh-out command is used to build a FACE structure from a source bPOLYHEDRON. The

command creates of the FACE structure such that the initial bone layer is the exact shape

and position of the source bPOLYHEDRON surface. The vertices of the source bPOLYHEDRON

define the positions of the point mass samples, and the edges of the polygons on the source

bPOLYHEDRON surface provide the local connectivity information to define the location of

the spring constraints which define the tissue layer.

Two types of connections are formed between the point samples within a layer. A mem-

brane connection is created between each pair of point samples which correspond to vertices

connected by an edge in the original bPOLYHEDRON description. The membrane connections

are meant to maintain the original distance between points, and thus are resistant to stretch-

ing and compression. Plate connections are meant to resist bending of the material. For

each pair of membrane springs which share a common point sample, an additional spring

is added between the other two point samples. This forms a triangular shape which resists

bending.

The flesh-out command constructs the three tissue layers by building out from the

vertices of the source bPOLYHEDRON along their vertex normals.2 The parameters of the

command include the deep-fascia..thickness and the superficiaLfascia..thickness, which define

the distances between the bone layer and the smas layer and the smas layer and the skin

layer, respectively, as measiured along the vertex normal. The bone layer is coincident with

the surface of the source bPOLYHEDRON. Each of these layers has the same arrangement of

point samples and springs. Two spring connections are made between each pair of adjacent

layers for each spring connection made within the smas layer. This forms diagonal cross-bars

which resist vertical compression and torsion of the tissue.
2The normal at a vertex is defined as the average of the outward facing normals of the polygons of which

the vertex is a member, normalized to unit length.

77

5.7 Numerical Integration

The numerical integration scheme (as described in section 3.2.1) is executed using the

simulate command. This command accepts as parameters the time step to use (dt) and

the number of iterations to perform (it will continue until interrupted with a button or

keyboard event if the number is negative). The command also accepts a number of optional

arguments. The -until time flag causes simulation to continue until the now field of

the Time structure reaches the specified time. Normally, the update-.all.f ace..objects

function is called every time step, however, the -skip count flag can be used to tell the

simulate command to perform count steps of integration before changing the shape of the

FACE bPOLYHEDRONs. This also inhibits redrawing of the graphics screen and thus saves

time when simulating the tissue at higher time resolution.

The -runge-kutta flag causes the simulate command to use a second-order version

of Runge-Kutta numerical integration. In this case, the command saves the current states

of all the blots in the simulation, and then forward simulates using the standard Euler

integration technique to get an approximation of the blot positions at the end of the time

step. At this point, the force constraints, which are dependent on the Time structure, are

triggered again to calculate the total force which would be acting on the blots if they were

actually moved to those positions. The force and velocity values calculated at the end

of the time step are then averaged with the values saved from the beginning of the time

step. These new averaged values are use to make the final calculation of the positions and

velocities at the end of the time step.

78

Chapter 6

Results

6.1 Experimental Results

Figures 6-1 through 6-3 show the behavior of the simulation technique under a variety of

initial and boundary conditions.

6.1.1 Wound Closure

Figure 6-1 shows a sequence of states from a simulation of wound closure in a tissue sample.

The force constraints within the lower two tissue layers are shown as lines, and the skin layer

is shown as a polygon mesh. The force constraints between the layers are not shown. The

initial configuration of the tissue model contains a hole which models a section of excised

tissue. A set of force constraints representing sutures are connected to the reference points

on the sides of the wound. The rest length of these force constraints is decreased over the

course of the simulation in order to effect wound closure. The boundary of the tissue sample

is unconstrained.

The simulation results show the deformation caused in the surrounding tissue as a result

of the wound closure procedure. The resulting deformation causes not only deformation in

the plane of the skin, but also shows changes in the thickness of the skin at various regions

around the wound closure. The bulges at the near and far sides of the closure match

observed "dog's ears" behavior of real tissue in response to surgical procedures[64].

The following is a bolio command script which controls simulation of the closure of an

79

elliptical excision. Semicolon is the comment character in bolio. The source bPOLYHEDRON,

fusif arm, used by the fleshout algorithm has missing polygons in the region which models

the excision. It was created using a standard 3D graphics object modeler[52].

;; wound closure test script

;;
setup graphics

#include lookat-wound
; read the source data object (this object has polygons missing to
; approximate a fusiform wound shape)
instance.-object /u/pieper/data/fusiform

; Build flesh layers out from the object. Both fascia layers are 0.07
; units thick (the fusiform object is 1 x 1 square). Each point sample

; has a mass of one unit (the -me flag sets the mass each). The force

; constraints built by the flesh-out command have a default material
; constant of 1.
fleshout fusiform -dfth 0.07 -sfth 0.07 -me 1
; Make triangles out of the polygons in the top surface

triangulate skin.face.fusiform

; Make original object invisible
visible fusiform -off

; use muscle structures to form sutures across the opening
; first two numbers are indices into the point sample list indicating the
; points to connect, the second two numbers indicate which layers to

; connect. The -c flag sets the material constant, the -m flag sets the

; material type to linear.
; put a set of sutures across the skin
add-muscle skinsuture 102 103 2 2 -c 5 -m 4
addamuscle skinsuture 91 92 2 2 -c 5 -m 4
add-muscle skinsuture 81 82 2 2 -c 5 -m 4
add-muscle skinsuture 70 71 2 2 -c 5 -m 4
; put a set of sutures across the smas
add-muscle smassuture 102 103 1 1 -c 5 -m 4
add-muscle smassuture 91 92 1 1 -c 5 -m 4
add-muscle smassuture 81 82 1 1 -c 5 -m 4
addamuscle smassuture 70 71 1 1 -c 5 -m 4
; put a set of sutures across the bone
add-muscle bonesuture 102 103 0 0 -c 5 -m 4
add-muscle bonesuture 91 92 0 0 -c 5 -m 4
add-muscle bonesuture 81 82 0 0 -c 5 -m 4
add-muscle bonesuture 70 71 0 0 -c 5 -m 4
; set up key-framed lengths for the sutures
setup twitch skinsuture 0 1 5 0.1 10 0.01 40 0.01 50 .5 -start 0.5

80

setup twitch smassuture 0 1 5 0.1 10 0.01 40 0.01 50 .5 -start 0.5
setup twitch bonesuture 0 1 5 0.1 10 0.01 40 0.01 50 .5 -start 0.5
; set damping value
damping 0.2
; simulate with Runge-Kutta integration, with timesteps of 0.01,
; redrawing every 5 frames, stop when time reaches 100.
simulate -dt 0.01 -skip 5 -runge..kutta -until 100

6.1.2 Draping Over Hard Tissue

Figure 6-2 shows deformation of a tissue sample as it travels over underlying hard tissue.

The bottom layer of the material is collision detected with the hard tissue via the drape

constraint operating on the sphere object (using the drape..sphere block.type) and the

floor (using the drape.plane block-type). The interaction of soft tissue with underlying

hard tissue is important for modeling the interaction of the lips and cheeks with the teeth,

and the general movement of the skin under the influence of muscle actions.

The following is a bolio command script which controls simulation of the tissue sample

draping over hard tissue.

balldrape

; animation test for skin dynamics, soft tissue draping over hard
;;

setup view
#include lookat -balldrape
; read base object for building tissue
instance...object data/grid.10.10 sourcegrid
; read the ball
instance..object data/sphere.obj ball
; read the plane
instance..object data/grid.5.5 floor
instance..object data/wiregrid.5.5 gridfloor
edit..xform floor -t 0 0 -0.2501 -s 4 4 1
edit-xform gridfloor -t 0 0 -0.25 -s 4 4 1
; change colors for the floor
colors floor -faceted -diff .98 .98 .98 -high 0.8 0.8 0.8 -spec 214
colors gridfloor -faceted -wire .05 .05 .05
colors ball -smooth -wire .05 .05 .05

81

4

Figure 6-1: (a) Progressive states of wound closure simulation. The simulation model

contains 522 sample points.

82

,a.

-- ii

Figure 6-1: (b) Progressive states of wound closure simulation.

83

; build flesh from source object. Fascia layers are 0.1 units thick
(source grid is 1 x 1). Each point sample has a mass of one unit (the

; -me flag sets the mass each)

flesh-out sourcegrid -dfth 0.1 -sfth 0.1 -me 1

; make skin surface renderable
triangulate skin.face.sourcegrid

; make the source invisible
visible sourcegrid

; add gravity to all the face blots
gravity-f ace -g 0.1

; drape over ball's bounding sphere -c sets the material constant
; of the drape
drape -c 1000 -s ball
; drape over floor plane
drape -c 1000 -p floor
;add-muscle muscle 35 65 1 1 4 20
; set damping to quell oscillation
damping 0.2

simulate -dt 0.05 -skip 2 -runge.kutta -until 50

6.1.3 Muscles Acting Within Tissue

Figure 6-3 shows a tissue sample falling under the influence of gravity (the gravity con-

straint) and colliding with a solid floor (the block-plane type drape constraint). A set

of five muscle fibers are connected across the tissue sample which contract to deform the

material. This simulation shows the combination of the following important aspects of fa-

cial tissue modeling: the multiple layer of tissue interact and deform in a realist volumetric

bulging in opposition to the line of contraction (the poisson effect); the soft tissue interacts

with underlying solid surface in a manner analogous to the interaction of soft tissue with

underlying hard tissue; and force constraints representing muscle actions are attached at

arbitrary points with in the tissue and controlled to obtain deformation behavior in the

tissue.

The following is a bolio command script which controls simulation of the tissue sample

with muscle action.

;; twitch

84

I~..4,.

-- ~~ ~ N.
S~ .~.I..v

N

.j~..

~4~Z

Figure 6-2: (a) Progressive states of hard tissue interaction simulation. The simulation

model contains 300 sample points.

85

.

.....
.........................

.

..-
..........

............................
......

...
................

.................
Ask.,.

N --- -----------

Figure 6-2: (b) Progressive states of hard tissue interaction simulation.

86

Figure 6-2: (c) Progressive states of hard tissue interaction simulation.

87

A --

Figure 6-2: (d) Progressive states of hard tissue interaction simulation.

88

;pk- A.-.-

X.. *

Figure 6-2: (e) Progressive states of hard tissue interaction simulation.

89

Figure 6-2: (f) Progressive states of hard tissue interaction simulation.

90

...

Figure 6-2: (g) Progressive states of hard tissue interaction simulation.

91

Figure 6-2: (h) Progressive states of hard tissue interaction simulation.

92

..........
......

Z.V0

....

......

..

;01

...... ..

...........

..............
...........

...

Figure 6-2: (i) Progressive states of hard tissue interaction simulation.

93

-~ ~ ~ -

4

Figure 6-2: (j) Progressive states of hard tissue interaction simulation.

94

4

Figure 6-2: (k) Progressive states of hard tissue interaction simulation.

95

- -~-
d ~ \~

Figure 6-2: (1) Progressive states of hard tissue interaction simulation.

96

.. ...I -...

Figure 6-2: (m) Progressive states of hard tissue interaction simulation.

97

;; animation test for skin dynamics, muscle acting in tissue

initialize graphics
#include lookat-twitch
; read base object
instance.object data/grid.10.10 sourcegrid
;instance-object data/grid.2.2 sourcegrid
; rotate object source object
edit-xform sourcegrid -r 0 10 0
; apply transformation matrix to source vertices
harden sourcegrid

; read the plane
instance-object data/grid.5.5 floor
instance-object data/wiregrid.5.5 gridfloor
edit-xform floor -t 0 0 -0.4501 -s 4 4 1
edit-xform gridfloor -t 0 0 -0.45 -s 4 4 1
; change colors for the floor
colors floor -faceted -diff .98 .98 .98 -high 0.8 0.8 0.8 -spec 1
colors gridfloor -faceted -wire .05 .05 .05

build flesh from source.

flesh-out sourcegrid -sc 2 -dfth 0.1 -sfth 0.1 -me 1

; make skin surface renderable
triangulate skin.face.sourcegrid

; turn off source
visible sourcegrid

; add gravity to all the face blots
gravityf ace -g 0.1

; drape over floor plane
drape -c 1000 -p floor

; put a bunch of fibers together in this muscle.
; first two numbers are indices into the point sample list indicating the
; points to connect, the second two numbers indicate which layers to
; connect. The -c flag sets the material constant, the -m flag sets the

; material type to linear.
addamuscle muscle 13 83 1 1 -m 4 -c 20

add-muscle muscle 33 63 1 1 -m 4 -c 20
add-muscle muscle 14 84 1 1 -m 4 -c 20

add-muscle muscle 34 64 1 1 -m 4 -c 20
add-muscle muscle 15 85 1 1 -m 4 -c 20

add-muscle muscle 35 65 1 1 -m 4 -c 20
setup twitch muscle 0 1 10 0.3 30 0.3 40 1 -start 2

; set damping to quell oscillation

98

damping 0.3
simulate -dt 0.05 -skip 5 -runge-kutta -until 50

6.2 Limitations of the Current Model and Directions for

Improvement

While section 3.1 looked at the long term goals for the development of a soft tissue simulator,

this section looks at near term goals for the prototype system. The improvements can

be installed in the near term to increase the range of possible simulations. The current

implementation has several shortcomings which will need to be refined as the system is

developed, but because the underlying system (bolio) has been written in a flexible manner,

changes in the physical model can often be accomplished with minor code revisions. (Many

such revisions have been performed in developing the current model.) The following sections

look at some of the issues which should be addressed as the model is revised.

6.2.1 Deformability

The model of deformability, as currently implemented, includes only point to point force

constraints (springs). This is a good technique, in general, since three dimensional structures

can be built using springs as building blocks. However, some behavior of soft tissue is best

described in terms of constraints involving more than two points. One such behavior is the

volume-preserving deformation of fluids, as exhibited by the fluids of the ground substance.

Another behavior which occurs at a higher level is the problem of collections of springs

inverting. This occurs because the springs don't accurately model the fact that points

of a solid element are not able to pass through each other. A solution to both of these

problems is to define elements which are collections of points. The volume of the collection

can be calculated, and after deformation, forces can be applied to points to move them in

a direction which would tend to return the collection to its original volume. Inversion of a

tetrahedron of points can be determined by looking at the position of a point with respect

to the plane defined by the other three points - if the point moves on to the wrong side of

that plane, a force can be applied to move it back.

99

Figure 6-3: (a) Progressive states muscle action and hard tissue interaction simulation. The

simulation model contains 300 sample points.

100

Figure 6-3: (b) Progressive states muscle action and hard tissue interaction simulation.

101

Figure 6-3: (c) Progressive states muscle action and hard tissue interaction simulation.

102

Figure 6-3: (d) Progressive states muscle action and hard tissue interaction simulation.

103

Figure 6-3: (e) Progressive states muscle action and hard tissue interaction simulation.

104

Another technique which could be applied to improve the efficiency and accuracy of the

simulation in situations of large and irregular deformation would be to automatically adjust

the resolution of the sampling depending on the amount of deformation; that is, to create

new point samples and springs in areas where the model is experiencing large amounts of

deformation and leaving the lower resolution in the areas of lower deformation. This would

allow for high resolution sampling of regions of complex deformation (for example, where

the skin is wrinkling) while maintaining a simpler representation in regions of less complex

deformation. Of course it would also be desirable to adaptively reduce the resolution of

the sampling if the deformation returns to a less complex state. The multigrid method of

relaxation is similar to this approach, except that it changes the resolution of the sampling

throughout the entire simulated material. It is used to evaluate a gross measure of the

deformation at low resolution which serves as a first approximation from which to develop a

more accurate deformation at high resolution. Feynman successfully applied the multigrid

technique for simulating the deformation of cloth[15].

A related problem occurs in the time domain. When the state of forces acting on a point

sample is changing rapidly with respect to time, the fixed time step of integration may not

accurately sample that change, and thus, an incorrect force may be used. A solution to

this problem is to take a measure of the change in the force during the time step, perhaps

by comparing the forces calculated at the start and the end of the time step in the version

of Runge-Kutta integration described in section 5.8. The numerical analysis literature

contains this and other schemes for automatically adjusting integration time steps[49][44].

An interesting idea which seems not to have been addressed is the possibility of using small

time steps in one part of the simulated material (perhaps at a collision point, where the

forces are changing rapidly) while using a large time step for the samples in the rest of

the material where the forces are not changing as rapidly. A simulation using multiple

time steps could potentially be much faster than one which maintains a global time step,

although the added work of keeping track of local time steps and the problem of integration

at the boundaries between regions may make this approach infeasible.

105

6.2.2 Formability

The tools currently available to build simulation models operate at either too gross or too

fine a detail to be practical for building accurate models. The flesh-.out command, for

example, has only a single thickness parameter for each of the fascia layers, which doesn't

allow for thickness variations across the face. The flesh.out command and the FACE

structures are currently hard-coded to support the three-layered model in use at this time.

The command line method of building constraint networks is unworkable for defining large

simulation models. Some form of editor should be designed to provide higher level tools

for forming the simulation models. A grow/shrink operator might be built, for example, to

change the rest lengths of springs within a selected region of material. Similar operators

could change the material properties within regions or increase/decrease the resolution of

the sampling. While this type of editor would be useful for generating various models to test

the simulation, a better approach for generating complex models in the long term will be

tools which automatically extract physical models from scanned patient data (as discussed

in section 3.1.2).

6.2.3 Reformability

There are currently no high level tools for removing springs from the FACE structures. An

appropriate tool would allow selection of a region of the tissue and update the FACE and

bOBJECT data structures appropriately.

6.2.4 Controllability

The current use of cosine interpolation between key values to control muscle lengths is

awkward for defining coordinated muscle actions. A facial muscle model based on FACS is

being developed by Waite[60]; this model should be incorporated into the simulator.

106

6.2.5 Interactivity

Speed

The main interactivity improvement to be made to the prototype is to increase the execution

speed. To some extent, this will be achieved by porting the code to faster machines -- newer

versions of graphics workstations. However, since this will only provide a speed improvement

of a few times at best, a more promising approach is to look at distributing the simulation

over multiple processors. This could be implemented by using a special purpose parallel

computer, such as a Connection Machine, or by using several workstations connected via

a local network. Because it is a discrete simulation model, the simulation is well suited to

parallel computation no matter what the architecture, and either approach would require

special purpose coding changes to support the parallelism.

Rendering

The use of triangulated mesh as the output primitive introduces some rendering problems

since it is not symmetric. While the input bPOLYHEDRON for the flesh-out command need

not be triangular, the output polygons in the skin bPOLYHEDRON mesh must be triangular

in order to ensure that the resulting polygons are planar in spite of the movements of the

vertices. A vertex in the mesh is in both of the two triangles of the grid section to the lower

left and the upper right, but is in only one of the triangles of the upper left and lower right

grid sections. When this point moves, the change in the rendered surface is not distributed

evenly, having a much larger impact in the directions where it affects two triangles than in

the directions where only one triangle is affected. This problem is localized to the rendering

of the surface and does not represent an asymmetry in the underlying physical model. This

problem would be eliminated if a higher order interpolation were used to render the surface

rather than the linear interpolation of the triangulated mesh. A hermite spline surface

patch, for instance, would eliminate this asymmetry.

Other rendering issues include specifying optical properties for the skin surface. Cur-

rently, a shiny, sickly green is chosen by default, and rendering is performed without texture

mapping or shadows. The optical properties of the skin should change from point to point

107

on the skin surface and should also be able to change over time to simulate effects like

blushing or going pale. Obviously, a wide range of skin color choices should be available.

Some effort should be made to find rendering techniques which better represent the fine

detailed texture of skin texture, the appearance of facial hair, and the play of shadows on

the face.

108

Chapter 7

Conclusion

This thesis has presented a mathematical model which can be used to simulate many of the

aspects of the mechanical behavior of facial tissue which are relevant to plastic surgery. A

set of criteria were established by which to judge the development of surgical simulators:

deformability, formability, reformability, controllability, and interactivity. The model can

simulate the action of layers of soft tissue as they interact with underlying hard tissue,

internal muscle forces, and external forces such as gravity. Models can be built which ap-

proximate patient anatomy including features such as excised skin. thesis has also described

directions for improvement of both the model and the system. This thesis has also presented

an interactive simulation platform which has many features that will be critical in future

surgical simulators.

The main conclusion to draw from the work presented in this thesis is that the technology

for computer simulation of human facial tissue is not yet completely understood, but that the

potential application of such technology would be very valuable. The problem is difficult

because human facial tissue is complex in behavior (and thus it is hard to predict its

response to applied forces) and complex in anatomy (and thus it is difficult to build models

which represent the reality of a living subject). Computer modeling of soft tissue will be

very valuable because understanding the nature of soft tissue is critical for the successful

application of plastic and reconstructive surgery.

The second conclusion to draw is that in order to be useful in a clinical setting, the

simulation must be embedded in an interactive system. The graphical output should allow

109

the user to watch the changing shape of the material, since this helps develop an under-

standing the mechanical deformation process. The input devices should allow interaction

with the simulation using the same gestures and motions as would be used when dealing

with the real physical objects. Another important requirement of an interactive system is

high-performance computation. This is particularly true in this case due to the complexity

of simulating soft tissue. Historic trends indicate that the price of computer hardware will

go down and that performance will increase. This suggests that while today's hardware

cannot support a simulator of plastic surgery, future systems, possibly employing parallel

computation, will be powerful enough and will be available at a low enough price for a

breakthrough in clinical application.

110

Acknowledgments

"It takes a whole lot of help to make it on your own." Steve Forbert

Many thanks are due to many people, here are a few of each. My wife Carol, for agreeing

to come on an educational adventure (it ain't over yet!), and then for making it the best

time of my life. Mom and Dad, Dave and Jim, Grandma and the rest of my Family (Piepers

and Mishlers) for love and support. To the playpen kids, for a great place to live and work,

the folks in cga who've made the snakepit, and everyone in the building for making the

Media Lab a great place to study. To David Zeltzer for guidance and technology. To Joe

Rosen for inspiration, background, and vision. To Bubu for the bball idea. To Cliffie for the

"b" word. To Hewlett-Packard Corporation for the great machines to work on. To NHK,

Gould, Apple, and all the other far-sighted companies who've made Computer Graphics

and Animation at the Media Lab possible.

The bolio system has been a group effort in every sense. Cliff Brett wrote the original

version of bolio and much of the internal graphics code in the current version. David

Sturman wrote the DataGlove interface and helped developed many demo scripts including

the Roach 'n' Glove demo. Mike McKenna wrote the roach module. David Zeltzer wrote the

skeleton animation system. Paul Dworkin helped design the functionality of bolio. Peter

Schroeder wrote the pathplan module and the moves and cam.moves modules. Dave Chen's

graphics code in rendermatic have been an invaluable example for much of bolio's internal

structure. Dave also wrote the inverse-kinematics module. The contributors to bolio have

shown great patience with my naming conventions and my programming style.

111

Bibliography

[1] Rohan Abeyaratne. MIT Professor of Mechanical Engineering, personal communica-
tion.

[2] Rohan Abeyaratne. Constitutive law for an elastic material. In Course Notes for
Applied Elastcity, chapter 4. MIT, Fall 1987. unpublished.

[3] R. J. Atkin and N. Fox. An introduction to the theory of Elasticity. Longman Group
Limited, London, 1980.

[4] Ronen Barzel and Alan H. Barr. A modeling system based on dynamic constraints. In
Computer Graphics, volume 22, August 1988.

[5] A. Borning. Thinglab - a constraint oriented simulation laboratory. In Technical
Report No. SSL-79-3, Xerox PARC, Palo Alto, California, July 1979.

[6] Cliff Brett, Steve Pieper, and David Zeltzer. Putting it all together: An integrated
package for viewing and editing 3D microworlds. In Proc. 4th Useniz Computer Graph-
ics Workshop, Cambridge, MA, October 1987.

[7] William J. Cromie. Computer-aided surgery. MIT Report, XVI(9), November 1988.

[8] Robert A. Debrin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In Com-

puter Graphics, volume 22, August 1988.

[9] Xiao Qi Deng. A Finite Element Analysis of Surgery of the Human Facial Tissues.

PhD thesis, Columbia University, 1988.

[10] Rod Deyo, John A. Briggs, and Pete Doenges. Getting dynamics in gear: Graphics

and dynamics in driving simulation. In Computer Graphics, volume 22, August 1988.

[11] Paul Ekman. Cross cultural studies of facial expression. In Paul Ekman, editor, Darwin

and Facial Ezpressions, chapter 4. Academic Press, New York San Francisco London,

1973.

[12] Harry R. Elden. Biophysical analysis of aging skin. In Harry R. Elden, editor, Bio-
physical Properties of Skin, chapter 1. Wiley-Interscience, New York, 1977.

(13] Elliott H. Rose, M.D., Lars M. Vistnes, M.D., and George A. Ksander, M.S. A mi-

croarchitectural model of regional variations in hypodermal mobility in porcine and

human skin. Annals of Plastic Surgery, 1(3), May 1978.

112

[14] Alejandro J. Ferdman. Robotics Techniques for Conrolling Computer Animated Fig-
ures. Thesis Submitted to the Department of Architecture, Massachusetts Institute of
Technology, 1986.

[15] Carl Feynman. Modeling the Appearance of Cloth. Thesis Submitted to the Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
1986.

[16] S. S. Fisher, M. McGreevy, J. Humphries, and W. Robinett. Virtual environment
display system. In ACM 1986 Workshop on Interactive 3D Graphics, October 1986.

[17] James D. Foley. Interfaces for advanced computing. Scientific American, pages 127-
134, October 1987.

[18] G. Jost, M.D. and Y. Levet, M.D. Parotid fascia and face lifting: A critical evaluation
of the SMAS concept. Plastic and Reconstructive Surgery, 74(1), July 1984.

[19] C. R. Gallistel. The Organization of Action: A New Synthesis. Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1980.

[20] M. J. V. Gordon, B. Strauch, and S. A. Blau. Abstract of paper in progress and
personal communication, 1987.

[21] R. D. Harkness. Mechanical properties of skin in relation to its biological function and
its chemical components. In Harry R. Elden, editor, Biophysical Properties of Skin,
chapter 11. Wiley-Interscience, New York, 1977.

[22] David Haumann. Modeling the physical behavior of flexible objects. In SIGGRAPH
'87 Course Notes on Topics in Physically Based Modeling, August 1987.

[23] Henry Gray, F.R.S. Anatomy, Descriptive and Surgical. Stein and Day, New York,

1977.

[24] Hewlett-Packard Company. HP-UX programmers manual, 1988.

[25] Hewlett-Packard Company. Starbase reference, 1988.

[26] J. M. Pensler, M.D., J. W. Ward, M.D., and S. W. Parry, M.D. The superficial
musculoaponeurotic system in the upper lip: An anatomic study in cadavers. Plastic

and Reconstructive Surgery, 75(4), April 1985.

[27] Jeffrey L. Marsh, M.D., Michael W. Vannier, M.D., W. Grant Stevens, M.D., James

0. Warren, B.S.A.E, Donald Gayou, Ph.D., and Daniel M. Dye, Ph.D. Computerized
imaging for soft tissue and osseous reconstruction in the head and neck. Clinics in

Plastic Surgery, 12(2), April 1985.

[28] R. M. Kenedi, T. Gibson, J. H. Evans, and J. C. Barbenel. Tissue mechanics. Physics

in Medicine and Biology, 20(5):699-717, February 1975.

[29] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and

Applications, May 1988.

113

[30] N. Magnenat-Thalmann, E Primeau, and D. Thalmann. Abstract muscle action pro-
cedures for human face animation. Visual Computer, May 1988.

[31] Mario Gonzalez-Ulloa, M.D., F.A.C.S., F.I.C.S., F.R.C.M. and Eduardo Stevens Flores,
M.D. Senility of the face-basic study to understand its causes and effects. Plastic
and Reconstructive Surgery, 36(2):239-246, 1965.

[32] Mark L. Lemmon, M.D. Superficial fascia rhytidectomy. Clinics in Plastic Surgery,
10(3), July 1983.

[33] Michael McKenna and David Zeltzer. Gait control and dynamic simulation for legged
locomotion. MIT Media Laboratory Computer Graphics and Animation Group Work
in Progress, National Science Foundation Grant Number IRI-8712772: Modeling Motor
Behavior and Virtual Environments for Three Dimensional Computer Animation.

[34] Michael McKenna and David L. Zeltzer. Dynamic simulation of autonomous legged
locomotion. 1989. Submitted for publication.

[35] Thomas A. McMahon. Muscles, Reflexes, and Locomotion. Princeton University Press,
Princeton, New Jersey, 1984.

[36] Michael W. Vannier, M.D., Jeffrey L. Marsh, M.D., and James 0. Warren, M.D. Three
dimensional computer graphics for craniofacial surgical planning and evaluation. In
Computer Graphics, volume 17, July 1983.

[37] Gavin S. P. Miller. Motion dynamics of snakes and worms. In Computer Graphics,
volume 22, August 1988.

[38] Debi P. Mukherjee and Allan S Hoffman. Physical and mechanical properties of elastin.
In Harry R. Elden, editor, Biophysical Properties of Skin, chapter 6. Wiley-Interscience,
New York, 1977.

[39] Fredric I. Parke. Computer generated animation of faces. Proceedings of the ACM
Annual Conference, 1, 1972.

[40] Fredric I. Parke. Parameterized models for facial animation. Computer Graphics and
Applications, November 1982.

[41] Richard P. Paul. Robot Manipulators: Mathematics, Programming, and Control. MIT
Press, Cambridge, Massachusetts, 1981.

[42] Stephen M. Platt. A Structural Model of the Human Face. PhD thesis, University of
Pennsylvania, 1985.

[43] Stephen M. Platt and Norman I. Badler. Animating facial expressions. In Computer
Graphics, volume 15, August 1981.

[44] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipice in C: The Art of Scientific Computing. Cambridge University
Press, Cambridge, 1988.

114

[45] Eric Ribble. Synthesis of Human Skeletal Motion and the Design of a Special-Purpose
Processor for Real-Time Animation of Human and Animal Figure Motion. Thesis
Presented to the Department of Electrical Engineering, Ohio State University, 1982.

[46] Mark Rosenzweig and Arnold Leiman. Physiological Psychology. D. C. Heath and
Company, 1982.

[47] Peter Schroeder and David Zeltzer. Pathplanning inside BOLIO. In SIGGRAPH '88
Course Notes on Synthetic Actors, August 1988.

[48] Alvy Ray Smith. The Viewing Transformation. Computer Graphics Project, Computer
Division, Lucasfilm Ltd., Marin, Califoria, May, 1984.

[49] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
1986.

[50] David J. Sturman, David L. Zeltzer, and Steve Pieper. Hands-on interaction with
virtual environments. 1989. Submitted for publication.

[51] Ivan E. Sutherland. Sketchpad: A man-machine graphical communication system.
In Proceedings of the AFIPS Spring Joint Computer Conference., volume 23, pages
329-346, Spring 1963.

[52] Symbolics, Inc. S-geometry manual, 1988.

[53] Dimetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation: Viscoelas-
ticity, plasticity, fracture. In Computer Graphics, volume 22, August 1988.

[541 Dimetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically deformable
models. In Computer Graphics, volume 21, July 1987.

[55] David Thompson, William Buford, Loyd Myers, David Giurintano, and John Brewer.

A hand biomechanics workstation. In Computer Graphics, volume 22, August 1988.

[56] V. Wright, M.D., F.R.C.P. Elasticity and deformation of skin. In Harry R. Elden,

editor, Biophysical Properties of Skin, chapter 12. Wiley-Interscience, New York, 1977.

[57] Arthur J. Vander, James H. Sherman, and Dorothy S. Luciano. Human Physiology:

The Mechanisms of Body Function. McGraw Hill, Inc., New York, 1975.

[58] Jouko Viljanto. Tensile strength of healing wounds. In Harry R. Elden, editor, Bio-

physical Properties of Skin, chapter 13. Wiley-Interscience, New York, 1977.

[59] Vladimir Mitz M.D. and Martine Peyronie M.D. The superficial musculo-aponeurotic

system (SMAS) in the partoid and cheek area. Plastic and Reconstructive Surgery,

58(1):80-88, July 1976.

[60] Clea Waite. The Facial Action Control Editor, face: A Parametric Facial Expression

Editor for Computer Generated Animation. Thesis Submitted to the Media Arts and

Sciences Section, Massachusetts Institute of Technology, 1988.

115

[61] Keith Waters. A muscle model for animating three-dimensional facial expression. In
Computer Graphics, volume 21, July 1987.

[62] Wayne F. Larrabee, Jr., M.D. A finite element model of skin deformation. Laryngo-
scope, pages 399-419, April 1986.

[63] Jerry Weil, 1987. unpublished manuscript.

[64] William C. Grabb, M.D. and James W. Smith, M.D. Plastic Surgery. Little, Brown
and Company, Boston, 1979.

[65] Andrew Witkin, Kurt Fleischer, and Alan Barr. Energy constraints on parameterized
models. In Computer Graphics, volume 21, July 1987.

[66] F. E. Zajec, E. L. Topp, and P. J. Stevenson. A dimensionless musculotendon model.
Proceedings of the 8th Annual Conference of the IEEE Engineering in Medicine and
Biology Society, 1986.

[67] David L. Zeltzer. Representation and Control of Three Dimensional Computer Ani-
mated Figures. PhD thesis, Ohio State University, August 1984.

[68] David L. Zeltzer. Motor control techniques for figure animation. Computer Graphics
and Applications, 2(9), November 1982.

[69] David L. Zeltzer, Steven D. Pieper, and David J. Sturman. An integrated graphi-
cal simulation platform. Proceedings of Graphics Interface 89, 1989. Submitted for
publication.

[70] T. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill. A hand gesture
interface device. In Proceedings of Human Factors in Computing Systems and Graphics
Interface, pages 189-192, 1987.

116

Appendix A

Roach 'n' Glove Microworld

Commands

In the lists below, the mnemonic alias for the command is given, followed by the command

name as it appears on the menu. Most of the commands actually invoke scripts to perform

the specified actions. Each of the commands is preceded by a back-quote (') when typing

the keyboard alias.

A.1 Physical Simulation Commands

e p+: physics on. This turns on the simulation clock. When the simulation clock is

turned on, the system calculates the effect of force generating constraints (springs,

gravity, collision detection) and integrates the forces and velocities of the objects to

calculate new positions in each frame.

* p-: physics off. This turns off the simulation clock.

e op: objects pyramid. This command connects four objects together with springs in a

tetrahedral shape. Any of the objects in the resulting structure may be moved (e.g.,

picked up by the glove) and the effect will be transferred to the other objects via the

springs.

e ot: objects triangle. Three objects are connected in a triangle with springs.

117

" ob: objects bola. Four objects are connected with springs to form a bola shape. One

object in the middle connects to the three other objects, each of which only connects

to the middle object.

* of: objects free. All spring constraints are deleted.

" f-: floor off. The collision detection constraint which prevents the objects from passing

through the floor grid and the walls is turned off. The floor is on by default.

" f+: floor on. The collision detection constraint for the floor and walls is turned back

on.

A.2 Roach Commands

" r+: roachwalk on. This command activates the roachwalk constraint. This constraint

is dependent on the start of each frame, and causes the roach to update the position

of its bOBJECTS to reflect the state of the behavioral simulation.

" r-: roachwalk off. This command suspends execution of the roachwalk constraint.

" rc: roach center. This commands the roach module to move the roach back to the

center of the floor grid. The roach's bOBJECTS are updated accordingly.

" rrw: roach random walk. This command puts the roach into random walking mode.

In this mode, the roach picks a random point on the floor grid and walks to it. When

it reaches the point, it picks a new one randomly.

* rv+: roach view on. This command attaches the bCAMERA to the roach's position and

orientation, providing, a view as if you were "riding the cockroach". The DataGlove

is also re-oriented to move relative to the roach.

* rv-: roach view off. This command makes the camera stop following the roach.

118

A.3 Glove Commands

* gc: glove calibrate. This command records a set of key postures to set the calibration

tables in a struct glovepoll.data. The calibration records the flex values for the

user's joints for a series of poses. First, with all joints fully extended; second, with

the thumb closed as far as possible and the other fingers fully relaxed; and third, with

the thumb relaxed and the other fingers closed. Twenty samples of the flex values are

averaged for each posture in order to determine the range of motion for each of the

joints.

* gg: glove grab. This command sets the struct glovepoll-data posture table entry

for the grab command. To record the posture, the glove module performs 30 consec-

utive reads of the DataGlove, and stores the minimum and maximum values recorded

for each joint. Subsequently, whenever the glovepoll constraint detects that all of

the joint positions are within the range of those recorded for the grab posture, the

number for that posture is set in the struct glovepoll.data. Both the link.near

and the grabber constraints are dependent on the grab posture.

* gm: glove menu. This command sets the struct glovepoll-data posture table

entry for the glove menu command. When the menu posture is entered, the menu

appropriate to the current world is displayed, and the joints of the index and middle

fingers control the cursor's movement up and down the menu. When the desired menu

item is highlighted, it can be selected by a twist of the hand. This is implemented via

the glove.cursor constraint, which is dependent on the menu posture.

e gf: glove follow. This command sets the struct glovepoll-data posture table entry

for the glove follow command. When the follow posture is entered, a line is drawn

from the current position of the roach to the current projection of the glove position

on the ground plane. The roach is told to walk to the projection of glove position. As

long as the glove remains in this posture, the path will be continuously updated and

the roach will follow the changing position of the glove.

119

" gp: glove path follow. This command acts the same as the glove follow command

except that rather than following a straight line from its current position to the glove

shadow, the roach follows a path calculated by the pathplan module. The shortest,

collision-free path from the roach to the glove shadow is continuously calculated while

the glove is in the path follow posture.

" gv: glove view. This command sets the struct glovepoll-data posture table entry

for the glove view command. When the view posture is entered, the view camera is

constrained so that the eye point tracks the position of the glove and is always looking

at the center of the roach's body.

A.4 View Commands

e vr: view reset. This command resets the view parameters to their default values.

e ve: view exaggerated. This command loads a set of view parameters which correspond

to a very wide angle lens. The exaggerated perspective provides a somewhat more

convincing sense of depth which can help the user correlate their hand movements

with the movements of the glove in the simulated world.

* 3+: red/green 3D display on. This command puts the screen into red/green stereo

mode for viewing with special glasses which have one red lens and one green lens. A

separate image is rendered for each eye; one in shades of red for the eye with the red

lens and one in shades of green for the eye with the green lens. The two images of the

scene are blended on the screen.

@ 3-: red/green 3D display off. This command turns the red/green stereo mode off.

A.5 Robot Arm Commands

* ra+: robot arm on. This command turns on a four joint inverse-kinematic robot arm.

The base object of the robot arm is fixed in space above the surface of the floor grid,

and the end effector is pulled down to the floor by gravity. While either the base or

120

the end effector can be manipulated by the glove, the kinematic relationships of the

arm are maintained.

e ra-: robot arm off. This command turns the robot arm off.

A.6 Pathplanning Commands

" vm: vgraph make. This command creates a visibility graph for the current positions

of the objects in the world. A bPOLYLINE bOBJECT, which represents the vgraph, is

displayed to show the possible paths for the roach in the current world.

" v+: vgraph visible. This command turns the vgraph bOBJECT visible.

" v-: vgraph visible. This command turns the vgraph bOBJECT invisible.

121

