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Abstract

The emergence of e-commerce business models (such as Airbnb and Amazon) brings
opportunities and challenges to their operations. This thesis studies several estimation
and optimization problems within the online platform domain, using data-driven
approaches in operations management.

The thesis consists of three components. Motivated by the unique setting of
Airbnb, in the first work, we consider a game-theoretical setup in which each seller on
the platform provides a single-unit product and competes with one another on price.
We investigate sellers’ optimal pricing decisions and the platform’s optimal assortment
display policy. We find that the platform should display the entire assortment to all
the customers when demand is sufficiently high. Moreover, we propose a tabulation
algorithm and a mixed-integer programming formulation to effectively solve for the
sellers’ and the platform’s optimal decisions. Additionally, in the optimal display
policy, we incorporate constraints to guarantee a certain degree of seller and customer
fairness on both system and individual levels.

The second work is also closely related to marketplaces like Airbnb, where we
estimate and optimize the impact of photo layout. We apply Resnet50, a convolutional
neural network model, to build two separate, supervised learning models to evaluate
the image quality and room types posted by Airbnb hosts. Then, we characterize
the overall impacts of photo layout by the room type, photo quality, and display
order. To address the estimation challenges in the Airbnb setting, we propose a novel
pairwise comparison model to consistently estimate the impact of photo layout. Our
estimation results suggest that the cover image has a significantly more significant
impact than non-cover photos. A high-quality bedroom cover image leads to the
most significant increase in demand. The counterfactual analysis shows the potential
impact when adopting the optimal photo layouts.

In the third work, we collaborate with a global online fashion retailer, Zalando, to
optimize large-scale price discount decisions. We address Zalando’s local and global
business challenges by applying a three-step process. We cluster products into groups
that behave similarly and pre-solve the aggregated problem. In the second step, we
decompose the problem using Lagrangian relaxation into a problem for each product
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(SKU) and provide an efficient way to identify the Lagrange multipliers. Finally, we
optimize decisions for individual products addressing local business constraints. For
this new approach, which was implemented as part of Zalando’s price discount decision
process, we provide results from offline tests and field experiments to demonstrate its
benefit.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Engineering Systems, MIT

Thesis Committee Member: Stephen Graves
Title: Abraham J. Siegel Professor of Management, MIT

Thesis Committee Member: Víctor Martínez de Albéniz
Title: Professor of Production, Technology and Operations Management, IESE Busi-
ness School
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Chapter 1

Introduction

1.1 Motivation

The field of Operations Management focuses on the business operations decision-

making process by increasing its efficiency. With technological advances, the emer-

gence of new business models, like e-commerce markets, brings both opportunities

and challenges to their operations. The widespread COVID-19 pandemic magnifies

such challenges. Covid-19 adds $219 billion to US e-commerce sales in 2020-2021

(Berthene 2022). Koetsier (2020) estimates that COVID-19 Accelerated e-commerce

growth for four to six years.

There are several distinctions between e-commerce platforms and traditional brick-

and-mortar retailing stores. These distinctions impose various challenges on the e-

commerce decision-making process. Firstly, online marketplaces may involve multiple

stakeholders, including customers and third-party sellers. The decision-making pro-

cess is much more complicated than a single decision maker’s problem, as in the

traditional retailing setting. The existence of multiple sellers creates competition on

quality or price, which is generally challenging to characterize in reality. On top of

this, the platform needs to carefully decide on the display policy for the sellers to

optimize the expected revenue. As a result, the flexibility in the platform’s display

policy may lead to unfairness issues across sellers or customers, which also needs to

be addressed.
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Secondly, unlike brick-and-mortar stores where customers can access the products

physically, e-commerce heavily relies on display and visual information. An example

would be Airbnb, a peer-to-peer lodging marketplace provider. Customers browse

online the features of the lodging options without physically accessing the option. As

a result, the web page’s information, including images and reviews from other cus-

tomers, becomes highly significant. Unlike the traditional data format (like prices),

images and texts contain much more information, imposing challenges in the estima-

tion process.

The third difference is that e-commerce platforms are not constrained by limited

shelf spaces, leading to a huge assortment or seller base. Pricing decisions are required

for multiple markets and time periods on a huge assortment. Moreover, there usually

exist business constraints to couple the pricing decisions across the products. As a

result, products cannot be priced individually, and the joint optimization problem

has a very large scale.

This thesis investigates estimation and optimization challenges in several e-commerce

settings. An overview of the works in this thesis is as follows.

1.2 Overview

In Chapter 2, we study the assortment display problem in online marketplaces, in

the existence of price competition and fairness concerns. Online platforms have been

expanding the seller base to widen their product assortment to match consumers’

individual preferences. Nevertheless, the increasing number of sellers leads to inten-

sified competition and results in sellers setting lower prices for the products. Thus,

it is unclear whether displaying all the sellers to the entire customer base maximizes

platform revenue. Motivated by the unique setting of Airbnb, we consider a game-

theoretical setup in which each seller on the platform provides a single-unit product

and competes with one another on price. We investigate sellers’ optimal pricing deci-

sions and the platform’s optimal assortment display policy, which is characterized by

the partitioning of products and traffic assigned to each partition. We find that the

16



platform should display the entire assortment to all the customers when demand is

sufficiently high. Moreover, we propose a tabulation algorithm and a mixed-integer

programming formulation to effectively solve for the sellers’ and the platform’s opti-

mal decisions. Additionally, we incorporate constraints to guarantee a certain degree

of the seller and customer fairness, on both system and individual levels, in the opti-

mal display policy. Using data from Airbnb, we present a case study to illustrate how

our model framework can be applied in practice. Finally, we extend the case in which

each seller supplies a distinct product with an inventory size of one by considering

scenarios in which each product has more than one unit.

The second work in Chapter 3 is also closely related to marketplaces like Airbnb,

where we estimate and optimize the impact of photo layout. Host-generated property

images as a visual channel reveal important information about properties. Selecting

proper images to display can lead to higher demand and increased rental revenue. In

this paper, we define, estimate, and optimize the impacts of Airbnb photos on cus-

tomers’ renting decisions. We apply Resnet50, a convolutional neural network model,

to build two separate, supervised learning models to evaluate the image quality and

room types posted by Airbnb hosts. Then, we characterize the overall impacts of

photo layout by the room type featured in the photo, photo quality, and the order

of display on the listings’ webpages. To address two estimation challenges in the

Airbnb setting, namely censored demand and changing consideration sets, we pro-

pose a novel pairwise comparison model that utilizes customers’ booking sequence

data to consistently estimate the impact of photo layout on customers’ renting deci-

sions. Our estimation results suggest that the cover image has a significantly larger

impact than non-cover photos and that a high-quality bedroom cover image leads to

the most significant increase in demand. Furthermore, we build a non-linear integer

programming optimization problem and develop an algorithm to determine the op-

timal photo layout. Our counterfactual analysis suggests that a listing’s unilateral

adoption of optimal photo layout leads to 11.0% more bookings on average. More-

over, depending on the neighborhood and market size, when listings simultaneously

switch to the optimal photo layout, they get booked for two to five additional days

17



in a year on average, which boosts the revenue by $500 to $1100.

In the third work in Chapter 4, we collaborate with a global online fashion retailer,

Zalando, as an example of how a global retailer can utilize a massive amount of data to

optimize price discount decisions over a large number of products in multiple countries

on a weekly basis. Given demand forecasts under a collection of discrete prices,

Zalando’s objective is to set discount levels to maximize total profit over the entire

selling horizon while taking into account both local and global business constraints.

Local constraints refer to single product level requirements, where Zalando needs to

balance sales across different countries and over different weeks while adhering to a

first-come-first-serve policy. As long as product inventory exists, a customer is served

independent of the customer’s origin country or time of arrival. Global constraints

refer to specific targets set by management for different product categories and each

country. We address these challenges by applying a three-step process. In the first

step, we cluster products into groups that behave similarly and solve the aggregated

problem to allow us to decouple the problem into a problem for each product category.

Each product category includes thousands of individual products (SKUs) and the

various markets where products are sold, each with its own target sales and margins.

In the second step, we decompose this problem using Lagrangian relaxation into a

problem for each product (SKU) and provide an efficient way to identify the Lagrange

multipliers. Finally, in the last step, we optimize pricing decisions for individual

products and also address local business constraints. For this new approach, which

was implemented as part of Zalando’s price discount decision process, we provide

results from offline tests and field experiments to demonstrate its benefit.

Finally, Chapter 5 summarizes the contributions and discusses the potential fu-

ture directions. The technical proofs and supplemental material for each chapter are

included in the appendices.
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Chapter 2

Assortment Display, Price

Competition, and Fairness in Online

Marketplaces

2.1 Introduction

It has become a norm for online platforms to widen their seller base constantly. For

example, Airbnb now offers 5.6 million listings worldwide1; Amazon has 6.3 million

total sellers worldwide, 1.5 million of whom are active2. Such rapid expansion of sellers

is partly due to the network nature of platforms. Yet, it also reflects the platforms’

effort to satisfy the heterogeneous tastes of their customers with a constellation of

products. Unlike brick-and-mortar retailers whose product assortment is limited by

shelf space, online platforms can increase the number of sellers and the size of the

product assortment with little cost. This enables the large platforms to further expand

their assortments.

Although a large seller base increases the likelihood the consumer will find the pre-

ferred variety, it may also jeopardize platform revenue because sellers would set lower

prices for their products in response to the resulting heightened competition. Real-

1https://news.airbnb.com/about-us/
2https://www.marketplacepulse.com/amazon/number-of-sellers
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izing that displaying all the products to the entire customer base may not maximize

platform revenue, some companies start to ramp up sales by prioritizing a subgroup

of products on the search results pages, which spurs concerns over the unfairness of

the product display.3 In this paper, we focus on a unique setting in which each seller

provides a different product with one-unit inventory per time period (e.g., Airbnb,

eBay), we contribute to this growing discussion in the literature on assortment op-

timization by answering the following questions: (i) how does competition affect the

seller’s pricing decision when each seller supplies one unit of a different product, (ii)

when would showing different subsets of products to different subsets of customers

generate higher platform revenue than that generated by the current practice and (iii)

how to design an assortment display policy that is fair to the sellers and customers,

and what is the associated cost of implementing such a policy.

To answer the above questions, we construct a game-theoretical model. The plat-

form decides whether and how each seller should be grouped into different partitions

and how much traffic each partition should receive to maximize the total revenue.

Furthermore, each seller supplies a different product with one-unit inventory and sets

the product’s price in response to other sellers’ prices within the same partition. Un-

der this setup, we theoretically demonstrate that it is optimal to display the entire

product assortment when a platform faces sufficient demand. When the platform

demand is moderate, however, the derivation of the equilibrium price requires solving

a system of nonlinear equations, which can be computationally infeasible because the

number of display policies increases rapidly with the number of sellers. To derive

the equilibrium price for each seller and ultimately prescribe the display policy, we

propose a novel approach to calculate the equilibrium price under flexible display

constraints. Specifically, we first discretize and tabulate the left- and right-hand sides

of the first-order conditions (FOCs) of the seller’s pricing decision. Incorporating

the outputs from the tabulation procedure, we rewrite the platform’s problem as a

mixed-integer programming (MIP) model. The MIP framework can effectively solve

the optimal display policy and can easily be adjusted to include new constraints that

3https://www.nytimes.com/2018/06/23/business/amazon-the-brand-buster.html
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Table 2.1: Summary of Optimal Display Policies Under Different Settings and De-
mand Levels

Demand/Supply Ratio
Very High Moderate Very Low

Unit Inventory Display Everything MIP† Multiple Partitions
Limited Inventory Display Everything MIP Multiple Partitions
Infinite Inventory Display Subset Display Subset Display Single Item
† MIP indicates that the specific display policy is inconclusive and needs to be advised
by the solution of the MIP problem. The optimal display strategies under the remaining
market conditions are known, yet the specific partitions of sellers and customers still
require solving the MIP problem.

reflect restrictions on the display policy.

Leveraging our game-theoretical model and the MIP framework, we summarize

the optimal display policy under different market conditions in the first row of Table

2.1. Similar to Heese and Martínez-de Albéniz (2018), we note that it is sometimes

economically sensible to display only a subset of products to the entire customer base.

While such a policy might be practical in offline retail settings, in which the limited

shelf space naturally prevents the store from displaying all the products, this display

policy essentially denies a proportion of the sellers the ability to join the platform

and could spur concerns over an unfair business environment on online marketplaces.

To guarantee a certain degree of seller fairness, we introduce the notion (𝛼, 𝛿)-fairness

on the system (partition) level and incorporate such fairness constraints into the MIP

framework. Here, 𝛼 is defined as the closeness in the attractiveness of each partition

and 𝛿 the closeness in the traffic allocated to each partition. Moreover, we define

the ‘envy level’ as a seller’s revenue difference when moving to other partitions as a

fairness measure on the individual seller level. We showcase how the upper bound

on a seller’s envy level is determined by the combination of the (𝛼, 𝛿). Meanwhile,

to ensure that customers perceive the partitions as fair, we introduce the concept

of 𝛾-fairness to measure the relative difference in customer welfare across partitions.

Similar to (𝛼, 𝛿)-fairness, we also showcase that 𝛾-fairness can be incorporated into

our MIP framework.

Additionally, we present a case study that draws transaction data from Airbnb
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to showcase how our framework can be applied in practice. Specifically, we esti-

mate the quality of each listing by minimizing the squared discrepancy between each

listing’s rental probability and the realized demand outcome. We then conduct a

counterfactual analysis under different demand scenarios to recommend the optimal

display policy for the platform. Furthermore, we calculate the revenue loss when the

platform shifts from the (0, 0)-fair display, i.e., the unrestricted case, to (0, 1)-fair, in

which each partition receives equal demand. The platform incurs less than a 20% loss

in revenue when the demand level is low or moderate. Nevertheless, the revenue gap

ceases when the demand level is high, as the optimal policy under the unrestricted

case is to display all the sellers to all customers, which is also (0, 1)-fair.

Finally, we extend the case in which each seller supplies a distinct product with

the inventory of size one by considering two scenarios where the product each seller

provides has (i) limited inventory or (ii) infinite inventory. We formulate the objective

function for each seller and demonstrate that when facing sufficient demand, it is still

optimal to display all the products when the seller possesses multiple units of the

product, but the platform should display only the highest-quality item when each

seller has infinite units of each product, and the number of sellers is large. The

insights for optimal display policies under different settings are summarized in Table

2.1.

2.2 Literature Review

This work is related to three streams of literature, namely, assortment optimization,

price competition, and fair resource allocation.

The field of assortment optimization has been active in recent decades, including

both dynamic assortment planning and static assortment display. Static assortment

display only focuses on the optimal assortment policy for a single period, and Kök

et al. (2008) provides a comprehensive review of the literature in this field. Talluri and

Van Ryzin (2004) show that under the MNL demand model, the optimal assortment

set is that with the highest profit margins. However, this structural property no
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longer holds in our setting, as the limited inventory size could lead to unsatisfied

customers, which a larger assortment could alleviate. Under the static setup, the

interplay between assortment and pricing has also been studied extensively. Anderson

et al. (1992) show that it is optimal for the retailer to use the same markup for all

products, although this result no longer holds when price sensitivities differ across

products (e.g., (Wang 2012) or (Gallego and Wang 2014)). In this paper, we model

a similar process as a two-stage game in which the platform decides the assortment

strategy. Dynamic assortment optimization focuses on optimal product planning over

time under various customer behaviors; see Ferreira and Goh (2021), Bernstein et al.

(2015), Caro et al. (2014), Bernstein and Martínez-de Albéniz (2017), Lei et al. (2021),

and Wagner and Martínez-de Albéniz (2020).

In the traditional assortment planning literature, prices are usually determined by

a centralized decision-maker. By contrast, this paper models the price competition

among sellers in online marketplaces. Price competitions are prevalent and are of-

ten combined with assortment problems (e.g., (Caro and Martínez-de Albéniz 2012),

(Federgruen and Hu 2015)). (Besbes and Sauré 2016) consider the game-theoretic

setup where two retailers compete on assortment and pricing and show that compe-

tition would lead to a larger assortment breadth. Meanwhile, the closest work to our

paper is Heese and Martínez-de Albéniz (2018), in which the assortment planning

process is modeled as a two-stage game between a retailer and its upstream manufac-

turers. They engage in horizontal price competition with each other. Different from

Heese and Martínez-de Albéniz (2018) which mainly analyzes the optimal fixed subset

display policies, our work focuses on designing the optimal partition display policies.

Moreover, our sellers in each partition compete through price to maximize their rev-

enue, while in Heese and Martínez-de Albéniz (2018), the upstream manufacturers

compete for a fixed amount of slots in the assortment.

Our paper discusses the optimal display policy under several fairness constraints

and is thus related to previous literature investigating the tradeoff between fairness

and efficiency. Most of the previous work that explores the optimal decisions un-

der several fairness constraints adopts the notion of 𝛼-fairness proposed in Mo and
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Walrand (2000). Specifically, Mo and Walrand (2000) provides a generalized defini-

tion of fairness using a parametric function, for which higher values of 𝛼 indicate a

fairer allocation, and the parameters 𝛼 = 0, 1, and ∞ correspond to the utilitarian,

proportional and max-min fairness, respectively. Using the definition of 𝛼-fairness,

Bertsimas et al. (2011, 2012) study the efficiency loss incurred to achieve a certain

fairness level in offline resource allocation problems; McCoy and Lee (2014) quantify

how equity and efficiency interact for humanitarian and health delivery supply chains,

and Bateni et al. (2018) investigate an online resource allocation problem on a mar-

ketplace and provide empirical validation of the proposed allocation algorithm. Our

work also uses the notion of 𝛼-fairness, but our notion of 𝛼-fairness departs from the

traditional definition. It requires instead the relative ratio of incoming traffic and the

total competitiveness between any two partitions to remain within a specific range in

a way similar to Cohen et al. (2019).

2.3 Model Framework

2.3.1 Price Competition under Full Display

We first consider a simple setup where a platform (e.g., Airbnb) hosts 𝑁 sellers (e.g.,

listing owners) and displays everyone by default. Each seller 𝑖 supplies a single-unit

product with quality 𝑎𝑖 on the platform and observes the qualities of all the other

competitors 𝑎−𝑖. We denote the expected number of customer arrivals by 𝑀 , which

we assume is common knowledge to the platform and the sellers. Observing (𝑎𝑖,𝑎−𝑖)

and 𝑀 , every seller 𝑖 simultaneously decides the price for its product to maximize

revenue. The pricing game is characterized as follows. We assume that 𝑀 customers

arrive simultaneously and observe the full product assortment. The utility that cus-

tomer 𝑚 obtains from product 𝑖 is 𝑢𝑖𝑚 = 𝑎𝑖−𝛽𝑝𝑖+ 𝜖𝑖𝑚, where 𝑎𝑖 is the quality of the

product, 𝛽 is the coefficient for price 𝑝𝑖 and 𝜖𝑖𝑚 follows a 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1) distribution

that captures customers’ heterogeneous tastes. This way, customers select products

according to the multinomial logit (MNL) choice model. Notably, as each product
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has only unit inventory, if a product is requested by multiple customers, the seller will

accept the offer from only one buyer, and the remaining customers will be rejected

and unable to select another product. In this setting, seller 𝑖’s payoff function can be

written as:

max
𝑝𝑖

Π𝑖(𝑀,𝑝−𝑖) = 𝑝𝑖

⎛⎝1−

(︃
1− exp (𝑎𝑖 − 𝛽𝑝𝑖)

1 +
∑︀𝑁

𝑗=1 exp (𝑎𝑗 − 𝛽𝑝𝑗)

)︃𝑀
⎞⎠ . (2.1)

Equation (2.1) states that seller 𝑖’s expected revenue is the product of the price and

the probability that product 𝑖 is selected by at least one customer, which equals one

minus the probability that all 𝑀 customers choose options other than 𝑖. The utility

of the outside option is normalized to one as in the classic MNL setup.

For brevity, we first denote the attractiveness of product 𝑖 as 𝑣𝑖 = exp (𝑎𝑖 − 𝛽𝑝𝑖)

and write the probability that a customer chooses product 𝑖 as 𝑞𝑖 = 𝑣𝑖/(1+
∑︀𝑁

𝑗=1 𝑣𝑗).

In this way, the price equilibrium, 𝑝*𝑖 , 𝑖 = 1, ..., 𝑁 , can be characterized by the FOC

of Equation (2.1) as:

(1 +𝑀𝛽𝑝*𝑖 𝑞
*
𝑖 )(1− 𝑞*𝑖 )

𝑀 = 1, ∀𝑖 = 1, ..., 𝑁. (2.2)

We next describe the properties of the equilibrium prices. To start, the pricing game

always permits a unique equilibrium, which we formally state in the following Propo-

sition 2.1:

Proposition 2.1. A unique pure-strategy Nash equilibrium always exists for the

seller’s pricing game.

This property guarantees that there always exists one and only one equilibrium

regardless of the number of sellers and customers. In addition to existence and unique-

ness, the equilibrium price has the following characteristics:

Proposition 2.2. The equilibrium price 𝑝*𝑖 is increasing in 𝑎𝑖, i.e., products with

higher qualities will charge higher prices. Furthermore, lim𝑀→∞ 𝜕𝑝*𝑖 /𝜕𝑎𝑖 = 1/𝛽, ∀𝑖 =

1, ..., 𝑁 .
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Proposition 2.2 has two implications. First, sellers with higher product quality

charge higher prices in equilibrium. Second, the price change is linear in quality in

the limiting case in which the platform faces considerable demand. As a result, all

the products share the same attractiveness 𝑎𝑖 − 𝛽𝑝*𝑖 . While Propositions 2.1 and

2.2 characterize the properties of the equilibrium price, they do not reveal what

equilibrium price each seller should set. We showcase how the exact value of the

equilibrium prices, which is the solution to a system of nonlinear FOCs, can be

computed in Section 2.4.

2.3.2 Price Competition under Partitioned Display

Different from the standard practice in which the platform displays all the sellers, we

now consider a case in which the platform has the freedom to choose which product

to display and to which customers. Specifically, we consider a two-stage game with

the platform as the leader and the sellers as the follower. In the first stage, the

platform announces a display policy (𝒮𝑘,𝑀𝑘) to the sellers. The display policy has

two components. First, it describes how the platform partitions products from the

full assortment into different subsets 𝒮𝑘. Second, it indicates the number of customers

𝑀𝑘 assigned to each product partition 𝒮𝑘
4. Importantly, in the rest of the paper, we

refer to a display policy as the division of the assortment 𝒮 and demand 𝑀 that

satisfies the following two conditions:

1. Each seller is assigned to one and only one partition, i.e., ∪𝑘𝒮𝑘 = 𝒮 and 𝒮𝑖∩𝒮𝑗 =

∅.

2. Every customer can observe one and only one partition, i.e.,
∑︀

𝑘 𝑀𝑘 = 𝑀 .

Intuitively, there should not be overlaps of seller or customer groups. Allowing sellers

to be assigned into multiple partitions would lead to multiple optimal prices for the

same product. We assume each seller belongs to a single partition to exclude the

potential of such price discrimination. This class of display policy is pretty general.
4In reality, as customer arrivals can be perceived as uniform within a short time window (e.g.,

every 10 seconds), the traffic allocation can be achieved by common modulo operations.
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For instance, subset display is a special case of partition display that allocates all the

customers to a single partition.

In the second stage of the game, after observing the display policy and (𝑎𝑖,𝑎−𝑖),

the qualities of all other competitors with whom seller 𝑖 displays together in the same

partition, every seller 𝑖 maximizes its expected utility by simultaneously setting 𝑝𝑖.

Finally, customers assigned to each partition arrive and make purchase decisions after

observing the attractiveness of each product in that partition.

We now elaborate on seller 𝑖’s optimization problem facing the partitioned display.

In the second stage, each seller 𝑖 in each assortment 𝒮𝑘 observes the quality of the

competing sellers within the same partition. After observing the quality for each seller

(𝑎𝑖,𝑎−𝑖), 𝑖 ∈ 𝒮𝑘, total arrival 𝑀𝑘 traffic of the subset, and a belief on competitor prices

𝑝−𝑖, seller 𝑖 faces the following optimization problem:

max
𝑝𝑖

Π𝑠
𝑖 (𝒮𝑘,𝑀𝑘, 𝑝−𝑖) = 𝑝𝑖

⎛⎝1−

(︃
1− exp (𝑎𝑖 − 𝛽𝑝𝑖)

1 +
∑︀

{𝑗∈𝒮𝑘} exp (𝑎𝑗 − 𝛽𝑝𝑗)

)︃𝑀𝑘

⎞⎠ . (2.3)

Similar to the scenario of displaying everything, we can write the FOC for Equation

(2.3) as:

(1 +𝑀𝑘𝛽𝑝
*
𝑖 𝑞

*
𝑖 )(1− 𝑞*𝑖 )

𝑀𝑘 = 1, ∀𝑖 ∈ 𝒮𝑘. (2.4)

Notably, both Propositions 2.1 and 2.2 hold valid for Equation (2.4), as each seller’s

equilibrium price is determined only by the competing sellers in the same partition,

not by the equilibrium prices in other partitions. Foreseeing the equilibrium prices

set by each seller, the platform decides the optimal partition to maximize the total

revenue. Typically, the primary revenue source of platforms such as Airbnb or Uber

is through commission, i.e., the platform takes a fixed percentage cut of the total

revenue from each seller. Thus, omitting the fixed commission rate, the platform’s

27



optimization problem can be formulated as

max
𝒮𝑘,𝑀𝑘

∑︁
𝑘

∑︁
𝑖∈𝒮𝑘

Π*
𝑖 (𝒮𝑘,𝑀𝑘)

𝑠.𝑡. ∪𝑘 𝒮𝑘 = 𝒮, 𝒮𝑖 ∩ 𝒮𝑗 = ∅∑︁
𝑘

𝑀𝑘 = 𝑀

Π*
𝑖 (𝒮𝑘,𝑀𝑘) = 𝑝*𝑖 (1− (1− 𝑞*𝑖 )

𝑀𝑘)

(1 +𝑀𝑘𝛽𝑝
*
𝑖 𝑞

*
𝑖 )(1− 𝑞*𝑖 )

𝑀𝑘 = 1, ∀𝑖 ∈ 𝒮𝑘.

(2.5)

The first two constraints in Equation (2.5) manifest our assumptions that each

product exclusively belongs to one subset and that each customer observes only one

such subset of products. The last two constraints capture the incentive compatibility

(IC) of the seller’s pricing decision and imply that each seller sets the optimal price

given a set of display policies (𝒮𝑘,𝑀𝑘). Intuitively, partitioning the entire assortment

into several distinct product sets dampens the competition in the whole market, thus

inducing sellers to charge higher prices. However, because the demand allocated to

each partition is also lower than that under the full display policy, the probability

that each product is selected by a customer can be lower. Thus, the overall impact

of product partitioning on equilibrium pricing and the resulting platform revenue is

unclear. In what follows, we provide a theoretical analysis of the optimal display

strategy when the total demand 𝑀 is sufficiently large, which is often the case for

large online marketplaces such as Airbnb. First, we can characterize the following

limiting behaviors:

Lemma 2.1. For a fixed partition display 𝒮𝑘 and any product 𝑖 ∈ 𝒮𝑘, define 𝑝*𝑖 (𝒮𝑘,𝑀𝑘)

and 𝑞*𝑖 (𝒮𝑘,𝑀𝑘) to be the equilibrium price and selection probability of product 𝑖 under

partition 𝒮𝑘 and demand 𝑀𝑘. Then, in the limiting case in which 𝑀𝑘 → ∞, we have

1. lim𝑀𝑘→∞ 𝑝*𝑖 (𝒮𝑘,𝑀𝑘) = +∞, lim𝑀𝑘→∞ 𝑞*𝑖 (𝒮𝑘,𝑀𝑘) = 0

2. lim𝑀𝑘→∞
𝑀𝑘𝑞

*
𝑖 (𝒮𝑘,𝑀𝑘)

ln(− ln 𝑞*𝑖 (𝒮𝑘,𝑀𝑘))
= 1.

Lemma 2.1 describes the order of the equilibrium purchasing probability 𝑞*𝑖 in
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the limiting case, which we use to calculate the revenue a product generates under

different partitions as stated in Lemma 2.2.

Lemma 2.2. Consider two subsets, 𝒮1 and 𝒮2, and a product 𝑖 that is in both subsets,

i.e., 𝑖 ∈ 𝒮1∩𝒮2. If the number of customers assigned to each subset maintains a fixed

ratio 𝛾 > 0, then lim𝑀→∞Π*
𝑖 (𝒮1,𝑀)− Π*

𝑖 (𝒮2,𝑀/𝛾) = ln 𝛾.

Note that ln 𝛾 is strictly positive as long as 𝛾 > 1. Thus, Lemma 2.2 implies

that in the limiting case, as long as the number of customers assigned to partition

𝑖 remains a fixed proportion of the total number of customers, presenting product 𝑖

to the entire customer base generates higher revenue than that to a fraction of the

incoming traffic. This result holds regardless of how many other products are also

included in subsets 𝑆1 and 𝑆2. Nevertheless, it is essential to note that Lemma 2.2

does not imply that the platform should not partition over sellers and customers. This

is because Lemma 2.2 does not shed light on the optimal size the platform should

set for each subset 𝑆𝑘, and the number of customers 𝑀𝑘 rationed to each subset of

products may not always remain at a constant ratio of the total incoming traffic. To

complement Lemma 2.2, we provide the following result about the monotonicity of

seller revenue on 𝑀 .

Lemma 2.3. For a fixed assortment display 𝒮, revenue Π𝑖(𝒮,𝑀) is monotonically

increasing in 𝑀 .

Combining Lemmas 2.2 and 2.3, we now provide the sufficient condition to make

it optimal for the platform to display everything as a whole when demand becomes

high through Theorem 2.1.

Theorem 2.1. Suppose that there are 𝑁 products 𝒮 = {1, 2, . . . , 𝑁}. For any 𝛾 > 1,

there exists a threshold 𝑀(𝛾), such that when 𝑀 > 𝑀(𝛾), for any display policy

{𝒮𝑘,𝑀𝑘}𝐾𝑘=1 that satisfies 𝑀𝑘 < 𝑀/𝛾, we have

𝑁∑︁
𝑖=1

Π*
𝑖 (𝒮,𝑀) >

𝐾∑︁
𝑘=1

∑︁
𝑖∈𝒮𝑘

Π*
𝑖 (𝒮𝑘,𝑀𝑘).
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Figure 2-1: Revenue under Partition Display with Equal Demand

Proof for Theorem 2.1. As the number of subsets 𝒮1 ⊂ 𝒮 is finite, according to

Lemma 2.2, when 𝑀 > 𝑀(𝛾), where 𝑀(𝛾) is the threshold that depends on 𝛾, we

have

Π*
𝑖 (𝒮,𝑀)− Π*

𝑖 (𝒮1,𝑀/𝛾) > 0, ∀𝒮1 ⊂ 𝒮, 𝑖 ∈ 𝒮1.

Lemma 2.3 further states that Π𝑖(𝒮𝑘,𝑀) is monotonically increasing in 𝑀 , and we

can conclude that
𝑁∑︁
𝑖=1

Π*
𝑖 (𝒮,𝑀) ≥

𝐾∑︁
𝑘=1

∑︁
𝑖∈𝒮𝑘

Π*
𝑖 (𝒮𝑘,𝑀/𝛾)

≥
𝐾∑︁
𝑘=1

∑︁
𝑖∈𝒮𝑘

Π*
𝑖 (𝒮𝑘,𝑀𝑘).

It is helpful to discuss the implication behind Theorem 2.1. For a platform facing

sufficiently high demand, the platform enjoys the highest total revenue when the

platform exhibits all products concurrently to all customers, i.e., there is no need

to group products into different partitions and display each partition to a subset of

customers. Importantly, for large platforms on which most sellers offer a single-unit

product, Theorem 2.1 provides a theoretical justification that displaying the entire

assortment to all customers leads to the highest revenue. To verify Theorem 2.1 and

to gain insight into the optimal display policy under an arbitrary 𝑀 , we perform

numerical analysis and present the results in Figure 2-1. 5 Specifically, Figure 2-1

5The detailed derivation of equilibrium prices and optimal display policies will be introduced in
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compares the optimal total revenue under different partition scenarios. We select

an instance with 𝑁 = 100 sellers and let each partition receive the same level of

demand 𝑀/𝐾. 𝐾 = 1 corresponds to the default policy that displays all sellers to

all customers. We normalize the revenue of the default policy to one and compare

the revenue under different display policies under various demand levels. When the

demand level is low (𝑀 = 50 and 𝑀 = 100), dividing the sellers into more partitions

is more profitable. When the demand level is high (𝑀 = 500 or 𝑀 = 1000), it

is optimal to maintain the display-everything policy, which is consistent with the

conclusion of Theorem 2.1.

2.3.3 Discussion on Model Assumptions

We have introduced several assumptions in modeling the decision-making process in

online marketplaces. We now discuss these assumptions before we analyze the optimal

display policy.

Customer’s Simultaneous Arrival and Multiple Bookings In our model, we

assume that customers arrive simultaneously. While customers arrive sequentially

over a time span, the purchasing or booking requests may not be satisfied immediately

on platforms such as eBay or Airbnb. For example, many Airbnb hosts would turn

off the ‘instant booking’ option so that they get to evaluate and screen the potential

tenants. Usually, hosts would review the booking requests regularly, say at the end

of every day, and eventually accept one request. We model the unsatisfied demand in

case of multiple requests to be lost, and this is supported by Fradkin (2017), which

suggests that 42% of customers’ inquiries are rejected by hosts, and those rejected

are 43% to 70% less likely to submit another request on the platform.

Product Filter When facing a large assortment, customers usually use filters to

narrow search results and reduce search costs. After filtering, the displayed products

are similar in one or several attributes and can thus be considered substitutes that

engage in price competition with each other. As all products (sellers) compete through

price in our model, these products can be viewed as the search results after filtering.

Section 2.4.
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Case in point, we apply our framework to the Airbnb data in Section 2.6, in which

we use listings within the same region and with the same room type as substitutes.

Product Visibility In our model, we assume products displayed in the same parti-

tion share the same visibility to the customers. That is, our formulation of product

utility does not incorporate the specific page rank, i.e., the display order, of the

product. As the page rank of each product may vary depending on the customer

characteristics, we follow previous literature on assortment optimization in market-

places (Dzyabura and Jagabathula 2018, Aouad et al. 2019), and do not model page

rank for tractability of the model. Nevertheless, suppose the page rank of each prod-

uct is invariant across customers and observed in the data. In that case, we can

integrate the page rank information into each product’s utility function to reflect its

impact.

2.4 Derivation of the Optimal Display Policy

2.4.1 Characterizing the Price Equilibrium

In this section, we derive the platform’s optimal partition strategy. To this end, we

first characterize sellers’ optimal pricing decisions under a given partitioning. Given

an arbitrary display policy, the derivation of the equilibrium prices requires jointly

solving a system of FOCs specified in Equations (2.4). These FOCs are highly non-

linear and cannot be characterized by the Lambert-W function, which Heese and

Martínez-de Albéniz (2018) used to analyze the infinite inventory scenario. It is thus

impossible to derive a closed-form solution for the equilibrium price 𝑝*𝑖 .

There are several viable approaches to solve for the equilibrium prices. One option

is to compute through simulations. Since we have demonstrated the existence and

uniqueness of the equilibrium, we can initialize a set of feasible prices and iteratively

update each seller’s price as the best response to the competitor’s prices until they

converge to an equilibrium where no seller has the incentive to deviate. However,

this approach will no longer be applicable when the platform attempts to find the
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optimal display policy. This is because the possible number of display policies grows

exponentially with the number of sellers 𝑁 , and enumerating all the policies becomes

computationally burdensome, if not infeasible.

In our work, we propose a novel approach that transforms Equation (2.5) into

an MIP problem to determine the induced optimal price and the optimal display

policy. The idea is to define and discretize an intermediate 𝒵 in Equation (2.2)

such that each FOC is decoupled from the system of FOCs given 𝒵. Then, we

precalculate and tabulate the required inputs into tables and let the MIP solve for the

display policy and the corresponding equilibrium prices that maximize the platform’s

total revenue. This approach enhances computational tractability by discretizing the

nonlinear FOCs into a set of precomputed values. Moreover, the MIP framework

provides a flexible infrastructure for the platform to impose different constraints on

display policies. Granted, solving a large-scale MIP can still be computationally

intensive, but we demonstrate in Appendix A.2 that our approach can be solved

within a reasonable running time.

To better introduce the tabulation process, we first define the total attractiveness

of all the sellers in partition 𝑘 as 𝒵𝑘 =
∑︀

𝑖∈𝒮𝑘
exp (𝑎𝑖 − 𝛽𝑝𝑖). Furthermore, as each

partition’s equilibrium can be solved independently, we focus on solving the equi-

librium for a single partition 𝑘 and omit the superscript for ease of notation in the

remainder of the section. In fact, there is a unique value of 𝒵 that can allow for

a set of prices, {𝑝𝑖}, to simultaneously satisfy Equation (2.4) and the definition of

𝒵. Moreover, under such 𝒵, the resulting set of prices represents the equilibrium

price. Thus, we construct a feasible range 𝒵 ∈ [𝒵,𝒵], over which we discretize 𝒵

into 𝐿 levels to form a ladder. For each seller 𝑖 ∈ 𝑁 and each fixed value 𝒵𝑗, 𝑗 ∈ 𝐿

in the ladder, we can compute the best response 𝑝𝑖,𝑗 by applying common built-in

root finding package to the FOCs. Although the FOCs are nonlinear, finding each

root under a fixed 𝒵𝑗 reduces to a one-dimensional search problem that can be effi-

ciently solved. By doing so, we can tabulate the best responses into a 𝑁 × 𝐿 table

with each entry (𝑖, 𝑗) corresponding to the equilibrium price for the 𝑖-th seller under

the 𝑗-th value in the ladder of 𝒵. Similarly, we also track seller 𝑖’s attractiveness
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Algorithm 1: Tabulation of Formulation Input
input : {𝑎𝑖, 𝑖 = 1, ..., 𝑁},{𝒵𝑗 , 𝑗 = 1, ..., 𝐿}, 𝑀

1 for 𝑗 ∈ {1, ..., 𝐿} do // Iterate over 𝒵
2 for 𝑖 ∈ {1, ..., 𝑁} do // Iterate over sellers
3 Solve FOC

𝑝*𝑖,𝑗 = arg𝑝 {(𝑀𝛽𝑝𝑞 + 1)(1− 𝑞)𝑀 = 1},
to get the best response price 𝑝*𝑖,𝑗

4 Tabulate 𝐸𝑖,𝑗 = exp(𝑎𝑖 − 𝛽𝑝*𝑖,𝑗)

5 Tabulate Π𝑖,𝑗 = 𝑝*𝑖,𝑗
(︀
1− (1− exp (𝑎𝑖 − 𝛽𝑝*𝑖,𝑗)/(1 + 𝒵𝑗))

𝑀
)︀

6 end for
7 end for

output: {𝑝*𝑖,𝑗 , 𝐸𝑖,𝑗 ,Π𝑖,𝑗 , 𝑖 = 1, ..., 𝑁, 𝑗 = 1, ..., 𝐿}

𝐸𝑖,𝑗 = exp(𝑎𝑖 − 𝛽𝑝*𝑖,𝑗) and the induced revenue Π𝑖,𝑗 in separate tables. These three

tables 𝑝*𝑖,𝑗, 𝐸𝑖,𝑗 and Π𝑖,𝑗 (𝑖 = 1, ..., 𝑁, 𝑗 = 1, ..., 𝐿) are connected in the sense that

the price in the (𝑖, 𝑗)-th entry in the 𝐸𝑖,𝑗 and Π𝑖,𝑗 tables is identical to the value of

the (𝑖, 𝑗)-th entry in the table for 𝑝*𝑖,𝑗. We summarize the tabulation procedure in

Table 1. This process allows us to formulate the problem as a mixed integer linear

programming (MILP) that we introduce in the next subsection.

2.4.2 MIP Formulation and Fixed Subset Display

With the pretabulated inputs, we now construct the MILP model to solve the price

equilibrium. We start with the simplest case, in which the platform displays all the

products to all the customers as currently employed by platforms such as Airbnb

and ebay. Given the qualities {𝑎𝑖, 𝑖 = 1, ..., 𝑁}, demand 𝑀 , the total attractiveness

{𝒵𝑗, 𝑗 = 1, ..., 𝐿} and tabulated inputs {𝑝*𝑖,𝑗, 𝐸𝑖,𝑗,Π𝑖,𝑗, 𝑖 = 1, ..., 𝑁, 𝑗 = 1, ..., 𝐿},

the goal is to find a column 𝑗* from table 𝐸𝑖,𝑗, such that
∑︀

𝑖 𝐸𝑖,𝑗* = 𝒵𝑗* . The

existence and uniqueness of the equilibrium are guaranteed by Proposition 2.1. For

simplicity, we will use this exact form of constraints with equality in the remainder

of the paper. However, in practice, it is unlikely that there exists a unique 𝒵𝑗* value

that makes the equilibrium coincide with one point on the ladder. To ensure the

MIP is feasible, we could replace the abovementioned equality constraint with two

inequalities
∑︀

𝑖𝐸𝑖,𝑘 ≥ 0.5(𝒵𝑘 + 𝒵𝑘−1) and
∑︀

𝑖 𝐸𝑖,𝑘 ≤ 0.5(𝒵𝑘 + 𝒵𝑘+1). Intuitively, the
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solution will approach the true optimum as the discretization of the 𝒵 ladder becomes

finer.

We compute the equilibrium prices under the default display policy in the example

above. The platform does not need to make any decisions because the policy is fixed.

We now present the case in which the platform chooses to display a fixed subset of the

sellers. This scenario is a special case of our partition display policy allocating all the

traffic 𝑀 to a single partition. It is in line with the classic setting in the assortment

optimization literature (e.g., Talluri and Van Ryzin 2004). Formally, we denote by

𝑧𝑗 the binary decision variable on whether the 𝑗-th column is selected and by 𝑥𝑖,𝑗 the

binary decision variable indicating whether seller 𝑖 is assigned to the group with 𝑧

value 𝑧𝑗. The formulation is as follows.

max
𝑥,𝑧

∑︁
𝑥𝑖,𝑗 Π𝑖,𝑗

𝑠.𝑡.
∑︁
𝑖

𝑥𝑖,𝑗𝐸𝑖,𝑗 = 𝑧𝑗𝒵𝑗, ∀𝑗 = 1, ..., 𝐿

∑︁
𝑗

𝑧𝑗 = 1,

𝑥, 𝑧 binary

(2.6)

This formulation selects one column 𝑧𝑗 = 1 in the table and sellers 𝑥𝑖,𝑗 = 1 within

the column. The objective maximizes the total revenue of all the sellers, which aligns

with the platform’s incentive. The first constraint in Equation (2.6) ensures that the

definition of 𝒵 is satisfied. In particular, 𝑧𝑗 = 0 when column 𝑗 is not selected. Thus,

we must have 𝑥𝑖,𝑗 = 0 for all 𝑖, because the inputs 𝐸𝑖,𝑗 are nonzero. When column

𝑗 is selected, the model will select a subset of rows to satisfy the definition of 𝒵.

Furthermore, the second constraint ensures that only one column will be selected,

as only one fixed assortment will be displayed to the customers. Notably, similar to

the full display case, the first constraint cannot be met exactly due to the discrete

nature of 𝒵. To guarantee the feasibility of the MIP, in practice, we could relax the

constraint by adding buffers of the following form:
∑︀

𝑖 𝑥𝑖,𝑗𝐸𝑖,𝑗 ≥ 0.5𝑧𝑗(𝒵𝑗+𝒵𝑗−1) and∑︀
𝑖 𝑥𝑖,𝑗𝐸𝑖,𝑗 ≤ 0.5𝑧𝑗(𝒵𝑗 + 𝒵𝑗+1).
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Exploiting Equation (2.6), we now conduct numerical analysis to explore the price

equilibrium under the default display policy. We simulate a market with 𝑁 = 100

sellers whose product quality is normally distributed and follows 𝑎 ∼ 𝒩 (3, 1). We set

the price coefficient to be 𝛽 = 1 and vary the demand level from 50 to 1,000. Panel

(a) in Figure 2-2 plots the relationship between the equilibrium price and product

quality under different demand scenarios. Specifically, Panel (a) is consistent with

Proposition 2.2 in that prices are monotonically increasing in quality, and when facing

high demand, the relationship between price and quality becomes linear.
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Figure 2-2: Price and Revenue under Fixed Assortment Display

We then conduct numerical analysis to study the total revenue under the optimal

display policy given different assortment sizes. The results are presented in Panel

(b) in Figure 2-2. Specifically, the 𝑥 and 𝑦 axes represent the cardinality of the

displayed subset and the total revenue, respectively. The platform showcases the

entire assortment to the customers at 𝑥 = 100 and displays a subset over the remaining

region. Interestingly, when demand is low, displaying a subset of products induces

higher total revenue than displaying the whole assortment. As demand increases, the

cardinality of the optimal assortment also grows. Consistent with the results from

Theorem 2.1, it is optimal for the platform to display all 𝑁 products when demand

becomes sufficiently high. Notably, our numerical results provide important guidelines

for platforms to decide on their expansion strategy. Newly launched platforms usually

provide subsidies to incentivize service providers to join. However, our results suggest

36



that attracting a large number of service providers at an early stage can be suboptimal

due to insufficient demand. Nevertheless, for large platforms that face heavy traffic

on a daily basis, increasing the base of service providers can boost total revenue, as

a reduction in the lost demand caused by (i) customers choosing the product and (ii)

customers choosing the outside option outweigh the dampened product price caused

by the more intense competition.

2.4.3 Partitioned Display

In Section 2.4.2, we proposed an MIP formulation to characterize the equilibrium

price and the optimal display policy under fixed assortment. We now move to a

more general case in which the platform has the flexibility to partition the products

into arbitrary subsets and allocate the incoming traffic to each subset. To derive

the optimal partition (𝒮𝑘,𝑀𝑘) that maximizes total revenue and characterizes the

equilibrium price, we now describe the tabulation procedure and the MIP formulation

based on Equation (2.5).

As the platform now has the flexibility to distribute the incoming demand unevenly

to each product partition, each seller no longer faces 𝑀 incoming customers when

making its pricing decision. Thus, we first need to modify the tabulation procedure

to incorporate flexibility in the number of customers each seller could potentially

face. To this end, we normalize the total demand to one and discretize the fraction

of demand (i.e., market share) from 0% to 100%. Specifically, we denote the 𝑣-th

entry of the discretized market share by 𝑃𝑣. For example, when discretizing with

10% separation, we ultimately have 11 market share levels in total, and 𝑃1 = 0%

and 𝑃11 = 100%. We then replace 𝑀 with 𝑀𝑃𝑣 as the demand level and replicate

the tabulation process described in Algorithm 1. In doing so, the outputs of the

tabulation, 𝐸𝑖,𝑗,𝑣 and Π𝑖,𝑗,𝑣, will now have an additional dimension reflecting the MIP

inputs under different fractions of market shares.

In addition to demand level 𝑣, the general class of partition display policy extends

formulation (2.6) by allowing products to be grouped into different partitions, which

we denote by 𝑘. The total partition number, 𝐾, is part of the inputs. In the main for-
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Figure 2-3: Price under different Levels of Demand 𝑀 , at Optimal 𝐾

mulation, let 𝑥𝑖,𝑗,𝑘,𝑣 denote the binary decision variable indicating whether to allocate

seller 𝑖 to partition 𝑘, which has total partition attractiveness 𝒵𝑗 and market demand

𝑀𝑃𝑣. Similarly, 𝑧𝑗,𝑘,𝑣 denotes the binary decision variable of whether to select the

𝑗th level of 𝒵 and 𝑣th level of market share for partition 𝑘. In this way, the main

formulation can be expressed as:

(Main) max
𝑥,𝑧

∑︁
𝑘

𝑥𝑖,𝑗,𝑘,𝑣 Π𝑖,𝑗,𝑣 (2.7)

𝑠.𝑡.
∑︁
𝑖

𝑥𝑖,𝑗,𝑘,𝑣𝐸𝑖,𝑗,𝑣 = 𝑧𝑗,𝑘,𝑣𝒵𝑗 ∀𝑗, 𝑘, 𝑣

∑︁
𝑗,𝑘,𝑣

𝑥𝑖,𝑗,𝑘,𝑣 = 1, ∀𝑖

∑︁
𝑗,𝑣

𝑧𝑗,𝑘,𝑣 = 1, ∀𝑘

∑︁
𝑗,𝑘,𝑣

𝑧𝑗,𝑘,𝑣𝑃𝑣 = 1,

𝑥𝑖,𝑗,𝑘,𝑣 binary, 𝑧𝑗,𝑘,𝑣 binary

Compared to formulation (2.6), which selects one feasible column and a subset

of rows (sellers) in the table, the main formulation draws entries from the tabulated

tensor. Again, the first constraint ensures that the exponential of individual attrac-
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tiveness sums to 𝒵. The second constraint guarantees that every seller is assigned

to one and only one partition. The third constraint ensures that for each partition

𝑘, only one 𝒵𝑗 and one market share 𝑃𝑣 are selected. Finally, we add the fourth

constraint to ensure that the market shares assigned to each partition sum to one.

Leveraging formulation (2.7), we showcase the optimal display policy and the corre-

sponding optimal price in Figure 2-3. Specifically, Panel (a) of Figure 2-3 displays

the equilibrium price and partitioning of each product under different demand levels.

Panel (a) indicates that sellers set higher equilibrium prices when the platform faces

higher demand. Interestingly, although the platform is provided with the flexibility to

allocate traffic to all partitions, the optimal strategy turns out to be a subset display

that only presents the medium to high-quality products to the customers. Meanwhile,

as the demand increases, a larger set of products are displayed to the customers. In

Panel (b), we require the demand allocated to each partition to be equal, and as a

result, the subset partition is no longer feasible. Panel (b) demonstrates that there

can be a significant imbalance in the number of products included and the average

product quality among partitions depending on the specific demand level. We will

address the concern of such potentially unfair allocation later in Section 2.5.

Finally, the main formulation can be solved by classic solvers such as Gurobi. Yet,

the tabulation and optimization processes will become computationally challenging

as the number of sellers 𝑁 increases and step sizes of discretization of 𝒵 become

finer. To reduce the computation time, we propose two relaxed formulations that

provide the upper and lower bounds of formulation (2.7), respectively. The details

of the simplification procedure and the goodness of approximation are discussed in

Appendix A.2.

2.5 Fairness

While the partitioned display may increase the platform revenue compared to the

display-everything strategy, the optimal partitions shown in Figure 2-3 can raise fair-

ness concerns. First, the platform may display only a subset of products to achieve
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higher profitability. While such a policy might be practical in offline retail settings

(Heese and Martínez-de Albéniz 2018, Martínez-de Albéniz and Roels 2011), where

the limited shelf space naturally prevents the store from showcasing all the prod-

ucts, this display policy potentially prevents a proportion of the sellers from joining

the platform. It could spur concerns over an unfair business environment on online

marketplaces, which the European Commission has regulated against (Bostoen 2018).

Second, under the optimal display strategy, different partitions can vary substantially

in the number of sellers and product quality. Such drastic variations in the assortment

size and quality also raise whether such a display policy is fair to the customers. In

this section, we address the unfairness in the display policy viewed by both sellers

and customers by introducing several fairness metrics and incorporating them into

formulation (2.7) as additional constraints.

2.5.1 Seller Fairness

We first study the fairness issue from the seller’s viewpoint. Previous literature has

proposed a number of commonly used notions of fairness (e.g., Mo and Walrand

2000, Bertsimas et al. 2011). For sellers, our goal is to ensure different partitions

have equal access to the market and are similar in overall quality. As a result, our

fairness definition resembles that in Cohen et al. (2019) and emphasizes the closeness

in demand allocation and the partition competitiveness across different partitions.

Specifically, each partition 𝑘 is characterized by the incoming demand 𝑀𝑘 and the

total attractiveness in equilibrium 𝒵𝑘 =
∑︀

{𝑖∈𝒮𝑘} exp (𝑎𝑖 − 𝛽𝑝*𝑖 ). If two partitions 𝑘1

and 𝑘2 share the same values of 𝒵𝑘 and 𝑀𝑘, customers will face the same optimization

problem and, therefore indifferent to the assignment. Motivated by this observation,

we propose a notion of fairness measured by the relative difference in attractiveness

𝒵 and the difference in the incoming demand that each of the 𝐾 partitions receives.

To this end, we introduce the definition of (𝛼, 𝛿)-fairness.

Definition 1. A display policy is (𝛼, 𝛿)-fair, where 0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝛿 ≤ 1, if

the total attractiveness of each partition satisfies 𝒵𝑘/𝒵𝑘′ ≥ 𝛼 and the total demand
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assigned to each partition satisfies 𝑀𝑘/𝑀𝑘′ ≥ 𝛿 for all partitions 𝑘, 𝑘′ ∈ {1, ..., 𝐾}.

Intuitively, 𝛼 quantifies the level of unbalance in the total attractiveness among

partitions. According to the definition above, 𝛼 = 1 refers to the fairest scenario

because each partition has the same total attractiveness, while a smaller 𝛼 allows

certain partitions to be significantly better or worse off than the rest and corresponds

to a less fair scenario. Similarly, the demand allocation is fairest when 𝛿 = 1, as the

demand assigned to each partition is identical and equal to 𝑀/𝐾 in this case. When

𝛿 = 0, the fairness constraint ceases to matter, and the platform can freely allocate the

market shares among partitions. In fact, the notion of (𝛼, 𝛿)-fairness could be easily

incorporated into our MIP Formulation (2.7) as additional constraints. Denoting the

feasible region of Formulation (2.7) by 𝒬, we augment Formulation (2.7) to include

the 𝛼 and 𝛿 fairness constraints as

max
𝑥,𝑧

∑︁
𝑘

𝑥𝑖,𝑗,𝑘,𝑣 Π𝑖,𝑗,𝑣 (2.8)

𝑠.𝑡.
∑︁
𝑗,𝑣

𝑧𝑗,𝑘,𝑣𝒵𝑗 ≥ 𝛼
∑︁
𝑗,𝑣

𝑧𝑗,𝑘′,𝑣𝒵𝑗 ∀𝑘, 𝑘′ = 1, 2, . . . , 𝐾

∑︁
𝑗,𝑣

𝑧𝑗,𝑘,𝑣𝑃𝑣 ≥ 𝛿
∑︁
𝑗,𝑣

𝑧𝑗,𝑘′,𝑣𝑃𝑣 ∀𝑘, 𝑘′ = 1, 2, . . . , 𝐾

𝑥, 𝑧 ∈ 𝒬

The integration of fairness into the main formulation is straightforward. Recall that

𝒵𝑗 is the 𝑗-th level of the tabulated 𝒵 value and 𝑃𝑣 is the 𝑣-th level of the tabulated

market share. The first two constraints ensure that the ratios of the market share

and attractiveness between any two partitions are greater than 𝛿 and 𝛼, respectively.

Moreover, note that Formulation (2.8) does not guarantee the existence of a feasible

solution. In other words, Formulation (2.8) might be infeasible if we impose somewhat

restrictive fairness constraints, i.e., both 𝛿 and 𝛼 are required to be close to one.

The (𝛼, 𝛿)-fairness guarantees a certain degree of equity in demand and attrac-

tiveness across partitions, but it is unclear how an (𝛼, 𝛿)-fair policy would affect every

single seller’s revenue. To quantify the effect of various fairness policies from the per-
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spective of an individual seller’s revenue, we propose the following definition of the

“envy level".

Definition 2. Denote by Π0
𝑖 the revenue that seller 𝑖 receives from the current par-

tition. When seller 𝑖 is moved to the 𝑘-th partition, 𝑘 = 1, 2, . . . , 𝐾, while the rest of

the sellers remain unchanged, we denote the revenue that seller 𝑖 will receive by Π𝑘
𝑖 .

Then, we define the current “envy level" for seller 𝑖 as:

𝐸𝑁𝑖 =
max𝑘{Π𝑘

𝑖 } − Π0
𝑖

Π0
𝑖

.

As a measure of the potential percentage of revenue gain, the envy level captures

the incentive for one seller to move to another partition. A display policy is considered

less fair if the envy level is large for some sellers under such policy, as these sellers

would have strong incentives to move to a more profitable partition. On the other

hand, if 𝐸𝑁𝑖 = 0 for all 𝑖 = 1, 2, . . . , 𝑁 , we consider the current partition fair because

no seller has incentives to switch partition groups unilaterally. Notably, when a

display policy is (𝛼, 𝛿)-fair, i.e., 𝛿 = 𝛼 = 1, we also have 𝐸𝑁𝑖 = 0 for all 𝑖 =

1, 2, . . . , 𝑁 , indicating that sellers would be indifferent to which partition they are

assigned, as their equilibrium prices and revenues will be exactly the same across all

partitions.

Exploiting Formulation (2.8), we are able to derive the equilibrium price and the

resulting seller revenue under different (𝛼, 𝛿) combinations. In Panel (a) of Figure

2-4, we demonstrate how the maximum of the envy level across sellers varies under

different (𝛼, 𝛿) combinations. As expected, the envy level is the highest when the

display policy is the least fair as measured by 𝛼- and 𝛿-fairness, i.e., (𝛼, 𝛿) = (0, 0.2).

Moreover, Panel (b) of Figure 2-4 showcases how the total revenue as defined in the

objective of Formulation 2.8 is affected by the display fairness. We observe that the

total revenue is monotonically decreasing as either 𝛼 or 𝛿 increases. The revenue

under the fairest case in which (𝛼, 𝛿) = (1, 1) is 86.1% of that when the platform is

not concerned about fairness at all, i.e., (𝛼, 𝛿) = (0, 0). Additionally, we scrutinize

the relationship between seller quality and each seller’s envy level. Specifically, we
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Figure 2-4: Envy Level and Total Platform Revenue under Different 𝛼 and 𝛿. The
full assortment has 40 sellers with quality 𝑎𝑖 following normal distribution 𝒩 (4, 1).
Demand is set to be 60, and the partition number is set to be 3. Parameters 𝛼 and
𝛿 are set from 0 to 1 with intervals of 0.2.

sort 40 sellers according to their product quality, classify them into three groups with

sizes of 13, 13 and 14 and label them as ’Low,’ ’Medium,’ and ’High,’ respectively.

We plot the envy distribution of these three groups in Figure 2-5. Notably, sellers in

the low-quality group exhibit a significantly higher envy level than their counterparts

in the higher quality groups, as shown in Figure 2-5, indicating that a seller with

a lower quality product is more likely to receive an unfair assignment. In fact, the

maximal envy level of the ’High’ group is 0.58, while for the ’Low’ group, it is as high

as 6.85. Without resorting to Formulation (2.8), we can use the following proposition

to bound the envy level of each individual seller.

Proposition 2.3. For any display policies with fairness level 2
3
< 𝛼 ≤ 1 and 0 < 𝛿 ≤

1, the envy level for each seller can be bounded by

𝐸𝑁𝑖 ≤
2𝛼

3𝛼− 2

(︂
1

𝛼
+

1

𝛿
− 2

)︂
, ∀𝑖 = 1, 2, . . . , 𝑁. (2.9)

This proposition aims to illustrate the connection between the individual envy

level and fairness parameters (𝛼, 𝛿). The upper bound of the envy level is decreasing

in both 𝛿 and 𝛼. Moreover, the rate of change is significantly higher when 𝛿 and 𝛼 are

small. This indicates that subject to the same decrease in the fairness parameters,

the envy level is likely to increase in less fair settings. Although the left-hand side
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Figure 2-5: Envy Distribution for Different Quality Groups. The parameter setup is
the same as that in Figure 2-4.

𝐸𝑁𝑖 is on individual sellers, the right-hand side upper bound is free of any individual

inputs. In other words, the bound is tightest when benchmarked with the seller that

has the maximum envy level.

2.5.2 Customer Fairness

Similar to how the profit-maximizing partition strategy can cause unfair distribution

of exposure among sellers, the variations in assortment size and quality across parti-

tions can also lead to the perception of unfairness among customers. Meanwhile, it

is unclear if a display policy that is fair to the sellers is also fair for the customers.

To address these questions, we first explore the connections between the seller and

customer fair. We then formally define and formulate customer fairness as additional

constraints to formulation 2.7.

We define the welfare a customer in partition 𝑘 receives as 𝑢𝑘. As all customers are

homogeneous in our model, 𝑢𝑘’s are independent and identically distributed (i.i.d.)

across customers in the same partition. As a result, we drop the customer subscript

from the notation. Specifically, 𝑢𝑘 equals 𝑎𝑖 − 𝛽𝑝*𝑖 if the customer books seller 𝑖’s

product, and zero if the customer selects the outside option. To investigate to what

extent seller fairness is equivalent to customer fairness, we study through numerical

analysis the difference in the expected individual customer welfare among customers
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Figure 2-6: Customer Welfare under Different Level of alpha in the Equal Demand
Case.

in three partitions under (𝛼, 1)-fair display policies. In this case, we consider cus-

tomer fairness as the relative difference in customer welfare across partitions. We

plot the equilibrium outcomes in Figure 2-6. When we impose more strict fairness

requirements on the sellers, i.e., when 𝛼 approaches one, the differences in customer

welfare across partitions shrink and eventually evaporate. This numerical study sug-

gests that equity in customer welfare across partitions can be achieved with a display

policy that is (1, 1)-fair to the sellers.

Figure 2-6 suggests that a certain degree of customer fairness can be simultane-

ously guaranteed when the platform imposes restrictions on seller fairness. Neverthe-

less, the converse of the statement that customer fairness leads to seller fairness does

not always hold. To see this, consider a subset display policy that allocates all the

demand into one partition. This policy is fair to all customers since they are assigned

to the same partition. However, such display is unfair to sellers who are not assigned

any demand. As a result, we need to develop a separate notion of fairness for the

customers. Similar to Definition 1, we define customer fairness as follows:

Definition 3. A display policy is 𝛾-fair, where 0 ≤ 𝛾 ≤ 1, if the expected individual

customer welfare of each partition satisfies E[𝑢𝑘]/E[𝑢𝑘′ ] ≥ 𝛾 for all partitions 𝑘, 𝑘′ ∈

{1, ..., 𝐾}.

The parameter 𝛾 reflects the closeness of expected individual customer welfare
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across partitions. Again, while we define seller fairness on the partition level, customer

fairness can be interpreted as either a partition level or an individual level of fairness

metric since all the customers are assumed to be homogeneous in our model.

We next incorporate the notion of customer fairness into our MIP formulation. In

this case, we are not able to directly tabulate the expected customer welfare E[𝑢𝑘] as

described in Algorithm 1. Previously, the tabulation of FOC as shown in Equation

(2.4) is possible because we manage to decompose the system of equations to a state

in which the solution 𝑝*𝑖 depends only on seller 𝑖’s product quality 𝑎𝑖 and the interme-

diate variable 𝒵 so that we can precompute and store the solution of each individual

equation. The computation for E[𝑢𝑘], however, requires enumerating all the demand

realizations under all potential partition outcomes, which is a combinatorial problem

by nature.

Given that it is infeasible to compute E[𝑢𝑘], the expected welfare that customers

in partition 𝑘 receive, we propose to circumvent this challenge by tabulating how

much customer welfare each individual seller generates in expectation. Intuitively,

the equivalence of these two terms can be justified by drawing an analogy from the

network flow problem: the total customer welfare that customers in partition 𝑘 re-

ceive must be equal to the total amount generated by the sellers in partition 𝑘. We

denote the customer welfare generated by seller 𝑖 in partition 𝑘 as 𝑣𝑘𝑖 . There are

two realizations for 𝑣𝑘𝑖 : 𝑣𝑘𝑖 = 𝑎𝑖 − 𝛽𝑝*𝑖 if the product is purchased, and 𝑣𝑘𝑖 = 0 if no

customer ends up purchasing the product. The purchasing probability of product 𝑖 in

partition 𝑘 is described in Equation (2.3). In this way, we can compute E[𝑢𝑘] through

the following equation

E[𝑢𝑘] =
1

𝑀𝑘

∑︁
𝑖∈𝒮𝑘

E[𝑣𝑘𝑖 ] =
1

𝑀𝑘

∑︁
𝑖∈𝒮𝑘

(𝑎𝑖 − 𝛽𝑝*𝑖 )

(︂
1−

(︁
1− exp (𝑎𝑖 − 𝛽𝑝*𝑖 )

1 +
∑︀

𝑗∈𝒮𝑘
exp(𝑎𝑗 − 𝛽𝑝*𝑗)

)︁𝑀𝑘

)︂
.

(2.10)

Now we can tabulate the expected customer welfare seller 𝑖 generates under 𝑗th level

of 𝒵 and market share level 𝑣 as

𝑈𝑖,𝑗,𝑣 =
1

𝑀𝑃𝑣

(𝑎𝑖 − 𝛽𝑝*𝑖,𝑗,𝑣)

(︂
1−

(︁
1−

exp (𝑎𝑖 − 𝛽𝑝*𝑖,𝑗,𝑣)

1 + 𝒵𝑗

)︁𝑀𝑃𝑣
)︂
. (2.11)
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As the tabulated 𝑈𝑖,𝑗,𝑣’s are seller dependent, we need to sum over 𝑖, 𝑗, 𝑣 to derive the

partition-level customer welfare. When the platform requires the display policy to be

𝛾-fair, we can formulate the problem as

max
𝑥,𝑧

∑︁
𝑘

𝑥𝑖,𝑗,𝑘,𝑣 Π𝑖,𝑗,𝑣 (2.12)

𝑠.𝑡.
∑︁
𝑖,𝑗,𝑣

𝑥𝑖,𝑗,𝑘1,𝑣𝑈𝑖,𝑗,𝑣 ≥ 𝛾
∑︁
𝑖,𝑗,𝑣

𝑥𝑖,𝑗,𝑘2,𝑣𝑈𝑖,𝑗,𝑣 ∀𝑘1, 𝑘2 = 1, 2, . . . , 𝐾

𝑥, 𝑧 ∈ 𝒬 .

2.6 Application using Airbnb Datasets

This section presents a case study using transaction data from Airbnb to demonstrate

how our framework can be applied in practice. Our goal is to show the empirical

strategy when fitting our model to the data and ultimately evaluate the impact of

different display policies under various market conditions for the Airbnb platform.

Our model, albeit stylized, closely reflects the gist of the decision-making processes of

the hosts and the Airbnb platform for the following reasons. First, each host on the

Airbnb platform supplies a listing with unit availability every day. Second, many hosts

have disabled instant booking, indicating that they plan to evaluate the profiles of

all the applicants before accepting one, thus translating the sequential arrival pattern

of the customers to a simultaneous scenario. Finally, each host makes independent

pricing decisions while observing the prices set by other listing owners.

In what follows, we first introduce the setting of Airbnb and provide a summary of

our data. We then describe how to fit our model to the transaction data to estimate

𝑎𝑖, the quality of each Airbnb listing 𝑖. Finally, we tabulate the critical inputs of our

MIP, through which we examine the optimal display policy under different demand

scenarios.

47



2.6.1 Data

Our Airbnb dataset covers the transaction history of listings in Manhattan, New York,

in 2018. Airbnb offers different home types that include Private Room, Shared Room,

and Entire Home/Apartment. Different home types tend to target different customer

segments, so competition usually occurs only within each home type. Thus, we limit

the scope of our analysis to include only listings labeled as Entire Home/Apartment.

The data include the daily transaction history of 2,561 such listings. On each day,

the data documents the status of each listing as either blocked (i.e., made unavailable

by the owner), available, or reserved. This way, we can recover the assortment of

listings displayed to the customers that we use to form the consideration sets for

the customers. The data also provide daily booking prices for each listing and other

listing characteristics such as overall ratings and number of reviews. We present the

summary of the listing characteristics in Table 2.2.

Table 2.2: Summary of Listings Characteristics

Property characteristics Mean St. Dev. Min Max

Occupancy Rate 0.65 0.36 0 1
Price (in USD) 247.54 287.58 10 2,500
Number of Reviews 70.02 63.49 0 400
Overall Rating 4.59 0.61 0 5
Number of Bedrooms 1.24 0.89 0 6
Number of Bathrooms 1.13 0.41 0 5
Response Rate† 91.19 19.12 0 100
Superhost 0.23 0.42 0 1
† Note: Response rate is defined as the percentage of the time that a host responds to guests
within 24 hours. A host becomes as a Superhost if the host satisfies a series of criteria set by
Airbnb, such as a high overall rating and low cancellation rate.

2.6.2 Estimation

To derive the optimal display policy for Airbnb, we first need to estimate each listing’s

quality. According to our theoretical model in Section 2.3, the overall mean utility of

listing 𝑖 on day 𝑡 can be expressed by the listing quality and price and as 𝑎𝑖 − 𝛽𝑝𝑖𝑡.

Nevertheless, instead of fitting an individual 𝑎𝑖 for each listing, we parametrize listing

quality as a linear combination of listing-specific covariates to reduce the number of
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parameters to be estimated and avoid overfitting the model. Specifically, we write

the utility that customer 𝑚 gains from booking listing 𝑖 on day 𝑡 as

𝜇𝑖𝑡𝑚 = 𝑎𝑖 − 𝛽𝑝𝑖𝑡 + 𝜖𝑖𝑚 = 𝑋𝑖𝛾 + FE𝑖 − 𝛽𝑝𝑖𝑡 + 𝜖𝑖𝑚 ,

where 𝜖𝑖𝑚 follows i.i.d. 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1). Quality is expressed as 𝑎𝑖 = 𝑋𝑖𝛾 + FE𝑖, where

𝑋𝑖 contains the listing characteristics summarized in Table 3.1 (apart from occupancy

rate and price). Additionally, following Li et al. (2019), we divide Manhattan into

10 regions, and assume that substitution occurs within each region. We use 𝐹𝐸𝑖 to

represent the regional fixed effect that listing 𝑖 shares with competing listings within

the same region. For ease of notation, we write 𝜃Ξ𝑖𝑡 = 𝑋𝑖𝛾 + FE𝑖 − 𝛽𝑝𝑖𝑡. In this

way, the theoretical probability that listing 𝑖 is booked on day 𝑡 is

1− (1− 𝑞𝑖𝑡)
𝑀 = 1−

(︁
1− exp(𝜃Ξ𝑖𝑡)

1 +
∑︀

𝑗∈𝒮𝑖𝑡
exp(𝜃Ξ𝑖𝑡)

)︁𝑀
, (2.13)

where 𝒮𝑖,𝑡 is the partition that listing 𝑖 belongs to on day 𝑡. Since Airbnb by default

displays all the available listings over a certain region to all customers, 𝒮𝑖,𝑡 in this case

represents all the listings within the same neighborhood as listing 𝑖. We denote by

the binary variable 𝑌𝑖,𝑡 the observed outcome from the transaction history indicating

whether listing 𝑖 is booked on day 𝑡. We adopt the nonlinear least squares frame-

work to recover a consistent estimate of 𝜃 that leads to the best fit of the demand

realization:

𝜃 = argmin
𝜃

∑︁
𝑡=1,...,𝑇

∑︁
𝑖=1,...,𝑁

(︂
1−

(︁
1− exp (𝜃Ξ𝑖𝑡)

1 +
∑︀

𝑗∈𝒮𝑖,𝑡
exp (𝜃Ξ𝑗𝑡)

)︁𝑀
− 𝑌𝑖𝑡

)︂2

. (2.14)

We would like to make several notes about this estimation equation. First, the listing-

specific parameters are identifiable because we observe variations in these listing char-

acteristics in the data. Moreover, the identifiability of the regional fixed effects is

achieved through the variations in the overall occupancy rate across different regions.

One estimation challenge is that Equation (2.14) requires the actual demand level 𝑀

as a fixed input, which in reality reflects listing owners’ common belief about future
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Table 2.3: Estimation Results
Demand/Supply Ratio

(𝑀/𝑁 =1) (𝑀/𝑁 = 1.5) (𝑀/𝑁 =2)

Price (× 100) -0.193 -0.217 -0.291
(-0.202 -0.185) (-0.235 -0.205) (-0.391 -0.25)

Overall Rating 0.355 0.382 0.499
(0.332 0.378) (0.355 0.413) (0.410 0.691)

Number of Reviews 0.005 0.006 0.011
(0.005 0.005) (0.006 0.006) (0.009 0.012)

Superhost 0.100 0.124 0.184
(0.078 0.121) (0.097 0.153) (0.122 0.231)

Response Rate 0.007 0.007 0.007
(0.006 0.007) (0.006 0.008) (0.006 0.008)

Number of Bedrooms 0.174 0.197 0.244
(0.163 0.187) (0.181 0.220) (0.214 0.349)

Number of Bathrooms 0.205 0.231 0.311
(0.179 0.232) (0.191 0.304) (0.232 0.425)

Observations 46,769 46,769 46,769
Regional Fixed Effects Yes Yes Yes

demand. However, we do not directly observe 𝑀 in the data, so we conduct estima-

tion under different demand scenarios. Specifically, we assume 𝑀 to be proportional

to the number of listings, with the demand-to-supply ratio set to be 1.0, 1.5 or 2.0.

The estimation results are presented in Table 2.3.

As the demand level increases, Table 2.3 suggests that while the magnitude of

these estimates increases, the relative magnitude across estimates largely persists

within each demand scenario. The 95% confidence intervals of our estimation re-

sults obtained through bootstrap simulations are presented in brackets. Using the

estimation results, we calculate the listing quality as 𝑎𝑖 = 𝑋𝑖𝛾 + FE𝑖.

2.6.3 Counterfactual Analysis

We obtain three sets of listing quality using our estimation results, each corresponding

to a demand level. For each demand scenario, we incorporate the listing quality into

Algorithm 1 to tabulate 𝑝*𝑖,𝑗, 𝐸𝑖,𝑗 and Π𝑖,𝑗, which in turn are used as inputs for our MIP

formulation, i.e., Equation (2.7). We can provide recommendations on the optimal

partition number for each neighborhood under each demand scenario. We visualize

the solutions from our MIP in Figure 2-7.
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Figure 2-7: Optimal Number of Partitions in each Manhattan Neighborhood.

When listing owners expect the daily demand to be low or moderate, Panels

(a) and (b) suggest that Airbnb should assign listings in each neighborhood to par-

titions. Nevertheless, Panel (c) of Figure 2-7 implies that Airbnb should use the

current display-everything strategy in most neighborhoods when faced with sufficient

demand, which is consistent with Theorem 2.1. Importantly, in addition to the opti-

mal partition number, our MIP formulation also explicitly indicates which partition

each listing is assigned to, making our results readily implementable by the platform.

Additionally, we also investigate the cost of fairness in the context of Airbnb. To

this end, we compare the difference in the optimal partition number and revenue

when the display policy is (0, 0)-fair and (0, 1)-fair. We present the results of our

counterfactual analysis in Table 2.4. Under each demand scenario, we report the op-

timal partition numbers under the two abovementioned policies in parentheses. The

resulting revenue gap generally falls within 20%. Notably, when demand is sufficiently

high, the unconstrained optimal display policy is also (0, 1)-fair for most of the neigh-

borhoods, as the optimal strategy is to display all listings to all the customers, which

automatically satisfies the definition of (0, 1)-fairness. Using a similar approach, we

can assess the profit gap between the unconstrained optimal display policy and the

optimal policy under arbitrary 𝛼, 𝛿, and 𝛾 combination.
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Table 2.4: Optimal Partition Number (PN) when (𝛼, 𝛿) = (0, 0) and (0, 1) and the

Revenue Gap.

District
𝐷𝑅 = 1.0 𝐷𝑅 = 1.5 𝐷𝑅 = 2.0

PN Gap PN Gap PN Gap

Central Harlem (3, 3) 18.12% (2, 4) 17.23% (1, 1) 0.00%

Chelsea and Clinton (3, 5) 19.84% (3, 2) 21.84% (1, 1) 0.00%

East Harlem (3, 5) 15.53% (3, 2) 12.84% (1, 1) 0.00%

Gramercy Park and Murray Hill (3, 5) 18.72% (3, 2) 19.65% (1, 1) 0.00%

Greenwich Village and Soho (4, 5) 19.65% (3, 4) 17.60% (1, 1) 0.00%

Inwood and Washington Heights (3, 5) 18.15% (2, 3) 19.23% (1, 1) 0.00%

Lower East Side (3, 2) 9.26% (2, 1) 14.14% (4, 1) 55.02%

Lower Manhattan (3, 4) 19.35% (4, 3) 18.28% (1, 1) 0.00%

Upper East Side (4, 4) 17.76% (4, 4) 16.22% (2, 1) 5.79%

Upper West Side (2, 3) 15.42% (5, 4) 14.55% (1, 1) 0.00%

In fact, Airbnb has been segmenting the listings into different partitions since

launching ‘Airbnb Plus,’ which, according to Airbnb, is a selection of only the highest

quality homes with hosts known for great reviews and attention to detail. Our par-

tition display policy can be implemented in a similar fashion. Customers searching

for lodging options in a neighborhood will be presented with a selection of listings,

with the probability of seeing each partition governed by the market share allocated

to each partition.

2.7 Extension to Non-Unit Inventory

Unlike Airbnb, sellers on platforms such as Amazon or Taobao may possess more than

one unit of inventory for each product. We thus formulate the objective functions

and derive the corresponding FOCs under multi-unit and infinite-unit scenarios. We

theoretically derive the optimal display policy when the platform is sufficiently large.

Notably, in the non-unit inventory case, we can still derive the optimal display pol-

52



icy under arbitrary market conditions and fairness constraints by incorporating the

outputs from the tabulation procedure described in Table 1 into the MIP formulation.

2.7.1 Finite Inventory

First, we assume that seller 𝑖 owns one SKU and has 𝑊𝑖 units of inventory in stock.

We assume the market size to be larger than the inventory level, i.e., 𝑊𝑖 < 𝑀 . The

seller’s objective function when facing demand 𝑀 can be written as

max
𝑝𝑖

Π𝑖(𝑀, 𝑝−𝑖) = 𝑝𝑖

(︃
𝑊𝑖 −

𝑊𝑖−1∑︁
𝑗=0

(𝑊𝑖 − 𝑗)

(︂
𝑀

𝑗

)︂
𝑞𝑗𝑖 (1− 𝑞𝑖)

𝑀−𝑗

)︃
(2.15)

where 𝑞𝑖 is defined as in Equation (2.2). Note that, instead of expressing the total

revenue as the sum of revenue from selling 1, 2, ...𝑊𝑖 products, Equation (2.15) cap-

tures the difference in the total revenue collected from selling all the products and

sum of the revenue losses when there are 1, 2, ...𝑊𝑖 unsold products. Then, the FOC

of Equation (2.15) can be expressed as

𝑊𝑖−1∑︁
𝑗=0

(𝑊𝑖 − 𝑗)

(︂
𝑀

𝑗

)︂
𝑞𝑗𝑖 (1− 𝑞𝑖)

𝑀−𝑗(1 +𝑀𝛽𝑝𝑖𝑞𝑖 − 𝑗𝛽𝑝𝑖) = 𝑊𝑖. (2.16)

Given an arbitrary 𝑀 , obtaining the closed-form solution for Equation (2.16) is

analytically challenging due to the combinatorial and nonlinear nature of the equation.

Nonetheless, when demand 𝑀 approaches infinity, the probability that all the 𝑊𝑖

products are purchased approaches 1. Thus, Equation (2.16) reduces to (1+𝑀𝛽𝑝𝑖𝑞𝑖−

𝑗𝛽𝑝𝑖) = 𝑊𝑖, which allows us to obtain the following result:

Theorem 2.2. Suppose that there are 𝑁 products 𝒮 = {1, 2, . . . , 𝑁}, each with finite

inventory 𝑊𝑖. For any 𝛾 > 1, there exists a threshold 𝑀(𝛾), such that when 𝑀 >

𝑀(𝛾), for any display policy {𝒮𝑘,𝑀𝑘}𝐾𝑘=1 that satisfies 𝑀𝑘 < 𝑀/𝛾, we have

𝑁∑︁
𝑖=1

Π*
𝑖 (𝒮,𝑀) >

𝐾∑︁
𝑘=1

∑︁
𝑖∈𝒮𝑘

Π*
𝑖 (𝒮𝑘,𝑀𝑘).
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Thus, when each product has finite units, it is still optimal for the platform to

display the entire assortment to all customers when demand 𝑀 is sufficiently large.

2.7.2 Infinite Inventory

Finally, we consider an extreme case in which each vendor on the platform holds

infinite inventory for the listed product. In this case, the seller’s objective function

can be written as:

max
𝑝𝑖

Π𝑠
𝑖 (𝑝−𝑖) = 𝑝𝑖𝑞𝑖 =

𝑝𝑖 exp (𝑎𝑖 − 𝛽𝑝𝑖)

1 +
∑︀𝑁

1 exp (𝑎𝑗 − 𝛽𝑝𝑗)
. (2.17)

When all the demand can be satisfied, the purchasing probability in Equation (2.17)

reduces to the standard MNL model (which is also equivalent to Equation (2.7) by

setting 𝑀 = 1). Then, the FOC for Equation (2.17) becomes

1

𝛽𝑝𝑖
= 1− 𝑞𝑖 (2.18)

In this case, the equilibrium price and revenue no longer depend on total demand.

Thus, the platform’s problem reduces to deciding only the number of listings in each

partition. Intuitively, when the platform hosts many sellers, with each possessing

a high level of inventory, it can be optimal to display only a subset of products.

Proposition 2.4 formally characterizes the optimal display policy when the number of

sellers is large:

Proposition 2.4. Denote by Π(𝒮) the total revenue from displaying assortment 𝒮

to customers. Suppose that product quality satisfies 𝑎ub = 𝑎1 ≥ 𝑎2 ≥ · · · ≥ 𝑎𝑁 = 𝑎lb,

where 𝑎lb > 0, 𝑎ub > 1/𝛽 and 𝑎ub − 𝑎lb < ln(𝛽𝑎ub − 1). Then, there exists a threshold

𝑁0 such that when the cardinality of 𝒮 satisfies |𝒮| > 𝑁0, we have Π(𝒮) < Π({𝑎1}).

Theorem 2.4 indicates that when the market becomes sufficiently competitive,

and the products are similar in quality, the platform should only display the product

with the highest quality. Notably, our numerical results of the unit-inventory case

presented in Panel (b) of Figure 2-2 point to a similar conclusion: when the number
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of products offered is considerably more significant than the market size; it is optimal

to display only a small subset of the entire assortment.
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Chapter 3

Estimating and Exploiting the Impact

of Photo Layout: A Structural

Approach

3.1 Introduction

Airbnb is a peer-to-peer lodging marketplace provider that offers close to 5 million

listings across 81,000 cities and has hosted over 300 million guests since 2008. The

platform aims to empower each of its hosts to provide high-quality rentals and max-

imize their revenues. One of Airbnb’s challenges since as early as 2011 is to make

sure that images posted by property owners are captivating and properly presented.

However, unlike the hotel industry, where hotels take photos of their rooms, Airbnb

has little control over user-generated images. The platform launched a photography

program in 2011 to help match hosts with local professional photographers who help

take photos of the hosts’ properties to improve photo quality. Although Airbnb claims

that images taken by professional photographers can lead to a 40% higher total earn-

ings, 24% more bookings, and 26% increased nightly prices1, many hosts still post

low-quality photos (Zhang et al. 2019), let alone perform a full-fledged optimization

1https://www.airbnb.com/professional_photography.
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of photo layout that accounts for image content, image quality, and the display order.

There is a good deal of literature that demonstrates the impact of images on

consumer behaviors within advertisement settings (Meyers-Levy and Peracchio 1992,

Miller and Kahn 2005). Similarly, Airbnb hosts use images to reveal critical informa-

tion about their apartments. Since customers usually have limited time and attention

when booking their property, they rely heavily on visual information to quickly com-

pare alternatives. Based on the quality and content of the images, customers form

expectations about each property and accordingly make decisions about which lodg-

ing to choose. Thus, given a collection of images with varying quality and content,

deciding which photo to prioritize on the listing’s web page is crucial for attracting

customers. Building upon previous papers that study the impact of various factors

on property demand (Li et al. 2016, Zhang et al. 2017), we examine how customers’

renting decisions are affected by photo layouts, which are characterized by the room

type featured in the photo, the photo quality and the order of display on the listings’

webpages.

For this study, we use three datasets to conduct our empirical analysis. The first

dataset contains detailed property characteristics for the 10,280 listings on Airbnb in

New York City in 2018. The second dataset documents the daily transaction history

for each listing throughout the year. The third dataset contains more than 220,000

photos posted by the apartment owners on the Airbnb platform for the same set of

listings. Because information on photo quality and photo content is not readily avail-

able in the existing dataset, we employ techniques in Computer Vision to augment our

information on image quality and image room types. Specifically, to extract image

quality and image room types from each photo, we apply a widely-used convolutional

neural network (CNN) model, Resnet50 (He et al. 2016), and we build two separate

supervised learning models to evaluate image quality and classify photo type. A score

from 1 to 7 is assigned as a measurement for photo quality, where a higher score in-

dicates that a photo is more visually attractive. Meanwhile, photos are classified into

one of the five room categories, namely, BEDROOM, LIVING ROOM, OUTSIDE,

TOILET and KITCHEN. The accuracy of the image quality scoring model and the
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room type classification model are 85.7% and 84.0%, respectively.

To examine and maximize the impact of a listing’s photo layout on its demand

using the three datasets, we address three major challenges: (i) the definition and the

identification of layout need to be carefully specified and carried out; (ii) as each listing

on each day can only be booked once, the demand data will be severely censored to

1 and customers would face changing choice sets, which make the estimation results

from traditional estimation approaches such as the multinomial logit (MNL) model

biased in the Airbnb setting; and (iii) posting photos of the same room type may

strengthen or weaken the impact from each individual photo. Thus the formulation

and the solution of the layout optimization problem are non-trivial.

We quantify the overall impact of photo layout according to how these photos

are displayed on the Airbnb website. As shown in Figure 3-1, customers can view

thumbnails of multiple listings within the search page. If they are interested, con-

sumers can proceed to any listing page. By default, the listing’s page displays the

first five images of a listing, in which the cover image is emphasized and takes up a

more significant amount of space than the other four photos. To reflect how Airbnb

displays listing images, we let the impact of photo layout depend on each photo’s

quality and room type. More importantly, whether an image is posted in the cover

spot versus the other four spots. We also introduce duplicate factors to capture the

increased or dampened marginal benefits from posting multiple images that contain

the same room type. With the photo-level data, we conduct reduced-form analysis to

study how photo layout affects the monthly occupancy rate of each property. We ob-

serve that higher quality images lead to a higher occupancy rate. In addition, we find

that the cover image generally has a more significant impact on a listing’s occupancy

rate than non-cover images. The bedroom photo has a more substantial impact than

other room types in the cover spot.

Next, we estimate the impact of image layout on customers’ renting decisions

under a random utility framework to pave the way for optimization and counterfactual

analysis over image layout. Because each lodging provides only one unit of supply

each day, the demand for each listing on each day is censored to 1. The censored
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Figure 3-1: Screenshot of Airbnb Webpages. Left: Cover Thumbnails on the Search
Page; Right: Listing View Page

demand data will bias the estimation in two ways: (i) The demand of the listings

is truncated. Consequently, we cannot distinguish the relative attractiveness among

popular listings that get reserved every day, and (ii) Once an apartment is booked for

a specific check-in date, customers who visit the website later would face a smaller

consideration set for the same check-in date. In this paper, we propose a novel

pairwise comparison model to estimate customers’ responses to the layout of photos

consistently. We further show that the estimation process can be simplified under

specific error term structures. In addition to sales data, which classic choice models

usually use, the pairwise comparison model also utilizes information on the sequence

by which each property is booked to recover the impact of property characteristics.

The estimation results suggest that the cover image has a much higher impact on

customers’ perceptions of lodging quality than photos in the non-cover spots. We also

observe that using a high-quality bedroom photo for the cover image results in the

maximal increase of a listing’s attractiveness. Interestingly, we do not find that living

room cover photos, which more than 60% of the listings are currently using, make

listings more attractive than the other room types. In addition, we observe decreasing

(increasing) marginal returns in image quality from posting bedroom (living room)

images in both cover and non-cover spots, suggesting listing owners should consider

such duplicate effects when setting up their photo layouts.

The results from this paper should provide direction for an Airbnb listing owner

when deciding which five photos to select from an existing collection of images to
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maximize his listing’s attractiveness. To this end, we formulate a non-linear integer

programming optimization problem and develop an algorithm to derive the optimal

photo layout. Under the optimal photo layout, 71% of listings use a bedroom image as

their cover photo. The rest of the room types are featured as cover images only when

they have much higher quality than the bedroom photos. We demonstrate through

our counterfactual that when a listing unilaterally switches to the optimal photo

layout, on average, the listing owner enjoys an 11.0% increase in booking probability.

Additionally, suppose the listing owner increases its rental price to neutralize the

benefits generated by the optimal photo layouts (i.e., the listing’s rental probability

stays the same). In that case, the yearly revenue will increase by an average of $1,248.

Finally, when all listings on Airbnb simultaneously switch to the optimal photo layout,

depending on the specific neighborhood and market size, each listing on Airbnb will

be booked for two to five more days in a year, which boosts the revenue by $500 to

$1100, respectively.

Our paper contributes to the OM community in the following two ways. First,

our paper provides an integrated framework that extracts relevant photo features

and quantifies and estimates the impact of the photo layout. This empirical strategy

echoes and builds upon previous literature ((Martinez-de Albeniz and Valdivia 2019),

(Zhang et al. 2019)) and can be used as an intermediate step for full-scale assortment

optimization on the product display. Second, the PCM approach we propose can ob-

tain less biased estimates in settings where the consideration set changes dynamically

over time. Besides the Airbnb platform, such settings include the flash sales industry

((Boada-Collado and Martínez-de Albéniz 2020)), car rental industry ((Jagabathula

et al. 2019)) and matching market ((Kanoria and Saban 2020)).

3.1.1 Literature Review

Our research is related to four streams of literature: the impact of photo layout

on product sales, computer vision, consumer choice models and choice model-based

assortment optimization, and the sharing economy, with a particular focus on peer-

to-peer lodging rental platforms.
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Using images as an effective means to convey information has been widely stud-

ied across various fields such as psychology and marketing. Valdez and Mehrabian

(1994) and Mikels et al. (2005) show that images can affect people on an emotional

level. About the advertisement industry, Snyder and DeBono (1985) suggests that

manipulating products’ images helps capture different types of customers. Moreover,

previous research (() (Gorn et al. 1997), (Miller and Kahn 2005)) documents that im-

age details such as camera angles and colors significantly impact images on consumer

behaviors. Our paper differs from existing literature by jointly examining the impact

of image quality, orders of image display, and image content on consumer choice in

the peer-to-peer apartment-sharing market.

Extracting and evaluating information from images are classic computer vision

tasks that have been well-studied by the machine learning community. Datta et al.

(2006) is among the first to extract detailed image features such as saturation and

hue and apply Support Vector Machine to predict binary high/low image quality out-

comes. In recent years, the Convolutional Neural Network (CNN) has been introduced

and shown to significantly improved the out-of-sample prediction accuracy over tra-

ditional techniques ((Krizhevsky et al. 2012), (Simonyan and Zisserman 2014)). In

our paper, to evaluate the quality and content of images posted by Airbnb listing

owners, we adopt Resnet50 - a type of pre-trained, structured CNN model capable of

regression and classification computer vision tasks. As a 50-layer residual network,

Resnet50 has been proven to outperform average human judgment on the ImageNet

dataset ((He et al. 2016)).

Our paper is closely related to literature that studies choice-based demand models

and their variants. The multinomial logit (MNL) model is one of the most frequently

used and studied discrete choice models ((McFadden 1978), (Ben-Akiva and Lerman

1985)). To relax the assumption that the error term in the MNL model follows

a general extreme value (GEV) distribution, Mahajan and Van Ryzin (2001) and

Farias et al. (2013) introduce non-parametric rank-based choice models that focus on

the preference list of the choices without specifying any utility forms. In addition,

Manski (1975) and Fox (2007) develop semi-parametric choice models that assume
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flexible error structures. In our paper, we must deal with two unique challenges in the

Airbnb setting that render classic estimation approaches non-viable, namely shrinking

consideration sets and heavily censored demand ((Boada-Collado and Martínez-de

Albéniz 2020)). In response to these challenges, we develop a pairwise comparison

estimation model (PCM) that utilizes information about the sequence with which each

property is booked to consistently estimate the impact of photo layouts on customers

booking decisions. In addition, PCM does not require a specific error term structure

and is more robust to error term misspecification.

We also contribute to literature that examines choice model-based assortment op-

timization problems (Mahajan and Van Ryzin 2001, Talluri and Van Ryzin 2004, Kök

and Fisher 2007, Aouad et al. 2015). Vulcano et al. 2010 is among the first empirical

works to study the effectiveness of choice-based revenue management (RM) models.

Using data from a major US airline, they report around 5% revenue gains by applying

choice-based RM. Using transaction-level data from a major U.S. automaker, Farias

et al. (2013) proposes a non-parametric approach that enables data to automatically

choose the best choice model for revenue predictions and demonstrates a 20% improve-

ment in prediction accuracy over state-of-the-art benchmark models. Wang (2018)

empirically demonstrates that, after incorporating various reference prices into an

MNL model, the optimal policies for the assortment planning problems significantly

improve the goodness of fit and prediction accuracy of consumer choice behavior. In

addition, Feldman et al. (2019) shows that an MNL-based assortment optimization

model generates 28% higher revenue per customer visit than the machine-learning-

based algorithm currently used by Alibaba’s marketplaces. In our paper, we study

the optimal layout of photos while allowing for interaction among photos in the lay-

out, i.e., the synergy between cover and non-cover images. We formulate the photo

layout optimization problem, which is similar to assortment optimization, as a non-

linear integer programming problem. We then provide an algorithm that solves for

the optimal solution.

Our paper studies the impact of photo layout on lodging demand on the Airbnb

platform and is, therefore, related to the recent literature on property-sharing plat-
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forms. In particular, Zhang et al. (2017, 2019) are most relevant to our work. Zhang

et al. (2017) employs a quasi-experimental method to examine how the quality of im-

ages displayed on Airbnb can increase the property demand by 14.3%. Zhang et al.

(2019) shows that, compared to high-quality photos, medium-quality images generate

a higher number of reviews and have a more significant effect on property demand

in the long run as they are less likely to create a dissatisfactory gap between the

perceived and the true quality of the property. Our paper observes that high-quality

photos give rise to a higher review writing probability and thus higher demand than

medium-quality photos. We arrive at divergent results, possibly because our paper

has different data granularity and uses a different empirical strategy than that of

Zhang et al. (2019). First, we do not have monthly time stamps on the number

of review data. Second, we develop a pairwise comparison model that accounts for

changes in the consideration set. Yet, we do not incorporate features such as "ef-

fort level" in our model, which may also contribute to the difference in the result.

There are also several empirical papers about the Airbnb platform that relate to our

work. Farronato and Fradkin (2018) models and estimates the effects of enabling peer

supply from Airbnb and shows that the welfare gains are concentrated when hotels

have constrained capacities. Li et al. (2016) empirically demonstrates that behav-

ioral differences between nonprofessionals and professional hosts on Airbnb can lead

to different revenue. Cui et al. (2019) shows through field experiment that informa-

tion transparency such as reviews can reduce discrimination by apartment owners on

Airbnb. Our work contributes to the existing literature on the property-sharing plat-

form on two fronts. First, we investigate how, in addition to image quality, the image

content and the display order posted by Airbnb hosts affect lodging demand. Second,

because each listing’s providing only one unit of availability per day on the Airbnb

platform will bias the estimation results, we develop a novel estimation framework

to reduce such estimation bias and consistently estimate the impacts of photo layout

and apartment characteristics on the listings’ demand.
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3.2 Empirical Analysis

3.2.1 Data Description and Empirical Strategy

For our empirical analysis, we use three datasets containing 10,280 Airbnb listings in

New York City posted in 2018. The first dataset includes property characteristics,

the second contains daily transaction histories for each property, and the third has

images of each property.2

The first dataset contains information for each individual listing, including listing

titles, listing types (entire apartment, private room, or shared room), ZIP codes,

overall rating, number of reviews, whether the listing owner is a superhost3, response

rate, number of bedrooms and bathrooms, cancellation policy, etc. A summary of

characteristics of the first dataset is presented in Table 3.1.

Table 3.1: Summary of Listings Characteristics

Property characteristics Mean St. Dev. Min Max

Occupancy Rate 0.52 0.40 0.00 1.00
Price (in USD) 148.38 131.36 10.00 5,068.71
Number of Reviews 28.67 35.97 0 313.00
Overall Rating 4.65 0.33 1.00 5.00
Number of Bedrooms 1.15 0.70 0.00 9.00
Number of Bathrooms 1.12 0.38 0.50 6.50
Response Rate† 93.82 14.69 0.00 100.00
Superhost 0.13 0.34 0.00 1.00
Number of Photos 14.67 10.07 1.00 178.00
† Note: Response rate is defined as the percentage of time a host responds to potential guests
within 24 hours. A host becomes as a Superhost if the host satisfies a series of criteria set by
Airbnb, such as high overall rating and low cancellation rate.

The second dataset contains daily transaction information for all 10,280 listings

in 2018. For each day, a listing may have three possible codes: "A,” "B," or "R.” "A"

indicates that the listing is available on the day, but no customer ends up booking

the property. "B" specifies that the listing is blocked and unavailable to customers.

"R" refers to a property that is reserved. We can also observe the daily booking

2Our datasets are scraped in a socially responsible fashion that will not affect the operational
performance of the servers of the Airbnb platform.

3A host becomes as a Superhost if the host satisfies a series of criteria set by Airbnb. The detailed
criteria are provided at https://www.airbnb.com/superhost.
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Table 3.2: Example of Daily Transaction Data
Property ID Check-in Date Status Transaction Date Price

1000070 2018-09-07 R 2018-05-11 55
1000070 2018-09-08 R 2018-06-11 55
1000070 2018-09-09 A NA 55
1000070 2018-09-10 B NA NA

price and two important dates: (i) Check-in Date, which is the date the customer

is expected to be accommodated, and (ii) Transaction Date, which is defined as the

date the customer completes the booking online. The example shown in Table 3.2

shows the status of a listing for four consecutive days. As indicated in the first two

rows of Table 3.2, the listing is booked on both September 7th and 8th, yet the

booking transactions are completed on May 11th and June 11th, respectively. The

third row shows that the property was available on September 9th, indicating that no

one booked the property. The listing is blocked and made unavailable for customers

on September 10th (row 4 of Table 3.2).

The third dataset includes 222,144 images from all 10,280 listings. For each image,

we record the order in which the image is displayed on the webpage. For example,

an image with the label "1" indicates that the image is posted as the cover photo,

and the label "2" signifies that the image is displayed right after the cover photo. In

addition, we use computer vision techniques to identify and evaluate the quality and

room type of each image. Image quality is assessed on a 1-7 Likert scale based on how

visually pleasant the image is, and room type is classified as BEDROOM, LIVING

ROOM, OUTSIDE, TOILET or KITCHEN. In what follows, we briefly introduce the

computer vision models used to recover image characteristics.

3.2.2 Determination of Image Quality and Image Content

We build two separate supervised learning models to efficiently extract image infor-

mation: one regression model to determine image quality and one classification model

to identify room type. Out of the 222,144 images, we randomly selected a subset of

4,000 images, each scored by four subjects (raters) based on how visually pleasing

66



the picture is.4 Scores are first pre-processed to exclude outliers, and for each image,

the average of the four scores is computed as the image’s quality. The labeled score

reflects the subject’s evaluation of the visual attractiveness of the image and serves

as a subjective proxy for photo quality. As a result, the score for the same photo can

vary across subjects. We also construct an alternative photo quality measure based

on objective photo features such as saturation and hue as a robustness check. The

construction of the alternative quality score and the related analysis are presented in

Appendix B.2 and Section A of the Online Companion. Subjects are also asked to

label the room type based on whether the main part of the image reflects BEDROOM,

LIVING ROOM, OUTSIDE, TOILET or KITCHEN (the photo types are abbrevi-

ated as B, L, O, T, K, respectively). The final room type label is determined based

on the majority rule, i.e., the label identified by the majority of the four subjects.5

We split the 4,000 images into a training set (60%) and a test set (40%), and we

apply convolutional neural networks (CNN), a widely adopted deep learning frame-

work in the computer vision field, to train both models. Since training and tuning a

CNN model from scratch requires a great deal of time and effort, we employ transfer

learning and a widely used CNN framework named Resnet50. Resnet50 has a rela-

tively small number of layers and parameters yet outperforms other computer vision

models and even humans on standard computer vision tasks (He et al. 2016).

To address the potential overfitting issue when training these two models, we

perform standard data augmentation processes (which simulates the actual photo-

taking process and enlarges the training set), including random rotation of photos

within 20 degrees, horizontal photo flips, and random crops. To test out-of-sample

performance, we train the parameters of Resnet50 using 60% of the data. We build

one regression model to predict images’ quality scores and one classification model

to predict the room types featured in the images. Table 3.3 presents the summary

statistics of the image characteristics.

In Panel (a) of Figure 3-2, we plot the discrepancy between the predicted and ac-

4The detailed labeling instruction closely follows the guidelines provided in Zhang et al. (2017),
which we attach in the Online Companion.

5In the case of a draw, we randomly choose a label between the two labels proposed.
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Figure 3-2: Accuracy of Image Quality Identification

tual scores, which takes the value of 0, +1, or −1, where 0 indicates that the predicted

score equals the actual one, and +1(−1) signifies that the predicted score is higher

(lower) than the actual one. Panel (a) of Figure 3-2 also shows that the misspecified

images are concentrated around the threshold, which reflects the subjectivity and

ambiguity of image quality judgments. The overall out-of-sample prediction accuracy

for photo quality is 85.7% when we split the quality scores into high and low while

setting the threshold to 4. Panel (b) of Figure 3-2 shows a confusion matrix of the

out-of-sample performance for the image room type classification model. The two

numbers in each block represent the percentage and the number of images of the tar-

get type classified into the output type. Overall, our photo type classification model

achieves an accuracy of 84.0% on the test set. We explain the potential sources of

errors in the Appendix B.1. After the training process, we re-train the two models on

the subset of 4,000 images and use the resulting models to predict the quality scores

and room types for 222,144 images. Table 3.3 summarizes the image quality of each

room type. Additionally, Figure 3-3 plots the average image quality score against the

image index (the order in the photo is presented on the website). We observe a clear,

decreasing pattern of average scores in the display sequence (i.e., cover photos receive

the highest quality scores, with decreasing scores associated with each subsequent

index). Moreover, the average scores for each listing’s first five images are signifi-
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Table 3.3: Summary of Image Quality and Content

Statistic Mean St. Dev. Min Max

Average Image Quality Score 4.069 0.728 1.309 6.429
Number of Living Room Images 5.056 4.133 0.000 69.000
Number of Bedroom Images 3.991 3.436 0.000 66.000
Number of Outside Images 1.820 3.088 0.000 61.000
Number of Toilet Images 1.809 1.569 0.000 22.000
Number of Kitchen Images 1.995 1.788 0.000 45.000

Number of Observations: 10280

cantly higher than the average scores for all images included in each listing. This

implies that listing owners are consciously adjusting the sequence of their images so

that higher-quality images are prioritized. In addition, the average quality score for

the first image is considerably higher, hinting at the significant impact of the cover

image. Based on such observation, we formally define the impact of photo layout in

the next subsection.

Figure 3-3: Relationship between Average Score and Image Indices

3.2.3 Definition and Identification of Photo Layout

With the photo quality and room types extracted, we quantify the overall impact of

the photo layout. Since 2018, listings on the Airbnb platform display the first five

pictures of the property as shown in Figure 3-1, where the cover image occupies half

of the space, and the other four images evenly split the other half. Given such a

69



layout, we limit the scope of our analysis to the first five images.6 Since the cover

photo occupies a large area on the web page and is the only image on display when

customers browse their search results, we propose separate coefficients indicating if

an image of a particular room type is posted in the cover spot or on one of the other

four non-cover spots. Specifically, we denote 𝛼𝑐
𝑚, 𝑚 ∈ {𝐵,𝐿,𝑂, 𝑇,𝐾} as the impact

of the cover image scores for an image of type 𝑚, and 𝛼𝑛𝑐
𝑚 as the impact of the score

for an image of type 𝑚 when the image is placed in the other four non-cover spots.7

When a listing owner posts multiple images of the same room type, however, the

value of each additional image could either be discounted as customers may receive less

new information from the next image, or strengthened, as customers could confirm the

quality of the room after examining it from different angles. Therefore, we introduce

𝛿𝑚, 𝑚 ∈ {𝐵,𝐿,𝑂, 𝑇,𝐾} to capture the potential diminishing or increasing returns

for posting photos of identical room types. Because the prominent position of the

cover image receives more attention than photos in the other positions (which makes

it more likely to create synergy with the same type of photos at non-cover spots),

we assume that the duplicate effect exists when the listing owner posts photos of the

same room type in both cover and non-cover slots.

To quantify the overall impact of the photo layout, we incorporate three elements

of a photo in our formulation: the quality of the photo, the room type of the photo,

and whether or not the photo is posted as the cover image. Specifically, we denote

the score for the cover image as 𝑠𝑐, and for ease of notation let 𝑠𝑐𝑚 = 𝑠𝑐1{𝑇𝑌 𝑃𝐸=𝑚}.

Furthermore, we denote the total number of photos of room type 𝑚 as 𝐾𝑚, where

𝐾𝑚 = 𝐾𝑐
𝑚 +𝐾𝑛𝑐

𝑚 , the sum of type-𝑚 photos in both cover and non-cover positions.

The average and the total score of photos of room type 𝑚 are 𝑠𝑚 and 𝑆𝑚 where

6Seeing more photos requires extra clicking and scrolling on the web page, which dampens the
impact from the rest of the photo layout. Meanwhile, including too many images in the layout would
weaken the identification.

7On Airbnb’s mobile application, images are not displayed as according to Figure 3-1. However,
customers on the mobile app still observe the cover image for each listing on both the searching page
and the property page, and they need to scroll to see the rest photos. Thus, the way we classify
layout into cover and non-cover positions still holds for mobile users, whom we cannot distinguish
from the web users due to the limitation of our data.
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𝑆𝑚 = 𝑠𝑚𝐾𝑚. The total impact of the first five photos is then:

𝑉 =
∑︁
𝑚

(︀
𝛼𝑐
𝑚𝑠

𝑐
𝑚 + 𝛼𝑛𝑐

𝑚𝑆𝑛𝑐
𝑚 + 𝛿𝑚𝑆

𝑛𝑐
𝑚 1{𝐾𝑐

𝑚=1}1{𝐾𝑛𝑐
𝑚 ≥1}

)︀
. (3.1)

The first term in Equation (3.1) captures the impact of cover image of room type

𝑚 and score 𝑠𝑐𝑚. The second term reflects the total impact of type-𝑚 photos dis-

played at non-cover positions. To better understand the third term, we rewrite it

as 𝛿𝑚𝑠
𝑛𝑐
𝑚𝐾𝑛𝑐

𝑚 1{𝐾𝑐
𝑚=1}1{𝐾𝑛𝑐

𝑚 ≥1}, which is non-zero only when the cover image shares

the same room type as one or more photos in the non-cover spots. Thus, the third

term captures the impact of photo repetition, with the effect size proportional to the

number of repeated photos with the same room type and their average photo quality.8

Identification of Parameters We now show that the parameters in Equation (3.1)

are identifiable. The identification of 𝛼𝑐
𝑚 is achieved by the variation in the quality

of each room type cover image. Similarly, 𝛼𝑛𝑐
𝑚 is identifiable because of the variation

in the number of photos and the photo quality in non-cover spots. Finally, the

identification of 𝛿𝑚 is achieved through the variation of the room type in the cover

image position, the number of photos that have the same room type, and their quality

scores.

3.2.4 Reduced-form Analysis

We now conduct reduced-form regression analysis to study the impact of photo layout

on property occupancy rate. From the dataset, we first construct the occupancy rate,

denoted as 𝑂𝐶_𝑅𝐴𝑇𝐸, to reflect the popularity of a listing:

𝑂𝐶_𝑅𝐴𝑇𝐸𝑖𝑡 =
𝑁𝑅𝑖𝑡

𝑁𝑅𝑖𝑡 +𝑁𝐴𝑖𝑡

, (3.2)

where 𝑁𝑅𝑖𝑡 is the number of days property 𝑖 is reserved in month 𝑡 and 𝑁𝐴𝑖𝑡 the

number of days the property is available in month 𝑡. In our reduced-form regressions,

8We assume the impact of the cover image will not be affected in this case, so we use the average
score for only the non-cover images.
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Table 3.4: Regression Results: Impact of Image Layout on Occupancy Rates
(1) OLS (2) 2SLS

Photo Level Cover Non-Cover Duplicate Cover Non-Cover Duplicate

Bedroom 1.10*** 0.29*** -0.006 0.99*** 0.24*** 0.002
(0.17) (0.05) (0.05) (0.17) (0.05) (0.05)

Living_Room 0.94*** 0.11* 0.11* 0.89*** 0.09 0.11*
(0.16) (0.05) (0.05) (0.16) (0.05) (0.05)

Outside 0.87*** -0.13 0.38*** 0.87*** -0.15* 0.38***
(0.20) (0.07) (0.11) (0.20) (0.07) (0.11)

Toilet 0.90* 0.22*** -0.07 0.72 0.21** -0.01
(0.46) (0.07) (0.47) (0.46) (0.07) (0.47)

Kitchen 0.94*** 0.27*** 0.32** 0.88*** 0.23*** 0.32*
(0.20) (0.06) (0.12) (0.20) (0.05) (0.12)

Property Level

Price (×10−2) -1.50*** -1.80***
(0.05) (0.15)

Overall_Rating 5.68*** 6.33***
(0.42) (0.45 )

Num_of_Rev 0.19*** 0.21***
(1.74×10−3 ) (7.53×10−3 )

Superhost 5.41*** 4.52***
(0.27) (0.36 )

Response_Rate 0.24*** 0.22***
(0.06) (0.07)

Num_of_Photos -0.11*** -0.13***
(0.01) (0.01)

Num_of_Bedrooms 1.70*** 1.99***
(0.17) (0.19)

Num_of_Bathrooms 0.13 0.41
(0.29) (0.30)

IV NO YES
Monthly FE YES YES
Zipcode FE YES YES
Observations 86,142 86,142
Adjusted R2 0.296 0.294
Note: *p<0.1; **p<0.05; ***p<0.01

we assume the monthly occupancy rate is linear in the characteristics; in other words:

𝑂𝐶_𝑅𝐴𝑇𝐸𝑖𝑡 = 𝛽𝑝𝑝𝑖𝑡 + 𝑉𝑖 + 𝜏 PROPERTY𝑖 + 𝛾 CONTROL𝑖𝑡 + 𝜖𝑖𝑡 , (3.3)

where 𝑝𝑖𝑡 is the average price in month 𝑡 for the listing 𝑖. 𝑉𝑖 is the impact of photo

layout defined in the previous section, where

𝑉𝑖 =
∑︁
𝑚

(︀
𝛼𝑐
𝑚𝑠

𝑐
𝑚𝑖 + 𝛼𝑛𝑐

𝑚𝑆𝑛𝑐
𝑚𝑖 + 𝛿𝑚𝑆

𝑛𝑐
𝑚𝑖1{𝐾𝑐

𝑚𝑖=1}1{𝐾𝑛𝑐
𝑚𝑖≥1}

)︀
(3.4)

. We assume that photo layout for each listing remains the same across different time

periods. PROPERTY is a vector of property characteristics, including overall rating

by Airbnb guests, number of reviews, whether the owner is a superhost, response
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rate, number of bedrooms and bathrooms and the total number of photos each listing

owner posts. 𝜏 depends only on the property and is time invariant, and CONTROL

includes monthly fixed effects and location (ZIP code) fixed effects.

The regression results are presented in column (1) of Table 3.4. Lower prices,

higher image quality, a higher number of bedrooms, and higher ratings by Airbnb

guests are associated with higher monthly occupancy rates. Also, listings owned

by superhosts and those with higher response rates are more likely to be booked.

Most importantly for this study, cover images, in general, have a much higher impact

on occupancy rates than images in non-cover spots, likely because cover images are

displayed on the search results page and take up more space on the listing page than

the other four photos. More specifically, high-quality bedroom cover images lead

to the biggest increase in occupancy rates among the five room types. Finally, the

positive coefficients of the duplicate effect from the living room, outside, and kitchen

images indicate that having identical photos can lead to greater improvements in

demand than the combined improvements from individual photos.

Endogeneity In our regression analysis, both the rental price of the property and

the number of reviews suffer from potential endogeneity concerns as there could be

unobserved property characteristics that affect listing owners’ pricing decisions and

customers’ reviews. To address the endogeneity in price, we use as an instrumental

variable (IV) the average price of competing listings that share the same property

type (such as apartment or loft) and are located in the same neighborhood. This IV

is correlated with the price of the focal listing as the competing listings that have

the same property type and are located in the neighborhood charge similar prices as

the focal listing. In addition, the average price of competing listings is unlikely to

be correlated with the unobserved characteristics of the focal apartment. To address

the endogeneity in the number of reviews, we use the average number of reviews

of competing listings as the IV. According to Table 3.4, the main results remain

unchanged after we incorporate these two IVs in our two-stage least squares (2SLS)

regression. Meanwhile, both the 1st stage F-statistic and the Cragg-Donald Statistic

presented in Table 3.5 reject the null hypothesis, suggesting that the instrument is
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Table 3.5: Endogenous Variables, Instrument Variables and Related Tests
Endogenous Variable IV 1st Stage

F-Statistic
Cragg-Donald

Statistic
Wu-Hausman

Statistic

Price Avg. Price‡ 6945.95*** 2434.10*** 11.35***Number of Reviews Avg. # Rev‡ 2508.60***
‡The average price and number of reviews are taken over listings of the same type in the
neighborhood
Note:*p<0.1; **p<0.05; ***p<0.01

not weak. Furthermore, the Wu-Hausman test is also significant, which implies the

consistency of the two IVs.

3.3 Structural Estimation

Our reduced-form regression results demonstrate the impact of photo layout on occu-

pancy rate. This section performs structural estimation to gauge the effect of photo

layout on customers’ booking decisions to closely replicate customers’ booking pro-

cesses at Airbnb, capture the substitution pattern among listings, and eventually

suggest optimal photo layouts.

3.3.1 Identification Strategy

On the Airbnb platform, each property provides only one unit of supply each day.

Thus the demand for each listing on each day is censored to 1. Such heavily censored

demand data imposes two challenges to our estimation process. First, customers face

a changing choice set: when a customer books a property for specific check-in date,

the property becomes unavailable. Consequently, the size of choice set for customers

who arrive after this transaction will shrink by one. To not bias the estimation, we

need to keep track of the availability of each property and incorporate the changing

choice set into our estimation model whenever a customer books a property. Second,

the demand for each property is heavily censored in our data. Because each property

can only be booked once on a specific day, the daily demand is truncated at 1 and

cannot fully capture the attractiveness of each listing. To elaborate, consider a case
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in which two properties both get booked out every single day during a period of 30

days. According to the booking data, both apartments will be considered equally

popular as both listings have 30 units of demand over the period. However, if, in

fact, one apartment regularly gets booked ahead of the other, we need to make sure

that our estimation model properly reflects that one apartment is preferred over the

other.

Traditional estimation approaches, such as the MNL choice model that has a fixed

consideration set (McFadden 1978) and the maximum score estimation approach (Fox

2007), fail to converge in this setting due to the challenges mentioned above. To obtain

consistent estimates of the impact of image layout, we develop a pairwise comparison

model (PCM) - an estimation framework that consistently estimates the impact of

property characteristics on demand. In what follows, we present our estimation model,

and we demonstrate its asymptotic properties in Section 3.3.1. We also compare

the performance of different estimation approaches for the Airbnb platform using

synthetic data in Section 3.3.1.

To start with, we assume that the customer 𝑘’s utility from booking apartment 𝑖

is

𝜇𝑖𝑘 = 𝑋𝑖𝛽 + 𝜖𝑖𝑘 (3.5)

= 𝛽𝑝𝑝𝑖 + 𝑉𝑖 + 𝜏PROPERTY𝑖 + 𝛾CONTROL𝑖 + 𝜖𝑖𝑘 ,

for which the utility function is linear in the apartment specific covariates. We as-

sume that 𝜖𝑖𝑘 are independent and identically distributed (i.i.d.) across listings and

customers, yet we do not specify a particular functional form for the error term 𝜖𝑖𝑘.

Next, we define 1{𝑖≻𝑗}𝑑 as whether property 𝑖 is reserved ahead of property 𝑗 on

check-in date 𝑑 according to the data, given both listings are not blocked on that day.

For example, suppose we observe both properties 𝑖 and 𝑗 are reserved on September 1st

in the data. For property 𝑖, the booking transaction was completed on August 15th,

and for property 𝑗, it was August 18th. Then, we have 1{𝑖≻𝑗}𝑑 = 1 and 1{𝑗≻𝑖}𝑑 = 0 on

September 1st. Alternatively, suppose property 𝑖 was booked on August 15th, yet no
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one ends up booking property 𝑗. In this case, we still have 1{𝑖≻𝑗}𝑑 = 1 and 1{𝑗≻𝑖}𝑑 = 0

on September 1st. Accordingly,
∑︀𝐷

𝑑=1 1{𝑖≻𝑗}𝑑 would give the number of observations

where listing 𝑖 is selected ahead of 𝑗 over the period of 𝐷 as recorded in the data, and

(
∑︀𝐷

𝑑=1 1{𝑖≻𝑗}𝑑+
∑︀𝐷

𝑑=1 1{𝑗≻𝑖}𝑑) is the total number of possible comparisons in the time

horizon of D days from the data. For each pair of listings (𝑖, 𝑗), given the covariates

𝑋𝑖, 𝑋𝑗, it holds that, in expectation, the theoretically predicted number of times 𝑖 is

selected ahead of 𝑗 should equal to the observed number of times 𝑖 is selected ahead

of 𝑗. That is to say:

E
[︀
1{𝑖≻𝑗}𝑑|𝑋𝑖,𝑋𝑗

]︀
= P(𝑖 ≻ 𝑗|𝛽,𝑋𝑖,𝑋𝑗)

(︂ 𝐷∑︁
𝑑=1

1{𝑖≻𝑗}𝑑 +
𝐷∑︁

𝑑=1

1{𝑗≻𝑖}𝑑

)︂
(3.6)

= P((𝑋𝑖 −𝑋𝑗)𝛽 ≥ 𝜖𝑗𝑘′ − 𝜖𝑖𝑘)

(︂ 𝐷∑︁
𝑑=1

1{𝑖≻𝑗}𝑑 +
𝐷∑︁

𝑑=1

1{𝑗≻𝑖}𝑑

)︂

= 𝐺(𝛽(𝑋𝑖 −𝑋𝑗))

(︂ 𝐷∑︁
𝑑=1

1{𝑖≻𝑗}𝑑 +
𝐷∑︁

𝑑=1

1{𝑗≻𝑖}𝑑

)︂
,

where P(𝑖 ≻ 𝑗|𝛽,𝑋𝑖,𝑋𝑗) is the theoretical probability that, given 𝛽, 𝑋𝑖 and 𝑋𝑗 ,

the property 𝑖 is booked ahead of 𝑗 when both properties are made available, i.e., not

blocked by the owners. In addition, the link function 𝐺(·) is the cumulative distribu-

tion function (c.d.f.) of the difference of the error term 𝜖𝑗𝑘′ − 𝜖𝑖𝑘. For example, when

𝜖𝑖𝑗 follows Gumbel distribution, 𝐺(·) is simply the c.d.f. of the logistic distribution.

For the general case where 𝐺(·) may not have a closed-form expression, we estimate

Equation (3.6) by nonlinear least squares (NLS):

𝛽 = argmin
𝛽

𝐾−1∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

(︃
P(𝑖 ≻ 𝑗|𝛽)

(︂ 𝐷∑︁
𝑑=1

1{𝑖≻𝑗}𝑑 +
𝐷∑︁

𝑑=1

1{𝑗≻𝑖}𝑑

)︂
⏟  ⏞  

expected number of times 𝑖 is selected ahead of 𝑗

−
𝐷∑︁

𝑑=1

1{𝑖≻𝑗}𝑑⏟  ⏞  
actual number of times 𝑖 is

selected ahead of 𝑗

)︃2

.

(3.7)

We evaluate 𝛽 in Equation (3.7) by minimizing the squared discrepancy between the

expected frequency and the realized frequency in the data, over all 𝑛(𝑛− 1)/2 pairs

of listings.

PCM overcomes our two estimation challenges of changing consideration sets and
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censored demand. Unlike MNL, which requires a fully specified consideration set

to specify the probability of a particular option being chosen, the PCM approach

needs only a function form for the error term to specify the probability that property

𝑖 is chosen ahead of property 𝑗, which, together with the number of comparisons

between property 𝑖 and 𝑗, allow for the identification of the coefficients for the listing

features. Additionally, since the demand is censored to be 0 or 1 in the Airbnb

data, it is possible that two popular listings both get reserved every day and are

considered equal by traditional choice models. In this situation, PCM can identify

the more favored listing and the impact of the corresponding features by utilizing

the information on the booking sequence on top of quantity information to identify

consumers’ preferences. Apart from the two abovementioned advantages, PCM is

more robust to error term misspecification than other commonly used estimation

approaches, which we discuss formally in Section 3.3.1.

Properties of the PCM Estimator

With the estimation framework specified, we now develop two asymptotic properties

of the PCM estimator to enable further statistical inferences. We first list three

assumptions relevant to our propositions.

Assumption 3.1. For a nonlinear regression model 𝑦𝑡 = 𝑓𝑡(𝑋,𝛽) + 𝜖𝑡, assume the

following:

(i) 𝑓𝑡(𝑋,𝛽) = 𝑓(𝑋,𝛽), 𝜕𝑓
𝜕𝛽

exists and is continuous.

(ii) 𝛽 belongs to a compact space.

(iii) E[ 𝜕𝑓
𝜕𝛽

𝜕𝑓
𝜕𝛽

′
] is finite and nonzero.

All three assumptions hold in our context for the following reasons. In this nonlin-

ear regression framework, each observation corresponds to a pair a listings (𝑖, 𝑗), and

𝑋 represents (𝑋𝑖 −𝑋𝑗), the difference between feature vectors of listings 𝑖 and 𝑗.

The dependent variable 𝑦𝑡 is the number of observations in the data where property

𝑖 is booked ahead of 𝑗, while 𝑓𝑡(𝑋,𝛽) is the expected number of observations where

property 𝑖 is booked ahead of 𝑗. As Equation (3.7) suggests, this term equals the
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multiplication of P(𝑖 ≻ 𝑗|𝛽), i.e., the theoretical probability that 𝑖 is preferred to 𝑗

given 𝛽, and the total number of comparisons between 𝑖 and 𝑗.

The first part of assumption (i) holds if 𝑓𝑡(𝑋,𝛽) is time-invariant because in our

formulation, the probability function P(𝑖 ≻ 𝑗|𝛽) has the same functional form across

all the observation pairs. For the second part of assumption (i), we can obtain the

derivative of the link function 𝐺(·) in Equation (3.6) with respect to 𝛽, which is

proportional to the probability distribution function (p.d.f.) of the underlying link

distribution. The p.d.f. of 𝐺(·) is continuous for most, if not all, error distributions.

For instance, when the link function follows a normal distribution, the derivative for

𝑓 is 𝜕𝑓
𝜕𝛽

= (𝑋𝑖−𝑋𝑗)𝜑(𝛽(𝑋𝑖−𝑋𝑗)), where 𝜑 is the p.d.f. of the normal distribution.

Assumption (ii) naturally holds, since we expect the true values of 𝛽 to be finite

and thus bounded within a compact set. Assumption (iii) assumes that the second

moment of 𝜕𝑓
𝜕𝛽

is non-zero and finite. In our context, this is also valid for most of the

link functions. Again, we use the normally distributed link function as an example.
𝜕𝑓
𝜕𝛽

= (𝑋𝑖 − 𝑋𝑗)𝜑(𝛽(𝑋𝑖 − 𝑋𝑗)) is the multiplication of the difference in feature

vectors and the p.d.f.. As the feature difference (𝑋𝑖 −𝑋𝑗) between any two pairs of

listings are bounded, the second moment of this term is non-zero and finite. Thus,

assumption (iii) also holds for the commonly used link functions. With the three

assumptions justified, we formally state the consistency of the nonlinear least square

PCM estimator 𝛽 in Proposition 3.1.

Proposition 3.1. Under Assumption (i) and (ii), the PCM nonlinear least square

estimator 𝛽 is a consistent estimator of 𝛽0, the true parameter in the data generating

process.

Similar to other M-estimators, Proposition 3.1 indicates that the PCM nonlinear

least square estimator is consistent. A formal proof of the consistency is presented

in Appendix B.4. In addition, we also establish the asymptotic normality of the

estimator as the following.

Proposition 3.2. Under assumptions (i)-(iii), the PCM least square estimator 𝛽 is

78



asymptotically normal with

√
𝑇 (𝛽 − 𝛽0)

𝑑−→ 𝒩 (0, 𝜎2
0E[

𝜕𝑓

𝜕𝛽

𝜕𝑓

𝜕𝛽

′
]−1) , (3.8)

where 𝜎0 is the standard deviation of the discrepancy between the theoretical and the

observed probabilities in Equation (3.7).

Again, the proof of the proposition is presented in Appendix B.4. The asymptotic

normality enables the construction of confidence intervals and justifies our statistical

inference. Notice that the asymptotic property holds for the normally distributed

utility error term and for a family of distributions that satisfy assumptions (i)-(iii).

However, to interpret the convergence rate of the estimator, we assume that the

error term follows a normal distribution for the present. Recall that E[ 𝜕𝑓
𝜕𝛽

𝜕𝑓
𝜕𝛽

′
] is

the second moment of (𝑋𝑖 − 𝑋𝑗)𝜑(𝛽(𝑋𝑖 − 𝑋𝑗)). When the variation in listing

features (𝑋𝑖 − 𝑋𝑗) is very small, the convergence rate is slow as the identification

of parameters is weak. If there’s no variation in the features, assumption (iii) will

be violated, and the model will fail to converge at all. On the other hand, when

(𝑋𝑖−𝑋𝑗) is very large, the term 𝜑(𝛽(𝑋𝑖−𝑋𝑗)) becomes small, and, consequently,

the convergence slows down. The underlying reason for this is that when the listing

features are distributed very sparsely in the feature space, there will be a range of 𝛽

that would yield the same observations. More data points are required to recover the

true parameter 𝛽.

Special Case: Gumbel or Normal Error Term.

We now discuss two special cases in which the error term 𝜖𝑖𝑘 in Equation (3.5) follows

𝐺𝑢𝑚𝑏𝑒𝑙(0, 1) and 𝒩 (0, 1), respectively. Specifically, we show how these two com-

monly used distributions lead to simplified estimation process. We start with the

case where 𝜖𝑖𝑘 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1). In this case, after algebaric manipulation, Equation

(3.6) becomes:

E
[︂ ∑︀𝐷

𝑑=1 1{𝑖≻𝑗}𝑑∑︀𝐷
𝑑=1 1{𝑖≻𝑗}𝑑 +

∑︀𝐷
𝑑=1 1{𝑗≻𝑖}𝑑

⃒⃒⃒⃒
𝑋𝑖,𝑋𝑗

]︂
= 𝐺(𝛽(𝑋𝑖 −𝑋𝑗)) (3.9)
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= P((𝑋𝑖 −𝑋𝑗)𝛽 ≥ 𝜖𝑗𝑘′ − 𝜖𝑖𝑘)

=
1

1 + exp (−(𝑋𝑖 −𝑋𝑗)𝛽)
,

where 𝑘 and 𝑘′ are the indices for customers who reserve properties 𝑖 and 𝑗. Because

both 𝜖𝑖𝑘 and 𝜖𝑗𝑘′ follow i.i.d. 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1), the difference between the two error terms,

𝜖𝑗𝑘′ − 𝜖𝑖𝑘, follows 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(0, 1). This way, Equation (3.9) can be directly estimated

through fractional response logistic regression (Papke and Wooldridge 1996) with

common built-in functions such as glm() in R.

Similarly, when 𝜖𝑖𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1), Equation (3.6) can be written as:

E
[︂ ∑︀𝐷

𝑑=1 1{𝑖≻𝑗}𝑑∑︀𝐷
𝑑=1 1{𝑖≻𝑗}𝑑 +

∑︀𝐷
𝑑=1 1{𝑗≻𝑖}𝑑

⃒⃒⃒⃒
𝑋𝑖,𝑋𝑗

]︂
= 𝐺(𝛽(𝑋𝑖 −𝑋𝑗)) = Φ(𝛽(𝑋𝑖 −𝑋𝑗)) ,(3.10)

where Φ(·) is the c.d.f. of normal distribution. As both 𝜖𝑖𝑘 and 𝜖𝑗𝑘′ follow i.i.d.

𝒩 (0, 1), and the difference of 𝜖𝑗𝑘′ − 𝜖𝑖𝑘 follows 𝒩 (0,
√
2). As a result, Equation (3.10)

can then be estimated by fractional response probit regression.

Performance Comparisons for Estimation Models

Before presenting our estimation results, we first demonstrate the performance of

the PCM estimator. To this end, we benchmark PCM with three different estimation

models on synthetic data under two different specifications in the Airbnb setting. The

data generating process follows the random utility model proposed by Fox (2007):

𝜇𝑎𝑖 = −𝑥1,𝑎𝑖 + 𝛽0𝑥2,𝑎𝑖 + 𝜏𝑎𝑖 , (3.11)

where 𝜇𝑎𝑖 is the utility gained for customer 𝑎 choosing listing 𝑖, 𝑥1,𝑎𝑖 and 𝑥2,𝑎𝑖 are

the covariates and are i.i.d. normally distributed as 𝒩 (0, 2), 𝛽0 is the parameter to

be recovered by the estimation models and has true value 𝛽0 = 1, and 𝜏𝑎𝑖 is the

error term. In the first specification, 𝜏𝑎𝑖 follows a standard Gumbel distribution. In

the second specification, 𝜏𝑎𝑖 follows a bimodal distribution with the same mean and

variance as the standard Gumbel distribution. Similar to Section 3.3.1, after the

80



utility for each property is realized, customers arrive sequentially to decide which

property to book. When a property is booked, the consideration set shrinks by one,

accordingly.

Multinomial Logit Model (MNL) We use the widely adopted MNL model as

a benchmark. Under the MNL model, the probability of choosing listing 𝑖 is 𝑃𝑖 =

exp(𝛽𝑋𝑖)/
∑︀

𝑖′ exp(𝛽𝑋
′
𝑖).

Sequential Multinomial Logit Model (SMNL) One of the limitations of the

classic MNL model is the fixed consideration set that the model assumes. When

applied to the Airbnb setting, the changing consideration sets caused by properties

having only unit availability will lead to biased estimation results. To address this

issue, we modify the classic MNL to take into account the changing choice sets, and

we propose a sequential MNL (SMNL) approach. The probability of choosing 𝑖 on

day 𝑡 is:

𝑃 𝑑
𝑖 = P(𝑈𝑖 ≥ 𝑈𝑖′ ,∀𝑖′ ∈ I𝑑) =

exp(𝑈𝑖)∑︀
𝑖′∈I𝑑 exp(𝑈𝑖′)

=
exp(𝛽𝑋𝑖)∑︀

𝑖′ exp(𝛽𝑋
′
𝑖)1𝐵𝑑

𝑖 ≤𝐵𝑑
𝑖′

(3.12)

𝛽 = argmax
𝛽

∑︁
𝑡

∑︁
𝑖

log𝑃 𝑑
𝑖 ,

where 𝑈𝑖 is the mean utility, and I𝑑 is the choice set when 𝑖 is booked on day 𝑑, and

it shrinks over time. This shrinking behaviour is captured by 1𝐵𝑑
𝑖 ≤𝐵𝑑

𝑖′
, which is an

indicator of whether listing 𝑖 gets booked ahead of 𝑖′ on the check-in date 𝑑. Then

we can use maximum likelihood estimator (MLE) to find the optimal 𝛽. Note that

after we introduce the indicator, the computational time becomes much longer for

high dimensional 𝛽.

Maximum Score (MS) Another limitation of the MNL model is its assumption that

the error term follows a Gumbel distribution. To mitigate potential mis-specification

of the error term, Fox (2007) proposes a semi-parametric maximum score (MS) model:

𝛽 = argmax
𝛽

𝐾−1∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

1

𝑁

𝑁∑︁
𝑎=1

(︀
1[𝑎𝑖]1[𝛽𝑋𝑎𝑖>𝛽𝑋𝑎𝑗 ] + 1[𝑎𝑗]1[𝛽𝑋𝑎𝑗>𝛽𝑋𝑎𝑖]

)︀
, (3.13)

where the expression enumerates all pairs of listings (𝑖, 𝑗). 1[𝑎𝑖] indicates whether list-
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ing 𝑖 is chosen at observation 𝑎, and 𝛽 forms a deterministic ranked preference list for

the expression to be most consistent with data. Fox (2007) shows that the MS esti-

mator is asymptotically consistent and very fast to compute. However, identification

of the true parameter with limited data is challenging.

Using synthetic data where listings have unit availability every day, we run the

three abovementioned estimation approaches together with our PCM model (esti-

mated both through NLS and GLM). Adopting the data setup in Fox (2007), we

generate 100 listings with normally distributed features, and the parameter to be

estimated has true value 𝛽0 = 1. We assume that there are 500 potential customers.

Upon each customer’s arrival, an i.i.d. error term is realized for each listing, and

the listing with the highest realized utility will be booked. If the realized utility for

all available listings is lower than that of the outside option (with mean utility nor-

malized to zero), that demand is lost. Once a listing is booked on a day, it will be

unavailable for subsequent customers. Meanwhile, we consider two error term dis-

tributions for listings’ utility. In the first case, the error term is a standard Gumbel

distribution. In the second case, the error term is misspecified as standard Gumbel

but is, in fact, a mixed-normal distribution with the same mean and variance as the

standard Gumbel distribution. To reflect the scope of the Airbnb dataset and our

estimation process, in the synthetic data analysis, we account for the outside option

in the data-generating process but not in the estimation stage. Customers compare

different options and choose the one with the highest realized utility, be it a listing on

Airbnb or the outside option. Then, we perform conditional PCM estimation using

only the simulated booking history on Airbnb. We report the estimation results in

Table 3.6.

The estimation results show that the classic MNL model fails to recover the true

value of 𝛽0, as the model does not account for the changing consideration sets. The

MS estimator performs poorly due to the lack of data and failure to incorporate

consideration set shrinkage. When the error term is correctly specified, both the

SMNL and PCM estimators can recover a parameter value close to 𝛽0 = 1, with

PCM presenting a smaller gap between the recovered parameter and the true value of
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Table 3.6: Estimation Results Using Synthetic Data (𝛽0 = 1, 95% CI)
Error Structure Gumbel Mixed-Normal

Choice Model Mean St. Dev. RMSE Mean St. Dev. RMSE

MNL 0.095 0.194 0.925 0.147 0.213 0.878
SMNL 0.995 0.016 0.017 1.206 0.049 0.211
MS 0.170 3.463 3.544 0.885 3.151 3.137
PCM (NLS) 0.997 0.014 0.015 1.073 0.022 0.076
PCM (GLM) 1.003 0.021 0.021 1.171 0.045 0.177

𝛽0. However, when the error structure is misspecified, PCM (NLS) appears to be the

most robust approach, as it presents the smallest gap with the true value. Finally,

when estimated through GLM, the running time of PCM is significantly reduced,

yet a larger bias is reported when the error term is misspecified. In Appendix B.3,

we present additional numerical experiments to showcase that PCM can uncover

the ground-truth parameter regardless of whether outside option observations are

included.

3.3.2 Structural Estimation of Parameters and Estimation Re-

sults

Next, we conduct structural estimation by applying PCM to the transaction data

from all ten neighborhoods in Manhattan. The 10 neighborhoods shown in Figure

3-4 encompass 43 ZIP codes that include 2,561 Airbnb listings and 297,815 daily

transactions.9 We assume that customers compare lodging alternatives within each

neighborhood, i.e., listings in areas that have the same color code in Figure 3-4 are

compared pair-wised. In addition, we assume that customers’ preferences for listings

characteristics over the ten neighborhoods are homogeneous, i.e., they share the same

set of parameters in our estimation. The estimates we obtain represent the average

effects of photos and other characteristics on the listing attractiveness. While different

regions can have heterogeneous fixed effects, those fixed effects will get canceled in the

estimation process because we perform pairwise comparisons on listing pairs within
9Many listings labeled as a private room do not display images of a kitchen or living room.

Therefore, to examine the impact of all five room types, our study focuses only on listings that rent
the entire home/apartment.
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each region. Furthermore, as an existing listing may switch its availability status, the

consideration set may not be strictly shrinking over time. Thus, we only focus on the

demand within one month before the check-in date in our estimation, as listing owners

are less likely to switch the status of their listing as the check-in date approaches. We

provide a detailed discussion on this issue in Appendix B.2.

To exploit the flexibility of the error term structure in Equation (3.5), we test

two specifications where the error term in Equation (3.5) follows Gumbel and normal

distribution, respectively. We estimate 𝛽 = (𝛽𝑝, 𝜏 ,𝛾, 𝛼
𝑐
𝑚, 𝛼

𝑛𝑐
𝑚 , 𝛿𝑚) by combining the

customer utility specified in Equation (3.5) with the pairwise estimation Equation

(3.7). Specifically, our estimation equation is as follows:

𝛽 = argmin
𝛽

12∑︁
𝑚=1

10∑︁
𝜂=1

∑︁
(𝑖,𝑗)∈𝑆(𝑚,𝜂)

(︃
P(𝑖 ≻ 𝑗|𝛽)

(︂ 𝐷∑︁
𝑑=1

1{𝑖≻𝑗}𝑑 +
𝐷∑︁

𝑑=1

1{𝑗≻𝑖}𝑑

)︂
−

𝐷∑︁
𝑑=1

1{𝑖≻𝑗}𝑑

)︃2

,

(3.14)

where we sum over 12 months, 10 neighborhoods, and all the listing pairs in month 𝑚

and neighborhood 𝜂, respectively. Additionally, P(𝑖 ≻ 𝑗|𝛽) follows logistic (normal)

distribution when the error term in Equation (3.5) follows Gumbel (normal) distribu-

tion. We further use bootstrap to obtain 95% confidence intervals for our estimates.

We present the estimation results in Table 3.7. As the main insights from both

specifications are identical, yet the model under the Gumbel error structure presents

a higher pseudo-R-squared value, we will focus on the results under the Gumbel er-

ror term in what follows. The results suggest that the bedroom room type is the

best choice for the cover image, given the same photo quality. When the quality of

the bedroom cover image increases by 1, the customer’s utility increases by 0.108 -

the highest magnitude among all room types. This is likely because most Airbnb

customers stay overnight and place great value on the quality and coziness of the

bedroom. Therefore, for most customers, a high-quality picture of the bedroom will

likely be particularly attractive and play a significant role in their decision-making

processes. Kitchen and outside views are the second and third best options, respec-
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Figure 3-4: Neighborhoods of Interest in Manhattan.

tively, for the cover image. Interestingly, posting living room photos as cover images

results in the lowest increases in demand, even though more than 60% of the listings

currently use living room cover images. There were 12 incidences in which listing

owners posted a toilet as the cover image. We removed all 12 incidences from our

estimation due to weak identification for the toilet cover photo.

The magnitudes of coefficients of the non-cover images are less than half than their

cover counterparts, highlighting the crucial role that the cover images play in helping

customers decide which property to book. As noted above, these cover images are

displayed on the search results webpage to attract customers to click on the listing

for further inspection, and they take up more space on the listing webpage than

the additional four photos. Bedroom (living room) photos have negative (positive)

duplicate effect coefficients, implying decreasing (increasing) marginal returns when

posting photos of these room types in both cover and non-cover spots. The positive
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Table 3.7: Structural Estimation Results
(1) Gumbel Error Terms (2) Normal Error Terms

Photo Level Cover Non-Cover Duplicate Cover Non-Cover Duplicate

Bedroom 0.108 0.028 -0.009 0.086 0.024 -0.006
(0.100 0.119) (0.025 0.030) (-0.012 -0.006) (0.056 0.098) (0.022 0.026) (-0.009 0.000)

Living_Room 0.077 0.022 0.006 0.063 0.020 0.005
(0.070 0.085) (0.019 0.026) (0.004 0.009) (0.046 0.072) (0.018 0.023) (0.002 0.007)

Outside 0.084 0.014 NA 0.071 0.013 NA
(0.074 0.097) (0.008 0.020) (NA) (0.062 0.079) (0.009 0.017) (NA)

Toilet NA 0.017 NA NA 0.014 NA
(NA) (0.009 0.022) (NA) (NA) (0.010 0.018) (NA)

Kitchen 0.089 0.026 NA 0.072 0.023 NA
(0.076 0.102) (0.023 0.029) (NA) (0.055 0.083) (0.021 0.026) (NA)

Property Level

Price (×10−2) -0.403 -0.343
(-0.415 -0.393) (-0.362 -0.332)

Overall_Rating 0.306 0.253
(0.293 0.318) (0.219 0.275)

Num_of_Rev 0.728 0.624
(×10−2) (0.754 0.843) (0.617 0.631)
Superhost 0.186 0.151

(0.171 0.201) (0.121 0.172)
Response_Rate 0.795 0.686
(×10−2) (0.754 0.843) (0.647 0.724)
Num_of_Photos 0.171 0.151
(×10−2) (0.105 0.230) (0.109 0.212)
Num_of_Bedrooms 0.227 0.198

(0.215 0.239) (0.184 0.223)
Num_of_Bathrooms 0.106 0.086

(0.095 0.118) (0.059 0.104)

Pseudo R Squared: 0.357 0.349

duplicate effect for living room might be one of the reasons why, albeit having the

lowest impact among all room types in the cover position, more than 60% of the

listings in our data use living room photos as cover images. We do not analyze

duplicate effects for toilet, kitchen and outside pictures due to insufficient number of

observations.

Moreover, lower prices, higher overall ratings, and a more significant number of

reviews all make properties more likely to be booked. Additionally, listings for which

the owners are superhosts and with high response rates are more likely to be booked

by the customers. Finally, listings with more bedrooms and bathrooms also enjoy

higher demand.
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Robustness Check. We perform structural estimation over additional specifica-

tions to consolidate our estimation results. The results are summarized in Table B.1

and Table B.2 in Appendix B.2. Specifically, Column (1) of Table B.1 presents the

estimation results when the photo quality is assessed not through the labeled score

but objective features such as the contrast and the vibrance of the picture. Column

(2) further includes a second-order term for the objective photo score to capture

the potential nonlinear effect of the photo quality. We repeat the same estimation

in Columns (3) and (4) using the labeled photo quality. All the specifications are

estimated through GLM. The details for all the setups are presented in Appendix

B.2.

Furthermore, we examine how photo type misspecification and misspecified list-

ing status could bias our estimation results. While our model achieves an overall

accuracy of 84%, Figure 3-2 indicates that certain room types, such as bedroom, are

prone to misclassification. We thus use synthetic data to investigate how photo type

misclassification affects our estimation results. Meanwhile, the consideration set may

not be strictly shrinking over time, a new apartment may pop up at any time, or

an existing listing may switch its status between "B" (blocked) and "A" (available).

To study the impact of misspecified listing status on the estimation results, we first

examine the percentage of miscounted incidences through a separate dataset that

contains the three-month trajectory of the status for each listing. We identify that

such miscounted incidences account only for 1.24% of the total number of cases. We

then investigate the impact of miscounted cases on our estimation results through

synthetic data. The elaborate setups for the two abovementioned cases are presented

in Appendix B.2, and the estimation results are shown in Table B.2.

3.4 Optimization and Counterfactual Analysis

In this section, we explore how our estimation results from Section 3.3.1 lead to

implications for Airbnb’s listing owners. Specifically, we are interested in the benefits

associated with adjusting the layout of the Airbnb listing photo. To this end, we
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formulate the layout optimization problem to obtain the optimal photo layout that

maximizes the attractiveness of a listing. We then investigate the impact of the

optimal photo layout on the revenue for each listing.

To pave the way for our counterfactual analysis, we first determine the optimal

photo layout for each listing. From Table 3.7, we observe that posting multiple bed-

room (living room) images leads to decreasing (increasing) marginal returns, and

therefore, selecting the optimal layout is nontrivial (i.e., it may not be optimal for

owners to rely on their highest quality images if they duplicate room types) and re-

quires an optimization framework. To this end, we first reformulate the impact from

the photo layout,
∑︀

𝑚

(︀
𝛼𝑐
𝑚𝑠

𝑐
𝑚 + 𝛼𝑛𝑐

𝑚𝑆𝑛𝑐
𝑚 + 𝛿𝑚𝑆

𝑛𝑐
𝑚 1{𝐾𝑐

𝑚=1}1{𝐾𝑛𝑐
𝑚 ≥1}

)︀
, in matrix represen-

tation. Suppose a listing owner has a set of 𝑁 images with scores {𝑠𝑛} ⊆ {[1, 7]}𝑁 ,

we use 𝐻, a 𝑁 ×5 matrix, to summarize the quality score as well as the room type of

each image. Each row in 𝐻 corresponds to an image, and each column corresponds

to a room type ({𝐵,𝐿,𝑂, 𝑇,𝐾}). An entry only takes a positive value of its image

quality score if the image is of the room type designated for the column. In other

words, 𝐻𝑛𝑚 = 𝑠𝑛1{Type𝑛=𝑚}. From the data input 𝐻, the listing owner must decide

which image to use as the cover and which images to use in the four non-cover spots.

Denote 𝑍 to be a 𝑁 ×5 decision variable matrix, where 𝑧𝑛𝑖 = 1 if the 𝑛th photo is se-

lected to for the 𝑖th slot (𝑖 = 1 means covers). Also, through the previous estimation

procedures, we obtain the coefficients on the layout impacts 𝛼𝑐
𝑚, 𝛼𝑛𝑐

𝑚 and 𝛿𝑚. The

integer programming formulation in matrix representation is as follows:

max
𝑍

𝑍𝑇
1 𝐻𝛼𝑐 +

5∑︁
𝑖=2

𝑍𝑇
𝑖 𝐻𝛼𝑛𝑐 +

5∑︁
𝑖=2

𝑍𝑇
𝑖 𝐻𝛿 1{𝑍𝑇

1 𝐻(𝑍𝑇
𝑗 𝐻)𝑇>0} (3.15)

s.t.
𝑁∑︁

𝑛=1

𝑧𝑛𝑖 = 1 ∀𝑖 = 1, ..., 5

5∑︁
𝑖=1

𝑧𝑛𝑖 ≤ 1 ∀𝑛 = 1, ..., 𝑁

𝑧𝑛𝑖 ∈ {0, 1} ∀𝑛, 𝑖,

where 𝛼𝑐, 𝛼𝑛𝑐 and 𝛿 are the vectors of estimated parameters, and 𝑍𝑗 is the 𝑗th
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column of the decision variable matrix 𝑍, corresponding to the index of images. The

objective function follows the definition of photo layout impact specified in Equation

(3.1): 𝑍𝑇
1 𝐻𝛼𝑐 and 𝑍𝑇

𝑗 𝐻𝛼𝑛𝑐, 𝑗 = 2, ..., 5, capture the impact of the cover image and

the non-cover images, respectively. The indicator function 1{𝑍𝑇
1 𝐻(𝑍𝑇

𝑗 𝐻)𝑇>0} specifies

whether a non-cover image is of the same room type as the cover; thus, the third term

captures the potential impact of duplicate images. The first constraint in Equation

(3.15) implies that each slot can only display one image, and the second constraint

is that each image can be only displayed in at most one slot. This formulation is

nonlinear since it involves several indicator functions 1{𝑍𝑇
1 𝐻(𝑍𝑇

𝑗 𝐻)𝑇>0}, determining if

the image at slot 𝑗 has the same type as the cover’s (the first slot). Directly solving

this nonlinear integer programming problem is challenging due to the large feasible

region resulting from hosts having a large number of photos. We therefore propose

an algorithm to solve for the optimal solution.

Algorithm 2:
input : Scores 𝑠𝑛, Types Type𝑛, Model parameters 𝛼𝑐, 𝛼𝑛𝑐 and 𝛿

1 for 𝑚 ∈ {𝐵,𝐿,𝑂, 𝑇,𝐾} do // Denote as scenario 𝑚
2 find 𝑛* = argmax𝑛(𝑠𝑛|Type𝑛 = 𝑚), compute 𝑣𝑛* = 𝑠𝑛*𝛼𝑐

𝑚 ;
3 for 𝑛 ∈ {1, ..., 𝑁} ∖ {𝑛*}, do
4 if Type𝑛 = 𝑚 then compute 𝑣𝑛 = 𝑠𝑛(𝛼

𝑛𝑐
𝑚 + 𝛿𝑚); // Duplicate effect

5 else compute 𝑣𝑛 = 𝑠𝑛𝛼
𝑛𝑐
𝑚 ;

6 end for
7 For the sequence {𝑣𝑛}, 𝑛 ∈ {1, ..., 𝑁} ∖ {𝑛*}, find

𝑛𝑖 = arg𝑛 𝑣(𝑁−𝑖+1), 𝑖 = 1, 2, 3, 4;
8 Compute 𝑉𝑚 = 𝑣𝑛* +

∑︀4
𝑖=1 𝑣𝑛𝑖

9 end for
10 find 𝑚* = argmax𝑚 𝑉𝑚;
11 apply the optimal layout as in scenario 𝑚*

Intuitively, this algorithm compares different scenarios, under each of which we

place a room type image with the highest score into the cover slot. Once the room

type of the cover image is fixed, we specify the impact of the four non-cover slots.

Finally, we compare the total utility obtained from each scenario and select the one

with the highest value. We state the optimality of Algorithm 2 as follows:

Proposition 3.3. When 𝛼𝑐
𝑚 ≥ 𝛼𝑛𝑐

𝑚 and 𝛼𝑐
𝑚 ≥ 𝛼𝑛𝑐

𝑚 + 𝛿𝑚, ∀𝑚 ∈ {𝐵,𝐿,𝑂, 𝑇,𝐾},
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Algorithm 1 recovers the optimal photo layout.

Proposition 3.3 holds when the cover image has a larger impact on customer utility

than the non-cover ones, with or without the duplicate effect, which our estimation

results in Table 3.7 confirm. We present the proof of Proposition 3.3 in Appendix

B.4.

Applying the estimation results in Table 3.7 to Algorithm 2, we obtain the optimal

photo layouts for listings across the ten neighborhoods. We contrast the differences

in the room type and photo quality of cover images between the current and the op-

timal photo layouts in Figure 3-5. Panel (a) of Figure 3-5 shows that, in optimality,

more than 71% of the listings should use a bedroom photo as the cover image. Our

estimation results suggest high-quality bedroom cover images lead to the most signif-

icant improvements in a listing’s demand. On the other hand, very few listings use

photos of the kitchen and outside views as cover images since such photos usually do

not contain critical information about the listings. Panel (b) of Figure 3-5 compares

the quality of cover images in the current photo assortment and the optimal one.

The qualities of the cover images increase for all room types under the optimal photo

assortment, indicating that when switching to the optimal assortment, listings do not

only benefit from a higher impact from the cover photos with the right room types

but also an increase in photo quality.

We then compare the statistics for all 2,561 listings (2,047 non-superhosts and

514 superhosts) over all of Manhattan. Before the optimization, the means of the

estimated layout effects are 0.816 and 0.846 for non-superhosts and superhosts, re-

spectively. The two-sample t-test has a p-value of 8.6 × 10−4, suggesting that su-

perhosts adopt better photo layouts on average. After optimizing the layouts, the

same result holds: the average layout impacts for non-superhosts and superhosts are

0.947 and 0.989, respectively. In summary, superhosts tend to post photos with a

higher overall impact, potentially because (1) superhosts tend to put more effort into

selecting photos to post, and (2) because superhosts, on average, post higher numbers

of photos than non-superhosts (18.5 vs. 15.2), they have more photos to choose from

when maximizing the impact of first five images. We also test whether superhosts are
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more likely to post the optimal photo suggested by our counterfactual analysis as the

cover photo. We find that while 15.7% of the non-superhosts had cover photos that

conformed to the optimal solution suggested by our counterfactual analysis, 18.3% of

the superhosts had already adopted the optimal cover photo.
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Figure 3-5: Quality and Room Type of Cover Image under the Optimal Photo Layout.

It is worth pointing out that listing owners on Airbnb enjoy a high degree of

autonomy in that they can freely decide the quality and sequence of the images on

the listing’s webpage. However, it is still of interest to Airbnb to refine its current

image-posting guidelines 10 and provide recommendations on the layout of the images

to listing owners because those who follow the guidelines will enjoy higher demand

and thus generate higher revenue for the platform.

After we obtain the optimal photo layouts for all these listings, we conduct three

counterfactual analyses to study how the optimal photo layouts affect listings’ rental

probabilities and revenue.

Impact of Optimal Photo Layout on Rental Probability (Individual Level).

We first study the impact on rental probability when a listing unilaterally switches

to the optimal photo layout suggested by Algorithm 2. Under optimality, the impact

from photos for listing 𝑖 improves from the current value, 𝑉𝑖, to 𝑉 *
𝑖 , which is

𝑉 *
𝑖 =

∑︁
𝑚

(︁
𝛼̂𝑐
𝑚𝑠

*𝑐
𝑚𝑖 + 𝛼̂𝑛𝑐

𝑚𝑆*𝑛𝑐
𝑚𝑖 + 𝛿𝑚𝑆

*𝑛𝑐
𝑚𝑖 1{𝐾𝑐

𝑚𝑖=1}1{𝐾𝑛𝑐
𝑚𝑖≥1}

)︁
, (3.16)

10https://www.airbnb.com/help/article/746/how-can-i-take-great-photos-of-my-listing
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where the values of 𝛼̂𝑐
𝑚, 𝛼̂𝑛𝑐

𝑚 and 𝛿𝑚 are presented in Table 3.7, and 𝑠*𝑐𝑚𝑖 and 𝑆*𝑛𝑐
𝑚𝑖 are

the quality scores of photos in the optimal layout. In addition, the utility obtained

by customer 𝑘 from booking property 𝑖 increases from the current value 𝜇𝑖𝑘 to 𝜇*
𝑖𝑘 =

𝛽𝑝𝑝𝑖 + 𝑉 *
𝑖 + 𝜏PROPERTY𝑖 + 𝛾CONTROL𝑖 + 𝜖𝑖𝑘, with the rest of the listing features

remain the same.

After we derive the mean utility for each property, we calculate the average in-

crease in booking probability across listings as follows:

∆P =
1

𝑁𝐷

𝑁∑︁
𝑖=1

𝐷∑︁
𝑑=1

P𝑑(𝜇
*
𝑖 , 𝜇−𝑖, 𝐵𝑑)− P𝑑(𝜇𝑖, 𝜇−𝑖, 𝐵𝑑)

P𝑑(𝜇𝑖, 𝜇−𝑖, 𝐵𝑑)
. (3.17)

In Equation (3.17), for a given day 𝑑, we assume that the demand (i.e. the total

number of listings booked, 𝐵𝑑) is identical to what we observe in the data. Addition-

ally, we denote P𝑑(𝜇𝑖, 𝜇−𝑖, 𝐵𝑑) as the simulated booking probability for listing 𝑖 with

utility 𝜇𝑖 on day 𝑑, given the total number of bookings, 𝐵𝑑, and the utilities for other

listings, 𝜇−𝑖. Similarly, P𝑑(𝜇
*
𝑖 , 𝜇−𝑖, 𝐵𝑑) is the probability that listing 𝑖 gets booked

on day 𝑑 under the optimal photo layout. We calculate the renting probability of

listing 𝑖, P𝑑(𝜇𝑖, 𝜇−𝑖, 𝐵𝑑) using a 10,000 iteration sampling-without-replacement simu-

lation, in which the sampling probability for each listing is proportional to E[𝑒𝜇𝑖𝑘 ] as

𝜖𝑖𝑘 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙(0, 1). Through a similar simulation, P𝑑(𝜇
*
𝑖 , 𝜇−𝑖, 𝐵𝑑) is obtained when

listing 𝑖 unilaterally adopts the optimal photo layout, in which case the increased

attractiveness for listing 𝑖 also lowers the relative booking probabilities for the rest

of the listings. Repeating the analysis to all the listings in our group, we find that

optimal photo layout, on average, increases the booking probability by 11.0%.

Notably, the real average impact when listing 𝑖 unilaterally adopts the optimal

photo layout can be higher than ∆P for two reasons. The first is the spillover ef-

fect. The optimal photo layout first leads to increases in booking probability. Then,

the increased bookings translate into a higher number of reviews over time, which,

according to our estimation results in Table 3.7, further boosts the booking prob-

ability, and the positive feedback cycle continues. Hence, the impact of the photo

layout will increase over time and will impact demand through multiple channels.

92



The second reason is that, according to Table B.2, the misclassification of the room

type can result in our estimation providing an attenuated magnitude for the impact

of the cover image. As a result, failing to account for such misclassification leads our

counterfactual analysis to understate revenue gain when each listing switches to the

optimal photo layout, as the increase in the overall attractiveness from the optimal

photo layout should be higher under the correctly specified scenario.

Monetary Value of Optimal Photo Layout (Individual Level). We are also

interested in the gain from the optimal photo layout to the equivalent dollar value.

To this end, we study the following questions: Assuming listing owners display the

optimal collection of photos suggested by Algorithm 2, how much can the owners raise

their rental prices to neutralize the gain from displaying the optimal photo layout?

What is the corresponding gain in revenue from the increase in rental rates? When we

switch from the current photo layout to the optimal one, the photo impact improves

from 𝑉𝑘 to 𝑉 *
𝑘 . Since the attractiveness of listing 𝑖 perceived by customer 𝑘 can be

written as 𝜇𝑖𝑘 = 𝛽𝑝𝑝𝑖 + 𝑉𝑖 + 𝜏PROPERTY𝑖 + 𝛾CONTROL𝑖 + 𝜖𝑖𝑘, to keep the 𝜇𝑖𝑘 the

same, the new price will increase to:

𝑝*𝑖 = 𝑝𝑖 +
𝑉𝑖 − 𝑉 *

𝑖

𝛽
. (3.18)

Following Equation (3.18), the counterfactual analysis suggests that by displaying

the optimal photo layout, listing owners can, on average, improve the annual revenue

by $1247.6 while maintaining the same demand. The magnitude of revenue gain is

substantial, especially considering that the improvement is achieved by adjusting the

sequence of existing photos on the website, which incurs no cost at all.

Impact of Optimal Photo Layout on Listing Demand and Revenue (Plat-

form Level). When every listing changes to the optimal photo layout simultaneously,

the calculation of the revenue gain for each listing is complicated by the fact that (1)

improvements across all Airbnb listings would intensify the competition among them

and could result in decreased demand for certain listings; and (2) Airbnb would

become more attractive as a platform after the adoption and would bring in new cus-
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Algorithm 3:
input : Arrival list ℳ, Constant list 𝒞, True parameters 𝛽0, Features 𝑋𝑖, True

Demand 𝑏0
1 𝑏𝑠𝑖𝑚 = [0, 0, ..., 0] // Initialize the number of simulated bookings
2 𝑆𝑎 = [1, 2, ..., 𝐼] // Initialize the availability set
3 for 𝑀 ∈ ℳ do // Each value of possible number of arrivals
4 for 𝑐 ∈ 𝒞 do // Each value of constant 𝑐
5 for 𝑘 ∈ {1, ...,𝑀} do // Each customer arrival
6 Realize utility for each option: 𝑢𝑖 = 𝛽0𝑋𝑖 + 𝑐+ 𝜖𝑖, 𝑢0 = 𝜖0
7 Pick 𝑖* = argmax𝑖∈{0,1,...𝐼} 𝑢𝑖
8 if 𝑖* ̸= 0 then // Not the outside option
9 𝑏𝑠𝑖𝑚[𝑖*] = 𝑏𝑠𝑖𝑚[𝑖*] + 1

10 𝑆𝑎 = 𝑆𝑎 ∖ 𝑖* // Listing 𝑖* become unavailable
11 end if
12 end for
13 Compute 𝑒𝑟𝑟𝑐,𝑀 =

∑︀
𝑖(𝑏𝑠𝑖𝑚 − 𝑏0)

2

14 end for
15 Pick 𝑐*𝑀 = argmin𝑐∈𝒞 𝑒𝑟𝑟𝑐,𝑀
16 end for

output: Simulated bookings under 𝑐*𝑀 for each 𝑀

tomers who previously chose to stay at hotels or alternative lodging establishments.

Thus, to study the impact of optimal photo layout adoption at the platform level,

i.e., when every host simultaneously switches to the optimal photo layout, we need to

account for the impacts of the intensified competition within the Airbnb platform and

the increased market share of Airbnb. We assume that market size (total number of

customers that have lodging needs) is known. We consider four scenarios in which the

market size is 10, 5, 1, or 0.5 times as large as the number of listings. For each market

size 𝑀 , we estimate 𝑐, the constant utility value for the outside option, by minimizing

the discrepancy between the simulated number of bookings and the actual number

of bookings documented in the data. As we have shown through our synthetic data

that the PCM estimation results are robust in the absence of outside option data,

we use the results in Table 3.7 as the underlying parameters for customer utility in

our estimation process. After deriving the constant 𝑐, we update the utility for each

listing 𝑖 by changing the impact of the photo layout from 𝑉𝑖 to 𝑉 *
𝑖 and simulate the

number of bookings in the presence of the outside option to calculate the demand

and revenue gains. Algorithm 3 summarizes our procedures for our counterfactual
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Figure 3-6: Counterfactual Analysis. (a) The demand increase from optimal layout;
(b) The revenue gain from optimal photo layout.

analysis when all the listings simultaneously change to the optimal photo layout.

Figure 3-6 presents the by-region improvements when all listings on Airbnb simul-

taneously switch to the optimal photo layout. Depending on the specific neighborhood

and market size, listings, on average, will be booked for two to five more days in a

year, which boosts the revenue by $500 to $1100, respectively. As the constant util-

ity, 𝑐 of the outside option, is different under different market sizes, we note that a

larger market size may not induce a higher number of transactions or more signifi-

cant revenue gains. Additionally, when all the listings update their photo layouts, the

revenue gain is, on average, smaller than the case with a single unilateral change to

the optimal photo layout, suggesting that the intensified competition outweighs the

benefit additional customers bring in through improved platform attractiveness.
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Chapter 4

Large-scale Price Optimization for an

Online Fashion Retailer

4.1 Introduction

Markdown and promotional pricing have been popular in the operations manage-

ment field, where researchers and companies try to understand consumers’ purchas-

ing behavior by building demand forecasts and optimizing markdowns. The online

fashion retailing environment has some unique features and challenges within the

field. Firstly, it is common for a company to manage a large number (typically hun-

dreds of thousands) of products across different markets and product categories in

the online retailing environment. The scale of the problem imposes requirements on

the efficiency of the optimization framework as it must be executed on a weekly or

even daily basis. To make things more complicated, business targets exist that tie

individual products together. For instance, from the business planning perspective,

the company may set a particular revenue target for specific product categories or

individual countries, which is a constraint that applies to all the products within the

category and/or country. The challenge is that jointly optimizing all the products

may be intractable, and decomposition methods must be applied. Another challenge

is that we would have specific business constraints that require careful modeling, even

for single-product discount optimization. For example, due to the fear of confusing

97



Figure 4-1: Zalando’s homepages for the “Men” (left) and “Women” (right) segments.

customers or receiving negative customer responses, discounts on a single product

should not change drastically from week to week. If these business constraints lead to

a non-linear optimization model even for single products, the corresponding “global"

problem with multiple products will have a higher level of complexity and would be

impossible to solve. Finally, due to the nature of the fashion industry and the large

scale of products, there is a long tail of products with very few or no historical sales

data. This makes both demand forecast and optimization challenging.

In this work, we collaborate with Zalando (www.zalando.de), Europe’s leading

online fashion platform, which delivers products to more than 28 million active cus-

tomers in 17 countries. On the fashion platform, customers can find a wide assort-

ment of around 600,000 articles from more than 2, 500 brands for 6.5 billion euros

yearly sales as of 2019. Zalando offers customers a comprehensive selection of apparel,

footwear, cosmetics, and accessories for women, men, and children with free shipping

and return shipping. A screenshot of the web page is presented in Figure 4-1. Za-

lando’s logistics network with five central logistics centers enables efficient delivery

to all customers throughout Europe, supported by local distribution focused on local

customer needs in northern Italy, France, and Sweden. The fashion, technology, and

logistics triad offers added value to the customers and brand partners.

The goal of the collaboration is to manage the prices of products through a sales

season so that profit is maximized and overstock at the end of the season is minimized.
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Additionally, the process aims to distribute discounts so that business targets (e.g.,

growth in a particular market) are reached. The implementation of this process in

the past has been a hybrid of an automated optimization process, which recommends

profit optimal discounts for individual products, and a manual selection process from

these discount recommendations. The manual selection process builds on the experi-

ence of pricing experts for the individual markets, which use their expertise to select

the discounts so that the market’s business targets are reached.

There are a few challenges in the manual process. First, as Zalando’s business

grows, scaling this process is not easy. Second, because Zalando has multiple targets

by product category and country level, intuition and experience are insufficient. Fi-

nally, it is not clear that the current process generates effective discounts. Therefore,

our objective is to develop a fully automated system that satisfies the various business

requirements and allows Zalando to maximize its impact on the bottom line.

Like most online retailers, Zalando has a regular price update cycle to ensure that

each product (or Stock Keeping Units, SKU) receives an optimal discount. Weekly

price updates are typically synchronized between all markets, while prices in different

countries (or markets) are set independently. The shop operates with a global stock

assumption that every product can be sold in any country without limitations by

sharing a shared inventory pool. This means that we do not have direct control

over the sales: it is not an option to turn down a customer to reserve the product

for customers in other countries. We can only impact sales through appropriate

discounts.

Weekly selection of prices for such a large assortment is near impossible to do

manually. That is why the first generation of the automatic price recommendation

system was introduced in Zalando, aiming to maximize total profit. The insights were

to discount heavily the SKUs that are expected to have large overstock (e.g., due to

optimistic buying decisions or drastic changes in season’s weather) and to discount

conservatively with SKUs that are selling well in the shop. Such an automatic system

proved to be beneficial and led to significant increases in financial indicators, and

contributed to the company’s successful growth.
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However, such a system lacks an important feature, crucial for a large-scale multi-

national business. Having a drastic financial impact, pure discounting does not allow

to steer towards specific financial targets. It does not allow easily to include strate-

gic company goals in the pricing process. This leads to a situation where discounts

produced by the system still need manual intervention from commercial planners to

steer discounts toward financial targets. In this paper, we also refer to the latter as

“global" constraints since our model will have to solve at a more “global level" instead

of by single products.

The increase in manual efforts reveals a need for a new generation of pricing sys-

tems, which we call the “target steering" system. Such a system aims not only to make

price recommendations for overstock mitigation but also to provide discounts that sat-

isfy weekly financial targets (like certain revenue levels in a selection of countries).

This paper describes the design and implementation details of such a large-scale price

recommendation system, which proved to be a challenging task on such a large scale.

Given the demand forecasts under a collection of discrete prices, the objective

of Zalando is to find the discount levels that maximize the total profit over the

entire selling horizon while taking into account both “local" and “global" business

constraints. On the “local" single SKU level, due to operational sharing inventory pool

assumption, Zalando needs to balance the sales across different countries. Specifically,

we have to make sure that no inventories are reserved strategically for demands in

other countries or later time periods (this is referred to as “stock hedging”). To

address this challenge, we formulate the price optimization problem as a mixed-integer

programming (MIP) problem and incorporate the balancing constraints to solve the

“stock hedging" issue. In addition, since our forecaster is at the size-aggregated SKU

level, due to each SKU’s limited availability of different sizes under low stock, we

propose a new stock-dependent method to adjust the demand forecasts and provide

more accurate input into the pricing system.

On the “global" level, when we jointly optimize the discounts of different SKUs in

selected categories, the total revenue and weighted average discounts of the SKUs

should meet specific “global" steering targets. This is because pricing managers
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need to manage the discounts across articles to deliver the forecasted discount spend

and achieve the revenue targets. The weighted average discounts (or, say “discount

spend") are essential for pricing managers’ planning decisions. To reduce the com-

putational complexity raised by these global constraints, we decompose the global

problem into parallel sub-problems of each single SKU by using Lagrangian decom-

position and propose an efficient algorithm to find the optimal Lagrangian multipliers.

Finally, we developed an aggregation framework to cluster SKUs based on cate-

gories and similarities to reduce computational complexity. This framework enables

solving the problem via a 3-step process. In the first step, we solve the aggregated

problem in a way that decouples the problem into a problem for each product cate-

gory. In the second step, we apply the Lagrangian method to decouple the problem for

each SKU. Finally, in the last step, we solve a large number of SKU-specific problems.

Notably, the aggregation method enables planners to test various pricing strategies

before finalizing the season’s targets for each product category and country.

We also conduct field experiments to validate the optimization system in real

business cases. In both the online and offline environment, we design and implement

experiments to validate whether the proposed framework is capable of steering to-

wards specific business targets. The results in the target group satisfied the targets,

where global constraints are met, and the weighted average discount values are close

or within the target bounds most of the time. Previously, the commercial team man-

aged different global constraints manually using intuitions and heuristic processes.

This new methodology will automate the process of pricing, reducing the manual

work and making scaling up much more manageable.

4.2 Literature Review

Promotional pricing is a sales strategy in which brands temporarily reduce the price

of a product or service to attract prospects and customers. By lowering the price

for a short time, a brand artificially increases the value of a product or service by

creating a sense of scarcity. Consumer-goods companies and retailers realize that
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getting pricing, markdowns, and promotions right across all brands and channels is

critical to survive and thrive. In-depth overviews of this literature can be found in

Talluri and Van Ryzin (2006) and Özer et al. (2012). Previous research contributes

to developing and implementing pricing decision support tools for retailers. Smith

and Achabal (1998) developed clearance prices and inventory management policies.

Natter et al. (2007) implemented a decision-support system for dynamic retail pricing

and promotion planning. In the meantime, more and more companies have adopted

industry software to facilitate their pricing decisions. For instance, software com-

panies like LOKAD and BlueYonder provide software systems solutions to demand

prediction and optimization within the supply chains. However, such products may

not be able to tailor to the company’s needs fully, and in many cases company de-

mands its system of forecast and optimization. Making the right pricing decision is

a critical step for modern companies to succeed and enable smart decision-making,

taking advantage of the visibility of data (N. Boute et al. 2020).

Our work is to apply revenue management techniques for optimizing prices in

the online fashion retailing environment across different countries under inventory

constraints. The problem we study in this paper includes the following distinguishing

features that define our unique position in the revenue management literature.

First, in the online retailing environment, the richness and availability of data

enable us to build demand forecasts using historical observations. This is related to

the online learning setting for price optimization. There is an increasing stream of

research on online learning models, which often assume an unknown linear demand

model. den Boer (2015) provides a comprehensive survey on this topic. Papers in this

research stream study the fundamental trade-off between experimenting to improve

estimates of the unknown demand model (the exploration) and leveraging current

estimates to maximize revenue (the exploitation) (Bu et al. 2020). There are many

papers that developed online pricing models under the assumption of linear demand

model (e.g., Keskin and Zeevi 2014, den Boer 2015, Qiang and Bayati 2016, den Boer

and Keskin 2019). Nambiar et al. (2019) and Ban and Keskin (2020) assumed gen-

eralized linear demand model. In this paper, Zalando builds a deterministic demand

102



function based on neural networks, making it powerful to incorporate all the inter-

nal and external data to improve prediction. However, it is highly nonlinear. This

non-linearity makes the optimization model more challenging to deal with.

Second, the pricing process usually contains two key components: demand fore-

casting and price optimization. An essential input for the success of the price opti-

mization model is the predicted demand values. Recent advances in machine learning

techniques and richness of data have motivated innovative data-driven approaches to

forecast demand and optimize price. For example, Ferreira et al. (2016) studied a

pricing problem for an online flash fashion retailer, Rue la la. That paper applies

random forests to estimate customer demand under different price levels and pro-

poses an efficient optimization algorithm based on mixed-integer programs to make

discount decisions. Caro and Gallien (2012) study a clearance pricing problem for

fast-fashion retailer Zara. They build a demand forecast model to address the lack

of price-sensitivity data in that work. They then feed the demand forecast to an

optimization model to determine price markdowns. Cheung et al. (2017) study a pro-

motion pricing problem for Groupon, a large e-commerce marketplace for daily deals.

In that paper, they develop a pricing policy that dynamically learns customer demand

using real-time sales data under limited price experimentation. Ma et al. (2018) ap-

plies random forest models to predict demands for a CPG company, followed by a

pricing optimization model.

Third, another interesting feature of the problem is the large scale due to the na-

ture of fashion products, often involving large assortments. Individual product is sold

across multiple countries with a shared inventory pool, and the inventory allocation

across different countries and different time periods need to be balanced. Namely,

the company cannot reserve inventory for a specific country or time period. Fur-

thermore, the pricing decisions of different products are tied together under specific

business steering targets across countries and product categories. Therefore, instead

of solving the problem by articles, the model should be able to solve multiple products

at a much large scale across countries within a reasonable time. There are very few

papers resolving this challenge in the literature.
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Finally, this work is also related to the literature investigating the operational

challenges in the online fashion retailing industry. Apart from the several papers

mentioned above, there has been more and more empirical work in the context of

fashion retailing. Caro and Martínez-de Albéniz (2015) provides a comprehensive

overview of the business models for the fast-fashion industry. Boada-Collado and

Martínez-de Albéniz (2020) examines the impact of inventory levels on demand in

the fashion retailing setting. Fisher et al. (2018) validate the pricing competition

model in the online retailing setup through field experiments. Our paper combines

data-driven approaches and optimization modeling methods, validated through offline

tests with historical data and real-world field experiments.

4.3 Demand Forecast Model

Before introducing the price optimization framework, we first give a brief overview

of the demand forecast model, generating deterministic demand predictions under

all price levels and serving as the optimization model’s input. To make the price

optimization model succeed, the accuracy of the demand forecaster is critical. There

are many commercial promotion software available in the market. However, they

either can not meet the high requirement of accuracy or are limited to certain types

of businesses environment. Zalando has its unique challenges (large scale assortment,

long tail of low sales products, operating in multiple countries, long planning horizon,

etc.), making it essential to develop our own operational processes/models.

Zalando uses a collection of forecast models that provide (size aggregated) article-

level forecasts every week. The forecaster is based on the Transformer architecture

Vaswani et al. (2017) with some adjustments to make it suitable for time series fore-

casting. The transformer is a recently developed machine learning tool based on

neural networks. It has been widely used in natural language processing and achieves

outstanding performance. In Zalando’s context, Transformer inputs the sales his-

tory of every product in all countries and some product-specific feature information

(e.g., brand, color, style, product category) to predict the demand for future weeks.
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The model is retrained every week with new incoming data to predict, considering

discount levels, past sales history, countries, weeks, and product-specific features men-

tioned above. It uses weighted least square error as the measure of accuracy. It has

been tested to outperform the previous forecast models Zalando was using, includ-

ing gradient-based auto-regressive models, random forests, and other types of neural

networks. We present the relative performance metrics in Table 4.1, where ASF4 is

the name for the gradient-based auto-regressive benchmark model. LSTM is another

type of neural network model. We mask the percentage error values so that ASF4 has

a calibrated level of zero, then present the absolute percentage difference in terms of

errors for the other two models. The table includes both first-week forecast accuracy

and aggregate level forecast accuracy for the whole selling season. It is observed that

the Transformer model obtains not only the lowest error with massive improvement

from the other two models but also the most minor bias, which is essential for the

optimization procedure.

Table 4.1: Performance Comparisons between Demand Forecast Models
Models 1st Week Error Seasonal Error Bias

ASF4 0 (calibrated) 0 (calibrated) 14%
LSTM -30% +9% 12%
Transformer -30% -9% -3%

In business practice, we have the following two observations on demand. First,

since markets are based in different countries, it is unlikely that demand in one country

will depend on the prices in other countries. It is observed that same applies to

different time periods and different products. The assumption is that the forecast

in one country does not depend on discounts from other countries, nor should the

forecast for one week rely on the forecast in other weeks. This assumption allows

us to characterize demand independently across countries and time periods in the

Transformer architecture. The second observation is that discount levels are not

continuous, and usually take discount steps of 5% (e.g., 15%, 50%). This allows us to

model the optimization problem into an MIP to select the optimal discount among

the discrete discount levels. For this MIP, we require the forecaster to tabulate the
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predicted demand under every possible discount level for every country and every

coming week into large tables, which will feed as inputs to the optimization model in

the following section.

4.4 Single SKU Discount Optimization

We start with the price optimization model for each single SKU. Recall that each

SKU’s discount needs to be optimized for 17 countries (denoted as 𝐶) and generally

a season of 40 weeks (denoted as 𝑇 ). The forecaster in the previous section will

generate the predicted demand for each discount level on the price ladder (denoted

by 𝐿). Given 𝐿 discrete discount levels, we need to decide the optimal discount

for each product over a selling horizon of 𝑇 weeks across 𝐶 countries. Throughout

the paper, we use [𝑛] to denote the set {1, 2, . . . , 𝑛}. Let 𝑃𝑐 denote the original

(undiscounted) price of the SKU in country 𝑐 ∈ [𝐶], and let 𝑑𝑙 be the discount value

for discount level 𝑙 ∈ [𝐿]. Specifically, we have a total of 𝐿 = 15 discount levels,

ranging from 0% to 70% off, with a step size of 5%, in which 𝑑1 = 0 denotes the

undiscounted price and 𝑑𝐿 = 0.7 denotes 70% off the original price.

Let 𝐷𝑐,𝑡,𝑙 and 𝑅𝑐,𝑡,𝑙 be the demand and return rate forecast, respectively, for coun-

try 𝑐 ∈ [𝐶] in week 𝑡 ∈ [𝑇 ] under discount level 𝑙 ∈ [𝐿]. We assume that demand 𝐷𝑐,𝑡,𝑙

and return rates 𝑅𝑐,𝑡,𝑙 are deterministic and provided as inputs to the optimization

model. Given the sales in week 𝑡, the corresponding returns are distributed in the

following weeks according to the return base vector 𝑅𝐵. In other words, 𝑅𝐵1 fraction

of the sales will be returned in the upcoming week. The 𝑅𝐵 vector is also assumed

to be fixed and provided by Zalando as an input.

Our decisions are binary variables 𝑧𝑐,𝑡,𝑙 ∈ {0, 1}, which indicate the choices of

discount level 𝑙 in country 𝑐 on week 𝑡, and sales variables 𝑥𝑐,𝑡,𝑙, which characterizes

the sales under discount level 𝑙 in country 𝑐 on week 𝑡. Let 𝑦𝑡 be the stock level at

the beginning of week 𝑡, and 𝑦𝑒𝑛𝑑 be the stock leftover after selling horizon 𝑇 . At the

beginning of week 𝑡, we have stock replenishment 𝐴𝑡 that is predetermined before the

whole selling horizon. At the end of selling horizon, the remaining stock 𝑦𝑒𝑛𝑑 has a
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salvage value of 𝑆𝑉 per unit. Let 𝜋𝑐,𝑡,𝑙 be the profit of selling one item of the SKU in

country 𝑐 and week 𝑡 under discount level 𝑙. 1

To maximize the total profit of selling the product, we formulate the single SKU

discount optimization problem into a MIP.

(𝑃 ) max
𝑥,𝑧

∑︁
𝑐,𝑡,𝑙

𝜋𝑐,𝑡,𝑙 𝑥𝑐,𝑡,𝑙 + 𝑦𝑒𝑛𝑑 𝑆𝑉 (4.2)

𝑠.𝑡. 𝑦𝑡 = 𝑦1 −
∑︁
𝑐,𝑠<𝑡,𝑙

𝑥𝑐,𝑠,𝑙 +
∑︁
𝑡

𝐴𝑡 +
∑︁
𝑐,𝑠<𝑡,𝑙

(
𝑡−𝑠∑︁
𝑖=1

𝑅𝐵𝑖)𝑅𝑐,𝑠,𝑙𝑥𝑐,𝑠,𝑙 ∀𝑡 = 2, ..., 𝑇

(4.3)∑︁
𝑐,𝑙

𝑥𝑐,𝑡,𝑙 ≤ 𝑦𝑡 ∀𝑡

(4.4)

𝑥𝑐,𝑡,𝑙 ≤ 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙 ∀𝑐, 𝑡, 𝑙

(4.5)∑︁
𝑙

𝑧𝑐,𝑡,𝑙 = 1, ∀𝑐, 𝑡

(4.6)

𝑧𝑐,𝑡,𝑙 ∈ {0, 1}, 𝑥𝑐,𝑡,𝑙 ≥ 0 ∀𝑐, 𝑡, 𝑙

(4.7)

The objective is to maximize the total profit, both in and after the selling season.

Constraint (4.3) specifies the stock dynamics for each time period, where the stock

level at the beginning of week 𝑡 is equal to the initial stock 𝑦1 minus sales, plus

replenishment and returns from previous weeks. Constraint (4.4) requires that the

total sales for a specific time period have to be less than or equal to the remaining

1Specifically, we have

𝜋𝑐,𝑡,𝑙 =
1

(1 + CCR)𝑡/52

(︂∑︀
𝑙 𝑃𝑐(1− 𝑑𝑙)(1− CO)(1−𝑅𝑐,𝑡,𝑙)

1 + VAT𝑐

)︂
− 1

(1 + CCR)𝑡/52
(𝑅𝑐,𝑡,𝑙CR𝑐 − CF𝑐) (4.1)

where CCR and VAT are constants. CO, CR and CF are the coupon loss, return and fulfillment
cost, respectively.
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stock. Constraint (4.5) limits the sales variable for each 𝑐, 𝑡, 𝑙 (country, time and

discount level) combination. So that when 𝑧𝑐,𝑡,𝑙 = 0, the sales must also be zero,

and when 𝑧𝑐,𝑡,𝑙 = 1, the sales will be less or equal to the forecast demand. Finally,

Constraint (4.6) describes that only one discount level is allowed to be selected in

each country and each week.

A natural question is that why we need to model the extra sales variable 𝑥𝑐,𝑡,𝑙,

given that in reality we do not have control over it. We illustrate this point through

a counterexample. Suppose that we do not model the sales variable, the simplified

MIP will have the following form:

max
𝑧

∑︁
𝑐,𝑡,𝑙

𝑧𝑐,𝑡,𝑙 𝑝𝑙 𝐷𝑐,𝑡,𝑙

𝑠. 𝑡.
∑︁
𝑐,𝑡,𝑙

𝑧𝑐,𝑡,𝑙 𝐷𝑐,𝑡,𝑙 ≤ 𝑌

∑︁
𝑙

𝑧𝑐,𝑡,𝑙 = 1 ∀𝑐, 𝑡

𝑧𝑐,𝑡,𝑙 ∈ {0, 1} ∀𝑐, 𝑡, 𝑙

Suppose we have a toy model with a single period, single country, and two price

levels 𝑝1 = 20, 𝑝2 = 10, so that 𝐶 = 𝑇 = 1, 𝐿 = 2. The inventory level is 𝑌 = 120,

and the demand forecaster gives us 𝐷𝑙=1 = 50 and 𝐷𝑙=2 = 140. In other words, if

we set the high price of 20, we will have a demand of 50, and the low price of 10

will yield a demand of 140. With the simplified MIP, the optimal solution is to set

the price high 𝑝 = 𝑝1 = 20, and the total profit is 1,000. However, in reality, we

could set the low price and only satisfy partial demand, with 𝑝 = 𝑝2 = 10 and a total

profit of 1,200. From this counterexample, we can see the limitation of the simple

MIP in terms of the flexibility to capture different sales levels. We can think of this

limitation as a result of having discrete price levels since if prices are continuous, we

could always set the correct price for the demand just to deplete all the stock. As a

result, we need to model sales 𝑥𝑐,𝑡,𝑙 as a decision variable in the model.
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4.4.1 Business Constraints

The price optimization model (𝑃 ) is a basic model that captures the stock dynam-

ics and establishes the relationship between discount decisions and sales. From the

business perspective, it is necessary to set certain limitations on the discounts in this

basic model. The motivation could be either to avoid lousy customer perceptions

and experience, adjust to specific promotional sales events, or simply from the busi-

ness requirements. We summarize several types of single SKU business constraints as

follows.

Minimum/Maximum Discounts. To allow flexibility of discount levels, the

discount range for the basic formulation is set to be from 0% to 70%. However, in

practice, the allowable discount range could be much narrower. Some limitations

could come from important brand agreements associated with brand images; others

can come from specific country (market) regulations. For example, we would not

expect a newly on-shelf fashion product to have deep discounts. The model includes

country-week specific minimum/maximum discount bounds to capture this constraint

to restrict the discount ranges.

Maximum Upward/Downward Steps. Intuitively, customers will get upset

if they find the price changes drastically within a short amount of time. In addition,

significant discount increases may lead to an explosion of returns, which will incur

non-trivial costs on the business. In other words, discount differences in consecutive

weeks should not be substantial. We could upper bound these discount differences

by country-week specific maximum upward/downward steps. For example, if one

SKU has a discount of 20% in week one, and the maximum allowable upward and

downward step are both 15%, then the feasible discount range for week two will be

from 5% to 35%.

Discount Barriers. When discount levels are too marginal (like 5%), customers’

perception of the promotion may be compromised. To address this issue, we impose

country-week specific discount barriers so that the discount values are either 0% or

above these specific discount barriers. For example, by setting a discount barrier of
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20%, we disallow discount levels 5%, 10% and 15%.

4.4.2 Stock Hedging

In the previous section, we assume in model (𝑃 ) that we can optimize over sales

via decision variables 𝑥𝑐,𝑡,𝑙. Although this assumption allows a linear formulation

of (𝑃 ), it may cause “stock hedging" problems in the final solution, meaning the

product’s inventory is reserved for specific countries and certain weeks, which violates

the operations in practice. The online shop operates with global stock, accessible by

all countries, and it is not typical to reject sales from a specific country, even if it

may be profitable. For example, a customer in Germany arrives in week one when

stocks are available. The model (𝑃 ) may reject her demand by setting 𝑥 = 0 because

it is more profitable to sell this inventory unit in Spain or week two. In reality,

Zalando does not have the flexibility to turn down customers and “hedge” the stock,

so the optimal solution from (𝑃 ) is often not practical. We need to integrate further

constraints to deal with the stock hedging problem.

Specifically, we go through the sales dynamics in each week as follows, and there

will be two possible scenarios. When the inventory is sufficient in week 𝑡, i.e., 𝑦𝑡 ≥∑︀
𝑐,𝑙 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙, it requires 𝑥𝑐,𝑡,𝑙 = 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙, i.e., sales equal to demand 𝑥𝑐,𝑡,𝑙 = 𝐷𝑐,𝑡,𝑙 in

each country for the selected price levels 𝑙 with 𝑧𝑐,𝑡,𝑙 = 1. The other scenario happens

when the inventory is insufficient in week 𝑡, i.e., 𝑦𝑡 ≤
∑︀

𝑐,𝑙 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙, as a result not

all the demand in week 𝑡 will be satisfied. Here we assume that the customer arrival

process in all countries are evenly distributed across the week, and we will have

𝑥𝑐,𝑡,𝑙 = 𝑦𝑡 ·
(︁
𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙/

∑︀
𝑐,𝑙 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙

)︁
, i.e., sales split proportionally to demand in

each country for the selected price levels.

Combining the above two scenarios, the realized sales in practice can be described

by the following equation:

𝑥𝑐,𝑡,𝑙 = 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙 min{1, 𝑦𝑡∑︀
𝑐,𝑙 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙

}. (4.8)

In our model formulation (𝑃 ), we assume sales are also decision variables, and
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simply put constraints 𝑥𝑐,𝑡,𝑙 ≤ 𝑧𝑐,𝑡,𝑙𝐷𝑐,𝑡,𝑙 on the sales decisions 𝑥𝑐,𝑡,𝑙. This formulation

allows an extra degree of freedom to allocate the stock across different week and coun-

tries. However, the optimal solution might reserve the inventory for specific countries

and certain weeks with insufficient inventory, as the example above illustrates. If

this is the case, we will see in the final solution that 𝑥𝑐,𝑡,𝑙 < 𝐷𝑐,𝑡,𝑙 even when 𝑦𝑡 can

satisfy the demand of all the countries in the corresponding week. This violates the

real-world sales pattern in (4.8), and we refer to this violation as the "stock hedging"

problem.

We refer to the requirement in (4.8) as the sales-balancing conditions. Since

restrictions are nonlinear, we cannot directly integrate them into our basic MIP for-

mulation (𝑃 ). To address this problem, We break down the conditions into country-

balancing and week-balancing conditions and then add constraints into our formula-

tion to capture these two conditions separately.

Country balancing constraints. The stock hedging problem across countries,

the issue occurs when unbalanced sales occur across countries. For example, suppose

we only have two markets, and the demand is 100 in Germany and 50 in Spain,

we would expect the realized sales to be also 2:1. In other words, if inventory is

sufficient (larger than 150), the sales will be equal to the demand. If the inventory

is insufficient (say 100), the demand will be satisfied proportionally (66 in Germany

and 33 in Spain).

We address the stock hedging issues across different countries by adding the fol-

lowing constraint into formulation (𝑃 ):

∑︁
𝑙∈[𝐿]

𝑥𝑐,𝑡,𝑙

𝐷𝑐,𝑡,𝑙

=
∑︁
𝑙∈[𝐿]

𝑥1,𝑡,𝑙

𝐷1,𝑡,𝑙

for 𝑐 ∈ [𝐶] ∖ {1}, 𝑡 ∈ [𝑇 ]. (4.9)

Intuitively, this constraint requires that sales through all countries should follow the

same depleting rate (proportional to their demands). It makes sure that given a set

of demands and inventory levels, there’s only one way to distribute the stock across

countries, which is to distribute proportionally to their demands.

Week balancing constraints. For the stock hedging problem across weeks,
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the issue occurs when the model reserves stock for future weeks, when there are still

unsatisfied demands in the current week.

We address the stock hedging issues across different weeks by adding a set of big-

M constraints. We introduce binary variable 𝜑𝑡 for each time period. Specifically,

𝜑𝑡 = 1 denotes sufficient inventory in week 𝑡 and 𝜑𝑡 = 0 denotes insufficient inventory

in week 𝑡. We then add the following constraints:

∑︁
𝑐,𝑙

(𝐷𝑐,𝑡,𝑙𝑧𝑐,𝑡,𝑙 − 𝑥𝑐,𝑡,𝑙) ≤ 𝑀𝑑𝑒𝑚𝑎𝑛𝑑 · (1− 𝜑𝑡) ∀𝑡 = 1, ..., 𝑇 (4.10)

∑︁
𝑐,𝑙

𝑥𝑐,𝑡,𝑙 ≥ 𝑦𝑡 −𝑀𝑠𝑡𝑜𝑐𝑘 · 𝜑𝑡 ∀𝑡 = 1, ..., 𝑇, (4.11)

where 𝑀𝑑𝑒𝑚𝑎𝑛𝑑 and 𝑀𝑠𝑡𝑜𝑐𝑘 are large constants that upper-bound the total demand

and remaining inventory in each week, respectively. When 𝜑𝑡 = 1, constraint (4.10)

in combination with (4.5) forces sales to be equal to demand and (4.11) is relaxed.

When 𝜑𝑡 = 0, (4.10) is relaxed, and (4.11) in combination with constraint (4.4) forces

sales to be equal to the remaining inventory.

Corollary 1. Set of constraints (4.9), (4.10) and (4.11) is identical to desired sales

pattern described by (4.8) given the original problem formulation.

The proof can be found in the Appendix. By adding constraints (4.9), (4.10) and

(4.11), we fix the stock hedging problem and capture the observed sales pattern in

(4.8), while still maintaining the linear structure for the optimization model.

4.4.3 Limited Size Availability

In the context of the fashion industry, there is a clear separation between articles on

the unit and aggregated level: throughout the paper, we have been using the notion

of SKU for configuration level stock keeping units (e.g., sneakers of a specific brand,

including all sizes). An SKU can be managed at a lower level (e.g., the white T-shirt

of a particular brand-sized “M"). In principle, it is possible to set prices on size levels.

The latter is not typically done due to the drastic increase of the problem scale.
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In model (𝑃 ), we assume that each SKU represents the same product with different

sizes. Both the demand forecast and the inventory of each SKU are given on the

aggregated level of all sizes. In reality, however, specific sizes of the SKU might be

unavailable when the stock level is low, which might raise discrepancies between the

observed sales and the demand forecast values. For instance, consider an SKU that

contains a white T-shirt of the same style with sizes S, M, and L. When the stock

level is much higher than the demand, it is likely that all sizes are available in the

requested quantities. When the stock level is low and close to the demand, specific

sizes may not be in stock sufficiently, and thus the corresponding demand cannot

be fulfilled entirely. In this case, the given demand forecast values overestimate the

actual demand, and we need to scale down these values based on the product’s stock

level.

One way to adjust the demand forecast is to use a “stock response" function,

which is defined as a function that maps the product’s stock level to a smaller value

to approximate inventories in reality. Specifically, given stock level 𝑌𝑡, the stock

response function outputs a multiplier sr𝑡(𝑌𝑡) that is multiplied to demand forecasts

𝐷𝑐,𝑡,𝑙. In practice, Zalando has been implementing an exponential stock response

function as follow:

sr𝑡(𝑌𝑡) = 1− exp
(︁
−𝛼 · (𝑌𝑡/𝒩 )𝛽

)︁
, (4.12)

where 𝒩 is the cardinality (number of different sizes) of the SKU, and 𝛼 and 𝛽 are

parameters fine-tuned by fitting the historical data. A graphical illustration is plotted

as the solid curve in Figure 4-2. The intuition is that when the stock level is very high,

all sizes are expected to be available. Therefore, the stock response factor is close to

one. On the other hand, when the stock level is low, it is more likely for specific sizes

to become unavailable and the corresponding demand cannot be satisfied; therefore,

realized demand will reduce by multiplying a factor of the stock response value.
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Piecewise Linear Approximation

One challenge of the approach above is that the stock response function is nonlinear

and will be multiplied by the demand and decision variables in the formulation, which

will also become non-linear. To deal with this challenge, we adopt the approximation

algorithm in Kontogiorgis (2000) to approximate the stock response function with a

piecewise linear function that has 𝐾 segments. The detailed algorithm is provided in

the appendix. Figure 4-2 shows the approximation Piecewise Linear Interpolate (PLI)

result with three segments, compared to the benchmark 𝑃2 two-piece approximation.

Figure 4-2: Stock response function and the piecewise linear approximation

There is a natural trade-off on how many pieces we should select for the approx-

imation. We compare the maximum error, the running time of the model, and the

objective difference for different approximation schemes. The result is presented in

Table 4.2.

Table 4.2: Comparison between stock response approximation schemes
Methods Max Error Running Time (Seconds) Objective Difference

P2 0.412 502 9.03%
PLI3 0.117 671 5.35%
PLI4 0.063 710 1.76%
PLI5 0.037 874 1.07%
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Formulate Stock Response Factors

We explicitly formulate the stock response factors using the following constraints that

describe the factor as a linear combination of the breakpoints of the piecewise linear

curve. Let 0 = 𝑦(1) ≤ . . . ≤ 𝑦(𝐾) ≤ 𝑦(𝐾+1) = 𝑦𝑘 be the breakpoints of the interval

[0, 𝑦𝑘], and 𝑓 (1), . . . , 𝑓 (𝐾), 𝑓 (𝐾+1) the corresponding function value, i.e., 𝑓 (𝑖) = sr
(︀
𝑦(𝑖)
)︀

for 𝑖 ∈ [𝐾]. Given inventory 𝑦𝑡 at the beginning of week 𝑡, we have

𝑦𝑡 =
𝐾+1∑︁
𝑖=1

𝜇𝑖𝑦
(𝑖) (4.13)

sr𝑡 =
𝐾+1∑︁
𝑖=1

𝜇𝑖𝑓
(𝑖) (4.14)

𝐾+1∑︁
𝑖=1

𝜇𝑖 = 1 (4.15)

0 ≤ 𝜇𝑖 ≤ 1 for 𝑖 = 1, . . . , 𝐾 + 1 (4.16)

In addition, (4.13) and (4.14) should be a linear combination of two consecutive

breakpoints. Let 𝐸𝑖 with 𝑖 = 1, . . . , 𝐾 be the binary variables that indicate whether

or not 𝑦(𝑖) is selected as the left breakpoint. We then have constraints

𝐾∑︁
𝑖=1

𝐸𝑖 = 1 (4.17)

𝐸𝑖 ∈ {0, 1} for 𝑖 = 1, . . . , 𝐾 (4.18)

𝜇1 ≤ 𝐸1 (4.19)

𝜇𝑖 ≤ 𝐸𝑖−1 + 𝐸𝑖 for 𝑖 = 2, . . . , 𝐾 (4.20)

𝜇𝐾+1 ≤ 𝐸𝑘. (4.21)

4.4.4 Integrating Stock Hedging and Stock Response

We integrate extra constraints in the previous two subsections to deal with stock

hedging and limited size availability issues, respectively. Unfortunately, the stock

hedging behavior is impacted by the stock response constraint. It is assumed in stock
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hedging that either the stock is depleted or the demand is fulfilled. However, with

the stock response factor, the condition no longer holds. It should be updated that

the stock is depleted or the demand modified by the stock response factor is fulfilled.

Due to the interference between stock hedging and limited size availability, we need

to introduce an extra set of variables and constraints. Let 𝐷′
𝑐,𝑡,𝑙 denote the demand

forecast after the modification of the corresponding stock response factors, and we

then have the following constraints that describes the modified demand forecast:

𝐷′
𝑐,𝑡,𝑙 ≤ sr𝑡 ·𝐷𝑐,𝑡,𝑙 ∀𝑐, 𝑡, 𝑙 (4.22)

𝐷′
𝑐,𝑡,𝑙 ≤ 𝑧𝑐,𝑡,𝑙 ·𝐷𝑐,𝑡,𝑙 ∀𝑐, 𝑡, 𝑙 (4.23)

𝐷′
𝑐,𝑡,𝑙 ≥ sr𝑡 ·𝐷𝑐,𝑡,𝑙 − (1− 𝑧𝑐,𝑡,𝑙) ·𝑀sr ·𝐷𝑐,𝑡,𝑙 ∀𝑐, 𝑡, 𝑙 (4.24)

Given 𝐷′
𝑐,𝑡,𝑙 the modified demand forecast, we need to update constraint (4.10) to

∑︁
𝑐,𝑙

𝐷′
𝑐,𝑡,𝑙 − 𝑥𝑐,𝑡,𝑙 ≤ 𝑀𝑑𝑒𝑚𝑎𝑛𝑑 · (1− 𝜑𝑡), ∀ 𝑡 ∈ [𝑇 ] (4.25)

and additionally, constraint (4.5) to

𝑥𝑐,𝑡,𝑙 ≤ 𝐷′
𝑐,𝑡,𝑙, ∀ 𝑐, 𝑡, 𝑙. (4.26)

We now have the full-scale single SKU optimization problem that captures all

relevant business constraints with the above constraints included. In summary, the

constraints for the ingle SKU MIP are (4.3)-(4.7), (4.9), (4.13)-(4.21), and (4.22)-

(4.26). The benefit of this linear formulation is the computational time. Solving each

single SKU MIP with 17 countries, 40 weeks, and 15 price levels using a commercial

solver will take several seconds. We can speed up the process by utilizing parallel

computing power since, by far, each SKU is optimized individually. There are other

approaches to speed up the single SKU optimization, and we will introduce an effective

one in the next subsection.
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4.4.5 Telescopic Method

We can aggregate on the time scale for single SKU optimization by using a telescopic

method to reduce the computational time. The telescopic method is motivated by

several observations in single SKU level optimization. First, the optimization model

is solved only to obtain optimal discounts for the first week and will be resolved with

new data inputs every week. As a result, the most relevant decisions will be the first-

week discounts. Second, it is observed that demand and return forecasts for later

weeks are less accurate, and intuitively we should “care less" about later weeks. Last,

computational burdens are huge concerns in practice. In general, the optimization

model needs to include the entire season that SKUs are offered to customers and could

last for a whole year. In other words, the number of time periods can be as large

as 𝑇 = 52 weeks. Although one can resort to linear programming (LP) relaxations

for faster computations, with the extra complexity of the formulation introduced in

Section 4.4.2, 4.4.3, LP relaxations will be less reliable, and the computation time

for solving MIP will explode as the number of weeks grows. In contrast, telescopic

methods “combine" later weeks into fewer optimization periods, significantly speeding

up the optimization routine.

Take an example where the optimization planning horizon is 𝑇 = 40 if we introduce

additional constraints 𝑧𝑐,𝑡,𝑙 = 𝑧𝑐,20,𝑙 for all 𝑡 ≥ 20, that is, forcing all the discounts

after week 20 to be the same. The new optimal solution will be suboptimal for the

original problem and yield a lower objective. Nevertheless, the optimal solution for

the first week will not be far from the true optimal solution. Hence we can implement

such an approximation by combining weeks after week 20 into one period.

Denote 𝜏 ∈ [𝑡1, ..., 𝑡𝑇 ] to be the starting weeks for each period and we have 𝑇 total

telescopic periods, each with 𝑛𝜏 weeks. For example, [1, 2, 7] means that we combine

weeks 2-6 into one period and all weeks after (weeks 7-40) into another period. We

denote the hatted version to be the telescopic updated version and update the model
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inputs to their aggregated version:

𝐷̂𝑐,𝜏,𝑙 =

𝑡𝜏+1−1∑︁
𝑖=𝑡𝜏

𝐷𝑐,𝑖,𝑙 𝐴𝜏 =

𝑡𝜏+1−1∑︁
𝑖=𝑡𝜏

𝐴𝑖 (4.27)

𝑅̂𝑐,𝜏,𝑙 =
1

𝑛𝜏

𝑡𝜏+1−1∑︁
𝑖=𝑡𝜏

𝑅𝑐,𝑖,𝑙 𝜋̂𝑐,𝜏,𝑙 =
1

𝑛𝜏

𝑡𝜏+1−1∑︁
𝑖=𝑡𝜏

𝜋𝑐,𝑖,𝑙 (4.28)

Intuitively, we approximate demand, replenishment, and unit profit of a tele-

scopic period by summing up the values of each week. For returns, we compute

the average return rates of each week since these are fractional values. In addition,

we approximate the business constraint inputs, including max/min discount levels,

max upward/downward steps, and discount barriers, by taking the average across

the corresponding weeks. The telescopic methods have proven to be an effective ap-

proximation heuristic and have been adopted by Zalando to speed up the weekly

optimization routine.

4.5 Global Optimization

In previous sections, we formulated the discount optimization problem for single SKUs

and addressed the potential issues caused by the linear MIP formulation. If each SKU

behaves independently in practice, we could separately optimize each SKU to obtain

the optimal discounts for all the SKUs. However, “global” business constraints tie

different SKUs together. We introduce two kinds of global constraints in this paper.

The first kind is from a business planning perspective, where each country has its

own growth plans. For instance, the company may want the total sales for all the

SKUs within a product category (e.g., women footwear) to reach a specific target.

The second kind of business constraint comes from the cost perspective. Controlling

the average discounts over a group of SKUs is critical to evaluating the cost spent

on the campaigns. For example, the company may want to maintain the weighted

average discount for a group of SKUs within a range (e.g.,15% to 17%). This value

is denoted as the sales Discount Rate (sDR) target. The way Zalando adopts to

118



measure weighted average discount is to use discount rates weighted by their potential

contributions to the total revenue (undiscounted price times sales), as defined below:

𝑠𝐷𝑅𝑖 =

∑︀
(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︀
𝑙 𝑑𝑙 𝑥𝑘,𝑐,𝑡,𝑙𝑃𝑘,𝑐∑︀

(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︀
𝑙 𝑥𝑘,𝑐,𝑡,𝑙𝑃𝑘,𝑐

sDR is critical from business planning perspective, as it measures the relative cost

of adopting a discount strategy. The higher the sDR value, the more Zalando need

to invest (or bear as opportunity costs) to the discount plan. In reality, sDR targets

are closely monitored by Zalando high level business teams, and they usually impose

certain values as targets to reach. For example, it might be required that for women

footwear category, the weighted average discount (sDR) for Germany in the next four

weeks is around 15%. We discuss in this section the global problem in which we

jointly optimize a group of SKUs such that the above two types of constraints are

satisfied in certain countries and weeks. We follow the notation in Section 4.4 and

add subscript 𝑘 to denote the associated variables of SKU 𝑘. Define target set 𝒯 to

be the set of SKUs, with specific sets of countries and time periods that we want to

reach a certain global target. Given target set 𝒯𝑖 := {(𝑘, 𝑐, 𝑡) | 𝑘 ∈ 𝒦𝑖, 𝑐 ∈ 𝒞𝑖, 𝑡 ∈ 𝒲𝑖},

we have two types of steering targets: revenue target and sDR target.

Revenue targets. ∑︁
(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︁
𝑙

𝑃𝑘,𝑐,𝑡,𝑙𝑥𝑘,𝑐,𝑡,𝑙 ≥ 𝐺𝑀𝑉 −
𝑖 (4.29)

sDR targets.

𝑠𝐷𝑅−
𝑖 ≤

∑︀
(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︀
𝑙 𝑑𝑙 𝑥𝑘,𝑐,𝑡,𝑙𝑃𝑘,𝑐∑︀

(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︀
𝑙 𝑥𝑘,𝑐,𝑡,𝑙𝑃𝑘,𝑐

≤ 𝑠𝐷𝑅+
𝑖 (4.30)

4.5.1 Lagrangian relaxation

The solutions of different SKUs are coupled via the global steering targets, and di-

rectly solving the global optimization problem for hundreds of thousands of SKUs

could be an impossible task. Moreover, parallel computing power cannot be utilized

if we optimize all the SKUs jointly. We, therefore, decompose the global target con-

straints by using Lagrangian relaxation, namely, by introducing dual multipliers, each
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associated with a global target.

Let 𝒫𝑘 be the feasible region of sub-problem 𝑘, which specifies the values of 𝑥𝑘

and 𝑧𝑘 subject to the constraints for single SKU optimization problem ((4.3)-(4.7),

(4.9), (4.13)-(4.21), and (4.22)-(4.26)) for each single SKU 𝑘. We can then write the

global problem as the following.

max
∑︁
𝑘,𝑐,𝑡,𝑙

𝜋𝑘,𝑐,𝑡,𝑙𝑥𝑘,𝑐,𝑡,𝑙 + 𝑦𝑘,𝑒𝑛𝑑SV𝑘 (4.31)

𝑠.𝑡.
∑︁

(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︁
𝑙

𝑃𝑘,𝑐,𝑡,𝑙𝑥𝑘,𝑐,𝑡,𝑙 ≥ GMV−
𝑖 ∀𝑖 ∈ 𝐼 (4.32)

∑︁
(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︁
𝑙

(𝑑𝑙 − sDR−
𝑖 )𝑥𝑘,𝑐,𝑡,𝑙 ≥ 0 ∀𝑖 ∈ 𝐼 (4.33)

∑︁
(𝑘,𝑐,𝑡)∈𝒯𝑖

∑︁
𝑙

(𝑑𝑙 − sDR+
𝑖 )𝑥𝑘,𝑐,𝑡,𝑙 ≤ 0 ∀𝑖 ∈ 𝐼 (4.34)

𝑥𝑘, 𝑧𝑘 ∈ 𝒫𝑘 (4.35)

Let 𝜆−, 𝜇′−, 𝜇′+ be the dual non-negative vectors associated with constraint (4.32),

(4.33) and (4.34) respectively. Let 𝜃 = (𝜆, 𝜇−, 𝜇+
𝑖 ). We then obtain the Lagrangian

dual problem:

min
𝜃≥0

𝑔(𝜃) := max
∑︁
𝑘

∑︁
𝑐,𝑡,𝑙

(︂
𝜋𝑘,𝑐,𝑡,𝑙 +

∑︁
𝒯𝑖

𝜆−
𝑖 𝑃𝑘,𝑐,𝑡,𝑙 +

∑︁
𝒯𝑖

𝜇−
𝑖 (𝑑𝑙 − sDR−

𝑖 ) (4.36)

−
∑︁
𝒯𝑖

𝜇+
𝑖 (𝑑𝑙 − sDR+

𝑖 )

)︂
𝑥𝑘,𝑐,𝑡,𝑙 −

∑︁
𝒯𝑖

𝜆𝑖GMV−
𝑖 + 𝑦𝑘,𝑒𝑛𝑑SV𝑘 (4.37)

𝑠.𝑡. 𝑥𝑘, 𝑧𝑘 ∈ 𝒫𝑘 (4.38)

where the Lagrangian dual function 𝑔 is piece-wise linear, convex, continuous and

non-smooth.

In general, Lagrangian multipliers 𝜃 must be non-negative to penalize target vio-

lations in the objective. In practice, the corresponding constraints could be infeasible,

where the multipliers will go to infinity or be heavily violated in a given solution. In

this case, the multipliers could have very large values, possibly orders of magnitude
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larger than the rest of the objective function, causing slow convergence or numer-

ical instability. To guarantee that the problem of optimizing 𝑔(𝜃) is both bounded

and numerically stable, we assume each lagrangian multiplier 𝜃𝑖 to be bounded from

above by a reference value 𝜃𝑖 which can be easily computed from the data as follows.

Consider a generic formulation for the 𝑖th target

∑︁
𝑗∈𝐽

𝜏𝑗𝑖𝑥𝑗 ≤ 𝑇𝑖

with primal variables 𝑥𝑗, 𝑗 ∈ 𝐽 , and multiplier 𝜃𝑖. Let 𝑓(x) =
∑︀

𝑗∈𝐽 𝑐𝑗𝑥𝑗 be the

objective function to be maximized. Dualizing the 𝑖th target constraint yields the

modified objective function

min
𝜃𝑖

(︃
max

x

∑︁
𝑗∈𝐽

𝑐𝑗 − 𝜃𝑖𝜏𝑗𝑖)𝑥𝑗

)︃
− 𝜃𝑖𝑇𝑖

Then, the reference value for the multiplier has to satisfy the condition

𝜃𝑖 > 𝜃min
𝑖 = max

𝑗∈𝐽

𝑐𝑗
𝜏𝑗𝑖

The condition guarantees that if target 𝑖 is violated then the multiplier 𝜆𝑖 can

become large enough to dominate the coefficients of the primal variables x, i.e.

max𝜃𝑖∈[0,𝜃𝑖] 𝜃𝑖𝜏𝑗𝑖 > 𝑐𝑗 ∀𝑗 ∈ 𝐽 and thus steer the optimization towards target-reaching

solutions. From a business perspective, the multiplier 𝜃𝑖 represents the per-sold-item

cost of violating target 𝑗 by an additional unit; hence the condition states that the

maximum allowed cost per sale for an additional unit of violation 𝜃𝑖 for any article

𝑗 ∈ 𝐽 needs to be greater than the per-unit profit 𝑐𝑗 for the same sale to guaran-

tee convergence to a target-reaching solution. In our experiments we set 𝜃𝑖 = 3𝜃min
𝑖

∀𝑖 ∈ 𝐼.

121



4.5.2 Cutting plane algorithm

We use the Cutting Plane (CP) method (Kelley 1960) to solve (4.36). The method

iteratively constructs a piece-wise linear approximation of the Lagrangian dual func-

tion 𝑔 and minimizes its value, yielding a new dual vector of multipliers at each

iteration. Specifically, given dual variables 𝜃𝑛0 and 𝑦0 = 𝑔(𝜃𝑛0 ) at iteration 𝑛, we add

the constraint or “(optimality) cut” 𝑦 ≥ 𝑔′(𝜃0)(𝜃 − 𝜃0) + 𝑦0 to the CP model:

(︀
ℳ𝑛

)︀
𝑧𝑛 := min 𝑦 (4.39)

𝑠.𝑡. 𝑦 ≥ 𝑔′(𝜃𝑖0)(𝜃 − 𝜃𝑖0) + 𝑦𝑖0 for 𝑖 = 1, . . . , 𝑛 (4.40)

0 ≤ 𝜃 ≤ 𝜃 (4.41)

We chose the CP algorithm because it can provide good solution quality and rapid

convergence while being relatively easy to implement in the company’s environment

and requiring little overhead compared to the solution of the lagrangian subproblems.

See Frangioni et al. (2015) for a more in-detail evaluation of optimization methods

for Lagrangian dual functions.

In the following, we report relevant properties of the CP algorithm. First, as 𝑔 is

convex, we have that the series {𝑧𝑛}𝑛∈𝑁 is non-decreasing, i.e. 𝑧𝑛 ≥ 𝑧𝑛−1 ∀𝑛 ∈ 𝑁 .

Let 𝑆* be the optimal value for the original problem and 𝜃* the optimal solution for

the lagrangian dual problem. From strong-duality in convex problems, we will have

𝑆* = 𝑔(𝜃*), and 𝑧𝑛 ≤ 𝑔(𝜃*) ≤ 𝑔(𝜃𝑛) for all iterations 𝑛, with the values converging to

the optimum 𝑔(𝜃*) in a finite number of steps. We can then define the optimality gap

at iteration 𝑛 as gap𝑛 =
𝑔(𝜃𝑛)− 𝑧𝑛

|𝑧𝑛|
. However, the MIP integer constraints introduce

non-convexity to our problem, and we have instead the weak duality 𝑆* ≤ 𝑔(𝜃*), and

𝑧𝑛 converges to an upper bound of the optimal value of the original problem, i.e.

∃ 𝑛̄ ∈ 𝑁 : 𝑧𝑛 ≥ 𝑆𝑛 ∀𝑛 ≥ 𝑛̄. Indeed, 𝑧𝑛 converges to the value of the continuous

relaxation of the equivalent Dantzig-Wolfe reformulation of the lagrangian relaxation

(Desrosiers and Lübbecke 2005).

We report the algorithm scheme in figure 4. We initialize the algorithm with the

"dummy solution" 𝜃 = 0, which yields the "unconstrained optimum" or the profit-
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maximal solution where targets are ignored. Other initialization schemes could yield

better results or faster convergence depending on the problem and the underlying

data. We refer to the literature Frangioni et al. (2015) for further information. In our

experiments, the zero-multipliers solution is easier to use. They do not require any

prior knowledge or computation and provide a benchmark of the optimization model

without any global constraints.

As a stopping criterion, we could use a MIP optimality gap by computing at each

iteration 𝑛 a lower bound for the original problem using some heuristic, possibly

based on the current lagrangian solution (𝜃𝑛,x𝑛), and comparing it with the current

best dual bound max𝑛′≤𝑛 𝑔(𝜃
′
𝑛). Given the scale of our problem, computing accurate

heuristic solutions during the iterations would be significantly expensive. We then

consider the following stopping conditions: (i) the number of iterations has reached

an upper limit 𝑁 and (ii) the change between multipliers in subsequent iterations is

below a minimum threshold 𝜖.

Algorithm 4: Cutting Plane
1: Initialization. Optimization model ℳ; set 𝑛 = 1, 𝑧0 = −∞; set dual values

𝜃0 = 0

2: for 𝑛 = 1, . . . , 𝑁 do

3: solve the Lagrangian relaxation problem to obtain 𝑔(𝜃𝑛);

4: calculate subgradient 𝑔′(𝜃𝑛) ;

5: if 𝑛 = 𝑁 or ‖𝜃𝑛 − 𝜃𝑛−1‖ > 𝜖 then

6: add optimality cut to model ℳ𝑛−1 yielding model ℳ𝑛

7: solve model ℳ𝑛 to obtain dual value 𝑧𝑛+1 and dual solution 𝜃𝑛+1

8: else

9: break;

10: end if

11: end for
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4.5.3 Primal heuristics

While optimizing the dual function leads to finding primal solutions with minor vio-

lations and good objectives, the process does not guarantee to find primal solutions

that are either optimal or feasible for the original problem. To tackle this challenge,

we develop primal heuristics to construct a good global solution using all the results

in the previous iterations.

Let 𝑠𝑛 = (𝑝𝑛, 𝑣𝑛1, 𝑣𝑛2, . . . , 𝑣𝑛|𝐽 |) denote the result in iteration 𝑛 where 𝑝𝑛 is the

profit objective and 𝑣𝑛𝑗 is the violation in global target 𝑗. Let 𝑝 = max𝑛∈𝑁{𝑝𝑛} be

the highest profit in all iterations. Let 𝜎𝑗 be the target value of global target 𝑗. In

addition, we record the profit and violations of each SKU 𝑘. Let 𝑝𝑘𝑛 be the profit from

SKU 𝑘 in iteration 𝑛 and 𝑙𝑘𝑛𝑗 violation from SKU 𝑘 for target 𝑗 in iteration 𝑛. We

then solve the following problem to obtain an optimal combination of the solutions.

min
∑︁
𝑗∈|𝐽 |

𝛿𝑗 + 𝛿𝑝 (4.42)

𝑠.𝑡. 𝛿𝑝 = 1−
∑︀

𝑘∈𝐾
∑︀

𝑛∈𝑁 𝑟𝑘𝑛𝑝𝑘𝑛

𝑝
(4.43)

𝛿𝑗 =

∑︀
𝑘∈𝒯𝑗

∑︀
𝑛∈𝑁 𝑟𝑘𝑛𝑙𝑘𝑛𝑗

𝜎𝑗

∀𝑗 ∈ 𝐽 (4.44)∑︁
𝑛∈𝑁

𝑟𝑘𝑛 = 1 (4.45)

𝑟𝑘𝑛 ∈ {0, 1}; 𝛿𝑗, 𝛿𝑝 ≥ 0 (4.46)

Figure 4-3 showcases one run of a global optimization problem with 1,000 SKUs and

four sDR targets. It took eight iterations to converge within the optimality gap. The

x-axis plots the percentage profit gap compared to the highest profit the model has

ever seen. The y-axis measures the total amount of violations of the four sDR con-

straints. It is clear that when the algorithm stops at the eighth iteration, the primal

solution is not particularly preferable. However, after computing a new solution with

the Primal Heuristic, the violations are reduced to zero without compromising the

profit objective.
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Figure 4-3: Profit Gaps and Violations Across Iterations and Primal Heuristic

4.6 Field Experiments

We have proposed various techniques in previous sections to model, solve and improve

the discount optimization process. Zalando is very collaborative and eager to conduct

offline and online experiments to validate the proposed framework. In this section, we

report experiments performed at Zalando. These are the first stage of the experiments,

with the primary purpose of checking the functionality of the system, as well as the

ability to reach the global targets. In later field experiments, the main goal will shift

towards measuring the improvement in total profits compared to the old system.

4.6.1 Offline Large-Scale Experiments

Before carrying out real field experiments, we first test the optimization framework

offline by using historical data. From an experimental design perspective, we selected

a sample of the assortment of the Kids category because it includes articles of all

types, from shoes to accessories. Therefore its variety is comparable to the one of

the whole shop. Other categories are split by gender or article type (Men Textile,

Women Shoes, Accessories). In this sense, a sample from the Kids category is likely

to be more representative of the whole shop than a sample of the same size from

another category. The optimization spans 14 countries and 26 weeks. The goal is to

125



generate profit-optimal target-reaching discounts to be uploaded for the first week of

the optimization horizon. The problem has one global sDR target for the first week of

the experiments. To speed up the process and also facilitate the weekly optimization

routine, the implementation exploits large-scale cloud-based parallelization to solve

lagrangian subproblems in parallel. We use Amazon EMR as the execution platform,

which allows the provision of Hadoop clusters with a specified amount of total cores

and memory. Our implementation is written in Python, using the Apache Spark

framework. In our experiments, we used the C5 instance type provided by AWS.

We present the results of two large-scale tests we run on our algorithm. The goal

of these tests is to mimic the settings of the following field experiments, and the

experiments started on different weeks. Run time is measured as the total time for

the overall system to confirm the completion of each run after a launch. It can be

seen that our algorithm manages to reach the targets in both cases.

Table 4.3: Offline experimental results
Experiments SKUs Iterations Run Time

(s)
Number
of Cores

Total
Memory

Target
Deviation

1 51745 5 105 2000 4.0 0.00
2 12798 5 90 1500 3.0 0.00

4.6.2 Online Field Experiment Results

The online experiments were launched in consecutive weeks, where the model was

solved using 2000 parallel processing cores and 4.0 TiB for each experiment. Bold

values indicate when the model and the actual values in the target group satisfied the

targets. It can be observed that the target (sDR) value for both the model and the

test articles are close to or within the target bounds most of the time. For the test

group, the actual sDR is much closer to the target than the control one, especially for

experiment #3, proving the practical effect of the decisions taken by the model. More

precisely, for test #3, the users later confirmed the targets were much harder than

expected concerning the assortment, meaning our model managed to significantly
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move the sDR for the test group despite the targets being difficult to reach. To

compare profit, we require the Treatment and Control group to be subjected to the

same (sDR) targets, as they directly impact profit.

During the field test, the Control group is managed directly by the commercial

team using different heuristic processes that can yield different sDRs than the one

for the Treatment group. Indeed, we observed large deviations in the Control group

from the sDR target, primarily attributed to this heuristic process and other process-

related issues. For this reason, we cannot directly compare profit among the two

groups.

Table 4.4: Online field experimental results

Experiments SKUs Iterations Run Time
Target deviation

Model Actuals
Test Control

1 12632 4 1h -0.09% 0.00% -3.27%
2 12757 1 40m 0.00% 0.00% 0.00%
3 8961 4 1h -0.14% -2.85% -10.43%

4.7 Aggregation Model

In reality, the company is dealing with a global problem with potentially 𝐾 > 600, 000

SKUs, 𝐶 = 17 countries, 𝑇 = 40 weeks and 𝐿 = 15 discount levels. Moreover, the

global optimization in previous sections may take several iterations to terminate.

Practically it imposes heavy burdens on computational resources and demands sim-

plification or certain levels of aggregation. For the global problem, we propose an

aggregation framework to cluster similar SKUs within each category into dummy

SKUs. This framework brings value from several perspectives. Firstly it could signifi-

cantly reduce the number of SKUs in the global problem, saving much computational

time and resources. Secondly, there are many “long tail” SKUs that are less popular

and have few or no historical sales. Since these SKUs are expected to have lower

demand prediction accuracy and lower sales, therefore are less important to the busi-

ness operations. By clustering, we combine these SKUs and make centralized price
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decisions. Finally, aggregation results are also helpful to business planning. The

aggregated output provides quick suggestions for business users on their high-level

promotional planning for certain countries or product categories.

4.7.1 Clustering

On the global optimization level, the company has country-specific and category-

specific targets. For instance, Figure 4-4 illustrates an example of a global optimiza-

tion with 14 country targets (as indicated for each column) and four category targets

(as indicated for each row). The values in individual cells are category-country-specific

targets and are unknown before solving the global optimization problem. The idea

of the aggregation model is to approximate the global problem by clustering SKUs

within each category. The resulting model is much smaller due to clustering, whose

outputs approximate the cell category-country targets. Finally, we could decompose

the global problem into category-specific problems and solve each SKU’s optimal

discounts by using cell-specific targets.

Figure 4-4: Example of Country and Category Global Targets

The first part of the aggregation model is to find a clustering algorithm. Ideally,

the SKUs within each cluster should have similar optimal discounts since we combine

their information. After exploring the features that impact optimal discount decisions,

we include demand, price, inventory, and unit profit as features to perform clustering.

After removing the outliers (SKUs with extremely low inventories or demands), we

normalize the values on each dimension and apply the K-Means clustering algorithm
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for each category.

4.7.2 Aggregation Approximation

After we form clusters in each product category, we need to apply an aggregation

method to represent SKUs within each cluster. We consider two approaches. The first

approach is to aggregate the SKUs in each cluster by taking the 𝑁 closest SKUs to the

cluster’s center and scaling up demand, inventory, and other parameters accordingly.

This approach is simple to implement; however, it only utilizes the information of

a small number of SKUs and will not yield a good approximation if the cluster is

spread out. The second approach is to aggregate the SKUs in each cluster into a

giant dummy SKU. The challenge of this method is how to combine the inputs from

different SKUs. We adopt the second approach and take the demand-weighted average

of price, inventory, and other parameters.

4.7.3 Experimental Results

The data set contains 1,000 SKUs from 11 categories across 14 countries and 40 weeks

of the planning horizon. The business users impose four global sDR targets, two on

individual product categories (Women Textile and Women Footwear) and two on

respective countries.

We test the aggregation framework by comparing it to the benchmark instance, where

we apply the dis-aggregated method and jointly optimize SKUs from all the categories.

In both cases, we implement methods for global optimization in Section 4.5, namely

Lagrangian relaxations and primal heuristics on the MIP. We compare the running

time and sDR targets for the two instances.

After solving the first stage of the aggregated model, value has already been cre-

ated in category-level business insights. If needed or further required by the business

users, we could solve each category on the dis-aggregated model, using sDR inputs

from the aggregated model. The optimal objective difference for both product cate-

gories is less than 0.5%. We present the discount distribution histogram in Figure 4-5
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Figure 4-5: Discount Distribution Comparison for Women Textile Category

Figure 4-6: Discount Distribution Comparison for Women Footwear Category
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Table 4.5: Comparison of sDR targets
Country

1
Country

2

Benchmark AggregationDifference Benchmark AggregationDifference

Women Textile 0.138 0.129 -0.009 0.161 0.171 0.01
Women Footwear 0.148 0.177 0.029 0.183 0.181 -0.002

and 4-6.
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Chapter 5

Concluding Remarks

This chapter summarizes the previous works and discusses future research directions.

5.1 Assortment Display, Price Competition, and Fair-

ness in Online Marketplaces

This paper investigates how platforms such as Airbnb should display their assort-

ment to maximize total revenue. Specifically, we consider a stylized model where

the profit-maximizing platform determines the partition of the products and traffic

assigned to each partition. Each seller on the platform supplies a distinct product

with one-unit inventory and sets the product’s price given the prices of the other

sellers in the partition. We provide theoretical justification that it is optimal to dis-

play the entire product assortment when a platform faces sufficiently large demand.

Moreover, to derive the equilibrium price for each seller and ultimately offer recom-

mendations on the display policy, we tabulate the FOC and formulate the platform’s

problem as an MIP. Exploiting the MIP, we can compute the equilibrium pricing for

each seller and, based on this, recommend the corresponding optimal display pol-

icy for the platform. Our theoretical and numerical results carry critical managerial

implications. The platform should adopt different display strategies to maximize its

revenue depending on the market conditions characterized by the number of sellers
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and customers. Additionally, to address the concerns over unfairness in the partition

display from both the sellers and customers, we incorporate the fairness constraints

on the closeness of (1) attractiveness of each partition, (2) the demand allocated to

each partition, and (3) the individual customer welfare. Such fairness constraints

guarantee a certain degree of fairness for the sellers and customers. Furthermore,

we also use data from Airbnb to demonstrate how our framework can be applied in

reality and simultaneously demonstrate the revenue loss that Airbnb incurs to achieve

a fair display. Finally, we extend our current model to the case in which each seller

has more than one unit of the listed product and discuss the optimal display policy

when demand is sufficiently high.

Our MIP framework can generally be applied to platforms on which the service

provider supplies a single unit of product. Such cases include Airbnb and the labor

market, where each company posts a job with one vacancy and competes with other

companies on salary, and eBay, where each seller posts one product and competes

on price through the “buy it now" option. Nevertheless, our MIP framework is also

flexible. It can include other industry-specific constraints, but importantly, it can

also be applied to characterize the equilibrium price and derive the optimal display

policy for platforms on which sellers have more than one unit of inventory in stock.

5.2 Estimating and Exploiting the Impact of Photo

Layout: A Structural Approach

This paper studies how the photo layout on Airbnb’s listing web pages affects cus-

tomers’ renting decisions. Specifically, we provide an integrated framework to extract

photo features, evaluate photo impact and ultimately optimize the photo layout. This

framework can be adopted by platforms such as Yelp and Hotel.com to help select

and recommend user-generated images in the user comments. Similar to the case of

Airbnb, such images tend to vary significantly in quality and content. Our framework

can be used to estimate and optimize the image recommendation system to boost the
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user engagement level. Moreover, online retailers, such as Farfetch and Alibaba, can

use our framework to identify photo content and photo features that boost demand.

According to Martinez de Albeniz (2017), the image production process for online re-

tailers is usually time-consuming and requires careful planning on the operations side.

By providing guidance on the photo layout and the photo features to be included,

our framework can improve the conversion rate for the platform and potentially also

simplify the image production process.

Specifically, we take advantage of the advancement in computer vision algorithm

to augment the Airbnb transaction datasets with information about the photo qual-

ity and room of images posted by listing owners. Then, to address two estimation

challenges associated with the Airbnb setting, namely shrinking consideration set and

censored demand, we develop a pairwise comparison model (PCM) that utilizes infor-

mation about the sequencing of property bookings to supplement the sales data. The

PCM estimation framework allows for flexible utility structure and is asymptotically

normal with a convergence rate linear in the number of observations. We find that the

cover photo generates a much higher impact than the rest of the photos, possibly be-

cause (i) the cover image is displayed when customers are browsing through different

listing options on the search page and (ii) the cover image takes up a more significant

amount of space on the listing’s web page than do the other photos. Additionally, the

estimation results suggest that a high-quality bedroom photo is the best candidate for

the cover image of an Airbnb listing. We determine the optimal photo layout for each

listing based on our estimation results. Our counterfactual analysis suggests that a

listing’s unilateral adoption of optimal photo layout leads to 11.0% more bookings

on average, which translates into an average annual revenue improvement of $1248.

Moreover, depending on the location and market size, when all listings simultaneously

switch to the optimal photo layout, they get booked for two to five additional days

on average, which is equivalent to $500 to $1100 increase in revenue, respectively.

The PCM estimation framework can be applied practically to settings where prod-

ucts have limited quantities, and the sequence of purchase is observed, e.g., the car

rental market, second-hand market, and flash sale websites. As each SKU has lim-
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ited units in stock in such cases, the aggregate demand data are usually censored,

and customers’ consideration set changes frequently. PCM is particularly suitable for

such scenarios, as it can uncover the true values for the parameters of interest under

changing consideration sets even when the no-purchase data are not observed.

Our study empirically quantifies the impact of photo layout and contributes to

understanding the impacts of visual messages in the online retailing and advertisement

industries. There are a few limitations and directions for future work. First, with

more detailed data on customers’ devices and clicking and searching behaviors, we

will be able to focus on web users and better construct their consideration sets, thus

obtaining more refined estimation results. Additionally, extending the current layout

definition with a larger image dataset would be interesting, and exploring the impact

of the display sequence of photos in the non-cover spot on listing demand. Given

sufficient variation in the room type of the first five images, the impact of the photo

layout under alternative definitions of duplication can also be tested. Meanwhile,

the estimation results can be verified through a lab experiment in which each listing

has infinite availability each day. The estimation process is simplified, as it can be

carried out using the standard MNL model. Finally, the photo layout optimization

problem can be studied in conjunction with product assortment optimization or price

optimization to generate a more substantial revenue increase for the platform.

5.3 Large-scale Price Optimization for an Online Fash-

ion Retailer

Zalando has successfully implemented all the algorithms described in this work into

their weekly price discount recommendation system routine. The optimization model

outputs optimal discount decisions for hundreds of thousands of products every week

across more than 14 markets. As the preliminary field experiments suggest, the model

can steer the discounts to satisfy the global targets. In conclusion, our work addresses

several critical challenges for the online fashion retailer Zalando, with a vast number
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of products and different levels of business constraints. We first manage to model the

single product optimization problem as an MIP instance, which correctly captures the

challenge of stock hedging and stock response. On the “global" level with constraints

across multiple products, we apply the Lagrangian decomposition and the cutting

plane method to efficiently find the solution within the optimality gap for this large-

scale optimization problem. We also adopt a heuristic to combine solutions across

iterations to yield a better solution. Finally, we propose an aggregation framework

that will drastically improve the computational time and provide high-level business

insights. The pilot field experiment empirically validates that the optimization frame-

work successfully steers the discounts towards the business targets, and the model will

be integrated into the company’s weekly operation pipeline. We provide a new al-

gorithm system that automates the decision-making process for a globally operating

fashion platform. This system can be applied to many other similar business envi-

ronments in the future. We plan to test the algorithms on the company platform and

investigate the profit improvement under this new decision-making system to show

more convincing results. Another important future direction is how to reduce the

scale of the problem or increase the efficiency of our system so we can achieve better

speed without losing much optimality.
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Appendix A

Proofs and Alternative Formulations

for Chapter 2

A.1 Proofs for Propositions and Theorems

A.1.1 Proof for Proposition 2.1

For existence, we can show the derivative of revenue for listing 𝑖 with respect to 𝑝𝑖 is

𝑑Π𝑖

𝑑𝑝𝑖
= 1− (𝑀𝛽𝑝𝑖𝑞𝑖 + 1)(1− 𝑞𝑖)

𝑀 . (A.1)

Clearly when 𝑝𝑖 = 0, we have 𝑑Π𝑖

𝑑𝑝𝑖
= 1− (1− 𝑞𝑖)

𝑀 > 0, and when 𝑝𝑖 is very large, we

can show that 𝑑Π𝑖

𝑑𝑝𝑖
−→ 0 and 𝑑Π𝑖

𝑑𝑝𝑖
< 0. This is because as 𝑝𝑖 → ∞ we have 𝑞𝑖 → 0 and

𝑝𝑖𝑞𝑖 =
𝑝𝑖

1+𝑆−𝑖𝑒𝛽𝑝𝑖−𝑎𝑖
→ 0, where 𝑆−𝑖 = 1 +

∑︀
𝑗 ̸=𝑖 𝑒

𝑎𝑗−𝛽𝑝𝑗 is a constant, so𝑑Π𝑖

𝑑𝑝𝑖
−→ 0 and

lim
𝑝𝑖→∞

𝑀 ln(1− 𝑞𝑖) + ln(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)

𝑀𝛽𝑝𝑖𝑞𝑖
= lim

𝑝𝑖→∞

ln(1− 𝑞𝑖)

𝛽𝑝𝑖𝑞𝑖
+

ln(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)

𝑀𝛽𝑝𝑖𝑞𝑖
= 1 > 0.

This implies (𝑀𝛽𝑝𝑖𝑞𝑖 + 1)(1− 𝑞𝑖)
𝑀 > 1 when 𝑝𝑖 is large and we get 𝑑Π𝑖

𝑑𝑝𝑖
< 0 immedi-

ately.
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Now consider the second order derivative

𝑑2Π𝑖

𝑑𝑝2𝑖
= −(1− 𝑞𝑖)

𝑀(𝑀𝛽𝑞𝑖 − 𝛽2𝑀𝑝𝑖𝑞𝑖(1− 𝑞𝑖))−𝑀𝛽𝑞𝑖(1− 𝑞𝑖)(1− 𝑞𝑖)
𝑀−1(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)(A.2)

= −𝑀𝛽𝑞𝑖(1− 𝑞𝑖)
𝑀(𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 2). (A.3)

When 𝑝𝑖 = 0, we have 𝑑2Π𝑖

𝑑𝑝2𝑖
= −2𝛽𝑀𝑞𝑖(1− 𝑞𝑖)

𝑀 < 0. From the expression above, we

can see directly that 𝑀𝛽𝑝𝑖𝑞𝑖−𝛽𝑝𝑖(1−𝑞𝑖)+2 → −∞ and 𝑞𝑖(𝑀𝛽𝑝𝑖𝑞𝑖−𝛽𝑝𝑖(1−𝑞𝑖)+2) →

0. This means that when 𝑝𝑖 is large, 𝑑2Π𝑖

𝑑𝑝2𝑖
> 0 and approaches to zero. Because the

expression is a continuous function of 𝑝𝑖 and flips the sign on the domain [0,+∞),

we know there exists at least one root. Setting the second order derivative to zero,

we get 𝑀𝑞𝑖 + 𝑞𝑖 − 1 = − 2
𝛽𝑝𝑖

. The left hand side is a decreasing function in 𝑝𝑖 and the

right hand side is increasing in 𝑝𝑖, and there can be at most one intersect. Now we

know that there exist a single non-saddle 𝑝** such that 𝑑2Π𝑖

𝑑𝑝2𝑖
= 0. It is then obvious

that 𝑑Π𝑖

𝑑𝑝𝑖
is decreasing on [0, 𝑝**] and increasing on [𝑝**,+∞). Knowing that 𝑑Π𝑖

𝑑𝑝𝑖
is

positive when 𝑝𝑖 = 0, and it approaches to zero from the negative side when 𝑝𝑖 is

large, we conclude that there exists a single root 𝑝* for the first derivative, so that
𝑑Π𝑖

𝑑𝑝𝑖
> 0 on [0, 𝑝*] and 𝑑Π𝑖

𝑑𝑝𝑖
< 0 on [𝑝*,+∞). This proves quasi-concavity of Π𝑖 as a

function of 𝑝𝑖.

Since 𝑞𝑖 = 𝑒𝑎𝑖−𝛽𝑝𝑖

1+
∑︀

𝑗 𝑒
𝑎𝑗−𝛽𝑝𝑗

= 1
1+𝑆−𝑖𝑒𝛽𝑝𝑖−𝑎𝑖

, where 𝑆−𝑖 = 1 +
∑︀

𝑗 ̸=𝑖 𝑒
𝑎𝑗−𝛽𝑝𝑗 ∈ (1, 1 +∑︀

𝑗 𝑒
𝑎𝑗) ≜ (1, 𝑆) is bounded, we have

(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)(1− 𝑞𝑖)
𝑀 > (𝑀𝛽𝑝𝑖

1

1 + 𝑆𝑒𝛽𝑝𝑖−𝑎𝑖
+ 1)(1− 1

1 + 𝑒𝛽𝑝𝑖−𝑎𝑖
)𝑀 ≜ 𝑓𝑖(𝑝𝑖).

Following the same argument before, we can prove the existence of 𝑝*𝑖 such that

𝑓𝑖(𝑝𝑖) > 1 when 𝑝𝑖 > 𝑝*𝑖 . This means 𝑑Π𝑖

𝑑𝑝𝑖
< 0 when 𝑝𝑖 > 𝑝*𝑖 . Note that 𝑝*𝑖 only depend

on the qualities {𝑎𝑗}𝑛𝑗=1, so we can restrict the price space to be Π𝑖[0, 𝑝
*
𝑖 ], which is

a compact set. Fudenberg and Tirole (1991) implies existence of pure strategy Nash

equilibrium under such condition.

For uniqueness, let 𝐻 = { 𝜕2Π𝑖

𝜕𝑝𝑖𝜕𝑝𝑗
}𝑁×𝑁 , from Cachon and Netessine (2006) we only

need to prove that (−1)𝑁 |𝐻| is positive at the equilibrium. From direct calculation,
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we get the following

𝜕2Π𝑖

𝜕𝑝2𝑖
= −𝑀𝛽𝑞𝑖(1− 𝑞𝑖)

𝑀(𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 2)

𝜕2Π𝑖

𝜕𝑝𝑖𝜕𝑝𝑗
= 𝑀𝛽𝑞𝑖𝑞𝑗(1− 𝑞𝑖)

𝑀−1(𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 1).

By applying the calculation rules for determinant, the sign of |𝐻| is the same as the

sign of |𝐴| where

𝐴𝑖𝑖 = −(
1

𝑞𝑖
− 1)(𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 2), 𝐴𝑖𝑗 = 𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 1.

Denote ℎ𝑖 = 𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 1 and 𝑟𝑖 = 1− ℎ𝑖+1
𝑞𝑖

, we have

|𝐴| =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
ℎ1 + 𝑟1 ℎ1 . . . ℎ1

ℎ2 ℎ2 + 𝑟2 . . . ℎ2

...
...

...

ℎ𝑁 ℎ𝑁 · · · ℎ𝑁 + 𝑟𝑁

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ = 𝑟1𝑟2 . . . 𝑟𝑁

(︂
1 +

ℎ1

𝑟1
+

ℎ2

𝑟2
+ · · ·+ ℎ𝑁

𝑟𝑁

)︂
.

We next prove 𝑟𝑖 < 0 at equilibrium point. Indeed, 𝑟𝑖 < 0 ⇐⇒ ℎ𝑖 + 1 − 𝑞𝑖 >

0 ⇐⇒ 𝑀𝛽𝑝𝑖𝑞𝑖 + 1− 𝛽𝑝𝑖(1− 𝑞𝑖) + 1− 𝑞𝑖 > 0. From the FOC condition 2.2, we get

𝛽𝑝𝑖 = ((1− 𝑞𝑖)
−𝑀 − 1)/(𝑀𝑞𝑖), plug this into the expression of 𝑟𝑖, we get

𝑟𝑖 < 0 ⇐⇒ (1− 𝑞𝑖)
−𝑀 − (1− 𝑞𝑖)

−𝑀 − 1

𝑀𝑞𝑖
(1− 𝑞𝑖) + (1− 𝑞𝑖) > 0

⇐⇒ (𝑀 + 1)𝑞𝑖 + (𝑀𝑞𝑖 + 1)(1− 𝑞𝑖)
𝑀+1 > 1

By Bernoulli inequality and the fact that 𝑀 ≥ 1, we get

LHS of A.1.1 ≥ (𝑀 + 1)𝑞𝑖 + (𝑞𝑖 + 1)(1− 𝑞𝑖)
𝑀+1

= (𝑀 + 1)𝑞𝑖 + (1− 𝑞2𝑖 )(1− 𝑞𝑖)
𝑀

> (𝑀 + 1)𝑞𝑖 + (1− 𝑞2𝑖 )(1−𝑀𝑞𝑖)

= 1 + (𝑞𝑖 − 𝑞2𝑖 ) +𝑀𝑞3𝑖 > 1
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which proves 𝑟𝑖 < 0.

Note that we have ℎ𝑖 < 1− 𝑞𝑖 + ℎ𝑖 = −𝑞𝑖𝑟𝑖, which implies ℎ𝑖

𝑟𝑖
> −𝑞𝑖 when 𝑟𝑖 < 0.

In this case, we can obtain 1 + ℎ1

𝑟1
+ ℎ2

𝑟2
+ · · · + ℎ𝑁

𝑟𝑁
> 1 − 𝑞1 − 𝑞2 − · · · − 𝑞𝑁 > 0. So

the sign of |𝐴| is (−1)𝑁 and we have (−1)𝑁 |𝐻| is positive at the equilibrium point.

This combines with the fact that Π𝑖 is quasi-concave implies the uniqueness of pure

strategy Nash equilibrium by Cachon and Netessine (2006).

A.1.2 Proof for Proposition 2.2

By applying Implicit Function Theorem to the 𝑖-th FOC (2.2) we obtain

𝜕𝐹𝑂𝐶𝑖

𝜕𝑎𝑖
= −(1− 𝑞𝑖)

𝑀(𝑀𝛽𝑝𝑖𝑞𝑖(1− 𝑞𝑖))−𝑀𝑞𝑖(1− 𝑞𝑖)(1− 𝑞𝑖)
(𝑀−1)(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)

= −𝑀𝑞𝑖(1− 𝑞𝑖)
𝑀(𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 1)

We already have the partial derivative with respect to 𝑝𝑖 from Equation (A.2). Hence

we are able to calculate 𝜕𝑝𝑖
𝜕𝑎𝑖

as

𝜕𝑝𝑖
𝜕𝑎𝑖

= −𝜕𝐹𝑂𝐶𝑖/𝜕𝑎𝑖
𝜕𝐹𝑂𝐶𝑖/𝜕𝑝𝑖

=
𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 1

(𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖(1− 𝑞𝑖) + 2)𝛽
, (A.4)

Note that by applying the Bernoulli inequality to the FOC equation (2.2) , we can

get

1 = (1 +𝑀𝛽𝑝𝑖𝑞𝑖)(1− 𝑞𝑖)
𝑀 > (1 +𝑀𝛽𝑝𝑖𝑞𝑖)(1−𝑀𝑞𝑖) =⇒ 1 +𝑀𝛽𝑝𝑖𝑞𝑖 > 𝛽𝑝𝑖. (A.5)

Hence we can conclude that 𝜕𝑝𝑖
𝜕𝑎𝑖

> 0. Furthermore, when 𝑀 → ∞, we can have

𝑀𝑞𝑖 → ∞ (this is a direct result from Lemma 2.1), so the right hand side of (A.4)

approaches to 1
𝛽

and we finish our proof.

A.1.3 Proof for Lemma 2.1

For the first part of the lemma, if there exists 𝑝𝑈 such that 0 < 𝑝𝑖 < 𝑝𝑈 for infinite

many 𝑀 , then there exists a lower bound 𝑞𝐿 for 𝑞𝑖 because 𝑞𝑖 =
exp(𝑎𝑖−𝛽𝑝𝑖)

1+
∑︀

𝑗 exp(𝑎𝑗−𝛽𝑝𝑗)
=
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1
exp(𝛽𝑝𝑖−𝑎𝑖)+

∑︀
𝑗 exp(𝑎𝑗−𝑎𝑖−𝛽(𝑝𝑗−𝑝𝑖))

> 1
exp (𝛽𝑝𝑈−𝑎𝑖)+

∑︀
𝑗 exp(𝑎𝑗−𝑎𝑖+2𝛽𝑝𝑈 )

and this expression does

not contain 𝑝𝑖. Then consider the FOC equation, we have

−𝑀 ln(1− 𝑞𝐿) < −𝑀 ln(1− 𝑞) = ln(𝑀𝛽𝑝𝑞 + 1) < ln(𝑀𝛽𝑝𝑈 + 1). (A.6)

Take 𝑀 → ∞ and we immediately get contradiction since the LHS of (A.6) is linear

in 𝑀 while the order of the RHS of (A.6) is logarithm in 𝑀 . We can also have 𝑞𝑖 → 0

by the MNL equation since we have now already proven all 𝑝𝑖 → ∞.

For the second part, we first prove 𝑀𝛽𝑝𝑖𝑞𝑖 → ∞ as 𝑀 → ∞. Since 𝑞𝑖 → 0, from

the FOC equation, we have:

ln(𝑀𝛽𝑝𝑖𝑞𝑖 + 1) = −𝑀 ln(1− 𝑞𝑖) = 𝑀𝑞𝑖 + 𝑜(𝑀𝑞𝑖) (A.7)

If there exists 𝑈* such that 𝑀𝛽𝑝𝑖𝑞𝑖 < 𝑈* for infinite many 𝑀 , then because 𝑝𝑖 → ∞,

we must have 𝑀𝑞𝑖 → 0. This means the right side of (A.7) goes to 0, hence we get

𝑀𝛽𝑝𝑖𝑞𝑖 → 0. However, in this case we can get ln(𝑀𝛽𝑝𝑖𝑞𝑖 + 1) ∼ 𝑀𝛽𝑝𝑖𝑞𝑖, which is a

contradiction to (A.7) because we would have 𝑀𝛽𝑝𝑖𝑞𝑖 ∼ 𝑀𝑞𝑖 and this cannot be true

since 𝑝𝑖 → ∞.

Then we prove the second statement in the lemma. Note that from the MNL

model, we have 𝛽𝑝𝑖 = 𝑎𝑖 − ln 𝑞𝑖 + ln( 1−𝑞𝑖
1+𝑆−𝑖

) where 𝑆−𝑖 =
∑︀

𝑗 ̸=𝑖 𝑒
𝑎𝑗−𝛽𝑝𝑗 . Since 𝑝𝑗 → ∞,

we have 𝑆−𝑖 → 0 and ln( 1−𝑞𝑖
1+𝑆−𝑖

) → 0. Because lim𝑀→∞𝑀𝛽𝑝𝑖𝑞𝑖 = ∞, plug this into

the FOC, we get

ln𝑀𝑞𝑖 + ln(𝑎𝑖 − ln 𝑞𝑖 + ln(
1− 𝑞𝑖
1 + 𝑆−𝑖

)) + 𝑜(1) = −𝑀 ln(1− 𝑞𝑖)

Since 𝑞𝑖 → 0 as 𝑀 → ∞, we further get ln(𝑎𝑖 − ln 𝑞𝑖 + ln( 1−𝑞𝑖
1+𝑆−𝑖

)) → ∞ and

lim𝑀→∞(ln(𝑎𝑖 − ln 𝑞𝑖 + ln( 1−𝑞𝑖
1+𝑆−𝑖

))− ln ln 1
𝑞𝑖
) = 0, so we have

ln𝑀𝑞𝑖 + ln ln
1

𝑞𝑖
+ 𝑜(1) = −𝑀 ln(1− 𝑞𝑖) = 𝑀𝑞𝑖 + 𝑜(𝑀𝑞𝑖).

Note that ln ln 1
𝑞𝑖
→ ∞, so 𝑀𝑞𝑖 → ∞. In this case, we can have the order ln𝑀𝑞𝑖 =
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𝑜(𝑀𝑞𝑖). By merging the term ln𝑀𝑞𝑖 to 𝑜(𝑀𝑞𝑖) we finally achieve 𝑀𝑞𝑖 ∼ ln ln 1
𝑞𝑖

as

desired.

A.1.4 Proof for Lemma 2.2

Denote 𝑞1 = 𝑞*𝑖 (𝑀,𝒮1), 𝑞2 = 𝑞*𝑖 (𝑀/𝛾,𝒮2) , which is the probability of item 𝑎𝑖 in the

two sub-markets (we drop index 𝑖 for simplicity). Then from Lemma 2.1 we have:

𝑀𝑞1 ∼ ln ln 1
𝑞1
, 𝑀

𝛾
𝑞2 ∼ ln ln 1

𝑞2
. Take the ratio of these two equations, we get

lim
𝑀→∞

𝛾𝑞1
𝑞2

ln(− ln 𝑞2)

ln(− ln 𝑞1)
= 1 (A.8)

We next prove by contradiction that the above equation (A.8) implies

lim
𝑀→∞

𝛾𝑞1
𝑞2

= 1.

Let 𝑥 = ln 𝛾𝑞1, 𝑦 = ln 𝑞2, then by taking logarithm of both sides of (A.8), we have

lim
𝑀→∞

𝑥− 𝑦 + ln ln(−𝑦)− ln ln(ln 𝛾 − 𝑥) = 0

If lim𝑀→∞ 𝑥− 𝑦 ̸= 0, then without loss of generality, suppose there exists 𝜖 > 0 such

that 𝑥− 𝑦 > 𝜖 for infinite many times. Take 𝑀 large enough, we can require 𝑥, 𝑦 to

satisfy

𝑥− 𝑦 + ln ln(−𝑦)− ln ln(ln 𝛾 − 𝑥) < 𝜖/2

This means ln ln(−𝑦) − ln ln(ln 𝛾 − 𝑥) < −𝜖/2, which implies ln(−𝑦)/ ln(ln 𝛾 − 𝑥) <

𝑒−𝜖/2. Take exponential and we get

𝜖− 𝑥 < −𝑦 < (ln 𝛾 − 𝑥)𝑒
− 𝜖

2 .

This cannot hold when 𝑀 is large enough because 𝑒−𝜖/2 < 1 and we have 𝑥 → −∞
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when 𝑀 → ∞. As a result, we can conclude that

lim
𝑀→∞

𝑥− 𝑦 = lim
𝑀→∞

ln(
𝛾𝑞1
𝑞2

) = 0,

which gives us lim𝑀→∞
𝛾𝑞1
𝑞2

= 1 as desired.

Finally, we consider the revenue Π𝑖. From Lemma 2.1, we have lim𝑀→∞𝑀𝑞1 =

lim𝑀→∞(𝑀/𝛾)𝑞2 = ∞, so we are able to calculate the revenue difference as follows,

lim
𝑀→∞

Π𝑖(𝒮1,𝑀)− Π𝑖(𝒮2,𝑀/𝛾) = lim
𝑀→∞

(𝑝1 − 𝑝2)− (
𝑝1

𝑀𝛽𝑝1𝑞1 + 1
− 𝑝2

𝑀
𝛾
𝛽𝑝2𝑞2 + 1

)

= lim
𝑀→∞

𝑝1 − 𝑝2

= lim
𝑀→∞

ln(
𝑞2
𝑞1
) + ln(

1− 𝑞1
1 + 𝑆1

)− ln(
1− 𝑞2
1 + 𝑆2

) (By the FOC)

= lim
𝑀→∞

ln(
𝑞2
𝑞1
)

= ln 𝛾.

A.1.5 Proof for Lemma 2.3

We first prove 𝑝𝑖 is monotone increasing with respect to 𝑀 , i.e., when the demand

expands, the seller should charge higher price. We prove this by decoupling demand 𝑀

and total attractiveness 𝑧. Specifically, by writing the FOC equation (1+𝑀𝛽𝑝𝑖𝑞𝑖)(1−

𝑞𝑖)
𝑀 = 1 as

(︂
1 +𝑀𝛽𝑝𝑖

exp(𝑎𝑖 − 𝛽𝑝𝑖)

1 + 𝑧

)︂(︂
1− exp(𝑎𝑖 − 𝛽𝑝𝑖)

1 + 𝑧

)︂𝑀

= 1, (A.9)

we can define 𝑝𝑖(𝑧,𝑀) to be the solution of the above equation (A.9). In this way,

the real attractiveness 𝑧* would be the solution of
∑︀𝑁

𝑖=1 exp(𝑎𝑖 − 𝛽𝑝𝑖(𝑧,𝑀)) = 𝑧.

For any 𝑀1 < 𝑀2, suppose 𝑧1 and 𝑧2 to be the total attractiveness at equilibrium

under demand 𝑀1 and 𝑀2, i.e.,
∑︀𝑁

𝑖=1 exp(𝑎𝑖 − 𝛽𝑝𝑖(𝑧1,𝑀1)) = 𝑧1 and
∑︀𝑁

𝑖=1 exp(𝑎𝑖 −

𝛽𝑝𝑖(𝑧2,𝑀2)) = 𝑧2, then we only need to prove 𝑝𝑖(𝑧1,𝑀1) < 𝑝𝑖(𝑧2,𝑀2).
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By implicit function theorem, we have

𝜕𝑝𝑖(𝑧,𝑀)

𝜕𝑧
=

𝛽𝑝𝑖(1− 𝑞𝑖)− (1 +𝑀𝛽𝑝𝑖𝑞𝑖)

𝛽(1 + 𝑧) ((1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖)
,

𝜕𝑝𝑖(𝑧,𝑀)

𝜕𝑀
=

(𝛽𝑝𝑖𝑞𝑖 + ln(1− 𝑞𝑖)(1 +𝑀𝛽𝑝𝑖𝑞𝑖))(1− 𝑞𝑖)

𝑀𝛽𝑞𝑖((𝛽𝑝𝑖 − 1)(1− 𝑞𝑖)− (1 +𝑀𝛽𝑝𝑖𝑞𝑖))
.

Note that we already prove in (A.5) that 𝑀𝛽𝑝𝑖𝑞𝑖+1 > 𝛽𝑝𝑖. Also we have ln(1−𝑞𝑖) <

−𝑞𝑖 by simple calculus. As a result, we obtain 𝜕𝑝𝑖
𝜕𝑀

> 0 and 𝜕𝑝𝑖
𝜕𝑧

< 0. Hence, we

have 𝑝𝑖(𝑧1,𝑀1) < 𝑝𝑖(𝑧1,𝑀2) as 𝑀1 < 𝑀2. We next prove 𝑧1 > 𝑧2. If we do have

𝑧1 > 𝑧2, this would result in 𝑝𝑖(𝑧1,𝑀2) < 𝑝𝑖(𝑧2,𝑀2) and we have our desired result.

In fact, let 𝑓(𝑧) =
∑︀𝑁

𝑖=1 exp(𝑎𝑖 − 𝛽𝑝𝑖(𝑧,𝑀2))− 𝑧, then 𝑧2 is the root of 𝑓(𝑧). Define

𝑞𝑖(𝑧,𝑀) = exp(𝑎𝑖 − 𝛽𝑝𝑖)/(1 + 𝑧), then we can calculate its derivative with respect to

𝑧 as
𝜕𝑞𝑖(𝑧,𝑀)

𝜕𝑧
= − 𝑞𝑖

1 + 𝑧
· 1− 𝑞𝑖
((1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖)

. (A.10)

For attractiveness level 𝑧1, we have 𝑞𝑖(𝑧1,𝑀2) < 𝑞𝑖(𝑧1,𝑀1) < 1 because 𝑝𝑖 is monotone

increasing with respect to 𝑀 . Also note that 𝑞𝑖(𝑧,𝑀2) ≡ 0 and 𝑞𝑖(𝑧,𝑀2) ≡ 1 is

two solutions to the above ODE (A.10). Then by classical ODE theory, because

0 < 𝑞𝑖(𝑧1,𝑀2) < 1, then 0 < 𝑞𝑖(𝑧,𝑀2) < 1 for any 𝑧 > 0. As a result, we would have
𝜕𝑞𝑖(𝑧,𝑀)

𝜕𝑧
< 0. Hence, for any 𝑧 > 𝑧1, we can get 𝑞𝑖(𝑧,𝑀2) < 𝑞𝑖(𝑧1,𝑀2) < 𝑞𝑖(𝑧1,𝑀1)

and we can calculate 𝑓 ′(𝑧) as

𝑓 ′(𝑧) = −
𝑁∑︁
𝑖=1

exp(𝑎𝑖 − 𝛽𝑝𝑖)𝛽
𝜕𝑝𝑖
𝜕𝑧

− 1

= −
𝑁∑︁
𝑖=1

(1 + 𝑧)𝑞𝑖𝛽
𝛽𝑝𝑖(1− 𝑞𝑖)− (1 +𝑀𝛽𝑝𝑖𝑞𝑖)

𝛽(1 + 𝑧) ((1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖)
− 1

=
𝑁∑︁
𝑖=1

𝑞𝑖
(1 +𝑀𝛽𝑝𝑖𝑞𝑖)− 𝛽𝑝𝑖(1− 𝑞𝑖)

(1 + 𝑧) ((1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖)
− 1

≤
𝑁∑︁
𝑖=1

𝑞𝑖 − 1

<

𝑁∑︁
𝑖=1

𝑞𝑖(𝑧1,𝑀1)− 1 < 0.
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Because we already have 𝑓(𝑧1) =
∑︀𝑁

𝑖=1 exp(𝑎𝑖 − 𝛽𝑝𝑖(𝑧1,𝑀2)) − 𝑧1 <
∑︀𝑁

𝑖=1 exp(𝑎𝑖 −

𝛽𝑝𝑖(𝑧1,𝑀1)) − 𝑧1 = 0, hence 𝑓(𝑧) < 0 for every 𝑧 > 𝑧1 and we must have 𝑧2 < 𝑧1

since 𝑧2 is a root of 𝑓(𝑧). As a result, 𝑝𝑖 is increasing in 𝑀 .

Then calculate 𝜕Π𝑖

𝜕𝑀
without decoupling 𝑧 and 𝑀 . In this case, 𝑀 would be the only

variable and 𝑧 is determined by the system of FOC equations. By taking derivative

with respect to 𝑀 at both sides of the MNL equation, we have (write 𝑞′𝑖 =
𝜕𝑞𝑖
𝜕𝑀

and

𝑝′𝑖 =
𝜕𝑝𝑖
𝜕𝑀

):

𝑞′𝑖 = −𝑞𝑖𝛽𝑝
′
𝑖 + 𝑞𝑖(

𝑁∑︁
𝑗=1

𝑞𝑗𝛽𝑝
′
𝑗).

So we can further calculate 𝜕Π𝑖

𝜕𝑀
as

𝜕Π𝑖

𝜕𝑀
=

𝛽𝑝𝑖
(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)2

(𝑝𝑖𝑞𝑖 + (𝑀𝛽𝑝𝑖𝑞𝑖 + 1 + 𝑞𝑖)𝑀𝑞𝑖𝑝
′
𝑖 +𝑀𝑝𝑖𝑞

′
𝑖)

=
𝛽𝑝𝑖

(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)2

(︃
𝑝𝑖𝑞𝑖 + (𝑀𝛽𝑝𝑖𝑞𝑖 + 1 + 𝑞𝑖)𝑀𝑞𝑖𝑝

′
𝑖 +𝑀𝛽𝑝𝑖(−𝑞𝑖𝑝

′
𝑖 + 𝑞𝑖(

𝑁∑︁
𝑗=1

𝑞𝑗𝑝
′
𝑗))

)︃

≥ 𝛽𝑝𝑖
(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)2

(︃
𝑝𝑖𝑞𝑖 + (1 + 𝑞𝑖)𝑀𝑞𝑖𝑝

′
𝑖 +𝑀𝛽𝑝𝑖𝑞𝑖(

𝑁∑︁
𝑗=1

𝑞𝑗𝑝
′
𝑗)

)︃

> 0.

The first inequality is because of (A.5) and the second inequality is because we already

prove 𝑝′𝑖 > 0.

A.1.6 Proof for Theorem 2.2

By similar argument in Lemma 2.1, we can still have lim𝑀→∞ 𝑞𝑖 = 0 and lim𝑀→∞ 𝑝𝑖 =

∞. We then prove that 𝑀𝑞𝑖 → ∞ when 𝑀 → ∞. If this is not true, there must exists

𝑈 > 0 such that 𝑀𝑞𝑖 < 𝑈 for infinite many 𝑀 , with out loss of generality, we assume

this is true for all 𝑀 . Denote 𝐴𝑗(𝑀) = (𝑊𝑖− 𝑗)
(︀
𝑀
𝑗

)︀
𝑞𝑗𝑖 (1− 𝑞𝑖)

𝑀−𝑗(1+𝑀𝛽𝑝𝑖𝑞𝑖− 𝑗𝛽𝑝𝑖),
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then the FOC can be written as
∑︀𝑊𝑖−1

𝑗=0 𝐴𝑗(𝑀) = 𝑊𝑖, and we can have

𝐴𝑗(𝑀)

𝐴𝑗−1(𝑀)
=

(𝑊𝑖 − 𝑗)
(︀
𝑀
𝑗

)︀
𝑞𝑗𝑖 (1− 𝑞𝑖)

𝑀−𝑗(1 +𝑀𝛽𝑝𝑖𝑞𝑖 − 𝑗𝛽𝑝𝑖)

(𝑊𝑖 − 𝑗 + 1)
(︀

𝑀
𝑗−1

)︀
𝑞𝑗−1
𝑖 (1− 𝑞𝑖)𝑀−𝑗+1(1 +𝑀𝛽𝑝𝑖𝑞𝑖 − (𝑗 − 1)𝛽𝑝𝑖)

=
𝑊𝑖 − 𝑗

𝑊𝑖 − 𝑗 + 1

(︀
𝑀
𝑗

)︀(︀
𝑀
𝑗−1

)︀ 𝑞𝑖
1− 𝑞𝑖

1 +𝑀𝛽𝑝𝑖𝑞𝑖 − 𝑗𝛽𝑝𝑖
1 +𝑀𝛽𝑝𝑖𝑞𝑖 − (𝑗 − 1)𝛽𝑝𝑖

(A.11)

which is bounded under our hypothesis. (We use the fact that
(︀
𝑀
𝑗

)︀
/
(︀

𝑀
𝑗−1

)︀
= 𝑂(𝑀)

when 𝑀 → ∞.) Note that
∑︀𝑊𝑖−1

𝑗=0 𝐴𝑗(𝑀) = 𝑊𝑖, so each term 𝐴𝑗(𝑀) is bounded,

which is true for 𝑗 = 0. Then by the same argument in Lemma 2.1, we can have

𝑀𝑞𝑖 → ∞, which is a contradiction.

Since we now lim𝑀→∞𝑀𝑞𝑖 = ∞, we can deduce that 𝐴𝑗(𝑀)

𝐴𝑗−1(𝑀)
→ ∞ by (A.11).

However, the FOC requires
∑︀𝑊𝑖−1

𝑗=0 𝐴𝑗(𝑀) = 𝑊𝑖, so we must have lim𝑀→∞𝐴𝑊𝑖−1(𝑀) =

𝑊𝑖 and lim𝑀→∞ 𝐴𝑗(𝑀) = 0,∀𝑗 < 𝑊𝑖 − 1. This implies

(︂
𝑀

𝑊𝑖 − 1

)︂
𝑞𝑊𝑖−1
𝑖 (1− 𝑞𝑖)

𝑀−𝑊𝑖+1(1 + (𝑀𝑞𝑖 −𝑊𝑖 + 1)𝛽𝑝𝑖) → 𝑊𝑖, (𝑀 → ∞) (A.12)

We can analyze the order of the left hand side of equation (A.12) as we did in Lemma

2.2:

LHS of A.12 = 𝑂
(︀
(𝑀𝑞𝑖)

𝑊𝑖−1(1− 𝑞𝑖)
𝑀−𝑊𝑖+1𝑀𝑞𝑖𝑝𝑖

)︀
.

By taking logarithm, we can further have

(𝑊𝑖 − 1) ln(𝑀𝑞𝑖) + (𝑀 −𝑊𝑖 + 1) ln(1− 𝑞𝑖) + ln(𝑀𝑞𝑖) + ln(𝑝𝑖) = 𝑂(1).

Because ln(1− 𝑞𝑖) = 𝑂(𝑞𝑖), we then achieve

𝑀𝑞𝑖 + ln(𝑝𝑖) = 𝑀𝑞𝑖 + ln

(︂
𝑎𝑖 − ln 𝑞𝑖 + ln

(︂
1− 𝑞𝑖
1 + 𝑆−𝑖

)︂)︂
= 𝑂(1).

Hence, we conclude 𝑀𝑞𝑖 ∼ ln ln 1
𝑞𝑖

by the fact that 𝑆−𝑖 → 0 and 𝑞𝑖 → 0. Then it
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follows from the proof of Lemma 2.2 that

lim
𝑀→∞

𝑝𝑖(𝒮1,𝑀)− 𝑝𝑖(𝒮2,𝑀/𝛾) = lim
𝑀→∞

ln

(︂
𝑞𝑖(𝒮1,𝑀)

𝑞𝑖(𝑆2,𝑀/𝛾)

)︂
= ln 𝛾.

Note that the FOC requires

𝑊𝑖−1∑︁
𝑗=0

(𝑊𝑖 − 𝑗)

(︂
𝑀

𝑗

)︂
𝑞𝑗𝑖 (1− 𝑞𝑖)

𝑀−𝑗(1 + (𝑀𝑞𝑖 − 𝑗)𝛽𝑝𝑖) = 𝑊𝑖.

this combines with the fact that 𝑀𝑞𝑖 → ∞ give us

lim
𝑀→∞

𝑊𝑖−1∑︁
𝑗=0

(𝑊𝑖 − 𝑗)

(︂
𝑀

𝑗

)︂
𝑞𝑗𝑖 (1− 𝑞𝑖)

𝑀−𝑗𝑝𝑖 = 0.

So the difference in revenue can be calculated as

lim
𝑀→∞

Π𝑖(𝒮1,𝑀)− Π𝑖(𝒮2,𝑀/𝛾) = lim
𝑀→∞

𝑊𝑖(𝑝𝑖(𝒮1,𝑀)− 𝑝𝑖(𝒮2,𝑀/𝛾)) = 𝑊𝑖 ln 𝛾.

From here, the rest of the proof is similar to Theorem 2.1.

A.1.7 Proof for Proposition 2.3

We will prove this bound by using the decoupling technique as we did in the proof

of Lemma (2.3). This means we will consider the total attractiveness and demand

separately. In fact, by writing the FOC equation (1 +𝑀𝛽𝑝𝑖𝑞𝑖)(1− 𝑞𝑖)
𝑀 = 1 as

(︂
1 +𝑀𝛽𝑝𝑖

exp(𝑎𝑖 − 𝛽𝑝𝑖)

1 + 𝑧

)︂(︂
1− exp(𝑎𝑖 − 𝛽𝑝𝑖)

1 + 𝑧

)︂𝑀

= 1, (A.13)

we can define 𝑝𝑖(𝑧,𝑀) to be the solution of the above equation (A.13) and define the

corresponding 𝑞𝑖(𝑧,𝑀) = exp(𝑎𝑖−𝛽𝑝𝑖(𝑧,𝑀))/(1+𝑧) and Π𝑖(𝑧,𝑀) = 𝑝𝑖(1−(1−𝑞𝑖)
𝑀).

Then we have the following two lemmas:

Lemma A.1. For any demand level 𝑀 and total attractiveness 𝑧1 > 𝑧2 > 𝑧*𝑖 , where

𝑧*𝑖 is the attractiveness level when we only display the 𝑖-th seller under demand 𝑀 ,
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we get

|Π𝑖(𝑧1,𝑀)− Π𝑖(𝑧2,𝑀)|
Π𝑖(𝑧2,𝑀)

≤ 1 + 𝑞𝑖(𝑧2,𝑀)

𝛽𝑝𝑖(𝑧2,𝑀)

𝑧1 − 𝑧2
1 + 𝑧2

≤ 2(𝑧1 − 𝑧2)

1 + 𝑧2
. (A.14)

Here, 𝑞𝑖(𝑧2,𝑀) and 𝑝𝑖(𝑧2,𝑀) are the corresponding probability and price under 𝑧2

and 𝑀 .

Lemma A.2. For any demand level 𝑀1 > 𝑀2 and total attractiveness level 𝑧 > 𝑧*𝑖 ,

where 𝑧*𝑖 is the attractiveness level when we only display the 𝑖-th seller under demand

𝑀1, we get

|Π𝑖(𝑧,𝑀1)− Π𝑖(𝑧,𝑀2)|
Π𝑖(𝑧,𝑀2)

≤
(︂

1

𝛽𝑝𝑖(𝑧,𝑀2)
+ 𝑞𝑖(𝑧,𝑀2)

)︂
𝑀2 −𝑀1

𝑀2

≤ 2(𝑀2 −𝑀1)

𝑀2

.

(A.15)

Here, 𝑝𝑖(𝑧,𝑀2) and 𝑞(𝑧,𝑀2) are the corresponding price and probability under 𝑧 and

𝑀2.

Proof for Proposition 2.3: We will use these two lemmas to prove the statement

in Proposition 2.3. Suppose seller 𝑖 is in a partition of attractiveness 𝑧1 and demand

𝑀1 and he/she hope to switch to another partition with attractiveness 𝑧2 and demand

𝑀2. We further assume after the switching, the attractiveness of the new partition

becomes 𝑧*2 . Obviously, we get 𝑧*2 > 𝑧2. So the envy level can be written as

𝐸𝑁𝑖 =
Π𝑖(𝑧

*
2 ,𝑀2)− Π𝑖(𝑧1,𝑀1)

Π𝑖(𝑧1,𝑀1)
.

If 𝑧1 < 𝑧2 or 𝑀1 > 𝑀2, then we can directly apply Lemma A.2 or A.1 with

replacing 𝑧2 to be 𝑧1 or 𝑀2 to be 𝑀1. Hence, we only need to prove the case where

𝑧1 ≥ 𝑧2 and 𝑀1 ≤ 𝑀2. Denote Π1
𝑖 = Π𝑖(𝑧1,𝑀1),Π

2
𝑖 = Π𝑖(𝑧

*
2 ,𝑀1),Π

3
𝑖 = Π𝑖(𝑧

*
2 ,𝑀2),

then from Lemma A.1:

Π2
𝑖 − Π1

𝑖

Π2
𝑖

≤ 2
𝑧1 − 𝑧*2
1 + 𝑧*2

≤ 2
𝑧1 − 𝑧2

𝑧2
≤ 2(

1

𝛼
− 1), (A.16)

where the last inequality follows from the definition of 𝛼-fair policy. Similarly, by
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Lemma A.2, we get
Π3

𝑖 − Π2
𝑖

Π2
𝑖

≤ 2
𝑀2 −𝑀1

𝑀1

≤ 2(
1

𝛿
− 1), (A.17)

where the last inequality follows from the definition of 𝛿-fair policy. Furthermore, if

2/3 < 𝛼, then 2( 1
𝛼
− 1) < 1, so by using (A.16), we could obtain

Π2
𝑖

Π1
𝑖

≤ 𝛼

3𝛼− 2
.

Finally, by adding (A.16) and (A.17), and noticing the inequality above, we would

have
Π3

𝑖 − Π1
𝑖

Π1
𝑖

≤ 2𝛼

3𝛼− 2

(︂
1

𝛼
+

1

𝛿
− 2

)︂
.

Proof for Lemma A.1: We will use mean value theorem to estimate the difference

in revenue when the attractiveness 𝑧 moves from 𝑧1 to 𝑧2. In this section, we omit

the same demand level 𝑀 for simplicity. We first consider 𝜕𝑝𝑖
𝜕𝑧

. From the definition

of 𝑞𝑖 = 𝑒𝑎𝑖−𝛽𝑝𝑖

1+𝑧
, we get 𝜕𝑞𝑖

𝜕𝑧
= 𝑞𝑖(−𝛽 𝜕𝑝𝑖

𝜕𝑧
− 1

1+𝑧
). By differentiating both side of the FOC

equation and plugging in this relationship, we get

𝜕𝑝𝑖
𝜕𝑧

=
𝛽𝑝𝑖(1− 𝑞𝑖)− (1 +𝑀𝛽𝑝𝑖𝑞𝑖)

𝛽(1 + 𝑧) ((1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖)
. (A.18)

Then, because Π𝑖(𝑧) = 𝑝𝑖 − 𝑝𝑖
𝑀𝛽𝑝𝑖𝑞𝑖+1

, we further achieve

𝜕Π𝑖(𝑧)

𝜕𝑧
= − Π𝑖

𝛽𝑝𝑖(1 + 𝑧)

(︂
1 +

𝑞𝑖
2 +𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖 + 𝛽𝑝𝑖𝑞𝑖 − 𝑞𝑖

)︂
. (A.19)

Note that by applying the Bernoulli inequality to the FOC, we can get

1 = (1 +𝑀𝛽𝑝𝑖𝑞𝑖)(1− 𝑞𝑖)
𝑀 > (1 +𝑀𝛽𝑝𝑖𝑞𝑖)(1−𝑀𝑞𝑖) =⇒ 1 +𝑀𝛽𝑝𝑖𝑞𝑖 > 𝛽𝑝𝑖. (A.20)

And by taking logarithm of the FOC and using the fact that ln(1+𝑥) ≤ 𝑥 for 𝑥 > −1,

we will get a lower bound for 𝑝𝑖:

0 = ln(1 +𝑀𝛽𝑝𝑖𝑞𝑖) +𝑀 ln(1− 𝑞𝑖) ≤ 𝑀𝛽𝑝𝑖𝑞𝑖 −𝑀𝑞𝑖 =⇒ 𝛽𝑝𝑖 ≥ 1. (A.21)
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Now that we have (A.20) and (A.21), we can estimate the denominator in equation

(A.19) that 2 +𝑀𝛽𝑝𝑖𝑞𝑖 − 𝛽𝑝𝑖 + 𝛽𝑝𝑖𝑞𝑖 − 𝑞𝑖 > 1. Hence,

− Π𝑖

𝛽𝑝𝑖(1 + 𝑧)
(1 + 𝑞𝑖) <

𝜕Π𝑖(𝑧)

𝜕𝑧
< − Π𝑖

𝛽𝑝𝑖(1 + 𝑧)
. (A.22)

From (A.20) and (A.18), we can conclude that 𝜕𝑝𝑖
𝜕𝑧

< 0, which means as the total

attractiveness increases, the price 𝑝𝑖 will decrease in return. And for probability 𝑞𝑖,

we can calculate

𝜕𝑞𝑖
𝜕𝑧

= − 𝑞𝑖
1 + 𝑧

* 1− 𝑞𝑖
((1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖)

< 0. (A.23)

The term Π𝑖

𝑝𝑖
= 1− (1− 𝑞𝑖)

𝑀 is therefore decreasing as 𝑧 increases as well. Hence this

is also the case for Π𝑖

𝑝𝑖(1+𝑧)
and Π𝑖(1+𝑞𝑖)

𝑝𝑖(1+𝑧)
. Then by mean value theorem, for any 𝑧1 > 𝑧2,

there exists a 𝑧2 < 𝑧* < 𝑧1 such that

Π𝑖(𝑧1)−Π𝑖(𝑧2) =
𝜕Π𝑖(𝑧

*)

𝜕𝑧*
(𝑧1−𝑧2) > −Π(𝑧*)(1 + 𝑞𝑖(𝑧

*))

𝛽𝑝𝑖(𝑧*)(1 + 𝑧*)
(𝑧1−𝑧2) > −Π𝑖(𝑧2)(1 + 𝑞𝑖(𝑧2))

𝛽𝑝𝑖(𝑧2)(1 + 𝑧2))
(𝑧1−𝑧2).

which further gives (note that 𝑧1 > 𝑧2 means Π𝑖(𝑧1) < Π𝑖(𝑧2))

|Π𝑖(𝑧1)− Π𝑖(𝑧2)|
Π𝑖(𝑧2)

<
1 + 𝑞𝑖(𝑧2)

𝛽𝑝𝑖(𝑧2)

𝑧1 − 𝑧2
1 + 𝑧2

<
2(𝑧1 − 𝑧2)

1 + 𝑧2
, (A.24)

where the last inequality follows from 𝛽𝑝𝑖 > 1 and 𝑞𝑖 < 1.

Proof for Lemma A.2: For the demand 𝑀 , we use similar approach as in lemma

A.1. First, by the implicit function theorem, we are able to calculate 𝜕𝑝
𝜕𝑀

as:

𝜕𝑝𝑖
𝜕𝑀

=
(𝛽𝑝𝑖𝑞𝑖 + ln(1− 𝑞𝑖)(1 +𝑀𝛽𝑝𝑖𝑞𝑖))(1− 𝑞𝑖)

𝑀𝛽𝑞𝑖((𝛽𝑝𝑖 − 1)(1− 𝑞𝑖)− (1 +𝑀𝛽𝑝𝑖𝑞𝑖))
. (A.25)

By using (A.20), we can easily see that 𝜕𝑝𝑖
𝜕𝑀

> 0. Meanwhile, we can also derive 𝜕Π𝑖

𝜕𝑀
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by implicit function theorem:

𝜕Π𝑖

𝜕𝑀
=− (𝛽𝑝𝑖𝑞𝑖 + (1 +𝑀𝛽𝑝𝑖𝑞𝑖) ln(1− 𝑞𝑖))(1− 𝑞𝑖)(𝑀𝛽𝑝𝑖𝑞𝑖 + 2− 𝛽𝑝𝑖)

(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)2[(1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖]
+

𝑝2𝑖 𝑞𝑖
(1 +𝑀𝛽𝑝𝑖𝑞𝑖)2

(A.26)

=𝑝𝑖
−(1− 𝑞𝑖) ln(1− 𝑞𝑖)(𝑀𝛽𝑝𝑖𝑞𝑖 + 2− 𝛽𝑝𝑖) + 𝛽𝑝𝑖𝑞

2
𝑖

(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)[(1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖]
. (A.27)

Because we have 𝑀𝛽𝑝𝑖𝑞𝑖+1 > 𝛽𝑝𝑖 and ln(1− 𝑞𝑖) < −𝑞𝑖, then the first term in (A.26)

is positive, which gives us 𝜕Π𝑖

𝜕𝑀
> 0.

For the fact that 0 < 𝑞 < 1, then by simple calculus, we can show that |(1 −

𝑞) ln(1− 𝑞)| ≤ 𝑞, so we are able to estimate |𝜕Π𝑖

𝜕𝑀
| as

|𝜕Π𝑖

𝜕𝑀
| =𝑝𝑖

|(1− 𝑞𝑖) ln(1− 𝑞𝑖)(𝑀𝛽𝑝𝑖𝑞𝑖 + 2− 𝛽𝑝𝑖)|+ 𝛽𝑝𝑖𝑞
2
𝑖

(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)[(1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖]

<𝑝𝑖
𝑞𝑖(𝑀𝛽𝑝𝑖𝑞𝑖 + 2− 𝛽𝑝𝑖) + 𝛽𝑝𝑖𝑞

2
𝑖

(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)[(1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖]

<
𝑝𝑖

𝑀𝛽𝑝𝑖𝑞𝑖 + 1
[𝑞𝑖 +

𝑞𝑖(𝑞𝑖(1− 𝛽𝑝𝑖))

(1− 𝛽𝑝𝑖)(1− 𝑞𝑖) + 1 +𝑀𝛽𝑝𝑖𝑞𝑖
+ 𝛽𝑝𝑖𝑞

2
𝑖 ]

<
𝑝𝑖

𝑀𝛽𝑝𝑖𝑞𝑖 + 1
[𝑞𝑖 + 𝛽𝑝𝑖𝑞

2
𝑖 ] =

Π𝑖

𝑀
(
1

𝛽𝑝𝑖
+ 𝑞𝑖)

(A.28)

We next prove the term 𝑝𝑖
𝑀𝛽𝑝𝑖𝑞𝑖+1

is decreasing with respect to 𝑀 . If we have the

mononicity condition, note that 𝑝𝑖𝑞2𝑖 is also decreasing with respect to 𝑀 by the fact

that 𝛽𝑝𝑖 > 1 in (A.21), then the term Π𝑖

𝑀
( 1
𝛽𝑝𝑖

+ 𝑞𝑖) is decreasing with respect to 𝑀 .

By (A.25) and (A.26), we can calculate the derivative as

𝜕( 𝑝𝑖
𝑀𝛽𝑝𝑖𝑞𝑖+1

)

𝜕𝑀
=

(1 +𝑀𝛽𝑝2𝑖 𝑞𝑖)
𝜕𝑝𝑖
𝜕𝑀

− 𝛽2𝑝2𝑖 𝑞𝑖

𝛽(𝑀𝛽𝑝𝑖𝑞𝑖 + 1)2
. (A.29)

Hence
𝜕(

𝑝𝑖
𝑀𝛽𝑝𝑖𝑞𝑖+1

)

𝜕𝑀
< 0 ⇐⇒ 𝜕𝑝𝑖

𝜕𝑀
<

𝛽2𝑝2𝑖 𝑞𝑖
1+𝑀𝛽2𝑝2𝑖 𝑞𝑖

. By plugging in (A.25), this condition is

further equivalent to

𝛽𝑝𝑖𝑞𝑖(1− 𝑞𝑖) +𝑀𝛽2𝑝2𝑖 𝑞
2
𝑖 + ln(1− 𝑞𝑖)(1 +𝑀𝛽2𝑝2𝑖 𝑞𝑖)(1− 𝑞𝑖) > 0.

By simple calculus, we can prove 𝑥 ln(𝑥) > 𝑥−1 for all 1 > 𝑥 > 0. Hence, ln(1−𝑞𝑖)(1−
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𝑞𝑖) > −𝑞𝑖. As a result, we only need to prove 𝛽𝑝𝑖𝑞𝑖+ln(1−𝑞𝑖) > 0. This can be derived

from the FOC equation. Recall that the FOC is ln(1 +𝑀𝛽𝑝𝑖𝑞𝑖) +𝑀 ln(1− 𝑞𝑖) = 0,

so ln(1 − 𝑞𝑖) = − ln(1+𝑀𝛽𝑝𝑖𝑞𝑖)
𝑀

> −𝛽𝑝𝑖𝑞𝑖 where we use the fact that ln(1 + 𝑥) < 𝑥 for

𝑥 > −1.

Hence, for any 𝑀1 > 𝑀2, by mean value theorem, there exists 𝑀1 > 𝑀* > 𝑀2

such that

Π𝑖(𝑀1)−Π𝑖(𝑀2) = |𝜕Π𝑖(𝑀
*)

𝜕𝑀
|(𝑀1−𝑀2) ≤ |𝜕Π𝑖(𝑀1)

𝜕𝑀
|(𝑀1−𝑀2) ≤ Π𝑖(𝑀1)

(︂
1

𝛽𝑝𝑖(𝑀1)
+ 𝑞𝑖(𝑀1)

)︂
𝑀1 −𝑀2

𝑀1

where we used the monotonicity condition for the partial derivative 𝜕Π
𝜕𝑀

. Finally, by

rearranging terms, we have

Π𝑖(𝑀1)− Π𝑖(𝑀0)

Π𝑖(𝑀𝑖)
≤
(︂

1

𝛽𝑝𝑖(𝑀1)
+ 𝑞𝑖(𝑀1)

)︂
𝑀1 −𝑀2

𝑀1

≤ 2
𝑀1 −𝑀2

𝑀1

.

Here, the last inequality follows from 𝛽𝑝𝑖 > 1 and 𝑞𝑖 < 1.

A.1.8 Proof for Proposition 2.4

We first prove that under the equilibrium, we have 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑁 > 1 ,

𝑞1 ≥ 𝑞2 ≥ · · · ≥ 𝑞𝑁 and 𝑒𝑎1−𝛽𝑝1 ≥ 𝑒𝑎2−𝛽𝑝2 ≥ · · · ≥ 𝑒𝑎𝑁−𝛽𝑝𝑁 , i.e., products with higher

quality should charge higher prices and have larger attractiveness. From the first

order condition, we have 1
𝛽𝑝𝑖

= 1− 𝑞𝑖, which indicates 𝛽𝑝𝑖 > 1 immediately. Then for

any 𝑎𝑖 ≥ 𝑎𝑗
1− 1/(𝛽𝑝𝑖)

1− 1/(𝛽𝑝𝑗)
=

𝑞𝑖
𝑞𝑗

= 𝑒(𝑎𝑖−𝛽𝑝𝑖)−(𝑎𝑗−𝛽𝑝𝑗) ≥ 𝑒𝛽(𝑝𝑗−𝑝𝑖)

if 𝑝𝑖 < 𝑝𝑗, then the left side 1−1/(𝛽𝑝𝑖)
1−1/(𝛽𝑝𝑗)

< 1 and the right side 𝑒𝛽(𝑝𝑗−𝑝𝑖) > 1, which is

a contradiction. Hence we must have 𝑝𝑖 ≥ 𝑝𝑗. From the FOC, this indicates 𝑞𝑖 ≥ 𝑞𝑗

which further shows 𝑒𝑎𝑖−𝛽𝑝𝑖 ≥ 𝑒𝑎𝑗−𝛽𝑝𝑗 .

Then for any 𝑖 = 1, 2, . . . , 𝑁 , we have

1

𝛽𝑝𝑖
= 1− 𝑒𝑎𝑖−𝛽𝑝𝑖

1 +
∑︀

𝑘 𝑒
𝑎𝑘−𝛽𝑝𝑘

≥ 1− 𝑒𝑎𝑖−𝛽𝑝𝑖

1 +𝑁𝑒𝑎𝑁−𝛽𝑝𝑁
. (A.30)
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Denote 𝑝*𝑁 to be the solution of equation

1

𝛽𝑝*𝑁
= 1− 𝑒𝑎𝑁−𝛽𝑝*𝑁

1 +𝑁𝑒𝑎𝑁−𝛽𝑝*𝑁
,

then we have 𝑝𝑁 < 𝑝*𝑁 by (A.30). We can also easily see that lim𝑁→∞ 𝛽𝑝*𝑁 = 1

For the seller 𝑖 = 1, we further have

1

𝛽𝑝1
≥ 1− 𝑒𝑎1−𝛽𝑝1

1 +𝑁𝑒𝑎𝑁−𝛽𝑝𝑁
≥ 1− 𝑒𝑎1−𝛽𝑝1

1 +𝑁𝑒𝑎𝑁−𝛽𝑝*𝑁
.

Let 𝑝*1 be the solution that satisfies

1

𝛽𝑝*1
= 1− 𝑒𝑎1−𝛽𝑝*1

1 +𝑁𝑒𝑎𝑁−𝛽𝑝*𝑁
, (A.31)

then we have 𝑝𝑁 ≤ 𝑝𝑁−1 ≤ 𝑝𝑁−2 ≤ · · · ≤ 𝑝1 ≤ 𝑝*1. As a result, Π(𝒮) =
∑︀𝑁

𝑖=1 𝑝𝑖𝑞𝑖 =∑︀𝑁
𝑖=1 𝑝𝑖 −𝑁/𝛽 ≤ 𝑁(𝑝*1 − 1/𝛽). And note that lim𝑁→∞ 𝑝*1 = lim𝑁→∞ 𝑝*𝑁 = 1/𝛽, this

enable us to derive an upper bound on the revenue Π(𝒮)

Π(𝒮) < 𝑁(𝑝*1 − 1/𝛽) = 𝑝*1
𝑁𝑒𝑎1−𝛽𝑝*1

1 +𝑁𝑒𝑎𝑁−𝛽𝑝*𝑁
→ 𝑒𝑎1−𝑎𝑁/𝛽, (𝑁 → ∞).

For a single display with product 𝑎1, the revenue is Π({𝑎1}) = 𝑝′𝑞′ = 𝑝′ − 1/𝛽,

where 𝑝′ satisfies

1

𝛽𝑝′
= 1− 𝑒𝑎1−𝛽𝑝′

1 + 𝑒𝑎1−𝛽𝑝′
⇐⇒ 𝑝′ − 1

𝛽
=

𝑒𝑎1−𝑝′

𝛽
.

So Π(𝑎1) > lim𝑁→∞Π(𝒮) ⇐⇒ 𝑎𝑁 > 𝑝′ ⇐⇒ 𝑎𝑁 > (1+𝑒𝑎1−𝑎𝑁 )/𝛽, which is satisfied

by the condition 𝑢− 𝑙 < ln(𝛽𝑢− 1).

A.2 Simplification of the Main Formulation

The idea behind the alternative formulations is to reduce the dimension of the prob-

lem. To achieve this, we remove the subscript 𝑘 from formulation (2.7) and character-

ize each partition through a unique (𝑗, 𝑣) dyad. Specifically, 𝑧𝑗,𝑣 specifies whether the
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partition with total attractiveness 𝒵𝑗 is assigned with market share 𝑃𝑣. In addition,

we denote by 𝑥𝑖,𝑗,𝑣 a binary decision variable indicating whether to allocate 𝒵𝑗 and

market share 𝑃𝑣 to seller 𝑖, and there are in total 𝐾 pairs of (𝑗, 𝑣) combinations. The

value 𝑥𝑖,𝑗,𝑣 will then shape the first constraint and the total revenue through input

tables 𝐸𝑖,𝑗,𝑣 and Π𝑖,𝑗,𝑣. The specific formulation is as follows:

(LB) max
𝑥,𝑧

∑︁
𝑘

𝑥𝑖,𝑗,𝑣 Π𝑖,𝑗,𝑣 (A.32)

𝑠.𝑡.
∑︁
𝑖

𝑥𝑖,𝑗,𝑣𝐸𝑖,𝑗,𝑣 = 𝑧𝑗,𝑣𝒵𝑗 ∀𝑗, 𝑣

∑︁
𝑗,𝑣

𝑥𝑖,𝑗,𝑣 = 1, ∀𝑖

∑︁
𝑗,𝑣

𝑧𝑗,𝑣 = 𝐾,

∑︁
𝑗,𝑣

𝑧𝑗,𝑣𝑃𝑣 = 1,

𝑥𝑖,𝑗,𝑣 binary, 𝑧𝑗,𝑣 binary

In fact, formulation (2.7) (denoted Main) is a relaxation of formulation (A.32)

(denoted LB) and the optimal total revenue of LB serves as a lower bound of that for

Main. To see this, note that any feasible solution of LB is still feasible under Main.

However, a feasible solution in Main in which two partitions receive the same (𝑗, 𝑣)

pair is infeasible in LB, as this will make the corresponding 𝑧𝑗,𝑣 = 2, thereby violating

the binary constraint.

Using a similar idea, we construct another formulation (UB) whose objective is the

upper bound of the main formulation. Specifically, the formulation of UB is identical

to that of LB, except that we require 𝑧𝑗,𝑣 to be nonnegative integers instead of binary

variables. Again, using the same argument from the previous paragraph, it is clear

that any feasible solution in the main formulation is also feasible for UB, but integer

solutions such as 𝑧𝑗,𝑣 = 2 are feasible only in UB.

These two formulations, LB and UB, serve to provide the lower and upper bounds

to the main optimization problem. Such approximations are particularly useful when
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solving the main problem turns out to be computationally challenging, which is the

case when the number of listings becomes large and the discretization gap becomes

sufficiently small. In Figure A-1, we show the revenue and running time of the

three formulations, together with a fourth option, namely, the LP relaxation of the

main formulation. The instance is the same as in the previous numerical analysis.

It is observed that the upper and lower bound and the LP relaxation yield almost

the same outcome as the main formulation. However as shown in panel (a), we

need finer discretization (smaller step sizes) of 𝒵 for the formulation to have a good

approximation. However, panel (b) shows that when the step size is very small, the

lower and upper bound formulations will have significantly shorter computational

time.
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Figure A-1: Revenue and Running Time under Partitioned Display
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Appendix B

Proofs and Supplemental Material for

Chapter 3

B.1 Background Information on Airbnb

The labelling task is undertaken by four subjects. Similar to Zhang et al. (2017), we

prepare a detailed scoring instruction in which we give examples of images that have

score from 1 to 7 where higher score indicates a higher image quality. Specifically,

image score is determined by how attractive the image is. For example, a score 1

is given to the image in panel (a) of Figure B-1 as the photo is underexposed and

doesn’t accurately represent the room features, while a score 7 is assigned to panel

(b) of the Figure B-1 since the exposure, lighting and hue of the image are all well

controlled and it clearly represents the kitchen.

There can be multiple reasons that lead to inaccurate room type classification.

First, it is possible for an image to capture a view of multiple room types. For example,

the picture in panel (a) of the Figure B-2 shows both bedroom and living room in

the same picture, which adds uncertainty into both the labeling and classification

processes. In this case, we ask our subjects to label the main room type of the images,

and when the labels are not unanimous, we label the room type that the majority

chooses (with a random draw in the case of a tie). Second, the images do not belong

to any of the five room types (such as fitness rooms). When labeling the images in the
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Figure B-1: Quality variation in photos

training set for the CNN model, subjects are asked to mark these images as NA, and

they are excluded from the final training data. While it is possible that images of the

NA type could appear in the test set and be classified as one of the five room types,

we would like to note that the proportion of NA type images in the first five images

on the display web page is very small - they only account for 1.05% of the training

set. Including the NA type will generate more noise in the classification process, as

NA may include any random room or subject, while the insufficient number of images

makes it almost impossible to train the neural network to recognize all the patterns.

Third, objects in different rooms may look identical to each other. For example, the

image in panel (b) of Figure B-2 is mis-classified as bedroom as the sofa looks similar

to a bed.

Overall, our current ResNet50 model achieves an accuracy of 84%. To investigate

the impact of photo type mis-specification on estimation outcomes, in the estimation

stage, we perturb the actual room types into the mis-classified types using the prob-

ability transition matrix presented in Figure 3-2. The detailed setup and estimation

results are summarized in Appendix B.2.

B.2 Robustness Check for Estimation Results

In Table 3.7 the estimation results assume Gumbel error term distribution in the linear

utility model and photo layout defined as in 3.2.3. In this appendix section we present
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Figure B-2: Misspecification of Bedrooms

several alternative specifications to confirm the robustness of estimation results, over

the same regions and time. To start with, we examine (1) the estimation results using

GLM instead of NLS on the same specification, (2) the estimation results using photo

scores constructed from objective measures, and (3) the potential non-linearity effect

from photo layout. The estimation results are presented in Tabel B.1.

Estimation Results using GLM We estimate the same specification using Equa-

tion 3.9 and present the results in column (3) of Table B.1. Compared to the estimates

obtained through NLS, the relative order of impact from each photo type remains the

same, i.e., the coefficient for bedroom photo still has the largest magnitude among all

the room types. However, when the error term is mis-specified, the GLM estimation

results on synthetic data in Table 3.6 demonstrate larger deviations from the true

vale. As a result, we use the NLS estimation results in the main text, despite the

significant reduction on computation time of the GLM approach.

Fitted Photo Quality In addition to running GLM using the labeled photo quality,

we rerun our estimation using fitted photo quality, which is comprised by six objec-

tive photo quality measures, namely Hue, Saturation, Brightness, Contrast, Clarity

and Resolution (the construction of the fitted photo quality variable is provided in

the Online Companion). The estimation results are shown in column (1) of Table

B.1. When using fitted photo quality, the impact from cover photos become larger

specification (3). However, in both cases, bedroom covers lead to the highest increase

in apartment attractiveness.

The Nonlinearity Effect from Photo Layout We further add squared terms for
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Table B.1: PCM (GLM) Estimation Results under Different Photo Quality Specifi-
cations

Fitted Photo Quality Labled Photo Quality

(1) (2) (3) (4)

Price −0.342*** (0.001) −0.337*** (0.001) −0.363*** (0.001) −0.358*** (0.001)

Overall_Rating 0.319*** (0.003) 0.322*** (0.003) 0.287*** (0.003) 0.294*** (0.003)

Number_of_Reviews 0.007*** (0.00002) 0.008*** (0.00002) 0.007*** (0.00002) 0.008*** (0.00003)

Airbnb_Superhost 0.196*** (0.003) 0.199*** (0.003) 0.188*** (0.003) 0.196*** (0.003)

Response_Rate 0.008*** (0.0001) 0.007*** (0.0001) 0.008*** (0.0001) 0.008*** (0.0001)

Num_of_photo 0.002*** (0.0001) 0.003*** (0.0001) 0.001*** (0.0001) 0.002*** (0.0001)

Num_of_Bedrooms 0.176*** (0.002) 0.173*** (0.002) 0.166*** (0.002) 0.165*** (0.002)

Num_of_Bathrooms 0.234*** (0.005) 0.201*** (0.005) 0.239*** (0.005) 0.197*** (0.005)

Photo: Cover (𝑎𝑐𝑚)
Bedroom 0.193*** (0.003) 0.178*** (0.003) 0.119*** (0.002) 0.112*** (0.002)

Living Room 0.163*** (0.003) 0.149*** (0.003) 0.096*** (0.002) 0.093*** (0.002)

Outside 0.188*** (0.003) 0.169*** (0.003) 0.114*** (0.003) 0.105*** (0.003)

Kitchen 0.181*** (0.003) 0.167*** (0.003) 0.087*** (0.003) 0.082*** (0.003)

Bedroom2 0.003*** (0.0002) 0.001*** (0.0002)

Living Room2 0.004*** (0.0002) 0.004*** (0.0002)

Outside2 0.007*** (0.0003) 0.004*** (0.0004)

Kitchen2 0.006*** (0.0002) 0.007*** (0.0003)

Photo: Non-Cover (𝑎𝑛𝑐
𝑚 )

Bedroom 0.021*** (0.001) 0.018*** (0.001) 0.027*** (0.001) 0.023*** (0.001)

Living Room 0.013*** (0.001) 0.012*** (0.001) 0.022*** (0.001) 0.021*** (0.001)

Outside 0.009*** (0.001) 0.010*** (0.001) 0.011*** (0.001) 0.009*** (0.001)

Toilet 0.006*** (0.001) 0.002 (0.001) 0.016*** (0.001) 0.010*** (0.001)

Kitchen 0.021*** (0.001) 0.020*** (0.001) 0.025*** (0.001) 0.023*** (0.001)

Bedroom2 0.0004*** (0.00002) 0.0005*** (0.00002)

Living Room2 0.0003*** (0.00002) 0.0003*** (0.00002)

Outside2 0.002*** (0.0001) 0.001*** (0.0001)

Toilet2 0.002*** (0.0001) 0.003*** (0.0001)

Kitchen2 0.001*** (0.00004) 0.001*** (0.00004)

Photo: Duplicate (𝛿𝑚)
Bedroom −0.004*** (0.001) −0.003*** (0.001) −0.007*** (0.001) −0.004*** (0.001)

Living Room 0.009*** (0.001) 0.011*** (0.001) 0.004*** (0.001) 0.004*** (0.001)

Observations 1,566,415 1,566,415 1,395,827 1,395,827

Note: *p<0.1; **p<0.05; ***p<0.01

the scores of cover and non-cover photos to capture potential non-linear effect. As

shown in Column (2) and (4) of Table B.1, the magnitudes for the second order terms

are very small, while the rest of the parameters are similar in magnitudes to other

specifications.

Robustness Check for Misspecified Consideration Set A new apartment may

pop up at any time, or an existing listing may switch its status between "B" (Blocked)

and "A" (Available), so that the consideration set is not strictly shrinking over time.
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Table B.2: PCM (GLM) Estimation Results under Misspecified Listing Status and
Image Types through Simulated Synthetic Data

Dependent variable:

Real Value Unadjusted Adjusted Misspecified
Image Types

Price −0.402 −0.404*** −0.404*** -0.401***
(0.0001) (0.0001) (0.0037)

Overall.Rating 0.307 0.306*** 0.305*** 0.305***
(0.0002) (0.0002) (0.0059)

Number.of.Reviews 0.007 0.007*** 0.007*** 0.007***
(0.000001) (0.000001) (0.000005)

Airbnb.Superhost 0.186 0.190*** 0.190*** 0.185***
(0.0002) (0.0002) (0.0063)

Response.Rate 0.008 0.008*** 0.008*** 0.008***
(0.000004) (0.000004) (0.000178)

Num_of_Photos 0.001 0.001*** 0.001*** 0.001***
(0.00001) (0.00001) (0.00033)

Num_of_Bedrooms 0.228 0.229*** 0.229*** 0.228***
(0.0001) (0.0001) (0.0046)

Num_of_Bathrooms 0.106 0.114*** 0.115*** 0.109***
(0.0002) (0.0002) (0.0110)

Cover
Bedroom 0.110 0.112*** 0.111*** 0.093***

(0.0001) (0.0001) (0.0038)
Living Room 0.080 0.082*** 0.081*** 0.074***

(0.0001) (0.0001) (0.0035)
Outside 0.080 0.082*** 0.081*** 0.070***

(0.0001) (0.0001) (0.0038)
Kitchen 0.090 0.090*** 0.090*** 0.079***

(0.0001) (0.0001) (0.0036)

Non-Cover
Bedroom 0.030 0.030*** 0.031*** 0.030***

(0.00003) (0.00003) (0.00134)
Living Room 0.020 0.020*** 0.020*** 0.023***

(0.00003) (0.00003) (0.00148)
Outside 0.010 0.011*** 0.011*** 0.012***

(0.00004) (0.00004) (0.00161)
Toilet 0.020 0.020*** 0.020*** 0.022***

(0.00004) (0.00004) (0.00159)
Kitchen 0.020 0.020*** 0.020*** 0.022***

(0.00003) (0.00003) (0.00146)

Duplicate
Bedroom −0.010 −0.010*** −0.011*** -0.007***

(0.00003) (0.00003) (0.00156)
Living Room 0.006 0.006*** 0.006*** 0.004***

(0.00003) (0.00003) (0.00148)

Observations 1,846,081 1,846,081
Note: *p<0.1; **p<0.05; ***p<0.01

In our main analysis in Table 3.7, we address this issue by focusing the demand

within one month before the check-in date, as listing owners are less likely to switch

the status of their listing as the check-in date approaches. Without observing the

status trajectory, we assume that these trajectories are consistent with the status

documented in our dataset. Specifically, on any given day, if a listing ends up not
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being booked (available), then we assume it has been available for the past month.

Similarly, if a listing is blocked in the final status, we assume it has been blocked for

the past month as well. To test the validity of our assumption, we acquired a new

dataset that documents the trajectory of the status of each listing from February 1st

to May 1st. Specifically, we observe listing 𝑖’s availability trajectory on a specific

check-in date, let us say, March 1st, from February 1st all the way to March 1st. In

this way, we are able to check whether the owner of property 𝑖 changes the status of

the listing before the check-in date or not.

Importantly, we examine the percentage of miscounts caused by irregular variation

in the choice set, which could result from the following three cases: 1) a new apartment

is listed on the website halfway, but is counted as available throughout the month

in our previous analysis, 2) an existing listing that switches between "B" and "A"

but is counted as "A" in the previous estimation process, and 3) an existing listing

that switches between "B" and "A" but is counted as "B" in the previous estimation

process.

Cases 1 and 2 are similar, as they both refer to situations where a listing was

blocked for some days but was considered available when we count the number of

comparisons. In these cases, as the listing did not participate in all the comparisons,

the number of comparisons is overestimated. Case 3 is the opposite of Cases 1 and 2

in that the listing was made available for some days but was not accounted for in our

previous analysis. In this case, we underestimated the number of comparisons. For

each listing 𝑖, the percentage of miscounts is calculated by dividing the total number

of violations for listing 𝑖 (i.e., number of days/incidences that satisfy the three cases

mentioned above) across the timespan of our dataset by the total number of statuses

for listing 𝑖 tracked in our dataset. We find that scenarios 1 and 2 combined account

for 0.83% of the total number of cases, and scenario 3 accounts for 0.41% of the total

number of cases. In total, all three cases comprise 1.24% of all the observations. We

also investigate the impact of miscounted cases on our estimation results through

synthetic data (as our availability data span only three months, we are not able

to tune our previous estimation using real data that includes transactions over the
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entire year). For each listing, we record the number of miscounts and correct the

bias caused by the abovementioned cases. We present the estimation results in Table

B.2. The estimation results are almost identical under the adjusted and unadjusted

specifications, suggesting that when the percentage of miscounts is low, assuming that

the offer set is shrinking has a very limited impact on the estimation results.

Robustness Check for Misspecified Image Type The output from CNN is

subject to misclassifications (currently the state-of-the-art classification has approxi-

mately 88% accuracy1). In our case, Figure B-2 provides a breakdown of the by-room-

type accuracy from our ResNet50 model, which can potentially bias the estimation

results. As it is not possible to manually recover the true type for every one of the

222,144 photos, we test the impact of photo type misspecification on the estimation

outcomes using synthetic data. To best approximate the actual data-generating pro-

cess, we sample 1,000 listings from our data. We then generate the room type of

each image according to the approximated empirical distribution (B=30%, L=30%,

O=10%, K=20%, T=10%). Importantly, the underlying coefficient of each feature is

assumed to align with our GLM estimation results. In this way, the mean attractive-

ness of each listing is computed by plugging in the estimation results in Table B.2

into Equation 3.5. With the assumption that the error term in Equation 3.5 follows

a Gumbel distribution and that the outside options are normalized to 0, we simulate

the transaction data for the 1,000 listings in a timespan of one year.

In the estimation stage, we perturb the actual room types into the misclassified

types using the probability transition matrix presented in Figure 2. The estimation re-

sults are summarized in Table B.2. We observe that misclassification in our simulated

data generates downward bias only for the coefficients of cover effects. Nevertheless,

the order of impact for different room types remains the same, i.e., all else remaining

equal, a bedroom photo is still the best candidate for the cover. This is possibly

because the percentage of misspecified photos does not vary too much across room

types. Other than for the cover image, photo type misclassification appears to have

a very limited impact on the coefficients for features. As a result, failing to account

1https://paperswithcode.com/sota/image-classification-on-imagenet
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for photo type misclassification will understate the revenue gain when each listing

switches to the optimal photo layout in the counterfactual analysis, as the increase

in the overall attractiveness from the optimal photo layout should actually be higher

under the correctly specified scenario.

B.3 Numerical Experiment using Synthetic Data

We perform estimation through SMNL, PCM (NLS) and PCM (GLM) under different

true values of the parameter of interest, 𝛽0. Similar to the data generating process

we use for Table 3.6, we assume that there are 500 potential customers. Upon each

customer’s arrival, an i.i.d. error term is realized for each listing, and the listing

with the highest realized utility is booked. If every listing’s realized utility is lower

than that of the outside option (whose mean utility is normalized to zero), then

that demand is lost. Throughout the numerical experiment, we observe the decision

made by each customer, i.e., if the customer chooses a specific listing or the outside

option. We first perform estimation without observing the no-purchase data. Then,

to investigate how the absence of no-purchase data affects our estimation results, we

repeat the analysis by incorporating no-purchase data into our comparisons. We use

“+O” to signify such specifications in Tables B.1 and B.2. Under such specifications,

the PCM model compares all pairs of options including the outside option. Unlike

listings on Airbnb that have unit availability, the outside option has almost unlimited

inventory and therefore can be selected multiple times on a specific day. Nevertheless,

the counting principle of PCM remains the same. The number of times that the

outside option 𝑜 is preferred to option 𝑖 on day 𝑑, 1{𝑜≻𝑖}𝑑, is counted by the number

of times on day 𝑑 that a customer chooses 𝑜 when 𝑖 is also available. For instance,

on a specific day, if 10 customers ultimately book the outside option until listing 𝑖 is

booked, then PCM will count 10 times for the term 1{𝑜≻𝑖}𝑑 and one time for the term

1{𝑖≻𝑜}𝑑. In this way, we can construct the comparison matrix similarly as before, and

the estimation follows the standard PCM (either NLS or GLM) procedures. Tables

B.1 and B.2 report the estimation results under 𝛽0 = 0.5 and 𝛽0 = 2, respectively.
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We observe that PCM is able to uncover the ground-truth parameter regardless of

whether outside option observations are included.

Table B.1: Extended Estimation Results Using Synthetic Data (𝛽0 = 0.5, 95% CI)
Error Structure Gumbel Mixed-Normal

Choice Model Mean St. Dev. RMSE Mean St. Dev. RMSE

SMNL 0.499 0.012 0.012 0.610 0.032 0.115
PCM (NLS) 0.501 0.014 0.014 0.535 0.018 0.040
PCM (GLM) 0.501 0.016 0.016 0.584 0.037 0.092
PCM+O (NLS) 0.500 0.012 0.012 0.530 0.016 0.035
PCM+O (GLM) 0.498 0.015 0.015 0.572 0.026 0.077

Table B.2: Extended Estimation Results Using Synthetic Data (𝛽0 = 2, 95% CI)
Error Structure Gumbel Mixed-Normal

Choice Model Mean St. Dev. RMSE Mean St. Dev. RMSE

SMNL 1.989 0.027 0.028 2.357 0.073 0.364
PCM (NLS) 1.988 0.036 0.038 2.147 0.048 0.154
PCM (GLM) 1.981 0.050 0.054 2.305 0.125 0.329
PCM+O (NLS) 2.002 0.035 0.035 2.131 0.072 0.149
PCM+O (GLM) 1.979 0.046 0.050 1.935 0.162 0.173

B.4 Proof for Proposition 3.1 - 3.3

Proof for Proposition 3.1 - 3.2. To prove consistency nonlinear regression model,

we need to verify four conditions of the consistency Theorem 4.3.1 in Amemiya (1985).

That is, for any nonlinear regression that takes form of 𝑦𝑡 = 𝑓𝑡(𝛽) + 𝜖𝑡, we have:

(𝐴) 𝜕𝑓𝑡/𝜕𝛽 exists and is continuous on 𝑁.

(𝐵) 𝑓𝑡(𝛽) is continuous in 𝛽 ∈ 𝑁 uniformly in 𝑡.

(𝐶)
1

𝑇

𝑇∑︁
𝑡=1

𝑓𝑡(𝛽1)𝑓𝑡(𝛽2) converges uniformly in 𝛽1,𝛽2 ∈ 𝑁.

(𝐷) lim
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

[𝑓𝑡(𝛽0)− 𝑓𝑡(𝛽)]
2 ̸= 0 if 𝛽 ̸= 𝛽0.
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Condition (A) follows directly from our assumption (i). To show that condition (B)

is satisfied, we have from Equation (3.9) that

P(𝑖 ≻ 𝑗|𝛽1)− P(𝑖 ≻ 𝑗′|𝛽2) = P(𝜇𝑖 > 𝜇𝑗|𝛽1)− P(𝜇𝑖 > 𝜇′
𝑗|𝛽2) (B.1)

= 𝑓𝑡(𝑋𝑡𝛽1)− 𝑓𝑡(𝑋𝑡𝛽2)

=

∫︁ 𝑋𝑡𝛽2

𝑋𝑡𝛽1

𝜕𝑓𝑡(ℎ)

𝜕𝛽
𝑑ℎ

= 𝑋𝑡(𝛽1 − 𝛽2)
𝜕𝑓𝑡(ℎ

*)

𝜕𝛽
, (B.2)

where the last line is obtained by mean value theorem, 𝑋𝑡 = 𝑋𝑖 − 𝑋𝑗 and ℎ* ∈

(𝑋𝑡𝛽1, 𝑋𝑡𝛽2). Since 𝑋𝑡 and 𝜕𝑓𝑡(ℎ
*)/𝜕𝛽 are all bounded, condition (B) is satisfied.

Condition C is not easily verifiable, and we use Theorem 4.2.3 in Amemiya (1985).

By making the assumptions (i) and (ii), we let 𝑓𝑡(𝛽) = 𝑓(𝑥𝑡,𝛽) and take 𝑥𝑡 and

𝑓𝑡(𝛽1𝛽2) as the 𝑦𝑡 and 𝑔(𝑦𝑡, 𝜃) in theorem 4.2.3, respectively. We can show condition

C holds in this case.

Similar to (B), the proof for Condition (D) can easily be shown using mean value

theorem:

lim
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

[𝑓𝑡(𝛽0)− 𝑓𝑡(𝛽)]
2 = lim

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

[P(𝑖 ≻ 𝑗|𝛽1)− P(𝑖 ≻ 𝑗′|𝛽2)]
2 (B.3)

= lim
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

[

∫︁ 𝑋𝑡𝛽2

𝑋𝑡𝛽1

𝜕𝑓𝑡(ℎ)

𝜕𝛽
𝑑ℎ]2

= lim
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

[𝑋2
𝑡 (𝛽1 − 𝛽2)

2(
𝜕𝑓𝑡(ℎ

*)

𝜕𝛽
)2] > 0 .(B.4)

Now, to prove asymptotic normality, apart from the assumptions above, we need to

further assume:

(𝐸) lim
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

𝜕𝑓𝑡
𝜕𝛽

⃒⃒⃒⃒
𝛽0

𝜕𝑓𝑡
𝜕𝛽′

⃒⃒⃒⃒
𝛽0

(≡ 𝐶) is a finite nonsingular matrix.

(𝐹 ) lim
𝑇→∞

1

𝑇

𝜕2𝑆𝑇

𝜕𝛽𝜕𝛽′

⃒⃒⃒⃒
𝛽*

= 2 lim
𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

𝜕𝑓𝑡
𝜕𝛽

⃒⃒⃒⃒
𝛽0

𝜕𝑓𝑡
𝜕𝛽′

⃒⃒⃒⃒
𝛽0

whenever lim
𝑇→∞

𝛽* = 𝛽0
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where 𝑆𝑇 =
∑︀𝑇

𝑡=1[𝑦𝑡− 𝑓𝑡(𝛽)]
2. Directly validating these assumptions can be difficult.

Using similar idea as in Example 4.3.3 in Amemiya (1985), we can show

√
𝑇 (𝛽 − 𝛽0) = −

[︂
1

𝑇

𝜕2𝑆𝑇

𝜕𝛽𝜕𝛽′

⃒⃒⃒⃒
𝛽*

]︂−1
1√
𝑇

𝜕𝑆𝑇

𝜕𝛽

⃒⃒⃒⃒
𝛽0

where 𝛽* lies between 𝛽 and 𝛽0. We then have

1√
𝑇

𝜕𝑆𝑇

𝜕𝛽

⃒⃒⃒⃒
𝛽0

= − 2√
𝑇

𝑇∑︁
𝑡=1

𝜖𝑡(
𝜕𝑓

𝜕𝛽
) −→ 𝑁

(︀
0, 4𝜎2

0E[
𝜕𝑓

𝜕𝛽

𝜕𝑓

𝜕𝛽

′
]
)︀

1

𝑇

𝜕2𝑆𝑇

𝜕𝛽𝜕𝛽′

⃒⃒⃒⃒
𝛽0

=
1

𝑇

𝑇∑︁
𝑡=1

(︀
2
𝜕𝑓

𝜕𝛽

𝜕𝑓

𝜕𝛽

′
+ 2𝜖𝑡

𝜕2𝑓

𝜕𝛽2

)︀
lim

1

𝑇

𝜕2𝑆𝑇

𝜕𝛽𝜕𝛽′

⃒⃒⃒⃒
𝛽0

= E[2
𝜕𝑓

𝜕𝛽

𝜕𝑓

𝜕𝛽

′
]

Finally we have

√
𝑇 (𝛽 − 𝛽0) −→ 𝑁(0,

𝜎2
0

𝐶
), 𝐶 = E

[︀𝜕𝑓
𝜕𝛽

𝜕𝑓

𝜕𝛽

′]︀
For example in the case of normal distribution, 𝑓(·) ∼ 𝒩 (0, 𝜎), 𝐶 = E

[︀
1

4𝜎2𝜋
𝑒−

𝑋𝛽0
2𝜎2
]︀
.

Now it is clear that once assumptions (i)-(iii) are all satisfied, we can prove proposition

3.1 and 3.2.

Proof for Proposition 3.3. Intuitively, Proposition 3.3 can be proven by contradic-

tion. Suppose that there exists another layout with a strictly higher value function

𝑉
′
> 𝑉𝑚* , then it must hold that 𝑉

′
> 𝑉𝑚 for all 𝑚. Without loss of generality,

suppose that 𝑉
′
𝑚 has a cover photo of bedroom. Then, if we compare 𝑉

′ and 𝑉𝐵,

there are two possible cases:

1. 𝑉
′ and 𝑉𝐵 have the same cover score. Because both layouts have the same cover

photo room type, the same images in the non-cover slots would have the same

impact on customer utility. By construction of value functions in the algorithm,

there is no other layout that would obtain a strictly higher value function for

non-cover slots, which leads to a contradiction;
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2. The two cover images have different quality scores. Because the algorithm

selects the highest score among all bedroom photos as the cover, we have 𝑠𝑛* >

𝑠′𝑛* . However, swapping the higher quality cover image with the lower quality

one cannot yield a strictly higher value function as non-cover spots have smaller

impacts on a listing’s attractiveness, so, again we come to a contradiction.
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Appendix C

Supplemental Material for Chapter 4

C.1 Return Forecaster

An essential part of the Zalando business is the flexible return policy: for most of

the countries the customers enjoy 100 day free return after the purchase. Returned

articles (e.g. if they do not fit), if the pass the quality control, are coming back in the

stock and can be sold later. Such a policy obviously has an impact on the pricing of

the articles and plays an important part in Zalando’s pricing system. In order to keep

track on stock we also need to forecast returns. The return model we use consists

of two components. The so called return rate model predicts the probability that a

given cSKU is returned and a return times model that predicts when a given return

is expected to arrive. Assuming all returns happen within a six-week window, we

model return arrival by a six-dimensional vector where the 𝑖𝑡ℎ entry corresponds to

the probability that a given article arrives in the 𝑖− 1𝑡ℎ week after sale. The return

rate models the probability of a return at a cSKU-country level. It is a decision-based

model that uses two sources of information gathered over the last 52 weeks:

1. cSKU-specific information: once we observed a sufficient number of past sales,

we use (observed) past returns to estimate return rates.

2. Fallback: if we do not have sufficient past sales, we use the return rate of all

articles within the same article type and brand.
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C.2 Proof of Corollary 1

Let us first consider a specific time slot 𝑡′ and prove the corollary for the case, when

inventory is sufficient to satisfy all demand, i.e. 𝑦𝑡′ ≥
∑︀

𝑐,𝑙 𝑧𝑐,𝑡′,𝑙𝐷𝑐,𝑡′,𝑙.

In this case in (4.8) sales become equal to demand (if corresponding discount

decision is activated):

𝑥𝑐,𝑡′,𝑙 = 𝑧𝑐,𝑡′,𝑙𝐷𝑐,𝑡′,𝑙 ∀𝑐 ∈ [𝐶]. (C.1)

Which implies (assuming non-negative demand) that 𝑥𝑐,𝑡′,𝑙
𝐷𝑐,𝑡′,𝑙

= 𝑧𝑐,𝑡′,𝑙, i.e. ratio between

sales and demand is equal to 1 if the corresponding discount variable is chosen and

zero otherwise. Let us assume without loss of generality, that such discount level is

𝑙𝑐 for each country, i.e.

𝑧𝑐,𝑡′,𝑙𝑐 = 1 =
𝑥𝑐,𝑡′,𝑙𝑐

𝐷𝑐,𝑡′,𝑙𝑐

. (C.2)

At the same time, constraints (4.10)-(4.11) are forcing 𝜑𝑡′ = 1:

∑︁
𝑐

𝐷𝑐,𝑡′,𝑙𝑐 =
∑︁
𝑐

𝑥𝑐,𝑡′,𝑙𝑐 (C.3)

∑︁
𝑐

𝑥𝑐,𝑡′,𝑙𝑐 ≥ 𝑦𝑡′ −𝑀𝑠𝑡𝑜𝑐𝑘, (C.4)

and given that sales can never exceed demand (𝐷𝑐,𝑡,𝑙 ≥ 𝑥𝑐,𝑡,𝑙), lead to the fact that

𝐷𝑐,𝑡′,𝑙𝑐 = 𝑥𝑐,𝑡′,𝑙𝑐∀𝑐 ∈ [𝐶].

Let us a take a look on what happens with (4.9). For every constraint, only one

summand on each side of it is positive, since only one and only one 𝑥𝑐,𝑡′,𝑙𝑐 > 0 (one

discount can be chosen per country). Thus the (4.9) becomes:

𝑥𝑐,𝑡′,𝑙𝑐

𝐷𝑐,𝑡′,𝑙𝑐

=
𝑥1,𝑡,𝑙𝑐

𝐷1,𝑡,𝑙𝑐

for 𝑐 ∈ [𝐶] ∖ {1}, 𝑡 ∈ [𝑇 ], (C.5)

which is true when 𝐷𝑐,𝑡′,𝑙𝑐 = 𝑥𝑐,𝑡′,𝑙𝑐 .

Let us now consider the case stock scarcity, i.e. when there is not enough stock
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to satisfy all demand (𝑦𝑡′ ≤
∑︀

𝑐,𝑙 𝑧𝑐,𝑡′,𝑙𝐷𝑐,𝑡′,𝑙). In this case (4.8) becomes:

𝑥𝑐,𝑡′,𝑙 = 𝑧𝑐,𝑡′,𝑙𝐷𝑐,𝑡′,𝑙
𝑦𝑡′∑︀

𝑐,𝑙 𝑧𝑐,𝑡′,𝑙𝐷𝑐,𝑡′,𝑙
. (C.6)

Let us again assume that for simplicity that 𝑙𝑐 discount level is chosen for each country

𝑐:

𝑥𝑐,𝑡′,𝑙𝑐 = 𝐷𝑐,𝑡′,𝑙𝑐

𝑦𝑡′∑︀
𝑐′ 𝐷𝑐′,𝑡′,𝑙𝑐′

(C.7)

𝑥𝑐,𝑡′,𝑙 = 0 ∀𝑙 ∈ [𝐿] ∖ {𝑙𝑐}, (C.8)

which is identical (given assuming demand values) to:

𝑥𝑐,𝑡′,𝑙𝑐

𝐷𝑐,𝑡′,𝑙𝑐

=
𝑦𝑡′∑︀

𝑐′ 𝐷𝑐′,𝑡′,𝑙𝑐′

, (C.9)

from which we can also deduce that
∑︀

𝑐 𝑥𝑐,𝑡′,𝑙𝑐 = 𝑦𝑡′ .

For constraints (4.9)-(4.11) we have:

𝑥𝑐,𝑡′,𝑙𝑐

𝐷𝑐,𝑡′,𝑙𝑐

=
𝑥1,𝑡′,𝑙𝑐

𝐷1,𝑡′,𝑙𝑐

for 𝑐 ∈ [𝐶] ∖ {1}, (C.10)∑︁
𝑐

𝐷𝑐,𝑡′,𝑙𝑐 − 𝑥𝑐,𝑡′,𝑙𝑐 ≤ 𝑀𝑑𝑒𝑚𝑎𝑛𝑑 (C.11)

∑︁
𝑐

𝑥𝑐,𝑡,𝑙𝑐 = 𝑦𝑡′ , (C.12)

where the last one comes from the fact that sales cannot exceed stock (4.4). The

latter set of equations is identical to:

𝑥𝑐,𝑡′,𝑙𝑐

𝐷𝑐,𝑡′,𝑙𝑐

=
𝑥1,𝑡′,𝑙𝑐

𝐷1,𝑡′,𝑙𝑐

for 𝑐 ∈ [𝐶] ∖ {1}, (C.13)∑︁
𝑐

(𝐷𝑐,𝑡′,𝑙𝑐 − 𝑥𝑐,𝑡′,𝑙𝑐) ≤ 𝑀𝑑𝑒𝑚𝑎𝑛𝑑 (C.14)

∑︁
𝑐

𝑥𝑐,𝑡′,𝑙𝑐 = 𝑦𝑡′ , (C.15)
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, from what we get

𝑥𝑐,𝑡′,𝑙𝑐

𝐷𝑐,𝑡′,𝑙𝑐

=
𝑥1,𝑡′,𝑙1

𝐷1,𝑡′,𝑙1

for 𝑐 ∈ [𝐶] ∖ {1},∑︁
𝑐

𝑥1,𝑡′,𝑙𝑐

𝐷𝑐,𝑡′,𝑙𝑐

𝐷1,𝑡′,𝑙1

= 𝑦𝑡′ ,

and finally

𝑥𝑐,𝑡′,𝑙𝑐 = 𝐷𝑐,𝑡′,𝑙𝑐

𝑦𝑡′∑︀
𝑐′ 𝐷𝑐′,𝑡′,𝑙𝑐′

for 𝑐 ∈ [𝐶] ∖ {1}

C.3 Piecewise linear approximation

The objective is to use a piecewise linear function to approximate function (4.12).

Note that parametric form of the function is known, and it is continuous, twice

differentiable, strictly increasing and concave. We adopt the approximation method

in Kontogiorgis (2000) by selecting breakpoints on the curve, and connect them into

a piecewise linear function. We adopt the infinite norm as the measure of distance

for intervals of each piece,

‖𝑔‖[𝑎,𝑏] := max
𝑥∈[𝑎,𝑏]

|𝑔(𝑥)| (C.16)

which is upper bounded by 1
8
(∆𝜏𝑘)

2(‖𝑓 ′′‖[𝜏𝑘,𝜏𝑘+1]). Intuitively, if the function has

higher curvature on a certain interval, the distance (or the approximation error) of

that interval will also be larger. Therefore, we would like to put more breakpoints

where the function is “more nonlinear". Formally, the paper suggests minimizing

{max
𝑘

(∆𝜏𝑘)
2(‖𝑓 ′′‖[𝜏𝑘,𝜏𝑘+1])}

with breakpoints 𝜏𝑘 such that

(∆𝜏𝑘)(‖𝑓 ′′‖[𝜏𝑘,𝜏𝑘+1])
1/2 = constant, ∀𝑘 = 1, ..., 𝐾. (C.17)
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This can be approximated by

∫︁ 𝜏𝑘

𝑙

|𝑓 ′′|1/2𝑑𝑥 =
𝑘 − 1

𝐾 − 1

∫︁ 𝑢

𝑙

|𝑓 ′′|1/2𝑑𝑥, ∀𝑘 = 2, ..., 𝐾. (C.18)

Algorithm 5:
initialization: Uniform breakpoints

1 while ∆𝜖 ≥ 𝜖 do

2 for k = 2,...,K-1 do

3 compute change of slope 𝛼𝑘 :=
𝑓(𝜏𝑘+1)−𝑓(𝜏𝑘)

𝜏𝑘+1−𝜏𝑘
− 𝑓(𝜏𝑘)−𝑓(𝜏𝑘−1)

𝜏𝑘−𝜏𝑘−1

4 compute 𝛽𝑘 := |𝛼𝑘|/(𝜏𝑘+1 − 𝜏𝑘−1)

5 end for

6 set 𝛽1 = 𝛽2, 𝛽𝐾 = 𝛽𝐾−1

7 for k = 1,...,K-1 do

8 compute ℎ(𝑥) = 𝛽𝑘 + 𝛽𝑘+1

9 end for

10 compute 𝐺(𝑥) :=
∫︀ 𝑥

𝑙
(ℎ(𝑠))1/2𝑑𝑠

11 solve 𝐺(𝜏𝑘) =
𝑘−1
𝐾−1

𝐺(𝑢) for 𝑘 = 2, ..., 𝐾 to get 𝜏𝑘

12 calculate approximation error 𝜖 and the change of error ∆𝜖

13 end while

We note that in this approach, the piecewise linear approximation function uses

breakpoints on the original function curve, which might not be the “optimal" way

of approximating function sr(·). Also in practice we do not have to require the

breakpoints to be on the curve, therefore there could be potential improvements.
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