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Abstract
Continuous stirred tank reactors, or CSTRs, are one of the most commonly used reactors in
the biomanufacturing sector. This is because CSTRs offer a relatively simple design, operate
by maintaining a constant and predictable outlet concentration, and have been utilized and
studied long enough for the field to have developed a great familiarity. One major drawback of
single-CSTR applications arises with certain cell-virus systems that exhibit the von Magnus
effect. Through the von Magnus effect, oscillations in cellular and viral states arise with
individual states sometimes spanning orders of magnitude within a single run. This work
demonstrates two successful methods for reducing and eliminating this periodicity including
designing and applying a proportional feedback controller for setpoint tracking as well as
staging multiple CSTRs in series. Additionally, oscillatory behavior can be avoided through
novel reactor designs. One such design, a novel hollow fiber bioreactor, is explored in this
work. This design constrains larger cellular and viral species within a hollow fiber lumen
where viral infection of the cells can take place along the length of the reactor. Fresh
media is provided to the system through the extracapillary space with smaller waste and
nutrient molecules able to pass through the membrane to maintain the health of the cells.
With this design, we are able to achieve stable outlet concentrations that can be optimized.
Finally, as an extension to these ideas, population balance models were analyzed to allow
the tracking of individual populations of cells within a reactor - particularly those of a
certain age group. As cells age, they may become less productive or more likely to exhibit
genetic decomposition. Thus, tracking cell ages provides avenues to design new systems
that may be able to filter such aging cell populations out, thereby potentially increasing the
overall productivity of the system. The groundwork for this is providing solution strategies
for population balance models including numerical approaches as well as direct analytical
solutions. Both approaches are analyzed here in great depth.

Thesis Supervisor: Richard D. Braatz
Edwin R. Gilliland Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Importance of Viral Vaccines

Since their inception, viral vaccines have played an integral role in our society. These vital

drugs are formulated to combat some of the deadliest and most prevalent diseases humankind

has been faced with. To date, there are over 200 known species of virus [69]. Some of the

most common, in terms of new cases per year, include Influenza (3-5 million severe cases

per year, with mild case counts reaching even higher), HIV (1.5-2 milllion cases per year),

Dengue (200-300 million cases per year) and Rotavirus (about 100 million cases per year)

according to the respective World Health Organization Fact Sheets. Certain viruses affect

particular areas of the world more prevalently, and some only present with mild symptoms.

However, regardless of severity of the associated disease, it is imperative that we are prepared

to create vaccines for any virus, at any time, and in any needed amount. This is particularly

true during pandemic states, when demand for vaccines surges with little to no warning.

The solution to this preparedness lies in continuous viral vaccine manufacturing.

1.2 A Brief Overview of Viral Vaccine Production

Viral vaccine manufacturing remains an important aspect of the pharmaceutical industry,

particularly as global demand for certain vaccines continues to rise. The current platform

with which many of these viral vaccines are produced is embryonated chicken eggs, by which

11



the eggs are infected with the virus of choice and then incubated to produce the antigenic

material used in creating the vaccine. Although this method is well-established, the use of

continuous cell lines as the hosts for viral replication has shown promise in recent decades.

This is particularly true when considering that designer cell lines offer faster turnaround in

the case of pandemics, are scalable to very high worldwide demands, and are impervious to

avian virus outbreaks which can decimate the flocks that provide embryonated eggs.

To take the use of continuous cell lines a step further, many researchers have considered

their use in continuous bioreactor systems. Continuous bioreactors are designed such that

media is constantly flowed through them, and because of this setup, compared to their batch

counterparts, continuous reactors offer increased flexibility in design, more robust controlla-

bility, higher productivity and reduced operating costs [27]. The continuous bioreactor, or

chemostat, was designed in the 1950s as a method for constantly producing bacteria in cul-

ture for extended periods of time [43]. This work was adapted in the 1960s for the continuous

cultivation of viruses ranging from polio to adenoviruses in two-stage reactor systems [18,24].

Perhaps the most influential work in the area of continuous reactors for viral infection

was not undertaken until the late 1980s when Kompier, Tramper and Vlak developed a

two-reactor system designed to grow and infect insect cell populations with baculovirus [26].

The goal of their study was increased yields and productivity in terms of percentage of

cell population infected and amount of virus produced per feed materials, and they were

able to show successfully that, by these metrics, the continuous system was more effective

than batch. Their work was continued into the 1990s where different reactor configurations,

as well as recombinant viruses were explored [61–63]. Parallel to much of this experimental

work, some researchers took to modeling these continuous, multi-stage reactor systems, using

first-order kinetics to represent the viral infection process [7, 8, 61].

More recently the focus on continuous bioreactors for viral infection has shifted toward

broadening the field through the use of newly designed cell lines of a variety of types, as well as

optimizing these systems through reactor design. Frensing et al. used a two-stage system to

grow and infect duck cell populations with Influenza A [13], while Tapia et al. have focused on

producing modified vaccinia ankara (MVA) virus in similar avian lines [55,57]. Tangentially,

other researchers have sought ways to increase cell density in these continuous systems so
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as to significantly increase virus yields. The primary work in this area is from Genzel et

al. who have explored the use of hollow fiber reactors and alternating and tangential flow

filtration to grow avian and human cell lines to densities an order of magnitude greater than

is typically achieved in batch culture [16,58].

A major finding connecting much of the work in viral vaccine production is the presence

of defective interfering particles (DIPs) and the negative effect they have on virus yields.

This was particularly evident in the work in the 80s and 90s where modeling efforts were

undertaken in order to understand a marked decline in virus production after running a

continuous system for a month, as well as periodic trends in relevant species concentrations

[7]. What was then called the "passage effect" was later attributed to the von Magnus effect.

Simply put, this phenomenon is described as an increase in defective viruses that are nearly

indistinguishable from their standard counterparts except that they tend to have a degraded

genome [64]. The defective viruses generally have a lower infectivity and tend to interfere

with the production of the standard particles [13,14]. Cells that become infected with DIPs

exhibit behavior that resembles uninfected cells in terms of growth and development, and

because of this, periodic build-ups of the defective species occur in continuous systems.

1.3 Frensing Model

To date, one of the most developed and accurate viral infectivity models is that of Frensing

et al. who described the infection of a duck cell line with Influenza A. The model consists

of six ordinary differential equations,

𝑑𝑇

𝑑𝑡
= 𝜇𝑇 − 𝑘1 (𝑉𝑠 + 𝑉𝑑)𝑇 +𝐷 (𝑇in − 𝑇 ) , (1.1)

𝑑𝐼𝑑

𝑑𝑡
= 𝑘1𝑉𝑑𝑇 − (𝑘1𝑉𝑠 − 𝜇) 𝐼𝑑 −𝐷𝐼𝑑, (1.2)

𝑑𝐼𝑠

𝑑𝑡
= 𝑘1𝑉𝑠𝑇 − (𝑘1𝑉𝑑 + 𝑘2) 𝐼𝑠 −𝐷𝐼𝑠, (1.3)

𝑑𝐼𝑐

𝑑𝑡
= 𝑘1 (𝑉𝑠𝐼𝑑 + 𝑉𝑑𝐼𝑠) − 𝑘2𝐼𝑐 −𝐷𝐼𝑐, (1.4)
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Table 1.1: Frensing Model Parameter Values

Parameter Value Description
𝑘1 2.12 × 10−9 mL/virion/h viral infection rate constant
𝑘2 7.13 × 10−3 1/h infected cell death rate constant
𝑘3 168 virion/cell/h virus production rate constant
𝑘4 0.035 1/h viral degradation rate constant
𝑘33 168 virion/cell/h DIP production rate constant
𝜇 0.027 1/h cell growth rate
𝐷 0.0396 1/h reactor dilution rate
𝑓 10−3 fraction of infected cells producing DIPs
𝑇in 3 × 106 cells/mL feed cell concentration

𝑑𝑉𝑠

𝑑𝑡
= 𝑘3𝐼𝑠 − (𝑘1 (𝑇 + 𝐼𝑑 + 𝐼𝑠 + 𝐼𝑐) +𝐷 + 𝑘4)𝑉𝑠, (1.5)

and
𝑑𝑉𝑑

𝑑𝑡
= 𝑘33𝐼𝑐 + 𝑓𝑘3𝐼𝑠 − (𝑘1 (𝑇 + 𝐼𝑑 + 𝐼𝑠 + 𝐼𝑐) +𝐷 + 𝑘4)𝑉𝑑, (1.6)

which describe the time evolution of six species within a single continuous stirred tank reactor

(CSTR) [13]. The species consist of target cells denoted as 𝑇 , standard virus particles (STVs)

denoted by 𝑉s, defective interfering particles (DIPs) denoted by 𝑉d, and three infected cellular

species denoted by 𝐼. The subscripts 𝑑, 𝑠, and 𝑐 for the infected cell species refer to DIP-,

STV- and co-infected, respectively. The remaining parameters are defined in Table 1.1.

This model was used as the basis for much of my thesis work contained herein. Written

in the form of species balances as above, it is easy to see there are six states within the model

including four cellular species and two viral. Gaining a deeper understanding of how these

states interact, as well as how they are connected through the remaining parameters in the

model, was of the utmost importance for my work.

1.4 Outline of Thesis Document

The primary goal of my thesis work was to build a better understanding of certain cell-virus

infectivity systems that are already being applied in industry. Specifically, the cell-virus

systems most relevant to my work are those that exhibit oscillatory behavior due to the Von
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Magnus Effect. In Chapter 1, I present the main background and motivation as a necessary

basis to understanding the work herein. Viral vaccines have been an integral part of our world

since their inception decades ago. Yet even today we struggle to develop these life-changing

medicines to combat certain diseases. While the methods most commonly employed today

allow the manufacturing of these viral vaccines, it is becoming ever-clearer that egg-based

viral replication or other batch mode processes have vital drawbacks that must be addressed.

Finally, Chapter 1 examines the influenza A infectivity model that forms the basis for much

of my work and discusses its relevance and the modifications I made to the original model

from Frensing [13].

Chapter 2 delves into a more detailed look at the oscillatory nature of the model. The

approach here was to generate a methodology to reduce or eliminate oscillatory behavior

through the application of first priniciples. Of course, with a basic understanding of the

biomanufacturing industry, it is clear that large changes in existing processes can be difficult

to adopt. Thus, Chapter 2 begins with an open loop analysis of the Frensing model. This

analysis examines each variable within the model and, through systematically modifying one

variable at a time, provides a more concrete idea of how we can simply change parameter

values to reduce oscillations. While this is simple, it is not always effective at completely

smoothing the relevant states. The chapter continues with the construction of a p-only

controller that can successfully eliminate oscillations over time. Finally, a third approach is

offered by using residence time distributions to demonstrate that by adding more tanks in

series to a bio-process, we can buffer the viral and cellular states and stabilize them by the

exit of the final reactor in the series.

In Chapter 3, I present a novel bioreactor for the manufacturing of viral vaccines. This

new reactor is based on hollow fiber bioreactors, with some key modifications. By passing the

cell and virus slurry through the lumenal space of the reactor, we can confine the infectivity of

the system and better control the rate at which this occurs. Media passed in parallel through

the extracapillary space provides oxygen and nutrients, via diffusion across the membrane,

for the cells’ survival. Using this reactor setup, I was able to demonstrate successfully

that there is no oscillatory behavior in this system. Over the run time, the states are not

monotonic, and thus there is room for optimization of reactor parameters including reactor
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length, diameter, and feed flow rates. This chapter analyzes the reactor using infectivity

kinetics from the Frensing model, but is constructed in such a way that other cell-virus

systems could be substituted with few modifications.

As cell populations age, they often exhibit changes on a physical or physiological level

that can affect their productivity, particularly when considering cell populations used for

drug production. With this in mind, I wanted to apply population balance models (PBMs)

to track the various age groups of cells within the population. Chapters 4 and 5 lay the

groundwork for this application of PBMs by analyzing a numerical solution method that

contains no discretization error. These chapters are written pedagogically, and they take the

reader through the application of my approach beginning with the simplest cell population

balance equation and progressing to the general case. More specifically, Chapter 4 details

the numerical method and shows the relevant examples, and Chapter 5 uses the method of

characteristics to develop analytical solutions that support the proofs from Chapter 4.
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Chapter 2

Stabilization of Oscillatory Behavior

in Continuous Stirred Tank Reactors

for Viral Propagation

To gain insight into the oscillatory nature of certain cell-virus infectivity systems, I began

with the Frensing model in its original form. The goal at this point was simply to reproduce

what Frensing had done, and then use the design paramters already contained within the

model to perform an open-loop analysis. The results of the open-loop analysis provided

key relationships within the model, which translate directly to physical situations that arise

within the bioreactor as infection is occuring. From here, I turned to control theory to

construct a simple feedback controller, choosing manipulated and control variables with my

understanding gained in the open loop analysis. Feedback control allows companies to apply

new technology to their already existing processes, so as to reduce up front capital costs in

moving toward stabilization. The alternative to feedback control is utilizing residence time

distributions of the process. By adding more CSTRs in series, we can effectively manipulate

the residence time distribution of the species we care about, and thus stabilize it over the

course of the entire process.
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2.1 Open Loop Analysis of Infectivity System

Frensing et al. were able to show that their model, when run with the parameter values

shown in Table 1, resulted in all six states exhibiting stable oscillations over time, which

they attributed to the accumulation of defective interfering particles within the system [13].

As the Frensing et al. model is the most relevant to my work, I chose it as the base on

which much of my work was built. Of course, this model was constructed specifically for

Influenza A infection using a certain avian cell line. However, a long-term goal of my work

is to build a "plug and play" model that would allow users to select a cell and virus type

and simply update the kinetic values as needed. It is important to first understand how the

system behaves at different values of relevant parameters. The model itself contains nine

parameters, of which seven are rate constants, cell growth rate and fraction of cells producing

defective virus particles. These seven parameters are directly related to the cell type and

virus chosen for the system, and are thus assumed to be fixed once both a virus and cell

type are chosen. Note, however, that the values for these parameters are likely to change

with the cell/virus combination chosen.

The remaining parameters in the model are the concentration of cells in the feed stream,

𝑇in, and the dilution rate, 𝐷, which is equivalent to the ratio of flow rate, 𝐹 , divided by

reactor volume, 𝑉 . In essence, this leaves three tunable parameters. Knowing this, these

three parameters were individually varied in an attempt to gauge how the system’s states

respond to each, and, perhaps more importantly, to determine, in a more quantitative man-

ner, how the productivity of the system varies with each. As productivity can be measured

in a number of ways, the metric chosen here, for the sake of consistency, was the cumulative

number of standard virus particles harvested from the reactor over time.

2.1.1 Productivity Versus Inlet Target Cell Concentration

The concentration of target cells in the feed stream was the first parameter analyzed. The

parameter space was gridded using logarithmic spacing between 104 and 107 cells/mL. The

resulting concentration plots for the cellular states are shown in Figure 2-1, while plots of

the viral states and the productivity are shown in Figure 2-2.
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Figure 2-1: Concentration plots of cellular species at various reactor volumes with fixed flow
rate of 19.8 mL/h demonstrate that increasing feed concentration causes oscillatory behavior
to worsen.

One trend immediately evident in Figure 2-1 is that the number of target cells in the

system, 𝑇 , generally increases as the concentration of these cells in the feed increases. While

this trend is expected given that cells are entering the system at a higher rate, it is not

as obvious that increasing the concentration of target cells in the feed should increase the

oscillations of all of the other states. This is likely due to the fact that increasing the feed

concentration promotes an immediate increase in the accumulation of target cells within the

CSTR. This, in turn, increases the production rate of STVs and the STV-infected cell species

- a fraction of which create DIPs according to degradation of the viral genome over time, or

rounds of infection, described by the von Magnus effect. Finally, increases in these species

promote increases in the production rate of the DIP- and co-infected species, both of which

consume target cells via infection reactions. Thus, it makes sense that an increase in the

rate of addition of target cells would result in a sharp increase in all states followed by a
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Figure 2-2: Concentration plots of viral states at various values of target cell concentration
in the feed stream further demonstrate that increasing feed concentration causes larger os-
cillations. Productivity, measured in terms of cumulative number of standard virus particles
produced over time, decreases as a result.

sharp decline in all states, thereby causing the larger oscillations exhibited by the system at

higher feed concentrations. Of course, the opposite is then also true in that these oscillations

should be tempered at lower target cell feed rates.

2.1.2 Productivity versus 𝑉

Next, the effect of the volume of the infection reactor was analyzed. Plots of cellular and

viral state concentrations and productivity are shown in Figure 2-3 and Figure 2-4. It should

be noted that the initial conditions for these simulations were set to constant concentration

rather than constant mass. Thus, as reactor volume was increased, so too was the amount

of target cells and STVs present initially.

Here again, it is immediately evident that increasing the reactor volume increases the

oscillations of all states within the reactor. This is easily explained by the fact that increasing

20



Figure 2-3: Concentration plots of cellular species at various reactor volumes with fixed flow
rate of 19.8 mL/h demonstrate that increasing volume causes larger oscillations

the reactor volume at a fixed flow rate increases the residence time of the system. Thus,

target cells remain in the system for a longer period of time, giving them a greater chance to

become infected by STVs. Furthermore, the now greater number of STVs and STV-infected

cells have a larger chance to produce DIPs and DIP-infected cells. Similar to the previous

section, the increased amount of each species causes a greater rate of degradation as well as

a greater rate of exodus from the reactor. From this analysis it is clear that increasing the

volume of the reactor should cause greater oscillations in the species. On the other hand,

decreasing reactor volume at a fixed flow rate has the opposite effect.

Despite the larger fluctuations in all species, Figure 6 shows that increasing the reactor

volume increases the cumulative number of standard virus particles produced over the reactor

run time. This may be due, at least in part, to the use of constant concentration initial

conditions across trials. As reactor volume increases from 150 mL to 600 mL, the number

of standard virus particles initially present in the reactor is increased by a factor of 4. It
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is not surprising then that the final number of standard virus particles in the 600 mL trial

is 2-3 times greater than that in the 150 mL trial. Interestingly, when considering only the

last 10 days of a 20 day run, the trend in cumulative STVs produced is reversed. In fact,

the number of STVs produced in the final 10 days for a reactor volume of 150 mL is nearly

1011, while that for the 600 mL trial is 1.5 orders of magnitude lower. This result suggests

that, when performing longer runs in a single CSTR system, it is beneficial to utilize a lower

working volume after the first 5-10 days. As this may not be physically realizable, a similar

effect could be obtained by manipulating the flow rate of the reactor such that the dilution

rate increases at later times.

2.1.3 Productivity versus 𝐹

The last parameter to be explored was the reactor flow rate, 𝐹 . The flow rate was varied

from 25 to 100 mL/h in a reactor of constant volume at 500 mL. Results of these trials are

shown in Figure 2-5 and Figure 2-6.

As expected based on the relationship between reactor flow rate, volume and dilution

rate, the trend exhibited in Figure 2-5 shows that as flow rate is increased at a fixed reactor

volume, the oscillations of all states diminish over time. This stabilization of species occurs

more quickly at larger flow rates, which also tends to result in larger numbers of target,

STV-infected, and co-infected cells. Similarly, the average number of STVs in the system

also increases with flow rate, while the number of DIPs decreases, if only slightly. Much of

these trends can be explained with an analysis similar to that in the previous section. Flow

rate is proportional to dilution rate, which is inversely proportional to reactor residence

time. This suggests that as flow rate increases (and residence time decreases), there is a

lower chance overall that DIPs will be produced from standard virus particles. This is also

in accordance with the von Magnus effect in that with a lower residence time, fewer infection

cycles will occur leading to a smaller fraction of STVs that produce DIPs.

In this part of the analysis, the highest flow rate tested was 100 mL/h in a reactor with

a 500 mL volume. This is equivalent to a dilution rate of 0.2/h, which is relatively large for

any real system. However, because of the noticeably increasing trend in cumulative STVs

produced with increasing flow rates at both early and late times of the run, larger values of
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flow rate (and thus dilution rate) were tested (Figure 2-7 and Figure ??).

Here, flow rates of 250-520 ml/h were examined in the same 500 mL reactor. Of course,

without some mechanism for recycling media, these flow rates would likely result in ex-

orbitantly large operational costs. However, assuming that media recycle is possible, it is

apparent that further increases in reactor flow rate lead to greater amounts of standard virus

particles within the reactor, and therefore greater numbers of cumulative STVs produced,

at least up to a point. As flow rate is increased toward the point at which dilution rate ap-

proaches 1 ℎ−1, the cumulative number of STVs produced over time begins to drop. At flow

rates resulting in dilution rates greater than 1 ℎ−1, productivity decreases sharply, indicating

that the residence time of the system has become lower than the time it takes target cells to

become infected by STVs. Realistically, moving the reactor contents through the system at

these speeds may be harmful to the cells and/or virus particles in terms of the shear stresses

they would encounter, but this is a limitation of the current model.
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Figure 2-4: Concentration plots of viral states at various reactor volumes with fixed flow
rate of 19.8 mL/h. Oscillations increase with increased reactor volume because of increased
residence time.
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Figure 2-5: Concentration plots of cellular species at various flow rates at constant reactor
volume of 500 mL. Decreases in residence time reduces the amplitude of oscillations because
of reduced contact time between cells and virus.
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Figure 2-6: Reducing residence time on these scales causes reduced oscillations in the viral
states and increased productivity
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Figure 2-7: Using high dilution rates leads to reduced oscillations in cellular states. However,
shear stress may limit maximum allowable flow rates.
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Figure 2-8: Up to a certain point, high diluation rates can increase productivity.
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2.2 Feedback Control

Although a measure of productivity versus system parameters is important, designing a sys-

tem to operate robustly and stably is perhaps more industrially relevant. To this end, simple

feedback controllers were designed using the parameters analyzed previously as manipulated

variables in order to control a subset of the system states and stabilize them around their

steady state values. As a proof of concept, proportional-only controllers (P controllers) were

designed first. It was assumed that all relevant states could be measured directly, there are

no disturbances affecting the system, and there is no uncertainty in the parameters. The

controller equation then becomes

�̂� = 𝑘�̂�, (2.1)

where 𝑢 represents the manipulated variables 𝑇in, 𝑉 and 𝐹 , 𝑘 is the proportional gain, 𝑥

represents the corresponding state, and the carrots above 𝑢 and 𝑥 denote that these are

deviation variables. The deviation variables are determined by subtracting the steady state

value from the state in question or by subtracting the value of the manipulated variable at

that steady state. For this analysis, 𝑥 includes the target cells, STVs and DIPs.

First, 𝑇in was used to control all three states individually. For each case, the system was

run for 600 hours with the parameter values used by Frensing et al. (Table 1.1). Then,

providing the system was at steady state, the steady state value was determined by using

the peak to peak average value, and the new value of the manipulated variable for that case

was determined using the controller equation. This value was updated every two hours to

approximate continuous control action, and the system was run for another 1200 hours. The

concentration and 𝑇in plots resulting from the most effective gain values tested are shown in

Figures 2-9 through 2-12.

As is evident from the concentration plots, the oscillations in the system can be largely,

if not entirely, reduced using simple P-only controllers. In some cases, particularly when

using 𝑇in to control the viral states, some offset can be observed. This suggests that adding

integral action to the controllers may be beneficial. However, there are many instances in

which adding integral action to unstable systems drives the system to further instabilities.

It should be noted that a large variety of gain values were tested for each combination of
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Figure 2-9: Controlling the concentration of target cells using concentration of target cells
in the feed stream

state and manipulated variable. However, beyond those shown here, none of the designed

controllers were able to effectively stabilize the relevant states.

It is interesting to note that utilizing proportional-only controllers allows the stabilization

of 𝑇 , 𝑉s, and 𝑉d around their steady states. This suggests that it may be possible to

force the system to operate at other steady states by manipulating parameters in the right

combinations. If this is true, it is likely that the system’s productivity can be increased,

simply by adding feedback control. At this point, only one manipulated variable has been

varied at a time, but adding multiple, interacting control loops is clearly the next step in

such an analysis. Furthermore, more robust controllers can be designed by linearizing the

bioreactor model around the desired state using a Taylor series expansion. Such a model

takes the form

𝑓(𝑥, 𝑢) ≈ 𝑓(𝑥, 𝑢)|𝑥𝑠𝑠,𝑢𝑠𝑠
+ 𝜕𝑓(𝑥, 𝑢)

𝜕𝑥

⃒⃒⃒⃒
⃒
𝑥𝑠𝑠,𝑢𝑠𝑠

(𝑥− 𝑥𝑠𝑠) + 𝜕𝑓(𝑥, 𝑢)
𝜕𝑢

⃒⃒⃒⃒
⃒
𝑥𝑠𝑠,𝑢𝑠𝑠

(𝑢− 𝑢𝑠𝑠) + ℎ.𝑜.𝑡. (2.2)

where ℎ.𝑜.𝑡. represent second and higher ordered derivatives (assumed to be negligible), and
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Figure 2-10: Controlling the concentration of standard virus particles using concentration of
target cells in the feed stream

the subscript 𝑠𝑠 represents the steady state value. The function 𝑓(𝑥, 𝑢) represents the model

ODE equations presented previously, and when these are evaluated at their steady states,

they are equal to 0. Thus, the first term on the right-hand side disappears, and we can

represent the system as
𝑑

𝑑𝑡
𝑥 = 𝐴(𝑥− 𝑥𝑠𝑠) +𝐵(𝑢− 𝑢𝑠𝑠). (2.3)

In this way, the system is linearized around a steady state. Furthermore, 𝐴 is a matrix

that represents the jacobian of the model equations evaluated at the steady state, and 𝐵

represents the analogous matrix of derivatives with respect to parameters evaluated at steady

state. The individual values of 𝐴 and 𝐵 provide estimates of the process and controller gain

values.

2.3 Steady State Analysis

When designing the feedback controllers tested with the model analyzed here, the steady

state values obtained after running the model for 600 hours at a constant parameter set were
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Figure 2-11: Controlling the concentration of defective virus particles using concentration of
target cells in the feed stream

Figure 2-12: Controlling the concentration of target cells using flow rate

used to calculate the necessary deviation variables. However, for the sake of completeness, a

full steady state analysis is necessary to ensure that all possible steady states are accounted

32



for.

To analyze the steady states of the system in more detail, the lefthand sides of the model

equations were set to 0, and the equations were subsequently solved for the steady state

value of their respective states. The steady state model is given by

𝑇 = 𝐷𝑇in

𝑘1
(︁
𝑉s + 𝑉d

)︁
+𝐷 − 𝜇

, (2.4)

𝐼d = 𝑘1𝑉d𝑇

𝑘1𝑉s +𝐷 − 𝜇
, (2.5)

𝐼s = 𝑘1𝑉s𝑇

𝑘1𝑉d + 𝑘2 +𝐷
, (2.6)

𝐼c =
𝑘1
(︁
𝑉s𝐼d + 𝑉d𝐼s

)︁
𝑘2 +𝐷

, (2.7)

𝑉s = 𝑘3𝐼s

𝑘1
(︁
𝑇 + 𝐼d + 𝐼s + 𝐼c

)︁
+𝐷 + 𝑘4

, (2.8)

and

𝑉d = 𝑘33𝐼c + 𝑓𝑘3𝐼s

𝑘1
(︁
𝑇 + 𝐼d + 𝐼s + 𝐼c

)︁
+𝐷 + 𝑘4

, (2.9)

where states with overbars represent the steady state value.

Because of the coupled nature of the system, an analytical solution for individual steady

state values cannot be obtained. Thus, Matlab’s fsolve function was utilized to obtain these

values numerically. Approximately 15000 combinations of initial conditions were tested, with

each state being allowed to take on an initial value of 0, 103, 105, 107 or 109 cells (or virions)

per mL. The converged solutions were able to be divided into four groups, indicating four

different steady states. Two of these resulted in the concentrations of some species taking

on negative values, which means they are infeasible. Another steady state occurs when all

species concentration except the target cells are reduced to zero. This is the trivial steady

state which simply balances cell growth and influx with reactor dilution rate, and it can only

be reached if no viruses originate in the system. The fourth steady state is non-trivial and

feasible, and it is that which is seen when running the system with the initial conditions

specified by Frensing et al.
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Knowing that there is one nontrivial, feasible steady state, it is interesting to determine

if that steady state can be optimized to result in a greater number of STVs. This can be

done by performing a full optimization allowing the parameters 𝑇in, 𝑉 , and 𝐹 to be varied

over physical values so as to maximize the number of STVs produced over time. A first step

toward this end is gridding the parameter space and testing various combinations within

that space.

2.4 CSTRs in Series

Although applying a closed loop, feedback controller was effective at dampening the oscilla-

tory nature of the cell-virus system, it may not always be possible to design such a control

system. In these cases, another option is to manipulate the residence time distribution of

the virus particles. Specifically, by having the infection aspect of the vaccine production

platform contained within a series of CSTRs, it is possible to dampen any oscillations by

the exit of the final reactor in series. It is well known within chemical engineering that

connecting an infinite number of CSTRs in series constructs a system that acts like a plug

flow reactor, or PFR, which does not allow the accumulation of particles like in a CSTR.

Of course, it is unrealistic to supply an infinite number of CSTRs, and instead we would

like to know how many CSTRs are needed to sufficiently dampen oscillatory behavior in a

given system. The Frensing system was used as a basis to study this question as well, and it

was determined that with this system, approximately 5 reactors are needed in series, as seen

in Figure 2-13. This approximation can be refined by applying an optimization algorithm

around the Frensing system, incrementally increasing the number of reactors in the series,

and analyzing the 2-norm (or other function indicative of a system’s stability) of the relevant

states.

2.5 Future Work

An analysis of initial conditions used in the system must be performed including the difference

in effect of using constant mass versus constant concentration conditions. It is expected
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Figure 2-13: Smoothing of final concentrations occurs through the addition of multiple
reactors in series. For this system, approximately 5 reactors are needed.

that there will be little difference, but the information may be useful nonetheless. This is

especially true when considering that allotments of the seed virus may be in short supply,

and using constant concentration when scaling up reactor sizes would require more material.

Secondly, now that the single CSTR system is well-understood, new reactor configurations

must be explored. It is expected that a series of CSTRs can be utilized to reduce the system’s

oscillatory behavior, particularly when more robust controllers are added. Next, if very high

dilution rates are of interest, estimates of the effect of these high throughputs on the cells

and virus particles, in terms of shear and other stresses, must be undertaken to make the

model more complete.
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Chapter 3

In silico Analysis of an Alternative

Hollow Fiber Bioreactor

Configuration for Vaccine Production

in Suspension Cell Cultures

For years, animal cell lines have been studied as sources of biopharmaceuticals such as vac-

cines and antibodies [12, 44]. Many studies have focused on the selection of suitable biore-

actors within which the animal cell culture is grown and used for production. Well-stirred

bioreactors, which are easy to implement in the laboratory, are scalable, and have been

widely employed at production scale, have been the standard choice in the bioprocessing in-

dustry for many years. Viral products, such as vaccines, produced on animal-cell substrates

will benefit from the development of new cell lines amenable to suspension culture [25,36,37].

Suspension culture expands the development space by enabling the separation of cell pop-

ulation growth and viral propagation, allowing the application of separate process control

strategies to each stage [13]. The well-stirred bioreactor system for influenza production as

described in Frensing et al. is limited for continuous propagation because the wide resi-

dence time distribution allows significant formation of late-forming, undesirable byproducts

called defective interfering particles (DIPs) which lead to undesirable oscillations in cell and
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virus concentrations that span orders of magnitude [13]. Several alternatives to stirred-tank

bioreactors have been described in literature, with the goal of addressing the accumulation of

undesirable byproducts and resulting oscillatory behavior. One such configuration is the hol-

low fiber bioreactor (HFBR), which consists of a bundle of thin hollow-fiber tubes in parallel

within a cartridge [35, 47, 48, 58]. An immobilized animal cell culture occupies the extra-

capillary space (ECS) within the cartridge, which surrounds the fibers. Culture medium

containing oxygen, glucose, amino-acids, etc. flows through the fiber lumen and enables the

delivery of nutrients via diffusion through the porous wall to the cells, while waste products

such as lactic acid, ammonia, and carbon dioxide are returned to the flowing media for dis-

posal. This material exchange is accomplished by transport in the radial direction consisting

primarily of molecular diffusion and a small amount of convective transport through the

fiber wall pores and extracellular matrix in the extra-capillary space. Nurturing of the cell

culture is accomplished by introducing, at a high rate, nutrient-rich medium into the lumen

of the hollow fibers. A fraction of these nutrients are transported by diffusion through the

hollow fiber membrane into the ECS, and the remainder is recycled. This bioreactor configu-

ration is problematic in a number of ways, including that harvesting of viruses must be done

from the ECS outlet and that it is difficult to monitor and control the health of the culture

during all phases of the reaction. Furthermore, if cells, rather than antibodies or viruses,

are the intended product, harvesting from the ECS can lead to cell damage. We propose

the alternative HFBR configuration in Figure 3-1, in which a cell-medium slurry enters the

front of the HFBR and flows through the fiber lumen, which we designate as the fiber-lumen

stream (FLS). The slurry is created immediately before the bioreactor entrance by injecting

a stream containing viral particles into the stream containing cells, which ensures a constant

inlet concentration. Another stream of medium, called the perfusion fluid, enters the extra-

capillary space and flows parallel to the hollow-fiber tubes. The inner portion of the fiber

membrane is permeable to the nutrient and waste molecules, and is impermeable to cells

and virus reactants and products, which remain in the lumen stream. This inner portion of

the membrane is called the ultrafiltration skin. Nutrients depleted by cell growth and viral

infection in the lumen stream are resupplied by membrane transport from the extra-capillary

stream. Waste products are transported from the lumen stream through the membrane into
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Figure 3-1: Structure within a hollow fiber bioreactor cartridge. In this model, cells and
viruses are suspended in slurry flowing through the lumen. Additional media flows through
the ECS as perfusion fluid to provide nutrients.

the ECS, alleviating their effect on cell vitality, and cells and viruses are easily harvested by

sending the outflow from the FLS to a storage vessel.

3.1 Hollow Fiber Bioreactor Model

The model used to examine the alternative HFBR is based on the Krogh Cylinder models

(KCM) of earlier investigators, as shown in Figure 3-1 [48]. Computationally, this model

offers the convenience of radial symmetry, which promotes ease of extension to an entire

HFBR cartridge by simulating a single fiber. There are three zones in the radial domain:

the lumen of the hollow fiber, the membrane of the hollow fiber, and the extra-capillary

region. In the KCM, we assume that the extra-capillary space is annular, with an imaginary

wall for the outer boundary. All three zones are occupied by the smaller species, but the

cells and viruses only inhabit the hollow fiber lumen. The curved triangular zones in the

ECS defined by coincident edges of three imaginary outer boundaries are excluded in the
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analysis, but perfusion fluid flows through them as well. As metabolites in these areas can

still be transported to the Krogh cylinder zone by diffusion, the actual delivery of nutrients

by perfusion flow is underestimated in this model. Thus, the performance of the alternative

HFBR will be better than that predicted by the Krogh cylinder model, and this analysis

actually predicts a lower bound of performance in terms of nutrient delivery from the ECS.

Within the alternate HFBR model, a number of variables impact design considerations

including the flow rates of the lumen and perfusion streams, the radius of the fiber lumen,

the length of the bioreactor system, and the cell growth and viral infection rates. A subset

of these, specifically the cell growth and viral infection rates, are determined once a specific

cell line and virus type have been chosen for the system. This work primarily focuses on

delineating trends in productivity in terms of viral production and target cell consumption

with bioreactor dimensions (lumen radius and system length) and flow rates through the

lumen and ECS. Several cell growth rates were tested, however, to demonstrate how this

parameter affects productivity as well as to show that the alternate HFBR is somewhat

robust to the choice of the cell line. Timescales on the order of hours are required for cellular

production of influenza viruses, so the velocities in the lumen are purposefully limited to low

values (i.e., on the order of a few centimeters per hour) to maintain high enough residence

times) [13]. The correspondingly low Reynolds numbers necessitate the use of parabolic

velocity profiles, creating a wider residence time distribution for slowly diffusing entities such

as cells. This problem is somewhat alleviated by shear-induced migration of particles [9].

The rate constants used in our simulations of cell and virus dynamics are those for avian cell

line AGE1.CR.pIX, which is used to generate influenza virus [36,37]. Cell-virus kinetics are

obtained from Frensing et al., and cell-specific uptake coefficients of nutrients and production

coefficients for waste species are taken from Lohr et al [13, 36]. In the following equations,

the independent variables are the radial (r) and axial (z) positions in the bioreactor. The

hollow fiber membrane keeps cells and viruses inside the lumen, but allows for transport of

smaller species like glucose, amino acids, oxygen, ammonium, and lactate. Furthermore, axial

diffusion and radial convection are ignored in this analysis. First, we present the governing

continuity equations for the hollow fiber lumen, which contains nutrient and waste species

as well as cells and viruses. Those equations are followed by the models for the porous fiber
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membrane and the extra-capillary space, which are occupied only by nutrient and waste

species. At steady state, the system is described by a set of algebraic and parabolic, second-

order partial differential equations, solvable by various numerical techniques. For this work,

the model equations are solved by the method-of-lines in which the finite difference method

is applied to the radial derivatives to produce a system of ordinary differential equations in

terms of the axial coordinate, which are solved using MATLAB’s ODE15s function.

3.1.1 Lumen of the Hollow Fiber

For cells and virus that are confined to the hollow fiber lumen, the governing equations and

inlet conditions are

𝑣z(𝑟)
𝜕𝑇 (𝑧, 𝑟)
𝜕𝑧

= 𝐷𝑇

(︃
𝜕2𝑇 (𝑧, 𝑟)
𝜕𝑟2 + 1

𝑟

𝜕𝑇 (𝑧, 𝑟)
𝜕𝑟

)︃
+ 𝜇𝑇 (𝑧, 𝑟)

− 𝑘1 (𝑉s(𝑧, 𝑟) + 𝑉d(𝑧, 𝑟))𝑇 (𝑧, 𝑟), 𝑇 (0, 𝑟) = 𝑇0, (3.1)

𝑣z(𝑟)
𝜕𝐼s(𝑧, 𝑟)
𝜕𝑧

= 𝐷𝐼s

(︃
𝜕2𝐼s(𝑧, 𝑟)
𝜕𝑟2 + 1

𝑟

𝜕𝐼s(𝑧, 𝑟)
𝜕𝑟

)︃

+ 𝑘1𝑉s(𝑧, 𝑟)𝑇 (𝑧, 𝑟) − (𝑘2 + 𝑘1𝑉s(𝑧, 𝑟)) 𝐼s(𝑧, 𝑟), 𝐼s(0, 𝑟) = 𝐼s0, (3.2)

𝑣z(𝑟)
𝜕𝐼d(𝑧, 𝑟)
𝜕𝑧

= 𝐷𝐼d

(︃
𝜕2𝐼d(𝑧, 𝑟)

𝜕𝑟2 + 1
𝑟

𝜕𝐼d(𝑧, 𝑟)
𝜕𝑟

)︃

+ 𝑘1𝑉d(𝑧, 𝑟)𝑇 (𝑧, 𝑟) + 𝜇𝐼d(𝑧, 𝑟) − 𝑘1𝑉s(𝑧, 𝑟)𝐼d(𝑧, 𝑟), 𝐼d(0, 𝑟) = 𝐼d0, (3.3)

𝑣z(𝑟)
𝜕𝐼c(𝑧, 𝑟)
𝜕𝑧

= 𝐷𝐼c

(︃
𝜕2𝐼c(𝑧, 𝑟)
𝜕𝑟2 + 1

𝑟

𝜕𝐼c(𝑧, 𝑟)
𝜕𝑟

)︃

+ 𝑘1 (𝑉s(𝑧, 𝑟)𝐼d(𝑧, 𝑟) + 𝑉d(𝑧, 𝑟)𝐼s(𝑧, 𝑟)) − 𝑘𝑑𝐼c(𝑧, 𝑟), 𝐼c(0, 𝑟) = 𝐼c0, (3.4)
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𝑣z(𝑟)
𝜕𝑉s(𝑧, 𝑟)

𝜕𝑧
= 𝐷𝑉s

(︃
𝜕2𝑉s(𝑧, 𝑟)

𝜕𝑟2 + 1
𝑟

𝜕𝑉s(𝑧, 𝑟)
𝜕𝑟

)︃

+ 𝑘3𝐼s(𝑧, 𝑟) − (𝑘1𝜓 (𝑇 (𝑧, 𝑟) + 𝐼s(𝑧, 𝑟) + 𝐼d(𝑧, 𝑟) + 𝐼c(𝑧, 𝑟)) + 𝑘4)𝑉s(𝑧, 𝑟), 𝑉s(0, 𝑟) = 𝑉s0,

(3.5)

and

𝑣z(𝑟)
𝜕𝑉d(𝑧, 𝑟)

𝜕𝑧
= 𝐷𝑉d

(︃
𝜕2𝑉d(𝑧, 𝑟)

𝜕𝑟2 + 1
𝑟

𝜕𝑉d(𝑧, 𝑟)
𝜕𝑟

)︃
+ 𝑘33𝐼c(𝑧, 𝑟) + 𝑓𝑘3𝐼s(𝑧, 𝑟)

− (𝑘1𝜓 (𝑇 (𝑧, 𝑟) + 𝐼s(𝑧, 𝑟) + 𝐼d(𝑧, 𝑟) + 𝐼c(𝑧, 𝑟)) + 𝑘4)𝑉d(𝑧, 𝑟), 𝑉d(0, 𝑟) = 𝑉d0. (3.6)

This model was derived based on the kinetic scheme for the interaction among cells and

viruses used by Frensing et al., which discusses influenza virus production from the avian

cell line AGE1.CR6, where 𝑇 , 𝐼s, 𝐼d, and 𝐼care concentrations of uninfected target cells,

cells infected by standard virus, cells infected by defective interfering particles (DIPs), and

cells infected both by standard and defective viruses, respectively [13]; 𝑉sand 𝑉dare the

concentrations of standard virus and DIPs, respectively; and the lumen velocity (𝑣𝑧) has a

parabolic profile given by

𝑣𝑧(𝑟) = 2𝑣𝑧,0

(︃
1 − 𝑟2

𝑅2
lum

)︃
, (3.7)

where 𝑅𝑡𝑒𝑥𝑡𝑟𝑚𝑙𝑢𝑚 is the lumen radius and is the average flow velocity in the lumen.

The kinetic parameters in 3.1 to 3.6 are the growth rate of the target cell population

𝜇 (1/h), the target cell concentration in the feed 𝑇0 (cells/mL), the viral infection rate 𝑘1

(mL/virion-h), the apoptosis rate of infected cells 𝑘2 (1/h), the standard virus production

rate 𝑘3 (virions/cell-h), the DIPs production rate, 𝑘33 (virions/cell-h), the virus degradation

rate 𝑘4 (1/h), the fraction 𝑓of DIPs produced relative to standard viruses in the standard

virus infected cell species, and a factor 𝜓 for unit conversion which is equal to one when

Vs and Vd are quantified in units of virions/cell. Values for the other parameters are given

in Table 3.1. Viral production within the system is driven in part by the kinetics of the

infection process. Target cells are fed to the system and produced through mitosis. The

target cells are converted to infected states through infection either with standard virus or

with defective-interfering particles. Both 𝐼sand 𝐼dare converted to co-infected cells through
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cross infection by the other virus particle. Standard- and co-infected cells are the primary

source of standard virus particles and DIPs, respectively. The model is structured such

that viruses are produced by the appropriately infected cells only while they are alive, and

considers cell death via apoptosis for these species using first-order kinetics. Although nearly

all virus particles produced by the STV-infected cells are the standard type, a small fraction

( 1/1000) are DIPs instead, as a result of genetic degradation. All particles produced from

co-infected cells, on the other hand, are the defective variant [13].

Within the lumen, the conservation equation for the smaller molecules that can pass

through the hollow-fiber membrane is

𝑣𝑧(𝑟)𝜕𝑐𝑖(𝑧, 𝑟)
𝜕𝑧

= 𝐷𝑖

(︃
𝜕2𝑐𝑖(𝑧, 𝑟)
𝜕𝑟2 + 1

𝑟

𝜕𝑐𝑖(𝑧, 𝑟)
𝜕𝑟

)︃
+𝑄𝑖(𝑧, 𝑟), 𝑐𝑖(0, 𝑟) = 𝑐0, (3.8)

where 𝑧 is the axial position, 𝑟 is the radial position, 𝑐𝑖 is the concentration of species i

∈ G, Gl, O2, NH4+, L, G denotes glucose, Gl denotes the amino acid glutamine, O2 is

dissolved oxygen, NH4+ is ammonium ion representing nitrogenous waste, and L is lactate,

a byproduct of glucose metabolism. The diffusivity of species 𝑖 is denoted by 𝐷𝑖, and 𝑄𝑖 is

nutrient consumption rate (or waste production rate, where appropriate) for species 𝑖.

The consumption and production rates of smaller species are proportional to cell concen-

tration and are given by

𝑄𝐺 = −𝑞𝐺(𝑇 + 𝐼s + 𝐼d + 𝐼c), (3.9)

𝑄𝐺𝑙 = −𝑞𝐺𝑙(𝑇 + 𝐼s + 𝐼d + 𝐼c), (3.10)

𝑄𝑂2 = −𝑞𝑂2(𝑇 + 𝐼s + 𝐼d + 𝐼c), (3.11)

𝑄𝐿 = −𝑞𝐿(𝑇 + 𝐼s + 𝐼d + 𝐼c), (3.12)

and

𝑄𝑁𝐻4+ = −𝑞𝑁𝐻4+(𝑇 + 𝐼s + 𝐼d + 𝐼c), (3.13)

where the 𝑞𝑖 and 𝑝𝑖 are the cell-specific consumption and production coefficients, respec-

tively, for species 𝑖. These rates are assumed to be the same across all cell states in the

model. Although the consumption or production rates may change when a cell becomes in-
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fected, such variations are not well characterized in the literature, and would not change the

main conclusions of this study. The diffusivities for viruses are obtained by Stokes-Einstein

equation,

𝐷 = 𝑘𝐵𝑇

6𝜋𝑅𝑣𝜇visc
, (3.14)

and for cells are given by Higgins, et al.,

𝐷 = 𝐶𝛾ℎ𝑅
2
cell, (3.15)

where 𝑅𝑣 is the virus radius, and 𝛾ℎ is the hydrodynamic shear rate [10,40].

Cell-specific coefficients for consumption and production appear in Table 3.2 and are

inferred from Lohr et al. and Petiot et al., except for that of oxygen, which was suggested

as a typical value by Piret and Cooney [36, 46, 48]. Values for diffusivities as well as other

parameters appearing in the model are also listed in Table 3.2, and Table 3.3 contains solution

parameters and ranges of certain parameters tested in the model.

3.1.2 Membrane of the Hollow Fiber

There are two components of the membrane of the hollow fiber: the very thin ultrafiltration

skin, which is at the interface of the lumen, and a thicker spongy material, which encom-

passes the outer portion of the membrane and interface with the extra-capillary space. The

ultrafiltration skin prevents viruses and cells from entering the sponge, and has an approx-

imate thickness of Δ𝑅𝑢 = 0.5 microns and a fractional porosity 𝜖𝑢 of about 0.03 . The

spongy portion of the membrane is about 75 microns in thickness, and only nutrient and

waste molecules are capable of entering the spongy portion through the ultrafiltration skin.

Convection terms in the membrane are assumed negligible due to the low axial flow, that

is, the hydraulic pressures between the lumen and extra-capillary space are the same. Fur-

thermore, no nutrient consumption or waste production occurs in the membrane due to the

exclusion of cells and virus. The governing equations for the concentrations of the permeable
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species in the spongy region are

𝐷𝑚,𝑖
1
𝑟

𝜕

𝜕𝑟

(︃
𝑟
𝜕𝑐𝑚,𝑖

𝜕𝑟

)︃
= 0. (3.16)

3.1.3 Extra-capillary Space

Only the smaller molecules are present in the extra-capillary space. The continuity equations

in this region are

𝑢𝑧(𝑟)𝜕𝑐𝑖(𝑧, 𝑟)
𝜕𝑧

= 𝐷𝑖

(︃
𝜕2𝑐𝑖(𝑧, 𝑟)
𝜕𝑟2 + 1

𝑟

𝜕𝑐𝑖(𝑧, 𝑟)
𝜕𝑟

)︃
, 𝑐𝑖(0, 𝑟) = 𝑐𝑖,ext(𝑧) (3.17)

where 𝑢𝑧(𝑟) is the flow velocity in the ECS. The flow is laminar and velocity profile is

parabolic and described by

𝑢𝑧(𝑟) = 2𝑢𝑧,0

⎛⎜⎝1 −

(︁
𝑟 − 𝑙𝑒𝑓𝑡(1

2(𝑅ext −𝑅m) +𝑅m
)︁2

(︁
1
2(𝑅ext −𝑅m)

)︁2

⎞⎟⎠ (3.18)

where 𝑅𝑚 is the radius at the intersection of the membrane and extra capillary space, 𝑅𝑒𝑥𝑡

is the external radius of the system which occurs at the outer edge of the ECS and 𝑢𝑧0

represents the average flow velocity in the ECS.

3.1.4 Radial Boundary Conditions

The cells and viruses occupy only the lumen of the hollow fiber. For 𝑋(𝑧, 𝑟) representing

the concentration of a cell or virus, its boundary conditions are

𝜕𝑋(𝑧, 𝑟)
𝜕𝑟

= 0𝑎𝑡𝑟 = 0 (3.19)

and
𝜕𝑋(𝑧, 𝑟)

𝜕𝑟
= 0𝑎𝑡𝑟 = 𝑅lum. (3.20)

The first equation is a symmetry condition, while the latter enforces that neither cells

nor virus particles can diffuse through the membrane.

45



For the smaller species, which occupy the lumen, membrane, and extra-capillary domains,

six radial boundary conditions are required. For the lumen region, the symmetry condition

at the lumen center is
𝜕𝑐𝑖

𝜕𝑟
= 0𝑎𝑡𝑟 = 0, (3.21)

and the flux continuity conditions at the intersection of the lumen and inner surface of

the ultrafiltration skin are

𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅−

lum

= 𝜖𝑢𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅+

lum

, (3.22)

where 𝜖𝑢 is the porosity of the ultrafiltration skin.

For the spongy region of the membrane, the flux continuity condition at the intersection

of the outer surface of ultrafiltration skin and the inner surface of the spongy region of the

membrane is

𝜖𝑢𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅−

lum

= 𝜖𝑚𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅+

lum

, (3.23)

where 𝜖𝑚 is the porosity of the membrane sponge.

The intersection of the sponge and the extra-capillary space must satisfy the flux conti-

nuity condition

−𝜖𝑚𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅lum+Δ𝑅u+Δ𝑅m

= −𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅lum+Δ𝑅u+Δ𝑅m

, (3.24)

where there will be a discontinuity in 𝜕𝑐
𝜕𝑟

, since 𝜖𝑚 is less than 1 . Also imposed at this

interface is the continuity condition

𝑐𝑖(𝑧,𝑅lum + Δ𝑅u + Δ𝑅m−) = 𝑐𝑖(𝑧,𝑅lum + Δ𝑅u + Δ𝑅m+), (3.25)

where Δ𝑅𝑚+ and Δ𝑅𝑚− denote positions just inside and outside, respectively, the spongy

and extra-capillary space interface.

46



Finally, a no-flux condition is specified at the outer boundary of the extra-capillary space:

−𝐷𝑖
𝜕𝑐𝑖

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅ext

= 0. (3.26)

This condition indicates an impermeable boundary for our imaginary outer wall surround-

ing the extra-capillary space. Here, the assumption is that the concentrations of nutrients

and waste species reach a maximum and minimum, respectively, at the interface with the

extra-capillary space surrounding adjacent hollow fibers.

3.2 Hollow Fiber Bioreactor Design Considerations

The novelty of the alternate hollow fiber bioreactor presented here promotes using a design-

based approach to acquire trends between system parameters and bioreactor productivity.

Rather than using a single metric for productivity, we considered the resultant consumption

of target cells (process feedstock), production of standard virus particles (desired product),

and production of defective interfering particles which are an undesired byproduct. Biore-

actor length and radius, FLS and ECS flow rates, cell doubling times, and small-molecule

consumption and production rates are parameters which were varied between bioreactor se-

tups using various cell substrates and viral species. Once a cell line and virus are chosen,

however, only bioreactor sizing parameters can be modified. Thus, we explored the effects of

bioreactor length and fiber radius (200 to 500 microns) on the production of standard virus

particles. Multiple cell doubling times (24, 30, and 36 hours) were explored as well in order

to show that the alternate HFBR is a valid consideration for a variety of cell types. It is

common with bioprocesses involving animal cell substrates to use a residence time on the

order of 20 hours [56, 59]. Simulation results quickly demonstrated, however, that standard

virus production for that residence time reaches a peak well before the end of the bioreactor

for a variety of combinations of bioreactor length and flow rate (Figure 3-2). Any production

after this point consists primarily of defective interfering particles, which indicates that a

20-hour residence time is too long for this system. We reduced the residence time to a final

value of 12 hours, to ensure near-maximal production of standard virus without diluting this
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Figure 3-2: Using a 20 hour residence time results in a decline in standard virus production
before the exit of the reactor, even at a variety of combinations of flow rate and reactor
length. Furthermore, defective interfering particle production, which occurs more rapidly,
causes the concentration of the defective species to overtake that of the standard particle.
Reducing the residence time to 12 hours allows the capture of standard virus concentration
peak without diluting it unnecessarily with DIPs.

species with excess DIPs which would be produced at longer times. Bioreactors modeled

in this study were designed by first choosing linear flow rates based on desired production

rates and typical feed flow rates, and then determining the bioreactor length to maintain

a residence time of 12 hours. As oxygen is oftentimes the growth rate-limiting species, a

suitable velocity for the perfusion flow through the ECS is determined by requiring the oxy-

gen depletion per pass to be no more than half of the original value [48]. This moderate

depletion is similar to that obtained by Piret and Cooney for a traditional HFBR [47]. Using

this metric, the perfusion fluid flow rate is set to twice that of the lumen stream, giving the

ECS a residence time of 6 hours.
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3.3 Results and Discussion

Simulations of the model equations presented in this chapter indicate that lumen radius has

the largest effect on the key species concentrations throughout the bioreactor. Bioreactor

radii less than 250 𝜇m were necessary to ensure adequate cell densities over the entire cross-

section. For example, when , the radial profiles of the target and STV-infected cells at

downstream axial locations indicates serious depletion of these cells near the lumen wall

(Figure 3-3). The low value of the cell diffusivity was insufficient for radial diffusion to

compensate for the slow residence time in the outer lumen. This point is further illustrated

by the mixed-cup averages of the cells and viruses in Figure 3-4, when 𝑅𝑙𝑢𝑚 = 500𝜇 m.

The severe decline in standard virus precursor cell concentrations 𝑇and 𝐼supstream of the

outlet of the bioreactor causes STV production to halt and the concentration of this species

to be overtaken by that of its defective counterpart. On the other hand, radial profiles for

indicate an adequate distribution of cells over most of the cross-section (Figure 3-5). The

radial profiles of the virions show less spatial variation due to their higher diffusivities (Figure

3-6). The target cell doubling time had a low impact on species concentrations throughout

the bioreactor when compared to the effects of modifying bioreactor dimensions. Increasing

cell doubling time from 24 to 30 to 36 hours caused target cell and STV concentrations

to decrease by1–2% down the length of the bioreactor (Figures 3-7 and 3-8), and similar

small effects on the other variables. The target cell concentration drops sharply by in the

first half of the bioreactor (Figure 3-7), in which the cells have only been in the hollow

fibers for 6 hours. As such, the target cells spend insufficient time in the bioreactor to have

significant proliferation for any value of their doubling times. In other words, the growth

kinetics of the target cells are much slower than the viral infection kinetics, so the resulting

dynamics have a weak dependency on variation in the cell growth kinetics. Because it is

clear that the alternative HFBR system is more effective at smaller lumen radii, and to

make these results industrially applicable, the remainder of the results are posed as a case

study using a bioreactor with a lumen radius of 250 microns, which matches commercially

available hollow fibers. Based on the above modeling results, the residence time is kept

at 12 hours, and the target cells are chosen to have a 24-hour doubling time. Figure 3-9
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shows the axial profiles of the mixed-cup average of the concentrations of cells and virions,

respectively. Target cells are almost depleted at the outlet of the bioreactor, while standard

virus-infected cells – which are the only cells that can produce standard viruses – are more

plentiful but declining. The DIP-infected cell concentration remains low throughout the

bioreactor. Only the concentration of co-infected cells – which can produce only defective

virions – is increasing at the outlet. These results imploy that the effluent cells should not be

recycled, and that the only material leaving the bioreactor that could be potentially recycled

(modulo any regulatory considerations) would be standard virus particles. The maximum

concentration of standard virus particles for the 250-micron lumen is 44% higher than for

the 500-micron lumen (compare Figures 3-5 and 3-9), which provides additional support for

the lowering of the hollow fiber radius. Figure 3-10 displays the radial profiles of the nutrient

concentrations at the axial locations z = 0 , 0.10, 0.20, 0.30 and 0.38 m, respectively. The

flat profiles at z = 0 reflect the inlet conditions. At z = 0.10 m, the glucose, amino acid, and

oxygen concentrations are nearly flat, due to high diffusivities and small radial dimensions,

with a slight decline from the outer edge of the ECS to the lumen center at , as expected.

Replenishment of glucose and amino acids from the highly perfused extra-capillary space is

sufficient to maintain exit levels above 90% of the entrance concentrations. The discontinuity

in radial gradients at the membrane reflects the use of the overall membrane resistance.

Oxygen is more depleted near the outlet of the bioreactor, but its concentration is still more

than half of the inlet concentration, which is in line with results for traditional HFBRs.

For overall reduction of the consumption of consumables, the outlet perfusion fluid could

be boosted with more glucose and amino acids, re-oxygenated, and recycled to the medium

reservoir . The radial profiles for ammonium ion and lactate concentrations are relatively

flat (Figure 3-11), as for the nutrient profiles. The exit levels of ammonium are lower than

for mammalian cells, as avian cells consume far less glutamine [17]. Thus avian cells offer a

benefit as high levels of ammonium are toxic to some mammalian cells. Lactate levels are

similar as in mammalian cells, but lactate toxicity does not appear to be a problem, given

the success of Frensing’s experiments [13, 17]. A higher perfusion rate through the ECS

would lead to even lower consumption of nutrients and buildup of waste, making the exit

ECS fluid a better candidate for recycling. With recycling, the perfusion rate would need to
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Table 3.1: Cell and Virus Kinetic Parameter Values

Parameter Value
𝐷cell(𝑚/𝑠2) 2.08 × 10−13

𝐷virus(𝑚/𝑠2) 5.0 × 10−12

𝐼d,0(𝑐𝑒𝑙𝑙𝑠/𝑚3) 0
𝐼s,0(𝑐𝑒𝑙𝑙𝑠/𝑚3) 0
𝐼c,0(𝑐𝑒𝑙𝑙𝑠/𝑚3) 0

𝑘1(𝑚𝐿/𝑣𝑖𝑟𝑖𝑜𝑛/ℎ) 2.12 × 10−9

𝑘2(1/ℎ) 7.13 × 10−3

𝑘3(𝑣𝑖𝑟𝑖𝑜𝑛/𝑐𝑒𝑙𝑙/ℎ) 168
𝑘4(1/ℎ) 0.035

𝑘33(𝑣𝑖𝑟𝑖𝑜𝑛/𝑐𝑒𝑙𝑙/ℎ) 168
𝐾m,Gl(𝑚𝑚𝑜𝑙/𝑚3) 0.5 × 106

𝜇 (1/h) 0.027
𝑓 10−3

𝑅cell(𝑚) 7.5 × 10−6

𝑅virus(𝑚) 50 × 10−9

𝑇0(𝑐𝑒𝑙𝑙𝑠/𝑚3) 3 × 1012

𝑉d,0(𝑣𝑖𝑟𝑖𝑜𝑛𝑠/𝑚3) 0
𝑉s,0(𝑣𝑖𝑟𝑖𝑜𝑛𝑠/𝑚3) 1.25 × 1011

be optimized to trade off cell health and costs.

3.4 Conclusions

Hollow fiber bioreactors provide a narrow residence time distribution for cell-virus cultures,

thus curtailing the creation of late-forming defective viruses in the case of the AGE1.CR.pIX/influenza

virus system. Because DIPs cannot accumulate periodically in an alternative HFBR, the

oscillatory behavior that occurs in certain cell/virus systems is eliminated. To obtain a

sufficient output of standard virus that is not diluted with DIPs, the alternative HFBR

model using model parameters fit to data by Frensing et al.6 indicates that the average

residence time of cells should set to about 12 hours. This value can likely be optimized to

further improve STV to DIP collection ratio, or similar productivity metrics. The results

presented here indicate an upper limit of 250 microns on the radius of the hollow fiber lumen

is necessary to ensure adequate cell densities throughout the bioreactor to maintain a high
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Table 3.2: Nutrient and Waste Kinetic Parameter Values

Parameter Value
𝑐G,0(𝑚𝑚𝑜𝑙/𝑚3) 20 × 103

𝑐Gl,0(𝑚𝑚𝑜𝑙/𝑚3) 3.6 × 103

𝑐O2,0(𝑚𝑚𝑜𝑙/𝑚3) 0.2 × 103

𝑐+
NH4,0(𝑚𝑚𝑜𝑙/𝑚3) 0
𝑐L,0(𝑚𝑚𝑜𝑙/𝑚3) 0
𝐷G(𝑚2/𝑠) 6.7 × 10−10

𝐷Gl(𝑚2/𝑠) 7.6 × 10−10

𝐷O2(𝑚2/𝑠) 2.0 × 10−9

𝐷+
NH4(𝑚2/𝑠) 1.97 × 10−9

𝐷L(𝑚2/𝑠) 4.9 × 10−10

𝑞G(𝑚𝑚𝑜𝑙/𝑠/𝑐𝑒𝑙𝑙) 3.737 × 10−13

𝑞Gl(𝑚𝑚𝑜𝑙/𝑠/𝑐𝑒𝑙𝑙) 7.958 × 10−14

𝑞O2(𝑚𝑚𝑜𝑙/𝑠/𝑐𝑒𝑙𝑙) 4.290 × 10−15

𝑝+
NH4(𝑚𝑚𝑜𝑙/𝑠/𝑐𝑒𝑙𝑙) 5.363 × 10−14

𝑝L(𝑚𝑚𝑜𝑙/𝑠/𝑐𝑒𝑙𝑙) 6.557 × 10−13

𝜖m 0.86
𝜖u 0.03

Table 3.3: Other Parameter Values

Parameter Value
𝑅ext(𝑚) 475 × 10−6

𝑅lum(𝑚): (tested) 200 × 10−6 to 500 × 10−6

𝑅lum(𝑚): (final value) 250 × 10−6

𝑢𝑧(𝑚/ℎ) 0.024
𝑣𝑧,0(𝑚/ℎ) 0.03

𝑧𝐿(𝑚): (tested) 0.2 to 0.5
𝑧𝐿(𝑚): (final value) 0.38

Δ𝑅𝑚(𝑚) 75 × 10−6

Δ𝑅𝑢(𝑚) 0.5 × 10−6
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volumetric production of standard virus. This maximum radius is primarily set by the low

diffusivities of cells. For larger lumen radii, the target and standard-virus-infected cells are

depleted in the outer regions of the lumen, which leads to lower production of standard

virus per unit volume of hollow fiber. Using hollow fibers with smaller radii might improve

performance, but potential plugging is a concern, depending on choice of cell line and typical

cell diameters. The diffusivities of the metabolites are sufficiently high to keep their radial

profiles relatively uniform in the alternative HFBR. By using high perfusion rates of medium

through the ECS, sufficient nutrients can be supplied, and the effluent nutrient stream can

be recycled. Recycling of cells after a single pass through the hollow fiber is not advisable as

80% are incapable of producing standard virus; i.e., they are DIP- and co-infected cells. This

depletion of useful cells is due to the cell-virus kinetics revealed by Frensing’s experiments.

The alternative HFBR enables the disposal of the spent cells, as does a harvested well-stirred

bioreactor. A conventional HFBR, with cells anchored in the extra-capillary space, would

eventually suffer the same problem, so the spent cells would have to be removed and the

ECS re-cultured.
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Figure 3-3: 500-micron reactor, 24 hour target cell doubling time. Radial profiles of target
and STV-infected cells (precursors to standard virus particles) show severe depletion, partic-
ularly at the lumen wall, before the exit of the reactor. This is caused by the low diffusivity
of these species.

Figure 3-4: 500-micron reactor, 24 hour target cell doubling time. Concentration of target
and STV-infected cells decline rapidly before the end of the reactor, while the co-infected
species concentration remains high. This causes STV production to end prior to the reactor
outlet, while DIP production is maintained by the large co-infected population.
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Figure 3-5: 200-micron reactor, 24 hour target cell doubling time. Both STV-precursor
species are adequately distributed across the radius of the reactor which promotes viral
production throughout the entire reactor volume.

Figure 3-6: 200-micron reactor, 24 hour target cell doubling time.
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Figure 3-7: 250 micron reactor. Increasing target cell doubling time from 24 to 30 to 36
hours results in lower concentrations of this species throughout the reactor. However, the
decrease is only 1-2% of the concentration entering the reactor.
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Figure 3-8: 250 micron reactor. Increasing target cell doubling times increases STV produc-
tion by 1-2%.

Figure 3-9: 250-micron reactor, 24 hour target cell doubling time. Results for the case study
reactor show adequate cell densities throughout the reactor, as well as production of STVs
that exceeds that of the defective variant.
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Figure 3-10: 250-micron reactor, 24 hour target cell doubling time. Nutrient profiles remain
relatively flat, indicating ease of diffusion relative to cell and virus species. The discontinuity
that occurs at the membrane (at a radial position of 250 microns) is expected from analysis
of the equations. Note that oxygen depletion is only 30% here, which indicates that the
perfusion flow rate can potentially be reduced.

Figure 3-11: 250-micron reactor, 24 hour target cell doubling time. Radial profiles of waste
species demonstrate that neither accumulate to toxic levels within the reactor.
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Chapter 4

Finite Difference Simulation of

Population Balance Models with No

Discretization Error

Population balance models are used to describe an exceptionally wide array of chemical and

biological processes which have a distribution over some intrinsic property as their main

state. Because of the ubiquitous nature of these problems, it is important to have a gener-

alizable approach for the solution of population balance equations. The finite difference and

finite volume methods typically utilized to solve these equations rely on increasingly higher

ordered approximations, which can be computationally expensive. This chapter proposes a

simple finite difference scheme that results in no numerical discretization error for certain

classes of population balances. The proposed finite difference method results in zero error

for constant growth rate, and nonzero error expressions are derived for more complicated

systems including time or age-dependent growth and non-homogeneous problems. These

error expressions confirm the zero error in the simpler cases. Further, they demonstrate

that it is appropriate to apply the finite difference methods to more complicated classes of

problems, with the expectation that the error will transition from first-order error to zero

error as the growth rate and/or nonhomogeneous terms become smoother functions of time

or the intrinsic variable.

The spatiotemporal dynamics of populations are described by population balance models.
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These models are applicable to a wide variety of biological processes for populations that in-

clude cells, viruses, aggregates, bubbles, droplets, crystals, or precipitates. A large literature

derives finite difference and finite volume methods for the numerical simulation of popula-

tion balance models, as well as for more general partial differential equations, with the focus

being to minimize discretization errors (e.g., see [20], [50], [68], [38], [39], [70] and citations

therein). Especially important for this class of hyperbolic partial differential equations is the

need to reduce numerical diffusion (i.e., smearing of the numerical solution compared to the

true solution) and numerical dispersion (i.e., aphysical oscillations in the numerical solution

that do not arise in the true solution). This chapter describes a finite difference method with

no discretization error for the simulation of classes of population balance models that arise

in many applications.

This chapter summarizes the population balance model and describes the finite difference

method with associated analysis for a series of successively more complicated population

balance models. The intent is for this chapter to be pedagogical. That is, the chapter

shows the main idea of the finite difference method first for a relatively simple case, and

then shows how to generalize the approach. The chapter also derives error expressions that

quantify the error for more general population balance models, which show that the finite

difference method behaves benignly, and is also suitable for application to those systems.

4.1 Population Balance Models

Species balances for spatially well-mixed systems can be written as ordinary differential

equations (ODEs),
𝑑𝑓(𝑡)
𝑑𝑡

= ℎ(𝑡, 𝑓), (4.1)

where 𝑓 is the species density (e.g., concentration), 𝑡 is time, and ℎ is a forcing function

that can be a function of 𝑓 and 𝑡. Both 𝑓 and ℎ can be vectors in general, with each

element corresponding to each species in the system. For the derivation and analysis of

finite difference methods, 𝑓 and ℎ can be treated as scalars without loss of generality, as the

extension to the vector case is trivial.

When a species has an additional intrinsic variable, such as size or age, the partial
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differential equation (PDE) corresponding to the ODE model is

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺𝑓(𝑡, 𝑎))
𝜕𝑎

= ℎ(𝑡, 𝑎, 𝑓) (4.2)

where 𝑎 is the additional intrinsic variable and 𝐺 = 𝑑𝑎/𝑑𝑡 is the rate of change of the intrinsic

variable with respect to time. The term 𝐺 is referred to as “growth rate” in the population

balance literature.While this is an accurate term for most populations, it is somewhat of a

misnomer in that 𝑑𝑎/𝑑𝑡 is not associated with a rate of growth for some applications, e.g.,

when 𝑎 is the age of a cell and 𝐺 represents the aging of a cell rather than its growth. To

be consistent with the literature, this chapter also refers to 𝐺 as the growth rate.

This equation describes the time evolution of the distribution of 𝑓 with respect to 𝑎. For

example, in cell population balance models which define the variable 𝑎 as the age of a cell,

𝐺 = 1 [60]. When the intrinsic variable 𝑎 is the size or mass of the cell, or the number or

concentration of organelles within a cell, then 𝐺 is rarely equal to one but may be describable

by a constant or a function of 𝑎 and/or 𝑡. The forcing function ℎ can also be a function of

the intrinsic variable a. When the growth rate is not a function of 𝑎, then 𝐺 can be factored

of the second term,
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= ℎ(𝑡, 𝑎, 𝑓) (4.3)

The above population balance models, as well as the results of this chapter, can also be

generalized to the case with multiple intrinsic variables, e.g.,

𝜕𝑓(𝑡, 𝑎1, . . . , 𝑎𝑚)
𝜕𝑡

+
𝑚∑︁

𝑖=1
𝐺𝑖
𝜕𝑓(𝑡, 𝑎𝑖)
𝜕𝑎𝑖

= ℎ(𝑡, 𝑎1, . . . , 𝑎𝑚, 𝑓) (4.4)

in a straightforward manner, where 𝑚 is the number of intrinsic variables. Also, the same

population balance model and results can be extended to populations in a steady-state slug

or plug flow through a tube by replacing the time 𝑡 with the residence time 𝜏 , or to the

dynamic slug or plug flow through a tube by including both derivatives with respect to time

and residence time, e.g.,

𝜕𝑓(𝑡, 𝑎1, . . . , 𝑎𝑚)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎1, . . . , 𝑎𝑚)
𝜕𝜏

+
𝑚∑︁

𝑖=1
𝐺𝑖
𝜕𝑓(𝑡, 𝑎𝑖)
𝜕𝑎𝑖

= ℎ(𝑡, 𝑎1, . . . , 𝑎𝑚, 𝑓) (4.5)
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where 𝜏 = 𝑧/𝑢 where 𝑧 is the axial position down the tube and 𝑢 is the flow velocity.

4.2 Numerical Method and Associated Error Analysis

Finite difference methods are used to approximate partial differentials, e.g., on the left-hand

side of (5.6). To reduce the numerical error, that is, the difference between the numerical

approximation described by the discretized equation and the true solution described by the

PDE, the well established strategy is to use increasingly complicated and higher order accu-

rate finite difference expansions. While this approach reduces the number of discretization

points needed to achieve a specified level of numerical accuracy, the computational cost per

discretization point increases.

This chapter describes a different approach, which is to select a special choice of first-

order finite difference expressions so that the discretization error is zero. This approach both

results in the lowest cost per discretization point and allows the user to select the number of

discretization points based on the level of detail desired in the solution rather than achieving

a desired numerical error. Specifically, this approach employs a first-order forward difference

for the time derivative and a first-order backward difference for the derivative with respect

to the intrinsic variable.

As is standard in the numerical analysis literature (e.g., [49] ), the finite difference method

is first applied to homogeneous population balance models, both to simplify the algebra and

because the presence of a nonhomogeneous term does not affect whether the finite difference

method gives zero discretization error in the sum of the partial derivatives. The first set

of results also show that the finite difference method, when transformations are included,

results in zero error for large mesh sizes for homogeneous population balance models.

The numerical analysis in this chapter starts by studying the homogeneous form of the

partial differential equations, as that simplifes the analysis and is by far the most common

practice in the engineering and science literature [29, 49]. Then the chapter analyzes the

overall error between the numerical solution and the exact solution for the nonhomogeneous

partial differential equation, which is the type of analysis employed by mathematicians who

specialize in numerical methods for PDEs (e.g., [11, 31]). This latter analysis quantifies the
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effects of mesh sizes on the overall error for nonhomogeneous population balance models,

and shows how the overall error converges to zero as the time or size dependency weakens

in the nonhomogeneous term.

4.2.1 Case 1: Cell Population Balance Models

First let’s illustrate the approach by considering the homogeneous population balance model

in which the growth rate 𝐺 is equal to 1,

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.6)

over the real domains 𝑎 ≥ 0 and 𝑡 ≥ 0. The value of 𝐺 = 𝑑𝑎/𝑑𝑡 = 1 applies to cell

populations in which 𝑎 is the age and is defined to have the same unit as the time 𝑡 [28].

Applying the aforementioned finite difference scheme yields

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 + 𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎 = 0 (4.7)

where 𝑖 is the time index and 𝑗 is the index for the intrinsic variable. The Taylor series

expansions for 𝑓 in terms of 𝑡 and 𝑎, respectively, are

𝑓(𝑡+Δ𝑡, 𝑎) = 𝑓(𝑡, 𝑎)+Δ𝑡 𝜕𝑓
𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡,𝑎

+(Δ𝑡)2

2!
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡,𝑎

+(Δ𝑡)3

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · ·+ (Δ𝑡)𝑛

𝑛!
𝜕𝑛𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · · (4.8)

𝑓(𝑡, 𝑎−Δ𝑎) = 𝑓(𝑡, 𝑎)−Δ𝑎 𝜕𝑓
𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡,𝑎

+(Δ𝑎)2

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡,𝑎

−(Δ𝑎)3

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · ·+(−1)𝑛 𝜕
𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · · (4.9)

These expressions can be rearranged into the form

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 = 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ Δ𝑡
2!
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ (Δ𝑡)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ · · · + (Δ𝑡)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ · · · (4.10)

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎 = 𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡,𝑎

− Δ𝑎
2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ (Δ𝑎)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · ·+(−1)𝑛−1 (Δ𝑎)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · · (4.11)

and inserted into the left-hand side of (4.7) to give an expression for the discretization error
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of

error = 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 + 𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎

= 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ 𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ Δ𝑡
2!
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡,𝑎

− Δ𝑎
2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ (Δ𝑡)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ (Δ𝑎)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ · · · + (Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛−1 (Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.12)

From (4.6), the first two terms on the right-hand side sum to 0. Taking successive

derivatives of (4.6) with respect to 𝑡 and 𝑎 and rearranging gives the equalities:

𝜕2𝑓

𝜕𝑡2
= 𝜕2𝑓

𝜕𝑎2 (4.13)

𝜕3𝑓

𝜕𝑡3
= −𝜕3𝑓

𝜕𝑎3 (4.14)

such that the remaining terms in (4.12) (if the fourth and sixth terms are re-written) are

error = Δ𝑡− Δ𝑎
2!

𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ (Δ𝑡)2 − (Δ𝑎)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ · · · + (Δ𝑡)𝑛−1 − (Δ𝑎)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ · · ·

(4.15)

where induction is used to derive the 𝑛th-order term. By choosing Δ𝑡 = Δ𝑎, all terms

on the right-hand side of (4.12) cancel, proving that this finite difference scheme has no

discretization error.

For Δ𝑡 = Δ𝑎, the finite difference expression (4.7) simplifies to

𝑓 𝑗
𝑖+1 = 𝑓 𝑗−1

𝑖 . (4.16)

This difference equation is an analytical solution to the population balance model (4.6).

Writing in terms of the original variables, this expression is

𝑓(𝑡𝑖 + Δ𝑡, 𝑎) = 𝑓(𝑡𝑖, 𝑎− Δ𝑡). (4.17)
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Applying this equation for 𝑡0 = 0 and 𝑖 = 1 gives

𝑓(𝑡1, 𝑎) = 𝑓(𝑡0, 𝑎− 𝑡1) = 𝑓0(𝑎− 𝑡1), (4.18)

which is

𝑓(𝑡, 𝑎) = 𝑓0(𝑎− 𝑡) (4.19)

for 𝑡 = 𝑡1 – the exact analytical solution to (4.6). This expression is exact for any value of

Δ𝑡. Writing the equation for 𝑖 = 2 gives

𝑓(𝑡2, 𝑎) = 𝑓(𝑡1, 𝑎− (𝑡2 − 𝑡1)) = 𝑓(𝑡0, 𝑎− (𝑡2 − 𝑡1) − 𝑡1) = 𝑓0(𝑎− 𝑡2), (4.20)

which is the exact analytical expression (4.30) for 𝑡 = 𝑡2. Although the above numerical

analysis treated all of the Δ𝑡 to be equal, to simplify the analysis, we see that the numerical

method gives the exact analytical solutions for nonuniform Δ𝑡, as long as Δ𝑎𝑖 is set equal

to Δ𝑡𝑖.

The above finite difference expression is very cheap, as it does not actually involve any

floating point operations, e.g., plus, minus, multiplication, or division. Instead, the algorithm

just shifts the elements in the vector whose elements are 𝑓 𝑗
𝑖 by one position.

4.2.2 Case 2: Population Balance Models with Constant Growth

Rate

Next let’s analyze the homogeneous population balance model in which 𝐺 = 𝑔 constant,

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝑔
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.21)

over the real domains 𝑡 ≥ 0 and 𝑎 ≥ 0. This population balance model arises when the

driving force for growth is constant. A common example is in crystallization where 𝑎 is the

crystal size and the supersaturation that appears in the growth rate is held constant by a

feedback control system to provide high molecular purity while suppressing nucleation (e.g.,

see [3, 6, 19,41,54,65–67] and citations therein).
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The population balance model (4.21) can be transformed to be the same as the cell

population balance model (4.6) by redefining the time coordinate as 𝑡 = 𝑔𝑡, in which case

the same finite difference method results in zero discretization error. The below analysis

avoids that transformation, so as to clearly show how the growth rate enters into the exact

cancellation of discretization error and the numerical stability condition.

Applying the finite difference scheme yields

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 + 𝑔
𝑓 𝑗

𝑖 − 𝑓 𝑗−1
𝑖

Δ𝑎 = 0. (4.22)

Inserting the Taylor series for 𝑓 in (4.10) and (4.11) into this equation gives the discretization

error of

error = 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 + 𝑔
𝑓 𝑗

𝑖 − 𝑓 𝑗−1
𝑖

Δ𝑎

= 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ 𝑔
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ Δ𝑡
2
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡,𝑎

− 𝑔Δ𝑎
2

𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ (Δ𝑡)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ 𝑔(Δ𝑎)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ · · · + (Δ𝑡)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ (−1)𝑛−1 𝑔(Δ𝑎)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ · · · (4.23)

As before, the first two terms on the right-hand side sum to 0 according to (4.21).

Furthermore, successive derivatives of (4.21) can be taken and rearranged to yield

𝑔
𝜕2𝑓

𝜕𝑎2 = 1
𝑔

𝜕2𝑓

𝜕𝑡2
(4.24)

𝑔
𝜕3𝑓

𝜕𝑎3 = − 1
𝑔2
𝜕3𝑓

𝜕𝑡3
(4.25)

such that the remaining terms in (4.23) (if the fourth and sixth terms are rewritten) are

error = 1
2

(︃
Δ𝑡− Δ𝑎

𝑔

)︃
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡,𝑎

+ 1
3!

(︃
(Δ𝑡)2 − (Δ𝑎)2

𝑔2

)︃
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · ·+ 1
𝑛!

(︃
(Δ𝑡)𝑛−1 − (Δ𝑎)𝑛−1

𝑔𝑛−1

)︃
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡,𝑎

+· · ·

(4.26)

where induction is used to derive the 𝑛th-order derivative. Choosing Δ𝑎 = 𝑔Δ𝑡 results in

the cancellation of the remaining terms on the right-hand side of (4.23), showing that the

finite difference approximation results in no numerical discretization error.
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The choice of Δ𝑎 = 𝑔Δ𝑡 is exactly the Courant–Friedrichs–Lewy (CFL) necessary con-

dition [5] for numerical stability of a finite difference method for the population balance

model (4.21). The above analysis shows that the CFL condition not only provides numerical

stability but also results in zero discretization error.

The above and subsequent analyses apply independent of the boundary conditions and so

hold for any physically meaningful boundary conditions, e.g., for the birth of cells at 𝑎 = 0.

For Δ𝑎 = 𝑔Δ𝑡, the finite difference expression (4.22) simplifies to

𝑓 𝑗
𝑖+1 = 𝑓 𝑗−1

𝑖 (4.27)

This difference equation is an analytical solution to the population balance model (4.21).

Writing in terms of the original variables, this expression is

𝑓(𝑡𝑖 + Δ𝑡, 𝑎) = 𝑓(𝑡𝑖, 𝑎− 𝑔Δ𝑡). (4.28)

Applying this equation for 𝑡0 = 0 and 𝑖 = 1 gives

𝑓(𝑡1, 𝑎) = 𝑓(𝑡0, 𝑎− 𝑔𝑡1) = 𝑓0(𝑎− 𝑔𝑡1), (4.29)

which is

𝑓(𝑡, 𝑎) = 𝑓0(𝑎− 𝑔𝑡) (4.30)

for 𝑡 = 𝑡1 – the exact analytical solution to (4.6). This expression is exact for any value of

Δ𝑡. Writing the equation for 𝑖 = 2 gives

𝑓(𝑡2, 𝑎) = 𝑓(𝑡1, 𝑎− 𝑔(𝑡2 − 𝑡1)) = 𝑓(𝑡0, 𝑎− 𝑔(𝑡2 − 𝑡1) − 𝑔𝑡1) = 𝑓0(𝑎− 𝑔𝑡2), (4.31)

which is the exact analytical expression (4.30) for 𝑡 = 𝑡2. Although the above numerical

analysis treated all of the Δ𝑡 to be equal, to simplify the analysis, we see that the numerical

method gives the exact analytical solutions for nonuniform Δ𝑡, as long as Δ𝑎𝑖 is set equal

to 𝑔Δ𝑡𝑖.

As above, the finite difference expression only requires a memory reallocation.
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4.2.3 Case 3: Population Balance Models with Growth Rate 𝐺(𝑎)

Next, let’s analyze the homogeneous population balance in which 𝐺 = 𝐺(𝑎) such that

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.32)

with 𝐺(𝑎) continuous in 𝑎 and 𝐺(𝑎) > 0, ∀𝑎 (similar results can be derived for the case where

𝐺(𝑎) < 0,∀𝑎 by a small change in the discretization scheme). The expression 𝐺(𝑎) models

size-dependent growth, which has been heavily studied in the literature on precipitation and

crystallization, e.g., see [1, 2, 4, 22, 23] and citations therein. When 𝑎 is the age of a growing

cell, then 𝐺(𝑎) ̸= 0 models age-dependent growth.

The first step in the zero-error finite difference method for solving (4.32) is to multiply

the population balance model (4.32) by 𝐺(𝑎) and define a new variable 𝑓 = 𝐺(𝑎)𝑓(𝑡, 𝑎), to

give
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺(𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.33)

The second step is to define a change in variables of

�̃� =
∫︁ 𝑎

0
𝐺(�̂�)𝑑�̂� (4.34)

and

𝑓(𝑡, �̃�) = 𝑓(𝑡, 𝑎), (4.35)

which results in the transformed population balance model

𝜕𝑓(𝑡, �̃�)
𝜕𝑡

+ 𝜕𝑓(𝑡, �̃�)
𝜕�̃�

= 0, 𝑓(0, �̃�) = 𝑓0(�̃�). (4.36)

The PDE is just the cell population balance model, to which the numerical discretization can

be applied to produce zero discretization error. For a growth rate that is always positive or

always negative, (4.34) can be solved off-line and used afterwards to map the 𝑓(𝑡, �̃�) values,

to calculate the values 𝑓(𝑡, 𝑎) with zero error. This method can also be applied to growth

rates that can have any value, including zero, by (1) splitting the simulation into segments in

which the value of 𝐺(𝑎) is positive, negative, or zero in each segment, (2) applying the finite
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difference method to each segment, and (3) subsequently summing the resulting solutions.

The below analysis directly applies the finite difference discretization to (4.33), which

shows that the method has a graceful increase in numerical error when applied without first

applying the suggested change of variables.

Applying the aforementioned finite difference scheme results in

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+𝐺(𝑎𝑗)

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= 0. (4.37)

The Taylor series expansions for 𝑓 in terms of 𝑡 and 𝑎, respectively, are

𝑓(𝑡𝑖+Δ𝑡𝑖, 𝑎𝑗) = 𝑓(𝑡𝑖, 𝑎𝑗)+Δ𝑡𝑖
𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑡𝑖)2

2!
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑡𝑖)3

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·+(Δ𝑡𝑖)𝑛

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·

(4.38)

𝑓(𝑡𝑖, 𝑎𝑗−Δ𝑎𝑗) = 𝑓(𝑡𝑖, 𝑎𝑗)−Δ𝑎𝑗
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑎𝑗)2

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−(Δ𝑎𝑗)3

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·+(−1)𝑛 (Δ𝑎𝑗)𝑛

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·

(4.39)

Insertion of these expansions into (4.37) results in a discretization error of

error = 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+𝐺(𝑎𝑗)

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝐺(𝑎𝑗)
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ Δ𝑡𝑖
2!

𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− 𝐺(𝑎𝑗)
Δ𝑎𝑗

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑡𝑖)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+𝐺(𝑎𝑗)
(Δ𝑎𝑗)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · + (Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛−1 (Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.40)

The sum of the first two terms on the right-hand side is zero due to (4.33). Taking successive

derivatives of (4.33) gives
𝜕2𝑓

𝜕𝑡2
= −𝐺(𝑎) 𝜕

2𝑓

𝜕𝑡𝜕𝑎
, (4.41)

𝐺(𝑎)𝜕
2𝑓

𝜕𝑎2 = − 𝜕2𝑓

𝜕𝑡𝜕𝑎
− 𝑑𝐺

𝑑𝑎

𝜕𝑓

𝜕𝑎
, (4.42)

𝜕3𝑓

𝜕𝑡3
= −𝐺(𝑎) 𝜕3𝑓

𝜕𝑡2𝜕𝑎
, (4.43)
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and

𝐺(𝑎)𝜕
3𝑓

𝜕𝑎3 = − 𝜕3𝑓

𝜕𝑡𝜕𝑎2 − 𝑑2𝐺

𝑑𝑎2
𝜕𝑓

𝜕𝑎
− 2𝑑𝐺

𝑑𝑎

𝜕2𝑓

𝜕𝑎2 . (4.44)

Insertion of these expressions into (4.40), and applying induction for the 𝑛th-order derivatives

gives

error = −𝐺(𝑎𝑗)
Δ𝑡𝑖
2!

𝜕2𝑓

𝜕𝑡𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ Δ𝑎𝑗

2!

[︃
𝜕2𝑓

𝜕𝑡𝜕𝑎
+ 𝑑𝐺

𝑑𝑎

𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−𝐺(𝑎𝑗)
(Δ𝑡𝑖)2

3!
𝜕3𝑓

𝜕𝑡2𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− (Δ𝑎𝑗)2

3!

[︃
𝜕3𝑓

𝜕𝑡𝜕𝑎2 + 𝑑2𝐺

𝑑𝑎2
𝜕𝑓

𝜕𝑎
+ 2𝑑𝐺

𝑑𝑎

𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

−𝐺(𝑎𝑗)
(Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛−1𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛 (Δ𝑎𝑗)𝑛−1

𝑛!

[︃
𝜕𝑛𝑓

𝜕𝑡𝜕𝑎𝑛−1 +
𝑛−1∑︁
𝑘=1

𝑐𝑛
𝑘

𝑑𝑘𝐺

𝑑𝑎𝑘

𝜕𝑛−𝑘𝑓

𝜕𝑎𝑛−𝑘

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

(4.45)

where the binomial coefficient 𝑐𝑛
𝑘 is given by

𝑐𝑛
𝑘 = (𝑛− 1)!

(𝑛− 𝑘 − 1)!𝑘! , ∀𝑘 = 1, 2, . . . , 𝑛− 1. (4.46)

Choosing Δ𝑎𝑗 = 𝐺(𝑎𝑗)Δ𝑡𝑖 results in the expression

error = 𝐺(𝑎𝑗)
Δ𝑡𝑖
2!

[︃
𝑑𝐺

𝑑𝑎

𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−𝐺2(𝑎𝑗)
(Δ𝑡𝑖)2

3!

[︃
1

𝐺(𝑎𝑗)
𝜕3𝑓

𝜕𝑡2𝜕𝑎
+ 𝜕3𝑓

𝜕𝑡𝜕𝑎2 + 𝑑2𝐺

𝑑𝑎2
𝜕𝑓

𝜕𝑎
+ 2𝑑𝐺

𝑑𝑎

𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·

−𝐺𝑛−1(𝑎𝑗)
(Δ𝑡𝑖)𝑛−1

𝑛!

[︃
1

𝐺𝑛−2(𝑎𝑗)
𝜕𝑛𝑓

𝜕𝑡𝑛−1𝜕𝑎
+ (−1)𝑛−1

(︃
𝜕𝑛𝑓

𝜕𝑡𝜕𝑎𝑛−1 +
𝑛−1∑︁
𝑘=1

𝑐𝑛
𝑘

𝑑𝑘𝐺

𝑑𝑎𝑘

𝜕𝑛−𝑘𝑓

𝑑𝑎𝑛−𝑘

)︃
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

(4.47)

Taking the partial derivative of (4.42) with respect to 𝑡 gives

𝐺(𝑎) 𝜕3𝑓

𝜕𝑡𝜕𝑎2 = − 𝜕3𝑓

𝜕𝑡2𝜕𝑎
− 𝑑𝐺

𝑑𝑎

𝜕2𝑓

𝜕𝑡𝜕𝑎
, (4.48)

which can be rearranged to

1
𝐺(𝑎)

𝜕3𝑓

𝜕𝑡2𝜕𝑎
+ 𝜕3𝑓

𝜕𝑡𝜕𝑎2 = − 1
𝐺(𝑎)

𝑑𝐺

𝑑𝑎

𝜕2𝑓

𝜕𝑡𝜕𝑎
. (4.49)
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Insertion of this expression into the error (4.47) results in

error = 𝐺(𝑎𝑗)
Δ𝑡𝑖
2!

[︃
𝑑𝐺

𝑑𝑎

𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−𝐺2(𝑎𝑗)
(Δ𝑡𝑖)2

3!

[︃
− 1
𝐺

𝑑𝐺

𝑑𝑎

𝜕2𝑓

𝜕𝑡𝜕𝑎
+ 𝑑2𝐺

𝑑𝑎2
𝜕𝑓

𝜕𝑎
+ 2𝑑𝐺

𝑑𝑎

𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

−𝐺𝑛−1(𝑎𝑗)
(Δ𝑡𝑖)𝑛−1

𝑛!

[︃
1

𝐺𝑛−2(𝑎𝑗)
𝜕𝑛𝑓

𝜕𝑡𝑛−1𝜕𝑎
+ (−1)𝑛−1

(︃
𝜕𝑛𝑓

𝜕𝑡𝜕𝑎𝑛−1 +
𝑛−1∑︁
𝑘=1

𝑐𝑛
𝑘

𝑑𝑘𝐺

𝑑𝑎𝑘

𝜕𝑛−𝑘𝑓

𝑑𝑎𝑛−𝑘

)︃⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

(4.50)

The overall discretization error is first order when the growth rate varies with 𝑎, with the

first-order term being proportional to 𝑑𝐺/𝑑𝑎. Consistent with the zero error observed for

constant 𝐺 in Case 2, the second-order term is equal to zero for 𝑑𝑛𝐺/𝑑𝑎𝑛 = 0. We know

from the error analysis for Case 2 that all of the higher order terms are also equal to zero

for 𝑑𝑛𝐺/𝑑𝑎𝑛 = 0.

The above error expression shows that the discretization error continuously transitions

from first-order accurate to zero error as 𝑑𝑛𝐺/𝑑𝑎𝑛 decreases. As the change in growth rate

with respect to 𝑎 approaches zero, the discretization error approaches zero, which motivates

the use of the aforementioned finite difference approach for the population balance model

(4.33) for Case 3 as long as the growth rate has a weak dependancy on 𝑎.

The choice of Δ𝑎𝑗 = 𝐺(𝑎𝑗)Δ𝑡𝑖 is exactly the Courant–Friedrichs–Lewy (CFL) necessary

condition [5] for numerical stability of a finite difference method for the population balance

model (4.33) evaluated for the current value of 𝑎 = 𝑎𝑗 whenever the discretization formula

(4.37) is applied. This above analysis shows that the CFL condition not only provides nu-

merical stability but also, when applied in the right way, discretization error that approaches

zero as 𝑑𝑛𝐺/𝑑𝑎𝑛 approaches zero.

The above and subsequent analyses apply independent of the boundary conditions and so

hold for any physically meaningful boundary conditions, e.g., for the nucleation of crystals

at some small size.

For the choice Δ𝑎𝑗 = 𝐺(𝑎𝑗)Δ𝑡𝑖, the finite difference expression (4.37) simplifies to

𝑓 𝑗
𝑖+1 = 𝑓 𝑗−1

𝑖 . (4.51)
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As above, the finite difference expression only requires a memory reallocation.

4.2.4 Case 4: Population Balance Models with Time-Varying Growth

Rate 𝐺(𝑡)

Next, let’s analyze the homogeneous population balance model with time-varying growth

rate,
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺(𝑡)𝑓(𝑡, 𝑎))
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.52)

The growth rate can be pulled outside of the partial derivative with respect to 𝑎, to give

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺(𝑡)𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎) (4.53)

over the real domains 𝑡 ≥ 0 and 𝑎 ≥ 0 with 𝐺(𝑡) continuous in 𝑡 and 𝐺(𝑡) > 0,∀𝑡. This

population balance model is applicable to populations of varying driving force, e.g., growing

crystals or precipitants under conditions of varying supersaturation [52], or growing cells in

bioreactors with varying nutrients or substrate concentrations [51,70].

The first step of the finite difference method is to define

𝑡 =
∫︁ 𝑡

0
𝐺(𝑡)𝑑𝑡 (4.54)

and

𝑓(𝑡, 𝑎) = 𝑓(𝑡, 𝑎) (4.55)

and use a change in variables to derive the transformed population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.56)

which is just the cell population balance model to which the numerical discretization can

be applied to produce zero discretization error. For a growth rate that is always positive or

always negative, (4.54) can be solved off-line and used afterwards to map the 𝑓(𝑡, 𝑎) values,

to the calculate the values 𝑓(𝑡, 𝑎) with zero error. This method can also be applied to growth
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rates that can have any value, including zero, by (1) splitting the simulation into segments in

which the value of 𝐺(𝑡) is positive, negative, or zero in each segment, (2) applying the finite

difference method to each segment, and (3) subsequently summing the resulting solutions.

The below analysis directly applies the finite difference discretization to (4.53) to show

that numerical error behaves benignly when the growth rate is time varying.

Applying the finite difference scheme yields

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+𝐺(𝑡𝑖)

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= 0. (4.57)

The function 𝑓 can be expanded with Taylor series in 𝑡 and 𝑎 to give

𝑓(𝑡𝑖+Δ𝑡𝑖, 𝑎𝑗) = 𝑓(𝑡𝑖, 𝑎𝑗)+Δ𝑡𝑖
𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑡𝑖)2

2!
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑡𝑖)3

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·+(Δ𝑡𝑖)𝑛

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·

(4.58)

𝑓(𝑡𝑖, 𝑎𝑗−Δ𝑎𝑗) = 𝑓(𝑡𝑖, 𝑎𝑗)−Δ𝑎𝑗
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑎𝑗)2

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−(Δ𝑎𝑗)3

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·+(−1)𝑛−1 (Δ𝑎𝑗)𝑛

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·

(4.59)

Insertion of these expansions into (4.57) yields

error = 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+𝐺(𝑡𝑖)

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+𝐺(𝑡𝑖)
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ Δ𝑡𝑖
2!

𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−𝐺(𝑡𝑖)
Δ𝑎𝑗

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑡𝑖)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+𝐺(𝑡𝑖)
(Δ𝑎𝑗)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · + (Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛−1𝐺(𝑡𝑖)
(Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

(4.60)

The first two terms on the right-hand side sum to zero according to (4.53), and taking

successive derivatives of (4.53) and rearranging results in the expressions,

𝜕2𝑓

𝜕𝑡2
= −𝑑𝐺

𝑑𝑡

𝜕𝑓

𝜕𝑎
−𝐺(𝑡) 𝜕

2𝑓

𝜕𝑡𝜕𝑎
, (4.61)
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𝐺(𝑡)𝜕
2𝑓

𝜕𝑎2 = − 𝜕2𝑓

𝜕𝑡𝜕𝑎
, (4.62)

𝜕3𝑓

𝜕𝑡3
= −𝑑2𝐺

𝑑𝑡2
𝜕𝑓

𝜕𝑎
− 2𝑑𝐺

𝑑𝑡

𝜕2𝑓

𝜕𝑡𝜕𝑎
−𝐺(𝑡) 𝜕3𝑓

𝜕𝑡2𝜕𝑎
, (4.63)

and

𝐺(𝑡)𝜕
3𝑓

𝜕𝑎3 = − 𝜕3𝑓

𝜕𝑡𝜕𝑎2 . (4.64)

Substituting these expressions into (4.60) results in

error = −Δ𝑡𝑖
2!

[︃
𝑑𝐺

𝑑𝑡

𝜕𝑓

𝜕𝑎
+𝐺(𝑡) 𝜕

2𝑓

𝜕𝑡𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ Δ𝑎𝑗

2!
𝜕2𝑓

𝜕𝑡𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− (Δ𝑡𝑗)2

3!

[︃
𝑑2𝐺

𝑑𝑡2
𝜕𝑓

𝜕𝑎
+ 2𝑑𝐺

𝑑𝑡

𝜕2𝑓

𝜕𝑡𝜕𝑎
+𝐺(𝑡) 𝜕3𝑓

𝜕𝑡2𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− (Δ𝑎𝑗)2

3!
𝜕3𝑓

𝜕𝑡𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

− (Δ𝑡𝑖)𝑛−1

𝑛!

[︃
𝑛−1∑︁
𝑘=0

𝑐𝑛
𝑘

𝑑𝑘𝐺(𝑡)
𝑑𝑡𝑘

𝜕𝑛−𝑘𝑓

𝜕𝑡𝑛−1−𝑘𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛−1 (Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝜕𝑎𝑛−1

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.65)

where 𝑐𝑛
𝑘 is the binomial coefficient

𝑐𝑛
𝑘 = (𝑛− 1)!

(𝑛− 𝑘 − 1)!𝑘! , ∀𝑘 = 0, 1, 2, . . . , 𝑛− 1. (4.66)

Choosing Δ𝑎𝑗 = 𝐺(𝑡𝑖)Δ𝑡𝑖 and some rearrangement results in

error = −Δ𝑡𝑖
2!

[︃
𝑑𝐺

𝑑𝑡

𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− (Δ𝑡𝑖)2

3!

[︃
𝑑2𝐺

𝑑𝑡2
𝜕𝑓

𝜕𝑎
+ 2𝑑𝐺

𝑑𝑡

𝜕2𝑓

𝜕𝑡𝜕𝑎
+𝐺(𝑡) 𝜕3𝑓

𝜕𝑡2𝜕𝑎
+𝐺2(𝑡) 𝜕3𝑓

𝜕𝑡𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · − (Δ𝑡𝑖)𝑛−1

𝑛!

[︃(︃
𝑛−1∑︁
𝑘=0

𝑐𝑛
𝑘

𝑑𝑘𝐺

𝑑𝑡𝑘
𝜕𝑛−𝑘𝑓

𝜕𝑡𝑛−1−𝑘𝜕𝑎

)︃
+ (−1)𝑛−1𝐺𝑛−1(𝑡) 𝜕𝑛𝑓

𝜕𝑡𝜕𝑎𝑛−1

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.67)

which shows that the numerical discretization error is first order in Δ𝑡𝑖 and approaches zero

error as 𝐺(𝑡) approaches a constant value.

Taking the partial derivative of (4.61) with respect to 𝑎 gives

𝜕3𝑓

𝜕𝑡2𝜕𝑎
= −𝑑𝐺

𝑑𝑡

𝜕𝑓

𝜕𝑎2 −𝐺(𝑡) 𝜕2𝑓

𝜕𝑡𝜕𝑎2 . (4.68)
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Multiplying by 𝐺(𝑡) gives

𝐺(𝑡) 𝜕3𝑓

𝜕𝑡2𝜕𝑎
= −𝐺(𝑡)𝑑𝐺

𝑑𝑡

𝜕𝑓

𝜕𝑎2 −𝐺2(𝑡) 𝜕2𝑓

𝜕𝑡𝜕𝑎2 , (4.69)

which can be inserted into the error (4.67) to give

error = −Δ𝑡𝑖
2!

[︃
𝑑𝐺

𝑑𝑡

𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− (Δ𝑡𝑖)2

3!

[︃
𝑑2𝐺

𝑑𝑡2
𝜕𝑓

𝜕𝑎
+ 2𝑑𝐺

𝑑𝑡

𝜕2𝑓

𝜕𝑡𝜕𝑎
−𝐺(𝑡)𝑑𝐺

𝑑𝑡

𝜕𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

− (Δ𝑡𝑖)𝑛−1

𝑛!

[︃(︃
𝑛−1∑︁
𝑘=0

𝑐𝑛
𝑘

𝑑𝑘𝐺

𝑑𝑡𝑘
𝜕𝑛−𝑘𝑓

𝜕𝑡𝑛−1−𝑘𝜕𝑎

)︃
+ (−1)𝑛−1𝐺𝑛−1(𝑡) 𝜕𝑛𝑓

𝜕𝑡𝜕𝑎𝑛−1

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.70)

The overall discretization error is first order when the growth rate varies with 𝑡, with

the first-order term being proportional to 𝑑𝐺/𝑑𝑡. Consistent with the zero error observed

for constant 𝐺 in Case 2, the second-order term is equal to zero for 𝑑𝑛𝐺/𝑑𝑡𝑛 = 0. We know

from the error analysis for Case 2 that all of the higher order terms are also equal to zero

for 𝑑𝑛𝐺/𝑑𝑡𝑛 = 0.

The above error expression shows that the discretization error continuously transitions

from first-order accurate to zero error as 𝑑𝑛𝐺/𝑑𝑡𝑛 decreases. As the growth rate with respect

to 𝑎 approaches zero, the discretization error approaches zero, which motivates the use of

the aforementioned finite difference approach for the population balance model (4.53) for

Case 4 as long as the growth rate has a weak dependency on 𝑡.

The choice of Δ𝑎𝑗 = 𝐺(𝑡𝑖)Δ𝑡𝑖 is exactly the CFL necessary condition [5] for numerical

stability of a finite difference method for the population balance model (4.53) evaluated for

the current value of 𝑡 = 𝑡𝑖 whenever the discretization formula (4.57) is applied. This above

analysis shows that the CFL condition not only provides numerical stability but also, when

applied in the right way, discretization error that approaches zero as 𝑑𝑛𝐺/𝑑𝑡𝑛 approaches

zero.

The finite difference expression is the same as in Cases 1 to 3.
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4.2.5 Case 5: Population Balance Models with Separable Time-

and Size-dependent Growth Rate

This section shows how zero discretization error is achieved for the population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺𝑡(𝑡)𝐺𝑎(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.71)

in which the growth rate is separable. Nearly all growth rates reported in the literature

have this form, in which the growth rates 𝐺(𝑡, 𝑎) can be written as the product of time- and

size-dependent algebraic functions [20].

The first step in the finite difference method is pull the 𝐺𝑡(𝑡) outside of the partial

derivative with respect to 𝑎, define

𝑡 =
∫︁ 𝑡

0
𝐺𝑡(𝑡)𝑑𝑡 (4.72)

and

𝑓(𝑡, 𝑎) = 𝑓(𝑡, 𝑎), (4.73)

and use a change in variables to derive the transformed population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺𝑎(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.74)

The next step is to multiply the equations by 𝐺𝑎(𝑎) to give

𝐺𝑎(𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺𝑎(𝑎)𝜕(𝐺𝑎(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= 0, 𝐺𝑎(𝑎)𝑓(0, 𝑎) = 𝐺𝑎(𝑎)𝑓0(𝑎). (4.75)

Define a new variable

𝑓(𝑡, 𝑎) = 𝐺𝑎(𝑎)𝑓(𝑡, 𝑎)) (4.76)

and pull the 𝐺𝑎(𝑎) into the partial with respect to 𝑡 in the first term of the PDE to give

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺𝑎(𝑎)𝜕(𝑓(𝑡, 𝑎))
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.77)
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The next step is to define the change in variables

�̃� =
∫︁ 𝑎

0
𝐺𝑎(�̂�)𝑑�̂� (4.78)

and

𝑓(𝑡, �̃�) = 𝑓(𝑡, 𝑎), (4.79)

which results in the transformed population balance model

𝜕𝑓(𝑡, �̃�)
𝜕𝑡

+ 𝜕𝑓(𝑡, �̃�)
𝜕�̃�

= 0, 𝑓(0, �̃�) = 𝑓0(�̃�). (4.80)

The PDE is just the cell population balance model, to which the numerical discretization

method can be applied to produce zero discretization error. For a growth rate that is

always positive or always negative, (4.34) can be solved off-line and used afterwards to map

the 𝑓(𝑡, �̃�) values, to calculate the values 𝑓(𝑡, 𝑎) with zero error. This method can also

be applied to growth rates that can have any value, including zero, by (1) splitting the

simulation into segments in which the value of 𝐺𝑎(𝑎) and 𝐺𝑡(𝑎) are positive, negative, or

zero in each segment, (2) applying the finite difference method to each segment, and (3)

subsequently summing the resulting solutions.

The numerical analysis for the situation in which the numerical discretization is directly

applied intermediate transformed population balance models is not derived here, as the

results would look like the concatenation of the results of the previous two sections.

The finite difference expression is the same as in Cases 1 to 4.

4.2.6 Case 6: Nonhomogeneous Population Balance Models with

Constant Growth

This section considers the effect of including nonhomogeneous terms within the population

balance model. To simplify the analysis while still being able to make all of the main points,

consider the case of constant growth,

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝑔
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= ℎ(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.81)
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Let’s first analyze the case in which ℎ is a constant,

𝜕𝑓

𝜕𝑡
+ 𝑔

𝜕𝑓

𝜕𝑎
= ℎ. (4.82)

Applying the numerical discretization yields

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= ℎ. (4.83)

Substituting the Taylor series expansions of 𝑓 ,

𝑓(𝑡𝑖+Δ𝑡𝑖, 𝑎𝑗) = 𝑓(𝑡𝑖, 𝑎𝑗)+Δ𝑡𝑖
𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑡𝑖)2

2!
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑡𝑖)3

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·+(Δ𝑡𝑖)𝑛

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·

(4.84)

and

𝑓(𝑡𝑖, 𝑎𝑗−Δ𝑎𝑗) = 𝑓(𝑡𝑖, 𝑎𝑗)−Δ𝑎𝑗
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑎𝑗)2

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−(Δ𝑎𝑗)3

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·+(−1)𝑛 (Δ𝑎𝑗)𝑛

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+· · ·

(4.85)

into (4.83) gives

error = −ℎ+ 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= −ℎ+ 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝑔
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ Δ𝑡𝑖
2!

𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− 𝑔
Δ𝑎𝑗

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑡𝑖)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝑔
(Δ𝑎𝑗)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · + (Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛−1𝑔
(Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

. (4.86)

Equation (4.82) implies that the sum of the first three terms on the right-hand side is zero,

and taking successive derivatives of (4.82) yields

𝜕2𝑓

𝜕𝑡2
+ 𝑔

𝜕2𝑓

𝜕𝑎𝜕𝑡
= 0 and 𝜕2𝑓

𝜕𝑡𝜕𝑎
+ 𝑔

𝜕2𝑓

𝜕𝑎2 = 0 −→ 𝜕2𝑓

𝜕𝑡2
− 𝑔2𝜕

2𝑓

𝜕𝑎2 = 0 −→ 𝑔
𝜕2𝑓

𝜕𝑎2 = 1
𝑔

𝜕2𝑓

𝜕𝑡2

−→ 𝑔
𝜕3𝑓

𝜕𝑎3 = 1
𝑔

𝜕3𝑓

𝜕𝑎𝜕𝑡2
(4.87)
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𝜕2𝑓

𝜕𝑡2
+ 𝑔

𝜕2𝑓

𝜕𝑎𝜕𝑡
= 0 −→ 𝜕3𝑓

𝜕𝑡3
+ 𝑔

𝜕3𝑓

𝜕𝑎𝜕𝑡2
= 0 −→ 𝜕3𝑓

𝜕𝑎𝜕𝑡2
= −1

𝑔

𝜕3𝑓

𝜕𝑡3
(4.88)

Insertion of the rightmost equation in (4.88) into (4.87) gives

𝑔
𝜕3𝑓

𝜕𝑎3 = − 1
𝑔2
𝜕3𝑓

𝜕𝑡3
. (4.89)

Substituting the boxed equations and their generalization derived by induction into (4.86)

gives

error = 1
2!

(︃
Δ𝑡𝑖 − Δ𝑎𝑗

𝑔

)︃
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 1
3!

⎛⎝(Δ𝑡𝑖)2 −
(︃

Δ𝑎𝑗

𝑔

)︃2
⎞⎠𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · + 1
𝑛!

⎛⎝(Δ𝑡𝑖)𝑛−1 −
(︃

Δ𝑎𝑗

𝑔

)︃𝑛−1
⎞⎠𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.90)

Choosing Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 allows the cancellation of the remaining terms on the right-hand side,

showing that the finite difference method results in no numerical discretization error.

Now let’s consider the case where ℎ = ℎ(𝑎) such that the population balance model (4.81)

can be written as
𝜕𝑓

𝜕𝑡
+ 𝑔

𝜕𝑓

𝜕𝑎
= ℎ(𝑎). (4.91)

Applying the numerical discretization scheme results in

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= ℎ(𝑎𝑗) (4.92)

Substituting the Taylor expansions for 𝑓 in (4.84) and (4.85) into the finite difference ap-

proximation yields

error = −ℎ(𝑎𝑗) + 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= −ℎ(𝑎𝑗) + 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝑔
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ Δ𝑡𝑖
2!

𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− 𝑔
Δ𝑎𝑗

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑡𝑖)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝑔
(Δ𝑎𝑗)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · + (Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛−1𝑔
(Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.93)
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Equation (4.91) implies that the first three terms sum to zero, and taking successive deriva-

tives of (4.91) yields

𝜕2𝑓

𝜕𝑡2
+𝑔 𝜕

2𝑓

𝜕𝑎𝜕𝑡
= 0 and 𝜕2𝑓

𝜕𝑡𝜕𝑎
+𝑔𝜕

2𝑓

𝜕𝑎2 = 𝑑ℎ

𝑑𝑎
−→ 𝜕2𝑓

𝜕𝑡2
−𝑔2𝜕

2𝑓

𝜕𝑎2 +𝑔𝑑ℎ
𝑑𝑎

= 0 −→ 𝑔
𝜕2𝑓

𝜕𝑎2 = 1
𝑔

𝜕2𝑓

𝜕𝑡2
+ 𝑑ℎ

𝑑𝑎

−→ 𝑔
𝜕3𝑓

𝜕𝑎3 = 1
𝑔

𝜕3𝑓

𝜕𝑎𝜕𝑡2
+ 𝑑2ℎ

𝑑𝑎2 (4.94)

𝜕2𝑓

𝜕𝑡2
+ 𝑔

𝜕2𝑓

𝜕𝑎𝜕𝑡
= 0 −→ 𝜕3𝑓

𝜕𝑡3
+ 𝑔

𝜕3𝑓

𝜕𝑎𝜕𝑡2
= 0 −→ 𝜕3𝑓

𝜕𝑎𝜕𝑡2
= −1

𝑔

𝜕3𝑓

𝜕𝑡3
(4.95)

Insertion of the rightmost equation in (4.95) into (4.94) gives

𝑔
𝜕3𝑓

𝜕𝑎3 = − 1
𝑔2
𝜕3𝑓

𝜕𝑡3
+ 𝑑2ℎ

𝑑𝑎2 . (4.96)

The expression for the error (4.93) can be simplified by using the boxed equations to give

error = 1
2!

(︃
Δ𝑡𝑖 − Δ𝑎𝑗

𝑔

)︃
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− Δ𝑎𝑗

2!
𝑑ℎ

𝑑𝑎

⃒⃒⃒⃒
⃒
𝑎𝑗

+ 1
3!

⎛⎝(Δ𝑡𝑖)2 −
(︃

Δ𝑎𝑗

𝑔

)︃2
⎞⎠𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑎𝑗)2

3!
𝑑2ℎ

𝑑𝑎2

⃒⃒⃒⃒
⃒
𝑎𝑗

+ · · · + 1
𝑛!

⎛⎝(Δ𝑡𝑖)𝑛−1 −
(︃

Δ𝑎𝑗

𝑔

)︃𝑛−1
⎞⎠𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛 (Δ𝑎𝑗)𝑛−1

𝑛!
𝑑𝑛−1ℎ

𝑑𝑎𝑛−1

⃒⃒⃒⃒
⃒
𝑎𝑗

+ · · ·

(4.97)

Choosing Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 cancels of all of the terms on the right-hand side that involve deriva-

tives of 𝑓 , to give

error = −Δ𝑎𝑗

2!
𝑑ℎ

𝑑𝑎

⃒⃒⃒⃒
⃒
𝑎𝑗

+ (Δ𝑎𝑗)2

3!
𝑑2ℎ

𝑑𝑎2

⃒⃒⃒⃒
⃒
𝑎𝑗

+ · · · + (−1)𝑛 (Δ𝑎𝑗)𝑛−1

𝑛!
𝑑𝑛−1ℎ

𝑑𝑎𝑛−1

⃒⃒⃒⃒
⃒
𝑎𝑗

+ · · · (4.98)

The remaining terms depend on successively higher order derivatives of ℎ(𝑎). While the

error is strictly first-order accurate in Δ𝑎𝑗, the error approaches zero as the dependancy

of the nonhomogeneous term ℎ on age becomes weaker. The coefficients converge to zero

faster at higher orders as the nonhomogeneous term becomes smoother. In applications, the

nonhomogeneous term is typically a smooth function of 𝑎, and the higher order terms would

become zero. For example, consider the case in which ℎ(𝑎) has a mild quadratic curvature,
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e.g., ℎ(𝑎) = 1+0.1𝑎+0.01𝑎2. Then [𝑑ℎ/𝑑𝑡|𝑎𝑗
= 0.1+0.02𝑎𝑗, 𝑑2ℎ/𝑑𝑡2 = 0.01, and 𝑑𝑛ℎ/𝑑𝑡𝑛 = 0

for all 𝑛 > 2. The coefficient in the first-order term is small, the coefficient in the second

order term is smaller, and the coefficients of the higher order terms are exactly equal to zero.

For completeness, the finite difference scheme (4.92) for Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 simplifies to

𝑓 𝑗
𝑖+1 = 𝑓 𝑗−1

𝑖 + ℎ(𝑎𝑗)Δ𝑡𝑖. (4.99)

In contrast to Cases 1 to 4, this finite difference expression require one summation, one

multiplication, and one function evaluation – in addition to the memory reallocation. The

computational cost remains very low compared to numerical algorithms reported in the

literature for simulating population balance models.

Next, let’s analyze the case in which the nonhomogeneous term in the population balance

model (4.81) is time varying,
𝜕𝑓

𝜕𝑡
+ 𝑔

𝜕𝑓

𝜕𝑎
= ℎ(𝑡). (4.100)

The finite difference approximation is

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= ℎ(𝑡𝑖). (4.101)

Substituting the Taylor expansions for 𝑓 in (4.84) and (4.85) into the finite difference ex-

pression yields

error = 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

− ℎ(𝑡𝑖)

= −ℎ(𝑡𝑖)+
𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+𝑔 𝜕𝑓
𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+Δ𝑡𝑖
2!

𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

−𝑔Δ𝑎𝑗

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+(Δ𝑡𝑖)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+𝑔 (Δ𝑎𝑗)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · + (Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (−1)𝑛−1𝑔
(Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.102)

The first three terms on the right-hand side sum to zero according to (4.100). Taking
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successive derivatives of the PDE (4.100) gives

𝜕2𝑓

𝜕𝑎𝜕𝑡
+𝑔𝜕

2𝑓

𝜕𝑎2 = 0 and 𝜕2𝑓

𝜕𝑡2
+𝑔 𝜕

2𝑓

𝜕𝑡𝜕𝑎
= 𝑑ℎ

𝑑𝑡
−→ 𝑔

𝜕2𝑓

𝜕𝑎2 = 1
𝑔

𝜕2𝑓

𝜕𝑡2
− 1
𝑔

𝑑ℎ

𝑑𝑡
−→ 𝑔

𝜕3𝑓

𝜕𝑎3 = 1
𝑔

𝜕3𝑓

𝜕𝑎𝜕𝑡2

(4.103)
𝜕2𝑓

𝜕𝑡2
+ 𝑔

𝜕2𝑓

𝜕𝑡𝜕𝑎
= 𝑑ℎ

𝑑𝑡
−→ 𝜕3𝑓

𝜕𝑡3
+ 𝑔

𝜕3𝑓

𝜕2𝑡𝜕𝑎
= 𝑑2ℎ

𝑑𝑡2
−→ 1

𝑔

𝜕3𝑓

𝜕2𝑡𝜕𝑎
= 1
𝑔2
𝑑2ℎ

𝑑𝑡2
− 1
𝑔2
𝜕3𝑓

𝜕𝑡3
(4.104)

−→ 𝑔
𝜕3𝑓

𝜕𝑎3 = 1
𝑔2
𝑑2ℎ

𝑑𝑡2
− 1
𝑔2
𝜕3𝑓

𝜕𝑡3
, (4.105)

which can be used to simplify the error expression to

error = 1
2!

(︃
Δ𝑡𝑖 − Δ𝑎𝑗

𝑔

)︃
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 1
2!

Δ𝑎𝑗

𝑔

𝑑ℎ

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖

+ 1
3!

⎛⎝(Δ𝑡𝑖)2 −
(︃

Δ𝑎𝑗

𝑔

)︃2
⎞⎠𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 1
3!

(︃
Δ𝑎𝑗

𝑔

)︃2
𝑑2ℎ

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖

+ · · · + 1
𝑛!

⎛⎝(Δ𝑡𝑖)𝑛−1 −
(︃

Δ𝑎𝑗

𝑔

)︃𝑛−1
⎞⎠𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 1
𝑛!

(︃
Δ𝑎𝑗

𝑔

)︃𝑛−1
𝑑𝑛−1ℎ

𝑑𝑡𝑛−1

⃒⃒⃒⃒
⃒
𝑡𝑖

+ · · · (4.106)

Choosing Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 cancels all of the terms involving derivatives of 𝑓 , to give

error = 1
2!

Δ𝑎𝑗

𝑔

𝑑ℎ

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖

+ 1
3!

(︃
Δ𝑎𝑗

𝑔

)︃2
𝑑2ℎ

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖

+ · · · + 1
𝑛!

(︃
Δ𝑎𝑗

𝑔

)︃𝑛−1
𝑑𝑛−1ℎ

𝑑𝑡𝑛−1

⃒⃒⃒⃒
⃒
𝑡𝑖

+ · · · (4.107)

which can alternatively be written as

error = Δ𝑡𝑖
2!

𝑑ℎ

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖

+ Δ𝑡2𝑖
3!

𝑑2ℎ

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖

+ · · · + Δ𝑡𝑛−1
𝑖

𝑛!
𝑑𝑛−1ℎ

𝑑𝑡𝑛−1

⃒⃒⃒⃒
⃒
𝑡𝑖

+ · · · (4.108)

The error is first order in Δ𝑎𝑗 with the coefficients on higher order terms becoming smaller

as ℎ(𝑡) becomes smoother.

For Δ𝑎𝑗 = 𝑔Δ𝑡𝑖, the finite difference expression (4.101) simplifies to

𝑓 𝑗
𝑖+1 = 𝑓 𝑗−1

𝑖 + ℎ(𝑡𝑖)Δ𝑡𝑖, (4.109)

which has the same low computational cost as for an age-dependent forcing function.

Finally, consider the case in which ℎ = ℎ(𝑡, 𝑎) where the PDE (4.81) and the discretized
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population balance model, respectively, are

𝜕𝑓

𝜕𝑡
+ 𝑔

𝜕𝑓

𝜕𝑎
= ℎ(𝑡, 𝑎) (4.110)

and
𝑓 𝑗

𝑖+1 − 𝑓 𝑗
𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= ℎ(𝑡𝑖, 𝑎𝑗). (4.111)

Substituting the Taylor expansions for 𝑓 in (4.84) and (4.85) also into the finite difference

expression yields

error = 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

− ℎ(𝑡𝑖, 𝑎𝑗)

= −ℎ(𝑡𝑖, 𝑎𝑗) + 𝜕𝑓

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝑔
𝜕𝑓

𝜕𝑎

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ Δ𝑡𝑖
2!

𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− 𝑔
Δ𝑎𝑗

2!
𝜕2𝑓

𝜕𝑎2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑡𝑖)2

3!
𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝑔
(Δ𝑎𝑗)2

3!
𝜕3𝑓

𝜕𝑎3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · + (Δ𝑡𝑖)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 𝑔(−1)𝑛−1 (Δ𝑎𝑗)𝑛−1

𝑛!
𝜕𝑛𝑓

𝜕𝑎𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.112)

Equation (4.110) implies that the first three terms on the right-hand side sum to zero. Taking

successive derivatives of (4.110) yields

𝜕2𝑓

𝜕𝑡2
+ 𝑔

𝜕2𝑓

𝜕𝑡𝜕𝑎
= 𝜕ℎ

𝜕𝑡
and 𝜕2𝑓

𝜕𝑎𝜕𝑡
+ 𝑔

𝜕2𝑓

𝜕𝑎2 = 𝜕ℎ

𝜕𝑎
−→ 𝑔

𝜕2𝑓

𝜕𝑎2 = 𝜕ℎ

𝜕𝑎
− 1
𝑔

𝜕ℎ

𝜕𝑡
+ 1
𝑔

𝜕2𝑓

𝜕𝑡2

−→ 𝑔
𝜕3𝑓

𝜕𝑎3 = 𝜕2ℎ

𝜕𝑎2 − 1
𝑔

𝜕2ℎ

𝜕𝑎𝜕𝑡
+ 1
𝑔

𝜕3𝑓

𝜕𝑎𝜕𝑡2
(4.113)

and

𝜕2𝑓

𝜕𝑡2
+ 𝑔

𝜕2𝑓

𝜕𝑡𝜕𝑎
= 𝜕ℎ

𝜕𝑡
−→ 𝜕3𝑓

𝜕𝑡3
+ 𝑔

𝜕3𝑓

𝜕𝑡2𝜕𝑎
= 𝜕2ℎ

𝜕𝑡2
−→ 1

𝑔

𝜕3𝑓

𝜕𝑎𝜕𝑡2
= 1
𝑔2
𝜕2ℎ

𝜕𝑡2
− 1
𝑔2
𝜕3𝑓

𝜕𝑡3
. (4.114)

Combining and rearranging the latter two PDEs gives

𝑔
𝜕3𝑓

𝜕𝑎3 = 𝜕2ℎ

𝜕𝑎2 − 1
𝑔

𝜕2ℎ

𝜕𝑡𝜕𝑎
+ 1
𝑔2
𝜕2ℎ

𝜕𝑡2
− 1
𝑔2
𝜕3𝑓

𝜕𝑡3
(4.115)
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Substituting the boxed equations into (4.112) and rearranging gives

error = 1
2!

(︃
Δ𝑡𝑖 − Δ𝑎𝑗

𝑔

)︃
𝜕2𝑓

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

− Δ𝑎𝑗

2!

[︃
𝜕ℎ

𝜕𝑎
− 1
𝑔

𝜕ℎ

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ 1
3!

⎛⎝(Δ𝑡𝑖)2 −
(︃

Δ𝑎𝑗

𝑔

)︃2
⎞⎠𝜕3𝑓

𝜕𝑡3

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑎𝑗)2

3!

[︃
𝜕2ℎ

𝜕𝑎2 − 1
𝑔

𝜕2ℎ

𝜕𝑡𝜕𝑎
+ 1
𝑔2
𝜕2ℎ

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · ·

+ 1
𝑛!

⎛⎝(Δ𝑡𝑖)𝑛−1 −
(︃

Δ𝑎𝑗

𝑔

)︃𝑛−1
⎞⎠𝜕𝑛𝑓

𝜕𝑡𝑛

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑎𝑗)𝑛−1

𝑛!

[︃
𝑛−1∑︁
𝑘=0

(−1)𝑘

𝑔𝑘

𝜕𝑛−1ℎ

𝜕𝑡𝑘𝜕𝑎𝑛−𝑘−1

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.116)

Choosing Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 cancels all the terms involving derivatives of 𝑓 ,

error = Δ𝑎𝑗

2!

[︃
−𝜕ℎ

𝜕𝑎
+ 1
𝑔

𝜕ℎ

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑎𝑗)2

3!

[︃
𝜕2ℎ

𝜕𝑎2 − 1
𝑔

𝜕2ℎ

𝜕𝑡𝜕𝑎
+ 1
𝑔2
𝜕2ℎ

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ (Δ𝑎𝑗)𝑛−1

𝑛!

[︃
𝑛−1∑︁
𝑘=0

(−1)𝑘

𝑔𝑘

𝜕𝑛−1ℎ

𝜕𝑡𝑘𝜕𝑎𝑛−𝑘−1

⃒⃒⃒⃒
⃒
𝑡𝑖,𝑎𝑗

+ · · · (4.117)

The error is technically first order in Δ𝑎𝑗, with the coefficients being sums of successively

higher order derivatives of the nonhomogeneous term ℎ with respect to 𝑡 and 𝑎. The dis-

cretization error approaches higher order accuracy as the nonhomgeneous term varies more

slowly with respect with 𝑡 and 𝑎.

The choice Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 simplifies the finite difference expression (4.111) to

𝑓 𝑗
𝑖+1 = 𝑓 𝑗−1

𝑖 + ℎ(𝑡𝑖, 𝑎𝑗)Δ𝑡𝑖, (4.118)

which has the same low computational cost as when the forcing function is an explicit

function of only age or time.
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4.2.7 Case 7: Population Balance Models with Linear Nonhomo-

geneous Term

A large proportion of population balance models have a linear nonhomogenous term, e.g.,

Von Foerster’s equation [60],

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆(𝑡, 𝑎)𝑓(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.119)

Let’s first illustrate the finite difference method for the case in which 𝜆 is a constant. The

first step is to multiply the population balance model by 𝑒𝜆𝑡,

𝑒𝜆𝑡𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝑒𝜆𝑡𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆𝑒𝜆𝑡𝑓(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.120)

and do the replacement

𝜕

𝜕𝑡
(𝑒𝜆𝑡𝑓(𝑡, 𝑎)) = 𝜆𝑒𝜆𝑡𝑓(𝑡, 𝑎) + 𝑒𝜆𝑡𝜕𝑓(𝑡, 𝑎)

𝜕𝑡
(4.121)

to derive
𝜕

𝜕𝑡
(𝑒𝜆𝑡𝑓(𝑡, 𝑎)) + 𝜕

𝜕𝑎
(𝑒𝜆𝑡𝑓(𝑡, 𝑎)) = 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.122)

Defining

𝑓(𝑡, 𝑎) = 𝑒𝜆𝑡𝑓(𝑡, 𝑎) (4.123)

results in the homogeneous cell population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.124)

which was solved as Case 1. This approach is basically the same as the integrating factor

employed in the analytical solution of first-order ordinary differential equations. This method

applies to 𝜆 being a function of 𝑎 or 𝑡, with a slight tweak to the definitions.

For example, consider

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆(𝑡)𝑓(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.125)
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Multiply the population balance model by exp
(︁∫︀ 𝑡

0 𝜆(𝑡)𝑑𝑡
)︁

to give

exp
(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+exp
(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆(𝑡) exp
(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝑓(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0,

(4.126)

and do the replacement

𝜕

𝜕𝑡

(︂
exp

(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝑓(𝑡, 𝑎)

)︂
= 𝜆(𝑡) exp

(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝑓(𝑡, 𝑎) + exp

(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

(4.127)

to derive

𝜕

𝜕𝑡

(︂
exp

(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝑓(𝑡, 𝑎)

)︂
+ 𝜕

𝜕𝑎

(︂
exp

(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝑓(𝑡, 𝑎)

)︂
= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.128)

Defining

𝑓(𝑡, 𝑎) = exp
(︂∫︁ 𝑡

0
𝜆(𝑡)𝑑𝑡

)︂
𝑓(𝑡, 𝑎) (4.129)

results in the homogeneous cell population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.130)

which was solved as Case 1.

The case of 𝜆 being a function of 𝑎 is handled similarly. Consider

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆(𝑎)𝑓(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.131)

Multiply the population balance model by exp(
∫︀ 𝑎

0 𝜆(�̃�)𝑑�̃�) to give

exp
(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+exp
(︂∫︁ 𝑎

0
𝜆(𝑡)𝑑�̃�

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆(𝑎) exp
(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝑓(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0,

(4.132)

and do the replacement

𝜕

𝜕𝑎

(︂
exp

(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝑓(𝑡, 𝑎)

)︂
= 𝜆(𝑎) exp

(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝑓(𝑡, 𝑎) + exp

(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

(4.133)
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to derive

𝜕

𝜕𝑡

(︂
exp

(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝑓(𝑡, 𝑎)

)︂
+ 𝜕

𝜕𝑎

(︂
exp

(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝑓(𝑡, 𝑎)

)︂
= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.134)

Defining

𝑓(𝑡, 𝑎) = exp
(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝑓(𝑡, 𝑎) (4.135)

results in the homogeneous cell population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = exp
(︂∫︁ 𝑎

0
𝜆(�̃�)𝑑�̃�

)︂
𝑓0(𝑎), (4.136)

which was solved as Case 1.

The case where 𝜆 is a function of both 𝑡 and 𝑎 can be handled in a similiar manner as

when 𝜆 is a function only of 𝑡,

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.137)

Multiply the population balance model by exp
(︁∫︀ 𝑡

0 𝜆(𝑡, 𝑎)𝑑𝑡
)︁

to give

exp
(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ exp
(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= −𝜆(𝑡, 𝑎) exp
(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝑓(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0, (4.138)

and do the replacement

𝜕

𝜕𝑡

(︂
exp

(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝑓(𝑡, 𝑎)

)︂
= 𝜆(𝑡, 𝑎) exp

(︂∫︁ 𝑡

0
𝜆𝑡(𝑡, 𝑎)𝑑𝑡

)︂
𝑓(𝑡, 𝑎)

+ exp
(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

(4.139)

to derive

𝜕

𝜕𝑡

(︂
exp

(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝑓(𝑡, 𝑎)

)︂
+ 𝜕

𝜕𝑎

(︂
exp

(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝑓(𝑡, 𝑎)

)︂
= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (4.140)
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Defining

𝑓(𝑡, 𝑎) = exp
(︂∫︁ 𝑡

0
𝜆(𝑡, 𝑎)𝑑𝑡

)︂
𝑓(𝑡, 𝑎) (4.141)

results in the homogeneous cell population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (4.142)

which was solved as Case 1.

The above transformation approach can be applied to the other population balance mod-

els investigated in this chapter.

The finite difference method can be shown to also have zero discretization error for

population balance models with multiple internal coordinates (where 𝑎 is a vector) and

external coordinates (where 𝑥 is the axial distance along a plug-flow vessel). Since population

balance models have the same form as reaction-convection-diffusion equations, the same zero-

error finite difference method also applies to those systems when the same assumptions are

made.

4.3 Conclusions

In this chapter, we proposed a finite difference scheme for the solution of a general class of

population balance models. The chapter pedagogically progresses through increasingly more

complicated population balance models, demonstrating how the proposed finite difference

method can be applied to obtain no numerical discretization error, through the use of some

transformations. Further, when applied directly to more general PBEs, we have derived

error expressions which show that the error is first order, transitioning to zero order as the

growth rate and non-homogeneous terms become smoother functions of 𝑎.

Typically, the study of finite difference methods to solve population balance models fo-

cuses on developing inceasingly more complicated and higher order accurate finite difference

methods, which can result in the numerical solution becoming increasingly more compu-

tationally expensive. Furthermore, these higher ordered methods are subject to aphysical

oscillations that do not appear in first order or zero error solutions such as that proposed in
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this chapter.

By specifically choosing to apply a first-order forward difference for the time derivative

and a first-order backward difference for the derivative with respect to the intrinsic variable,

the numerical discretization error is reduced to zero in homogeneous population balances

with constant growth rate, 𝐺. In more complicated systems in which the growth rate varies

with time or the intrinsic variable or a non-homogeneous forcing function is present, the error

expressions developed here demonstrate how the discretization error that results from the

application of the difference scheme behaves benignly. This indicates that the finite difference

scheme analyzed here is applicable to a wide variety of industrially relevant problems.
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Chapter 5

Analytical Solutions of Population

Balance Models

Many chemical and biological processes are well-described by population balance models, in

which the main state is a distribution over some property such as age, length, or mass. This

chapter derives analytical solutions for some classes of population balance models, which

can be applied directly in specific applications within those classes, or used as limiting cases

for the validation of numerical methods applicable to more general systems. The analytical

solutions are also used to prove that the finite difference method in the previous chapter

gives zero error for those classes.

Population balance models are widely used for describing population dynamics, which

arise in a variety of chemical and biological applications. This chapter derives analytical

solutions for some classes of population balance models that commonly appears in these

applications, namely, to populations of biological cells and crystals. The analytical solutions

are derived in a tutorial manner, as the specific steps in the derivations are more widely

applicable than the specific applications themselves. The analytical solutions are also com-

pared with a more general analytical solution whose published theoretical derivation is more

complicated than the derivations given in this chapter.

Analytical solutions are not available for all population balance models, and numerical

methods remain as the only approach for those PBMs in which analytical solutions are not

available. A large literature derives finite difference methods for the numerical simulation of
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population balance models, as well as for more general partial differential equations, with the

goal being to minimize numerical errors associated with the finite difference approximations

(e.g., see [20,22,32–34,39,50,68] and citations therein). Especially important for this class of

partial differential equations is the need to reduce numerical diffusion (i.e., smearing of the

numerical solution compared to the true solution) and numerical dispersion (i.e., oscillations

in the numerical solution that do not arise in the true solution).

The previous chapter describes a finite difference method with no discretization error

for the simulation of classes of population balance models that arise in many applications,

with the proofs of zero error based on Taylor series expansions. As an alternative approach,

this chapter applies the analytical solutions to prove that the finite difference method in the

previous chapter produces zero discretization error. The advantages of the proofs in this

chapter are that they are much shorter and require less algebra; the advantages of the proofs

in the previous chapter are that they do not require knowledge of the analytical solutions

and require less sophisticated mathematics.

Section 5.1 describes species and population balance models. Section 5.2 presents ana-

lytical solutions to the population balance models, which are applied in Section 5.3 to prove

that the numerical method in the previous chapter has zero discretization error. Section 5.4

concludes the chapter.

5.1 Species and Population Balance Models

Species balances for spatially well-mixed systems can be written as ordinary differential

equations (ODEs),
𝑑𝑓(𝑡)
𝑑𝑡

= ℎ̂(𝑡, 𝑓), (5.1)

where 𝑓 is the species density, 𝑡 is time, and ℎ̂ is a forcing function which can be a function

of 𝑓 and 𝑡.

When a species has an additional intrinsic variable, such as age or size, the partial
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differential equation (PDE) corresponding to the ODE model is

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺(𝑡, 𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= ℎ̂(𝑡, 𝑎, 𝑓), (5.2)

which describes the time evolution of the distribution of 𝑓 with respect to 𝑎, where 𝑎 is the

additional intrinsic variable and 𝐺 = 𝑑𝑎/𝑑𝑡 is the rate of change of the intrinsic variable

with respect to time. For example, for cell population balance models in which the variable

𝑎 is the cell age, 𝐺 = 1. When the intrinsic variable 𝑎 is the size or mass of the cell, or the

number or concentration of organelles within a cell, then 𝐺 is more generally describable by

a constant or a function of 𝑎 and/or 𝑡. The forcing function ℎ can also be a function of the

intrinsic variable 𝑎.

In most applications, the 𝐺(𝑡, 𝑎) in the population balance model (5.2) is separable, that

is, can be written as 𝐺(𝑡, 𝑎) = 𝐺𝑡(𝑡)𝐺𝑎(𝑎). In this case, the PDE can be transformed by

multiplication by 𝐺𝑎(𝑎) to give

𝐺𝑎(𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺𝑎(𝑎)𝜕(𝐺𝑡(𝑡)𝐺𝑎(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= 𝐺𝑎(𝑎)ℎ̂(𝑡, 𝑎, 𝑓), (5.3)

which can be written as

𝜕(𝐺𝑎(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑡

+𝐺𝑎(𝑎)𝐺𝑡(𝑡)
𝜕(𝐺𝑎(𝑎)𝑓(𝑡, 𝑎))

𝜕𝑎
= 𝐺𝑎(𝑎)ℎ̂(𝑡, 𝑎, 𝑓), (5.4)

With the definitions 𝑓(𝑡, 𝑎) = 𝐺𝑎(𝑎)𝑓(𝑡, 𝑎) and ℎ(𝑡, 𝑎) = 𝐺𝑎(𝑎)ℎ̂(𝑡, 𝑎, 𝑓), this equation sim-

plifies to
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺𝑎(𝑎)𝐺𝑡(𝑡)
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= ℎ(𝑡, 𝑎, 𝑓), (5.5)

which has the form
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺(𝑡, 𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= ℎ(𝑡, 𝑎, 𝑓), (5.6)

in which the growth rate is outside of the partial with respect to 𝑎. The rest of this chapter

assumes that the growth rate 𝐺(𝑡, 𝑎) is separable, so the population balance model can be

written as (5.5).
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5.2 Analytical Solutions

Analytical solutions for special cases of the population balance model have been available

for decades and new solutions continue to be derived. An example of the latter is a 2020

paper published in Scientific Reports which considered the population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺𝑓(𝑡, 𝑎))
𝜕𝑎

= 𝐷
𝜕2𝑓

𝜕𝑎2 − 𝑘𝑎+ ℎ̂(𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎), (5.7)

where 𝐺, 𝐷, and 𝑘 are constant growth rate, diffusivity, and kinetic constant; and ℎ̂ is a

forcing function which can be age dependent. Analytical solutions are provided for various

choices of boundary conditions over finite or semi-infinite domains for 𝑎, e.g.,

𝑓(𝑡, 0) = 𝑓𝑡(𝑡), lim
𝑡→∞

𝜕𝑓

𝜕𝑎
= 0. (5.8)

Here we consider a population balance model with growth rate and forcing function that

depend on 𝑎:
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= ℎ̂(𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎). (5.9)

An exact analytical solution to this population balance model is [53]

𝑓(𝑡, 𝑎) = 𝐺[𝜆(𝑡, 𝑎)]
𝐺(𝑎) 𝑓0[𝜆(𝑡, 𝑎)] + 1

𝐺(𝑎)

∫︁ 𝑎

𝜆(𝑡,𝑎)
ℎ̂(�̃�)𝑑�̃�, (5.10)

where 𝜆 and 𝑄 are defined by

𝜆(𝑡, 𝑎) := 𝑧−1[𝑧(𝑎) − 𝑡] (5.11)

and

𝑧(𝑎) :=
∫︁ 1
𝐺(𝑎)𝑑𝑎. (5.12)

This analytical solution requires that the growth rate is positive, the system contains no

aggregation or breakage, and any birth or death rates are not explicit functions of time. The

analytical expression (5.10) was derived by a combination of a novel transformation and the

method of characteristics (e.g., [15, 45] and citations therein).

This section applies simple variable transformations and the method of characteristics to
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derive exact analytical solutions for some population balance models with time- and size-

dependent growth rate. The derivations of the analytical solutions are very similar to [53],

with some analytical solutions being less general in some ways and some being more general

in some ways than (5.10). In particular, some of the analytical solutions are applicable to

population balance models with time-dependent and negative growth rates, although with

the restriction that ℎ(𝑎) = 0. In all cases, the resulting expressions are simpler than (5.10).

The methods are presented in a pedigogical way, starting with a simple population balance

model to clearly illustrate the approach, before moving to a more complex population balance

model.

Let’s first consider the homogeneous version of the population balance model (5.9):

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (5.13)

with 𝐺(𝑎) > 0.1 Multiplying by 𝐺(𝑎) and defining a new function 𝑓 (e.g., [20]) by

𝑓(𝑡, 𝑎) = 𝐺(𝑎)𝑓(𝑡, 𝑎), (5.14)

allows the PDE (5.13) to be written as

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺(𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓0(0, 𝑎) = 𝐺(𝑎)𝑓0(𝑎). (5.15)

If 𝑓 is assumed to be parameterizable in terms of a single characteristic variable 𝑠, then

𝑑𝑓

𝑑𝑠
= 𝜕𝑓

𝜕𝑡

𝑑𝑡

𝑑𝑠
+ 𝜕𝑓

𝜕𝑎

𝑑𝑎

𝑑𝑠
. (5.16)

Mapping the individual terms in the expressions in (5.13) and (5.16) results in the charac-

teristic equations
𝑑𝑡

𝑑𝑠
= 1, (5.17)

𝑑𝑎

𝑑𝑠
= 𝐺(𝑎), (5.18)

1This assumption is removed later.
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and
𝑑𝑓

𝑑𝑠
= 0. (5.19)

Being able to find a solution to these equations would confirm the validity of the assump-

tion that 𝑓 is parameterizable in terms of a single characteristic variable. Integrating the

characteristic equations gives

𝑡 = 𝑠+ 𝑐1 (5.20)∫︁ 𝑎

0

1
𝐺(�̃�)𝑑�̃� = 𝑠+ 𝑐2, (5.21)

and

𝑓 = 𝑓 * (5.22)

where 𝑓 * cannot depend on the characteristic variable 𝑠. Without loss of generality, the

constant 𝑐1 can be set to zero so that 𝑠 is the same as the time variable, 𝑡 = 𝑠. With the

definition 𝑎0 := 𝑎|𝑠=0, (5.51) implies that 𝑎0 must satisfy

∫︁ 𝑎0

0

1
𝐺(�̃�)𝑑�̃� = 𝑐2, (5.23)

which implies some relationships between 𝑎0 and 𝑎 and 𝑡:

∫︁ 𝑎

0

1
𝐺(�̃�)𝑑�̃� = 𝑡+

∫︁ 𝑎0

0

1
𝐺(�̃�)𝑑�̃�, (5.24)

∫︁ 𝑎

𝑎0

1
𝐺(�̃�)𝑑�̃� = 𝑡. (5.25)

Evaluating the initial condition for 𝑓(𝑡, 𝑎) in (5.15) at 𝑡 = 0 and 𝑎 = 𝑎0 gives that

𝑓(𝑡, 𝑎) = 𝑓(0, 𝑎0) = 𝐺(𝑎0)𝑓0(𝑎0) (5.26)

for any value of 𝑎0 > 0.

If 𝑎0 in (5.25) is analytically solvable in terms of 𝑎 and 𝑡, then that expression for 𝑎0

can be inserted into the right-hand side of (5.26) to produce an analytical solution for the

transformed population balance model (5.15). To construct an analytical expression for 𝑎0
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in (5.26), first define a function

𝑧(𝑎) =
∫︁ 𝑎

0

1
𝐺(�̃�)𝑑�̃�, (5.27)

which is one-to-one for any positive function 𝐺(𝑎).2 Then (5.25) can be written as

𝑧(𝑎) − 𝑧(𝑎0) = 𝑡, (5.28)

which can be solved for 𝑎0 as

𝑎0 = 𝑧−1[𝑧(𝑎) − 𝑡]. (5.29)

Insertion into (5.26) gives the analytical solution of the population balance model (5.13) as

𝑓(𝑡, 𝑎) = 𝐺(𝑧−1[𝑧(𝑎) − 𝑡])𝑓0(𝑧−1[𝑧(𝑎) − 𝑡]), (5.30)

Inserting this expression into (5.14) results in the analytical solution to (5.13):

𝑓(𝑡, 𝑎) = 𝐺(𝑧−1[𝑧(𝑎) − 𝑡])
𝐺(𝑎) 𝑓0(𝑧−1[𝑧(𝑎) − 𝑡]). (5.31)

This analytical solution is a special case of the more general expression (5.10).

Analytical solutions for 𝑧 and 𝑧−1 have been derived for several growth functions, in-

cluding for linear, monosurface, and diffusion-limited [53]. For example, the expressions for

𝐺(𝑎) = 𝑎 are

𝑧(𝑎) =
∫︁ 𝑎

0

1
�̂�
𝑑�̂� = ln 𝑎, (5.32)

𝑧−1(𝑎) = 𝑒𝑎, (5.33)

𝑧−1[𝑧(𝑎) − 𝑡] = exp[ln 𝑎− 𝑡] = 𝑎𝑒−𝑡. (5.34)

2This approach also works if the lower limit is replaced by a different constant, or if any indefinite integral
is used.
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Then the analytical solution of the population balance model (5.13) is

𝑓(𝑡, 𝑎) = 𝐺(𝑧−1[𝑧(𝑎) − 𝑡])
𝐺(𝑎) 𝑓0(𝑧−1[𝑧(𝑎) − 𝑡]) (5.35)

𝑓(𝑡, 𝑎) = 𝐺(𝑎𝑒−𝑡)
𝐺(𝑎) 𝑓0(𝑎𝑒−𝑡) = 𝑒−𝑡𝑓0(𝑎𝑒−𝑡). (5.36)

This expression satisfies the initial condition,

𝑓(0, 𝑎) = 𝑒−0𝑓0(𝑎𝑒−0) = 𝑓0(𝑎). (5.37)

Insertion into the original population balance model (5.13) gives

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝐺(𝑎)𝑓(𝑡, 𝑎))
𝜕𝑎

= 𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕(𝑎𝑓(𝑡, 𝑎))
𝜕𝑎

(5.38)

= 𝜕(𝑒−𝑡𝑓0(𝑎𝑒−𝑡))
𝜕𝑡

+ 𝜕(𝑎𝑒−𝑡𝑓0(𝑎𝑒−𝑡))
𝜕𝑎

(5.39)

= 𝑒−𝑡𝜕𝑓0(𝑎𝑒−𝑡)
𝜕𝑡

+ 𝜕𝑒−𝑡

𝜕𝑡
𝑓0(𝑎𝑒−𝑡) + 𝑎𝑒−𝑡𝜕𝑓0(𝑎𝑒−𝑡)

𝜕𝑎
+ 𝜕(𝑎𝑒−𝑡)

𝜕𝑎
𝑓0(𝑎𝑒−𝑡)

(5.40)

= 𝑒−𝑡𝑓 ′
0(𝑎𝑒−𝑡)(−𝑎𝑒−𝑡) − 𝑒−𝑡𝑓0(𝑎𝑒−𝑡) + 𝑎𝑒−𝑡𝑓 ′

0(𝑎𝑒−𝑡)𝑒−𝑡 + 𝑒−𝑡𝑓0(𝑎𝑒−𝑡)

(5.41)

= 0. (5.42)

An implicit assumption of [53] is that 𝐺(𝑎) is positive, which is required for the 𝑧(𝑎)

and 𝑧−1(𝑎) to be one-to-one functions, and all of the examples in that paper also satisfied

𝐺(𝑎) > 0. Negative 𝐺(𝑎) is common in many applications, including in the dissolution of

crystals and precipitates. The case where 𝐺(𝑎) < 0 is handled in the same way, and the case

in which 𝐺(𝑎) can have any sign can be handled by splitting 𝐺(𝑎) into segments in which

𝐺(𝑎) has a single sign in each segment, and adding the resulting solutions obtained for each

segment.

Let’s consider the population balance model with size- and time-dependent growth rate,

𝜕𝑓

𝜕𝑡
+𝐺𝑡(𝑡)

𝜕(𝐺𝑎(𝑎)𝑓)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (5.43)
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where the time-dependency was moved outside of the partial derivative with respect to 𝑎.

An exact analytical solution can be generated for this case by using the method of

characteristics after dividing through by 𝐺𝑡(𝑡), multiplying through by 𝐺𝑎(𝑎), and defining

a new function 𝑓 ,

𝑓(𝑡, 𝑎) = 𝐺𝑎(𝑎)𝑓(𝑡, 𝑎). (5.44)

Then the original population balance model (5.43) can be written as the transformed popu-

lation balance model

1
𝐺𝑡(𝑡)

𝜕𝑓

𝜕𝑡
+𝐺𝑎(𝑎)𝜕𝑓

𝜕𝑎
= 0, 𝑓0(0, 𝑎) = 𝐺𝑎(𝑎)𝑓0(𝑎). (5.45)

If 𝑓 is assumed to be parameterizable in terms of a single characteristic variable 𝑠, then

𝑑𝑓

𝑑𝑠
= 𝜕𝑓

𝜕𝑡

𝑑𝑡

𝑑𝑠
+ 𝜕𝑓

𝜕𝑎

𝑑𝑎

𝑑𝑠
. (5.46)

Mapping the individual terms in the expressions in (5.45) and (5.46) results in the charac-

teristic equations
𝑑𝑡

𝑑𝑠
= 1
𝐺𝑡(𝑡)

, (5.47)

𝑑𝑎

𝑑𝑠
= 𝐺𝑎(𝑎), (5.48)

and
𝑑𝑓

𝑑𝑠
= 0. (5.49)

Being able to find a solution to these equations would confirm the validity of the assump-

tion that 𝑓 is parameterizable in terms of a single characteristic variable. Integrating the

characteristic equations gives ∫︁ 𝑡

0
𝐺𝑡(𝑡)𝑑𝑡 = 𝑠+ 𝑐1 (5.50)

∫︁ 𝑎

0

1
𝐺𝑎(�̃�)𝑑�̃� = 𝑠+ 𝑐2, (5.51)

and

𝑓 = 𝑓 * (5.52)
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where 𝑓 * cannot depend on the characteristic variable 𝑠. Without loss of generality, the

constant 𝑐1 can be set to zero so that

∫︁ 𝑡

0
𝐺𝑡(𝑡)𝑑𝑡 = 𝑠 (5.53)

The time dependency 𝐺𝑡(𝑡) is assumed to be greater than zero, which implies that 𝑤 is

monotonically increasing.3 With the definition 𝑎0 := 𝑎|𝑠=0, (5.51) implies that 𝑎0 must

satisfy ∫︁ 𝑎0

0

1
𝐺𝑎(�̃�)𝑑�̃� = 𝑐2, (5.54)

which implies some relationships between 𝑎0 and 𝑎 and 𝑡:

∫︁ 𝑎

0

1
𝐺𝑎(�̃�)𝑑�̃� =

∫︁ 𝑡

0
𝐺𝑡(𝑡)𝑑𝑡+

∫︁ 𝑎0

0

1
𝐺𝑎(�̃�)𝑑�̃�, (5.55)

∫︁ 𝑎

𝑎0

1
𝐺𝑎(�̃�)𝑑�̃� =

∫︁ 𝑡

0
𝐺𝑡(𝑡)𝑑𝑡. (5.56)

Evaluating the initial condition for 𝑓(𝑡, 𝑎) in (5.45) at 𝑡 = 0 and 𝑎 = 𝑎0 gives that

𝑓(𝑡, 𝑎) = 𝑓(0, 𝑎0) = 𝐺𝑎(𝑎0)𝑓0(𝑎0) (5.57)

for any value of 𝑎0 > 0.

If 𝑎0 in (5.56) is analytically solvable in terms of 𝑎 and 𝑡, then that expression for 𝑎0

can be inserted into the right-hand side of (5.57) to produce an analytical solution for the

transformed population balance model (5.45). To construct an analytical expression for 𝑎0

in (5.56), first define a function

𝑧(𝑎) =
∫︁ 𝑎

0

1
𝐺𝑎(�̃�)𝑑�̃�, (5.58)

3This assumption can be removed by small revisions to the analysis.
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which is one-to-one for any positive 𝐺(𝑎).4 Then (5.55) can be written as

𝑧(𝑎) − 𝑧(𝑎0) =
∫︁ 𝑡

0
𝐺𝑡(𝑡)𝑑𝑡, (5.59)

which can be solved for 𝑎0 as

𝑎0 = 𝑧−1[𝑧(𝑎) − 𝑤(𝑡)]. (5.60)

Insertion into (5.57) gives the analytical solution of the population balance model (5.45) as

𝑓(𝑡, 𝑎) = 𝐺𝑎(𝑧−1[𝑧(𝑎) −
∫︀ 𝑡

0 𝐺𝑡(𝑡)𝑑𝑡 ])𝑓0(𝑧−1[𝑧(𝑎) −
∫︀ 𝑡

0 𝐺𝑡(𝑡)𝑑𝑡 ]), (5.61)

Inserting this expression into (5.44) results in the analytical solution to (5.43):

𝑓(𝑡, 𝑎) = 𝐺𝑎(𝑧−1[𝑧(𝑎) −
∫︀ 𝑡

0 𝐺𝑡(𝑡)𝑑𝑡])
𝐺𝑎(𝑎) 𝑓0(𝑧−1[𝑧(𝑎) −

∫︀ 𝑡
0 𝐺𝑡(𝑡)𝑑𝑡 ]). (5.62)

This analytical solution generalizes the expression (5.10) to include time-dependent growth

rates, for the special case where the forcing function is zero.

As an example, consider the case where 𝐺𝑡 = 𝑒−𝑡 and 𝐺𝑎(𝑎) = 𝑎. The expression for 𝑠

from (5.53) is ∫︁ 𝑡

0
𝐺𝑡(𝑡)𝑑𝑡 =

∫︁ 𝑡

0
𝑒−𝑡𝑑𝑡 = 1 − 𝑒−𝑡. (5.63)

As before, the expression for 𝑧 and 𝑧−1 for 𝐺(𝑎) = 𝑎 are

𝑧(𝑎) =
∫︁ 𝑎

0

1
�̂�
𝑑�̂� = ln 𝑎, (5.64)

and

𝑧−1(𝑎) = 𝑒𝑎. (5.65)

Then

𝑧−1[𝑧(𝑎) −
∫︀ 𝑡

0 𝐺𝑡(𝑡)𝑑𝑡 ] = exp[ln 𝑎− 1 + 𝑒−𝑡] = 𝑎 exp(𝑒−𝑡 − 1) (5.66)

4This approach also works if the lower limit is replaced by a different constant, or if any indefinite integral
is used.
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Then the analytical solution of the population balance model (5.43) is

𝑓(𝑡, 𝑎) = 𝑎 exp(𝑒−𝑡 − 1)
𝑎

𝑓0(𝑎/𝑡) = exp(𝑒−𝑡 − 1)𝑓0(𝑎 exp(𝑒−𝑡 − 1)). (5.67)

5.3 Numerical Analysis

Finite difference methods approximate the partial differentials on the left-hand side of (5.6).

To reduce the numerical discretization error, that is, the difference between the numerical

approximation described by the discretized equation and the true solution described by the

PDE, the well-established strategy is to use increasingly complicated and higher order accu-

rate finite difference expansions. While this approach reduces the number of discretization

points needed to achieve a specified level of numerical accuracy, the computational cost per

discretization point increases.

The previous chapter takes a different approach, which is to select particular first-order

finite difference expressions for both partial derivative terms and choose the mesh size so

that the sum of the two discretized expressions in the left-hand side (5.6) has zero numerical

discretization error. That chapter also showed that this exact cancellation of errors could

require the mesh size to be age or time dependent. The approach both results in the lowest

cost per discretization point and allows the user to select the number of discretization points

based on the level of detail desired in the solution rather than based on achieving a desired

numerical discretization error. Specifically, a first-order forward difference was employed for

the time differential and a first-order backward difference was used for the differential for

the intrinsic variable 𝑎. This approach, for an appropriately chosen mesh and possibly also

doing a change in variables, resulted in exact cancellation of the error introduced in the

finite difference discretization of the first term in (5.6) by the error introduced in the finite

difference discretization of the second term.

This section applies analytical solutions of the population balance models to provide

alternative proofs of the zero error and related results in the previous chapter.
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5.3.1 Case 1: Cell Population Balance Model

First the approach is illustrated for the homogeneous cell population balance model [60],

that is, with growth rate 𝐺 equal to 1,

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (5.68)

over 𝑎 ∈ ℛ and 𝑡 ≥ 0. Applying the above finite difference scheme yields

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 + 𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎 = 0 (5.69)

where 𝑖 is the time index, 𝑗 is the index for the intrinsic variable, and Δ𝑎 and Δ𝑡 are real

positive scalars. An exact analytical solution to the PDE (5.68) can be derived and is given

by

𝑓(𝑡, 𝑎) = 𝑓0(𝑎− 𝑡), (5.70)

which is proved by
𝜕𝑓

𝜕𝑡
= −𝑓0(𝑎− 𝑡), (5.71)

𝜕𝑓

𝜕𝑎
= 𝑓0(𝑎− 𝑡), (5.72)

𝜕𝑓

𝜕𝑡
+ 𝜕𝑓

𝜕𝑎
= −𝑓0(𝑎− 𝑡) + 𝑓0(𝑎− 𝑡) = 0, (5.73)

and

𝑓0(𝑎− 𝑡)|𝑡=0 = 𝑓0(𝑎). (5.74)

This exact analytical solution can then be substituted into the finite difference approximation

shown in (5.69) to quantify the numerical discretization error:

error = 𝑓0(𝑎− (𝑡+ Δ𝑡)) − 𝑓0(𝑎− 𝑡)
Δ𝑡 + 𝑓0(𝑎− 𝑡) − 𝑓0(𝑎− Δ𝑎− 𝑡)

Δ𝑎 (5.75)

By selecting the mesh sizes so that Δ𝑡 = Δ𝑎, the discretization error satisfies

error = 𝑓0(𝑎− 𝑡− Δ𝑡) − 𝑓0(𝑎− Δ𝑎− 𝑡)
Δ𝑡 = 0, (5.76)
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which shows that the proposed finite difference scheme and mesh selection results in no

numerical discretization error.

5.3.2 Case 2: Population Balance Model with Constant Growth

Rate

Next analyze the homogeneous population balance model in which 𝐺 = 𝑔 is a non-zero

constant,
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝑔
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (5.77)

over 𝑎 ∈ ℛ and 𝑡 ≥ 0. Applying the aforementioned finite difference scheme yields

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 + 𝑔
𝑓 𝑗

𝑖 − 𝑓 𝑗−1
𝑖

Δ𝑎 = 0 (5.78)

An exact analytical solution to (5.77) can be derived as

𝑓(𝑡, 𝑎) = 𝑓0(𝑎− 𝑔𝑡), (5.79)

which is proved by
𝜕𝑓

𝜕𝑡
= −𝑔𝑓0(𝑎− 𝑔𝑡), (5.80)

𝜕𝑓

𝜕𝑎
= 𝑓0(𝑎− 𝑔𝑡), (5.81)

𝜕𝑓

𝜕𝑡
+ 𝑔

𝜕𝑓

𝜕𝑎
= −𝑔𝑓0(𝑎− 𝑔𝑡) + 𝑔𝑓0(𝑎− 𝑔𝑡) = 0, (5.82)

and

𝑓0(𝑎− 𝑔𝑡)|𝑡=0 = 𝑓0(𝑎). (5.83)

The exact analytical solution can then be substituted into the finite difference approxi-

mation in (5.78) to derive an expression for the numerical discretization error:

error = 𝑓0(𝑎− 𝑔(𝑡+ Δ𝑡)) − 𝑓0(𝑎− 𝑔𝑡)
Δ𝑡 + 𝑔

𝑓0(𝑎− 𝑔𝑡) − 𝑓0(𝑎− Δ𝑎− 𝑔𝑡)
Δ𝑎 . (5.84)
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By selecting the mesh for 𝑡 and 𝑎 to satisfy Δ𝑎 = 𝑔Δ𝑡, the error is

error = 𝑓0(𝑎− 𝑔𝑡− 𝑔Δ𝑡)) − 𝑓0(𝑎− Δ𝑎− 𝑔𝑡)
Δ𝑡 = 0, (5.85)

which shows that the finite difference scheme with the selected mesh results in no numerical

discretization error.

5.3.3 Case 3: Population Balance Model for Size-dependent Growth

Next, analyze the transformed homogeneous population balance model (5.15) in which 𝐺 =

𝐺(𝑎),
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺(𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎), (5.86)

with 𝑡 ≥ 0, 𝐺(𝑎) continuous in 𝑎 ∈ ℛ, and 𝐺(𝑎) > 0,∀𝑎.5 Applying the aforementioned

finite difference scheme gives

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+𝐺(𝑎𝑗)

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= 0. (5.87)

Consider the transformation

𝑧(𝑎) =
∫︁ 𝑎

0

1
𝐺(�̃�)𝑑�̃�, (5.88)

which is one-to-one since 𝐺(𝑎) > 0. Then

𝜕𝑧

𝜕𝑎
= 𝑑𝑧

𝑑𝑎
= 1
𝐺(𝑎) (5.89)

and

𝐺(𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 𝐺(𝑎)𝜕𝑓(𝑡, 𝑎)
𝜕𝑧

𝑑𝑧

𝑑𝑎
= 𝐺(𝑎)𝜕𝑓(𝑡, 𝑎)

𝜕𝑧

1
𝐺(𝑎) = 𝜕𝑓(𝑡, 𝑎)

𝜕𝑧
. (5.90)

Then the PDE (5.86) can be rewritten as

𝜕𝑓(𝑡, 𝑧)
𝜕𝑡

+ 𝜕𝑓(𝑡, 𝑧)
𝜕𝑧

= 0, 𝑓(0, 𝑧) = 𝑓𝑧0(𝑧), (5.91)

5Similar results can be derived for the case where 𝐺(𝑎) < 0, ∀𝑎 by a slight tweak in the equations.
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where 𝑓 denotes that 𝑓 has been reparameterized in terms of 𝑡 and 𝑧. If the population bal-

ance model (5.91) is solved numerically or analytically, its solution can be used to construct

the solution (5.86) by using (5.88) to map each value of 𝑧 to 𝑎, that is, to map each triplet

(𝑓, 𝑡, 𝑧) to (𝑓, 𝑡, 𝑧)

Either analytically or numerically invert 𝑧(𝑎) to construct the mapping 𝑧−1(𝑎), which

can be inserted into 𝑓0(𝑎) to construct 𝑓𝑧0(𝑧) = 𝑓0(𝑎(𝑧)). One way to do this inversion

numerically is to plot 𝑧(𝑎) to construct pairs (𝑧𝑖, 𝑎𝑖) and then reorder to give (𝑎𝑖, 𝑧𝑖), aka

𝑎(𝑧).

Equation (5.91) resembles the cell population balance model where 𝐺 = 1 and the ana-

lytical solution was 𝑓(𝑡, 𝑎) = 𝑓0(𝑎− 𝑡), so the analytical solution of (5.91) is

𝑓(𝑡, 𝑧) = 𝑓𝑧0(𝑧 − 𝑡), (5.92)

which can be reparameterized in terms of 𝑎 by replacing 𝑧 with

𝑧(𝑎) =
∫︁ 𝑎

0

1
𝐺(�̂�)𝑑�̂� (5.93)

and using the initial condition parameterized in terms of 𝑎, to give

𝑓(𝑡, 𝑎) = 𝑓𝑧0

(︃∫︁ 𝑎

0

1
𝐺(�̂�)𝑑�̂�− 𝑡

)︃
. (5.94)

The proof that this analytical expression solves the population balance model (??) is by

taking the appropriate partial derivatives and substitutions:

𝜕𝑓

𝜕𝑡
= −𝑓𝑧0

(︃∫︁ 𝑎

0

1
𝐺(�̂�)𝑑�̂�− 𝑡

)︃
, (5.95)

𝜕𝑓

𝜕𝑎
= 1
𝐺(𝑎)𝑓𝑧0

(︃∫︁ 𝑎

0

1
𝐺(�̂�)𝑑�̂�− 𝑡

)︃
, (5.96)

𝜕𝑓

𝜕𝑡
+𝐺(𝑎)𝜕𝑓

𝜕𝑎
= −𝑓𝑧0

(︃∫︁ 𝑎

0

1
𝐺(�̂�)𝑑�̂�− 𝑡

)︃
+ 𝐺(𝑎)
𝐺(𝑎)𝑓𝑧0

(︃∫︁ 𝑎

0

1
𝐺(�̂�)𝑑�̂�− 𝑡

)︃
= 0, (5.97)
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The function 𝑓𝑧0(𝑧) is constructed from 𝑓0(𝑎) by construction:

𝑓𝑧0

(︃∫︁ 𝑎

0

1
𝐺(�̂�)𝑑�̂�− 𝑡

)︃⃒⃒⃒⃒
⃒
𝑡=0

= 𝑓𝑧0(𝑧 − 𝑡)
⃒⃒⃒
𝑡=0

= 𝑓𝑧0(𝑧) = 𝑓0(𝑎). (5.98)

This analysis indicates that the numerical discretization method results in zero error

when applied to the population balance model obtained by change of variables from 𝑎 to 𝑧.

The exact solution for 𝑓(𝑡, 𝑎) is directly computable from 𝑓(𝑡, 𝑧) by the mappings in (5.93)

and (5.98).

5.3.4 Case 4: Population Balance Model With Time-dependent

Growth Rate

Next consider the population balance model with time-varying growth rate 𝐺 = 𝐺(𝑡) >

0,∀𝑡 ≥ 0,
𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+𝐺(𝑡)𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎). (5.99)

Dividing both sides by 𝐺(𝑡) and defining a new variable 𝜏 such that

𝜏 =
∫︁ 𝑡

0
𝐺(𝑡)𝜕𝑡 (5.100)

results in
𝜕𝑓(𝜏, 𝑎)
𝜕𝜏

+ 𝜕𝑓(𝜏, 𝑎)
𝜕𝑎

= 0, 𝑓(0, 𝑎) = 𝑓0(𝑎) = 𝑓0(𝑎), (5.101)

which is the cell population balance model (i.e., has 𝑑𝑎/𝑑𝜏 = 1). The exact analytical

solution of this PDE is

𝑓(𝜏, 𝑎) = 𝑓0(𝑎− 𝜏) = 𝑓0(𝑎− 𝜏) (5.102)

and the solution to the original population balance model (5.99) is

𝑓(𝑡, 𝑎) = 𝑓0

(︂
𝑎−

∫︁ 𝑡

0
𝐺(𝑡)𝑑𝑡

)︂
. (5.103)
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Inserting into the original PDE (5.99) verifies that this analytical solution is correct:

𝜕𝑓

𝜕𝑡
= −𝐺(𝑡)𝑓0

(︂
𝑎−

∫︁ 𝑡

0
𝐺(𝑡)𝑑𝑡

)︂
, (5.104)

𝜕𝑓

𝜕𝑎
= 𝑓0

(︂
𝑎−

∫︁ 𝑡

0
𝐺(𝑡)𝑑𝑡

)︂
, (5.105)

𝜕𝑓

𝜕𝑡
+𝐺(𝑡)𝜕𝑓

𝜕𝑎
= −𝐺(𝑡)𝑓0

(︂
𝑎−

∫︁ 𝑡

0
𝐺(𝑡)𝑑𝑡

)︂
+𝐺(𝑡)𝑓0

(︂
𝑎−

∫︁ 𝑡

0
𝐺(𝑡)𝑑𝑡

)︂
= 0, (5.106)

and

𝑓0

(︂
𝑎−

∫︁ 𝑡

0
𝐺(𝑡)𝑑𝑡

)︂⃒⃒⃒⃒
𝑡=0

= 𝑓0(𝑎). (5.107)

The analysis in Section 5.3.1 shows that the finite difference scheme has zero error for the

population balance model written in terms of 𝜏 and 𝑎, which can be used to construct the

solution to the (5.100).

Applying the finite difference scheme to the original population balance model (5.99)

would have yielded
𝑓 𝑗

𝑖+1 − 𝑓 𝑗
𝑖

Δ𝑡𝑖
+𝐺(𝑡𝑖)

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= 0. (5.108)

Substituting the analytical solution into this discretized PDE gives the combined discretiza-

tion error of

error =
𝑓0
(︁
𝑎−

∫︀ 𝑡𝑖+Δ𝑡𝑖
0 𝐺(𝑡)𝑑𝑡

)︁
− 𝑓0

(︁
𝑎−

∫︀ 𝑡𝑖
0 𝐺(𝑡)𝑑𝑡

)︁
Δ𝑡𝑖

+

𝐺(𝑡𝑖)
𝑓0
(︁
𝑎−

∫︀ 𝑡𝑖
0 𝐺(𝑡)𝑑𝑡

)︁
− 𝑓0

(︁
𝑎− Δ𝑎𝑗 −

∫︀ 𝑡𝑖
0 𝐺(𝑡)𝑑𝑡

)︁
Δ𝑎𝑗

. (5.109)

Choosing Δ𝑎𝑗 = 𝐺(𝑡𝑖)Δ𝑡𝑖 results in

error =
𝑓0
(︁
𝑎−

∫︀ 𝑡+Δ𝑡𝑖
0 𝐺(𝑡)𝑑𝑡

)︁
− 𝑓0

(︁
𝑎−𝐺(𝑡𝑖)Δ𝑡𝑖 −

∫︀ 𝑡𝑖
0 𝐺(𝑡)𝑑𝑡

)︁
Δ𝑡𝑖

. (5.110)

The numerical error in the direct application of the finite difference scheme is zero for all 𝑓0

if and only if ∫︁ 𝑡𝑖+Δ𝑡𝑖

0
𝐺(𝑡)𝑑𝑡 = 𝐺(𝑡𝑖)Δ𝑡𝑖 +

∫︁ 𝑡𝑖

0
𝐺(𝑡)𝑑𝑡 (5.111)
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∫︁ 𝑡𝑖+Δ𝑡𝑖

𝑡𝑖

𝐺(𝑡)𝑑𝑡 = 𝐺(𝑡𝑖)Δ𝑡𝑖 (5.112)

This condition will rarely hold in practice for non-constant 𝐺(𝑡). In contrast, the above

change in variables from 𝑡 to 𝜏 results in zero discretization error when applying the finite

difference scheme to the population balance model for 𝑓(𝜏, 𝑎), which can then be used to

construct 𝑓(𝑡, 𝑎) in the original population balance model (5.99).

5.3.5 Case 5: Non-Homogeneous Population Balance Model With

Constant Growth Rate

Finally, consider the non-homogeneous population balance model

𝜕𝑓(𝑡, 𝑎)
𝜕𝑡

+ 𝑔
𝜕𝑓(𝑡, 𝑎)
𝜕𝑎

= ℎ(𝑡, 𝑎), 𝑓(0, 𝑎) = 𝑓0(𝑎). (5.113)

Applying the discretization scheme yields

𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡𝑖
+ 𝑔

𝑓 𝑗
𝑖 − 𝑓 𝑗−1

𝑖

Δ𝑎𝑗

= ℎ(𝑡𝑖, 𝑎𝑗). (5.114)

First consider the case of constant ℎ. Then the error is

error = 𝑓 𝑗
𝑖+1 − 𝑓 𝑗

𝑖

Δ𝑡 + 𝑔
𝑓 𝑗

𝑖 − 𝑓 𝑗−1
𝑖

Δ𝑎 − ℎ. (5.115)

In this case, the method of characteristics can be used to determine an analytical solution

for 𝑓 ,

𝑓(𝑡, 𝑎) = ℎ𝑡+ 𝑓0(𝑎− 𝑔𝑡), 𝑡 ≥ 0, (5.116)

which is proved by
𝜕𝑓

𝜕𝑡
= ℎ− 𝑔𝑓0(𝑎− 𝑔𝑡), (5.117)

𝜕𝑓

𝜕𝑎
= 𝑓0(𝑎− 𝑔𝑡), (5.118)

𝜕𝑓

𝜕𝑡
+ 𝑔

𝜕𝑓

𝜕𝑎
= ℎ− 𝑔𝑓0(𝑎− 𝑔𝑡) + 𝑔𝑓0(𝑎− 𝑔𝑡) = ℎ, (5.119)
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and

[ℎ𝑡+ 𝑓0(𝑎− 𝑔𝑡)|𝑡=0 = 𝑓0(𝑎). (5.120)

The exact analytical solution can then be substituted into the finite difference approximation

in (5.114) to quantify the numerical discretization error:

error = ℎ𝑡𝑖 + ℎΔ𝑡𝑖 + 𝑓0(𝑎𝑗 − 𝑔𝑡𝑖 − 𝑔Δ𝑡𝑖) − ℎ𝑡𝑖 − 𝑓0(𝑎𝑗 − 𝑔𝑡𝑖)
Δ𝑡𝑖

+ 𝑔
ℎ𝑡𝑖 + 𝑓0(𝑎𝑗 − 𝑔𝑡𝑖) − ℎ𝑡𝑖 − 𝑓0(𝑎𝑗 − Δ𝑎𝑗 − 𝑔𝑡𝑖)

Δ𝑎𝑗

− ℎ. (5.121)

Selecting Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 results in

error = 𝑓0(𝑎𝑗 − 𝑔𝑡𝑖 − 𝑔Δ𝑡𝑖) − 𝑓0(𝑎𝑗 − Δ𝑎𝑗 − 𝑔𝑡𝑖)
Δ𝑡𝑖

= 0, (5.122)

which shows that the finite difference approximation results in no numerical discretization

error.

Let’s consider the case in which ℎ = ℎ(𝑡). A similar analytical solution can be generated

through the method of characteristics, which is given by

𝑓(𝑡, 𝑎) =
∫︁ 𝑡

0
ℎ(𝑡)𝑑𝑡+ 𝑓0(𝑎− 𝑔𝑡), 𝑡 ≥ 0, (5.123)

which is proved by taking the appropriate derivatives:

𝜕𝑓

𝜕𝑡
= ℎ(𝑡) − 𝑔𝑓0(𝑎− 𝑔𝑡), (5.124)

𝜕𝑓

𝜕𝑎
= 𝑓0(𝑎− 𝑔𝑡), (5.125)

𝜕𝑓

𝜕𝑡
+ 𝑔

𝜕𝑓

𝜕𝑎
= ℎ(𝑡) − 𝑔𝑓0(𝑎− 𝑔𝑡) + 𝑔𝑓0(𝑎− 𝑔𝑡) = ℎ(𝑡), (5.126)

and

𝑓(0, 𝑎) =
[︂∫︁ 𝑡

0
ℎ(𝑡)𝑑𝑡+ 𝑓0(𝑎− 𝑔𝑡)

⃒⃒⃒⃒
𝑡=0

= 𝑓0(𝑎). (5.127)

Substituting the exact analytical solution into the finite difference approximation in (5.114)
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gives

error =
∫︀ 𝑡𝑖+Δ𝑡𝑖

0 ℎ(𝑡)𝑑𝑡+ 𝑓0(𝑎𝑗 − 𝑔𝑡𝑖 − 𝑔Δ𝑡𝑖) −
∫︀ 𝑡𝑖

0 ℎ(𝑡)𝑑𝑡− 𝑓0(𝑎𝑗 − 𝑔𝑡𝑖)
Δ𝑡𝑖

+

𝑔

∫︀ 𝑡𝑖
0 ℎ(𝑡)𝑑𝑡+ 𝑓0(𝑎𝑗 − 𝑔𝑡𝑖) −

∫︀ 𝑡𝑖
0 ℎ(𝑡)𝑑𝑡− 𝑓0(𝑎𝑗 − Δ𝑎𝑗 − 𝑡𝑖)

Δ𝑎𝑗

− ℎ(𝑡𝑖). (5.128)

Selecting Δ𝑎𝑗 = 𝑔Δ𝑡𝑖 results in the simplified error expression

error =
∫︀ 𝑡𝑖+Δ𝑡𝑖

0 ℎ(𝑡)𝑑𝑡−
∫︀ 𝑡𝑖

0 ℎ(𝑡)𝑑𝑡− ℎ(𝑡𝑖)Δ𝑡𝑖
Δ𝑡𝑖

. (5.129)

The error is zero if ∫︁ 𝑡𝑖+Δ𝑡𝑖

𝑡𝑖

ℎ(𝑡)𝑑𝑡 = ℎ(𝑡𝑖)Δ𝑡𝑖, (5.130)

which occurs for very few choices of ℎ(𝑡), e.g., when ℎ(𝑡) is constant or is a staircase function.

The analysis of this section shows the zero error obtained by the finite difference scheme in

Cases 1 to 4 applies only to nonhomogeneous population balance equations where the forcing

function ℎ is a constant. In contrast, transforming the population balance models first and

then applying the finite difference equation results in zero discretization error.

5.4 Conclusions

This chapter derives analytical solutions to several classes of population balance models using

the method of characteristics, and applies the analytical solutions to provide alternative

proofs that the finite difference method in the previous chapter has zero discretization error.

Additional results are derived that include (1) the analytical solution for the population

balance model with general time-dependent forcing function, and (2) conditions for zero

error when the finite difference method is applied directly to some population balance models

without first performing a transformation of variables.

The results in this and the previous chapter show that a finite difference method that

combines first-order discretizations with transformations and certain mesh sizes is able to

derive exact solutions for several classes of population balance models. In some sense, these

exact solutions – although obtained by numerical methods – are also a type of analytical
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solution to the population balance models.

Even for classes of population balance models in which the finite difference method does

not produce zero error, the method is shown to have benign behavior more generally. An

advantage of the proposed method is that the number of flops for each mesh calculation

is very low, and the use of first-order methods imply that the proposed method will also

be much more accurate in regions of high derivatives (e.g., as discussed in detail in the

textbooks by Randall Leveque [32,33]) and will not introduce the aphysical oscillations that

can occur with higher order methods. While most of the population balance modelling

community has moved away from first-order first difference methods due to concerns about

numerical diffusion (e.g., [20]), these chapters show that first-order first difference methods,

when applied a very specific way, can provide numerical solutions that are both highly

accurate and have low computational cost. In particular, these solutions are well suited for

calculations in which the PBM must be solved a large number of times, such as in parameter

estimation and Markov Chain Monte Carlo analysis (e.g., [21, 52]) and in nonlinear model

predictive control (e.g., [30, 42]).
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Chapter 6

Concluding Remarks

6.1 Importance/Motivation

Vaccines are some of the most valuable drugs we are able to produce due to their widespread

applicability in staving off viral infections, some of which can be lethal. Being able to produce

these drugs quickly while maintaining their efficacy is of the utmost importance, and to

ensure this is possible, we must turn to continuous viral vaccine production. While some

viral vaccine platforms can be upgraded to produce continuously using designer cell lines,

certain cell-virus combinations exhibit oscillatory behavior that can cause many production

issues. My research has focused on various ways to approach the mitigation of this oscillatory

behavior including applying feedback control and designing new reactor types. Additionally,

using population balance models, we can track the age distributions of cells in a continuous

reactor and potentially design capture methods to remove older, less productive cells from

vaccine production processes.

6.2 CSTR Stabilization

While reducing or eliminating oscillatory behavior in bioreactors can be approached in a

multitude of ways, the method I chose through the course of my research was to start simple.

Continuous stirred tank reactors are well-known and well-understood pieces of equipment in

the biomanufacturing industry that are nearly ubiquitous across companies. That said, the
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simplest approach to stabilization is adapting equipment that is already in place. Using the

Frensing Influenza model, I explored how this could be done by applying ideas from optimal

design. Beginning with open loop testing, I was quickly able to determine open loop step

test result. Furthermore, these results suggested that oscillatory behavior can be reduced or

eliminated using feedback control. Even the most basic PID controller - a P-only controller

- showed an exceptional ability to dampen the oscillatory nature of the Frensing system and

stabilize the relevant states around their steady state values over a short window of time

get this time value. While a P-only controller was sufficient to stabilize the system, more

complex controller setups will likely be more efficient in doing so. One relevant example

would be a model predictive controller with a time-based proportional gain. Alternative to

the control-based approaches, connecting multiple CSTRs in series is yet another method

for reducing oscillatory behavior. By placing the tanks in series, the first and middle tanks

serve to stabilize the oscillations in relevant states such that the output of the final tank is

stable and predictable. The number of tanks needed is around 5 for the Frensing system,

but will likely vary across other cell-virus systems.

6.3 Alternative Hollow Fiber Reactor

Hollow fiber bioreactors provide a narrow residence time distribution for cell-virus cultures,

thus curtailing the creation of late-forming defective viruses in the case of the AGE1.CR.pIX/influenza

virus system. Because DIPs cannot accumulate periodically in an alternative HFBR, the

oscillatory behavior that occurs in certain cell/virus systems is eliminated. To obtain a

sufficient output of standard virus that is not diluted with DIPs, the alternative HFBR

model using model parameters fit to data by Frensing et al.6 indicates that the average

residence time of cells should set to about 12 hours. This value can likely be optimized to

further improve STV to DIP collection ratio, or similar productivity metrics. The results

presented here indicate an upper limit of 250 microns on the radius of the hollow fiber lumen

is necessary to ensure adequate cell densities throughout the bioreactor to maintain a high

volumetric production of standard virus. This maximum radius is primarily set by the low

diffusivities of cells. For larger lumen radii, the target and standard-virus-infected cells are
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depleted in the outer regions of the lumen, which leads to lower production of standard

virus per unit volume of hollow fiber. Using hollow fibers with smaller radii might improve

performance, but potential plugging is a concern, depending on choice of cell line and typical

cell diameters. The diffusivities of the metabolites are sufficiently high to keep their radial

profiles relatively uniform in the alternative HFBR. By using high perfusion rates of medium

through the ECS, sufficient nutrients can be supplied, and the effluent nutrient stream can

be recycled. Recycling of cells after a single pass through the hollow fiber is not advisable as

80% are incapable of producing standard virus; i.e., they are DIP- and co-infected cells. This

depletion of useful cells is due to the cell-virus kinetics revealed by Frensing’s experiments.

The alternative HFBR enables the disposal of the spent cells, as does a harvested well-stirred

bioreactor. A conventional HFBR, with cells anchored in the extra-capillary space, would

eventually suffer the same problem, so the spent cells would have to be removed and the

ECS re-cultured.

6.4 PBE

In this chapter, we proposed a finite difference scheme for the solution of a general class of

population balance models. The chapter pedagogically progresses through increasingly more

complicated population balance models, demonstrating how the proposed finite difference

method can be applied to obtain no numerical discretization error, through the use of some

transformations. Further, when applied directly to more general PBEs, we have derived

error expressions which show that the error is first order, transitioning to zeroth order as the

growth rate and non-homogeneous terms become smoother functions of 𝑎.

Typically, the study of finite difference methods to solve population balance models fo-

cuses on developing increasingly more complicated and higher order accurate finite difference

methods, which can result in the numerical solution becoming increasingly more computa-

tionally expensive. Furthermore, these higher ordered methods are subject to aphysical

oscillations that do not appear in first order or zero error solutions such as that proposed in

this chapter.

By specifically choosing to apply a first-order forward difference for the time derivative
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and a first-order backward difference for the derivative with respect to the intrinsic variable,

the numerical discretization error is reduced to zero in homogeneous population balances

with constant growth rate, 𝐺. In more complicated systems in which the growth rate varies

with time or the intrinsic variable or a non-homogeneous forcing function is present, the error

expressions developed here demonstrate how the discretization error that results from the

application of the difference scheme behaves benignly. This indicates that the finite difference

scheme analyzed here is applicable to a wide variety of industrially relevant problems.

Additionally, I derived analytical solutions to several classes of population balance models

using the method of characteristics, and applied the analytical solutions to provide alterna-

tive proofs that the finite difference method in the previous chapter has zero discretization

error. Additional results are derived that include (1) the analytical solution for the popu-

lation balance model with general time-dependent forcing function, and (2) conditions for

zero error when the finite difference method is applied directly to some population balance

models without first performing a transformation of variables.

The results in this and the previous chapter show that a finite difference method that

combines first-order discretizations with transformations and certain mesh sizes is able to

derive exact solutions for several classes of population balance models. In some sense, these

exact solutions – although obtained by numerical methods – are also a type of analytical

solution to the population balance models.

Even for classes of population balance models in which the finite difference method does

not produce zero error, the method is shown to have benign behavior more generally. An

advantage of the proposed method is that the number of flops for each mesh calculation

is very low, and the use of first-order methods imply that the proposed method will also

be much more accurate in regions of high derivatives (e.g., as discussed in detail in the

textbooks by Randall Leveque [32,33]) and will not introduce the aphysical oscillations that

can occur with higher order methods. While most of the population balance modelling

community has moved away from first-order first difference methods due to concerns about

numerical diffusion (e.g., [20]), these chapters show that first-order first difference methods,

when applied a very specific way, can provide numerical solutions that are both highly

accurate and have low computational cost. In particular, these solutions are well suited for
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calculations in which the PBM must be solved a large number of times, such as in parameter

estimation and Markov Chain Monte Carlo analysis (e.g., [21, 52]) and in nonlinear model

predictive control (e.g., [30, 42]).

6.5 Future Directions

My work has covered quite a few areas of continuous viral vaccine production, and I look

forward to where future students might take some of these ideas. For instance, the utility of

the population balance model approach to age tracking can be extended to other intrinsic

variables like cell size or mass or any of a number of other viable choices. In doing this, future

researchers will be able to determine how these variables might impact the productivity of

viral production platforms. The hollow fiber reactor design itself was always meant to be

plug and play for different cell lines and virus types, which allows plenty of opportunity to

expand on the reactor and its uses. Many of my conclusions are stepping stones, and the

possibilities of where they can lead are very exciting.
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