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Abstract

Unmanned robots are increasingly used around humans in factories, malls, and ho-
tels. As they navigate our space, it is important to ensure that such robots do not
collide with people who suddenly appear as they turn a corner. Today, however,
there is no practical solution for localizing people around corners. Optical solutions
try to track hidden people through their visible shadows on the floor or a sidewall,
but they can easily fail depending on the ambient light and the environment. More
recent work has considered the use of radio frequency (RF) signals to track people and
vehicles around street corners. However, past RF-based proposals rely on a simplis-
tic ray-tracing model that fails in practical indoor scenarios. This thesis introduces
CornerRadar, an RF-based method that provides accurate around-corner indoor lo-
calization. CornerRadar addresses the limitations of the ray-tracing model used in
past work. It does so through a novel encoding of how RF signals bounce off walls
and occlusions. The encoding, which we call the hint map, is then fed to a neural
network along with the radio signals to localize people around corners. Empirical
evaluation with people moving around corners in 56 indoor environments shows that
CornerRadar achieves a median error that is 3x to 12x smaller than past RF-based
solutions for localizing people around corners.

Thesis Supervisor: Dina Katabi
Title: Professor of Electrical Engineering and Computer Science

3



4



Disclaimer
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Chapter 1

Introduction

The problem of detecting and tracking people around corners has attracted significant

interest in recent years [48, 15, 20, 40, 7, 24, 6, 34, 33]. It is motivated by the intro-

duction of robots and unmanned vehicles into indoor spaces to transport products in

factories and warehouses, deliver food in restaurants, and clean rooms in hotels and

hospitals [52, 4, 17]. These robots are typically equipped with camera and low-cost

LiDAR devices to allow them to navigate around and detect visible people. However,

they may collide with a person who suddenly appears in front of the robot as it turns

a corner. If a robot could localize humans around corners and track their movements,

it could better plan its trajectory and avoid potential collisions.

While the research community has made important advances, there is still no

practical solution for indoor localization of people around corners. Past work falls

into two categories: optical methods and RF-based methods. Several optical methods

emit ultra-short light pulses and measure their time of return [58, 59, 24]. Such

methods require expensive equipment with very high temporal precision and high-

power laser beams that exceed the eye safety limit [30]. Other optical solutions track

people around corners using the visible shadows they may leave on the floor or a

sidewall [34, 33]. Such approaches however are fragile and can easily fail depending

on the environment and lighting conditions.

A more natural solution would use Radio-Frequency (RF) signals, as they experi-

ence less diffusion when they bounce off walls due to their much longer wavelengths.
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Figure 1-1: RF localization with/without direct paths. The direct path illustrated
by the dashed blue line is blocked due to traversing multiple walls. The radio on
the robot receives the RF signal along the indirect path that bounces off sidewalls,
illustrated with the green line.

However, despite a rich literature on RF-based indoor localization, the vast majority

of past solutions do not work around corners [63, 41, 19, 25, 56, 11, 5, 26, 42, 66, 1,

2, 39, 21, 29, 28, 62, 27, 64]. The reason is that these techniques typically assume

that since RF signals can traverse walls, there always be a direct RF path from the

tracked person to the radio receiver (e.g., the robot). Yet, when people are hidden

around corners, the RF signals have to traverse multiple walls, and their structural

support material, which causes a drastic attenuation of the direct RF path, as shown

in Figure 1-1. When the direct propagation path is blocked, the core principle un-

derlying most RF-localization techniques does not hold, leading to major localization

errors [47].

This problem has been recognized by recent papers on around-corner RF-based

localization [65, 15, 20, 40, 47]. While these papers differ in the details of their

techniques, all of them address the above problem by adopting ray tracing, a technique

widely used in computer graphics [14, 12]. Specifically, they assume that RF signals

bounce off walls like visible light, and do not traverse them. Given no direct path,

they use the floor plan to backtrack the indirect RF path to the person behind a

corner, as shown by the green line in Figure 1-1. However, RF signals are not the

same as visible light. Though RF signals can be reflected by occluders just like visible

light, they can also propagate through those occluders. Simply adapting ray tracing

from the visible domain and assuming no direct RF propagation is not robust.

18



This thesis introduces CornerRadar, a novel solution for RF-based indoor local-

ization that works around corners. In contrast to past papers on localization with

RF signals, which assume either the presence of a direct RF propagation path or

its absence and fail to work when the environment does not comply with the chosen

assumption, CornerRadar avoids making any such hard assumptions. Instead, Cor-

nerRadar takes into account both possibilities and uses a data-driven approach to

decide which possibility is more likely.

Specifically, the design of CornerRadar has two components: a Hint Map and a

Localization Convolutional Neural Network (CNN). The Hint Map is a novel encoding

that summarizes how RF signals propagate in a given spatial layout. It takes into

account both the possibility of reflecting off walls following ray-tracing rules and prop-

agating through them. The Localization CNN takes, as input, the received RF signals

and the Hint Map and localizes people around corners. Once trained, CornerRadar’s

CNN can generalize to new environments never seen during training.

We have implemented CornerRadar and evaluated its performance empirically in

56 indoor environments, with people walking around corners and behind walls. Our

evaluation scenarios are diverse in their layout, the speed of walking people, and

the distance and orientation of the radio with respect to the corner of interest. Our

results show that CornerRadar is highly accurate, and its median errors are 3x to

12x smaller than past RF-based localization techniques, which tend to fail either due

to the presence or absence of the direct RF path. Further, CornerRadar’s median

localization errors along the 𝑥 and 𝑦 axes are 16.8 cm and 13.8 cm respectively, even in

new environments unseen by the CNN during training. To the best of our knowledge,

no past work on RF-based indoor localization has shown such low errors for tracking

people around corners.
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Chapter 2

Related Work

Past work on seeing around corners has two lines of research: optical methods and

RF-based methods.

2.1 Optical Around-Corner Sensing

The past decade has seen significant work in computer vision and graphics on novel

methods for sensing objects around corners [58, 59, 24, 32, 22, 23, 34, 33, 9, 7, 46].

Early work on non-line-of-sight (NLOS) imaging [58, 59] has relied on costly and

complicated streak cameras, and is limited to small-scale scenes. Some later work like

[24] images hidden objects by examining the intensity response of a laser; however,

it expects the object to be rigid and its shape known in advance. Further, these

methods require high power laser beams that can exceed the eye safety limit [47].

The authors of [32, 22, 23] reconstruct the shape of a hidden object by leveraging

NLOS correlography. However such methods are applicable only to small objects, as

big objects do not cause the self-interference upon which correlation-based techniques

rely. A few papers [34, 33] detect hidden people by analyzing the shadows they leave

on the floor or a sidewall; yet the shadows need to be observable from the camera’s

point of view, which works only at very close to the corner and requires a light source

far behind the person. The authors of [9, 7, 46] use conventional intensity images for

NLOS tracking and localization, but those methods are limited to highly reflective

21



targets [9, 7], sparse dark backgrounds [9], or scenes with additional occluders [46].

The work in [7] analyzes the subtle spatio-temporal radiance variations to detect the

presence of a hidden person; however, it cannot localize the person. In summary,

none of the existing optical methods can accurately localize people around corners in

general indoor settings.

2.2 RF-Based Around-Corner Sensing

There is a rich literature on RF-based indoor localization [63, 41, 19, 25, 56, 11,

5, 26, 42, 66, 1, 2, 39, 21, 29, 28, 62, 27, 64]. These methods work through walls

and occlusions. However, while RF-based localization techniques vary widely in their

details, they typically rely on the presence of a direct signal path from the tracked

person to the radio receiver. They first disentangle the direct path from the indirect

paths, then use the direct path to localize the target. Recent papers on around-

corner RF-based tracking have recognized that when people are around a corner, the

direct path tends to be blocked or very highly attenuated due to the need to traverse

multiple walls [65, 31, 51, 15, 20, 40, 47]. To address this problem, all of these papers

assume RF signals cannot traverse walls; they use ray tracing to estimate how RF

signals bounce off walls, and backtrack the signal to the person around the corner.

Different papers differ in the details of how they apply ray tracing. For example,

[31, 65, 15, 40, 51] first process the RF signals to identify the main target, then use

ray tracing to backtrack the center point in that target. Other papers [20, 47] apply

ray tracing to all received RF signals first, then process the results to localize the

target.

In particular, the authors of [47] have recently proposed an outdoor solution for

allowing cars to track people and vehicles around street corners. Their method uses

a Frequency Modulated Continuous Wave (FMCW) radar and processes the received

RF signal using ray tracing, assuming no direct RF path. They then use a neural

network to classify different hidden targets behind into person, bicycle or car.

CornerRadar differs from all of the past work on RF-based localization. In contrast

22



to past work that assumes the presence of a direct path, CornerRadar can localize

people even when the direct RF path is fully blocked. In contrast to past RF work on

localizing people around corners, CornerRadar accounts for the fact that RF signals

do not simply reflect off walls and that they can also traverse walls and arrive along

the direct path. CornerRadar also accounts for the low spatial resolution of RF signals

in comparison to visible light, which causes additional errors when past work applies

ray tracing to RF signals, as explained in Chapter 4.
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Chapter 3

Background

This chapter introduces background information that we use in the rest of the thesis.

The description herein is kept at high level. For more information, readers can refer to

past literature on localization using FMCW radio [1, 2, 36, 44, 61] and ray tracing [47,

65, 40].

3.1 FMCW Radio

As common in past work in many papers on RF-based localization [1, 2, 36, 44, 61],

CornerRadar uses a multi-antenna FMCW radio. The radio has an antenna array

with 12 antennas organized horizontally. The combination of FMCW and antenna

array allows the radio to filter the received RF signal based on the distance it traveled

and the spatial angle from which it arrives [50]. Thus, the received RF signal can be

expressed as a time series of RF-Snapshots, where each snapshot is a 2D matrix, and

each entry in this matrix, (𝑖, 𝑗), refers to the RF signal received along a particular

angle of arrival 𝜃𝑖, and from a particular distance 𝑑𝑗. Figure 3-1a shows an example

RF-Snapshot. The colors in the figure denote the signal power, where red refers to

high power RF signal and dark blue refers to no RF power. Naturally, the original RF-

Snapshot is in the polar coordinates. To allow for better visualization with respect to

the floor map, we transform the RF-Snapshot into the Cartesian coordinates as shown

in Figure 3-1b. Finally, as common in past work, we remove RF signals reflected off
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(a) Polar (b) Cartesian

Figure 3-1: An RF-Snapshot in two coordinate systems. It shows the signal power
received from a particular position in space. Red refers to high signal power, while
dark blue denotes no signal.

static objects (e.g., walls and furniture) by subtracting consecutive snapshots. For

clarity, all RF-Snapshots in this thesis are shown after such subtraction.

3.2 Ray Tracing

Ray tracing is commonly used in computer graphics to trace the propagation of visible

light [14, 12]. It is also used in some past work on RF-based localization to backtrack

a received RF signal to the original location it came from [47, 65]. To understand the

process, let’s use the example in Figure 3-2a, which shows an RF-Snapshot augmented

with the floor map, the location of the radio (the cyan rectangle) and the true location

of the person (the yellow star). The black lines in the figure refer to the walls. In

this example, the target is hidden around a corner, and the direct path is blocked.

However, because of the existence of an indirect path, some locations behind the wall

have high signal power. The goal of ray tracing is to map those locations back to the

original location of the person in the corridor.

To do so, walls are assumed to be perfect specular reflectors of RF signals. One

can then draw a ray between the radio and the location of high RF power, as in

Figure 3-2b. If the ray does not cross a wall, the signal is considered to be coming

from the direct path. If the ray crosses a wall (as is the case in Figure 3-2b), the ray is

reflected off the wall while ensuring that the angle of incidence 𝑖 is equal to the angle

26



(a) RF-Snapshot with the floor map

(b) Peak-based ray tracing (c) All-pixels ray tracing

Figure 3-2: (a) An RF-Snapshot augmented with the location of the radio (the cyan
rectangle), the true location of the person (the yellow star), and the walls (the black
lines). (b) Peak-based ray tracing: it first finds the peak in the original RF-Snapshot,
then performs ray tracing on the peak pixel to estimate the true location of the
reflector. (c) All-pixels ray tracing: it first performs ray tracing on every pixel in the
original RF-Snapshot, then adds up the RF power (shown in green). Note that (b)
and (c) show the the same RF-Snapshot as (a) but with a different color scheme, for
better visibility.

of reflection 𝑖′. After reflecting off a wall, the ray is no longer a straight line. Instead,

it is now zigzagged, as shown in Figure 3-2b. Its total length however remains the

same as that of the original straight ray. The process is repeated until the reflected

ray stops crossing walls. The final end of the ray corresponds to the location of the

target as shown in Figure 3-2b.

The above description is the most common form for applying ray tracing to RF

signals, which we denote as Peak-Based Ray Tracing. It is used by multiple past

papers on RF-based around-corner localization, such as Zhao et al. [65]. Alternatively,

one could perform ray tracing on every pixel in the RF-Snapshot, not just the peak

pixel, and sum up the power after ray tracing. This approach is less sensitive to the
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choice of peak pixel. We call this approach All-Pixels Ray Tracing. It is illustrated

in Figure 3-2c where the green color represents the RF power after ray tracing all

pixels in the original RF-Snapshot (the darker the green, the higher the power is).

This approach is used by Scheiner et al. [47] to localize people and vehicles around

corners.
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Chapter 4

Why Ray Tracing Fails

(a) Mirroring (b) Splitting

Figure 4-1: Ray Tracing Failure Cases. The yellow star indicates the person’s true
location. The purple ellipse shows the location of strong power in the original RF-
Snapshot. The yellow and green regions show where ray tracing maps the blue spot.
(a) shows a scenario where ray tracing maps the person to the corridor though he is
behind the wall. (b) shows that ray tracing can split a single target to two targets.

As mentioned earlier, past papers[20, 47, 65, 40] on around-corner RF-based lo-

calization use ray tracing as it applies to visible light. While this approach works

in simple environments, it fails in general indoor scenarios. We highlight two failure

modes: mirroring and splitting. Mirroring refers to ray tracing confusing a person

behind a wall with being in front of the wall because it ignores that RF signals can

traverse walls. Figure 4-1a illustrates such a scenario where the person, denoted by

a yellow star, is walking inside the room, but ray tracing maps him to a different

location on the other side of the wall (the yellow patch). This is because the simple
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ray tracing model in past work ignores that RF signals can traverse walls.

The splitting problem is more complex. It is due to the fact that RF receivers

have poor spacial resolution. RF-based localization systems use antenna arrays to

distinguish between signals arriving from different spatial angles. However, unlike

cameras which have millions of photo diodes, radios have a relatively small number

of antennas, and hence a coarse angular resolution (e.g., 10 degrees) [37, 60]. As a

result, even a point reflector appears as a wide path in the RF-Snapshot, as shown

in Figure 3-2a. This causes a problem when applying ray tracing to such a patch.

Specifically, different parts of the patch can end up back traced to different locations,

creating confusion about the actual location of the person, as illustrated in Figure 4-

1b.

We note that the mirroring and splitting problems affect both peak-based ray trac-

ing and all-pixels ray tracing. In particular, for peak-based ray tracing the splitting

problem appears as ambiguity, since depending on which pixels is chosen as the peak

(which can easily change with a small amount of noise), the ray-tracing algorithm

can pick a completely different location.
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Chapter 5

CornerRadar

CornerRadar is an automatic system for localizing people around corners by analyzing

the combination of received RF reflections and the environment layout. CornerRadar

adopts a data-driven approach. Instead of directly back tracing the RF signal to the

target’s location, CornerRadar trains a neural network that takes both the radio signal

along with information about potential direct and indirect paths, and predicts the

location of the person. Thus, CornerRadar has two main components that together

localize a hidden target: 1) a Hint Map, which is a novel encoding that describes how

RF signals propagate in an environment while taking into account both ray tracing

and propagation along the direct path; and 2) a Localization CNN which takes as

input the Hint Map and the received RF-Snapshots, and infers whether there is

someone around the corner and their location.

Before delving into the design details, we note that all past works on around-

corner localization (i.e., both optical and RF-based approaches) have so far focused

on scenarios in which the robot/car/radio is static [65, 8, 31, 51, 48, 15, 20, 40, 47].

Similarly, in this thesis we focus on scenarios in which the radio is static as the natural

first step to addressing the problem.
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Figure 5-1: Encoding the ray-tracing rules into the hint map. (a) shows each point is
mapped to its ray-tracing image. (b) shows the encoding in the Cartesian coordinates.
(c) shows the final ray-racing hint map which is in the polar coordinates.

5.1 Hint Map

The Hint Map is an encoding that describes how ray tracing and direct path prop-

agation work in a particular environment, but without applying these rules to the

received RF signals. Making the encoding independent of the received RF signals

serves two goals. First, the encoding can be used by the neural network as coarse

hints, which alone do not provide the full picture. This allows the neural network

to learn from the data how to apply these rules and when to favor ray tracing over

direct path propagation. The second purpose of the Hint Map is to help the neural

network better generalize to new test environments that it did not see during training.

By capturing much of the environment-dependent information, and expressing it in a

standardized way via a Hint Map, the neural network learns a more general function,

hence improving its chances of working in new environments that are different from

the environments in the training set.

The next few subsections describe how we generate such encoding. For simplicity,

our illustrations use L-shaped corners. CornerRadar however does not make assump-

tions on corner shape or angle, and works well with corners that do not have L-shape

or 90-degree angles, as shown in Section 6.3.

5.1.1 Generating the Hint Map

The hint map has two components: a ray-tracing hint map, and a direct-path hint

map. We refer to these two components as the R-Map and D-Map, respectively.
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Figure 5-2: Multipath. The figure shows that ray-tracing hint map encoding natu-
rally supports multipath. Here, (𝜃1, 𝑟1) and (𝜃2, 𝑟2) are both encoded with the same
coordinates of the target location 𝑄.

We first describe how to obtain the R-Map. To do so, we encode each point in the

spatial layout with the coordinates of its ray-tracing image. Figure 5-1 illustrates

this encoding. Specifically, Figure 5-1a shows three example points 𝑃1, 𝑃2 and 𝑃3,

which are mapped to their ray-tracing images, i.e., the corresponding points after

ray tracing, 𝑄1, 𝑄2 and 𝑄3. Note that 𝑃3 is mapped to itself since it is directly

visible. Figure 5-1b shows the resulting encoding in the Cartesian coordinate system.

Specifically, the coordinates of 𝑄1, (𝑥′
1, 𝑦

′
1), are recorded in the pixel (𝑥1, 𝑦1) in the R-

Map. Since the encoding will be consumed by the neural network along RF-Snapshots,

we transform it to the polar coordinates to better align it with the RF-Snapshots.

Since there is a significant energy loss each time the RF signal bounces off a wall,

when calculating the R-Map, we allow each ray to bounce off a maximum of three

walls. Points whose ray-tracing images require more than three off-wall reflections

are considered invalid, and their corresponding coordinates are set to 0.

But how about multipath? In indoor environments, it is common for RF signals to

propagate along multiple paths. Can this encoding support multipath propagation?

Indeed, the encoding is designed to handle indoor multi-path effects and benefit from

them. Figure 5-2 illustrates this property. It shows two points in the layout, 𝑃1 and

𝑃2, are mapped to the same ray-tracing image, 𝑄. This means that if the localized

target happens to be at 𝑄, it would reflect the RF signal along two paths.

In fact there might be many other paths that end at 𝑄, resulting in many other

points in the layout being mapped to 𝑄. All of those paths are encoded in the R-Map,
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since all of those points are encoded with the coordinates of 𝑄 (e.g. the coordinates

of 𝑄, (𝑥′, 𝑦′), appears in both pixel (𝜃1, 𝑟1) and pixel (𝜃2, 𝑟2)), using the encoding

scheme described above.

We note that the multi-path effects can help CornerRadar differentiate through-

wall targets versus around-corner targets, For example, in Figure 5-2, if the moving

person is indeed located at 𝑃1 instead of 𝑄, then there will be only one possible path

to reach it, the direct through-wall path, plotted in blue. In contrast, when the target

is at 𝑄 behind the corner, there will be multiple indirect-paths for the RF signal to

reach it (e.g., the path plotted in pink). As a result, the RF-Snapshot will have more

peaks, thus differentiated from the through-wall target.

It is worth noting that the R-Map is different from all-pixels ray tracing, intro-

duced in Section 3.2. The content of each pixel in the R-Map is the coordinates of its

ray-tracing image. In contrast, the content of each pixel in all-pixels ray tracing is the

RF power of its ray-tracing image(s) in the corresponding RF-snapshot. Thus, the

R-Map is an encoding of the environment and would change only if the environment

changes. In contrast, all-pixels ray tracing is an encoding of a particular RF-snapshot

in a particular environment. Hence, it would change if either the RF-snapshot or the

environment changes. This difference is essential as it allows CornerRadar to convey

to the neural network the rules of ray tracing but without applying them directly to

the RF signals. This allows the neural network to learn from the data how to apply

those rules, while avoiding splitting and mirroring.

Next, to accommodate the fact that signals can directly propagate through walls,

we augment the hint map with an encoding of the direct path, i.e.,the Direct-path Hint

Map or D-Map. The D-Map is simple. It maps each point to itself, i.e., each point

is encoded with its own Cartesian coordinates. By giving it both the R-Map and D-

Map, we allow the neural network to use the observed data to make its own decisions

about whether the RF signal propagated directly or by bouncing off sidewalls.
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Figure 5-3: In Figure 5-3a, we show the actual layout. The actual layout has some
details that CornerRadar does not need for accurate localization. It is sufficient to
focus on four major walls highlighted in blue. In Figure 5-3b, LiDAR measurements
are plotted in grey, and our detection result is plotted as dashed lines.

5.1.2 Layout Detection

To generate the Hint Map, we need the layout of the environment. Since the floor plan

may be unavailable, we present in this section a simple algorithm that automatically

extracts an approximate layout sufficient for the operation of CornerRadar. The

algorithm uses a simple LiDAR, mounted on the radio. The design is independent of

the details of the LiDAR, but for our experiments we use RealSense LiDAR Camera

L515 [18], which is small and low cost, and weighs only 100g (see Section 6.1 for more

details).

It is computationally expensive to recover every detail of the layout. Instead, as

shown in Fig. 5-3a, we only focus on recovering two sets of parallel walls that have the

most impact on around-corner localization: a Near Wall and Far Wall that confine

the hidden corridor where the target is located, and a Barrier Wall and Relay Wall

that confine the corridor where the radio is located.

Our algorithm works as follows. The LiDAR mounted on our radio device scans

the corner and generates a 3D point cloud of the environment. We first project these

3D points on the 2D floor plane, as illustrated by the grey points in Figure 5-3b. Next,

we cluster the points into small clusters such that the maximum distance between

any two points in a cluster does not exceed 10cm. We fit a line to all points in a
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Figure 5-4: The pipeline of the Localization CNN. The input consists of RF-Snapshot
and corresponding hint maps. CNN extracts features and predicts the location of the
person in the corridor.

cluster using least squares regression [13]. If the fit quality exceeds a threshold, the

line is kept; otherwise the points are released. We then iterate on these small line

segments to merge them into larger segments. Specifically, for any two segments

whose edges are less than 2cm apart, we compare the slope of the segments; if the

two slopes are close, the points in the two segments are merged together, and a new

line is fitted using least square. If the fit quality is acceptable, the newly generated

segment is kept; otherwise the original two line segments are restored. We iterate

on this process until it is not possible to create longer line segments. Next, for each

segment longer than 0.5m, we consider only its two end points. We order these end

points with respect to the angle they create with the LiDAR. We then process these

end points sequentially according to their order to fit the minimum number of lines

with acceptable fit quality. Finally, we pick two lines closest to the LiDAR, as the

Barrier and Relay Walls. We then look for a line segment that has a gap of at least 1m

with the Barrier Wall. This would be the Far Wall. The Near Wall is then assumed

to be parallel to the Far Wall.

5.2 Localization CNN

5.2.1 Network Architecture

In this section, we introduce our Localization Convolutional Neural Network, which

takes as input the 10 most recent RF-Snapshots and the corresponding hint maps, and

outputs the current coordinates of the person. If the scene is empty, the coordinates
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Figure 5-5: Illustration of Coordinate Systems. Radio Coordinate System (RCS) is
plotted in green, having an origin at the position of the radio. Corridor Coordinate
System (CCS) is plotted in blue. The yellow star is the person in the corridor.

will be at infinity.

Both the RF-Snapshots and the hint maps are represented as polar grids, which

intrinsically are matrices. For the RF-Snapshot, each element in the matrix is the

value of the RF power received at that location. And for the R-Map/D-Map, each

element in the matrix is the coordinate after/without ray tracing. Since the coordinate

is a tuple of 𝑥 and 𝑦, we separate each hint map into two matrices: one for 𝑥 coordinate

and one for 𝑦 coordinate. We then treat those matrices as different channels: one

channel for RF-Snapshot, two channels for R-Map and two channels for D-Map.

As illustrated in Figure 5-4, our network has ten 3D convolution layers; after

each convolution layer, there is a layer of batch normalization and a layer of ReLU

activation. On top of the convolution layers, we have two fully connected layers. At

the end, the network outputs the 𝑥 and 𝑦 coordinates of the target.

The CNN is trained with the following loss function:

ℒ = |𝑥− �̂�|+ |𝑦 − 𝑦|,

where (𝑥, 𝑦) is the ground truth coordinates of the target and (�̂�, 𝑦) is its predicted

location.

5.2.2 Aligning the Prediction Space across Environments

A key challenge in designing any neural network model is to ensure the network

generalizes well to new environments that it did not train with. One way to address
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this challenge is to train with a very large and diverse dataset such that any new

environment is likely very similar to some environment in the training set. In practice,

however, the training set is always limited. So, in this section, we ask whether we can

improve the generalizability of our CNN given that we train it with a limited number

of layouts.

At a high level our idea is simple. The network will generalize better to new

layouts if all layouts look similar, even those that the network has not seen. Of

course, we cannot change the layout of a particular corner, but we can change how

the layout is represented to make different layouts look as similar as possible to the

neural network.

This idea motivates us to perform a change of coordinates from the Radio Coordi-

nate System (RCS) to the Corridor Coordinate System (CCS). Specifically, so far we

have kept the standard coordinates used in past work on RF-based localization, where

the radio is the origin, and the 𝑥-axis is aligned with the radio’s antenna array. While

this coordinate system is the most common and natural choice for RF localization

systems [1, 2, 47], it does not help in making various layouts look similar.

We propose the Corridor Coordinate System (CCS), a novel coordinate transform

that aligns the corners across all training and testing environments, and hence enables

the CNN to generalize better to new unseen environments. As indicated by blue

arrows in Figure 5-5, the Corridor Coordinate System has its origin at the corner,

and its 𝑦-axis along the corridor.

Since the CCS representation sees each layout from the perspective of its corner,

all around-corner scenarios look fairly similar, with people mainly moving along the

𝑦-axis. This representation reduces disparity across environments, including those

unseen during training. We show empirically in Section 6.11 that this coordinate

transform significantly improves performance.

Finally, we emphasize that this transform is not simply a fixed transform between

two Cartesian coordinates, which would be just a translation and rotation. It is a

data-dependent transform because the actual corner location w.r.t the radio changes

from one layout to another.
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Chapter 6

Evaluation

We implement CornerRadar and evaluate it empirically.

6.1 Implementation Details

We have implemented CornerRadar, as described in Chapter 5. As in past work, we

collect RF signals using an FMCW radio equipped with an antenna array. The radio

sweeps the frequencies from 5.4 GHz to 7.2 GHz and transmits at sub-milliwatt power.

The antenna array has 12 antennas, with about 150 degrees directionality. Due to

its low transmission power, the radio has a maximum range of about 11 meters. We

process the received RF signal using standard FMCW and antenna array equations [1,

2] to produce RF-Snapshots, where each snapshot has 100×100 pixels. The radio can

generate 180 snapshots per second. To reduce computational complexity and boost

the SNR, we average every 36 RF-Snapshots together, producing 5 RF-Snapshots per

second.

To extract information about the layout, we use the Intel RealSense LiDAR Cam-

era L515 [18]. It is low cost, light, and small (it has a diameter of only 6cm and

weighs 100g). Its depth error is less than 2cm. It is configured to stream measure-

ments at 5 frames per second. The LiDAR camera produces both RGB images and

3D point clouds with depth information. The LiDAR camera is co-located with the

radio. The 3D point cloud is used to generate an estimate of the layout as described
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Figure 6-1: Data Collection Setup. To extract the ground-truth location of the person
at every point in time, we place a LiDAR camera facing the corner and looking into
the corridor. The subject is asked to walk in the hidden corridor while the radio is
placed on the other side of the corner to record the RF signal. A camera LiDAR is
mounted on the radio to capture the environment.

in Section 5.1.2.

The localization CNN is implemented in PyTorch [38]. As illustrated in Figure 5-

4, our CNN has 10 3D convolution layers with the following hyper-parameters. The

kernel size of the convolution layers is 3 for the temporal dimension, 5 for the two

spacial dimensions. The stride is set to be 2 in odd layers and 1 in even layers. The

model is trained for 60 epochs. The learning rate is initially set to 0.01, and decayed

by an order of magnitude every 20 epochs. Data used for training is not used for

testing. Specifically, we divide the 56 environments into 4 folds. We perform cross-

validation testing, where we train a model on three folds and test it on the remaining

fold. We repeat this process 4 times, each time changing the test fold.

Data processing is done offline on a Titan Xp GPU to generate the evaluation

results. However, in Section 6.12 we measure CornerRadar’s running time on a Jetson

Nano and show that it can run in real-time on such a small low-power platform.

6.2 Experimental Setup

All experiments were approved by our IRB. We run our experiments in different

indoor environments around our campus. In every environment, we place the radio
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(a) Radio-to-Corner Distance Distribution (b) Angle Distribution

(c) Corner-to-Target Distance Distribution (d) Target Speed Distribution

Figure 6-2: Experimental Setup Diversity. The figure reports the histograms of the
distance from radio to corner, radio orientation, the distance from corner to target
and target’s walking speed.

randomly 1 to 3 meters away from the corner to emulate a robot that may run into a

person as it turns a corner. The distribution of the radio’s distance from the corner is

plotted in Figure 6-2a. Since the radio antennas receive signals only within an angle

of 150 degrees, we turn the radio to the right or left to allow it to receive signals

that bounce off side walls. We randomly choose the orientation angle and whether

to orient the radio left or right. Figure 6-2b plots the distribution of the orientation

angle.

A key challenge in evaluating such a system is to extract the ground-truth location

of the person at each time. To do so, we use a second LiDAR camera that faces the

corridor and can directly see the person, as shown in Figure 6-1. We call this camera

the ground-truth camera. Note that the ground-truth LiDAR camera is not part of

our CornerRadar system. It is used only to collect the ground-truth location for the

training of our model and is not required during operation.
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(a) RGB Frame (b) Depth Frame

Figure 6-3: Target localization with the ground-truth LiDAR camera. To extract the
ground truth, we apply a computer vision person detector to the RGB frames and
use the depth of the pixel in the detected region (the green rectangle) to compute the
ground-truth location of the target.

The ground-truth LiDAR camera is capable of generating both an RGB video

and a depth stream, with pixels aligned, as shown in Fig. 6-3. We apply an RGB

person detector[43] to the RGB video, which generates for each frame a bounding box

around the person. We then use the generated bounding boxes as a filter to select the

depth pixels for the target/person. The selected depth pixels are projected to the 3D

space, forming a point cloud. The ground-truth location of the person is calculated as

the median of the selected point cloud in each frame. We calibrate the ground-truth

LiDAR camera with the camera mounted on the radio, so that we can calculate the

ground-truth coordinate of the subject with respect to the radio.

To collect data, we ask subjects to walk in the hidden area around a corner, in any

way they want. That is, the subjects can either walk slowly or quickly, in a straight

line or in a zigzagged way. In this way we can test the performance of our system in

all possible scenarios. The distribution of the subjects’ distances from the corner is

plotted in Figure 6-2c, and the distribution of the subjects’ walking speeds is plotted

in Figure 6-2d.

6.3 Dataset

Overall, we collect data in 56 different environments with diverse layouts. The dataset

contains 47, 355 samples of RF-Snapshots and the corresponding person location. As
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Figure 6-4: Example Layouts. The areas where the subjects walk are highlighted
in yellow. The cyan boxes show the radio positions. The left three columns are
environments where the direct path is blocked, while the last column are environments
where there exists a direct path.

shown in Figure 6-4, we consider two scenarios where people may suddenly appear

from a side corridor or as they exist an adjacent room. Given the ground-truth

locations and the corresponding RF-Snapshots, we can identify the cases where the

signal propagates along a direct path from the person to the radio, and the cases

where the direct path is blocked. Overall, 27% of our RF-Snapshots have a direct

path, whereas the rest have only indirect paths.

We classify the corners in our dataset into: (1) L-shape: a junction with only two

exits; (2) T-shape: a junction with 3 exits; (3) +-shape: a junction with 4 exits;

(4) Other: a corner that involves open spaces, stairs, pillars or other structures. The

pie chart in Figure 6-5a shows that our dataset is composed of corners with various

shapes: 46% L-shape, 32% T-shape, 11% +-shape and 11% others.

Further, the corners in our experiments do not necessarily have a ninety degree

angle. The two walls intersecting at the corner could also form acute or obtuse angles.

As shown in the pie chart in Figure 6-5b, 9% of the corners in our dataset have a

non-90-degree angle, which is representative of real-world scenarios where a small
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Figure 6-5: Dataset profile: (a) shape of the corner; (b) angle of the corner; (c)
material of the walls around the corner; (d) furniture around the corner.

percent of corner angles are not 90 degrees.

In our dataset, the walls in different environments exhibit different materials in-

cluding plaster, wood, glass and metal. As shown in Figure 6-5c, 100% of the corners

have some drywall, 37% of them contain wood walls, 53% contain glass windows or

glass walls, and 30% contain large structures of metal.

In addition, the environments in the dataset have typical furniture. As summa-

rized in Figure 6-5d, 20% have tables, 20% have chairs, 12% have cabinets, 16% have

other small objects including trash bins, kitchen equipment like coffee-machine and

microwave, screens and computers, etc.
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6.4 Metric

Let (𝑥, 𝑦) and (�̂�, 𝑦) denote the coordinates of the ground-truth location and the

prediction, expressed in the corridor coordinate system. We consider the following

metrics:

1. Absolute Error 𝑒𝑥𝑦 =
√︀

(𝑥− �̂�)2 + (𝑦 − 𝑦)2 is the Euclidean distance between

the ground-truth and the prediction.

2. Cross-Corridor Error 𝑒𝑥 = |𝑥− �̂�| is the error perpendicular to the corridor.

3. Along-Corridor Error 𝑒𝑦 = |𝑦−𝑦| is error along the direction of the corridor.

6.5 Baselines

We compare our system with the following baselines: 1

1. Zhao et al. [65]. This work uses peak-based ray tracing to localize people

around corners. It first detects the highest power pixel in an RF-Snapshot,

then performs ray tracing from that pixel to recover the location of the target.

The method requires the floor layout. So we feed it the ground-truth layout

(manually labeled using the floor plan) for ray tracing purpose.

2. Zhao et al. [65] (Multi-bounce). The original paper by Zhao et al. [65]

allows RF signals to bounce off only one wall. This is too restrictive since RF

signals in a corridor tend to bounce multiple times before reaching the receiver.

Thus, for fair comparison with CornerRadar, we also compare with an updated

version of this work where the RF signal can bounce off side walls multiple times

if the environment allows for such bouncing. We denote the augmented method

Zhao et al. [65] (Multi-bounce).

3. Scheiner et al. [47] This method was designed for outdoor environments to

allow a car to detect other cars and pedestrians around street corners. Instead
1None of the baselines is open sourced; therefore we implement them with our best effort.
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of just ray tracing the main peak in the RF-Snapshot as in Zhao et al. [65], this

method uses all-pixels ray tracing, i.e., it applies ray tracing to every pixel in the

RF-Snapshot and projects the results on the spatial layout. This projection is

then fed to a neural network to extract the exact location of the hidden target.

Further, while the paper provides an algorithm for detecting the layout using

the car’s LiDAR, their algorithm assumes all wall segments are at least one

meter long, which is not true for indoor scenarios. Thus, provide this baseline

with ground-truth layout for ray tracing purpose.

4. Scheiner et al. [47] (Multi-bounce) Like Zhao et al. [65], Scheiner et al. [47]

also assumes the signal bounces only once before reaching the target. Thus, we

consider a stronger baseline, Scheiner et al. [47](Multi-bounce), which allows

the signal to bounce multiple times when backtracking each pixel.

5. Adib et al. [2]: Finally, we compare CornerRadar with a standard technique

for device-free indoor localization based on the work of Adib et al. [2]. It localizes

the target by detecting the highest power peak in the RF-Snapshot. As stated

earlier, this traditional line of work assumes the presence of a direct propagation

path, which is not the case in around-corner scenarios. However, we compare

with it to show that this assumption leads to very large errors when applied to

around-corner scenarios.

6.6 Localization Accuracy

In this section, we evaluate CornerRadar’s accuracy in localizing hidden people and

compare it with the baselines. We apply CornerRadar and all baselines to the same

dataset described above, and report the localization results. Figure 6-6 shows the

distribution of errors for each scheme, as a function of the target’s distance to the

corner. The results are presented as a boxplot, where each box extends from the 25-th

percentile to the 75-th percentile, and the line in the middle shows the median.
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(a) CornerRadar (ours) (b) Scheiner et al. [47](Multi-bounce)

(c) Zhao et al.[65] (Multi-bounce) (d) Scheiner et al. [47]

(e) Zhao et al.[65] (f) Adib et al. [2]

Figure 6-6: Box plots of absolute error of CornerRadar and baselines as a function of
the person’s distance from the entry to the corridor (i.e., the target’s 𝑦 coordinate).
Each box is drawn from 25th percentile to 75th percentile with an orange horizontal
line drawn in the middle to denote the median. The whiskers extending from the
boxes denote the minimum and maximum.
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Figure 6-6 shows that CornerRadar is highly accurate and its median localization

error is 3x to 12x smaller than the baselines. Figure 6-6 also shows that the deeper

the person is inside the corridor, the larger the error for all schemes. This is due to

two reasons. First, the radio uses an antenna array to detect the signal’s angle of

arrival. An angle error of 1 degree translates to a larger Euclidean error at distance.

Second, the farther away the person is, the longer the RF signal travels, and the more

likely it bounces off multiple walls, which causes attenuation and reduces the signal to

noise ratio (SNR). Nonetheless, CornerRadar significantly outperforms the baselines.

Furthermore, CornerRadar’s errors fall in a tight range, whereas the baselines produce

a wide range of errors indicating low robustness.

Figure 6-6 also shows a performance gap between the baselines [65, 47] and their

multi-bounce versions. For example, comparing Figure 6-6d and Figure 6-6b, we find

that allowing the RF signals to bounce off walls multiple times significantly improves

the performance of Scheiner et al. [47]. The median errors are halved almost across all

target’s distances. Similarly, Figure 6-6e and Figure 6-6c show that Zhao et al. [65]’s

error is reduced when allowing for multiple bounces. Also, the farther away the

person is, the more the error decreases. This is because when the target is far from

the corner, the RF signal cannot reach the target by bouncing only once.

6.7 Presence or Absence of Direct Path

Table 6.1 summarizes the median localization error across all experiments for all

schemes as well as their performance in the presence and absence of the direct path.

The table shows that CornerRadar’s performance is the same with and without a

direct path. In contrast the performance of the baselines varies significantly depending

on whether a direct path exists. In particular, Adib et al. [2] assumes that RF signals

traverse walls and occlusions. Hence, it has a very good performance when the direct

path is available, yet its performance is very poor when the direct path is blocked.

In contrast, past schemes for localizing people around corners, i.e., Zhao et al. [65],

Scheiner et al. [47], and their variants perform well in the absence of a direct path,

48



Table 6.1: Comparison of localization error (in meters) of CornerRadar and baselines.
The table reports the median error for all environments, and the median errors for
environments with and without a direct path.

(a) all environments

Method 𝑒𝑥 𝑒𝑦 𝑒𝑥𝑦

Adib et al. [2] (Direct-path) 1.166 0.662 3.368
Zhao et al. [65] 1.469 0.447 2.396

Zhao et al. [65] (Multi-bounce) 0.428 0.459 1.319
Scheiner et al. [47] 0.428 1.366 1.597

Scheiner et al. [47] (Multi-bounce) 0.341 0.618 0.832
CornerRadar (ours) 0.168 0.138 0.266

(b) without direct-path

Method 𝑒𝑥 𝑒𝑦 𝑒𝑥𝑦

Adib et al. [2] (Direct-path) 2.056 3.905 4.855
Zhao et al. [65] 0.463 1.351 2.082

Zhao et al. [65] (Multi-bounce) 0.372 0.434 0.696
Scheiner et al. [47] 0.414 1.276 1.497

Scheiner et al. [47] (Multi-bounce) 0.308 0.582 0.760
CornerRadar (ours) 0.169 0.137 0.263

(c) with direct-path

Method 𝑒𝑥 𝑒𝑦 𝑒𝑥𝑦

Adib et al. [2] (Direct-path) 0.175 0.152 0.290
Zhao et al. [65] 1.821 0.385 2.715

Zhao et al. [65] (Multi-bounce) 1.829 0.402 2.720
Scheiner et al. [47] 0.477 1.606 1.869

Scheiner et al. [47] (Multi-bounce) 0.491 0.768 1.126
CornerRadar (ours) 0.165 0.139 0.272
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(a) Example of Mirroring (b) Example of Splitting

Figure 6-7: Empirical examples of splitting and mirroring. The received RF-Snapshot
is plotted in shaded purple and the ray-traced RF-Snapshot is plotted in shaded
green. The target’s true location is represented by a yellow star, the prediction of
CornerRadar is represented by a green circle and the prediction of Scheiner et al. [47]
is represented by a red triangle. The blue and orange lines in (b) show that the
same blob of RF power (in shaded purple) is split after ray tracing between two
locations. The figure shows that the approach of Scheiner et al. suffers from splitting
and mirroring errors, whereas CornerRadar avoids such problems.

but degrade badly when the direct path is available. This is because those schemes

ignore that RF signals can traverse walls, and hence when such event occurs, they

lead to large errors.

6.8 Empirical Examples of Mirroring and Splitting

In Chapter 4, we described two limitations of ray tracing that affect past work:

mirroring and splitting. In this section, we show empirical data that exhibit those

problems. Figure 6-7 shows data from two environments in our dataset. Figure 6-7a

shows an example of mirroring. The target (indicated by the yellow star) is actually

located inside the room, but Scheiner et al. [47] positions him at its mirror location

outside the room (as indicated by the red triangle). Figure 6-7b shows an example

of splitting. All-pixels-ray-tracing (shown in shaded green) creates multiple bright

spots, one near the entrance of the corridor, and one near the true location. The

neural network in Scheiner et al. [47] gets confused between these two spots and picks

the wrong location (as indicated by the red triangle).

In comparison, CornerRadar predicts the correct location in both examples and
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Figure 6-8: CornerRadar’s robustness to target’s speed.

(a) Radio-Corner Distance (b) Radio Orientation

Figure 6-9: CornerRadar’s robustness to radio placement and orientation.

avoids splitting and mirroring (as indicated by the green circles). This is because our

neural network does not operate on all-pixels-ray tracing. Our neural network takes

the RF-snapshots, the R-Map and the D-Map. The combination of the RF-snapshots

and D-Map incorporates the fact that RF signals can propagate through walls, and

allows the network to avoid mirroring. The combination of the RF-snapshots and

R-Map shows the neural network that there is only one reflector in the RF-snapshots

and hence it should not be split.

6.9 Robustness to Target’s Speed

In real-world scenarios, people can walk slowly or move quickly. We would like to

ensure that CornerRadar stays accurate regardless of the target’s speed. Thus, in

Figure 6-8, we plot CornerRadar’s localization error as a function of the person’s

walking speed. The results show that CornerRadar’s errors do not change with the

person’s speed. In all cases, the median error stays around 0.27m.
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Table 6.2: Impact of CornerRadar’s Components. The table reports the median
error of potential variants of CornerRadar to highlight the importance of the ideas
underlying the design.

Method 𝑒𝑥 𝑒𝑦 𝑒𝑥𝑦

CornerRadar (Full System) 0.168 0.138 0.266
No Hint Map 0.254 0.312 0.500

Replace Hint Map with Floor Map 0.237 0.273 0.441
Replace CCS with RCS 0.219 0.277 0.426

6.10 Robustness to Radio Placement and Orienta-

tion

We investigate CornerRadar’s robustness to radio placement and radio orientation.

For radio placement, we consider scenarios in which the radio is 1 to 3 meters away

from the corner, since at such distances a moving robot may run into a person who

suddenly turns the corner and appears in the robot’s path. As for radio orientation,

it is important to ensure that the radio can receive the RF signals that bounce off

sidewalls. Hence, when fixing the radio on a robot, one should turn the radio slightly

to the left or right. We explore angles that vary between 0 and 45 degrees.

Figure 6-9a and Figure 6-9b plot CornerRadar’s error as a function of radio place-

ment and radio orientation. They show that our system maintains low errors across

a wide variety of placements and orientations.

6.11 Performance Analysis of CornerRadar’s Com-

ponents

The design of CornerRadar involves multiple components and sub-components. In

this section, we evaluate how some of these components impact localization accuracy.

Specifically, we evaluate the following variants of our system:

1. No Hint Map: To show the importance of the hint map, we evaluate a variant

of CornerRadar that feeds the RF-Snapshots to the neural network without the
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hint map.

2. Replace Hint Map with Floor Map: One may wonder whether simply pro-

viding the neural network with the floor map is sufficient for good performance.

Thus we evaluate a variant of CornerRadar where the hint map is replaced by

the floor map. The floor plan is provided to the neural network as a binary

image, where the pixels that belong to a wall are assigned 1 and the others are

assigned 0.

3. Replace CCS with RCS: In this case, the neural network is given the hint

map as input, but the coordinates in the hint map and the coordinates of the

label are expressed in the radio coordinate system (RCS) instead of the corridor

coordinate system (CCS).

Table 6.2 reports the median localization error of all of the above CornerRadar

variants. First, we can see that the hint map is crucial to our system. Without

the hint map, CornerRadar’s error along the corridor is doubled (from 0.266m to

0.500m). The results also show that the floor map is not as effective as the hint map.

In particular, replacing the hint map with the floor map causes the error along the

corridor to become 1.6 times larger (0.441m vs. 0.266m). This is because, without the

hint map, the neural network has to learn the ray tracing rules on its own from the

data. Finally, the table also demonstrates the benefit of using the Corner Coordinate

System (CCS) instead of the Radar Coordinate System (RCS). It shows that this

change of coordinates leads to a localization error 1.6 times smaller.

6.12 Evaluation of Computational Requirements

While our data processing was done on a Titan Xp GPU, in this section, we show that

CornerRadar can run in real-time on a small low-power platform like the NVIDIA

Jetson Nano Developer Kit (Nano) [35]. There are three steps for CornerRadar to

generate a prediction. 1) RF-Snapshots Generation: the system collects raw

RF samples from the antenna and uses the antenna array equation and Fast Fourier
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Table 6.3: CornerRadar’s average running time for computing a localization reading
on NVIDIA Jetson Nano. For reference, we also report the running time on NVIDIA
Titan Xp. Step 1: RF-Snapshots Generation. Step 2: Hint Map Generation. Step 3:
Neural Inference.

Device \ Step Step 1 Step 2 Step 3 Total

NVIDIA Jetson Nano 40ms 25ms 58ms 123ms
NVIDIA Titan Xp 11ms 8ms 8ms 27ms

Transform to obtain the RF-Snapshots. 2) Hint Map Generation: the system takes

the point clouds measured by the LiDAR and runs the layout detection algorithm to

get the current layout. Then it uses the layout to generate the corresponding hint

maps as explained in Section 5.1. 3) Neural Inference: The system finally feeds the

RF-Snapshots and the hint maps to the trained neural network and gets a location

prediction.

As shown in Table 6.3, CornerRadar generates a position reading in 123 millisec-

onds on Jetson Nano (40ms for generating the RF-snapshots, 25ms to generate the

hint-map, and 58ms for the neural network inference). This shows that CornerRadar

can support real-time operation using an on-board small IoT computer.
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Chapter 7

Discussion

In this chapter, we discuss the implications of our results for robot navigation, and

the limitation of the system.

7.1 Implications for Robot Navigation

Research on robot navigation has shown a significant interest in strategies for avoiding

robots colliding with humans [54, 3, 49, 16, 55, 10]. Simply having robots sounding

an alarm as they move, and expecting humans to avoid them is not sufficient. Real-

world accidents show that robots can run over young kids [45], who are unlikely to

pay attention to such alarms. The robotic community has two general strategies for

dealing with collisions. The robot may take a conservative strategy [54, 3, 49] and

move only when it is certain it will not collide with a human. Such a strategy however

can lead to the freezing robot problem [53] –i.e., in complex scenarios, the robot may

have a high uncertainty about potential collisions, and as a result cannot make any

movements. Alternatively, the the robot may use an aggressive strategy [57] and keep

moving until it sees a human that may collide with it. Such a strategy is dangerous

and requires the robot to have very accurate location estimates to avoid collisions.

CornerRadar’s ability to deliver accurate around-corner localization has direct im-

plications for robot navigation. Consider a robot that follows a conservative strategy.

Say the robot needs to sustain a 0.5m safety margin from people. If the localization
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system has an 𝑥 m error, then the robot needs to find a path that is 0.5 + 𝑥 m away

from the person to guarantee the desired safety margin. Assuming that a corridor has

a width of 2m, the person and the robot both have a 0.25m radius. If the localization

error can exceed 1 meter, it will be infeasible for the robot to find a safe path, and

the robot ends up freezing. Our results show that CornerRadar’s error are low and

in no case in our experiments exceeded 1 meter. In contrast, the errors in past work

are high, and with high probability, exceed 1m.

Now consider a robot that follows an aggressive strategy. In this scenario, it is

critical for the robot to have a long sensing range. The longer the sensing range is, the

earlier the robot can detect the person and adjust its path. The localization results

show that CornerRadar can maintain low localization errors even if the person is 6

meters within the corridor. In contrast, the errors in past work increase quickly with

distance, and for the same error level, the sensing range will be much smaller.

7.2 Limitations

While CornerRadar significantly improves around corner localization, it also has a

few limitations.

7.2.1 Moving Radio

Like all past work on around-corner sensing (both optical and RF-based), this the-

sis mainly consider the scenarios with a static radio. We have conducted a pre-

liminary study on applying CornerRadar to moving platforms. Initial results show

CornerRadar can potentially be extended to moving radios.

A moving radio is challenging because it makes it hard to eliminate background

reflections and focus on the moving person. Specifically, when the radio is static,

one can apply consecutive subtraction to the RF-Snapshots to remove reflections

from static objects, mainly walls, and focus only on reflections from moving people.

However, when the radio is moving, consecutive subtractions cannot remove the walls

since they move with respect to the radio. In this case, wall reflections can clutter
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the RF-snapshots and look to the model as if they were moving people. This is a

general problem that affects all past work on localization from RF reflections.

We tried a simple strategy to address this challenge. Since our layout-detection

method provides the location of the walls, we tried to mask out (i.e., zero out) the

RF power that corresponds to wall locations in the RF-snapshots – i.e., remove any

RF power that comes from the walls. We then run our system on these updated

RF-snapshots with no additional modifications. We conducted experiments with a

moving cart, and applied this strategy. The resulting localization errors in this case

are 𝑒𝑥 = 0.155m, 𝑒𝑦 = 0.204m and 𝑒𝑥𝑦 = 0.315m. While the errors have increased in

comparison to a static radio, the results show the feasibility of extending our method

to moving robots. A detailed investigation of moving radios however is beyond the

scope of this thesis and left to future work.

7.2.2 Multiple Targets

We have considered only scenarios with one person moving at any time. We do not be-

lieve this to be a strong limitation because applications of around-corner localization

are typically focused on detecting the person closest to the corner (e.g., the person

who may collide with the robot as it turns the corner). Further, we believe that

extensions to multiple unspecified number of people can be achieved by changing the

CNN to output people locations as a probability over a 2D space, instead of simply

outputting the x-y coordinates of a single person. This however requires collecting

training data with multiple people in the scene, which is left for future work.

7.2.3 Curved Walls

Our layout-detection algorithm assumes that walls are straight. However, in some

environments the walls around the corner may be curved. In this case, our layout-

detection algorithm may generate an incorrect layout. It is feasible to extend the

layout-generation algorithm to deal with curved walls, albeit with increased compu-

tational complexity. No other component in CornerRadar assumes straight walls.
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Thus, we believe with a modified layout detection and enough training data from

curved-wall environments, CornerRadar can work well with curved walls. However,

corners with curved walls are relatively uncommon, and we have not encountered

such environment during data collection. In future work, we will consider extending

CornerRadar to handle curved-wall scenarios.
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Chapter 8

Conclusion

In this thesis, we present CornerRadar, a novel RF system that can localize people

around corners. The combination of the hint map and the localization CNN enables

CornerRadar to overcome the deficiency of ray tracing in indoor environments and

leads to more robust performance in the presence and absence of a direct propagation

path. Empirical evaluation from a large number of indoor environments demonstrates

that CornerRadar is both accurate and robust. We believe that our system can serve

as a fundamental building block that complements past work on indoor RF-based

localization.
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