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Abstract

Function-as-a-Service (FaaS) platforms are an appealing option for developers be-
cause they save time and money by eliminating the work spent managing application
servers. Apiary is a novel FaaS platform which performs extremely well on data-
centric tasks by tightly integrating computation and storage layers, eliminating the
time spent transferring data between the two. Moreover, Apiary’s robust provenance
system and straightforward programming model provide compelling reasons for de-
velopers to use it for both data-centric and compute-intensive tasks. In this paper, we
detail a general architecture for using Apiary’s asynchronous programming model to
implement compute-intensive tasks as external services. These external services are
free to make usage of specialized hardware such as GPUs, which provide extremely
good performance for many typical compute-intensive tasks such as machine learning
inference.
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Chapter 1

Introduction

In recent years, FaaS platforms have found support in both industry [1, 2, 3| and
research [4, 5, 6] applications. The principal attraction of FaaS platforms is that they
save developer time and money by eliminating the work spent managing application
servers and providing a straightforward pricing model based on auto-scaling, since
the FaaS platform provider can manage the application servers and charge according

to usage.

Broadly, we can divide FaaS applications into two types according to how they
spend the bulk of their resources. They may be either compute-intensive, such as
image or video processing, or data-centric, such as microservices and web-serving ap-
plications. Existing FaaS platforms perform poorly on the latter type of applications
because they typically disaggregate computation and storage layers. Several of the
most popular industry FaaS platforms, such as AWS Lambda, Azure Functions, and
Google Cloud Functions, were created by cloud vendors who offer cloud storage plat-
forms. For these vendors, disaggregating computation and storage makes sense as
it allows the FaaS platform to directly integrate with their cloud storage platform.
Unfortunately, this approach limits performance on data-centric applications because
it incurs the cost of a round trip between the computation and storage layers for each

operation.
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1.1 Apiary

Apiary [7] is a novel FaaS platform which tightly integrates computation and stor-
age layers. This allows Apiary to perform extremely well on data-centric tasks by

eliminating the time spent transferring data between the two layers.

Apiary is the result of a joint effort by MIT, Stanford, CMU, Google, and VMware
to use a distributed database management system (DBMS) as the foundation of a
novel Faa$S platform [8]. By tightly integrating computation and data layers, Apiary
leverages its underlying highly-performant DBMS to provide impressive performance
on data-centric tasks. Several data-centric workloads have been experimentally shown
to exhibit higher performance running on Apiary than on popular FaaS platforms such
as Openwhisk [9] and Boki [5]. Apiary guarantees that all functions run as ACID

transactions, provides exactly-once semantics, and offers automatic data provenance.

1.1.1 Programming Model

Apiary provides a straightforward programming model to developers. Functions
are written in a high-level language (Java), embedding SQL queries to a relational
database (VoltDB [10]). These functions are compiled to stored procedures, which

run natively as database transactions.

1.1.2 Exactly-Once Semantics

Apiary offers exactly-once semantics for general graphs of functions. Existing FaaS
platforms either require all functions to be idempotent or use external transaction
managers which incur a high performance cost. Apiary solves this problem by logging
executions from stored procedures and using a novel dataflow analysis algorithm to

keep the overhead at less than 5% [7].
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1.1.3 Provenance Capture

Apiary provides automatic provenance capture by recording all data which is read or
written by each database operation. Provenance information is grouped by functions,
providing application-specific context. This makes it easier for Apiary to handle

common queries in large-scale FaaS deployments, such as:

e Which operation most recently updated this record?
e Which records were produced by this data pipeline?

e Does this operation have the right to access this data?

Apiary records both the full history of function execution and the exact informa-
tion read from and written to the database, feeding this information to an analytical
database (Vertica [11]). This analytical database can then be queried with standard
SQL queries to answer provenance questions which might be difficult to answer in

other systems that need to query multiple sources to gather this information.

1.2 Heterogeneous Hardware

In the last few decades, the computation landscape has drastically changed. In partic-
ular, the scale has changed significantly; as a concrete example, the MIT Supercloud
has approximately 10,000 cores and a hundred terabytes of main memory [12]. With
this increase in scale comes a fundamental shift in how users run compute tasks.
Fifty years ago, a programmer might run a computation locally on a single, trusted
machine. The compute tasks of today may be much larger, running on hundreds or
even thousands of machines. Moreover, modern clusters often contain multiple dif-
ferent types of hardware specifically optimized for purposes such as simulation, data

analysis, and machine learning.

1.2.1 Data Centers and Computation

Computing hardware choices now include options such as graphics processing units

(GPUs) and tensor processing units (TPUs), as well as field programmable gate arrays
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(FPGASs) and multiple integrated cores (MICs) and many more [13, 14]. Certain tasks
can be performed more efficiently on some of these specialized hardware options;
this efficiency translates into lower cost and/or better performance for the end user.
Modern data centers make full use of this wide array of hardware, making it more

important than ever to embrace the power of heterogeneous hardware.

1.2.2 Machine Learning

Machine learning tasks are ideal candidates for utilizing specialized hardware such as
GPUs. The dramatic increase in usage of machine learning models aligns with the
similar increase in usage of specialized hardware. The massive, rigid computations
which occur in a typical machine learning model can greatly benefit from the archi-
tecture of the GPU, often by orders of magnitude over running on a CPU. Popular
machine learning frameworks such as TensorFlow [15] and PyTorch [16] provide na-
tive support for running models on GPUs, making it easy for an end user to take

advantage of the computational power of the GPU.

1.3 Contributions

As described earlier, existing FaaS platforms perform poorly on data-centric tasks
because their computation and storage layers are disaggregated. Apiary is a novel
FaaS system that performs well on these tasks by tightly integrating computation
and storage, and its robust provenance system and straightforward programming
model provide compelling reasons for developers to use Apiary to deploy both data-
centric and compute-intensive tasks. However, there are several reasons to implement
compute-intensive tasks differently from data-centric tasks. Since Apiary tightly inte-
grates computation and storage, it must scale according to the data storage require-
ments, which may not directly align with the computation requirements. Moreover,
compute-intensive tasks may take drastically more time than data-centric tasks, and
it is impractical to lock a partition of the underlying database for a significant amount

of time.
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Motivated by these reasons, we detail a general architecture for using Apiary’s
asynchronous programming model to implement compute-intensive tasks as external
services. Doing so avoids locking a partition of the underlying database for a signifi-
cant amount of time, only doing so when directly retrieving or inserting data. These
external services are free to make use of specialized hardware such as GPUs or TPUs,
which provide extremely good performance for many typical compute-intensive tasks
such as machine learning models. We conduct performance tests on several typical
machine learning inference tasks and show that the overhead incurred by Apiary is

negligible compared to the time spent on computation for these tasks.
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Chapter 2

Related Work

2.1 FaaS Platforms

In recent years, FaaS platforms have found much support in both industry [1, 2, 3]
and research [4, 5, 6] applications. For example, the most widespread option, AWS
Lambda, has 3.5x as many function invocations as two years ago, and other popular
cloud storage providers such as Azure and Google Cloud have an increasing proportion
of their users also making use of their FaaS platforms (Azure Functions and Google
Cloud Functions, respectively) [17]. This significant growth can be attributed to the

strong appeal of FaaS platforms for saving user time and money.

2.1.1 Benefits

A traditional web serving application architecture consists of three distinct tiers:

e A frontend where the user interacts with the application
e A stateless tier of web servers which respond to user requests and implement
application logic
o A stateful backend for application data storage
Each of these tiers presents another layer of infrastructure to manage, and the
time and money required for upkeep of this infrastructure can quickly rise to unrea-

sonable levels. FaaS platforms provide an appealing alternative to this architecture
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by reducing the scale of the infrastructure an engineer must manage. In particular,
a FaaS platform replaces the middle tier of web servers with functions implementing
application logic and the stateful backend with a cloud storage system. This elimi-
nates the need for engineers to manage any failures occurring in the middle tier as
well as the need to auto-scale this tier according to the load, minimizing both time

and money spent.

2.1.2 Data-Centric FaaS Tasks

Increasingly, FaaS platforms are used for data-centric applications such as microser-

vices and web-serving applications [17, 6]. Some examples include:

e A social network where users create posts and interact with others’ posts 18]
e A store where users view items, add them to their cart, and check out [19]
e A hotel reservation service where users find nearby hotels and reserve rooms in

them [20]

We have already discussed how existing FaaS platforms incur a significant per-
formance penalty because they disaggregate computation and storage layers. For
example, a simple function performing a point database update in popular FaaS plat-
form Openwhisk takes over a millisecond to run to completion, with only 23 ps of
this time spent actually performing query execution; over 98% of the time is spent

connecting to and communicating with the remote database [7].

2.2 Heterogeneous Hardware

2.2.1 Integration with DBMS

With the ever-increasing prevalence of specialized hardware, much work has been
done on integrating standard DBMSs with specialized hardware in recent years [13,
14, 24, 25|. The ability to harness both a powerful DBMS and modern specialized

hardware promises to yield impressive results.
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One such application of this integration is using the combination of a standard
DBMS and specialized hardware as the foundation of a new operating system. This is
a direction explored by TabulaROSA [13], which uses a DBMS to manage operating
system state. Broadly, operating systems such as Linux are quite old and, by today’s
standards, fairly slow, which motivates using a high-performance DBMS instead.
Moreover, Linux is particularly bad at managing heterogeneous hardware, as this was
simply not relevant when it was created. TabulaROSA defines key operating functions
in terms of high-level mathematical semantics which can be directly translated into
DBMS operations and can be formally verified to be correct. This shows that an
operating system using a DBMS is possible on many different types of hardware.
Initial performance tests of forking, a fundamental operating system function, showed

promising results [13].

Another application is using specialized hardware to build a more performant
query processing engine for a DBMS. Traditional relational DBMSs are generally
“pull-based” in the sense that the data needed for each computational thread is pulled
from internal storage. In contrast, a “push-based” DBMS passively relies on a stream-
ing mechanism which feeds it data. Recently certain “push-based” DBMSs have be-
come popular, such as Aurora [21|, Qpipe [22], and DataPath [23|. These DBMSs
tend to become limited by computation when the data arrival rate is quite high. This
fact motivates taking advantage of specialized hardware to build a more performant
query processing engine [24]. Initial testing on a proof of concept yielded promising
results, as a query processing engine running on a GPU can outperform a comparable

system on a CPU by an order of magnitude or more on certain operations [24].

There has also been work to develop a DBMS with built in support for acceleration
via specialized hardware. One such project is CoGaDB [14], a main-memory DBMS
which supports GPU acceleration and is optimized for online analytical processing
(OLAP) workloads. CoGaDB implements efficient algorithms for common database
operations for both CPUs and GPUs and uses a self-tuning optimizer framework
[25] to build an optimizer which is hardware-oblivious and efficiently schedules tasks

according to processor availability. CoGaDB can quickly adapt to take full advantage
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of the power of the underlying hardware and shows great promise for a DBMS with

built in support for specialized hardware.

2.2.2 Task Scheduling

As the hardware landscape grows more diverse, data centers are increasingly faced
with jobs which have complex dependencies and heterogeneous resource demands.
Significant work has been done to investigate how to handle these jobs efficiently

while taking full advantage of the available hardware.

Much research on this problem considers the simpler case where each task can
only be executed on a specific type of hardware. Even in this simpler case, finding
an optimal schedule is intractable [26]; however, an optimal schedule can be approx-
imated. Graphene [27] is a cluster scheduler aimed at jobs with strict heterogeneous
resource demands which utilizes an offline and an online component to schedule tasks
efficiently. The offline component identifies “troublesome” tasks, i.e. those which are
long running or with complex resource demands, and schedules those first; the online
component uses heuristics to tightly pack tasks and to trade-off between fairness and
speed of completion. With this approach, Graphene finds a solution within 1.75x the
cost of an optimal solution in the worst case, outperforming more naive schedulers

such as the Apache Tez [28] scheduler [27].

Generalizing the problem to account for the fact that many tasks may be per-
formed on multiple types of hardware makes the scheduling problem at hand much
more complicated. Some work in this area focuses on using an initial test suite to
gather various information such as latency, transfer bandwidth, and computational
power about the available hardware, and combining this information with an online
learning approach utilizing placement heuristics to schedule tasks efficiently [29]. This
approach is hardware-aware in the sense that the information gathered is manually
curated with knowledge of the underlying hardware and this information is crucial
to the resulting schedule. Other approaches are hardware-agnostic, relying on online

machine learning based models to adapt to the underlying hardware [25, 30].
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2.2.3 Machine Learning Deployment Systems

With popular machine learning frameworks such as TensorFlow and PyTorch provid-
ing native support for using specialized hardware such as GPUs to train and utilize
models, several systems have been developed to make it easier to deploy these mod-
els on specialized hardware. Systems such as TensorFlow-Serving [31], Clipper [32],
and Amazon Sagemaker [33] make it easy for end users to deploy their models as
microservices to a GPU for inference. Deployed models may be interacted with using
REST or RPC APIs. Users may utilize a pipeline to retrain and redeploy models in

the background, ensuring the deployed model stays current.
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Chapter 3

System Architecture

Although the high-level idea of calling an external process is straightforward, there
are several performance concerns and infrastructure requirements that inform these
architectural decisions. In this chapter, we detail the general architecture for using
Apiary’s asynchronous programming model to implement compute-intensive tasks as

external services.

3.1 Overview

In Apiary, users write code in the form of stored procedures written in Java which
use embedded SQL queries to communicate with the underlying VoltDB instance.
These stored procedures are run natively as ACID transactions in the database. For
compute-intensive tasks, the computation time may be quite long relative to data-
centric tasks, meaning that it may be unreasonable to lock the underlying database
partition for the duration of the task. To circumvent this problem, users can make use
of Apiary’s asynchronous programming model, which allows them to asynchronously
invoke stateless functions which are not tied to the database. These stateless functions
connect via TCP to an external process which manages computation. Figure 3-1
shows a high-level overview of this architecture.

The entry point for an end user to invoke a compute-centric task is a single

primary stored procedure. This stored procedure retrieves data from the database
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Figure 3-1: System architecture. Upward lines represent flow of data originating from
the underlying database, downward lines represent flow of information computed by

external process.

and asynchronously invokes a stateless function. This stateless function does not have
access to the database and thus does not need to lock the underlying partition. It
connects over TCP to a long-running external process managing computation. After
computation occurs, the computed information is transferred back through the chain
and eventually reaches the original stored procedure, at which point it may be inserted

into the database. Multiple stored procedures may be invoked, leading to multiple

TCP >

\ J 'i'

stateless stateless

function function

Y Y
invocation

v h

primary primary

stored procedure stored procedure

stateless functions making TCP connections with the external process.

3.2 Primary Stored Procedure

The primary stored procedure performs the following steps:

1. Invokes another stored procedure to fetch the desired data from the database.

2. Asynchronously invokes a stateless function and gives it the retrieved data.

When the stateless function receives a response from the external process man-

aging computation, it returns the computed information.

3. Invokes another stored procedure to insert the computed information into the
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database.

Note that steps (1) and (3), the points which make direct contact with the
database, run as ACID transactions.

Even for a single computational task, data may need to be transferred using multi-
ple invocations of the primary stored procedure. This is due to some fundamental size
limitations of VoltDB arising from the fact that VoltDB is a main-memory database,

namely:

e The maximum size of any column is 1MB;
e The maximum size of any row is 2MB;

e The maximum size of any stored procedure return value is 50MB.

Moreover, the current Apiary implementation restricts stored procedures to at
most 1MB due to the way it serializes tasks. In any case, whether the limit is 1MB or
50MB one can easily envision computational tasks which require significantly more
data than this to be transferred, which is not an issue since the external process will

accept as many connections as needed.

3.3 External Process

The external process is a long-running process which accepts TCP connections from
potentially many stateless functions. This has a number of crucial advantages over

doing computation directly in stateless functions:

e The external process can initialize computation structures, e.g. load saved
machine learning models, before receiving any connections, eliminating a po-
tentially massive delay in computation.

e The limitation on the amount of information returned by a stored procedure
means that data from multiple stateless functions may need to be pooled to run
a single computation.

e Transferring data over TCP means the external process may be run in any high

level language, not just Java, and may potentially be run on any machine.
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task ID | piece ID data

Figure 3-2: Structure of a message sent to the external process. Each message includes
an identifier for which task it is for and, if necessary, an identifier for which piece of
the puzzle it is when pooling data from multiple stateless functions.

Figure 3-2 shows the structure of a message sent to the external process. The
external process determines which task the data is for and how to assemble multiple

pieces of data based on the identifiers at the start of the message.
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Chapter 4

Computational Test Selection

The architecture we have described thus far is quite general, and one can envision
using this architecture to run many types of compute-centric tasks. However, to in-
vestigate the performance of the architecture, we focus on machine learning inference
for image classification. In this chapter, we discuss the datasets and the models we

have selected for performance testing.

4.1 Image Classification

Image classification is a standard problem handled by many machine learning mod-
els. The typical approach to this task is to treat it as a supervised learning problem,
i.e. using labeled examples to train a model to classify arbitrary images. This ap-
proach naturally requires a great deal of labeled data, so well-constructed datasets

are valuable assets.

4.2 Datasets

We have selected three popular image classification datasets with images at different
scales. Here we will provide a discussion of the datasets and the models we use for
classifying images from each of them. We believe that our models represent realistic

use cases for a user deploying an image classification model.
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4.2.1 MNIST

The MNIST dataset [34] is perhaps the most iconic image classification dataset. It was
created by the National Institute of Standards and Technology (NIST) and consists
of 70,000 images of handwritten digits generated by hundreds of writers including
both Census Bureau employees and high school students. Each image is black and

white and is fairly small at 28x28 pixels.

Figure 4-1: A handwritten 1 from the MNIST dataset.

There has been much work in developing models to recognize the different digits.
Recent models [35] have attained an accuracy as high as 99.8%, which is quite im-
pressive given that the images in the dataset are so small. Some of the images in the
testing dataset are nearly unreadable [36] and may prevent even the most advanced

models from reaching perfect accuracy.

4.2.2 ImageNet

The ImageNet dataset [37] is an image dataset organized by the WordNet hierarchy
[38]. WordNet is a large lexical database of English words and phrases, with syn-
onyms grouped together into synsets. These synsets may have various relationships
with other synsets, the most common being the super-subordinate relationship. For
example, the “chair” synset has a super-subordinate relationship with the “armchair”

synset. These relationships naturally structure synsets into hierarchy trees.
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There are around 80,000 synsets in WordNet which correspond to nouns. The Ima-
geNet dataset aims to provide around 1,000 quality-controlled and human-annotated
images for each of these synsets, and currently provides well over 20,000 different
image categories. These images are taken from various sources on the web and vary
significantly in size, with an average resolution of around 470x390; most models resize

the images to a standard 256x256 or 224x224 before using them.
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Figure 4-2: Two examples of hierarchy chains in WordNet, with example images from
ImageNet representing each synset. Figure taken from [37].

Training a model to perform with high accuracy on the ImageNet dataset can be

quite costly for a few reasons:

e Many of the synsets are quite similar to each other and will be difficult to
distinguish even for a human; for example, “lapdog” and “toy dog”.

e The images, even scaled down to 256 x256 or 224x224, are significantly larger
than the MNIST images, and as such the relevant computation for training is

significantly more expensive.

In addition, it is not the goal of this paper to develop novel or incredibly accurate
models. Thus, we have taken several steps to reduce the training expense while main-
taining a reasonably accurate model. Instead of using all 20,000+ image categories,
we use only the standard 1,000 categories that are used by the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), an annual image classification competition
run by the creators of ImageNet. More importantly, we perform transfer learning

using a pre-trained headless model [39]; that is, we start with a pre-trained model
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which extracts a small, information-dense number of features from the image, and we
train a layer to map these features to our categories. The pre-trained model uses the
MobileNetV2 [40] architecture and is provided by Google on TensorFlow Hub. This
model was originally trained on the ImageNet dataset. It takes a 224x224 image as
input and outputs a feature vector with 1,280 features; on top of this, we add a layer
acting as the classification head, mapping these features to the 1,000 categories from
ILSVRC. This approach saves a great deal of time on training and allows the model

to perform quite well.

4.2.3 COCO

The COCO (Common Objects in Context) dataset [41] is an image dataset prepared
by Microsoft. It consists of 328,000 images of 91 distinct and easily recognizable
object types such as “clock”, “horse”, and “traffic light”. Not only is each image
labeled with each object type found in it, but each individual object is marked with
a bounding shape. The images have an average resolution of around 640x480, and

models typically resize them to standard sizes such as 512x512 before using them.

Figure 4-3: An example image from the COCO dataset, with bounding shapes around
various objects shown. Figure taken from [42].

Similarly to the ImageNet dataset, there are high costs in training a model to

perform with high accuracy. In fact, the images in the COCO dataset are slightly
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bigger than the images in the ImageNet dataset, and identifying bounding shapes for
objects in an image is significantly more complicated than just detecting their pres-
ence. Thus for simplicity we directly use a pre-trained model provided by TensorFlow
on TensorFlow Hub. The model [43] uses the CenterNet [44] architecture with the
Hourglass [45] backbone and was originally trained on the COCO dataset. It takes a
512x512 image as input and outputs data identifying the objects in the images and

bounding boxes for each object.
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Chapter 5

Results

5.1 Features

A user deploying machine learning models using Apiary can take advantage of several

features:

e Data sent to the external process can easily be used for either inference or
training the model itself, by simply changing the task ID referenced in Figure

3-2 to tell the external process which purpose to use it for.

e Inference and training can be performed immediately by the external process,
or wait until a certain batch size appears. This allows users to balance work
done by the external process between different tasks or prioritize a specific task

over others.

e The models themselves can be stored in Apiary and loaded into the external
process by simply storing and sending 1MB pieces of the serialized model. Com-
bined with Apiary’s robust provenance system, this allows users to easily track
not only which data was used for training and inference, but also the history of
the model itself as it is trained on new data or experiences architectural changes

from the end user.
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5.2 Inference Performance

For performing inference, each invocation of the primary stored procedure fetches as
many images as can comfortably fit in IMB. In all three datasets, the sizes we have
chosen to scale the images to are less than 1MB, so there is no need to break an image
into multiple pieces in the database.

The external process runs on a virtual machine equipped with a GPU configured
using Google Cloud Platform [46] and uses the GPU to perform inference. To mea-
sure inference performance, we provide comparisons against running on a CPU and
against the time spent directly running the model, as well as a comparison against
TensorFlow-Serving [31], a popular machine learning deployment system mentioned
earlier. Of course we anticipate some overhead on directly running the model, but
even against TensorFlow-Serving there will be some overhead incurred primarily by
invoking stored procedures. For each comparison we record performance numbers for
1, 10, 100, and 1,000 invocations of the primary stored procedure. The performance

numbers provided are the median of five runs.

5.2.1 MNIST

The MNIST model we use has a single hidden layer with 512 neurons. This is in line
with the scale of other MNIST models [34] and while simple, it is already enough to
perform with 96% accuracy or more on the testing set.

Since the MNIST images are only 28x28 and they are black and white, each only
takes up 784 bytes, meaning 1,200 images can comfortably fit into a single MB and
thus we fetch this many with each invocation of the primary stored procedure. The

external process simply returns the classification of each image.

1 Invocation 1,000 Invocations
TF-Serving | Model Execution || TF-Serving | Model Execution
Apiary 28.8% 72.7% 10.6% 23.8%
TF-Serving N/A 34.1% N/A 11.9%

Table 5.1: Overhead incurred for Apiary with external process running on a GPU
against TensorFlow-Serving and raw model execution time for MNIST example.
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Amortized Latencies for MNIST Testing
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Figure 5-1: Comparing the external process on a CPU and GPU against TensorFlow-
Serving and the baseline time spent executing the model for MNIST testing.

Table 5.1 shows the results of the comparison. We can see that we pay a relatively
high overhead compared to both model execution time and TensorFlow-Serving, es-
pecially when only invoking a single stored procedure. We can also see in Figure 5-1
that the GPU is not dramatically better than the CPU for this example. Both of
these facts are understandable as the computation here is relatively simple compared
to the other inference tasks, with inference taking only a few microseconds for each
image. Even so, the overhead is not too large; with 1,000 invocations of the primary
stored procedure the overhead against TensorFlow-Serving falls to just over 10% and

the overhead against the base model execution time is 23.8%.

5.2.2 ImageNet

The ImageNet images have been scaled to 224 x224 and they are color images, mean-
ing 6 images can comfortably fit into a MB. Thus we fetch 6 images with each in-
vocation of the primary stored procedure. The external process simply returns the
classification of each image.

Table 5.2 shows the results of the comparison. Here the overhead against model

37



1 Invocation 1,000 Invocations
TF-Serving | Model Execution || TF-Serving | Model Execution

Apiary 9.1% 26.3% 5.0% 16.7%
TF-Serving N/A 15.8% N/A 11.1%

Table 5.2: Overhead incurred for Apiary with external process running on a GPU
against TensorFlow-Serving and raw model execution time for ImageNet example.

execution time and TensorFlow-Serving is, unsurprisingly, drastically better than for
the MNIST example; Figure 5-2 shows the performance numbers in more detail.
Note that for this example the GPU outperforms the CPU by a factor of 3 due to
the computation being more complex. For our system using Apiary on a GPU, even
when invoking a single stored procedure the overhead against TensorFlow-Serving is

less than 10%, dropping to just 5% at 1,000 invocations.
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Figure 5-2: Comparing the external process on a CPU and GPU against TensorFlow-
Serving and the baseline time spent executing the model for ImageNet testing.

5.2.3 COCO

The COCO images have been scaled to 512x512 and they are color images, meaning

only a single image fits within a MB. Thus each invocation of the primary stored
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procedure fetches a single image. For this example the external process returns more
than just a simple classification for each image; instead it returns data corresponding
to multiple objects identified in the image and estimated bounding boxes for each.
Functionally this does not change the implementation much as the information is still

just sent back to the stateless function.

1 Invocation 1,000 Invocations

TF-Serving | Model Execution || TF-Serving | Model Execution
Apiary 5.1% 6.7% 3.3% 9.8%
TF-Serving N/A 1.5% N/A 6.3%

Table 5.3: Overhead incurred for Apiary with external process running on a GPU
against TensorFlow-Serving and raw model execution time for COCO example.

Table 5.3 shows the results of the comparison. Here the overhead against model
execution time and TensorFlow-Serving is better than both of the previous examples.
Figure 5-3 shows the performance numbers in more detail, although the CPU num-
bers are omitted as for this test the CPU is orders of magnitude slower due to the
complexity of the computation. In all cases for this model the overhead incurred is
less than 10%, even when comparing directly against the model execution time, and

the overhead against TensorFlow-Serving is 5% or less.
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Amortized Latencies for COCO Testing
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Figure 5-3: Comparing the external process on a GPU against TensorFlow-Serving
and the baseline time spent executing the model for COCO testing.
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Chapter 6

Closing Remarks

6.1 Discussion

The initial testing shows very promising results, with overheads of less than 10%
when compared with TensorFlow-Serving for both the ImageNet and COCO datasets,
which contain significantly larger images than the MNIST dataset. Even for the
MNIST dataset, with enough invocations of the primary stored procedure the over-
head drops to just over 10%. These numbers make sense as the expected overhead
from retrieving data from the database and inserting computed information into it
should be quite small, and as the complexity of the computation grows this over-
head should look smaller and smaller by comparison. The absolute worst case in
our performance testing occurs when performing a single invocation of the primary
stored procedure for the MNIST dataset, where the performance is just under 30%
worse than that of TensorFlow-Serving. Even so, in this case over half the time is
spent running the model itself. In general, we conclude that the performance hit
incurred by deploying machine learning models in Apiary is negligible compared to
the cost of computation. This, combined with Apiary’s robust provenance system
and straightforward programming model, makes Apiary a good choice for users who

want to deploy compute-centric tasks.

41



6.2 Future Work

One obvious goal for future work is to build more infrastructure taking advantage of
Apiary’s robust provenance tracking. For example, one can imagine a simple frontend
showing the history of a model saved into the database, or possibly displaying which
data in the database has been used for training or inference. This could provide a
more positive user experience.

Another avenue for future work is to explore computationally-intensive tasks other
than machine learning. While we have focused on this topic, there are a wealth of
other computationally-intensive tasks that could be explored, and the architecture
we have described could surely be modified to accommodate these tasks.

Finally, another interesting question to explore is how the architecture could be
improved if the size restrictions presented by VoltDB were relaxed. While these
restrictions are understandable, they do affect the architecture significantly as one
cannot simply grab all the relevant data using a single invocation of the primary.
This could come in the form of changes to VoltDB itself allowing larger outputs from

stored procedures.

6.3 Conclusion

Apiary is a novel FaaS platform which performs extremely well on data-centric tasks
by tightly integrating computation and storage layers, eliminating the time spent
transferring data between the two. Apiary also offers a robust provenance system
and straightforward programming model, making it an appealing option for develop-
ers. We detail a general architecture for using Apiary’s asynchronous programming
model to implement compute-intensive tasks as external services. These external
services are free to make usage of specialized hardware such as GPUs, which pro-
vide extremely good performance for many compute-intensive tasks such as machine
learning models. Initial performance testing on machine learning inference tasks

shows promising results, giving hope that Apiary will prove a good fit for all types of
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computationally-intensive tasks.
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