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Abstract

Exact colorimetric reproduction of a color image is often impossible due to the color
gamut limit of the output device. When printing digital color images, pixel values may
specify colors that are unprintable on a given printer with the given inks. In order to
avoid gross printing errors, all pixel values must be transformed into the range of print-
able colors. When colors are changed, the goal is to minimize the impact on the overall

appearance of the image. It is very difficult to quantify image appearance accurately.

In order to gamut-compress an image, first the lightness range of the image is re-
duced using spatial filtering in the CIE psychometric lightness domain to attenuate the
low frequency lightness component of the image. This allows the contrast of the high
frequencies to be maintained although the dynamic range is reduced. Second, adaptive
three-dimensional gamut compression is performed in which image chroma is smoothly
compressed as a function of lightness, hue angle, and chroma. Adaptive gamut compres-
sion warps the shape of the image’s three-dimensional color gumut solid to better fit the

device’s color gamut solid. By comparison, the previous technique of global compression



shrinks the image gamut until it fits entirely within the device gamut, thus usually wast-
ing part of the device’s gamut capability. Another previous technique, pixel clipping,
chops off the image gamut wherever it exceeds the device gamut. Adaptive scaling elim-
inates the loss of detail from pixel clipj ing yet retains the colorfulness of the image by

using the entire device gamut.

Thesis Supervisor: Prof. William F. Schreiber
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Chapter 1

Introduction

1.1 Background

1.1.1 Problem

Each imaging device, medium, and storage format has its own associated range of rep-
resentable colors. In general, this range is quite different for a printer, video monitor,
scanner, and transparency projection. There often are significant differences hetween the
capabilities of different devices within the same functional category. The range of colors
a particular device or medium handles is called its color gamut. Calibrated colorimet-
ric measurements are necessary to have meaningful compé.risons between various color
gamuts. The difference between color gamuts can create a problem whenever an image
is rendered or translated between devices. If the destination gamut is more restricted
than the source gamut in some region, then the colors in that region must somehow he
compressed.

This project deals with the color gamut compression problem in the specific context
of printing digital color images from a computer. The purpose of this project is to
transform, in a controlled way, all non-printable colors in an image into printabl: colors.

In the process of changing out-of-gamut colors, it may be desirable to also change in-
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gamut colors slightly. If the color gamut of a printer is viewed as a continuous solid in
some three-dimensional color space, then each pixel value must lie inside the solid for the
image to be printable. When transforming an image to lie within a particular device’s
color gamut, the ultimate goal is to preserve the perceptual appearance of the original.
This objective is difficult to quantify, and consequently methods for gamut compression
tend to be rather ad hoc. Some approaches to the gamut compression problem involve
defining fixed device-to-device mappings; the mappings explored here depend on both
the particular image and rendering device. For this project, the desired appearance of the
image is assumed to be specified correctly. These algorithms do not explicitly attempt

to correct or enhance poor quality image data.

1.1.2 The Goal: Appearance Matching

The goal in gamut compression is to preserve the appearance of the original image while
using fewer colors. Ideally, we could calculate the optimal output of the gamut mapping
procedure by minimizing the change in appearanc: between the original and gamut-
constrained image while imposing the color gamut constraint. This apr.-vach is not
practical because image appearance is difficult, if not impossible, to quaatify precisely.
Some methods have achieved good results for small amounts of compression by trying to
match appearance by minimizing the change in each pixel value as measured in a uniform
color space. This approach does not take into account the many perceptual phenomena.
that affect appearance. Perceptual phenomena are as important to image appearance as
is the spectral power distribution that reaches the eye. Light energy is easier to measure
than appearance, but trying to compare images in terms of light energy is not really
comparing appearance.

One example of a perceptual phenomenon that makes appearance matching difficult
is brightness constancy |28] [9]. Brightness constancy explains the fact that the brightness
of an object is not proportional to the level of illumination falling on it. It is as if our

visual system attempted to judge the reflectance of objects, rather than simply measure
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the amount of light energy coming from them. Because of brightness constancy, it makes
sense to normalize the measurement of an image with respect to a white object in the
scene. We judge the lightness of objects by comparing themn to a white point in the scene,
not by the absolute amount of light energy coming from the object. In Section 2.6, the
white point is used to explicitly normalize the color space used for gamut compression.

A second example of a perceptual phenomenon that makes appearance matching
difficult is color constancy (also called hue constancy) (9] [5]. Color constancy is the effect
by which an object illuminated by two spectrally different light sources, like daylight and
tungsten, appears to be the same color. According to colorimetry, discussed in Chapter 2,
the tristimulus values of an object are related to the product of the spectral reflectance of
the object and the spectral power distribution of the source. In general, this means that
the tristimulus values of an object will change when the light source changes. Although a
measurement with a colorimeter under two different light sources can give very different
results, humans are relatively insensitive to such changes and usually judge the colors as
having the same appearance. The lack of models describing this mechanism makes the
measurement of appearance difficult.

One further complication to the simple minimization of appearance error is that the
preferred reproduction of many familiar objects is different from their true colorimetric
values [14]. In other words, some color “errors” could Le be perceived as enhancements to
the image. For example, the preferred colors of sky blue and caucasian skin are different
from their colorimetric values. This makes the calculation of appearance error even more
difficult because it is necessary to know what an object is in order to know how a color
change will be judged. Furthermore, for some special objects it is important to have
the colors look just right, while for other objects that are Joss familiar, accuracy does
not matter as much. For example, a hue shift in the reproduction color of a person’s
face is usually much more noticeable than the same hue shift in the reproduction color
of a telephone. The many factors that influence image appearance are difficult, if not

impossible, to model accurately.
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1.2 Some Previous Approaches to the Color Gamut

Preblem

Color gamut compression is not a new problem. Virtually all color imaging methods have
an associated technique for gamut compression, be it explicit or implicit. It is useful to
review some of the previous approaches, along with their benefits and drawbacks, before

discussing the proposed improvements.

1.2.1 Graphic Arts

Graphic artists and photographers have a long history of experience with color gamut
compression. Consequently, the graphics arts industry is a valuable source of ideas about
color gamut compression. Understanding the graphic artist’s methods for gamut com-
pression is complicated by the fact that it is often performed in conjunction with other
steps of the reproduction process, such as color correction and tone scale modification.
Graphic artists commonly use one of two methods to accomplish color gamut compres-
sion: photographic processing and color scanners. Scanners offer the most control and
flexibility. The scanner operator can adjust controls to specify the parameters of func-
tions such as the tone reproduction curve, unsharp masking, and color balance of the
image. In photography, masks and separations are madé of the original image using
special films and exposure techniques to produce a well-balanced, high-contrast repro-
duction. Both of these methods require a significant amount of human interaction and
judgement. In compressing the gamut, the graphic artist makes a decision about which
colors are important and how these key colors should be reproduced. These judgements
are often made without immediate feedback; thus, extensive experience may be required

to become proficient with these methods.
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1.2.2 Xerox PARC

A project explicitly involving gamut mapping was undertaken at XEROX PARC (Palo
Alto Research Center) in 1986 [29]. It involved preparing color separations for offset
printing of a variety of computer images for a special issue of Color Research and Ap-
| plication [30]. The system consists of a calibrated input process for converting images
into CIE tristimulus values, X, Y, Z; a calibrated output process for accurately printing
reproducible colors from X, Y, Z values; and a set of gamut mapping tools for linking the
two. The gamut mapping tools operate in the X, Y, Z domain using various mappings
to convert calibrated tristimulus values from the monitor to calibrated tristimulus values
for the printer, and in the process, eliminate all non-printable colors.

The Xerox processing scheme consists of three sequential transformations. Each trans-
formation is performed interactively by watching projections of the image and device
gamuts. The first transformation, involving translation, scaling, and gray axis rotation
is the main part of the gamut mapping. Its primary purpose is to adjust the achromatic
image component so that the gray axes of the image and destination device are aligned
and approximately the same size. This is accomplished by subtracting the blackest color
in the image from all colors, multiplying by a matrix to align the gray axis of the image
with that of the destination gamut, multiplying by a constant to set the overall contrast,
adding the value of the printer’s black, and fine tuning by small shifts along the gray
axis. The accuracy of individual colors is not emphasized; by observing how the entire
image gamut compares to the destination gamut, a reasonable overall mapping is found.
Best results were obtained by mapping most, but not all, of the pixel values to the inside
of the color gamut in this first step. The next two transformations bring the remaining
colors in-gamut.

The second step, sometimes r.eeded for highly saturated images, is called the umbrella
transformatior.. The umbrella iransformation is similar to the Ives-Abney-Yule compro-
mise [13] and desaturates an image by moving the primaries used to represent the image

towards the white point. A color R, G, B, given by RR, + GG, + BB, is mapped to
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RR,+ GG, + BB, where R,,G,, B, are the source primaries and R,,,G,, B, are the new
primaries. Hue shifts can be nchieved using this transformation by allowiuy t,,, G\, and
B, to deviate from the lines between the original primaries and the white point. As with
the first transformation, it was found best not to map all colors inside the destination
gamut using the umbrella transformation. The reason is that the desaturation is global;
therefore, in order to put all saturated colors inside the destination gamut, it would be
necessary to desaturate the entire image severely.

The third step, clipping out-of-gamut colors to the gamut surface, is provided so that
the global operations of the first two steps are not required to over-compress the image.
The clipping scheme 1naps out-of-gamut colors to a perpendicular nrojection or to the
closest point on the gamut surface when a perpendicular projection does not exist. Note
that the exact results obtained by clipping depend on the color space used, X, Y, Z in
this case.

One important point about this project is that these tools were targeted for use in
their lab by people at least somewhat knowledgeable about color science and printing.
It would probably be difficult for non-technical users to get good results by using these
tools, since the emphasis * .s placed on viewing gamut representations, rather than the
transformed image itself. Representing the printed image or a calibrated monitor and
observing changes directly in the image might be easier to use and might give more
predictable results than observing the gamut diagrams. The approach of using soft-
proofing in conjunction with interactive control of colo: mappings has been successfully

demonstrated[23].

1.2.3 M.I.T. E.E. Thesis, Robert Buckley

In 1978, Buckley investigated the photographic reproduction of pictures with non-repro-
durible colors(7]. Buckley’s thesis is based on the the Evan’s consistency principle [11],
which suggests that all colors in an image should be compressed equally. According to

this theory, colors that are reproducible should be compressed along with the colers that
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are not, so that the picture remains “internaily consistent.” Buckley used the CIE 1964
U*V*W?* uniform color space.

Buckley’s compression scheme involved compressing lightness (W*) and chromatic-
ness (U*V*) independently while attempting to hold hue constant. In the first step, all
lightness values are multiplied by a constant to reduce the density range and shifted to
the appropriate range by adding another constant. This affine transformation roughly
matches the whitest and blackest colors in the image to the whitest and blackest repro-
ducible colors. During this first step, the chromatic components of the image are not
used or changed. The second step, global chroma scaling, reduces the chromaticness of
all colors in the image by a constant scale factor. This global constant is determined
by selecting the largest scale factor which maps every color to the inside of a polyhedral
solid model of the color gamut.

Buckley found that global chroma scaling resulted in excessive desaturation. To
improve his results, he limited the selection of the constant to a few important areas of
the picture. This forced the important areas to be completely in the gamut and imposed
no restriction on the rest of the image. This technique allowed more chromaticness and
improved the reproduction. Buckley also experimented with sharpening the image and

found that it improved the appearance.

1.2.4 M.IT. Ph.D. Thesis, Jason Sara

In 1984, Jason Sara did a much more involved study of several color gamut compression
techniques. Sara used the L*a*b* color space to represent image data. Three categories
of algorithms were investigated, two clipping methods and one global scaling method.
In the minimum error gamut compression (MEGC) method, all in-gamut colors are left
unchanged and all out-of-gamut colors are mapped to the closest in-gamut color, as
measured by the euclidian distance in L*a*b* space. In the MEGC scheme, there iz no
differentiation between changes in hue, lightness, or chroma; all changes are considcred

equivalent as long as the euclidian distance is the same. In the binary search gamut
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compression, each out-of-gamut color is moved towards a “target” color which is near the
neutral axis, until the out-of-gamut color lies on the gamut surface. As with MEGC, the
binary search gamut compression does not change any colors that are already in-gamut.
Sara also tried a smooth gamut compression scheme that involved no clipping to the
gamut boundary. Two variations of the smooth gamut compression were investigated.
The first, global compression, is identical to Buckley’s method. The second was to allow
the compression to vary over different hues.

In Sara’s opinion, the best results were obtained with the MEGC mnethod. He found
these images to be the most colorful and closest in appearance to the originals. Even
so, the MEGC method had a few significant problems. Originally, shadows tended to be
reproduced too lightly. In an effort to correct this problem, an emphasis was placed on
the lightness match when determining the error, which in turn caused very saturated dark
colors t> be mapped to black. For example, when emphasis was placed on the lightness
mapping, dark blues were mapped to black rather than being lightened. Another problem
with the MEGC method was that smooth gradients were sometimes reproduced as steps.
These artifacts appeared when many out-of-gamut colors were mapped to one color on
the gamut surface. This occurred because the gamut was modeled as a polyhedral solid.
The vertices of the polyhedron are more likely to be near an out-of-gamut color than
other surface points because the vertices “poke out” the most. One last problem with
the MEGC method was that some objectionable hue shifts occurred. In an attempt
to eliminate this problem, another version of MEGC was tried in which hue was held
constant. This method was not preferred by Sara because these images appeared less
colorful to him.

The binary search methods had problemns similar to those of MEGC. The most signif-
icant problem with the binary search methods was that shadows were usually reproduced
too lightly. When lightness was held constant in an attempt to remedy this problem, too
many light colors were mapped to white and too many dark colors were mapped to black.

As with MEGC, the binary search methods sometimes reproduced smooth gradients as



steps.

The smooth gamut compression without clipping had the advantage that it preserved
more image detail than the other methods. Unfortunately, it also had a tendency to pro-
duce images that look “washed out” as a result of excessive desaturation. Consequently,

Sara did not prefer it.

1.3 Overview of the Method

There are three important issues brought forth by the previous approaches to color gamut
compression: the degree of adaptiveness of the algorithm over different arcas of the gamut,
the color space in which the gamut compression is performed, and whether the lightness
component of the image receives special attention.

The first issue, discussed in detail in Chapter 5, involves the degree of adaptiveness of
the gamut compression method. Methods involving clipping, such as the MEGC method,
are the most adaptive because every pixel in the image is processed without regard to
the value of any other pixel. Methods such as Buckley’s global chroma compression are
the least adaptive across the color gamut because every pixel is processed in exactly the
same way. From the previous work, we can see that either extreme has its problems.
The lack of adaptiveness always results in an overcompressed image. On the other hand,
too much adaptiveness, such as in the MEGC method, causes the relationships between
colors to be disregarded. When several colors are mapped to the same color, imnage detail
is lost, and false contours may appear in areas that were smooth gradients in the original.
In Chapter 5, a compromise between the ‘e two extremes which emphasizes adaptiveness
is developed.

The second important gamut compression issue is the choice of the particular color
space chosen as the domain for the compression. This topic will be discussed in more
detail in Chapter 2. In his gamut coinpression techniques, Sara used the L*a*b* color

space, which has three main advantages over linear spaces such as CIE tristimulus values,
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X, Y, Z. First, L*a*b* explicitly normalizes all color values with respect to a reference
white. Some type of normalization is necessary in order to avoid having the intensity of
the light source affect the measurements. For example, in the Xerox project, tristimulus
values were translated between a monitor and the printer. The maximum luminance of
the monitor gamut was 25 foot-lamberts, whereas the maximum luminance of the printer
gamut was 526 foot-lamberts, which was dependent on the intensity of the light source
used to measure the print samples. Consequenily, the calibrated color values on the
monitor could not be used on the printer without using the gamut compression tools,
even though the colors were considered printable. The second advantage of L*a°b" is that
it has good perceptual uniformity. The Xerox gamut clipping scheme did not clip colors
to the perceptually closest color, rather, colors were clipped to the closest color in X,
Y, Z space. Had the L*a*b* color space been used, the clipping would have minimized
a perceptual distance metric, not the X, Y, Z distance, which is poorly correlated to
human perception. The third advantage of L*a*b* is that it is an opponent color space,
and is a better model of the human visual sysiem. For these reasons, the L*a*b* color
space is used for this project.

The third important issue concerning the gamut compression method is whether spe-
cial processing is devoted to the lightness or achromatic component of the imnage. Buck-
ley’s thesis and the Xerox work both paid special attention to the achromatic component
of the image. In both projects the first processing step was to adjust the overall density
or lightness range of the image without regard to the chromatic components of the image.
This approach appeared to work well. In Sara’s thesis, lightness was processed along with
the chromatic components. Sara also had many problems with incorrect lightness values
in his output images.

The reason why it may be advantageous to process the lightness, density, or achro-
matic range first is that different devices have very different dynamic ranges with respect
to lightness. The printer used to print the images in this thesis can produce no more

than a 20:1 ratio between the luminous intensity of the white paper compared to 100%
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black. Other devices have much greater dynamic ranges. A good reflection print, for
example, may have a 100:1 ratio of intensities, and an image projected in a dark room
may have a 1000:1 ratio of intensities[25]. Real scenes viewed by the human eye often
encounter intensity ranges which are much greater still. The lightness range of an image
must be compressed in order to reproduce it on a device with a smaller dynamic range.
Otherwise, nnly a small range of lightnesses in the image will be distinct, the others are
reproduced either as white or black. Buckley’s approach, the affine transformation, is a
simple method for reducing the lightness range of an image. Unfortunately, the image
contrast is reduced along with the lightness range. This is a serious disadvantage of the
affine transformation because high imags= contrast is very important to producing qunality
reproductions.

There are many reasons to support the idea that the achromatic component of the
visual signal is inherently different from the chromatic components. Studies of the hu-
man visual system have found that the retina encodes the achromatic and chromatic
signals very differently [6]. Spatial perception is almost entirely based on the achromatic
signal component. The fact that the chromatic components of an image are relatively
unimportant to spatial perception has heen applied in numerous applications such as
color television, color facsimile, and color image coding. Since the spatial details of
the chromatic components of an image are relatively unimportant, the chromatic iinage
components can often be lowpass filtered without significant degradation. The lowpass
filtering reduces the bandwidth required to transmit or store the color signal. Since tele-
vision and facsimile were originally designed for black and white signals, reducing the
bandwidth of the color signal is necessary for transmission within the small available
bandwidth. For details on such a facsimile system and a discussion of the psychophysical
basis for chrominance spatiai filtering, see [26].

There are many more applications and examples which illustrate the difference he-
tween the achromatic and chromatic signals. For example, most image sharpening tech-

niques only process the achromatic component of the image. Processing the chromatic
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Figure 1-1: General method for color gamut compression

components usually does not enhance the image. One last simple example of the unim-
portance of spatial accuracy in the color signal can be seen in comic book images. Comic
books rely on line drawings for the spatial detail, and allow inaccurate alignment of the
color printing. The inaccurate color printing is not a significant problem since the human
visual system is relatively insensitive to chromatic spatial detail. The reason why the
line drawings are printed in black, and not yellow or blue, is that black lines create the
largest changes in lightness and thus add the most to the spatial content of the image.
Since the achromatic compenent is sufficiently different in nature from the chromatic
components of the color signal, it is processed independently as the first step of gamut
compression. After the image lightness component has roughly the correct range, the
three-dimensional gamut compression method is applied. Figure 1-1 illustrates the gen-
eral approach. Chapter 4 discusses the lightness processing step, and Chapter 5 discusses

the three-dimensional gamut compression step in more detail.
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Chapter 2

Measuring Color

2.1 Tristimulus Values

There are many possible methods for measuring visible light. Humans can see wave-
lengths of light between about 400 and 700 nm, so, for color measuring purposes, we
are only interested in wavelengths within this range. One way of measuring light energy
at various wavelengths is to use an instrument called a spectroradiometer. Quantities
from a spectroradiometer are not immediately useful for measuring color because the
human eye adapts to different overall levels of illumination and detects relative changes
of light energy in a scene. A spectrophotometer is another light measuring instrument
which is similar to a spectroradiometer except that a spectrophotometer measures rel-
ative quantities, such as reflectance or transmittance, as a function of wavelength. A
spectroradiometer can be used as a spectrophotometer by normalizing measurements
with respect to the light source. Despite the normalization, the human eye measures
light differently than a spectrophotometer.

The eye has two main categories of light receptors. Rods are used primarily for night
levels of illumination, called scotopic vision. Cones are used primarily for day levels of
illumination, called photopic vision. There are three types of cones, each with a different

spectral sensitivity. Having three types of daylight sensors is what enables us to see
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color. Because there are three types of cones, human color perception is inherently three
dimensional '. Unlike cones, rods come in only one type, which is why we cannot see
color at night. Since human color perception is based primarily on the cones, only vision
due to the cones will be discussed.

The difference between the three types of cones is that each is most sensitive to
a different range of wavelengths of light. Each cone is most sensitive either to short,
medium, or long wavelengths of visible light. The peak sensitivities are located at about
450, 530, and 560 nm. Roughly speaking, the three categories of cones can be thought
of as being most sensitive to either red, green, or blue light. All three are sensitive
over a fairly wide range and there is considerable overlap in the ranges of wavelengths
that each type of cone is sensitive to. The main difference between a spectrophotometer
and measurements made by the cones is that a spectrophotometer measures light over
many very narrow frequency bands. In order to model the color measuring behavior of
the eye, the many narrow bandwidth measurements from the spectrophotometer can be
scaled and combined to find the amount of energy over the wide frequency bands that
cones would measure. A general model of this process is that cones behave as bandpass
filters on the spectral power distribution to produce three signals. Figure 2-1 illustrates
the model. Since the cones are packed together closely in the fovea, three signals are
available to describe the color of each small area in the scene being viewed.

In Figure 2-1, E()) is the spectral power disiribution of the light. H,()), H.()), and
H,(}) are linear bandpass filters corresponding to the short, medium, and long wavelength
types of cones. R, (7, and B are the flter outputs which correspond to the raw signals
measured by the eye. These cone “filter responses” or some linear transformation of
them are often called color matching functions or color mizture curves (CMCs). The

eye’s bandpass filtering operation, illustrated in Figure 2-1, can be expressed:

R = /E(,\)H,(A)d,\ (2.1)

!There is a small range of illumination where both rods and cones are active. In this mesopic range,
color perception is based on four types of receptors.
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Figure 2-1: Block diagram model of the cones’ linear bandpass filtering behavior.

= /E(,\)H,.,,(,\)d,\ (2.2)
- /E(,\)H,(,\)dA (2.3)

The important point here is that color perception is based on only three signals: R, G,
and B, which are called tristimnl.s values. Since the eye has only three different types
of color receptors, the color signal has only three degrees of freedom. The exact nature
of the spectral power distribution is not important. Conséquently, only three numbers
are needed to represent a color. Compared to a spectral power distribution, tristimulus
values greatly simplify the specification of color.

Since tristimulus values come from the integral sum of a function, the spectral power
distribution that produces a particular color sensation is non-unique. Tristimulus values
can be determined from the spectral power distribution but the spectral power distribu-
tion cannot be determined from the tristimulus values. In order to match two colors for
a given set of detectors with sensitivities H,()), H,(}), and Hi(}), it is only necessary
to match the cristimulus values obtained at the outputs of H,(X), Hn()), and Hi()),

not the spectral power distributions. In fact, tristimulus values only tell us whether two
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colors match under similar viewing conditions. If two colors are different, tristimulus val-
ues do not describe how the colors are different. The vast majority of color reproduction
processes rely on matching tristimulus values since matching spectral power distributions

is difficult and unnecessary.

2.2 Linearity

The fact that the bandpass filtering of the cones is essentially a linear process and that
combining light energy is a linear process has some important consequences. In the field
of color, Grassman’s laws is the term used to state that light energy and tristimulus
values, which are linear functions of light energy, are linear.

One very important consequence of linearity is that, given almost any three spectral
power distributions as primaries, we can produce a match to most any color. There are
two requirements that must be met to guarantee that a color match can be produced.
First, the tristimulus vectors of the primariecs must be linearly independent. One way of
expressing linear independence is that no linear combination of any two vector primaries
can produce the third. The second requirement is that negative amounts ot the primaries
must be allowed. Although this presents no problem mathematically, negative light
energy is not physically possible and thus imposes a real constraint on the gamut of
colors that can be produced with a given set of primaries.

Color matching with three primaries can be demonstrated by shining lights on two
separate white screens. The color to be matched is projected on the first white screen.
The three linearly independent primaries are projected on the second white screen. By
adjusting the intensity of each primary, the color projected on the first screen can be
matched. When a negative amount of a primary is required, that primary can be added
as a positive light on the opposite screen. As long as the three primaries are linearly
independent and there is no limitation on their intensity, the two screens can always be

made to match.
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It is reasonable that only three primaries are necessary to match an arbitrary color
because color perception has only three degrees of freedom. As long as there are three
primary basis vectors which are linearly independent, then they will span the three-
dimensional space of all possible tristimulus vectors. The combination of three primaries

to produce an arbitrary color can be written:

R, Ry Ry R,
a | &y t+a| Gy | tas| Gy | = | G, (24)
B, B, Bs B.

where [R1G1 B1|T, [R2G2B;]T, and [RaGsBs|T are the tristimulus primary vectors and
[R:G:B.|T is the tristimulus vector to be matched. The weightings of the primaries, a,,

a,, and aj, are simply:

-1
a; R, R, Rs R.
a; | = | Gi G2 Gs G, (2-5)
as B] Bz Ba B::

The matrix is guaranteed to be invertible since the tristimulus primary vectors are linearly
independent.

Another consequence of linearity is that tristimulus values in terms of one set of three
primaries can always be transformed into a new set of tristimulus values in terms of a
different set of three primaries. The new set of three primaries can be any three linearly
independent tristimulus vectors.

Givan tristimulus values a, a3, and a3 in terms of primaries Ry 4G4 B14|7, [R24G24 B2al%,
and [R34G34B34)7, a new set of tristimulus values can be found in terms of primaries

[RIBGIBBlBlra [RzBGzan]T, and [R:!BG:!B BsB]T=

Ria Rays R34 Rip R2p Rip
a GlA + as Gz,q + ag G3A = bl GIB + bz GZB + bs GSB (26)
B4 Baa B34 Byp Bsp Bap

26



Solving for the new set of tristimulus values, b,, b,, and b3, gives,

-1
b, Rip R;p Hip Ri4 Rax Ray a,
b | = | Gip G2 Giss Gia Gaa Gag a; (2.7)
b3 Bip B:p Bip Bia B3;a Bsy as

Note that it is not necessary for the new set of primaries to be physically realizable.
Negative tristimulus values can always be eliminated if the primaries are not constrained
to be realizable.

As an example of transforming primaries, suppose we are given tristimulus values
in terms of the phosphor primaries of one monitor. We could convert these tristimulus
values into a new set of tristimulus values in terms of the phosphor primaries of a different
monitor using Equation 2.7. In practice, additional steps are necessary because monitor
intensity is usually not a linear function of the input signal.

Although a color match can be produced using any set of three linearly independent
primaries, an important distinction is that color cannot be measured using any set of three
linearly independent primaries. An intuitive example which shows that an arbitrary set
of primaries will not work, is to consider using three narrow-band filters to measure color.
If a monochromatic light source was being measured, it is possible that the signal would
would be missed entirely. The information is lost and there is no way to determine what
the tristimulus values would have been if the spectral sensitivities of the cones had been
used as the primaries.

It is not necessary, however, to use the exact spectral sensitivities of the cones to
measure color. Any invertible linear combination of the cones’ spectral sensitivities is
essentially equivalent. We can measure a spectral power distribution colorimetrically

using any set of tilters H;{)), H2()), and Hj()) given by:

Hy(X) An A Ap Hi(X)
Hy(A) | = | An Ay Az Hn(A) (2.8)
Hj()X) Az Asp Asg H,())
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Since the matrix A is invertible, Hi(}), H,()), and H,(]) are still known.

In practice, the filters used to measure color in devices such as scanners and television
cameras are often not a linear transformation of the cones’ spectral sensitivities. This
may be a source of significant error when measuring color, A common practice is to find a
“best fit” matrix A in Equation 2.8 to relate the device’s actual measurement primaries
to a set that is linearly related to the cones’ spectral sensitivities. As more emphasis
is placed on colorimetrically accurate reproduction, this discrepancy between ideal and

practice will probably disappear.

2.3 CIE Tristimulus Values

Tristimulus values greatly simplify color measurement because they are based on a model
of the human eye. Tristimulus values also present a problem because different people’s
eyes are different. Fortunately, the differences are small for most people, but people
with defective color vision may have very different spectral sensitivities than people
with normal color vision. The problem of abnormal color vision primarily affects men.
Depending on race, between 8% and 3% of males have some form of deficient color vision.
About 0.4% of all females have deficient color vision(35]. Because of differences between
people with normal color vision, the Commission Internationale de l’Eclairage (CIE), an
international organization for color measurement, has deﬁned a set of color matching
functions for the standard observer(8]. The CIE color matching functions are denoted
T, § and Z. They approximately correspond to red, green, and blue wideband filters
respectively. Figure 2-2 shows the CIE color matching functions 2.

Using CIE terminology, Equations 2.1, 2.2, and 2.3 become

X = /E(A)E(,\)d,\ (2.9)

Y /E(,\)y(,\)d,\ (2.10)

1l

%Slightly different definitions of 7, 7 and % exist for different angular fields of view,
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Figure 2-2: The 1931 CIE 2° standard observer (3] .

Z::/EMWQMA (2.11)

X, Y, and Z are called CIE tristimulus values.

When defining the standard observer, the CIE was free to chose any linear combi-
nation of color matching functions. This particular set, T, 7 and Z, achieves two goals.
First, the 7 curve is equal to the achromatic luminous efficiency function. Thus, the CIE
tristimulus value Y is equal to luminous intensity. Second, Z, 7 and Z are non-negative.
This is not particularly important now, but originally, it made colorimetric computations
easier.

Chromaticity coordinates are a very common linear transformation of CIE tristimulus

values X, Y, and Z:

X

_ . 9.12
” X+Y+2 (2.12)
y
- _ 2.1
y X+Y+2 (2.13)
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= z = 1 2.14
s e vy A B A (2.14)

Chromaticity coordinates provides a simple way to graph X, Y, and Z in two-
dimensions. Since z + y + z = 1, only two of the three chromaticity variables need
to be plotted. Usually, £ and y are graphed in the first quadrant of a cartesian grid.
The luminous intensity, Y is often given with z and y in order to specify a color, and is
plotted as the z-axis of the chromaticity diagram.

Since chromaticity is a linear transformation of tristimulns values, functions which are
straight lines in terms of tristimulus values are mapped to straigl.. lines in chromaticity
coordinates. Additive color mixtures of two primaries in the chromaticity diagram must
produce a color which lies on the line between the two primaries. In general, given sone
arbitrary number of additive primaries, the gamut of reproducible colors is the region
inside the polygon (or polyhedron in three-dimensions) which has the primaries as its

vertices.

2.4 Additive and Subtractive Processes

We have explained how to measure color given a spectral power distribution, but the
factors that made the spectral power distribution what it is have not been discussed. In
this section, the processes between the light source and the eye which affect the spectral
power distribution will be briefly explained.

The simplest process that changes a spectral power distribution is additive light mix-
ing. Additive light mixing is simply the sum of light energy for each wavelength. Ex-
amples of devices which operate by an acditive process include television monitors and
multicolored discs spinniag at high speed, which mix colors tempor . The result of
additive light mixing is linear and thus easily predictable.

Subtra. - = processes may occur when light interacts with with some colored mate-
rial. Surfaces or media that the light is passing through removes light energy at various

wavelengths. Subtractive color processes tend to be more complicated than additive pro-
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cesses because they are often the result of absozption or scattering. When a material
absorbs some wavelengths of light, the energy is usually converted to heat. Scattering
is caused by small particles which have an index of refraction different from that of the
inedium through which the light is propagating. The amount of scattering depends on
the refractive index of the particle and the particle’s size.

Subtractive processes are often most easily represented as multiplicative processes.
The original spectral power distribution is multiplied by a spectral reflectance or trans-
mittance function which varies between zero and one over different wavelengths, atten-
uating the light energy. Examples of subtractive processes include color printing, paint
mixing, and dyes in a solution.

Cyan, magenta, and yellow are often used as the subtractive primaries, whereas red,
green, and blue are often used as the additive primaries. This is not necessary. Nothing
inherent in these processes dictates that particular primaries must be associated with a
particular process. Other primaries could be chosen, but usually the color gamul will
decrease in size.

One last interesting process that modifies a spectral power distribution is the fluores-
cent process. Fluorescent processes absorb light energy at one wavelength and emit it at
another, longer wavelength. Typically, light energy is absorbed in the ultraviolet range,
which is not visible, and emitted in the visible range. Fluorescent materials are often
used as whiteners. Fluorescent whiteners can make an object appear brighter than an
object with 100% reflectance if there is sufficient ultraviolet energy in the source, since

more visible light comes off of the fluorescent object than was incident.

2.5 Measuring the Color of a Reflective Ob ject

In the previous sections, we discussed how to measure the color of light given its spectral
power distribution. In this section we will explain how to measure the color of an object

that does not emit light. For example, we may want to measure the color of a piece of
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paper. In order to measure the color of most objects, it is necessary to illuminate them.
The spectral properties of the light source illuminating the sample will strongly affect
the color that is measured. The light energy reflected by an object is the product of its

reflectance and the energy of the source for each wavelength:
E(X) = L(A)R()). (2.15)

L()) is the spectral power distribution of the light source. R()) is the spectral reflectance
of the object being measured and ranges between zero and one as a function of wavelength.
To measure CIE tristimulus values X, Y, and Z of a reflective sample, Equation 2.15 is
substituted into Equations 2.9, 2.10, and 2.11.

In order to measure the color of a reflective sample, some light source must be used.
If we know the spectrophotometric curve of a sample, we can calculate X, Y, and Z
using a standard illuminant. An illuminant is defined by & spectral pow;vcr distribution,
and is not necessarily a real light source. The term source refers to a real physical light.
It may or may not be possible to create a source which is spectrally equivalent to a given
illuminant.

When measuring a reflective sample, it is important to remember that chromaticity
is not an adequate specification of an illuminant. Just because two sources have the
same CIE tristimulus values and match each other visually does not mean that an object
viewed under the two different sources will look the same,'nor measure the same X, Y,
Z values. The reason is that the multiplication of reflectance by source energy must
be calculated on a wavelength by wavelength basis. The integral of a product of two
functions of wavelength is different from the product of the integrals.

Since tristimulus measurements of a reflective object depend on the light scurce,
sometimes two objects will match color under one light source, but will not match under
another light source. Two objects which match color only under a particular set of
illuminants are called a metameric pair or metamers and are said to exhibit metamerism.
The two samples of a metameric pair must match under at least one illuminant and must

mismatch under at least one illuminant. The only case in which the colors of two objects
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match, regardless of the illuminant, is when the objects have identical spectral reflectance
curves. Since spectral curves are practically never matched, the problem of finding a color
match is equivalent to finding a metameric pair which matches under a given illuminant.

In practice, to determine the tristimulus values of a reflective sample, the integrals of
Equations 2.9, 2.10, and 2.11 are computed as summations. Tristimulus values are often
computed from a spectrophotometric curve. The spectral reflectance is multiplied by %,
7, and Z at many discrete values of wavelength and then summed to determine X, Y,

and Z. Discrete tables of CIE Z, 7, and % are available in many books about color[3] [36).

2.6 The L*a*b* Color Space

In section 2.3, two color spaces were introduced: CIE tristimulus values, X, Y, Z, and
chromaticity coordinates, Y, z, y. In fact, using Equation 2.8, an infinite number of
linearly related color spaces can be defined. These linear color spaces are poor choices as
a domain for color gamut compression because they make no attempt to model the hu-
man eye. Consequently, numerical differences in tristimulus or chromaticity coordinates
are poorly correlated to perceptual differences. In order to approach this problem, the
CIE recommended in 1976 the use of the L*a*b* (CIELAB) and L*u*v* (CIELUYV) color
equations. By incorporating nonlinearities which are well correlated with experimental
results, L*a*b* and L*u*v* provide numbers which are a better descriptor of color ap-
pearance. I chose to use the L°a*b* color space over L*u*v*. One slight advantage of
choosing L*a*b* for this thesis was that many test images specified in L*a*b* were already
available.

L*a*b* is defined in terms of CIE tristimulus values:

1

Y \?3
< LA 2.16
L 116(},0) 16 (2.16)
1

- () - ()

(2.17)

a
|
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B = 200 [(;)i - (Zﬁ)i} (2.18)
Equations 2.16, 2.17, and 2.18 are valid for (§) > .01, () > .01, and (§-) > 0L
L*a*b° is defined for smaller values of X, Y, and Z, but these definitions are not nesded
for most image processing applications because such small values are practically never
encountered. X,, Y,, and Z, in Equations 2.16, 2.17, and 2.18 are the CIE tristimulus
values of reference white.

The variable L* only depends on CIE Y, the luminous efficiency function, and is
called lightness. Evans defines lightness as the visually apparent reflectance of a surface
under a given set of conditions [11]. There are many possible ways to define a perceptual
lightness scale that is well correlated to the physical variable luminance. L* is the CIE
psychometric lightness scale and takes on positive values less than 106. Mcre accurate
lightness scales are possible but they are also more complicated. As mentioned in Sec-
tion 1.1.2, brightness also depends on the viewing field, and attempts to account for it
can make the function even more complicated {2]. The logarithm function is sometimes
used as a lightness scale, and provides interesting mathematical justifications for some
image processing techniques, but it is not as accurate as L* in Equation 2.16.

The variables a* and b* are organized as an opponent color system. The opponent
color system is based on the idea that somewhere in the visual signal transmission path
between the eye and the brain, color is coded into a red-green signal and a yellow-blue
signal [6]. In the L*a*b* color space, a* is the red-green signal and b* is the yellow-blue
signal. The variables a* and b* are signed real numbers where positive values of a* and
b* are redish and yellowish, and negative values of a* and 4* are greenish and blueish
respectively. For example, in this system orange would be in the +a*, +b* (red, yellow)
quadrant, and purple would be in the +a*, —b* (red, blue) quadrant. All achromatic
colors, such as white, black, and gray have a* = * = 0.

L*a*b* is graphed in three-dimensional cartesian coordinates with a* corresponding to

the x-axis, b* corresponding to the y-axis, and L* corresponding to the z-axis. In many
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image processing applications it is useful to have the L* image component separate from
the chromatic image components, a* and b*. For example, in color image enhancement,
often only the lightness component needs to be processed, and in color image coding,
the coding requirements for the lightness image component are different from the coding
requirements for the chromatic components.

One of the main advantages of L*a*b* for color gamut compression is that it has good
perceptual uniformity while being relatively simple to calculate. A good measure of the
perceptual difference between two colors can be calculated as the straight-line euclidian

distance between the two color points in L*e*b* space:

AE. = VAL'? 1 Aa*? + Ab? (2.19)

An accurate perceptual distance metric is important for color gamut compression because
it provides a simple means for estimating the perceptual impact of a color change.

In cylindrical coordinates, the L*a*b* cartesian color coordinates become the L*h,,C2,
color coordinates, which are used in Chapter 5. The definitions of metric hue angle
(hay) and metric chrema (C;,) depend only on a* and 6* and are given by the standard

rectangular to polar conversion:

hay = arctan (b—‘) (2.20)

a

w = Va?ib? : (2.21)

Through the rest of this document, the ab subscripts are assumed. Lightness, L°, is
the z-axis in both L*a*b* and L*hC*. Hue angle, h, is the main determinant of a color
name. Hue tells whether a color is, for example, green, yellow, or orange. Chroma
indicates how much of a hue is in a color; whether it is pale or deep, weak or strong.
Chroma is correlated to the vividness, purity, chromaticness, or colorfulness of a color.
The less black, white, or gray a color has, the higher its chroma. Chroma is also related
to saturation, although saturation is not defined in L*a’b* space, because saturation is
only defined for linear transformations of CIE chromaticity coordinates. In the L°u*v*

color space, saturation is equal to chroma divided by lightness.
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When using Equation 2.19 to measure the color error of a particular color change, it
is sometimes useful to separate the error into components. The component errors AL*,
Aa*, Ab*, and AC"* are simply the arithmetic difference between the two values of the
variable. Hue error cannot be calculated this way since it is an angle measure. The hue

angle error is given by

Ah = VAET = AL — AC* (2.22)

In summary, color should be measured in the same way thet the human eye does.
The fact that the human eye reduces spectral power distributions of light to a three-
dimensional signal makes color matching practical. The methods for measuring color are
well defined in terms of the standard observer. There are many candidate color spaces
for performing color gamut compression. The L*a*b* color space is one good choice. In
Chapter 4, L* is processed to reduce the lightness range of the image and in Chapter 5,

C* is processed during the three-dimensional gamut compression.
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Chapter 3

Measuring the Gamut

In this chapter, the method used to measure the gamut of the printer is discussed. The
particular device measured is a Hewlett-Packard Paintjet! color printer. The Paintjet is
a four-color, 180 dpi (dots per inch horizontally and vertically), thermal ink jet printer.
The dots are placed at regular fixed intervals in a square grid. At any point in the grid,
one of eight colors is possible. Using only one color at a time, cyan, magenta, yellow,
black, and white (no ink) can be printed. Using two primaries at once, red, green, and
blue can be produced. Black can not be mixed with any of the colors. All printing is
done on Hewlett-Packard Paintjet paper?, which is a coated paper designed for use with
the Paintjet printer.

As mentioned in Chapter 1, the color gamut of an output device can be represented
as a solid in a three-dimensional color space. Colors contained within the solid are
reproducible, and colors outside of the solid are not reproducible. In order to gamut-
compress an image for display on a particular device, it is necessary to know exactly
what the gamut of the device is.

One approach is to determining the gamut of a printer is to develop a model, and

calculate the color gamut from the model. For example, the color gamut of a thermal

"Hewlett-Packard catalog number HP 3630A.
2Hewlett-Packard catalog number HP 51630P.
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ink jet printer can be calculated from the Kubelka-Munk reflectance equation [10]. If one
were planning to specify the gamut of many printers it might be useful to study methods
for calculating the gamuts without ineasuring each of them. Only one or two printers
were to be measured for this project, so it did not make sense to develop elaborate models,
since the models would need to be tested against measurements anyway. The approach
taken is to measure the gamut of the printer by measuring many color print samples.

Since the gamut is a continuous solid, it would be necessary to print an infinite number
of color patches to measure every point in the gamut. Even if all colors could be measured,
most of them would lie on the interior of the gamut solid, and thus would give no
additional information about its shape and size. In order to minimize the numbe: of print
samples, only the colors that lie on the gamut surface should be printed. Fortunately,
for the Paintjet printer, the colors which lie on the gamut surface are easy to predict.

Since the Paintjet printer can print only one of eight colors at any given point, the
gamut, to a first order approximation, is linear. The human visual system integrates the
small, relatively distinct dots. If nonlinearities from ink mixing and dot overlap were
not present, the color gamut could be modeled perfectly by a polyhedral solid in a linear
color space. Figure 3-1 illustrates the polyhedral gamut solid which, for the Paintjet, is
a dodecahedron. The eight primaries are the vertices of the dodecahedron. Since the
printing process is not completely additive, we do not expect the polyhedral model to be
accurate, but we can see that the colors which form the gamut surface are produced by
only twelve combinations of the primaries. Each of the twelve combinations, corresponds
to one face of the dodecahedron in Figure 3-1.

The twelve combinations of three primaries which produce colors on the gamut surface

are:
YGW YGK
YRW YRK
CBW CBK
CGW CGK
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Figure 3-1: A polyhedral gamut.

MRW MR K
MBW M B K

The sum of the amounts of each of primary must be 100%. Note that any of the three
quantities in the combination can be zero, giving the one and two-color combinations
which lie on the gamut boundary. Each of the combination of prinaries corresponds to
one of the twelve faces of the polyhedral solid. One page of color print samples is devoted
to each face of the dodecahedron. Figure 3-2, shows the arrangement of one page of test
samples. The patches at the three vertices of the diagram are printed with 100% of a
primary color. There are six steps between each pair of primaries. When all twelve pages
of color test patch—es are printed, black and white are printed six times, other primaries
four times, two-color combinations twice, and three-color combinations once. This gives
296 unique colors on the surface of the gamut.

In order to print a patch with a given percentage of each of thec three primaries, it is
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Figure 3-2: Arrangement of color test patches for color gamut measurement.
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necessary select 3 method of arranging the dots in a square grid. Probably the simplest
method in terms of implementation is to choose each color randomly. The probability
of selecting each primary is fixed at the desired ratio. The color of one point in the
grid is given by the outcome of each random trial. Although this method is simple, it
does not work well because it produces “splotchy” test patches. The problem with this
probabilistic method is that dots of one color are clustered together too often.

Another simple approach is to place the dots deterministically, such that colors are
alternated as much as possible. This works much better than the simple probabilistic
approach but has the disadvantage that regular patterns are produced for some ratios
¢f the primaries, which causes diff ‘ent amounts of dot overlap. This is not a serious
problem but it does cause uneven sampling of the gamut surface. One way to eliminate
this problem is to make the dot selection algorithm slightly probabilistic in order to break
up the patterns (for a more detailed look at dot patterning see [34] [32]).

After all twelve pages of test patches have been printed, each test patch is measured
with a colorimeter’. Figures 3-3 and 3-4 show various views of the measured color
samples. The mesh connects color test patches which are adjacent in Figure 3-2.

Since the measured values only describe the gamut at discrete points, it is necessary
to interpolate in order to specify other values. Since the samples are spaced closely
together, the values inside each triangle in the mesh of Figures 3-3 and 3-4 are interpo-
lated from the plane which passes through the three sample points. Essentially, the 296
distinct color samples define a 588-sided polyhedron. Figure 3-5 shows three views of
the interpolated gamut. To avoid having to search for the appropriate color points and
interpolate them every time a gamut value is needed, a lookup table (LUT) was created.
The gamut is stored in cylindrical coordinates in order to be immediately useful for the
three-dimensional gamut compression of Chapter 5. The maximum printable chroma is
stored as a function of lightness and hue angle in the LUT.

The fact that the white paper has a different chromaticity than 100% black ink causes

3The colorimeter used was a Minolta DP-100, which assumes a Dgs illuminant.
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Figure 3-3: Projections of the top-half and hottom-half of the Paintjet color gamut.
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Figure 3-4: The top-half, whole, and bottom-half of the Paintjet color gamut.
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Figure 3-5: Three views of the interpolated Paintjet color gamut.
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Figure 3-6: Color gamut when black and white have different chromaticities.

a small problem for creating the LUT. The problem is that both the white point and the
black point of the gamut solid cannot lie on the L*-axis (C* = 0) if their chromaticities
are different. Figure 3-6 illustrates the situation. The problem is that for low lightnesses,
C'* has two values at some hues and is unspecified at others. One solution to this problem
is to tilt the coordinate system slightly, so that both the white point and black point
of the printer gamut lie on the same axis. Consequently, the color space is not truly
L*a*b* or L*hC* anymore. Although this slightly modified version of L*hC* is what is
actually used as the domain for gamut compression, the change is so small that the two
are not distinguished. No inaccuracies or inconsistencies result, it just means that when
we refer to compressing C* in Chapter 5, the chroma is actually being moved towards
the line which passes through the white point and black point of the printer gamut, not
the L*-axis. The white point of the printer gamut lies on the L*-axis by definition.
Figure 3-7 shows the values of the final lookup table, and the shape and symmetry of
the gamut. The vertical axis is lightness and the horizontal axis is hue. The maximum
chroma of the printer gamut for a given lightness and hue is proportional to the lightness

of the picture at those coordinates. The slight false contours which appear in Figure 3-7
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Figure 3-7: The interpolated color gamut lookup table.
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are a result of the dithering used to print the figure, not the the LUT values.
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Chapter 4

Lightness Compression

As discussed in Section 1.3, the lightness component of an image is given special attention
by being processed independently as the first step of the color gamut compression. The
lightness processing compresses the overall lightness range of the image to fit within that
of the rendering device. The chromatic components, ¢* and b*, or C* and h, are not
considered in this chapter. In the next chapter, the second gamut compression step,
three-dimensional gamut compression is discussed.

Given an image and an output device, there are three possible situations with respect
to the lightness ranges. First, if the lightness range of the image exactly matches the
lightness range of the printer, then there is no problem, and the image is likely to be
reproduced well. In the second case, when the lightness values of the image do not use
the entire lightness range of the printer, lightness compression is not necessary, and in
fact it may be possible to enlarge the lightness range of the image. This second case
will not be discussed because it relates more to image enhancement than color gamut
compression. The third case, when the lightness range of the image exceeds the lightness
range of the printer, is case of interest for this chapter.

Figure 4-1 illustrates the lightness compression problem. As discussed in Section 2.6,
L* is the CIE psychometric lightress scale and C'* is metric chroma. For printing, having

L* values too large is not a problem, because L* = 100, which is the largest possible

48



*
+C

Figure 4-1: Lightness Compression of the color gamut.

value of L*, is defined to be paper white. The lowest value of L* depends on the dynamic
range and may be very different for the image and the output device. In Figure 4-1,
Kgey is the lightness value of the printer’s 100% black and K;,, is the lightness value of
the darkest color in the image. If an image in which K;, < K., is not compressed in
lightness, then all image lightness values in the range Ky, > L* > K, are printed as

black, which results in a very dark image.

4.1 Compression Methods

A variety of methods can be used to compress the lightness of an image. In this section,
two particular methods are discussed.

The simplest method of lightness compression is a straight line, or affine, transforma-
tion.

Loyr = 7Ly + Lo (4.1)

The endpoints of the line are fixed by setting the white point of the image to the white
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point of the printer and setting the black point of the image to the black point of the

printer. Assuming the image contains lightness values in the range I(;,, < L* < 100,

then the parameters of the affine transformation are given by:

K., — 100
Kim — 100 (4.2)
L, = 100(1 —~). (4.3)

The affine transformation has the problem that it significantly reduces image contrast,
which is proportional to the parameter 4. Since 7 is less than one, contrast is decreased
and the image tends to look “dull” and “flat”. The goal of this chapter is to be able
to reduce the lightness range of the image while minimizing degradations due to the
reduction of image contrast.

Image contrast and sharpness are both very important to image quality. Most ncnex-
perts do not distinguish between sharpness and contrast, and in general Apparent contrast
is directly related to apparent sharpness [24]. Contrast is related to differences in light-
ness, whereas sharpness is related to how quickly or slowly the changes in lightness take
place. Contrast can also be thought of in the frequency domain. If the contrast of the
high frequencies in an image is decreased, then sharpness will be decreased. Conversely,
if the contrast of the high frequencies in an image is increased, then the sharpness will
be increased.

Empirically, we know that high frequencies are importé.nt to image quality. One of
the most common image enchancement techniques is to boost the high frequencies in the
image’s lightness component. We also know that if an immage is blurred by decreasing
the high frequencies, the image looks worse. The affine transformation of Equation 4.1
essentially decreases all the frequencies in the image by the factor 4. Since high frequen-
cies are more important to image quality than the low frequencies, ideally, a difterent
value of v could be applied to each. Fortunately, most of the dynamic range of an image
is contained in its lower frequencies, so it is possible to reduce the dynamic range of the
entire image by reducing the contrast of the lower frequencies. Usually, very little of

the dynamic range of the image is contained in the high frequencies, so decreasing the
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Figure 4-2: The affine transformation compared to LFLC.

contrast of the high frequencies would not decrease the dynamic range much anyway.
This approach, low frequency lightness compression (LFLC) will be the subject of the
remainder of this chapter.

Figure 4-2 compares the affine transformation to the low frequency lightness compres-
sion method in the frequency domain!. The affine transformation treats all frequencies
essentially the same, whereas the LFLC method maintains the contrast of the high fre-
quencies.

This LFLC method is similar to the techniques of unsharp masking [37] and homo-
morphic image processing (18] [4). The main difference between these methods and LFLC
is the domain in which the frequency modifications take place. Homomorphic image pro-
cessing filters images in the log domain and unsharp masking operates in the density
domain, which is the logarithm of reflectance or transmittance. LFLC by comparison is
performed in the CIE psychometric lightness domain, which is explained in Chapter 2,
and is a more uniform lightness scale with respect to human perception than the log

scale.

!The affine transformation is not actually a linear system. The quantity L — L, is n linear system,
and is what is graphed in Figure 4-2.
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4.2 Separating the Image

4.2.1 Implementation Strategy

The frequency response curve in Figure 4-2 contains three parameters for specifying the
LFLC, ai, as, and w.. By Parseval’s theorem, we know that the energy of the image in
the spatial domain must equal the energy of the image in the frequency domain, so, as
the parameters oy and ay, are decreased, the energy of the image in the spatial domain
decreases. We know that lower energy signals tend to have smaller amplitudes, but
unfortunately it is a difficult problem to determine, a priori, how the dynamic range of
the image will change as a function of a; and a,. In order to achieve the desired dynamic
range, one approach is to iterate, repetitively filtering the image until the correct values
of the parameters are found. This approach is impractical because it requires too much
computation and time to filter an image. Consequently, a different approach must be
found.

In order to reduce the amount of computation, the filter cutoff, w, is held constant.
Then the image is separated into a lowpass component and a highpass component, such
that the sum of the components is the original image. Each of the image components
is scaled before being recombined in order to generate families of filtered images. A
block diagram for computing a series of filtered images is shown in Figure 4-3 and a
corresponding family of frequency responses is illustrated in Figure 4-4.

The reason why this methed saves computation is that the image only needs to be
lowpass filtered once to produce the entire family of frequency responses. After the low
frequency image is obtained, the high frequency image can be computed by subtracting
the low frequency image from the original. Scaling the image components and adding

them back together requires a relatively small amount of computation and time.
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Figure 4-3: Block diagram of the Low Frequency Lightness Compression method.
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Figure 4-4: Examples of frequency responses from LFLC.



4.2.2 Lowpass Filtering

'This section concentrates on the details of the block labeled “LOWPASS FILTER” in
Figure 4-3.
Filtering can be thought of and computed in both the spatial domain and the fre-

quency domain. The following two operations describe the filtering in both domains:

Y(kl,kz) = H(kl,kz)°X(’B1,k2) (44)

y(n1,n2) = h(ni,n2) *x z(ny,ng) (4.5)

where z(n,n3), y(n1,n2), and h(n1,n,) are the original image, the filtered image, and
the impulse response of the filter respectively. X(w,,w;), Y (w;,w;), H(w;,w,) are the
respective discrete Fourier transforms. The ‘*’ in Equation 4.5 denotes convolution.

The two-dimensional discrete Fourier transform pair is defined as:

' Nil Nil z(n,, nz)e-jiﬁ'k‘"' ce~ifgham 0 < ki< M -1
X(ky ko) = { mido io 0<k<N:—1 (4.6)
0 otherwise

1 Ny ~-1N;-1 2w, P 0 < <N 1
X(kl kz)e.‘lm- 1M IRt S S vy
z(ny,ny) ={ MN; klz=:o k,z=:o ’ 0<n, <N,-1 (4.7)

0 otherwise
Thus, a filter can be completely specified by either H (kl,kz) or h(ng,n,).

There are two basic approaches to digital image filter design and implementation.
One can either design and implement a finite impulse response (FIR) filter or an in-
finite impulse response (IIR) filter (for details of filter design see [16]). Each method
has its advantages and disadvantages. In direct implementations, an IIR filter usually
requires much less computation than a comparable FIR filter, but if fast Fourier trans-
forms (FFTs) are used to compute the discrete Fourier transform, then the methods
have similar computational requirements. Two-dimensional IIR filters have the disad-
vantage that they are more difficult to design because i is difficult to test their stability.

'Two-dimensional FIR filters, in comparison, are relatively simple because stability is
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guaranteed. FIR filters have another desirable property; it easy to design FIR filters that
have zero phase. Zero-phase filters are desirable because they tend to preserve the shape
of the signal in the passband. Zero-phase is more difficult to achieve with IIR filters and
requires the cascade of at least two filters. Because of their relative ease of design and
desirable properties, only FIR filters are considered in the remainder of this chapter.

Since we desire a zero-phase filter, the magnitude response completely specifies the
response of the filter. Frequency sampling is one simple method for designing filters. To
design the filter, the values of H(k,,k,) are simply the samples of some continuous fre-
quency function. In our case, the values of H(k;, k;) might be samples of an ideal lowpass
filter magnitude response. This approach has a problem because, in general, the inverse
discrete-time Fourier transform will have an infinite impulse response. Consequently, the
discrete Fourier transform is aliased in space and the convolution is also aliased. So,
simply specifying the filter response in the frequency domain may have undesirable con-
sequences in the spatial domain. Careful attention must be paid to the region of support
of the filter, that is, the region in which it is nonzero in space. H(k;,k;) must be specified
in some way such that h(n;,n;) has a small finite region of support.

Windowing is a standard method for limiting the non-zero range of a function [12].
Windows used for the purpose of creating FIR filters must be zero outside the region of
support of the filter so that when the window is multiplied by the infinite length signal, the
signal is forced to be finite length. Many different types of windows may be used. Some
examples include the Hamming, Hanning, rectangular, Bartlett, and Kaiser windows. All
of these windows are one-dimensional and must be extended to two-dimensions for image
processing. The two most common methods to create a two-dimensional window from a
one-dimensional window is to make the one-dimensional window circularly symmetric in
two dimensions, or to make the window separable into the product of a window in the
first dimension and a window in the second dimension. Windowing in space corresponds
to convolving the frequency response of the filter with the frequency response of the

window. Thus, windowing tends to add ripple and increase the transition bandwidth of
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the frequency response of the original filter.
A second standard approach to designing a lowpass FIR filter is to window the impulse

response of an ideal lowpass filter. The two-dimensional ideal lowpass filter is given by:
h(n,ng) = ——eee J (we /73 + n3) (4.8)
2wy /n? + n?

where Ji(z) is the Bessel function of the first kind and first order (for e derivation see
(16]). Figure 4-5 shows an example of an image filtered using the ideal lowpass filter
of Equation 4.8 in conjunction with a circularly-symmetric rectangular window. This
window has a magnitude of one inside the region nZ + nZ < R? and zero elsewhere,
where R is the radius of the circular region of support. The original image is shown in
Figure 4-5a, the low frequency component in 4-5b, and the high frequency component
in 4-5¢, The high frequency component is increased in amplitude and shifted towards
gray for display purposes.

Examination of the images in Figure 4-5 shows strong banding around the head of
the subject. Banding, which appears where there is a transition between light and dark
regions in the image, is undesirable because it may also arvear in the final image. The
ripple in the filtered image is caused by ripple in the step response of the filter. One way
to constrain the step response of the filter to be monotonic, and thus have no ripple, is
to require that the impulse response of the filter be non-negative for all indices. This
requirement can be seen by considering the convolution of the impulse response with a
unit step. Mapping the nonnegative impulse response requirement into a useful frequency
domain constraint is not a simple problem. We know that in general the step response
will tend to have less ripple as the transition between the stopband and the passband of
the filter’s frequency response becomes smoother. Thus, we might expect windowing to
reduce the ripple of the step response, but we can also see that a window will not eliminate
the negative portions in the impulse response of the two-dimensional ideal lowpass filter.
Windowing may improve the banding problem but will not eliminate it.

To improve the filtering shown in Figure 4-5, we would like to start with a lowpass

filter design whose impulse response is nonnegative in ord:r to eliminate the ripple.
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One filter that has this property is the Gaussian filter. In continuous time, the Fourier
transform of a Gaussian impulse response is & Gaussian lowpass frequency response. In
discrete time, the same is approximately true. The two dimensional Gaussian impulse

response can be expressed in the form:
—(l\2+'l2)
h(ni,ng) = e (4.9)
which is clearly circularly symmetric. Written in the form,
—n? —nd
h(ny,np) = e5 e 77 (4.10)

it is clear that the two-dimensional Gaussian impulse response is also separable. Sepa-
rability may be exploited to achieve greater efficiency in some implementations.

Like the ideal lowpass impulse response, the Gaussian impulse response is infinite.
This is less of a problem than for most impulse responses because the Gaussien approaches
zero rapidly as n? + n? increases. If a circularly-symmetric rectangular window is applied
to the Gaussian impulse response at some n? + n2 >> 12 then the filter will be largely
unaffected. In the implementation used to produce the images in this thesis, the radius
of the region of support was somewhat arbitrarily chosen to be equal to 2.67, setting the
window radius at the point where the amplitude of the impulse response has decreased
roughly three orders of magnitude.

To ensure that the filter will not change the overall scale of the image, the sum of the
values of the windowed impulse response is set to one:

ZZh(n,,nz)zl (4.11)
nona
This requires each value of /1(ny,n;) be scaled by a constant. The normalization is not
included in the definition of the Gaussian impulse response of Equation 4.9 because the
scale factor depends on the exact characteristics of the window. To avoid having to sum
all of the values of the impulse response, the constraint of Equation 4.11 can be met by

scaling all frequency values of the filter by 1/X(0,0).
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An example of an image separated by the Gaussian filter is given in Figure 4-6, which
should be compared to the ideal lowpass filtered images of Figure 4-5. The important
difference is that the banding has disappeared in the Gaussian filtered image. In the
diagram, the original image at the top of the page is separated into the two components
at the bottom of the page. As before, the highpass image has been increased in amplitude
and shifted towards gray for display purposes.

The parameter T has not been discussed so far because it is held constant for a given
family of filter responses. In the two-dimensional ideal lowpass filter, the cutoff frequency
was specified by w.. In the Gaussian filter, the cutoff frequency is inversely related to
T. Since the purpose of filtering is to preserve the high frequencies in the image as
much as possible, a lower frequency cutoff is generally preferred to a higher frequency
cutoff. The problem is that if the cuteff is too low, then the lightness range may not be
able to be reduced sufficiently even if the low frequency image component is completely
removed. Experience with selecting  has shown that there is usually a point at which
further decreases in the filter’s cutoff frequency necessitates a proportionately much larger
reduction in the amount of the low frequency image component that is retained. In the
other direction, setting the cutoff too high reduces the advantages of the filtering, and in
the limit as the cutoff frequency is increased, the LFLC method becomes equivalent to
the affine transformation of Equation 4.1. Fortunately, the exact value of the filter cutoff
is not critical. Relatively large changes in the value of the cutoff frequency have only
a small effect on the final image. Using the definition of the impulse response given in
Equation 4.9, values of 7 between about 10 and 30 work well on most images. Examples
of images that have been lowpass filtered using the two-dimensional Gaussian impulse
response with various values of r are shown in Figures 4-7, 4-8, 4-9, 4-10, and 4-112.

Examples of final images processed with different values of r are given in Appendix B,

and are discussed in Chapter 6.

2To make the images photocopy better, spatial resolution and the number of gray levels is sacrificed
by using a clustered dot dither. No false contcurs are actually present in the filtered images.
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Figure 4-6: Image separated using a windowed Gaussian filter.
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Figure 4-7: Original lightness image Lefore Gaussian lowpass filtering,



Figure -8: Gaussian lowpass filtered image, 7 5.



Figure 4-9: Gaussian lowpass filtered image, r - [().

6.



Figure 4-10: Gaussian lowpass filtered image, r - 20,
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Figure 1-11: Gaussian lowpass filtered image, 1 0.
~



4.2.3 Implementation Details

One practical problem that has been ignored so far is the question of what to do about
filtering near the image borders. The issue can be seen by looking ai the convolution
expression that specifies the filtering operation. The convolution of the signal z(n;,n2)

with the filter impulse response h(n;,n;) is given by

M, M,
y(n1,nq) = Z Z h(my, ma)z(ny — my,ny — m,) (4.12)

my=—M ma=—M,

where h(n,,n;) has the rectangular region of support —M; < n; < My, —M; < n; < M,.
If the original image :n(nl:nz) has dimensions N; x N, then to obtain an output image
y(n1,n2) of the same dimensions, y(n;,n,) will depend on z(n,,n;) over a range of
(2M, + N1} x (2M2 + N,), which is not completely specified.

One trivial solution to the problem is to define z(n,,n;) = 0 outside the region
0<n; <N, -1,0<n; <N, -1, and accept the degradation near the image borders.
This may be acceptable for some applications and becomes less of a problem when the
region of support of the filter’s impulse response is small. For the Gaussian filter, a
typical cutoff would be given by r = 10. This would yield ar impulse response with a
region of support of dimensions 53 x 53 pixels, although many of the values of the impulse
response away from the origin are small. Clearly, the border effects cannot be ignored.

Another solution, often used when the FFT is used to filter the image, is to let the
circular convolution of the FFT “wrap around” image values from one border to the
opposite border. Conceptually, this approach wraps the filter around to the other side of
the image whenever the filter falls over the border. The borders are defined by the size
of the FFT used to compute the image. FFTs are usually constrained to be a power of
two in length, so the original image is often different in size than the FFT. This requires
the rest of the values in the FFT array to be filled in by some arbitrary value. This
padding is treated as part of the image with respect to the wrap around. In cases where
the image near the border is much different from the padding values, or different from

the image on the opposite border, this method may produce undesirable results. These

66



problems become more significant as the size of the region of support of the impulse
response increases, which occurs as the filter cutoff frequency decreases.

Conceptually, the solution used in this thesis is that whenever h(n;,n,) is shifted
beyond the border of the original image, the values of h(n,,n;) that fall off the original
image are “folded” back onto the image. This approach ensures that the filtered image
depends only on the original image in the same region, not on some arbitrary padding
value or on the image content near the opposite border.

Since a direct implementation of folding the impulse response would require different
filters near the border, the computation is done in a different way. First, the size of the
original image is increased by the size of the region of support of the filter by flipping
and appending copies of the image to itself at the borders. To handle the corners, flipped
copies of the image are first appended to the top and bottom to increase the height, then
the left and right borders are extended. Second, the enlarged image is filtered, taking no
explicit care near the borders. Third, the enlarged border region is discarded to obtain
an output image of exactly the same dimensions as the input image. Since the size of
the original image is increased and the borders of this enlarged image are thrown away
anyway, it does not matter how the borders are treated in the computation. Figures 4-12
and 4-13 provide an example of an image enlarged by flipping its borders. For example,
the value of z(--1,—4) is given by z(1,4). |

For increased speed, the filtering was computed by taking the discrete Fourier trans-
forms of the filter’s impulse response and the original image, multiplying the transforms
in the frequency domain, and inverse transforming. The discrete Fourier transforms were
computed using a inodified version of an N-dimensional FFT program [20]. Large im-
ages present a problem for computing two-dimensional FFTs, because they require large
amounts of memory, which may or may not be available. On the workstation used to
run the filtering program, memory allocation was rarely a problem, but as FF'T sizes
increased, the time required per pixel also increased. The decrease in speed is caused by

the decreased efficiency of the memory system for large amounts of data. A large mem-
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Figure 4-12: Image before enlarging borders.
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Figure 4-13: Image with enlarged borders.
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ory allocation decreases the cache hit rate and causes extreme slowdown if the virtual
memory system is required to swap pages. Therefore, it is advantageous, and on smaller

computers necessary, to filter the image in sections in order to reduce the size of the
FFTs. .

There are two common methods for sectioning convolutions, the overlap-add and the
overlap-save methods [21]. There is no compelling reason to prefer either one over the
other, so the overlap-save method was chosen. To use the overlap-save method, the
output image is sectioned into pieces which are slightly smaller than the size of the FFT
and each piece is computed separately.

For any given image there are usually several possible ways to break it into pieces.
Since the time required to filter the image can change dramatically depending on the
sectioning, the program which lowpass filters the image selects the optimal FFT size
before beginning the computation. The optimal FFT size depends on the size of the
image to be processed, the size of the region of support of the impulsz response, and the
amount of time that it takes the given workstation to compute the all of the possible sizes
of two-dimensional FFTs, which must be powers of two for the particular algorithm. In
many cases, this approach gave significant performance improvements.

In summary, in order to compress the lightness range, images are filtered to obtain
a low frequency component image and a high frequency component image. Zero-phase
FIR filters with a monotonic step response work well. Once the image is separated into
two components, the components can be iteratively scaled and recombined to achieve

the output image with the desired lightness range and appearance. How the image

components are recombined is the topic of the next section.

4.3 Recombining the Image Components

In the previous section, methods were discussed for separating an achromatic image into

a low frequency image and a high frequency image such that the sum of the two images
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is equal to the original image. In this section, the component images are scaled by
constants, recombined, and shifted by a constant lightness to produce an output image
of the correct lightness range.

The recombining procedure is described by:

¥(n1,n2) = ayzi(nyyna2) + anzn(ny,na) + d (4.13)

%

wheze z)(ny,n2) is the low frequency image computed in the previous section, z,(n;,n)
is the high frequency image obtained by subtracting the low frequency image from the
original, and y(n;,n,) is the output image. The parameters, a; and oy, are constant scale
factors less than or equal to one, and d shifts resulting image to the appropriate lightness
level. These recombination parameters are included in Figure 4-3.

In order to quickly experiment with many values of oy, as, and d, an interactive
compater program was created to display the processed image on a mouitor. The program
allows a variety of parameters to be specified and also computes a histogram of the
resulting image. In order to change the value of + quickly, several different lowpass
images are pre-computed to avoid the substantial delay of lowpass filtering. Different
low frequency images are read in on demand and output iiages can be saved to files.

The lightness values of the original image are stored as unsigned characters using
one byte per pixel. The low frequency image is stored as floating point numbers using
four bytes per pixel. Four bytes per pixel is probably more than necessary, but one byte
per pixel for the low frequency image is not sufficient. When only 256 levels are used
to represent the low frequency image, false contours sometimes appear in the output
image. This quantization error also appears as a series of spikes in the histogram of
the output image. When floating point numbers are used for storing the low frequency
image, the quantization artifacts disappear and the histogram of the output image looks
much smoother.

As mentioned in Section 4.1, decreasing a, normally does not reduce the dynamic
range of the image significantly but does degrade the image significantly. Thus, setting

ay < 1is not a good idea. Although increasing aj generally improves the appearance of
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an image, it is not allowed because it is more related to image enhancement than ganut
compression. Consequently, the value of ay is set to be one.

The parameter o is used to decrease the lightness range of the image, and in general
must be less than one. The exact value of a; can be quickly determined using the
interactive display program.

One method that often worked welil for finding an initial estimate of ¢ is based on
the approximation that the decrease in the lightness range of the low frequency image
component is approximately equal to the decrease in the lightness range of the final
output immage. Using this assumption:

Kdeu - I{im

~1- ]
oy max|z;(ny,n2)] — min[z;(n1,n,))

(4.14)

where K;,, and K., are the black points of the image and the device (see Figure 4-1). The
denominator terms, max|z;(n,,n2)] and min[z/(n;,n;)|, are the maximumn and minimum
lightness values in the low frequency image. Equation 4.14 assumes K;, < Kg4.,. This
approximation works well for max[z/(n;,n3)] — min[zi(n;,n2)] > Kaeo — Kim, that is, as
long as the low frequency image component is the dominant contributor to the output
lightness range. For low frequency images which have very small lightness ranges, the
approximation does not work well. This may occur when the filter cutoff is to low (7 too
large for the Gaussian filter). In these cases the lightness range is more dependent on
the high frequency image, and it may be impossible to reduce the lightness range of the
output image sufficiently without increasing the filter cutoff.

The parameter d, is the last parameter that needs to be specified. The value of d is
selected so that the reproduced image wil! have the same apparent lightness as the original
image and the reproduced image is within the lightness range of the printer. Adding a
positive value of d is usually necessary because the image needs to be compressed towards
the white point rather than zero, which is what y(n;,n;) tends to as oy and «; become
small. As with aq, d can quickly be determined iteratively using the interactive display
program.

Conceptually, to determine an initial estimate of d, the value of d that holds the
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peak value of the low frequency image constant after scaling is chosen. Another way of
thinking about this process is to first shift the lightnesses of the low frequency image so
that the maximum value is moved to zero. Then scale the low frequency image by «y.
Lastly, shift the lightnesses back by exactly the same amount that they were first shifted.
This holds the maximum value of the low frequency image constant, and compresses the
other values towards this maximum point.

For implementation purposes, it is unnecessary to shift, scale, and shift back. The

two shifts can be combined to give:
d = max[z;{n;,n,)](1 — ). (4.15)

When the two image components are recombined using Equation 4.13, the peak-to-
peak lightness range is usually greater than the original image. The reason for this is
that most images have some small light points in larger dark regions and some small dark
points in larger light regions. In each case, the amplitude of the points is not decreased
because it is part of the high frequency image which is not attenuated. When the light
point occurs in a dark region, the value of the light point is increased along with the dark
values. When a dark point occurs in a light region, its value remains nearly unchanged
in the output image. These few extraneous lightness values can cause problems is if
the lightness range is measured automatically from its endpoints. For example, if the
endpoints of the histogram of the output image are used to éutomatically set the lightness
range of the image, a very poor picture will result. The solution to the problem of the
extraneous values is to clip them to the minimum and maximum lightness values of the
printer. Clipping lightness values is simple and works well.

The LFLC method is not a one-to-one, input-to-output mapping. Pixels of the same
lightness in the input image may become different lightnesses in the output image, and
pixels of different lightness in the input image mnay mapped to the same lightness in the
output image. igure 4-14 shows the input-output relationship of the LFLC for the wine
image of Figures B-4 and B-5. Lik-wise, Figure 4-15 shows the input-output relationship
of the LFLC for the rose image of I'igures B-7 and B-8. In Figures 4-14 and 4-15, the
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intensity of the distribution is proportional to the number of pixels having that particular

input output relationship.
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Chapter 5

Three-dimensional Gamut

Compression

5.1 Choosing the Compression Variable

Color gamut compression is inherently a three-dimensional problem because human color
perception is three-dimensional. There is an infinite number of three-dimensional spaces
that could be used to represent color and provide the domain for performing color gamut
compression. As discussed in Chapter 1, the L*a*b* color space, which is the L*AC"* color
space in cylindrical coordinates, was chosen. The L*hC* representation is particularly
useful in this chapter because L*, h, and C* are somewhat orthogonal with respect to
human perception, that is, they relate to different perceptual attributes of color.
During the gamut compression process, out-of-gamut colors must be changed. The
question is, which of the three numbers which represent the color should be changed.
Sometimes, changing any one of the three values is sufficient. Since the lightness com-
pression of Chapter 4 guarantees that all lightness values will be within the achromatic
range of the device, changing L*® is never necessary. Likewise, since changing h only ro-

tates the hue value around the gamut, changes in h are never necessary. Only if changes
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in C* are allowed can it be guaranteed that a pixel value can be changed to be in-gamut!.

Although it is never necessary to change L* or k, it may be advantageous. Since the
color gamut is not circularly-symmetric, changing & can sometimes allow larger amounts
of chroma. Likewise, for dark or light colors, changing L° may also allow larger amounts
of chroma. Caution must be exercised when changing the hue or lightness of a pixel.
In general, for a constant AE, changes in hue are riskier than changes in lightness, and
changes in lightness are riskier than changes in chroma. Because L*, h, and C* correspond
to different perceptual attributes, the relative acceptability of various color changes may
be different even though the perceptibility of the changes is equal. For example, if the
color of a red apple is compressed by shifting the red towards purple or crange, the
new color may be unacceptakie. Changes in lightness or chroma that are perceptually
equidistant may be preferred.

Later in this chapter, an adaptive method for gamut compression is developed. Mak-
ing the gamut compression adaptive over the entire space adds quite a bit of complexity
to the problem. In order to keep the problem manageable, only C* will be allowed to
change during the three-dimensional gamut compression. C* is the only one of the three
variables that can guarantee that all colors can be moved in-gamut, and fortunately,
it is the least likely of the three variables {o cause an objectionable error. Figure 5-1

illustrates the approach and should be compared to Figure 1-1.

5.2 Changing C*

There are many possible ways to reduce the chroma of image pixel values in order to
gamut compress an image. In this section, two extreme approaches and the form of the

compromise will be discussed.

LIf the white point or the black point of the device gamut does not lie on the achromatic axis, then
reducing C* of a very light or very dark cclor may not be sufficient to bring that color in-gamut. This
case is not discussed because it can be avoided by temporarily tilting the achromatic axis to pass through
the white point and the black point.
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Figure 5-1: Simplified method for color gamut compression.

The first extreme method, which is conceptually similar to the MEGC method of
Section 1.2.4, is to “chop off” any chroma values that are out-of-gamut. This approach,
chroma clipping, leaves all colors that are originally in-gamut unchanged. To move colors

which are out-of-gamut inte the device gamut, the chroma value of each out-of-gamut

pixel is reduced by = ninimum amount needed to bring the pixel’s color in-gamut:
Covr = Cin for  Cfy < Cleviee (L7, 1) (5.1)
C(.)UT = "n;euice(L.’h) for CI.N > 'n;eut'ce(L‘7h) (5'2)

‘I i8 the chroma value of a pixel in the input image, Cj 1 is the same pixel’s chroma
value after the gamut compression, and C},,;..(L* k) is the maximum reproducible
chroma of the particular output device for a given lightness and hue.

The second extreme approach, Buckley’s method, discussed in Section 1.2.3 is to
globally reduce all chroma values until the entire image is in-gamut. Thus, if there
are any out-of-gamut colors, then all colors in the image will have their chroma value
decreased by the same scale factor required to bring the most extreme color into the
device gamut.

Cour =B-Cln all  Ciy (5.3)

79



All image chroma values are scaled by the positive real constant 3 < 1. 3 is the largest
scale factor which moves all image colors inside the device gamut.

As mentioned in Section 1.3, these two extreme approaches, chroma clipping and
global chroma scaling, each have their own associated advantages and disadvantages.
The chroma clipping method has the advantage that it results in the largest average
chroma in the output image, which makes the image look colorful. The chroma clipping
method has the disadvantage that it is a many-to-one mapping which transforms colors
which are originally different to the same printable color. This many-to-one mapping
tends to reduce the visibility of image detail. If an image contains a large object that
has most of its colors in one region which is outside of the device gamut, then the object
may suffer considerable loss in detail as a result of the many-to-one color mapping. An
example of this can be found in [15].

The global chroma scaling has the opposite properties. It has the severe disadvantage
that the average chroma of the output image is often reduced significantly. Images
processed by the global chroma scaling technique usually look “washed out” because of
their low average chroma. Chroma scaling has the advantage that it keeps separate colors
separate throughout the mapping process. Thus, more image detail is preserved using
the global chroma scaling method.

Given the two extremes, with diametrically opposing advantages and disadvantages,
the obvious goal is to find the optimal balance point between the two, which maximizes
the benefit and minimizes the degradation from each. This optimal method must keep the
average chroma as high as possible while trying to avoid bunching a lot of colors together.
Given this goal, it is not clear what method can be used to accomplish it. What must
be found is a set of equations which provide a compromise between the chroma clipping
of Equations 5.1 and 5.2, and the chroma scaling of Equation 5.3.

The two extreme approaches have an important difference. Chroma clipping gamut-
compresses each pixel color independently from all others, whereas global chroma scaling

operates on all pixel colors together. Since we are looking for a compromise between
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these two methods, what is desired is compression that is adaptive over different regions
of the gamut. This way similar colors are essentially processed together to avoid the
many-to-one mapping problem, yet colors that are very different are essentially treated
independently.

The reason why the global chroma scaling method almost never works well is that the
solid that represents the image data in three-dimensional color space is usually shaped
differently than the solid representing the device’s color gamut. Global scaling shrinks
entire image gamut with respect to the worst case, overcompressing all other colors and
wasting a large portion of the output device’s color gamut capabilities. Scaling by a
constant factor will never make the shapes fit together better. What is needed is to
“warp” the shape of the image gamut to fit the device gamut better. This way, the
image is not compressed for regions of color that are in-gamut, but regions of the image
that are out-of-gamut will be compressed to fit within the device gamut. This warping
is precisely what adaptive processing can accomplish.

The most general adaptive compression function is a function of L*, k, a1d C*:
Cour = f(L*,h,Ciy) (5.4)

where C}y is the chroma value of an arbitrary input color and C§yp is the output chroma
value that is guaranteed to be in-gamut. This chroma compression is adaptive over all
three dimensions of the color space. |

Figure 5-2 helps illustrate the sort of problem that often occurs with the two extreme
chroma compression methods, and provides the motivation for adaptive processing. The
points A, B, C, and D represent four pixel colors in an unprocessed image. The color A
is the only color that is outside of the color gamnut of the device. The chroma clipping
method would change color A to be the same as color B, and leave the other colors un-
changed. The global chroma scaling method would move color A to the original position
of color B, but the chroma of all of the colors are also be reduced by the factor g = (Ei'
In this example, the color A has a high lightness value, which is near the white point

of the device gamut. Color gamuts have a very small chroma range at high lightnesses
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Figure 5-2: Chroma compression of image pixel colors.

(and at low lightnesses), so the scale factor P is very small. Unless the compression is
allowed to vary as a function of lightness, color D, which is in-gamut, will be compressed
severely. Likewise, unless the compression is allowed to vary as a function of hue, color
C, which is also in-gamut will also be compressed severely. Consequently, it is important
that the chroma scaling be adaptive for different lightnesses and hues.

To avoid the problems discussed above, the chroma compression is adaptive over all
three dimensions of the color space. Being adaptive over different hues allows, for exam-
ple, the greens in an image to be compressed more or less than the blues. Being adaptive
over different lightnesses allows light blues, for example, to be compressed more or less
than dark blues. The compression may even be a nonlinear function dependent on Cjy.
This would provide the ability to compress colors that are far out-of-gamut proportion-
ately more than colors that that are well within-gamut, thus keeping the average chroma
of the image as high as possible.

Although the gamut compression is allowed to be adaptive over the entire color space,
it cannot be totally unconstrained. Three intuitive constraints are assumed. The first

assumption is that the gamut compression function should vary smoothly across the
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color space in all directions. If neighboring regions of the color gamut were allowed to
be processed radically differently, we might expect, as Evans would describe it, “internal
inconsistencies” in the image. The second assumption is that the average chroma of
an image should be maximized in order to make the image look as colorful as possible.
The third assumption is that it is desirable to keep distinguishable colors separate after
processing. Achieving the goals of the second and third assumptions requires a compro-
mise, since separating out-of-gamut colors requires moving them away from the borders,
towards the middle of the gamut.

These few assumptions really do not constrain f(-) of Equation 5.4 much at all. The
chroma compression function can still assume a wide variety of mathematical forms.
What is needed is to select a particular form for f(-) that can provide the basis for the
adaptive chroma scaling. One reasonable approach is to define a family of transfer func-
tions having exogenous parameters to control the smoothness of the gamut mapping and
the relative tradeoff between clipping and scaling. Using this approach, the processing
can be controlled by only two or three parameters. Reducing the number of control
parameters makes experimentation easier, and is useful for reducing the complexity of
gamut compression systems. If the gamut compression system is manually controlled,
having fewer parameters may make the adjustments easier. If the gamut compression is
automatic, then fewer control parameters need to be estimated from the image in order

to process the image.

5.3 A Particular C*¥ Transfer Function

As we have seen from the previous section, there is no clear choice of what function should
be used for f(-). In this section the particular choice of f(-) that was implemented will
be explained.

Since the transfer function described here must actually be implemented, the imple-

mentation issues are intertwined with the selection of the transfer function. All else being
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mapped to output chroma values of zero. In other words, adding & constant to in-gamut
chroma values is not allowed. The other endpoint is fixed such that the inaximum image
chroma velue in a particular L*, h region of the gamut, C},,,., i¢ mapped to the gamut
boundary of the device. The middle of the three points lies on the line Cjy = Cj,,,., and
has a height m;C}, ..., where 0 < m;C{, ;.. < Clevice: The value of m;Cy, ;.. controls
whether clipping or scaling is emmphasized. When m; = 1, then the transfer function is

_ exactly like the chroma clipping of Equations 5.1 and 5.2. When m; = m,,;n,

’device K
Cc'.mage (07)

Mmin =
such that the two line segments of the transfer function form a straight line, the transter
function is identical to the linear scaling of Equation 5.3 except that the transfer function
ie adaptive and Equation 5.3 is global. When m; < m,;, then chroma values are reduced
and separated even more than the chroma scaling technique. Since chroma scaling already
has the problem tlat it tends to reduce and separate chroma too much, m; < m,;, is an
unlikely candidate to be a good parameter choice and will not be allowed.

Thus, as m; varies between 1 and m,;,, the transfer function behavior varies between
clipping and scaling. One of the endpoints of the transfer function is fixed at the origin
and the other is fixed by the gamut of the output device and the gamut of the image.
This leaves only one free variable, the position of middle point of the chroma transfer
function. Consequently, it is not necessary to store m;, m,, and Yo to apply Equations 5.5
and 5.6. Only two parameters are needed for each lightness-hue region of the gainut. In
the implementaiicn, i:;, ™, and y, are each stored to avoid repetitive calculation of the
redundant variable.

Since the gamut warping function depends on the particular colors in the image, the
first step in calculating the parameters m;, m,, and b, is to tabulate the multidimensional
histogram of image colors. This histograin is a function of the form N(L*,h,(’*), where
N(-) is the number of pixels of color (L*,h,('*). Histogram bins are defined over a
certain volume which determines the number of bins needed. The larger the volume of

each individual bin, the fewer the bins that are necessary. Since we eventvally want
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to average many adjacent histograin values to produce a smoothly changing transfer
function, a large number of histogram bins is desirable. Since the number of bins can
quickly become very large “ue to the histogram’s cubic form, a simplified version of
histogram is used in the implementation. The three-dimensional histogram is reduced to

thrze, two-dimensional histograms which are functions of lightness and hue:
Nin(L*,h)
Nowe(L*, k)
Craz(L",R).

The three variables are non-negative integer quantities, representing the number of in-
gamut pixels, the number of out-of-gamut pixels, and the maximum chroma value for
each small lightness-hue bin of the color gamut. In the implementation, 187 lightness
bins and 360 hue bins were used. This total of 67,320 bins is probably much more than
necessary, but was chosen to avoid problems in achieving a smooth and accurate warping
function due to sampling the color space too coarsely.

The next step, having tabulated the characteristics of the distribution of color within
the image, is to produce a smoothed version of each of the three, two-dimensional lLis-
togram tables. The smoothed version of the histograms will be used to calculate m;, m,,
and b,. It is important to note that the smoothing is performed on the raw histogram
data rather than the final parameters m;, m,, and b,. If thé smoothing were done on m;,
m,, and b, then all information about the relative importance of each L*, h bin is lost.
The sort of problem that could occur if m;, m,, and b, are smoothed is that one m;, m,,
b, triplet derived from only a few pixels could be averaged (weighted equally} with an
adjacent m;, m,, b, triplet which was derived from thousands of pixels. By averaging the
raw data, the weight or importance given to each bin is proportional to the number of
pixels that it represents.

The next issue related to smoothing is how exactly to average nearby histogr.am bins.
Should all the bins in the average be given equal weight? Over how large a lightnes-

hue range should the histogram bin averaging cover? Since it is practically impossible
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to predict how large the area of averaging should be, this is left as an input to the
computer program that performs the chroma compression. At first glance it might seem
reasonable to give all of the histogram bins in the averaging region equal weight, but
this can cause a problem. The problem is that discontinuities are more likely when
using equal weighting because each histogrzam bin must either be included or completely
ignored. Equal weighting is the same as using a rectangular window function. Whenever
the rectangular window crosses over a histogram bin that has a very different nature
compared to its neighbors, the full impact of that bin is added immediately. Histogram
bins should be able to be included in the computation gradually. Instead, if a triangular
(Bartlett) window function is used, then discontinuities in the histogram will become
ramp changes in the smoothed histogram which would have appeared as step changes
when the rectangular window was used.

A triangular window is a one-dimensional function. A two-dimensional window is
needed because the histograms are functions. of two variables, L* and h. A separable
two-dimensional window can be formed as the product of two, one-dimensional windows.
Figure 5-4 shows the two one-dimensional windows.

The variables L, ,4;u, and A,q4iu, set the width of the windows. There are 2L, 44,0, + 1
and 2h,44;u, + 1 nonzero points in each one-dimensional window. The maximum value of

both windows is set to be 1. The two-dimensional window is given by:

w(L*h) = wi(L*)-wa(h)

(Lradiua +1- IL I)(h-radl'ua +1 - |h|) ILOI < L,—udiun ‘hl < hradi

_ (Lradt'ua + 1)(hradiuo + 1) l‘(58)
0 otherwise
Applying the window to each of the three, two-dimensional histograms gives:

Lradiul hrn:ﬁul

Sin(L* k) = S Na(L* +4,h + jhw(i,f) (5.9)

"=—Ll'ﬂ‘llll j='hrad|uo

Lraduu hradnu

Sout(L*,h) = S New(L* +i,h + j)w(iy ) (5.10)

i=—Leadius J=—hradius
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Figure 5-4: Windows used to smooth the histograms.
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Lradine Keadius
Cimage(Lh) = ) Y. CrelL® +i,k 4 j)wii,j) (5.11)

i==Lyqdive J=~hradius

where S;n, Sout, and C? are the smoothed versions of N;,, N,.., and C'*

tmage madx

respectively.
When the smoothing is actually computed, the window will cross over the borders of the
histogram array. This is not really a problem if the histogram entries are defined to
be zero outside the borders of the histogram table. When the window falls beyond the
lightness boundary, the zero values of these non-existent histogram bins will not effect
the smoothing. Since hue is an angle value, whenever the window passes beyond the hue
border of the table, the window should be wrapped around to the opposite end of the
table. So, for example, if histogram hue bins are spaced one degree apart, h,q4ius = 2°,
and the histogram is windowed about h = 0, then hue values of —358, -359, 0, 1, 2
degrees would be used.

Because the window is an even function, Equations 5.9, 5.10, and 5.11 are equivalent

to convolution in space:

Sin(L*,h) = Nia(L*,k)+w(L*,h) (5.12)
Sout(L* h) = Noue(L*, k) * w(L* k) (5.13)
o age( L R) = Cro(L* k) xw(L*,h) (5.14)

where * denotes convolution. Note that the smoothing operation could be performed
in the frequency domain by multiplying the discrete Fourier transform of each of the
three histogram tables by the discrete Fourier transform of the window. If care is taken,
the wrap around requirement of windowing the hue can be handled implicitly using the
circular convolution performed by the DFT multiplication.

From the smoothed histogram data, the parameters m;, m,, and b, are calculated by:

me = Sin )
b Sin. + Sout
m, = 'n;cuicc(l _' m") r for m; 2> Mpmin (‘515)
Ci‘magc - Jcm'ce
bo = Cn;euicc(m‘i - m’O) )
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m; = Mnin

m, = Mmnin fOl‘ Sin n Sout < Mumin (516)
b, = 0
Since the gamut compression is adaptive and Sin, Sou, and Cf, .. are functions of

(L*,k); m;, m,, and b, are also functions of (L*, k). For implementation purposes, there
is no reason to store Sin, Sout, and Cj, ;. in an intermediate table. O. c these values
are computed for a particular lightness-hue bin, the corresponding m;, m,, and b, can be
computed immediately and stored in a lightness-hue table.

The final step is to apply the compression function to the image chroma values.
This involves the application of Equations 5.5 and 5.6. Each pixel is tested whether
it is in-gamut or out-of-gamut in order to determine whether to apply Equation 5.5 or
Equation 5.6.

It is important to note that Equation 5.15 is where the tradeoff between clipping
and scaling is made. If all pixels are in-gamut, S, = 0, which gives m; = 1, setting
the output chroma equal to the input chroma. As the number of out-of-gamut pixels is
increased, the slope of m; is is decreased to make space for the out-of-gamut colors to be
mapped into the gamut. If all the pixels are out-of-gamut, then the slope of m; and m,
are limited by m,;,.

Equations 5.15 and 5.16 are somewhat arbitrary. There are many other, possibly
better, ways of specifying and implementing a chroma transfer function. Equations
which emphasize clipping would probably be an improvement, and are a topic for future

research.
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Chapter 6

Results, Conclusions, and

Suggestions

6.1 Experimental Results

Appendix B contains eight pages of color images. The following evaluations are based on
my own subjective judgements with input from both people experienced and inexperi-
enced in graphic arts and image processing. The evaluation of the images is described in
some detail because copies of this document will not have the original pictures included.
Also, a problem to be wary of is that these color pictures fade over time. The fading can
be noticeable after only a few months, depending on the amount of light that the pi-ture
has been exposed to. As the pictures fade, subtle differences in processing become less
obvious. In an attempt to make the color images for this thesis more permanent, color
photocopies were produced. Because the color gamut of the copier was sufficiently dif-
ferent from that of the Paintjet printer, the results were obscured. Table 6.1 summarizes
the processing applied to each of the eight images in Appendix B. Table 6.2 lists the
exact processing parameters, discussed in Chapter 4, used for the low frequency lightness
compression of both images. Table 6.3 shows how the color space is compressed during

the adaptive chroma scaling of Chapter 5. The percentages in Table 6.3 indicate the
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Table 6.1: Processing Summary of Images in Appendix B

Figure " Lightness Processing I Chroma Processing |
la none
1b clipping
2 clipping
3 clipping
4 clipping
5 ACS
6 none
7 clipping
8 ACS

Table 6.2: Parameters of Low Frequency Lightness Compression (LFLC)

Parameter || Wine Image | Rose Image |
T 30 10
apn 1 1
estimated o .70 .68
actual oy .70 .69
estimated d 29 21
actual d 29 29
Lyyr < Kgey 1.6% 2.1%
Lyyr > 100 2.2% 0.002%
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Table 6.3: Characteristics of Adaptive Chroma Scaling (ACS) over the Color Ganiut

Lrad = hrad =6
Case Wine | Rose | comments

m; = 1 all nearby colors are in-gamut
1> m; > mpin piecewise linear compression
M = Mynin linear scaling; many out-of-gamut pixels

unspecified no pixels in this color range

amount of the color space (the number of histogram bins) associated with each case of
the processing.

The first color image, Figure B-1, shows the importance of eliminating out-of-gamut
colors before halftoning and printing. In Figure B-la, no form of chroma compression
was applied. The out-of-gamut colors cause quite undesirable results in the reproduction.
The blue hat has been printed as magenta, cyan blobs have appeared in the eyes, and the
bow tie is almost purely the red primary. In Figure B-1b, chroma clipping was performed
on the image, eliminating the gross errors due to out-of-gamut colors.

The images in Figures B-2, B-3, B-4, and B-5 have no out-of-gamut colors. To more
carefully observe the changes in lightness, a gray scale has been appended to the bottom
of the original image. The gray scale varies linearly in lightness from the value of the
blackest color in the image to the value of the whitest color in the image. Figures B-2,
B-3, and B-4 illustrate the importance of properly adjusting the lightness and Figure B-5
is for comparing adaptive chroma scaling to chroma clipping.

The image in Figure B-2 clearly shows the need for matching the lightness range of
the image to the lightness range of the output device. The lightness range of the image is
greater than the lightness range of the printer, so many colors are clipped to black. The
left side of the gray scale shows the wide range of lightnesses that have been mapped to
black.

The lightness range of the image in Figure B-3 has been reduced using the affine

transformation to map the image's black to the printer’s black and the image’s white to
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paper white. Note that the left edge of the gray scale is the only part printed as pure
black and the right edge of the gray scale is the only part that is pure white. Although
the affine-compressed image looks much better than the unprocessed image, it also has
low contrast.

The image in Figure B-4 illustrates the low frequency lightness compression method.
It clearly is an improvement over the affine lightness compression in Figure B-3, which
looks dull and flat by comperison. The LFLC image has much higher apparent contrast
and sharpness. The blacks look blacker and the image appears to have much more depth.
Note the slight taper in the upper right corner of the gray scale. This is caused by the
filtering.

The last image in this group, Figure B-5, shows the effect of adaptive chroma scaling.
The differences between this and the previous image are subtle, and the improved detail
is partially obscured by the low resolution of the printer. Some improved separation of
colors can be seen. For example, the red grapes appear to have more shape than before.

The last three images, Figures B-6, B-7, and B-8, are cases in which judgments of
the images varied the most. The image in Figure B-6 is compressed in lightness by the
affine transformation and has not been chromaclipped. In this image, 38% of the pixel
values are out-of-gamut. There is considerable loss of detail because many pixels are
reproduced as the red primary of the printer. This also results in a maximally saturated
image. Some people preferred this image because it was extremely saturated even though
the detail was lacking. This image was certainly not the most accurate, but some people
found it pleasing.

The image in Figure B-7 was processed by the LFLC technique and had chroma
clipped. The LFLC improved the image contrast and the chroma clipping stopped the
halftoning algorithm from selecting the red primary for most of the rose. Some people
preferred this image over the previous because of its improvement in detail.

The last image, presented in Figure B-8, was processed by the LFLC method and

adaptive chroma scaling. This image has the best detail of the three rose images but
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also has the lowest overall chroma. Most people found this image to be too desaturated
and did not prefer it. It is interesting to note that when the color copies of the rose
image were judged, Figure B-8 was preferred. The reason behind this is that the color
gamut of the copier is much more restricted in the reds than the Paintjet. The copies of
Figures B-6 and B-7 lost their advantage of high chroma but still lacked in detail. The

detail of the image processed by adaptive chroma scaling was still clear in the color copy.

8.2 Conclusions and Suggestions

For all images tested, ‘the low frequency lightness compression method presented in Chap-
ter 4 was clearly superior to the affine transformation. Low frequency lightness compres-
sion always resulted in an image with equivalent or better appearance than the affine
method. The methods for estimating the parameters of the low frequency lightness com-
pression generally worked well. The only parameter which was not explicitly calculated,
T, turned out not to be particularly crucial. Often, a 50% change in the value of + had
an almost unnoticeable affect on the final image.

One possible extension of the LFLC method would be to allow image enhancement
by removing the constraint a; = 1. If ax > 1 then the image is sharpened. This capa-
bility would require no extra computation and could open up many image enhancement
possibilities.

There are methods which are simpler than LFLC and better than the affine trans-
formation, such as various forms of static nonlinear transformations! that might be able
to produce good results also [31] [19]. The low frequency lightness compression method
has the advantage that it is easier to control than these fixed input-output operations.
In systems designed for novice users or for automatic systems, having fewer parameters
which are easy to select is an advantage. In their present forin, Equations 4.14 and 4.15,

which estimate values of a; and d, are not accurate enough to control a completely au-

! Also called tone reproduction curves or Jones curves in the graphic arts.
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Figure 6-1: Severe reduction in chroma due to one far out-of-gamut pixel.

tomatic system. One possibility for future work would be to improve the methods for
. estimating the control parameters.

The adaptive chroma scaling method presented in Chapter 5 worked well on some
images and did not work as well on other images. In all cases it improved image detail as
predicted, but it sometimes over-compressed the color gamut. The lesson learned is that
small amounts of adaptive chroma compression improve the image, but moderate or large
amounts of chroma compression degrade the image because the average chroma becomes
too low. One possible improvement of this particular imple.ﬁnentation would be to change
the form of Equations 5.5 and 5.6, which define the particular C'* transformation used,
to emphasize clipping more and the distinction between colors less. The implementation
could also probably be improved by allowing single extraneous colors to be ignored during
the calculation of the transfer function. The problem that could occur is that if a regien
contains many colors which areAslightly out of gamut, then the transfer function is only
based on the peak image chroma in that region of color. One outlying color point could
cause the entire region of the gamut to be desaturated. Figure 6-1 illustrates this potential

problem.
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Another problem occurred when converting from rectangular to polar coordinates
to calculate 2 and C* from a* and b*. Since a* and b* have only 256 possible values
each, only a discrete number of hue angles is possible. The fact that many (a°, b*)
values are converted to a few hue angles, such as 45°, and other hue angles are rare,
such as 44°, causes the color histogram to be very uneven. The effectis of these spikes
can be reduced by increasing L,q4ius 80nd h,o4ivs, the dimensions of the window used to
smooth the histogram (Equation 5.8). As a result, in the current implementation, L,.4;.,
and A,q4ius cannot be reduced arbitrarily without noticeable discontinuities in the gamut
mapping.

One last suggestion for future research is to allow L* and kh to change during the
three-dimensional gamut mapping. This is the general approach discussed in Chapter 1
and illustrated in Figure 1-1. L* and h were held fixed in Chapter 5 to make the adaptive
compression more manageable.

In summary, the low frequency lightness compression method worked very well. The
three-dimensional adaptive chroma scaling method demonstrated the ability to improve
images but the particular form of the transfer function should be improved so that a

wider range of ilnages can be processed without overcompression.
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Appendix A

Printing L*a*b* Images

The color images processed in this thesis are stored as an array of L*a*b* values. L*, a*,
and b* are each represented by one bLyte, giving a total of 16,777,216 different colors.
The printer used is capable of producing only eight difterent colors of dots. To print
colors different from the eight primaries of the printer, it is necessary to halftone, that
is, use combinations of the eight possible color dots placed side-by-side to produce the
desired color. There are two steps in the printing process. First, a correction is made for
nonlinearities in lightness. Second, error-diffusion is used to halftone the L*a*b* image
so that is suitable for printing.

The first step, correcting for nonlinearities in lightness, is necessary because of the
characteristics of the printer. The printer’s dots are round rather than square, and overlap
when placed next to each other. Consequently, the area covered by dots increases rapidly
with the number of dots added when there are few dots, and the area covered dces not
increase much when there are many dots. Figure A-1 shows the resulting lightness as a
function of the percentage of black dots.

To measure the points graphed in Figure A-1, various percentages of black dots are
pricted. Although it is not always the case, there is a one-to-one mapping of lightness
to dot percentage. If the function is inverted, we can determine the percentage of dots

needed to print a desired lightness. In general, what is desired is to apply the inverse of
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Figure A-1: Lightness printed as a function of dot percentage.

the printing function to the data. The printing system has inputs, and produces print
samples which can be measured as L*a*b” values. To print a particular L*a*b* value,
the correct inputs to the printing system can be found from the inverse of the printing
function. Very sophisticated and accurate methods, such as fitting polynomials, are
possible for calculating the proper inputs to produce a specified color[33]. By applying
the inverse of the function graphed in Figure A-1, the image is corrected for the printer’s
nonlinearities in lightness before the halftoning.

The second step in the printing process is to halftone the image. The standard Floyd
and Steinberg error diffusion technique [32] is used, extended to three-dimensions for
color printing. The Floyd and Steinberg method method was originally intended for
printing black and white images. The value of each input pixel is a number between zero
and one. The two possible output values are zero for white and one for black. Each pixel
is processed in turn, left to right and top to bottom. To determine the output value of
the current pixel, it is compared to the threshold, which is 3. If the pixel is greater than

the threshold, then black is printed, and if the pixel value is less than the threshold, then
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white is printed. The error is defined as the difference between the input value aund the
printed value. The error is divided up and distributed to neighboring pixels which have

not been processed. The exact distribution and weights are shown in Figure A-2. The

Sl e
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Figure A-2: The Floyd and Steinberg error diffusion weights.

solid dot in the figure represents the current pixel, and the fractions show the amount of
the error distributed to each neighbor. The error weights sum to one so that the error is
not increased or decreased as it propagates. This procedure is repeated until all pixels
have been processed.

Conceptually, the Floyd and Steinberg error diffusion method extended to color print-
ing is the same as the gray scale version. Instead of error-diffusing scalars which represent
gray levels, three-dimensional vectors are processed to represent colors. Instead of two
choices for each output pixel, there are eight, one corresponding to each primary dot
color. Instead of a threshold, the AE,, metric of Equation 2.19 is used to select the
closest of the eight possible output colors. The error to be distributed to the neighbors
is a vector rather than a scalar.

The extended, three-dimensional form of the error diffusion is more prone to problems
associated with pixel values beyond the range of the primaries, compared to the one-
dimensional version. This is why color gamut compression is important for printing color
images. If the pixels are out-of-gamut, the error grows without bound and inappropriate
output colors are selected. The image in Figure B-1 shows how the out-of-gamut colors
cause gross printing errors. When actually implementing these algorithms, LUTs are
used to ininimize the number of calculations.

There are many possible improvements for the above printing process. For example,
adding a serpentine raster or randomizing the weights in some fashion could reduce the

patterning produced by the Floyd and Steinberg method. Another improvement would
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be to use a more sophisticated pre-correction for nonlinearities. Fortunately, for the

Paintjet printer, the error produced by this printing method is relatively small.
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Appendix B

Color Images
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