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Abstract

Turbulence in the atmospheric boundary layer mitigates wake losses between tur-
bines and is critical to power generation by wind farms. As offshore wind energy
development increases in the United States, it is necessary to understand the im-
pact turbulence intensity uncertainty has on predicting the annual energy production
(AEP) of a wind farm. In numerical models used to calculate farm power, turbu-
lence intensity is treated as a constant input, though it has variability in the physical
atmosphere. Wind conditions, such as turbulence intensity, can be modeled with nu-
merical weather prediction (NWP), or measured with in situ instruments that may
not be available offshore in the exact location of interest. For the Vineyard Wind 1
offshore farm off the coast of Massachusetts, this uncertainty between data sources led
to an overprediction of 4.4% by the NWP data compared to that of the in situ data.
We found that assuming a median turbulence intensity, instead of the full turbulence
intensity distribution, resulted in an AEP prediction difference of less than a third
of a percent. While the quantitative results presented in this thesis are site-specific
to the Vineyard Wind 1 farm, the results suggest that wind condition uncertainty
has a significant impact on AEP uncertainty. The results motivate further in situ
measurement campaigns to assess the wind conditions that offshore wind farms will
encounter.

Thesis Supervisor: Michael F. Howland
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Background

1.1 Introduction to Offshore Wind

There is high potential to capture wind energy in offshore environments [1]. Recent

infrastructure and energy diversification plans [2] have increased the desire to under-

stand the wind energy resources on outer continental shelves (OCS) of the United

States. The United States aim to deploy an offshore wind capacity of 30 gigawatts

(GW) by the year 2030 and a capacity of 110 GW by 2050 [2]. In particular, the

eastern coast has many lease areas already marked for offshore wind development, a

proposed 16 wind farms with a total capacity of 26 GW [3]. Chosen for their high

wind speeds, these regions have the potential to account for a significant percentage

of energy supply in the adjacent communities and total energy production in each

coastal state [3].

Compared to onshore environments, the offshore atmospheric boundary layer

(ABL) has more stable conditions (i.e., less diurnal variability) caused by the heat

capacity of water [4]. Higher wind speeds occur offshore due to less surface roughness

over the ocean [4]. These two traits of the offshore environment make it a valu-

able resource for energy harvesting. The equation for power from a turbine is most

generally

𝑃 =
1

2
𝜌𝐴𝐶𝑃𝑢

3 (1.1)
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in which power (𝑃 ) is the product of air density (𝜌), the swept rotor area (𝐴), the

coefficient of power (𝐶𝑃 ), and the cube of the incoming wind speed (𝑢).

It is important to understand and model the wind conditions offshore to best

understand the potential power generation of that area. Though computational fluid

dynamics (CFD) simulations can more accurately model flow through a wind farm,

it is too expensive to run for optimization-oriented design decisions [5]. A more

computationally efficient means of understanding offshore wind power potential is

to use numerical-based methods. However, these numerical models may overlook

certain key wind conditions. Additionally, because measuring wind conditions in

areas of interest for offshore wind development is expensive, modelling technologies

an alternate source for wind data. One example is numerical weather prediction

(NWP), which utilizes mathematical models to predict future weather patterns based

on historical data and models to interpolate where data is not available.

1.2 Vineyard Wind 1 Offshore Wind Site

This thesis focuses on the in-development Vineyard Wind 1 (VW1) offshore wind

farm, the first federal utility-scale offshore wind energy project in the United States

[6]. This wind farm is being developed in the federal lease area OCS-A-0501 off the

coast of Massachusetts, 15 miles south of Martha’s Vineyard. The project plan in-

cludes 62 General Electric Haliade-X 13-megawatt (MW) turbines spaced one nautical

mile apart on an east-west, north-south grid. The current Vineyard Wind 1 develop-

ment plans detail a capacity of 800 MW, powering over 400,000 homes in Cape Cod

and other Massachusetts communities via Eversource, the local utility [6].

1.3 How Wind Farm Design Impacts Annual Energy

Production

The annual energy production (AEP) of a wind farm is the amount of electrical en-

ergy generated over the course of a year. AEP is not only influenced by freestream

14



wind conditions, but also by how turbines in an array interact and impact down-

stream wind. Turbine wakes, the areas of low velocity downstream of a turbine due

to extracting energy from the flow, are a function of wind conditions, which directly

impact the performance of a wind farm [7]. Wind farm sites are often chosen for

their high wind speeds, but wind conditions such as wind direction and turbulence

intensity (TI) also play important roles in energy production. Wake interactions be-

tween turbines become larger at certain wind directions. Wake recharge, replenishing

velocity downstream of a turbine with the above freestream flow, between turbines is

directly linked to wind speeds and turbulence (e.g. [8], [9], [10]). Figure 1-1 shows

contours of wakes in a turbine array with turbulence intensity varying from 6% to

50%. Higher TI leads to more wake recharge and greater power generation.

More turbines in a farm will increase the amount of energy harvested from the

wind, but at an economic cost. The levelized cost of energy (LCOE) ($/MWh), the

total cost of a wind farm capital and operational expenditures over the net AEP, is a

tool to measure the trade offs between farm design and energy production. The reduc-

tion in LCOE for wind farms in recent decades have spurred widespread development

of wind farms globally [7]. However, the LCOE for an individual development, such

as the VW1 farm, is impacted by design decisions. Wind farms are often composed

of tens to hundreds of turbines. A farm is designed based on constraints of total area

available (wind farm footprint), type(s) of turbines, number of turbines, arrangement

of turbines, and spacing between turbines [11]. Turbines can have different speci-

fications such as rotor diameter, which dictates the total swept area of the blades,

and hub height, the distance from sea level to the the turbine rotor center. The

spacing between turbines is a balance between packing turbines tightly to maximize

use of the lease area and spacing turbines apart to minimize wake interactions that

influence downstream velocity deficits, the decrease in momentum downstream of a

turbine due to energy extraction from the wind [11]. The distance between turbines

therefore relates to the number of turbines that can fit within a given wind farm lease

area. Adding more turbines may decrease total farm efficiency due to increased wake

interactions. However, it may also reduce the LCOE, since the benefit of adding AEP

15



Figure 1-1: Sideview of a three-turbine wake interaction at constant wind speed and
direction. As turbulence intensity (TI) increases, the velocities between turbines
increases due to wake recharge induced by turbulent mixing. Note that 50% TI is not
common.

outweighs the expense of each additional turbine.

In the atmospheric boundary layer, wind speeds typically increase with altitude,

so wind farms developers often design farms with higher hub heights to capture those

higher wind velocities. The wind speed relationship to altitude is often simplified

with a power law
𝑢

𝑢𝑟

=

(︂
𝑧

𝑧𝑟

)︂𝛼

(1.2)

in which 𝑢 is the wind speed at height 𝑧, and 𝑢𝑟 is the known reference velocity at

height 𝑧𝑟. A high shear coefficient (𝛼 > 0.2) is indicative of a stable atmosphere,

while a low shear coefficient (𝛼 < 0.2) characterizes an unstable atmosphere [4].

However, turbulence often decreases very rapidly with height, from a maximum value

just above the land or ocean surface [4]. Due to this, it is important to investigate

the relationships between wind speed, turbulence intensity, and AEP at the Vineyard

Wind 1 site for different heights above sea level.
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1.4 Low Turbulence Intensity

Turbulence, the irregular motion of a fluid, is important to large wind farms for

recharging the velocity deficit, or wake, between adjacent turbines. Turbulence helps

transport the kinetic energy from the freestream wind above the wind farm down to

the rotor area where turbines can extract the energy, thus increasing power production

[7]. Turbulent kinetic energy (TKE) is the root mean square of fluctuating wind

velocity, for which 𝜎2
𝑖 in Equation 1.3 represents the variance of the wind components.

TKE =
1

2
(𝜎2

𝑢 + 𝜎2
𝑣 + 𝜎2

𝑤) (1.3)

Turbulence intensity (TI), or turbulence level, is the ratio of TKE to the mean wind

speed (𝑢) [4]:

TI =

√︁
2
3
TKE

𝑢
(1.4)

TI is a dimensionless parameter often expressed as a percent, with values below 5%

considered relatively low and values above 10% considered relatively high [4]. TI

affects wind farm performance by promoting wake deficit recharge downstream of

turbines within a farm.

Though offshore sites typically have stronger and steadier wind speeds than on-

shore sites due to lower surface friction [12], the Vineyard Wind 1 site AEP may be

significantly impacted by the low atmospheric turbulence observed in the region [12].

Bodini et al. (2019) analyzed lidar data from the Woods Hole Oceanographic In-

stitute (WHOI) Air-Sea Interaction Tower (ASIT) and found "very low atmospheric

turbulence" in this area.

1.5 Thesis Objective and Scope

The goals of this thesis are to explore the following questions:

Firstly, how does uncertainty in TI influence the farm’s expected AEP? The un-

certainty in TI comes from the availability of different data sources, in particular

17



the WHOI lidar data and the National Renewable Energy Laboratory (NREL) NWP

data. The differences in TI data sources for the VW1 site may significantly increase

the range of uncertainty for the farm’s AEP. Additionally, how does AEP depend on

using the median TI of a dataset versus the full probability distribution of TI?

Finally, what is the impact on AEP as TI is expected to decrease with height?

Though wind speed increases with elevation, turbulence intensity decreases with

height (something not often considered in wind farm modelling), which may impact

the effectiveness of increased hub height on AEP.

18



Chapter 2

Methodology

2.1 Numerical Analysis in FLORIS

The FLOw Redirection and Induction in Steady State (FLORIS) [13], developed by

NREL in collaboration with the Delft University of Technology, is a Python-based

wind farm modelling software using steady-state wake models. During the course of

this study, FLORIS version 3, a successor to FLORIS version 2.4, was released and

all following numerical experimentation were done with the 3.0.1 update. FLORIS

has previously been used in other offshore studies [14] and tested for sensitivity and

uncertainty [15].

In this study, we used a numerical-based approach to model the VW1 wind farm.

Because turbine power is a function of the area-averaged inflow velocity, it is necessary

to understand the impact of turbulence intensity on turbine wakes, which is the

velocity deficit downstream of turbines. We used a Gaussian wake model developed for

FLORIS that is an integration of models from different papers, including Bastankhah

and Porté-Agel (2014); Abkar and Porté-Agel (2015); Niayifar and Porté-Agel (2015);

Bastankhah and Porté-Agel (2016); Dilip and Porté-Agel (2017). It is composed of

a self-similar velocity deficit model [16] and elements of atmospheric stability. In

their paper on analyzing heterogeneous wake using FLORIS, Farrell et al. (2021)

translated the FLORIS methodology well from its Python environment [17].
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The velocity deficit 𝑢(𝑥, 𝑦, 𝑧) is calculated with

𝑢(𝑥, 𝑦, 𝑧)

𝑈∞
= 1− 𝐶

[︂
exp

(︂
−(𝑦 − 𝛿)2

2𝜎2
𝑦

)︂
exp

(︂
−(𝑧 − 𝑧ℎ)

2

2𝜎2
𝑧

)︂]︂
(2.1)

in which 𝑈∞ is the incoming velocity; 𝑥, 𝑦, and 𝑧 represent the spatial coordinates in

the streamwise, spanwise, and vertical directions, respectively; 𝛿 is the wake deflection

[18]; and 𝑧ℎ is the turbine hub height. 𝐶 is the velocity deficit at the wake center:

𝐶 = 1−

√︃
1− (𝜎𝑦0𝜎𝑧0)𝐶0(2− 𝐶0)

𝜎𝑦𝜎𝑧

, where 𝐶0 = 1−
√︀

1− 𝐶𝑇 (2.2)

in which 𝐶𝑇 is the thrust coefficient and 𝜎 is the wake width in the vertical (𝑧) and

lateral (𝑦) directions. The wake widths are further dependent on the wake expansion

rate, which is parameterized by 𝑘𝑦 and 𝑘𝑧:

𝜎𝑧

𝐷
= 𝑘𝑧

(𝑥− 𝑥0)

𝐷
+

𝜎𝑧0

𝐷
, where

𝜎𝑧0

𝐷
=

1

2

√︂
𝑢𝑅

𝑈∞ + 𝑢0

(2.3)

𝜎𝑦

𝐷
= 𝑘𝑦

(𝑥− 𝑥0)

𝐷
+

𝜎𝑦0

𝐷
, where

𝜎𝑦0

𝐷
=

𝜎𝑧0

𝐷
cosh 𝛾 (2.4)

in which 𝐷 is the rotor diameter, 𝑢𝑅 is the velocity at the rotor, 𝛾 is the turbine yaw

(in this study 𝛾 = 0∘), and 𝑢0 is the maximum velocity deficit in the wake. From

Niayifar and Porté-Agel (2015), parameters 𝑘𝑦 and 𝑘𝑧 were estimated to be dependent

on ambient incident turbulence intensity 𝐼0, where 𝑘𝑎 = 0.38371 and 𝑘𝑏 = 0.003678

based on tuning using large eddy simulations of the neutral atmospheric boundary

layer. The wake spreading rate can also be estimated based on power measurements

[10]. Though 𝑘𝑦 and 𝑘𝑧 can potentially grow at different rates, they are set equal for

model simplicity such that

𝑘𝑦 = 𝑘𝑧 = 𝑘𝑎𝐼 + 𝑘𝑏. (2.5)

The local turbulence intensity, 𝐼, is a combination of the ambient turbulence

intensity with the wake-added turbulence, 𝐼+ generated from the turbine operation.
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FLORIS uses the following superposition methodology to calculate the total 𝐼:

𝐼 =

⎯⎸⎸⎷ 𝑁∑︁
𝑗=0

(𝐼+𝑗)2 + 𝐼20 (2.6)

in which 𝑁 is the number of turbines upstream that generate added turbulence in-

tensity. The Crespo-Hernandez wake turbulence model [19] was used to calculated

added turbulence intensity:

𝐼+ = 0.73𝑎0.8325𝐼0.03250 (𝑥/𝑑)−0.32 (2.7)

in which 𝑎 is the axial induction factor and 𝑥 is the distance downstream..

2.2 FLORIS Validation

Using data and methods from existing literature, we validated FLORIS methodology

by comparing our power outputs to those from a well-studied wind farm. Niayifar

and Porté-Agel [9] compared their new power model against large eddy simulation

(LES) data for the Horns Rev wind farm off the coast of Denmark. Using the study’s

input parameters (i.e., farm layout, turbine specifications, wake model parameters),

we compared the FLORIS power output against that of the Horns Rev numerical

analysis. The Gaussian wake velocity model detailed in section 2.1 was used. Two

numerical experiments were performed to compare the Niayfar Horns Rev power data

to the FLORIS power outputs. The first was comparing normalized power per row

at a constant wind speed, direction, and TI (Figure B-1). The second compared

normalized power at a constant wind speed and TI at wind directions sweeping 173∘

to 353∘ (Figure B-2). The results showed that FLORIS slightly underpredicts power

output per row but maintained the shape of the original Horns Rev plots. Because

the goals of this thesis are to compare AEP of different datasets, we hypothesize that

a consistent underprediction is therefore not expected to significantly impact relative

comparisons.
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2.3 Wind Farm Specifications

The Vineyard Wind 1 analysis was performed using an array of turbines spaced one

nautical mile, or 8.5 rotor diameters, apart as shown in Figure 2-1. The plans for

the Vineyard Wind 1 farm include 62 General Electric Haliade-X 13MW turbines,

which have a hub height of 135m and a 218m rotor diameter. However, the power

and thrust data for these turbines are not publically available. Therefore, this study

uses International Energy Agency (IEA) 15MW reference turbines, commonly used

in studies done by NREL [20]. The IEA 15MW turbine has similar rotor diameter

(240m) and standard hub height (150m) as the Haliade-X 13MW turbine.

The IEA 15MW turbine thrust and power curves are shown in Figure 2-2. The

power curve predicts the turbine’s power at each wind speed. These curves are divided

into three regions. Region 1 is from wind speeds of 0 m/s to the cut-in speed (3 m/s

for the IEA 15MW turbine), the speed at which the turbine starts generating power.

Region 2 is from the cut-in speed to the rated wind speed (10.6 m/s for the IEA

15MW turbine), the speed at which the rated (maximum) power is reached. Past the

rated wind speed is Region 3, throughout which the turbine actively slows itself down

to limit fatigue.

2.4 Wind Condition Data Sources

For this study, two data sources were compared: in situ lidar measurements and

modelled weather prediction data.

2.4.1 WHOI ASIT Lidar Data

The Woods Hole Oceanographic Institution’s (WHOI) Air-Sea Interaction Tower

(ASIT), located at 41°19.501’N, 70°34.000’W, is a cabled, fixed platform located ap-

proximately 3 km south of Martha’s Vineyard that has been collecting continuous

observations of the atmospheric boundary layer since 2016. Bodini et al. [12] used

data from October 2016 to October 2017 to analyze the turbulence intensity offshore
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Figure 2-1: Vineyard Wind 1 Farm Layout – an array of 62 turbines spaced 1 nautical
mile apart.

Figure 2-2: IEA 15MW turbine power and thrust curves, data from NREL [20]. The
grey vertical line indicates the rated power speed 10.6 m/s. Region 2 (left of the
vertical line) is from cut-in speed (3 m/s) to rated speed; power is zero at speeds less
than cut-in. Region 3 (right of the vertical line) shows the range of wind speeds for
rated power.
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of the East Coast of the United States. Periods during which rain was observed have

been excluded from Bodini’s dataset. Because of its proximity to land at its north,

the ASIT wind speed and turbulence kinetic energy (TKE) measurements may not

be appropriate for understanding northerly wind over the open ocean [12]. However,

this thesis is concerned with understanding how the currently available measurement

data may be used to predict wind farm annual energy production and influence wind

farm siting and design.

The data used in this analysis are from Bodini’s processed data [21] from the

“MetOcean Initiative” funded by the Massachusetts Clean Energy Center [22]. The

data, collected with lidar, contain wind direction, wind speed (m/s), and turbulence

kinetic energy (m2/s2). The lidar took measurements at the following elevations above

sea level in meters: 53, 60, 80, 90, 100, 120, 140, 160, 180, and 200.

2.4.2 NREL Wind Prospector Data

Being able to quantify this energy potential without relying on in situ measurements

has led to the development of methodologies and public datasets, such as those pro-

vided by NREL. In 2013, NREL began developing the Wind Integration National

Dataset (WIND) Toolkit [23], the largest publicly available grid integration wind

dataset, with seven years of data at 5-minute and 2 km x 2 km resolution over 126,000

sites. In 2020, NREL released the Offshore Mid Atlantic Dataset, an updated 21-year

(2000-2020) wind resource set that replaced the WIND Toolkit for the offshore At-

lantic region [23]. This new dataset used a more recent version of Weather Research

and Forecasting (WRF) NWP, version 4.1.2.

For this study, the data was taken from coordinates within the VW1 lease area,

40°55.571’N, -70°42.134’W. The relevant attributes from the Wind Prospector (WP)

Offshore Mid Atlantic dataset included wind direction (degrees), wind speed (m/s),

and turbulence kinetic energy (m2/s2), each collected at 5-minute intervals. Each

wind condition is available for the following elevations above sea level in meters: 10,

20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 400, and 500.
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2.4.3 Data Processing

For the current study, a year’s worth of data from October 2016 to September 2017

was collected and sorted such that the WHOI lidar data and Wind Prospector NWP

data had measurements at the same 10-minute time steps. The WP data, taken at

5-minute intervals, were averaged to obtain the 10-minute resolution. Because the

WHOI data was processed by Bodini et al. (2019), the times when precipitation

occurred were omitted. These times and any other gaps in WHOI data were similarly

omitted from the WP data.

For each dataset, turbulence intensity, the relative fluctuation of wind velocity

versus the mean wind speed, was calculated. Turbulence intensity (TI) can be derived

from TKE via Equation 1.4 with 10-minute wind speed averages.

2.5 Numerical Experiments

To investigate the uncertainties in wind condition data sources, we ran controlled

numerical experiments using the FLORIS software. The Vineyard Wind 1 farm ori-

entation with 62 IEA 15MW turbines was initialized. The turbines are fully yaw

aligned, such that the rotors are fully facing the incoming wind regardless of wind

direction. In the physical ABL, the presence of the ground (or ocean surface) creates

friction that forces a velocity profile that is zero at the lower boundary layer and

increases with height [4]. However, for these analyses, wind shear was omitted, mean-

ing that the incoming velocity does not change with height in this model. Because

of this, the "hub height" of the farm is set by the elevation of the wind condition

measurements (e.g., lidar data recorded at 140m will result in an AEP calculation of

turbines with hub height 140m).

2.5.1 Additions to FLORIS Code

FLORIS uses wind speed and direction distributions in power calculations, but turbu-

lence intensity distributions are not considered. Instead, TI is prescribed as a constant
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value for all inflows. For this study, additions have been made to the existing FLORIS

package to include TI probability distributions. For the typical FLORIS setup, wind

conditions for the inflow are initialized; wind speed and direction inputs may be het-

erogeneous vectors, but TI can only be inputted as a singular value. FLORIS uses the

Gaussian wake model detailed in Section 2.1 to calculate the incident wind speed felt

by each turbine in the farm, and the individual turbine powers, measured in Watts,

(Equation 1.1) are determined with the rotor area-averaged velocity. The total farm

power is the sum of the individual turbine powers. AEP, often measured in gigawatt-

hours (GWh), is then calculated using the mean farm power multiplied by 8760 hours

(the number of hours in a year).

In order to fully capture the TI distributions from the wind condition datasets,

we iterated the turbine power calculation over the entirety of the three-variable (wind

speed, wind direction TI) inflow combinations. Unlike the default FLORIS methods,

each farm power was calculated using a different inflow TI value. Similar to the above

methods, AEP (called "full AEP" in the remainder of this study) was then calculated

using the mean farm power.

2.5.2 Farm Efficiency Analyses

Farm efficiency is the ratio between the total farm power and the maximum potential

farm power without wake losses. The farm efficiency was calculated using the total

farm power over the power of the freestream operating turbine (the turbine at the

beginning of the inflow) multiplied by the number of turbines in the farm. To un-

derstand the impact of using the full TI probability distribution versus the singular

median TI value, we ran three different farm efficiency analyses. The first used only

the median values for all three wind conditions: wind speed, wind direction, and

TI. The second was based on the standard FLORIS methodology, using the median

value for TI and the full wind speed and direction probability distributions. The final

analysis was based on our additions to the FLORIS code, using the full probability

distributions for each wind condition to find the "full" farm efficiency.
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2.5.3 Monte Carlo Sampling for Probability

It is computationally expensive to run power calculations for each of the wind con-

ditions, which can number to 52,560 for a year’s worth of 10-minute samples. The

machine used in this analysis had an Intel Core i7, 3.8 GHz processor and required

approximately 12 hours per 30,000 wind condition iterations. To combat the dimen-

sionality of the added TI variable and find the statistical significance of a more efficient

method, Monte Carlo estimation was used. Monte Carlo uses random sampling to

draw inferences about a population; as the sample size from a distribution grows, the

average of the samples grow closer to the true mean of the population [24]. In our

study, the number of samples was chosen, and that number of random indices from

the wind condition data were used in the wake model. In practice, the goal was to

determine the minimum number of wind condition samples required to get reasonably

close to the full AEP.

27



28



Chapter 3

Results

3.1 Differences Between TI Datasets

Table 3.1 shows the farm efficiency of the Vineyard Wind 1 setup at different pre-

scribed turbulence intensities at constant wind speed (8 m/s) and direction (270∘).

Farm efficiency increases non-linearly as turbulence intensity increases.

Turbulence Intensity Farm Efficiency
0.02 60%
0.04 67%
0.06 71%
0.08 75%
0.1 78%
0.2 88%

Table 3.1: Farm efficiency at prescribed turbulence intensities for the Vineyard Wind
1 farm.

The processed and matched time-stamp wind speed and turbulence intensity data

for the WP and WHOI datasets are shown in Figure 3-1. Visually comparing the

wind directions, the WP wind roses (Figures 3-1a and 3-1b) show more westerly winds

while the WHOI wind roses (Figures 3-1c and 3-1d) have predominately southwesterly

winds. The WP has generally lower turbulence intensities than WHOI, though they

both show the lowest turbulence intensities coming from the southwest.

Figure 3-2 shows contour maps of the relationships between each inflow wind
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(a) WP Wind Speed (b) WP Turbulence Intensity

(c) WHOI Wind Speed (d) WHOI Turbulence Intensity

Figure 3-1: Wind roses for wind speed and turbulence intensity at 140m. Figures a)
and b) are from the Wind Prospector dataset; c) and d) are measured by the WHOI
ASIT lidar.
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condition. The resolution of each wind condition is as follows: 1 m/s wind speed, 3°

wind direction, 0.01 turbulence intensity. In Figure 3-2a, only the region two range

of the turbine power curve (cut-in speed 3 m/s to rated-power speed 10.6 m/s) is

shown, as farm efficiency tends towards 100% when the wind speed is above rated

power speed. This is shown with wind speed on the vertical axis in Figure 3-2c. In

Figures 3-2b and 3-2c, the farm efficiency is lowest when wind directions are aligned

with rows or columns of the turbine array and turbine wakes are directly interacting

and reducing wind speeds between turbines.

To better understand the differences in the wind condition distributions of each

dataset, the histograms in Figure 3-3 show overlapping probability distributions. For

all wind condition pairs, the two-sample Kolmogorov-Smirnov test null hypothesis

stating that the data are from the same continuous distribution was rejected at the

5% confidence level. Therefore, the datasets are statistically different. The WP data

show more instances of higher wind speeds than the WHOI data. Additionally, the

WP turbulence intensities have two peaks at 0.02 and 0.05, while the WHOI TI peaks

at 0.02 only. Table 3.2 shows the mean, median, and standard deviation (𝜎) for each

dataset and wind condition. The medians for wind speed and wind direction are

similar to each other, while the turbulence intensity medians are identical.

Wind Direction Wind Speed (m/s) TI
mean median 𝜎 mean median 𝜎 mean median 𝜎

WP 209.4∘ 233.0∘ 97.6∘ 10.6 10.0 5.4 0.05 0.04 0.09
WHOI 209.5∘ 236.9∘ 100.8∘ 10.0 9.4 4.9 0.06 0.04 0.07

Table 3.2: Statistics of the WP and WHOI wind condition data at 140m elevation.
Number of data point timestamps = 32948.
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(a) Turbulence Intensity vs Wind Speed

(b) Turbulence Intensity vs Wind Direction

(c) Wind Speed vs Wind Direction

Figure 3-2: Contour plots comparing the farm efficiencies of each combination of wind
conditions. Figure 3-2a focuses on the power curve region 2 range of wind speeds.
When wind conditions are fixed: wind direction is 240∘; wind speed is 8m/s; TI is
8%.

32



Figure 3-3: Overlapping histograms of WP and WHOI data at 140m for wind direc-
tion, wind speed, and TI.
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The Monte Carlo random sampling scheme is shown in Figure 3-4 with the follow-

ing sampling sizes: 100, 1000, 5000, 10000, 20000, 30000, 40000, 60000. Each sample

size was iterated 10,000 times, and the mean and range of percent difference from

the full calculated AEP is plotted. The full calculated AEP for the WP and WHOI

data at 140m is 5355.21 GWh and 5129.68 GWh, respectively. Figure 3-5 shows the

differences between the random sampling in the previous figure.

% Difference =
|WHOI − WP|

WHOI
· 100 (3.1)

The percent difference (Equation 3.1) between the AEP values for the WP and WHOI

datasets is 4.40% in favor of the WP AEP, shown in Figure 3-5 as the red reference

line.

(a) WP AEP Monte Carlo Integration (b) WHOI AEP Monte Carlo Integration

Figure 3-4: Random sampling mean percent difference from the full calculated AEP
for each dataset. Bars indicate range of percent difference for 10,000 iterations of
each sample amount.
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Figure 3-5: AEP differences between datasets. Red line indicates the percent differ-
ence (Equation 3.1) between the full calculated AEP.
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3.2 Changes in Hub Height

Similar results were found with the datasets at increased hub heights of 160m, 180m,

and 200m. The processed wind speed data for the WP and WHOI datasets are

shown in Figure 3-6. For all wind conditions and hub heights, the WP and WHOI

data were statistically different. Visually comparing the wind directions, the WP

wind roses show consistent westerly winds with height while the WHOI wind roses

have southwesterly winds that become more westerly with height. In Figure 3-7, the

turbulence intensities qualitatively do not change with height for each dataset. For

both datasets, the wind speed gradually increases as elevation increases (Appendix

A), though the median turbulence intensities remain constant. The full histograms

can be viewed in Appendex B.

The full AEP was calculated for the WP and WHOI datasets at each hub height

and are shown in Figure 3-8. AEP increases with height for both, and the percent

difference between the two shrink.
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WP WHOI

Figure 3-6: Wind roses for wind speed at the hub heights 140m, 160m, 180m, 200m
for WP (left) and WHOI (right).
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WP WHOI

Figure 3-7: Wind roses for turbulence intensity at the hub heights 140m, 160m, 180m,
200m for WP (left) and WHOI (right).
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Figure 3-8: Calculated AEP at increasing hub height for each dataset. Percent dif-
ferences (Equation 3.1) between datasets at each height is labeled.
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3.2.1 Median TI vs Full TI Distribution

Tables 3.3 and 3.4, WP and WHOI, respectively, show the results of the farm ef-

ficiency experiments for different hub heights. The corresponding AEP values are

located in the Appendix (Tables A.4 and A.5).

WP Farm Efficiency
Hub

Height
1) Median

TI, WS, WD
2) Median TI;
Full WS & WD

3) Full TI,
WS, WD

140m 94.88% 88.29% 88.36%
160m 90.24% 88.88% 88.96%
180m 93.91% 89.31% 89.41%
200m 93.91% 89.85% 89.98%

Table 3.3: Farm efficiency of the VW1 farm using the WP data at different hub
heights. Farm efficiency 1) uses the median values for TI, wind speed (WS), and
wind direction (WD); 2) uses the median TI with the full probability distributions of
WS and WD; 3) uses the full probability distributions for TI, WS, and WD.

WHOI Farm Efficiency
Hub

Height
1) Median

TI, WS, WD
2) Median TI;
Full WS & WD

3) Full TI,
WS, WD

140m 90.76% 88.00% 88.82%
160m 92.36% 88.47% 89.44%
180m 79.15% 88.88% 89.96%
200m 79.60% 89.57% 90.68%

Table 3.4: Farm efficiency of the VW1 farm using the WHOI data at different hub
heights. Farm efficiency 1) uses the median values for TI, wind speed (WS), and wind
direction (WD); 2) uses the median TI with the full probability distributions of WS
and WD; 3) uses the full probability distributions for TI, WS, and WD.
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Chapter 4

Discussion

4.1 TI Data Source vs. AEP at 140m Hub Height

As seen in Table 3.1, turbulence intensity has a direct influence on wind farm power

efficiency. Farm efficiency significantly increases as turbulence intensity increases at

constant wind speed and direction, since turbulent mixing recharges the wake velocity

deficit downstream of a turbine. It is therefore significant to include TI in energy

modelling calculations.

The wind roses in Figure 3-1 show distinct differences in the magnitudes and di-

rections of wind speeds and turbulence intensity between the two datasets. The WP

wind roses (Figures 3-1a and 3-1b) show a spread of wind directions coming from the

northwest, west, and southwest. The WP wind speeds more often reach velocities

of 20 m/s and higher. Comparatively, the WHOI data (Figures 3-1c and 3-1d) has

predominately southwesterly winds, which is explained by Bodini [12] as impacted

by the Martha’s Vineyard land mass to the north and northwest of the lidar tower.

The WHOI turbulence intensities are universally higher, especially from the north

and northwest where the wind is blowing from the land with higher surface rough-

ness generating more turbulence [12]. From the WP data, the turbulence intensity

surpasses 0.08 only 15% of the time.

Figure 3-2 illustrates the impacts each wind condition has on the farm efficiency

independently. Particularly at low wind speeds, farm efficiency significantly improves
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with increasing TI (Figure 3-2a); it is probable that the wind speeds within the

farm drop below the cut-in speed, precipitously lowering farm efficiency. A singular

prescribed TI in a numerical model may not present the full importance of TI. Above

the rated wind speed 10.6 m/s, however, wind speed dominates both TI and wind

direction. Varying wind directions at speeds lower than the rated wind speed are

vital to farm efficiency such that wake interactions are minimal. It should be noted

that an unidentifiable bug our implementation of the FLORIS code made possible

farm efficiencies greater than 100%; the efficiencies did not exceed 105% and should

not detract from the relative impacts of each wind condition combination. This bug

presented in even the simple case of a two-turbine array. While a solution was not

reached before the publication of this thesis, we anticipate that this bug did not affect

the qualitative results.

From Table 3.2, a major takeaway is that the means and medians for TI are similar

if not identical. However, the histogram in Figure 3-3 illustrates significant differences

in the probability distributions of TI between the datasets. While the WHOI TI peaks

around 0.02 and gradually decreases in probability, the WP TI peaks at both 0.02

and 0.05. This distribution difference maps directly to the 4.40% difference in AEP

between the two datasets, with WP AEP greater than WHOI AEP. The difference

between the data is therefore larger than the medians would suggest. The 4.40%

difference in AEP between the datasets at 140m, 225.53 GWh, is a significant over

prediction by the WP data that negatively impacts a developer’s LCOE since cost

per unit energy will seem to be lower.

The purpose of the Monte Carlo analysis was to understand the possibility of us-

ing a fraction of the total datasets to predict AEP since the current FLORIS methods

do not account for distributions of TI, and the additional code implemented is com-

putationally expensive. Based on our findings, 5,000 random samples, approximately

15% of the datapoints, may be an efficient and accurate volume at which to run the

wake model power calculations.

From a year’s worth of data at 10-minute increments, 63% was viable from the

WHOI dataset at 140m. It is possible comparing the full WP data to the existing
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WHOI data (100% vs 63%) would result in larger or smaller differences, but that

analysis was not done in this study.

4.2 Impact of Wind Conditions on AEP at Increased

Hub Heights

Upon investigating the WP and WHOI datasets at different heights, the wind condi-

tions did not change in the way that second research question of this thesis proposed.

As seen in Tables 3.2, A.1, A.2, and A.3, the median turbulence intensities did not

change with height for each dataset as well as between them. However, wind speed

increased with height similar to the power law Equation 1.2. Since turbulence inten-

sity is a relationship between TKE and wind speed (Equation 1.4), TKE must have

increased proportionally to wind speed to maintain constant TI. Though TKE often

decreases with height in onshore stable conditions, previous literature has not found

a clear relationship between TKE and stability in the offshore environment [25].

Since turbine power increases with increasing wind speeds, it is not surprising

that the AEP seen in Figure 3-8 increases with height. It is interesting to note the

percent difference between the calculated AEPs decreases with height, which may be

most directly impacted by the dominance of wind speed over other wind conditions

above the rated wind speed. This also may be due to the WRF NWP more accurately

predicting wind speeds higher in the ABL, versus the lower atmosphere that has a

more complicated relationship with waves at the ocean surface [26].

4.3 Importance of Full TI Distribution vs Median TI

The results from the farm efficiency experiments shown in Tables 3.3 and 3.4 provide

insight into the importance of the wind condition distributions when calculating farm

efficiency and, similarly, AEP. Results from experiment 1), with median values for

all three wind conditions, show the limitations of using a singular wind direction.

Though median wind speed increased with height and median TI stayed constant for
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each dataset, wind direction through the wind farm array determined the extent of the

farm power. Figure 3-2 details the relationship of wind direction to farm efficiency,

for which wind directions resulting in the most wake interaction had the lowest farm

efficiency. For experiment 1), the WP farm efficiency is non-monotonic with height,

and the WHOI farm efficiencies for 180m and 200m are significantly lower due to the

median wind direction.

Although we performed the comparison between the WP and WHOI datasets with

the full distributions of each wind condition, the results of farm efficiency experiments

2) and 3) show a small difference between using the full TI distribution versus using

just the median TI. For all corresponding cases, the farm efficiencies were within

1.11% of each other. As noted in Tables 3.2, A.1, A.2, and A.3, the median TI was

the same across all datasets at 0.04. The histograms (Figures 3-3, B-3, B-4, and B-5)

comparing the distributions for TI between the datasets show a double peak for the

WP data, and a smoother distribution for the WHOI data. Even with the interesting

shape of the WP TI distribution, the median TI was still an efficient and accurate

means of understanding the farm efficiency and AEP of the wind farm. Because this

analysis was performed at a specific site for a single year, this comparison between

median TI and the full TI distribution in farm power calculations may not hold

everywhere.
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Chapter 5

Conclusions

The goal of this thesis was to understand the impact that turbulence intensity has on

AEP at the Vineyard Wind 1 farm and determine the importance of wind condition

data sources on AEP. Based on the calculations of farm efficiency at different turbu-

lence intensities, it can be concluded that TI has a direct impact on power and energy

production. However, the calculated AEP using the full TI probability distribution

at the Vineyard Wind 1 farm was less than a third of a percent different than the

AEP calculated with the median TI.

Because it is expensive to directly measure wind conditions offshore at scale, it was

important to compare the WHOI lidar measurements to the WP numerical weather

prediction data. The WP AEP calculation was larger than that of the WHOI AEP

at each hub height, though the percent difference decreased with height. Though the

WHOI ASIT measurements are publically available for industry use, the data were

not directly in the Vineyard Wind 1 lease area and were significantly impacted by the

proximity to land. Although 4.40% AEP overprediction by WP compared to WHOI

is significant, it is not certain that the WP wind condition predictions are not more

accurate to the true values in the lease area, since the in situ measurements were not

exactly at the WP coordinates. To understand the full AEP at the Vineyard Wind

1 site using the WP data, it is important to note that the WP data was filtered to

directly match with the limited WHOI data; the WP data are available at every 5-

minute interval from 2000 through 2020 and will continue to be updated. Year-to-year
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uncertainties in wind conditions will also impact AEP values, though averages and

trends may be understood with the extensive WP datasets available through NREL.

Though it was hypothesized that the turbulence intensity would decrease with

height, this was not found to be the case for either dataset. Instead, TKE increased

proportionally to wind speed, keeping TI constant. Therefore, the study could not

assess the impact of changing turbulence intensity with height on AEP. As predicted,

however, wind speed did increase with height and positively influenced the predicted

AEP. The differences between the WP and WHOI AEP calculations decreased with

height.

Because the United States has plans to broadly develop utility-scale wind farms

across the Eastern Seaboard, it is the aim of this study to report the following: 1)

turbulence intensity should be included in models as an important wind condition

when designing the layout of a wind farm and considering wake interactions; 2) the

NREL Wind Prospector Mid Atlantic Dataset is a valuable, inexpensive resource for

data on the wind conditions in a given region without access to more accurate in situ

measurements; 3) though using the median TI to calculate the AEP at the Vineyard

Wind 1 site resulted in a difference of less than 0.33% compared to the AEP using

the full TI distribution, the full TI probability distribution may be required for other

sites and years of data to fully understand the wind energy potential there.
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Appendix A

Tables

Wind Direction Wind Speed (m/s) TI
mean median 𝜎 mean median 𝜎 mean median 𝜎

WP 211.8∘ 236.5∘ 98.1∘ 10.8 10.3 5.4 0.05 0.04 0.07
WHOI 210.5∘ 240.1∘ 101.9∘ 10.3 9.7 5.0 0.06 0.04 0.07

Table A.1: Statistics of the WP and WHOI wind condition data at 160m. Number
of data point timestamps = 31037.

Wind Direction Wind Speed (m/s) TI
mean median 𝜎 mean median 𝜎 mean median 𝜎

WP 211.9∘ 238.2∘ 98.5∘ 11.0 10.5 5.4 0.05 0.04 0.07
WHOI 210.8∘ 242.5∘ 102.3∘ 10.6 10.1 5.2 0.06 0.04 0.07

Table A.2: Statistics of the WP and WHOI wind condition data at 180m. Number
of data point timestamps = 27740.

Wind Direction Wind Speed (m/s) TI
mean median 𝜎 mean median 𝜎 mean median 𝜎

WP 209.0∘ 236.6∘ 98.1∘ 11.3 10.8 5.5 0.05 0.04 0.07
WHOI 209.2∘ 242.5∘ 101.7∘ 11.1 10.6 5.4 0.06 0.04 0.07

Table A.3: Statistics of the WP and WHOI wind condition data at 200m. Number
of data point timestamps = 23555.
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WP AEP (GWh)
Hub

Height
1) Median

TI, WS, WD
2) Median TI;
Full WS & WD

3) Full TI,
WS, WD

140m 6982.36 5369.76 5355.21
160m 7258.32 5488.18 5471.95
180m 8000.31 5614.57 5599.25
200m 8189.42 5785.87 5771

Table A.4: AEP for the VW1 farm using the WP data at different hub heights. Farm
efficiency 1) uses the median values for TI, wind speed (WS), and wind direction
(WD); 2) uses the median TI with the full probability distributions of WS and WD;
3) uses the full probability distributions for TI, WS, and WD.

WHOI AEP (GWh)
Hub

Height
1) Median

TI, WS, WD
2) Median TI;
Full WS & WD

3) Full TI,
WS, WD

140m 5555.26 5122.18 5129.68
160m 6215.44 5278.39 5292.25
180m 6003.48 5456.27 5473.93
200m 6948.00 5683.87 5702.06

Table A.5: AEP for the VW1 farm using the WHOI data at different hub heights.
Farm efficiency 1) uses the median values for TI, wind speed (WS), and wind direction
(WD); 2) uses the median TI with the full probability distributions of WS and WD;
3) uses the full probability distributions for TI, WS, and WD.
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Appendix B

Figures

Figure B-1: Horns Rev normalized power per row from [9] compared to the calculated
power from FLORIS.
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Figure B-2: Horns Rev normalized power versus wind direction from [9] compared to
the calculated power from FLORIS.
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Figure B-3: Overlapping histograms of WP and WHOI data at 160m for wind
direction, wind speed, and TI.
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Figure B-4: Overlapping histograms of WP and WHOI data at 180m for wind
direction, wind speed, and TI.
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Figure B-5: Overlapping histograms of WP and WHOI data at 200m for wind
direction, wind speed, and TI.
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