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Abstract

Large curated datasets have been essential to the development of deep learning
models across many disciplines. Consequently, the properties of these datasets have a
large impact on the behavior of these models. As machine learning pipelines increas-
ingly leverage more unlabelled datasets—which tend to undergo less curation than
labelled datasets—controlling data quality becomes even more important. We focus
on a particular aspect of data quality: train-test leakage or duplicate examples. These
can cause overestimation of models’ performance on benchmarks among other issues.
In this work, we apply datamodels, a framework for analyzing the behavior of a model
class as a function of its training data, to deduplicate unlabelled datasets. Inspired
by the recent CLIP model, we focus on detecting duplicates between YFCC15M and
the ImageNet validation dataset. Our results demonstrate how to adapt datamodels
effectively for these filtering tasks in unsupervised, large-scale settings. We finish by
discussing the challenges of our method and duplicate detection more broadly.

Thesis Supervisor: Aleksander Mądry
Title: Cadence Design Systems Professor of Computing
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Chapter 1

Introduction

A key driver in the progress of deep neural architectures in machine learning is

the development of large datasets. Labelled datasets such as the ILSVRC[6] image

classification benchmark ("ImageNet") have been central to the development and

evaluation of image classification models. Recent state of the art machine learn-

ing models use even larger uncurated and unlabelled datasets. The best ImageNet

classification models use massive neural network architectures and both labelled and

unlabeled training examples. OpenAI trained CLIP[15], a self-supervised model that

achieves state of the art accuracy across many image classification benchmarks, with

400 million image-text pairs. Large datasets have also been central to recent progress

in natural language processing. GPT-3[3], a state of the art language model, was

trained using 500 billion tokens.

Although large, unlabelled datasets are helpful for achieving state of the art re-

sults, these datasets tend to be more poorly curated compared to labelled datasets.

In particular, train-test duplication can be a problem within such datasets. Classifi-

cation accuracy on ImageNet and other datasets serve as an important benchmark for

evaluating new computer vision algorithms. If duplicates exist between the training

and the validation dataset, the benchmark could encourage the emergence of training

algorithms that are better at training examples than generalizing to unseen data.

Prior work shows that removing train-val duplicates can cause significant reductions

in the evaluation accuracy of state of the art computer vision models on CIFAR[1].
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In addition, training on datasets with train-test duplication can lead to lower-quality

models. Language models trained on a deduplicated version of C4 have lower per-

plexity scores and output fewer memorized sequences[11].

More specifically, we are interested in finding duplicates between the CLIP dataset

and the ImageNet validation set. The CLIP training dataset is a model of interest

because CLIP’s evaluation datasets are known to have duplicates within the its re-

spective training dataset. For instance, FairFace[10], a CLIP evaluation dataset, is

drawn entirely from YFCC100M[17], a dataset that was also used to draw examples

for the CLIP training dataset. The same also applies for Country211, another CLIP

evaluation dataset. This thesis can help future work better understand how duplicates

affect downstream task performance by improving duplicate detection techniques. We

are particularly interested in finding duplicates between the CLIP dataset and the

ImageNet evaluation dataset because ImageNet validation accuracy is an important

metric for evaluating computer vision models. Prior work has shown that ImageNet

accuracy is correlated with performance on downstream tasks.

Most traditional methods for dataset deduplication in computer vision are fairly

limited. It is common to use pixel-wise distance metrics (e.g l2 distance) to identify

duplicates. However, this method is not robust to small differences in saturation,

scaling, or translation. Distance in representation space[1] (e.g using features of a

pretrained model) is another common heuristic for dataset deduplication. Datamodels

[8] outperformed distance in representation space for dataset deduplication on CIFAR.

Datamodels were able to find 10% train-test leakage in CIFAR compared to 3% using

distance in representation space. Similarly, datamodels outperformed distance in

representation space when finding train-val duplicates in FMoW. In this work, we

apply datamodels to dataset deduplication between YFCC15M and the ImageNet

validation dataset.

In this thesis, we use datamodels for dataset deduplication between YFCC15M and

the ImageNet validation dataset. YFCC15M is a dataset filtered from YFCC100M

by OpenAI in 2020. This dataset is a subset of YFCC100M that contains image and

English text pairs. YFCC15M is also a subset of the dataset used to train the OpenAI
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CLIP model. Our contributions in this thesis are as follows:

• Extending datamodel-based deduplication to unlabelled datasets: This

work presents the first attempt at using datamodels to deduplicate an unlabelled

dataset. Previously, datamodels have only been used for deduplicating labelled

datasets. We present modifications to the datamodel training process that allow

it to deduplicate unlabelled datasets.

• (Partially) Quantifying leakage between YFCC15M and ImageNet:

We detect only a small degree of duplication between YFCC15M and the Ima-

geNet validation set. Of the 600 samples we manually inspect (and are predicted

to be most likely to contain duplicates), we only find 21 duplicates.

• Comparing datamodel-based and representation-based methods: We

compare the performance of the datamodel with a baseline method based on

embedding or representation distance. Although datamodels detect more dupli-

cates than the ResNet50 baseline, we find that datamodels do not perform sig-

nificantly better than the baseline at detecting ImageNet-YFCC15M duplicates.

Nonetheless, both methods detect non-overlapping set of examples, suggesting

that combining different methods can be a more effective duplicate detection

method.

• Analyzing challenges of automated duplicate detection: We analyze the

failure cases of the datamodel in duplicate detection. Specifically, we observe

that datamodels struggle to detect duplicates among evaluation images that

models can more easily classify. We propose various strategies to improve the

datamodel’s ability to detect duplicates.

In Chapter 2, we present background relevant to this work. In Chapter 3, we

describe the methods we used to find duplicates between YFCC15M and the ImageNet

validation set. In Chapter 4, we describe the results of applying our deduplication

strategy to a baseline method and offer an analysis.

15
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Chapter 2

Related Work

2.1 Large-scale computer vision datasets

Large-scale datasets have been essential to the growth of deep learning in computer

vision. In this section, we will describe some important computer vision datasets

relevant to this thesis.

2.1.1 ImageNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)[6] dataset is a su-

pervised image classification dataset with around 1.2 million labeled examples from

1000 classes. The ILSVRC dataset has served as an important benchmark for com-

puter vision algorithms. Prior work has shown that good classification accuracy

on ImageNet is correlated with transfer accuracy on downstream tasks[9]. It has

been shown that there are exceptions to this trend. Some adversarially robust Im-

ageNet models have higher transfer accuracy despite having lower performance on

ILSVRC[16]. Self-supervised models tend to perform worse on ILSVRC dataset, but

they tend to have higher transfer accuracies and do better on downstream tasks[12].

Some recent works have also addressed the quality of labelling within the ImageNet

dataset. Each image in the ImageNet dataset has a single label assigned through

Amazon Mechanical Turk workers. However, there exist multiple classes present in
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some ImageNet images, leading to ambiguity concerning the true label in the image.

In [2], reassessed labels (ReaL) are assigned to each image such that each image in the

ILSVRC dataset can have multiple labels. They found that state of the art ImageNet

models tend to perform well even in the presence of label ambiguity, which suggests

that these models tend to be good at memorizing label noise.

2.1.2 YFCC100M

YFCC100M[17] is a dataset of 100 million images collected from Flickr from 2004

until 2014. YFCC100M is an unlabelled dataset. Although there are no label annota-

tion for each image, some images in YFCC100M contain natural text titles, descrip-

tions, and tags. The presence of natural language titles and descriptions has made

YFCC100M a valuable resource for training multimodal models such as CLIP and

DALLE.

Due to the massive size of YFCC100M, most people do not work with the entirety

of YFCC100M. Some notable subsets of YFCC100M include:

• YFCC15M[15] - A subset of 15 million images in YFCC100M that contains

natural language titles and descriptions. This subset was used as part of an

internal OpenAI dataset to train CLIP and DALLE.

• FairFace[10] - A public dataset of around 100,000 images balanced across 7

race groups. All images are labelled with age, race, and gender information.

This subset is used to calibrate models across race, age, and gender groups.

• Country211[15] - A subset designed to evaluate a model’s performance on ge-

olocation. This subset was constructed from image-geotag pairs within YFCC100M.

2.2 CLIP

Supervised labels are expensive to collect. To avoid paying the price of labelling

images, some learning algorithms have been designed to take advantage of large unla-

belled datasets. CLIP[15] uses image-text pairs to jointly train an image encoder and
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a text encoder. During CLIP training, we assume that each image is most similar

to its corresponding caption and dissimilar to all other captions. CLIP enforces this

assumption through the InfoNCE[13] objective, which maximizes the cosine similarity

of image-caption pairs and minimizes the cosine similarity of the image with all other

captions in the training batch.

CLIP achieves state of the art results across a wide range of evaluation benchmarks

and image domains. CLIP’s training dataset is central to its success. OpenAI trained

CLIP using WIT, an internal dataset of 400 million image-caption pairs. Training on

smaller datasets causes a significant decrease in CLIP’s performance on downstream

tasks. CLIP can only achieve 62% accuracy on ImageNet after training exclusively

on YFCC15M, but it can achieve 73.3% accuracy after training on WIT using a

comparable architecture.

2.3 Dataset Deduplication

2.3.1 Dataset Deduplication in NLP

Previous works find that dataset duplication is highly prevalent in natural lan-

guage datasets, and removing exact and near-duplicates can improve the performance

of language models. [11] finds that train-test overlap is highly prevalent in language

datasets. Specifically, the authors deduplicate C4, a large dataset used to train T5

Text-to-Text Transformers. They discovered that 7.18% of tokens from the C4 train-

ing set are duplicated in the validation set through exact substring matching.

No negative consequences arose from deduplication, despite the reduction in the

size of the training corpus. In fact, the authors found that duplication leads to several

positive outcomes. Duplication causes the model to generate less diverse text. By

removing near-duplicates, the model emits 10 times fewer memorized sequences. In

addition, removing duplication causes the language model to generate better higher-

quality text. Model perplexity can decrease by up to 10% after removing duplicates.

This work uses methods that are specific to text processing, such as MinHash and
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substring matching. These techniques cannot be applied to images.

2.3.2 Deduplicating CLIP Dataset

Various previous works have attempted to deduplicate the CLIP training dataset

due to the large degree of known overlap between the CLIP training dataset and eval-

uation datasets. For instance, CLIP reports metrics on the Country211 geolocation

dataset, which has 20 percent overlap with the CLIP training dataset. Prior work

use the following strategies for deduplicating the CLIP dataset:

• In the CLIP paper[15], the authors use a self-supervised model to detect du-

plicates between the CLIP training set and various evaluation sets. The self-

supervised model is trained by aligning image representations under different

augmentations.

• In the LiT paper[19], the authors use a B/32 Vision Transformer pretrained on

the JFT300M dataset to perform deduplication.

Previous work show that YFCC-ImageNet validation duplicates do not signifi-

cantly affect CLIP training. In the CLIP paper, the authors compare the performance

of CLIP on various downstream tasks before and after deduplication. Even under the

presence of a 20 percent train-validation dataset overlap, the CLIP model trained on

a deduplicated dataset does not perform much worse than a CLIP model trained on

the original dataset. Similar results have also been observed by LiT.

2.3.3 Deduplicating Image Datasets

In addition to the techniques described in Section 2.3.2, several other works are

related to image deduplication.

• Embedding distance is commonly used to deduplicate datasets. As described

in [1], we can compute the distance between image embeddings to determine if

an image pair is a duplicate. If the embedding distance between an image pair

20



is less than a threshold value, this technique would flag the image pair to be a

potential duplicate.

• Near-duplicate detection is related to instance-level content-based image re-

trieval (CIR). Instance-level CIR is the task of searching in a large database

to find identical instances of objects present in the query image under various

conditions (ie illumination, cropping, different perspectives) [5]. Prior works

propose Siamese networks and manifold learning for this task.

• Identifying near-duplicates is related to copy detection. Various neural network

architectures have been developed to detect instances of copyright violation.

These models are trained to identify duplicates even when the duplicate has been

intentionally modified to evade detection. Examples of models that achieve state

of the art on copy detection evaluation datasets include DINO[4] and SEER[7].

2.4 Datamodels

Datamodels[8] can be used to understand the behavior of a model class in terms

of its training data. A datamodel is a function that predicts the outcome of training a

model on an arbitrary subset of the training data and evaluating the resulting model

on a fixed target. We can use datamodels for a wide range of tasks, including feature

representation, duplicate detection, and counterfactual identification. Datamodels

are estimated through the following procedure:

1. Randomly sample 𝑁 number of subsets 𝑆𝑖 from the training dataset. The size

of each subset 𝑆𝑖 depends on the parameter 𝛼 ∈ [0, 1]: |𝑆𝑖| = 𝛼 · |𝐷𝑇 |, where

𝐷𝑇 is the training dataset.

2. Train one model 𝑚𝑖 per subset 𝑆𝑖. After this step, there should be 𝑁 models.

3. Record the model output 𝑂𝑖,𝑗 = 𝑓(𝑚𝑖(𝑥)) for each example 𝑥𝑗 in the evaluation

dataset 𝐷𝐸. This results in an 𝑁 × |𝐷𝐸| array 𝑂 of predicted model outputs.
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4. For a particular training example 𝑗, train a datamodel 𝐷 that predicts model

𝑚𝑖 output 𝑂𝑖,𝑗 from 𝑆𝑖, the subset of the training dataset that was used to train

𝑚𝑖.

Datamodels can find more train-test duplicates than some existing methods. This

approach found a 10% train-test overlap between the CIFAR training dataset and

the CIFAR test dataset, significantly more than the 3% found through embedding

distances. Similarly, datamodels detected more duplicates in FMoW than through

the embedding distance method.
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Chapter 3

Design

We use datamodels to detect duplicates between the ImageNet validation set and

a filtered subset of YFCC15M. [8] uses datamodels to detect duplicates between the

the CIFAR validation dataset and the CIFAR training dataset. More specifically,

they use a linear datamodel 𝑔𝜃 to analyze the influences between training samples

and validation samples. By examining the learned 𝜃, we can determine the impact

of a training sample on a learned model’s prediction. If a training sample has a

large influence on a validation sample, then it is likely that there is a duplicate

of the validation sample on the training sample. We cannot use the same process

to detect duplicates between YFCC15M and the ImageNet validation set without

modifications. Since YFCC15M does not have labels, we cannot train a datamodel

to predict 𝑓𝐴(𝑥;𝑆𝑖), where 𝑓𝐴 is the correct class margin.

The next sections describe how we extend datamodels to analyze an unlabelled

dataset. Roughly, this process can be split into the following steps:

1. Training Models on the ImageNet validation dataset: 100,000 models

were trained on different random 50 percent subsets of the ImageNet validation

dataset.

2. Filtering Candidate YFCC15M Examples: Evaluating 100,000 models on

the entirety of YFCC15M is too slow and time-intensive. This evaluation would

have taken a few months, even assuming the availability of 16 V100 GPUs. In
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order make the evaluation process more efficient, we used 20 resnet18 models to

remove out-of-distribution samples from the YFCC15M dataset. In addition,

we assigned pseudolabels to the filtered samples.

3. Estimating Influences: We computed influences from the ImageNet valida-

tion dataset to YFCC15M using predictions from the 100,000 models on the

YFCC15M dataset. Using the influence values, we can estimate the importance

of each training example on the model prediction of YFCC15M. We expect that

high magnitude influence values correspond to potential duplicates.

3.1 Training Models

We wish to predict the influence of one example 𝑖 on another example 𝑗. Let 𝑖 be

any datapoint in 𝐷1, 𝑗 be any datapoint in 𝐷2, where 𝐷1 and 𝐷2 are two different

datasets. To measure the influence of training sample 𝑖 on validation sample 𝑗, we

can train models on many subsets {𝑆𝑛} of 𝐷1 and evaluate these models on 𝑗. Let

𝑆𝑖 = {𝑆𝑛 : 𝑖 ∈ 𝑆𝑛}. Let 𝑆𝑖 = {𝑆𝑛 : 𝑖 /∈ 𝑆𝑛}. Let 𝑓𝐴(𝑥, 𝑆𝑛) be the evaluation of some

validation point 𝑥 on a model trained on set 𝑆𝑛. If |𝜇𝑆𝑖
(𝑓𝐴(𝑗, 𝑆𝑛))−𝜇𝑆𝑖

(𝑓𝐴(𝑗, 𝑆𝑛))| is

large, then training example 𝑖 has a large influence on the prediction of example 𝑗.

In most cases, this relationship should be symmetric. Assume a training example 𝑖

is highly influential on the model’s evaluation on validation 𝑗. Then, sample 𝑗 should

also have high influences in training sample 𝑖, assuming that sample 𝑗 is part of the

training set and sample 𝑖 is part of the validation set. Thus, we have the option of

either training many models over subsets of the ImageNet validation set or training

models over subsets of YFCC15M. We decided on training models over subsets of

the ImageNet validation set because the YFCC15M is an unlabeled dataset; training

classification models over YFCC15M is impossible. In addition, YFCC15M is the

bigger dataset, and it would be faster to train models over YFCC15M.

During training, we randomly sampled 100,000 random 50 percent subsets of the

ImageNet validation dataset and trained 100,000 ResNet18 models on the random

50 percent subsets. Before training, we performed grid search the select the best
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Figure 3-1: Average ImageNet Model Confidences on YFCC Compared to ImageNet
Training Set

hyperparameters for training on the ImageNet validation set. The hyperparameters

we used can be found in Table A.1.

3.2 Filtering YFCC15M

Due to the massive size of YFCC15M, we decided to only examine samples in

YFCC15M that are likely to be duplicated in ImageNet. In order to perform this

filtering, we trained 20 resnet18 models on the entire ImageNet training dataset.

Then, recorded the output of each 20 resnet18 model on the YFCC15M dataset.

We calculated the average prediction of each resnet18 model on each YFCC15M

datapoint. Let 𝜇(𝑦) =
∑︀20

𝑖=1 𝑓𝑖(𝑦)/20, where 𝑓𝑖 is one of our resnet18 classifiers,

𝑦 ∈ 𝑌 is a YFCC15M image. We assign top 5 largest values of 𝜇(𝑦) as the model

confidence and record the top 5 largest classes in 𝜇(𝑦) for each 𝑦.

Ultimately, we decided to select the 10,000 samples with the largest average con-
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fidences for computing influences. This technique is commonly used in related work

in semi-supervised learning to remove out-of-distribution data[18, 14]. After manual

inspection of randomly selected subsets of the filtered data, we believe that the fil-

tered data can belong to ImageNet classes. Examining the confidence values 𝜇(𝑦)

also suggests that the filtered data belongs to ImageNet classes. Figure 3-1 shows

the distribution of model confidences 𝜇(𝑦) on YFCC15M compared to the ImageNet

training set. We observe that model confidences for the majority of YFCC15M im-

ages is less than 0.45, which suggests that the outliers with confidence values greater

than 0.45 belong to ImageNet classes. However, there exist many ImageNet training

samples on which the trained models have low confidence. There could exist many

duplicates in the remaining, unexamined portions of YFCC15M on which the trained

models predict lower average confidence.

3.3 Computing Influences

Using the 100,000 models trained on 50 percent of the ImageNet validation set

and evaluated on the filtered subset of YFCC15M, we can compute the influence of

examples from the ImageNet validation set on examples from YFCC15M. [8] shows

that calculating influences is a special form of datamodelling. Let 𝑖 be an example

from the ImageNet validation set. We can compute 𝑆𝑖 and 𝑆𝑖 by examining the

training set for each 50 percent ImageNet model. Then, we compute influences for

each data 𝑖 from the ImageNet validation set and 𝑗 from the YFCC15M filtered subset

through the following equation:

| 1

|𝑆𝑖|
∑︁
𝑆𝑛∈𝑆𝑖

𝑓𝐴(𝑗, 𝑆𝑛)−
1

|𝑆𝑖|

∑︁
𝑆𝑛∈𝑆𝑖

𝑓𝐴(𝑗, 𝑆𝑛)| (3.1)

We recorded influences for five different choices of 𝑓𝐴. Let 𝑝𝑖 be the ith largest

class index recorded after averaging the outputs of 20 ImageNet models from section

3.2. We let 𝑓𝐴𝑖
= 𝑜𝑝𝑖 , where 𝑜 are the logits of a trained model. We record the top 5

largest logit values and classes. We will refer to the top-k largest logit classes as the
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top-k pseudolabel. After computing influences, we ranked each ImageNet validation

image 𝑖 by the maximum influence over YFCC images 𝑗. We manually inspected the

top 300 ImageNet validation images by maximum influence on YFCC image to find

proposals for duplicates.

27



28



Chapter 4

Results

In this chapter, we compare the results of applying datamodels to duplicate detec-

tion to a baseline method that uses embedding distance. After applying the method

described in Section 3, we realized that both the baseline and datamodels propose

false positives and that manual review of candidates was necessary. We describe the

procedure we use to select duplicates for manual review in Section 4.1. In Section

4.2, we compare the performance of datamodels to a baseline method. We find that

datamodels do not significantly outperform the baseline method. We describe pro-

posals for improving the datamodels’ performance in detecting duplicates in Section

4.3.

4.1 Selecting Duplicate Candidates

We discovered many false positives when analyzing the top predictions from the

datamodels and the baseline method. Section 4.1.1 describes how false positives are

virtually indistinguishable from true duplicates using embedding distance or influ-

ence scores alone. The next section describes the methods we use to select the top

duplicates for review.

29



4.1.1 Challenges of Fully Automated Duplicate Detection

We encountered many false positives when examining the top image proposals

from the baseline method and the datamodel. It was quite difficult to distinguish be-

tween false positive proposals by examining influence values or embedding distances

alone. In Figure 4-1b and Figure 4-1a, we present histograms of the 100 highest influ-

ence values across YFCC images for an ImageNet image with an exact duplicate and a

histogram of the same values for an ImageNet image with no duplicate. The histogram

of influence values for these two images are virtually indistinguishable. Similarly, the

distribution of the distances to the 100 closest ImageNet embeddings is virtually in-

distinguishable between duplicated ImageNet examples and non-duplicated ImageNet

examples. Due to the similarity of influence values and embedding distance between

duplicates and false positives, we need to manually review duplicate proposals from

the datamodels and the baseline.

(a) Top Influences - No Duplicate (b) Top Influences - Duplicate

(c) Top Distances - No Duplicate (d) Top Distances - Duplicate

Figure 4-1: Top 100 Distance and influences for duplicate and non-duplicate image
pairs

4.1.2 Narrowing Duplicate Candidates

To minimize the number of candidates for manual review, we only inspected the

most promising duplicate proposals from the datamodels and the baseline method.

We use the following heuristic to select the most promising duplicate proposals from

the datamodels. We only manually reviewed duplicate proposals from the 300 Ima-

geNet images with the highest maximum influences on top-1 pseudolabel value across
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YFCC images. For each of these ImageNet images, we propose the 10 YFCC images

with the highest influence on top-1 pseudolabel value as potential duplicate candi-

dates. We originally examined images by their influence across all top-5 pseudolabel

values, but we found that duplicates usually occur between ImageNet images and the

YFCC images with largest influence on the top-1 pseudolabel value.

The baseline model proposes ImageNet-YFCC image pairs with the smallest Eu-

clidean distance between ImageNet-YFCC image embedding pairs as potential dupli-

cates. Similar to the datamodels approach, we manually review duplicate proposals

from the 300 ImageNet images with the smallest minimum embedding distance across

YFCC images. For each of these 300 ImageNet images, we inspect the 10 YFCC im-

ages with the smallest embedding distance to the ImageNet image for duplicates.

4.2 Detected Duplicates

In this section, we provide data on duplicates found by the embedding method and

the datamodels. We are interested in detecting both exact duplicates and near du-

plicates. Exact duplicate images are image pairs that are almost pixel-wise identical.

They could be detected by comparing the pixel-wise difference between an image pair

to a preset threshold. Near duplicates are duplicate images from the same scene, but

not necessarily from the same camera perspective or the under the same illumination,

lighting conditions, etc.

4.2.1 Duplicates found by both Datamodels and Baseline

In Figure 4-2a, we show the duplicates detected by both the datamodel and the

baseline model. Within the top 300 image proposals, we detect 14 exact duplicates.

Both the baseline method and datamodels are able to detect exact duplicates. How-

ever, the datamodels require more samples to detect the same duplicates. Table 4.1

shows that the top 14 image proposals from the baseline model are exact duplicates.

One must examine 144 duplicate proposals to detect exact the same duplicates using

the datamodel. This result suggests that the baseline model could be a better tool
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for detecting exact duplicates.

ImageNet
Index

Datamodel
Rank

Datamodel
Influence

Baseline
Rank

Embedding
Distance

34209 82 2.24 6 3.72
34787 50 2.58 9 5.29
35236 35 2.86 5 3.50
28100 4 4.24 1 2.60
38566 46 2.64 11 5.47
47687 58 2.45 3 3.12
49509 92 2.18 0 2.03
30571 1 4.97 13 7.35
25998 53 2.56 7 3.99
47667 61 2.44 8 4.18
26423 3 4.55 2 2.88
48568 73 2.28 10 5.43
24505 144 1.96 4 3.32
43899 87 2.20 12 6.55

Table 4.1: Relative rank for duplicates found by both datamodel and baseline

4.2.2 Duplicates only found through Baseline

The baseline was able to detect some near-duplicates that the datamodel was

unable to detect. In Figure 4-2b, we show the images that were only found by the

baseline. The baseline model is able to detect ImageNet duplicates with remarkably

few proposals. In Table 4.2, we show that 7/8 duplicates detected by only the baseline

were found after examining fewer than 100 samples.

ImageNet
Index

Datamodel
Rank

Datamodel
Influence

Baseline
Rank

Embedding
Distance

22727 8711 0.32 31 9.45
31882 6194 0.45 27 9.37
25004 694 1.26 82 10.20
32463 1088 1.08 18 8.69
26262 350 1.52 20 8.82
43895 4430 0.57 178 10.91
37180 4158 0.62 33 9.54

Table 4.2: Relative rank for duplicates found by only the baseline model
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(a) Both

(b) Baseline Only

(c) Datamodel Only

Figure 4-2: Duplicates found by each model type
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ImageNet Index Datamodel
Rank

Datamodel
Influence

Baseline
Rank

Embedding
Distance

5793 123 2.04 1986 13.73
2562 220 1.71 8016 16.33
26276 182 1.79 910 12.59
23812 270 1.62 1971 13.71
40612 230 1.69 545 11.99
37159 207 1.73 976 12.70
24413 75 2.27 3681 14.76
41648 212 1.72 4958 15.34
42929 15 3.72 1494 13.29
38621 173 1.85 717 12.29

Table 4.3: Relative rank for duplicates found by only the datamodel

4.2.3 Duplicates only found through Datamodels

10 duplicate pairs were only detected by the datamodel. In Figure 4-2c, we show

the image pairs that were only detected by the datamodel. In Table 4.3, we show the

ranks of the image pairs that were only detected by the datamodel. Interestingly, one

must examine over 200 duplicate proposals to find most of the near-duplicates only

detected by the datamodel. It is possible that the top proposals from the datamodel

do not typically contain near-duplicates, and that some near-duplicates are proposed

beyond the 300th proposal.

4.3 Additional Discussion

We were hoping to find more duplicates between the ImageNet training dataset

and YFCC. Datamodels were able to find many more duplicates between the CIFAR

and FMoW training and validation datasets than the baseline method. Encouraged

by these results, we also expected that the datamodel would perform better than

the baseline on the duplicate detection task. However, we found that the baseline

performs comparably to the datamodel duplicate detector. In addition, we believe

that there are not as many duplicates between YFCC100M and the ImageNet val-

idation dataset as we had previously suspected. We randomly select 300 ImageNet

images and examine the corresponding 10 YFCC images with the highest influence
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on top-1 pseudolabel value for each ImageNet image. We found no duplicates of the

300 randomly sampled ImageNet images, so we suspect that the overlap rate between

YFCC15M and ImageNet is relatively low. In the subsequent sections, we will discuss

potential explanations for why so few duplicates were detected between ImageNet and

YFCC and why our datamodel did not perform substantially better than the baseline.

4.3.1 Little Overlap between examined subset and ImageNet

Validation

There could inherently exist few duplicates between YFCC15M and the ImageNet

validation dataset. In 4-3a, we show the distribution of pseudolabels across the entire

YFCC15M dataset. Each ImageNet class is present at least once in the YFCC15M

pseudolabels. Some classes are better-represented than others. The most common

YFCC15M pseudolabel is “stage”, with 377948 images in the YFCC sharing this

pseudolabel. The least common YFCC15M pseudolabel is "Sealyham terrier", with

only 42 images. This is not a surprising outcome; we can expect that some ImageNet

classes are unlikely to be posted on Flickr, the source of all YFCC images. We could

easily expect that there are more images of stages, lakeshores, and movie theaters (the

most common YFCC pseudolabels) compared to Sealyhams, Dandie Dinmont terriers,

and Japanese spaniels (the least common pseudolabels). Because many ImageNet

classes are underrepresented in YFCC, we would expect fewer duplicates from these

classes.

In addition, the relatively poor performance of YFCC15M CLIP on ImageNet

could imply that there are very few duplicates between YFCC15M and the ImageNet

validation dataset. CLIP[15] has fairly low linear probe accuracy on the ImageNet

validation dataset when trained on only YFCC15M (not the entire OpenAI dataset).

A CLIP trained with YFCC15M only achieves around 60 percent linear probe accu-

racy and 30 percent zero-shot accuracy on the ImageNet validation dataset. It is fairly

straightforward to achieve higher accuracies on ImageNet validation dataset simply

by training a supervised model on the ImageNet training dataset. CLIP does not
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outperform the best semi-supervised models on ImageNet even when trained on the

entire OpenAI dataset. CLIP performs 3% worse on ImageNet compared Noisy Stu-

dent, a semi-supervised approach. There could exist more train-val duplicates in the

21 datasets where CLIP outperforms Noisy Student, such as Country211 (+22.7%),

StanfordCars (+15.9%), or GTSRB (+14.7%). However, it is also possible that Noisy

Student is overfitted to the ImageNet dataset.

(a) YFCC15M (b) Filtered 10k YFCC15M

Figure 4-3: Counts for each pseudolabel class by dataset

It is possible that our filtering process from Section 3.2 removed good candidates

for deduplication from the YFCC dataset. The class distribution in our filtered YFCC

subset is very skewed. Of the 1000 ImageNet classes, 521 classes are not represented

in the filtered subset’s pseudolabels. This could be due to the method that we used

to filter YFCC images. We selected images from YFCC that had the highest average

predicted confidence. Our filtered subset could be limited to images that are easier for

the trained ImageNet model to correctly classify. The ImageNet models that we used

for filtering could output lower confidences for more fine-grained ImageNet classes,

leading to their underrepresentation in the filtered YFCC subset. Figure 3-1 shows

that trained ImageNet models could output low confidence values even on images

present in their own training set. We could have even removed exact duplicates of

ImageNet validation images from YFCC15M while performing filtering.
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4.3.2 Suboptimal Tuning of Datamodel Hyperparameters

The hyperparameters we used for deduplicating YFCC15M and the ImageNet

validation dataset could have been non-optimal. Specifically, we suspect that we

used an incorrect 𝛼 value, a hyperparameter controlling the size of each subset 𝑆𝑖 on

which we train each ImageNet model. We believe that we should decrease 𝛼 and train

on smaller subsets 𝑆𝑖. Quantitatively, we observe that datamodels are most effective

at identifying near-duplicates of examples where the models struggle to make a correct

prediction, which is in line with our intuitions. More easy examples tend to have larger

data support in the subsampled sets 𝑆𝑖. We would then calculate lower influences

between individual images within the data support and a query evaluation image,

even if a duplicate exists. In Figure 4-4, we compare the probability that models

correctly classify exclusively datamodel-detected duplicate images and exclusively

baseline-detected duplicate images. We observe that models tend to have higher

average accuracies on exclusively baseline-detected examples. By decreasing 𝛼, we

can decrease the size of the data support for each evaluation image and perhaps

allow the datamodel to detect duplicates that only the baseline can currently detect.

Qualitatively, we observe that exclusively datamodel-detected duplicates indeed seem

more difficult to classify. There appear to be more copies of the exclusively baseline-

detected duplicates within the ImageNet validation dataset, implying that exclusively

baseline-detected duplicate images are easier to classify and enjoy larger data support.

The datamodel was able to identify duplicate pairs in Figure 4-6. There tend to be no

copies of successfully detected duplicates within the model training dataset. Figure

4-5 shows that the datamodel does not successfully detect duplicates when there

are multiple copies of the duplicate in the model training dataset. Decreasing 𝛼 in

turn decreases the probability that we sample a copy of a duplicate candidate while

selecting the model training subset 𝑆𝑖, hence increasing the influence of the duplicate.

We expect that the resulting datamodels would be more sensitive to individual

images in the training dataset if 𝛼 were reduced, but reducing 𝛼 comes with its own

risks. Insufficient training data could have negative implications for the ability of our

37



Datamodel Only Baseline Only
Duplicate Detection Method

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 C
or

re
ct

 P
re

di
ct

io
n 

by
 M

od
el

s

(a) Seen During Training

Datamodel Only Baseline Only
Duplicate Detection Method

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
of

 C
or

re
ct

 P
re

di
ct

io
n 

by
 M

od
el

s

(b) Unseen During Training

Figure 4-4: These figures show the probability that the trained models would correctly
classify near-duplicate images. The datamodel tends to detect duplicates among
samples that are more difficult for models to classify. The baseline tend to detect
duplicates among samples that are easier for models to classify.

datamodel to detect near-duplicates. In a low data regime, it is possible that the

trained ImageNet models would be unable to learn good features and exhibit high

variance behaviors that do not depend on the presence of particular images in their

training set. The calculated influence values from such ImageNet models would not

be useful for detecting near-duplicate pairs.

However, experimenting with different values of 𝛼 is computationally expensive.

The most time-intensive step of applying datamodels is the model training step;

experimenting with additional values of 𝛼 would force us to train thousands of more

models. Due to the difficulty of experimenting with 𝛼, datamodels could be a useful

tool to use in conjunction with a distance-based embedding approach because they

tend to find duplicates among different kinds of images. We can also attempt to reduce

the time necessary for training models by using pretrained feature extractors during

model training. This approach would decrease the amount of time necessary to train

models for datamodel estimation. In addition, we could then safely set 𝛼 to a low

value without sacrificing the quality of the learned feature representation. However,

this approach can lead to incorrect estimations of the true influence values since the

pretrained feature extractor would have been trained on a larger set of examples than

the model training set. We could also attempt to decrease the model’s sensitivity to

the 𝛼 parameter by deduplicating the model training set with itself before datamodel

training.

38



Figure 4-5: Highest ImageNet influencers for duplicates only detected by datamodel
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Figure 4-6: Highest ImageNet influencers for duplicates only detected by baseline
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(a) Seen During Training (b) Unseen During Training

Figure 4-7: Probability of Correctly Classifying Image Per ImageNet Validation Ex-
ample

Although most examples in the model training set are "difficult", we believe that

duplicates are more likely to be "easy" examples. We plot the probability of correctly

predicting labels for each image in the model training set in Figure 4-7a. The models

perform poorly on most of the examples not present in the training set as shown in

Figure 4-7b, which suggests that the datamodel could correctly identify more dupli-

cates than the baseline over the entire dataset. However, it is more likely that more

train-val near-duplicates exist where the model performs well. Some images are more

likely to be duplicated than others due to the nature of their contents. For instance,

it’s more likely for an image of a famous landmark to be duplicated than an image of

a common item. If such an example is duplicated between the training and evaluation

dataset, it is also more likely to be copied within the training dataset itself. Multiple

copies of the same image within the training dataset could lead to a higher probability

of correctly classifying the example, which in turn could lead the datamodel to be

less effective at identifying the duplicate.

4.3.3 Naïve Selection of Duplicate Detection Thresholds

We observed many more false positives in the datamodels’ top duplicate proposals

than in the baseline’s top proposals. This result may be due to the shortcomings of

max influence as a heuristic. We can quantitively explain why there are many false

positives in the datamodels’ top proposals by computing influence values from the
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training dataset to itself. From Figure 4-8c, we notice an overlap in the range of

influence values for duplicate and non-duplicate pairs in the training dataset.
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Figure 4-8: These figures show the value of
the influence function from each ImageNet
image to itself (an exact duplicate).

It is possible that there are many du-

plicated images within the model train-

ing dataset; this would cause an overes-

timate in the influence values between

non-duplicate pairs. Despite this pos-

sibility, there are still many images

from the model training dataset that

have very low self-influence values, which

makes these images difficult to distin-

guish from non-duplicated images by in-

fluence values alone. This overlap sug-

gests that the maximum influence value

over the evaluation set could be a bad

heuristic. Duplicates that have low self-

influence scores would be unlikely to be

proposed, even if they have a high degree

of similarity.

We could potentially decrease the

datamodels’ false positives by taking

self-influence scores into account when

choosing the top training images to

manually inspect. We note that self-

influence scores behave differently for

the most challenging ImageNet examples

compared to the easiest ImageNet exam-

ples. Figure 4-8a shows the self-influence values for the most difficult training ex-

amples, while 4-8b shows self-influence values for the easiest training examples. We

could try to dynamically set duplicate thresholds based on the difficulty of a par-
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ticular model training example. We should calibrate the influence values of each

training-validation pair with the training image’s self-influence value before ranking

the top training images by max influence across the evaluation set.

4.3.4 Subjectivity of Near-Duplicate Detection

We end this section with a discussion on the nature of duplicativeness. First,

duplicativeness can be subjective. Even different people can have different opinions

of whether or not a pair of images are near-duplicates. Experts in a particular object

domain can perhaps notice differences between pairs of images that an untrained eye

would not detect (e.g., two dogs of the same breed). Deciding if a pair of images are

near-duplicates or are just highly similar can cause disagreement even among people.

More importantly, human understanding of what makes two objects the same can

be extremely different from a machine learning model’s understanding. This difference

in understanding could be due to the way that neural networks come to understand

“sameness.” The neural networks used in this work only have an understanding of

"sameness" from training on various classification tasks. Humans have a much richer

understanding of what makes an image one of a kind. For this reason, near duplicates

as judged by humans could be irrelevant to how current models behave. Indeed, the

high number of false positives proposed by both the embedding-based method and

the datamodels indicate that near-duplicates do not contribute significantly more to

a model’s predictions compared other examples. Hence, duplicate examples may not

be the most useful datapoints on which to analyze these models—at the end of the

day, we mainly care about duplicates insofar as how they affect models.
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Chapter 5

Future Work and Conclusion

In this work, we use datamodels to find duplicates between YFCC15M and the

ImageNet validation set. We found that datamodels have the potential to be a useful

tool for dataset deduplication, but some additional modifications are likely to improve

their usefulness. Some notable results from this work include:

• Deduplicating Unlabelled Datasets with Datamodels - This is the first

work that uses datamodels to deduplicate an unlabelled dataset. We use predic-

tions from trained models to generate pseudolabels for the unlabelled dataset

and to filter examples that are unlikely to be duplicated. We train a datamodel

using these pseudolabels to detect duplicates.

• Concrete Data on YFCC-ImageNet Overlap - We present 31 instances of

duplication between YFCC and ImageNet along with their ImageNet identifiers

out of the 300 examples we examined. We do not believe that this result im-

plies a high degree of overlap between YFCC15M and the ImageNet validation

dataset; these 300 examples are the most likely candidates for duplication out

of the filtered subset we examined. Although this is a relatively insignificant

number in the context of the ImageNet and YFCC dataset size, these exam-

ples can be used to evaluate future deduplication attempts and to train future

models.

• Comparing Datamodels to Representation Baseline - We find that data-
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models do not significantly outperform the baseline. However, we believe that

datamodels can be improved by applying some modifications.

• Example Difficulty and Datamodel Duplicate Detection - We find that

the baseline can more easily find duplicates among easily-classified examples,

while the datamodels can find more duplicates among examples that are more

difficult to classify. This could imply that datamodels should be used in conjunc-

tion with feature representation models because they have different strengths.

• Analysis of Self-Influence Scores - We observe that self-influence scores can

take on a wide range of values, and they are not always greater than influence

scores between non-duplicates. We propose that duplicate proposals should be

calibrated against self-influence scores.

Some recommendation we have for future work include:

• Tuning of Datamodel Subsampling Parameter - We observed some in-

stances where the datamodel cannot detect duplicates due to the presence of

duplicates within the ImageNet validation dataset itself. We propose that eval-

uation datasets should be deduplicated before applying datamodels or that the

𝛼 parameter of the datamodel should be reduced for larger evaluation datasets.

• More Efficient Datamodel Estimation - We are unsure if this modification

will lead to good influence estimates. However, using pretrained backbones can

lead to faster model training, less compute requires, and less storage consump-

tion. Also, this modification will enable us to better examine the effects of

individual training examples.

• Quantifying the Impact of Data Deduplication for CLIP Models - It

is not well-understood how train-val duplication affects CLIP models. Prior

works indicate that train-val duplication does not affect CLIP performance on

downstream tasks. However, it is possible that duplication does play a role

in CLIP performance in ways that are currently not well-understood. Under-

standing if and how label leakage occurs in multimodal self-supervised learning
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could be an interesting line of work. It is also possible that the largest effects

of data deduplication could be observed in semi-supervised models, which are

trained on both labelled and unlabelled datasets. Prior work [2] show that

semi-supervised models perform well even in the presence of label ambiguity.

In addition, CLIP cannot outperform state of the art semi-supervised models

trained to maximize ImageNet validation accuracy.

• Deduplicating Additional Datasets - Machine learning practitioners usually

evaluate self-supervised models across a wide range of datasets. Self-supervised

models usually cannot outperform semi-supervised models on ImageNet, but

they can achieve better results across a wider range of tasks. There could be a

high degree of overlap between YFCC15M and these other evaluation datasets.

• Deduplication Within Training and Validation Sets - We discovered sev-

eral duplicates within the ImageNet validation set (see the first row of images

in Figure 4-5) and within YFCC15M. Although train-val duplication is well-

studied, we do not currently have a good understanding of how duplication

within training and validation sets affect model training.
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Appendix A

Supplement

A.1 Tables

In Table A.1, we show the hyperparameters used to train the models in this work.

Model
Type

LR Schedule
Type

Learning
Rate

LR Peak
Epoch

Epochs Momentum Weight
Decay

resnet18 cyclic 0.5 16 40 0.9 1e-3

Table A.1: Model Training Hyperparameters
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