
GRAND-assisted Optimal Modulation
by

Basak Ozaydin
B.S., Bilkent University (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 13, 2022
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Muriel Médard
Cecil H. Green Professor of Electrical Engineering and Computer

Science
Thesis Supervisor

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ken R. Duffy

Director, Hamilton Institute
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students



GRAND-assisted Optimal Modulation

by

Basak Ozaydin

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

For Gaussian channels with peak and average power constraints the optimal mod-
ulation (OM) schemes are known to have nonuniform probability distributions over
the signal points. An established way to obtain these distributions is assigning dif-
ferent number of bits to different constellation points. However, this method leads to
challenges in demodulation as if a symbol is identified falsely, due to the different bit
lengths of symbols, bit insertions or deletions may occur which may in return cause
error propagation. Hence, the difficulty of realizing the channel optimal distributions
on constellation signals impeded OM from becoming widely utilized in communica-
tion systems. In this thesis, we propose a practical system for OM that uses only
a simple padding scheme instead of the complex mechanisms in the current litera-
ture. A guess-based error correction demodulator lies at the core of the proposed
system. Together with the padding scheme of our choice, our novel light-weight vari-
ant of Guessing Random Additive Noise Decoding (GRAND) demodulator protects
the system against insertions and deletions. We display that with our approach an
overall gain of up to 2 dB in energy per bit over noise spectral density (𝐸𝑏/𝑁0) is
achievable compared to Quadrature Amplitude Modulation (QAM) with the same
number of points.
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Chapter 1

Introduction

In 1971, Smith proved that the optimal channel input of a scalar Gaussian channel

under peak and average power constraints is a set of discrete points and that the

optimal distribution over them can be determined through convex optimization [25].

Analogous results have since been established for other channels [27, 22, 13, 21, 5, 19,

17]. In the complex additive white Gaussian (CAWGN) channel with maximum and

average power restrictions, it has been proved that the constellation points in the

optimal channel input are discrete in amplitude and continuous in phase (DACP),

i.e. they form concentric circles around the origin [22]. Later, it was found that these

continuous sets of points can be discretized with negligible loss in performance [14].

Modulation schemes are divided into two classes depending on symbol locations

and the probability distribution of their use: uniform and non-uniform. For uniform

constellations if binary input data is uniform, each symbol is used equally likely.

Moreover, constellation points are symmetric when they are represented on the I-Q

plane. In non-uniform constellations, non-uniformity can arise in the frequency of

use of the signal points or in asymmetries in the locations of the constellation points

14



Figure 1-1: The constellation on the left is a 64-QAM constellation whereas the
constellation on the right is an optimal non-uniform 64-point constellation with the
same average signal power.

on the I-Q plane. Some of the most common schemes are uniform, including QAM

and Phase Shift Keying (PSK), as used in applications including 5G, LTE, and IEEE

802.11 [24]. Fig. 1-1 compares these two different constellation structures. Each of

these constellations consist of 64 points and the average energies of the signal points

in both of the constellations are the same. The probability of each signal point of the

nonuniform constellation on the right panel, which is obtained with the methodology

described in this thesis, is displayed with a heatmap, whereas the probability of

every signal in the 64-QAM constellation on the left panel is 1/64. With the optimal

channel input distributions of the CAWGN being nonuniform, studying the methods

to identify nonuniform constellations is a worthwhile endeavour. As such, the aim

of constellation shaping literature is to obtain enhanced power efficiency, which is

achieved by nonuniform constellations.

Methods for identifying improved constellations include dividing constellation

points into sublattices and using a binary error-correcting code on top of them

15



[6, 10, 11], or through varying the lengths of the bit sequences assigned to sym-

bols to approximate target symbol-use distributions [18, 28, 4, 3, 2]. When the latter

methods are used they are typically paired with an error correction code [28]. For

creating a variable length bit mapping, Huffman shaping is one technique that yields

dyadic approximations to the desired target symbol-use probability distribution. In

[18], it is shown that this method can get very close to the maximum possible shaping

gain of 1.53 dB for unbounded Gaussian channels. Despite the core ideas underlying

the design of optimal nonuniform constellations for peak-power constrained channels

being known, they are not widely deployed. This is due to practical problems in-

troduced by nonuniform distributions and the methods to identify them, which we

discuss next.

In contrast to QAM or PSK, where every symbol is mapped to a fixed number of

bits, the main challenge in using bit-symbol mappings of different lengths is that it

makes the demodulation vulnerable to insertion and deletion errors. Namely, when

using such varying length mappings if a symbol is demodulated as another symbol

which is mapped to less or more number of bits, the bit sequence corresponding to

the symbols that follows this false demodulation will experience a shift, resulting in

error propagation. Hence, some sort of protection in the form of an error correction

code needs to be employed in these systems. This results in a large computational

overhead. As for the nonuniform constellation design approach with sublattices, one

needs to design a suitable code that would yield the channel optimal distribution. In

the system that we are proposing with this thesis, we draw inspiration from the re-

cently introduced Guessing Random Additive Noise Decoding (GRAND) algorithm

to design a simple insertion-deletion detection and correction system with a consid-

erably small overhead.

By reflecting on the above-discussed previous works, we identify three main chal-
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lenges for practical OM systems:

A. Designing channel optimal constellations.

B. Constructing a transmitter that shape the probabilities of the transmitted signals

according to the optimal channel input design.

C. Devising a receiver that can handle the non-uniformly distributed received signals

in such a way that the SER gains that can be obtained via constellation shaping

are successfully translated to BER gains.

In this thesis, our contributions to address these challenges and to realize OM are as

follows:

I. We propose a new approximation for the cutting plane algorithm introduced in

[15] to facilitate the constellation design in channels with high signal-to-noise

(SNR) power ratio.

II. We introduce a greedy algorithm for quantizing the continuous energy levels of

the optimal channel input.

III. We build a padding scheme based on Huffman shaping to lower the total over-

head and system complexity.

IV. We introduce a new light-weight GRAND variant that corrects the length of

the transmitted message if an insertion or deletion event occurs.

The items I and II concern challenge A, padding scheme in item III is the change

we propose to the existing systems for challenge B and works as a facilitator for

item IV. In addition to this, the proposed padding scheme is not a function of

the data, resulting in faster and less complex operations than standard binary error

17



correction coding schemes. Most importantly, item IV is the novel approach we bring

to challenge C and it converts the insertion and deletion errors of the varying-length

constellation shaping methods into a mean of error correction. Translating the SER

gains to BER is the primary motivation and the contribution of this paper, as BER

is heavily affected from insertions and deletions. The novel scheme we introduce with

III and IV mainly focuses on this goal.

The rest of this thesis is organized as follows: In the remaining part of this

section, basic underlying concepts are discussed to provide background information

in conjunction with how these concepts are utilized. As for the layout of the rest of

the sections, we will follow the flow of a traditional communication system. First,

in chapter 2, we will elaborate on our approach to optimal constellation design and

discuss the design choices for items I and II in sections 2.1 and 2.2, respectively.

The transmitter side of the proposed communication system will be provided in

chapter 3. The modulator we propose builds upon the Huffman shaping approach

but follows different design choices in three main areas. To begin with, since Huff-

man shaping approximates a probability distribution that satisfies channel input

constraints, there are some optimal distributions where the dyadic approximation

obtained via Huffman shaping ends up violating this set of constraints. We discuss

how we address such violations in section 3.1. Commonly, the bit mappings for fixed-

length mapping constellations are chosen to reduce the possible number of bit errors

should a symbol be falsely demodulated. We extend this idea to the variable-length

mapping setting through a greedy algorithm in section 3.2. Last but not least, the

padding scheme that facilitates GRAND-assisted length correction is introduced in

section 3.3.

The novel receiver side that performs guess-based length corrections is presented

in chapter 4. Chapter 5 illustrates the gains that the proposed system can achieve

18



as well as provide insight into some interesting future work directions. Finally, we

give an overview of the proposed OM scheme and draw a roadmap for the future of

this study in chapter 6.

1.1 Notation and Channel Model

Before proceeding with an overview of the prerequisite topics for this thesis, providing

the notation that will be used throughout is essential. In line with the convention,

random variables are represented by uppercase letters, 𝑋; vectors are represented by

boldface lowercase letters, x; matrices are represented by boldface uppercase letters,

X; and sets are represented by italic uppercase letters, 𝒳 .

The channel of interest in our constellation and system design is the complex

Gaussian channel with average and peak power constraints on the input. Let X

and Y be the complex channel input and output respectively and N be a complex

Gaussian noise, i.e. 𝑁 ∼ 𝒩C(0, 𝑁0). Then the channel is modeled as

𝑌 = 𝑋 +𝑁, (1.1)

with 𝐸𝑓𝑋(𝑥)[𝑋
2] ≤ 𝜎2

𝑃 and |𝑋| ≤ 𝑀 , where 𝑀 is the peak power constraint and 𝜎2
𝑃

is the average power constraint. We will be denoting the set of all possible input

distributions of a channel that satisfies the stated average and peak power constraints

withℳ, i.e.,

ℳ = {𝑓𝑋(𝑥) : 𝐸𝑓𝑋(𝑥)[𝑋
2] ≤ 𝜎2

𝑃 , |𝑋| ≤𝑀}. (1.2)

N is independent from X and, distributed independent and identically with inde-

pendent in-phase and quadrature components. The capacity of this channel given

19



by:
𝐶 = max𝑓𝑋(𝑥)∈ℳ 𝐼(𝑋;𝑌 ) subject to

𝐸[𝑋2] ≤ 𝜎2
𝑃 , |𝑋| ≤𝑀

(1.3)

The complex Gaussian channel is the special case of the Rician channel whose channel

equation is given by 𝑌 = (𝑚 + 𝐴)𝑋 + 𝑁 where A and N are independent and

identically distributed complex Gaussian variables with 𝐸[|𝐴|2] = 𝛾2 and 𝐸[|𝑁 |2] =

𝑁0. According to [13], the conditional distribution of the channel output given the

channel input of a Rician channel is given by

𝑓𝑌 |𝑋(𝑦|𝑥) =
1

𝜋 (𝛾2|𝑥|2 +𝑁0)
exp

(︂
− |𝑦 −𝑚𝑥|2

(𝛾2|𝑥|2 +𝑁0)

)︂
. (1.4)

When A is a deterministic variable, i.e. 𝛾 = 0, and m=1, we obtain the complex

Gaussian channel. Then, the conditional distribution of the channel output given

the channel input is:

𝑓𝑌 |𝑋(𝑦|𝑥) =
1

𝜋𝑁0

exp

(︂
−|𝑦 − 𝑥|2

𝑁0

)︂
. (1.5)

Let 𝑋 = 𝐴𝑋𝑒
𝑗𝜃 and 𝑌 = 𝐴𝑌 𝑒

𝑗𝜂. From (1.5), one can readily obtain the conditional

distribution of 𝐴𝑌 given 𝐴𝑋 [22]:

𝑓𝐴𝑌 |𝐴𝑋
(𝑎𝑌 |𝑎𝑋) = exp

(︂
−(𝑎2𝑌 + 𝑎2𝑋)

𝑁0

)︂
𝐼0

(︂
2𝑎𝑌 𝑎𝑋
𝑁0

)︂
, (1.6)

where 𝐼0(𝑥) is the modified Bessel function of the first kind and of 0th order. When

the order of the modified Bessel function is an integer, as the case in (1.6), it is

expressed as:

𝐼𝑛(𝑧) =
1

𝜋

∫︁ 𝜋

0

𝑒𝑧 cos 𝜃 cos(𝑛𝜃)𝑑𝜃 [1]. (1.7)
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As a result of this, 𝐼𝑛(𝑧) is a monotonously increasing function and the following

lemma provides how fast it increases asymptotically [1].

Lemma 1.1.1. For large |𝑧| and 𝛼 = 4𝑛2,

𝐼𝑛(𝑧) =
𝑒𝑧√
2𝜋𝑧

(︂
1− 𝛼− 1

8𝑧
+𝑂

(︀
𝑧−2
)︀)︂

. (1.8)

This asymptotic behaviour is useful in making numerical approximations and per-

forming some simplifications when we are designing close-to-optimal constellations

at SNR regimes of engineering interest, which will be detailed in section 2.1.

1.2 Background Information

A conventional communication system consists of three blocks; transmitter, channel

and the receiver. The transmitter usually contain three blocks; source encoder,

channel encoder, modulator. The receiver, which is the counterpart of the transmitter

has demodulator, channel decoder and source decoder blocks, respectively. In this

section, we will provide an overview of these conventional blocks of communication

systems together with the related assumptions and relations used in this work to

provide a background for the reader.

1.2.1 Source Encoding

The output of an information source is a random variable, 𝑆. If 𝑆 is discrete random

variable, then the source is referred to as discrete. On the other hand, if 𝑆 is con-

tinuous, then the source is an analog one. In discrete sources 𝑆 is chosen randomly
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from an alphabet 𝒮 = {𝑠1, . . . , 𝑠𝐾} according to a certain probability mass function

(pmf):

𝑃 (𝑆 = 𝑠𝑘) = 𝑝𝑘 1 ≤ 𝑘 ≤ 𝐾, (1.9)

where 𝑝𝑘 is a valid pmf. A source code is a mapping from 𝒮 to a set of finite symbol

strings 𝒜 coming from a 𝐴-ary alphabet [7]. The length of symbols strings in 𝒜 may

vary. From here on, we will considering the binary alphabet, i.e. 𝐴 = 2. One of

the goals of source encoding is compressing the sequence generated by the source to

increase transmission efficiency. The following theorem states how much a string of

symbols can be compressed without considerable loss of information:

Theorem 1.2.1. (Strong law of large numbers for incompressible sequences [7]) If

a string 𝑥1𝑥2 . . . is incompressible, it satisfies the law of large numbers in the sense

that
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 →
1

2
(1.10)

Hence the proportion of 0s and 1s in any incompressible string are almost equal.

According to Theorem 1.2.1, uniform bit sequences are incompressible. As a re-

sult, source encoding results in an almost uniform distribution. Therefore, assuming

that the output of the source encoder is a uniformly distributed bit sequence is a com-

mon assumption in the existing literature, particularly in works related to Huffman

shaping [18, 4]. Hence, while designing the modulator we will assume that the input

bit sequence of the modulator is uniformly distributed and each bit independent from

other bits, in line with the convention.
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1.2.2 Guess-Based Decoding

In this section we will focus on the recently introduced maximum-likelihood decoding

scheme GRAND, as the length correction mechanism we introduce in this thesis

follows a guess-based approach and is inspired by GRAND, hence it is vital to have

an insight on GRAND for the demodulator proposed in this system.

Channel encoder divides the output of the source encoder into sequences of 𝑘 bit

each and maps these 𝑘 bits to 𝑛-bit sequences, i.e. 𝑓 : F𝑘
2 → F𝑛

2 where F2 is the

binary field. Each 𝑛-bit sequence is referred to as a codeword and the collection of

all the codewords is called codebook. In his seminal work, Shannon envisioned using

a random channel code and a maximum likelihood decoder and proved that random

codes are capacity achieving [23]. However, in traditional communication systems

random codes cannot be used as there had been no universal maximum likelihood

decoder due to its complexity. Rather than using random codes and maximum

likelihood decoders, in practice, codes with certain structures and decoders that are

adjusted for the particular choice of code are used.

The recently introduced decoding scheme GRAND is a practical universal max-

imum likelihood decoder and it can be used with any kind of code as long as it is

provided with a method to check whether a bit sequence is in the codebook or not.

The main idea behind GRAND and its variants is guessing the additive noise that

the channel applies on the transmitted sequence. First, we will discuss GRAND and

then we will briefly elaborate on its ORBGRAND variant, which was our inspiration

in the design of the demodulator presented in section 4. To perform the guessing

operation, GRAND orders possible noise effect sequences from the most likely to the

least likely. Starting from the most likely one, it removes the noise effect sequences

from the received bit sequence and checks whether the remaining binary string is a
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member of the codebook. The first codeword that one reaches with this method is

the maximum likelihood decoding.

Algorithm 1: ORBGRAND [8]
Input: C: code membership function

T: query threshold
𝑦𝑛: demodulated bits
𝑟𝑛:order of bit reliabilities

Result: 𝑐*,𝑛: decoded codeword
d: flag to indicate that a decoding is found
q: number of iterations until a decoding is found

Initialization: q←0, d ← 0;
while 𝑞 < 𝑇 do

𝑧𝑛 ←
Next most likely noise sequence assuming that greater bit position = greater reliability
𝑧𝑛𝑟 ← Permutation of 𝑧𝑛 according to r
𝑞 ← 𝑞 + 1
if 𝐶(𝑦𝑛 ⊖ 𝑧𝑛𝑟 ) == 1 then

𝑐*,𝑛 ← 𝑦𝑛 ⊖ 𝑧𝑛𝑟
𝑑← 1
return

end
end

ORBGRAND is a GRAND variant which uses soft information by calculating the

reliability of each received bit. The noise effect sequences are generated by assuming

that the first bit is the least reliable bit position and as the bit position increases, the

reliabilities the bits increase. Starting from the first generated noise effect sequence,

the queried noise effect sequence is permuted according to the bit reliability order.

The permuted bit sequence is removed from the hard demodulated signal. Using the

codebook membership function of the code, whether the resulting bit sequence is in

the codebook or not is checked. The first codeword found this way is the output of

the decoder. Alg. 1 gives an outline of ORBGRAND.
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In this thesis, we will be introducing a light-weight GRAND variant that con-

siders noise effects on symbol-level and corrects one symbol error in an attempt to

correct length changes that occur due to insertions and deletions, while doing so, the

demodulator utilizes soft information through calculating reliabilities of the symbols.

1.2.3 Modulation and Constellation Shaping

Modulation is the process of mapping bit sequences to a set of waveforms, 𝒮 =

{𝑠𝑚(𝑡), 𝑡 = 1, 2, . . . ,𝑀}, that can be transmitted across the channel [20]. 𝑠𝑚(𝑡)

for 𝑚 = 1, 2, . . . ,𝑀 can possibly be a set of scalar signals or a set of complex

signals. When 𝒮 is a set of complex signals, the signals within this set can be easily

represented in a vector form by using

𝑠𝑖(𝑡) =

√︃
2

𝜀𝑔
𝑔(𝑡)𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡) and 𝑠𝑞(𝑡) =

√︃
2

𝜀𝑔
𝑔(𝑡)𝑠𝑖𝑛(2𝜋𝑓𝑐𝑡), (1.11)

as the basis of the signal space spanned by 𝒮 where 𝜀𝑔 is the energy of the signal

g(t). In such a case, for all 𝑚 = 1, 2, . . . ,𝑀 , 𝑠𝑚(𝑡) corresponds to vector with

2 components; sm =

⎡⎣𝑠𝑖𝑚
𝑠𝑞𝑚

⎤⎦. 𝑠𝑖𝑚 and 𝑠𝑞𝑚 are referred to as the in-phase and the

quadrature components. Every sm, therefore represents a point on the I-Q plane

whose coordinates are (𝑠𝑖𝑚, 𝑠
𝑞
𝑚). The set of points, {sm|𝑚 = 1, 2, . . . ,𝑀} is called

the modulation constellation.

As previously mentioned, the nonuniformity within a constellation can be achieved

through the probability distribution over the constellation points and/or the locations

of constellation points. Correspondingly, there are two approaches in constellation

shaping; geometric shaping strives for nonuniform signal intervals, i.e. by modifying

points of the constellation, sm, whereas probabilistic shaping matches the distribu-
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tion of the constellation to a particular nonuniform distribution, i.e. it modifies the

frequency of use of constellation points sm.

In this thesis, we perform both geometric shaping and probabilistic shaping; the

locations of the channel optimal modulation schemes turn out to be non-symmetric

with respect to the axis due the quantization step that the optimal DACP distribu-

tions go through. In addition to this, the quantization of the DACP distributions

yield a nonuniform probability distribution over the constellation points, hence prob-

abilistic shaping is also required to realize these distributions over the geometrically

shaped constellations. We will focus on Huffman shaping mentioned in [18, 28], for

shaping constellations probabilistically.

The premise of Huffman shaping is simple and it relies on reversing Huffman

coding. Huffman coding is a source coding algorithm that produces an optimal

code according to the following procedure [12]: Let 𝒮 be the alphabet that will

be encoded and consider each element of 𝒮 as the leaf nodes of a binary code tree.

Huffman algorithm arranges each symbol from the most likely to the least likely, then

chooses the last two in this list and creates a new internal node whose probability

is the sum of the probabilities of these two least probable nodes. These three nodes

are connected to each other such that the new one is the parent of the other two.

The two old nodes are removed from the nodes list and the new node is added to

it. In the next iteration, again the nodes with the smallest probabilities are chosen

from the list and connected to a parent node as described. This processes is repeated

until only one node remains in the list, and this last-standing node becomes the root

of the binary code tree. By assigning the branches “0” and “1”, one can obtain the

optimal code for the given discrete distribution. Alg. 2 describes this procedure, and

Fig. 1-2 provides a code tree built using the Huffman algorithm.

Huffman coding assembles the Huffman tree according to the above-given pro-
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Algorithm 2: Huffman Tree Generation
Input: X: alphabet of possible symbols

P: vector of probabilities corresponding to the symbols in X
Result: Huffman tree: a binary tree in which each branch represents a bit
Initialization: Create nodes for each symbol with their corresponding
probabilities

Enumerate each node and place the nodes into an array
repeat

i) Find the 2 nodes with smallest probability and remove them from the
list

ii) Create a new parent node with probability equal to the sum of the 2
chosen nodes

iii) Add the new node to the list, set this new node as the parent of the 2
nodes

until Until a single node remains ;

cedure and then it matches symbols with bit sequences by reading the bits on the

branches. For instance, after building the tree in Fig. 1-2, symbol number 3 is

mapped to the bit sequence “10”, and symbol number 5 is mapped to “0010”. This

method yields a 1-1 mapping between the symbols and the bit sequences. Huffman

shaping reverses this mapping, namely instead of assigning bit sequences to symbols,

it assigns signals to bit sequences entering the modulator. After having grown the

binary code tree, the binary input of the modulator is followed through the branches

of the Huffman tree to decide what symbols correspond to the received input bit

sequence. Tracking the bits along branches leads to a leaf node. When a leaf node is

reached, the symbol corresponding to that particular node is transmitted, and then

to map the remaining bits, the procedure returns back to the root of the tree and

again follows bits until reaching a leaf. This process terminates when there is no

longer any bits that need to be mapped to symbols.

In this work, we chose to model the bit sequence coming to the modulator as a
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fixed number, i.e. the message lengths are fixed. Consider the tree in Fig. 1-2 and

suppose that from the channel encoder, the bit sequence “10011101” has arrived at

the modulator. Starting from the root node, node number 31, we follow the bits on

the branches. The first received bit is 1, advancing along the branch that represents

1, we arrive at node 29. Carrying on in this way, we see that after the first 2 bits,

we end up at symbol 3. Hence, the first symbol that the transmitter sends is symbol

3. The first bit after we arrive at the leaf corresponding to the third symbol is 0.

This time starting from node 31, we move along branch 0 to arrive at node 30. The

substring “0111” leads us to symbol 1. So, after 3, we transmit 1. The remaining

substring after attaining two symbols is “01”. From Fig. 1-2, one can see that this

last bit sequence does not reach any of the leaves. Thus, the algorithm to map bit

sequences to symbols needs one more adjustment. This topic will be covered with

the padding scheme that will be presented in section 3.3.

This method yields the dyadic approximation of the optimal distribution. We

assume that the message bits are independent and identically distributed and each

bit is 0 with probability 1/2 and 1 with probability 1/2, as we previously discussed in

the source encoding section. So, when moving along the branches towards the leaves,

each branch adds a factor of 1/2 to the probability of the arrived leaf node. As an

example, consider Fig. 1-2; in the final distribution 𝑝𝑋(2) = 1/4 and 𝑝𝑋(16) = 1/128,

as the distances of the leaf nodes corresponding to these symbols from the root are

2 and 7 respectively.

One drawback of this method for obtaining nonuniform constellations is the fact

that there may be insertions and deletions and hence, bit errors may propagate

after a false demodulation. Some padding schemes were previously studied such

as the padding scheme proposed by Ungerboeck that relies on synchronization and

pointers [28] and is as illustrated as in Fig.1-3. However, we observed that with an
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Figure 1-2: A Toy Huffman Tree

average of 3.5 overhead bits, the padding scheme that we propose in this thesis is

significantly more efficient. In Ungerboeck’s padding scheme symbols are transmitted

in groups of 𝑁𝑠 symbols and each 𝑁𝑠-symbol frame is assigned to a 𝑁𝑏-bit information

frame. At the beginning of each symbol frame, there are overhead bits reserved to

synchronization and a pointer. Frames may contain bits belonging to the information

frames of the previous symbol frames due to the variable-length mappings of Huffman

shaping. Thus, pointer field of a symbol frame points to the location of the beginning

of the bit frame associated with that particular symbol frame. With one bit being

reserved to synchronization, for Ungerboeck’s padding scheme to be more efficient
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Figure 1-3: An illustration for Ungerboeck’s padding scheme. The S&P field stores
the synchronization bit and the pointer to the beginning of the information frame
assigned to the particular symbol frame.

than the one we propose, the pointer field should consist of at most 2 bits. A 2-

bit pointer field can only point to positions that are at most 4 bits away from the

pointer field. However, as an example, in the optimal 128-point constellation that we

obtained, the average length of bit mappings of constellation symbols is �̄� = 6.3264.

This means that the choices of pointer field sizes that will make Ungerboeck’s padding

scheme more efficient than ours cannot even correct single symbol shifts between

symbol frames.
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Chapter 2

Constellation Design

There are two separate optimization problems when constructing the close-to-optimal

constellations. The first problem, which we consider in section 2.1 is finding the prob-

ability distribution of the amplitudes. A key result of [15] is that an optimal channel

input distribution, 𝑓𝑋(𝑥), is a distribution where the values 𝐴𝑋 or, equivalently, the

energy levels, are in a discrete set, 𝒜, while the phases are uniformly distributed.

Solving the first problem yields a DACP distribution. The second problem, which we

consider in section 2.2, is determining the number and the phases of the quantized

points that should be used to represent each of the amplitudes in the first problem

in order to yield a discrete constellation. For the first task, we will use a modified

version of the cutting plane algorithm introduced in [15]. Our modification arises

from a numerical instability we observed when the algorithm is used in high SNRs

and relies on an approximation of the channel sensitivity function of the CAWGN

channel, which is defined in the upcoming section. For the second task, we use a

method in [14] to determine the number of quantization points that we should use

for each energy level. In order to determine the phases of the constellation points on
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each energy level, we introduce a greedy optimization algorithm that aims increasing

the smallest distance between two points in consecutive energy levels.

2.1 Approximation to the Cutting Plane Algorithm

Algorithm 3: Cutting Plane Algorithm for Determining Optimal Channel
Input Distribution [15]
Input: X: Alphabet of possible symbols

ℳ: Set of possible channel input distributions
Result: Optimal channel input distribution over X
Initialization: Take an arbitrary input distribution, 𝑓𝑋0 ∈ℳ;
repeat

i) Find the piecewise-linear approximation of the mutual information:

𝐼𝑛(𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥)) = min

0≤1<𝑛
𝐸𝑓𝑋(𝑥) [𝑔 (𝑓𝑋(𝑥), 𝑓𝑋𝑖

(𝑥))] , 𝑓𝑋(𝑥) ∈ℳ. (2.1)

ii) Find the next distribution:

𝑓𝑋𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝐼𝑛(𝜇)} (2.2)

until the input distribution converges ;

A cutting plane algorithm, which is as presented in Alg. 3, to optimize the prob-

ability distribution over a fixed set of energy levels, 𝒜, was previously proposed

[15] and shown to converge considerably more quickly than the Blahut-Arimoto al-

gorithm. We provide a brief overview of that algorithm as applied to our setting.

Reference [15] solves the maximization for channel capacity by a cutting plane algo-

rithm that, instead of seeking directly the mutual information maximizing distribu-

tion 𝑓𝑋(𝑥), uses a sequence of increasingly tight relaxations, using approximations

of the mutual information.
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We define the channel sensitivity function 𝑔 (𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥)) as follows

𝑔 (𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥)) = 𝐷

(︁
𝑓𝑌𝑓𝑋 (𝑥)

(𝑦)||𝑓𝑌𝑓𝑋𝑖
(𝑥)
(𝑦)
)︁
, (2.3)

where 𝐷(.||.) is the notation for the Kullback-Leibler divergence and 𝑓𝑌𝑓𝑋 (𝑥)
(𝑦) is the

distribution of the output 𝑌 when the input distribution is 𝑓𝑋(𝑥). We begin from

an initializing input distribution 𝑓𝑋0(𝑥) ∈ ℳ. At each iteration 𝑛 of the algorithm

we solve the following approximation to 𝐼(𝑋;𝑌 )

𝐼𝑛(𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥))

= min
0≤1<𝑛

𝐸𝑓𝑋(𝑥) [𝑔 (𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥))] , 𝑓𝑋(𝑥) ∈ℳ. (2.4)

One can readily verify that 𝐼𝑛(𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥)) ≥ 𝐼(𝑋;𝑌 ). Each iteration of the

algorithm can be expressed as

max 𝑐

𝑠.𝑡. 𝐸𝑓𝑥(𝑥) [𝐼𝑛(𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥))] ≥ 𝑐,

0 ≤ 𝑖 < 𝑛,

𝑓𝑋(𝑥) ∈ℳ. (2.5)

A key feature of the above optimization, proven in [15], is that we can restrict

ourselves to a discrete subset of distributions in ℳ so that the above optimization

is finite-dimensional The procedure to use this algorithm with CAWGN channel is

explained in [15].

We apply an essential modification to the procedure of [15]. As 𝑁0 decreases, the

exponential term in 𝑓𝐴𝑌 |𝐴𝑋
(𝑎𝑌 |𝑎𝑋), plummets whereas the modified Bessel function
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of the first kind increases steeply in (1.6), resulting in numerical issues for high SNR

designs. To resolve this issue, we propose using the approximation in 1.1.1. Using this

lemma, 𝐼0(𝑧) is replaced with 𝑒𝑧/
√
2𝜋𝑧. This provides simplifications when solving

(2.5), and removes a numerical indeterminacy in the calculation of 𝑔 (𝑓𝑋(𝑥), 𝑓𝑋𝑖
(𝑥))

and the steps for this approximation are provided below:

log

⎛⎝ 𝑒
−|𝑦−𝑥|2

𝑁0∑︀|𝑀|
𝑖=1 𝑝𝒜(𝑎𝑖)𝑒

−|𝑦|2−𝑎2
𝑖

𝑁0 𝐼0
(︁

2|𝑦|𝑎𝑖
𝑁0

)︁
⎞⎠ ≈ log

⎛⎜⎝ 𝑒
−|𝑦−𝑥|2

𝑁0∑︀|𝑀|
𝑖=1 𝑝𝒜(𝑎𝑖)𝑒

−|𝑦|2−𝑎2
𝑖

𝑁0 𝑒
2|𝑦|𝑎𝑖
𝑁0 1√

4𝜋|𝑦|𝑎𝑖/𝑁0

⎞⎟⎠
= log

⎛⎝ 1∑︀|𝑀|
𝑖=1 𝑏𝑖(𝑦,𝑁0)𝑒

−|𝑦|2−𝑎2
𝑖

𝑁0
+

|𝑦−𝑥|2
𝑁0

+
2|𝑦|𝑎𝑖)

𝑁0

⎞⎠
= − log

(︂∑︀|𝑀 |
𝑖=1 𝑏𝑖(𝑦,𝑁0)𝑒

−|𝑦|2−𝑎2𝑖
𝑁0

+
|𝑦−𝑥|2

𝑁0
+

2|𝑦|𝑎𝑖
𝑁0

)︂
= − log

(︂∑︀|𝑀 |
𝑖=1 𝑒

ln(𝑏𝑖(𝑦,𝑁0))𝑒
−|𝑦|2−𝑎2𝑖

𝑁0
+

|𝑦−𝑥|2
𝑁0

+
2|𝑦|𝑎𝑖
𝑁0

)︂
= − log

(︃∑︀|𝑀 |
𝑖=1 𝑒

(︂
ln(𝑏𝑖(𝑦,𝑁0))+

−|𝑦|2−𝑎2𝑖
𝑁0

+
|𝑦−𝑥|2

𝑁0
+

2|𝑦|𝑎𝑖
𝑁0

)︂)︃
= −max𝑘 {𝑣𝑘(𝑦,𝑁0)} − log

(︁∑︀|𝑀 |
𝑖=1 𝑒

𝑣𝑖(𝑦,𝑁0)−max𝑘{𝑣𝑘(𝑦,𝑁0)}
)︁

≈ −max𝑘 {𝑣𝑘(𝑦,𝑁0)} ,
(2.6)

with 𝑎𝑖 being the ith element of the set of energy levels, 𝒜; 𝑏𝑖(𝑦,𝑁0) =
𝑝𝒜(𝑎𝑖)√
4𝜋|𝑦|𝑎𝑖/𝑁0

;

𝑣𝑘(𝑦,𝑁0) = ln(𝑏𝑘(𝑦,𝑁0)) +
−|𝑦|2−𝑎2𝑘

𝑁0
+ |𝑦−𝑥|2

𝑁0
+ 2|𝑦|𝑎𝑘

𝑁0
; and 𝑝𝒜(𝑎𝑖) =

∫︀
|𝑥|=𝑎𝑖

𝑓𝑋(𝑥). This

final result is utilized when calculating the logarithmic expression coming from the

Kullback-Leibler divergence in the channel sensitivity function given in (2.3).

35



2.2 Greedy Quantization

The cutting plane algorithm in the previous section yields a continuous input distri-

bution, which is not a realizable as a channel input distribution due to its continuous

nature, hence these continuous energy levels need to be quantized to obtain applica-

ble constellations. It is known that when quantizing these continuous energy levels,

the probabilities of points on the same energy level are the same, since the phase

information is not preserved over the channel transmission and moreover the arcs

between consecutive constellation points on the same energy level are equal in length

[14]. Reference [14] proposes three different rules to elect the number of points each

ring need to have for the loss of quantization to be small. Among these three rules,

the best performing quantization methods suggests using at least 𝑘𝑎 number of points

for energy level 𝑎 ∈ 𝒜, with 𝑘𝑎 being equal to:

𝑘𝑎 =

⌊︃
3
√︀
𝑎2𝑝𝒜(𝑎)∑︀

�̄�∈𝒜
3
√︀
�̄�2𝑝𝒜(�̄�)

𝐾

⌋︃
, (2.7)

where K is the total number of points we want to have in the constellation, and

𝑝𝒜(𝑎) =
∫︀
|𝑥|=𝑎

𝑓𝑋(𝑥)𝑑𝑥. Due to the flooring operation, some constellation sizes can-

not be achieved for some distributions. In such a case, one can consider the constel-

lation with the smallest number of points that has more than K points in total. The

probability of every point on the energy level a is 𝑝𝒜(𝑎)
𝑘𝑎

. Since constellation points

divide an energy level into arcs of same length, the degree that sees one such arc on

energy level a is given by:

∆𝜃𝑎 =
2𝜋

𝑘𝑎
. (2.8)

To specify a point on the coordinate plane, not only its distance from the origin

but also the angle it makes with the x-axis is needed. Hence, the exact phases of
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constellation points need to be identified to describe a constellation. For this purpose

we devised a greedy optimization algorithm. This algorithm works as follows: the

points on the first energy level are placed starting from the x-axis with intervals

of degree ∆𝜃𝑎. The points on the second energy level are initially placed starting

from the x-axis just as the innermost level but than rotated in such a way that the

smallest distance between a point in the first level and a point in the second level

is maximized. After fixing the angle of rotation for the second energy level, the

third energy level is placed starting from the x-axis and then rotated to increase the

minimum distance between the second level and the third. This process goes on until

all the energy levels are placed and possibly rotated.

Figure 2-1: An example 128-point constellation design.
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An example constellation design using the described method is presented in Fig. 2-

1. In order to obtain this constellation, the following parameters are used with this

modified cutting plane algorithm,

𝒜 = {𝑥| 𝑥 = 0.6 𝑘, 𝑘 = 0, . . . , 10} (2.9)

The constellation design is made for 𝑁0 = 0.01. In the design procedure, the average

channel input power constraint is set as 𝜎2
𝑃 = 4. The choice of 𝜎2

𝑃 = 4 is the same as

the parameter used in [15] but the overall design SNR is chosen to be higher than the

constellations presented there by taking 𝑁0 = 0.01. The reason for this higher SNR

choice is to target the SNR values of engineering interest where the bit error rate

of 128-QAM is around 10−4 in the design. In the results presented in the upcoming

sections, we show that the proposed constellation design technique is robust and the

constellations designed for 𝑁0 = 0.01 perform well at lower SNRs. The 64-point

constellation design is presented on the right panel of Fig.1-1. In Appendix A, 256-

point constellation design together with the parameters to obtain the 64-point and

256-point constellations are presented.
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Chapter 3

Modulator Design

Once the OM constellations are designed, the output bits of the channel encoder

need to be mapped to the constellation points such that each symbol occurs accord-

ing to the probabilities in the constellation design. The mapping function should

take the channel modulator input distribution and convert it to the distribution

of the constellation points. To perform this mapping, we chose using the Huffman

shaping method, which is described in the introduction. However directly using Huff-

man shaping on its own may end up violating the average power constraint we had

when designing the constellation since it changes the probabilities of the constellation

points to their dyadic approximation. Moreover, fixed length mappings can utilize

Gray code to decrease the number of bit errors as it reduces the Hamming distance

between the bit mappings of two signals close to one another in the I-Q plane. Last

but not least as discussed in the introduction, when using Huffman shaping with

fixed message lengths, which is a design choice we adopt in our system, one may end

up at a non-leaf node of the binary Huffman code tree. In this section, we provide

our solutions to these challenges.
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3.1 Power Normalization

The channel model of interest had two constraints on the input and thus the valid

channel input distributions are expressed by (1.2). Discretization and assigning the

approximate dyadic distribution does not violate the peak power constraint as the

energy levels remain unchanged from this operation. However, the average power

constraint may be violated due to the changes in the probabilities of the signal

points. Define 𝑝𝑖 as the probability of symbol 𝑖, s𝑖, after applying the Huffman

shaping on the designed constellation. The average power of a constellation of 𝑀

symbols after the Huffman shaping is equal to:

�̄� =

⎯⎸⎸⎷ 𝑀∑︁
𝑖=1

𝑝𝑖||s𝑖||2 (3.1)

To ensure that the average power constraint is satisfied, a normalization is applied to

radius of the energy levels. If after the discretization, the average energy constraint

is not violated, then we don’t have to perform this normalization, in fact normalizing

energy levels in such a case may violate the peak power energy constraint. On the

other hand, if the average energy constraint is violated this means that the mean

energy of the signal points exceed the average energy constraint. In these cases, the

factor
𝜎𝑃

�̄�
, (3.2)

is less than 1, with 𝜎𝑃 being the average power constraint in the constellation de-

sign, as defined in section 1.1. Hence, normalizing the x and y coordinates of the

constellation points with this factor cannot violate the peak power constraint and

the resulting constellation becomes a valid input distribution according to the condi-
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Figure 3-1: The theoretical performance of the constellations after reverse Huffman
mapping

tions enforced in the constellation design. In Fig. 3-1, one can observe the theoretical

performance of the designed constellations with respect to channel capacity for the

channel statistics used in the design. The constellation design parameters used with

the cutting plane algorithm presented in the previous chapter to obtain this theo-

retical performance is the same the parameters used in [15] in order to observe the

effect of the quantization and normalization and they can be summarized as:

𝒜 = {0, 1, 2, 3, 4, 5}, 𝜎2
𝑃 = 4, 𝑁0 = 1. (3.3)
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The y axis stands for the mutual information between channel input and channel

output whereas x axis represents the number of quantization points used to dis-

cretize the DACP distribution. The magenta line represents the channel capacity

for the complex Gaussian channel that satisfies 𝑁0 = 1. The blue line represents

the performance of the designed constellations with respect to number of quantiza-

tion points used to discretize the constellation. Finally, the black dots represent the

theoretical performance of 8, 16, 32, 64 and 128 QAM. One can readily see that

after 20 quantization points, the designed constellation points exceed the maximum

mutual information that QAM can achieve and around 40 quantization points, the

performance gets very close to the channel capacity. As a result of our non-linear

method of mapping probabilities some small-amplitude ripples occur in the mutual

information, yet these do not change the fact that designed constellations can get

closer to the channel capacity compared the QAM constellations of the same sizes.

3.2 Error Aware Mapping

Due to the reliance on the varying-length bit strings, the question of how to perform

the bit-mapping arises in the system we propose with this thesis. In common commu-

nications systems, where the employed modulation scheme performs constant-length

bit mappings, Gray code is utilized. We therefore develop a different bit mapping

algorithm, suited to OM.

We propose rearranging the bit sequences of the symbols that have the same

probability after Huffman shaping such that the two closest constellation points differ

in only one bit if they have the same probability. The algorithm sweeps through

the constellation points and checks whether the closest constellation point of the

currently queried point is mapped to a bit sequence of the same length. If the lengths
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are the same, then the proposed algorithm checks the Hamming distance between

the bit mappings of these sequences. If the Hamming distance is only one, then it

moves onto the next constellation point. However, if the Hamming distance is greater

than one, it inspects other bit sequences of the same length until an exchangeable

bit sequence is detected or all the same-length bit sequences are exhausted. In this

codebook fixing process an attempt to fix the bit mappings of nearest neighbour

symbols which are mapped to different number of bits is not made as this type of

error will trigger the error correction mechanism that will be discussed in the next

chapter, and hence dealt separately from the errors that do not cause insertions or

deletions.

Let the list of the bit sequences that have the same length as the current con-

stellation point be denoted by ℒ. Suppose that the closest neighbor of the symbol

s, call it s𝑗, is more than one Hamming distances away from s and the algorithm

found out that bit sequence mapped to s𝑗, denote it by 𝑙𝑗, is in ℒ. Assume that

𝑙𝑖 is the bit sequence of symbol s𝑖 such that 𝑙𝑖 ∈ ℒ. The algorithm first checks 𝑙𝑖’s

Hamming distance from the mapping of s. If Hamming distance is more than one,

then it moves onto the next bit mapping in ℒ. If the distance is one bit, it checks

whether 𝑙𝑖 is exchangeable with 𝑙𝑗. The bit sequence 𝑙𝑖 is deemed as exchangeable if

it satisfies one of the following criteria:

• The Hamming distance between the bit mappings of s𝑖 and its closest neighbor

is more than one.

• The Hamming distance between the bit mappings of s𝑖 and its closest neighbor

is one, but the Hamming distance between the mapping of s𝑗 and the closest

neighbor of s𝑖 is also one.

If one of the above conditions is met, the algorithm swaps the bit sequences corre-
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sponding to s𝑗 and s𝑖. If no exchangeable symbol is encountered despite having its

nearest neighbor more than one bit away, the algorithm does not change anything

and moves onto the next point.

3.3 Padding

As previously stated, in the system model we propose, the length of the bit sequence

that arrives at the modulator is modelled as fixed. With a fixed number of bits

to be transmitted, the last tree traversal in the Huffman shaping method may stop

before reaching a leaf. In such cases, the following simple padding scheme, which

GRAND will avail of for length correction, is proposed. If the mapping process

stops at a non-leaf node, first the branch that is labelled with a “1” is followed and

then the 0-labelled branches are followed until a leaf is reached. Reading backwards

from the end of the symbol to the first 1 reveals how many bits were used to pad.

This information is used in the GRAND-assisted demodulation described in the next

section. If there is no bit in the original bit string that isn’t mapped to any symbol,

padding starts at the root of the tree.

An illustration of this process is presented in Fig. 3-2. If the bit sequence that

arrived at the modulator is “1110111”, then the symbols 7 and 4 are transmitted.

The last bit does not reach a leaf and stops at node 37 of the tree. The proposed

padding scheme dictates following the “1” branch to node 33 and the “0” branches

are followed from there, leading to the transmission of symbol 15.

The proposed padding scheme is simple and effective when combined with the

GRAND-based demodulator. The location of the last 1 indicates the end of the orig-

inal message, hence the padding scheme provides the length of the original message.

If the last received symbol is demodulated in error the location of the last 1 may
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Figure 3-2: A toy constellation design

change, but we establish that the padding frequency can be designed so that this

happens sufficiently infrequently so as not to harm performance.

One small detail to note occurs when the message bit sequence is mapped to a

symbol sequence without any leftover bits. In that case, we pad starting from the

root of the Huffman tree. In the example in fig. 3-2, the bit sequence that will be

used for padding if there is no unmapped bit, is “1000”. This means that the last

transmitted symbol in such cases is symbol 10. The reason behind this choice will

be explained in more detail in the next chapter of this thesis but to give a rough

idea, the position of the last 1 in the bit sequence of the last symbol is important

in determining the length of the received bit sequence and consequently it should be

ensured that the last 1 in the final symbol comes from padding.

This scheme leads to variable length padding. In the worst case scenario, the

number of overhead bits for a message is equal to the depth of the Huffman tree

and the number of symbols used for overhead is at most one, yet, this is rarely the

case. For instance, for the 128-point OM constellation design, average number of

overhead bits turn out to be 3.5, which corresponds to almost the half of the average
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bit sequence length of this constellation.
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Chapter 4

Demodulator Design and

Length-Based Correction

There are two main problems that the demodulator needs to answer. First, the

demodulator needs to form its decision regions according to the prior probabilities

of the signals in the constellation. By using the Bayes’ Theorem, determining deci-

sion regions is simple and we give a brief overview of the obtained decision regions

using this method in section 4.1. The second problem, which can be considered as

the most vital challenge when using varying-length constellation shaping methods,

is preventing or correcting the possible insertions or deletions in the transmission.

To solve this latter problem, in section 4.2 we propose a novel guess-based length

correction mechanism that detects and corrects insertion and deletion errors when

such errors are caused by a single symbol error. We choose transmission lengths used

in the proposed systems such that the probability of having more than one symbol

errors that result in insertion and deletion is sufficiently low and hence the length

correction mechanism can successfully identify and correct these tricky situations.
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Section 4.2 also contains the full discussion on how to choose transmission lengths

in the proposed system.

4.1 Decision Regions

Let’s revisit the channel model. As mentioned in section 1.1, 𝑌 is the channel

output, 𝑋 is the channel input and 𝑁 is the zero-mean, circularly symmetric complex

Gaussian that satisfies 𝐸[|𝑁 |2] = 𝑁0. Also let s𝑖 be the ith constellation symbol.

Unlike the case in the uniform constellations, with the constellation design described

in the previous sections, 𝑋 no longer comes from a uniform distribution but it is

distributed according to the “Huffman approximation distribution".

The demodulation process needs to incorporate the non-uniform prior distribution

of the symbols in the constellations suggested in this paper. To achieve this, we

can use Bayes’ Theorem. As the priors in the uniform constellations are uniform,

maximum likelihood (ML) and maximum a posteriori (MAP) demodulations yield

the same results. Yet, in the non-uniform constellation, the a priori probabilities

differ which results in a difference between ML and MAP estimations. In the MAP

estimation, for a channel output to be labeled as symbol s𝑖, the following inequality

must be satisfied:
𝑓𝑌 |𝑋(y|s𝑖)𝑃 (𝑋 = s𝑖)

𝑓𝑌 |𝑋(y|s𝑗)𝑃 (𝑋 = s𝑗)
≥ 1 ∀𝑗 ̸= 𝑖 (4.1)

Or equivalently,
𝑓𝑁(y − s𝑖)𝑃 (𝑋 = s𝑖)

𝑓𝑁(y − s𝑗)𝑃 (𝑋 = s𝑗)
≥ 1 ∀𝑗 ̸= 𝑖, (4.2)

where 𝑓𝑁(n) is the transition function of a channel and in our setting it is as follows:
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𝑓𝑁(n) =
1

𝜋𝑁0
𝑒𝑥𝑝(− 1

𝑁0
|n|2). Then, equation (16) becomes,

𝑒𝑥𝑝
(︁
− 1

𝑁0
|y − s𝑖|2

)︁
𝑃 (𝑋 = s𝑖)

𝑒𝑥𝑝
(︁
− 1

𝑁0
|y − s𝑗|2

)︁
𝑃 (𝑋 = s𝑗)

≥ 1 ∀𝑗 ̸= 𝑖 (4.3)

Let’s study the boundary between symbol i and any other symbol k for convenience.

Using the monotonicity of the logarithm,

𝑙𝑜𝑔

⎛⎝ 𝑒𝑥𝑝
(︁
− 1

𝑁0
|y − s𝑖|2

)︁
𝑃 (𝑋 = s𝑖)

𝑒𝑥𝑝
(︁
− 1

𝑁0
|y − s𝑘|2

)︁
𝑃 (𝑋 = s𝑘)

⎞⎠
= 𝑙𝑜𝑔

(︂
𝑃 (𝑋 = s𝑖)

𝑃 (𝑋 = s𝑘)

)︂
+

(︂
− 1

𝑁0

|y − s𝑖|2
)︂
−
(︂
− 1

𝑁0

|y − s𝑘|2
)︂
≥ 0 (4.4)

After cancellations and reorderings of the terms, we obtain the following inequality:

𝑙𝑜𝑔

(︂
𝑃 (𝑋 = s𝑖)

𝑃 (𝑋 = s𝑘)

)︂
− 1

𝑁0

(𝑎2𝑖 − 𝑎2𝑘 + 𝑏2𝑖 − 𝑏2𝑘) ≥ 𝑎
−2𝑎𝑖 + 2𝑎𝑘

𝑁0

+ 𝑏
−2𝑏𝑖 + 2𝑏𝑘

𝑁0

(4.5)

where y = (𝑎, 𝑏), s𝑖 = (𝑎𝑖, 𝑏𝑖) and s𝑘 = (𝑎𝑘, 𝑏𝑘). The boundary between the decision

regions of symbol i and symbol j is expressed as the equality version of the inequal-

ity in (4.5). The decision region of symbol i is expressed with all the inequalities

of the form (4.5) where 𝑘 ̸= 𝑖 and s𝑘 is a symbol in the constellation of interest.

Applying this to the constellation on figure 1-1, we obtain the regions in figure 4-

1. Each decision region is colored with a different shade of cyan and magenta dots

are the constellation points. By observing figure 4-1, one can verify that the deci-

sion boundaries do not split the line between two constellation points equally but

rather the distances between them and the constellation points depend on the prior

probabilities of the points.
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The demodulator calculates 𝑓𝑌 |𝑋(y|s𝑖)𝑃 (𝑋 = s𝑖) for each of the received symbols

and decides in which decision region the received signal lies depending on for which

i 𝑓𝑌 |𝑋(y|s𝑖)𝑃 (𝑋 = s𝑖) is maximized. This step is independent of the bit sequences

and, therefore, after this initial demodulation the bit sequences we obtain may differ

from the transmitted bit sequence in terms of length if some signal lies in the decision

region of another symbol with a bit sequence of different length. The next section

provides a methodology to undertake this situation. The decision regions for the

128-point constellation in Fig. 2-1 and the 256-point constellation design is provided

in Appendix A.

Figure 4-1: The decision regions for the constellation given in the right panel of
Fig. 1-1.
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4.2 Length-Based Correction

As a result of the varying bit lengths of symbols, insertions and deletions can result

from erroneous demodulation. By adapting GRAND to use the padding as a form

of an error correcting code, one can readily correct many of these length errors. The

proposed procedure is presented in Alg. 4.

Algorithm 4: Demodulation and Length Correction
Input: y: channel output

C: constellation points and their probabilities
f: symbol to bit mapping
𝑁0: noise power
n: number of transmitted bits

Result: x̂: demodulated bit sequence
ŷ ← MAP demodulation
x̂ ← bit sequence corresponding to 𝑦
if �̂�.length ̸= n then

𝑖 ← 0, r ← likelihood order of symbols in ŷ
while 𝑖 < ŷ.𝑙𝑒𝑛𝑔𝑡ℎ do
𝒫 ← set of constellation points on the same ring and the neighboring
rings

p ← likelihood order of elements in 𝒫
for j= 1 to 𝒫.length do

x̂ ← bit sequence of ŷ[𝑟(𝑖)] = 𝒫(𝑝(𝑗))
if x̂.length == n then

return x̂
end
𝑖 ← 𝑖+ 1

end
end
return bit sequence corresponding to 𝑦

We use the term “message" to indicate the information bit sequence and “transmit-

ted bit sequence" to include the padding bits. In the proposed system, the message

length is constant and known by both the transmitter and receiver. However, the
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number of bits in the transmitted sequence changes based on the number of padding

bits. Having removed the padding bits at the receiver, if the length of the remaining

bits is not equal to the agreed message length, then at least one demodulated symbol

resulted in an insertion or deletion.

Our goal in setting message lengths is to ensure that the likelihood of having more

than one insertion or deletion error between padded symbols be made negligible.

For a given constellation and 𝐸𝑆/𝑁0, the probability of an insertion or deletion in

demodulation, 𝑝indel(𝐸𝑆/𝑁0), can be evaluated with theory or through simulation.

As symbol errors resulting in length changes occur independently, the number of

transmitted symbols until an error with length change is geometrically distributed

with probability 𝑝indel(𝐸𝑆/𝑁0). Namely, let 𝐿𝑛 be the random variable corresponding

to the number of symbols errors with length change in a message block of length n.

Then, the probability of having more than one symbol error that causes length change

is expressed by

𝑃 (𝐿𝑛 > 1) = 1−
(︂
𝑛

0

)︂
(1−𝑝indel(𝐸𝑆/𝑁0))

𝑛−
(︂
𝑛

1

)︂
𝑝indel(𝐸𝑆/𝑁0)

1(1−𝑝indel(𝐸𝑆/𝑁0))
𝑛−1.

(4.6)

Using this model, we set the message length such that 𝑃 (𝐿𝑛 > 1) is bounded above

by 𝑎(𝐸𝑆/𝑁0) 𝑝indel(𝐸𝑆/𝑁0) where 𝑎(𝐸𝑆/𝑁0) is a small tunable parameter of the order

10−2. The value of the 𝑎(𝐸𝑆/𝑁0) is determined with a search to minimize the BER

of the final binary system. All the results that will be presented in the next section

are obtained after fixing the 𝑎(𝐸𝑆/𝑁0) values. Message lengths for the reported

simulations are presented in Table 1 for the 128-point constellation design in Fig. 2-

1. The message bit lengths are obtained by multiplying the number of symbols found

via the above model with the weighted average length of the bit mappings.

In this design, message lengths increase with 𝐸𝑠/𝑁0, so that the rate of the over-
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head decreases with increasing SNR. As SNR goes to infinity, the overhead becomes

infinitesimally small compared to the transmitted block length and the rate of the

proposed scheme converges to one. In Table 1, the last column illustrates this change

in rate for the 128 point constellation. When an insertion or deletion does occur, it

is most likely that there is a single erroneous symbol and that results in shifting to

a symbol on a neighboring ring, i.e. one energy level up or down. An ability to find

the symbol that is in error and correcting it, or at least replacing it with one of the

correct length, decreases both symbol and bit error rates. At this point, we draw

inspiration from the recently introduced GRAND [9, 26, 8].

First, the demodulator estimates the transmitted symbols via the decision regions

given by Bayes’ theorem and then converts the resulting symbols to a binary string.

By construction, the bit sequence of the last symbol needs to contain a one. If there

is none, then the last symbol is demodulated incorrectly. An attempt can be made to

correct the error by replacing the last symbol with the second most probable symbol

for the last received signal.

The message length that is to be received is known to the receiver. The demodu-

lator compares the length of the message with the known constant. If the lengths are

not the same, then demodulated symbols are listed from least reliable to most reli-

able. Starting with the least reliable symbol, the demodulator examines the length of

Table 4.1: Some Message Lengths for 128-point Constellation Design
𝐸𝑏/𝑁0 (𝑑𝐵) Ave. num. bits (𝑁𝑏) Num. symbols (𝑁𝑠) Rate

20.00 1594 252 0.998
18.75 771 122 0.995
17.50 177 28 0.979
16.25 56 9 0.934
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the bit sequence if it switches the demodulated symbol to a symbol on its own ring or

a neighboring ring. If there is a bit sequence of the correct length, then the original

demodulated symbol is swapped with the most likely alternate symbol on these spec-

ified energy levels and the resulting symbol sequence is returned for demodulation.

If there is no bit sequence of the correct length, the demodulator proceeds to the

next least reliable demodulated symbol. This process continues until a bit sequence

of the correct length is found or all the demodulated symbols are exhausted. In the

latter case, the original demodulated message bits are returned without any change.

Consider the Huffman tree and the message bit sequence introduced in the exam-

ple with Fig. 3-2. Suppose that after detection, the demodulator formed the received

symbol sequence as 9−4−15 which corresponds to the bit sequence “1001011110000”.

After separating this bit sequence from padding, the remaining bits are “10010111”.

The expected message length is 7, but the demodulator has 8 bits hence it attempts

error correction. The received symbols are ordered according to their reliability. If

symbol 9 was labelled as the least reliable symbol, the symbols on the same and the

neighboring rings are listed as alternatives. According to the constellation on the left

panel of Fig. 3-2, the list in this example is {5, 6, 7, 8, 10, 11, 12, 13}. The elements of

this list are ordered according to their likelihoods and new bit sequences are formed

by swapping symbol 9 with the elements of this list according to their likelihoods.

When the demodulator finds a bit sequence with length 7, it terminates its search

and outputs the resulting bit sequence. In this example swapping symbol 9 with

symbol 7 yields the correct length, thus the demodulator outputs the bit sequence

“1110111” correctly.
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Chapter 5

Overall System Performance

In this section, the performance of the proposed OM constellation design with

GRAND-like length correction is presented in comparison with QAM constellations

of identical sizes. QAM is a standard in many applications and the BER and SER

performances of various-size QAM constellations are readily available in MATLAB

using the built-in function “berawgn”. It is useful to provide a definition for the en-

ergy per bit over noise spectral density (𝐸𝑏/𝑁0) for the upcming results. In a usual

modulation scheme, we use the following relation

𝐸𝑠

𝑁0

=
𝐸𝑏

𝑁0

log2(𝐾) (5.1)

between symbol energy per noise spectral density (𝐸𝑠/𝑁0) and bit energy per noise

spectral density (𝐸𝑏/𝑁0) with K being the size of the constellation. The number of

bits used to represent symbols may differ in the designed constellation, and hence,

the conventional equation to calculate the 𝐸𝑏/𝑁0 does not hold. With 𝑁𝑠(𝐸𝑠/𝑁0)

being the average number of symbols for a message plus padding bits, at most one

symbol is used for the padding overhead. Hence, the average energy of a single
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information symbol is upper bounded by 𝐸𝑠 +
𝐸𝑠

𝑁𝑠(𝐸𝑠/𝑁0)
. As a result the following

relation is used to obtain 𝐸𝑏/𝑁0:

𝐸𝑠 +
𝐸𝑠

𝑁𝑠(𝐸𝑠/𝑁0)

𝑁0

=
𝐸𝑏

𝑁0

𝐾∑︁
𝑖=1

−𝑝𝑖 log2(𝑝𝑖), (5.2)

where 𝑝𝑖 is the probability of the constellation point 𝑖.

Figure 5-1: SER and BER performances of the overall system in comparison with
QAM

Fig. 5-1 displays the overall system performance for some of the commonly used

constellation sizes in comparison with the QAM constellations of the same sizes. It

can be observed that using OM yields a gain in all the presented constellation sizes

compared to the performance of QAM constellations of the same sizes in the SNR

region of engineering interest. In particular, the 128-point constellation displays a

significant gain of about 2 dB compared to the 64-point and 256-point constellation

designs. We observed that the performance of the 64-point and 256-point constella-
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tion design suffers from the cutting plane algorithm which determines the optimal

continuous probability distribution over a fixed set of energy levels that are provided

as an input to the algorithm. The fact that this algorithm does not build an optimal

set of energy levels, but instead optimizes the probabilities over the provided fixed

set of energy levels may result in suboptimal distributions as seen in the current

64-point and 256-point designs in Fig. 5-1.

Figure 5-2: Illustration of the change in the attainable mutual information between
the channel output and the channel input distribution found during the iterations of
the modified cutting plane algorithm and the modified steepest ascend cutting plane
algorithm with respect to the iteration number.

Due to this shortcoming of the cutting plane algorithm, some of our future work
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include enhancing this constellation design process in order to improve the OM gains

for all constellation sizes. A promising lead in this direction is presented in Fig. 5-2.

Reference [15], introduces another algorithm which is referred to as the “Steepest

Ascend Cutting Plane Algorithm” which builds the input alphabet while also op-

timizing the probability distribution over the dynamic set of energy levels. After

performing modifications that are similar to those that we applied to the original

cutting plane algorithm, we observed the changes in the mutual information between

the channel input distribution found during the iterations of the modified steepest

ascend cutting plane algorithm and the channel output. This is depicted in Fig. 5-2

with the magenta curve. We compare this with the the mutual information between

the channel input distribution found during the iterations of the modified cutting

plane algorithm and the channel output, which is given with the dark blue curve.

The cyan dashed-line is the channel capacity at the design SNR. From Fig. 5-2, it is

clear that the constellations obtained via the steepest ascend cutting plane algorithm

can get closer to the channel capacity, after sufficiently many plane cuts, compared to

the constellations designed via the cutting plane algorithm. The only disadvantage

of the steepest ascend algorithm is that it takes more iterations for the algorithm to

converge, but this optimization is performed only once, hence this property is not

a real drawback against the overall system performance. We are currently work-

ing on utilizing the new constellation designs obtained this way with the proposed

modulator and demodulator.
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Figure 5-3: BER performance comparison of the 128-point OM design with uncoded

128 QAM and 128-QAM with an additional LDPC code for binary error correction.

Due to the varying-length overhead in the proposed scheme, our 128-point design

has different rates at different SNRs. The coded 128-QAM results at each SNR

are obtained by using LDPC codes of the same average rate as the design at that

particular SNR

We note that the 128-point OM constellation design can achieve a gain of about 2

dB both in SER and BER with the proposed length correction demodulator and that

this gain is of the order that is typically attained through the use of computationally
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involved Forward Error Correction (FEC) codes. To further assess that observa-

tion, we compared the BER performance of the proposed 128-point OM design and

128-QAM employing Low Density Parity Check (LDPC) codes. As the rate of the

proposed scheme depends on the SNR, for the QAM with LDPC to be comparable

with the proposed scheme a different LDPC code that has the same rate and the

same block length as the proposed scheme is used, at each SNR. For instance, at

𝐸𝑏/𝑁0 = 20 𝑑𝐵, the LDPC code used in Fig. 5-3 has a message length of 1594 bits

and a rate of 0.998 and at 𝐸𝑏/𝑁0 = 17.50 𝑑𝐵, the LDPC code that is used has a

message length of 177 bits and a rate of 0.979. More message lengths and rates can

be found in Table 4.2. We use the repeat-accumulate LDPC code design described

in [16]. The decoder used with these LDPC codes is the built-in min-sum LDPC

decoder of MATLAB. The results displayed in Fig. 5-3 confirm the earlier finding

that using OM with a simple padding scheme and GRAND-style length correction

results in a final BER performance that is as good as using computationally involved

FEC schemes as an outside wrapper to standard modulation.

Another interesting future work direction is what happens when a GRAND-based

demodulator that considers all the possible single-symbol-swaps instead of the light-

weight version where it only considers the swapping a symbol with another symbol

if they are on the same energy level or on the neighbouring energy levels. We have

recently implemented this more comprehensive demodulator and currently working

on how using this new demodulator affects the complexity of the demodulation and

the overall length-correction capability of the system.
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Chapter 6

Conclusion

In this thesis, we provide a system for making optimum modulation practical. We

present a design procedure to obtain non-uniform constellations according to channel

statistics. It was already known in theory that optimal modulation schemes are non-

uniform, in the sense that symbol transmission distributions are non-uniform, and

that they can perform better in terms of capacity than the commonly used uniform

modulation schemes. The proposed design provides modulation and associated de-

modulation schemes that can significantly surpass the performance of the commonly

used modulation schemes such as QAM. While OM is expected to be capable of

providing significant SER benefits over commonly used schemes, to translate that to

BER gains requires a method that can resolve insertion and deletion errors. Here we

establish a simple, low-overhead, and computationally light mechanism to translate

that gain to BER. Our method achieves this with a simple padding approach and

a novel light-weight GRAND decoder, resulting in a significant improvement of the

order of 2 dB that is transparent to the final binary data.

As for the future work, the proposed system will be extended using the Steepest
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Ascend Cutting Plane Algorithm which, instead of optimizing over a fixed set of

energy levels, builds the set of energy levels while also optimizing the probability

over these energy levels. Instead of using a light-weight approach in GRAND-assisted

demodulation which considers only a subset of possible symbol swaps based on the

energy levels, we are currently working on a GRAND demodulator that considers

all length-correcting symbol swaps. In addition to this, the question of whether the

proposed system can be extended to multiple-input multiple-output channel models

is an interesting question that will be considered in the further stages of the work.
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Appendix A

Figures

Figure A-1: 256-point constellation design
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The parameters to obtain the 64-point constellation in Fig. 1-1:

𝒜 = {𝑥| 𝑥 = 0.7 𝑘, 𝑘 = 0, . . . , 10}, 𝑁0 = 0.01, 𝜎2
𝑃 = 4 (A.1)

The parameters to obtain the 256-point constellation in Fig. A-1:

𝒜 = {𝑥| 𝑥 = 0.4 𝑘, 𝑘 = 0, . . . , 10}, 𝑁0 = 0.01, 𝜎2
𝑃 = 4 (A.2)

Figure A-2: The decision regions for the 128-point constellation design in Fig. 2-1.
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Figure A-3: The decision regions for the 256-point constellation design in Fig. A-1.
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