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Abstract

The use of autonomous vehicles has been growing across the globe, driven by their ability tomeet

the diverse needs of industry and scientific applications. Terrestrial and aerial uncrewed vehicles

typically benefit from high-throughput communication systems which enable accurate positioning

and operator input; Autonomous Underwater Vehicles (AUVs), however, generally require a higher

degree of autonomy as they must rely on much more limited communication links and lack access

to global navigation satellite systems (GNSS) while underway. This distinction becomes especially

important in hazardous environments like the Arctic Ocean, where surface ice may impede an AUV

from breaching to regain access to position and controller updates. Instead, underwater vehicles

in ice-covered environments require a higher level of autonomous decision-making, and rely on

a combination of self-contained sensors and acoustic positioning networks for navigation – but

the latter generally rely on a deterministic conversion of acoustic travel times to ranges, failing to

capture the natural variability of the acoustic environment.

This dissertation demonstrates the application of physics-based machine learning techniques as

an alternative to deterministic solutions for environmental adaptation in unmanned vehicle auton-

omy. This is achieved by gradually incrementing the complexity of the adaptation problem: first,

the tasks of behavior identification and riverbed characterization are tackled with a classification

approach; next, an embedded acoustics model is used in place of the conventional linear model for

acoustic positioning, and a feature design approach is employed to improve the performance of this

embedded range estimation; last, a pseudo-tomographic approach based on neural network tech-

niques is proposed as a complement to compressive sensing, to enable exploratory environmental

adaptation onboard AUVs.

The improvements to acoustic positioning are validated against data collected in the Beaufort Sea

in March of 2020, where the presence of the Beaufort Lens combines with the surface ice covering

theArcticOcean to create an ideal setting inwhich to demonstrate the importance of environmental

adaptation. These capabilities may impact monitoring efforts in the area, which has seen increased

interest from fishing, trade and military operations, and is of significant importance to understand-

ing climate conditions.

Thesis Supervisor: Henrik Schmidt

Title: Professor of Mechanical and Ocean Engineering
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1 Introduction

“If I were to choose a single phrase to characterize the first century of modern oceanography, it

would be ‘a century of undersampling.’ The most profound effect of satellite oceanography has

not been the resulting new sensor packages (and these have been remarkable), nor the global

coverage, but rather that for the first time ocean processes were adequately sampled.”

– Walter Munk1

Lake Geneva was the setting for the earliest recorded attempt to measure the speed of sound in

water. The experiment, conducted byDaniel Colladon andCharles Sturm in 1827, produced a value

of 1435 m/s for water at 8◦C – a result that has long been regarded as remarkably for how close it

is to modern values. It was nearly a century after this first measurement, during World War I, that

the first investigations concerned with the particulars of sound propagation underwater were first

conducted.2

The field of ocean acoustics has evolved greatly from its early days. Continued research efforts

over the years yielded multiple theoretical approaches for the problem of propagation modeling.

Field and theoretical experiments yielded multiple formulations for the value of the speed of sound.

Skylab’s RADSCAT and then SeaSat, both launched in the 1970’s, marked the beginning of satellite

oceanography.3 As renown physical oceanographer Walter Munk said, the arrival of satellite tech-

1Halpern, “1. Oceanography before, and after, the Advent of Satellites”.
2Lasky, “Review of undersea acoustics to 1950”; Urick, Sound propagation in the sea; Jensen, Kuperman, Porter, and

Schmidt, Computational ocean acoustics.
3Monaldo, Jackson, and Pichel, “SEASAT TO RADARSAT-2: RESEARCH TO OPERATIONS”.
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nology had a profound impact in our understanding of the oceans because it provided us with an

unprecedented standard of sampling for the processes affecting the world’s largest water masses.

And yet, advances in machine learning techniques over the past few decades have wholly redefined

the concept of “adequate sampling.”

1.1 A new and changing Arctic

TheArctic has captivated theminds ofmankind formillennia – andwhat else could be expected of a

placemysterious enough to inherit three names fromAncientGreece? Pytheas, aGreek geographer,

is said to have sailed north until he encountered a frozen ocean, where man could “neither sail nor

walk.” From here, he is said to have sailed back south to find land, and the place he encountered he

called Thule - the land beyond beyond all known lands. Of the two other names, this can be said:

that onewas quite an apt description of the reality we know today, and that the other held the power

of inspiration over those who would risk it all for a utopian vision. These names were Arctic, from

Arktikos (αρκτικοσ), meaning “of the great bear”; and Hyperborea, the region beyond the kingdom

of Boreas (the god of the north wind).4

The cartographer Mercator, on the basis of stories that made their way to him, drew the heart of

the Arctic on his maps as a place called the Lodestone Mountain, capable of ripping the nails out

of ships with its magnetic pull; or alternatively as a maelstrom so powerful, not even the strongest

winds could save a ship caught in its grip. But, where Pytheas encountered a frozen ocean, Mercator

drew instead an open ocean surrounding those iconic landmarks which embodied the ocean’s at-

traction turned fatal. This peculiar choice persisted through the centuries, and inspired generations

of explorers to see beyond legend; to seek not the utopia of the Hyperboreans or the excitement of

ocean-borne crucibles, but the more realistic dream of a northern passage.5

4Schulz, “Literature’s Arctic Obsession”.
5Schulz, “Literature’s Arctic Obsession”.
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This vision of a blue Arctic – of one without a blanket of ice spread atop it – is perhaps one of the

great ironies about this northernmost domain. It has been centuries since Mercator’s maps inspired

the pursuit of a northern passage, which has only in recent decades become a likely reality for our

future. Figure 1.1 shows how the age of sea ice has changed over the years, according to satellite

imagery as well as satellite tracking of buoys placed on the sea ice, as part of the International Arctic

Buoy Program.6

The observations from satellite data collected by the NSIDC are well-complemented by the find-

ings presented by Chen, where a detailed comparison of two sets of acoustic measurements (col-

lected in the Beaufort Sea during the spring of 1994 and spring of 2016) shows that changes in the

Arctic soundscape are indeed consistent with two distinct models for surface source distributions.

The data from the Sea Ice Mechanics Initiative of 1994 (SIMI-94) was found to be consistent with a

model of uniformly distributed sources, where many sustained transients are generally expected –

the analogy here being that thicker, stronger ice is generally associated with this model for its abil-

ity to sustain the kind of loading that would produce these transient signals. In contrast, the data

collected by MIT’s Laboratory for Autonomous Marine Sensing Systems (LAMSS) during the US

Navy’s Ice Exercise of 2016 (ICEX-16) was determined to lack much of the transient characteristics

of the SIMI-94 data, and to be more spatially discrete; that is, the field measurements from 2016 are

better described by the simpler model of a single source at some range from the receiver. The latter

model would be consistent with localized phenomena such as ridge formation, and allows for the

argument that thinner, weaker ice will tend to break apart with relative ease and therefore will not

sustain the transient signals of the uniform source distribution model.7

6Tschudi, Meier, Stewart, Fowler, and Maslanik., EASE-Grid Sea Ice Age, Version 4; Tschudi, Meier, Stewart, Fowler,

and Maslanik., Polar Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 4.
7Chen, “Ambient Acoustics as Indicator of Environmental Change in the Beaufort Sea: Experiments & Methods for

Analysis”.
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Figure 1.1: Estimated age of sea ice in the Arctic during the month of March, shown biennially from 1984 to

2020. Based on data from the National Snow and Ice Data Center.
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1.2 The need for real-time environmental adaptation

The changes in the age, thickness, and distribution of the ice cover atop the Arctic Ocean directly

impact the soundscape of those polar waters; but the ice alone does not account for all that has

changed in the Arctic. Another phenomenon that has impacted the Arctic is the appearance of a

warm layer of water coming in from the Pacific – sitting at a depth of around 70-80 meters, this

layer of warm water directly affects the sound speed profile and thus the performance of acoustics-

driven sensing, navigation and communications infrastructure. This phenomenon, known as the

Beaufort Lens, was observed by Woods Hole Oceanographic Institution (WHOI) in 2013, through a

network of specialized remote sensors designed to collect environmentalmeasurements; theWHOI

Ice Tethered Profiler (ITP) program. The Beaufort Lens was also observed during underwater vehi-

cle operations conducted by MIT LAMSS as part of ICEX-168 and has been the subject of multiple

studies to date; an interesting example of work on the Beaufort lense is a recent study that eval-

uated ocean circulation models against acoustic measurements from the Canada Basin Acoustic

Propagation Experiment (CANAPE) and data from the ITP program in order to assess the effects

of variablility in the Pacific summer water layer and the ice cover on underwater sound ducting at

large scales.9

The impact of the Beaufort Lens on acoustic communications is illustrated in Figure 1.2, for a

3.5kHz source at a depth of 33 meters. The top half illustrates a generic Arctic environment based

on historical trends; this environment, with a generally increasing sound speed value as a function

of depth (top left), is what was generally expected for ICEX-16. Even with some small variability

added to this generally increasing environment, the operational paradigm indicated that a vehicle

8Schmidt and Schneider, “Acoustic communication and navigation in the new Arctic — A model case for environ-

mental adaptation”.
9Duda, Zhang, and Lin, “Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater

sound ducting”.
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operating within the upper 200 meters10 should be able to maintain a reliable acoustic path to a

source at 33m depth, so long as the range between the two nodes remained within 6-7 kilometers

(top right). Furthermore, the 6-7km range predicted in the operational paradigm would have been

consistent with historical performance.11 As the range extends beyond 7km in this generic Arc-

tic environment, it becomes increasingly difficult to discern particular paths between the source

and some receiver in the transmission loss field, and this property of the model translates to the

expectation that communication performance will be significantly degraded at these longer ranges.

The bottom half of Figure 1.2 shows the sound speed profile based on measurements collected at

CampSargo, the name given to the ice campduring ICEX-16. These in-situmeasurements captured

the Beaufort lens, which is reflected in the sound speed profile as a local maximum (bottom left) – a

feature often described as a knee, for its appearance when plotted. Where the generally increasing

sound speed profile of the generic Arctic produced upward-refracting paths, the appearance of a

local maximum in the ICEX-16 data tends to divide the water column into two ducts: one in the

surface layer, above the knee; and another one that tends to trap sound below the knee, roughly

between 75m and 300m depth in the case shown. The transmission loss field for the ICEX-16 en-

vironment captures these ducts rather clearly (bottom right).

A key difference between these two exemplary environments is that, while the generic Arctic

case had reliable paths out to 6-7km, the ICEX-16 case exhibits a deep shadow zone – a region

with very large transmission loss, which is to say, where very little energy from the source can

be detected – stretching between the 2km and 5km range markers. If the vehicle is constrained

to operate within the upper 200m of the water column, then this shadow zone means the vehicle

10Mechanical design for underwater operations is a fascinating domain of engineering, which includes considerations

such as whether to use air-filled pressure vessels or oil-filled, pressure-compensated chambers. The vehicle used

for ICEX-16 and ICEX-20, for example, holds two air-filled pressure vessels that contains the vehicle’s computers;

these air-filled vessels play a part in the research vehicle’s depth rating being limited to about 200 meters. However,

further discussion about mechanical design is beyond the scope of this thesis.
11Schmidt and Schneider, “Acoustic communication and navigation in the new Arctic — A model case for environ-

mental adaptation”.
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Figure 1.2: Comparison of the generic Arctic environment (top) and a model based on field measurements

from ICEX-16 (bottom). Sound speed profiles are shown on the left, and incoherent transmission

loss estimates are shown on the right, for a source depth of 33 meters.
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would have to go it alone for an important portion of itsmission. The numerous surface interactions

and subsequent multipath in the surface duct would presumably render that upper region highly

unreliable for communications and navigation, while the deeper acoustic paths travel beyond the

reach of the vehicle.

There is, of course, a seemingly simple solution to the limitation presented in Figure 1.2: what if

we could simply adjust the source depth to address the shadow zone limitation; would this change

allow us to insonify the previously unreachable portion of the water column? After all, this intro-

duction has thus far discussed the presence of reliable acoustic paths anywhere in the upper 200m

of the water column (which are reachable by the vehicle, as is the case in the generic Arctic environ-

ment) as a sufficient condition of viability. This initial treatment comes from the assumption that,

in an updated environment such as that of ICEX-16, (i) there exists some alternate source depth

which would enable insonification of the entire range-depth domain required for a mission, and

that (ii) the vehicle autonomy would then seek to operate within the valid subset of depths for any

given range. The reality of vehicle operations, however, is a much more complicated endeavor than

that.

It has already been demonstrated, through additional model and simulation work, that changing

the source depth alone (to a different static value), or even configuring multiple sources at discrete

depths, may not suffice to fully restore communication capabilities in the ICEX-16 environment.12

Additionally, there is the risk that the chosen environmental model – however well-founded on

prior data – is itself an inadequate representation of reality; much like the generic Arctic model was

a poor estimate of the true field, going into ICEX-16. Thus, a more promising approach to handle

the challenges of the new Arctic, as they were experienced during the 2016 deployments, would

involve enhancements in two key areas. First, there is a need for the system to realize real-time

environmental adaptation; that is, the vehicle or vehicle operator should be able to detect whether

12Schmidt and Schneider, “Acoustic communication and navigation in the new Arctic — A model case for environ-

mental adaptation”.
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the internal environmental model is sufficient to inform the decision-making process during a mis-

sion and, if it is not good enough, then either adjust or replace said model with a more appropriate

one. Second, the vehicle or vehicle operator should be able to relay these changes to its own in-

ternal environmental model to its remote counterpart in a compact and efficient way, such that

the communications link between nodes is not overloaded. By sharing the updated environmental

model, both vehicle and operator13 can then rely on a common understanding of the environment

to anticipate the performance of the communication network and adjust their navigation objec-

tives, maintaining contact as needed throughout the mission and thus addressing the key challenge

identified during ICEX-16.

1.3 Problem statement and outline

This thesis focuses on the first of those two fundamental needs identified during the ICEX-16 de-

ployments; it explores the application of machine learning techniques towards the ultimate goal of

approaching real-time environmental adaptation forAutonomousUnderwater Vehicles (AUVs),

specifically by pursuing a constrained fit of the true local sound speed profile (SSP) that may be used

to inform navigation and communication decisions onboard the vehicle.

In order to tackle this challenge, a multidisciplinary approach is needed. To that end, this in-

troductory chapter first presented the motivation behind this work in the context of a prior AUV

deployment conducted in the Arctic ocean. Relevant theory and related works from the various

underlying fields are introduced in Chapter 2. As a primer to machine learning techniques used

throughout this work, Chapter 3 presents two studies conducted on small-scale AUVs. The exper-

imental system and foundational work for the Arctic deployment at the heart of this project are

presented at length in Chapter 4. Chapter 5 dissects the data collected under the ice, out in the

13This could also be adapted for any number of nodes in a larger network, such as vehicle swarms; some considerations,

such as reserving sharing capabilities for the operator or lead-vehicle only, may be needed to optimize use of the

communication channel in this scenario.
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Beaufort Sea. In Chapter 6, the contributions from Chapter 4 are related to the data presented in

Chapter 5, in the light of implications for navigation performance. From there, Chapter 7 builds on

how physics-informed models may be linked to machine learning techniques, to correct internal-

ized models and pursue online environmental adaptation. Finally, Chapter 8 presents conclusions

and closing remarks.
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2 Background

“No one really starts anything new, Mrs. Nemur. Everyone builds on other men’s failures.

There is nothing really original in science. What eachman contributes to the sum of knowledge

is what counts.”

– Daniel Keyes, Flowers for Algernon

The sentiment captured in Daniel Keyes’ award-winning text1 certainly fits the pursuit of ad-

vances in fields as interdisciplinary as marine robotics – be it failure or success, we build on the

work of those who came before us in the hopes that our own contributions will move ours fields

forward, even if only by one small step.

The following sections seek not to be a holistic exposition of all those domains involved in the

deployment of an advanced marine robotic system2, but rather each is a dive into one or another

of those areas which ultimately provide the basic foundation from which the contributions of this

thesis may be developed and understood.

1Flowers for Algernon was first published as a short story, which won the Hugo Award for Best Short Story in 1960; the

text was later expanded into a novel which was published in 1966 and was joint winner of that year’s Nebula Award

for Best Novel.
2See footnotes in Chapter 1 for an example of a domain relevant to these deployments, but not covered in detail

throughout this thesis.
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2.1 Estimating the speed of sound in water

Muchworkhas been done in the pursuit of a general expression for the speed of sound inwater since

the early experiment by Colladon and Sturm. Most often, these contributions have been largely

based on empirical approaches involving either laboratory or field measurements, and some have

been challenged or even deemed obsolete after publication. This section presents a brief history

of select papers on the pursuit of a mathematical expression for the speed of sound in water, with

emphasis on the equations most relevant to this thesis.

“In 1923, Stephenson timed the transmission of a bomb explosion between two hydrophones a

known distance apart in Long Island Sound, while at about this same time, Heck and Service

measured the travel time of pulses reflected from the sea bottom and determined the velocity

from depth obtained by wire sounding. These measurements established the velocity of sound

in sea water for many years thereafter.”

– Robert Urick3

As Urick goes on to explain, the years following World War I saw a focus shift from theory to the

development of better equipmentwithwhich to explore the physical domain, and itwas only around

the 1930’s that enough sea-going experience had come to show the variability in measurements

weren’t solely an artifact of the equipment available, but rather a characteristic of the environment.

Thus, this brief recounting of history shall skip ahead to the late 1950’s, whenWilson first presented

his experiment to measure the speed of sound in distilled water, and later presented his results as a

function of temperature, pressure and salinity4 – his results were subsequently updated to account

for a wider range of salinity values.5

3Urick, Sound propagation in the sea.
4Wilson, “Speed of Sound in Distilled Water as a Function of Temperature and Pressure”; Wilson, “Speed of Sound in

Sea Water as a Function of Temperature, Pressure, and Salinity”.
5Wilson, “Equation for the Speed of Sound in Sea Water”.

46



Wilson’s work substantiated prior work conducted at the Naval Research Laboratory (NRL),

which established a discrepancy against the then-current standard set by Kuwahara’s look-up tables

in the late 1930’s, and his solution consisted essentially of an empirical equation obtained by fitting

581 measurements of sound speed performed on samples collected by the Navy Hydrographic Of-

fice. His paper also included parameterized look-up tables for each of the correction values in his

equation. Prior to Wilson’s work, Greenspan6 had provided tables with sound speed as a function

of temperature in distilled water. Follow-up work on Wilson’s equation, presented in 1971, showed

that there were some inconsistencies with the laboratory measurements used to produce the equa-

tion, thus rendering it obsolete.7

Having provided the aforementioned NRL work on Kuwahara’s table, which Wilson substanti-

ated, Del Grosso revisited this challenge in the 1970’s with 3 key contributions. The first work,

conducted by Del Grosso and Mader, addressed the derivation of an equation from indirect mea-

surements of the speed of sound in seawater samples, collected via interferometry rather than direct

pulse measurements. He also noted that storage may have a non-negligible impact on the sample’s

composition and thus its usefulness for this kind ofwork.8 His secondwork in this set consisted of a

series of tables that elaborate on the equation from his first work, emphasizing parameter ranges of

particular interest such as those related to the open ocean as well as the Mediterranean and Red Sea.

This second work also discussed cautionary arguments which had been raised with regards to the

concept of salinity – this included how salinity may be related to chlorinity and conductivity.9 Del

Grosso’s third work consolidated prior efforts into a formulation that was valid for sea water and

pure water alike, yielding the 1974 equation then referred to as NRL II10 and given here as Eq. 2.1.

6Greenspan andTschiegg, “Speed of sound inwater by a directmethod”; Greenspan andTschiegg, “Tables of the Speed

of Sound in Water”.
7Anderson, Sound speed in seawater as a function of realistic temperature – salinity – pressure domains; Dushaw, Worcester,

Cornuelle, and Howe, “On equations for the speed of sound in seawater”.
8Del Grosso and Mader, “Speed of Sound in Sea-Water Samples”.
9Del Grosso, “Tables of the speed of sound in open ocean water (with Mediterranean Sea and Red Sea applicability)”.

10Del Grosso, “New equation for the speed of sound in natural waters (with comparisons to other equations)”.
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The reference value �000 and single-parameter values Δ�• of Del Grosso’s equation are expanded

in Eq. 2.2, while the multi-parameter term Δ�()% is expanded in Eq. 2.3.

�()% = �000 + Δ�) + Δ�( + Δ�% + Δ�()% (2.1)

�000 = 1402.392

Δ�) = 0.501109398873 × 101)

− 0.550946843172 × 10−1)2

+ 0.221535969240 × 10−3)3,

Δ�( = 0.132952290781 × 101(

+ 0.128955756844 × 10−3(2,

Δ�% = 0.156059257041 × 100%

+ 0.244998688441 × 10−4%2

− 0.883392332513 × 10−8%3,

(2.2)
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Δ�()% = − 0.127562783426 × 10−1)(

+ 0.635191613389 × 10−2)%

+ 0.265484716608 × 10−7)2%2

− 0.159349479045 × 10−5)%2

+ 0.522116437235 × 10−9)%3

− 0.438031096213 × 10−6)3%

− 0.161674495909 × 10−8(2%2

+ 0.968403156410 × 10−4)2(

+ 0.485639620015 × 10−5)(2%

− 0.340597039004 × 10−3)(%

(2.3)

Following Del Grosso’s work, Medwin presented a simplified version of the NRL II equation

with the intent of providing an updated textbook-style formulation. Medwin’s argument was that

while Eq. 2.1 expands to 19 termswith a large number of significant figures (12 for all but one of the

terms), his formulation had a total of 9 terms and far fewer significant figures – enough to compress

the equation to one or two lines and render it suitable for use in handheld calculators. This kind

of convenience, of course, came at the cost of accuracy. Thus, Medwin claimed his equation would

be a suitable substitute to NRL II “in cases where deviations of the order of tenths of 1 m/sec are

tolerable”.11

In 1977, only a few years after Del Grosso’s equation was published, Chen and Millero argued

that work conducted in the intervening period presented a paradox. Per their findings, Del Grosso’s

measurements at 1-atm were the more reliable ones, acknowledging the issues in Wilson’s data for

the same pressure; but it was Wilson’s work, rather than Del Grosso’s, that they found more reli-

11Medwin, “Speed of sound in water: A simple equation for realistic parameters”.
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able at high pressure. Thus, Chen and Millero proceeded to derive a new equation from their own

measurements, which were collected by using an ultrasonic velocimeter.12 The resulting expres-

sion was later endorsed by UNESCO,13 and is given here as Eq. 2.4. The sound speed in pure water

�, () , %) as well as the remaining terms related to salinity are expanded symbolically in Eq. 2.5,

while the numerical values for the various coefficients are given in Table 2.1.

�((,) , %) = �, () , %) + �() , %)( + �() , %)(3/2 + �() , %)(2 (2.4)

�, () , %) = �00 + �01) + �02)
2 + �03)

3 + �04)
4 + �05)

5

+ (�10 + �11) + �12)
2 + �13)

3 + �14)
4)%

+ (�20 + �21) + �22)
2 + �23)

3 + �24)
4)%2

+ (�30 + �31) + �32)
2)%3,

�() , %) = �00 + �01) + �02)
2 + �03)

3 + �04)
4

+ (�10 + �11) + �12)
2 + �13)

3 + �14)
4)%

+ (�20 + �21) + �22)
2 + �23)

3)%2

+ (�30 + �31) + �32)
2)%3,

�() , %) = �00 + �01) + (�10 + �11))%

�() , %) = �00 + �10%

(2.5)

12Chen and Millero, “Speed of sound in seawater at high pressures”.
13Fofonoff and Millard, Algorithms for computation of fundamental properties of seawater.

50



Table 2.1: Numerical coefficients for the Chen and Millero equation for the speed of sound in seawater

Coefficient Value Coefficient Value

�00 1402.388 �02 7.164 ×10−5

�01 5.03711 �03 2.006 ×10−6

�02 −5.80852 ×10−2 �04 −3.21 ×10−8

�03 3.3420 ×10−4 �10 9.4742 ×10−5

�04 −1.47800 ×10−6 �11 −1.2580 ×10−5

�05 3.1464 ×10−9 �12 −6.4885 ×10−8

�10 0.153563 �13 1.0507 ×10−8

�11 6.8982 ×10−4 �14 −2.0122 ×10−10

�12 −8.1788 ×10−6 �20 −3.9064 ×10−7

�13 1.3621 ×10−7 �21 9.1041 ×10−9

�14 −6.1185 ×10−10 �22 −1.6002 ×10−10

�20 3.1260 ×10−5 �23 7.988 ×10−12

�21 −1.7107 ×10−6 �30 1.100 ×10−10

�22 2.5974 ×10−8 �31 6.649 ×10−12

�23 −2.5335 ×10−10 �32 −3.389 ×10−13

�24 1.0405 ×10−12 �00 −1.922 ×10−2

�30 −9.7729 ×10−9 �01 −4.42 ×10−5

�31 3.8504 ×10−10 �10 7.3637 ×10−5

�32 −2.3643 ×10−12 �11 1.7945 ×10−7

�00 1.389 �00 1.727 ×10−3

�01 −1.262 ×10−2 �10 −7.9836 ×10−6
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One key characteristic of the equations presented thus far is that they relied on three environ-

mental parameters to produce a value for the speed of sound: the temperature ) , the salinity ( and

the pressure %. In 1981, Mackenzie set out to propose an equation that yielded viable results for

this same problem by using depth instead of pressure. In his argument, he remarked how tempera-

ture and salinity were themselves measured as functions of depth, and how the previous empirical

equationswere long enough to be effectively incompatible with pocket calculators. WhileMedwin’s

simplified version of Del Grosso’s equation – one of a small set that actually used depth instead of

pressure at the time – was limited to depths of less than 1000 m, Mackenzie’s expression was shown

to have good agreement with pressure-based expressions down to 8000 m depths, and was likewise

brief enough to be “satisfactory for general applications and is particularly convenient when em-

ploying small programmable calculators”.14 Mackenzie’s formulation is given in Eq. 2.6.

2 = 1448.96 + 4.591) − 5.304 × 10−2)2 + 2.374 × 10−4)3

+ 1.340(( − 35) + 1.630 × 10−2� + 1.675 × 10−7�2

− 1.025 × 10−2) (( − 35) − 7.139 × 10−13)�3

(2.6)

The equations presented in this section are considered relevant even today, in the ocean sensing

domain. Indeed, Eq. 2.4 and 2.6 are of particular interest to this work, as they directly informed the

sound speed measurements herein reported. The equations given by Wilson, Del Grosso, and Chen

& Millero are made readily available to users of the SEASOFT software package provided by Sea-

Bird Electronics as part of the interface to the company’s Conductivity-Temperature-Depth (CTD)

probes. In the case of R/V Macrura, this becomes relevant because the onboard CTD is a Sea-Bird

Electronics SBE 37-SI. However, the Laboratory for AutonomousMarine Sensing Systems does not

rely on SEASOFT, but rather uses a serial interface to communicate directly with the CTD onboard

an appropriately equipped autonomous underwater vehicle. Per Sea-Bird’s specifications, the sound

14Mackenzie, “Nine-term equation for sound speed in the oceans”.
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speed reported directly from the CTD via serial interface is computed using the Chen and Millero

formula.15 As a counterpoint, samples collected with other CTD probes external to the vehicle were

processed with the Mackenzie equation, given the convenience of a depth-based expression.

This section has, by now, presented a brief history of the equations used to compute sound speed

values from oceanographic measurements. A key takeaway from the material presented here is

that the parametrization of these equations is non-trivial and empirical, rather than deterministic.

Indeed the motivation behind providing the equations and related parameter tables is to lay the

ground work for a discussion on the need for dimensional reduction of the environmental data in

a deployment context, which was alluded to in Chapter 1 and will be presented in depth later in the

text.

2.2 Acoustic propagation

As explained in Computational Ocean Acoustics16 (COA), there are essentially five types of models

used for acoustic propagation in the sea. These models are shown in Fig. 2.1, which is a reproduc-

tion of an equivalent figure in the aforementioned text (COA, Fig. 1.31). These models differ in the

level of fidelitywithwhich they reproduce the acoustic field; a distinction that is also largely coupled

with the computational cost of each method – at higher fidelity, higher the computational demand.

Additionally, the complexity of the field is also related to the signal frequency. Thus it stands that,

for higher frequencies, ray methods are often the most practical, as they produce a physically in-

tuitive and useful solution at relatively low cost, even if said result is colored by some well-known

numerical artifacts. In contrast, the higher fidelity of other methods becomes increasingly valuable

when computing the acoustic field at lower frequencies, such that the improvements in the model

accuracy justify a manageable shift in cost.

15Sea-Bird Electronics, Application Note 6: Determination of Sound Velocity from CTD Data; Sea-Bird Electronics, Seasoft

V2: SBE Data Processing (Software Manual); Sea-Bird Electronics, SBE 37-SI MicroCAT C-T (P) Recorder (User Manual).
16Jensen, Kuperman, Porter, and Schmidt, Computational ocean acoustics.
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Figure 2.1: Models for acoustic propagation in the ocean.

In ocean acoustics, signals are generally classified as high frequency when they are around a few

kilohertz or above, and low frequency signals are typically understood to be around or below one

kilohertz. This research is concerned with an acoustic communication system operating at a car-

rier frequency of 10kHz, which falls within the higher frequency domain for marine environments.

Furthermore, this work is interested in real-time AUV operations, where the computational capac-

ity onboard the vehicle is limited and efficient operation of all software tools is of the essence for a

successful field deployment. Given the functional requirements of the project, the rest of this work

will be based on ray-based acoustic propagation models.

2.2.1 Ray methods

Ray methods are rooted in the Law of Refraction, also known as Snell’s Law. Anyone who has spent

enough time playing with a magnifying glass, trying to focus the sunlight to a pinpoint, likely has an
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intuitive understanding of the concept of refraction. Arguably, this anchoring on physical intuition

may be the greatest asset of ray-based methods: the insight we can draw from this sort of intuition

can help us interpret and evaluate the results of more complex models. Thus, a brief introduction

of the relevant theory is given hereafter; interested readers are encouraged to visit Chapter 8-C of

David Blackstock’s textbook17 for a more detailed presentation.

cos(\1)
21

=
cos(\2)

22
(2.7)

In the context of acoustics, Snell’s Law is typically given as in Eq. 2.7, expressed in terms of the

grazing angle \• and the corresponding sound speed 2•. Using this mathematical formulation as a

basis, the aforementioned physical intuition can be summarized in the following way: in a layered

environment such as shown in Fig. 2.2, a ray traveling fromone layer to the next will bend such that,

when it enters a region with a faster sound speed, the grazing angle will be proportionally reduced;

conversely, when the ray enters a region with a slower sound speed, the grazing angle will increase

proportionally.

Ray bending alone isn’t sufficient for a viable propagation model, as boundary conditions still

need to be considered. Some numerical experimentation with Snell’s Law may reveal to an inter-

ested reader that a physical limit exists for the equation’s ability to capture a ray’s behavior. Given

a set of initial conditions \1 and 21, a critical sound speed value 22,2@7B exists for the limit \2 = 0,

where cos(\2) = 1. Of course, transmission to layers with sound speed values greater than 22,2@7B

does occur, but this falls into the domain of evanescent waves where the wavenumber 9 is complex;

as this work is concerned with propagating waves (9 is real), evanescent waves and related theory

will not be addressed in further detail18. An alternative framing of this constraint is that, given two

layers with sound speed 21 and 22 such that 21 < 22, there is a critical incoming grazing angle \1,2@7B

17Blackstock, Fundamentals of physical acoustics.
18Readers interested in learning more about evanescent waves are encouraged to read the related sections in ( Jensen,

Kuperman, Porter, and Schmidt, Computational ocean acoustics) for a detailed presentation.
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Figure 2.2: A ray bending through a stack of layers, each with an increasing sound speed 27 < 27+1.

such that the outgoing ray will have a zero-valued grazing angle \2 and the wave will still belong to

the propagating domain.

2.2.2 The Eikonal equation

When visualizing rays in an acoustic field, it is important to recall that these rays are, in essence, de-

fined as the normal vectors to a wavefront. Thus, the next step in framing the acoustic propagation

model in terms of ray methods is to describe the wavefront itself.

The derivation of amathematical expression for thewavefront beginswith the frequency-domain

wave equation, or Helmholtz equation, which can bewritten in Cartesian coordinates as shown in Eq.

2.8. Here, the term 2(x) represents the sound speed as a function of position x, and l is the angular

frequency.

∇2> + l2

22(x) > = −X (x − x0) (2.8)

56



By seeking a solution to the above expression in the special form known as the ray series (Eq. 2.9),

the Helmholtz equation can be rearranged into three equations, equated by the order with respect

to l. These three equations are known as the Eikonal equation, for the terms related to l2; and the

transport equations, related tol andl1−8. The particulars of the derivation are covered in great detail

in ( Jensen, Kuperman, Porter, and Schmidt, Computational ocean acoustics), so they will not be reproduced

here.

>(x) = 47lg (x)
∞∑
8=0

�8(x)
(7l) 8 (2.9)

Of the three expressions derived from the Helmholtz equation, this section is mainly concerned

with the first one. As shown in Eq. 2.10, the Eikonal equation relates the travel time g through a

medium with the velocity 2(x) of the medium. In other words, the Eikonal equation means that the

gradient of the arrival time surface is inversely proportional to the speed of the wavefront.

‖∇g‖2 =
1

22(x) (2.10)

Physical intuition for the effect captured in the Eikonal equation starts with a simple, uniform

domain – that is, one where the sound speed is equal all throughout. Given the uniform domain, it

stands that ‖∇g‖2 will likewise be a constant. Thus, this simple environment, the time fronts will

be circular and centered on the source location, while the gradient will be composed by the radial

projections starting at the source. A convenient characteristic of this simplified scenario is that all

solutions of the Eikonal equation are unique.

The uniform domain is a convenient starting point to build some intuition, but it is also rather

uninteresting on its own. If we then change the sound speed from a constant value to a linear profile,

the time field changes to the one shown in Fig. 2.3. Here, the gradient field (represented by radial

projections in the uniform environment) is now represented by curved paths shown in blue; the
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Figure 2.3: Equal time fronts (black) and time field gradient (blue/arrows) for a linear sound speed profile and

a source located at 1000m depth.

iso-temporal fronts which used to be circles in the base case are now transformed, as sound travels

through the lower depths travel faster than it does in the surface layers.

This simplified scenario does not yet account for boundary interactions, nor does it illustrate how

the non-linearity of the Eikonal equation may lead to multiple valid solutions for more complex

sound speed profiles. These complicating factors are discussed next.

2.2.3 Multipath propagation

One key issue with the Eikonal equation is that its non-linearity may lead to multiple viable solu-

tions, which can cause a number of complications for a user seeking to exploit the kind of informa-

tion therein represented. Additionally, boundary interactions can also add to the number of viable

solutions. Thus, within the field of ocean acoustics, the Eikonal equation is generally solved by the

method of characteristics. In simplified terms, this means rewriting Eq. 2.10 with respect to a series

of curves that are perpendicular to the time fronts g7; these curves (rays) serve as a new coordinate

system, such that the otherwise overlapping (non-unique) solutions in the Cartesian representation
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become unique relative to ray coordinates. Expressed in cylindrical coordinates, this yields Eq. 2.11.

These rays, defined as being perpendicular to the time fronts g7, therefore match the gradient of the

time field which is shown in blue in Figure 2.3.

d@

dA
= 2b (A), db

dA
= − 1

22
m2

m@

dH

dA
= 2Z (A), dZ

dA
= − 1

22
m2

mH

(2.11)

To understand the method of characteristics, it helps to once again begin with a simplified envi-

ronment. Figure 2.4 illustrates a simple examplewhere two viable solutions are shown for a uniform

half-space with sound speed 2, and a source-receiver pair located at xA and x@ respectively. These

two solutions, shown as blue and amber, are the product of boundary interactions and are effectively

indistinguishable from one another in the Cartesian space representation. That is, if we were given

the instruction to select a value g for the receiver coordinates x@ = [F@ , G@ , H@] , we would not have

sufficient information to determine which of the two values g (x@),1 ≠ g (x@),2 to choose (left side of

the figure). In ray coordinates, where location x is of the form x7 = [\0,7, A7] , the solutions become

unique with respect to the ray’s coordinates. These correspond to \0,7, the launch angle of the 7-th

ray; and A7, some strictly increasing coordinate value (such as distance traveled, or time) along the

path of the 7-th ray. The right side of Figure 2.4 illustrates the increasing travel time g along each

of the rays as A increases up to the point A7,@ at which each ray reaches the receiver coordinates. As

this example illustrates a uniform half-space of sound speed 2, the values g7 increase by the simple

algebraic rule g7 = A7/2.

In switching from the Cartesian representation to ray coordinates, we avoid the issue of having

multiple solutions as a product of the nonlinearities in the Eikonal equation – the solutions become

unique in ray coordinates. However, the process of collecting results for a given receiver location

becomes somewhat more complex because we still have to account for how ray coordinates map
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Figure 2.4: Two rays illustrate distinct viable solutions for the Eikonal equation in a simple uniform half-

space.

into Cartesian space. The sample rays shown in Figure 2.4 are actually members of a special subset

of rays known as eigenrays, which connect two points in space. It may be apparent to an attentive

reader19 that a random choice of launch angle does not guarantee the existence of some value A7,@

where the ray would reach the receiver. Thus, a methodology is required to (i) identify these special

rays that connect a source-receiver pair based on their launch angle \0,7, and then (ii) report the

associated viable solutions g7.

The ray coordinates can be described as amanifold representation of Cartesian space; just likewe

consider the travel time g in Figure 2.4 (right), we can likewise express a set of functions @(\0,7, A7)

and H(\0,7, A7) (in the case of a 2D range-depth domain) that map ray coordinates to their Cartesian

equivalent. Assuming a sufficiently fine-grained fan of launch angles and likewise fine enough sam-

pling along the ray distance A, then, one possible numerical method to identify eigenrays that reach

a receiver located at [F@ , G@ , H@] (3D) or [@@ , H@] (2D) would be to use a capture radius from the re-

ceiver position, to detect rays that enter the capture space. This sort of algorithm is well established

in literature and is also used in standard software tools for the field of ocean acoustics.

19Or a readerwhohas played enoughbilliards andhas realized the parallels of the game vis-à-vis this uniformhalf-space

scenario
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2.3 Acoustic tomography and geophysical inversion

The field of acoustic tomography as we know it today originated around 1975, from a collabora-

tion between Walter Munk, Carl Wunsch and Peter Worcester. At the time, Munk was working at

Scripps Institution of Oceanography; Carl Wunsch was at MIT, in what is nowadays the Depart-

ment of Earth, Atmospheric and Planetary Sciences. Peter Worcester was a student under Munk’s

guidance, working on long range (25km) reciprocal acoustic transmission experiments. InWunsch’s

own words, talking about those days:20

After a few days, the Jason director, Dick Garwin, wandered in to ask what we were doing;

when we told him, he said, “You’ve just reinvented [medical] tomography.” The first written

account of the technology was by the three of us in an unclassified Jason technical report. Wal-

ter and I went on to make it practical, based upon collaboration with Worcester and numerous

colleagues from acoustics, engineering, and oceanography. In a later book (Munk et al. 1995),

we attempted a summary of this work.

– Carl Wunsch

At its heart, OceanAcoustic Tomography (OAT) aims to create estimates of the sound speed struc-

ture in a volume of water – much in the same way that medical tomography seeks to map out differ-

ent material properties in the human body. To achieve this, both fields rely on a series of measure-

ments collected from source and receiver arrays configured in such away as to produce overlapping

paths in the intermediate space. These measurements, recorded in the receiver projection space21,

are then matched with an initial (a priori) model and processed as inputs for the inversion problem

to produce an estimate of the volumetric distribution of their respective target parameters.22 In

20Wunsch, “Right Place, Right Time: An Informal Memoir”.
21A more familiar way to think of this may be to think of the projection space as ”camera angles”, from which a scene

is being recorded.
22Deffenbaugh, “Optimal Ocean Acoustic Tomography and Navigation with Moving Sources”; Duda, “Modeling and

Forecasting Ocean Acoustic Conditions”.
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terms of the practical value of OAT, it is worth noting that while Satellite Oceanography gets us

a surface-layer view of what is happening, we often still need information about depth-dependent

variability.

To put things in perspective, Figure 2.5 (a) illustrates a use case of tomography in dental applica-

tions, where the volumetric information devised fromnon-invasivemeasurements is often used as a

reference model to plan surgical procedures. The dental or medical imagery may feel more familiar

or intuitive, as it is more closely connected to the visible aspects of our daily lives; but the practi-

cal value of volumetric reconstruction carries over just as well to our understanding of the ocean

environment and its impact on climatological phenomena. Where medical tomography generally

benefits from having a relatively small target volume, however, OAT generally faces a challenge of

scale; to produce the comprehensive results sought of tomographic solutions, OAT requires arrays

that span tens to thousands of kilometers – to this effect, Figure 2.5 (b) shows twoOAT experiments

deployed in the North Atlantic between 1988-1992, along with a 2D snapshot of the sound speed

at 300m depth.

Another analogy between the medical and ocean acoustics fields may be apparent at this point.

Much like the medical field still finds value in resources such as 2D X-ray images, which are gener-

ally more accessible than tomograms, the domain of ocean acoustics also draws notable value from

less comprehensive techniques. Ocean Climate Thermometry (OCT) is one such example, where

the system may be reduced, in the extreme, to recording data for a source-receiver configuration

covering a single geodesic path in order to produce a path-averaged estimate of the sound speed.

This value of sound speed is, in turn, closely related to the path-averaged temperature. Indeed, we

can compare OCT with single-point temperature measurements, which are subject to highly local-

ized variability related to turbulence and internal waves; OCT can provide a relatively cost-effective

view into the average temperature of the ocean basins. Although it is much more spatially limited

when compared to OAT, even the simplest form of OCT can become highly valuable when looking
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Figure 2.5: A comparison ofmedical and ocean acoustic tomography. a) A sample volumetricmodel produced

by Cone-beam Computed Tomography (CBCT), which is often used in medical applications to

plan surgical procedures. b) Locations of two experiments employing ocean acoustic tomogra-

phy in the North Atlantic, overlaid on a snapshot of sound speed at 300m depth derived from

a high-resolution numerical ocean model. These volumetric reconstructions enable users to ex-

plore distinct cross-sections of a target volume, compared to non-separable 2Dprojections. Image

credits: a) Jose D. Viquez, DDS, FRCD(C); b) Brian Dushaw, Ph.D. (released to public domain).

63



at changes of the average temperature estimate of a large body of water over an extended period of

time.23

2.3.1 The linearized inverse problem

In order to address the inversion problem, let us first consider the forward problem as stated in

Equation 2.12, where F represents perturbations in the sound speed profile and G represents the

measured variation in ray travel times. The measurement matrix� captures the modeled transfor-

mation from sound speed perturbations F to resulting travel time variability G. In addition to this

linear relation, there are two sources of error introducedwith the noise vector <: truemeasurement

noise as well as mismatch between the true perturbations and the linear model.

G = �F + < (2.12)

The measurement matrix � captures the relation between deviations from a base model. Its en-

tries can be populated by accounting for Fermat’s principle, which can be loosely stated as the in-

tuitive idea that neighboring paths will have a very similar travel time, with variations captured in

second-order terms. In otherwords, Fermat’s principle states that the time integral will be indepen-

dent of small perturbations in the integral path – so, the travel time calculation may be performed

as if the path was unchanged, and following the derivation given by Deffenbaugh (“Optimal Ocean

Acoustic Tomography and Navigation with Moving Sources”) yields the relation given in Equation 2.13.

�7< =
97(<ΔH)

V

√
1 − 22

22B

2

�����min(2B,2(<X H))

min(2B,2((<−1)ΔH))
(2.13)

In Eq. 2.13, the term 97(H) represents the number of times the 7-th ray passes through depth H,

where H = <ΔH in the discretized formulation. V is the rate of change of the sound speed profile

23Duda, “Modeling and Forecasting Ocean Acoustic Conditions”.
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with respect to depth, V =
2(<ΔH)−2((<−1)ΔH)

ΔH . The sound speed term 2B is defined as the sound speed

for which the ray would become horizontal.

Where Eq. 2.12 aims to convert sound speed perturbations into predicted travel time variation,

capturing the forward problem, the objective of the tomography problem is instead to relate mea-

sured travel time variations to a best estimate of the sound speed perturbations that caused them.

The tomography problem is, therefore, the inversion of Eq. 2.12 to solve for the sound speed per-

turbations F.

As mentioned earlier, Ocean Acoustic Tomography generally targets large volumetric scales in

the order of many kilometers, which can be compared to the relatively small targets in medical

applications. This difference in scale translates to an increased operational cost incurred for each

unique sampling path – each new eigenray, connecting sources and receivers in the experimental

setup. Accounting for this constraint, OAT nonetheless seeks to solve for the volumetric model of

the sound speed profile using a limited number of samples, and the inversion problem for OAT is

therefore significantly under-determined.

Generally speaking, the most common techniques used to address the under-determined nature

of the tomography problem can be described as order-reduction approaches. The idea behind this

type of formulation is to exploit model assumptions, or prior data, to rewrite the problem into a

form that couples the numerous dimensions of variability into the most typical or most significant

modes. This can be achieved with Empirical Orthogonal Functions (EOFs), which are generally

comparable to the components produced by Principal Component Analysis (PCA). One notable

difference between the two is that some EOF applications may introduce a smoothing step or some

other minor alteration to the function set, after extracting the base components equivalent to PCA.

The conventional EOF or PCA approach consists of developing a covariance matrix from a set of

samples – in the case of tomography, these samples would be sound speed profiles. The dominant

eigenvectors of the resulting covariance matrix are then taken as the basis vectors for the reduced-
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order representation. As such, these methods generally provide a means of lossy data compression,

and are well suited to fit measurements in the same domain as the model. In the context of tomog-

raphy, where sampling G occurs in a different domain than the model representation F, the Optimal

Orthogonal Function (OOF) method produces the set of basis functions q that represent the great-

est possible reduction of error in the inversion problem by accounting for the observability of the

variations in the sound speed profile.24 Other less direct approaches, such as dictionary learning,

have also been explored.25

2.4 Positioning

The classical tomography approach – be it medical or OAT – generally expects that the position of

sources and receivers are known. This is because those positions are typically used as static refer-

ence points, such that the inversion problem can focus on seeking the convergence of the volumetric

model alone. Doing otherwise means adding complexity to the inversion problem, making it more

challenging to solve and making the output much less reliable. Similarly, much of navigation first

begins with determining one’s position in order to inform path planning from that point forward –

positioning precedes navigation.

In very general terms, positioning systems can generally be described by two fundamental mod-

els, known as spherical and hyperbolic positioning. The key difference between these two systems

lies in how they handle timing information. Thus, it stands that timing precedes positioning much

like positioning precedes navigation.

Spherical positioning requires knowledge about timing in a system-wide sense – it needs to know

when signals are transmitted andwhen they are received. This is because spherical positioning relies

on a simple ranging model, which can be directly related to the signal’s travel time. Equation 2.14

24Deffenbaugh, “Optimal Ocean Acoustic Tomography and Navigation with Moving Sources”.
25Bianco and Gerstoft, “Dictionary learning of sound speed profiles”.
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Figure 2.6: Spherical positioning uses travel time information directly, and thus requires knowledge about the

system’s synchronization. a) Single-beacon range shown as red circle; simple ranging is possible

due to available timing information, but distinct positions cannot be isolated. b) Two-beacon posi-

tion, with red circles marking true position (filled) and ambiguous solution (unfilled). c) 3-beacon

solution shows how additional measurements help break the ambiguity and reduce uncertainty

about the true solution.

relates the range @ between a source and receiver to the travel time g byway of the signal propagation

speed 2.

@ = 2g (2.14)

Using this simple relation, a vehicle’s position can be estimated relative to the positions of a set of

beacons. The solution, illustrated in Figure 2.6, can be described as minimizing the error between

the ranges measured per Eq. 2.14 and the ranges derived from the known beacon positions and

the estimated vehicle position. Thus, a single beacon will at best produce a range from itself; two

receivers would produce two distinct solutions, but would not be able to break the ambiguity. A

system with 3 or more beacons, however, would be able to collect enough information to break the

ambiguity and give a unique solution.

Hyperbolic positioning treats time information differently, in that it uses differences in travel time,

and can therefore remain oblivious to the details about the time of transmission. By rewriting the

travel time as the difference between transmission and reception times (g = BRx − BTx), we can

rearrange Eq. 2.14 to illustrate this point. The relation between the range difference and the travel
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Figure 2.7: Hyperbolic positioning uses differences in travel times, and does not require knowledge about the

system’s synchronization. a) A minimum of two beacons are needed to produce a time differ-

ence and a single hyperbola. b) Three beacons can produce two hyperbolas, using one node as

a reference point for the time difference. c) In the 3-beacon system, the position estimate be-

comes underdetermined along the baseline extensions, where the hyperbolas become tangential

(red line).

time difference allows us to translate time measurements into hyperbolas – lines that preserve the

range differences – which then form the basis upon which this flavor of positioning operates; these

concepts are illustrated in Figure 2.7.

Δ@ = 2Δg = 2
[
(BRx,1 −��BTx) − (BRx,2 −��BTx)

]
(2.15)

These two models, spherical and hyperbolic, can be regarded as two extremes of the timing in-

formation domain; the first implies that the system-wide time information is known exactly (zero

variance), while the latter represents the scenario where the timing variance approaches infinity.

These extremes also have well-defined performance thresholds, in terms of their ability to estimate

position from noisy measurements, given by the respective Cramér-Rao bounds. Between these

two extremes lie the models for which the timing information is known with finite but non-zero

variance; for example, when one node’s clock tends to run faster than the rest.26

Real world applications of the above models have been well documented in literature over the

years; at least one of them is most likely quite familiar to you, the reader. Nonetheless, a brief

26Deffenbaugh, Bellingham, and Schmidt, “The relationship between spherical and hyperbolic positioning”; Deffen-

baugh, “Optimal Ocean Acoustic Tomography and Navigation with Moving Sources”.
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presentation of some such examples follows, in recognition of their relevance to this work. A more

extensive, if not completely thorough, presentation of these examples was recently published27 and

is recommended to interested readers.

2.4.1 The Global Navigation Satellite System (GNSS)

Although we rarely make the distinction in casual conversation, there is a notable difference be-

tween theGlobal Positioning System (GPS) and a genericGlobalNavigationSatellite System (GNSS).

The former actually refers to a specific GNSS, which is owned by the US government, and is op-

erated and maintained by the US Air Force. The US-based GPS is one of four such satellite net-

works, also referred to as constellations, in orbit: the Russian GLObal NAvigation Satellite System

(GLONASS) was deployed around the same time asGPS; the Chinese BeiDou system reached global

coverage with its 3rd generation, whose last satellite was launched in 2020; and Galileo, the Euro-

pean system, has been operational since 2019. Each of these systems generally consists of 20-35

satellites; the United States, for example, is committed to maintaining the availability of at least 24

operational GPS satellites, 95% of the time. As of this writing, the US government reports 31 oper-

ational units for GPS, across modern and legacy satellites28; the European system reports 22 units

available for use on the Galileo constellation29.

The various GNSS systems provide timing, positioning and navigation services, which are essen-

tial to the scientific community; and which are of significant value to the general public as well. To

do so, the satellites themselves carry high-precision atomic clocks; but the heart of GNSS is actu-

ally land-based. Tracking stations on Earth provide timing updates to GPS satellites twice a day, for

example, and also relay satellite position information. The satellites, in turn, are constantly broad-

casting their position and timing information. On the user side (client-side), once enough signals

27Van Uffelen, “Global Positioning Systems: Over Land and Under Sea”.
28https://www.gps.gov/systems/gps/space/
29https://www.gsc-europa.eu/system-service-status/constellation-information
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are detected and tracked by the GPS receiver, the sensor can determine its own position by using

Eq. 2.14, with 2 set to the speed of light.

This is a slight simplification, of course, but one that is good enough in the scope of this brief

discussion. From Eq. 2.14, and given the large value of the speed of light (299,792,458 meters

per second), it should be apparent that even slight synchronization errors can lead to significant

range errors in GNSS applications. Additionally, ionospheric variability and other environmental

effects can change the true value of the propagation speed 2 and introduce additional error to the

system. To illustrate this, let’s again consider Figure 2.6, which shows the 3 beacon ranges on the 2D

scenario perfectly overlapping at the receiver location (the 3D problem handled by GNSS requires

a minimum of 4 satellites to break the ambiguity). A mismatched propagation model would offset

those range rings, making them larger or smaller than they are in this figure. Say, for example, that

the true propagation speed was slightly slower than modeled; then, the travel time measured will

increase accordingly.

In this simplified case, the receiver knows nothing about themismatch and thus it will keep using

the model speed to project the expected ranges; the rings produced by the model would be larger

than those shown in the figure. The true position of the vehicle would still be expected to be within

the area where all circles intersect, but the optimization problem can no longer set the error to

zero as in the purely theoretical scenario. In the field, these sources of error will also vary for each

satellite-receiver path; they translate to uncertainty in the final output. As was mentioned before,

the uncertainty of the model’s output is well characterized by the Cramér-Rao bounds.

As may be expected, there are indeed applications where additional information about the model

mismatch is accounted for, in order to reduce the uncertainty of the position estimator. One ex-

ample of such a GNSS enhancement is the case of real-time kinematic positioning (RTK). The RTK

paradigm uses a static reference station to determine the necessary corrections with respect to the
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conventional GNSS solution, and to relay this additional information to nearby vehicles in order to

improve the performance of onboard position tracking.

2.4.2 Acoustic positioning

There is one key difference between GNSS and acoustic positioning, in that the former relies on ra-

dio waves (the L1 carrier frequency used by satellites corresponds to 1575.42 MHz), while the latter

relies on mechanical pressure waves. Beyond that, the underlying principles are generally the same

as those described earlier, for spherical and hyperbolic positioning. In the context of underwater

vehicles, we have the advantage that depth-sensing can resolve one of the dimensions, reducing the

tracking problem to a 2D scenario. Furthermore, 2-way travel time systems or synchronized clocks

may be used to track timing information, thus moving the estimator’s performance towards that of

the spherical positioning model.

Traditional acoustic positioning tends to break down into 3 categories, depending on the charac-

teristic length of the tracking system. Long baseline (LBL) systems tend to have beacons spread far

out, with their positions carefully surveyed or closely tracked with a GPS-enabled surface expres-

sion, and typically operate in the order of hundreds of meters to several kilometers. Short baseline

(SBL) systems typically have beacons placed along the span of a surface ship, and tend to operate

in a much smaller scale – precision tracking is generally only available in the vicinity of the surface

ship. Ultra-short baseline (USBL) systems further compress the beacon span to a small transducer

array, and generally use phase information detected by the array (which relates to the arrival angle

using a technique known as beamforming), alongwith the arrival time, to produce a vehicle position

estimate.
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2.5 Autonomy

The concept of autonomous vehicles – along with the plethora of challenges these unmanned sys-

tems face – have become a part of the public conversation thanks to the growing presence of ad-

vanced driver assistance systems (ADAS) onboard commercially available cars and trucks. Although

itmay be somewhat less visible to the general public, the autonomy conversation has also permeated

the shipping industry at large.

In 2018, Boston-basedSeaMachines announced a contractwith theDanish companyA.P.Moller-

Maersk – one of the largest container ship lines in the world. Per this contract, the situational

awareness system developed by Sea Machines would be trialed onboard one of Maersk’s container

ships as a means of providing the ship operators with additional information that may help reduce

human error. That same year, Rolls-Royce Commercial Marine30 and the Finnish ferry operator

Finferries demonstrated fully autonomous operations with the car ferry Falco, which operated in

the Turku archipelago. A third example of autonomy in the shipping industry is given by MV Yara

Birkeland, developed by chemical company Yara International and technology enterprise Kongsberg

Maritime. MV Yara Birkeland was designed in 2017, and departed on its maiden voyage the 19th of

November, 2021.

2.5.1 Middleware autonomy

At the heart of any autonomous vehicle used in industrial applications (as exemplified previously)

or in research, there is some flavor of decision-making infrastructure that justifies the name. This

infrastructure generally consist of a set of collaborative processes built on top of middleware archi-

tectures; sensor drivers, for example, can interface with mission manager apps to determine what

actuator signals are needed to move a robot in the desired direction. Within the AUV domain, three

30Rolls-Royce Commercial Marine (RRCM) was acquired by the Norwegian technology group Kongsberg Gruppen.

The acquisition was finalized on April of 2019, and RRCM officially became part of Kongsberg Maritime from that

point forward.
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Figure 2.8: The MOOS autonomy middleware uses a centralized publish-subscribe architecture.

such middleware resources tend to stand out: the Mission Oriented Operating Suite (MOOS),31 the

Robot Operating System (ROS),32 and the Lightweight Communications and Marshalling library

(LCM).33

The core idea of sharing information between different processes and vehicles is a common one.

However, the middleware options above differ in terms of their transport protocol and centraliza-

tion. LCM, for example, uses the low latency but unreliable user datagram protocol (UDP) in a

decentralized architecture. MOOS and the original ROS1 both use the transmission control proto-

col (TCP) in a centralized structure; the centralized publication-subscription scheme in MOOS is

shown in Figure 2.8. ROS2 expanded on its predecessor by adopting the Data Distribution Service

(DDS) specification as its base layer. This change enabled ROS to benefit from the decentralized

discovery capabilities of DDS, as well as reliable message delivery even on the generally unreliable

UDP. DDS ismanaged by theObjectManagement Group (OMG), an international technology stan-

dards consortium.

High-level middleware such as ROS and MOOS benefit primarily from their developer ecosys-

tems,more so than from the specific details of their plumbing. Given its use for this research project,

31Newman, “MOOS-mission orientated operating suite”.
32Quigley, Gerkey, Conley, Faust, Foote, Leibs, Berger, Wheeler, and Ng, “ROS: an open-source Robot Operating Sys-

tem”.
33Huang, Olson, and Moore, “LCM: Lightweight Communications and Marshalling”.
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Figure 2.9: The MOOS-IvP autonomy software suite introduces the IvP Helm, which enables complex

decision-making through multi-object optimization.

the remainder of this section will focus on MOOS in particular – and on one of the key resources

in its ecosystem: the MOOS-IvP suite.

The MOOS-IvP suite builds on top of the MOOS middleware, adding a number of applications

and utilities that bring significant value for autonomous vehicle operations. The IvP Helm, which

lives at the heart of this expansion suite, stands out for its role in enabling complex decision making

– IvP stands for Interval Programming, the multi-objective optimization method used by the helm.

As shown in Figure 2.9, the IvP Helm uses a behavior-based architecture; its internal IvP solver

interprets the needs of the different (potentially competing) behaviors into a unified decision that

can then be relayed to the vehicle’s actuator controllers.34

34Benjamin, Schmidt, Newman, and Leonard, “Nested autonomy for unmanned marine vehicles with MOOS-IvP”.
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2.5.2 Communications

One of the key limitations of AUV operations is the limited throughput available for underwater

communications, which is generally in the order of 100 bits per second, and often less than that.

Though the MOOS-IvP suite provides many valuable resources for the operation of Autonomous

Underwater Vehicles, one layer that is not readily addressed in the suite is that of this acoustic com-

munications interface.

In response to this need, the Goby Underwater Autonomy Project was initially developed with

the intent to create a unified framework for collaboration between multiple marine vehicles, by

seamlessly incorporating communication solutions across multiple interfaces: acoustic, ethernet,

wifi, and serial. Earlier versions were designed to work with MOOS-IvP and the associated soft-

ware developed at MIT LAMSS. Now in its third version, the project has become a full middleware

in its own right; Goby3 provides a publish-subscribe solution built on the concept of nested com-

munications, where different layers meet the needs for inter-thread, inter-process and inter-vehicle

communications.35 Although Goby3 is a middleware in its own right, the project has preserved

compatibility with the MOOS-IvP suite, making it possible for users to continue to benefit from

the extensive work captured in the IvP Helm, while also adding advanced capabilities in terms of

communication.

In addition to providing access to any choice of transport mechanisms, such as the acoustic com-

munications link, the Goby3 project also offers the flexibility to work with any number of data

marshalling schemes such as Google Protocol Buffers (GPB) and JSON. Where throughput is of

great concern for the inter-vehicle layer when using an acoustic communications link, the project

offers support for the Dynamic Compact Control Language (DCCL), which provides a flexible yet

powerful way to marshal data into very small datagrams, or packets. To understand the importance

of efficient data packaging for underwater operations, it helps to compare the acoustic communi-

35Schneider, “Goby3: A new open-source middleware for nested communication on autonomous marine vehicles”.
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cations throughput with that of the link used to reach vehicles on Mars. Though latency may be

higher, the typical throughput of the Mars to Earth link is generally in the order of 104 bits per

second. Thus, the fact that DCCL compression offers a 50-80% improvement over pure GPB or a

Python struct (packed binary data class) is quite valuable.36

2.6 Summary

This chapter has introduced key concepts across various domains: the principles of sound propa-

gation, including how they are used to measure properties of the world’s oceans; the core methods

for positioning, and how they are embodied in real-world applications, both over land (GNSS) and

below the sea (LBL, SBL, USBL); the basics of vehicle autonomy, along with some examples of well-

established frameworks.

Additional background material that is relevant to a specific chapter will be presented therein.

Such is the casewith beamforming and time-to-intercept techniques, used inChapter 3 for behavior

classification; the aforementioned signal processing techniques are thus presented in Section 3.2.1.

36Schneider, Petillo, Schmidt, and Murphy, “The Dynamic Compact Control Language version 3”.
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3 A Machine Learning primer

“How do you know? It’s a question we need to ask more often, both of ourselves and of others.

The power lies in its frankness. It’s nonjudgmental — a straightforward expression of doubt

and curiosity that doesn’t put people on the defensive.”

― Adam M. Grant, Think Again: The Power of Knowing What You Don’t Know

One of the essential features of the scientist’s mindset, Grant goes on to explain in his book, is

their innate curiosity. Sometimes, that inquisitiveness may be directed at a problem – “how can we

solve this?” – but other times, it is (and should be!) directed at the proposed solution. This line of

questioning is, after all, the one that allows us to explore new ways of handling the problem, and to

recognize gaps or flaws in our prior views. Given new information, the scientist’s approach is then

to adjust his thinking accordingly.

This chapter opens with a brief history of Machine Learning (ML). With this historical founda-

tion in place, the chapter then explores Grant’s question in twoways, framedwithin the experiential

learning process. The first angle comes from the perspective of an autonomous vehicle, and under-

girds the entirety of this thesis: how can the vehicle evaluate information it has collected already,

about its environment or about its collaborators, to inform its decisionmaking process? The second

angle belongs to you, the reader, as it did tome in conducting this work. For this second perspective,

the original question transforms into two threads. First, how can we be confident we understand

the information available to the vehicle? And then, do we truly understand the flow of such infor-
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mation through the vehicle’s decision pipeline? In short, this chapter introduces some of the key

concepts and lower-level techniques of ML in the context of two experimental challenges. These

concepts and methods constitute the building blocks for more advanced ML techniques which will

be discussed later in the text.

From a technical standpoint, the core contributions of this chapter are (1) the implementation

of a self-contained vehicle behavior classification algorithm that supplements the well-established

bearing-based target tracking signal with a Time-To-Intercept (TTI) estimation algorithm similarly

based on passive sensing, to increase the amount of information drawn from the acoustic envi-

ronment for the classification task;1 and (2) the implementation of a related but distinct classifier

designed for an environment characterization application, this one related to external data sources

rather than design choices to inform the construction of reference models.2

3.1 A brief history of Machine Learning

The termsArtificial Intelligence (AI) andMachine Learning (ML) arewidely known at this point; with-

out necessarily understanding the intricacies of the words, there is a reasonable expectation that

these words may be known and even spoken in the average household. This may be a product of

the near ubiquity of smartphones, the far-spread use of social networks or our modern-day depen-

dence on the internet and particularly on search-engines. Whatever the causes that brought us here,

concepts like voice and facial recognition, smart news feeds and predictive search suggestions are

all a thing of daily life in much of the world.

When considering humankind’s desire for what we now call AI, modern day experts in the field

have even drawn a line back to Greek mythology. One of the stories highlighted was that in which

1Fischell, Viquez, and Schmidt, “Passive acoustic tracking for behavior mode classification between surface and un-

derwater vehicles”; Fischell, Viquez, and Schmidt, “Machine learning for behavior classification of passively tracked

vessels”.
2Viquez, Fischell, and Schmidt, “Estimation of the acoustic environment through machine learning techniques”.
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the celestial artificer, Hephaestus, crafted the automaton Talos as a gift to Minos; his machine was

meant to help the first king of Crete guard his island. Other stories have also been pointed to, in

which inventors see their creations brought to life. With this vision of artifacts capable of thought

and actionof their own, it is no surprise thatwhen computerswere first conceived, peoplewondered

if they would ever become intelligent.3

The early days of artificial intelligence were centered on using computers to solve difficult, but

well-defined problems. Where these problems could be described with clear mathematical rules,

they would often provemuch easier to solve with a computer than it was to solve them by hand. But

problems that are relatively simple for humans to solve intuitively – problems like voice and facial

recognition, the examples mentioned earlier – carried too much complexity to be easily captured

in a set of hand-crafted mathematical rules. Thought they were intuitive for us, these problems

were difficult for a computer to solve. This, then, became the goal of machine learning; and, for the

more complex of problems, the goal of deep learning (DL) specifically: in simple terms, the objective

was to enable a computer to learn from experience, from data, to identify its own choice of rules

whichwould then allow it to solve those tasks that are intuitive to us but difficult for us to formulate

mathematically.

Bringing it back tomodern day, the field of deep learning has now gone through three core waves

of interest. The first of these spanned the 1940s-1960s, when the field was known as cybernetics; this

first wave captured developments such as the K-means clustering algorithm and the perceptron

algorithm. The second spanned the 1980s-1990s, under the name of connectionism, was sparked

by the development of the backpropagation algorithm. The third wave of interest in AI and ML

principles, which we are living through, is generally considered as starting around 2006.4

3Goodfellow, Bengio, and Courville, Deep Learning.
4Goodfellow, Bengio, and Courville, Deep Learning; Bianco, Gerstoft, Traer, Ozanich, Roch, Gannot, and Deledalle,

“Machine learning in acoustics: Theory and applications”.
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The literature on artificial intelligence and machine learning is extensive, and has covered many

distinct algorithms and applications, as well as general resources and methodologies. Borrowing

from the concepts of the Experiential Learning Theory,5 the next sections in this chapter will intro-

duce concepts of ML in the context of two experimental challenges6. However, readers interested

in learning more about the field of Machine Learning in general are encouraged to seek some of

the aforementioned literature, of which the following select texts are recommended: Bishop (Pattern

recognition and machine learning); Goodfellow, Bengio, and Courville (Deep Learning); Schölkopf and Smola

(Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond). In the context of

ML for acoustics, the survey by Bianco, Gerstoft, Traer, Ozanich, Roch, Gannot, and Deledalle (“Machine

learning in acoustics: Theory and applications”) is also highly recommended.

3.2 Behavior classification : understanding your signals

In seeking to teach a machine to perform a new task, we as developers and operators can benefit

from reflecting on our own learning process. Kolb’s learning theory can be summarized as a four-

stage cycle, consisting of: (i) having a concrete experience as active participants; (ii) reflecting on our

observation from that experience, paying close attention to instances such as when what happened

was not what we expected; (iii) adjusting our expectations, or developing a new understanding of

what happened, a process also known as abstract conceptualization; and then (iv) engaging in ac-

tive experimentation, testing our new understanding and expectations to new situations. As a first

applied example of ML, then, let us consider the task of behavior classification in the light of those

first three stages.

The task at hand consists on the application of ML techniques to enable an AUV to perform

classification of an external collaborator’s behavior; that is, to determine what the collaborator is

5Kolb, The experiential learning theory of career development.
6”I hear and I forget. I see and I remember. I do and I understand.” This quote, attributed to Confucius, summarizes

Kolb’s theory wonderfully; the crux of Experiential Learning Theory is that a person learns through action.
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doing without engaging in direct and explicit communication. Thus, the first three stages can be

regarded as follows:

1. Baseline observations: what have we seen in the field, which may relate to this task? Which

signals and tracking techniques can we take advantage of?

2. Reflecting on the challenges: what has made, or could make, this task a challenge with re-

spect to the earlier observations? Are there any apparent limitations to the chosen inputs?

3. Recurring themes as signals: can we identify recurring themes, and use them to develop a

new understanding of the system? How much of this new understanding can we carry with

us to new challenges in the future?

3.2.1 First stage : baseline observations

These baseline observations effectively amount to a supplement of the background presented in

Chapter 2. They are presented here, in the context of the particular application for which they are

used in this thesis.

Swarm operations : a collaborative framework

With the advent of lower-cost AUVs, a small fleet of moderately equipped vehicles may well become

a more attractive proposition than that of a single, large vehicle equipped with top of the line sen-

sor systems.7 Even if the overall cost remained the same across both scenarios, a fleet of smaller

vehicles could still benefit from covering a large area in a smaller amount of time. Indeed, the same

fleet concept carries over to search and rescue operations over land, where teams of volunteers and

trained personnel sweep an area in a coordinated fashion, in hopes of minimizing the odds that

any critical clues will be missed. While AUV operations were conducted as part of the Malaysia

7Viquez, Fischell, Rypkema, and Schmidt, “Design of a general autonomy payload for low-cost AUV R&D”.
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Airlines flight 370, the search over an area of 860 square kilometers spanned 70 operational days;8

how much faster could this have been done with a suitable fleet of smaller vehicles?

In this kind of operations, time is generally considered a critical factor, and when an operation

faces the added risk that a target will be displaced (say, by ocean currents, for example), the impor-

tance of a timely search becomes ever more significant. Sontag (Blind man’s bluff : the untold story of

American submarine espionage) tells the story of how a similar search operation conducted in the late

1960’s nearly ended in failure. The team’s efforts had been concentrated in thewrong area formuch

of their time, and the worsening weather had caused leadership to order an end to the search. It was

only the persistence of Chester Buchanan, one stubborn oceanographer and senior NRL scientist;

and the wits of John Craven, the chief scientist of the Special Projects Office of the US Navy who

helped pioneer the use of Bayesian search techniques to locate objects lost at sea.

From the above historical events and many more experiences like them, along with the new-

found availability of lower-cost underwater vehicles, is that research projects in the AUV commu-

nity steered towards swarm operations. Formation control, for example, can be a challenge for a set

of vehicles operating in a current or other drifting conditions,9 especially if they are tightly packed

and have limited communication capabilities. As underwater communications imply hardware and

power requirements that increase the cost of these smaller-scale vehicles, there have also been some

projects that look at enabling performant single-beacon navigation for these vehicles, such that co-

ordinated fleet operations can be conducted without the need for active acoustic hardware on all

units.10

8LeHardy and Moore, “Deep ocean search for Malaysia airlines flight 370”.
9Rypkema, “Distributed Autonomy and Formation Control of a Drifting Swarm of Autonomous Underwater Vehi-

cles”.
10Rypkema, Fischel, and Schmidt, “Closed-Loop Single-Beacon Passive Acoustic Navigation for Low-Cost Au-

tonomous Underwater Vehicles”; Rypkema, “Underwater & Out of Sight: Towards Ubiquity in Underwater

Robotics”.
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Time to intercept : a collision avoidance system

Collision avoidance, in a general sense, presents many challenges. We see these difficulties on the

road every day, where we have to judge other drivers’ behavior and alertness. We also have to ac-

count for road conditions, and how the weather may affect our ability to safely operate a vehicle.

These challenges carry over to self-driving cars, as their perception of theworld differs fromours; in

someways for the better, but in others for theworse. While significant progress has beenmade in the

development of advanced driver-assistance systems (ADAS), failures in self-driving vehicle systems

and their operator’s behavior have ultimately led to accidents;11 as similar accidents have occurred

with purely human-operated vehicles, these events ultimately serve to emphasize the challenges of

collision avoidance – a difficult task for human and machine alike. Though they are relatively un-

common in commercial aviation, mid-air aerial collisions between two planes have also occurred

in the past.12 Marine vehicles are not immune to this kind of tragedy either, with the events in-

volving the US Navy’s destroyers USS Fitzgerald and USS John McCain serving only as two recent

examples.13

The standard sensor suitewehave come to expect of topof the line ships–GPS for self-localization;

the automatic identification system (AIS) to share position information with nearby vessels; radar

and other sensors for additional detection capabilities – has proven insufficient for preventing

costly accidents. With the intent of augmenting the information available to marine systems for

collision avoidance, US Patent 8,830,79314 described a system that could estimate time-to-intercept

(TTI) from the acoustic signal of an approaching vessel. The patent’s approachparted fromEquation

3.1, which states the expected acoustic intensity �3� to be detected by a receiverwhen accounting for

11Singhvi and Russell, “Inside the Self-Driving Tesla Fatal Accident”; Griggs and Wakabayashi, “How a Self-Driving

Uber Killed a Pedestrian in Arizona”.
12National Transportation Safety Board, Midair Collision over George Inlet de Havilland DHC-2, N952DB, and de Havil-

land DHC-3, N959PA; National Transportation Safety Board, Mid-Air Collision: Ongoing Investigation, Accident No.

CEN21FA215.
13Rich, “7 Navy Sailors Missing AFter U.S. Destroyer Collides With Merchant Vessel Off Japan”; Beech and Haag, “10

Missing After U.S. Navy Ship and Oil Tanker Collide Off Singapore”.
14Schmidt and Benjamin, System and Method for Collision Avoidance in Underwater Vehicles.
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range-decay relative to a constant source. This formulation generally assumes cylindrical spreading

as the more conservative basis; cylindrical spreading is also a more likely approximation for shal-

low water environments, for which this system was originally envisioned. The TTI formulation is

thus captured in Equation 3.2, where ¤�meas represents the change in acoustic intensity measured by

a sensor in the field; the time-to-intercept value is inversely proportional to the measured change

in intensity.

�3� = �0 − 10 log10(@) = �0 −
10 log(@)
log(10) (3.1)

TTI ≡ −@¤@ =
10

log(10) ¤�meas

(3.2)

Beamforming : tracking relative bearings

Whether we talk about the children’s game “Marco Polo” or a bat’s use of echolocation, the follow-

ing statement stands true: the direction from which a signal is detected is very important in many

applications. In the domain of signal processing, the spatial filtering process related to determin-

ing the direction from which a signal is coming into a receiver array is called beamforming. Fur-

thermore, reciprocity applies here; the same process can be used to transmit signals in a particular

direction. Thus, what humans and bats do naturally can be transferred to other applications – we

can observe these two processes (directional transmission and reception) used in modern high-end

wireless communications, for example. Top-of-the-line wireless routers feature beamforming ca-

pabilities as a means of lowering power consumption while attaining better performance – such as

reaching targets at longer ranges. The same principles apply, whether we are talking about the elec-

tromagnetic waves of wireless radio communications or the mechanical pressure waves of acoustic

systems – the latter being the case for that well-known children’s game and the bats mentioned be-
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Figure 3.1: An illustration of fundamental concepts in beamforming. a) A 10-element line array in 2D space,

with a plane wave input; the plane wave is traveling in the direction a (system state shown for

B = 0). b) The signal recorded by each receiver as a function of time. c) The signal phase recorded

for each receiver when processing a snapshot of the data (as shown in b).

fore, and for the acoustic systems employed onboard autonomous underwater vehicles and crewed

submarines alike.

Let’s begin the presentation of the mathematical formulation of the conventional beamformer by

setting a physical point of reference. Figure 3.1(a) shows a line array in 2D space, and an incident

plane wave that serves as input to the elements of the acoustic array. For the purposes of this dis-

cussion, let’s consider the left-most blue line as a global leading edge of the signal (the line that runs

closest to element no. 1); all subsequent blue lines represent the start of a new cycle in the signal, and

the signal in this case is a sinusoidal function. As drawn, the plane wave is traveling in the direction

of vector a, at some angle \ from the horizontal axis. For the 2D case, the direction vector a is given

by:

a =


− cos(\)

− sin(\)

 (3.3)
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For a planewave propagating in a locally homogeneousmedium, thewave fronts shown in Figure

3.1(a) can be described by the wavenumber k:

k =
l

2
a (3.4)

In a simple harmonic oscillator, wewould typically have the system’s phase given as the product of

time B and the system’s frequency l; sincewe are consideringmultiple receivers distributed in space,

let us use a value g< = B + 2< for each of the < element, such that the constant 2< effectively corrects

for the offset between the leading edge of the signal and the receiver. To illustrate this, consider

element no. 1 near the global leading edge, as well as element no. 10 nearly two full cycles into the

wave pattern shown; relative to the front that crosses the origin (the second blue line), these two

points are nearly one full cycle ahead and nearly one full cycle behind. This effect is also illustrated

in Figure 3.1(b), which shows the data recorded by each element as a function of time B; the spatial

separation translates to a phase shift of the sine wave.

It should be apparent that the value of 2< would change with the angle \. More importantly,

this correction can also be expressed in terms of the spatial parameters of the system, given by the

wavenumber k which characterizes the wave, and the position vector p< for each element:

lg< = k)p< (3.5)

Using this form for the spatial correction readily accounts for the effect of the incident angle \,

which is captured in the direction of the wavenumber vector k. In other words, the dot-product of

k and p< simply represents the number of cycles that separate the zero-phase reference (the front

that crosses the origin) and the <-th receiver, along the direction of the plane wave. As the signal

is a sinusoidal function, it may help to consider the phase recorded for each element at time B = 0,

as shown in Figure 3.1(c). As mentioned before, with respect to the spatial distribution shown in
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(a), element no. 1 is just past the beginning of a cycle; as we move up the array, we see the elements

reporting increasingly large phase offsets. Element no. 6 is just past another cycle start line, and the

phase shift shown conveys that clearly; from there, we move up to element no. 10 which is nearly

at the end of the second cycle. Indeed, the phase shifts shown in (c) are sufficient to construct the

signals in (b); these are equivalent to vk(k)48EB , where the replica vector vk(k) is given by:

vk(k) =



4−8k
)p1

4−8k
)p2

...

4−8k
)p<


(3.6)

The importance of this representation stems from the following idea, which lives at the heart of

the conventional beamformer: if we can represent the expected signals as we do with the replica

vector vk(k), then we can compare the expected replicas with the measured signals to determine

the direction of the signal. To do so, a snapshot of the time-series data collected by the receiver

is converted to frequency domain using a Fourier transform; the output will be of the same form

as vk, to a scaling constant that represents the signal amplitude. Then, the agreement between a

directional replica vk(ks), which is steered to an angle \A, and the measured signal vk(km) can be

expressed by:

�(l, \A) =
1

#
vk(ks)�vk(km) (3.7)

Equation 3.7 above is known as the conventional beam pattern, and it plays a key role in the devel-

opment of more advanced techniques - namely, optimum and adaptive array processing. The term

vk(ks)� represents the conjugate transpose of vk(ks). Additionally, the 1
#

term acts as a normaliza-

tion coefficient, since the replica vectors vk(ks) contain unit-amplitude complex terms in the case

of uniform amplitude weighting. Figure 3.2 shows the beam pattern produced by using the replica
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Figure 3.2: Magnitude of the beampattern obtained by scanning across steering angles \A, for the setup shown

in Fig. 3.1.

vector to scan across the set of steering angles \A = [−90, 90]; the input plane wave shown in Figure

3.1 is arriving at an angle of 25 degrees.

More generally, the conventional beam pattern can be rewritten as in Equation 3.8, where the

weight vector w is given by Equation 3.9. The replica vector vk(ks) is written as vs for convenience.

�(l, \A) = w�vm (3.8)

w� =
vs

�

vs�vs
(3.9)

In more advanced implementations of this spatial filtering technique, additional information is

captured in the weight vector w. Null-steering, for example, can be used to account for known

sources whose effect needs to be removed – such is the case with jamming signals. The spectral

covariance matrix of the signal noise, Sn (l), or the spectral covariance matrix of the entire input

signal, Sx(l), can be used to augment the resolution of the beamformer. These two matrices are

used in the Minimum Variance Distortionless Response (MVDR) beamformer and the Minimum

Power Distortionless Response (MPDR) beamformer respectively, where the weight vector takes

the form shown in Eq. 3.10 after substituting for the appropriate S matrix.
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w�
MVDR =

vs
�Sn

−1

vs�Sn
−1vs

, w�
MPDR =

vs
�Sx

−1

vs�Sx
−1vs

(3.10)

This is but a brief presentation of a rather complex part of signal processing. Readers interested

in learningmore about conventional and optimumbeamformers, aswell as the adaptive forms of the

filter, are encouraged to check out the work of Jensen, Kuperman, Porter, and Schmidt (Computational

ocean acoustics), and VanTrees (Optimum Array Processing). Both of these texts offer detailed derivations

and additional considerations for using this type of spatial filtering.

3.2.2 Second stage : reflecting on the challenges

The baseline observations above exhibit the following properties:

• Swarm operations

Multi-vehicle operations are challenging. The use of an active acoustic system, such as in the

single-beacon work cited earlier, creates an opportunity for coordinated operating modes

based on a small number of predefined signals. A well-defined schedule (when all nodes have

a reliable time reference) also facilitates the signal processing step. Under such conditions, the

requirements for information shared across all vehicles in the system is non-trivial – signal

replicas and timing must be common to all units.

• Time-to-Intercept

The mathematical formulation for TTI is related to the derivative of the intensity measure-

ment, which is a noisy signal. This means that using the algorithm blindly will produce a

very noisy output. However, taking steps such as frequency filtering and signal smoothing

prior to estimating TTI can improve the reliability of the results. Using additional informa-

tion about the system, such as the presence of straight shipping lanes, can also be exploited
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to improve the interpretation of the noisy input. Generally speaking, a vehicle or mooring

tasked with computing TTI in a low to moderate traffic region requires relatively little in-

formation about the system-wide characteristics; as long as contacts are sufficiently spaced

apart from one another, the broadband intensity can be used to produce useful TTI values

even if a target’s acoustic signature is unknown.

• Beamforming

The spatial filter requires some information about the expected signal properties. For ex-

ample, are we tracking a narrow-band signal, such that the replica vectors are only varying

with respect to the arrival angle as in Figure 3.2; or are we looking for a broadband signal,

such that we’ll need to scan across angles and frequency alike? Indeed, the physical layout

of the array itself is guided by the expected signal frequency, as the element spacing and ar-

ray length vis-à-vis the signal’s wavelength drive the array’s resolution. Beyond the effects of

signal frequency on the array’s design and resolution, beamforming is by and large a passive

technique; as with TTI, beamforming techniques can produce useful information about the

environment, even with relatively little external knowledge.

Each of the three categories above have some requirement of system-wide information to per-

form well. However, the required knowledge threshold between them varies significantly. The

work on single-beacon navigation for vehicle swarms presented by Rypkema, Fischel, and Schmidt

(“Closed-Loop Single-BeaconPassiveAcousticNavigation for Low-CostAutonomousUnderwaterVehicles”)

requires a notable level of coordination and a dedicated source; not a source of opportunity. On the

other hand, the TTI and beamforming techniques can be used to track sources of opportunity –

meaning sources that do not actively collaborate with the tracking unit – as long as the respective

processing pipelines can observe the signal produced by the source of opportunity.

From these observations and challenges, then, follows the question: could we use passively ac-

quired data, such as the outputs of the TTI and beamforming pipelines, to do some (if not all) of
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the work in an active pipeline like the one used for swarm operations, with respect to coordinating

operational modes?

3.2.3 Third stage : recurring themes as signals

The previous question lives, of course, at the heart of this third stage in the experiential learning

framework. The requirement for a positive response would be that there exist a recurring theme in

the data, which may be exploited as a source of information about the system. Indeed, the concept

of pattern recognition is well established as a part of machine learning and is the subject of the book

by Bishop (Pattern recognition and machine learning). Another project that uses pattern recognition across

two different sources - transmission loss and arrival time - to discern information about an acoustic

system can be found in simulation-based work presented by Fouquette (“Multipath Arrival Tracking

for Marine Vehicles Utilizing Pattern Recognition”).

Now, let us go back to the aforementioned question: could we use passively acquired data to

coordinate operational modes? To answer it, let us consider the signals presented in Section 3.2.1

as illustrated in Figure 3.3. Here, two sets of signals are shown: one for a ship moving along a

transect and another for a ship loitering about a point at some distance from the receiving array.

Both paths shown have been configured to share a common closest point of approach (CPA), and

the time-series data has been shifted so both vehicles cross the CPA at time B = 0.

For a simple enough scenario such as the one shown, and given enough data in time for each

signal, it seems as though the cyclical nature of the loiter path would certainly stand out against

the linear transect. However, two limitations of this plot ought to be considered: the impact of

the signal-to-noise ratio (SNR), and the effect that transect and loiter parameters may have on the

uniqueness of the signals.

The first of these limitations is of general importance in most signal processing applications, and

ours is no exception. Both the beamformer and TTI algorithms depends on having a sufficiently
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Figure 3.3: Sample bearing and time-to-intercept signals produced by ships moving along a transect and a

loiter pattern. The starting positions and initial steps are shown in green, while the closest point

along both paths are marked with a red cross. In the time-series data, the intercept time for both

transect and loiter are shown as a solid red vertical line, while additional approaches from the

loitering vehicle are shownwith dashed red lines. Bearing is given relative to the array’s broadside,

aligned with the vertical axis.
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large signal-to-noise ratio in order to produce valuable information from their inputs. For example,

the expected signal intensity used for the TTI solution was given by Eq. 3.1 under the assumption

of cylindrical spreading, and ignoring noise. As a derivative relation, noise in the input signal would

be effectively amplified in the TTI output; in the extreme, a low SNR would cause the TTI output to

be of little use. The same goes for the beamformer, where a low SNR may cause the filter to report

similar energy values for all bearings and thus make it impossible to track a source.

The second limitation relates the parameters of the ship’s path to the scale and nature of the

features produced by the two signal processing blocks. For the transect shown in Fig. 3.3, the ship

travels parallel to the array; given the relatively small distance from the array to the CPA, the array

reports a bearing close to 90deg. As the ship crosses the array’s broadside at its closest point, it

reverses the sign of the asymptotic bearing. For comparison, a transect that ran perpendicular to

the array’s axis (but offset from the array’s center)would startwith somedistinct asymptotic bearing;

as the ship passed over the array, the bearingwould peak at either endfire (± 90deg) and then return

to the original asymptotic bearing.

Indeed, the parameters that define both scenarios are already enough to create a sizeable search

space for a naive, “brute force” approach. For the linear transects, the ship heading and speed are

combined with the CPA to fully define the signal shapes. The loiter is defined by the coordinates

of the pattern’s center, as well as its radius and the ship’s speed (the CPA can be drawn from these

values). Initial conditions, in this casemeaning the vehicle position along the parameter-constrained

path at time B = 0, can be regarded simply as a shift of the signal’s pattern along the timeline. Figure

3.4 shows snapshots from a number of randomized simulations for both transects and loiters, where

these shifts can be observed.

A well-known characteristic of time-series data is that it often exhibits time-scaling variability

that can be described as slowing down or speeding up. In the case of the beamformer and TTI

outputs, it should be apparent that vehicle speed will impact the time scale of the signal; but Figure
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Figure 3.4: Behavior classification from bearing and time-to-intercept (TTI) signals detected at a receiving

array; signals are produced by an external vehicle moving relative to the array. This comparison

illustrates the challenges that come with conventional “feature design” solutions, as the signals

exhibit distinct patterns which are generally visible to the human eye, but require additional pro-

cessing before they may be classified by a computational algorithm.
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3.4 also illustrates how the distance to the closest point of approach (CPA) can also impact the rate

of change in the signal. The further away a target vehicle’s CPA is, the slower its perceived bearing

rate will be as it crosses this critical reference point; we can compare this scenario to us visually

tracking a plane in the sky.

Since the various parameters that define the travel patterns in our classification task are un-

known, it is necessary for our application to process the signals using a technique that can account

for such temporal distortions. This application therefore relies on Dynamic Time Warping (DTW),

a technique used in areas where such speeding up and slowing down is expected, such as motion

studies and speech classification. DTW is a non-linear transform; at its heart, it allows us to compare

two time-series shapes by stretching the sequences in such a way as to minimize time-induced dif-

ferences between samples, and then reporting the differences between the transformed sequences

in a distance-like metric.

The non-linearity of DTWcomes from the algorithm’s governing rules for stretching each signal.

These rules can be conceptualized as follows:

• The transformed signals will have the same length, with the first and last point of each output

being anchored to the first and last sample of the corresponding input sequence.

• Every sample in each of the input signals has to be matched to at least one point of the other

signal.

• The transforms should be monotonically increasing. When matching one point from signal

A to many points of signal B, the points of signal B must be adjacent (no skips).

• In many applications, an additional constraint establishes a maximum number of matches

per sample. This is also referred to as enforcing a maximum window width.
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The optimal DTWsolutionwould be the one tominimize the distance between the output signals

while obeying these rules. The non-linearity that comes from this warping is what allows us to

evaluate the information content of the sequences independently of the time scaling.15

Dynamic Time Warping exposes a comparative metric between two time-series signals. Thus,

using it in a classifier effectively implies that there ought to be known records with which field

measurements shall be compared. One method that can be used to build such a classifier, then,

is to collect a library of labeled samples; any new measurements can be compared with the entire

library to produce a classification score. This score can be based on a single nearest-neighbor (1-

NN) distance, or expanded to a k-nearest-neighbors (k-NN) form.

In the context of behavior classification based on the beamforming and TTI signals, we opt for

a k-NN approach given its added robustness relative to 1-NN. The final classification is produced

by majority vote among the selected neighbors rather than by a single match, thus increasing the

confidence that a class choice fits more of the training data and is less likely matching some outlier.

The performance of this k-NN classifier was evaluated against simulation data as well as field mea-

surements; these performance results were presented in Fischell, Viquez, and Schmidt (“Passive acoustic

tracking for behavior mode classification between surface and underwater vehicles”).

3.3 Environment characterization : exploiting a priori

information

The previous section looked at how a vehicle can evaluate the information it has collected about

other vehicles around it to inform its decisionmaking process. That vehicle perspective was framed

by the first three stages of Kolb’s Experiential Learning Theory. The fourth stage in Kolb’s theory

15Dau, Keogh, Kamgar, Yeh, Zhu, Gharghabi, Ratanamahatana, Yanping, Hu, Begum, Bagnall, Mueen, Batista, and

Hexagon-ML,The UCR Time Series Classification Archive; Dau, Silva, Petitjean, Forestier, Bagnall,Mueen, andKeogh,

“Optimizing dynamic time warping’s window width for time series data mining applications”.
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consists of engaging in active experimentation, testing our new understanding and expectations

to new situations; it is here that we assess our understanding of the information availability and

information flow in the vehicle’s decision pipeline. To that end, this section considers another clas-

sification task: one aimed at environmental characterization.

The core of the vehicle behavior classification algorithm depended on our ability to produce reli-

able and realistic feature samples through simulation. A number of simulated runs, stored as replica

vectors in the training set for the k-NN classifier, were compared with new measurement vectors

to produce an output class. The performance of the algorithm was obtained by performing that

very comparison using additional simulation runs as well as snapshots collected from field mea-

surements. An important concept in this entire process is that we were evaluating predetermined

behaviors – we sought to distinguish a vehicle moving in a loiter pattern from one moving in a lin-

ear transect. The simulation data and field tests were both limited to this choice of behaviors – in

other words, we were exploiting additional information about the problem that was not inherent

to the classification task itself.

The idea of using preexisting, or a priori, information is fundamental to many applications. In

problems related to navigation, for example, knowledge about a system’s initial conditions and its

sensing capabilities as well as the expected process errors are used to build Kalman filters of many

kinds. This also transfers readily to the evaluation of environmental models; if we can provide the

system with a sensible set of characteristic environments, we can once again use a nearest neighbor

classifier to determine which model best describes the data.

3.3.1 Assembling candidate models

The idea of using preexisting, or a priori, information is fundamental tomany applications. In prob-

lems related to navigation, for example, knowledge about a system’s initial conditions and its sensing

capabilities as well as the expected process errors are used to build Kalman filters of many kinds.
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This also transfers readily to the evaluation of environmental models; if we can provide the sys-

tem with a sensible set of characteristic environments, we can once again use a nearest neighbor

classifier to determine which model best describes the data.

There is an important difference between the models for behavior and environmental classifi-

cation. The behavior work could benefit from our choice of patterns as the a priori information

used to produce the sample signals. However, the work on environmental models requires that we

explore data over which we have no control – data that is nonetheless highly related to the problem

we are trying to solve. The process of assembling the candidate models, thus, requires us to look

for external sources of information to serve as a foundation. The acoustic model we intend to use

for this task requires information about the water column, such as the sound speed profile; it also

requires knowledge of the composition of the bottom layer and its depth.

Figure 3.5 illustrates two surveys that can be used to prepare candidate models for the classifica-

tion task in the Charles River Basin. A soil survey, such as those facilitated by the Natural Resources

Conservation Service of the US Department of Agriculture,16 can offer some insight to the likely

composition of the riverbed. The percentage of sand for a given soil complex, for example, can be

collected from the report. Other sources, such as knowledge about the urban drainage system or

experiential knowledge about the site can also offer information17 worth exploring with the can-

didate models. Likewise, bathymetric surveys like the one released by the MIT Sea Grant College

Program and the Charles River Alliance of Boaters18 provide information that is directly relevant

to the propagation models; the depth of the water column can have a notable impact on predicted

boundary interactions. These charts can also inform choices made for the modeling stage, such as

whether a waveguidemodel with a representative depth is sufficient, or whether a higher resolution

16Natural Resources Conservation Service, Web Soil Survey.
17It is fairly common for sailboats that turned turtle (boats that are fully inverted, with their mast pointing straight to

the bottom) in the Charles River Basin to show some mud on their mast and sail, when they’ve been righted.
18Zimba, Sacarny, Yoder, and Bray, Chart of the Lower Charles River.
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a)

USDA NRCS Soil Survey

b)

Charles River Bathymetric Survey

Figure 3.5: Reference surveys for the Charles River Basin. (a) Soil surveys provided by the Natural Resources

Conservation Service of the US Department of Agriculture can be used to identify the presence of

materials such as sand (shown), clay, and silt in local substrates; the Merrimac-Urban land com-

plex (blue), for example, has a weighted average of 82.8% sand content across all depth layers.

(b) Bathymetric surveys such as the one shown, by the MIT Sea Grant College Program and the

Charles River Alliance of Boaters, inform decisions about a propagation model’s bottom bound-

ary.

approach – one that actually captures the boundary changes with respect to range from the source

– is needed for a particular application.

Table 3.1: Parameters for acoustic modeling, by material

Property Units Mud Basalt Sand

Compressional speed [m/s] 1500.0 5250.0 1640.0

Shear speed [m/s] 30.0 2500.0 110.0

Compressional attenuation [dB/_] 0.5 0.1 0.8

Shear attenuation [dB/_] 1.0 0.2 2.5

Density [g/cm3] 1.8 2.7 1.9

Parting from the aforementioned surveys and external sources, then, let us consider two riverbed

materials to start with: sand, given the high percentage contained in the neighboring Merrimac-
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Figure 3.6: Acoustic models for riverbed characterization. (a) Transmission loss chart for the full field, as-

suming an isovelocity profile with 2 = 1451 and a uniform sand bottom starting at 5.8m (19ft). (b)

Power detected by a receiver at a depth of 1 meter, as a function of range, for the three riverbed

materials evaluated by the classifier.

Urban land complex; and mud, given the experiential knowledge about the Charles River Basin. A

thirdmaterial, basalt, will also be considered to provide for a comparative discussion later on. Addi-

tionally, let us consider a simplified, uniform bathymetry with a typical value of 5.8m (19ft). Figure

3.6(a) illustrates the full field transmission loss for the sandy riverbed, given the uniform depth as-

sumption. Figure 3.6(b) shows a slice of the field, for a receiver at 1m depth; the corresponding

pressure values are shown for all three riverbed materials. The properties of each riverbed material

used for acoustic modeling are given in Table 3.1.

As with the behavior classification exercise, we need to build a set of replica vectors that will

constitute the training set for the k-NN classifier. Where the behavior classifier explored a large

domain of path parameters with variable time scaling, themodels presented here for environmental

characterization are much more tightly defined. The density of mud, for example, can go from

around 1.73 g/cm3 for flowing mud, to 1.84 g/cm3 for a more steady mud; we will consider only a

representative value for each of the material properties as given in Table 3.1. However, the reduced

set of parameters will be balanced by the uncertainties in the sensor systems and the experimental
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Figure 3.7: Schematic of the model preparation process for virtual sampling.

process overall. These can be introduced to the simulation-based data through virtual sampling, the

second-to-last stage in the model preparation process shown in Figure 3.7.

3.3.2 Virtual sampling as a stochastic observer

The objective of virtual sampling is to ingest model-based or simulation-based data and produce

an output that is comparable to that expected of real sensors. As such, the process should allow

us to simulate field work. A kinematic model, for example, can be used to emulate the motion of

the sensor (and the vehicle that carries it) in space, to determine the sampling region from which

a measurement shall be collected. The samples can be collected from within the sampling region

neighboring the position determined by the kinematic model, rather than directly at the simulated

vehicle’s position, to reflect potential errors in timing and positioning. Randomized sensor noise

can also be added to the data to reflect the sensor’s expected performance. Thus, virtual sampling

also allows us to replicate the effect that limitations of the experimental process may have on the
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Figure 3.8: The power predicted by the acoustic propagation model (a) is randomly sampled, and noise is

added to reflect sensor and process error. Each set of random samples is discretized in range to

construct a virtual sampling vector (b), which is added to the training set. This process is repeated

multiple times permodel to ensure the training set contains enough sample vectors, and sufficient

information about the model, to be used by the classifier.

data collected. This is illustrated in Figure 3.8, where the data from the acoustic propagation model

is randomly sampled and discretized into range bins. The resulting vectors are also normalized, to

focus on signal shapes rather than signal amplitudes which would be affected by a source level that

may vary between experiments.

The choice to work with a discrete subset of ranges stems from the fact that there is no guarantee

the field measurements would necessarily align with some predetermined choice of ranges. Fur-

thermore, the replica vectors should reflect the fact that our assumptions – for example, to work

with a constant depth in this case study – are not a perfect match to reality; we may be confident

that large-scale features are robust to mismatch, but smaller-scale structure in the signal may not

accurately represent reality. Opting for a discrete subset of ranges, then, allows us to compare the

simulation and field data with relatively little cost.
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Figure 3.9: Equipment used to collect acoustic data for the environment classifier. (a) Components for a

stand-alone acoustic array that generally reproduces the capabilities available onboard an AUV;

shows part of the anchoring system used to stabilize the array orientation. (b) Equipment loaded

on an electric motorboat prior to deployment; shows the stand-alone array unit and the compo-

nents that make up a traceable acoustic source node.

3.3.3 Collecting field measurements

The objective of building a classifier for environmental characterization is to eventually apply the

classifier to field measurements, assessing how well the virtual-sampling sets and the real data align

with each other. To this end, an experimental system was deployed in the Charles River Basin based

on the concepts described earlier. Acoustic signals were transmitted from one vehicle, insonifying

the environment; these signals were then recorded by a receiving array some distance away. The

various components involved are shown in Fig. 3.9.

The receiving system consisted of a vehicle dummy rather than an actual AUV, given the availabil-

ity of equipment and the overlap with additional research efforts that required similar data19. The

substitute vehicle had a surface expression (paddle board) which supported the vehicle computer,

data acquisition system and GPS receiver. In addition, the vehicle also had an underwater compo-

nent consisting of the receiving array with its supporting structure, as well as rigging equipment

(lines, floats and anchors) to orient the array and secure the system during the experiments.

19In addition to facilitating this environmental characterization work, the dataset collected during these field opera-

tions was also used as a starting point for research on Synthetic Aperture Sonar, as part of the Strategic Environ-

mental Research and Development Program (SERDP).
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The transmitting vehicle was chosen to be an electric motorboat given that one was available –

this choice helped reduce ship noise in the data, compared to the other non-electric boats available.

Its acoustic equipment included a Lubell Labs underwater speaker, as well as an audio controller to

output a selection of waveforms through the speaker. The ship was also tracked with a Hemisphere

GPS module to track its position.

3.3.4 Statistical performance

This environment classifier was initially designed by creating a training set from acoustic models

and virtual sampling – a purely theoretical foundation. Its implementation, on the other hand, eval-

uates the training set against fieldmeasurements to produce a classification prediction. In real-time

operations, this sort of classifierwould produce an output from snapshots of data, and depending on

the nature of the task, the most recent sequential predictions may be considered as a group to pro-

duce an additional confidence metric. Regardless of the design basis, the classifier’s performance

and reliability need to be evaluated before deploying it in the field; this can be done by taking a

bootstrapping approach.

At a high level, bootstrapping refers to the process of sampling a dataset randomly and with re-

placement; a given sample may appear more than once in the resampled set. This new set is then

evaluated against some algorithm or scoring metric, and the resampling and evaluation process is

repeated multiple times to estimate the distribution of the scoring metric (the target statistic) across

the original population, meaning the source from which the set of known measurements was col-

lected. The conceptual schematic of information flow in the bootstrapping approach is presented

in Figure 3.10.

The performance reported by the bootstrapping approach hinges mainly on three parameters:

the number of random samples < taken from the original set ofmeasurements (with replacement) to

construct a test set; the number of neighbors 9 used by the k-NN classifier to produce a prediction;
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Figure 3.10: Schematic of the bootstrapping approach to determine the classifier performance. The solution

consists of a data-driven voting system based on multiple random iterations of the k-NN classi-

fier.

and the number of repetitions used in the bootstrapping process. Figure 3.11(a) illustrates a sample

distribution of the classifier output across 1200 repetitions, where each iteration is based on a single

neighbor, 9 = 1, and a population size of < = 200. A sample set from one of the 1200 repetitions is

shown in Fig. 3.11(b).

There are two main observations to be made from Figure 3.11, with regards to this classifier’s

performance. The first is that the distribution of class outputs is strongly concentrated on what we

expect the answer to be – we know from experience that the Charles River Basin features a muddy

bottom, and this is the same overall solution identified by the bootstrapping exercise. The second

observation is that the observation vector constructed from field measurements are not necessarily

as smooth as the training samples; the fact that the acoustic features produced my the mud bottom

model are visibly different from those of the sand and basalt models influences the ability of the

resampling process to converge on the known solution.

Supplementary analysis

The uniqueness of the feature space directly impacts the performance of the classifier. More gen-

erally, machine learning techniques of this type generally aim to create some hyperspace (a trans-
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Figure 3.11: Performance of a k-NN classifier for riverbed material characterization. (a) Classification votes

from 1200 repetitions with k=1 nearest neighbors and n=200 random data samples per trial. (b)

Comparison of a random test vector built with n=200 samples from field measurements, versus

one feature vector per class from the training set. The training set is assembled by virtual sam-

pling from the acoustic models.

formation of the measurement or observation domain) that makes it possible to separate samples,

such that a well-defined portion of the new space corresponds to each of the assigned labels. In Fig.

3.11(b), this could be associated to distinguishing between the presence or absence of a peak around

the 30-40m range, for example.

As the features become less unique (there ismore overlap in the data), this becomes an increasingly

challenging exercise. This may be better illustrated by exploring the classifier’s ability to evaluate

two other parameters used in the acoustic models. Fig. 3.12 shows the same classifier, trained on

variations of the mud model with different bathymetry. Fig. 3.13 likewise explores variations of

the mud model, this time looking at estimating the density of the mud layer as the classification

objective.

For both of these supplementary scenarios, a 3-point classifier is implemented; the reference

value from the earlier material characterization trial lies in the central position, with positive and

negative offsets from the reference values populating the other classes. These are implementations
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Figure 3.12: Performance of a k-NN classifier for bathymetry estimation. (a) Classification votes from 1200

repetitions with k=1 nearest neighbors and n=200 random data samples per trial. (b) Compar-

ison of a random test vector built with n=200 samples from field measurements, versus one

feature vector per class from the training set. The training set is assembled by virtual sampling

from the acoustic models.
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Figure 3.13: Performance of a k-NN classifier for riverbed density estimation. (a) Classification votes from

1200 repetitions with k=1 nearest neighbors and n=200 random data samples per trial. (b) Com-

parison of a random test vector built with n=200 samples from field measurements, versus one

feature vector per class from the training set. The training set is assembled by virtual sampling

from the acoustic models.
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of a classifier rather a regression approach, even though the new targets are numerical values of a

given parameter – an application comparable to that of the data discretization process, in which

samples are assigned to the closest bin.

In the order presented, and with the deviations shown, these parameters introduce gradually

smaller deviations from the reference model. The bathymetry models, configured to broadly cap-

ture the spread of depth measurements reported for the Charles River Basin, exhibit some small

differences between the models, and the bootstrap distribution weakly supports the choice of refer-

ence value. The densitymodels are configuredwith small deviations from themud baseline, and the

result is visually overlapping tracks for all models; the classifier begins to take on the extremes due

to the variability captured in the resampling (bootstrap) process. Note that the difference in density

between mud and sand, as given in Table 3.1, are closer than the chosen offset. This same process

could be extended to other parameters given in the aforementioned table and used in the acoustic

model, though the benefit of it really hinges on this idea: does the chosen feature space (translated

to replica vectors by the acousticmodel) reflect any helpful information for the classifier to exploit?

3.4 Summary

This chapter presented two projects that employ fundamental concepts of machine learning to ex-

plore the domain of information often available to Autonomous Underwater Vehicles. The first, a

vehicle behavior classifier, was presented in the context of the Experiential Learning Theory and

captured the benefits of expanded access to information collected from the acoustic environment.

The learning frameworkwas thenused as a basis to illustrate the development process for the second

project, drawing somedistinctions between the first task and that of environmental characterization

in terms of the information (samples and modeling constraints) available. Where the first project is

informed mainly by design choices, the second relies on external information over which no direct
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control can be exerted, conveying the fundamental challenge behind autonomous environmental

adaptation efforts.

The behavior classification portion of this chapter was published in “Passive acoustic tracking for

behavior mode classification between surface and underwater vehicles” and also presented in “Machine

learning for behavior classification of passively tracked vessels”. The environmental classification section

was presented in “Estimation of the acoustic environment through machine learning techniques”.
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4 ICEX-20 : Experimental system

“You love the sea, Captain, don’t you?”

“Yes, I love it! The sea is everything! It covers seven-tenths of the earth. Its breath is pure

and wholesome. The sea is an immense desert where man is never alone, for he feels life

pulsating all around him. The sea is nothing but the means which permits man to lead an

almost supernatural existence; it is all movement and love. It is the living infinite, as one of

your poets has said.”

– Jules Verne, 20,000 Leagues Under the Sea

The ICEX-20 experiment builds on many years of field experience and prior work, of which the

ICEX-16 mentioned in Chapter 1 is but one example. Discussing the core systems that enabled this

experiment – which is itself the first objective of this chapter – is an exercise of rediscovery and

wonder Captain Nemo would be thrilled about. Building on this scientific precedent, the following

sections then present simulation-based work that explored the feasibility of exploiting data already

available onboard the AUV to enhance the vehicle’s autonomy via machine learning techniques.

The core contributions of this chapter include (1) the preparation of the vehicle autonomy pay-

load for field trials and the ICEX-20 deployments, including the integration of the most up-to-date

LAMSS codebasewith necessary kernelmodulemodifications to enable legacy hardware interfaces;

and (2) the exploration of environmental adaptation opportunities based on the information con-

tent available onboard the vehicle, both from a theoretical perspective and through hardware-in-
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the-loop simulations.1 The insights drawn from this simulation work are exploited later in this

thesis, to improve on the performance of fielded algorithms.

4.1 Core systems

The core systems that made the ICEX-20 experiment possible in the first place include the Virtual

Ocean Simulator and its hardware-in-the-loop (HITL) implementation, NETSIM. The Integrated

Communications andNavigationNetwork (ICNN), which ultimately enabled the operational capa-

bilities demonstrated throughout the experiment, was originally designed and tested in simulation

using both the software-only and HITL implementations of the Virtual Ocean.

4.1.1 The Virtual Ocean Autonomy Testbed

The Virtual Ocean Autonomy Testbed (VOAT), or Virtual Ocean Simulator, is a collection of spe-

cialized applications assembled to work in unison in order to reproduce the effect of the physical

ocean on acoustic signals. The toolkit includes programs for data assimilation from ocean models,

such as the HYbrid Coordinate Ocean Model (HYCOM)2 and MIT’s Multidisciplinary Simulation,

Estimation and Assimilation Systems (MSEAS).3 In addition to ocean models, packages for acous-

tic propagation modeling are also included. The fundamental characteristic of the virtual ocean

architecture is that it was designed to make the vehicle autonomy system agnostic to whether it was

deployed in the field or in a simulation.4

1Viquez, Bhatt, Novitzky, and Schmidt, “Model-aided acoustic environment estimation via data fusion for au-

tonomous underwater vehicles”; Bhatt, Viquez, Novitzky, and Schmidt, “An information theory approach to assess

acoustic-environmental significance”.
2Chassignet, Hurlburt, Smedstad, Halliwell, Hogan, Wallcraft, Baraille, and Bleck, “The HYCOM (HYbrid Coordinate

Ocean Model) data assimilative system”.
3Haley and Lermusiaux, “Multiscale two-way embedding schemes for free-surface primitive equations in the “Multi-

disciplinary Simulation, Estimation and Assimilation System””.
4Schneider and Schmidt, “NETSIM:ARealtimeVirtualOceanHardware-in-the-loopAcousticModemNetwork Sim-

ulator”.
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At the heart of the system lies the following operational premise: every node in the system that

has a need to know something about the environment runs its own, self-contained instance of the

virtual ocean. Vehicle nodes, for example, run a copy of the virtual ocean regardless of whether

they are launched in simulation or in the field (Figure 4.1). Each of these internal models is used to

inform objective functions used by the corresponding vehicle’s helm throughout the mission.

The fidelity of the virtual ocean is driven in part by the choice of active modules and configura-

tions. The benefits of having this flexibility built into the system become apparent when looking

at real-time operations such as the one illustrated in Figure 4.1. In largely controlled simulation

conditions, access to powerful computers is certainly within reach, and using high-resolutions in

runtime may appear to be a non-issue. When the environmental simulator is deployed onboard a

real vehicle, however, computational limitations most often driven by a limited power budget can

become a significant factor that impedes the use of the same high-resolution models.

The vehicle’s need to understand its environment, of course, should be apparent: the internal

model informs decisions related to the communication and navigation systems, and thus can have

a sizeable impact on the autonomous performance of the vehicle. For example, an operational re-

quirement stating that the vehicle ought to maintain a viable communication link available at all

times would be all but impossible to meet without supplying the vehicle with a suitable environ-

mental model.

Within LAMSS, the standard implementation of the VirtualOcean Simulator uses the ray-tracing

program BELLHOP along with data from the ocean models to produce element-level time series

data, capturing both signal and noise. In order to achieve an appropriate balance between perfor-

mance and computational load, the virtual ocean uses a nested modeling approach which benefits

from the use of pre-computation by exploiting the timescales of change for the different features.

The ocean models, which serve as the starting point for the framework, generally vary slowly and

are thus sampled at relatively long intervals. The data from the ocean models is then used as an
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Figure 4.1: The Virtual Ocean Simulator runs in simulation and field deployments alike. In the field, real

vehicles rely on a lower-fidelity version of the simulator to inform decisions that may be impacted

by the environmental conditions.
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Figure 4.2: The Virtual Ocean Simulator uses a nested modeling approach that exploits the timescales of

change of the different features. Slow-changing features such as those reported by the different

ocean models are sampled less frequently, while fast-changing features such as the element-level

signals (which change as the vehicle travels) are sampled much more frequently.

input for the acoustic modeling code, which produces a local grid of arrival structures in the scale

of the vehicle’s motion.

This grid of arrival structures serves as an intermediate point from which the element-level

signals are computed by local plane wave expansion. Thus, the local grid of arrival structures is

recomputed at shorter intervals than the ocean model updates, and the grid is configured to be

large enough to provide sufficient information for multiple cycles of the element-level computa-

tion, which is the fastest-changing feature in the set. In addition to reflecting the physical rates of

change, these timescales are also partly informed by the particular application for which they are

being used. Exemplary uses of the virtual ocean are shown in Figure 4.2, alongwith typical timescale

configurations for those applications.
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4.1.2 NETSIM : Hardware-In-The-Loop simulation

A notable difference between field deployments (Fig. 4.1) and simulation is that the latter requires

separate instances of the virtual ocean for the sensor simulator and the modem interfaces (Fig. 4.3),

in addition to the ones used for each vehicle’s internal models. This requirement stems from the

intent to make the vehicle autonomy code entirely agnostic to the type of run (simulation vs field

deployment).

Each instance of the virtual ocean can be configured independently. This makes it possible to

evaluate the impact of a mismatched environment model, for example. In single-computer, full sys-

tem simulation, the number of processes required often means that a lower-fidelity representation

is preferred – a need that is covered by a local implementation of the necessary modem interfaces

through netsim_udp.

NETSIM itself, the hardware-in-the-loop implementation of the Virtual Ocean Simulator, intro-

duces physicalmodem interfaces and further separates the different instances of the virtual ocean in

the simulation framework. The physicalmodems are assigned to the simulated nodes; given enough

capacity in terms of audio ports and modem units, the system can be scaled to any number of nodes.

Figure 4.4 illustrates the combined hardware and software components of NETSIM as presented

by Schneider and Schmidt (“NETSIM: A Realtime Virtual Ocean Hardware-in-the-loop Acoustic Modem

Network Simulator”), with a two-vehicle configuration shown in the diagram.

Upon a transmission command from the autonomy systemon any one node, the assignedmodem

prepares and emits the audio signal on its audio channel, which in field operations would normally

be connected to a transducer (via the appropriate power amplifier). The transmitting modem’s sig-

nal is picked up by a sound card on the audio server. This computer then uses the element-level

impulse responses from the virtual ocean to transform the audio input into a high-fidelity approx-

imation of the signal received by each of the remaining nodes. Spatial Doppler effects are captured

in the signal transform by convolving each of the multi-path arrivals in the impulse response with
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Figure 4.3: NETSIM expands on the Virtual Ocean Simulator by using an instance of the simulator running

a high-fidelity ocean model as a substitute for the physical ocean. Software-based and hardware-

in-the-loop implementations are available.
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Figure 4.4: NETSIM introduces physical modems as the key hardware-in-the-loop component.
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the associated Doppler-shifted replica. Ambient noise can also be injected to the signal at this stage.

The modified signals are then relayed to the physical modems according to their node association

on their corresponding input channel.

4.1.3 ICNN : The Integrated Communications and Navigation Network

The Virtual Ocean Autonomy Testbed and its hardware-in-the-loop implementation, NETSIM,

were instrumental to the success of ICEX-20 deployments. Even from the early design and de-

velopment stages, the virtual environment enabled continuous simulation-based testing and vali-

dation of the many moving pieces involved in the experiment, facilitating risk mitigation efforts

along the way. This approach has a close parallel in planetary exploration, where repeat deploy-

ments aren’t always possible. In space and under the polar ice, a reliable understanding of risks and

failure modes is critical to the success of a mission, and is often obtained from iterative simulations

with high-fidelity models.

One of the ICEX-20 development pipelines that directly benefited from the VOAT was that of

the Integrated Communications and Navigation Network, or ICNN. From a high-level perspec-

tive, the ICNN is a specialized implementation of the Long Baseline (LBL) solution discussed in

Section 2.4.2. Indeed, there are other systems that expand on conventional LBL, including com-

mercial offerings from companies such as iXblue; but these improvements are often based on more

complex tracking of the position solutions given by the same simplified linear model given in Sec-

tion 2.4. The ICNN stands out from conventional LBL configurations in that the time-of-flight to

range conversions are directly aided by the acoustic propagation and ocean dynamics models in the

VOAT,5 rather than relying on the simplified linear model.

5Randeni, Schneider, and Schmidt, “Construction of a high-resolution under-ice AUV navigation framework using

a multidisciplinary virtual environment”; Schneider, Schmidt, and Randeni, “Self-Adapting Under-Ice Integrated

Communications and Navigation Network”.
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Figure 4.5: Overview of the Integrated Communications and Navigation Network (ICNN).

As deployed for ICEX-20, the hardware portion of the ICNN consisted of 4 ice-tethered buoys

deployed in a 1.5-2 km radius from ice camp Seadragon. Each buoy was equipped with its own

acoustic modem, as well as two input hydrophone layers, at depths of 30 m and 90 m. They were

also equipped with a single output channel each, such that half of the buoys capable of transmitting

at each of the aforementioned depths. In addition to the acoustic hardware, each of the buoys also

included a GPS receiver and a Freewave radio to communicate with the operations center. This

system overview is illustrated in Figure 4.5.6

4.1.4 AUV Macrura : Autonomy Payload

In discussing the core systems that enabled the ICEX-20 experimental work, it should be apparent

that the vehicle platform itself was indeed an essential component of the deployments. Under the

payload autonomy scheme,7 the general architecture of AUV Macrura can be represented as in Fig.

6Randeni, Schneider, and Schmidt, “Construction of a high-resolution under-ice AUV navigation framework using a

multidisciplinary virtual environment”.
7Benjamin, Schmidt, Newman, and Leonard, “Nested autonomy for unmanned marine vehicles with MOOS-IvP”.
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Figure 4.6: Overview of the system architecture for a payload autonomy implementation.

4.6, where the front-seat system is responsible for the low-level controls and any platform-specific

sensor processing. The payload system ingests navigation information and any other sensor data

relayed by the front-seat, and exploits the available information tomakehigher-level decisions about

how to meet the vehicle’s mission objectives. The payload’s decisions are then relayed back to the

front-seat in the form of targets for its controllers to handle – thus, this scheme is also referred to

as a backseat autonomy system, in reference to its role as a backseat driver.

The remainder of this section focuses specifically on the payload autonomy system (backseat),

which the author of this thesis was responsible for during the span of ICEX-20 preparations and

field operations (Fig. 4.7).

At a high level, preparations involved reconstruction of the hardware and software stacks. In

the software layer, this involved a clean installation of the entire system as well as implementing

custom configurations and conducting validation of all computers with their fresh, up-to-date op-
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a)
b)

Figure 4.7: Payload Autonomy stack for AUV Macrura. (a) Side view of the distributed computing assembly

that enables Macrura’s autonomy. (b) The author of this thesis, working on the payload in prepa-

ration for field testing ahead of ICEX-20.

erating systems and the lab’s latest codebase. Diagnosing issues in the physical interface layer, and

modification of custom kernel modules used as part of the payload’s data acquisition system were

all necessary steps in enabling the vehicle to enter the field once again.

In its latest iteration (as deployed for ICEX-20), Macrura’s payload autonomy consists of a dis-

tributed computing systemwith three processing units. The payload also includes networkinghard-

ware, data acquisition systems and additional sensormodules. While navigation sensors on theAUV

are generally handled by the front-seat system, acoustic and environmental sensors aremanaged di-

rectly by the payload module.

The three processing units are divided into the following functions: a central autonomy unit, a

homing unit, and a machine learning module. The homing unit was originally added to the payload

in preparation for the ICEX-16 experiments. It was implemented as a specialized module with

the sole purpose of ingesting and processing acoustic data from a nose-mounted tetrahedral array,

to produce estimated bearing and range to a known beacon.8 The machine learning module was

8Rypkema, “Underwater & Out of Sight: Towards Ubiquity in Underwater Robotics”.
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Figure 4.8: Overview of the internal components in the payload autonomy module.

added in preparation for the ICEX-20 experiments, to expand the payload’s capabilities for parallel

processing tasks used in ongoing research efforts to implement machine learning. This distributed

computing setup is illustrated in Fig. 4.8.

4.2 Observable information from the vehicle perspective

The core idea behind model-aided estimation is to use the information provided by some mathe-

matical construct to constrain how a system exploits a set of measurements to inform subsequent

predictions about a function’s values. For the positioning problem (Sec. 2.4), real-time applications

often rely on the assumption of a uniform sound speed in the conversion between travel time and

range – that is, they typically use a linear model as a simple but sufficient approximation of the
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real world. Tomographic inversion (Sec. 2.3) may use a reduced-order representation to tackle the

problem of estimating the environment based on samples between nodes at known locations; the

choice of basis functions, then, capture the essence of the model. Although these two applications

typically take their counterpart to have a known solution, the environmental modeling and posi-

tioning tasks are in fact closely related in the absence of a known ground truth for either of them.

Additionally, both tasks have the following in common: the sound speed profile and travel time do-

mains are both of interest to them, either as a basis for subsequent simplifications or as a baseline

from which deviations are evaluated.

The following sections revisit the sound speed and acoustic domains, whichwere first introduced

inChapter 2, to illustrate howvarious data sources andmodelswere used to inform thedevelopment

work that preceded the ICEX-20 field operations.

4.2.1 The Sound Speed Domain

The localized sound speed value at any point in the ocean is a complicated function of other physical

parameters, such as temperature, salinity and pressure or depth (Sec. 2.1). Moreover, the impact of

any such value goes well beyond its particular coordinates; even under the simplified assumption of

a range-independent model, the depth-dependent variability of the sound speed profile across the

water columndirectly impacts the acoustic environment – it creates shadow zones and convergence

zones that impact navigation and communication, as was first illustrated in Chapter 1, Figure 1.2.

As operatedwithin the LAMSS autonomyparadigm, there are two layers of interest to the vehicle:

the real world, or physical layer; and the simulated or modeled world, which constitutes the virtual

layer. In the context of local sound speed sampling, these two layers can be described as follows:

• Physical layer

The vehicle has the ability to sample the real ocean directly, using its onboard CTD sensor.

The measurements collected by the vehicle can be interpreted using one of the equations
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given in Sec. 2.1, and provide a direct – albeit incomplete – observation of the sound speed

profile. The key limitation at play here is that the vehicle’s specificationsmay establish a depth

limit that would impede sampling the SSP at depths of interest for the acoustic modeling

exercise.

• Virtual layer

As was discussed earlier with respect to NETSIM, the vehicle benefits from its own instance

of the Virtual Ocean simulator, which is used to inform navigation decisions relative to mis-

sion objectives. By assessing performance in the virtual ocean, the vehicle can maintain or

establish a viable communication link at any point during the mission, for example. The

virtual layer of the sound speed domain is itself built around some combination of (1) histor-

ical benchmark profiles, (2) oceanographicmodels (MSEAS, HYCOM), and (3) fieldmeasure-

ments from past and ongoingmissions – the latter includes data from theWHOI Ice Tethered

Profiler (ITP) project.9

In addition to the aforementioned information layers, which center on the vehicle’s independent

operation, the AUV can also access an abstraction layer through inter-node communication. As the

throughput of the acoustic link is limited, a set of basis functions such as the Empirical Orthogonal

Functions (EOFs) mentioned in Sec. 2.3.1 can be used to compress the measurements collected by

one node or vehicle into a weight-vector representation. In fact, this collaboration framework was

at the center of ICEX-20 preparations: as part of the planned field demonstrations, environmental

adaptation would be tackled by capturing the SSP through local CTD casts launched from the ice

camp and fitting the samples with a reduced-order representation based on EOFs (Fig. 4.9). The

resulting weights would then be packaged into an environmental update message, and relayed to

9Krishfield, Toole, Proshutinsky, and Timmermans, “Automated Ice-Tethered Profilers for Seawater Observations

under Pack Ice in All Seasons”; Toole, Krishfield, Timmermans, and Proshutinsky, “The Ice-Tethered Profiler: Argo

of the Arctic”.
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Figure 4.9: The set of Empirical Orthogonal Functions (EOFs) used as the basis for data compression during

ICEX-20 field operations. These EOFs were computed from a subset of WHOI ITP data filtered

by proximity to the operations region and the time of year.

the vehicle so it could update its internal ocean model while underway, based on the compressed

representation of measurements collected at camp.

4.2.2 The Acoustic Domain

As has been discussed throughout this text, the sound speed domain has a direct impact on the

acoustic environment, determining propagation modes or paths. In high-fidelity applications, 3D

models may capture complex features of a signal’s propagation through space. Even in simplified,

range-independent applications, the complexity of the depth-dependent sound speed profile can

lead to pronounced shadow zones. This dependency of acoustic propagation models on the sound

speed profile was introduced in Sec. 2.2. As before, the vehicle’s perspective of the acoustic envi-

ronment comes in two layers. The physical layer corresponds to the data collected by the vehicle in

the physical ocean, and the virtual layer is composed of the acoustic propagation models.

In applications such as target detection and tracking, the vehicle’s recordings are often consid-

ered a key component of the data product. These can be analyzed in real time or in post-processing,
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to detect patterns of interest such as marine mammals or other vehicles. In acoustic communica-

tions, on the other hand, the raw data is not always available to the vehicle at large. Instead, acoustic

modems such as the WHOI Micromodem (the modem used by MIT LAMSS) may report only the

decoded data, if any, along with signal reception statistics and other metrics of interest. The WHOI

Micromodem sends a known chirp ahead of any data packets, such that the receiver node can iden-

tify an incoming message. The leading chirp is also used to produce a short-term impulse response

estimate (IRE), which the modem uses to unpack the message contents of later segments of the sig-

nal.

As a counterpoint to real-world measurements, one application of the acoustic modeling work

that constitutes this domain’s virtual layer is to predict how the transmitted signal is transformed

into the data recorded by the receiving element. To predict, in other words, what the impulse re-

sponse should look like and how the modem’s short-term IRE, which is based on a limited observa-

tion window, may impact its ability to process incoming signals.

4.3 Simulation work

As essential part of the preparations for the ICEX-20 field experiments consisted of performing

extensive simulationwork to ensure the robustness of the various algorithms deployed in theArctic.

With respect to the challenge of environmental adaptation, these simulations also provided valuable

insight into the alignment between the physical and virtual layers described earlier. This section

discusses the essential insights from said simulation-based work.

To tackle the relation between these two domains, let us first recall Fig. 2.4, which illustrated

multi-path arrivals detected by a receiver. The paths shown were due to boundary interactions in

an otherwise simple environment with a uniform sound speed profile, and the relation between dis-

tance traveled and time of travel was therefore also linear. Expanding on this basic intuition, Figure
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Figure 4.10: Effect of sound speed model on the ray tracing output (middle) and corresponding impulse re-

sponse estimate (right) used as a basis for ranging. Sound speed profiles are taken from HYCOM

(left, dashed) and the Virtual Ocean framework (left, solid).

4.10 evaluates two different sound speed profiles associated with the Arctic Ocean – one from HY-

COM10, and one from the Virtual Ocean framework, based on a sample set of field measurements.

The HYCOM sound speed profile leads the propagation model to predict direct path arrivals –

these rays are shown in themiddle bottom plot, in black. In contrast, the Virtual Ocean sound speed

model, which is informed by field measurements, indicates that any detected signals will involve

surface interactions; rays with boundary interactions are shown in the middle plots, in blue. The

impulse response estimates (right) are composed from the amplitude and travel time associatedwith

each of the rays (middle) upon arrival at the receiver coordinates. The IREs are compared with a

simplified @ = 2B ranging approach using 2 = 1440 m/s, which corresponds to the value at the

source depth. Time steps equivalent to 10 meters each are also shown along the timeline (red dots),

relative to the @ = 2B prediction, to illustrate the error incurred by the linear model when compared

to the acoustic propagation models.

As was discussed in Chapter 2, the ocean acoustic tomography problem seeks to estimate the

sound speed structure in a volume of water from a limited set of travel time measurements. One of

the considerations that should stand out from the discussion on tomographic inversion as presented

10Recall that HYCOM stands for the HYbrid Coordinate Ocean Model.
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Figure 4.11: Exploration of the impulse response estimate based on the weight of a single EOF. The weight is

set to a value between -5 and 5, for a total of 15 evenly spaced entries.

in Section 2.3.1, is that the measurement matrix � may be based on an initial reference model.

The a priori information about the environment is used to compute baseline eigenrays with their

corresponding travel times; the field measurements are then compared with the modeled results,

and the deviations are used to estimate the weights for the basis functions. However, the process

is sensitive to the correct identification of the eigenrays that should theoretically correspond with

each of the arrivals.

Given the challenges of the eigenray identification process, the simulations can be used to explore

the effect of different weights in the EOF representation space before actually looking at the inver-

sion problem itself. To this end, Figure 4.11 takes a single basis function from the set previously

shown in Fig. 4.9, and shows the impulse response estimate with respect to the chosen weight. The

weights are reported by index (first index is zero) rather than value, with values spanning from -5

to 5 for a total of 15 entries. The baseline (index 7 in this case) corresponds to a zero-valued weight,

meaning there is no deviation from the reference profile. The IREs are shown with marker size as

a proxy for amplitude, rather than using height as in the IREs from Fig. 4.10.
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The changes produced by adjusting the mixing parameter of a single EOF are sufficient to illus-

trate the complexities of eigenray detection at a high level. The set of rays arriving just before 4.94

seconds, for example, appear to be largely unaffected by changes to the EOF weight. The sets ar-

riving ahead of the 4.93 seconds mark appear to exhibit a linear relation between change in time

of travel and the change in weight. The paths arriving after 4.94 seconds appear to fade out as the

chosen weight becomes positive (index larger than 7).

Building on its predecessor, Figure 4.12 illustrates the IRE changingwith respect to an additional

shape from the set of basis functions. As before, each weight is set to a value of -5 to 5, for a total

of 15 entries each. The 225 combinations are ordered by setting both weights to their first (lowest)

value, and then scanning first across all weight values for one of the EOFs – this is illustrated as

a fine-step, with IREs of the same color. After reaching the end of the scan along the first shape’s

weights, the corresponding iterator is reset and the second iterator is stepped forward, creating the

coarse step illustrated by the change of color in the IRE markers. The baseline is shown by the

midpoint mixture index, where both weights are zero-valued. By scanning across two EOFs now,

an additional challenge to the eigenray identification task becomes apparent: the effect of changes

in the environment may be such that the order of arrival of the different paths may change. This is

illustrated by the arrivals near the 4.93 seconds mark for the higher-valued weight mixture indices.

In addition to consideringwhat can be learned from themodels alone, aswith the previous 1-EOF

and 2-EOF combinations, a “through-the-sensor” scheme for environmental adaptation also calls

for a discussion on how the model space and the sensor space align with one another. In this regard,

a high-level understanding of the inner workings of the acoustic modem come into play to guide

further development. This can be illustrated with the WHOI Micromodems used by LAMSS for

ICEX-20: as was stated earlier, the Micromodems begin every transmission with a predetermined

chirp, depending on the configured carrier frequency.
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Figure 4.12: Exploration of the impulse response estimate based on the mixture of 2 EOFs. As in the single-

EOF example, each weight is set to a value between -5 to 5, for a total of 15 evenly spaced entries

each. The 225 combinations are ordered by setting both weights to their first (lowest) value,

then scanning across one weight’s values as a fine step (same color), and across the other weight’s

values as a coarse step (change of color).
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The leading portion of the signal is used by the receiving modem unit as part of the detection

stage. The receiving modem can attempt to deconvolve the recorded signal by using replicas of

the expected chirps, in order to produce estimates of the impulse response. The IRE produced by

the modem reflects whether the incoming signal contains the expected pattern. If the result of this

matched filter exceeds a configurable detection threshold, the modem reports the detection and

moves into its reception stage, in which the IRE is used as a key to clean up the signal through

deconvolution before the modem tries to decode the data packets contained therein.

While the modem’s impulse response estimate is used to make sense of the data packets upon a

successful detection, one of the limitations it introduces is that it is based on a rather short obser-

vation window. For the ICEX-20 configuration, for example, the modem was set to operate at a

carrier frequency of 10kHz, and a bandwidth of 5kHz. The expected IREs for this configuration

are limited to 10 milliseconds, with sample points spaced as per Eq. 4.1.

ΔB =
1

2 (BW0) =
1

2 (5000Hz) = 0.1msec (4.1)

In addition to the estimated impulse response, the WHOI Micromodems can report the time of

arrival with respect to an internal or external time reference, based on the initial detection. How-

ever, in light of the challenges associated with eigenray detection, one potential approach to com-

paring model and field data is to enforce an amplitude threshold on the simulated set, to better

replicate the process undertaken by the real hardware. Figure 4.13 shows IREs for three different

environments, shifted from travel time to a relative scale zeroed at the time of detection. Here, the

single-point travel time and amplitude values are convolved with a gaussian kernel to approximate

the blending of neighboring arrivals.

The three environments illustrate the anticipated operational scheme: a baseline model and an

adapted model for the vehicle, as well as a higher-fidelity model deployed on the virtual ocean sim-

ulator. The reference model consisted of the ICEX-16 profile, which was deployed on NETSIM.
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The hardware-in-the-loop scheme was exploited to obtain IREs from real Micromodems, though

the simulated solution is also shown for reference. The baseline model was taken from the EOF

framework, with all-zero weights, and the adapted model was limited to using two EOFs only, for

illustrative purposes.

A notable takeaway from Figure 4.13 is that the effect of EOF weights can sometimes be clearly

observed in the acoustic model’s output. With the signals shifted to a trigger (or, detection) basis,

the shapes can be compared to one another, much as was done in Sec. 3.3 for the riverbed char-

acterization problem. The risk, on the other hand, is that the limited span of the IRE may at times

be too short to capture the complexity of the arrival structure. After all, the IREs at hand capture

approximately 10 milliseconds of data, when a typical transmission may be anywhere from 1 to 3

seconds long in total.

4.4 Summary

This chapter has covered the core systems required for the ICEX-20 AUV experiments. Later sec-

tions also discussed the theoretical foundation and the simulation work conducted as part of the

development of an environmental adaptation framework for ICEX-20. These simulations were

used to inform the experimental design, including system configurations, with the aim to maximize

the potential for further work in post-processing.

The theoretical work discussed in the later portions of this chapter was presented in “Model-aided

acoustic environment estimation via data fusion for autonomous underwater vehicles” and “An information

theory approach to assess acoustic-environmental significance”. The insights drawn from this simulation

work are exploited later in this thesis, to improve on the performance of fielded algorithms.
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5 ICEX-20 field report and data review

And through the drifts the snowy clifts

Did send a dismal sheen :

Nor shapes of men nor beasts we ken–

The ice was all between.

The ice was here, the ice was there

The ice was all around :

It cracked and growled, and roared and howled,

Like noises in a swound!

– Samuel Taylor Coleridge, The Rime of the Ancient Mariner

Though Coleridge’s text has his subjects traveling South, this powerful description of a frozen

domain is just as apt for the Arctic Ocean. The ice was indeed all around – this waswhat we traveled

North for! And the trek out to the territory of the great bear, as the ancient Greeks so aptly put it,

was not one without risk. This chapter presents a review of the data collected during ICEX 2020,

covering static experiments as well as the tethered and untethered deployments of AUV Macrura.

The core contributions of this chapter include (1) a holistic overviewof the acoustic data collected

during ICEX-20, including a brief discussion on data loss in the field; (2) an in-depth discussion of
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the quality of the acoustic data with respect to the operational paradigm and clock synchronization

challenges encountered in the field; and (3) a discussion of the impact the acoustic data had on the

vehicle’s navigation performance and on field operations, including its enabling a complex recovery

operation.1 The data quality assessment in this chapter was also used to support derivative work by

the author’s peers at the Laboratory for Autonomous Marine Sensing Systems.

5.1 Experiment Timeline

5.1.1 Getting to camp – and coming back

The story of how we traveled to and from ice camp Seadragon is perhaps an unconventional bit

of data. This piece of evidence, anecdotal in nature, speaks not of environmental measurements

and other data troves collected – that will come later. Instead, the story itself centers on the oper-

ational challenges we faced by pursuing successful deployment and recovery operations in such an

extreme environment. Certainly, we are not the first to deploy scientific equipment in the Arctic,

nor are we the first to experience difficulties out there. But, as a part-time outdoors-person, I am

reminded of the American Alpine Club’s (AAC) ongoing efforts to record and retell the most sig-

nificant and teachable moments of recent expeditions in their publication titled Accidents in North

American Climbing, which has been published annually since 1948. Much in the same spirit as the

AAC’s annual reports, this particular section seeks to serve as a brief reflection on our experience,

in the hopes that it may serve as a reference for future experiments of this kind. More importantly,

this very story captures the practical significance of the work we were looking to demonstrate out

there – but I will get to that later in this chapter.

The participation of MIT LAMSS at ice camp Seadragon was programmed for March 6 through

March 14 of 2020. Travel to the operational headquarters at Prudhoe Bay, Alaska, went largely as

1Randeni, Schneider, Bhatt, Viquez R., and Schmidt, “A high-resolution AUV navigation framework with integrated

communication and tracking for under-ice deployments”.
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planned via commercial airlines. Personnel transport from Prudhoe Bay to camp Seadragon was

facilitated by the Royal Canadian Air Force, using a Twin Otter (CC-138); equipment was trans-

ported using a CASA short takeoff and landing (STOL) aircraft. The first few days were dedicated

to setting up our network infrastructure, which included the testing and deployment of the radio-

enabled buoys in the field; we also had to prepare the vehicle, both on the software side by updating

the autonomy stack to the latest version, and on the hardware side by checking the pressure vessels

and assembling the vehicle body in full. Macrura’s first taste of the Arctic Ocean as part of ICEX-20

occurred on March 9, 2020, when a tethered run was conducted to validate all systems. Prior to

the vehicle entering the water for the planned ICEX-20 missions, the acoustic tracking range was

tested using a virtual vehicle approach, which relied on a standalone modem and transducer system

to interface with the physical ocean.

The day after that first engineering test, on March 10, the LAMSS team faced a couple of chal-

lenges worth reflecting on. The first of these consisted of a failure in the power circuitry, which

required us to open the front-seat payload. We had encountered this same type of power failure

once during prior engineering trials conducted in December of 2019 in Massachusetts Bay. While

a repeat occurrence was certainly undesirable, the engineering trials had put the team on alert for

this failuremode, and both spare parts and diagnostics procedureswere at hand to address the issue.

The second challenge stemmed from a disk failure in the back-seat payload – a different pressure

vessel from the one housing the front-seat computer and power circuitry. Getting access to the sec-

ond payload necessitated additional disassembly of the vehicle. In the end, we were able to address

this issue as well, with the spare equipment at hand; but not without jumping through some hoops

to recover much of the work performed in the days leading to the experiment, and changes made

onsite. The mostly unavoidable loss in both cases was that of the most precious resource in this kind

of experiment: time. I say mostly, because during the time when the vehicle was being serviced, we
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were conducting additional experiments with the buoys deployed in the field and the virtual vehicle

system we had first used to test the tracking range.

Overcoming issues that required both payloads opened in a single day out in the field, and with

failures occurring one after the other (rather than happening concurrently), may well have set a

new record for the LAMSS team’s fastest onsite recovery at this scale; but the greatest challenge we

encountered out there was one we could do very little to fix. The morning of March 11, we were

informed that a weather forecast first released the day before remained unchanged: a storm would

soon arrive, and we had but one day left to conduct our experiments before packing up. The MIT

LAMSS team would have to leave camp Seadragon on March 12, two full days earlier than planned.

Thus, it followed that on March 11, we conducted additional tethered deployments and eventually

moved forward with an untethered mission.

It was during that untethered mission that the final challenge took shape. Another fault had

caused the vehicle’s propulsion system to cease responding. With its propeller at a stall, and given its

slightly positive ballast, Macrura began to drift upward until it reached the layer of ice at the surface.

Despite the fault that disabled the propulsion system, the vehicle’s payload computer – responsible

for handling acoustic communications – remained active, and the acoustic tracking range was able

to locate the vehicle even as it settled under the ice. The AUV was approximately 1 km away from

camp, and a storm was coming.

5.1.2 Datasets acquired

As is so often the case when deploying complex systems in the field, the planned timeline was ul-

timately impacted by logistical issues such as a temporary loss of power at the research facility –

meaning, in this case, a tent at the ice camp which was designated specifically for scientific efforts –

as well as the aforementioned component failures and the competing use of limited resources such

as the hydrohole required to deploy AUV Macrura. Nature also had its say, when the approach of
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Figure 5.1: Gantt chart showing the timeline (UTC) of ICEX 2020 experiments.

a major winter storm necessitated the evacuation of the ice camp – a move that cut the anticipated

experimental window by about two days.

In terms of data collection, the ICEX 2020 experiments formally began during the afternoon of

March 10 (in AKDT). The first dataset consisted of a static experiment in which one of the buoys in

the ICNN was operated as a proxy for Macrura, and the tracking network was supplement with an

additional modem deployed from the ice camp to keep the number of operating nodes unchanged.

The second dataset was from another static experiment, in which the vehicle’s towed array was

weighted down and operated as a vertical line array (VLA). The vehicle was lowered to depths of 40,

60, 80 and 120 meters with a tether, and held at each depth for approximately 15 minutes each. On

March 11 of 2020, the vehicle was deployed under the ice, first on a tether for short-range loiters,

and later on without the tethered, for a longer mission. On its return home from the long mission,

the vehicle stalled due to anunexpected hardware failure; as the vehicle is slightly positively buoyant,

it made its way to toward the surface and settled under the ice, effectively creating another generally

static dataset. Figure 5.1 illustrates the acquisition of these datasets along the timeline, given inUTC

rather than Alaska time (AKDT) since universal time is the standard for LAMSS data logs.
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5.2 Overview of the acoustic communications logs

At the heart of the ICEX-20 datasets live three components collected from the acoustic environ-

ment: the first of them is the acoustic communications data. These logs capture the data used by the

ICNNto track the vehicle’s position over time, for example. The other two sets consist of recordings

collected by the vehicle’s array, in both VLA and horizontal line array (when towed) configuration;

and of data collected by an upward-facing side scan sonar fitted to Macrura, as LAMSS supported

the work of the US Navy’s unmanned undersea squadron, UUVRON. Due to the sensitive nature of

the data in the latter sets, they were both restricted to authorized personnel only. This thesis, and

this section in particular, make use of the first set composed of the acoustic communications logs.

As a first overview of the communications logs, Fig. 5.2 shows transmission and reception events

associatedwith each of themodems, with the event type indicated by the direction of themarker and

success or failure of the event indicated with different colors. Events are also staggered vertically

by type and status, to facilitate reading an otherwise dense plot. It may be noted that all modems

report reception failures at some point, while transmission failures are basically non-existent in this

dataset. This is expected, since transmission failures would be associated with a modem’s inability

to queue up a data packet.

5.2.1 Modem Error Codes

The acoustic link used by the WHOI Micromodems can be compared to other data transport pro-

tocols in that, at a high level, we can partition a transmission into three segments that represent the

information needed for a successful data transfer. The first is the leading chirp, used to establish the

link by triggering the detection system on the receiving modem. The second segment reports the

parameters used for signal modulation (for ICEX-20, LAMSS used the Micromodem’s Phase-Shift

Keying modulation, or PSK), which the receiving modem needs to decode the remaining segment.

The final portion of the signal contains data headers and the actual body of information transmitted.
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Figure 5.2: Timeline of acoustic transmission and reception events collected during ICEX 2020, identified by

experimental subset.
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Figure 5.3: Failure mode distribution for acoustic reception events at each node in the network. Failure

modes are categorized by each event’s PSK error code, as reported by the WHOI Micromodem.

Events with bad frames represent a notable portion of the data.

141



0

100

200

300

400
Modem Test

0

200

400

600

AUV Ops

| | | | |h1 h2 h3 h4 camp macrura
0

100

200

VLA

| | | | |h1 h2 h3 h4 camp macrura
0

500

1000

AUV Stalled

CA
CS

T 
Co

un
t

Receiving Node

PSK Error Code
No Error
Bad Frame
Bad Data Header
Bad Modulation Header

Figure 5.4: Failure mode distribution for acoustic reception events at each node in the network, for each

experimental subset. The particular distributions change with the varying spatial arrangements,

after breaking down the data set into smaller windows. However, it can be observed that the

events with bad frames continue to represent a notable portion of each subset.

The structured nature of the Micromodem’s signals makes it possible for a receiving modem to

report different error codes depending onwhat stage of the decoding process actually failed. Taking

a closer look at the PSK error codes reported for the reception events from each node, shown in

Fig. 5.3, it becomes apparent that the most typical failure mode is related to bad data frames. This

pattern generally holds true when breaking down the data across all experiments, as shown in Fig.

5.4. There is a visible relation between likelihood of failure and the positioning of nodes in the

network, as suggested by the significant drop in proportional failures for receptions at buoy h1,

during the window in which the vehicle had stalled; it should be noted that these events do include

receptions of topside-controlled transmissions at other buoys in the network.

5.2.2 Impulse Response Estimates

Working on large, multidisciplinary and cooperative operations brings on challenges beyond the

scope of the research efforts at the center of the project. This is especially true when the work re-
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quires timely coordination across multiple organizations. Despite all efforts to minimize surprises

when the team was finally in the Arctic, a series of logistical and disbursement delays encountered

during the development stages leading up to the experiment meant that some of the equipment

needed for the experiment – namely, the ICNN buoys – were not available for testing during the

engineering trials conducted with AUV Macrura in the Massachusetts Bay on December of 2019.

Instead, the two systems were tested separately and the radio drivers that interfaced both systems

were tested on the bench but not in the field.

When the two systems – the ICNN buoys with their radio network, and the vehicle operations

stack – were finally brought together atop the Arctic ice, it became apparent that the radio imple-

mentation used to connect the buoys to ice camp was more limited than what was predicted by

the equipment’s theoretical capabilities. When enabling all the expected messages for each of the

Micromodems on the ICNN buoys, the radio links became unreliable.

Being already on the ice when this issue came up, with very limited time for making adjustments

and a pressing need to proceed with the vehicle deployments required to meet the team’s scientific

objectives, a decision had to be made quickly. Disabling some of the non-critical reports produced

by the modems, including the impulse response estimates produced for each detection event, less-

ened the pressure on the radio network to the point that it was once again able to support vehicle

operations. Thus, the decision was made to operate the buoys with this reduced configuration. The

impulse response estimates produced by the WHOI Micromodems, one of the data sources initially

anticipated for this work, were among the affected records; Fig. 5.5 illustrates the number of IRE

entries relative to the number of detections. The data collected by themodem onboard Macrura was

unaffected, since the vehicle’s interface to the modem was wired rather than based on a radio link.
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Figure 5.5: Number of impulse response estimates collected, compared to number of events detected per

node. Limitations in the radio infrastructure used to communicate with remote nodes required

that the collection of impulse response estimates be disabled on those modems, while in-situ mis-

sion reconfiguration impacted the collection of samples from the camp’s modem.

5.3 Coordinated operations and the TDMA scheme

The acoustic communications paradigm used by LAMSS is based on a Time-Division Multiple Ac-

cess (TDMA) scheme, where the timeline is divided into slots which are then assigned across the

network’s nodes. By doing so, multiple transmitters can access the same frequency channel. For

vehicle operations with the ICNN, transmissions through the network’s buoys are assigned to the

topside system despite being unique transmitters. The time division is thus based on two nodes

only, and each slot is set to a width of 15 seconds to avoid overlapping transmissions within the

operational range. Because the ICNN was deployed in the vicinity of and in coordination with US

Navy submarines, the first topside slot of each 4-minute cycle was reserved for pinging the Navy’s

submarines. Thus, the TMDA cycle used during ICEX-20 is illustrated in Figure 5.6. Under this

scheme, transmissions used for AUV operations are expected to occur 1 second into each TDMA

window; the start of the window triggers clearing data buffers (for example, the travel time tables

used for trilateration on the ICNN), and queuing up the next outgoing message. Later references
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Figure 5.6: Visualization of the TDMA scheme used for ICEX 2020. The first slot in each 4-minute cycle is

reserved to ping U.S. Navy submarines in the area as part of coordinated operations. The remain-

ing slots are assigned to the topside and vehicle systems in alternating fashion. The 15-second slot

width supports operations in a 10 x 10 km grid, with enough buffer time at the end of each slot to

clear late-arrival paths before the next transmission.

to the TDMA cycle will focus on the minimal 2-node pattern, spanning 30 seconds at a time as it

alternates between a topside slot and a vehicle slot.

5.3.1 Time synchronization

One of the requirements for the TDMA scheme and the trilateration algorithm is that all nodes

share a common time reference. For nodes with a surface expression, as is the case for the mission

control computer on topside and the ICNN buoys, this is achieved by exploiting GPS time and the

associated pulse-per-second (PPS) signal. On the vehicle, which lacks regular access to the GPS

network, a high-precision chip-scale atomic clock2 (CSAC) is used instead. The vehicle’s CSAC is

first synchronized to GPS time and PPS via a secondary, external CSAC which is kept in sync with

the GPS network, along with the rest of equipment on the surface.

The Micromodem supports multiple options for timekeeping, including an integrated clock. As

part of the LAMSS operational framework, the modems are typically configured to accept updates

from external sources, such as theGPS receivers, which output time via theNMEA sentence GPZDA;

upon receiving an update, the modem sets its internal clock accordingly. The PPS output from the

2Gardner and Collins, “A second look at Chip Scale Atomic Clocks for long term precision timing”.
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GPS receiver, or from the CSAC onboard the vehicle, is also connected to the Micromodem as an

additional reference to ensure proper time synchronization.

5.3.2 Effects of clock synchronization error: acoustic transmissions

timeline

Transmission events are largely unaffected by modem clock drift alone, because the actual trans-

missions are controlled, first and foremost, by the topside computer’s decision that it’s time to relay

data through the modem; or, for vehicle transmissions, a decision made by the autonomy computer.

Upon doing so, the appropriate computer sends said data to the modem for buffering. The second

level of control for transmissions is the GPS or CSAC PPS line, which is connected to the modem’s

appropriate input and acts as the trigger for the modem to begin emitting the data buffered from

the topside computer. Thus, there are 3 requirements for healthy transmission events to occur:

• The modem’s PPS input signal is stable and accurate, to ensure transmissions are triggered

on time.

• The time set on topside computer or vehicle autonomy computer is accurate, to correctly

determine when to start loading the modem’s data buffer.

• The delays in serial communications, including transit through the FreeWave radio network,

do not cause an overflow into the next PPS cycle while the computer is loading data to the

modem’s buffer.

As long as the conditions stated above hold true, transmissions shall occur as expected within

the TDMA cycle constraints. This holds true, even if the recorded time in CAXST, the modem’s

transmission statistics, appears to differ significantly from the computer’s log time. This data flow

control is illustrated in Fig. 5.7.
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Figure 5.7: Acoustic transmission: timeline of clock-related events. Transmissions are generally robust to

modem clock misalignment, since they depend on: (1) the timing of the transmit command com-

ing from the topside computer, and (2) the pulse-per-second signal produced by the node’s time-

keeping solution (GPS receiver or synchronized CSAC). The modem clock provides timestamps

for transmission statistics, but does not control the transmission events.
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5.3.3 (More) Effects of clock synchronization error: differences

between transmission and reception events

Transmission events are generally quite robust to modem clock misalignment, depending on an

external PPS line and the time kept by the computer in control of the modems. Reception events,

on the other hand, are not so forgiving. Incoming (reception) events are highly sensitive to modem

clock drift, as the only high-precision reference associated with them is the timestamp provided

by the modem. This timestamp is collected on the topside or vehicle computers from the CACST

message produced by the modem, which reports the reception statistics (Fig. 5.8).

Using a PPS-synchronized timestamp captured by the modem allows us to compute acoustic

travel time with high precision, as long as the coarse time settings – hours, minutes, seconds –

are also set correctly. When all nodes are properly synchronized, the bulk of ranging errors are

generally driven by the interpretation and handling of said travel times vis-à-vis the choice of sound

speed model used to estimate the acoustic environment.

Impact of the radio link on event timing

Processing and transit times introduce variability such that we cannot use log times as reliable

sources for acoustic travel time. An error in the order of tens or hundreds of milliseconds translates

to tens or hundreds of meters in the range estimation error; this is the kind of error that could be

introduced when the radio link fails and needs to try sending a message again before it is success-

fully received by the topside computer. Thus, the value of log time is especially limited for modem

reports traveling through the FreeWave radio channel.

As part of the LAMSS operations protocol, the topside computer generally runs a Network Time

Protocol (NTP) server, which is configured to ingest timingmessages (i.e. GPZDA) and the PPS signal

fromaGPS receiver to ensure it is in syncwith universal time. Rather thanhaving themodemaccept

GPS time updates directly, the lab’s historical approach to managing modem time consisted of a
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Figure 5.8: Acoustic reception: timeline of clock-related events. The modem uses its internal clock to pro-

duce timestamps for reception events. Misalignment of the modem clock relative to GPS time

jeopardizes the best opportunity for high-precision timing, as the serial interface to the topside

computer may introduce significant additional delays.
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Figure 5.9: Diagram illustrating the conventional serial interface to acoustic modems. When communicating

over a wired interface, each modem uses a designated interface and there is less chance of failure

due to dropped packets.

probe and update process. This stemmed from early experiences with prototype modem hardware,

which had unreliable internal clocks, and was adopted by subsequent generations of students as the

accepted approach. Managing the modem time in this way generally meant that mission logs would

provide some insight to modem timekeeping issues, and allowed the mission control computer on

topside to manually update the modem’s time when it ran too fast or too slow relative to the NTP

server. This data flow is illustrated in Figure 5.9.

Historically, this approach tomodem timemanagement had been employed over hardwired con-

nections. Any delays introduced by the serial interface and the computer’s operating system (not

a real-time OS) could be accounted for by defining some tolerance threshold to the modem time’s

latency; any significant offsets could generally be attributed to the modem clock itself. The same

clock management scheme was employed for ICEX-20, under the expectation that the FreeWave
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radios that connected the topside computer to the ICNN buoys, along with the software required

to enable the interface, would behave transparently as a radio-based serial interface.

In practice, the throughput of the radio link was found to be lower than expected – though the

theoretical capacity would have supported it, the link could not be used as an equivalent to the

hardwired serial interface. Instead, the experience attained during systems testing on the ice made

it apparent that the radio interface introduced new and significant delays between the modem and

the topside computer. The resulting data flow between these nodes, then, is better described by Fig.

5.10.

5.3.4 Time skew in the ICEX-20 data

During the first few days on the ice, while conducting the various system tests necessary, time skew

was one of the key indicators of the issues introduced by the radio link. The buoys had built-in

GPS receivers with a PPS line connected directly to their respective Micromodems, but the coarser

time setting was managed by topside, per the aforementioned scheme, rather than being updated

directly by the buoy’s built-in GPS. The limited throughput of the radio interface encouraged the

team to reduce the sync probing rate for the remote modems. However, the reduced visibility of

the modem clock in the absence of a supplementary reference led to the buoys occasionally drift-

ing far out of sync. The distribution of time skew records available for each modem, along with

the corresponding number of events, is shown in Figure 5.11. The skew data shown is computed

by subtracting the log time, recorded by the control computer upon receiving a message from the

modem, and from the content of modemmessages linkedwith timekeeping: CATMS, the response to

time-setting commands; CATMQ, the response to time queries; and CATMG, reported by the modem

when the timing sources change – this occurs, for example, when the PPS signal produced modem’s

real-time clock syncs with the external PPS line from a buoy’s GPS receiver.
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Figure 5.10: Diagram illustrating the radio link as a substitute to the serial interface for remote acoustic

modems. The latency of the radio interface increases the chances for delayed or dropped pack-

ets, impacting the reliability of the interface.
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Figure 5.11: Time skew by node, as collected from explicit time queries sent to the node’s Micromodem. The

skew is givenwith respect to the control computer’s time; operatorworkstation for surface nodes

and payload computer for the vehicle.

The number of timing probe entries for Macrura may seem low compared to those for the camp

modem, since they both use hardwired serial connections. But, it should be noted that the vehicle

was not active outside of the VLA experiment and the vehicle deployments, except for some brief

testing conducted on the bench during the modem test experiment. The effect of limited time mon-

itoring is particularly apparent for h4, where some of the entries are visibly clustered around 2.5, 5

and 10 seconds behind the computer’s own time.

5.4 A closer look at the acoustic comms data

The previous section discussed the importance of time sync in coordinated operations. In that

scope, the effect of replacing wired connections with a radio network can become quite signifi-

cant when the latter cannot keep up with the expected throughput. Having covered that discussion,

this section revisits the acoustic communications logs and looks at the data within the framing of

the TDMA scheme.
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5.4.1 Transmission events

Because of how they are timestamped, the transmission event logs actually capture the symptoms

of clock drift. This is illustrated in Figure 5.12, which illustrates the distribution of events along

the 2-node TDMA cycle for the two time records available. When using the date and time recorded

within the modem’s transmission statistics, collected via the CAXSTmessage, then some events that

are apparently not aligned with the expected TDMA cycle become apparent. This applies, in par-

ticular, to transmissions put out from the camp modem during the modem test experiment. All

transmissions made from camp were expected to fall within the topside portion of the cycle (the

first 15 seconds). These seemingly tardy events, for the most part, come from a particular subset of

the experiment during which the camp modem’s clock is apparently drifting, unchecked, for nearly

an hour.

When looking at the same data relative to the log times, it becomes clear that the transmissions

sent out from themodem at campwere not, in fact, delayed by 5, 10 or nearly 20 seconds. Instead, all

camp transmissions occurred within the appropriate TDMA window. Because the log times reflect

the moment when the computer receives the CAXST message from the modem, they are recorded

after the modem has completed the transmission and relayed its performance metrics. However,

the clustering of events with respect to the log times suggests that these transmissions did actually

occur at the correctmoment, triggered by the PPS. It is worth recalling, at this point, that themodem

clock and the topside’s GPS-synced NTP server are independent; the drift of the modem clock does

not in any way influence the control computer’s clock. On the other hand, loss of the GPS signal

– or a poor connection to the GPS network – could affect the topside computer’s synchronization,

since it is not consistently attached to a CSAC. The presence of generators, radios, and other elec-

tronic equipment, in addition to the tent’s structure, could all influence the reliability of the topside

computer’s clock.
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Figure 5.12: Distribution of transmission events along the TDMA cycle, based on the timestamps reported

by the modem in the transmission statistics message (left) and on the time of the log entry, given

by the control computed (right). When using the date and time recorded within the modem’s

transmission statistics, some events that are apparently not aligned with the expected TDMA

cycle stand out; when looking at the same data relative to the log times, it becomes clear that the

transmissions sent out from themodem at campwere not, in fact, delayed. This timingmismatch

provides additional insight into the health of the ICNN’s synchronization, beyond that attained

from explicit time queries.
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5.4.2 Reception events

The importance of timing was stressed in Section 2.4, as it is the foundation for Positioning, Nav-

igation and Timing (PNT) systems – ordered by their level of dependency, these should perhaps

be named TPN systems instead, but in the interest of clarity, the PNT convention will be used

henceforth. Timing enables positioning, and the latter can then inform navigation decisions such

as course and speed corrections.3 Under this purview, acoustic travel times measured through the

time-synchronized reception events are what ultimately allow the ICNN to use trilateration to es-

timate the vehicle’s position; that is, after the travel times are converted to range estimates based on

the acoustic propagation models.

To that end, Figure 5.13 captures the distribution of arrival times at each node, along the TDMA

cycle. The events are coded by their respective PSK error code, to illustrate at a high level how longer

exposure to the ocean can effectively make it more difficult for the receiving modem to successfully

decode the signal. The signal distortion that causes the increase in difficulty could be attributed to

numerous causes, such as the effect of boundary interactions or closely timed multi-path arrivals.

With respect to the distribution of arrival times in Fig. 5.13, the first observation to be made is

that successful arrivals are front-loaded within each TDMA slot. This is certainly expected, as it is

here that direct paths or minimally distorted surface bounce paths would fall (ray geometries and

travel times will be discussed in more detail in Chapter 6). However, the second notable feature is

that there are numerous late arrivals –with travel times of 4-6 seconds, for example – that fail due to

some number of bad data frames in the signal. These can be seen within the vehicle’s transmission

window, roughly around 20-22 seconds. Failures related to corrupted data and modulation headers

appear in the dataset aswell, thoughmuch less frequently. Given the local bathymetry and predicted

paths, it is likely that at least some of these entries correspond to bottom-bounce paths.

3Howe, Miksis-Olds, Rehm, Sagen, Worcester, and Haralabus, “Observing the Oceans Acoustically”.
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Figure 5.13: Timeof arrival of reception events by node, given in the context of theTDMAscheme. Transmis-

sions are expected to occur 1 second after the start of each window (shaded regions). Successful

arrivals are front-loaded within each TDMA slot; late arrivals – with travel times of 4-6 seconds,

for example – fail primarily due to some number of bad data frames in the signal, but appear to

contain valid headers.
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It should be remarked that the vehicle (bottom plot) does not report any arrivals during the first

second or so after the expected start of transmission, for the vehicle’s TDMA slot – that is, around

16-17 seconds. The start of the transmission, as was mentioned earlier, is expected to occur one

second into each time slot, and this offset is illustrated by the shaded region at the start of each slot.

Micromodem transmissions can span about 1-3.5 seconds depending on the number of frames sent,

so the gap in the travel time distribution is consistent with the period during which the vehicle is

transmitting. The subsequent series of arrivals would then be consistent with the signal returning

to the vehicle through any number of indirect paths.

The likelihood that at least some of those paths returning to the vehicle include surface or bottom

interactions is high. Furthermore, it is worth noting that the vehiclemodem’s transducer is attached

at the bottom of the vehicle’s mid section. Thus, surface bounce paths – which would be the first to

return to the vehicle at its shallow operating depths – would likely be at least partially influenced by

the vehicle body; the fact that the reported arrivals contain bad frames is of little surprise. As each of

the ICNN buoys may record arrivals from another buoy’s transmissions, the presence of successful

entries in the earlier portions of the topside TDMA slot is very much expected across the tracking

range.

Receptions, by experiment

As with the PSK error codes earlier in the chapter, exploring the bounded subsets for each of the

experiments can provide some additional insights. To this end, Figures 5.14-5.17 break down the

distribution of arrivals by experiment. This perspective captures some of the effects induced by

changes in the vehicle’s position and depth.

• Modem test

The modem test was static in nature, as the experiment used only the ICNN buoys and a

fifth transducer deployed with a towfish, for the camp modem. The vehicle itself was not
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Figure 5.14: Time of arrival of reception events during the modem test experiment. The static nature of

the experiment is captured by the narrow and generally consistent peaks. This set reveals few

arrivals with travel times greater than 4 seconds.
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Figure 5.15: Time of arrival of reception events during the vertical line array experiment. The VLA experi-

ment consisted of a series of shorter static experiments, where the vehicle was held at different

depths for about 30minutes at a time. The effect of changing depth is reflected in the appearance

of the late arrivals within the vehicle’s transmission window, while the quasi-static nature of the

experiment is again reflected by the narrow peaks for successful arrivals.
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Figure 5.16: Time of arrival of reception events during AUV operations. The dynamic nature of AUV opera-

tions is captured by the widening of the peaks for successful arrivals, and the effect of changing

vehicle depth remains visible through the distribution of late arrivals.
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Figure 5.17: Time of arrival of reception events during the final phase of AUV operations, where the vehicle

had stalled. This set effectively amounted to another static experiment; the arrival structure once

again returns to tall, narrow peaks. With the vehicle settled in place under the surface ice, there

are once again few arrivals with travel times greater than 4 seconds.
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involved, and all transmission depths were fixed. The only adjustment possible in this set was

the choice of reception depth layer for the buoys, which had hydrophones at 30 and 90meters.

The static nature of the experiment is captured by the narrow and generally consistent peaks

in Fig. 5.14. The late arrivals observed earlier, during the vehicle TDMA slot, are notable for

their absence in this set.

• Vertical Line Array

TheVLA experiment consisted of a series of shorter static experiments, where the vehiclewas

held at different depths for about 30minutes at a time. With all subsets put together, Fig. 5.15

captures the effect of depth on the distribution of arrivals. Of note here is the reappearance

of the late arrivals in the vehicle’s transmission window. Though most of these contain bad

frames, it is remarkable that ICNNbuoy h3 reports a handful of successful arrivalswith travel

times just short of 4 seconds (shy of the 20 second mark). Based on the acoustic models, the

reported travel times for those events would be consistent with bottom-reflected paths.

• AUV Operations

The dynamic nature of AUV operations is captured by the widening of the peaks for success-

ful arrivals in Fig. 5.16. As with the VLA subset, the presence of those late arrivals at about

20-22 seconds seems to capture the effect of vehicle transmissions at deeper points in thewa-

ter column. The presence of two distinct peaks in the arrival structure of the camp modem,

and to a lesser degree for buoys h2 and h3 as well, seems to suggest that the dominant path

(eigenray) for these connections is changing as the vehicle travels away from camp.

• AUV Stalled

As with the modem test set, the period of time during which the AUV had stalled and got

lodged under the ice effectively amounted to a static experiment. The arrival structure once

again returns to tall, narrow peaks in Fig. 5.17.
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5.5 ICNN tracking data

The ICEX-20 experiments showed signs of success during preliminary processing of results in the

field. These included, for example, comparing the GPS data collected from the ICNN buoys with

the acoustic tracking solution produced by the network for the particular buoy acting as a proxy for

Macrura at any given point during the modem tests – these results are discussed in detail in Chap-

ter 6. The greatest practical evidence of success, though, may perhaps come from the fact that the

vehicle’s final failure – the one that caused it to stall and get lodged right under the surface ice –

created the need to plan recovery operations by relying solely on the solution collected from the

ICNN. The vehicle track during the mission is shown in Figure 5.18, along the acoustic tracking

updates produced by the ICNN. Speaking to the tracking data overall, the majority of the naviga-

tion error reported by the vehicle’s onboard hydrodynamic model-aided navigation4 (HydroMAN)

system was below 15 m and was thus small enough to enable a successful recovery.5

The field team traveled to the last location reported by the ICNN and dug a 6-inch hole through

the approximately 2 meters of ice. Through this hole, the team introduced a camera in hopes of

spotting the vehicle – and indeed, they were immediately able to spot the vehicle, roughly a meter

away from the current location. With the storm still coming and not enough time to complete the

recovery, the team had to secure the vehicle to a surface expression theymight be able to locate after

the storm. By this point, the vehicle batteries had run out, so no further location updates would be

available – even if the equipment extracted during the evacuation could be brought back afterwards.

Upon returning to the ice after the storm had passed, the recovery team sought out the surface

expression to which they had secured the vehicle. This proved a very helpful product of planning,

as the entire ice floe complex on which ice camp Seadragon was setup had moved during the storm;

4Randeni P., Rypkema, Fischell, Forrest, Benjamin, and Schmidt, “Implementation of a Hydrodynamic Model-Based

Navigation System for a Low-Cost AUV Fleet”.
5Randeni, Schneider, Bhatt, Viquez R., and Schmidt, “A high-resolution AUV navigation framework with integrated

communication and tracking for under-ice deployments”.
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DVL and INS measurements, as well as a self-correcting hydrodynamic model.
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a) b)

Figure 5.19: ICEX-20 vehicle deployment (a) and recovery (b) sites.

the vehicle’s position relative to camp had also changed significantly, as explained by LDCR Daniel

Goodwin.

“Consider this: Our backup plan was to use the relative position and range from camp. The

location that we went to recover the vehicle was roughly bearing 090◦ at 1100 m from camp. A

significant difference than the original 045◦ and 1000 m. Again, without securing the vehicle

topside prior to leaving the ice, finding the vehicle after the snowstorm was highly improbable.”

– LCDR Daniel Goodwin, US Navy

LCDR Goodwin, who was also a member of the MIT LAMSS team during ICEX-20, represented

the lab’s interests to other groups involved in the recovery efforts. The planning and execution of

the AUV recovery is presented in further detail in his master’s thesis, “Environmental Effects of the

Beaufort Lens on Underwater Acoustic Communications during Arctic Operations”. As part of contextu-

alizing the different working conditions, Fig. 5.19 illustrates the facilities at camp Seadragon (a),

from which the vehicle was deployed, as well as the setup used to recover the vehicle (b) after the

storm had passed.
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5.6 Summary

This chapter has presented a review of field logs and framed the acquired data in the experiment

timeline. The chapter also discussed the impact of logistical constraints – by forcing limited field

testing prior to the experiment, limitations such as delayed inter-organization disbursements re-

sulted in effective data loss. Building on the need to understand the extent and quality of data

available, the analysis herein presented explored the distribution of the data with respect to the

coordinated TDMA scheme, as well as the quality of time synchronization. The performance of the

tracking range is also briefly discussed, in light of both anecdotal evidence and data logs.

As of this writing, the performance evaluation of the ICNN (summarized in Section 5.5) has been

submitted for publication in “A high-resolution AUV navigation framework with integrated communi-

cation and tracking for under-ice deployments”. Portions of this field report and the associated data

analysis were also used to support subsequent research based on the ICEX-20 data, including the

works of Bhatt (“A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation

on autonomous underwater vehicles”) and Goodwin (“Environmental Effects of the Beaufort Lens on Un-

derwater Acoustic Communications during Arctic Operations”).
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6 Exploiting the multi-path structure

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

– Robert Frost, The Road Not Taken

In realistic environmental models, factors such as surface roughness and bathymetry will impact

the acoustic field. For one, changes on the angles of these boundaries readily affect the direction

of the reflected rays; Fig. 6.1 (a copy of Figure 4.10, provided locally for convenience) illustrates

various paths with multiple surface bounces – these would clearly be impacted by large waves on

the free ocean surface, or ice keels under the Arctic. Bathymetric features and other obstacles can

also block certain rays; paths that might be observable from one receiver position can fade away as

the receiver travels to a different location, which can affect a system’s ability to identify distinct rays

from the model and the receiver’s travel time measurements.1

Because of the difficulty associated with ascertaining the correct relation between the modeled

eigenrays and the arrivals recorded at the sensor, acoustic positioning systems typically opt for

1Deffenbaugh, Schmidt, and Bellingham, “Acoustic positioning in a fading multipath environment”; Deffenbaugh,

“Optimal Ocean Acoustic Tomography and Navigation with Moving Sources”.
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sponse estimate (right) used as a basis for ranging. Sound speed profiles are taken from HYCOM

(left, dashed) and theVirtualOcean framework (left, solid). Replicates Fig. 4.10 locally, for reader’s

convenience.

a deterministic linear transform. Assuming an effective group velocity to relate travel time with

range may incur additional error, but can be sufficient for many applications – moreover, doing

so sidesteps the complexity of identifying any particular path, and the inherent need for built-in

acoustic modeling capabilities that can run throughout the duration of the deployment. However,

the use of well-conditioned acoustic models during runtime can improve the performance of the

positioning system – particularly in the presence of features such as the Beaufort Lens, which may

have a strong influence on the acoustic environment.

The core contributions of this chapter include (1) the performance evaluation of themodel-aided

positioning solution fielded during ICEX-20 with respect to the static modem test experiment and

the buoy-to-buoy communications contained therein; (2) the development and validation of an im-

proved algorithm for the positioning problem, based on the insights from Section 4.3 and the data

analysis in Chapter 5;2 and (3) the evaluation of these two acoustic positioning algorithms with

respect to the trilateration framework used for the vehicle operations portion of the experiment.

2Bhatt, Viquez, and Schmidt, “Under-ice acoustic navigation using real-time model-aided range estimation”.
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6.1 Minimum bounce criteria

The acoustic positioning system deployed during ICEX-20 was first validated with a static exper-

iment (modem test), and was later relied upon for the successful recovery of AUV Macrura after a

critical system failure. This system builds on two fundamental assumptions:

1. The environmental model, which is used to predict acoustic propagation, is sufficiently rep-

resentative of the real environment.

2. The signal detected by the receiver will be dominated by the most direct set of paths. In this

context, the “most direct” set of paths is understood to be determined by the least number of

boundary interactions.

The first of these assumptions revolves around recognizing the limitations of a deterministic

approach in highly dynamic environments. The Beaufort Lens, whose effect on the acoustic envi-

ronment was first presented in Chapter 1, can vary significantly within the duration of a mission;

changes in its depth and other properties of the lens directly impact the associated acoustic ducts. It

would be virtually impossible to anticipate all possible scenarios and identify a reliable one-size-fits-

all solution for the relation between travel time and range. Therefore, the need for a representative

environmental model during the ICEX-20 deployments was handled by using the EOF framework

discussed in Chapter 4, given its ability to update the virtual oceanmodel fromCTDmeasurements.

The second assumption stems from the fact that producing high-resolution acoustic models dur-

ing runtime may not always be feasible within the functional requirements of the mission. As part

of the positioning exercise, reliable updates to the predicted arrival structure are generally needed

within the span of the communications cycle – meaning at the rate of a couple of times per minute,

at a minimum; some of the predictive tools deployed by LAMSS may require a faster update cycles.

In order to meet these timescale needs, shown earlier in Fig. 4.2, the faster stages of the system are
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generally built from plane-wave expansion of local grid solutions produced by the acoustic propa-

gation model at slower rates. This nesting approach is extremely valuable to real-time operations,

as these updates must be computed for each of the network’s possible contacts of interest, such as

the various vehicle-buoy combinations.

Thus, rather than seeking a fully deterministic relation betweenmodeled eigenrays and fieldmea-

surements, the ICEX-20 approach first selects a subset of the rays in each point-to-point model (for

each of the contacts between nodes, such as vehicle to buoy #1 or #2). These are bundled based

on an expected commonality, which in this case corresponds to the number of boundary interac-

tions. For each contact scenario, the corresponding set of rays is consolidated into a single metric:

a prediction for the effective group velocity C. This metric is obtained by way of a power weighted

average, as shown in Eq. 6.1, and is assumed to be smoothly varying with respect to range. The

corresponding weighted standard deviation is given in Eq. 6.2.
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During the ICEX-20 operations with the ICNN, the vehicle reported its estimated position and

depth, along with any other data packets it transmitted during its TMDA slot. Upon receiving these

updates, the ICNN evaluated the contents of the message as well as the perceived one-way travel

time. The position data transmitted by the vehicle was used approximate the range @̂ between the

vehicle and each receiving buoy, for each contact. This range was then used to perform the plane-

wave expansion of the acoustic model, along with the vehicle’s depth. This computation resulted

in predicted arrival times 3B< and amplitudes 0< for each of the <eigenrays expected to connect the

transmitter and receiver nodes. If any of the eigenrays were direct paths (#0 > 0), then only those
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rays were accounted for. If no direct paths were predicted by the model (#0 = 0), then the #1

single-bounce rays were considered next, only moving upward in number of boundary interactions

when the lower-count ones are unavailable – therein comes the name chosen for this metric: the

Minimum Bounce Criteria (MBC). Finally, the pseudo-range between two nodes 7, 8was calculated

simply by using the effective group velocity C7,8 in the linear relation (Eq. 6.3).

@7,8 = C7,8ΔB7,8 (6.3)

6.1.1 Modem-to-modem connections

In order to validate its use for under-ice operations, the MBC was first evaluated during the mo-

dem test experiment. Figure 6.2 illustrates the various transmitter-receiver connections recorded

during this static experiment. Per the presentation of the ICNN infrastructure in Section 4.1.3,

each buoy has a single transmitter at a fixed depth of either 30 or 90 meters; all buoys have two

receiver locations at 30 and 90 meters, and have the ability to select the reception depth layer. Thus,

Figure 6.3 complements the modem connection counts with information about the depth layers

corresponding to each of the transmission (Tx) and reception (Rx) events reported by each node.

In addition to showing the Tx/Rx activity by depth layer, Fig. 6.3 also shows the group velocities

estimated by the topside computer during the ICEX-20 deployments. These estimates were based

on the MBC (Eq. 6.1), and are reported here by their receiving node. The performance statistics

for both sets – using either the baseline or fitted SSP – are shown in Table 6.1. These values are

computed from the logged data and group velocity estimates only, and receptions with anomalous

values have been filtered out.
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Figure 6.2: Overview of the modem connections recorded during the modem test experiment. Reception

event counts are shown as fractions, with the number of successfully decoded entries on top and

the total number of detections on the bottom.

174



1435

1440

1445

1450

Es
t. 

GV
el.

 [m
/s

]

eof fit baseline
eof fit baseline

eof fit

-

-

20

30

90

Tx
 ev

en
ts,

de
pt

h 
la

ye
r [

m
]

16:00 18:00 20:00 22:00 Mar-11 02:00 04:00 06:00
Time, UTC 2020-Mar-11

-

-

20

30

90

Rx
 ev

en
ts,

de
pt

h 
la

ye
r [

m
]

Node
East
West
North
South
Camp

Figure 6.3: Timeline of events and configuration during the modem test experiment. The group velocity

estimates are based on either the baseline sound speed profile, or one obtained by fitting themodel
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layer, with the campmodem lowered to approx 20meters depth, and the buoys operating at either
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Table 6.1: Range estimation error for events recorded during the modem test experiment, based on data and

predictions produced in situ. Metrics are reported with respect to the absolute error.

SSP Count Mean [m] Median [m] STD [m] Max [m]

Baseline 247 11.35 11.96 4.23 23.95

EOF fit 575 11.31 11.20 8.09 25.99

6.1.2 On recorded data vs bottom-bounce predictions

One of the patterns regarded as anomalous consisted of events where the predicted group velocity

and recorded travel time produced an unusually large error with respect to the GPS-derived range.

This occurred with events that are considered consistent with bottom-bounce paths, and were only

recorded during portions of the experiment where the topside computer was configured to predict

groupvelocitieswith respect to the baseline profile. These events appearedonly rarely in the dataset,

reporting travel times of 4.19 seconds for transmissions originating at the eastern-most buoy and

recorded by the western-most buoy. For consideration, the error metrics for these events alone,

with respect to the associated GPS-derived ranges, are shown in Table 6.2.

Table 6.2: Range estimation error for events recorded during the modem test experiment, which may be con-

sidered consistent with bottom-bounce paths. Metrics are based on data and predictions produced

in situ, and are reported with respect to the directional error.

SSP Count Mean [m] Median [m] STD [m] Max [m]

Baseline 11 2865.54 2865.61 0.24 2865.88

The two nodes involved in these events are located approximately 3162 meters apart from one

another. Using a group velocity estimate related to a direct path in the models would nearly double

the estimated range, as the predicted travel time (not used by the MBC) would be smaller than the
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recorded measurement, thus producing the error reported in the previous table. As a first-order

approximation for these likely bottom-bounce arrivals, accounting for both the GPS-tracked range

between the buoys and the local bathymetry of approximately 2700 meters would produce a much

more reasonable estimate of the signal’s effective speed through the water column.

There is one final remark worth making, on the insight attainable from the mission logs alone.

In balancing competing computational requirements during the missions, the experimental system

was configured to produce ongoing estimates of the group velocity only for acoustic links that in-

cluded the vehicle. Per the principle of reciprocity, this meant the estimates logged corresponded

exclusively to models of the vehicle transmissions – or the virtual vehicle proxied by one of the

physical buoys, for the modem test experiment. This decision stemmed from the expectation that

group velocity estimates would be used exclusively as part of the ICNN’s positioning step. Since

the buoys reported their GPS-tracked position to the operations center via radio, the buoy-to-buoy

group velocity estimates were not used for positioning andwere therefore not computed or logged.

6.2 Nearest bounce criteria

Though rarely present in the modem test data logs, the handful of arrivals that appeared consis-

tent with bottom-bounce paths stood out for the significant amount of error they produced with

respect to the initial range estimate @̂ used in the Minimum Bounce Criteria framework. Drawing

from this insight, it follows that if bottom-bounce paths in the models were preserved for compar-

ison under appropriate circumstances, then the model’s predictions of the group velocity could be

used as part of the ranging framework. Indeed, the same argument could be extended to the various

combinations of surface and bottom interactions that may occur in environments such as the Arc-

tic Ocean, particularly when recognizing that an otherwise viable path could be blocked by some

external obstacle of which the acoustic model has no knowledge. Parting from this observation

comes the Nearest Bounce Criteria, which aims to strike a balance between the need for more gran-
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ular interpretations of the acoustic models and the reluctance to pursue a more detailed eigenray

identification approach in real time, in the field.

Like the Minimum Bounce Criteria (MBC), the Nearest Bounce Criteria (NBC) uses a power-

weighted average of the various arrivals predicted by the acoustic propagation model. The main

difference between the two is that the NBC categorizes its various predictions by some choice pa-

rameter; in this case, the number of boundary interactions tracked by the acoustic model. Thus, the

predicted travel time B9 corresponds to the power weighted average of the ray travel times for the

#9 rays with 9 bounces (Eq. 6.4). A given arrival reported by the physical modem is associated with

a number of bounces by minimizing the travel time error (Eq. 6.5).

B9 =

∑#9

<=1
3B<0

2
<∑#9

<=1
02
<

(6.4)

B7,8,9 = min
9=0,1,2,...

��B9 − ΔB7,8
�� (6.5)

The effective group velocity C7,8 associated with the closest travel time match B7,8,9 is then used to

produce the pseudo-range between two nodes 7, 8 by using the linear model, as before (Eqs. 6.6, 6.7).

C7,8 =
@̂

B7,8,9
(6.6)

@7,8 = C7,8ΔB7,8 (6.7)

From an operations perspective, one of the advantages of the NBC over the MBC deployed dur-

ing ICEX-20 is that it attains more granular control over the interpretation of the acoustic models,

without requiring any changes at all on the implementation of the models on the AUV or the oper-
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Figure 6.4: Runtime simulations are based on the Virtual Ocean Simulator, which uses a nested modeling

approach that exploits the timescales of change of the different features. The acoustic model

is evaluated at an intermediate timescale, producing data for a local grid near the target node.

The element-level impulse response estimate is computed by plane wave expansion of this pre-

computed grid.

ator station. Instead, it seeks to exploit information already available within the vehicle’s autonomy

system, updating only how the model output is processed for comparison with field measurements.

6.2.1 Validating the nearest bounce criteria

The NBC was not implemented during the ICEX-20 experiments, but was instead a product of

insight attained during the data analytics efforts that followed. Consequently, its validation neces-

sitated a post-processing approach that allowed the augmentation of field logs, while remaining

within the bounds of vehicle operations. In other words, the post-processing simulations sought to

approximate the simulations performed in real-time throughout the mission.

The main driver for pursuing an approximation, rather than a full recreation of runtime simu-

lations, is that the runtime system relies on a nested approach (Fig. 6.4), with intermediary data

products from slower layers feeding into the faster ones. Rather than replicating all layers of this

nested approach, then, the validation framework captured only the salient features of runtime pro-

cesses. As with the runtime acoustic model, a local grid was used to predict the arrival structure; but

absent the constraints of real-time operation to inform the construction of this mesh, a set of 11 x

11 points centered at the target node and spanning 10 meters in range and 20 meters in depth was

used instead, for each data point evaluated. The plane wave interpolation to the target coordinates

was also disregarded; in its stead, the arrival predictions across the grid were processed in bulk.
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The use of a local grid in this scenario was not only intended to recognize the operational frame-

work. It was also aimed atminimizing the impact of numerical resolution in the propagationmodel.

This limitation becomes apparent when using a single receiver point rather than a grid, as the con-

ventional approach to ray tracing starts from a set of launch angles; the resulting traces may rep-

resent paths that would reach a vehicle in a real application, but might not be recognized by the

numerical solver as a viable detection. Building on this consideration, the 2:1 ratio between the

vertical and horizontal spans covered by the local grid was driven by the expected spread of the

rays in both directions within the range of operations. This point is discussed further in Sec. 6.2.3,

where details about the ray-tracing models for the different environmental models are shown.

6.2.2 Performance of the nearest bounce and minimum bounce criteria

The NBC validation process was limited to evaluating paths with up to 4 bounces. This decision

was informed by the ranges and depths of operations involved in the ICEX-20 deployments, as well

as the expected attenuation related to multiple boundary interactions. Furthermore, surface and

bottombounceswere not accounted for separately; accounting for the fan of angles evaluated by the

acoustic propagation model and the generally upward-refracting nature of the surface duct in the

environments evaluated during this assessment, it was expected that there would be little overlap

between single surface bounce and single bottom bounce paths. On the point of environmental

models, three were used as part of this assessment: the baseline sound speed profile in the EOF

framework, and the EOF fit of experimental CTD data, were supplemented by a third sound speed

profile taken from HYCOM.

From all the events recorded during the modem test experiment, shown previously in Fig. 6.2,

only those that were successfully decoded by the receiving nodewere used in this performance eval-

uation of the two proposed performance metrics, MBC and NBC. After all, the ICNN was likewise

configured to distrust failed receptions as part of the collaborative navigation solution. For the
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purposes of producing a balanced standard for comparing the two metrics, entries whose measured

travel times was consistent with bottom-bounce paths were disregarded. The same was done for

events where the simulated MBC prediction was likewise locked onto a bottom-bounce path – this

point is discussed further Section 6.2.3.

Table 6.3: Range estimation error for 1232 acoustic communication events recorded during the modem test

experiment, using supplementary simulations. Performance improvements of the Nearest Bounce

Criteria over theMinimumBounce Criteria approach an order ofmagnitude. Metrics are reported

with respect to the absolute error.

Criteria Metric Baseline SSP EOF fit HYCOM

Minimum Bounce

Min [m] 0.01 0.00 0.11

Median [m] 10.24 13.23 6.34

Mean [m] 10.35 13.34 7.70

Max [m] 22.52 31.49 19.55

STD [m] 6.71 8.44 5.14

Nearest Bounce

Min [m] 0.00 0.00 0.01

Median [m] 2.27 2.13 4.49

Mean [m] 4.00 4.16 5.17

Max [m] 14.96 20.21 15.81

STD [m] 4.02 4.99 3.53

In all, 1232 events were isolated from the experimental data and evaluated in simulation as pre-

viously described, with a 10m by 20m grid centered at the target node’s range and depth. The range

estimation error statistics are shown in Table 6.3, where the Nearest Bounce approach is shown to

perform better than the Minimum Bounce approach across all three environmental models. Going
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by the median error on the more realistic models in the EOF framework3, these simulations indi-

cate that the scale of improvement attainable by tracking the model’s boundary interactions may

approach an order of magnitude – with the baseline SSP, for example, the median error goes from

10.24 meters to 2.27 meters. Although the gains are smaller with the generally smoother HYCOM

profile, the nearest bounce criteria nonetheless outperforms the MBC in this third environmental

model.

6.2.3 A case study of the performance improvement

At the beginning of Sec. 6.2 it was stated that the presence of receptions consistent with bottom

bounces in the data logs played an important part in motivating the improvements to the mini-

mum bounce criteria deployed during ICEX-20. Yet, these same bottom-bounce arrivals were dis-

regarded in the preceding performance analysis, in order to provide an equitative comparison be-

tween the two algorithms. This section dives deeper into the decision to disregard bottom-bounces

in the comparative metrics, expanding on the measurement-driven example from Section 6.1.2 by

presenting a choice case study from the simulation data to illustrate the improvements afforded by

the Nearest Bounce Criteria.

The values provided in Table 6.2 were based on in-situ simulation data collected from the ICEX-

20 logs, comparedwith theGPS-based range. These acoustic events, and the associatedmodel-aided

predictions, are herein revisited under the post-processing simulation framework previously pre-

sented. This is done in order to enable the comparison with respect to the different environmental

models; additionally, the post-processed simulations are needed to supplement fieldmeasurements,

since no real-time simulation data is available in the logs for the events connecting the North and

South buoys (see Table 6.4).

3The EOF framework used for ICEX-20 was based on WHOI Ice-Tethered Profiler data in the region.
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Table 6.4: Event data collected from the ICEX-20 modem test data logs for two buoy-to-buoy connections:

between (1) the East and West buoys, and (2) the South and North buoys. Note that in-situ simula-

tion data is only available for the 11 events between the East andWest buoys; the predicted one-way

travel time (OWTT) for these events is roughly half of the measured value.

East to West South to North

Field measurements

Number of events 11 10

Mean OWTT, measured [s] 4.19 2.20

Mean GPS range [m] 3161.90 3139.58

Logged simulations

Mean sim. range [m] 3161.82 N/A

Mean sim. OWTT [s] 2.20 N/A

Mean sim. group vel. [m/s] 1438.60 N/A

The number of bounces predicted for each environment, alongwith the correspondingmean and

standard deviation of the range estimation error, are shown in Table 6.5 for the East-West pair, and

in Table 6.6 for the North-South pair. For the East-West pair, the Minimum Bounce Criteria over-

shoots the true range by nearly 3 kilometers – this error is consistent with the difference between

modeled and measured travel times in Table 6.4, adjusted by the predicted group velocity. For the

North-South pair, the opposite effect is observed: for the CTD-driven environment, based on the

EOF fit, the MBC predicts a much shorter range than the one produced from GPS data.
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Table 6.5: Range estimation error for the 11 events recorded traveling from the easternmost buoy to thewest-

ernmost buoy during the modem test experiment. Metrics are reported with respect to the direc-

tional error.

Criteria Metric Baseline SSP EOF fit HYCOM

Minimum Bounce

Bounces 0 0 0

Mean [m] 2882.93 2892.62 2878.60

STD [m] 0.24 0.24 0.24

Nearest Bounce

Bounces 2 2 2

Mean [m] -28.01 -26.35 -30.37

STD [m] 0.08 0.08 0.08

Table 6.6: Range estimation error for the 10 events recorded traveling from the southernmost buoy to the

northernmost buoy during the modem test experiment. Metrics are reported with respect to the

directional error.

Criteria Metric Baseline SSP EOF fit HYCOM

Minimum Bounce

Bounces 1 1 0

Mean [m] 15.39 -1490.66 11.90

STD [m] 0.57 0.40 0.58

Nearest Bounce

Bounces 3 4 2

Mean [m] 2.38 0.76 8.29

STD [m] 0.59 0.57 0.58
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The source of these errors becomes apparent when tracking the number of boundary interac-

tions, as proposed by the NBC, when assimilating the results of the acoustic propagation model.

Table 6.7 shows the travel time predictions produced by the acoustic model, with respect to the

number of bounces. The shortcoming of the central assumption behind the MBC should become

apparent here; for the link between the East and West buoys, the MBC assumes the signal will be

dominated by a direct path with a travel time of 2.188 seconds, although the field records capture

11 events that are better approximated by a 2-bounce path with a travel time of 4.225 seconds. Sim-

ilarly, the 2.196-second link between North and South buoys appears to be better described by the

model’s 4-bounce path than by a 4.181 second single-bounce path.

Table 6.7: Predicted travel times by number of boundary interactions (bounces), for the EOF fit environment.

East to West South to North

Field measurements

Number of events 11 10

Mean GPS range [m] 3161.90 3139.58

Mean OWTT, measured [s] 4.190 2.196

Predicted travel time [s]

Direct path (0 bounces) 2.188 N/A

1 bounce 2.202 4.181

2 bounces 4.225 2.183

3 bounces N/A 2.188

4 bounces N/A 2.195
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6.2.4 Comparison with an eigenray-search approach

The ultimate goal of the MBC and NBC algorithms is to provide a reliable, physically intuitive in-

terpretation of the acoustic propagation models, without taking on the added burden of regularly

identifying specific paths that may connect any given source-receiver pair in the network. How-

ever, as part of validating the algorithm’s fundamentals in this chapter, it is nonetheless helpful to

perform the eigenray search to verify the results presented in Sections 6.2.2 and 6.2.3. Thus, Figures

6.5-6.7 illustrate the eigenrays with the closest-matching travel times, for each of the buoy-to-buoy

connections captured during the static modem test.

As shown in Figure 6.6, the 4-bounce prediction produced by the power-weighted NBC for the

North-South link, under the second environment (the EOF fit; Table 6.7), is consistent with an

eigenray that connects these two nodes and exhibits a quadruple surface bounce. The figures do

not show bottom-bounce paths due to the steeper angles at which these travel; however, these paths

do appear in the simulations as well. For the North-South link, with the source at 30 meters depth,

the simulations include rays with a single bottom bounce which would match the predicted travel

time of 4.181 seconds. With the source at 90 meters, as is the case for the East-West link, rays with

surface-bottom and bottom-surface bounces (for 2 bounces total) are also present.

6.3 Effect of the NBC on the navigation paradigm

The operational paradigmof the ICNNconsists of using acoustic positioning to compute correction

values relative to the position estimates transmitted by the vehicle, rather than transmitting the tri-

laterated positions themselves – this stems from the need for a compact representation of the most

useful information, as it must fit within the limited throughput of acoustic communications along

with any other pieces of information required for the mission. The particular approach to acoustic

positioning used in the ICNN benefits from the model-aided range estimation capabilities of the
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Figure 6.5: Ray traces for a source depth of 20 meters (Camp), under different environmental models. The

eigenrays produced by ray tracing arematched to fieldmeasurements by the estimated travel time,

to illustrate the most likely paths taken by the acoustic signals. Bottom bounce paths are not

shown.
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mental models. The eigenrays produced by ray tracing are matched to field measurements by

the estimated travel time, to illustrate the most likely paths taken by the acoustic signals. Bottom

bounce paths are not shown.
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189



virtual ocean simulator, since the reliability of the trilateration solution – and the correction terms

computed thereafter – depends on how accurately the travel time measurements are converted to

range estimates. As the environmental and acoustic propagation models become better representa-

tions of the real ocean, the lower the expected trilateration errorwill become. This relation between

the ranging and positioning problems becomes essential when discussing the performance of the

proposed algorithms with respect to vehicle operations.

Contrary to the modem test data discussed in the preceding sections, the datasets from AUV op-

erations do not includeGPS data for the submerged vehicle; no “ground truth” position information

is available to validate the results. Thus, this section aims to bridge that gap by reevaluating the per-

formance of the MBC and NBC algorithms with respect to the trilateration results produced for

the same modem test experiment previously discussed, in such a way that the analysis may later be

extended to include data from AUV deployments.

6.3.1 Baseline performance : in-situ trilateration

Expanding on the results briefly introduced in Section 5.5, Figure 6.8 illustrates the distribution of

vehicle position corrections recorded during themodem test experiment, as part of ICEX-20. These

corrections are separated both by the depth of the virtual vehicle (physically embodied by one of the

ICNN buoys), and the active reception layer configured for the remaining buoys at each event.

As part of a generally conservative approach to vehicle operations in ICEX-20, the ICNN trilater-

ation routine started with a default group speed estimate of 1430 meters per second. This value was

provided to the tracking program as part of the mission configuration, and was intended to serve

as a first approximation in line with the industry standard of a constant-valued time-range conver-

sion coefficient. When the virtual ocean had produced a recent estimate of the acoustic propagation,

however, the model-aided range estimation was preferred. These conversions were tracked inde-

pendently for each transmitter-receiver pair – although the group speed estimatewas expected to be

190



0

20

40

Co
un

ts
Virtual AUV at 30m   

0 5 10 15 20 25 30 35
ICNN Correction [m]

0

20

40

Co
un

ts

Virtual AUV at 90m   

ICNN Rx layer
30m | Shallow
90m | Deep

Figure 6.8: Distribution of vehicle position corrections computed by the ICNN during the modem test ex-

periment. The corrected position estimates are the trilateration results computed by the ICNN,

which are in turn derived from the recorded times of arrival and respective model-aided range

conversions; position corrections are then transmitted as marginal differences with respect to the

position estimate transmitted by the vehicle.

locally smooth near a given receiver, no such assumption was enforced for larger range differences

related to distinct acoustic links.

Table 6.8: Trilateration data for the example scenario shown in Figure 6.9, based on the Minimum Bounce

Criteria and data collected during the modem test experiment. The estimated ranges used for the

propagation model are based on the latest position estimates received from the virtual vehicle at

the time of model execution.

h1 – East h3 – West h5 – Camp

Model data

Estimated range [m] 2149.01 1895.85 1636.91

Predicted travel time [s] 1.487 1.312 1.139

Group Velocity [m/s] 1444.76 1444.54 1437.24
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h1 – East h3 – West h5 – Camp

Field data

Measured travel time [s] 1.502 1.329 1.140

Range conversion [m] 2170.42 1919.84 1638.73

True range (GPS) [m] 2149.43 1894.76 1633.00

Thus, Figure 6.9 illustrates one such instance collected from the ICEX-20 data logs, where the

ICNN tracker is relying on different model-driven velocity estimates to produce the ranges fed to

the trilateration solver. Here, the arrival times reported by the different buoys are converted to

travel times based on the TDMA schedule; the travel times are then converted to estimated ranges

and the ranging circles are drawn centered at each receiver. If the range conversions are adequate,

then the intersection of all circles should indicate the location of the source (see Sec. 2.4 for more

information on positioning). The data associatedwith the arrival events, shown as range projections

in the figure, is provided in Table 6.8. The magnitude of the resulting correction for this event was

of 20.4 meters. The trilateration error, taken as the root-mean-square of the ranging errors for each

acoustic link, was of 11.6 meters.

All the arrivals used for the event shown in Figure 6.9 corresponded to successful receptions.

Thus, the initial position estimate used in the calculation was based on the node report contained in

that same transmission. It should be noted that, although the virtual vehicle was connected to one of

the buoys, all vehicle software was in fact running on a separate computer; the ICNN did not have

access to that buoy’s GPS data stream, for this particular event or any others recorded throughout

the experiment, save for what was received through acoustic communications. The static nature

of the experiment, along with the fact that the virtual vehicle reported its position based on its

buoy’s GPS data, meant that the initial estimate transmitted to the ICNN was in fact aligned with
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Figure 6.9: Acoustic positioning via trilateration, using model-aided range estimation. The reception events

shown here occurred during the modem test experiment, while the northernmost buoy (h2) was

acting as the virtual vehicle. The event contains a viable 3-beacon solution with a correction of

20.4 meters from the initial position estimate transmitted by the virtual vehicle. The associated

trilateration error had a magnitude of 11.6 meters.

ground truth. Therefore, the distribution of corrections in Figure 6.8 effectively reflects positioning

accuracy.

In more general terms, there is certainly a remarkable difference between these two terms – the

magnitude of the corrections and the positioning accuracy. If the initial point of reference provided

to the algorithm is far away from ground truth – a scenario that is expected to occur occasionally

while the AUV is underway – then a larger correction may be necessary to produce a highly accu-

rate result. Given a sufficient number of data points from which to perform the trilateration, the

positioning accuracy may thus be better described by the trilateration error, which was previously

defined as the root-mean-square of the remaining ranging errors for each acoustic link.

The caveat of requiring a sufficient number of data points is key to the usefulness of the error

metric. The discussion of results obtained from the modem test data set has focused on the mag-

nitude of corrections because the majority of entries recorded during this particular subset of the

experiments were 2-beacon solutions. A total of 264 entries of this kind appear in the logs; by com-
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parison, only 22 3-beacon solutions were recorded during the experiment, along with 2 4-beacon

entries.

When limited to only two ranging circles for consideration, the trilateration algorithm reports

one of the intersection points as the final answer. The initial position, taken from the vehicle’s

transmission, is used only as a tie-breaker to pick the closer of the two intersection points; but it

has no influence on the reported error. Instead, computing the trilateration error with respect to

the chosen intersection of two circles would yield a value of zero, as the solution is exact. In other

words, the trilateration error term is not particularly helpful in understanding the reliability of a 2-

beacon solution. This topic will be revisited later in this chapter, in the context of AUV operations.

6.3.2 Comparing the different ranging approaches

Figures 6.10 and 6.11 illustrate the performance of the positioning system with respect to both al-

gorithms, the Minimum Bounce Criteria and the Nearest Bounce Critera, in a 3-beacon scenario.

The MBC is represented in two ways: (1) the implementation fielded during ICEX-20, which in-

cluded the local plane wave expansion of the gridded solutions posted by the acoustic model, and

(2) the simplified form used as part of the validation work presented in Sections 6.1 and 6.2. With

more than two entries to evaluate, the positioning task in these events becomes an over-constrained

problem; the trilateration error becomes representative of howclosely the various ranging estimates

capture the optimal solution. The numerical results for both cases are provided in Tables 6.9 and

6.10 respectively. Note that the second event shown here is the same event shown previously in

Figure 6.9.
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Figure 6.10: Trilateration with 3 beacons. The Minimum Bounce approach is unable to accurately estimate

the effective group velocity for one of the acoustic links, leading to a large positioning error that

can be easily recognized in this view. The Nearest Bounce approach is able to recognize the

alternate path and adjust accordingly.
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Figure 6.11: Trilateration with 3 beacons. The difference in performance of the various algorithms is not ap-

parent in this view; however, the Nearest Bounce approach clearly outperforms its counterparts

in approaching the GPS solution.
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Table 6.9: Trilateration results for the example scenario shown in Figure 6.10. The limitations of the Mini-

mum Bounce Criteria lead to errors in the order of 1 kilometer.

Method Correction [m] Error [m]

Nearest Bounce 14.066 10.436

Minimum Bounce 1258.776 1233.551

In-situ simulations 1243.126 1224.228

Table 6.10: Trilateration results for the example scenario shown in Figure 6.11. The Nearest Bounce Criteria

outperforms the Minimum Bounce Criteria.

Method Correction [m] Error [m]

Nearest Bounce 6.775 6.575

Minimum Bounce 28.151 6.314

In-situ simulations 17.870 12.967

In the earlier of these two events, the advantage gained by the Nearest Bounce algorithm be-

comes apparent. Rather than assuming the most direct path will be the one to trigger the receiver’s

processing pipeline, the NBC tracks additional potential solutions up to the final range estimation

step. This additional dimension of information enables the newer algorithm to correctly estimate

the range from the detection reported by the West buoy (h3). Both flavors of the Minimum Bounce

algorithm fail to capture an adequate approximation of the acoustic path that triggered the receiver,

leading to correction and error values of more than 1200 meters.

The set of viable events recorded during ICEX-20, from which the preceding case studies orig-

inated, were in fact processed in bulk to assess the overall differences in performance between the

different ranging approaches. Figure 6.12 shows the distribution of position corrections for all three

methods under evaluation. Unlike with Figure 6.8, where the events were classified by transmitter
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Figure 6.12: Distribution of vehicle position corrections computed in post-processing for the Minimum

Bounce and Nearest Bounce algorithms. The MBC is shown as implemented during ICEX-20,

with the local plane wave expansion, as well as in the simplified form used throughout this anal-

ysis.

and receiver depth, the events are now presented solely by ranging approach, for ease of compari-

son. Regardless of depth dependent characteristics, the NBC clearly outperforms its predecessor –

the bulk of corrections go from being generally lower than about 25 meters in magnitude, to being

smaller than about 10 meters.

In terms of the differences that can be observed in the distributions, particularly for the two fla-

vors of the Minimum Bounce Criteria, it should be noted that the in-situ simulation results were

collected directly from the mission logs, where the relevant ocean model alternated between the

EOF fit and the baseline model in the EOF framework, per the timeline previously given in 6.3.

Where these figures show post-processed simulation data, the results are based exclusively on the

environment model obtained by the EOF fit with respect to local CTD measurements. Addition-

ally, the two MBC sets also differ in the specific grid evaluated with the acoustic model, as well as

the treatment of local solutions across the grid with respect to the plane wave expansion (or lack

thereof). The case studies shown in Figures 6.10 and 6.11 correspond to events were the deployed

mission, like the post-processed simulations, was configured to use the sound speed obtained by

EOF fit.
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6.4 AUV navigation performance

Earlier sections in this chapter centered on assessing the validity and performance of the positioning

solution implemented as part of the Integrated Communications and Navigation Network (ICNN),

using the static modem test as the reference data set. This section shifts focus to the data collected

during vehicle operations, porting over elements of the previous analysis to report on the results

attained in a more dynamic context. To set the tone, and following on earlier footsteps, Figure

6.13 first illustrates themodem-to-modem connections recorded during the entire set of operations

involving AUV Macrura.

6.4.1 General data features

A notable feature of Figure 6.13, not so evident in its earlier counterpart, is that the new set clearly

exhibits instances where the number of detections reported by a given receiver exceed the number

of transmissions – meaning that the data necessarily contains instances where a given receiver de-

tects the same transmission more than once. This can be observed for transmissions from Camp

received byAUVMacrura, as well as transmissions from the vehicle that are later detected by its own

receiver. The fact that this behavior is evident in the data is consistent with the expectation of com-

plex multi-path in the Arctic Ocean; the lower number of successful receptions likewise aligns with

the expectation that locations with a complex multi-path arrival structure may render the receiver

unable to process the incoming signal. In all, the dataset contains 3260 transmissions and 12938

detection events; organized by the number of times a single beacon detects the same transmission

event multiple times, the incoming events can be sorted as per Table 6.11.
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Figure 6.13: Overview of the modem connections recorded during the experiments involving vehicle opera-

tions (VLA, tethered and untethered runs). Reception event counts are shown as fractions, with

the number of successfully decoded entries on top and the total number of detections on the

bottom. The vehicle depth is variable, and spans 0-125 meters.
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Table 6.11: Distribution of reception events, arranged by the number of times a given receiver detects the

same transmission event. The instances where a beacon detects the same transmission only once

are generally successful receptions; instances where the beacon reports three or more detections

for the same transmission window are generally associated with an error such as incomplete data

frames or headers.

No. of detections No. of occurrences Successful occurrences

1 7336 7310

2 1968 14

3 424 -

4 73 -

5 13 -

6 5 -

7 1 -

This phenomenon can similarly be observed in the context of data points available for trilater-

ation. Selecting specifically for transmissions made by AUV Macrura, and received by the ICNN

buoys, the distribution of the receptions is given by Figure 6.14. When the system is constrained

to accept only successful receptions, a total of 4704 reception entries can be used for trilateration.

Of the 86 instances where 5 data points are available, only 2 present an opportunity to use multiple

arrivals from one of the beacons; the remaining 84 events corresponded to unique arrivals at each

of the 4 ICNN buoys, plus an additional arrival at the towfish deployed from camp Seadragon to

act as a fifth beacon. Loosening the constraints on the data pipeline, in order to allow receptions

with PSK errors into the positioning system, would effectively mean that a total of 7779 reception

records could be used for trilateration – this would increase the number of multi-path arrivals ex-

ploited for positioning, where a notable number of transmission events are associated with 6 or

more data points across the 5 receivers.
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Figure 6.14: Distribution of the reception events recorded across the ICNN, arranged by the number of in-

dividual detections available per individual transmission event. Shows only instances where the

AUV is the transmitting node.

The additional data points exposed by relaxing the constraints of the acoustic network could

introduce potential improvements in the trilateration results. It should be apparent from the case

studies in the previous section that this may hold only under the assumption that some solution

exists to identify the different paths that enable these arrivals. However, the ICNN was built on

the assumption that the most direct path would dominate all arrivals, and that unsuccessful arrivals

were necessarily unworthy of trust. In exploring the capabilities of the Nearest Bounce approach,

it becomes apparent that some of the failure mode information produced by the acoustic modems

could be used to identify unsuccessful but otherwise trustworthy arrivals, such as those where the

failure was tied to corrupted data frames, in order to supplement the trilateration samples. The

availability of appropriate modulation and data headers, for example, could be taken as indication

that a particular entry could be used as part of the positioning framework.

6.4.2 Position corrections posted by the ICNN

Despite the potential gains that might come from using additional records, the ICNN was con-

strained to accepting only fully validated arrivals. Thus, the following performance review is like-
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Figure 6.15: Distribution of vehicle position corrections computed by the ICNN during AUV operations.

The corrected position estimates are the trilateration results computed by the ICNN, which are

in turn derived from the recorded times of arrival and respectivemodel-aided range conversions.

wise constrained to instanceswhere the communications logs reflect only successful arrivals. Figure

6.15 shows the distribution of the corrections, by their magnitude, according to the ICNN’s active

reception layer. Per the data shown in Figure 6.8, the system was operated on the expectation that

cross-layer links were more likely to fail than same-layer connections. Thus, the deep layer was

generally only active while the vehicle was below the lens. For context, the vehicle depth exceeded

50 meters only about 20% of the time the vehicle was active.

In order to explore the performance of the two algorithms in the context of AUV operations, the

communication events that could be associated with valid in-situ simulations were isolated from

the rest of the data. Of these, the instances where the mission logs defaulted to the pre-configured

conversion factor are not considered in the following analysis. However, instances where the logs

show a simulation attempt with an invalid result (such as reporting a zero-valued range and travel

time) were set to the pre-configured sound speed value of 1430 meters per second. This event
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Figure 6.16: Distribution of vehicle position corrections computed in post-processing for the Minimum

Bounce and Nearest Bounce algorithms. The MBC is shown as implemented during ICEX-20,

with the local plane wave expansion, as well as in the simplified form used throughout this anal-

ysis.

selection resulted in Figures 6.16 and 6.17, showing the correction magnitudes and the trilateration

errors for events with 3 or more data points available throughout the duration of AUV operations.

As was noted earlier, the insight garnered from the magnitudes of the position corrections is

quite valuable in the modem test scenario, because the trilateration results can be compared with

GPS logs to effectively illustrate positioning accuracy. In contrast this same insight is somewhat

less valuable in the absence of a reliable ground truth reference, as is the case in AUV operations,

because the correction magnitudes necessarily depend on the vehicle’s internal navigation estimate

– one that is prone to larger errors due to sensor drift, ocean current and other sources of error

not captured in the navigation model. Under these conditions, larger corrections aren’t necessarily

indicative of worse performance.

Consider the distribution of corrections shown in Figure 6.16 for all algorithms. The in-situ sim-

ulations exhibit a peak around 10 meters, and another around 30 meters; a similar pattern appears

for the post-processed MBC estimates. The Nearest Bounce approach, on the other hand, exhibits

a single, wider peak spreading between 5 and 20 meters; its highest point is located at the 15 meter

mark.
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Figure 6.17: Distribution of vehicle position corrections computed in post-processing for the Minimum

Bounce and Nearest Bounce algorithms. The MBC is shown as implemented during ICEX-20,

with the local plane wave expansion, as well as in the simplified form used throughout this anal-

ysis.

When exploring the trilateration errors in Figure 6.17, it becomes apparent that the worst of the

three methods is the post-processed MBC, with its error distribution for the selected cases peaking

at around 6 meters. The difference in trilateration error between the remaining methods is less ob-

vious. As a reminder, the remaining methods correspond to the plane wave expansion used during

real-time operations for ICEX-20, and the simplified application (no plane wave expansion) of the

NBC. The one difference that stands out between these two methods is that over 100 events shift

fromhaving about 2meters in the reported trilateration error, to having a value closer to the 1meter

mark.

6.5 Summary

This chapter has presented two algorithms for model-aided range estimation, aimed at supporting

the positioning stage of the Integrated Communications and Navigation Network. Both methods

are validated against a GPS-tracked static experiment conducted during ICEX-20. The results il-

lustrate the potential gains offered by the second approach, proposed as an improvement to the
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algorithm fielded during ICEX-20. The chapter also extended the performance analysis beyond

point-to-point ranging, to assess the impact on positioning by trilateration in the same static ex-

periment used for the initial validation. Finally, the chapter presents the results of extending the

trilateration analysis to vehicle operations conducted during ICEX-20, which lack the benefit of a

reliable ground truth positioning estimate.

As of this writing, the validation work and improvements of the model-aided range estimation

framework (based on the static modem test data; Sections 6.1 and 6.2) have been submitted for

publication in “Under-ice acoustic navigation using real-time model-aided range estimation”. A related

discussion of these sections is also presented by Bhatt (“A Virtual Ocean framework for environmentally

adaptive, embedded acoustic navigation on autonomous underwater vehicles”), coauthor of the submitted

article. The in-situ performance of the ICNN trilateration solution during the modem test exper-

iment (see Fig. 6.8) has also been submitted for publication, in “A high-resolution AUV navigation

framework with integrated communication and tracking for under-ice deployments”.
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7 Machine learning, revisited

Strange about learning; the farther I go the more I see that I never knew even existed. A short

while ago I foolishly thought I could learn everything—all the knowledge in the world. Now I

hope only to be able to know of its existence, and to understand one grain of it.

Is there time?

– Daniel Keyes, Flowers for Algernon

Thedomainofmachine learning (ML) is vast and constantly evolving, as it is increasingly takenup

by various fields of study and application. Climatology andweather forecasting, speech recognition

and image recognition – applications that impact lives on a daily basis in modern times – all lean

heavily on the advances of machine learning techniques to produce the results expected of them. As

was mentioned in Chapter 3, the means to achieve said results have evolved in three primary waves

of development over the past century, starting under the name of cybernetics in the 1940s-1960s;

later came the connectionism period around the 1980s-1990s; and finally reaching the field of ML as

we know it today. With each wave, the field shifted both in the complexity of its tools and the level

of abstraction it could work with.

Following a similar progression of increasing complexity and abstraction, this chapter aims to

explore how the vehicle’s capabilities for environmental adaptation may be enhanced by assimilat-

ing additional information from the vehicle’s sensor data. The model-aided approach presented in

Chapter 6 used direct environmental measurements to estimate the sound speed profile that was
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then fed to the acoustic propagation model; the latter then supported the ranging problem by pro-

viding estimates of the effective group velocity. As with the behavior classification work in Chapter

3, this chapter seeks to augment the information provided to the learning framework, this time

ingesting both the direct environmental measurements (namely, the CTD data) and the indirect

measurements acquired by way of the acoustic data – such as is done in tomography – to inform

the estimation of the sound speed profile. This augmented estimate would then be used to support

the travel time to range computation performed by the ICNN.

To tackle this augmented data assimilation, the chapter first explores additional related works

beyond the discussion of Chapter 2, specifically in the context of machine learning applications for

environmental sciences and ocean acoustics. Advances in the subset of Deep Learning solutions

that has come to be known as Physically Informed Neural Networks (PINNs) are also discussed,

and their applicability to the task of the ICNN is explored using a benchmark environmentalmodel.

Finally, a pseudo-tomographic approach is demonstrated as a viable candidate to produce additional

environment estimates beyond those produced by a combinatorial exploration of the EOF weight

estimation problem.

7.1 ML in environmental and ocean sciences

The application fields within the scope of environmental sciences – such as weather forecasting,

hurricane warning and other disaster management systems – have been powered by advances in

computational techniques and the corresponding technology as early as the 1950’s. For example,

the Joint Numerical Weather Prediction Unit ( JNWPU) – a collaboration between the U.S. Weather

Bureau,Navy, andAir Force – opened its doors on 1 July 1954with the objective of using forecasting

methods developed through research, and implemented through numerical techniques, to produce

updatedweather charts on a regular and ongoing basis. Since those early days, themodels have been

continuously improved to consider new data points (such as adding observations made by satellite
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remote sensing) and to expand the spatial resolution of the models, even within the constraints of

limited observations.1 Nowadays, the numerical weather predictionmodels are run by theNational

Centers for Environmental Prediction (NCEP).

7.1.1 The Landslide Hazard Assessment for Situational Awareness

The applications of numerical models extend well beyond weather forecasting. A recent paper pre-

sented advances to NASA’s Landslide Hazard Assessment for Situational Awareness (LHASA) mod-

els, where machine learning techniques are used to provide improved landslide nowcasting at the

global scale. LHASA version 2, the machine learning approach presented in the paper, is reported

as being twice as accurate as its predecessor, LHASA version 1. Released in 2018, version 1 was

not a machine learning model; instead, it combined satellite precipitation data with a global land-

slide susceptibility map to produce its nowcasts.2 The updated version of the landslide warning

system considers the same signals as its predecesor, but also evaluates additional variables with the

potential to explain some of the variability in landslide occurrence.

Described in simple terms, the LHASA v2 model consists of a collection of 300 shallow decision

trees built using the ML framework XGBoost. Each tree in the model has a depth of 2 layers, where

each layer compares the value of one variable against a threshold; given the limited number of layers,

atmost two of the explanatory variables can interact in any given tree. A simple example of one such

tree may determine whether the measured rainfall exceeded a certain value (1); depending on that

result, the system then checks whether the rainfall exceeds yet another threshold (2.1), or whether

the distance to a fault is greater than a third cutoff value (2.2). In all, each tree can produce a total of

4 different outcomes; when taking all 300 outcomes as an ensemble, the LHASA v2 system produces

a probabilistic value representing the landslide hazard at each point in the nowcast grid.

1Harper, Uccellini, Kalnay, Carey, and Morone, “50th Anniversary of Operational Numerical Weather Prediction”.
2Stanley, Kirschbaum, Benz, Emberson, Amatya, Medwedeff, and Clark, “Data-Driven Landslide Nowcasting at the

Global Scale”.
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Among the chief concerns discussed in the LHASApaper, and throughout theML literature, is the

importance of data quality. Indeed, a significant portion of the Landslide Hazard Assessment paper

is spent addressing limitations of some of the data sets used to inform the values of the explanatory

variables evaluated in the paper. Portions of the world’s landslide inventories could not be used

reliably as part of the training set for the new model, for example, due to limited spacial precision.

Other entries corresponded to events outside of the temporal window considered in their analysis.

Certainly, biases inmachine learning applications have been the subject of numerous studies, where

large data sets are often blindly trusted and used extensively in derivative research despite the fact

that they sometimes contain errors that may lead to undesirable consequences.3 For a system that is

intended to provide an early warning to communities around the globe, as is the case with LHASA,

recognizing the potential limitations and sources of bias contained within its reference data during

the early stages of model development can have a significant impact on model performance.

7.1.2 Learning data relations in Ocean Acoustics

Within ocean acoustics, as in many other fields, the advances in machine learning are generally

regarded as a promising solution to challenges such as data sparsity, missing or corrupted data and

generally large datasets with unknown patters captured therein. The data-driven nature ofmachine

learning, and its ability to automatically detect and exploit patterns within the data, have thus been

aimed at both environmental and operational challenges.

Within the environmental scope, different applications of dictionary learninghave beenproposed

as an alternative to the use of Empirical Orthogonal Functions (EOFs) in the pursuit of effective yet

sparse representations ofmodel data, such as the sound speed profile. Where EOFs are generally or-

thogonal, sometimes introducing only a limited smoothing transformof the truly orthogonal shapes

to produce the final basis functions, applications that rely on them generally benefit only from the

3Birhane and Prabhu, “Large image datasets: A pyrrhic win for computer vision?”; Northcutt, Athalye, and Mueller,

Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks.
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first few shapes in the set as they capture themajority of the explained variance. In dictionary learn-

ing, the resulting set is not bound to orthogonality, but rather can be an over-complete set. That is,

multiple shapes in the dictionary can share features associated with the explained variance. One of

the advantages reported for dictionary learning is the ability to attain comparable (and sometimes

better) performance as the EOF form,with fewer non-zeroweights. That is, the dictionary approach

enables increased sparsity in the final representation of themeasurements. The cost associatedwith

this enhanced sparsity comes in the form of changes to the weight estimation process; as the dictio-

nary learningmethod centers on sparsity and uses non-orthogonal functions, it generally requires a

somewhat more complex iterative method to weight estimation, compared to the straight-forward

least-squares approach used for EOF weights. Dictionary learning techniques have been applied to

sound speed profile estimation as well as to travel time tomography problems.4

In addition to environment-centric applications,machine learninghas also been applied to seabed

characterization and range estimation – tasks that generally shift the focus to a more operations-

centric perspective. As has been stated previously, data quality remains paramount to the successful

implementation of ML; and since extensive, appropriately labeled data sets are not always available

from the start for this kind of work, projects in this vein often use simulated data. Rather than re-

lying on limited field data sets for the training process, these real measurement sets – if they exist

at all – are instead used to inform model parameters. The source spectrum, acoustic propagation

models, and expected signal to noise ratios, to name some of the parameters of interest, are all con-

sidered when producing the simulated training set. Using this type of synthetic training set, which

is guaranteed to have correct labels by design, range estimation via Convolutional Neural Networks

(CNNs) has been found capable of outperforming the conventionalmatched field processing (MFP),

4Bianco andGerstoft, “Compressive acoustic sound speed profile estimation”; Bianco andGerstoft, “Dictionary learn-

ing of sound speed profiles”; Bianco and Gerstoft, “Travel Time Tomography With Adaptive Dictionaries”.
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and to exhibit enhanced robustness tomismatch between the environmental model and the true en-

vironment.5

7.2 Physically Informed Neural Networks

The field of machine learning is constantly evolving, with contributions to the core techniques and

algorithms coming in from a wide range of application fields. One of the recent advances that is

of especial interest to complex physical systems is the presentation of Physically Informed Neural

Networks, or PINNs. At their core, PINNs aim to solve forward and inverse problems described

by nonlinear partial differential equations.6 In order to better grasp the potential value of PINNs,

this section first discusses the types of machine learning addressed in the literature, followed by the

basic Neural Network model that underpins the architecture of PINNs. The differences between

PINNs and other neural networks is discussed next. Applications of PINNs are briefly introduced

thereafter, as a motivation for their value in the scope of this thesis.

7.2.1 A brief discussion on types of learning

There are numerous learningmethods and different types of problems that can be handledwithma-

chine learning. In order to make the design decisions needed to implementML in new applications,

it is necessary to understand these differences, as they can dictate the reliability and complexity of

the resulting system. Sorting by problem type, for example, machine learning can perform the fol-

lowing tasks:

5VanKomen, Neilsen, Howarth, Knobles, and Dahl, “Seabed and range estimation of impulsive time series using a

convolutional neural network”; Chen and Schmidt, “Robustness Analysis of a Convolutional Neural Network Ap-

proach to Source-Range Estimation in a Simulated Arctic Environment”.
6Raissi, Perdikaris, and Karniadakis, “Physics-informed neural networks: A deep learning framework for solving for-

ward and inverse problems involving nonlinear partial differential equations”; Haghighat and Juanes, “SciANN: A

Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural

networks”.
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• Binary classification

The behavior classification exercise developed in Section 3.2 is an example of binary classi-

fication, where the system is trying to decide between two possible outcomes.

• Multi-class classification

The environment characterization exercise developed in Section 3.3 is an example of multi-

class classification, where the algorithm is trying to decide between three possible outcomes.

• Regression

NASA’s Landslide Hazard Awareness system, briefly presented in Section 7.1.1 is an exam-

ple of a regression problem, where the learning framework is geared towards producing a

probability value rather than a class label.

In addition to the above, machine learning can also perform tasks such as transcription, ma-

chine translation, anomaly detection, denoising, and more.7 When considering the type of learning

methodology used, the three most commonly used are:

• Supervised learning

The core concept behind supervised learning is to learn the mapping from a set of inputs to

a corresponding set of outputs. The solutions – for example, the true classification labels –

are made available to the system during the training process. This should be apparent in the

behavior classification exercise from Section 3.2, where the training is based on simulation

signals clearly labeled by motion pattern. In the LHASA training process, the probability

values produced by the ensemble of decision trees are converted to a binary classification

based on some threshold (the paper uses 12%8), and the system’s ability to match the presence

or absence of landslide reports in the reference data sets is used as ametric of its performance.

7Goodfellow, Bengio, and Courville, Deep Learning.
8Stanley, Kirschbaum, Benz, Emberson, Amatya, Medwedeff, and Clark, “Data-Driven Landslide Nowcasting at the

Global Scale”.
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• Unsupervised learning

In contrast to the previous approach, unsupervised learning instead aims to extract features

from the data without aspiring to match predetermined solutions or labels. Examples of un-

supervised learning include data grouping methods such as K-means, and latent model ex-

traction like Principal Component Analysis (PCA) and dictionary learning. Recall that PCA

is also the basis for generating Empirical Orthogonal Functions (EOFs).

• Reinforcement learning

The third basic type in this list, reinforcement learning, aims to update the learned model

based on feedback produced by its environment. Although not given expected solutions as

with supervised learning, this type of learner is not entirely free to explore the data either,

as would be the case with unsupervised learning. Instead, the learner must approach some

central goal by choosing from a set of actions to take at each iteration. The feedback from the

environment reflects whether the action taken is helping the learner achieve its objective –

positive feedback is given as a numerical reward. The learning process, then, consists of iden-

tifying a model wherein the system can consistently make helpful decisions at each iteration,

in order to maximize its reward.

In addition to these basicmethods, hybrid approaches can be used aswell. Semi-supervised learn-

ing, for example, is a combination of the first two approaches, where only a subset of the data is

properly labeled but the learner seeks to exploit information contained in the unlabeled entries as

well.

7.2.2 Conventional neural network architecture

The basic layout of neural networks can be described as a stack of layers, each with some number

of perceptrons (neurons). Each individual perceptron accepts the output of the previous layer as its
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input F, adjusting each signal by some weight E; the perceptron also adds a bias term E0, such that

the linear transform 0? is given by Eq. 7.1. The output of the ?-th neuron in the current layer is then

given by H? = 6(0?), where 6(•) is a non-linear activation function applied to the linear transform.

0? =

#∑
<=1

E<F< + E0 (7.1)

The training process is then used to determine the weights E needed at each of the inter-neuron

connections, in order to successfully map the input samples to the expected outputs. When all

weights connecting two layers are non-zero, the layers are described as being fully connected. Zero-

valued weights can be used to disconnect a neuron from one of its inputs. To be considered Deep

Learning, amachine learning framework using neural networksmust satisfy three basic conditions:

(1) the features are learned through the training process rather than handcrafted; (2) the features ex-

tracted by each of the layers are organized from low-level to high-level abstraction; and (3) there

are at least two layers of non-linear transformations.9

7.2.3 How PINNs compare to other NNs

The fundamental distinctionbetweenPhysically InformedNeuralNetworks and conventionalNeu-

ral Network applications is in how the learning process is supervised. The conventional approach

takes a set of known, labeled data points and conditions the network to minimize the error between

the values predicted by the network and the real labels provided in the set. Physically Informed

Neural Networks, on the other hand, are not necessarily given data with known labels or values as

the output target. Instead, the output of the neural network is transformed per the partial differen-

tial equations (PDEs) that describe the problem, and the solution space is restricted to the subset of

solutions where the underlying PDEs are valid (Fig. 7.1).

9Bianco, Gerstoft, Traer, Ozanich, Roch, Gannot, and Deledalle, “Machine learning in acoustics: Theory and applica-

tions”.
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Figure 7.1: Diagrams illustrating the key differences between PINNs used for data-driven solution of PDEs

(top), versus the conventional label-matching model for artificial neural networks (bottom).

Because PINNs are in effect supervised by a set of PDEs, the numerical solution to the problem

neednot be known in advance. Instead, the network can be arranged to learn the solution field based

on the physics constraints described by the PDEs; any parameters captured in the functions would

have to be provided, as the PINNs act as numerical rather than symbolic function approximators.

Though solving the problem deterministically may be more accurate for one-off calculations, the

PINN approach affords the potential to quickly compute predictions anywhere in the input space,

after the network has been properly configured and trained. Alternatively, PINNs can also be ar-

ranged to ingest measurement data as the expected output, enabling the network to discover the

parameter values in the underlying set of equations.10 These two problem types are also referred to

as (1) data-driven solution and (2) data-driven discovery of partial differential equations.

This novel approach to artificial neural networks has been used in demonstrations for various

fields. In material modeling, for example, PINNs have been used to capture the potential energy

surface of inter-molecular systems; other benchmark demonstrations include learning the solution

to the one-dimensional, non-linear Schrodinger equation; or modeling incompressible fluid flow

10Haghighat and Juanes, “SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed

deep learning using artificial neural networks”.
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as described by the Navier-Stokes equation.11 Of particular interest in the scope of this thesis is

the use of PINNs to solve the Eikonal equation, as well as in tomography applications.12 It may be

noted that other Deep Learning techniques, such as the use of feed-forward networks with residual

blocks, have also been applied to the resolution of the Eikonal equation.13

7.2.4 Solving the Factored Eikonal equation with PINNs

|∇) |2 = 1

22(x) (7.2)

The Eikonal equation (Eq. 7.2) describes the relation between the local gradient (∇) of the time

field ) and the corresponding value of the sound speed 2(x) at any position x in the environ-

ment. However, the equation is non-linear and frequently has multiple solutions. Furthermore,

the Eikonal equation is subject to a singularity, due to the presence of a point-source. This section

summarizes prior work on the use of PINNs to solve an alternate form of the time field, as given by

the factored Eikonal equation.14

Where the standard form of the equation is subject to the point-source singularity, the factored

Eikonal equation seeks to separate the time field into two components. The first is a known term

)0, described by the euclidean distance from the source to any point in the environment and scaled

by a known reference sound velocity D(xs) – often of unit value, or equivalent to the value at the

source. The second component is an unknown term g that captures the distortion effect of the

environmental model (sound speed) on the known time field )0. In this form, the true time field

) (x) is given by Eq. 7.3.

11Pun, Batra, Ramprasad, and Mishin, “Physically informed artificial neural networks for atomistic modeling of ma-

terials”; Raissi, Perdikaris, and Karniadakis, “Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations”.
12Waheed, Haghighat, Alkhalifah, Song, andHao, “Eikonal solution using physics-informed neural networks”; Waheed,

Alkhalifah, Haghighat, Song, and Virieux, PINNtomo: Seismic tomography using physics-informed neural networks.
13Smith, Azizzadenesheli, and Ross, EikoNet: Solving the Eikonal equation with Deep Neural Networks.
14Waheed, Haghighat, Alkhalifah, Song, and Hao, “Eikonal solution using physics-informed neural networks”.
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) (x) = )0(x)g (x) , )0(x) =
|x − xs |
D(xs)

(7.3)

)2
0 |∇g |2 + g2 |∇)0 |2 + 2)0g (∇)0 · ∇g) =

1

D2(x) (7.4)

The original Eikonal equation can be expressed in terms of the factored time field, which yields

the form shown in Eq. 7.4. The singularity introduced by the point-source is captured by the known

term)0, making the unknown component g a smooth function in the vicinity of the source. Under

the PINN framework, then, a neural network is used to convert a set of coordinate values into

predictions of the time distortion field, ĝ. Like conventional neural networks, the various steps

in the PINN benefit from the implementation of automatic differentiation (AD), which makes it

possible to transform the output of the neural network such that the training target is to minimize

the cost function Leik in Eq. 7.5.

Leik = )2
0 |∇ĝ |2 + ĝ2 |∇)0 |2 + 2)0 ĝ (∇)0 · ∇ĝ) −

1

D2(x) (7.5)

Per Eq. 7.3 and in taking advantage of the implementation of AD, the known field )0 can be ex-

pressed in the PINNarchitecture by its differential relation to the inputs, which consist of the source

and receiver coordinates. The depth-dependent sound speed function is used in )0 with respect to

the source depth and in L with respect to the receiver depth; assuming the profile is known, these

values can likewise be computed from the coordinate inputs. This leaves only the distortion field

g to be learned by training a feed-forward neural network, as was previously illustrated in Figure

7.1.
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7.3 Augmenting the model-aided environment estimation

framework

The objective of reduced-order representations, like those facilitated by EOFs and dictionary learn-

ing solutions, is to condense potentially very large data sets into a compact form that is suitable for

use under constrained conditions. One such scenario, introduced in earlier chapters of this thesis,

is that of sharing environmental model estimates via acoustic communications in a collaborative

operational paradigm like the one employed during ICEX-20. To illustrate how ML is expected

to impact the vehicle’s environmental adaptation capabilities, this section first addresses the basic

implementation of an EOF approach. With the basic concept in place, the text then explores how

machine learning may be employed to augment the environment estimation framework by assimi-

lating information from additional data sources available to an AUV.

7.3.1 The baseline EOF solution

The use of Empirical Orthogonal Functions (EOFs) as a representation basis starts with the discov-

ery of primary variation modes in a data set. Like with Principal Component Analysis (PCA), the

objective is to build the set of basis functions � directly from the data; the main difference is that

EOFs may add a local smoothing step in some applications, which is not used in conventional PCA.

In the context of range-independent SSP representation, the data set and resulting basis functions

are bound to a common depth vector, which must be dense enough to capture the target regions

of variability; only the first few basis functions are generally considered useful in capturing the

majority of said variability. Accordingly, a new set of measurements must be discretized into the

same depth bins, and have the baseline profile subtracted, to produce a new sample vector 2; with a

matching samenumber of entries. Theweights fitting the new sample in terms of the basis functions

is then given by Eq. 7.6.
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w = argmin
w

L , L = ‖2; − �w‖ (7.6)

In the scope of ICEX-20 operations, where the weights were computed against CTD casts con-

ducted from camp by human operators, this first form was considered sufficient. The human-

operated casts consisted of deploying a tethered RBR Concerto to a depth of approximately 300

meters, which was done a total of 4 times; and deploying expendable CTDs (XCTDs) to a depth of

about 1000 meters, which was done a total of 5 times. In all, 9 CTD casts were collected from camp.

The relevance of the cast depths stems from the need for sufficient samples in the discretized form,

to ensure a stable fit; ahead of the experiment, this depth relation was selected to align with the

depths used in the HYCOM model.

With the CTDdata processed and discretized, the basis functionswere trimmed to themax depth

captured by the cast and the weights were computed for all possible combinations of the leading

EOFs – using the first 7 basis functions, this meant 127 scenarios were assembled. The resulting

fits were then ranked by the regression error, and relayed to a Tactical Decision Aid where a human

operator could assess the quality of the top-ranked entries in terms of realism and smoothness.

For each weight combination reviewed, the TDA also presented the results of a bespoke acoustic

propagation model, so the operator could account for the expected acoustic performance in their

selection of the weights reported to the autonomy infrastructure. For ICEX-20, the TDA operator

was a submarine officer from the U.S. Navy.15

Where the CTD casts conducted from topsidewent deep enough into thewater column to ensure

the regression was well constrained, the translation of the TDA system onto the vehicle autonomy

stack faced two main challenges. First, the relatively shallow maximum depth of AUV Macrura

meant that even when starting a mission with a max depth dive, the discretized samples would be

15Bhatt, Howard, and Schmidt, “Embedded Tactical Decision Aid Framework for Environmentally Adaptive Au-

tonomous Underwater Vehicle Communication and Navigation”.
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further constrained. Second, the fact that CTD samples collected by the vehicle were not in fact

initialized with a max-depth dive meant that the vehicle might reach a point in the mission where it

has collected enough samples in different depth bins to make the weight computation possible but

not necessarily stable in a physical sense. That is, the vehicle could produce weights that may lead to

unrealistic sound speed profiles, since the unsampled depth bins are left unbound by the trimming

step.

L = ‖2; − �w‖︸       ︷︷       ︸
fit CTD data

+ ‖_�w‖︸ ︷︷ ︸
regularizer

(7.7)

This issue can easily be addressed by introducing a regularization term to the loss function min-

imized in Eq. 7.6, leading to the loss function in Eq. 7.7. The regularization term, scaled by the _

coefficient, produces an increasingly large penalty as the weights diverge from the default vector

of zeros; in practice, this can be regarded as constraining all sound speed values – including those

at unsampled depths – so that they remain close to the baseline profile, which is itself physically

significant since it is obtained from field data when developing the EOF basis.

7.3.2 Accounting for acoustic time-of-travel data

As was done in the example applications from Chapter 3, this section explores how machine learn-

ing techniques may enable AUV operators – human and autonomous alike – to assimilate data from

multiple channels, in order to expand the amount of knowledge about the environment that is avail-

able for the decision-making process. Expressed in terms of the loss function, the goal is to fit data

from an environmental sensor in the form of a CTD, as discussed in the previous section; and also

fit data from the acoustic communications component of the Integrated Communications andNav-

igation Network. Conveying that the relation between the EOF representation and the timing data
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is not necessarily known, Eq. 7.8 simply states this component of the loss in terms of a function

5 (•) that depends on the EOF weights w and the travel time measurements g.

L = ‖2; − �w‖︸       ︷︷       ︸
fit CTD data

+ ‖_�w‖︸ ︷︷ ︸
regularizer

+ ‖

?︷ ︸︸ ︷
5 (w, g) ‖︸      ︷︷      ︸

fit timing data

(7.8)

Of course, the assumption that 5 (w, g) is not known can be challenged as an incomplete state-

ment. It may be more accurate to say that the relation between the two components is a complex

one. After all, this text has already presented the Eikonal equation and its use in ray tracing: given

a set of weights that represent a sound speed profile, the forward problem of the acoustic propa-

gation model can be solved for that SSP to predict the travel times that might be detected at some

set of receiver coordinates. These predictions would then be compared with the measurements in

the time-based component of the loss function. The Eikonal equation, in its most familiar Cartesian

form has known limitations – specifically with regards tomulti-path arrivals. These were discussed

in Section 2.2, which also presented the more involved ray coordinates and the method of charac-

teristics, used in standard software tools for the field of ocean acoustics to address the lack of unique

solutions in the Cartesian representation.

Under the guise of solving the inverse problem, a brute force search across some reduced-order

representation of the environment (which could be built using EOF or learned dictionaries) might

yield adequate results by enforcing the forward propagation model as given by the Eikonal equa-

tion. Indeed, similar approaches are used in beamforming and matched field processing (MFP),

where target bearing or position are identified by comparing the sensor measurements with simu-

lated replicas. But, such an approach comes with significant computational costs and well-known

numerical limitations.

Consider, for example, the weight discretization illustrated in Section 4.3. As part of the simula-

tionwork conducted in preparation for ICEX-20, theweight of a single basis functionwas evaluated
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across 15 values, and later 2 EOFs were likewise evaluated on a 15 × 15 grid. In a brute force ap-

proach, the system is forced to run calculations for the entire search space, regardless of its utility;

and as the number of basis functions increases, so does the computational cost of searching for a

solution.

While the impact of using more basis functions could be countered by sampling each domain

more sparsely, enforcing a specific grid that fails to represent the variability of the loss function in

the search space can also misrepresent the solution space and lead to erroneous estimates. This is

especially important in light of the fact that the landscape of the loss function is sensitive to mis-

match between the simulated environment and the real one. The tradeoff between resolution and

robustness, related to parameter sampling density and model mismatch, has been well documented

for applications of the conventional and optimal beamformers;16 the underlying concepts apply to

this discussion as well.

The aforementioned considerations have led to the use of machine learning solutions as poten-

tial alternatives to techniques like MFP, given that data-driven Convolutional Neural Networks

(CNNs) have been shown to be more robust to model mismatch.17 In a similar way, treating 5 (•)

as an unknown in the environmental adaptation problem reflects the complexity of the inversion,

and is intended to illustrate where machine learning techniques may yield the most benefit, as a

replacement for a brute force approach.

7.4 Exploring the potential of PINNs for field use

The ability of Physically Informed Neural Networks to learn a solution field from the partial differ-

ential equations that describe the problem make them an attractive candidate for applications such

as the pursuit for environmental adaptation discussed in this chapter, where direct measurements

16VanTrees, Optimum Array Processing.
17Chen and Schmidt, “Robustness Analysis of a Convolutional Neural Network Approach to Source-Range Estimation

in a Simulated Arctic Environment”.
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may be exceedingly limited and sparsely distributed across the field. In a hybrid approach, PINNs

can be tasked with (1) fitting the few measurements available, while (2) ensuring the validity of the

physical principles anywhere within the target domain. The PINN training process would become

a proxy for the inverse problem by learning the underlying model.

As with other neural networks, the model learned by a PINN would be a data-driven approxi-

mation of the true field. The network’s capacity ought to be calibrated to align with the variability

in the data, lest the network be prone to either underfitting or overfitting the data, and thus fail

to learn a suitable generalization. Numerical artifacts can also impact the learning process – while

the physical relation between meters and kilometers is well defined, alternating scales may lead to

entirely different models learned by the neural network as each layer enforces a linear transform

and a non-linear activation function.

7.4.1 PINN architecture

Tobetter illustrate the impact of these sensitivities in the context of the problem at hand, this section

presents three different attempts at recreating the travel time field by learning the time field g for

the factored Eikonal equation. Note that the limitations of the Eikonal equation in Cartesian space

have already been discussed in the text; the choice to evaluate the equation in this form here will

be addressed later in this section. For this exercise, the network used to learn the time distortion

field is configured to have 20 hidden layers and 20 neurons per layer (Fig. 7.2). The grid used in

these example scenarios spans 1000 points in range, and 500 points in depth. With the objective

of enforcing the physical constraints in the entire domain at each step in the training process, all

points are used for each batch. Lastly, the networks are trained for 5000 epochs, assuming a source

depth of 90 meters.
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Figure 7.2: Diagram illustrating the PINN framework to learn the factored Eikonal equation.

7.4.2 A PINN case study in 3 parts

Figure 7.3 presents the first of these three scenarios, using a sound speed based on theMunk analyt-

ical shape, with the profile’s minimum sound speed at a depth of 100 meters. It can be observed in

the figure that this PINN can learn to reproduce the downward refracting effect of the upper water

column. Though the upward refracting effect of the lower portion of the profile is less pronounced,

the change of slope in the stream lines (which are used as proxies for the ray paths) suggest the net-

work is likewise capturing the underlying physical constraints. The BELLHOP ray tracing solution

for this environment, with a minimum at 100 meters, is shown in Figure 7.4.

While the first example appears promising, one of its limitations is that it does not capture paths

extending to some nominal bathymetry; Chapter 6 discussed how bottom-bounce paths appeared

in the ICEX-20 data, and may appear in similar data sets for other regions. Though the Eikonal

equation alone doesn’t capture multipath arrivals or boundary interactions as such, a composite

model (much like the method of images) could be used as a reasonable approximation. The data

collected in the Beaufort Sea also conveys the need for extending the model to longer ranges; the
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Munk travel time field  case 1

Figure 7.3: Learning the travel time field for a Munk-shaped environment (case 1). The sampled field is lim-

ited to 1 km in range and 500 m in depth; the sound speed minimum is located at 100 m depth.

The top and bottom plots show two distinct repetitions of the training process; some variability

appears across repetitions, as expected. In general terms, though, the learning process and results

are fairly repeatable for this example.
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Figure 7.4: Ray tracing solution for direct paths in the Munk-shaped profile with the minimum at 100m,

computed via BELLHOP. Traces with steep launch angles and surface bounces are not shown.

longest distance recorded during the experiment, between the vehicle and any beacon in the ICNN,

was of approximately 4 km. Had there been no foul weather cutting the experiment short, longer

ranges might have been recorded in subsequent deployments.

To that end, the cases shown in Figures 7.5 and 7.6 extend the sampled domain in range and depth.

The second scenario in this case study covers a range of 2000 meters and a depth of 4 kilometers;

the third scenario covers a slightly increased depth of 5000 meters and a longer range, out to 6

kilometers. The number of points in the grid remains unchanged across all scenarios despite the

increased area – a limit driven in part by the computational resources available. Compared to the

first case, both of these scenarios use another Munk-shaped profile, this time with the minimum at

500 meters.

For both cases, the sparser sampling in both depth and range leads to a break from the underlying

physics – though the time front is still moving away from the source, the upward refracting effect

of the lower water column appears to be lost in these images. The repeatability of the approxima-

tion is also significantly impacted; though some iterations of the process produce generally smooth

field estimates, others see significant numerical artifacts enter the fold. PINNs are presumably su-
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Munk travel time field  case 2

Figure 7.5: Learning the travel time field for a Munk-shaped environment (case 2). The sampled field extends

to 2 km in range and 4 km in depth; the sound speed minimum is located at 500 m depth. With

increasingly sparse sampling of the function space, the learning process becomes less consistent

across repetitions; one instance may produce a smooth travel time field (top) while another exe-

cution of the same setup may produce a jagged field (bottom).
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Munk travel time field  case 3

Figure 7.6: Learning the travel time field for a Munk-shaped environment (case 3). The sampled field is fur-

ther extended to 6 km in range and 5 km in depth; the sound speed minimum is located at 500

m depth. With even sparser sampling of the function space, the results of the training process

become less reliable still. Once again, top and bottom illustrate two distinct repetitions of the

training process, one producing a smooth field and the other a jagged field.
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Figure 7.7: Ray tracing solution for direct paths in the Munk-shaped profile with the minimum at 500m,

computed via BELLHOP. Traces with steep launch angles and surface bounces are not shown.

The extents are matched to the longest-range scenario (case 3); the bounds marking the solution

for case 2 are also shown.

pervised by the underlying physics; in practice, this supervision is actually executed in a numerical

domain. Thus, the neural network used for these examples might lack the information needed to

enforce the continuity of the field all the way from the source and across the increasingly large gaps

between samples, compared to the denser grid from the first scenario18. It should be remarked that,

although the limitations of the Eikonal equation in capturingmultipath informationwere discussed

earlier in the text, the BELLHOP ray tracing solution for this environment (Fig. 7.7) reveals that the

sampled domain exhibits a smooth field; the poor performance is not a product of a complex envi-

ronment.

Stated from the perspective of an operator in the field, the expectation set forth by learning a

solution field with PINNs (or another machine learning solution) is that a user should later be able

to sample any set of coordinates within the network’s training domain, and the neural network

should produce sensible values for the chosen coordinates. However, the approach exemplified

18From an intuitive perspective, the effect of sparse spatial sampling can be compared to that of the sampling frequency

in time-series signal processing; collecting measurements at a rate lower than twice that of the target signal leads

to signal aliasing.
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here is highly sensitive to the spatial sampling used to train the network in the first place. The

PINN will only perform as expected when the data used to train the network provided enough local

information around regions of strong variability, such that the network could capture the salient

features. Enough global information must also be provided, to ensure the continuity of the field

across the network’s domain – it was here that the impact of increasingly sparse sampling of the

field became a challenge for the cases shown in Figures 7.5 and 7.6.

As shown with the first of the three demonstrations, and with the example applications covered

by the related literature, a robust implementation of PINNs could ultimately serve as a powerful in-

version solution in post-processing applications. However, their viability for a learning framework

trained in the field is highly sensitive to the complexity of the model, the spatial distribution of the

samples and the amount of data processed at each training step.

In terms of performance, each instance of the PINN presented in this section trained a total of

8101 parameters using 500,000 samples spread across the different grids. Each training cycle, span-

ning 5000 epochs, took approximately one hour on a first-generationNVIDIAAGXXavier sporting

a 16GBmemorybank. TheAGX is an edge computing solutiondesigned formachine learning appli-

cations; while not intended as an optimal training platform for complex ML programs, its relatively

moderate power budget (the device can be configured for 10W, 15W, or 30W operation) makes it a

sensible candidate for embedded applications. Running the same code on a 48-core Xeon system

with 64GB of memory took twice as long on average.

7.5 Environment estimation as a data assimilation problem

The central motivation behind this thesis is that, once deployed, autonomous systems often have

access to information about their environment that would not be available to a human operator

during the mission (due to a limited-throughput communications link or a lack of contact entirely);

information that may directly influence the likelihood of success for a given deployment. The task
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of interpreting said information can be made notably challenging when the samples are sparsely

distributed, as is often the case with Autonomous Underwater Vehicles; but having some concept

of that interpretation process programmed in the autonomy stack is necessary if the vehicle is to

benefit from the available data.

As part of that interpretation process, the importance of using simple inversion algorithms for

real-time training systems – whether they are built around PINNs or otherwise – should not be

surprising. High-fidelity models require larger sample sets to constrain the increased number of

parameters, and the resources required to perform the inversion must grow accordingly. Even

with regards to forward-problem resolution, higher fidelity models may fall beyond the reach of

an AUV’s computational resources, as was discussed in Section 4.1.1. Rather than seeking to learn

a high-resolution model, the aim with this environmental adaptation framework has been stated as

exploiting different data streams in a unified approach, to compensate for the limitations of each

individual data source. Much like prior work in ocean acoustic tomography,19 the environmental

adaptation problem is also a data assimilation problem.

7.5.1 A simplified inversion model

The aforementioned ocean tomography work relied on four defining equations to perform the in-

version. These equations represent: (1) a directmeasurementmodel, which relates data from aCTD

to the true sound speed profile; (2) an oceanographicmodel, whichmay capture regional circulation

data; (3) an acoustic propagation model, which relates the sound speed profile to the acoustic pres-

sure field; and (4) an acoustic measurement model, relating the pressure measurements to the true

acoustic field. Other work by the same author also discussed travel time tomography,20 which was

introduced in Section 2.3.1. The travel time formulation is of interest to this work, since the acous-

19Elisseeff, Schmidt, and Xu, “Ocean Acoustic Tomography as a Data Assimilation Problem”.
20Elisseeff, “Fast acoustic tomography of coastal, tidally-driven temperature and current fields”.
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tic data available to AUV Macrura and the ICNN is the processed output of WHOI Micromodems

rather than the raw time-series data.

In a similar fashion to what is done for tomographic work, then, Equation 7.8 can be modified

to use the linear travel time measurement model in place of the unknown function 5 (w, g). A mea-

surement related to travel time, g;, is approximated by an observation matrix � that transforms the

perturbations �w of the baseline sound speed profile (Eq. 7.9). Note that in Eq. 2.12, the observa-

tion matrix was given as �, in accordance to the literature references; it is renamed here to avoid

confusion with the direct measurement vector 2;.

L = ‖2; − �w‖︸       ︷︷       ︸
fit CTD data

+ ‖_�w‖︸ ︷︷ ︸
regularizer

+ ‖g; − ��w‖︸         ︷︷         ︸
fit timing data

(7.9)

7.5.2 Travel time sample selection

As was discussed in the background, the observation matrix � captures the ray sampling function

for each eigenray connecting a source and receiver pair, thus encapsulating information about the

base environmental model and the spatial arrangement of the collected samples. Assuming a good

enoughbaseline,measurement repetitions along the samebase path could thenbe used as an indirect

measurement of the sound speed profile, effectively adding a regularization term to the weights

vector w. However, the analysis in Section 6.2 showed that the eigenrays varied significantly across

the example Arctic environments, especially for the near-surface paths. Furthermore, the nature of

the experiment (and the eventual failure of the vehicle’s propulsion control computer) meant that

some range-depth combinations were densely sampled, while many others were not sampled at all.

Figure 7.8 shows the coverage maps for acoustic samples collected by AUV Macrura, and by the

ICNN buoys.

In order to demonstrate the application of a machine learning framework to assimilate both di-

rect and indirect measurements of the environment, the set of samples collected by the ICNN in
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Figure 7.8: Coverage of the range-depth domain for one-way travel time samples collected by AUV Macrura

(top) and the ICNNbuoys connected to the topside computer (bottom), for acoustic links between

topside and the vehicle; buoy-to-buoy samples are not shown. Ranges are given relative to the

ICNN buoys, with the different depths illustrated. The markers indicating the range and depth of

Macrura are color-coded by the depth layer of the ICNN transmitter or receiver involved in the

link.
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Figure 7.9: Sample selection from the set of acoustic data recorded by the topside-controlled ICNN. A k-

means approach with 8 clusters is used to identify representative regions in the set.

the field are first reduced to representative examples, using a k-means approach. The clustering al-

gorithm uses the sample’s range, depth and measured travel time, as well as the depth of the ICNN

component involved; all domains are normalized across the set of samples, to ensure they share

equal influence in the optimization process. The resulting cluster centers for 9 = 8 are shown in

Figure 7.9.

7.5.3 Learning the travel-time observation matrix

Generally speaking, the objective behind tomographic experiments is to solve the inverse problem

and produce as realistic a model of the environment as may be possible from the measurements

available. However, the concept of real-time environmental adaptation is somewhat less concerned

with obtaining this detailed model; instead, the adaptive system is more concerned with identifying

correction terms for its internal model, which may be used to improve its performance in the field.

In other words, the environmental adaptation problem is focused on attaining incremental gains.

Recognizing both the preference for conservative operations in AUV deployments, and the ex-

ploratory capabilities ofML techniques, this sectionmodifies theweight identification problem that
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was first given in Equation 7.6. Rather than enforcing the ray sampling functions given by Equation

2.13 in the observation matrix � (Eq. 7.9) to solve for the weight vector w, the problem is re-framed

as solving for the terms in � which would be required to fit the travel time data with respect to

the EOF-fitted sound speed profile �w + 21, where 21 represents the baseline SSP. This new system

configuration is still subject to fitting the CTD measurements with the weight vector; recall that 2;

represents the depth-dependent perturbations of the baseline profile, and not the discretized CTD

samples directly. This form of the problem is given in Equation 7.10.

argmin
w,�

‖2; − �w‖︸       ︷︷       ︸
fit CTD data

+ ‖_�w‖︸ ︷︷ ︸
regularizer

+ ‖B; − �(�w + 21)‖︸                  ︷︷                  ︸
fit timing data

(7.10)

The expectation with this variant of the problem is that, rather than forcing the time measure-

ments to directly influence the values in the weight vector, � will instead capture information re-

lating the travel time data and the direct environmental measurements. These should generally be

analogous to the ray sampling functions, but are not expected to directly reflect true eigenray infor-

mation, as the model has not been given any such information and the basis is now given in terms

of the true fitted profile rather than the perturbations.

After training, the rows of � revealed functions similar to the fitted profile. This relation could

be confirmed by zero-shifting and normalizing each of the rows and the sound speed profiles. Re-

verting the shifting and scaling process, using the values from the fitted profile for the rows of the

observation matrix, yields the results shown in Figure 7.10.

The practical application of a pseudo-tomographic approach like the one demonstrated here

would enable the autonomy system onboard a vehicle to look beyond the bounds of its internal

environmental model and the EOF representation. Training the observation matrix using this ap-

proach produces perturbations of the EOF-fitted environment, which could be fed to the Virtual

Ocean Autonomy Testbed as secondary models for further assessment. Indeed, the concept of ex-
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Figure 7.10: CTD casts collected during ICEX-20, along with the EOF fit obtained via conventional least-

squares. The rows of the travel time observation matrix � are scaled and shifted to align with

the data, illustrating how the training process captures perturbations of the EOF-fitted profile.
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ploring multiple forms of the environment approximation has also been tackled with Tactical Deci-

sion Aids, for human-in-the-loop operations; however, those representations were all fully bound

by the choice of basis functions.

7.6 Summary

This chapter revisited the topic ofmachine learning, exploring someof the considerations that affect

MLuse in oceanographic and environmental applications, aswell as advances inML frameworks for

physical systems described by partial differential equations. The potential benefits and limitations

of using Physically Informed Neural Networks in field applications were discussed with respect

to a benchmark example in the form of a Munk-shaped sound speed profile, performed in three

parts. Finally, a pseudo-tomographic approach to producing exploratory perturbations of an EOF-

driven environmental model was demonstrated. These altered environmental models complement

the combinatorial approach of the EOF-driven Tactical Decision Aid used during ICEX-20, and

could be evaluatedwith bespoke tools or the Virtual Ocean AutonomyTestbed to validate ormodify

the vehicle’s internal model.
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8 Conclusions

“People have forgotten this truth,” the fox said. “But you mustn’t forget it. You become respon-

sible forever for what you’ve tamed. You’re responsible for your rose.”

— Antoine de Saint-Exupéry, The Little Prince

This thesis brings a magnifying glass to some of the complexity involved in the operation of Au-

tonomous Underwater Vehicles, with the intent to improve on the vehicle’s environmental adap-

tation capabilities. The need for environmental adaptation can be appreciated when looking back

on prior experience conducting AUV deployments in the new Arctic, where a layer of warm Pa-

cific water creates a variable double-ducted acoustic environment that exacerbates the challenges

of underwater navigation in a GPS-denied environment.1 To tackle the challenge of environmental

adaptation, this thesis presented a multidisciplinary approach centered on exploiting information

available to the AUV or the vehicle operator in a collaborative framework.

8.1 Summary of contributions

In order to demonstrate the impact of foundational machine learning techniques, this thesis first

presented a framework that exploits bearing data and time-to-intercept data to classify the behavior

of a neighboring vehicle; both signals can be drawn by processing passive acoustic data. Building

1Schmidt and Schneider, “Acoustic communication and navigation in the new Arctic — A model case for environ-

mental adaptation”.
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on this example, the classification framework was extended to a simplified example of environment

characterization, presented in the formof riverbedmaterial identification. This extension benefited

from local surveys to inform the model generation process used to create the training set provided

to the classifier. (Chapter 3)

Following this foundation, the text moved on to explore how similar data-driven techniques may

be applied to the problem of environmental adaptation in the Arctic Ocean. As part of the exper-

iments required to demonstrate such capabilities, the author was responsible for the vehicle’s au-

tonomy payload and other computational resources needed to support deployments in the Arctic.

Additionally, simulations were performed ahead of field deployments in order to identify opportu-

nities for improvement within the reach of the AUV’s sensing capabilities. (Chapter 4)

An important contribution of this thesis consisted of an in-depth assessment of the data col-

lected during ICEX-20. This breakdown of the mission logs and measurements supported subse-

quent work in this text, and also enabled contributions by other members of the Laboratory for

Autonomous Marine Sensing Systems (LAMSS), who were likewise presenting research based on

these data sets. The assessment included the identification of clock synchronization issues and the

characterization of the acoustic data collected in the Arctic, as well as a discussion of the system

limitations that led to the unavailability of some of the anticipated measurements. (Chapter 5)

Building on the pre-deployment simulations and the data assessment, this thesis then presents

the range estimation algorithm fielded during ICEX-20, along with an improved solution that was

developed in post-processing. Both methods are aided by acoustic propagation models. The modi-

fied algorithm exploits information about feature availability that was identified in the preliminary

simulations. The added dimension of information was shown to improve the performance of the

range estimation and the subsequent acoustic positioning calculations produced by the Integrated

Communications and Navigation Network (ICNN) – the acoustic tracking network used during

ICEX-20. (Chapter 6)
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Lastly, this thesis expanded on the aforementioned contributions by demonstrating a pseudo-

tomographic approach to environment estimation, implemented with the help of a machine learn-

ing framework. The perturbations of the environmental model that were identified using this ap-

proach could be used to introduce a slight bias to the vehicle’s autonomous decision process, as part

of meeting the vehicle’s operational requirements – an example of this being that the vehicle may

need to maintain a reliable acoustic communication path available at all times. (Chapter 7)

8.2 Opportunities for improvement and future work

8.2.1 Data management in the field

In her book about the early days of World War I, renowned historian Barbara Tuchman notes that

“in the midst of war and crisis nothing is as clear or as certain as it appears in hindsight”.2 The same might

be said of scientific endeavors, where the process of exploration and discovery oft exposes clear

avenues for improvement that might be pursued in subsequent iterations. Such is the case with the

most forthright next steps discussed herein, which aim to tackle the limitations brought to light in

the ICEX-20 field report (Chapter 5).

First in this list, therefore, comes the thought of expanding the concepts that led to the improved

range estimation algorithm presented in Chapter 6 – the Nearest Bounce Criteria (NBC) – to reach

beyond the model scope. As reported in Chapter 5, many of the data points available in the acoustic

logs were left unused by the ranging solution fielded during ICEX-20, due primarily to corrupted

data frames even in the presence of valid and verifiable headers. The design decision to reject any

failure in the acoustic network was based on a conservative approach to operations, in the absence

of evidence supporting an alternative path; evidence that may well come from the data assessment

reported in this work. Even when multiple successful arrivals were detected at any of the buoys

2Tuchman, The Guns of August.
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for a given transmission event, the expectation of a single valid arrival per buoy was enforced in

the ICNN’s codebase. However, by enabling an acoustic tracking system such as the ICNN to ex-

ploit additional information from the field measurements, in the form of multiple distinct arrivals

at any of the tracking network’s nodes, the performance of the tracker could be improved. Poten-

tially weighted by the system’s confidence in the sample (encoding the extent of the failure in the

communications framework, for example), the additional range estimates could provide additional

information to constrain the uncertainty of the tracking solution. Such a consideration further

emphasizes the added value of the NBC, as it necessarily recognizes the multi-path nature of the

acoustic environment in the new Arctic.

The second avenue for improvement exposed in the data assessment fromChapter 5 relates to the

issues the LAMSS team experienced with the radio link between the ICNN buoys and the topside

control station at Camp Seadragon. To understand how this path for improvement becomes appar-

ent, some familiarity with the overhead costs of digital communication systems can be helpful. This

overhead may be used to record the source and destination addresses, or a specific packet number

for larger records that must be split into a series of transmissions; such examples apply to the Inter-

net Protocol, which one could argue is usually taken for granted in the present day. This additional

metadata makes it possible to implement mechanisms to validate the integrity of the data at the re-

ceiving node, for example; but it also cuts into the effective throughput of the system. Recognizing

both the value of this overhead and the limitations inherent to acoustic communication systems

has thus motivated the development of encoding optimizations for the headers that constitute this

overhead, and for the transmitted content itself.3

Drawing from the work that’s been put into acoustic communications, then, it follows that a

careful assessment of the ICNN’s data exchange needs may ultimately enable subsequent deploy-

3Schneider, “Transmitting Internet Protocol packets efficiently on underwater networks using entropy-encoder

header translation”; Schneider, Petillo, Schmidt, and Murphy, “The Dynamic Compact Control Language version

3”.
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ments to collect the records that were missed during ICEX-20. The radio links used to connect

the ICNN buoys to the operator computer were expected to provide more than enough capacity to

handle all the data produced by the various remote acoustic modems – yet the data loss incurred

in the form of absent impulse response estimates proved otherwise. Redressing the implementa-

tion of the radio links to bundle modem signals into larger packets, for example, could improve

the resulting overhead ratio. A logical counterpoint to buffering the signals in such a way would

be that doing so would introduce further delays in the information exchange between the remote

modem and topside – but this point is mainly relevant in the context of establishing and main-

taining the time synchronization between these systems. However, time queries and time setting

commands involved in this process are already subject to variability in the radio interface; this too

was discussed in Chapter 5. Thus, the system might benefit from abandoning the centralized con-

trol scheme implemented during ICEX-20, and instead transferring some of the responsibility for

time synchronization to each of the buoys’ GNSS receivers. Doing so would reduce the number of

messages exchanged between the operator computer and the ICNN buoys, relieving some of the

pressure on the radio network. Should the reduction of traffic on the network not be enough to

ensure the system’s needs are met, additional modifications such as the aforementioned stacking of

packets into fewer transmissions, or the encoding of these transmissions into more efficient repre-

sentations, could also be implemented.

8.2.2 Parallelizing the acoustic modeling tools

As stated in Section 2.2, there are numerous techniques that can be used to tackle the problem of

acoustic propagation. The most commonly used implementations of these techniques for ocean ap-

plications can be accessed through the Ocean Acoustics Library (OALIB4), which serves as a central

hub for the distribution of both software and data in this field. Outside of bespoke implementations

4https://oalib-acoustics.org
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used in post-processing, the work presented in this text made use of two of the packages in this li-

brary. The section on riverbed characterization used the wavenumber integration code OASES,

written by Prof. Henrik Schmidt. The components related to the Virtual Ocean, the ICEX-20 de-

ployments and acoustic navigation in the Arctic used the ray tracing program BELLHOP, written

by Dr. Michael B. Porter. These programs share two key commonalities of interest to the pursuit of

paths for improvement: both are written in FORTRAN, and both are written as serial code.

The first commonality between these software suites is worth mentioning for the impact it has in

terms of performance and maintainability. While not as popular as other programming languages

in the wider software development community, FORTRAN is still in active development and is well

established within the scientific community due to its speed when performing complex numerical

calculations, and to the existence of legacy code in highly critical systems across the globe.5 This

seemingly niche positioning means that qualified developers and maintainers may be few and far

between when compared to other languages; but they certainly exist. More importantly, the lan-

guage is natively parallel and can be used in conjunctionwithNVIDIA’s CUDA,which is perhaps the

most popular solution to date for general purpose computing on graphics processing units (GPUs).

The second commonality lies in the fact that the current code for both projects is implemented in

a serial approach, which has measurable consequences in both simulation and real-world deploy-

ments. As an illustration of this point, Section 4.1.1 addressed how the Virtual Ocean Simulator

developed by the LAMSS team uses a nested modeling approach to handle this limitation, exploit-

ing the various time scales of related processes to balance the need for up-to-date information with

the cost of running the acoustic propagation model on the same CPU resources as the rest of the

autonomy system. But as the number of nodes is increased – for example, by adding buoys to the

ICNN–a larger number ofmodel executions are requiredwithin a given timewindow, to reflect the

5Kedward, Aradi, Certik, Curcic, Ehlert, Engel, Goswami, Hirsch, Lozada-Blanco, Magnin, Markus, Pagone, Pribec,

Richardson, Snyder, Urban, and Vandenplas, “The State of Fortran”.
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additional acoustic contacts; the nested model architecture alone may not be sufficient to support

scaling operations in this way.

The issue at hand can ultimately be reduced to the processor time required for each execution of

the propagationmodels. The limitations of this serial code execution are emphasizedwhen running

simulations with an accelerated time scale, since this time-warped approach effectively compresses

the gap between iteration cycles of each of the apps in the autonomy ecosystem and is limited by

the number of processor cycles left unused in the corresponding real-time execution. Where many

of the applications in the autonomy stack are executed around four times per second but require a

relatively small amount of work per iteration, these can be accelerated to double-digit time factors

without much trouble, on the development platforms typically used by the members of the LAMSS

team. In contrast, re-processing the ray tracing files collected during ICEX-20 takes about 0.2 to 0.3

seconds typically, with some instances spilling beyond a full second in duration – and these times

reflect only the execution of the ray tracing program BELLHOP, in the absence of other autonomy

applications competing for resources and without accounting for the steps involved in collecting

updates for the environmentalmodel or in converting the resulting grid into a travel timeprediction.

In short, the serial nature of the code affects both the scalability and the time warp compatibility of

the Virtual Ocean.

It may be apparent by now that the improvement route emphasized here is the modernization

and parallelization of the code contained in the Ocean Acoustics Library. As part of an internal

review conducted by the author of this text, a bespoke implementation of ray tracing was shown to

benefit from as much as a 10x acceleration factor, when converting from a serial CPU approach to a

parallelizedGPGPU solution executed on a first-generation AGXXavier with 16GBmemory bank.

These gains were obtained with only a basic port of the bespoke code into the GPU, and the entire

demonstration was built natively in CUDA; further optimization should be attainable with a more

careful adaptation of the routines. Converting the OALIB projects, regarded as golden standards
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within the ocean acoustics community, should not require a complete rewrite – instead, the process

would benefit from the compatibility of FORTRAN kernels in the CUDA ecosystem; and doing so

may ultimately enable the use of time-warped simulations, and improve the scalability of systems

like the Virtual Ocean Simulator.

It should be noted, of course, that the idea of parallelizing these acoustic propagation suites is not

new. Asmaintainer of theOASES repository, the author of this thesis supported the integration of a

parallelization wrapper for the wavenumber integration code into the upstream project. The wrap-

per was developed by Dr. Gaute Hope in collaboration with Prof. Henrik Schmidt, and was dubbed

PAROASES for the nature of its function.6 However, PAROASES takes a high-level approach to

parallelization, splitting the model into subsets by the independent nature of the different frequen-

cies and executing multiple calls of the CPU-bound, serial code. Similarly, the ray-tracing models

executed for the post-processing portions of this thesis were often sent to a server with a large CPU

core count, to take advantage of multiple concurrent threads. Neither of these approaches takes

advantage of increased acceleration via GPU; and while prior efforts to upgrade BELLHOP using

CUDA do exist in the literature,7 the resulting project has not seen widespread adoption. A suc-

cessful modernization of the OALIB will likely require the collaboration of new developers with

the maintainers of the upstream projects, to ensure the upgrades are thoroughly tested and eventu-

ally merged into the well-known software suites to reach the wider network of users.

8.3 Closing remarks

Just as the Arctic captured the imagination of ancientGreece, so it captures theminds of the present.

The region has earned increased interest from fishing, trade and military operations – after all, the

vision of a blue Arctic comes with the promise of a convenient northern passage. It has also been

6Hope and Schmidt, “A parallelization of the wavenumber integration acoustic modelling package OASES”.
7Lazzarin, “Parallel implementation of a ray tracer for underwater sound waves using the cuda li- braries: description

and application to the simulation of underwater networks”.
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the subject of studies seeking to understand the role that the ice cap may play on changing climate

conditions. This interest in the frigid northern waters is embodied in the biennial nature of the

US Navy’s Ice Exercise (ICEX), which aims to demonstrate military capabilities and also to support

select scientific efforts; in addition to this thesis, other works8 likewise benefited from the data

collected by the LAMSS team during the 2016 and 2020 ICEX deployments. Furthermore, while

members of the lab’s team were on site, Ice Camp Seadragon was overflown by a Tu-142 maritime

reconnaissance aircraft. Whether the plane’s objective was to observe the US Navy submarines

in the area, specifically, or the camp’s operations more generally, the event serves to illustrate how

even now, the Arctic is at the center of competition between global powers. Alas, advances inmarine

vehicle autonomy have the potential for direct impact in efforts to monitor conditions in the Arctic,

which may ultimately influence commercial and military decisions to gain the upper edge in said

competition.

Looking beyond the global power dynamics involving the Arctic, experiments like those con-

ducted by LAMSS during ICEX-16 and ICEX-20 are only possible thanks to significant logistics

operations involving a wide arrange of teams. Getting equipment and personnel across across the

country, and eventually airlifted onto the ice, is no small feat; performing recovery operations like

the one described in Section 5.5 are also only possible only with great effort to coordinate many

competing resources and interests. Pilots, oceanographers, ice mechanics experts, medical person-

nel, and many others are essential to enable this type of work – and if the mission is to succeed, they

are need to be trusted to perform their duties. And much like with all the human personnel, AUV

Macrura also had to be trusted to perform as intended. Though an in-depth discussion of the role

of trust in human-robot interaction is beyond the scope of this work (this area of research features

8Bhatt, “A Virtual Ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous

underwater vehicles”; Chen, “Ambient Acoustics as Indicator of Environmental Change in the Beaufort Sea: Exper-

iments & Methods for Analysis”; Goodwin, “Environmental Effects of the Beaufort Lens on Underwater Acoustic

Communications during Arctic Operations”; Howard, “Multipath PenaltyMetric in Underwater Acoustic Commu-

nication for Autonomy and Human Decision-making”.
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the likes of Project Aquaticus9), it is nonetheless a necessary element when deploying autonomous

systems – indeed, the goal of improving the vehicle’s environmental adaptation capabilities for au-

tonomous operation may ultimately help create more trustworthy robotic platforms in the future.

9Robinette, Novitzky, Fitzgerald, Benjamin, and Schmidt, “Exploring Human-Robot Trust During Teaming in a Real-

World Testbed”.
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A Python MOOS and the LAMSS

Python toolkit

The python-moos project provides language bindings to the original MOOS code, making it pos-

sible for developers to exploit the fast prototyping benefits of the Python languagewhile interfacing

with the underlying C++ code at the heart of the MOOS and MOOS-IvP projects, along with their

associated ecosystem of autonomy software. The first commit for the python-moos interface is

dated back to 2013, when Prof. Paul Newman (author of the MOOS middleware) began working

on the language bindings using the Boost.Python libraries as a foundation.

Although the last commit recorded for Prof. Newman’s original project is dated back to May of

2016, the language bindings have continued to grow at the hands of various MOOS users, including

the author of this thesis. In December of 2016, Dr. Mohamed Saad Ibn Seddik began the effort of

rewriting the bindings to use the PyBind11 library. The Boost.Python used in the original project

provides a great range of backwards-compatibility and a rich feature set, but these perks come at

a cost in terms of size. Shifting to the lightweight, headers-only PyBind11 thus introduced savings

in terms of size costs associated with the project’s dependencies. In April of 2020, Russ Webber

joined inwith fixes to the compilation and testing infrastructures, aswell as updates to the PyBind11

implementation.
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The author of this thesis joined the development efforts in November of 2020 after being a reg-

ular user for some years, in order to provide fixes to the Continuous Integration and Continuous

Delivery (CI/CD1) infrastructure. The main goal was to ensure that potential users had easy, reli-

able access to any future updates to the bindings as they became more deeply integrated with the

LAMSS operational paradigm.

A.1 The Python-MOOS bindings

The following serves as an introductory guide to the python-moos bindings, and how to use them

for application prototyping and development. This guide is intended to facilitate the iterative na-

ture of the design process; for well-established algorithms in critical autonomy applications, such

as those that may be embedded into AUVs, it is still recommended that users consider translating

finalized solutions to C++, as the compiled program will generally perform better than interpreted

code.

A.1.1 Installation

The python-moos bindings are automatically installed as part of the standard LAMSS dependen-

cies. However, they can also be installed easily for other MOOS-related systems. In order to do

so, the minimum requirements are: (1)MOOS must be compiled and installed; (2) an appropriate

Python installation must be available on the system, and (3) the Python package manager, pip, must

also be installed. When all requirements are met, the python-moos bindings can be installed via

pip:

python3 -m pip install pymoos

1CI/CD is alternatively expanded as Continuous Integration and Continuous *Deployment* when the updates are

not just delivered to end users, but are in fact made active immediately on connected systems.
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The previous command will fetch the project from the Python Package Index (https://pipy.org),

perhaps themost popular solution for packagemanagement in the Python ecosystem. Alternatively,

the project can also be installed from source:

git clone https://github.com/oviquezr/python-moos.git python-moos
cd python-moos
python -m pip install .

The compilation and installation can also be executed via the following commands:

cd python-moos
python3 setup.py build
python3 setup.py install

A.1.2 Understanding the bindings

As of this writing, the bindings include connections to the MOOS Message and the MOOS Com-

munications Client components, as shown by the header inclusions in the source file PyMOOS.cpp:

#include "MOOS/libMOOS/Comms/MOOSMsg.h"
#include "MOOS/libMOOS/Comms/MOOSCommClient.h"
#include "MOOS/libMOOS/Comms/MOOSAsyncCommClient.h"

At the top level, this approach gives the user access to some of the core MOOS tools, such as time

references and timewarping. The synchronous and asynchronous Communications Client compo-

nents enable the configuration of custom callbacks, and provide access to the variable registration

and notification functions. Similarly, the MOOS Message bindings make it possible to access the

same features of mail entries provided for C++ applications. The basic bindings needed to start

using python-moos are given in Table A.1.
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Table A.1: A sampling of basic bindings handled by the python-moos project. Parent namespaces are

given in parenthesis for each group; the msg entry is an item from the vector returned by

pymoos.comms.fetch().

C++ Python

Core MOOS tools - (pymoos)

MOOSLocalTime .local_time()

MOOSTime .time()

SetMOOSTimeWarp .set_moos_timewarp()

GetMOOSTimeWarp .get_moos_timewarp()

Synchronous Comms (CMOOSCommClient) (pymoos.comms)

::Register .register()

CMOOSCommClient::Notify .notify()

Async Comms (MOOS::MOOSAsyncCommClient) (pymoos.comms)

::Run .run()

Basic callbacks (MOOS::AsyncCommsWrapper) (pymoos.comms)

::SetOnConnectCallback .set_on_connect_callback()

::SetOnMailCallback .set_on_mail_callback()

::FetchMailAsVector .fetch()

Message interface (CMOOSMsg) (msg from pymoos.comms.fetch())

::GetKey msg.key

::GetDouble msg.double
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C++ Python

::GetString msg.string

A.1.3 Getting started with Python-MOOS

The following sample code provides a minimal framework for a simple Python MOOSApp. The

example provided will connect to a MOOSDB running on localhost and the default port (9000).

Upon a successful handshake, it will register for the navigation variables NAV_X and NAV_Y. The

iterate function will simply act as a heartbeat indicator; the main expression of this simple app

is that, upon receiving mail associated with one of the requested variables, the on_new_mail()

callback will print the information received.

As part of the given report, themail handler will first print the current time as given by the under-

lying MOOSTime routine. It is important to note that the way MOOS handles time will be linked

to the time warp configuration, so it is strongly recommended that apps be properly configured

to match time warp across all active applications. Failure to do so may lead to unexpected behav-

ior; when using pLogger to record the mission, the issue may become evident after inspecting the

logged message times.

import pymoos
import time

# Set desired time warp
pymoos.set_moos_timewarp(1)

# Collect reference value for duration control
start_time = pymoos.time()

# Shorthand for the Async Comms Wrapper
pmc = pymoos.comms()
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def on_connect():
for var in ['NAV_X','NAV_Y']:

pmc.register(var,0) # register for MOOS variables
return True # REQUIRED: callbacks must return True

def on_new_mail():
for msg in pmc.fetch(): # handle mail in queue

print('Time :',pymoos.time())
print('Key :',msg.key())
print('Double :',msg.double())
print('String :',msg.string())

return True # REQUIRED: callbacks must return True

def iterate():
print('.',end='',flush=True)

pmc.set_on_connect_callback(on_connect)
pmc.set_on_mail_callback(on_new_mail)
pmc.run('localhost',9000,'pymoos_app')
pmc.wait_until_connected(2000)

apptick = 4

while start_time+300 > pymoos.time():
iterate()
time.sleep(1.0/apptick)

# Close connection to MOOSDB
pmc.close(True)

A.1.4 Using Python-MOOS as part of a class

A more complex application, or set of applications, may warrant the use of classes. This approach

wouldmake it possible to handle specialized components of the applications in different source files,

for example. Another advantage of the class-based approach, as is generally the case in software
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solutions, is that it allows for common components to be centralized in a parent class, minimizing

code duplication when possible.

The following code provides a simple example similar to the previous one, but this time using a

class to define the application’s instructions. The class in this code can be imported into another

source file, but the file can also be executed directly; the top-level execution instructions are then

given by the __main__ routine defined near the end of the code.

#!/usr/bin/env python3

import numpy as np
import pymoos
import logging

# pymoos doesn't currently bind to CMOOSApp method
# for config parsing; use this for convenience
from lib_pylamss import moos_config

# Use uPlot's Ansi module for color-coding logs
from lib_pylamss.Ansi import Ansi as ansi

logger = logging.getLogger(__name__)

class SAMPLE_APP:
'''
This is a sample Python-MOOS application
'''

def __init__(self,*args,**kwargs):

# Default server settings (override via config)
self.server_host = 'localhost'
self.server_port = 9000
self.time_warp = 1

# Process args and read config
self.name = args[2]
self.cfg = {'config':args[1],'apptick':4,}
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self.read_config()

# Initialize some variables
self.got_stuff = False
self.last_x = None
self.last_y = None

self.vars_to_reg = ['NAV_X','NAV_Y']

# Log pymoos app's configuration:
self.log_config()

# start pymoos.comms, with callbacks
pymoos.set_moos_timewarp(self.time_warp)
self.pmc = pymoos.comms()
self.pmc.set_on_connect_callback(self.on_connect)
self.pmc.set_on_mail_callback(self.on_new_mail)

self.pmc.run(self.server_host,self.server_port,self.name)
self.pmc.wait_until_connected(2000)

def iterate(self):
if self.got_stuff:

print()
print('Time :',pymoos.time())
print('Last X:',self.last_x)
print('Last Y:',self.last_y)
self.got_stuff = False
self.last_x = None
self.last_y = None
self.pmc.notify('SAMPLE_POST','the message')

def handle_mail(self,msg):
if msg.is_name('NAV_X'):

self.last_x = msg.double()
elif msg.is_name('NAV_Y'):

self.last_y = msg.double()

self.got_stuff = all([x!=None for x in [self.last_x,self.last_y]])

# =================================================
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# moos_config parser in lib_pylamss for convenience
def read_config(self):

moos_config.read_config(self,self.cfg['config'],self.name)
def log_config(self):

moos_config.log_config(self)

# ======================
# pymoos.comms callbacks
def on_connect(self):

for var in self.vars_to_reg:
logger.info(self.name +' Register for '+var)
self.pmc.register(var,0)

return True
def on_new_mail(self):

for msg in self.pmc.fetch():
self.handle_mail(msg)

return True

# ==================================================
# ==================================================
# This section defines how the program should behave
# when called directly, rather than as an import to
# another program
if __name__=='__main__':

import time
import sys

# Logger should be configured by 'primary' program
logging.basicConfig(

level=logging.DEBUG,
format=('%(asctime)s | %(name)s.%(funcName)-16s'

+' %(levelname)-8s : %(message)s'),
datefmt='[%Y-%m-%d %H:%M:%S]')

logging.Formatter.converter = time.gmtime

# create instance of our class
app = SAMPLE_APP(*sys.argv)

# call iterate based on a crude apptick interpretation
while True:
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app.iterate()
time.sleep(1.0/app.cfg['apptick'])

One notable feature of the above code is that it enables the use of configuration files, such as

the *.moos files used by the similarly named middleware. Although the bindings have not yet been

expanded to use the configuration parser provided in theMOOS code itself, the author of this thesis

has provided a suitable substitute in the LAMSS codebase. When following the lab’s setup guide to

install the autonomy ecosystem, the necessary system paths are automatically configured to enable

the imports as shown. Thus, a sample configuration file for the previous SAMPLE_APP could be

given by:

// MOOS file : test_config.moos

ServerHost = localhost
ServerPort = 9000

MOOSTimeWarp = 1

ProcessConfig = ANTLER
{

MSBetweenLaunches = 200
Run = MOOSDB @ NewConsole = false
Run = sample_app @ NewConsole = true

}

ProcessConfig = sample_app
{

AppTick = 5
}

Assuming the source file’s permissions have been updated to allow execution, the application

could then be launched manually by calling:

./test_pymoos.py test_config.moos sample_app
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The command arguments are (1) the application itself, (2) the configuration file (accessed by

args[1] in the code), and (3) the application’s name (args[2]), which is submitted to theMOOSDB

when establishing a connection. This can be used to execute multiple instances of the same appli-

cation with different aliases, as the MOOSDB requires that all clients register using unique names

as identifiers. Alternatively, if the application is executable and accessible in the user’s path under

sample_app (as shown in the configuration file), then the app could be automatically launchedwith

pAntler as part of a conventional MOOS mission.

A.2 The LAMSS Python plotting utilities

The LAMSS Display Center, designed as a solution for data visualization during mission runtime,

is among the more involved uses of the Python-MOOS interface within the LAMSS codebase. At

its heart, the LAMSS Display Center (or alternatively, lamssDC), sought to capture a series of legacy

visualizations originally coded in MATLAB, and provide a more user-friendly, scalable solution. To

better understand the driving forces behind this decision, it may be noted that the original code had

the following limitations:

1. They required the MATLAB-MOOS interface iMatlab, which in turn required a MATLAB

installation no newer than 2017b.

2. Each visualization tool required its own fully independent instance of MATLAB. As imple-

mented, a series of benchmark tests revealed, this requirement implied a burden of approxi-

mately 1GB of memory per instance – a significant burden, when looking at scalability.

3. The original visualization scripts were highly opinionated with regards to display real estate,

often taking control of the screen each time they updated their respective plots.
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In order to tackle these issues, theDisplayCenterwas built in three parts: (1) a series of individual

Python-MOOS applications charged with collecting the data for each of the sets of figures, (2) a

website capable of ingesting updates via a websocket connection to a central server, and (3) a central

server chargedwith accepting data from thePython-MOOSapplications and relaying it as needed to

thewebsocket clients. The capability of sending commands from theweb interface, relayed through

the central server to the appropriate destination, was also added – meaning that the central server

application is both a websocket server and a Python-MOOS application. Figure A.1 illustrates this

architecture schematically.

The website itself, mentioned earlier as the second component of the architecture, is a relatively

simple site in terms of the underlying HTML and CSS (styling) code. Within the site, the web-

socket connection is managed with JavaScript code, as is the command and control system inte-

grated therein. LAMSS mission control is typically handled via Goby Liaison, and the addition of

similar capabilities to the LAMSS Display Center is not to supersede this convention. On the con-

trary, the intent with adding command and control capabilities in lamssDC was to facilitate access

to configuration changes specifically related to the visualizations, minimizing the impact on more

established components of the operational paradigm. An example of this is introducing the ability

to change the transmitter and receiver nodes processed by the tloss_display tool from the same

panel that displays the resulting transmission loss map.

Similarly, the site’s plots are designed and rendered using BokehJS (a JavaScript library), as this

approach creates clean yet interactive figures. An added benefit of this library is that the burden

of re-rendering figures as needed is passed to the web client. Early development of the lamssDC

setup used the Python flavor of the Bokeh library, preparing the figures server-side, but this meant

the server was sending figure layout information in addition to the image or line plot data to each

connected client, putting an additional burden on the local network. Furthermore, the clients still

needed to render the figure, as it was received in the form of instructions to a related embedding

260



Figure A.1: Diagram illustrating the lamssDC server architecture. Plotting applications inherit from the uPlot

superclass and send requisite data to the lamssDC server via a websocket connection.
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engine rather than as static images, to preserve the benefit of interactivity. Updates in the original

approach required that the client’s web browser discard the previous figure entirely and then embed

the new figure from scratch, whereas the current implementation takes advantage of more granular

control granted by the native JavaScript API to minimize duplicate work when possible.

Though theweb development aspectmust be understood in order to properly extend the LAMSS

DisplayCenter’s plot collection, the primary focus of this discussion is the use of the Python-MOOS

interface as part of the data visualization framework. The next section discusses how the class-based

architecture presented in Section A.1.4 was used for this purpose.

A.2.1 The uPlot superclass

As part of the initial translation effort, it became apparent that each of the modules used to replace

the MATLAB visualizations had a common pattern – this was to be expected, given the common

objective of rendering data collected from the MOOSDB. In order to reduce code duplication, and

make the derivative projects robust to expected failure modes, most of the common patterns were

transferred to a single module, called uPlot. This plot utility superclass provides a series of basic

functions, including the following:

• __init__() (constructor):

– Defines default values for required parameters, such as the MOOSDB server’s host ad-

dress and port number, if they haven’t been defined in the subclass constructor already.

– Provides configuration parameters for an optional replay mode, and for saving plots.

– Reads the mission configuration file, if one has been defined.

– Handles the basic python-moos configuration, connecting the callbacks for a new con-

nection and new mail.

• on_new_mail():

262



– High-level callback, implements the fetch() call on the Python-MOOS interface, and

passes individual mail entries to a dedicated handler.

• on_connect():

– High-level callback, implements the register() call on the Python-MOOS interface

based on the configuration parameters.

• iterate_looper():

– High-level asynchronous loop, checks that the MOOSDB connection is alive before

passing to a dedicated iterate handler that prepares the appropriate plot data sets.

• websocket_client()

– Asynchronous loop,manages thewebsocket connection. This includes handling dropped

connections, and recovering gracefully when the server becomes available again.

The high-level routines mentioned above ultimately connect to lower-level routines that are de-

fined bydefault in the superclass, but are expected to be redefined in derivative classes. The expected

implementation of a particular subclass, such as the tloss_display case metioned earlier, would

be as follows:

• __init__() (constructor):

1. Define application-specific defaults, including minimum configuration requirements

and the application name to be passed to theMOOSDB in the absence of an appropriate

override. Required variables should also be defined.

2. Call the superclass initialization, to load additional generic defaults, and process the

configuration file if one was provided.

3. Define class-specific variables needed for the iteration logic, and process non-generic,

keyword accessible configuration overrides.
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• handle_mail():

– This is the basic mail-handling logic called by the corresponding superclass callback,

where registered mail should be processed and loaded into the necessary variables.

• handle_iterate():

– This is the basic iteration logic for the plotting app, called by the corresponding super-

class callback. This code should checks the mission state from the values of registered

variables, to determine if data should be assembled into a plot-ready set. If appropri-

ate, the resulting dictionary should be returned to the superclass method, that it may be

relayed to the server’s web clients.

• __main__ loop:

– The final block of each of the uPlot derivatives must determine that the app is being ex-

ecuted as a standalone program, and not being called as a library. When this is the case,

the main loop must instantiate the asynchronous executions for the MOOS interface

and the websocket client.

For additional information on the uPlot superclass and examples of how it is implemented to

produce the plots shown in the LAMSS Display Center, readers are encouraged to look through the

code provided in lamss-shared/src/python/uPlot.
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B LAMSS Docker

The LAMSS autonomy software ecosystem generally requires a Linux Operating System to work

properly, due to the extensive list of dependencies required. In particular, the LAMSS team gen-

erally supports LTS distributions of Ubuntu. By comparison, the MOOS-IvP project is primarily

developed on machines running macOS, and is consistently tested for compatibility in Linux dis-

tributions as well. The historical solution undertaken by LAMSS members has been to configure

virtual machines using hypervisor software such as VirtualBox or VMware; alternatively, many stu-

dents have opted for operating computers with native Linux installations.

In 2019, members of the LAMSS team sought to revamp the documentation for the lab’s software

suite. The initial update was led by Dr. Michael Novitzky, Dr. EeShan Bhatt, and the author of this

thesis. These documentation updates were then put to the test by a new class of students, who

provided valuable feedback about the usefulness of the text and the software tools provided. Since

then, continued efforts have beenmade tominimize the barriers to entrywhen it comes to deploying

the LAMSS codebase. As part of these ongoing efforts, the author of this thesis has contributed

automated configuration scripts and other solutions focused on one simple goal: to minimize the

number and complexity of steps required to reach a deployment-ready state on any new machine

– virtual or otherwise. This section is intended to serve as the initial documentation for the latest

contributions of this kind, which is centered on the use of Docker containers.
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B.1 From VMs to containers

The need for a containerized solution has two main roots. First, it has become clear over the past

few years that the documentation efforts that began in 2019 have not been enough to make the

LAMSS codebase accessible to the scientific community at large. Teams across the world who have

sought to implement the Virtual Ocean simulator and other powerful tools of the LAMSS codebase

in their own projects have needed to reach out to the lab for support – the author has been directly

responsible for providing such support in numerous occasions. The common thread across many

of these communications has been that although the documentation is generally clear in what is

needed, it is specific artifacts of each individual system configuration – firewall restrictions, older

installations and outdated packages – that generally create enough room for failure. Even when

standard repositories may be reachable, some of the custom package repositories hosted by LAMSS

members or affiliates can sometimes cause trouble. The vision of seamless portability lives at the

heart of Docker, and similar containerization tools; their goal, in otherwords, is to address this need

for a predictable, repeatable solution.

The second motivator for the move to containerization is tied to the present landscape of com-

putational solutions. Some users of the LAMSS codebase, including the author, have transitioned

to machines running on Apple Silicon. At the time of this writing, the landscape looks as follows:

(1) the VirtualBox project does not support, nor does it intend to support, Apple Silicon natively; (2)

VMware has released a public beta version of its macOS product, VMware Fusion, that provides na-

tive support on Apple Silicon – however, it is uncertain when the product will be officially released

for general availability outside of the public tech preview program; and (3) Docker Desktop for Mac

offers native support of the M1 chips, subject to the Docker Desktop terms. The latter means that

larger enterprises withmore than 250 employeesORmore than $10millionUSD in annual revenue

now must obtain a paid subscription; personal use continues to be free.
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B.2 The LAMSS Docker solution

The Dockerfile now provided with the LAMSS codebase is intended to serve as an initial solution

to the challenges above. Although the image is not currently released to a public registry, it can be

built locally using a convenience script provided with the codebase, or manually by calling docker

build. To get started, a user must first collect the necessary repositories:

git clone https://github.com/GobySoft/goby3.git
git clone https://github.com/GobySoft/netsim.git

git clone git@github.mit.edu:lamss/lamss.git
git clone git@github.mit.edu:lamss/lamss-shared.git
#git clone git@github.mit.edu:lamss/lamss-internal.git
git clone git@github.mit.edu:lamss/missions-lamss.git

Note that lamss-internal is commented out in the previous snippet, as it is the lab’s internal

sandbox repository. Furthermore, the GitHub Enterprise server operated by MIT (github.mit.

edu) requires Institute credentials and is not available to the general public. For the purpose of code

distribution to approved collaborators, LAMSS has been using mirror servers. Teams interested in

gaining access to the code should contact the lab for additional information.

After collecting the necessary repositories into a common directory, users are encouraged to run

the following configuration script in their host machine (macOS, WSL, Linux):

cd lamss/scripts; ./config_lamss_bash

The config_lamss_bash script will scan the user’s .bashrc file for entries related to histori-

cal configuration instructions, in order to avoid creating conflicts for experienced users. If the scan

returns no conflicts, the program will then link the provided augmentation file to the current setup.

This is recommended, but not required, as many of the adjustments relate to the compiler options
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and the system’s path. However, the augmented configuration does provide a number of conve-

nient aliases and also sets the user path to include other tools in lamss/scripts; thus why it is

recommended.

With the repositories now available on the host, and the configuration loaded, users can build the

Docker image by calling:

lamss_docker build

This is a simple redirect to docker build with some preset options, provided mostly for con-

venience; the build can also be executed manually. The benefit of using the preset solution – or

using the same tag, at a minimum – becomes clear when looking to run the container. The basic

idea behind this Docker-based solution is that the user will have a reliable environment for code

compilation and execution, but further development is performed from the host rather than the

container. The repositories are linked to the container using the --volume argument, and the vol-

umes are automatically identified and connected when using the following command:

lamss_docker run

For a typical setup, without the lab’s sandbox repository, the above becomes equivalent to man-

ually entering the following command:

docker run --rm -it \
--name lamss \
--publish 50022:22 \
--publish 50080:80 \
--publish 55900:5900 \
--publish 50001:50001 \
--publish 50002:50002 \
--volume $LAMSS_HOME/goby3:/home/lamss/goby3 \
--volume $LAMSS_HOME/netsim:/home/lamss/netsim \
--volume $LAMSS_HOME/lamss:/home/lamss/lamss \
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--volume $LAMSS_HOME/lamss-shared:/home/lamss/lamss-shared \
--volume $LAMSS_HOME/missions-lamss:/home/lamss/missions-lamss \
lamss

When the lamss-internal repository is available on the host, the same command expands to

provide the additional volume connection. The convenience of a short-hand command should be

apparent.

The LAMSS Docker image is configured to behave as the lab’s typical development environment.

To that end, a number of ports are exposed to the host, as shown in Table B.1. All standard ports

(SSH, HTTP, VNC) are adjusted by 50000, to match the range used by Goby Liaison.

Table B.1: Ports exposed in LAMSS Docker image.

Port Application

22 SSH + X Forwarding

80 Web server (apache2)

5900 VNC server

50001 Goby Liaison

50002 lamssDC websocket server

As instructed by the Dockerfile, the image is configured to enable X Forwarding over SSH, and

to disable password access. To gain access to the container via SSH, the appropriate keys must be

copied over – assuming the image was built with the default arguments:

docker cp $HOME/.ssh/id_ed25519.pub \

lamss:/home/lamss/.ssh/authorized_keys

One notable caveat to using X Forwarding to gain access to graphical applications is that some

of the tools in theMOOS-IvP project, and by extension of the LAMSS ecosystem, do not behavewell
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with this type of connection. Themain culprit tomotivate an alternate solutionwas thepMarineViewer

application, which triggered failures when testing over SSH with X Forwarding, with both native

installations and docker containers hosting the application. To address this issue, the Dockerfile

provided with LAMSS uses a VNC server as an alternate access point for graphical applications.

This is achieved by using a threepart solution: first, a virtual framebuffer is configured using xvfb

to handle the lack of a physical display; next, a lightweight window manager (fluxbox) is con-

nected to the framebuffer; and third, the VNC server x11vnc is configured to present the contents

of the virtual display. To connect to the VNC server, a user can employ their VNC client of choice

(for example, the Screen Sharing app on macOS) by pointing it to localhost:55900 on the host

machine.

The conventional philosophy of containerized solutions is that a single container should handle a

single process. To handle the limitations of this approach with respect to underlying services, such

as the web and SSH servers, the image is configured to prompt the user about starting those services

at first launch. A MySQL server, which is used by geov, is also installed by default and started upon

user agreement. The password used to access the VNC connection is also requested at launch.
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C Additional Python tools for LAMSS

In addition to the python-moos utilities presented in Appendix A, the LAMSS codebase has also

been augmented with some of the more useful data processing tools developed as part of the work

presented in this thesis. The tools, while not exhaustive in their coverage, are intended to facilitate

the most common tasks required to assimilate mission logs recorded by the autonomy suite, or out-

put files produced by the acoustic propagation models. This section introduces a number of these

tools, generally replicating the embedded documentation. For more detailed coverage, readers are

encouraged to explore the packages using Python’s help() function. Alternatively, interested read-

ers are encouraged to read through the referenced source code, which is extensively documented

with the appropriate docstrings.

C.1 The BELLHOP utility library

The BELLHOP utility library, lib_pybellhop, was developed as a near direct translation of the

corresponding MATLAB tools provided in the original Acoustics Toolbox. Not all files in the orig-

inal codebase were translated, as not all were required for the work herein presented. In its present

state, the following top-level functions are included:

• read_env( ENVFIL , MODEL )

– Reads an environmental file ( ENVFIL )
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– Returns dictionary with organized data

• read_arrivals_asc( ARRFile )

– Reads a Bellhop-generated ARR file

– Returns 3 separate data containers:

1. Arr is a numpy array which contains the arrival structure, organized by coordi-

nates.

2. Pos is a dictionary with the coordinate values for the Arr[] indexing grid

3. Freq is the frequency used by bellhop to generate this ARR file

• read_ray( RAYFile )

– Reads a Bellhop-generated RAY file

– Returns a list of dictionaries containing:

1. i_src : the source index (in case there are multiple sources)

2. alpha0 : the launch angle of the ray

3. r : the range coordinates produced by the ray tracing routine

4. z : the depth coordinates produced by the ray tracing routine

• read_shd( *args )

– Takes aBellhop-generated SHD (shade) file and attempts to determine the correct reader

function (ASCII or BIN) to call.

– Returns a dictionary containing:

1. Pos : the source and receiver positions

2. pressure : the pressure recorded in the SHD file

3. freqVec : the vector of frequencies
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Additional functions provided in the Acoustic Toolbox, which the above top-level functions re-

quired as dependencies, were also translated. For additional information, see the Acoustic Toolbox

documentation and the docstrings provided in this library.

C.2 The LAMSS utility library

Where theBELLHOP toolswere translations of existing code, theLAMSSutility library, lib_pylamss,

includes amore extensive collection of new code. The initial motivation for creating the librarywas

to centralize frequently-used routines, particularly for processing of navigation and acoustic com-

munications logs, into a widely reusable form. As python tools became more deeply integrated with

the LAMSS paradigm, this library grew to include a superclass for plot utilities, and other conve-

nience tools such as a mission configuration parser.

C.2.1 The Acoustic Comms tools

The modem interface used by LAMSS is built on Goby3, and two specialized applications were in-

volved inmanaging this interface for ICEX-20. The apps, lamss_icex_tracker andpAcommsHandler,

communicate with the modems via NMEA sentences transmitted over a serial interface, and mul-

tiple interfaces could be configured at any given time, such as for managing the Integrated Com-

munications and Navigation Network. In order to facilitate the intake of acoustic communications

logs, the following tools are provided:

• read_umodem_nmea( line )

– Reads a full line fromAComms logs (lamss_icex_tracker, pAcommsHandler), where

the line payload is an NMEA message posted by goby::acomms::modemdriver

– Returns a list with:

1. timestamp, as epoch
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2. interface mode (input/output)

3. modem number

4. NMEA string

• read_acomms_logfile( acomms_file, get_diagnostics=False)

– Reads a full AComms log file (lamss_icex_tracker, pAcommsHandler), and calls

read_umodem_nmea() for each line that contains a micromodem NMEA sentence.

– Returns a dictionary with numpy arrays:

1. time : timestamp, as epoch

2. mode : interface mode (input/output)

3. thr_id : thread number, for umodem driver

4. nmea : NMEA string

5. config : umodem config (SRC, BND, IRE)

6. diagnostics : sub-dictionary, optional

– get_diagnostics=True : If get_diagnostics=True, a sub-dictionary is to the return

under the diagnostics key, containing the above elements 1-4 for NMEA sentences

used in the goby micromodem driver for diagnostics and drift correction. These in-

clude: **CFG,**CFQ, **TMS,**TMQ,CAREV

• sort_comms( comms_data )

– Reads comms data produced by read_acomms_logfile(), identifies source name (per

ICEX 2020 modem id table) and sorts comms data by source name.

– Returns dictionary with data sorted into:

* h1-h4 : tracking range buoys

* macrura_10k

* macrura_25k

274



* camp_10k

* camp_25k

– NOTE: This utility was written to process the ICEX 2020 data. It does NOT currently

accept a reference modemidlookup.txt file

• read_caire_line( line )

– Reads CAIRE line (NMEA sentence) and converts hex-character representation of 16-

bit integers to appropriate numerical form.

– CAIRE line format: $CAIRE,N,<data>*<checksum>

– Returns tuple with (N,<data>), where N is the index from the NMEA sentence

• read_cacst_line( line )

– Reads CACST line (NMEA sentence) and converts to dictionary representation.

– CACST line format: $CACST,<Field1>,<Field2>,...,<Field26>*<checksum>

– Returns dictionary with fields as defined in the WHOI Micromodem User Manual.

C.2.2 The navigation and general log tools

Thenavigation and general log tools are intended to provide easy access to Python-powered analysis

of mission logs.

• read_klog_num( klog_dir, var_name )

– Reads a *.klog file generated by alogsplit, in which the message payload consists of

numerical values only.

– Returns a numpy array containing the log time and numerical value for each line in

*.klog

– Example source file: NAV_X.klog
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• read_klog_str( klog_dir, var_name )

– Reads a *.klog file generated by alogsplit, in which the message payload consists of

string values.

– Returns a dictionary containing numpy arrays with the data from each line in *.klog:

1. time : the log time

2. data : the string value

– Example source file: IVPHELM_BHV_RUNNING.klog

• read_lamssPB_to_dict( line )

– Reads a full line fromLAMSS&MOOS logs, where the line’s payload is a serialized pro-

tobuf message identified by a @PB[<message-name>] tag. The substring that follows

the @PB tag is refactored into a JSON-like string and unpacked by json.loads()

– Returns a dictionary representationof the protobuf payload, as capturedbyjson.loads()

– Example: NAV_DATA logs posted by pLamssMissionManager

• read_node_report_to_dict( line, is_log=True )

– Reads a NODE_REPORT line:

1. is_log=True (default): Reads a full line from LAMSS & MOOS logs, where the

line’s payload is a string matching the NODE_REPORT format. The string is con-

verted to a dictionary, which is then refactored to match the key-value pairs from:

@PB[goby.moos.protobuf.NodeStatus]wherenesteddictionaries (global_fix,

local_fix) are unpacked into the top layer, tomatch the output of: read_nav_data()

2. is_log=False: Reads a standalone NODE_REPORT, such as when called from a py-

moos instance

– Returns dictionary with {key : single-value} pairs
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– NOTE: Time-series data can be reassembled from calling process by converting list of

dictionary entries (one per line processed) into dictionary of lists or dictionary of arrays:

Y = {key: numpy.array([it[key] for it in X]) for key in X[0]}

• read_nav_data( klog_dir, nav_str="NAV_", debug=False )

– Reads the navigation data available in the *.klog directory generated by alogsplit, by

default: <alog_name>_alvtmp/

– Prioritizes NAV_DATA.klog and NODE_REPORT.klog if available. Otherwise, pro-

cesses all NAV_* files in the klog directory.

– Prefix NAV_ can be modified using nav_str=<prefix>, which will search for the fol-

lowing first:

* <prefix>_DATA.klog

– Alternatively, the prefix override will instruct the program to consider single-number

variables such as:

* <prefix>_X.klog

* <prefix>_Y.klog

* <prefix>_DEPTH.klog

– Returns a dictionary formatted as a flattened versionof@PB[goby.moos.protobuf.NodeStatus];

nested dictionaries (global_fix, local_fix) are unpacked into the top layer.

– Use debug=True to enable debug print statements

– NOTE: <prefix>*.klog files are filtered with pandas.DataFrame.join() using

the innermethod, removing rows with NaN entries

277





Acronyms

AI Artificial Intelligence

AUV Autonomous Underwater Vehicle

DL Deep Learning

ICNN Integrated Communication and Navigation Network

ML Machine Learning

NRL Naval Research Laboratory

PCA Principal component analysis

PINN Physically Informed Neural Network

PSK Phase-Shift Keying modulation

TDA Tactical decision aid

TDMA Time Division, Multiple Access

VOAT Virtual Ocean Autonomy Testbed
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Glossary

CACST WHOI Micromodem’s communication cycle receive statistics

CAIRE WHOIMicromodem’s impulse response estimate, given as the

deconvolution of a known signal replica against a limited ob-

servationof the acoustic sensor data. Amatch exceeding a pre-

determined energy threshold is regarded as a detection and

activates the modem’s receiver.

CAXST WHOI Micromodem’s communication cycle transmit statis-

tics

GLONASS TheRussianGlobalNavigation Satellite System, an alternative

to the US GPS

GNSS Global Navigation Satellite System

GPS The US Global Positioning System

MOOS The Mission Oriented Operating Suite, a lightweight middle-

ware for autonomous vehicles

SOFAR The Sound Fixing and Ranging channel
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