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Abstract

This thesis investigates issues concerning modeling and feedback control design for switching
power converters. A correction to the usual derivation of state-space averaged models for con-
stant frequency, current mode controllers is given and new results are shown and compared with
existent results. Approximate sampled-data models, often written down but seldom exploited,
are also highlighted. A two-output two-switch half-bridge converter is presented and modeled.
Averaged and sampled-data models are given. It is shown that the multivariable models of the
half-bridge converter can be decoupled into two single-input single-output switching converters.
The stability robustness of the closed-loop half-bridge converter is examined, and guaranteed
stability tests are obtained for the decoupled model.

The Linear Quadratic Regulator state feedback design method is presenited and systemat-
ically applied via MATRIX. to each output system of the decoupled half-bridge converter
model. The regulation of the full closed-loop half-bridge converter is evaluated through simula-
tions of performance tests and is found to meet stringent closed-loop power supply specifications.
Assuming the converter inductor currents are difficult to measure, observer based compensator
designs are ohtained and analyzed in the same manner. Observer based feedback designs are
found to yield equally satisfactory results. A simple hardware implementation for these observer
hased compensators is suggested. Recommendations for further work are stated.
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Chapter 1

Introduction

This thesis deals with modeling and control issues for single and multi-output, multi
switch DC-to-DC power converters (regulators). Switching regulation is the technique
by which unregulated source power is efficiently converted to regulated load power
through the use of controlled power switching devices. The emphasis upon switching
techniques, as opposed to linear techniques, relates to efficiency. An ideal switch has no
losses because either the voltage or current is zero. Thus, since it is designed to achieve
high efficiency energy conversion, a switching power converter is essentially composed of
switches and energy storage elements. The nominal steady state operation of a DC-DC
converter involves a cyclic operation of the switches to produce a commanded average

output voltage or current from a specified DC input source.

The modeling and control of switching power converters is an interesting and chal-
lenging research topic for various reasons. Most importantly, DC-DC converters are
generally highly nonlinear systems with time-varying topologies. The flow of electri-
cal energy from the source to the load(s) is controlled by turning the converter power
switches on and off. Therefore, it is necessary to develop modeling techniques that
would simplify the system analysis and control design, but at the same time be ro-
bust to modeling errors, at least in the frequency range of interest. Also, being power

supplies, DC converters must generally satisfy stringent closed loop design specifica-
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tions with respect to output voltage stability, regulation and dynamic performance,
hence making the coatrol design a challenge. In addition, the presence of two or more

controllable switches clearly makes the feedback control design a multivariable problem.

1.1 Outline and Contributions of Thesis

This thesis document is organized into two main parts. Part I deals with modeling
issues for both single and multiple output switching converters, and is divided into
two chapters (Chapters 2 and 3). Part II emphasizes control approaches for multiple
output switching converters and includes Chapters 4 through 6. A tutorial on a modern
systematic approach to control design is presented and applied to a typical half-bridge

two-switch two-output converter.

The control system software package MATRIXX was used throught the thesis in

the analysis and simulation of the switching power circuits presented.

Chapter 2 presents the three basic single output voltage converter circuits: the buck,
boost, and buck-boost (up-down) converters. The up-down converter is particularly
chosen to illustrate most of the arguments presented, since it exemplarizes many of
the nonlinearities and difficulties that could be encountered in analyzing such systems.
Typically used modeling approaches for DC power converters, namely averaged and
sampled-data modeling, are presented and their trade-offs examined. Approximate
sampled-data models, often written down but seldom exploited, are also investigated.
The chapter also introduces a commonly used state feedback control method for these
converters known as current mode control. The purpose of this is to present a correction
to the state-space averaged models for constant frequency, current mode controlled
converters usually found in the literature. This correction results in new small signal
averaged models for current mode control, though several of the observations can be

extended to converters operating under other control laws.
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Chapter 3 analyzes issues regarding the modeling of multiple-switch multiple-output
voltage converters. In particular, a two-switch two-output half-bridge converter is pre-
sented and analyzed. Mathematical models (switched, large and small signal averaged,
large and small signal sampled-data) and simulations are shown for the half-bridge
converter. Guidelines for small signal analysis of multi-switch multi-output switching
converters in both the time and frequency domain are given, with results for the half-
bridge converter. The chapter concludes with the examination of stability robustness

of the closed-loop half-bridge converter.

Chapter 4 focuses on control design for high frequency switching converters. The
Linear Quadratic Regulator (LQR) control design method for general multivariable
(and, in particular, single-input single output) dynamic systems is presented and its
closed loop properties discussed. An assumption of this design methodology is that
all state variables are available for feedback. However, as can be the case in switching
power converters, the cost/unavailability of sensing some of the state variables might
introduce the need of state estimators or observers in the feedback control loop. This
chapter also introduces observer theory and design and gives guidelines for the design

of observers/observer-based-compensators for switching converters.

Chapter 5 presents the results of the application of the Linear Quadratic Regulator
control design method to the two-output two-switch half-bridge converter. Control
design is based on two single-input single-output systems which represent the half
bridge converter after an input transformation that effectively decouples the system, as
shown in [5] for a two-switch two-output forward converter. Closed-loop performance
tests carried out on the System Build utility of MATRIXX are summarized. They
correspond to tests typically used on the actual closed-loop circuits. The transients

that result are presented and the LQR controllers evaluated.

Chapter 6 presents and evaluates observer based compensator designs for the half

bridge converter. A reduced order observer design is presented and results/trade-offs

13



are compared with the full state feedback (LQR) controllers of Chapter 5.

Chapter 7 draws the pertinent conclusions of this research and identifies problems
for future research. M AT RI X, software and documentation for this thesis research is

presented in [22].
In summary, the main contributions of this thesis are:
1. A correction to the usual derivation of state-space averaged models for constant
frequency, current mode controlled converters.

2. Investigation of approximate sampled-data models for modeling switching power

converters.

3. Guidelines for the small signal time and frequency domain analysis of multivari-

able switching power supplies.

4. Treatment of the issues concerning systematic control design and performance

analysis of multiple-switch multiple-output switching converters.
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Part 1

Modeling
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Chapter 2

Modeling DC To DC Switching
Converters

This chapter presents issues concerning the operation and modeling of switching power
converters. A commonly used control method known as current mode control will also
be introduced and new results for current mode controlled converters will be presented.

Approximate sampled-data models for these systems will be studied.

2.1 Basic Voltage Converters

The purpose of power converter systems is to efficiently supply an output load with a
required average voltage from a dc input voltage source. Switching is used in order to
achieve efficiency or lossless conversion. Figure 2.1 shows the three basic single output
voltage converter circuit topologies. The goal is to switch S1 (NPN transistor) at a
fixed frequency f, and control its ‘on’ time during each switching period T, so that the
desired average output voltage is obtained. Figure 2.2 shows the timing diagram for
S1. The term d, is the duty ratio in the k — th cycle of operation and represents the
fraction of the switching period that the transistor is ‘on’ or conducting, 0 < d, < 1.

Constant duty ratio results in cyclic steady state operation.
The diode (S2) is introduced to provide a continuous inductor current path when

16



S1is ‘off’. Note that the power conversion stage only includes ideally lossless elements.

In this work, the circuits are assumed to be operated in such a way that either
the transistor or the diode is always conducting (continuous conduction); the induc-
tor current is not allowed to fall to zero. Under this assumption, the system can be
characterized by two linear, time invariant (LTI) models corresponding to circuit con-
figurations when the transistor is on (u=1) and when it is off (1=0). These two LTI

models can be combined into a single large-signal model of the form

z'(t) = [Ao + u(A, — Ao)jz(t) + [Bo + u(By — Bo)|Vin (2.1)

where A,,Ay and B;,B, are the system state and input matrices when the transistor
is ‘on’ or ‘off’, respectively. The state vector z(t) is normally composed of inductor
currents and capacitor voltages. Note that if u is considered an input in (2.1) the

resulting description of the system is not only time-varying but nonlinear as well.

In the case of the buck-boost converter of Fig. 2.1, the transistor is turned on in
the first part of the cycle, causing the inductor current to ramp up. During this time,
the diode is reversed biased so that the capacitor voltage decays into the load. Then, in
the second part of the cycle, the transistor is turned off and the diode becomes forward
biased so that the inductor current flows through the diode, into the capacitor and the
load. Noting that the average voltage across the inductor is zero in steady state, and

assurning small ripple,

(d)Vin + (1 — d)vgyg =0 (2.2)

where v,,, is the average steady state value of capacitor voltage and d is the nominal or
steady state duty ratio or fraction of each cycle that the transistor is on. From (2.2),

we obtain

d
Vavg = _1__Jlfin (2-3)
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Figure 2.2: Switch S1 timing diagram

We see that the average value of the capacitor voltage in the steady state can be made
either larger or smaller in magnitude than the source voltage V;, (this is why the circuit

is termed a buck-boost or up-down converter).

Choosing the inductor current and capacitor voltage as state variables (z(t) =
(t.(t) v.(t))T) and making the appropiate substitutions into ( 2.1), the result for the

buck-boost converter is

z'(t) = ( _?____u _I—T; ):c(t)+ (

RC

oe

) Vi (2.4)

where u takes on the values 0 and 1. Typical inductor current and capacitor voltage
waveforms for the buck-boost converier are shown in Fig. 2.3. These nonlinear sim-
ulations were performed on MATRIX, as shown in [5]. The buck-boost parameter

values used in these and subsequent simulations and comparisons are:

Vin 200V
1.25mH
100 F
1092
S0usec
= 04

UNDAQ~
Ii

where D is the nominal duty ratio.
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2.1.1 State space averaging

To facilitate the use of well established control design methods based on state-space
models that have a continuously variable input, state-space averaged models for switch-
ing converters have been developed [4,3,22]. A state-space averaged model is an ap-
proximation to a model such as (2.1) that contains discrete control inputs, and can
be obtained by replacing the instantaneous values of all state and control variables by
their one-cycle averages, computed over an interval equal to the switching period of

the converter. For example,
1 pt , .
d(t) = T[_r u(s)ds (2.5)

is the one-cycle average value of u. It is important to point out, as shown in [22],
that since d(f) can never have a fundamental frequency higher than half the switching
frequency, the predictions of the continuous time averaged model at frequencies above

this frequency (1/2T) must be ignored.

The main motivation behind averaged models is that for practical purposes our
interest is to regulate the average output at some fixed value, provided that the ripple
or harmonics are sufficiently small. Also, small signal, linear averaged models, which
can be easily obtained, serve to predict well the dynamics of small perturbations from

a nominal operating point and can be used to obtain linear feedback controllers.

The large-signal state-space averaged model for a switching converter can be easily
obtained by just replacing the exact control u in (2.1) by the duty ratio d(t), now
considered a continuous time function. Generally, the resulting model is still nonlin-
ear since d(t) is still the control input. However, this model predicts exceedingly well
the averﬁge value of the ripple waveforms of the state z(t) in the steady state (con-
stant duty ratio d(t) = D, 0 < D < 1). For example, if we substitute v = D in
(2.1) and set the derivatives to zero (steady-state condition) for the buck-boost con-
verter, the resulting averaged inductor current and capacitor voltages relations are

Iy =ViuD/R(1 — D) and V, = —V,,D/(1 — D), respectively, and the latter expression

21



is just (2.3). Using the parameters given before, the results for this buck-boost con-
verter are:I; = 22.22amps, V. = —133.33volts. The averaged, open loop response to a
10% initial perturbation on the steady-state value of the state for this system is shown
in Figure 2.4. These plots represent the average values of the actual ripple waveforms

of z(t).

As mentioned before, the large-signal, averaged model is generally nonlinear. How-
ever, via the process of linearization, a linear small-signal model can be obtained which
approximately describes small deviations from the nominal operating point of the sys-
tem. The method consists in representing all nonlinearities in terms of deviations from
steady state by a Taylor series expansion around nominal values. Then, retaining only
linear or first order terins, the linear small-signal model results. After linearization,

the resulting open-loop, small-signal, averaged LTI model has the general form

§z'(1) = [Ao+D( Ay — Ao))62(t)+[Bo+D(By— Bo)|6Vin (1) +(( A1 — Ao )z s +( By — Bo)Vin|6d(1)
(2.6)

or

6z'(t) = Anbz(t) + B,8Vin(t) + F,.6d(t) (2.7)

where z,, is the (approximate) average value of the state vector corresponding to con-
stant Vi,, T, and D. From (2.6), transfer function descriptions relating perturbations
in éd(t) or 8V,,(t) to perturbations in state 6z(t) can be readily found and used for
analysis or as a basis for designing a feedback control scheme, as will be shown in the

next section. For the buck-boost converter, (2.6) takes the particular form

0 D! D Vin-Vc
éz'(t) = ( o 4 )6z(t)+ ( 5 )6V.-n(t)+( £ )6d(t) (2.8)

c RC C

where D' = 1 — D, and I, V, are the averaged, steady-state inductor current and

capacitor voltage, respectively.
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2.2 Current Mode Control

This section introduces basic concepts of a commonly used multiloop regulator scheme
known as current mode control. Although no complete closed loop designs are analyzed,
the main purpose is to later present a correction, see also (23], to the usual state-
space averaged models for constant frequency, current mode controlled converters. This

correction results in new small signal averaged models.

Current mode control is essentially a full state feedback control scheme. The control
is implemented by sensing the following two quantities: the output voltage of the
converter and the instantaneous current through the power switch. The principle is
to regulate the output by sensing the inductor or switch current (current or ac loop)
and comparing it with an output-derived reference level (ip) in order to close the main
feedback loop. The switch state transition time (and hence the duty cycle) during each
cycle is determined when the switching current ascends and intersects the threshold
level ip. This threshold level (ip), which is assumed to vary slowly (assumed constant
over T- a switching period), is thé output of an error compensator which has as input
the error signal or difference between the output voltage and the desired reference

voltage. Figure 2.5 illustrates a general current mode control scheme.

The inherent features of this control scheme are:

e Inherent pulse-by-pulse current limiting (transistor peak current protection)

¢ Allows easy paralleling of multiple power supply modules

e Easy hardware implementation

The key modeling task for control design is to obtain the open loop transfer function
from small perturbations in ip to small perturbations in average output voltage, with

the current loop closed. Once this is obtained, classical compensation techniques such

as shown in (18] can be used to design the voltage error amplifier in Fig. 2.5 in order
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to close the control loop. The correction to be introduced in the next section results
in new open loop small signal transfer function descriptions. Before this, an inherent

stability problem in current mode controlled converters will be mentioned.

2.2.1 Instabilities in current mode control

As discussed in [11], an inherent instability exists in the current loop for duty ratios
greater than 0.5, unless a stabilizing ramp is introduced. This will be illustrated with
Fig. 2.6, which shows general waveforms for a converter operating in current mode
control. Analyzing Fig. 2.6(a) results in a current perturbation propagation from cycle

to cycle of the form

%’% = "Z_: (2.9)
where m; and m, represent the inductor current slopes during charging and discharging
operations, making the usual approximation that the inductor current waveforms are

piecewise linear. Using the steady state condition,

m; D = my(1 — D) (2.10)
and substituting into (2.9) yields
ALy D
il T e 2.0 L S 2.
Alyt 1-D (211)

which shows the instability for D > 1/2, since for this range of D, Alinsyr/ A Int >
-1.

Using a stabilizing ramp as shown in Fig. 2.6 results in the following perturbation
propagation:
myp —

Me A InT (2.12)

AT r=——"
(N+1) ——

As we can see, choosing the slope of the ramp to be m. = m, forces all perturbations
to damp out in exactly one period. A drawback of the stabilizing ramp is the inability

to maintain a desired operating point as the duty ratio increases, since the intersection
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point with the current stabilizing ramp becomes lower. This results in lower steady
state values of inductor current and capacitor voltage than would be obtained for the

same level of commanded reference level in the absence of the ramp.

2.3 Corrected Averaged Models for Current Mode
Control

This section points out a subtle error in the usual derivation, [1]-[3], of smal! signal
state-space averaged models for the dynamics of current mode controlled switched

(CFCMC) dc-dc converters operating in continuous conduction.

Figure 2.7 shows the waveform of the inductor current 1(t) under CFCMC opera-
tion in continuous conduction. The converter switch is turned on every T seconds and
turned off whenever iy(t) equals the sum of a control signal ip and a compensating
ramp of fixed slope —Mc that restarts at 0 every cycle. (Extension to the case of a
varying compensation slope —mc is easy.) Note that Fig. 2.7 is drawn for a fransient
condition. The usual switched converter approximation of representing the inductor
current waveform as piecewise linear is made, with slopes m; and —my, during charging
and discharging operations. As mentioned before, it is also assumed that these slopes,
as well as the control signal ip, change only slowly from cycle to cycle. Lower case
letters without the time argument ¢t will be used to denote slowly varying quantities,
upper case letters to denote constants or steady-state values, and a " above a symbol

will denote a perturbation from steady state.

Denote the average inductor current over an interval of length T simply by i. Ele-

mentary geometrical calculations on Fig. 2.7 then show that
t =ip — McdT — d(m,dT/2) — d'(m,d'T/2) (2.13)

where d' = 1 — d. In steady state, where i1(t) = it(t + T), we have the additional
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Figure 2.6: Current perturbations propagation waveforms under current mode control
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relation
MID = MzDI (214)

where D, M, and M, are the steady-state value of d, m; and m, respectively. If the

system 1s in steady state, then substitution of (2.14) in (2.13) evaluated at steady state
yields I = Ip — Mc DT — (D + D')M, DT/2 or

I =Ip - [Mc + (M,/2)|DT (2.15)

The flaw in the derivations in [1]-[3] is that (2.15) is treated as though it applied
to the variables in the transient condition, i.e. it is treated as though it was i =

ip — [Mc + (m,/2)]dT.

The correct procedure is to first perturb (2.13) and only then substitute in the
nominal steady-state values as parameters. This resuits in the relationship 1 = ip —

McTd — (D*T/2)ri, — (DT/2)fy — (M, D — MyD')Td or, using (2.14),
i =1ip — McTd — (D*T/2)r, — (DT /2)ri, (2.16)

The usual derivation, on the other hand, obtains i = 1p — [Mc+(1l11/2)]Tci—(DT/2)rh,.

The rest of the procedure suggested in [1)-[3] can now be followed, combining (2.16)
with the usual open loop, small-signal, state-space averaged model for the converter

being studied. The correct derivation results in non-trivial changes to the usual models.

2.3.1 Corrected results

Figure 2.1 shows the three basic voltage converter topologies. The large signal time-
dependent line input and output voltages are u and v,, the input and output currents
are 1, and ¢, (the capacitor is counted as part of the load for the analysis here), and
the inductor current is i;. Note that, since no capacitor ESR is assumed, the output

voltage equals the capacitor voltage (v, = v. = v). As mentioned before, lower case
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letters without time argument are used to denote slowly varying quantities, upper case
letters to denote constants or steady state values, and = above a symbol denotes a
perturbation from steady state. Recall that the relation given by (2.16) applies to
any converter. The differences between converters result solely from how the inductor
slopes m, and m, are dependent upon operating conditions. It is interesting to note
that because of steady state assumptions made in [1]-[3] their small signal control law
does not includes perturbations r, in m;. In the discussion to follow, RFr is used to
denote the proportionality factor between the control input current to the comparator

(ip) and the voltage v, that produces it, ip = vp/Rp.

Buck converter: During the switch on-time the inductor is connected between line
input and output voltage u and v. During the switch-off time the inductor is connected
across the capacitor-load combination. Not that in this topology the inductor current

equals the output current (i =1,). Thus,

-0 v -
I =T (2.17)

Substitution in (2.16) yields the small signal control law

s 1 [P 5 D? (2D -1)
Md= - |+ - - —i 4 ——1 2.1

T(RF ”') oLt 2r | (2.18)
Also, from the open loop, small-signal, state-space averaged model we obtain the rela-
tions

d - 1, D, U,

EZL = —-Er+ Lu+ Ld (2.19)

LS S

i’ = ¢"* " Rc’

i, = Dip+Ipd

- -

L, = 7L
where Ir= DU/R is the averaged steady-state value of inductor current.

Boost converter: During the switch on-time the inducter is connected across the

line input voltage u, while it is connected across the line and output volteges when the
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switch is off. The inductor and input currents are the same (iy = i,). For this case

-

g = = (2.20)

o,
L'™T

Substitution of above expressions into (2.16) yields the small signal control law

) R Dz + DIZ D:z
. ,,) R (2.21)

-3

Open loop, small-signal, state-space averaged model relations can be found to be

d‘: D’, 1. Vt"
Ett’ = ——L—‘! +Zu+ fd (2.22)
LS S s Ly
a° = CHTRC'TC
lu = i:L

to = D'ip —Ipd

where It = U/RD'? and V, = U/D' are the averaged steady-state inductor current

and output (capacitor) voitage, respectively.

Euck-boost converter: During the switch on-time (transistor on) the inductor is
connected across the input voltage while during the off cycle it is connected across the

output load. Then

u v

7;1-1 = E, Thg = —z (2.23)
Substitution into (2.16) gives the small signal current mode control law as
H ]. {’P - Dz .D’2
d==|= - — 2.2
Med = 7 (Rp ”‘) AR A (2.24)

From the open loop, small-signal, state-space averaged model

d. D. D U-V..

—i, = —i+ =24 : 2.2!
7R L1+Lu+ I d (2.25)
4y - D 1 Ly

dt‘ = TC™TRC'tYo

tw = Dig+1I.d
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where Iy, = UD/(RD"),V, = —UD/D’ are the averaged, steady-state inductor current

and capacitor voltage, respectively.

Equations (2.18),(2.21), and (2.24) give the corrected small signal control law re-
lations for current mode control. It is interesting to note that when no compensating
ramp is used (M, = 0), d is completely eliminated from the control law for each
converter. This results in the closed loop ’system becoming first order when no com-
pensating ramp is used, and this is the major fact which is missed by the approach
taken in [1]-[3]. For example, in the buck-boost converter case, the control law derived

in {2] takes the form

- l vp - D
d= ———— | =— - - —1 .
T (L + M) (R,- ‘L) U+2M.L" (2.26)
Note that not only the ac perturbation d still appears in the control law when M, = 0

but this constraint also fails to include perturbations in the output voltage (#).

2.3.2 Illustrative special case

To further illustrate and clarify the new results introduced by the corrected small signal
control relations, the small signal frequency domain relationship between ip and % for
the buck-boost converter was derived by combining (2.24) with the open loop, small-
signal, averaged model. As indicated before, this is the key modeling task for control
design, since it is this transfer function which is needed to design the output voltage
error amplifier, which in turns determines ip, thus closing the main or outer feedback

loop. The resulting transfer function is

. DU U

os) = beRcY ~ IC * (2.27)
; U DTU M.T 1+4D)U | D?TU , M.D"T )
ip(s)  MT s+ [D'L — 3Ric T RC] s+ [(D'RL)C + 3tic t T ic

The above transfer function (2.27) has two poles on the negative real axis and a right
half-plane zero. However, note that for no compensating ramp (M. = 0) the relation

effectively becomes first order (only one pole). This can be traced to the fact that d
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does not appears in (2.24) when M, = 0. The usual transfer function, which can be
obtained by combining (2.26) with the open loop, small-signal, averaged model gives

- 4
Bs) _ U, _ L

2 ] .
: (8) T!U-;ngLl 82 4 [ [']L | T L;+25(:L[] s 4 [Uj'l +le! | TD jzl£+?hl‘L!]

The above transfer function also has a right-half plane zero and two poles on the
negative real axis. The right-half plane zero in (2.27) and (2.28) is the same for both
methods. However, as can be noticed from (2.28), substitution of M, = 0 in (2.28)
still results in a second order system with a high frequency pole which is spurious to
the averaged model. It turns out (not so obvious from transfer functions) that the low
frequency (dominant pole) in (2.27) and (2.28) is the same for both methods and is
independent of M.. The high frequency pole is different for both relations and depends

on the compensating ramp slope (it goes away in (2.27) for no compensating ramp).

To illustrate this point, a pole root locus of (2.27) and (2.28) as M. is varied is shown
in Fig. 2.8 for a buck-boost converter with typical parameter values (D = 0.5,T =
50psec). M. was varied from tweﬁty-ﬁve percent below to above the commonly used
value of M, = M, = DU/D'L, which is the negative slope of the inductor current
during the switch off time. Note that the usual and corrected models give the same
dominant pole at —1.75 x 10%. The high frequency pole moves to the right on the real
axis as M, is increased for both models. However, for M, = 0.75M, our model predicts
a pole which can be neglected since it is stili higher than half the switching frequency,

while the usual model predicts a pole at about a quarter of the switching frequency.

Figure 2.9 shows a Bode plot comparison of the transfer function between ip and
© for the usual and corrected models using a buck-boost converter with the same
parameters as before but with D = 0.2 and M, = 0 (no compensating ramp is needed
in principle since D < 0.5). One-half the switching frequency is located at 6.3 x 10*
radians per second. For low frequencies the two models are equivalent. For high enough

frequencies our model shows the expected one pole behavior while the usual model
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Figure 2.8: Pole loci transfer function of (a) corrected model and (b) usual model.
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starts to deviate at about a decade before one-half the switching frequency because
of the addition of a second (non-existing) pole at —4.97 x 10°. The exact sampled-
data model response computed via the procedure described in [7] is also included for
comparison. (The latter response is obtained by making the substitution z = ezp(jwT)
in the z-transform function of the sampled-data model.) Evidently our model does as
well as the usual model, despite having one less pole: both the averaged models begin

to deviate from the sampled-data model at around the same frequency.

2.3.3 Y-parameters

Equations (2.17) thru (2.25) are enough to obtain any transfer function of interest
(e.g. line-to-output, output impedance) for any of the converter topologies shown here.
However, in order to simplify the design process it is convenient as shown in [2] to
absorb the current loop into a y-parameter model as in Figure 2.10. This model
serves to easily and systematically obtain frequency domain relationships between line,
output, and control voltages and currents which are needed in analysis and control
design. In [2], the y-parameters are derived from equivalent circuit models in which
the usual (incorrect) small signal control law is used in the current loop. As expected,
the resulting parameters fail to predict the single-pole behavior when no compensating
ramp is used. For reference and comparison purposes, the corrected y-parameters were

derived and are shown in Tables 2.1 - 2.3.
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Figure 2.10: Model in y-parameter form.

The corrected y-parameters can easily and systematically be derived. For illus-
tration purposes, ysc or the short-circuit output current as a function of the control
voltage vp with zero input voltage will be derived next for the buck-boost converter

using (2.24) and (2.25). From Fig. 2.10, the definition of yac is

yac(8) = %i((% lscao - (2.29)

For this condition the corrected small signal control law (2.24) takes the form

s 1. 1 5
Mcd = _T”’ + TR (230)

Substituting ( 2.30) into the appropiate small signal, open loop relations in ( 2.25) and

taking the Laplace transform yields

U - Yy ; ( v— (2.31)
(” MCLT) w(s) = 3 LTRp op(s) .

o) = = (D' + ) i) + M’TR ip(s)

Combining the two equations above, it is straightforward to obtain yac(s) for the buck-

boost converter. This y-parameter model is also sufficient to determine the output
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Y’s buck

D?I D3TU+2LDI; —-2M:D2LT
) AR uf?
Mc3+qu

yll -

m‘;z(ILLa+DU)
Mcs+7gz

ylc

I;(2D-1) . DT(2D-1)U+21; L—2M:DTL
/) A 2Ti157
Mc3+7g[

yl2

2, (DU-2M.L)
Mc3+T[]'[

y21

U

y2c —_EU_MC-’+TI

i,[chL-(w—nU]
Mcs+7g[

y22

Table 2.1: Y-parameter expressions for buck converter.
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y’s boost

11
y M¢3+E
TRoZ
ylc —LV_M¢3+T"[
D’
,12 m(D’Vc—zLMc)
Mc8+¥i
_ 2 2 '(p24 pnl2 _ _ !
. IL(DH+D' )H_D(D +D )Tt;clégz, 2M:D'TL
y Mca+¥%
L (ILs—D'V,)
TRo-L\{LLS c
y2c 2

Mcs+¥fl

D' , +2D'ILL—D'3TV¢+2M¢D'2TL

2
29 _GTL____
’ Mes+11

Table 2.2: Y-parameter expressions for boost converter.
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buck-boost

yll

;;%,[DHLTL

s+(D3(U-V.)T+2DI  L-2D?M,TL)|

M s+ —T-L-‘U_V

ylc

rRzr L Ls+D(U-V))
Mes+ 5 °

yl2

D2, ot [DD'2T(U-V,)-2D'I; L+2M:DD'TL)

2T L*

Mcs+ 5

y21

—nLDzl s+

2DI; L-D?D'T(U-V.)+2M:DD'TL
2T L2

Mor Ul

y2c

TRz ULs-D'(U-Vc)]

Mes+ 5

y22

2
—ﬂ—l‘—D, ! s+

D3T(WU-Ve)+2D' Iy L+2MD'*TL
2T LS

Moot Tt

Table 2.3: Y-parameter expressions for buck-boost converter.
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voltage and line input currents as functions of the control voltage (vp) and the line

input voltage.

The y-parameters pole from Tables 2.1 - 2.3 can be expressed in the general form
(for all converters) as w, = w,M,/2#M_D', where w, = 2x/T. In (2], the equivalent
result is w. = w,M,/27m(M,/2 + M.)D'. Thus, it is mistakenly concluded there that
for no stabilizing ramp (M, = 0) this pole varies from about a third to two-thirds
of the switching frequency while in fact this pole is spurious to the averaged model
(we — —oo). If the stabilizing ramp is chosen so that M, = M, and (2.14) is used
in the expressions for w,, it can be easily shown that as D is varied from 0 to 1 the
pole from [2| varies from about a sixth to a third of the switching frequency w, while
our pole can vary all the way from a sixth of the switching frequency for D = 1 to
—oo for D = 0. However, since the stabilizing ramp is only normallv used for D > 0.5
(region of instability), it is important to point out that for D = 0.5 and M. = M, our

y-parameters pole is at about a third of the switching frequency.

2.4 Approximate Sampled-Data Models

Sampled data models provide a natural setting for describing systems in which the
control is exercised once each cycle. Consider, for example, the buck-boost converter
in Fig. 2.1 switching between topologies described by state-space descriptions of the

form:
z(t) = Ajz(t) + Biu(t) 1 =1,2 (2.32)

Let the system be in topology | =1 for a time T} and in topology ! = 2 for a time T5.

Duty Ratio Control: The period T can be expressed in terms of a duty ratio d,
in the k" cycle, 0 < d, < 1:

T = T+ T
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= dT+(1-d,)T
= &T+d,T

The large signal sampled data model (SDM) can be obtained by integrating the state
equations over one period of operation using the superposition integral, see (7] for
example. The assumption that u(t) is constant in each topology for any varticular
switching cycle is used to simplify the expressions. During T}, the switch is on, and

the state zx4q4, at ¢t = kT -+ d, T is given by:
Tred, = Fizp + Hyug (2.33)
where
Fy=etdT g = (4T Mirp dr (2.34)

Similarly, during T3, the switch is off, and the state at ¢ = kT + T is given by:

Zky1 = Fz-"~'k+d. (2.35)
+ quk+dk
where
Fy=eMaT g, — (4T sharpg gy (2.36)

The sampled data model provides a cycle to cycle description that can be chosen to
track either the ‘valleys’ or the ‘peaks’ of the state waveforms. The valley to valley

description is constructed by piecing together (2.33) and {2.35) to obtain:
Trtr = FoFyze + (F2Hy + Hy)u, (2.37)
The peak to peak description can be constructed similarly, resulting in:

Terdy+1 = FiFaziyq, (2.38)
+ (FiH; + Hy)uigaq,
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The remainder of this section will focus on the valley to valley description (2.37).

The derivation of a sampled data model can be simplified greatly by approximating

the matrix exponential by:
eAT ~ T+ AT (2.39)

and by discarding quadratic termsin T when taking the product of matrix exponentials.
The resulting approximate sampled data model is given by:
Tht1 =~ (I+ <A>dk T)zk

+ <B>g, Tu (2.40)
As before, d is the duty ratio in the k** cycle, and
<A>4,= Avdi + Aad, (2.41)

with a similar expression for < B >;,. The model makes the same approximations
that underlie continuous time state-space averaged models, [4], [12], but is preserved
and exploited as a discrete-time model. It is obtained with as little effort as the usual

averaged models.

To illustrate the simplicity of these expressions, the large signal approximate SDM

for the buck-boost converter where z = [if v|T is given by:

[ 1 ﬂ
Tre+1 = dT L ] T
S o L
L C RC
[ dyT
+ 6 ]uk (2.42)

To demonstrate the ability of (2.40) and (2.42) to represent the behavior of the actual
system for large and fast variations in duty ratio, F igs. 2.11 and 2.12 show tirme domain
simulations of the buck-boost converter in which the duty ratio is alternated between
di = 0 and di = 1 in successive periods. These results were obtained by Krishna

Mahabir. The solid line shows the trajectory of the (valley points of the) current in the
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Figure 2.11: Trajectories of ‘valley’ points for current transient in exact and approxi-
mate sampled-data models.

exact sampled data model discussed at the beginning of this section, while the dotted
line applies to the approximate SDM (2.42). The exact and approximate SDMs are
initiated with the same initial condition, X;,;, = [60 — 300]T away from the operating
point, X, = [40 — 200)7. Figure 2.11 shows a portion of the current transients a short
time after the system is initiated, while Fig. 2.12 shows the current transients in steady
state. Similar plots are obtained for the voltage transients. Figure 2.12 shows that the
current predicted by the approximate large-signal SDM differs from the actual value
by about 1.5 percent. Similarly, the voltage transient predicted by the approximate
large-signal SDM differs from the actual value by about 0.5 percent. Greater accuracy
can be achieved easily by retaining quadratic terms in T when taking the products of

matrix exponentials.

The approximate small-signal SDM can be obtained by linearizing (2.42), resulting
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n:

) 1 =pi .
zk+1 = [ —(1— DT ] (2.43)

where X = [I,V|T is the operating point. (We have assumed u; is constant for sim-

plicity). For our circuit example, the frequency response of (2.43) and of the ezact

small-signal SDM are essentially identical.

Current Mode Control: If the converter in (2.42) is in CFCMC operation, then
Fig. 2.7 shows that we have the constraint

i+ md, T = ip'k — AlcdkT (2.44)
where ip, is the value of ip in the kth cycle, so

di = [ipk — tk)/(m1 + Mc)T (2.45)
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This is combined with (2.40) to yield the desired approximate large-signal SDM for a
CFCMC converter, which can then be linearized about the steady state to produce a
small-signal model.

Substituting the differential constraint resulting from (2.45), namely

d = —i/(My+ Mc)T (2.46)
;p'k/(Ml + Mc)T

into (2.43) produces the approximate small-signal model under CFCMC. As an illus-
tration, we shall write this model explicitly for the case where the stabilizing ramp is
absent,i.e. M. = 0. Substituting (2.46)) into the approximate small-signal SDM (2.43)
and simplifying we get

. ~ M,/ M, L_)._
Thpr = =DT+UM:  _ T i
C RC
o -I
+ {[T L]X- (2.47)
ol 0

+ [ % ]zr}zp,k/(M, + Mc)T

The open loop current perturbations are governed by:

M,, 1-D)T .
’k+1 = —H: e+ %vk (248)

The first term is the expression predicted by the standard linearized analysis, while
the second is a weak coupling term that can be neglected for the parameters in our
example. Employing the steady state constraint ( 2.14) yields

; D .
ot &~ 75 (2.49)

This is the formula usually invoked to explain the instability for D > 0.5, see (2.11).
Ignoring the weak coupling terms in (2.47), the eigenvalues of the approximate small-

signal SDM operating under CFCMC are approximately given by:

M, T
A (1- RC) (2.50)
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Figure 2.13: Bode plot for exact (—) and approximate (...) sampled-data models.

One eigenvalue is fixed inside the unit circle, near 1 for typical component values, while

the other eigenvalue is negative and depends on the duty ratio.

The Bode plot in Fig. 2.13 compare the frequency resp%mses of the exact and
approximate small-signal SDM’s for the buck-boost example of:before operating under
CFCMC. Note the great improvement over the averaged modelg results of Fig. 2.9. By
retaining second-order terms in T, but still making the straight;].ine approximations for
each segment of trajectory, we end up approximating e"d'Te‘,;""T by I+ < A>; T+
A, A,dd'T? and so on. The resulting model generates a small-signal frequency response
for our buck-boost example that is essentially indistinguishable from the results of the
exact model. This section suggests that approximate sampled-data models may form

a far better basis for analysis and control design for CFCMC converters.
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Chapter 3

Models for Multiple Output
Converters

In this chapter, the two-switch two-output half-bridge converter is presented and ana-
lyzed in order to show an example of the operation and dynamic modeling of a genuine

multivariable switching power supply.

3.1 Two Output Hélf-Bridge Converter

When multiple regulated DC voltages are required by an electronic system, use is
normally made of a single converter with multiple outputs coupled magnetically through
a transformer. The addition of a transformer to the topology of a high frequency
switching converter provides input-output isolation. Also, the transformer permits a
turns ratio that avords the small duty ratios and high peak currents which would arise
if input and output voltage conversion ratios were far from unity, and thus reduces

semiconductor component stresses.

Figure 3.1 shows a typical buck dertved transformer-isolated half-bridge voltage
converter with two outputs on the secondary side. The term buck derived means that,
after appropiate transformation, this converter can be modeled as the basic buck con-

verter. The input power is first rectified and filtered to form a DC link, as represented
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by Vi. Power is transferred from the primary to the first output load (R,;) by diodes
D1 and D2. Similarly, for the second output { R,), power is transferred by diodes D3
and D4. As will be seen, the effect of the magnetic amplifier or auxiliary switch on
the second output is to delay this transferring of power so that the second load can
simultaneously be regulated at another neminal operating point. Since only V;/2 is
applied to the transformer primary, the half-bridge converter is mainly used for higher

input voltage applications.

The half-bridge converter permits operation in both first and third quadrants of its
transformer B-H characteristic curve. Thus, assuming that the two control switches
S1 and S2 in Fig. 3.1 operate 180 degrees apart and have equal ON times and
saturation voltages, it can be seen that the half-bridge converter transformer operation
can be inherently balanced. Furthermore, the effective frequency of operation is twice
the switching frequency of either S1 or 52. Using the latter argument and assuming
the transformer to have ideal magnetic characteristics, the half-bridge converter can
be described by the equivalent circuit shown in Fig. 3.2. Note that the equivalent
periodic input voltage (on the secondar.y side), V.4, in Fig. 3.2 incorporates both the
transformer turns ratio and the frequency doubling effects. Although simplified, the
circuit of Fig. 3.2 conveys the same information as Fig. 3.1 and can easily be used,
as will be shown, to obtain the dynamic equations governing the system during each

configuration.

The model shown in Fig. 3.2 has the following notation:
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N, - Number of turns of the primary winding.
N, - Number of turns of each secondary winding.
Vi - DC input voltage (primary).

Veg - Equivalent input voltage (secondary).

ry - Combined (primary and secondary) winding resistance.
R, - Load resistance of the first output.
R; - Load resistance of the second output.
C, - Capacitance of the first output.
C, - Capacitance of the second output.
r,y - [Equivalent series resistance of C,.
re2 - Equivalent series resistance of C,.
L, - Inductor of the first output.
L, - Inductor of the second output.
rr1 - Series resistance of L,.
rra - Series resistance of L,.
rq - Diode drop resistance.
V4 - Diode drop voltage (when conducting).
T, - Primary switches period.

T - Equivalent switching period (T,/2).

It should be pointed out that important practical considerations or nonidealities not
explicitly shown in Fig. 3.1 (e.g. capacitor ESR, transformer winding resistance, etc.)
are included in Fig. 3.2 for modeling purposes. In summary, the modeling assumptions

embedded in Fig. 3.2 are:
1. The effects of capacitor equivalent series resistance are not negligible (ESR in-
cluded).
2. Diode and transistor drops, when conducting, are included.

3. The transformer has ideal magnetic characteristics and there exists no leakage

flux among its windings.
4. The converter operates in continuous conduction mode.

5. The magnetic amplifier (magamp) is modeled as an ideal switch which can be

controlled to turn on at a later specified fraction of the switching period (T') after
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Figure 3.3: Timing diagram of control signals

STATES | V., | magamp
1 on off
2 on on

3 off off

Table 3.1: State combinations for the half-bridge converter.

V., goes high. Nonlinearities associated with the magnetic amplifier will noi be

considered.

Figure 3.3 shows the timimg diagram of control signals used in modeling the half-
bridge converter. The duty ratio d;(t) is the fraction of the switching period that the
voltage V., is on. The second duty ratio d,(t) defines the fraction of the switching period
that the magamp will remain off after the beginning of a new cycle. The magamp is
synchronized to turn off at the same time that V., goes low. Over one switching period
(period of V,;), the half-bridge converter will have the different state configurations
presented in Table 3.1.

To obtain the circuit state-space description in each state configuration correspond-

ing to Table 3.1, first define the system state and input vectors to be

z(t) = [va(t) in(t) ve(t) i(t))T (3.1)
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U =W v)f (3.2)

where

va - Capacitor voltage of the first output.

tn - Inductor current of the first output.
vz - Capacitor voltage of the second output.
i - Inductor current of the second output.

The exact circuit description will be characterized by three linear time invariant
(LTI) models corresponding to the three states of Table 3.1. The i — th state equation
will be

z'(t) = Aiz(t) + B;U (3.3)

During state 1, diodes D11 and D22 are on while D12 and D21 are off. Thus,
energy only gets delivered to the first load. Applying Kirchhoffs Laws to the circuit in

Fig. 3.2 for state 1, the circuit state-space description in this configuration is

va(t) ~om & 0 0 va(t) )
i 4i(t) _ _%xl_ _]r.,;-lr.ll 0 0 in(t) 4 _‘_2L|N, —1i U
dt | vea(t) 0 0 - & vea(t) 0 0
i2(1) 0 0 -8 @ i12(1) 0 -+
(3.4)
or
z'(t) = A1z(t) + BlU (3.5)
where
L= Ta + Rl
Pz = T2 + R,
Ter = Tapr+7L1+T4
Tez2 = Te2p2+TL2+ T4
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During state 2, the magamp switch is assumed to be closed (D21 on, D22 off) so
that power from V., is also being delivered to the second load. The state equations for

this circuit configuration are

va(t) —am & 0 0 var(t) 00
i in(t) — _Lu, - le'I 0 _LLT in(t) 4| EiNs L U
dt | valt) 0 0 -& 2 ver(t) 0 0
i1p(1) 0 —w g _ledra) || in(t) o L
(3.6)
or
z'(t) = A;z(t) + B.U (3.7)

In the final configuration (state 3), both outputs are isolated and the stored energy
in the inductors and capacitors is dissipated by the load. The state space description

of this circuit configuration is

va (1) ~&m & 0 0 ver() 0 o
dilan@) [ _| -8 -2 0 0 flam |, [0 -4
#lva) |T] 00 0 - oz || T|o o |V G
ilz(t) 0 0 - ﬁ. _gL.: iiz(t) 0 _EI;
or
z'(t) = Asz(t) + BsU (3.9)

The system output voltages for each of the configurations can be expressed as
Y1(t) = var(t) = [p17apy 00)z(t) = Cyz(2) (3.10)
v2(t) = vo2(t) = [00 p; reapala(t) = Coz(2) (3.11)

The output voltages are a linear combination of the states due to the equivalent series

resistance (ESR) of the output filter capacitors.
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The ezact large signal model of the half-bridge converter can be obtained, as shown
in Section 2.1, by introducing input variables u; and u,, which take on the values 1
or 0 depending on whether V,, and the magamp switch are 'on’ or 'off’, respectively.

Then, the exact large-signal model takes the form

:E'(t) = [uzAl + (‘U.l - uz)Az + (]. - ul)A;,]a:(t) + (312)
[uz2B1 + (21 — u2)By + (1 — uy) B3|U
y(t) = Cz(1) (3.13)

where

= [ ¢
Typical switched waveforms for this converter are shown in Fig. 3.4 and Fig. 3.5. The
switching period (T') is 2usec. These waveforms were obtained by simulating (3.12)
with the analysis and control software package MATRI Xy, as shown in [5]. Note that
the three switch configurations are present. From Figs. 3.4 and 3.5, it can be seen that

for well designed converters the state waveforms ripple can be made relatively small.

This is one of the main justifications for working with simpler averaged models.

3.2 Averaged Models

Replacing u, and u; in (3.12) with their respectives one cycle averages dy(t) and dy(t),
results in the large signal state-space averaged model. As shown in (5], the averaged
model curve approximates well the average value of the switched trajectory, and thus
can be used as a basis for analysis and control design. The envelope or average value
of the waveform is what needs to be controlled, not the exact trajectories of the state
variables. Figure 3.7 shows average open loop responses of the output voltages to a
large increase in load resistance for a typical half-bridge converter (parameter values

shown below). These plots represent the average values of the actual output voltage
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Figure 3.4: Typical inductor current waveforms of the half-bridge converter.
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Figure 3.5: Typical output voltage waveforms of the half-bridge converter.
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Figure 3.6: Definition of the duty ratio e,(t).

waveforms. The nominal parameters values of the half-bridge converter which will be

studied in this work are

N
L | (| T (| | O T O

NS
I

12:1
300
5.8m
0.17Q
0.27292
400pF
200uF
10mQ
10mQN
3uH
3uH
1mQ
1mQ
7.5mf}
0.6V
2usec

The control inputs to the large signal averaged model are the duty ratios d,(t) and

da(t). In order to greatly simplify the analysis and control design of this system, the

control inputs will be transformed or redefined as done in [5] for a forward converter

topology. In [5], it was shown that by defining the new set of input variables to be

e1(t) = dy(t)
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Figure 3.7: Open-loop average output voltage transient responses to a large step in-
crease in load.

61



and
e2(t) = di(t) — dy(2) , (3.15)

where the new duty ratio e;(t) defines the fraction of the swi:iching period in which the
magamp switch is on (as shown in Fig. 3.6), the two outpjut systems are effectively
decoupled and control design reduces to the control of two (a.l%most) independent single-
input, single-output systems. Using these redefined controls, éhe large signal state space

averaged model for the half-bridge converter becomes

1
!

0 va(t)

__£_ 2 0
v,_.l(f) C R, Clt + é ¢t
i lll(t) _ —i‘ll' _!rwel!Ll! !‘cll 0 _I‘w Zl! ! tll(t) (3 16)
dt | veaft) 0 0 ~Ca.R; CE vea(1) .
i2(t) 0 e —g _realitrg ia(1)
1
] 0 10
NV L1
1o o [ ea(?) ] oo | "
0 N,V ' _ L
2Ny L, L,

where V; (dicde drop voltage) is considered as a deterministic input or disturbance.
Note that if the small winding resistance r,, is neglected, the state dynamics of the first
output are only influenced by the duty ratio e,(¢) while the idynamics of the second
output depend only on e;(t). Moreover, the large signal state;space representation of
the system becomes linear. Since (as corroborated by simulations) the effect of r,
on the exact and averaged behavior of the system is negligible, it is convenient for
analysis and control purposes to neglect r,, and model the half-bridge converter as two
decoupled systems with control inputs e;(t) and e,(t). Then, separating the system

results in

zy(t) = A1z4(t) + Frei(t) + L,V (3.17)
where
z1(t) = [var(t) in(2))7

1 N _ra | 1 NV, ) 1= _1
Ly L, 2N, L,
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and

z5(t) = A2z2(t) + Frea(t) + Lo Vy (3.18)
where
z2(t) = [vea(t) ira(t)]T
0

_a oA 0
Az=[ Cafa G ,Fz=[_I!.L’L 1L2=[ 1]

L I 2N,L2 I

The output equations for both systems are the same linear combinations of the
states given in (3.13). The mathematical description of the half-bridge converter now
comprises two single-output converters whose large signal averaged models are given

by (3.17) and (3.18). Setting the left side of (3.17) and (3.18) equal to zero gives the

steady state average relation for both output units, namely,

0 = Alzlu + FlEl + L]Vd (3.19)
0 = Apz,,+ FAE; + LV,

where z;,, (¢ = 1,2) is the nominal steady state operating point for each output system

with nominal duty ratios

E, = D, (3.20)
Ez = Dl—Dz

Combining (3.19) with the output voltage relation for each system, the required nominal
duty ratio needed to achieve a desire nominal operating condition can be found. The

desired nominal operating conditions for the half-bridge converter are

1. Output 1: V,; = 5.1velts, I}; = 30A.

2. Output 2: V,; = 3.4volts, I;; = 12.5A.

For these operating conditions, the required nominal duty ratios can be found to be

E, = 0.485 and E, = 0.148.
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It is important to stress at this point that the second output is still not completely
decoupled from the first, as can be seen by exaraining the duty ratio constraints of the
decoupled system. The large signal averaged model (3.17),(3.18) has input constraints,
obtained from the definition of the new duty ratios and from Figs. 3.3 and 3.6. These

are

0<¢e(t)<1 (3.21)
0 < ex(t) < et) (3.22)
and for the small signal control inputs

_El _<_ 681 S I—El (323)

- E2 S 662(t) S El - E2 +5el(i) (324)

Thus, the upper bound of the duty ratio input e,(¢) is dependent on e,(t). As will be

seen in Chapter 5, this is an important factor in controller performance.

3.2.1 Small signal analysis

The small signal analysis of the half-bridge converter will be based on the decoupled
system (two single-input, single-output systems) with the new redefined controls. Fer
this case, the large signal averaged model is linear. Thus, the small-signal state space
averaged models for the half-bridge converter are obtained from the large signal model
by replacing the vector z(t) by the small signal state vector §z(¢) and the actual inputs

by the duty ratio perturbation input e(t). For the decoupled system, this results in

§zi(t) = A1bzyi(t) + Fibey(t) (3.25)
byr(t) = Crézy(t) (3.26)

and
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62’2(t) = Az&t:(t)‘f‘Fz&Cz(t) (3.27)
dys(t) = Cirbz,(t) (3.28)

These LTI models allow us to approach the small signal and feedback control design
of the two-output half-bridge converter simply in terms of two single-input single output
problems. Inserting the numerical parameter values of the half-bridge converter into

the above equation yields

[ -13888 2361 0
boa(t) = [ 314800 —5981 ] bz (1) + [ 4166666 ] bealt) (3.29)

6y1(t) = 61’01(1) = [0.9444 0.00944]621(t)

and

oo [ 17730 4822 0
Sz3(t) = [ ~321500 —6048 ] Sza(t) + [ 4166666 ] Sea(t) (3-30)

6yz(t) = 6voz(t) = [09645 000965]622(t)
The open loop poles for output 1 are
- 1.0+ j2.7and - 1.0 — 2.7 (x10%) (3.31)

and for output 2 are

~1.2+j3.9and — 1.2 - j3.9 (x10%) (3.32)

The pole locations show that both open loop systems are highly oscillatory. The
natural frequencies for these complex conjugate pole pairs match the frequencies of the
oscillations of the initial perturbation transient responses of the respective output units

shown in Fig. 3.7. The controllability and observability matrices [20] of each system
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have full rank, and therefore both of the single-output converters are controllable and
observable. As will be seen in the next chapters, controllability is essential in feedback,
state feedback and dynamic compensator control designs. Observability is fundamental

in observer, Kalman filter and dynamic feedback compensator design.

The small signal frequency analysis and control of the half-bridge converter will

focus on the two transfer functions

varls) _ Gi(s) (3.33)

81(3)

and

22() _ 6) (3.34)

e2(s)

which numerically are

39350(s + 2.5 x 10°)

Gils) = 3 +1.99 x 10%s + 8.3 x 10°

(3.35)

and

40188(s + 5.0 x 108}

G28) = T o d  10% +1.7 x 10°

(3.36)

The zeros in the above transfer functions are introduced by the equivalent series
resistances of the output capacitors. The Bode plots for these two systems are shown
in Fig. 3.8. The low frequency gain amplifications of these plots reflect the impact
that each duty ratio perturbation will have on its respective output voltage. Recall
that T = 2usec and so the small signai average results are only presented up to about
w = 1x10° rad/sec or about one-half the switching frequency because, as mentioned in
Chapter 2, predictions above that frequency should be discarded. As we will see in the
next chapters, this is another modeling assumption which will constrain the bandwitl

of the compensators to be designed for this converter.
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3.3 Sampled-Data Models

Although not used for control design and analysis in this thesis work, large and small
signal exact sampled-data models were derived for each decoupled half-bridge converter
system. The main purpose was to obtain small signal sampled-data models for each
output system in order to use these more exact models as a benchmark in the next
section, where the stability robustness of the closed loop half-bridge converter will be
studied. See [13] for the use of sampled-data models in the design of discrete controllers

for switching converters.

As shown in [7,13] and mentioned in Chapter 2, the sampled-data description can
be found by piecing together the solutions corresponding to each of the LTI circuit
descriptions during one period of operation. This will give us an exact description
of the circuit state variables at the end of each cycle or at intervals of T seconds.
Neglecting the effects of V;, the resulting large signal sampled-data models for each of

the half-bridge converter output systems (i = 1,2) have the general form

zi(k+1) = A,zi(k)+ B,;V; (3.37)
vilk+1) = Cizi(k+1) (3.38)

where k represents the k — th cycle of operation, and B,; depends on the duty ratio
€i(k). Thus, the resulting description is nonlinear. For notational coavenience, the

matrices A,; and B,; are presented in Appendix A.

Standard linearization procedures [20] can be applied to (3.37) in order to find
the small signal sampled-data model description for this system. Letting §z;(k) and
bei(k) denote perturbations in the sampled state and duty ratio inputs for each output,

respectively, and letting f; = z;(k + 1), the general small signal model is given by

af; of; )
6z,(k = [ 9 . 9 ) 3.
zik+1) = (Bzi(k))QJz(k)-l-(ae.-(k) Q.se(k) (3.39)
Syi(k +1) = Cibzi(k +1) (3.40)
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where Q represents evaluation at a nominal operating point (where ei(k) = E;). The
corresponding matrices are also presented in Appendix A. The model (3.39) will be
used in the next section to obtain stability robustness boundaries for the closed loop

half-bridge converter.

3.4 Stability Robustness of the Closed Loop Half-
Bridge Converter

The design of linear feedback controllers for the half-bridge converter will be based
on the small signal state space averaged model, which approximates the average value
of the nonlinear, switched circuit. Guarantees are needed that controllers based on
this nominal plant model will not yield an unstable control system when placed in the
actual loop. In general there are many sources of model errors. Besides the averaging
approximation, modeling errors of the half-bridge converter can be characterized in
terms of structured uncertainty of the power circuit with respect to line and load
changes, and parameter variations. The performance requirement that the switching
converter must exhibit good output regulation under all anticipated conditions of line
and load requires at least that the closed loop control system remaiu stable under
all changes in line and parameters. This stability issue will be termed the stability

robustness requirement of the nominal closed loop system.

Since the half-bridge converter is modeled as two single-output switching converters,
the following discussion will focus on stability robustness for a single-input single-output
system (see [14,15] for extensions of these results for multi-input multi-output plants).

Let the small signal model of such a converter be defined as

0z'(t) = A,bz(t) + F,be(t) (3.41)
Sy(t) = bv,(t) = Créz(t) (3.42)
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so the nominal transfer function from the duty ratio to output load voltage is

Gn(s) = Cu(sI = An) ' Fy = Co®(3)F,; &(s) = (sI — A,)"" (3.43)

Model errors can be reflected at the plant output (or equivalently at the plant input

for a single-input single-output system) by writing
Gactual(s) = L(a)G,,(s) = [1 + P(S)]G"(S) (344)

where P(s) is referred to as the multiplicative error, as illustrated in Figure 3.9.
Given these definitions, one can try to quantify all of the power circuit’s structured
uncertainty in terms of modeling errors of the nominal plant model. An upper bound
curve, P, (w), can then be obtained which reflects the worst case modeling errors
versus frequency. This frequency curve will play a fundamental role in the control

system design.

Consider a controller designed from the nominal plant model G,(s) and described
mathematically by the compensator K(s) shown in Fig. 3.10. One can now define the
standard frequency domain descriptions:

1. Nominal loop transfer function: T(s) = G.(s)K(s).

2. Nominal closed loop transfer function: C(s) = [1 + T(s)]"'T(s).

The actual feedback control system is obtained by replacing G,(s) in Fig. 3.10 by

Gactual( S )-

A sufficient condition to guarantee that the actual physical system will remain stable

if the nominal one is stable is:
|IC(jw)| < P;l.(w), forallw. (3.45)

The proof of this result to guarantee stability of the nominal control system design

is given in [14,15]. It is evident from (3.45) that the stability robustness requirement
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Figure 3.10: Nominal closed loop system with feedforward compensator K(s).

71



will in general limit the bandwith of the control system based on G, (s). For switching
converter control design based on the averaged model, this may limit the closed loop
bandwith more severely than the fact that it must be less than one half the switching

frequency.

The types of structured uncertainty of the half-bridge converter to be analyzed are

noted below:

1. Resistive load variations, R; — 2R,.
2. A +4% fluctuation of the supply voltage, V;, from its nominal value.

3. A £10% fluctuation in the nominal duty ratios, E;, from its nominal values.

With the above quantities, the model errors can be described in terms of the mag-
nitude of P(w). The above information will lead to having an idea of the worst case
magnitude of the modeling error, assuming a phase uncertainty of plus or minus 180

degrees. From (3.44), P(w) is found to be

P(w) = GG‘—(:(’;‘—) —1, for all w. (3.46)

where G ruat(w) is evaluated by making the substitution = = exp(jwT) in the small

signal sampled-data model of (3.39).

For both single-output systems of the half-bridge converter, G,ciuai(w) is obtained
by selecting values of load resistance R;, supply voltage V;, and nominal duty ratios
E; in the range indicated before and substituting these into (3.39). Then the upper
bound frequency curves, P~!(w), are calculated from (3.46) and analyzed. From these

the stability robustness boundary curves, P-!

mazx

(w) of ( 3.45), are determined as the
frequency curves that are most bandwidth limiting. The stability robustness boundary
curves of both single-input single-output units describing the half-bridge converter are
shown in Fig. 3.11. For both cases, the worst case modeling error versus frequency

occurred for load resistance equal to 2R;. The results are encouraging since for both
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cases Pl (w) crosses the 0 db line at about one half the switching frequency, so the
stability robustness constraints are not bandlimiting in the frequency range of interest.
In Chapters 5 and 6, the nominal closed loop control systems bandwiths will be checked

to see that they do not cross these boundaries.

73



20 H#\
s H
15 | Al

10

MmMocC —-<4—~=ZOD>X

- -~ Z —

|
-5
o 1 10 100 1000 10000  1.E+05  1.E+06

FREQUENCY IN RADIANS PER SECOND
QUTPUT 4

output 1

30

20

15

MoOC A—ZoD>X

TTTTTYY e nsBAS S A0 BARE 1
)1 |
- |

i

Z

2

10

oo =z

—
—

10 100 1000 10000 1.E405  1.E+06
FREQUENCY IN RADIANS PER SECOND

output 2

Figure 3.11: Stability robustness boundaries for each output unit of the half-bridge
converter.

74



Part II

Control
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Chapter 4

Control and Estimation System
Design

This chapter will focus on a tutorial on certain aspects of modern control and estimation
theory. The Linear Quadratic Reguiator problem and its closed loop properties are
presented. Essentials of observer theory are also included. The results presented here

will be applied in the next two chapters to the decoupled half-bridge converter system.

4.1 Current Control Approach for Power Convert-
ers

The linearization of the (generally nonlinear) large signal state-space averaged model
about an operating point allows the control engineer to take advantage of myriad results
from linear control theory. A drawback of this approach is that for large perturbations
away from this desired operating point the small signal analysis fails to faithfully predict
the system behavior and large signal transients may converge but may be significantly
different than those expected from the linear design. This inherent limitation of the

small signal analysis has to be taken into account in analysis and control design.

In present practice, state feedback control for power converters is based on classical

control theory which utilizes analytical tools such as Bode plots. As in the case of
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current mode control, the practice is to close one loop at a time: current loop first,
then voltage loop. The voltage loop is closed by choosing a compensation network
for an error amplifier such that the closed loop system has a satisfactory frequency
characteristics in terms of gain margin and bandwith. Guidelines are given to shape
this closed loop Bode plot in a way consistent with design specifications. An example of
such a methodology is shown in [19]. The limitations of such an approach become clear
when multiple, independently controlled switches are present. For example, the usual
practice for this case is to make one of the outputs or switches respond much faster
(larger bandwith) than the others in order to independently design the error amplifiers

for each of the outputs. Thus, the bandwith of the other outputs are overconstrained.

Modern state-space based control theory methodologies can eliminate some clas-
sical control limitations. For example, the Linear Quadratic Regulator to be studied
next can offer a very systematic design procedure that has ‘built-in’ performance and
robustness guarantees independent of plant and design parameters. Such guarantees
cannot be made for state variable feedback designs that are based upon eigenstruc-
ture assignment. Also, modern control concepts and design techniques for single-input
single-output systems are easily extendable and applicable to multivariable systems
without the neccesity of overly constraining the bandwith of any of the system out-

puts.

4.2 Linear Quadratic Regulators

The Linear Quadratic Regulator (LQR) formulation and solution are the outcome of a
specific mathematical optimization problem. The solution of the problem is due to R.E.
Kalinan in 1960, although explorations of, for example, the frequency domain properties
of the LQR problem continue even today. Note that the following brief introduction
to the LQR solution and properties is only intended to expose the necessary facts in

order to apply the design methodology to the small-signal state-space averaged models
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of high frequency switching converters. Good references on LQR theory are [17,16] and

[14].

4.2.1 Problem statement and solution

Let the state dynamics of a multivariable LTI (linear, time-invariant) system be

z'(t) = Az(t) + Bu(t) (4.1)
y(t) = Cz(t) (4.2)
with
z(t) € R", u(t) € B™, y(t) € R?
and A, B being constant matrices of appropiate dimensions.

For the LTI Linear Quadratic Regulator problem, the following assumptions will be

made

1. All state variables, z(t) ,can be measured in real time.

2. The system (4.1) is stabilizable. A system is stabilizable if all its unstable modes

are controllable, so an controllable system is stabilizable.

3. The system (4.1) is detectable. A system is detectable if all of its unstable modes

are observable, so an observable system is detectable.

The optimization problem is formulated as follows. Define a quadratic cost function

to be
J= Aw[zr(t)Qz(t) +uT(t)Ru(t))dt (4.3)

where the constant matrices Q and R are both assumed symmetric and positive definite.

Consider the problem of regulating the state vector z(t} about the desired equilibrium
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value of zero. The optimization problem is then to find the centrol u(t), 0 < t < oo,

that minimizes the cost J subject to the state dynamic constraints (4.1).

The solution to this special LQR problem turns out to require only constant full

state feedback of the system (4.1). The optimal control law is given by

u(t) = —Gz(t) (4.4)
with the gain matrix G defined as

G=R'B'K (4.5)

where K = K7 is the unique, positive semidefinite solution to the following elgebraic

Riccati equation (ARE):
0=-KA-ATK -Q+ KBR'BTK. (4.6)

The proof of this result is non-trivial and requires calculus of variations techniques.

For a detailed proof refer to [14].

Equation (4.6) represents a system of coupled quadratic equations for the entries
of K, so it is not surprising that in general there are many matrices K that are so-
lutions to the ARE. However, if (4, B] is controllable and [4,C] is observable, then
there exists one and only one solution matrix K to the ARE that is positive definite.
If the controllability assumption is relaxed to that of stabilizability, and the observ-
ability assumption to that of detectability, then there exists one and only one positive
semidefinite solution matrix K to the ARE. It should be noted that reliable software
exists for solution of (4.6), and the regulator function of MATRIX, can solve (4.6)

efficiently and return the optimal feedback gain matrix G.

4.2.2 Properties of closed loop system

The results of this section are all proved in [14]. All of the following LQR design prop-

erties hinge upon the full state feedback assumption and the specific way the control
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Figure 4.1: The LQR feedback loop.

gain matrix G is computed, namely via the solution of the ARE. It is stressed that these
properties hold for any order system with any number of controls and outputs. They

also hold for any A, B,C (modulo the stabilizability and detectability assumptions)
and any symmetric positive definite matrices R and Q. Thus, the open loop-system

may have unstable open-loop poles and nonminimun phase (right-half plane) zeros.

Substituting (4.5) into the open loop dynamic state equations (4.1), the LQR closed

loop system is found to be

z'(t) = [A- BG]z(t) (4.7)
y(t) = Cz(t)

The guaranteed properties of the above system are:

e Guaranteed stability of the LGR closed loop system. The poles of the system
(4.7) are strictly in the left half of the s — plane.

o The LQR control law (4.5) generates the minimun possible value of the quadratic

cost function J given by (4.3).

o Excellent robustness properties. The LQR loop transfer function matrix is de-
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fined mathematically by Gro(S) = G(sI — A)"'B as seen from Fig. 4.i. The
LQR closed-loop transfer function, defined as Cro(s) = [I + G'Lo(3)] 'GLg(s),
is guaranteed to be minimum phase (no zeros in right half plane). if the LQR
design parameter matrix R is assumed to be diagonal with equal entries on the

diagonal, then certain LQR robustness properties are guaranteed.

1. The maximum singular values of the sensitivity transfer function matrix
Sio(jw) = (I+Gro(jw))~!, which is defined as the transfer function relation

from an input disturbance at point 1 to point 2 in Fig. 4.1, are always less

than 1(0dB).
2. The upward gain margin of the loop is infinite.
3. The downward gain margin is at least 1/2 or —6dB.
4. The phase margin is at least plus or minus 60 degrees.
The gain and phase margins above can occur simultaneously and independently
in all m control channels. For single-input single-output systems the matrix R is
now a scalar parameter r, the LQ control gain is simply the vector g = (1/r)BTK,

and the inherent robustness properties of the LQR design are visualized in terms

of the transfer function gT(sI — A)~'B.

All of the above performance and robustness guarantees rely on the assumption
that all of the state variables are available for measurement. When this is not the case,
state estimators or observers can be used to obtain an estimate of the unavailable state

variables. The next section presents essentials of observer theory, following [24].

4.3 Linear Estimator/Observer Theory

Consider a system modeled by the state-space description
z'(t) = Az(t) + Bu(t) + Ln(t) (4.8)
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where z(t) is an n-dimensional state vector, z'(t) is its component-wise derivative, u(t)
is an m-dimensional vector of known inputs, and n(t) is 2 vector of unknown inputs
representing external disturbances and parameter uncertainties. Suppose the measured

outputs of the system are modeled by
y(t) = Cz(t) + 6(¢) (4.9)

where 6(t) represents sensor noise.

Observer theory is aimed at providing a real-time estimate z(t) of the state z(¢)
in the above model, using only the known signals u(t) and y(¢). A straightforward
approach to providing a state estimate for the model (4.8) when d(t) is unknown is via

a real-time simulation of (4.8) that ignores the term Ln(t), namely
z'(t) = Az(t) + Bu(t). (4.10)

However, an observer for the system modeled by'( 4.8) and (4.9) goes one step further,
in that one corrects the above real-time simulation by use of the discrepancy between
the actval outputs y(t) of the system and the prediction Cz(t) of these outputs that is

obtained by ignoring the term 6(t) in (4.9). This results in the system of equations

#(t) = Ai(t) + Bu(t)+ Hly(t) - Ci(1)] (4.11)

simulation measurement feedback

The term in brackets is called the prediction error, and the matrix H is termed the
observer gain. When H = 0, one recovers the simple real-time simulation of (4.10).
Given u(?) and y(t), the system {4.11) can be solved by integrating forward in real time
from some specified initial condition. In the context of switching converters, observers

will be used to estimate the small signal state vector.

The effectiveness of the observer is assessed by examining the dynamics of the

estimation error

e(t) = #(t) — z(t). (4.12)
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By letting n(t) = 0, it can be easily seen from (4.8),(4.9), and (4.11) that
e'(t) = (A - HC)e(t) (4.13)

The behavior of (4.13) is thus governed by the eigenvalues of A — HC. If we set H = 0,
the real time simulation is not corrected by a prediction error term and the error
dynamics are governed by the eigenvalues of the matrix A. For a sluggish or unstable
system this is unacceptable since the estimate Z(t) will then converge only sluggishly or
not at all to z(t). We might expect that the error dynamics can be modified to obtain
faster convergence of the estimate if we appropiately pick some nonzero observer gain
H. It turns out-see [20]-that if the pair [A, C] is observable, an appropiate choice of H
can place the eigenvalues of A — HC arbitrarily (subject only to the requirement that
complex eigenvalues are specified in complex conjugate pairs). The error dynamics
can therefore, in principle, be modified arbitrarily from that of the simple real-time

simulator.

A fast observer would require large values of the entries of H, and these large val-
ues would in .urn accentuate the disturbance effects. Thus, one would not attempt in
practice to make the observer overly fast. The primary objective of observer design
often shifts altogether to that of obtaining estimates that are less sensitive to distur-
bances/uncertainties, rather than obtaining estimates that converge fast. For example,
the most familiar version of the celebrated Kalman filter is precisely an observer in
which the gain H is chosen to give minimun mean square estimation error when n(t)
and 0(t) are modeled as white Gaussian noise processes. The Kalman filter gain matrix
can be found off-line by solving an algebraic Riccati equation similar to (4.6) and all
Kalman filter properties are mathematically dual to those established for the Linear

Quadratic Regulator (LQR) problem (see [14,17)).

The results in this work focus entirely on obtaining fast small-signal state estimates
for switching converters so that state observer based feedback controllers can be ob-

tained, as will be shown in Chapter 6. Since they will be based on averaged models,
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the main constraint in the design of these observers is that their error dynamics should

not be made faster than one half of the switching frequency.

The observers discussed above are also called full order observers because they
attempt to estimate all of the state variables. A full order observer in the case of
power converters would attempt to estimate, for example, iy, (inductor current) and v,
(capacitor voltage), because it is both of these variables that together make up the state
variables in the model of our system. As shown in [20], reduced order observers of order
n —p, where n and p are the number of state variables and outputs, respectively, can be
designed bty a suitable coordinate transformation. Although the price one usually pays
with the resulting reduced observer is a stronger sensitivity of the estimates to noise in
the unfiltered variables, there are two main issues that motivate the study of reduced
observers for switching converters. First, in constructing an estimate for the capacitor
voltage state (v.) the capacitor ESR enters in the model and this value is usually only
known with a certain degree of uncertainty anyway. Second, as we will see in Chapter
6, reduced order observers that only attempt to estimate the inductor current result
in reduced order feedback compet;sator networks which will reduce the complexity and

cost in implementation.

4.3.1 Observer-based compensation

There is an important result in systems theory which permits one to separate the
problem of observer design from that of control design. This result is known (see [21])

as the eigenvalue separation theorem.

Specifically, assume that the system (4.1) is both controllable and observable and
that a feedback control law is first designed under the assumption that the entire state
is available for direct measurement. This corresponds to setting u(t) = Kz(t), resulting

in the closed loop system

z'(t) = (A + BK)z(t). (4.14)
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The characteristic polynomial of 4 + BK can be selected arbitrarily and using the
optimal LQR control law presented before, X' = —G with G as given in (4.5). Next,
assume that an observer (either full or reduced order) is designed to obtain an ap-
proximation 2(t) of the state z(¢). Finally, if the two designs are combined by setting
the control input equal to u(t) = KZ(t), that is, using the observer generated state in
place of the actual state as shown in F ig. 4.2, it can be shown that the characteristic
polynomial of the composite system is the product of the characteristic polynomial of
the feedback system matrix A + BK and the characteristic polynomial of the observer.
Consequently, the design of state feedback and the design of a state estimator can be
carried out independently, and the eigenvalues of the entire system are the union of
those of state feedback and those of state estimator. A simple and reasonable guideline
to achieve a tradeoff between speed and performance is to choose the observer poles

two or three times faster than the eigenvalues of A + BK.

In the next chapter LQ full state feedback controllers will be presented and analyzed
for the half-bridge converter illustrated in Chapter 3. Next, in Chapter 6, reduced order
cobserver-based feedback compensators designs will be presented for this converter and
comparisons will be made. These designs will be based on the two decoupled small

signal averaged models for the half-bridge converter.
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Chapter 5

Linear Quadratic Regulator Control
of Half-Bridge Converter

In this chapter, the Linear Quadratic Regulator (LQR) state feedback design procedure
discussed in the last chapter will be applied to the half-bridge converter presented in
Chapter 3. Both time and frequency domain analysis of the resulting closed loop system

will be performed.

5.1 Closed Loop Analysis of Half-Bridge Converter

The half-bridge converter circuit is shown in Fig. 3.1. It is an example of a switching
power supply that can provide two regulated and isolated DC voltages to an exter-
nal electronic system. The circuit operation requires a closed-loop control to provide

robust, independent regulation of each output unit.

The performance of the resultant closed-loop circuit js evaluated through MATRIX,
simulations using the large signal averaged model for the half-bridge converter. The
tests to be performed pulse the output load current by an appropiate amount for sev-
eral milliseconds to see the efiects on the voltage regulation. The reason for picking
these tests is that they are typical of those used to test such converters and they are

consistent with the typical operation of this converter. Table 5.1 summarizes the two
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| Test | Qutput 1 conditions | Output 2 conditions | Ai,, | A,y |

1 5.1V at 30A 3.4V at 12.5A +10 A 0
2 5.1V at 30A 3.4V at 12.5A 0 +3 A

Table 5.1: Summary of half-bridge converter performance tests.

tests that have been used to evaluate LQR designs for the half-bridge converter. The
output currents, represented by Ai,; in Table 5.1, are not pulsed simultaneously and
it is assumed that both output units are operating in steady state at the time of these

steps.

The LQR feedback controller designs will be obtained from the two decoupled small-
signal averaged models for the half-bridge converter obtained in Chapter 3. Although
this input decoupling introduced before is a good modeling and control assumption, the
actual system is still not completely decoupled because of transformer nonidealities,
control variable constraints, etc. Thus, the resulting closed-loop system has to be
carefully examined. In the output voltage transients that result from the tests of Table

5.1, the following closed-loop performance specifications will be evaluated:
1. Stability of the power supply under the operating conditions of Table 5.1.
2. Maximum peak overshoot of 2% from the steady state average voltages.
3. Maximum settling time of two milliseconds.

4. Zero steady state error under all operating conditions.

5. Insensitivity of the voltage regulation in one output during disturbance in other

output.

6. The final closed loop bandwidth of each output unit must meet requiremerts
posed by the validity of the small signal models and that of the stability robustness

boundaries obtained in Chapter 3.
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5.2 LQR Design for Half-Bridge Converter
5.2.1 LQR design formulation

The LQR systematic design approach for the half-bridge converter was performed by
using the general guidelines described in [5]. Key aspects of the procedure described

there will be repeated here for convenience and completion.

First, the small-signal plant dynamics for each of the two decoupled outputs of the
converter are augmented to include an integrator in the forward path of the output
voltage in order to provide integral control and achieve the zero steady-state error
requirement that has been specified. Then, the resulting (augmented) small-signal

model for each unit of the half-bridge converter (i = 1,2) takes the form

$z,,(1) = Aabzai(t) + Baibei(t) (5.1)
byi(t) = Caibzai(t) (5.2)

with
624i(t) = [6zi(t) bvei(t) Sini(t)])T

A,,-=[g i:],Ba,:[g],ca..:[oc.-]

where 6z;(t) is the integral of the output voltage perturbation and A;, F;, and C; are
given by (3.25) and (3.27). The augmented models for each single-input single-output

system with the parameters of Chapter 3 were verified to be controllable.

The proposed small signal LQ regulator block diagram is shown in Fig. 5.1. The
regulator design will assume feedback of §z,; to simplify the design process, but in the
actual implementation the output voltage is sensed instead of §v.; and fed back through
the capacitor voltage gain, as shown in Fig. 5.1. The simulations results presented
later show that the ESR is not large enough to cause this to introduce a noticeable

error. The augmented plant model for each output unit will be used in conjunction
1

89



§ vci(s)

5 e,(s) l §2, (s)
Fi §iLi(s) ci ﬁ Py
gi
9,
9,
Figure 5.1: Linear Quadratic Regulator block diagram. )
with the quadratic cost
J= /ow[é:cf(t)Qéra(t) + rée?(t))dt (5.3)

in order to obtain a state feedback controller. (The subscript i has been dropped
for notational simplicity.) Using the general results presented in Chapter 4, the LQR
feedback law is

be(t) = —[g: gv gil6za(t) = —~Gbz4(1) (5.4)
G = %Bf K (5.5)
where K is the solution to the following algebraic Ricatti equation

0=-KA, - ATK - Q + }KBGB}‘K (5.6)

The LQR design paramerers are the constant state weighting matrix @ and scalar
contro! weighting constant r. For simplicity, @ was chosen to be diagonal, so each of its
diagonal elements will correspond to penalizing the deviation of a state variable from
its nominal operating value. The output voltage and its error integral are clearly the

states to be penalized most for deviations from steady state values. Their respective
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weighting should be picked orders of magnitude higher than the rest of the states (e.g.
inductor currents). If zero steady state error is required to coincide with the settling
time of the output voltage transient, then the integral weight must be very large, even
with respect to the output voltage weight. Once r is fixed, more weighting on states will
typically result in smaller maximum perturbations of the state and faster transients,
but with a corresponding increase in the bandwidth and the need for larger duty ratio
variations (i.e. control effort). Alternatively, control weighting, r, can be used to tune
the bandwidth of the closed loop system. Small control weighting resulis in high gain,
high bandwidth designs, while large values of r yield low gain, low bandwidth solutjons.

There are limiting factors to this approach, such as the stability robustness bound-
aries constraint or excessive duty ratio perturbations (input saturation) that will de-
grade performance. Thus, as with any controi system design methodology, iteration is
needed until the closed loop specifications are met, while, at the same time, the model

validity and constraints are not violated.

In order to obtain a satisfactory LQR design for the half-bridge converter, the

following criteria must be satisfied simultaneously:

1. The closed-loop performance specifications for the tests given in Section 5.1 must

be satisfied.

2. The closed loop poles (eigenvalues of 4, — B,G for each output system) must be
well below one half the switching frequency (or else state-space averaged models

have no meaning).

3. The disturbance rejection response, measured in terms of the sensitivity transfer
function Spq(s) = (1 + Gro(s)]™!, where G1o(s) = G(sI — A,)~'B,, should give

high attenuation at low frequencies.

4. The stability robustness boundaries obtained in Chapter 3 should not be crossed
by the nominal closed loop transfer function Crg(s) = [1 + Grq(s)] 'GLo(s).

\
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5. The required duty ratio perturbation for each transient test must not be exces-
sive. The closed loop regulator may have good speed of response at the cost
of input saturation that may degrade regulation. The constraints on duty ratio

perturbations (inputs) for the particular system of Chapter 3 are found to be

— .485 < ey (t) < 515 (5.7)

- .337 S 682(‘) S 148 + 681(1) (58)

As we can see from the above equations, even after the input decoupling, it
is possible that large disturbances and/or load changes in the first output can

degrade regulation in the second output.

Utilizing the approppiate MATRIXy functions, the LQ design was automated so
that for each LQR design (Q and r) all the above mentioned factors could be examined.
The large signal nonlinear simulations for the closed loop performance tests of Table 5.1
were performed on the System Build tools of MATRIXx. A satisfactory LQ design
that satisfies all of the requirements mentioned above for the half-bridge converter
described in Chapter 3 is presented next. Time and frequency domain results using the

averaged model will be shown.

5.2.2 Final LQR designs

The LQR designs for both LTI small signal circuit models representing the half-bridge
converter studied here were carried out independently on MATRIXx. The final LQR
designs follow the general guidelines mentioned in the last section. For output 1, a

choice of weights that led to good performance was found, through iterative simulations,

to be:
6.5 x 102 0 0
Q, = 0 9.5x10° 0 |, r, =6800 (5.9)
0 0 3.5
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Similarly, for output 2:

7 x 102 0 ]
Q, = 0 8x10° 0|, r, =7000 (5.10)
0 0 4

The optimal state feedback gains for these LQR parameters are
G, = (30,907 11.08 0.114] (5.11)

for output 1, and

G, = [30,694 11.01 0.16] (5.12)

for output 2. The closed-loop poles for each design are
- 2,620, (—2.45 + j2.38) x 10° (5.13)

for output 1 and
- 2,600, (—3.5 + j3.4) x 10° (5.14)

for output 2. The closed-loop poles of each single-input single-output system lie well
below one half the switching frequency (recall that 1/T = 500k H = or 3.14 x 10%rad/ sec).
The choice of the design parameters reflects the fact that the output voltage error must
decay to zero in about two milliseconds and that the duty ratio perturbations must
stay within the bounds given by (5.7) and (5.8). This is confirmed by the tests shown

next.

5.2.3 Transient performance analysis

The performance tests in Table 5.1 were carried out on the System Build utility of
MATRIXx. The small-signal LQR state feedback controllers presented in the last
section are simulated on the large-signal averaged model of the half-bridge converter
as given by (3.16). Figure 5.2 presents the implementation block diagram of an LQ
regulator applied to one of the output systems of the half-bridge converter, which

subtracts the nominal reference signals from the inductor current and output voltage.
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For the physical implementation of this controiler, the waveform E,,, + de(t) is the
reference signal for the PWM comparator of each output. In the simulations, both
small signal controllers are integrated into the half-bridge converter large-signal model

to obtain the total System Build average simulations.

Figures 5.3 and 5.4 show the transients of Test 1 (see Table 5.1), in which a current
source of 10 A is effectively connected in parallel with the first output load resistance
at .002 seconds. This effect is corroborated by the first output inductor current (21(1))
transient shown in Fig. 5.3. Note that the first output average voltage v,,(f) deviates
a maximun of .08 volts or 1.6 % from the steady state value and it settles back to
this value in less than two milliseconds. Thus, the peak overshoot and settling time
requirements are both met by this design. Also, the transient of e;(t) shows that the
regulation requires a maximun duty ratio perturbation of .02 which s well below the
constraints in the inequality in (5.7) and (5.8). This implies that the swing of €(t)
will not affect the regulation of the second output. However, as can be seen from vo2(1)
in Figure 5.4, the second output voltage still undergoes a very small perturbation at
-002 seconds. This is due to the small coupling effect of the coupling resistance r, as

expected from Chapter 3.

Figures 5.5 and 5.6 show the transients of Test 2, in which a source load current
in the second output is stepped to 3 A at time .002 seconds. Since, except for the small
effects of r,,, the first output is practically completely decoupled in the half-bridge
converter, the small perturbations of output 1 for this test are not included. Again, the
maximun peak deviation and settling time requirements for the second output voltage
U52(t) are met for this test. Also, the duty ratio perturbation e2(t) required is found to

be nonexcessive.
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Figure 5.2: Implementation block diagram for the Linear Quadratic Regulator.
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5.2.4 Frequency domain analysis

The Bode plots of Grq(s) for both LQR designs are shown in Fig. 5.7. Note that
the small-signal frequency domain analysis is only carried up to 1 x 10%rad/sec, which
is close to one half the switching frequency, since averaged model predictions above
that frequency should be discarded. These Bode plots show that our designs produced
high-gain, high bandwidth closed-loop systems. The phase margins for both outputs
are seen to be about 80 degrees. Recall from Chapter 4 that LQR designs have an

inherent guaranteed phase margin of at least 60 degrees.

The magnitude plots of Spq(s) and Crg(s) for both designs are presented in Figs.
5.8 and 5.9, respectively. The plots of S;g(s) show a gain attenuation of -20 dB or
larger for w < 1 x 10° rad/sec so both systems have excellent disturbance rejection in
this large frequency range. The closed-loop transfer function magnitude plots C'Lo(s)
are verified not to cross the stability robustness boundaries obtained in Chapter 3,
so it is guaranteed that the actual half-bridge converter will remain stable under this

controllers.

5.2.5 LQR Design Comments

The LQR designs required an iterative process of picking the best parameters Q and
. This procedure and the closed-loop performance evaluation are easily automated
using MATRIXx. The systematic LQR design procedure can easily be extended
to genuine multivariable converters that can not justifiably be decoupled in the way
possible for the half-bridge converter. However, the assumption that all state variables
(e.g. inductor currents) are available for feedback might be unrealistic in real practice.
Nevertheless, as stated in Chapter 4, LQR results can still be combined with state
observers to obtain observer based compensators, which avoid the need to measure all
state variables and can still result in robust designs. This will be shown in the next

chapter for the half-bridge converter system analyzed here.
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Chapter 6

Observer Based Compensators

This chapter will address the design and evaluation of an observer-based controller for
the half-bridge converter. Specifically, state-space estimators for the inductor currents
in each output system will be obtained and combined with the state feedback LQ results

presented in the last chapter, as described in Section 4.3.

6.1 Reduced Observer Design for Half-Bridge Con-
verter

The main motivation behind the observer design here is to avoid the need to directly
measure a state variable for feedback control purposes. The specific goal of this work is
to obtain small-signal average estimates of the inductor currents in the power stage of
the half-bridge converter, so that observer based compensators can be systematically
obtained as shown in Chapter 4. As will be seen, the results are robust and result
in controllers that only require measuring the perturbations in output voltage. The
formulation for obtaining the dynamics of the small-signal current estimators will be
presented next. The procedure to be shown here is specific to the models we are

using;the general method for the design of a reduced order observer is presented in

[20].
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As mentioned before, this design will be based on the small-signal averaged state
equations for each cutput system, namely (dropping the subscripts since the state

equations are the same for each output),

V(¢ —L
8] 1% )] [l o
where a = N,V;/2N, and p,r. are as defined in Chapter 3. Let §3.(¢) and §1)(1)
be the real-time estimates of the small-signal capacitor voltage and inductor current,
respectively. Then, assuming that the perturbation in average output voltage equals
the perturbation in capacitor voltage (§v,(¢) = §v.(t) = 6o.(t) - ignoring ESR), a real-
time open-loop simulation from (6.1) for the small-signal differential equation of the

inductor current gives

8i(1) = —%Jvo(t) - 'L—‘ai,(t) + %6e(t) (6.2)

The observer to be introduced corrects the above simulation by the use of a second
constraint obtained from the first equation in (6.1). Note first that if §1,(¢) = &i(¢),

and using 89.(t) = §v,(t), we would have

ui(t) + = bva(t) - Z8i(t) = 0 (6.3)

RC
The deviation of the left side from 0 serves as a measure of estiraation error. Using the

above constraint as a correction term in the open-loop simulation of (6.3) yields

8ii(t) = —%500(0 _ %6i(t) + %&(t) —h [m‘;(t) + 2 suy(t) - 6:,(t) (6.4)

RC

where h is the observer gain. Rearranging the above equation gives

62{(t)=(0h—f)6u(t\ thv(f)—(Z RC,)610(1)+ se(t)  (6.5)

Using (6.3), the observer error dynamics can be found to be given by the simple
expression

87)(1) = il(t) — il(t) = thZ,(t) (6.6)
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Thus, by choice of h we can modify the speed of convergence of this proposed observer.
However, a direct implementation of (6.5) will require not only the perturbation in
output voltage but its derivative as well. This is easily avoided by defining a new
variable ¢(t) as

q(t) = &4,(1) + hév,(1) (6.7)

Using this transformation in (6.5) yields the implementable equation

(t)—( h—f)q(t) Bt (% - = h+L]6vo(t)+ Xse(t)  (6.8)

The desired estimate §2(t) can be obtained from g¢(t) by rearranging (6.7). Equa-
tions (6.8) and (6.7) can be simulated (or physically implemented) for each output in
order to obtain the required small-signal estimate of the inductor current (67,(1)) with
the speed of convergence given by (6.6). Note that the only inputs necessary to obtain
this estimate are the real-time signals of the output voltage and duty ratio perturba-
tions. This estimate can then be fed back for use in the state feedback control law of

Chapter 5 in place of the actual inductor current perturbation.

The proposed observer/controller closed-loop system for each output is shown in
Fig. 6.1. The constant gains g,,9,, and g; are the LQR feedback gain constants
obtained in the last chapter. As discussed in Chapter 4, the poles or eigenvalues of this

composite system are just the union of the LQR feedback poles and the observer poles.

The transfer function relation describing the ‘observer’ block in Fig. 6.1 is just

obtained by taking Laplace transforms of (6.7) and (6.8). This yields

5;1(3) ==

—be(s) + (hs + (—h + )) 61',,(3)] . (6.9)

s+ (% ﬂh)[ L RC

The total frequency domain expression for the compensator control law expression

for each output can be easily obtained from Fig. 6.1 to he

be(s) = —gi 8i(s) (g + %) buas) (6.10)

estimation feedback >

P-1I term

106



where 83/(s) is as given by (6.9), and the proportional-integral (P-I) term is due to the
feedbz.ck of the output voltage perturbation and its integral. The control law described
by (6.11) can be easily implemented in real-time using analog components as shown in
Fig. 6.2. Appropriate choices of the parameters (R’s and C’s) are needed, of course. As
can be seen, the input to the controller is just the output voltage perturbation, which
can be obtained by subtracting the nominal reference voltage from the large signal
output voltage. The output of the controller §e(t) is the input to the error amplifier
signal of the PWM chip which drives the transistor switch sl or s2 in the primary of

the converter as shown in Fig. 3.1.

6.2 Observer-Based-Controller Results

Once the simple relations presented in the last section are obtained, the design and
analysis of the reduced observer design is straightforward. Since the same feedback
gain constants presented in Chapter 5 will be used, the only new design parameters
needed are the observer gains h; and h, for each output. These gains will determine
the speed of convergence of our estimates. As mentioned in Chapter 4, a simple and
reasonable guideline to use is to choose the observer poles two to three times faster than
the slowest eigenvalue of the closed-loop state fedback control dynamics (4, — B,G in
this case). In our case, we still have to check that the corresponding observer poles are
also below one-half the switching frequency, so that the validity of the averaged model

is not violated.

Specifically, substituting the required numerical values into (6.6), the observer error

dynamics for each output are given by

i (1) = 2361h,67,(1) (6.11)
bip(t) = 4822h,6115(1) (6.12)

From (5.13) and (5.14), the dynamics of the LQR feedback loops are governed by a pole
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at about —2,600 nepers. By choosing h; = —3.3 and h, = —1.7, the error dynamics

of both observers are three times faster than this frequency.

Time and frequency domain results for the resultant compensator design will be pre-
sented next. As before, the resultant designs will be seen to satisfy all closed-loop spec-
ifications and requirements presented in Chapter 5. The simulations on MATRI X x
only required a simple extension in order to obtain the estimate of 61,(t) as required

by (6.7) and (6.8).

6.2.1 Transient performance analysis

Figure 6.3 shows the closed-loop compensator transients of Test 1 for the half-bridge
converter. As seen from the figure, the required duty ratio perturbations for e;{t) are
nonexcessive, so the second output is practically insensitive to this test. Note that the
first output average voltage deviates only 0.8 % from the steady state value of 5.1 V
and it settles back to this value in less than the specified 2 milliseconds. Recall that
the maximum perturbation for the LQR full state feedback design was 1.6 % for this

same t{est.

Figure 6.4 shows the transients for Test 2 of the second output. The first output
was found to be insensitive to this disturbance. Again, the required input duty ratio
perturbation in e,(t) was found to be nonexcessive. Also, the time domain output
voltage regulation of this output showed a satisfactory response since the maximum
peak deviation was only 0.6 % from the steady state average value of 3.4 volts and ihe

settling time is still less than 2 milliseconds.

6.2.2 Frequency Domain Analysis

The Bode plots of the equivalent loop transfer function of the observer based com-

pensator shown in Fig. 6.1 for both outputs are shown in Fig. 6.5. These Bode
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plots show bandwidths comparable to the full state feedback controllers presented in
Chapter 5. However, the gain margins for both outputs here are seen to be about 60
degrees, which represent a reduction of about 20 degrees in phase robustness. The
corresponding sensitivity transfer functions for both outputs are shown in Figure 6.6.
This corresponds to the transfer function between a disturbance at the input of the
small-signal plant and the output voltage. These plots only show a disturbance at-
tenuation of more than 20 dB for frequencies below 1000 rad/sec. Thus, by analyzing
the frequency domain, we can conclude that a small penalty in robustness is paid by
the use of observers to eliminate the need of measuring the inductors currents. The
closed loop transfer functions were again verified not to cross the stability robustness

boundaries of Chapter 3.
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Chapter 7

Conclusions and Further Research

7.1 Conclusions

This thesis has investigated issues concerning the modeling and control of high fre-

quency switching converters.

A correction to the usual derivation of state-space averaged models for constant fre-
quency, current mode controlled converters was given and new results were shown and
compared with the literature. Approximate sampled-data models, which are as easily
obtained as continuous time averaged models, were shown to be more accurate than
the latter because they properly represent the cyclic operation of switched convert-
ers. The two-output two-switch half-bridge converter was modeled, and it was found
that the multivariable models of this converter can be decoupled into two single-input
single-output systems. The stability robustness of the closed-loop half-bridge converter
was examined and the guaranteed stability tests obtained were shown not to be overly

limiting on the bandwidth.

The Linear Quadratic Regulator feedback design method was presented and system-
atically applied via MATRIXx to each output of the decoupled half-bridge converter
model. The regulation of the full closed loop was evaluated through simulated perfor-

mance tests, and was found to meet stringent closed-loop power supply specifications.
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Assuming unavailability of measurements of the converter inductor current, observer
based compensator designs for each output were obtained and analyzed in the same
manner. Results for the observer based designs were found to be satisfactory. A simple
hardware implementation for the above mentioned observer based compensators was

proposed.

7.2 Further Work

Work in this thesis shows that a modern state feedback control appreoach can yield a
systematic procedure for obtaining robust controllers for switching power converters.
The results shown here should be compared with a current mode control design for a

similar half-bridge converter and the trade-offs should be examined.

Our results should be tested in hardware, especially if the latter comparison is
favorable, as we expect it to be. The state space control methods presented here
can be easily extended to obtain genuine multivariable controllers for non-decoupable
converters. A clear motivation for research is to extend the approaches presented here
to a genuine multivariable converter and to compare this with results from classical

control methods.
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Appendix A

Sampled-Data Model Matrices for
the Half-Bridge Converter
Decoupled System

Using the definitions for each output (i = 1,2):

a = piLli + 1eiCiR;
o 2L;C;R;
b o= L 4pi(rei + piRi) (PiLi +7'eiCiRi)z 1
2 L:C:R; L:C;R;
- , 1/2
A = (ﬂ_;P_/Ci) +1]
| b
. ) 1/2
Y, = (al_l:ﬂ-/Ll) +1]
L 1
0, = tan”! & Z PiliT — pi/CiRs
t bi-
o 1@ —rei/Li
¢; = tan (__bi )
Ai = —ai(1 - e (k)T
w; = b,(l - el(k))T
and
p = —a1e(k)T
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£ = —aeqr(k)T
B = be(k)T
a = bzez(k)T

Large Signal Matrices

A — 2.'ff""'Tco.s'(b;T + &;) gf;';e‘“"Tsinb,-T
"= —ﬁ:e““‘Tsinb.-T A.-e'“‘Tco.s(b,-T +9;)

ey _ e#(3-sinf + cosfl)]cos(w; + ¢;)
ca\l Cl bl 1 1
B, = ZNPLA,,.(nil+b?) {[

] . .
—H%ﬁll — e¥($sinf + cosf)]sinw,

N st [e*(~arcos(B + 6;) + bysin(B + 6,)) + aycosh; + by sinb,)sinw,
Aile#(—aycos(B + 0:) + bysin(B + 6,)) + a;cosb, + bysin,|cos(w; + 6;)

B,, = ___Iz.c_*;__r e’%‘[zl - ef(gzlsina + cosa)|cos(w, + ¢;)
] szL2(43+bz) __I_ngzh [1 —_ ef(%sina + COSQ)]Jinw2

4 %‘Ab:[ef(—azcos(a + 0;) + basin(a + 8,)) + azcosb, — by sinb,)sinw,
A%[e‘(—azco.s(a + 602) + bzsin(a + 9,)) + azcos8, — bysinb;)cos(w, + 60,)

Small Signal Matrices
af; _
(az.-(k))q -

(az{b)o = (fo )
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fen

.felz

pr1 21 TVIN,
2C,Ly(a? + b3)N,
sin(w + ¢y ) bre™ — a,sinf — b,cosﬁ]}
2C,Lyby(a} + b3)N,
sinwl[aw‘ﬂ(alcosG‘ + bysinby) + a;bysin(B + 6,) + b2cos(B + 01)]}

e~ T {co.s(w1 + ¢1)|ae™ - a,cosf + by sinp]

e T {COSWI[_ble—u(alcosol + bysindy) + arbycos(B + 61)]

_mbmhﬁe_m {C03W1\—ble—“ + 6ysinf + bycosf)
sinwfare™" — a,cosf + blsinﬂ]}

AITVIN,
2Ly(a} + b1)No

sin(wy + 01)[b1e"‘(a.1co.501 + bysinby) — abycos(B + 6,) + bfsin(ﬁ + 01)]}

e T {cos(u1 + 01)[a1e“‘(a1c0501 + bysinby) + a,bysin(B + 6,))

fen = M"C’" et {Aycos(a + 0,)sinw, + $ocos(wz + ¢2)sina}

2C;L:6:Np

2 2
fer = Me*’ et {%cos(a + 03)cos(wa + 0,) — —C—-%——sinasinwz}

b2

2
2N, 2 2L3b3
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