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Abstract
This thesis is about finding useful structures in a graph using fast algorithms, or showing that

no such fast algorithms exist using popular fine-grained hypotheses from the field of Fine-Grained
Complexity. These structures can be any small fixed-sized pattern, or more specific bigger struc-
tures such as the longest shortest path in a graph, the size of which is represented by the diameter
of a graph. Finding these structures has many applications, from protein-protein interactions in
biology to anomaly detection in networks.

We start by the problem of finding fixed-sized patterns in graphs as a subgraph, known as
Graph Pattern Detection or Subgraph Isomorphism. There are no fast algorithms for graph pattern
detection for many patterns despite many efforts, and so we focus on finding the source of hardness
of detecting different patterns. One of our results is that one such source is the appearance of
cliques (complete graphs) in the pattern which can make the pattern hard to detect.

We then move to patterns that are not necessarily fixed sized but are either paths or cycles. The
size of these patterns are often represented by popular parameters such as the diameter, radius and
girth in the graph.

We focus on computing the diameter (longest shortest path) of a graph and more specifically on
approximating the diameter since computing it exactly is known to be hard. There is a folklore 2-
approximation algorithm for the diameter that works in linear time, and we show that this algorithm
is optimal conditioned on the Strong Exponential Time Hypothesis (SETH). Our result shows that
any better than 2-approximation algorithm for the diameter requires super linear time. Moreover,
we give a series of time-accuracy trade-off lower bounds, completing a line of recent works.

The next pattern we discuss is a cycle, and more specifically it is the shortest cycle of a graph,
the length of which is known to be the girth. We give the first 2-approximation algorithm for com-
puting the girth in directed graphs in subquadratic time, improving the previous best approximation
factor (in subquadratic time) which was 3.

Finally, we don’t resort to the standard measures of these distance problems, as in many appli-
cations we need more specific notions of these problems. For example we might be only interested
in the longest shortest path among specific pairs of vertices (a variant of the diameter). Hence we
consider two variants: First we assume that we are given two subsets 𝑆 and 𝑇 of the vertex set of
the graph, and we are asked to compute distance parameters such as diameter and radius by only
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considering the pairs of nodes in 𝑆 × 𝑇 . These problems are called 𝑆𝑇 -distance problems and
when 𝑆 and 𝑇 are non-overlapping and cover all the vertex set, they are called bichromatic dis-
tance problems. We give a comprehensive study of approximation of 𝑆𝑇 and bichromatic distance
parameters.

Second, we consider a “symmetric” distance measure in directed graphs called min-distance.
We give big improvements in approximating min-diameter and min-radius in general graphs and
in directed acyclic graphs.

Thesis Supervisor: Virginia Vassilevska Williams
Title: Steven and Renee Finn Career Development Associate Professor of
Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis is about graphs and extracting information from them using fast algorithms. The type

of information we focus on is the existence of specific structures such as fixed-sized patterns,

short cycles or long shortest paths. Some of these specific structures are represented by well-

known parameters in a graph, such as the girth (the shortest cycle) or the diameter (the longest

shortest path). As real world graphs get bigger every day, finding or detecting these structures

(or computing these parameters) in a time close to the time needed to read the input is of large

importance. However this doesn’t seem possible for all the structures. There are conditional lower

bounds for the running time of detecting some of these structures that suggest we should resort to

approximation if we want fast algorithms.

In this thesis we obtain many algorithms and conditional lower bounds for detecting different

important structures in a graphs. This in fact is what the field of fine-grained complexity (FGC)

does: FGC seeks to find the exact complexity of polynomially solvable problems by designing fast

algorithms and proving lower bounds conditioned on popular fine-grained hypotheses.

The remaining of this chapter is a high level introduction to the problems discussed in this

thesis, and a summary of the results. In chapter 2 we define the most well-known FGC problems

and hypotheses that our lower bound results are based on. Each of the subsequent chapters contain

the results for a specific problem and can be read independently from the other chapters. Moreover,

at the end of each chapter we mention the most recent improvements on the results of that chapter
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that are made after its publication.

Finding Patterns The first type of information that we seek in a graph is the presence or absence

of small fixed sized patterns. Graph Pattern Detection or Subgraph Isomorphism (SI) asks, given

two graphs 𝐺 and 𝐻 , does 𝐺 contain a subgraph isomorphic to 𝐻? While the general problem

is NP-complete, many applications, such as biology, only need algorithms for the special case in

which 𝐻 is a small pattern, of constant size 𝑘, while the host graph 𝐺 is large. For example,

protein-protein interaction networks are modeled using graphs, and the appearance of some small

sized patterns can reveal important characteristics about them [BGP+13]. Moreover, graph pattern

detection can be used for database joins, anomaly detection in networks and in social networks

where one looks for particular structures in communities.

There are two versions of SI: induced and not necessarily induced, non-induced for short. In

the induced version, the copy of 𝐻 in 𝐺 must have both edges and non-edges preserved, whereas in

the non-induced version only edges need to carry over, and the copy of 𝐻 in 𝐺 can be an arbitrary

supergraph of 𝐻 . It is well known that the induced version of 𝐻-pattern detection for any 𝐻 of

constant size is at least as hard as the non-induced version, and that often the non-induced version

of SI has faster algorithms (e.g. the non-induced 𝑘-independent set problem is solvable in constant

time). In both versions when 𝑘 is a constant SI is easily in polynomial time: if 𝐺 has 𝑛 vertices,

the brute-force algorithm solves the problem in 𝑂(𝑛𝑘) time, for any 𝐻 .

It is well-known that the SI problem (induced and non-induced) for any 𝑘-node pattern 𝐻 in

𝑛-node graphs for constant 𝑘, can be reduced to detecting a 𝑘-clique (complete graph of size 𝑘) in

an 𝑂(𝑛) node graph. Thus the hardest pattern to detect is 𝑘-clique. Given this, a natural question

is the following:

If a pattern contains a 𝑡-clique, is it at least as hard to detect as a 𝑡-clique?

And in general,

What makes some patterns harder to detect than others?

Finding short cycles and long shortest paths The other structures we look for in a graph are

short cycles and long shortest paths. Finding these structures can be represented by distance pa-

rameters. The most important parameters are diameter, radius, eccentricities and girth. These
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parameters have many applications. For instance, the diameter measures how fast information

spreads in networks, which is central for paradigms such as distributed computing and sublinear

algorithms.

The eccentricity of a node is the farthest shortest path distance between this node and any other

node in the graph. The diameter of a graph is the largest shortest path distance between any two

nodes of the graph. The center of a graph is the node with minimum eccentricity and the radius

of a graph is the eccentricity of the center. Finally the girth of a graph is the length of the shortest

cycle in the graph.

Computing these parameters exactly is too expensive, almost quadratic in the size of the graph,

as it mostly requires computing the shortest path distance between all pairs of nodes. This is trou-

blesome as in most applications the graphs are very big. Moreover, in most applications, having

an estimate of these parameters is good enough. Hence many studies resort to approximations of

these parameters. An 𝛼 approximation algorithm of a parameter 𝐷, where 𝛼 ≥ 1, outputs a num-

ber 𝐷′ where 𝐷 ≤ 𝐷′ ≤ 𝛼𝐷. The goal is to obtain fast approximation algorithms for computing

any of these parameters, and to prove that they are tight using popular fine-grained complexity

conjectures.

Fine-grained complexity conjectures We are going to use some of the popular fine-grained

complexity conjectures that we are going to define in Chapter 2, such as Strong Exponential Time

Hypothesis (SETH) and 𝑘-Orthogonal Vectors (𝑘-OV).

1.1 Summary of Results

Here we present a high level summary of our contributions to the above problems.

1.1.1 Finding Fixed Sized Patterns

In Chapter 3 we study the algorithms and lower bounds for the graph pattern detection problem.

We give “fine-grained" lower bounds for this problem, and show that for each 𝑘 there is an "easy"

pattern, where easy means that this pattern can be detected faster than 𝑘-clique detection time.

More particularly, in [DVW21] Thuy Duong Vuong, Virginia Vassilevska Williams and I proved
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the following results.

We prove that if a pattern 𝐻 contains a 𝑘-clique subgraph, then detecting whether an 𝑛 node

host graph contains a not necessarily induced copy of 𝐻 requires at least the time for detecting

whether an 𝑛 node graph contains a 𝑘-clique. The previous result of this nature required that 𝐻

contains a 𝑘-clique which is disjoint from all other 𝑘-cliques of 𝐻 .

We show that if the famous Hadwiger conjecture from graph theory is true, then detecting

whether an 𝑛 node host graph contains a not necessarily induced copy of a pattern with chromatic

number 𝑡 requires at least the time for detecting whether an 𝑛 node graph contains a 𝑡-clique. This

implies that: (1) under Hadwiger’s conjecture for every 𝑘-node pattern 𝐻 , finding an induced copy

of 𝐻 requires at least the time of
√
𝑘-clique detection and size 𝜔(𝑛

√
𝑘/4) for any constant depth

circuit, and (2) unconditionally, detecting an induced copy of a random 𝐺(𝑘, 𝑝) pattern w.h.p.

requires at least the time of Θ(𝑘/ log 𝑘)-clique detection, and hence also at least size 𝑛Ω(𝑘/ log 𝑘) for

circuits of constant depth.

We show that for every 𝑘, there exists a 𝑘-node pattern that contains a 𝑘 − 1-clique and that

can be detected as an induced subgraph in 𝑛 node graphs in the best known running time for

𝑘 − 1-Clique detection. Previously such a result was only known for infinitely many 𝑘.

1.1.2 Finding Long Shortest Paths: The Diameter

The diameter is the length of the longest shortest path in the graph. Computing the diameter of

the graph exactly is hard, it requires computing all pairwise distances of the graph, and it is shown

that there is no substantially faster algorithm for it [RV13]. More precisely, computing the diameter

in sparse graphs requires 𝑚2−𝑜(1) time where 𝑚 is the number of edges. On the other hand, there

is a simple 2-approximation algorithm for computing the diameter that works in linear time. One

question is what happens if we want an 𝛼 approximation algorithm where 1 < 𝛼 < 2? More

importantly, is the 2-approximation algorithm optimal? Can we obtain a better approximation

factor in the same running time? Figure 1-1 is a summary of the results about diameter, including

the results that this thesis contributes to. We discuss these results in detail in Chapter 4. In the first

glimpse, Figure 1-1 represents several algorithms (the dots) and lower bounds (horizental lines),
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Figure 1-1: Hardness results for Diameter (in undirected graphs). The 𝑥-axis is the approximation
factor and the 𝑦-axis is the runtime exponent, and the underlying graph is sparse, i.e. the number
of edges 𝑚 is 𝑛 · 𝑝𝑜𝑙𝑦(log 𝑛) where 𝑛 is the number of nodes. Black lines represent lower bounds.
Purple dots represent algorithms [BRS+18, RV13, CLR+14], and pink dots represent algorithms
that also lose an additive factor [CGR16]. The purple dot algorithms work for directed graphs
as well, and they are the only algorithms for the directed diameter. In [BRS+18], the labeled
lower bound was proved for weighted graphs, and in unweighted graphs they proved a weaker
lower bound which says a 1.6−𝜀 approximation needs 𝑚3/2−𝑜(1) time, and later [Li20] showed the
stronger lower bound for unweighted graphs. The red region is due to our papers [DW21, DLW21].
Li [Li21] showed the same result as [DW21] for directed graphs in an independent and concurrent
work.

which for the most part do not match. Our work, the red region, helps in making this gap smaller.

In [DW21] Nicole Wein and I show that for any integer 𝑘 ≥ 2, any better than 2𝑘−1
𝑘

ap-

proximation algorithm for the diameter in directed graphs requires 𝑛1+1/𝑘−𝑜(1) time under SETH.

Before our work, these lower bounds were known only for 𝑘 ≤ 4. In [DLW21], Ray Li, Virginia

Vassilevska Williams and I prove the same result for undirected graphs. One main consequence

of these results is that the simple 2-approximation algorithm is tight: If one wants an algorithm

with an approximation factor smaller than 2, this algorithm would require super linear time, under

SETH.
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1.1.3 Finding Short Cycles: The Girth

The girth is the length of the shortest cycle in the graph. Similar to the diameter, the exact

computation of the girth can be done by computing the shortest path distance between all pairs

of nodes, i.e. solving all pairs shortest paths (APSP) problem in 𝑂̃(𝑚𝑛) time1, and one cannot

do better up to 𝑛𝑜(1) factors, both for sparse and dense weighted graphs, under popular hardness

hypotheses from fine-grained complexity [VW10, LVW18].

Given this, one question is the following:

what is the lowest approximation factor an algorithm can have if it runs in truly subquadratic time,

say 𝑂(𝑚𝑛𝜖) for 𝜖 < 1?

To answer this question, we focus on directed graphs. Chechik et al [CLRS20] give a 3-

approximation algorithm for computing the girth in 𝑂̃(𝑚
√
𝑛) time in directed graphs, and this was

the best approximation factor obtained for algorithms with running time 𝑂̃(𝑚𝑛𝜖) for some positive

𝜖 < 1. In [DVW20] Virginia Vassilevska Williams and I give a tight 2-approximation algorithm

in 𝑂̃(𝑚𝑛3/4) time for directed unweighted graphs. We show that any algorithm that gives a better

than 2-approximation algorithm for the girth in directed graphs requires 𝑚2−𝑜(1) under popular fine-

grained complexity conjectures. We also give an almost 2-approximation algorithm in 𝑂̃(𝑚
√
𝑛)

for directed weighted graphs.

1.1.4 Finding Long Shortest Paths and Short Cycles: Variants

In Chapter 6 we study variants of distance problems, where either the distance measure is not

the standard measure used, or we are only interested about the shortest path distance between some

pairs of node. These variants are natural and have many applications, but haven’t been studied a

lot. We present a thorough study of algorithms and conditional lower bounds for these variants.

Bichromatic and 𝑆𝑇 distance problems

Given two arbitrary subsets 𝑆 and 𝑇 of the nodes, we can define distance problems that only

concern shortest path distances between the nodes in 𝑆 and the nodes in 𝑇 . This way Backurs et

al [BRS+18] define the 𝑆𝑇 -diameter, and analogously 𝑆𝑇 -eccentricities and 𝑆𝑇 -radius can be de-

1𝑂̃ neglects poly logarithmic factors
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fined. If 𝑆 and 𝑇 are non-overlapping and cover all the nodes, we call these problems bichromatic-

eccentricities, radius and diameter.

There are related and well-studied problems to bichromatic and 𝑆𝑇 -distance problems such

as point sets (commonly known as Bichromatic Farthest Pair), the subset version of spanners as

well as the 𝑆𝑇 version of spanners (see Cection 6.1). Moreover, 𝑆𝑇 and bichromatic versions of

distance problems are very related to the standard versions. For example, the techniques used in

[BRS+18] for obtaining lower bounds for approximating 𝑆𝑇 -diameter is later used to obtain lower

bounds for the standard diameter.

In [DWVW19], Nicole Wein, Nikhil Vyas, Virginia Vassilevska Williams and I present a com-

prehensive study of the approximability of 𝑆𝑇 and Bichromatic Diameter, Radius, and Eccentric-

ities, and variants, in graphs with and without directions and weights. We give the first nontrivial

approximation algorithms for most of these problems, including time/accuracy trade-off upper and

lower bounds. We show that nearly all of our obtained bounds are tight under the Strong Exponen-

tial Time Hypothesis (SETH), or the related Hitting Set Hypothesis.

For instance, for Bichromatic Diameter in undirected weighted graphs with 𝑚 edges, we

present an 𝑂̃(𝑚3/2) time 5/3-approximation algorithm, and show that under SETH, neither the

running time, nor the approximation factor can be significantly improved while keeping the other

unchanged.

Min-distance Problems

Another set of variants of the standard distance problems use a different measure for computing

the distance in directed graphs. In undirected graphs, the notion of distance is symmetrical but this

is not true in directed graphs. There are natural ways to define a symmetric distance notion in

directed graphs, such as max, min and roundtrip distances. In Sections 6.2 and 6.3 we focus on

min-distance problems, where the min-distance between nodes 𝑣 and 𝑢 is defined as the minimum

of the shortest path distance from 𝑣 to 𝑢 and from 𝑢 to 𝑣. The main difficulty in working with

min-distance problems is that min-distance doesn’t obey triangle inequality, and hence the usual

techniques for obtaining algorithms do not directly work for these problems.

The only known nontrivial algorithms are by Abboud, Vassilevska W. and Wang [AVW16].
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For Min-Diameter [AVW16] gives a near-linear time 2-approximation algorithm if the input is a

directed acyclic graph (DAG). For general graphs, the only nontrivial fast approximation algorithm

is an 𝑂̃(𝑚𝑛1−𝜖) time 𝑛𝜖-approximation algorithm for any constant 𝜖 > 0 (No constant factor

approximation algorithm is known that runs significantly faster than just computing APSP.) For

Min-Radius, [AVW16] gives an 𝑂̃(𝑚
√
𝑛) time 3-approximation algorithm for directed acyclic

graphs. For general graphs, they only achieve a very weak 𝑛-approximation in near-linear time

that checks if the Min-Radius is finite. There are no known approximation algorithms for Min-

Eccentricities faster than just computing APSP.

In the [DWV+19] Nikhil Vyas, Yinzhan Xu, Yuancheng Yu, Nicole Wein, Virginia Vassilevska

Williams and I greatly improve the bounds of [AVW16] by providing the first constant factor ap-

proximations for diameter, radius and eccentricities in general graphs. We provide an almost 4-

approximation algorithm for min-diameter, an almost 5-approximation algorithm for min-eccentricities

and an almost 3-approximation algorithm for min-radius all in 𝑂̃(𝑚
√
𝑛) running time. We also

provide a series of time-accuracy trade-off algorithms for min-diameter

Later in [DK21], Jenny Kaufmann and I improve upon the results of [AVW16] for DAGs.

For example we close the gap between upper and lower bounds for min-radius, obtaining a 2-

approximation algorithm which runs in 𝑂̃(𝑚
√
𝑛) time. As the lower bound of [AVW16] for min-

radius only works for sparse DAGs, we further show that our algorithm is conditionally tight for

dense DAGs using a reduction from Boolean matrix multiplication.
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Chapter 2

Preliminaries

In this chapter we explain some of the popular fine-grained complexity hypotheses. We operate

mostly in the world-RAM model with log 𝑛 bit words which is a model of computation that is a

random-access machine able to do bitwise operations on a single word of log 𝑛 bits, where 𝑛 is

often the size of the input to the problem at hand.

2.1 (Strong) Exponential Time Hypothesis (ETH/SETH)

The 𝑘-CNF satisfiability (𝑘-CNF SAT) problem is one of the fundamental problems in com-

puter science. It takes a formula Φ with 𝑛-variables and 𝑚 clauses as input. This formula is in

Conjunctive Normal Form (CNF), which means that it is the AND of 𝑚 clauses, where each clause

is the OR of at most 𝑘 literals (variables or negated variables). The 𝑘-CNF SAT problem asks if

there is an assignment of variables to {0, 1} such that the formula is satisfied. It is proved that

3-CNF SAT (and 𝑘-CNF SAT for any integer 𝑘 ≥ 3) is NP-complete [Coo71]. Using the Sparsifi-

cation Lemma of Calabro, Impagliazzo and Paturi [CIP06], one can assume that 𝑚 = 𝑂(𝑛), and

hence there is a simple 𝑂(2𝑛𝑝𝑜𝑙𝑦(𝑛)) algorithm for 𝑘-CNF SAT by considering every assignment

of the variables.

Hypothesis 1 ((Strong) Exponential Time Hypothesis [IP01b]). Let 𝑐𝑘 be the smallest constant

such that there is an algorithm in the world-RAM model with log 𝑛 bit words for 𝑘-CNF SAT that
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runs in 𝑂(2𝑐𝑘𝑛+𝑜(𝑛)) time. Exponential Time Hypothesis (ETH) states that 𝑐𝑘 > 0 for all 𝑘 > 2.

Strong Exponential Time Hypothesis (SETH) states that there is no constant 𝜖 > 0 such that

𝑐𝑘 ≤ 1− 𝜖 for all constant 𝑘.

2.2 𝑘-Orthogonal Vectors (𝑘-OV)

In the 𝑘-OV problem, we are given 𝑘 unsorted lists 𝐿1, . . . , 𝐿𝑘 of 𝑛 zero-one vectors of length

𝑑 as input. If there are 𝑘 vectors 𝑣1 ∈ 𝐿1, . . . , 𝑣𝑘 ∈ 𝐿𝑘 such that for each coordinate 𝑖 ∈ [1, 𝑑] there

exist an index 𝑗 ∈ [1, 𝑘] such that 𝑣𝑗 is zero in coordinate 𝑖 (i.e. 𝑣𝑗[𝑖] = 0) we call these 𝑘 vectors

an orthogonal 𝑘-tuple. One should return true if there is an orthogonal 𝑘-tuple in the input.

Hypothesis 2 (𝑘-OV hypothesis [Vas18]). The 𝑘-OV hypothesis states that the 𝑘-OV problem re-

quires 𝑛𝑘−𝑜(1) time for randomized algorithms.

The 𝑘-OV hypothesis is equivalent to saying no 𝑂(𝑛𝑘−𝜖) time algorithm exists for 𝑘-OV for

constant 𝜖 > 0. Moreover, there is a reduction from 𝑘-CNF SAT to ℓ-OV, for any integers 𝑘 ≥ 3

and ℓ ≥ 2 [Wil05] that shows that 𝑘-OV hypothesis is implied by SETH.

2.3 𝑘-Clique Detection

𝑘-clique detection is simply graph pattern detection when the pattern is a 𝑘-clique: We are

given a host graph and we are asked to see if this graph has a 𝑘-clique as a subgraph.

Following Itai and Rodeh [IR78], Nešetril and Poljak [NP85] showed that a 𝑘-clique can be de-

tected in an 𝑛 node graph 𝐺 asymptotically in time 𝐶(𝑛, 𝑘) := 𝑀(𝑛⌊𝑘/3⌋, 𝑛⌈𝑘/3⌉, 𝑛⌈(𝑘−1)/3⌉), where

𝑀(𝑎, 𝑏, 𝑐) is the fastest known runtime for multiplying an 𝑎× 𝑏 by a 𝑏× 𝑐 matrix. A simple bound

for 𝑀(𝑎, 𝑏, 𝑐) is 𝑀(𝑎, 𝑏, 𝑐) ≤ 𝑎𝑏𝑐/min{𝑎, 𝑏, 𝑐}3−𝜔 where 𝜔 < 2.373 is the exponent of square

matrix multiplication [AV21], but faster algorithms are known (e.g. Le Gall and Urrutia [GU18]).

In particular, 𝐶(𝑛, 𝑘) ≤ 𝑂(𝑛𝜔𝑘/3) when 𝑘 is divisible by 3.

The 𝐶(𝑛, 𝑘) runtime for 𝑘-clique detection has had no improvements in more than 40 years.

Because of this, several papers have hypothesized that the runtime might be optimal for 𝑘-cliques

(and 𝑘-Independent Sets) (e.g. [ABW15, BW17, LWW18]).
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Hypothesis 3 (𝑘-clique Hypothesis). On a word-RAM with 𝑂(log 𝑛) bit words, for every constant

𝑘 ≥ 3, 𝑘-clique requires 𝑛𝜔(⌊𝑘/3⌋,⌈𝑘/3⌉,⌈(𝑘−1)/3⌉)−𝑜(1) time.

Here 𝜔(𝑎, 𝑏, 𝑐) is the exponent of the best running time for multiplying an 𝑛𝑎 × 𝑛𝑏 matrix by

an 𝑛𝑏 × 𝑛𝑐 matrix.

2.4 All Pairs Shortest Paths (APSP)

All Pair Shortest Paths problem takes as input a graph 𝐺 with 𝑛 nodes and 𝑚 edges, with edge

weights in [−𝑅,𝑅] where 𝑅 = 𝑂(𝑛𝑐) for some constant 𝑐. It asks for the length of the shortest

path between any pair of nodes. The length of a path is the sum of the edge weights for all edges

on that path.

APSP can be solved in 𝑂(min{𝑚𝑛+𝑛2 log log 𝑛, 𝑛3/𝑒𝑥𝑝(
√
log 𝑛)}) time [Pet04, Wil14]. For

undirected unweighted graphs, APSP can be solved using matrix multiplication in time 𝑂̃(𝑛𝜔)

[Sei95], where 2 ≤ 𝜔 < 2.373 is the matrix multiplication exponent [AV21]. For directed

unweighted graphs, APSP can be solved in time 𝑂̃(𝑛2.529) [Zwi02] (one can get slightly better

bounds using rectangular matrix multiplication [LU18]). There is a conjecture that we cannot do

better than 𝑛3 time for APSP in weighted directed graphs.

Hypothesis 4 (APSP Hypothsis [WW13]). APSP in weighted directed graphs requires 𝑛3−𝑜(1)

time.
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Chapter 3

Finding Fixed Sized Patterns

This chapter is written with authors Thuy Duong Vuong and Virginia Vassilevska Williams. In this

chapter we consider the pattern detection problem in graphs: given a constant size pattern graph

𝐻 and a host graph 𝐺, determine whether 𝐺 contains a subgraph isomorphic to 𝐻 . We present the

following upper and lower bounds:

• We prove that if a pattern 𝐻 contains a 𝑘-clique subgraph, then detecting whether an 𝑛

node host graph contains a not necessarily induced copy of 𝐻 requires at least the time for

detecting whether an 𝑛 node graph contains a 𝑘-clique. The previous result of this nature

required that 𝐻 contains a 𝑘-clique which is disjoint from all other 𝑘-cliques of 𝐻 .

• We show that if the famous Hadwiger conjecture from graph theory is true, then detecting

whether an 𝑛 node host graph contains a not necessarily induced copy of a pattern with

chromatic number 𝑡 requires at least the time for detecting whether an 𝑛 node graph contains

a 𝑡-clique. This implies that: (1) under Hadwiger’s conjecture for every 𝑘-node pattern 𝐻 ,

finding an induced copy of 𝐻 requires at least the time of
√
𝑘-clique detection and size

𝜔(𝑛
√
𝑘/4) for any constant depth circuit, and (2) unconditionally, detecting an induced copy

of a random 𝐺(𝑘, 𝑝) pattern w.h.p. requires at least the time of Θ(𝑘/ log 𝑘)-clique detection,

and hence also at least size 𝑛Ω(𝑘/ log 𝑘) for circuits of constant depth.

• We show that for every 𝑘, there exists a 𝑘-node pattern that contains a 𝑘 − 1-clique and that
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can be detected as an induced subgraph in 𝑛 node graphs in the best known running time for

𝑘 − 1-Clique detection. Previously such a result was only known for infinitely many 𝑘.

30



3.1 Introduction

One of the most fundamental graph algorithmic problems is Subgraph Isomorphism: given two

graphs 𝐺 = (𝑉,𝐸) and 𝐻 = (𝑉𝐻 , 𝐸𝐻), determine whether 𝐺 contains a subgraph isomorphic to

𝐻 . While the general problem is NP-complete, many applications (e.g. from biology [ADH+08,

PCJ06]) only need algorithms for the special case in which 𝐻 is a small graph pattern, of constant

size 𝑘, while the host graph 𝐺 is large. This graph pattern detection problem is easily in polynomial

time: if 𝐺 has 𝑛 vertices, the brute-force algorithm solves the problem in 𝑂(𝑛𝑘) time, for any 𝐻 .

Two versions of the Subgraph Isomorphism problems are typically considered. The first is

the induced version in which one seeks an injective mapping 𝑓 : 𝑉𝐻 ↦→ 𝑉 so that (𝑢, 𝑣) ∈ 𝐸𝐻

if and only if (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸. The second is the not necessarily induced version where one

seeks an injective mapping 𝑓 : 𝑉𝐻 ↦→ 𝑉 so that if (𝑢, 𝑣) ∈ 𝐸𝐻 then (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸 (however,

if (𝑢, 𝑣) /∈ 𝐸𝐻 , (𝑓(𝑢), 𝑓(𝑣)) may or may not be an edge). It is not hard to show (e.g. via color-

coding) that when 𝑘 is a constant, any algorithm for the induced version can be used to solve the not

necessarily induced one (for the same pattern) in asymptotically the same time, up to logarithmic

factors. In this chapter we consider both of the settings.

3.1.1 Hardness

A standard generalization of a result of Nešetril and Poljak [NP85] shows that the induced

subgraph isomorphism problem for any 𝑘-node pattern 𝐻 in an 𝑛-node host graph can be reduced

in 𝑂(𝑘2𝑛2) time to the 𝑘-Clique (or induced 𝑘-Independent Set (IS)) detection problem in 𝑘𝑛-node

graphs. Thus, for constant 𝑘, 𝑘-Clique and 𝑘-IS are the hardest patterns to detect.

Following Itai and Rodeh [IR78], Nešetril and Poljak [NP85] showed that a 𝑘-Clique (and

hence any induced or not-necessarily induced 𝑘-node pattern) can be detected in an 𝑛 node graph

𝐺 asymptotically in time 𝐶(𝑛, 𝑘) := 𝑀(𝑛⌊𝑘/3⌋, 𝑛⌈𝑘/3⌉, 𝑛⌈(𝑘−1)/3⌉), where 𝑀(𝑎, 𝑏, 𝑐) is the fastest

known runtime for multiplying an 𝑎 × 𝑏 by a 𝑏 × 𝑐 matrix. A simple bound for 𝑀(𝑎, 𝑏, 𝑐) is

𝑀(𝑎, 𝑏, 𝑐) ≤ 𝑎𝑏𝑐/min{𝑎, 𝑏, 𝑐}3−𝜔 where 𝜔 < 2.373 is the exponent of square matrix multipli-

cation [Vas12, Le 14], but faster algorithms are known (e.g. Le Gall and Urrutia [GU18]). In
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particular, 𝐶(𝑛, 𝑘) ≤ 𝑂(𝑛𝜔𝑘/3) when 𝑘 is divisible by 3.

The 𝐶(𝑛, 𝑘) runtime for 𝑘-Clique detection has had no improvements in more than 40 years.

Because of this, several papers have hypothesized that the runtime might be optimal for 𝑘-Cliques

(and 𝑘-Independent Sets) (e.g. [ABW15, BW17, LWW18]).

Meanwhile, for some 𝑘-node patterns 𝐻 that are not Cliques or Independent Sets, specialized

algorithms have been developed that are faster than the 𝐶(𝑛, 𝑘) runtime for 𝑘-Clique. For instance,

if 𝐻 is a 3-node pattern that is not a triangle or an independent set, it can be detected in 𝐺 in

linear time, much faster than the 𝐶(𝑛, 3) = 𝑂(𝑛𝜔) time for 3-Clique/triangle. Following work of

[CPS85, Ola90, EG04, KKM00, KLL13], Vassilevska W. et al. [WWWY15] showed that every

4-node pattern except for the 4-Clique and 4-Independent Set can be detected in 𝐶(𝑛, 3) = 𝑂(𝑛𝜔)

time, much faster than the 𝐶(𝑛, 4) runtime for 4-Clique. Bläser et al. [BKS18] recently showed

that for 𝑘 ≤ 8 there are faster than 𝐶(𝑛, 𝑘) time algorithms for all non-clique non-independent set

𝑘-node patterns; for 𝑘 ≤ 6, their runtime is 𝐶(𝑛, 𝑘 − 1). Independently, we were able to show the

same result, using an approach generalizing ideas from [WWWY15], see section 3.3.

A natural conjecture, consistent with the prior work so far is that for every 𝑘 and every 𝑘-node

pattern 𝐻 that is not a clique or independent set, one can detect it in an 𝑛 node graph in time

𝐶(𝑛, 𝑘 − 1). Blaeser et al. showed that for all 𝑘 of the form 3 · 2ℓ for integer ℓ, there is a 𝑘-node

pattern that (1) is at least as hard to detect as 𝑘 − 1-Clique and (2) can be detected in 𝐶(𝑛, 𝑘 − 1)

time. We show that such a pattern exists for all 𝑘 ≥ 3 (Theorem 3.3.4).

While there exist 𝑘-node patterns that can be detected faster than 𝑘-Clique, it seems unclear

how hard 𝑘-node pattern detection actually is. For instance, it could be that for every 𝑘, there is

some induced pattern on 𝑘-nodes that can be detected in say 𝑛log log(𝑘) time, or even 𝑓(𝑘)𝑛𝑐 time,

where 𝑐 is independent of 𝑘. A Ramsey theoretic result tells us that every 𝑘-node 𝐻 either contains

an Ω(log 𝑘) size clique or an Ω(log 𝑘) size independent set. Hence intuitively, detecting any 𝑘-node

𝐻 in an 𝑛 node graph should be at least as hard as detecting an Ω(log 𝑘) size clique in an 𝑛 node

graph. The widely believed Exponential Time Hypothesis (ETH) [IP01c] is known to imply that

𝑘-Clique cannot be solved in 𝑛𝑜(𝑘) time [CCF+05]. Coupled with the Ramsey result, ETH should

intuitively imply that no matter which 𝑘-node 𝐻 we pick, 𝐻-pattern detection cannot be solved in
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𝑛𝑜(log 𝑘) time.

Unfortunately, however, it is still open whether every pattern that contains a 𝑡-clique is as hard

to detect as a 𝑡-clique (see e.g. [BKS18]1). In general, it is not clear what makes patterns hard to

detect2.

One of the few results related to this is by Floderus et al. [FKLL15] who showed that if a

pattern 𝐻 contains a 𝑡-Clique that is disjoint from all other 𝑡-Cliques in 𝐻 , then 𝐻 is at least as

hard to detect as a 𝑡-Clique. This implied strong clique-based hardness results for induced 𝑘-path

and 𝑘-cycle. However, the reduction of [FKLL15] fails for patterns whose 𝑘-Cliques intersect

non-trivially.

The main difficulty in reducing 𝑘-Clique to the detection problem for other graph patterns 𝐻

can be seen in the following natural attempt used e.g. by [FKLL15]. Say 𝐻 has a 𝑘-clique 𝐾

and let 𝐻 ′ be the graph induced by the vertices of 𝐻 not in 𝐾. Let 𝐺 = (𝑉,𝐸) be an instance

of 𝑘-Clique. We’ll start by creating 𝑘 copies of 𝑉 , 𝑉1, . . . , 𝑉𝑘. For every edge (𝑢, 𝑣) of 𝐺, add

an edge between the copies of 𝑢 and 𝑣 in different parts (This is essentially the Kronecker/Tensor

product of 𝐺 and 𝐾𝑘). Every 𝑘-clique 𝐶 of 𝐺 appears in the new graph 𝑘! times; we’ll say that the

main copy 𝐶 of 𝐶 has the 𝑖th vertex of 𝐶 (in lexicographic order say) appearing in 𝑉𝑖. Now, add

a copy 𝐻̄ ′ of 𝐻 ′, using fresh vertices, and for every edge (ℎ, 𝑖) of 𝐻 with ℎ ∈ 𝐻 ′ and 𝑖 ∈ 𝐾, add

edges from ℎ ∈ 𝐻̄ ′ to all vertices in 𝑉𝑖. This forms the new graph 𝐺′ and guarantees that if 𝐺 has

a 𝑘-clique 𝐶, 𝐺′ contains a copy of 𝐻 which is just 𝐶 together with 𝐻̄ ′.

The other direction of the reduction fails miserably however. If 𝐺′ happens to have a copy of

𝐻 , there is no guarantee that any of the 𝑘-cliques of 𝐻 would have a node from each 𝑉𝑖 and hence

form a clique of 𝐺. As a simple counterexample (Figure 3-1) consider 𝐻 as a 4-Cycle (1, 2, 3, 4)

together with a node 5 that has edges to all nodes of the 4-Cycle. Starting from a graph 𝐺, WLOG

we would pick 𝐾 to be (1, 2, 5) and 𝐻 ′ = 3, 4 and form 𝐺′ as described. Let 𝐻̄ ′ contain the nodes

3̄, 4̄ and let the parts of 𝐺 be 𝑉1, 𝑉2, 𝑉5. Now the reduction graph 𝐺′ might contain a copy of 𝐻

even if 𝐺 has no 3-cliques, as 4̄ could represent 5, and 1, 3 and 2, 4 could be represented by two

1Bläser et al. [BKS18] show that for the particular types of algorithms that they use a pattern that contains a
𝑘-clique cannot be found faster than a 𝑘-clique, and they note that such a result is not known for arbitrary algorithms.

2In contrast, there are almost tight lower bounds for “partitioned subgraph isomorphism”, See [Mar07].
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v0 v1 v2 v3 v0 v1 v2 v3

Figure 3-1: An example of how a simple reduction attempt fails to reduce 3-Clique to 𝐻 . The
edges between the 𝑉𝑖 are determined by the 3-Clique instance.

nodes each in 𝑉1 and 𝑉5 respectively; see Figure 3-1. Hence the copy of 𝐻 wouldn’t use 𝑉2 at all

and doesn’t represent a triangle in 𝐺.

One could try to modify the reduction, say by representing the nodes of 𝐻 ′ by copies of the

vertices of 𝐺, as with 𝐾. However, the same issues arise, and they seem to persist in most natural

reduction attempts.

With an intricate construction, we show how to overcome this difficulty. Our first main theorem

is that patterns that contain 𝑡-cliques are indeed at least as hard as 𝑡-Clique, and in fact we prove it

for the not necessarily induced case which automatically gives a lower bound for the induced case

(Theorem 3.2.1 in the body):

Theorem 3.1.1. Let 𝐺 = (𝑉,𝐸) be an 𝑛-node, 𝑚-edge graph and let 𝐻 be a 𝑘-node pattern such

that 𝐻 has a 𝑡-clique as a subgraph. Then one can construct a new graph 𝐺* of at most 𝑛𝑘 vertices

in 𝑂(𝑘2𝑚 + 𝑘2𝑛) time such that 𝐺* has a not necessarily induced subgraph isomorphic to 𝐻 if

and only if 𝐺 has a 𝑡-clique.

Note that since the not necessarily induced pattern detection can be solved with the induced

version, a lower bound for the not necessarily induced pattern detection gives a lower bound for the

induced version. Since for every 𝑘-node graph 𝐻 , either 𝐻 or its complement contains a clique of

size Ω(log 𝑘), ETH implies that no matter which 𝑘-node 𝐻 we pick, induced 𝐻-pattern detection

cannot be solved in 𝑛𝑜(log 𝑘) time.

Our second theorem shows that some patterns are even harder, as in fact the hardness of a

pattern grows with its chromatic number!

Our theorem relies on the widely believed Hadwiger conjecture [Had57] from graph theory

which roughly states that every graph with chromatic number 𝑡 contains a 𝑡-clique as a minor3.
3𝐻 is called a minor of the graph 𝐺 if 𝐻 can be formed from 𝐺 by deleting edges and vertices and by contracting

edges.
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The Hadwiger conjecture is known to hold for 𝑡 ≤ 6 [RST93] and to almost hold for 𝑡 = 7 [KT05]

(It is equivalent to the 4-Color Theorem for 𝑡 = 5, 6 [RST93, Wag37, RSST97].). It also holds for

almost all graphs [BCE80]. Our lower bound theorem, which also proved for the not necessarily

induced case (Theorem 3.2.2 in the body) is:

Theorem 3.1.2. Let 𝐺 = (𝑉,𝐸) be an 𝑛-node graph and let 𝐻 be a 𝑘-node pattern with chromatic

number 𝑡, for 𝑡 > 1. Then assuming that Hadwiger conjecture is true, one can construct 𝐺* on at

most 𝑛𝑘 vertices in 𝑂(𝑛2𝑘2) time such that 𝐺* has a not necessarily induced subgraph isomorphic

to 𝐻 if and only if 𝐺 has a 𝑡-clique.

This is the first connection between the Hadwiger conjecture and Subgraph Isomorphism, to

our knowledge. Let us see some exciting consequences of this theorem. First, we get that if 𝑡 is

the maximum of the chromatic numbers of 𝐻 and its complement, then an induced 𝐻 is at least as

hard as 𝑡-Clique to detect. Now, it is a simple exercise that the maximum of the chromatic number

of a 𝑘-node graph and its complement is at least
√
𝑘. Thus, every induced 𝐻 on 𝑘-nodes is at least

as hard as
√
𝑘-Clique. There are no easy induced patterns.

Corollary 3.1.1. No matter what 𝑘-node 𝐻 we take, under ETH and the Hadwiger Conjecture, the

induced subgraph isomorphism problem for 𝐻 in 𝑛-node graphs cannot be solved in 𝑛𝑜(
√
𝑘) time.

This is the first result of such generality.

A second consequence comes from circuit complexity. Rossman [Ros08] showed that for any

constant integers 𝑘 and 𝑑, any circuit of depth 𝑑 requires size 𝜔(𝑛𝑘/4) to detect a 𝑘-Clique. Because

of the simplicity of our reduction (it can be implemented in constant depth), we also obtain a circuit

lower bound for induced pattern detection for any 𝐻 node subgraph:

Corollary 3.1.2. Let 𝑑 and 𝑘 be any integer constants. No matter what 𝑘-node 𝐻 we take, under

the Hadwiger Conjecture, any depth 𝑑 circuit for the induced subgraph isomorphism problem for

𝐻 in 𝑛-node graphs requires size 𝜔(𝑛
√
𝑘/4).

A third consequence is that in fact almost all 𝑘-node induced patterns are very hard – at least

as hard as Θ(𝑘/ log 𝑘)-Clique. Consider an Erdös-Renyi graph 𝐻 from 𝐺(𝑘, 𝑝) for constant 𝑝. It
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is known [BCE80] that the Hadwiger conjecture holds for 𝐻 with high probability. Moreover, the

chromatic number of such graphs (and their complements) is with high probability Θ(𝑘/ log 𝑘)

[Bol88]; meanwhile the clique and independent set size is only 𝑂(log 𝑘). Thus our chromatic

number theorem significantly strengthens our first theorem.

Corollary 3.1.3. For almost all 𝑘-node patterns 𝐻 , under ETH, induced 𝐻 detection in 𝑛 node

graphs cannot be done in 𝑛𝑜(𝑘/ log 𝑘) time.

We also immediately obtain, via Rossman’s lower bound, that for almost all 𝑘-node patterns

𝐻 , any constant depth circuit that can detect an induced 𝐻 requires size 𝑛Ω(𝑘/ log 𝑘).

Related Work. Vassilevska [Vas08b] showed that 𝐾𝑘 − 𝑒 (a 𝑘-clique missing an edge) can be

found in 𝑂(𝑛𝑘−1) time without using fast matrix multiplication, whereas the fastest algorithms for

𝑘-Clique without fast matrix multiplication run in 𝑂(𝑛𝑘/ log𝑘−1 𝑛) time [Vas09]; this was recently

improved by Bläser et al. [BKS18] who showed that every 𝑘 node pattern except the 𝑘-Clique and

𝑘-Independent Set can be detected in time 𝑂(𝑛𝑘−1). Before this, Floderus et al. [FKLL13] showed

that 5 node patterns4 can be found in 𝑂(𝑛4) time, again without using fast matrix multiplication.

Some other related work includes improved algorithms for subgraph detection when 𝐺 has

special structure (e.g. [KL17] and [FLR+12]). Other work counts the number of occurrences

of a pattern in a host graph (e.g. [KLL13, WW13, CDM17]). Finally, there is some work on

establishing conditional lower bounds. Floderus et al. [FKLL15] produced reductions from 𝑘-

Clique (or 𝑘-Independent Set) to the detection problem of ℓ-patterns for ℓ > 𝑘 (but still linear in

𝑘). They show for instance that finding an induced 𝑘-path is at least as hard as finding an induced

𝑘/2-independent set. Lincoln et al. [LWW18] give conditional lower bounds for not-necessarily

induced directed 𝑘-cycle detection. For instance, they show that if 𝑘-Clique requires essentially

𝐶(𝑛, 𝑘) time, then finding a directed 𝑘-Cycle in an 𝑚 edge graph requires 𝑚2𝜔𝑘/(3(𝑘+1))−𝑜(1) time.

This lower bound is lower than the upper bounds in this chapter, but they do show that superlinear

time is likely needed.

Detecting 𝑘-Cycles in undirected graphs is an easier problem, when 𝑘 is an even constant.

4All patterns except for 𝐾5, 𝐾4+𝑒, (3, 2)−fan, gem, house, butterfly, bull, 𝐶5, 𝐾1,4, 𝐾2,3 and their complements;
for these subgraphs the fastest runtime remained 𝐶(𝑛, 5) ≤ 𝑂(𝑛4.09).
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Yuster and Zwick [YZ94] showed that a 𝑘-Cycle in an undirected graph can be detected (and

found) in 𝑂(𝑛2) time for all even constants 𝑘. Dahlgaard et al. [DKS17] extended this result

showing that 𝑘-Cycles for even 𝑘 in 𝑚-edge graphs can be found in time 𝑂̃(𝑚2𝑘/(𝑘+1)). Their

result implies that of [YZ94], as by a result of Bondy and Simonovits [BS74], any 𝑛 node graph

with ≥ 100𝑘𝑛1+1/𝑘 edges must contain a 2𝑘-Cycle. When 𝑘 is an odd constant, the 𝑘-Cycle

problems in undirected and directed graphs are equivalent (see e.g. [Vas08b]).

3.1.2 Organization of the chapter

We start by providing lower bounds for detecting small subgraphs in Section 3.2. In Section

3.3, we provide our algorithms for the induced pattern detection. We first introduce a technique

for detecting any 𝑘-node pattern that is not a clique or independent set in time 𝐶(𝑛, 𝑘 − 1). Using

this technique in Subsection 3.3.5, we show that there is a 𝑘-node pattern that can be detected in

𝐶(𝑛, 𝑘 − 1) time in an 𝑛-node graph for all 𝑘.

3.2 Lower bounds

In this section we consider the problem of detecting and finding a (not necessarily induced)

copy of a given small pattern graph 𝐻 in a host graph 𝐺 (we assume 𝐺 and 𝐻 are simple graphs

with no self-loops). This is the variant of subgraph isomorphism in which the pattern 𝐻 is fixed,

on a constant 𝑘 number of vertices, and 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛 is given as an input. We focus

on the hardness of this problem: we show that any fixed pattern that has a 𝑡-clique as a subgraph, is

not easier to detect as a subgraph than a 𝑡-clique, formally stated as Theorem 3.2.1. First, we start

by an easier case of the theorem where the pattern is 𝑡-chromatic to depict the main idea of our

proof and then we proceed with the proof of the theorem for all patterns. Recall that a proper vertex

coloring of a graph is an assignment of colors to each of its vertices such that no edge connects two

identically colored vertices. If the set of colors is of size 𝑐, we say that the graph is 𝑐-colorable.

The chromatic number of a graph is the smallest number 𝑐 for which the graph is 𝑐-colorable, and

we call such graph 𝑐-chromatic. In the second part of this section, we prove a stronger lower bound

using Hadwiger conjecture, showing that under this conjecture any 𝑡-chromatic pattern is not easier
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to detect as a subgraph than a 𝑡-clique.

Theorem 3.2.1. Let 𝐺 = (𝑉,𝐸) be an 𝑛-node 𝑚-edge graph and let 𝐻 be a 𝑘-node pattern

such that 𝐻 has a 𝑡-clique as a subgraph. Then one can construct 𝐺* on at most 𝑛𝑘 vertices in

𝑂(𝑘2𝑚 + 𝑘2𝑛) time such that 𝐺* has a not necessarily induced subgraph isomorphic to 𝐻 if and

only if 𝐺 has a 𝑡-clique.

More specifically, we show that if 𝐺 has a 𝑡-clique then 𝐺* has an “induced” subgraph iso-

morphic to 𝐻 , and if 𝐻 has a “not necessarily induced" subgraph isomorphic to 𝐻 , then 𝐺 has a

𝑡-clique.

3.2.1 Simple case: 𝑡-Chromatic patterns

We show Theorem 3.2.1 when 𝐻 is 𝑡-chromatic in addition to having a 𝑡-clique as a subgraph.

Construct the new graph 𝐺* as follows: For each 𝑣 ∈ 𝐻 , let 𝐺𝑣 be a copy of the vertices of 𝐺 as an

independent set. For any two vertices 𝑣 and 𝑢 in 𝐻 where 𝑣𝑢 is an edge, add the following edges

between vertex sets 𝐺𝑣 and 𝐺𝑢: for each 𝑤1 and 𝑤2 in 𝐺, add an edge between the copy of 𝑤1 in

𝐺𝑣 and the copy of 𝑤2 in 𝐺𝑢 if and only if 𝑤1𝑤2 is an edge in 𝐺. So 𝐺* has 𝑛𝑘 vertices and since

for each pair of vertices 𝑢, 𝑣 ∈ 𝐻 we have at most 𝑚 edges between 𝐺𝑢 and 𝐺𝑣, the construction

time is at most 𝑂(𝑘2𝑚+ 𝑘𝑛).

Now we show that 𝐺 has a 𝑡-clique as a subgraph if and only if 𝐺* has 𝐻 as a subgraph. First

suppose that 𝐺 has a 𝑡-clique, say 𝑇 = 𝑣1, . . . , 𝑣𝑡. Consider a 𝑡-coloring of the vertices of 𝐻 , with

colors 1, . . . , 𝑡. For each 𝑤 ∈ 𝐻 , pick 𝑣𝑖 from 𝐺𝑤 if 𝑤 is of color 𝑖. Call the induced subgraph on

these vertices 𝐻*. We show that 𝐻* is isomorphic to 𝐻: map each 𝑤 ∈ 𝐻 to the vertex picked

from 𝐺𝑤 in 𝐺*. If 𝑤 and 𝑤′ are adjacent in 𝐻 , then their colors are different, so the vertices that

are picked from 𝐺𝑤 and 𝐺𝑤′ are different vertices of 𝐺, and they are part of the clique 𝑇 , so they

are adjacent. If 𝑤 and 𝑤′ are not adjacent, we don’t have any edges between 𝐺𝑤 and 𝐺𝑤′ , so the

vertices picked from them are not adjacent.

For the other direction, we show that if 𝐺* has 𝐻 as a subgraph then 𝐺 has a 𝑡-clique. Since

𝐻 has a 𝑡-clique as a subgraph, 𝐺* also has a 𝑡-clique as a subgraph. Suppose the vertices of this

clique are 𝑊 = {𝑤1, . . . , 𝑤𝑡} where 𝑤𝑖 is a copy of 𝑣𝑖 ∈ 𝐺. Each pair of vertices of the clique are
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in different copies of 𝐺, as these copies are independent sets. Moreover, for each 𝑖, 𝑗 ∈ {1, . . . , 𝑡},

since 𝑤𝑖 and 𝑤𝑗 are adjacent, they correspond to different vertices in 𝐺, so 𝑣𝑖 ̸= 𝑣𝑗 . Since we

connect two vertices in 𝐺* if their corresponding vertices in 𝐺 are connected, this means that 𝑣𝑖

and 𝑣𝑗 are connected in 𝐺. So 𝑣1, . . . , 𝑣𝑡 form a 𝑡-clique in 𝐺.

3.2.2 General case

Define a 𝑡-clique covering of a pattern 𝐻 to be a collection 𝒞 of sets of vertices of 𝐻 , such that

the induced subgraph on each set is 𝑡-colorable, and for any 𝑡-clique 𝑇 of 𝐻 , there is a set in 𝒞 that

contains all the vertices of 𝑇 . For example, in Figure 3-2, the graph 𝐻𝑒𝑥 has the following 3-clique

covering of size 2: {{𝑎1, 𝑎2, 𝑎3, 𝑎6}, {𝑎3, 𝑎4, 𝑎5, 𝑎1, 𝑎6}}.

For each 𝐻 we have at least one 𝑡-clique covering by considering the vertices of each 𝑡-clique

of 𝐻 as one set. However we are interested in the smallest collection 𝒞. So for a fixed 𝑡, we

define 𝑝(𝐻) to be the smallest integer 𝑟 ≥ 1, such that there is a 𝑡-clique covering of 𝐻 of size

𝑟. We call a 𝑡-clique covering of size 𝑝(𝐻) a minimum 𝑡-clique covering. For example, if 𝐻 is

𝑡-colorable, 𝑝(𝐻) = 1 as the whole vertex set is the only set that the 𝑡-clique covering has. If 𝐻 is

not 𝑡-colorable but has a 𝑡-clique, then 𝑝(𝐻) > 1. Note that when 𝐻 has size 𝑘 for a constant 𝑘,

we can assume that finding a minimum 𝑡-clique covering for 𝐻 takes constant time. One simple

(and not very efficient) approach is to first list all the 𝑡-cliques of 𝐻 , and then look at all the ways

one can partition this list into subsets. For each partition, check whether the induced subgraph on

these subsets is 𝑡-colarable. Call the partitions with this property valid, and take the valid partition

with the least number of subsets.

Proof of Theorem 3.2.1. Let 𝒞 = {𝐶1, . . . , 𝐶𝑟} be a minimum 𝑡-clique covering of 𝐻 , where

𝑟 = 𝑝(𝐻). The vertex set of the new graph 𝐺* is the following: For each vertex 𝑣 ∈ 𝐶1, let 𝐺𝑣 be

a copy of the vertices of 𝐺 as an independent set. For each vertex 𝑣 ∈ 𝑉 (𝐻) ∖𝐶1, let 𝑣* be a copy

of 𝑣 in 𝐺*. The edge set of 𝐺* is as follows: For each two vertices 𝑣, 𝑢 ∈ 𝐶1 that 𝑢𝑣 is an edge in

𝐻 , add the following edges between 𝐺𝑣 and 𝐺𝑢: for each 𝑤1 and 𝑤2 in 𝐺, add an edge between

the copy of 𝑤1 in 𝐺𝑣 and the copy of 𝑤2 in 𝐺𝑢 if and only if 𝑤1𝑤2 is an edge in 𝐺. For each two

vertices 𝑢 ∈ 𝐶1 and 𝑣 ∈ 𝑉 (𝐻) ∖ 𝐶1 that 𝑢𝑣 is an edge in 𝐻 , connect 𝑣* to all the vertices in 𝐺𝑢.
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Figure 3-2: Graph 𝐻𝑒𝑥 on the left. The largest clique of this graph is a triangle. 𝐻𝑒𝑥 is 4-
chromatic, so 𝑝(𝐻𝑒𝑥) > 1. We have 𝑝(𝐻𝑒𝑥) = 2, as a minimum 3-clique covering for it is
{{𝑎1, 𝑎2, 𝑎3, 𝑎6}, {𝑎3, 𝑎4, 𝑎5, 𝑎1, 𝑎6}}. The graph 𝐺* is on the right, thick edges represent the way
the edges are specified according to 𝐸(𝐺) between two copies of 𝐺.

For each two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐻) ∖ 𝐶1 that 𝑢𝑣 is an edge in 𝐻 , connect 𝑢* and 𝑣*. The way 𝐺*

is constructed is shown in Figure 3-2 for the particular pattern 𝐻𝑒𝑥 with maximum clique 3.

The number of nodes in 𝐺* is |𝐶1| · |𝑉 (𝐺)| + |𝑉 (𝐻) ∖ 𝐶1| ≤ |𝑉 (𝐻)| · |𝑉 (𝐺)| = 𝑛𝑘. The

number of edges between 𝐺𝑣 and 𝐺𝑢 for some 𝑢, 𝑣 ∈ 𝐶1 is at most 𝑚, and the number of edges

between any 𝑣* and 𝐺𝑢 for 𝑢 ∈ 𝐶1 and 𝑣 /∈ 𝐶1 is at most 𝑛. The rest of the edges are at most 𝑘2

many, so in total we have 𝑂(𝑘2𝑚+𝑘2𝑛+𝑘2) = 𝑂(𝑘2𝑚+𝑘2𝑛) many edges. Note that since finding

the minimum 𝑡-clique covering takes constant time (because 𝑘 is a constant) the construction time

is also 𝑂(𝑘2𝑚+ 𝑘2𝑛).

Now we show that 𝐺 has a 𝑡-clique as a subgraph if and only if 𝐺* has 𝐻 as a subgraph. First

suppose that 𝐺 has a 𝑡-clique, say 𝑣1, . . . , 𝑣𝑡. Consider a 𝑡-coloring of vertices of 𝐶1, with colors

1, . . . , 𝑡. Let 𝐻* be the subgraph on the following vertices in 𝐺*: for each 𝑤 ∈ 𝐶1, pick 𝑣𝑖 from

𝐺𝑤 if 𝑤 is of color 𝑖. For each 𝑤 ∈ 𝑉 (𝐻) ∖𝐶1, pick 𝑤*. We show that 𝐻 is isomorphic to 𝐻*: for

each 𝑤 ∈ 𝐶1, map 𝑤 to the vertex picked from 𝐺𝑤, and for each 𝑤 ∈ 𝑉 (𝐻) ∖ 𝐶1, map 𝑤 to 𝑤*.

If 𝑤, 𝑢 ∈ 𝐶1 such that 𝑤𝑢 ∈ 𝐸(𝐻), then their colors are different in the 𝑡-coloring of 𝐶1, and so

the vertices that are picked from 𝐺𝑤 and 𝐺𝑢 are different vertices of 𝐺 and part of the 𝑡-clique of

𝐺, so they are adjacent. If 𝑤𝑢 is not an edge, then there is no edge between 𝐺𝑤 and 𝐺𝑢. If 𝑤 ∈ 𝐶1

and 𝑢 ∈ 𝑉 (𝐻) ∖𝐶1 and 𝑤𝑢 is an edge in 𝐻 , then 𝑢* is adjacent to all vertices in 𝐺𝑤 including the

vertex that is picked from 𝐺𝑤 for 𝐻*. If 𝑤𝑢 is not an edge, then there is no edge between 𝑢* and
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𝐺𝑤. If 𝑤, 𝑢 ∈ 𝑉 (𝐻) ∖ 𝐶1, then 𝑢*, 𝑤* are both picked in 𝐻* and they are adjacent in 𝐺* if and

only if 𝑤 and 𝑢 are adjacent in 𝐻 .

For the other direction, we show that if 𝐺* has a subgraph 𝐻* isomorphic to 𝐻 , then 𝐺 has a

𝑡-clique. Let 𝑆1 = ∪𝑣∈𝐶1𝐺𝑣. First suppose that 𝐻* has a 𝑡-clique 𝑇 using vertices in 𝑆1. Since

for each 𝑣 ∈ 𝐶1, 𝐺𝑣 is an independent set, no two vertices of 𝑇 are in the same 𝐺𝑣. So there are 𝑡

vertices of 𝐻 , 𝑣1, . . . , 𝑣𝑡 such that 𝑇 has a vertex in each 𝐺𝑣𝑖 . Let this vertex be a copy of 𝑤𝑖 ∈ 𝐺.

Since for each 𝑖, 𝑗 ∈ {1, . . . , 𝑡}, 𝑖 ̸= 𝑗, the copies of 𝑤𝑖 and 𝑤𝑗 are adjacent in 𝐺*, we have that

𝑤𝑖 ̸= 𝑤𝑗 and they are adjacent in 𝐺. So {𝑤1, . . . , 𝑤𝑡} form a 𝑡-clique in 𝐺.

So assume that the induced subgraph on 𝑉 (𝐻*) ∩ 𝑆1 in 𝐺* has no 𝑡-clique. As 𝑆1 has all

the vertices in 𝐺* that correspond to the vertices in 𝐶1, we define similar sets for other 𝐶𝑖s. For

𝑖 ∈ {2, . . . , 𝑝(𝐻)}, let 𝑆 ′𝑖 = ∪𝑣∈𝐶𝑖∩𝐶1𝐺𝑣, 𝑆 ′′𝑖 = ∪𝑣∈𝐶𝑖∖𝐶1𝑣
* and 𝑆𝑖 = 𝑆 ′𝑖 ∪ 𝑆 ′′𝑖 . First note that the

induced subgraph on 𝑆𝑖 is 𝑡-colorable: Consider the 𝑡-coloring of 𝐶𝑖. For each 𝑣 ∈ 𝐶𝑖 ∖ 𝐶1, color

𝑣* the same as 𝑣. For each 𝑣 ∈ 𝐶𝑖 ∩ 𝐶1, color all vertices in 𝐺𝑣 the same as 𝑣.

Now we show that any 𝑡-clique in 𝐻* is in one of the sets 𝑆2, . . . , 𝑆𝑝(𝐻). This means that the

collection {𝑆2 ∩ 𝑉 (𝐻*), . . . , 𝑆𝑝(𝐻) ∩ 𝑉 (𝐻*)} is a 𝑡-clique covering for 𝐻* (and thus for 𝐻) with

size 𝑝(𝐻) − 1, which is a contradiction. Consider a 𝑡-clique 𝑇 = 𝑣1, . . . , 𝑣𝑡 in 𝐻*. Each 𝑣𝑖 is in

one of the copies of 𝐺 or is a copy of a vertex in 𝐻 . So for each 𝑣𝑖, there is some vertex 𝑤𝑖 ∈ 𝐻 ,

such that 𝑣𝑖 ∈ 𝐺𝑤𝑖
and 𝑤𝑖 ∈ 𝐶1 if 𝑣𝑖 ∈ 𝑆1, or 𝑣𝑖 = 𝑤*𝑖 and 𝑤𝑖 /∈ 𝐶1 if 𝑣𝑖 /∈ 𝑆1. Since for each

𝑖, 𝑗, 𝑣𝑖 and 𝑣𝑗 are adjacent in 𝐺*, this means that 𝑤𝑖 and 𝑤𝑗 are different vertices in 𝐻 and they are

adjacent. So 𝑊 = {𝑤1, . . . , 𝑤𝑡} form a clique in 𝐻 . Since 𝑇 ̸⊆ 𝑆1, WLOG we can assume that

𝑣1 /∈ 𝑆1. So 𝑤1 /∈ 𝐶1. So the 𝑡-clique 𝑊 is not in 𝐶1, and so it is in 𝐶𝑖, for some 2 ≤ 𝑖 ≤ 𝑝(𝐻).

Hence, 𝑇 ⊆ 𝑆𝑖. □

Corollary 3.2.1. Let 𝐻 be a 𝑘-node pattern that has a 𝑡-clique or a 𝑡-independent set as a sub-

graph. Then the problem of finding 𝐻 as an induced subgraph in an 𝑛-node graph is at least as

hard as finding a 𝑡-clique in an 𝑂(𝑛)-node graph.
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3.2.3 A Stronger Lower Bound

One of the oldest conjectures in graph theory is Hadwiger conjecture which introduces a certain

structure for 𝑡-chromatic graphs. Assuming that this conjecture is true, we show that any fixed

pattern with chromatic number 𝑡 is not easier to detect as an induced subgraph than a 𝑡-clique.

This strengthens the previous lower bound because the size of the maximum clique of a pattern is

at most its chromatic number, and moreover there are graphs with maximum clique of size two but

large chromatic number.

Conjecture 1 (Hadwiger’s Conjecture). Let 𝐻 be a graph with chromatic number 𝑡. Then one

can find 𝑡 disjoint connected subgraphs of 𝐻 such that there is an edge between every pair of

subgraphs.

Contracting the edges within each of these subgraphs so that each subgraph collapses to a single

vertex produces a 𝑡-clique as a minor of 𝐻 . This is the property we are going to use to show that

𝐻 is at least as hard to detect as a 𝑡-clique. Our main theorem is as follows.

Theorem 3.2.2. Let 𝐺 = (𝑉,𝐸) be an 𝑛-node graph and let 𝐻 be a 𝑘-node 𝑡-chromatic pattern,

for 𝑡 > 1. Then assuming that Hadwiger conjecture is true, one can construct 𝐺* on at most 𝑛𝑘

vertices in 𝑂(𝑛2𝑘2) time such that 𝐺* has a (not necessarily induced) subgraph isomorphic to 𝐻

if and only if 𝐺 has a 𝑡-clique.

To prove Theorem 3.2.2, we use a similar approach as Theorem 3.2.1. The approach of Theo-

rem 3.2.1 is covering the maximum cliques of the pattern by a collection of subgraphs. However,

since in Theorem 3.2.2 the pattern doesn’t necessarily have a 𝑡-clique, we cover another particu-

lar subgraph of the pattern, and hence we introduce a similar notion as 𝑡-clique covering for this

subgraph.

Let 𝐹 be a graph with a vertex (not necessarily proper) coloring 𝐶 : 𝑉 (𝐹 ) → {1, . . . , 𝑡}.

We say that 𝐹 has a 𝐾𝑡 minor with respect to the coloring 𝐶 if the vertices of each color induce a

connected subgraph and for every color there is an edge from one of the vertices of that color to one

of the vertices of every other color. For example, in Figure 3-2, consider the following coloring for
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𝐻𝑒𝑥: 𝐶𝑒𝑥 : {𝑎1, . . . , 𝑎6} → {1, . . . , 4}, where 𝐶𝑒𝑥(𝑎1) = 𝐶𝑒𝑥(𝑎2) = 1, 𝐶𝑒𝑥(𝑎3) = 𝐶𝑒𝑥(𝑎4) = 2,

𝐶𝑒𝑥(𝑎5) = 3 and 𝐶𝑒𝑥(𝑎6) = 4. Clearly 𝐻𝑒𝑥 has a 𝐾4 minor with respect to the coloring 𝐶𝑒𝑥.

Let 𝐹 and 𝐻 be two fixed graphs, where 𝐹 is 𝑡-chromatic. We say that 𝐻 is (𝐾𝑡, 𝐹 ) minor

colorable if there is a (not necessarily proper) coloring 𝐶 : 𝑉 (𝐻) → {1, . . . , 𝑡} such that any

induced copy of 𝐹 in 𝐻 has a 𝐾𝑡 minor with respect to 𝐶. For example, in Figure 3-3, the graph

𝐻 ′𝑒𝑥 has graph 𝐻𝑒𝑥 (Figure 3-2) as a 4-chromatic subgraph, and it is (𝐾4, 𝐻𝑒𝑥) minor colorable:

There are exactly two copies of 𝐻𝑒𝑥 in 𝐻 ′𝑒𝑥, one with vertex set {𝑎1, . . . , 𝑎6} and one with vertex

set {𝑎1, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8}, and both have a 𝐾4 minor with respect to the coloring given in Figure 3-

3. Note that minor colorability is different from colorability and the chromatic number of a graph:

recall that a graph is 𝑐-colarable for an integer 𝑐 if the graph has a proper coloring using 𝑐 colors

and the graph is 𝑐-chromatic (its chromatic number is 𝑐) if 𝑐 is the smallest integer such that the

graph is 𝑐-colorable.

Let 𝐻 be a pattern and let 𝐹 be a 𝑡-chromatic subgraph of 𝐻 . As a generalization to a 𝑡-clique

covering of 𝐻 , we define an 𝐹 -covering of 𝐻 to be a collection 𝒞 of sets of vertices of 𝐻 , such that

the induced subgraph of each set is (𝐾𝑡, 𝐹 ) minor colorable, and each (not necessarily induced)

copy of 𝐹 is completely inside one of the sets in 𝒞.

For any graph 𝐻 , we have at least one 𝐹 -covering by considering the vertices of each (not

necessarily induced) copy of 𝐹 as one set where the (𝐾𝑡, 𝐹 ) minor colorablitiy of each set comes

from Conjecture 1. Similar to 𝑡-clique coverings we are interested in the smallest collection 𝒞

among all 𝐹 -coverings. So for a fixed number 𝑡 and a 𝑡-chromatic subgraph 𝐹 of 𝐻 , we define

𝑝𝐹 (𝐻) to be the smallest integer 𝑟 ≥ 1, such that there is an 𝐹 -covering of 𝐻 of size 𝑟. We call

an 𝐹 -covering of size 𝑝𝐹 (𝐻) a minimum 𝐹 -covering. Note that 𝑝𝐾𝑡(𝐻) = 𝑝(𝐻). For example, in

Figure 3-3, 𝑝𝐻𝑒𝑥(𝐻
′
𝑒𝑥) = 1, according to the coloring given in the figure. Note that similar to the

𝑡-clique covering, we can find a minimum 𝐹 -covering in constant time if the size of 𝐻 is constant

by a brute-force argument.

Now we are ready to prove Theorem 3.2.2.

Proof of Theorem 3.2.2. We are going to mimic the proof of Theorem 3.2.1, and so we are

going to carefully choose a subgraph 𝐹 and consider the minimum 𝐹 -covering of it.
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Figure 3-3: The 4-chromatic graph 𝐻 ′𝑒𝑥 on the left side has the coloring 𝐶 ′𝑒𝑥 which makes it
(𝐾4, 𝐻𝑒𝑥) minor colorable: 𝐶 ′𝑒𝑥(𝑎1) = 𝐶 ′𝑒𝑥(𝑎2) = 𝐶 ′𝑒𝑥(𝑎7) = 1, 𝐶 ′𝑒𝑥(𝑎3) = 𝐶 ′𝑒𝑥(𝑎4) = 𝐶 ′𝑒𝑥(𝑎8) =
2, 𝐶 ′𝑒𝑥(𝑎5) = 3, 𝐶 ′𝑒𝑥(𝑎6) = 4. On the right side we show how 𝐺* is constructed as it is described
in the proof of Theorem 3.2.2. The double edges indicate a matching where nodes that are copy of
the same vertex in 𝐺 are connected. The thick edges represent the way we add edges according to
𝐸(𝐺).

Let 𝑧 be the largest integer such that every (𝑧 − 1)-node subgraph of 𝐻 is 𝑡− 1 colorable. Let

𝐹 be a 𝑡-chromatic subgraph of 𝐻 on 𝑧 nodes with maximum number of edges. Note that 𝐹 is

an induced subgraph of 𝐻 . In Figure 3-3, 𝐻 = 𝐻 ′𝑒𝑥 is 4-chromatic and one can check that any

subgraph on 5 vertices or less is 3 colorable. In this graph 𝑧 = 6 and 𝐹 = 𝐻𝑒𝑥.

Now suppose that 𝒞 = {𝐶1, . . . , 𝐶𝑟} is a minimum 𝐹 -covering of 𝐻 , where 𝑟 = 𝑝𝐹 (𝐻). Let

𝑓 : 𝐶1 → {1, . . . , 𝑡} be a (𝐾𝑡, 𝐹 ) minor coloring of 𝐶1. Define the vertex set of 𝐺* as follows: For

each vertex 𝑣 ∈ 𝐶1, let 𝐺𝑣 be a copy of 𝐺 as an independent set. For each vertex 𝑣 ∈ 𝑉 (𝐻)∖𝐶1, let

𝑣* be a copy of 𝑣 in 𝐺*. The edge set of 𝐺* is as follows: For each pair of vertices 𝑢, 𝑣 ∈ 𝐶1, if 𝑢𝑣

is not an edge in 𝐻 we don’t add any edges between 𝐺𝑢 and 𝐺𝑣. If 𝑢𝑣 is an edge and 𝑓(𝑢) = 𝑓(𝑣),

then add the following edges between 𝐺𝑢 and 𝐺𝑣: For each 𝑤 ∈ 𝐺, add an edge between the copy

of 𝑤 in 𝐺𝑢 and the copy of 𝑤 in 𝐺𝑣 (So we have a complete matching between 𝐺𝑢 and 𝐺𝑣). If 𝑢𝑣

is an edge and 𝑓(𝑢) ̸= 𝑓(𝑣), then add the following edges between 𝐺𝑢 and 𝐺𝑣: for each 𝑤1 and 𝑤2

in 𝐺, add an edge between the copy of 𝑤1 in 𝐺𝑢 and the copy of 𝑤2 in 𝐺𝑣 if and only if 𝑤1𝑤2 is an

edge in 𝐺. For each pair of vertices 𝑢 ∈ 𝐶1 and 𝑣 ∈ 𝑉 (𝐻) ∖ 𝐶1 such that 𝑢𝑣 is an edge in 𝐻 , add

an edge between 𝑣* and all vertices in 𝐺𝑢. For each pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝐻) ∖𝐶1 such that 𝑢𝑣

is an edge in 𝐻 , add an edge between 𝑢* and 𝑣* in 𝐺*. In Figure 3-3, 𝐻 ′𝑒𝑥 has a 𝐻𝑒𝑥-covering of

size 1 which is the whole graph. On the right side of the figure we show how 𝐺* is constructed.
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The number of nodes in 𝐺* is |𝐶1|·|𝑉 (𝐺)|+|𝑉 (𝐻)∖𝐶1| ≤ |𝑉 (𝐻)|·|𝑉 (𝐺)| = 𝑛𝑘. The number

of edges between 𝐺𝑣 and 𝐺𝑢 for some 𝑢, 𝑣 ∈ 𝐶1 is at most max (𝑚,𝑛), where 𝑚 is the number of

edges of 𝐺. The number of edges between any 𝑣* and 𝐺𝑢 for 𝑢 ∈ 𝐶1 and 𝑣 /∈ 𝐶1 is at most 𝑛. The

rest of the edges are at most 𝑘2 many, so in total we have 𝑂(𝑘2𝑚 + 𝑘2𝑛 + 𝑘2) = 𝑂(𝑘2𝑚 + 𝑘2𝑛)

many edges. Note that finding 𝑧 and 𝐹 takes constant time by a brute-force argument on all

the subgraphs of 𝐻 . Since finding the minimum 𝐹 -covering takes constant time (because 𝑘 is a

constant) the construction time is also 𝑂(𝑘2𝑚+ 𝑘2𝑛) ≤ 𝑂(𝑛2𝑘2).

Now we show that 𝐺 has a 𝑡-clique as a subgraph if and only if 𝐺* has 𝐻 as a subgraph.

First, suppose that 𝐺 has a 𝑡-clique, say 𝑇 = 𝑣1, . . . , 𝑣𝑡. Let 𝐻* be the induced subgrpah on the

following vertices in 𝐺*: for each 𝑤 ∈ 𝐶1, pick 𝑣𝑖 from 𝐺𝑤 if 𝑓(𝑤) = 𝑖. For each 𝑤 ∈ 𝑉 (𝐻)∖𝐶1,

pick 𝑤*. We show that 𝐻 is isomorphic to 𝐻*: for each 𝑤 ∈ 𝐶1, map 𝑤 to the vertex picked from

𝐶𝑤, and for each 𝑤 ∈ 𝑉 (𝐻) ∖ 𝐶1, map 𝑤 to 𝑤*. If 𝑢,𝑤 ∈ 𝐶1 and they are not adjacent, then there

is no edge between 𝐺𝑢 and 𝐺𝑤. If 𝑢𝑤 is an edge in 𝐻 , then if 𝑓(𝑢) = 𝑓(𝑤) = 𝑖, we picked 𝑣𝑖

from both 𝐺𝑢 and 𝐺𝑤 and hence there are adjacent (note that in this case the edges between 𝐺𝑢

and 𝐺𝑤 form a complete matching). If 𝑓(𝑢) ̸= 𝑓(𝑤), then the vertices that we picked from 𝐺𝑢 and

𝐺𝑤 are copies of different vertices of the clique 𝑇 , and so they are adjacent in 𝐺*. If 𝑢 ∈ 𝐶1 and

𝑤 ∈ 𝑉 (𝐻) ∖ 𝐶1 and 𝑢𝑤 is an edge in 𝐻 , then 𝑤* is adjacent to all vertices in 𝐺𝑢, so it is adjacent

to the vertex chosen from 𝐺𝑢 for 𝐻*. If 𝑢𝑤 is not an edge, then there is no edge between 𝑤* and

𝐺𝑢. If 𝑢,𝑤 ∈ 𝑉 (𝐻) ∖ 𝐶1, then 𝑢* and 𝑤* are connected in 𝐻* if and only if 𝑢𝑤 are connected in

𝐻 .

For the other direction, we show that if 𝐺* has a (not necessarily induced) subgraph 𝐻* iso-

morphic to 𝐻 , then 𝐺 has a 𝑡-clique. Let 𝑆1 = ∪𝑣∈𝐶1𝐺𝑣. First suppose that 𝐻* has a copy of 𝐹

in 𝑆1. Let the vertices of this copy be 𝑤1, . . . , 𝑤𝑧. For each 𝑤𝑖 there is a vertex 𝑣𝑖 ∈ 𝐻 such that

𝑤𝑖 ∈ 𝐺𝑣𝑖 . Now if for some 𝑖 ̸= 𝑗, 𝑣𝑖 = 𝑣𝑗 , then the induced subgraph on {𝑣1, . . . , 𝑣𝑧} has less than

𝑧 vertices, so it is 𝑡 − 1 colorable (using proper coloring). Now if we color 𝑤𝑖 the same color as

𝑣𝑖, we get a proper coloring of this copy of 𝐹 with 𝑡 − 1 colors, a contradiction to the chromatic

number of 𝐹 . So for each 𝑖 ̸= 𝑗, 𝑣𝑖 ̸= 𝑣𝑗 . Now we show that the induced subgraph on {𝑣1, . . . , 𝑣𝑧}

in 𝐻 is isomorphic to 𝐹 . Call this subgraph 𝐹 ′. We just showed that |𝑉 (𝐹 ′)| = 𝑧. Since there
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is no edge between 𝐺𝑣𝑖 and 𝐺𝑣𝑗 if 𝑣𝑖 and 𝑣𝑗 are not connected, we have that 𝐹 is a subgraph of

𝐹 ′, and so 𝐹 ′ is not 𝑡 − 1 colorable, and since it is a subgraph of 𝐻 , it is 𝑡-chromatic. If 𝐹 and

𝐹 ′ are not isomorphic, then 𝐹 ′ has more edges than 𝐹 , which is a contradiction. So 𝐹 and 𝐹 ′ are

isomorphic, and in particular 𝑤𝑖 and 𝑤𝑗 are adjacent if and only if 𝑣𝑖 and 𝑣𝑗 are adjacent. Suppose

that 𝑤𝑖 ∈ 𝐺𝑣𝑖 is the copy of 𝑤′𝑖 in 𝐺. We show that {𝑤′1, . . . , 𝑤′𝑧} contains exactly 𝑡 distinct vertices

that induce a 𝑡-clique in 𝐺. Consider the coloring 𝑓 on 𝐶1. First note that if 𝑣𝑖 and 𝑣𝑗 are adjacent

vertices such that 𝑓(𝑣𝑖) = 𝑓(𝑣𝑗), then since 𝑤𝑖 and 𝑤𝑗 are adjacent, we have 𝑤′𝑖 = 𝑤′𝑗 . Since 𝐹 ′

is a copy of 𝐹 in 𝐶1, it has a 𝐾𝑡 minor with respect to the coloring 𝑓 . So the subgraph that each

color induces is connected, and so for each 𝑣𝑖 and 𝑣𝑗 with 𝑓(𝑣𝑖) = 𝑓(𝑣𝑗) = 𝑎 we have 𝑤′𝑖 = 𝑤′𝑗 .

This means that all 𝑤𝑖’s with 𝑓(𝑣𝑖) = 𝑎 are copies of the same vertex, say 𝑢𝑎. Now take a pair of

colors, 𝑎, 𝑏 ∈ {1, . . . , 𝑡}. There are vertices 𝑣𝑖 and 𝑣𝑗 such that 𝑓(𝑣𝑖) = 𝑎, 𝑓(𝑣𝑗) = 𝑏 and 𝑣𝑖𝑣𝑗 is an

edge in 𝐻 . So 𝑤𝑖𝑤𝑗 is an edge in 𝐺*, and since 𝑎 ̸= 𝑏, 𝑤′𝑖 ̸= 𝑤′𝑗 , and 𝑤′𝑖𝑤
′
𝑗 is an edge in 𝐺. Since

𝑤′𝑖 = 𝑢𝑎 and 𝑤′𝑗 = 𝑢𝑏, we have that 𝑢𝑎 and 𝑢𝑏 are different vertices and they are adjacent in 𝐺. So

{𝑤′1, . . . , 𝑤′𝑧} = {𝑢1, . . . , 𝑢𝑡} induces a 𝑡-clique in 𝐺*.

Now suppose that there is no copy of 𝐹 in the induced subgraph on 𝑉 (𝐻*) ∩ 𝑆1 in 𝐺*. For

𝑖 ∈ {2, . . . , 𝑝𝐹 (𝐻)}, let 𝑆 ′𝑖 = ∪𝑣∈𝐶𝑖∩𝐶1𝐺𝑣, 𝑆 ′′𝑖 = ∪𝑣∈𝐶𝑖∖𝐶1{𝑣*} and 𝑆𝑖 = 𝑆 ′𝑖 ∪ 𝑆 ′′𝑖 . We prove

that the collection {𝑆2 ∩𝑉 (𝐻*), . . . , 𝑆𝑝𝐹 (𝐻) ∩𝑉 (𝐻*)} is an 𝐹 -covering for 𝐻*, which means that

𝑝𝐹 (𝐻) = 𝑝𝐹 (𝐻
*) < 𝑟, a contradiction.

First we show that any copy of 𝐹 in 𝐻* is in one of 𝑆𝑖s. Let 𝐹 * with vertex set {𝑤1, . . . , 𝑤𝑧}

be a copy of 𝐹 in 𝐻*. For each 𝑤𝑖, there is a 𝑣𝑖 ∈ 𝐻 where 𝑤𝑖 ∈ 𝐺𝑣𝑖 and 𝑣𝑖 ∈ 𝐶1 if 𝑤𝑖 ∈ 𝑆1,

or 𝑤𝑖 = 𝑣*𝑖 and 𝑣𝑖 /∈ 𝐶1 if 𝑤𝑖 /∈ 𝑆1. If 𝑣𝑖 = 𝑣𝑗 for some 𝑖 ̸= 𝑗, then 𝐹 * is 𝑡 − 1 colorable (with

proper coloring): the induced graph on {𝑣1, . . . , 𝑣𝑧} has at most 𝑧 − 1 vertices and so it is 𝑡 − 1

colorable. Color 𝑤𝑖 the same as 𝑣𝑖. From the way we construct 𝐺* we know that if 𝑣𝑖 and 𝑣𝑗 are

not connected, 𝑤𝑖 and 𝑤𝑗 are also not connected, and so this coloring of 𝐹 * is proper. Since 𝐹 * is

𝑡-chromatic, this is a contradiction. So if we call the induced graph on {𝑣1, . . . , 𝑣𝑧} ⊆ 𝑉 (𝐻) by

𝐹𝐻 , then |𝑉 (𝐹𝐻)| = 𝑧. We know that if 𝑤𝑖 and 𝑤𝑗 are connected, then 𝑣𝑖 and 𝑣𝑗 are connected. So

𝐹 is a subgraph of 𝐹𝐻 , and so 𝐹𝐻 is 𝑡-chromatic. If 𝐹𝐻 and 𝐹 are not isomorphic, it means that

𝐹𝐻 has more edges than 𝐹 , which is a contradiction. So 𝐹𝐻 and 𝐹 are isomorphic. Now since 𝐹 *
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is not in 𝑆1, WLOG we can assume that 𝑤1 /∈ 𝑆1, and so 𝑤1 = 𝑣*1 and 𝑣1 is not in 𝐶1. So 𝐹𝐻 ̸⊆ 𝐶1

and there is some 𝑖 ≥ 2 such that 𝐹𝐻 ⊆ 𝐶𝑖. So 𝐹 * is in 𝑆𝑖.

Now we show that for each 𝑖 ≥ 2, 𝑆𝑖∩𝑉 (𝐻*) is (𝐾𝑡, 𝐹 )-minor colorable. Since 𝐶𝑖 is (𝐾𝑡, 𝐹 )-

minor colorable, there is a coloring 𝑓𝑖 : 𝐶𝑖 → {1, . . . , 𝑡} such that each induced copy of 𝐹 in 𝐶𝑖

has a 𝐾𝑡 minor with respect to 𝑓𝑖. Let 𝑓 *𝑖 : 𝑆𝑖 ∩ 𝑉 (𝐻*) → {1, . . . , 𝑡} be the following coloring:

For each 𝑣 ∈ 𝐶𝑖∩𝐶1, let 𝑓 *𝑖 (𝑢) = 𝑓𝑖(𝑣) for all vertices 𝑢 ∈ 𝑆𝑖∩𝑉 (𝐻*)∩𝐺𝑣. For each 𝑣 ∈ 𝐶𝑖 ∖𝐶1

where 𝑣* ∈ 𝑉 (𝐻*), let 𝑓 *𝑖 (𝑣
*) = 𝑓𝑖(𝑣). Now if 𝐹 * = {𝑤1, . . . , 𝑤𝑧} is a copy of 𝐹 in 𝑆𝑖 ∩ 𝑉 (𝐻*),

we know that the set 𝐹𝐻 = {𝑣1, . . . , 𝑣𝑧} is a copy of 𝐹 in 𝐶𝑖, where 𝑤𝑖 ∈ 𝐺𝑣𝑖 if 𝑤𝑖 ∈ 𝑆1 and

𝑤𝑖 = 𝑣*𝑖 if 𝑤𝑖 /∈ 𝑆1. Note that 𝑓(𝑣𝑖) = 𝑓 *𝑖 (𝑤𝑖) and 𝑣𝑖 and 𝑣𝑗 are adjacent if and only if 𝑤𝑖 and 𝑤𝑗 are

adjacent. So since the subgraph induced on vertices of any color in 𝐹𝐻 is connected, the subgraph

induced on any color in 𝐹 * is also connected. Moreover, since in 𝑓𝑖 for any pair of colors there

is an edge between one of the vertices of that color to one of the vertices of the other color, this

property holds for 𝑓 *𝑖 . So 𝑆𝑖 ∩ 𝑉 (𝐻*) is (𝐾𝑡, 𝐹 )-minor colorable, and so we have an 𝐹 -covering

for 𝐻 of size less than 𝑝𝐹 (𝐻). □

Corollary 3.2.2. Let 𝐻 be a pattern and let 𝑡 be the maximum chromatic number of 𝐻 and its

complement. Then under Hadwiger conjecture, finding an induced copy of 𝐻 in an 𝑛-node graph

is at least as hard as finding a 𝑡-clique in an 𝑂(𝑛)-node graph.

3.3 Induced Pattern Detection: Algorithms

In this section we focus on the algorithmic part of the induced pattern detection problem,

starting with some background on the problem. First, it is a simple and folklore exercise to show

that if there is a 𝑇 (𝑛) time algorithm that can detect whether 𝐺 contains a copy of 𝐻 , then one can

also find such a copy in 𝑂(𝑇 (𝑛)) time: Partition the vertices 𝑉 of 𝐺 into 𝑘+1 equal parts (WLOG

𝑛 is divisible by 𝑘 + 1), for every 𝑘-tuple of parts, use the detection algorithm in 𝑇 (𝑛𝑘/(𝑘 + 1))

time to check whether the union of the parts contains a copy of 𝐻 . The moment a 𝑘-tuple of parts

is detected to contain a copy of 𝐻 , stop looking at other 𝑘-tuples and recurse on the graph induced

by the union of the 𝑘 parts. (Stop the recursion when 𝑛 is constant, and brute force then.) Since

every 𝑘 node subgraph is contained in some 𝑘-tuple of the parts, the algorithm is correct. The
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runtime is

𝑡(𝑛) ≤
log(1+1/𝑘) 𝑛∑︁

𝑖=1

(𝑘 + 1)𝑇 (𝑛(𝑘/(𝑘 + 1))𝑖)

≤ (𝑘 + 1)𝑇 (𝑛)
∞∑︁
𝑖=1

((𝑘/(𝑘 + 1))2)𝑖 ≤ 𝑂(𝑇 (𝑛)).

The second inequality above follows since 𝑇 (𝑛) ≥ Ω(𝑛2) as the algorithm needs to at least read

the input and the input can be dense. Because of this, for some nondecreasing function 𝑔(𝑛),

𝑇 (𝑛) = 𝑛2𝑔(𝑛). Hence for any 𝐿 ≥ 1, 𝑇 (𝑛/𝐿) = 𝑛2/𝐿2𝑔(𝑛/𝐿) ≤ 𝑛2/𝐿2𝑔(𝑛) = 𝑇 (𝑛)/𝐿2.

(Without this observation about 𝑇 (𝑛), the analysis would incur at most a log 𝑛 factor for finding

from detection.) As finding and detection are equivalent, we will focus on the detection version of

the problem.

Recall from the introduction, 𝐶(𝑛, 𝑘) := 𝑀(𝑛⌊𝑘/3⌋, 𝑛⌈𝑘/3⌉, 𝑛⌈(𝑘−1)/3⌉). Nešetril and Pol-

jak [IR78] showed that the pattern detection problem can be reduced to rectangular matrix mul-

tiplication. In particular, when 𝑘 ≡ 𝑞 mod 3, detecting a 𝑘 node pattern in an 𝑛 node 𝐺 can be

reduced in 𝑂(𝑛(2𝑘+𝑞)/3) time to the product of an 𝑛⌊𝑘/3⌋ × 𝑛⌈𝑘/3⌉ matrix by an 𝑛⌈𝑘/3⌉ × 𝑛⌈(𝑘−1)/3⌉

matrix.

Here we first recall the approach from [WWWY15], and then generalize the ideas there to

obtain an approach for all 𝑘 to show that (1) for all 𝑘 ≤ 6 and for all 𝑘-node 𝐻 that is not a Clique

or Independent Set, 𝐻 can be detected in 𝑂(𝐶(𝑛, 𝑘− 1)) time, whp, and (2) for all 𝑘 ≥ 3, there is

a pattern that can be detected in time 𝑂(𝐶(𝑛, 𝑘 − 1)), whp.

3.3.1 The approach from [WWWY15]

Vassilevska W. et al. [WWWY15] proposed the following approach for detecting a copy of 𝐻

in 𝐺:

1. First obtain a random subgraph 𝐺′ of 𝐺 by removing each vertex of 𝐺 independently and

uniformly at random with probability 1/2.

2. Compute a quantity 𝑄 that equals the number of induced 𝐻 in 𝐺′, modulo a particular integer
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𝑞.

3. If 𝑄 ̸= 0 mod 𝑞, return that 𝐺 contains an induced 𝐻 , and otherwise, return that 𝐺 contains

no induced 𝐻 with high probability.

The following lemma from [WWWY15] implies that (regardless of 𝑞), if 𝐺 contains a copy of

𝐻 , after the first step, with constant probability, the number of copies of 𝐻 in 𝐺′ is not divisible

by 𝑞.

Lemma 3.3.1 ([WWWY15]). Let 𝑞 ≥ 2 be an integer, 𝐺,𝐻 be undirected graphs. Let 𝐺′ be a

random induced subgraph of 𝐺 such that each vertex is taken with probability 1
2
, independently.

If there is at least one induced-𝐻 in 𝐺, the number of induced-𝐻 in 𝐺′ is not a multiple of 𝑞 with

probability at least 2−|𝐻|.

Now using Lemma 3.3.1, we can sample graph 𝐺′ from 𝐺, and with probability 2−𝑘 we have

the number of induced 𝐻 is not divisible by 𝑞. To obtain higher probability, we can simply repeat

this procedure.

Hence, it suffices to provide an algorithm for counting the number of copies of 𝐻 modulo some

integer. The approach from [WWWY15] is to efficiently compute a quantity which is an integer

linear combination 𝑄 =
∑︀𝑡

𝑖=1 𝛼𝑖𝑛𝐻𝑖
of the number of copies 𝑛𝐻𝑖

in 𝐺 of several different patterns

𝐻 = 𝐻1, 𝐻2, . . . , 𝐻𝑡, so that some integer 𝑞 divides the coefficients 𝛼𝑖 in front of 𝑛𝐻𝑖
for 𝑖 > 1

but 𝑞 does not divide 𝛼1. Thus, 𝑄 = 𝛼1𝑛𝐻 mod 𝑞.

Suppose that 𝑑 is the largest common divisor of 𝛼1 and 𝑞. Suppose that 𝑑 ̸= 1. Since 𝑞 divides

every 𝛼𝑘 with 𝑘 > 1, 𝑑 must divide all 𝛼𝑖. Hence, we could just consider 𝑄/𝑑 in place of 𝑄, and

take everything mod 𝑞/𝑑 instead of 𝑞.Thus WLOG 𝛼1 and 𝑞 are coprime, and so 𝛼−1 exists in Z𝑞.

Hence, 𝑄𝛼−1 = 𝑛𝐻 mod 𝑞, and we can use this quantity in step 2 of the approach above.

For instance, if 𝐻 is 𝐾4 − 𝑒 (the diamond), one can compute the square 𝐴2 of the adjacency

matrix 𝐴 of 𝐺 in 𝑂(𝑛𝜔) time, and compute

𝑄 =
∑︁

(𝑢,𝑣)∈𝐸

(︂
𝐴2(𝑢, 𝑣)

2

)︂
= 𝑛𝐾4−𝑒 + 6𝑛𝐾4 ,
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so that 𝑄 = 𝑛𝐾4−𝑒 mod 6.

In prior work, the equations 𝑄 were obtained carefully for each particular 4 node pattern. In

this section we provide a general and principled approach of obtaining such quantities that can be

computed in 𝑂(𝐶(𝑛, 𝑘 − 1)) time for 𝑘 ≤ 6.

3.3.2 Setup

As mentioned earlier, two graphs 𝐻 and 𝐻 ′ are isomorphic if there is an injective mapping

from the vertex set of 𝐻 onto the vertex set of 𝐻 ′ so that edges and non-edges are preserved. We

will represent this mapping by presenting permutations of the vertices of 𝐻 and 𝐻 ′, i.e. for two

graphs 𝐻 and 𝐻 ′ with vertex orders 𝐻 = (𝑣1, . . . , 𝑣𝑡) and 𝐻 ′ = (𝑤1, . . . , 𝑤𝑡), we say 𝐻 maps to

𝐻 ′ if for each 𝑖 and 𝑗, (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐻) if and only if (𝑤𝑖, 𝑤𝑗) ∈ 𝐸(𝐻 ′). Note that if 𝐻 maps to

𝐻 ′, 𝐻 ′ maps to 𝐻 as well.

Throughout this section, fix an integer 𝑘 and let 𝑘′ = ⌊𝑘−1
3
⌋. We refer to 𝑘-node graphs as

patterns, and we want to detect them in 𝑛-node graphs. We will assume that every graph we

consider is given with a vertex ordering, unless otherwise specified. We call a pattern with an

ordering labeled, and otherwise, the pattern is unlabeled. By the subgraph (𝑣1, . . . , 𝑣ℎ) in a graph

𝐺, we mean the subgraph induced by these vertices, with this specified order when considering

isomorphisms.

We partition all 𝑘-node patterns with specified vertex orders (there are 2(
𝑘
2) many of these) into

classes and for each class we count the number of subgraphs in a given graph 𝐺 which map to one

of the graphs in this class. For a 𝑘-node pattern 𝐻 = (𝑣0, . . . , 𝑣𝑘−1), define the class of 𝑘-node

patterns 𝐶(𝐻) as follows:

Let 𝐹 be the set of the following pairs of vertices: (𝑣0, 𝑣1), . . . (𝑣0, 𝑣𝑘′) (We sometimes refer to

these pairs as the first 𝑘′ edges of 𝐻). Then the graph 𝐻 ′ = (𝑤0, . . . , 𝑤𝑘−1) is in class 𝐶(𝐻) if

for all pairs of vertices (𝑣𝑖, 𝑣𝑗) /∈ 𝐹 , we have (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐻) if and only if (𝑤𝑖, 𝑤𝑗) ∈ 𝐸(𝐻 ′). In

other words, all graphs in a class agree on the edge relation except possibly for the pairs in 𝐹 .

Note that for any 𝐻 ′ ∈ 𝐶(𝐻), we have 𝐶(𝐻 ′) = 𝐶(𝐻). So each 𝑘-node pattern is in exactly

one class, which is obtained by changing its first 𝑘′ edges. Figure 3-4 shows two classes of graphs
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for 𝑘 = 4 (and hence 𝑘′ = 1). In this case the set 𝐹 consists of only one edge ((𝑣0, 𝑣1)) and hence

the graph classes are of size two.

v0 v1 v2 v3 v0 v1 v2 v3

(a) class 𝑐1

v0 v1 v2 v3 v0 v1 v2 v3

(b) class 𝑐2

Figure 3-4: Two graph classes for 𝑘 = 4. In both classes, the graphs in the class agree on all edges
except the edge 𝑣0𝑣1

3.3.3 General Approach

Our goal is to detect an unlabeled pattern by counting the number of (labeled) patterns in

different classes of graphs, which can be done as fast as the fastest algorithm for detecting 𝑘 − 1-

clique (i.e. 𝐶(𝑛, 𝑘−1)). Theorem 3.3.1 states this result formally and we prove it at the end of this

section. The graph classes possess some useful properties which we introduce in Theorem 3.3.2

and Lemma 3.3.2 and provide their proofs at the end of this subsection. Using these properties, we

show how to use graph classes to detect unlabeled patterns.

Theorem 3.3.1. Let 𝐺 be an 𝑛-node graph and let 𝑐 be one of the classes of 𝑘-node patterns.

We can count the number of subgraphs in 𝐺 which map to a pattern in 𝑐 in 𝑂(𝐶(𝑛, 𝑘 − 1)) =

𝑂(𝑀(𝑛⌊
𝑘−1
3
⌋, 𝑛⌈

𝑘−1
3
⌉, 𝑛⌈

𝑘−2
3
⌉)) time, which is the runtime of the fastest algorithm for detecting

𝐾𝑘−1.

Note that Theorem 3.3.1 counts the number of “labeled” patterns where the labeling comes

from an arbitrary but fixed initial ordering on 𝑉 (𝐺).

Now we need to relate unlabeled patterns to pattern classes. Each unlabeled 𝑘-node pattern has

𝑘! possible vertex orderings. We say that an unlabeled pattern 𝐻̃ embeds in class 𝑐 if there is an

ordering of vertices of 𝐻̃ which is in 𝑐. Let 𝑈(𝑐) be the set of unlabeled patterns that embed in

𝑐. For example, for the classes 𝑐1 and 𝑐2 in Figure 3-4, 𝑈(𝑐1) consists of the diamond (also called

diam for abbreviation) and the paw (depicted in Figure 3-5), and 𝑈(𝑐2) consists of the diamond

and 𝐾4. For each unlabeled pattern 𝐻̃ , let 𝛼𝑐
𝐻̃

denote the number of ways 𝐻̃ can be embedded

in 𝑐, i.e. the number of vertex orderings of 𝐻̃ that put 𝐻̃ into 𝑐. In the example of Figure 3-4,
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Figure 3-5: The diamond graph on the left and the paw graph on the right.

𝛼𝑐1
𝑑𝑖𝑎𝑚 = 4 = 𝛼𝑐2

𝑑𝑖𝑎𝑚, 𝛼𝑐1
𝑝𝑎𝑤 = 2 and 𝛼𝑐2

𝐾4
= 24. In this example, the 𝛼𝑐

𝐻̃
numbers are all equal to

|𝐴𝑢𝑡(𝐻̃)|, 5 each class contains at most one labeled copy of each 𝐻; in general, this need not be

the case.

Let 𝑛𝐻̃ be the number of copies of 𝐻̃ in 𝐺. We have the following corollary:

Corollary 3.3.1. The number of (labeled) subgraphs in 𝐺 which map to a pattern in 𝑐 is∑︀
𝐻̃∈𝑈(𝑐) 𝛼

𝑐
𝐻̃
𝑛𝐻̃ .

The numbers 𝛼𝑐
𝐻̃

have some useful properties as shown in the next theorem.

Theorem 3.3.2. For any unlabeled pattern 𝐻̃ we have |𝐴𝑢𝑡(𝐻̃)| |𝛼𝑐
𝐻̃

. Moreover, for any class 𝑐,

we have ∑︁
𝐻̃∈𝑈(𝑐)

𝛼𝑐
𝐻̃

|𝐴𝑢𝑡(𝐻̃)|
= 2𝑘

′
.

First note that this theorem gives us upper and lower bounds on the size of 𝑈(𝑐). Each term in

the above summation contributes at least 1, so |𝑈(𝑐)| ≤ 2𝑘
′ . Moreover since 𝑐 has at least 𝑘′ + 1

labeled patterns which have different numbers of edges, we have |𝑈(𝑐)| ≥ 𝑘′ + 1. So we get the

following corollary.

Corollary 3.3.2. For any class 𝑐, we have 2𝑘
′ ≥ |𝑈(𝑐)| ≥ 𝑘′ + 1.

Define 𝑏𝑐
𝐻̃
=

𝛼𝑐
𝐻̃

|𝐴𝑢𝑡(𝐻̃)| . By Corollary 3.3.1, the number of subgraphs in 𝐺 that map to a pattern

in 𝑐 computed by Theorem 3.3.1 is of the following form:

∑︁
𝐻̃∈𝑈(𝑐)

𝑏𝑐
𝐻̃
|𝐴𝑢𝑡(𝐻̃)|𝑛𝐻̃ (3.1)

5𝐴𝑢𝑡(𝐻̃) is the automorphism group of 𝐻̃ .
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So far we showed how each pattern class relates to unlabeled patterns. Now we show how we can

obtain different pattern classes from unlabeled patterns.

Lemma 3.3.2. Let 𝐻̃ be an unlabeled 𝑘-node pattern. For an arbitrary vertex with degree at

least 𝑘′, consider 𝑘′ of the edges adjacent to it; namely 𝑒1, . . . , 𝑒𝑘′ . Let 𝑆 be the set of all graphs

obtained by removing any number of the edges in {𝑒1, . . . , 𝑒𝑘′}. Then there is a class 𝑐, such that

𝑈(𝑐) = 𝑆. Moreover, 𝑏𝑐
𝐻̃
= 1, and 𝐻̃ is the pattern with maximum number of edges in 𝑐.

Applying Lemma 3.3.2 to our example, consider 𝐾4 as the initial pattern and consider an

arbitrary edge of it. Then the set 𝑆 consists of the diamond and 𝐾4, and so 𝑈(𝑐2) = 𝑆. Moreover,

since |𝐴𝑢𝑡(𝐾4)| = 24 = 𝛼𝑐2
𝐾4

, we have 𝑏𝑐2𝐾4
= 1. So by Theorem 3.3.2, 𝑏𝑐2𝑑𝑖𝑎𝑚 = 2 − 1 = 1.

Similarly if we consider the diamond as the initial pattern and take the edge between the degree

three vertices, then the set 𝑆 consists of the diamond and the paw, and so 𝑈(𝑐1) = 𝑆. Moreover,

since |𝐴𝑢𝑡(𝑑𝑖𝑎𝑚)| = 4 = 𝛼𝑐1
𝑑𝑖𝑎𝑚, we have 𝑏𝑐1𝑑𝑖𝑎𝑚 = 1, and hence 𝑏𝑐1𝑝𝑎𝑤 = 1.

Now we are ready to show how to detect unlabeled patterns using graph classes. First let 𝐵𝑟

be the set of unlabeled patterns 𝐻̃ such that 𝑟 | |𝐴𝑢𝑡(𝐻̃)|. Note that we have 𝐾𝑘, 𝐾𝑘 ∈ 𝐵𝑟 for all

𝑟 such that 𝑟|𝑘! (where 𝐾𝑘 is the 𝑘-clique and 𝐾𝑘 is the 𝑘-Independent set). For a fixed unlabeled

pattern 𝐻̃ which is not the 𝑘-Independent Set or the 𝑘-Clique, the idea is to compute the sums of

the form (3.1) for different pattern classes 𝑐, such that a linear combination of these sums gives us a

sum consisting of only the terms from 𝐻̃ and patterns 𝐻̃ ′ ∈ 𝐵𝑟 for some 𝑟 such that 𝑟 ̸ | |𝐴𝑢𝑡(𝐻̃)|.

More specifically, we want to compute a sum of the following form:

|𝐴𝑢𝑡(𝐻̃)|𝑛𝐻̃ +
∑︁

𝐻′∈𝐵𝑟

𝑑𝐻′|𝐴𝑢𝑡(𝐻̃ ′)|𝑛𝐻′ (3.2)

where 𝑑𝐻′ are some integers. Then using the fact that this sum is equal to |𝐴𝑢𝑡(𝐻̃)|𝑛𝐻̃ modulo

𝑟, by the approach of Vassilevska W. et al. [WWWY15] we can assume with constant probability

that 𝑟 ̸ |𝑛𝐻̃ , and hence we can detect 𝐻̃ in 𝐺.

We first prove Theorem 3.3.2 and Lemma 3.3.2 below, and then we provide the proof of Theo-

rem 3.3.1. Then we use our approach to show that for each 𝑘, there is a pattern that can be detected

in time 𝑂(𝐶(𝑛, 𝑘 − 1)). Finally, we show how our approach is used to prove that any 𝑘-node
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pattern except 𝑘-clique and 𝑘-independent set can be detected in 𝑂(𝐶(𝑛, 𝑘 − 1)) time, for 𝑘 ≤ 6.

Proof of Theorem 3.3.2. Let 𝐻 = (𝑤0, . . . , 𝑤𝑘−1) be an arbitrary pattern in 𝑐. Define 𝑏𝑐
𝐻̃

to be

the number of ways we can specify the edges 𝑤0𝑤1, . . . , 𝑤0𝑤𝑘′ so that the resulting vertex order

maps to a vertex order of 𝐻̃ . Note that this is independent of the choice of 𝐻 , because all edges

except the 𝑘′ edges mentioned are the same for all 𝐻 ∈ 𝑐. For each of these 𝑏𝑐
𝐻̃

vertex orderings,

we can apply |𝐴𝑢𝑡(𝐻̃)| automorphisms to get a different ordering that maps to it. So all these

orderings make the 𝛼𝑐
𝐻̃

possible ways 𝐻̃ can be embedded in 𝑐; hence 𝛼𝑐
𝐻̃

= 𝑏𝑐
𝐻̃
· |𝐴𝑢𝑡(𝐻̃)|.

Now note that the total number of ways we can specify the 𝑘′ edges 𝑤0𝑤1, . . . , 𝑤0𝑤𝑘′ is 2𝑘
′ , so∑︀

𝐻̃∈𝑈(𝑐)

𝛼𝑐
𝐻̃

|𝐴𝑢𝑡(𝐻̃)| =
∑︀

𝐻̃∈𝑈(𝑐) 𝑏
𝑐
𝐻̃
= 2𝑘

′

Proof of Lemma 3.3.2. Let 𝐻 = (𝑤0, 𝑤1, . . . , 𝑤𝑘−1) be an ordering of the vertices of 𝐻̃ such

that 𝑒𝑖 = 𝑤0𝑤𝑖 for each 𝑖 ∈ {1, . . . , 𝑘′}. Now each pattern 𝐻 ′ ∈ 𝐶(𝐻) differs from 𝐻 only in

those 𝑘′ edges, so the unlabeled version of 𝐻 ′ is obtained from 𝐻̃ by removing some of 𝑒𝑖 edges.

So 𝐶(𝐻) ⊆ 𝑆. Now consider 𝐻̃ ′ ∈ 𝑆. Since 𝐻̃ ′ is obtained from 𝐻̃ , we can consider the same

ordering of vertices for it. Call this vertex order 𝐻 ′. So 𝐻 ′ and 𝐻 differ only in the 𝑘′ first edges,

so 𝐻 ′ ∈ 𝐶(𝐻). Hence 𝑆 ⊆ 𝑈(𝑐) which shows that 𝑈(𝑐) = 𝑆.

Now since the number of ways we can embed 𝐻 in class 𝑐 is 1 (we have to put an edge between

all the 𝑘′ pairs of vertices), we have 𝑏𝑐
𝐻̃
= 1.

3.3.4 Proof of Theorem 3.3.1

The general idea is to remove one vertex, divide the rest of the vertices into three (almost) equal

parts. Then form two matrices such that the first matrix captures the subgraphs isomorphic to the

removed vertex plus the first part, and the second matrix captures the subgraphs isomorphic to the

removed vertex plus the second and the third part, and then use matrix multiplication to count the

number of subgraphs isomorphic to the whole pattern in the host graph. We show the approach

more formally below.

Let 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}. Let 𝐻 = (𝑤0, . . . , 𝑤𝑘−1) be an arbitrary pattern in 𝑐 (so 𝑐 = 𝐶(𝐻)).

Recall that 𝑘′ = ⌊𝑘−1
3
⌋. Our algorithm consists of three steps. In step one, for each 𝑡 = 𝑘 − 𝑘′ − 1

vertices 𝑣𝑖1 , . . . , 𝑣𝑖𝑡 , we count the number of vertices 𝑢 in 𝐺 such that the subgraph (𝑢, 𝑣𝑖1 , . . . , 𝑣𝑖𝑡)
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in 𝐺 maps to the subgraph (𝑤0, 𝑤𝑘′+1, 𝑤𝑘′+2, . . . , 𝑤𝑘−1) in 𝐻 . In step two, we count the number of

𝑘′-tuples (𝑣𝑗1 , . . . , 𝑣𝑗𝑘′ ) such that the subgraph (𝑣𝑗1 , . . . , 𝑣𝑗𝑘′ , 𝑣𝑖1 , . . . , 𝑣𝑖𝑡) in 𝐺 maps to the subgraph

(𝑤1, . . . , 𝑤𝑘−1) in 𝐻 . In step three, we show how to combine the numbers obtained in the last two

steps to get the resulting value.

Before we explain each step, here is some notation. Let 𝑘1 = ⌈𝑘−13 ⌉ and 𝑘2 = ⌈𝑘−23 ⌉. Note that

𝑘1, 𝑘2 ∈ {𝑘′, 𝑘′+1} and 𝑘′+ 𝑘1 + 𝑘2 = 𝑘− 1. Define the set 𝑆 to be all 𝑡-tuples 𝑝 = (𝑣𝑖1 , . . . , 𝑣𝑖𝑡)

where the subgraph induced by 𝑝 maps to the subgraph (𝑤𝑘′+1, . . . , 𝑤𝑘−1) in 𝐻 . We can write each

𝑡-tuple 𝑝 with a pair of 𝑘1 and 𝑘2 tuples, 𝑝′ and 𝑝′′; i.e. 𝑝′ = (𝑣𝑖1 , . . . , 𝑣𝑖𝑘1 ) and 𝑝′′ = (𝑣𝑖𝑘1+1
, . . . , 𝑣𝑖𝑡)

Step one: Construct two matrices 𝐵 and 𝐶 of sizes 𝑛𝑘1 × 𝑛 and 𝑛× 𝑛𝑘2 as follows: For each

𝑘1-tuple 𝑝1 = (𝑣𝑖1 , . . . , 𝑣𝑖𝑘1 ) and each vertex 𝑣ℎ ∈ 𝐺, let 𝐵𝑝1,𝑣ℎ = 1 if the subgraph (𝑣ℎ, 𝑝1) in

𝐺 maps to the subgraph (𝑤0, 𝑤𝑘′+1, . . . , 𝑤𝑘′+𝑘1) in 𝐻 . Otherwise set it to 0. For each 𝑘2-tuple

𝑝2 = (𝑣𝑗1 , . . . , 𝑣𝑗𝑘2 ) and each vertex 𝑣ℎ ∈ 𝐺, let 𝐶𝑣ℎ,𝑝2 = 1 if the subgraph (𝑣ℎ, 𝑝2) in 𝐺 maps

to the subgraph (𝑤0, 𝑤𝑘′+𝑘1+1, . . . , 𝑤𝑘−1) in 𝐻 . Otherwise set it to 0. Compute 𝑀 = 𝐵𝐶. For

any 𝑝1 = (𝑣𝑖1 , . . . , 𝑣𝑖𝑘1 ) and 𝑝2 = (𝑣𝑗1 , . . . , 𝑣𝑗𝑘2 ) such that the 𝑡-tuple (𝑝1, 𝑝2) ∈ 𝑆, we have

𝑀𝑝1,𝑝2 is the number of vertices 𝑢 such that the subgraph (𝑢, 𝑝1, 𝑝2) in 𝐺 maps to the subgraph

(𝑤0, 𝑤𝑘′+1, . . . , 𝑤𝑘−1) in 𝐻 .

Step two: Construct two matrices 𝐵′ and 𝐶 ′ of sizes 𝑛𝑘1 × 𝑛𝑘′ and 𝑛𝑘′ × 𝑛𝑘2 as follows: For

each 𝑘1-tuple 𝑝2 = (𝑣𝑖1 , . . . , 𝑣𝑖𝑘1 ) and each 𝑘′-tuple 𝑝1 = (𝑣𝑗1 , . . . , 𝑣𝑗𝑘′ ) in 𝐺, let 𝐵′𝑝2,𝑝1 = 1 if

the subgraph (𝑝1, 𝑝2) in 𝐺 maps to the subgraph (𝑤1, . . . , 𝑤𝑘′+𝑘1) in 𝐻 . Otherwise set it to 0. For

each 𝑘2-tuple 𝑝3 = (𝑣ℎ1 , . . . , 𝑣ℎ𝑘2
) and each 𝑘′-tuple 𝑝1 = (𝑣𝑗1 , . . . , 𝑣𝑗𝑘′ ) in 𝐺, let 𝐶 ′𝑝1,𝑝3 = 1 if the

subgraph (𝑝1, 𝑝3) in 𝐺 maps to the subgraph (𝑤1, . . . , 𝑤𝑘′ , 𝑤𝑘′+𝑘1+1, . . . , 𝑤𝑘−1) in 𝐻 . Otherwise

set it to 0. Compute 𝑀 ′ = 𝐵′𝐶 ′. For any 𝑝2 = (𝑣𝑖1 , . . . , 𝑣𝑖𝑘1 ) and 𝑝3 = (𝑣ℎ1 , . . . , 𝑣ℎ𝑘2
) such that

the 𝑡-tuple (𝑝2, 𝑝3) ∈ 𝑆, we have 𝑀 ′
𝑝1,𝑝3

is the number of 𝑘′-tuples 𝑝1 in 𝐺 such that the subgraph

(𝑝1, 𝑝2, 𝑝3) in 𝐺 maps to the subgraph (𝑤1, . . . , 𝑤𝑘−1) in 𝐻 .

Step three: Let 𝑟 be the number of vertices 𝑤𝑖 in {𝑤1, . . . , 𝑤𝑘′}, such that the subgraph

(𝑤𝑖, 𝑤𝑘′+1, . . . , 𝑤𝑘−1) in 𝐻 maps to the subgraph (𝑤0, 𝑤𝑘′+1, . . . , 𝑤𝑘−1) in 𝐻 . Compute the fol-
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lowing sum using matrices 𝑀 and 𝑀 ′:

∑︁
𝑝∈𝑆

(𝑀𝑝′,𝑝′′ − 𝑟)𝑀 ′
𝑝′,𝑝′′ (3.3)

If 𝑟 = 0, by the way we constructed 𝑀 and 𝑀 ′, each number 𝑀𝑝′,𝑝′′𝑀
′
𝑝′,𝑝′′ is the number

of 𝑘′ + 1 tuples (𝑣𝑖0 , . . . , 𝑣𝑖𝑘′ ) such that the subgraph (𝑣𝑖0 , 𝑝
′, 𝑝′′) in 𝐺 maps to the subgraph

(𝑤0, 𝑤𝑘′+1, . . . , 𝑤𝑘−1) in 𝐻 , and the subgraph (𝑣𝑖1 , . . . , 𝑣𝑖𝑘′ , 𝑝
′, 𝑝′′) in 𝐺 maps to the subgraph

(𝑤1, . . . , 𝑤𝑘−1) in 𝐻 . So the number in equation (3.3) is the number of subgraphs in 𝐺 which

map to a pattern in 𝑐. Now if 𝑟 > 0, then each 𝑘′-tuple that is counted in 𝑀 ′
𝑝′,𝑝′′ contains exactly

𝑟 vertices that are also counted in 𝑀𝑝′,𝑝′′ and cannot be used simultaneously. So in this case, the

number (𝑀𝑝′,𝑝′′ − 𝑟)𝑀 ′
𝑝′,𝑝′′ counts the number of 𝑘′ + 1 tuples with the property mentioned above.

Now we analyze the running time. 𝑀 and 𝑀 ′ in step one and two can be computed

in 𝑂(𝑀(𝑛⌊
𝑘−1
3
⌋, 𝑛, 𝑛⌈

𝑘−2
3
⌉)) and 𝑂(𝑀(𝑛⌊

𝑘−1
3
⌋, 𝑛⌈

𝑘−1
3
⌉, 𝑛⌈

𝑘−2
3
⌉)) time, respectively, using rect-

angular matrix multiplication. By checking all 𝑡-tuples of vertices in 𝐺 in 𝑛𝑡 time, we

can identify the set 𝑆, and then the sum in step three can be computed in 𝑂(|𝑆|) ≤

𝑂(𝑛𝑡) time. Note that 𝑂(𝑀(𝑛⌊
𝑘−1
3
⌋, 𝑛⌈

𝑘−1
3
⌉, 𝑛⌈

𝑘−2
3
⌉)) ≥ 𝑛max (⌊ 𝑘−1

3
⌋+⌈ 𝑘−1

3
⌉,⌈ 𝑘−1

3
⌉+⌈ 𝑘−2

3
⌉) which

is the size of the input in rectangular matrix multiplication, and also we have 𝑡 =

𝑘 − 1 − 𝑘′ ≤ max (⌊𝑘−1
3
⌋+ ⌈𝑘−1

3
⌉, ⌈𝑘−1

3
⌉+ ⌈𝑘−2

3
⌉). So the total the running time is

𝑂(𝑀(𝑛⌊
𝑘−1
3
⌋, 𝑛⌈

𝑘−1
3
⌉, 𝑛⌈

𝑘−2
3
⌉)).

3.3.5 Patterns easier than cliques

Using the approach of Section 3.3, we show that for any 𝑘, there is a pattern that contains

a 𝑘 − 1-clique and can be detected in 𝑂(𝐶(𝑛, 𝑘 − 1)) time in an 𝑛-node graph 𝐺. Since this

pattern has a 𝑘 − 1-clique as a subgraph, it is at least as hard as 𝑘 − 1-clique to detect, which

means that the runtime obtained for it is tight, if we assume that the best runtime for detecting

𝑘 − 1-clique is 𝑂(𝐶(𝑛, 𝑘 − 1)). Let 𝐻𝑘
𝑠 be the 𝑘-node pattern consisting of a (𝑘 − 1)-clique and

a vertex adjacent to 𝑠 vertices of the (𝑘 − 1)-clique. Assume that 𝑠 ≥ ⌈𝑘−1
2
⌉. If 𝑠 ̸= 𝑘 − 2, then

|𝐴𝑢𝑡(𝐻𝑘
𝑠 )| = 𝑠!(𝑘 − 𝑠− 1)!. For 𝑠 = 𝑘 − 2, |𝐴𝑢𝑡(𝐻𝑘

𝑘−2)| = (𝑘 − 2)!2!. So in all cases |𝐴𝑢𝑡(𝐻𝑘
𝑠 )|

is divisible by 𝑠!(𝑘 − 𝑠− 1)!.
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Theorem 3.3.3. Let 𝑘 be any positive integer, and suppose that there exists 𝑠, ⌈𝑘−1
2
⌉ ≤ 𝑠 ≤

𝑘 − 1 − ⌊𝑘−1
3
⌋, such that 𝑠 + 1 is a prime number. Then 𝐻𝑘

𝑠 can be detected in 𝐶(𝑛, 𝑘 − 1) time

with high probability.

Proof. Let the vertex outside the (𝑘 − 1)-clique in 𝐻𝑘
𝑠 be 𝑣0. We know that if 𝑘′ = ⌊𝑘−1

3
⌋, there

are at least 𝑘′ vertices that are not adjacent to 𝑣0 because 𝑠 ≤ 𝑘 − 1 − 𝑘′. Let 𝑣1, . . . , 𝑣𝑘′ be 𝑘′

of the vertices of the (𝑘 − 1)-clique that 𝑣0 is not adjacent to. Let 𝑣𝑘′+1, . . . , 𝑣𝑘 be the rest of

the vertices. Consider the ordering 𝐻 = (𝑣0, 𝑣1, . . . , 𝑣𝑘) of 𝐻𝑘
𝑠 , and let 𝑐 = 𝐶(𝐻) be the class

defined by 𝐻 . Note that 𝑈(𝑐), which is the set of unlabeled graphs that can be embedded in 𝑐, is

{𝐻𝑘
𝑠 , 𝐻

𝑘
𝑠+1, . . . , 𝐻

𝑘
𝑠+𝑘′}. So if we want to detect 𝐻𝑘

𝑠 in an 𝑛-node graph 𝐺, using Theorem 3.3.1 we

can count the number of subgraphs in 𝐺 that map to a pattern in the class 𝑐 in time 𝑂(𝐶(𝑛, 𝑘−1)).

As proved in our set-up (see Equation (3.1)), this number is 𝑄 =
∑︀𝑘′

𝑖=0 𝑏𝑖|𝐴𝑢𝑡(𝐻𝑘
𝑠+𝑖)|𝑛𝐻𝑘

𝑠+𝑖
, where

𝑏𝑖 is some integer and 𝑏0 = 1 (by an argument similar to Lemma 3.3.2). Since 𝑠 ≥ (𝑘 − 1)/2, we

have that 𝑠 + 1 > 𝑘 − 𝑠 − 1, and so |𝐴𝑢𝑡(𝐻𝑘
𝑠 )| is not divisible by 𝑠 + 1, which means that the

coefficient of 𝑛𝐻𝑘
𝑠

in the equation is not divisible by 𝑠 + 1. However, for all 𝑖 ≥ 1, we have that

|𝐴𝑢𝑡(𝐻𝑘
𝑠+𝑖)| is divisible by 𝑠+1. So 𝑄 is of the form (3.2) for 𝑟 = 𝑠+1, and hence we can detect

𝐻𝑘
𝑠 in time 𝑂(𝐶(𝑛, 𝑘 − 1)) with high probability. □

Lemma 3.3.3. For any positive integer 𝑘 ≥ 3, 𝑘 ̸= 14, there exists 𝑠 such that ⌈𝑘−1
2
⌉ ≤ 𝑠 ≤

𝑘 − 1− ⌊𝑘−1
3
⌋ and 𝑠+ 1 is prime.

Proof. We are going to use two theorems about prime numbers in intervals. The first one is due to

Loo [Loo11] that says for all 𝑛 > 1, there is a prime number in (3𝑛, 4𝑛). The second theorem is

due to Nagura [Nag52] and says that for all 𝑥 ≥ 25, there is a prime number in [𝑥, 6𝑥/5].

First suppose that 𝑘 = 6𝑡 + 𝑖 for two nonnegative integers 𝑡 and 𝑖 where 0 ≤ 𝑖 ≤ 5 and

𝑖 ̸= 2. If 𝑖 < 2, let 𝑛 = 𝑡, and otherwise let 𝑛 = 𝑡 + 1. We need a prime in the interval

𝐼 = (⌈𝑘−1
2
⌉, 𝑘 − ⌊𝑘−1

3
⌋ + 1), and since ⌈𝑘−1

2
⌉ ≤ 3𝑛 and 4𝑛 ≤ 𝑘 − ⌊𝑘−1

3
⌋ + 1, there exists such

a prime by the first theorem. Now assume that 𝑖 = 2. If 𝑡 ≥ 8, then ⌈𝑘−1
2
⌉ + 1 ≥ 25, and so if

𝑥 = ⌈𝑘−1
2
⌉ + 1, then 6𝑥/5 ≤ 𝑘 − ⌊𝑘−1

3
⌋ and so there is a prime in the interval 𝐼 by the second

theorem. Now suppose that 𝑡 ≤ 7 and 𝑖 = 2. For 𝑡 = 1, 3, 4, 5, 6, 7, the prime numbers in the

interval 𝐼 associated to each 𝑘 are 5, 11, 17, 17, 23, 23 respectively. □
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For 𝑘 = 14, we show that we can detect 𝐻𝑘
7 in 𝑂(𝐶(𝑛, 𝑘 − 1)) time. Note that 𝑘′ = 4 in this

case. The approach is the same as Theorem 3.3.3: we look at the class 𝑐 where 𝑈(𝑐) consists of

𝐻𝑘
7 , . . . , 𝐻

𝑘
11 and we consider the equation 𝑄 =

∑︀4
𝑖=0 𝑏𝑖|𝐴𝑢𝑡(𝐻𝑘

7+𝑖)|𝑛𝐻𝑘
7+𝑖

which can be obtained

in 𝑂(𝐶(𝑛, 𝑘 − 1)) time, where 𝑏0 = 1 (by an argument similar to Lemma 3.3.2). Now note that

|𝐴𝑢𝑡(𝐻𝑘
7+𝑖)| is divisible by 29 for all 0 < 𝑖 ≤ 4, and |𝐴𝑢𝑡(𝐻𝑘

7 )| is not divisible by 29. So 𝑄 is of

the form (3.2) for 𝑟 = 29, and hence we can detect 𝐻𝑘
7 in 𝑂(𝐶(𝑛, 𝑘− 1)) time, and hence we have

the following Theorem.

Theorem 3.3.4. For all 𝑘 > 2, there is some 𝑠 where the 𝑘-node pattern 𝐻𝑘
𝑠 can be detected in

𝑂(𝐶(𝑛, 𝑘 − 1)) time.

3.3.6 Induced pattern detection for 𝑘 ≤ 6

Note that the case of 𝑘 = 4 is resolved by [WWWY15]. When 𝑘 ∈ {5, 6}, we have 𝑘′ = 1.

Consider a class 𝑐. By Corollary 3.3.2, 𝑈(𝑐) has exactly two patterns which differ in only one edge

𝑒, namely 𝐻̃ and 𝐻̃ ∖ 𝑒. By Theorem 3.3.2, 𝑏𝑐
𝐻̃
+ 𝑏𝑐

𝐻̃∖(𝑒) = 2, so 𝑏𝑐
𝐻̃
= 𝑏𝑐

𝐻̃∖(𝑒) = 1. So for any class

𝑐 and any unlabeled pattern 𝐻̃ that embeds in 𝑐, we have 𝛼𝑐
𝐻̃

= |𝐴𝑢𝑡(𝐻̃)|. Moreover by Lemma

3.3.2, there is some class 𝑐 such that 𝑈(𝑐) consists of 𝐻̃ and 𝐻̃ ∖ {𝑒}, where 𝑒 is an arbitrary edge

in 𝐻̃ .

Hence by Theorem 3.3.1 and Corollary 3.3.1, for any unlabeled pattern 𝐻̃ which has at least

one edge, we can compute 𝑛𝐻̃ |𝐴𝑢𝑡(𝐻̃)|+𝑛𝐻̃∖𝑒|𝐴𝑢𝑡(𝐻̃ ∖ 𝑒)| in 𝑂(𝑀(𝑛, 𝑛2, 𝑛)) time for 𝑘 = 5 and

𝑂(𝑀(𝑛, 𝑛2, 𝑛2)) time for 𝑘 = 6. Now we give an algorithm which detects any fixed pattern 𝐻̃ in

a graph 𝐺, where 𝐻̃ is not the 𝑘-Clique or the 𝑘-Independent Set.

Let 𝑒1, . . . , 𝑒ℎ be an arbitrary permutation of all the edges of 𝐻̃ . Let 𝐻̃𝑖 = 𝐻̃ ∖ {𝑒1, . . . , 𝑒𝑖−1}

where 𝐻̃1 = 𝐻̃ . Compute 𝑞𝑖 = 𝑛𝐻̃𝑖
|𝐴𝑢𝑡(𝐻̃𝑖)| + 𝑛𝐻̃𝑖+1

|𝐴𝑢𝑡(𝐻̃𝑖+1)|. Compute 𝑄 =
∑︀ℎ

𝑖=1(−1)𝑖𝑞𝑖.

In fact, 𝑄 = 𝑛𝐻̃ |𝐴𝑢𝑡(𝐻̃)|+ (−1)ℎ𝑛𝐻̃ℎ+1
|𝐴𝑢𝑡(𝐻̃ℎ+1)|, which is of the form (3.2) for 𝑟 = 𝑘!, since

𝐻̃ℎ+1 is the 𝑘-Independent Set. So we can detect all 5-node patterns in time 𝑂(𝑀(𝑛, 𝑛2, 𝑛)) ∈

𝑂(𝑛𝜔+1), and all 6-node patterns in time 𝑂(𝑀(𝑛, 𝑛2, 𝑛2)) ∈ 𝑂(𝑛𝜔+2).
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3.4 Most recent results on this problem

Following our results in this chapter, Manurangsi, Rubinstein and Schramm [MRS21] formu-

lated a brand new hypothesis on the hardness of planted clique. This new hypothesis implies

many results that are not known to hold under standard hypotheses such as ETH or Strong ETH,

including that for every 𝑘-node 𝐻 , its induced pattern detection problem requires 𝑛Ω(𝑘) time.
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Chapter 4

Finding Long Shortest Paths: The Diameter

This chapter was written with authors Ray Li and Virginia Vassilevska Williams, and focuses on

computing the diameter of the graph. Approximating the graph diameter is a basic task of both

theoretical and practical interest. A simple folklore algorithm can output a 2-approximation to the

diameter in linear time by running BFS from an arbitrary vertex. It has been open whether a better

approximation is possible in near-linear time. A series of papers on fine-grained complexity have

led to strong hardness results for diameter in directed graphs, culminating in a recent tradeoff curve

independently discovered by [Li, STOC’21] and [Dalirrooyfard and Wein, STOC’21], showing

that under the Strong Exponential Time Hypothesis (SETH), for any integer 𝑘 ≥ 2 and 𝛿 > 0, a

2 − 1
𝑘
− 𝛿 approximation for diameter in directed 𝑚-edge graphs requires 𝑚𝑛1+1/(𝑘−1)−𝑜(1) time.

In particular, the simple linear time 2-approximation algorithm is optimal for directed graphs.

In this chapter we prove that the same tradeoff lower bound curve is possible for undirected

graphs as well, extending results of [Roditty and Vassilevska W., STOC’13], [Li’20] and [Bon-

net, ICALP’21] who proved the first few cases of the curve, 𝑘 = 2, 3 and 4, respectively. Our

result shows in particular that the simple linear time 2-approximation algorithm is also optimal

for undirected graphs. To obtain our result we develop new tools for fine-grained reductions that

could be useful for proving SETH-based hardness for other problems in undirected graphs related

to distance computation.
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4.1 Introduction

One of the most basic graph parameters, the diameter is the largest of the shortest paths dis-

tances between pairs of vertices in the graph. Estimating the graph diameter is important in many

applications (see e.g. [CGLM12, TK11, MLH09]. For instance, the diameter measures how fast

information spreads in networks, which is central for paradigms such as distributed and sublinear

algorithms.

The fastest known algorithms for computing the diameter of an 𝑛-node, 𝑚-edge graph

with nonnegative edge weights solve All-Pairs Shortest Paths (APSP) and run in 𝑂(min{𝑚𝑛 +

𝑛2 log log 𝑛, 𝑛3/𝑒𝑥𝑝(
√
log 𝑛)}) time [Pet04, Wil14]. For unweighted graphs one can use fast ma-

trix multiplication [Vas12, Le 14, AV21, Sei95, AGM97] and solve the problem in 𝑂(𝑛2.373) time.

Any algorithm that solves APSP naturally needs 𝑛2 time, just to output the 𝑛2 distances. Mean-

while, the diameter is a single number, and it is apriori unclear why one would need 𝑛2 time,

especially in sparse graphs, for which 𝑚 ≤ 𝑛1+𝑜(1).

There is a linear time folklore algorithm that is guaranteed to return an estimate 𝐷̂ for the

diameter 𝐷 so that 𝐷/2 ≤ 𝐷̂ ≤ 𝐷, a so called 2-approximation. The algorithm picks an arbitrary

vertex and runs BFS from it, returning the largest distance found. The same idea achieves a near-

linear time 2-approximation in directed and nonnegatively weighted graphs by replacing BFS with

Dijkstra’s algorithm to and from the vertex.

Roditty and Vassilevska W. [RV13], following Aingworth, Chekuri, Indyk and Motwani

[ACIM99], designed a 3/2-approximation algorithm running in 𝑂̃(𝑚
√
𝑛) time, for the case when

the diameter is divisible by 3, and with an additional small additive error if it is not divisible by 3.

Chechik, Larkin, Roditty, Schoenebeck, Tarjan and Vassilevska W. [CLR+14] gave a variant of the

algorithm that runs in 𝑂̃(𝑚3/2) time and always achieves a 3/2-approximation (with no additive

error). These algorithms work for directed or undirected graphs with nonnegative edge weights.

Cairo, Grossi and Rizzi [CGR16] extended the techniques of [RV13] and developed an approx-

imation scheme that for every integer 𝑘 ≥ 0, achieves an “almost” 2− 1/2𝑘-approximation (i.e. it

has an extra small additive error, similar to [RV13]) and runs in 𝑂̃(𝑚𝑛1/(𝑘+1)) time. The scheme
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only works for undirected graphs, however.

These are all the known approximation algorithms for the diameter problem in arbitrary

graphs: the scheme of [CGR16, RV13] for undirected graphs, and the three algorithms for di-

rected graphs: the exact 𝑂̃(𝑚𝑛) time algorithm using APSP, the 𝑂̃(𝑚) time 2-approximation and

the 3/2-approximation algorithms of [RV13, CLR+14]. In Figure 1-1 the known algorithms are

represented as purple and pink points.

A sequence of works [RV13, BRS+18, Li20, Bon21b, Li21, DW21, Bon21a] provided lower

bounds for diameter approximation, based on the Strong Exponential Time Hypothesis (SETH)

[IP01a, CIP10] that CNF-SAT on 𝑛 variables and 𝑂(𝑛) clauses requires 2𝑛−𝑜(𝑛) time. The first

such lower bound by [RV13] showed that any 3/2− 𝜀 approximation to the diameter of a directed

or undirected unweighted graph for 𝜀 > 0, running in 𝑂(𝑚2−𝛿) time for 𝛿 > 0, would refute SETH,

and hence the [RV13] 3/2-approximation algorithm has a (conditionally) optimal approximation

ratio for a subquadratic time algorithm for diameter. Later, Backurs, Roditty, Segal, Vassilevska W.

and Wein [BRS+18] showed that under SETH, any 𝑂(𝑚3/2−𝛿) time algorithm can at best achieve

a 1.6-approximation to the diameter of an undirected unweighted graph. Thus, the [RV13] 3/2-

approximation algorithm has a (conditionally) optimal running time for a (1.6− 𝜀)-approximation

algorithm.

Following work of Li [Li20] and Bonnet [Bon21b], Li [Li21] and independently Dalirrooyfard

and Wein [DW21], provided a scheme of tradeoff lower bounds for diameter in directed graphs.

They showed that under SETH, for every integer 𝑘 ≥ 2, a (2− 1/𝑘 − 𝜀)-approximation algorithm

for 𝜀 > 0 for the diameter in 𝑚-edge directed graphs, requires at least 𝑚1+1/(𝑘−1)−𝑜(1) time. Thus

in particular, under SETH, the linear time 2-approximation algorithm for diameter is optimal for

directed graphs.

For undirected graphs, however, only three conditional lower bounds are known: the 𝑚2−𝑜(1)

[RV13] lower bound for (3/2− 𝜀)-approximation, the 𝑚3/2−𝑜(1) [Li20] lower bound for (5/3− 𝜀)-

approximation, and the 𝑚4/3−𝑜(1) [Bon21a] lower bound for (7/4−𝜀)-approximation (see Figure 1-

1 in Chapter 1).

The tradeoff lower bounds for directed diameter of [DW21] and [Li21] crucially exploited
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the directions of the edges. One might think that one can simply replace the directed edges with

undirected gadgets. However, this does not seem possible. A very high level reason is that the

triangle inequality in undirected graphs can be used in both directions. The directed edges in the

prior constructions were used to make sure that some pairs of vertices have short paths between

them, while leaving the possibility of having large distances between other pairs. If undirected

edges (or even gadgets) are used instead however, the triangle inequality implies short paths for

pairs of vertices that the construction wants to avoid. A short path from 𝑢 to 𝑣 and a short path

from 𝑥 to 𝑣 does imply a short path from 𝑢 to 𝑥 in undirected graphs, but not in directed graphs.

This simple reason is basically why no simple extensions of the results of [DW21] and [Li21] to

undirected graphs seem to work. (See Section 4.4 for more about this.)

The fact that the triangle inequality can be used in both directions in undirected graphs, makes

it difficult to extend the lower bound constructions to undirected graphs, but it also seems to make

more algorithmic tradeoffs possible for undirected than for directed graphs, as evident from the

Cairo, Grossi, Rizzi [CGR16] algorithms. It thus seems possible that a better than 2 approximation

algorithm running in linear time could be possible for undirected graphs.

The main result of this chapter is a delicate construction that achieves the same tradeoff lower

bounds for diameter in undirected graphs as the ones in directed graphs, thus showing that undi-

rected diameter is just as hard. Namely:

Theorem 4.1.1. Assuming SETH, for all integers 𝑘 ≥ 2, for all 𝜀 > 0, a (2− 1
𝑘
−𝜀)-approximation

of Diameter in unweighted, undirected graphs on 𝑚 edges requires 𝑚1+1/(𝑘−1)−𝑜(1) time.

Theorem 4.1.1 was proved previously for 𝑘 = 2 [RV13], 𝑘 = 3 [BRS+18, Li20], and 𝑘 = 4

[Bon21a]. The theorem is stated in terms of the number of edges 𝑚; our lower bound constructions

are for the special case when 𝑚 = 𝑛1+𝑜(1) (i.e. very sparse graphs).

The main consequence of our theorem is that under SETH, there can be no better near-

linear time approximation algorithm for undirected unweighted diameter than the simple 2-

approximation algorithm that runs BFS from an arbitrary vertex.

Outline In Section 4.2, we give some preliminaries for our construction. In Section 4.3 we show

how to prove Theorem 4.1.1 for small cases 𝑘 = 4 and 𝑘 = 5 to illustrate some of our ideas. We
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(re)prove Theorem 4.1.1 for 𝑘 = 4, giving a simplified proof of Bonnet’s result, and show how the

proof can be modified to give a proof for 𝑘 = 5. The full proof for 𝑘 = 5 is deferred to section 4.6.

In Section 4.4, we highlight some of the ideas in the construction. Afterwards, we prove our formal

results. In Section 4.5, we prove Theorem 4.1.1 in full generality.

4.2 Preliminaries

For a positive integer 𝑎, let [𝑎] = {1, 2, . . . , 𝑎}.

𝑘-OV. A 𝑘-OV instance Φ is a set 𝐴 ⊆ {0, 1}d of 𝑛 binary vectors of dimension d = 𝜃(log 𝑛)

and the 𝑘-OV problem asks if we can find 𝑘 vectors 𝑎1, . . . , 𝑎𝑘 ∈ 𝐴 such that they are orthogonal,

i.e. 𝑎1 · . . . · 𝑎𝑘 = 0. The 𝑘-OV Hypothesis says that solving 𝑘-OV requires 𝑛𝑘−𝑜(1) time, and it is

implied by SETH [Wil04, Wil05].

Now we give the definitions that we use for our construction. At a very high level, we are

going to start from a 𝑘-OV instance and create a diameter instance. To do so, we are going to

make a graph where each node is a “configuration", which we are going to define later. Each

configuration consists of a number of “stacks", where each stack has some of the vectors of the

𝑘-OV instance. There are relationships between different stacks in a configuration, and we define

those relationships using “coordinate arrays". Below we define these notions more formally.

Stacks. Given a 𝑘-OV instance 𝐴 ⊂ {0, 1}d, we make the following definitions. A stack 𝑆 =

(𝑎1, . . . , 𝑎|𝑆|) is a vector of elements of 𝐴 whose length |𝑆| is a nonnegative integer. Denote 𝑎1 as

the bottom element of the stack and 𝑎|𝑆| as the top element of the stack. We let () denote the empty

stack, i.e., a stack with 0 vectors. Given a stack 𝑆 = (𝑎1, . . . , 𝑎ℓ), a substack 𝑆≤ℓ′ = (𝑎1, . . . , 𝑎ℓ′)

is given by the bottom ℓ′ vectors of 𝑆, where ℓ′ ≤ ℓ. We call these tuples stacks, because of the

following operations. The stack 𝑝𝑜𝑝𝑝𝑒𝑑(𝑆) is the stack (𝑎1, . . . , 𝑎ℓ−1), i.e., the stack 𝑆 with the

top element removed. For a vector 𝑏 ∈ 𝐴 and a stack 𝑆 = (𝑎1, . . . , 𝑎ℓ), the stack 𝑆 + 𝑏 is the

stack 𝑆 + 𝑏 = (𝑎1, . . . , 𝑎ℓ, 𝑏). The use of stacks as a primitive in our construction is motivated in

Section 4.4.

Coordinate arrays.
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𝑥[1] 𝑥[2] 𝑥[3]

𝑎1 1 1 1

𝑎2 1 1

𝑎3 1

𝑥[1] 𝑥[2] 𝑥[3]

𝑎1 1 1 1

𝑎2 1 1

𝑎3 1

𝑥[1] 𝑥[2] 𝑥[3]

𝑎1 1 1 1

𝑎2 1 1

𝑥[1] 𝑥[2] 𝑥[3]

𝑎1 1 1 1

𝑎2 1 1

Table 4.1: In each of the above, 𝑥 = (𝑥[1], 𝑥[2], 𝑥[3]) is a 4-coordinate array. The left two tables
depict that stack (𝑎1, 𝑎2, 𝑎3) satisfies 𝑥, and the right two tables depict that stack (𝑎1, 𝑎2) satisfies
𝑥.

Definition 4.2.1. A 𝑘-coordinate-array 𝑥 is an element of [d]𝑘−1.

In the reduction from 𝑘-OV, we only consider 𝑘-coordinate arrays, so we omit 𝑘 when it is

understood. For a 𝑘-coordinate array 𝑥 ∈ [d]𝑘−1 and an integer ℓ ∈ [𝑘 − 1], let 𝑥[ℓ] denote the

ℓth coordinate in the coordinate array 𝑥. Also for a coordinate 𝑐 and a vector 𝑎 ∈ 𝐴, 𝑎[𝑐] is the

𝑐th coordinate of 𝑎. We index coordinate arrays by 𝑥[ℓ] and vectors in 𝐴 by 𝑎[𝑐], rather than 𝑥ℓ

and 𝑎𝑐 (respectively), for clarity. For a set of non-orthogonal vectors {𝑎1, . . . , 𝑎𝑠} for 𝑠 ≤ 𝑘, let

𝑖𝑛𝑑(𝑎1, . . . , 𝑎𝑠) return a coordinate 𝑐 such that 𝑎𝑖[𝑐] = 1 for all 𝑖 = 1, . . . , 𝑠.

Definition 4.2.2 (Stacks satisfying coordinate arrays). Let 𝑆 = (𝑎1, . . . , 𝑎𝑠) be a stack where

|𝑆| ≤ 𝑘 − 1, and let 𝑥 ∈ [d]𝑘−1 be a 𝑘-coordinate array. We say that 𝑆 satisfies 𝑥 if there exists

sets [𝑘 − 1] = 𝐼1 ⊃ · · · ⊃ 𝐼𝑠 such that, for all ℎ = 1, . . . , 𝑠, we have |𝐼ℎ| = 𝑘 − ℎ and 𝑎ℎ[𝑥[𝑖]] = 1

for all 𝑖 ∈ 𝐼ℎ.

Lemma 4.2.1. If stack 𝑆 satisfies a coordinate array 𝑥, then any substack of 𝑆 satisfies 𝑥 as well.

Proof. This follows from the definition of satisfiability. □

Lemma 4.2.2. Let 𝑆 = (𝑎1, . . . , 𝑎|𝑆|) and 𝑆 ′ = (𝑏1, . . . , 𝑏|𝑆′|) be stacks, each with at most 𝑘 − 1

vectors from 𝐴, the 𝑘-OV instance, such that any 𝑘 vectors from among 𝑎1, . . . , 𝑎|𝑆|, 𝑏1, . . . , 𝑏|𝑆′|

are not orthogonal. Then there exists a coordinate array 𝑥 such that 𝑆 and 𝑆 ′ both satisfy 𝑥.

Proof. By Lemma 4.2.1, it suffices to prove this in the case that |𝑆| = |𝑆 ′| = 𝑘 − 1. Then

𝑆 = (𝑎1, . . . , 𝑎𝑘−1) and 𝑆 ′ = (𝑏1, . . . , 𝑏𝑘−1). Let 𝑥[ℓ] = 𝑖𝑛𝑑(𝑎1, . . . , 𝑎𝑘−ℓ, 𝑏1, . . . , 𝑏ℓ). Then for all
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ℎ = 1, . . . , 𝑘−1, we have 𝑎ℎ[𝑥[ℓ]] = 1 for ℓ ≤ 𝑘−ℎ, so 𝑆 satisfies 𝑥 with sets 𝐼ℎ = {1, . . . , 𝑘−ℎ}.

Additionally, for all ℎ = 1, . . . , 𝑘 − 1, we have 𝑏ℎ[𝑥[ℓ]] = 1 for ℓ = ℎ, . . . , 𝑘 − 1 so 𝑆 ′ satisfies 𝑥

with sets 𝐼ℎ = {ℎ, . . . , 𝑘 − 1}. Hence, both 𝑆 and 𝑆 ′ satisfy 𝑥. □

Lemma 4.2.3. Let 𝑎1, . . . , 𝑎𝑘 be 𝑘 orthogonal vectors. Suppose that 𝑗 is an index, 𝑥 is a coordinate

array and 𝑆 = (𝑎1, . . . , 𝑎𝑗) and 𝑆 ′ = (𝑎𝑘, . . . , 𝑎𝑗+1) are two stacks. Then stacks 𝑆 and 𝑆 ′ cannot

satisfy 𝑥 simultaneously.

Proof. Suppose for contradiction that 𝑆 and 𝑆 ′ both satisfy 𝑥. Let [𝑘 − 1] = 𝐼1 ⊃ 𝐼2 ⊃ · · · ⊃ 𝐼𝑗

be the sets showing that stack 𝑆 satisfies coordinate array 𝑥, and let [𝑘 − 1] = 𝐼𝑘 ⊃ · · · ⊃ 𝐼𝑗+1

be the sets showing that stack 𝑆 ′ satisfies coordinate array 𝑥. Here, 𝐼𝑗 has size 𝑘 − 𝑗 and 𝐼𝑗+1

has size 𝑗. We have |𝐼𝑗 ∩ 𝐼𝑗+1| = |𝐼𝑗| + |𝐼𝑗+1| − |𝐼𝑗 ∪ 𝐼𝑗+1| = 𝑘 − |𝐼𝑗 ∪ 𝐼𝑗+1| > 0. Then

𝐼1 ∩ 𝐼2 ∩ · · · ∩ 𝐼𝑘 = 𝐼𝑗 ∩ 𝐼𝑗+1 ̸= ∅, so there exists some 𝑖 ∈ 𝐼1 ∩ · · · ∩ 𝐼𝑘. For this 𝑖, we have

𝑎1[𝑥[𝑖]] = 𝑎2[𝑥[𝑖]] = · · · = 𝑎𝑘[𝑥[𝑖]] = 1, so 𝑎1, . . . , 𝑎𝑘 are not orthogonal, a contradiction. Thus,

stacks 𝑆 and 𝑆 ′ cannot satisfy 𝑥 simultaneously. □

4.3 Main theorem for 𝑘 = 4

In this section, we prove Theorem 4.1.1 for 𝑘 = 4. Theorem 4.1.1 for 𝑘 = 4 was previously

proven by Bonnet [Bon21a]. Here we present a simpler proof that also illustrates some ideas in

our general construction. Furthermore, our construction for 𝑘 = 4 can be easily modified to give

a hardness construction that proves Theorem 4.1.1 for 𝑘 = 5. We point out how this can be done

in the 𝑘 = 4 construction below. Since the modification is simple, and the proof of correctness is

similar but more involved, we defer the full proof of the 𝑘 = 5 construction to section 4.6, which

can be read for more intuition for the main construction. For two stacks 𝑆 = (𝑎1, . . . , 𝑎𝑠) and

𝑇 = (𝑏1, . . . , 𝑏𝑡), let 𝑆 ∘ 𝑇 denote the stack (𝑎1, . . . , 𝑎𝑠, 𝑏1, . . . , 𝑏𝑡).

Theorem 4.3.1. Assuming SETH, for all 𝜀 > 0, a (7
4
− 𝜀)-approximation of Diameter in un-

weighted, undirected graphs on 𝑚 edges needs 𝑚4/3−𝑜(1) time.

Proof. Start with a 4-OV instance Φ given by a set 𝐴 ⊂ {0, 1}d with |𝐴| = 𝑛𝑂𝑉 and d =

𝜃(log 𝑛𝑂𝑉 ). We show how to solve Φ using an algorithm for Diameter. First check in time 𝑂(𝑛3
𝑂𝑉 )
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({(a), (d)}, x, y)L2

({(a), (d′)}, x, y)L2
({(a′), (d)}, x, y)L2

({(a), (d)}, x′, y′)L2

({(a, b), ()}, x′, y′)L2
({(a, b), ()}, x, y)L2

(a, b, c)L1L1

L2 ({(a), (a′)}, x, x)L2

({(a, b), ()}, x, x)L2

(a, b, c)L1

({(a′, b′), ()}, x, x)

(a′, b′, c′)L1

({(a, b), ()}, x, y)L2

({(a), (a′)}, x, y)L2

({(a), (d′)}, x, y)L2

({(a), (d′)}, x′, y′)L2

(i) (ii)

Figure 4-1: (𝑖) 4-OV reduction graph. The purple edges are coordinate change edges. (𝑖𝑖) Paths
in the first two cases of the NO case. Black path is for the case where both vertices are in 𝐿1, blue
path is for the case where one vertex is in 𝐿1 and the other is in 𝐿2 with two stacks of size 1.

whether there are three orthogonal vectors in 𝐴. If so, we know that Φ also has 4 orthogonal

vectors, as we can add an arbitrary fourth vector to the triple and obtain a 4-OV solution.

Thus, let us assume that there are no three orthogonal vectors. We construct a graph with

𝑂̃(𝑛3
𝑂𝑉 ) vertices and edges from the 4-OV instance such that (1) if Φ has no solution, any two

vertices are at distance 4, and (2) if Φ has a solution, then there exists two vertices at distance

7. Any (7/4 − 𝜀)-approximation for Diameter distinguishes between graphs of diameter 4 and

7. Since solving Φ needs 𝑛
4−𝑜(1)
𝑂𝑉 time under SETH, a 7/4 − 𝜀 approximation of diameter needs

𝑛4/3−𝑜(1) time under SETH.

Construction of the graph The graph 𝐺 is illustrated in Figure 4-1(i) and constructed as follows.

The vertex set 𝐿1 ∪ 𝐿2 is defined on

𝐿1 = {𝑆 : 𝑆 is a stack with |𝑆| = 3},

𝐿2 =
{︀
({𝑆1, 𝑆2}, 𝑥, 𝑦) : 𝑆1, 𝑆2 are stacks with |𝑆1|+ |𝑆2| = 2,

𝑥, 𝑦 ∈ [d]3 are coordinate arrays such that

𝑆1 ∘ 𝑆2 satisfies 𝑥 and 𝑆2 ∘ 𝑆1 satisfies 𝑦, OR

𝑆1 ∘ 𝑆2 satisfies 𝑦 and 𝑆2 ∘ 𝑆1 satisfies 𝑥
}︀
. (4.1)

In vertex subset 𝐿2, the notation {𝑆1, 𝑆2} denote an unordered set of two stacks. As shown

in Figure 4-1, the vertices in 𝐿2 are of two types: ({(𝑎), (𝑏)}, 𝑥, 𝑦)𝐿2 and ({(𝑎, 𝑏), ()}, 𝑥, 𝑦)𝐿2 for
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𝑎, 𝑏 ∈ 𝐴, 𝑥, 𝑦 ∈ [𝑑].

Throughout, we identify tuples (𝑎, 𝑏, 𝑐) and ({𝑆1, 𝑆2}, 𝑥, 𝑦) with vertices of 𝐺, and we de-

note vertices in 𝐿1 and 𝐿2 by (𝑎, 𝑏, 𝑐)𝐿1 and ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 respectively. The (undirected un-

weighted) edges are the following.

• (𝐿1 to 𝐿2) Edge between (𝑆)𝐿1 and ({popped(𝑆), ()}, 𝑥, 𝑦)𝐿2 if stack 𝑆 satisfies both 𝑥 and

𝑦.

• (vector change in 𝐿2, type 1) For some vector 𝑎 ∈ 𝐴 and stacks 𝑆1, 𝑆2 with |𝑆1| ≥ 1, an

edge between ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 and ({popped(𝑆1), 𝑆2 + 𝑎}, 𝑥, 𝑦)𝐿2 if both vertices exist.

In particular, as Figure 4-1 shows, ({(𝑎, 𝑏), ()}, 𝑥, 𝑦)𝐿2 has an edge to ({(𝑎), (𝑏′)}, 𝑥, 𝑦)𝐿2 if

both vertices exist. These are the only type 1 edges.

• (vector change in 𝐿2, type 2) For some vector 𝑎 ∈ 𝐴 and stacks 𝑆1, 𝑆2 with |𝑆1| ≥ 1, an

edge between ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 and ({popped(𝑆1) + 𝑎, 𝑆2}, 𝑥, 𝑦)𝐿2 if both vertices exist.

In particular, as Figure 4-1 shows, ({(𝑎), (𝑏)}, 𝑥, 𝑦)𝐿2 has edges to ({(𝑎′), (𝑏)}, 𝑥, 𝑦)𝐿2 and

({(𝑎), (𝑏′)}, 𝑥, 𝑦)𝐿2 if the vertices exist. These are the only type 2 edges.

• (coordinate change in 𝐿2) Edge between ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 and ({𝑆1, 𝑆2}, 𝑥′, 𝑦′)𝐿2 if both

vertices exist.

There are at most 𝑛3
𝑂𝑉 vertices in 𝐿1 and at most 𝑛2

𝑂𝑉 d6 vertices in 𝐿2. Note that each vertex of

𝐿1 has 𝑂(d2) neighbors, each vertex of 𝐿2 has 𝑂(𝑛𝑂𝑉 + d2) neighbors. The total number of edges

and vertices is thus 𝑂(𝑛3
𝑂𝑉 d2) = 𝑂̃(𝑛3

𝑂𝑉 ). We first show below how to change this construction

for 𝑘 = 5, and then we show that the construction for 𝑘 = 4 has diameter 4 when Φ has no solution

and diameter at least 7 when Φ has a solution.

Modifications for 𝑘 = 5. The construction of the Diameter instance 𝐺 when 𝑘 = 5 is very

similar. We instead start with a 5-OV (rather than 4-OV) instance 𝐴 ⊂ {0, 1}𝑑, and use the exact

same graph, except the nodes in 𝐿1 have a stack of size 4 (rather than 3), and the total sizes of

the stacks in 𝐿2 is 3 (rather than 2). The descriptions of the edges are exactly the same. We defer
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the proof of correctness of this construction for 𝑘 = 5 to section 4.6. It is similar to the proof for

𝑘 = 4, but is more involved.

4-OV no solution Assume that the 4-OV instance 𝐴 ⊂ {0, 1}d has no solution, so that no four

(or three or two) vectors are orthogonal. We show that any pair of vertices have distance at most 4,

by casework:

• Both vertices are in 𝐿1: Let the vertices be (𝑎, 𝑏, 𝑐)𝐿1 and (𝑎′, 𝑏′, 𝑐′)𝐿1 . By Lemma 4.2.2

there exists coordinate array 𝑥 satisfied by both stacks (𝑎, 𝑏, 𝑐) and (𝑎′, 𝑏′, 𝑐′). We claim the

following is a valid path (see Figure 4-1ii):

(𝑎, 𝑏, 𝑐)𝐿1 − ({(𝑎, 𝑏), ()}, 𝑥, 𝑥)𝐿2 − ({(𝑎), (𝑎′)}, 𝑥, 𝑥)𝐿2 − ({(𝑎′, 𝑏′), ()}, 𝑥, 𝑥)𝐿2 − (𝑎′, 𝑏′, 𝑐′)𝐿1

(4.2)

The first edge and second vertex are valid because (𝑎, 𝑏, 𝑐) satisfies 𝑥 (and thus, by

Lemma 4.2.1, stack (𝑎, 𝑏) satisfies 𝑥). By the same reasoning the last edge and fourth vertex

are valid. The third vertex is valid because each of 𝑎 and 𝑎′ have a 1 in all coordinates of 𝑥,

so both (𝑎, 𝑎′) and (𝑎′, 𝑎) satisfy 𝑥.

• One vertex is in 𝐿1 and the other vertex is in 𝐿2 with two stacks of size 1: Let the vertices

be (𝑎, 𝑏, 𝑐)𝐿1 and ({(𝑎′), (𝑑′)}, 𝑥′, 𝑦′)𝐿2 . By Lemma 4.2.2, there exists a coordinate array 𝑥

satisfied by both stacks (𝑎, 𝑏, 𝑐) and (𝑎′, 𝑑′), and there exists a coordinate array 𝑦 satisfied by

both stacks (𝑎, 𝑏, 𝑐) and (𝑑′, 𝑎′). We claim the following is a valid path (see Figure 4-1ii):

(𝑎, 𝑏, 𝑐)𝐿1 − ({(𝑎, 𝑏), ()}, 𝑥, 𝑦)𝐿2

− ({(𝑎), (𝑎′)}, 𝑥, 𝑦)𝐿2

− ({(𝑑′), (𝑎′)}, 𝑥, 𝑦)𝐿2 − ({(𝑎′), (𝑑′)}, 𝑥′, 𝑦′)𝐿2 . (4.3)

The first edge and second vertex are valid because (𝑎, 𝑏, 𝑐) satisfies 𝑥 and 𝑦. Vector 𝑎 has a

one in each coordinate of 𝑥 and 𝑦, and stack (𝑎′, 𝑑′) satisfies 𝑥 and stack (𝑑′, 𝑎′) satisfies 𝑦,

so stack (𝑎′, 𝑎) satisfies 𝑥 and stack (𝑎, 𝑎′) satisfies 𝑦, so the third vertex ({(𝑎), (𝑎′)}, 𝑥, 𝑦)𝐿2
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is valid, and thus the second edge is also valid. The fourth vertex is valid because (𝑎′, 𝑑′)

satisfies 𝑥 and (𝑑′, 𝑎′) satisfies 𝑦 by construction of coordinate arrays 𝑥 and 𝑦, and thus the

third and fourth edges are valid. Hence, this is a valid path.

• Both vertices are in 𝐿2 with two stacks of size 1: Let the vertices be ({(𝑎), (𝑑)}, 𝑥, 𝑦)𝐿2

and ({(𝑎′), (𝑑′)}, 𝑥′, 𝑦′)𝐿2 . Let 𝑧1 ∈ [d] be a coordinate where 𝑎, 𝑑, 𝑎′, 𝑑′ are all 1, and let

𝑧 = (𝑧1, 𝑧1, 𝑧1) be a coordinate array. Then the following is a valid path:

({(𝑎), (𝑑)}, 𝑥, 𝑦)𝐿2 − ({(𝑎), (𝑑)}, 𝑧, 𝑧)𝐿2

− ({(𝑎′), (𝑑)}, 𝑧, 𝑧)𝐿2

− ({(𝑎′), (𝑑′)}, 𝑧, 𝑧)𝐿2 − ({(𝑎′), (𝑑′)}, 𝑥′, 𝑦′)𝐿2 . (4.4)

Indeed it’s easy to check that any stack of two of 𝑎, 𝑑, 𝑎′, 𝑑′ satisfies 𝑧, so all the vertices are

valid and thus all the edges are valid, so this is a valid path.

• One vertex is in 𝐿2 with two stacks of size 2 and 0: For every vertex 𝑢 =

({(𝑎, 𝑏), ()}, 𝑥, 𝑦)𝐿2 in 𝐿2 with two stacks of size 2 and 0, any vertex of the form 𝑣 =

(𝑎, 𝑏, 𝑐)𝐿1 in 𝐿1 has the property that the neighborhood of 𝑢 is a superset of the neighbor-

hood of 𝑣 (by considering coordinate change edges from 𝑢). Thus, any vertex that 𝑣 can

reach in 4 edges can also be reached by 𝑢 in 4 edges. In particular, since any two vertices in

𝐿1 are at distance at most 4, any vertex in 𝐿1 is distance at most 4 from any vertex in 𝐿2 with

two stacks of size 2 and 0. Applying a similar reasoning, any vertex in 𝐿2 with two stacks of

size 2 and 0 is distance at most 4 from any vertex in 𝐿2 with two stacks of size 2 and 0, and

any vertex in 𝐿2 with two stacks of size 1.

We have thus shown that any two vertices are at distance at most 4, proving the diameter is at most

4.

4-OV has solution. Now assume that the 4-OV instance has a solution. That is, assume there

exists 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ 𝐴 such that 𝑎1[𝑖] · 𝑎2[𝑖] · 𝑎3[𝑖] · 𝑎4[𝑖] = 0 for all 𝑖. Since there are no 3

orthogonal vectors, vectors 𝑎1, 𝑎2, 𝑎3, 𝑎4 are pairwise distinct.

71



Suppose for contradiction there exists a path of length at most 6 from 𝑢0 = (𝑎1, 𝑎2, 𝑎3)𝐿1 to

𝑢6 = (𝑎4, 𝑎3, 𝑎2)𝐿1 .

Since all vertices in 𝐿2 have self-loops with trivial coordinate-change edges, we may assume

the path has length exactly 6. Let the path be 𝑢0 = (𝑎1, 𝑎2, 𝑎3)𝐿1 , 𝑢1, . . . , 𝑢6 = (𝑎4, 𝑎3, 𝑎2)𝐿1 .

We may assume the path never visits 𝐿1 except at the ends: if 𝑢𝑖 = (𝑆) ∈ 𝐿1, then 𝑢𝑖−1 =

({popped(𝑆), ()}, 𝑥, 𝑦) and 𝑢𝑖+1 = ({popped(𝑆), ()}, 𝑥′, 𝑦′) are in 𝐿2, and in particular 𝑢𝑖−1 and

𝑢𝑖+1 are adjacent by a coordinate change edge, so we can replace the path 𝑢𝑖−1 − 𝑢𝑖 − 𝑢𝑖+1 with

𝑢𝑖−1 − 𝑢𝑖+1 − 𝑢𝑖+1, where the last edge is a self-loop.

For 𝑖 = 1, 2, 3, let 𝑝𝑖 denote the largest index such that vertices 𝑢0, 𝑢1, . . . , 𝑢𝑝𝑖 all contain a stack

that has (𝑎1, . . . , 𝑎𝑖) as a substack. Because we never revisit 𝐿1, we have 𝑝3 = 0. For 𝑖 = 1, 2, 3,

let 𝑞𝑖 be the smallest index such that vertices 𝑢𝑞𝑖 , . . . , 𝑢6 all contain a stack with (𝑎4, . . . , 𝑎5−𝑖) as

a substack. Because we never revisit 𝐿1, we have 𝑞3 = 6. We show that,

Claim 1. For 𝑖 = 1, 2, 3, between vertices 𝑢𝑝𝑖 and 𝑢𝑞4−𝑖
, there must be a coordinate change edge.

Proof. Suppose for contradiction there is no coordinate change edge between 𝑢𝑝𝑖 and 𝑢𝑞4−𝑖
. We

show a contradiction for each of 𝑖 = 1, 2, 3.

First, consider 𝑖 = 3. Here, 𝑢𝑝𝑖 = 𝑢0 = (𝑎1, 𝑎2, 𝑎3)𝐿1 . By minimality of 𝑞1, vertex 𝑢𝑞1 is of the

form ({(𝑒), (𝑎4)}, 𝑥, 𝑦)𝐿2 for some vector 𝑒. Then stack (𝑎4), satisfies one of 𝑥 and 𝑦. Since there

is no coordinate change edge between 𝑢0 and 𝑢𝑞1 , we must have 𝑢1 = ({(𝑎1, 𝑎2), ()}, 𝑥, 𝑦) for the

same coordinate arrays 𝑥 and 𝑦, so stack (𝑎1, 𝑎2, 𝑎3) satisfies both 𝑥 and 𝑦. Hence, there is some

coordinate array satisfied by both (𝑎1, 𝑎2, 𝑎3) and (𝑎4), which is a contradiction of Lemma 4.2.3.

By a similar argument, we obtain a contradiction if 𝑖 = 1.

Now suppose 𝑖 = 2. By maximality of 𝑝2, vertex 𝑢𝑝2 is of the form ({(𝑎1, 𝑎2), ()}, 𝑥, 𝑦)𝐿2 . By

minimality of 𝑞2, vertex 𝑢𝑞2 is of the form ({(𝑎4, 𝑎3), ()}, 𝑥, 𝑦)𝐿2 . The coordinate arrays 𝑥 and 𝑦

are the same between the two vertices because there is no coordinate change edge between them

by assumption. Then stacks (𝑎1, 𝑎2) and (𝑎4, 𝑎3) satisfy both coordinate arrays 𝑥 and 𝑦, which

contradicts Lemma 4.2.3. □

Since coordinate change edges do not change any vectors, by maximality of 𝑝𝑖, the edge

𝑢𝑝𝑖𝑢𝑝𝑖+1 cannot be a coordinate change edge for all 𝑖 = 1, 2, 3. Similarly, by minimality of 𝑞𝑖,
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the edge 𝑢𝑞𝑖−1𝑢𝑞𝑖 cannot be a coordinate change edge for all 𝑖 = 1, 2, 3. Consider the set of edges

𝑢𝑝3𝑢𝑝3+1, 𝑢𝑝2𝑢𝑝2+1, 𝑢𝑝1𝑢𝑝1+1, 𝑢𝑞1−1𝑢𝑞1 , 𝑢𝑞2−1𝑢𝑞2 , 𝑢𝑞3−1𝑢𝑞3 . (4.5)

By the above, none of these edges are coordinate change edges. These edges are among the 6

edges 𝑢0𝑢1, . . . , 𝑢5𝑢6. Additionally, the edges 𝑢𝑝𝑖𝑢𝑝𝑖+1 for 𝑖 = 1, 2, 3 are pairwise distinct, and

the edges 𝑢𝑞𝑖−1𝑢𝑞𝑖 for 𝑖 = 1, 2, 3 are pairwise distinct. Edge 𝑢𝑝3𝑢𝑝3+1 cannot be any of 𝑢𝑞𝑖−1𝑢𝑞𝑖

for 𝑖 = 1, 2, 3, because we assume our orthogonal vectors 𝑎1, 𝑎2, 𝑎3, 𝑎4 are pairwise distinct and

𝑢𝑝3−1 = 𝑢1 does not have any stack containing vector 𝑎4. Similarly, 𝑢𝑞3−1𝑢𝑞3 cannot be any of

𝑢𝑝𝑖𝑢𝑝𝑖+1 for 𝑖 = 1, 2, 3. Thus, the edges in (4.10) have at least 4 distinct edges, so our path has at

most 2 coordinate change edges. By Claim 1, there must be at least one coordinate change edge.

We now do casework on the number of coordinate change edges.

Case 1: the path 𝑢0, . . . , 𝑢6 has one coordinate change edge. By Claim 1, since vertex

𝑢𝑝3 = 𝑢0 is before the coordinate change edge, edge 𝑢𝑞1−1𝑢𝑞1 must be after the coordinate change

edge, and similarly edge 𝑢𝑝1𝑢𝑝1+1 must be before the coordinate change edge. Then all of the edges

in (4.5) are pairwise distinct, so then the path has 6 edges from (4.5) plus a coordinate change edge,

for a total of 7 edges, a contradiction.

Case 2: the path has two coordinate change edges. Again, by Claim 1, for 𝑖 = 1, 2, 3,

edges 𝑢𝑞𝑖−1𝑢𝑞𝑖 must be after the first coordinate change edge, and edge 𝑢𝑝𝑖𝑢𝑝𝑖+1 must be be-

fore the second coordinate change edge. Since we have 6 edges total, we have at most 4 dis-

tinct edges from (4.5), so there must be at least two pairs (𝑖, 𝑗) such that the edges 𝑢𝑝𝑖𝑢𝑝𝑖+1 and

𝑢𝑞𝑗−1𝑢𝑞𝑗 are equal. By above this edge must be between the two coordinate change edges, so edges

𝑢𝑝2𝑢𝑝2+1, 𝑢𝑝1𝑢𝑝1+1, 𝑢𝑞2−1𝑢𝑞2 , 𝑢𝑞1−1𝑢𝑞1 are all between the two coordinate change edges. However,

this means that vertices 𝑢𝑝2 and 𝑢𝑞2 are between the two coordinate change edges, contradicting

Claim 1.

This shows that (𝑎1, 𝑎2, 𝑎3)𝐿1 and (𝑎4, 𝑎3, 𝑎2)𝐿1 are at distance at least 7, completing the proof.

□
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Figure 4-2: Our Diameter instance 𝐺, illustrated for 𝑘 = 5. Vertices are configurations and edges
are operations on configurations. Edges within configurations hold coordinate arrays (suppressed
in the figure).

4.4 Overview of the general 𝑘 reduction

4.4.1 The basic setup

To prove Theorem 4.1.1 in general, we start with a 𝑘-OV instance 𝐴 ⊂ {0, 1}d with size

|𝐴| = 𝑛𝑂𝑉 and dimension d ≤ 𝑂(log 𝑛𝑂𝑉 ), and construct a graph 𝐺 on 𝑂̃(𝑛𝑘−1
𝑂𝑉 ) vertices and

edges such that, if the set 𝐴 has 𝑘 orthogonal vectors (Yes case), the diameter of 𝐺 is at least 2𝑘−1,

and otherwise (No case) the diameter of 𝐺 is at most 𝑘. Throughout, we refer to elements of 𝐴 as

vectors and elements of [d] as coordinates. Each vertex of 𝐺 is identified by a configuration 𝐻 ,

which contains vectors (in 𝐴) and coordinates (in [d]), along with some meta-data. Vertices must

be valid configurations 𝐻 , meaning vectors of 𝐻 have 1s in specified coordinates of 𝐻 . Edges

between configurations of 𝐺 change up to one vector and/or some coordinates, and we think of

edges as performing operations on configurations. We ensure the graph is undirected by choosing

operations that are invertible.
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4.4.2 The Diameter instance construction

We now sketch the definitions of configurations and operations, which define the vertices and

edges, respectively, of the Diameter instance 𝐺. Figure 4-2 illustrates our graph 𝐺 and some

vertices and edges.

Configurations. A configuration 𝐻 is identified by the following:

1. A positive integer 𝑡 and a sequence of 𝑡 lists of vectors 𝑆1, . . . , 𝑆𝑡, which we call stacks.

Stack 𝑆1 is special and is called the root, and we require 𝑆1 to have at least (𝑘 − 2)/2

vectors.

2. A collection of 𝑂(𝑘2) elements of [d]𝑘−1, which we call coordinate arrays, which are each

tagged with one or two of the stacks 𝑆1, . . . , 𝑆𝑡 (here, we omit the details of this tagging).

The size of a configuration is 𝑡+
∑︀𝑡

𝑖=1 |𝑆𝑖|, the number of stacks plus the number of vectors. The

vertices of our Diameter instance 𝐺 correspond to the valid (defined below) size-𝑘 configurations

(see Figure 4-2).1

Valid configurations. A configuration is valid if every coordinate array is satisfied (defined in

Definition 4.2.2) by its one or two tagged stacks. This technical notion of “stacks satisfying coor-

dinate arrays”, implicit in prior constructions [BRS+18, Bon21b, DW21, Li21, Bon21a], has two

key properties.

1. (Lemma 4.2.2, used in No case) If every 𝑘 vectors among the vectors of stacks 𝑆 and 𝑆 ′ are

not orthogonal, 𝑆 and 𝑆 ′ satisfy a common coordinate array.

2. (Lemma 4.2.3, used in Yes case) If stacks (𝑎1, . . . , 𝑎𝑗) and (𝑎𝑘, . . . , 𝑎𝑗+1) satisfy a common

coordinate array, then 𝑎1, . . . , 𝑎𝑘 are not orthogonal.

Operations. Operations (Figure 4-3) are composed of half-operations, which are one of the fol-

lowing.

1Prior lower bounds [BRS+18, Bon21b, DW21, Li21, Bon21a] resemble this construction but with only 𝑡 ≤ 2
stacks. Handling more than two stacks is nontrivial but seems necessary for our undirected, general-𝑘 result.
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Figure 4-3: (Full) Operation on configuration of size 𝑘 = 7. Root stack 𝑆1 is in purple. Coordinate
arrays (suppressed in figure) are attached to edges.

1. (Vector insertion) Insert a vector at the end of a stack.

2. (Vector deletion) Delete the last vector of a stack.

3. (Node2 insertion) Insert an empty non-root stack.

4. (Node deletion) Delete an empty non-root stack.3

5. (Flip) If 𝑡 = 2, switch the two stacks 𝑆1 and 𝑆2, making 𝑆2 the new root.

Note, vectors are inserted and deleted “First In Last Out”, hence the term “stack” (see Why

stacks?).

During node insertion and deletions, we also insert and delete, respectively, coordinate arrays

from the configuration. Specifying how to do this is a significant challenge. At a high level,

we associate with each configuration a star graph4 having vertices 𝑆1, . . . , 𝑆𝑡 and edges 𝑆1𝑆𝑖 for

𝑖 = 2, . . . , 𝑡 (hence 𝑆1 is called the root, see Figures 4-2 and 4-3). We attach each coordinate array

to an edge (the edge’s endpoints may be different from the coordinate array’s tagged stack(s)), and

insert and delete coordinate arrays when their associated edge is inserted or deleted.

A (full) operation consists of two half-operations: a vector insertion or node insertion followed

by a vector deletion or node deletion. We also allow operations to include a flip operation after

2We say “Node insertion” instead of “stack insertion” because in the actual construction, we place the stacks at
nodes of a graph.

3In the formal construction, we require that the deleted stack is either 𝑆𝑡−1 or 𝑆𝑡, and require an analogous con-
dition for node insertions. The proof holds without this requirement, but it is a notational convenience in the proof of
Lemma 4.5.3.

4We emphasize there are now two types of graphs: the Diameter instance, and the star graphs of each configuration.
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the half-operations. To ensure at most 𝑂̃(𝑛𝑘−1
𝑂𝑉 ) edges, we do not allow operations between two

configurations with one stack (𝑡 = 1). An operation is valid if the starting and ending configuration

are valid.5 The Diameter instance 𝐺 has the edge (𝐻,𝐻 ′) if applying a valid operation to 𝐻 gives

𝐻 ′.

Basic properties. We check a few basic properties of the construction.

• Operations leave the size 𝑡 +
∑︀𝑡

𝑖=1 |𝑆𝑖| of a configuration invariant, so the edges are well-

defined. (this is why we defined size as 𝑡+
∑︀𝑡

𝑖=1 |𝑆𝑖|.)

• Since the Diameter instance deals with size 𝑘 configurations, each configuration has at most

𝑘 − 1 vectors, so there are at most 𝑂̃(𝑛𝑘−1
𝑂𝑉 ) vertices. Similarly, one can check that there are

𝑂̃(𝑛𝑘−1
𝑂𝑉 ) edges, and that the graph can be constructed in 𝑂̃(𝑛𝑘−1

𝑂𝑉 ) time.

• Operations are invertible, so the graph is undirected. For example, a vector insertion/node

deletion can be inverted by a node insertion/vector deletion.

Why stacks? That is, why are vectors inserted “First In Last Out” from stacks? Crucially, stacks

ensure that 𝑘 − 1 operations are needed to delete the bottom vector of a configuration with one

stack. As in prior constructions, the Yes case shows that if 𝑎1, . . . , 𝑎𝑘 are orthogonal, the one-stack

configurations 𝐻 and 𝐻 ′ with stacks (𝑎1, . . . , 𝑎𝑘−1) and (𝑎𝑘, . . . , 𝑎2) are at distance 2𝑘 − 1. If we

could delete 𝑎1 from 𝐻 in less than 𝑘 − 1 operations, we could arrive in 𝑘 − 2 operations at a

configuration 𝐻 ′′ such that any 𝑘 vectors among 𝐻 ′′ and 𝐻 ′ are not orthogonal. Then 𝐻 ′′ and 𝐻 ′

are distance 𝑘 by the No case, so 𝑑(𝐻,𝐻 ′) ≤ 𝑑(𝐻,𝐻 ′′) + 𝑑(𝐻 ′′, 𝐻 ′) ≤ 2𝑘 − 2 by the triangle

inequality, a contradiction.

4.4.3 Correctness

We now sketch why 𝐺 has diameter at most 𝑘 in the No case and at least 2𝑘−1 in the Yes case.

No case. Suppose any 𝑘 vectors are not orthogonal. We want to show we can reach any configu-

ration 𝐻 ′ from any other configuration 𝐻 with 𝑘 valid operations. If the operations do not need to

5We also require validity of intermediate configurations after one of the two half-operations. In the Yes case, this
gives an extra +2, proving the diameter is 2𝑘 − 1, rather than 2𝑘 − 3.
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Figure 4-4: No-case path between configurations 𝐻 and 𝐻 ′ for 𝑘 = 7. We delete all non-root
stacks of 𝐻 before inserting any non-root stacks of 𝐻 ′. Orange edges hold auxiliary coordinate
arrays not belonging to 𝐻 or 𝐻 ′.

be valid, this is easy: insert the nodes and vectors of 𝐻 ′ while deleting the vectors and nodes from

𝐻 . We need 𝑘 deletions to remove 𝐻 (because it has size 𝑘), and 𝑘 insertions to build 𝐻 ′, so we

pair the insertions and deletions to get from 𝐻 to 𝐻 ′ in 𝑘 full operations.

Since these operations may not all be valid, we must carefully choose the order of the insertions

and deletions. The root stack is key in choosing the path. Let 𝑆1 and 𝑆 ′1 be the root stacks of 𝐻

and 𝐻 ′. Because 𝑆1 and 𝑆 ′1 each have at least (𝑘 − 2)/2 vectors (by definition, and crucially), we

can choose a path from 𝐻 to 𝐻 ′ that first deletes all the non-root stacks of 𝐻 while only adding

stack 𝑆 ′1 and its vectors (see Figure 4-4). Then when 𝑆 ′1 has at least (𝑘 − 2)/2 vectors, we apply

a flip operation, so that 𝑆 ′1 is the new root, and we build the remainder of 𝐻 ′ while deleting stack

𝑆1.6

Roughly, this path works because all coordinate arrays tagged with both a stack in 𝐻 and a

stack in 𝐻 ′ are “auxiliary”, belonging to neither 𝐻 nor 𝐻 ′; they are attached to 𝑆1𝑆
′
1, the orange

edges in Figure 4-4. This requirement is necessary, as 𝐻 and 𝐻 ′ are generic configurations, so

stacks of 𝐻 may not satisfy any coordinate array of 𝐻 ′ and vice-versa. Furthermore, Lemma 4.2.2

and non-orthogonality let us choose these auxiliary coordinate arrays to always be satisfied by their

tagged stacks, making the path valid.

6 By viewing a path 𝐻1, 𝐻2, . . . as a sequence of operations on 𝐻1, we can naturally identify stacks and coordinates
across different configurations in the path, talking about, for example, a stack 𝑆1 of 𝐻1 being in 𝐻𝑖. For this overview,
this informality suffices. To avoid ambiguity in the formal proof, we give stacks a label that does not change between
operations (and contract pairs of configurations that are equivalent up to permuting labels).
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Figure 4-5: The Yes case. We find a coordinate array 𝑥 satisfied by stack (𝑎1, . . . , 𝑎𝑘−𝑖−1) in
some configuration and satisfied by stack (𝑎𝑘, . . . , 𝑎𝑘−𝑖) in another configuration, contradicting
Lemma 4.2.3. Here, coordinate array 𝑥 is both attached to edge 𝑆1𝑆

′
1 (so it is inserted and deleted

with the edge) and tagged with stacks 𝑆1 and 𝑆 ′1 (so stacks 𝑆1 and 𝑆 ′1 need to satisfy 𝑥). The *s
represents some (possibly zero) vectors.

Yes case. Suppose that there are 𝑘 orthogonal vectors 𝑎1, . . . , 𝑎𝑘. We sketch why our graph 𝐺

has diameter at least 2𝑘 − 3. The formal proof shows the diameter is at least 2𝑘 − 1 (see footnote

5).

Let 𝐻0 be the configuration with one stack 𝑆1 = (𝑎1, . . . , 𝑎𝑘−1), and let 𝐻2𝑘−4 be the configura-

tion with one stack 𝑆 ′1 = (𝑎𝑘, . . . , 𝑎2). Suppose for contradiction there is a path 𝐻0, 𝐻1, . . . , 𝐻2𝑘−4.

At the highest level, we find two stacks (𝑎𝑘, . . . , 𝑎𝑗+1) and (𝑎1, . . . , 𝑎𝑗) from intermediate config-

urations satisfying a common coordinate array, contradicting Lemma 4.2.3.

Let 𝑖 be the smallest index such that configurations 𝐻𝑖, 𝐻𝑖+1, . . . , 𝐻2𝑘−4 all contain stack 𝑆 ′1.

It is easy to check that 𝑖 ≤ 𝑘 − 3 so 𝐻𝑖 also contains stack 𝑆1. For this sketch, assume that stacks

𝑆1 and 𝑆 ′1 are adjacent in the configuration 𝐻𝑖’s star graph.7 Since this star graph is always a tree,

and valid operations can only delete leaf nodes, stack 𝑆1 can only be deleted by deleting all of 𝐻𝑖

minus stack 𝑆 ′1 (The red stacks/vectors in Figure 4-5), which takes 𝑘−1 operations (Lemma 4.5.4).

Thus, configurations 𝐻𝑖, . . . , 𝐻𝑖+𝑘−2 all have stacks 𝑆1 and 𝑆 ′1 and the edge between them.

Our construction guarantees a coordinate array 𝑥 attached to edge 𝑆1𝑆
′
1 that is satisfied by

𝑆1 and 𝑆 ′1. Hence, 𝑥 is satisfied by 𝑆1 and 𝑆 ′1 in each of 𝐻𝑖, . . . , 𝐻𝑖+𝑘−2. In 𝐻𝑖, stack 𝑆1 must

have a prefix of (𝑎1, . . . , 𝑎(𝑘−1)−𝑖), which thus satisfies 𝑥. 8 In 𝐻𝑖+𝑘−2, stack 𝑆 ′1 must have a

prefix of (𝑎𝑘, . . . , 𝑎(2𝑘−4)−(𝑖+𝑘−2)+2), which also satisfies 𝑥. Hence stacks (𝑎1, . . . , 𝑎𝑘−𝑖−1) and

7There are two other cases: 𝑆1 and 𝑆′
1 are the same stack, and 𝑆1 and 𝑆′

1 are nonadjacent stacks in the star graph.
The first case is easy, and the nonadjacent case is similar but more technical, depending on the details of tagging
coordinate arrays with stacks.

8If a stack satisfies coordinate array, its prefixes (substacks) also satisfy that coordinate array (Lemma 4.2.1).
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(𝑎𝑘, . . . , 𝑎𝑘−𝑖) satisfy a common coordinate array, contradicting Lemma 4.2.3.

4.5 The main theorem for general 𝑘

We describe below a reduction from 𝑘-OV to 2𝑘 − 1 vs. 𝑘 Diameter with time 𝑂(𝑛𝑘/(𝑘−1)) on

graphs with edges of weight 1 or 0. This immediately gives a reduction from 𝑘-OV to 2𝑘− 1 vs. 𝑘

Diameter with time 𝑂(𝑛𝑘/(𝑘−1)) on unweighted graphs, by contracting the edges of weight 0. For

clarity of exposition, we describe the reduction to the 0/1-weighted graph.

Throughout the construction, fix 𝑘′ = ⌊𝑘/2⌋ + 1. Throughout the construction, all coordinate

arrays are 𝑘-coordinate arrays. Let Φ be a 𝑘-OV instance given by a set 𝐴 of 𝑛 vectors of length

𝑂(log 𝑛). We create a graph 𝐺 using this instance. First we need a few definitions.

4.5.1 Configurations

Edge constraints. The vertices of our construction are “configurations" which we are going to

define formally later. Each configuration is a small graph, in which each vertex is assigned a stack

and each edge puts constraints between those stacks. These edge-constraints on edges are of the

following form. Recall that a coordinate array is an element of [d]𝑘−1.

Definition 4.5.1 (Edge-constraint). In a graph with an edge connecting vertices 𝑣 and 𝑣′, a (𝑣, 𝑣′)-

edge-constraint 𝑋 (or edge-constraint when (𝑣, 𝑣′) is implicit) is a tuple of 2𝑘′ + 1 coordinate-

arrays: 𝑋𝑣,𝑖 and 𝑋𝑣′,𝑖 for 𝑖 ∈ [𝑘′], and 𝑋*.

We later define how these 2𝑘′ + 1 coordinate arrays of a (𝑣, 𝑣′)-edge-constraint relate with the

stacks assigned to 𝑣 and 𝑣′, as well as the stacks of other vertices.

Configurations. With these edge-constraints defined, we can now define a configuration.

Definition 4.5.2 (Configuration). A configuration 𝐻 is an undirected star9 graph 𝐻 with nodes

𝑉 (𝐻) labeled by distinct elements of [2𝑘′], such that

1. The center node, denoted 𝜌(𝐻), of the star graph 𝐻 is called the root (if the graph has two

nodes, either one could be the root),
9Recall a star graph is a tree with a center vertex adjacent to all other vertices.
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2. 𝐻 is equipped with a total order ≺𝐻 on the vertices of 𝐻 such that the root is the smallest

node of ≺𝐻 ,

3. Each node 𝑣 of 𝐻 is assigned a stack 𝑆𝑣(𝐻), and

4. Each edge (𝑣, 𝑣′) of 𝐻 is labeled with an (𝑣, 𝑣′)-edge constraint 𝑋𝑣,𝑣′ . As graph 𝐻 is

undirected, we equivalently denote 𝑋𝑣,𝑣′ by 𝑋𝑣′,𝑣.

Again, we emphasize that there are now two types of graphs, the configuration graph, and the

Diameter instance, whose vertices are identified by configuration graphs. We say configuration 𝐻

is a 𝑡-stack configuration if 𝐻 has 𝑡 vertices. The vertices of our Diameter instance are identified

with configurations. We use the following definition to specify how many nodes and vectors are

in these configuration. As we specify later, the vertices of our Diameter instance are identified by

configurations of size 𝑘.

Definition 4.5.3 (Size of a configuration). The size of a configuration 𝐻 is the integer
∑︀

𝑣∈𝑉 (𝐻)(1+

|𝑆𝑣(𝐻)|).

Note that the size of a configuration is the number of stacks plus the total number of vectors in

all the stacks.

Equivalent configurations. The node labels of a configuration 𝐻 in [2𝑘′] are irrelevant except

so that we can reason about operations on configurations (defined later) in a well defined way

(see footnote 6). Accordingly, we say two configurations are equivalent if, informally, one can be

obtained by permuting the node labels of the other. Formally, we have the following definition.

Definition 4.5.4 (Equivalence of configurations). We say two configurations 𝐻 and 𝐻 ′ are equiv-

alent if there is some permutation 𝜋 : [2𝑘′]→ [2𝑘′] such that,

• Configuration 𝐻 ′ contains node 𝜋(𝑣) for each node 𝑣 of 𝐻 , and an edge (𝜋(𝑣), 𝜋(𝑣′))

with (𝜋(𝑣), 𝜋(𝑣′))-edge constraint 𝑌 𝜋(𝑣),𝜋(𝑣′) for each edge (𝑣, 𝑣′) of 𝐻 with (𝑣, 𝑣′)-edge-

constraint 𝑋𝑣,𝑣′ , such that 𝑌 𝜋(𝑣),𝜋(𝑣′)
𝜋(𝑣),𝑗 = 𝑋𝑣,𝑣′

𝑣,𝑗 and 𝑌
𝜋(𝑣),𝜋(𝑣′)
𝜋(𝑣′),𝑗 = 𝑋𝑣,𝑣′

𝑣′,𝑗 for all 𝑗 ∈ [𝑘′], and

𝑌
𝜋(𝑣),𝜋(𝑣′)
* = 𝑋𝑣,𝑣′

* .
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• The stacks satisfy 𝑆𝜋(𝑣)(𝜋(𝐻)) = 𝑆𝑣(𝐻) for every node 𝑣 of 𝐻 .

• The ordering ≺𝐻′ on 𝐻 ′ has 𝜋(𝑣) ≺𝐻′ 𝜋(𝑣′) if and only if 𝑣 ≺𝐻 𝑣′.

• The root 𝜌(𝜋(𝐻)) of 𝜋(𝐻) satisfies 𝜌(𝜋(𝐻)) = 𝜋(𝜌(𝐻)).

In this case, we write 𝐻 ′ = 𝜋(𝐻).

It is easy to check the following fact from Definition 4.5.4. Taking 𝜋′ = 𝜋−1 below verifies

that the equivalence in Definition 4.5.4 is indeed an equivalence relation.

Lemma 4.5.1. For two permutations 𝜋 and 𝜋′, we have 𝜋(𝜋′(𝐻)) = (𝜋 ∘ 𝜋′)(𝐻)

Edge-satisfying and valid configurations. For a configuration to be a valid vertex of our di-

ameter instance, the stacks of a configuration need to satisfy particular coordinate arrays in the

configuration. We now make precise how we want the coordinate arrays to constrain the stacks.

This is the most technical definition in the construction.

Definition 4.5.5 (Edge-satisfying and 𝒳𝑣(𝐻)). A configuration 𝐻 with 𝑠 ≥ 1 vertices 𝑣1 ≺𝐻

· · · ≺𝐻 𝑣𝑠 is edge-satisfying if and only if for every 𝑖 ∈ [𝑠], the stack 𝑆𝑣𝑖(𝐻) satisfies each

coordinate array in the following set 𝒳𝑣𝑖(𝐻) of coordinate arrays.

1. For every neighbor 𝑣′ of 𝑣𝑖, and every index 𝑗 ∈ [𝑘′], set 𝒳𝑣𝑖(𝐻) includes the coordinate

array 𝑋𝑣𝑖,𝑣
′

𝑣𝑖,𝑗
and 𝑋𝑣𝑖,𝑣

′
* . Note that either 𝑣′ or 𝑣𝑖 is the root.

2. For every 𝑖′ > 𝑖, set 𝒳𝑣𝑖(𝐻) includes the coordinate array 𝑋𝑣𝑖′ ,𝑣1
𝑣𝑖′ ,𝑖

, where recall that 𝑣1 is the

root 𝜌(𝐻). See Figure 4-6.

We highlight the subtle detail that the edge constraint 𝑋𝑣1,𝑣𝑖 belonging to the edge 𝑣1𝑣𝑖 where

𝑣1 = 𝜌(𝐻) might hold coordinate arrays constraining the stacks of the nodes other than its end-

points 𝑣1 and 𝑣𝑖. To get more intuition, the coordinate arrays a given stack 𝑆𝑣𝑖 needs to satisfy are

illustrated in Figure 4-6, and for an edge 𝑣1𝑣𝑖 in configuration 𝐻 the stacks that must satisfy each

coordinate array in 𝑋𝑣1,𝑣𝑖 are illustrated in Table 4.2. Table 4.2 shows that every coordinate array

in the edge-constraint 𝑋 constrains at most two stacks.
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Figure 4-6: The coordinate arrays 𝒳𝑣𝑖(𝐻) that stack 𝑆𝑣𝑖(𝐻) satisfies, for 𝑖 ≥ 2. The relevant edges
are colored red, and the coordinate array that is satisfied by 𝑆𝑣𝑖(𝐻) is written on them. the edge
𝑣1𝑣𝑖 is shown in bold since many coordinate arrays on this edge-constraint are satisfied by 𝑆𝑣𝑖(𝐻).

* 1 . . . 𝑗 . . . 𝑖− 1 𝑖 . . . 𝑘′

* 𝑆𝑣1 , 𝑆𝑣𝑖 − . . . − . . . − − . . . −

𝑣1 − 𝑆𝑣1 . . . 𝑆𝑣1 . . . 𝑆𝑣1 𝑆𝑣1 . . . 𝑆𝑣1

𝑣𝑖 − 𝑆𝑣1 , 𝑆𝑣𝑖 . . . 𝑆𝑣𝑗 , 𝑆𝑣𝑖 . . . 𝑆𝑣𝑖−1
, 𝑆𝑣𝑖 𝑆𝑣𝑖 . . . 𝑆𝑣𝑖

Table 4.2: Edge satisfying constraints for 𝑋𝑣1,𝑣𝑖 in a configuration 𝐻 . The entry in row 𝑢 and
column 𝑡 represent the stacks satisfying 𝑋𝑣1,𝑣𝑖

𝑢,𝑡 . The entry in row * and column * represent the
stacks satisfying 𝑋𝑣1,𝑣𝑖

* . We drop 𝐻 in 𝑆𝑢(𝐻) for space constraints.



Definition 4.5.6 (Valid configuration). The configuration 𝐻 is valid if it is edge-satisfying and the

stack of the root node satisfies |𝑆𝜌(𝐻)(𝐻)| ≥ (𝑘− 2)/2. Here, 𝑘 is the parameter of our reduction.

We use this definition even when the size of configuration 𝐻 is not 𝑘.

The choice of our global constant 𝑘′ is motivated by this definition: Since all valid configu-

rations have a stack with at least (𝑘 − 2)/2 vectors, all valid size-𝑘 configurations, and hence all

configurations at vertices of our Diameter instance, have at most 𝑘 − ⌈(𝑘 − 2)/2⌉ = 𝑘′ nodes.

Operations on configurations. As mentioned earlier, our final construction consists of configu-

rations. To relate different configurations to each other, we define operations as follows.

Definition 4.5.7 (Operations on configurations). We define the following half-operations on con-

figurations 𝐻 , that produce a resulting configuration 𝐻 ′.

1. Vector insertion. 𝐻 ′ has the same nodes, root node, edges, stacks, and ordering as 𝐻 , except

that 𝑆𝑣(𝐻
′) = 𝑆𝑣(𝐻) + 𝑏 for some vector 𝑏 ∈ 𝐴 and some node 𝑣.

2. Vector deletion. 𝐻 ′ has the same nodes, root node, edges, stacks, and ordering as 𝐻 , except

that 𝑆𝑣(𝐻
′) = 𝑝𝑜𝑝𝑝𝑒𝑑(𝑆𝑣(𝐻)) for some node 𝑣.

3. Node insertion. 𝐻 ′ has the same nodes, root node, edges, stacks as 𝐻 , except that 𝐻 ′ also

contains a node 𝑣 labeled in [2𝑘′]∖𝑉 (𝐻), assigned with an empty stack 𝑆𝑣(𝐻
′) = ∅, and an

edge from node 𝑣 to the root node 𝜌(𝐻 ′) = 𝜌(𝐻) with a (𝑣, 𝜌(𝐻 ′))-edge constraint 𝑋 , and

such that the total order ≺𝐻′ is a total order consistent with ≺𝐻 on the nodes of 𝐻 and the

new node 𝑣 as either the largest or second largest node of ≺𝐻 .10

4. Node deletion. 𝐻 ′ has the same nodes, root node, edges, stacks as 𝐻 , except that for some

non-root (leaf) node 𝑣 with 𝑆𝑣(𝐻) = ∅ that is either the second-largest or largest node of

≺𝐻 , 𝐻 ′ does not contain node 𝑣 or the edge incident to it, and the order ≺𝐻′ is the order

≺𝐻 restricted to the nodes of 𝐻 ′

10This requirement that the new node 𝑣 is either the largest or second largest node of≺𝐻 is not necessary, but makes
the rest of the proof, especially Lemma 4.5.3, easier to write. Similarly, for node deletions, the deleted node does not
need to be the largest or second-largest node of ≺𝐻 .
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Figure 4-7: Example of a full operation consisting of a vector insertion (in 𝑣2), a flip and a vector
deletion (from 𝑣1). We assume that 𝑘 = 7 in this example. Note that when the flip operation
happens, the two nodes have the same number of vectors in their stacks. The root in all four
configurations is colored purple.

5. Flip. This half-operation is “only" defined when 𝐻 has exactly two nodes 𝑣 and 𝑣′ with

𝑣 = 𝜌(𝐻) as the root and |𝑆𝑣(𝐻)| = |𝑆𝑣′(𝐻)|. Then 𝐻 ′ has the same nodes, edges, and

stacks as 𝐻 , but 𝑣′ = 𝜌(𝐻 ′) is the root of 𝐻 ′ and the ordering ≺𝐻′ of the nodes of 𝐻 ′ is

switched accordingly, so that 𝑣′ ≺𝐻′ 𝑣.

Call such a half-operation valid if configurations 𝐻 and 𝐻 ′ are both valid.

A full operation is obtained by applying a vector or node insertion, possibly applying a flip (if

applicable), and then applying a vector or node deletion. We say a full operation from 𝐻 to 𝐻 ′ is

valid if each of the two (or three, if there is a flip) participating half-operations is valid, and if at

least one of 𝐻 or 𝐻 ′ has at least two nodes.

By combining a “delete" (node or vector) half operation to an insert (node or vector) half

operation, we make sure that the endpoints of a full-operation have the same size. For examples of

full operations, see Figure 4-3 and Figure 4-7. Full operations have the following useful properties.

Lemma 4.5.2 (Properties of half and full operations). Let 𝐻 and 𝐻 ′ be configurations.

• If applying a vector insertion to 𝐻 gives 𝐻 ′, it is possible to apply a vector deletion to 𝐻 ′ to

get 𝐻 .

• If applying a vector deletion to 𝐻 gives 𝐻 ′, it is possible to apply a vector insertion to 𝐻 ′ to

get 𝐻 .

• If applying a node insertion to 𝐻 gives 𝐻 ′, it is possible to apply node deletion to 𝐻 ′ to get

𝐻 .
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• If applying a node deletion to 𝐻 gives 𝐻 ′, it is possible to apply node insertion to 𝐻 ′ to get

𝐻 .

• Applying two flip operations to a 2-stack configuration gives the same configuration.

• If applying a valid full operation to 𝐻 gives 𝐻 ′, it is possible to apply a valid full operation

to 𝐻 ′ to get 𝐻 .

Proof. For the first item, if 𝐻 ′ is obtained from a vector insertion at node 𝑣 in 𝐻 , then 𝐻 is obtained

by a vector deletion at node 𝑣 in 𝐻 . The second, third, and fourth items are similar. For the fifth

item, flip operations do not change the 2-node graph, and two flips preserve the root node and the

ordering of the two nodes.

For the sixth item, note that the first five items imply that every half-operation has an inverse. If

𝐻 ′ is obtained by applying two half-operations to 𝐻 that give 𝐻 ′′ then 𝐻 ′, and both half operations

are valid, then configurations 𝐻,𝐻 ′′, 𝐻 ′ are all valid configurations. Then the full operation 𝐻 ′ →

𝐻 ′′ → 𝐻 is a valid full operation. Similarly if 𝐻 ′ is obtained with a valid full operation including

a flip, having intermediate configurations 𝐻 → 𝐻 ′′ → 𝐻 ′′′ → 𝐻 ′, then all the intermediate

configurations are valid, and 𝐻 ′ → 𝐻 ′′′ → 𝐻 ′′ → 𝐻 is a valid full operation. □

4.5.2 Defining the Diameter graph 𝐺

We are now ready to define our graph 𝐺. The vertex set of 𝐺 is the set of valid size-𝑘 config-

urations. Recall that for all size-𝑘 configurations, the number of stacks plus the total number of

vectors in all stacks is 𝑘, and a configuration is valid if it is edge-satisfying (Definition 4.5.5) and

the root stack has at least (𝑘 − 2)/2 vectors in it. The edge-set of 𝐺 includes the following types

of edges:

• edges (𝐻,𝐻 ′) such that configuration 𝐻 can be obtained from configuration 𝐻 ′ by a valid

full operation. We call these edges operation edges. By the last part of Lemma 4.5.2, (𝐻,𝐻 ′)

are connected by an operation edge if and only if 𝐻 can be obtained from 𝐻 ′ by a valid full

operation, so these edges can indeed by undirected.
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• weight-0 edges (𝐻, 𝜋(𝐻)) for all valid size-𝑘 configurations 𝐻 and all permutations 𝜋 :

[2𝑘′] → [2𝑘′] (recall 𝜋(𝐻) is defined in Definition 4.5.4). We call these edges permutation

edges.

• (if 𝑘 is even) weight-0 edges (𝐻,𝐻 ′) if 𝐻 ′ can be obtained by applying a flip to 𝐻 . We call

these edges flip edges.

For disambiguation, we always refer to vertices of configurations as nodes, and vertices of the

Diameter instance 𝐺 as vertices or configurations.

Runtime analysis. We first show that the graph 𝐺 can be constructed in time 𝑂𝑘(𝑛
𝑘−1
𝑂𝑉 d𝑂(𝑘2)).

One can construct the vertices of 𝐺 by enumerating over all possible star graphs labeled by [2𝑘′],

of which there are at most 𝑂𝑘(1), and then enumerating over all possible orderings ≺ of the nodes

of star graphs, of which there are at most 𝑂𝑘(1), and then enumerating over all possible stacks for

each star graph, of which there are at most 𝑂𝑘(𝑛
𝑘−1
𝑂𝑉 ) (each configuration is size-𝑘, meaning the

total number of nodes (stacks) plus the total number of vectors equals 𝑘, and since there is always

at least one node (stack), the total number of vectors is at most 𝑘 − 1), and enumerating over all

possible edge-constraints, of which there are at most 𝑂𝑘(d(𝑘′−1)·(2𝑘′+1)) ≤ 𝑂𝑘(d2𝑘2). Hence, there

are at most 𝑂𝑘(𝑛
𝑘−1
𝑂𝑉 d2𝑘2) vertices of 𝐺. Furthermore, for 𝑡 ≥ 2, there are at most 𝑂𝑘(𝑛

𝑘−2
𝑂𝑉 d2𝑘2)

many 𝑡-stack configurations of 𝐺.

For any configuration, there are 𝑂𝑘(𝑛𝑂𝑉 ) vector insertions possible, 𝑂𝑘(1) vector deletions

possible, 𝑂𝑘(d2𝑘′+1) node insertions possible, and 𝑂𝑘(1) node deletions possible. Hence, each

configuration of 𝐺 has at most 𝑂𝑘(𝑛𝑂𝑉 + d2𝑘′+1) neighbors. Every edge of 𝐺 has at least one

endpoint that has 𝑡 ≥ 2 stacks (by definition of valid full operation), so the total number of edges

of 𝐺 is at most 𝑂𝑘(𝑛𝑂𝑉 + d2𝑘′+1) ·𝑂𝑘(𝑛
𝑘−2
𝑂𝑉 d2𝑘2) ≤ 𝑂𝑘(𝑛

𝑘−1
𝑂𝑉 d4𝑘2).

Hence, 𝐺 has 𝑂̃(𝑛𝑘−1
𝑂𝑉 ) vertices (configurations) and edges. Checking whether any half-

operation is valid takes time 𝑂𝑘(d) = 𝑂̃𝑘(1). Hence enumeration of vertices (configurations)

and edges of the Diameter graph 𝐺 is standard and can be done in time near-linear in the number

of vertices and edges, so the construction of 𝐺 takes time 𝑂̃(𝑛𝑘−1
𝑂𝑉 ).
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4.5.3 Some useful properties of configurations

We now move on to proving the correctness of our configurations, showing that the Diameter

is at least 2𝑘 − 1 when the 𝑘-OV instance Φ has a solution (Yes case), and the Diameter is at most

𝑘 when Φ has no solution (No case). We begin with some useful lemmas about configurations.

Lemma for the No case. In the No case, we need to construct length 𝑘 paths between every pair

of nodes and verify that those paths are valid paths in the Diameter instance. The following natural

lemma facilitates these verifications. Call 𝐻 ′ a subconfiguration of 𝐻 if 𝐻 ′ can be obtained from

𝐻 by vector deletions and node deletions.

Lemma 4.5.3. If 𝐻 ′ is a subconfiguration of 𝐻 and 𝐻 is edge-satisfying, then 𝐻 ′ is also edge-

satisfying.

Proof. It suffices to prove that if 𝐻 ′ is obtained by applying a single vector deletion or node

deletion to 𝐻 , and 𝐻 is valid, then 𝐻 ′ is valid. The full lemma follows from induction of the

number of deletions needed to obtain 𝐻 ′ from 𝐻 . Let 𝐻 have vertices 𝑣1 ≺𝐻 · · · ≺𝐻 𝑣𝑠.

Suppose 𝐻 ′ is obtained from 𝐻 by a vector deletion. Then 𝐻 and 𝐻 ′ have the same node set

and edge set. Let 𝑖 ∈ [𝑠]. In the Definition 4.5.5, the set of coordinate arrays 𝒳𝑣𝑖(𝐻
′) is the same

as the set of coordinate arrays 𝒳𝑣𝑖(𝐻), because 𝐻 and 𝐻 ′ are the same graph with the same edge-

constraints. Since we assume 𝐻 is edge-satisfying, we have that 𝑆𝑣𝑖(𝐻) satisfies all the coordinate

arrays in 𝒳𝑣𝑖(𝐻) = 𝒳𝑣𝑖(𝐻
′), so 𝑆𝑣𝑖(𝐻

′) does as well, by Lemma 4.2.1. This holds for all 𝑖 ∈ [𝑠],

so we have that 𝐻 ′ is edge-satisfying.

Now suppose 𝐻 ′ is obtained from 𝐻 by a node deletion, so that the graph 𝐻 ′ is a subgraph of

the graph 𝐻 with a leaf node deleted. We claim that, for all 𝑖 such that node 𝑣𝑖 is in 𝐻 ′, we have

𝒳𝑣𝑖(𝐻
′) ⊆ 𝒳𝑣𝑖(𝐻). First, suppose 𝑣𝑠 is deleted from 𝐻 to give 𝐻 ′. Then, for each 𝑖 = 1, . . . , 𝑠−1,

by Definition 4.5.5, the set 𝒳𝑣𝑖(𝐻
′) is the same as the set of coordinate arrays 𝒳𝑣𝑖(𝐻), except with

𝑋𝑣𝑠,𝑣1
𝑣𝑠,𝑖

deleted, and, if 𝑣𝑖 is a neighbor of 𝑣𝑠 (only true for 𝑖 = 1), with coordinate arrays 𝑋𝑣𝑠,𝑣𝑖
𝑣𝑖,𝑗

deleted for 𝑗 ∈ [𝑘′], so indeed 𝒳𝑣𝑖(𝐻
′) ⊂ 𝒳𝑣𝑖(𝐻). Now suppose 𝑣𝑠−1 is deleted from 𝐻 to give

𝐻 ′. For 1 ≤ 𝑖 ≤ 𝑠 − 2, we have 𝒳𝑣𝑖(𝐻
′) ⊂ 𝒳𝑣𝑖(𝐻) by the same reasoning as when 𝑣𝑠 is deleted.

Additionally, we can show 𝒳𝑣𝑠(𝐻
′) = 𝒳𝑣𝑠(𝐻): nodes 𝑣𝑠 and 𝑣𝑠−1 are not adjacent in 𝐻 (node
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v′ = ρ(H)
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()() (a3)
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Figure 4-8: Lemma 4.5.4. In the example configuration of size 𝑘 = 7, to delete the root node
𝑣′ = 𝜌(𝐻) (purple) without deleting 𝑣, one needs to delete all the red vectors and red nodes. This
requires 3 node deletions and 3 vectors deletions for a total of 6 = 𝑘 − 1 deletions.

deletions can only delete non-root nodes so 𝑣𝑠−1 is not the root) so all of the coordinate arrays of

𝒳𝑣𝑠(𝐻) and 𝒳𝑣𝑠(𝐻
′) in part 1 of Definition 4.5.5 are the same, and 𝒳𝑣𝑠(𝐻) and 𝒳𝑣𝑠(𝐻

′) have no

coordinate arrays in part 2 of Definition 4.5.5 since 𝑣𝑠 is the largest node each of ≺𝐻 and ≺𝐻′ .

Thus, we have that𝒳𝑣𝑖(𝐻
′) ⊆ 𝒳𝑣𝑖(𝐻) for all nodes 𝑣𝑖 in 𝐻 ′. For all nodes 𝑣𝑖 in 𝐻 ′, we have the

stacks 𝑆𝑣𝑖(𝐻
′) and 𝑆𝑣𝑖(𝐻) are the same, since no vector insertions/deletions were applied. Thus,

since stack 𝑆𝑣𝑖(𝐻) satisfies all the coordinate arrays in 𝒳𝑣𝑖(𝐻), we have 𝑆𝑣𝑖(𝐻
′) satisfies all the

coordinate arrays in 𝒳𝑣𝑖(𝐻
′), as desired.

We have shown that if 𝐻 ′ is obtained by applying a single vector deletion or node deletion to

𝐻 , and 𝐻 is valid, then 𝐻 ′ is valid. By the first paragraph of the proof, this completes the proof.

□

Lemma for the Yes case. The next lemma is useful for the Yes case.

Lemma 4.5.4. Suppose 𝐻 is a size-𝑘 configuration containing a non-root leaf node 𝑣 with

𝑆𝑣(𝐻) = ∅ and edge (𝑣, 𝑣′) where 𝑣′ = 𝜌(𝐻). Suppose that one applies 𝑐 full operations among

which node 𝑣′ is deleted but node 𝑣 is never deleted. Then 𝑐 ≥ 𝑘 − 1.

Proof. Let 𝐻0 = 𝐻,𝐻1, . . . , 𝐻𝑐 be the sequence of configurations such that 𝐻𝑖 is the result of

applying a valid full operation to 𝐻𝑖−1 for 𝑖 = 1, . . . , 𝑐. Let 𝑣′′ /∈ {𝑣, 𝑣′} be an arbitrary node in

𝐻 . We claim that node 𝑣′′ must be deleted before node 𝑣′. Let 𝑖 ∈ {0, . . . , 𝑐} be the largest index

such that 𝑣′′ and 𝑣 are both in configuration 𝐻𝑖. Node 𝑣′ is on the path from node 𝑣′′ to node 𝑣

in configuration graph 𝐻0. Only leaf nodes can be deleted in a node deletion. Thus, as 𝑣 and 𝑣′′

are both in 𝐻0, . . . , 𝐻𝑖, all the nodes on the path from 𝑣 to 𝑣′′ are also nodes in 𝐻0, . . . , 𝐻𝑖. In
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particular, node 𝑣′ is in 𝐻0, . . . , 𝐻𝑖, so node 𝑣′′ must be deleted before 𝑣′.

Hence, the only way to delete node 𝑣′ without deleting node 𝑣 is to first delete all nodes other

than 𝑣′ (by first deleting the vectors in their stacks and then the node) and then deleting 𝑣′. This

results in deleting all nodes other than 𝑣, which takes at least
∑︀

𝑢∈𝑉 (𝐻)(1 + |𝑆𝑢(𝐻)|) − (1 +

|𝑆𝑣(𝐻)|) = 𝑘 − (1 + 0) deletions. Since each full operation applies at most one deletion, the

number of full operations needed to delete 𝑣′ without deleting 𝑣 is at least 𝑘 − 1. □

Permutations commute with valid full operations The next few lemmas justify the informal

statement that “permutations commute with valid full operations”. This statement is convenient

in the Yes case because it allows us to assume that all permutation edges are at the end of a path.

Intuitively, we expect this lemma to be true because changing the node labels of a configuration

gives essentially the same configuration.

Lemma 4.5.5. Let 𝜋 : [2𝑘′]→ [2𝑘′] be a permutation. Let 𝐻 be a configuration, and suppose that

applying a vector insertion (vector deletion, node insertion, node deletion, flip) on 𝐻 gives con-

figuration 𝐻 ′. Then there exists a vector insertion (vector deletion, node insertion, node deletion,

flip) that, applied to 𝜋(𝐻), gives 𝜋(𝐻 ′).

Proof. A vector 𝑏 ∈ 𝐴 is inserted at node 𝑣 in 𝐻 (𝑣 is a node label in [2𝑘′]) to give a configuration

𝐻 ′. Suppose that inserting vector 𝑏 at node 𝜋(𝑣) in 𝜋(𝐻) gives a configuration 𝐻 ′′. We claim

𝐻 ′′ = 𝜋(𝐻 ′). By definition of vector insertion, 𝐻 ′′ has the same nodes, edges, edge-constraints,

root node, and ordering as configuration 𝜋(𝐻). Furthermore, since 𝐻 has the same nodes, edges,

edge-constraints, root node, and ordering as configuration 𝐻 ′, we have 𝜋(𝐻) and 𝜋(𝐻 ′), and thus

𝐻 ′′ and 𝜋(𝐻 ′) have the nodes, edges, edge-constraints, root node, and ordering. Furthermore, the

stacks 𝑆𝜋(𝑣)(𝐻
′′) and 𝑆𝜋(𝑣)(𝜋(𝐻

′)) are both equal to 𝑆𝑣(𝐻) + 𝑏, and the stacks 𝑆𝜋(𝑣′)(𝐻
′′) and

𝑆𝜋(𝑣′)(𝜋(𝐻
′)) are both equal to 𝑆𝑣′(𝐻) for nodes 𝑣′ ̸= 𝑣 in 𝐻 , so we indeed have 𝐻 ′′ = 𝜋(𝐻 ′).

This proves the lemma for vector insertions. The proofs for vector deletions, node insertions,

node deletions, and flips are similar. □

Lemma 4.5.6. Let 𝜋 : [2𝑘′]→ [2𝑘′] be a permutation. If configuration 𝐻 is valid, then configura-

tion 𝜋(𝐻) is valid.
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Proof. The root node 𝜌(𝜋(𝐻)) of 𝜋(𝐻) has the same stack as the root node 𝜌(𝐻) of 𝐻 , which has

at least (𝑘 − 2)/2 vectors. By definition of 𝜋(𝐻), for each node 𝑣 ∈ 𝑉 (𝐻), the set of coordinate

arrays 𝒳𝜋(𝑣)(𝐻) is the same as 𝒳𝑣(𝐻). Since 𝐻 is valid, 𝑆𝑣(𝐻) satisfies every coordinate array in

𝒳𝑣(𝐻), so 𝑆𝜋(𝑣)(𝜋(𝐻)) = 𝑆𝑣(𝐻) satisfies every coordinate array in 𝒳𝜋(𝑣)(𝜋(𝐻)) = 𝒳𝑣(𝐻). This

holds for all 𝑣, so 𝜋(𝐻) is edge-satisfying and thus valid. □

As a corollary of Lemmas 4.5.5 and 4.5.6, we have that permutations commute with valid full

operations.

Corollary 4.5.1. Let 𝜋 : [2𝑘′] → [2𝑘′] be a permutation. Let 𝐻 be a configuration, and suppose

that applying some valid full operation on 𝐻 gives configuration 𝐻 ′. Then applying some valid

full operation on 𝜋(𝐻) gives 𝜋(𝐻 ′).

4.5.4 No case.

We now prove that when Φ has no solution, our Diameter instance has diameter at most 𝑘.

To do so, we find a length 𝑘 path between any two configurations 𝐻 and 𝐻 ′. As sketched in the

overview, we apply 𝑘 full operations to get 𝐻 ′ from 𝐻 , and each operation inserts a vector or node

“from 𝐻 ′” and deletes a vector or node “from 𝐻”. For an example of such a path when 𝑘 = 7, see

Figure 4-9.

Let 𝐻 be an arbitrary size-𝑘 configuration with vertices 𝑣1 ≺𝐻 · · · ≺𝐻 𝑣𝑠 for some 𝑠 ≥ 1,

where 𝑣1 = 𝜌(𝐻) is the root, and with edges 𝑣1𝑣𝑖 with edge-constraint 𝑋𝑣1,𝑣𝑖 for 2 ≤ 𝑖 ≤ 𝑠. Let

𝐻 ′ be an arbitrary size-𝑘 configuration with vertices 𝑣′1 ≺𝐻′ · · · ≺𝐻′ 𝑣′𝑠′ for some 𝑠′ ≥ 1, where

𝑣′1 = 𝜌(𝐻 ′) is the root, and with edges 𝑣′1𝑣
′
𝑖 with edge-constraint 𝑌 𝑣′1,𝑣

′
𝑖 for 2 ≤ 𝑖 ≤ 𝑠. By taking a

permutation edge (of weight 0) from vertex 𝐻 ′ in the Diameter instance 𝐺 to obtain an equivalent

configuration, we may assume without loss of generality that the set of node labels {𝑣1, . . . , 𝑣𝑠} of

𝐻 are disjoint from the node labels {𝑣′1, . . . , 𝑣′𝑠′} of 𝐻 ′.

We now define an edge-constraint 𝑍, containing the only “extra” coordinate arrays we need in

the path from 𝐻 to 𝐻 ′. Let 𝑍 be a (𝑣1, 𝑣
′
1)-edge constraint such that,

• For 𝑖 ∈ [𝑘′], coordinate array 𝑍𝑣1,𝑖 is satisfied by stack 𝑆𝑣1(𝐻) and, if 𝑖 ≤ 𝑠′, by stack

𝑆𝑣′𝑖
(𝐻 ′),
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Figure 4-9: The path of length 7 between 𝐻 and 𝐻 ′ for 𝑘 = 7. Full operations are indicated by red
arrows and roots are indicated by purple. The “extra” edge-constraint 𝑍 that belongs to neither 𝐻
nor 𝐻 ′ is labeled in orange.

• For 𝑖 ∈ [𝑘′], coordinate array 𝑍𝑣′1,𝑖
is satisfied by stack 𝑆𝑣′1

(𝐻 ′) and, if 𝑖 ≤ 𝑠, by stack

𝑆𝑣𝑖(𝐻), and

• 𝑍* is satisfied by 𝑆𝑣1(𝐻) and 𝑆𝑣′1
(𝐻 ′).

As configurations 𝐻 and 𝐻 ′ are size-𝑘 and have at least 1 stack, any stack of 𝐻 or 𝐻 ′ has at most

𝑘− 1 vectors. Hence, the coordinate arrays of 𝑍 all exist by Lemma 4.2.2. Note that the definition

of 𝑍 is symmetric with respect to 𝐻 and 𝐻 ′, in the sense that if we switch 𝐻 with 𝐻 ′ (and 𝑠 with

𝑠′ and (𝑣1, . . . , 𝑣𝑠) with (𝑣′1, . . . , 𝑣
′
𝑠)), the definition of 𝑍 stays the same.

We now define two intermediate nodes 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑, which are on our desired path from

𝐻 to 𝐻 ′. Let 𝐻𝑚𝑖𝑑 be the configuration with nodes 𝑣1 and 𝑣′1, with the connecting edge having

(𝑣1, 𝑣
′
1)-edge constraint 𝑍, where

• 𝑣1 = 𝜌(𝐻𝑚𝑖𝑑) is the root,

• 𝑆𝑣1(𝐻𝑚𝑖𝑑) is the bottom ⌈(𝑘 − 2)/2⌉ elements of 𝑆𝑣1(𝐻), and
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• 𝑆𝑣′1
(𝐻𝑚𝑖𝑑) is the bottom ⌊(𝑘 − 2)/2⌋ elements of 𝑆𝑣′1

(𝐻 ′).

Let 𝐻 ′𝑚𝑖𝑑 be the configuration with nodes 𝑣1 and 𝑣′1, with the connecting edge having (𝑣1, 𝑣
′
1)-

edge constraint 𝑍, where

• 𝑣′1 = 𝜌(𝐻 ′𝑚𝑖𝑑) is the root,

• 𝑆𝑣′1
(𝐻 ′𝑚𝑖𝑑) is the bottom ⌈(𝑘 − 2)/2⌉ elements of 𝑆𝑣′1

(𝐻 ′), and

• 𝑆𝑣1(𝐻
′
𝑚𝑖𝑑) is the bottom ⌊(𝑘 − 2)/2⌋ elements of 𝑆𝑣1(𝐻).

We have that 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑 are valid: by the definition of the edge-constraint 𝑍, we have that

𝑆𝑣1(𝐻) and thus 𝑆𝑣1(𝐻𝑚𝑖𝑑) satisfies 𝑍𝑣1,𝑗 for all 𝑗 ∈ [𝑘′], and also satisfies coordinate array 𝑍𝑣′1,1

and 𝑍*. Similarly, 𝑆𝑣′1
(𝐻 ′) and thus 𝑆𝑣′1

(𝐻𝑚𝑖𝑑) satisfies 𝑍𝑣′1,𝑗
for all 𝑗 ∈ [𝑘′], and also satisfies

coordinate arrays 𝑍*. Thus, 𝐻𝑚𝑖𝑑 is edge-satisfying and thus valid. By a symmetric argument,

𝐻 ′𝑚𝑖𝑑 is also valid. Note that 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑 are symmetric with respect to 𝐻 and 𝐻 ′, in the sense

that if we switched 𝐻 and 𝐻 ′, then 𝐻𝑚𝑖𝑑 becomes 𝐻 ′𝑚𝑖𝑑 and vise-versa.

Claim 2. One can apply ⌊𝑘/2⌋ valid full operations on 𝐻 to obtain 𝐻𝑚𝑖𝑑, and ⌊𝑘/2⌋ valid full

operations on 𝐻 ′ to obtain 𝐻 ′𝑚𝑖𝑑.

Proof. We prove this for 𝐻 and 𝐻𝑚𝑖𝑑, and the result for 𝐻 ′ and 𝐻 ′𝑚𝑖𝑑 follows from a symmetric

argument (the symmetry holds because the definition of 𝑍 and the definitions of 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑

are symmetric with respect to 𝐻 and 𝐻 ′). Let 𝐻̃ be the configuration obtained by adding node 𝑣′1

to 𝐻 with stack 𝑆𝑣′1
(𝐻 ′𝑚𝑖𝑑) (of size ⌊(𝑘 − 2)/2⌋), with an edge (𝑣1, 𝑣

′
1) having edge constraint 𝑍,

and such that the ordering ≺𝐻̃ agrees with ≺𝐻 on the nodes of 𝐻 , and 𝑣′1 is the largest node of ≺𝐻̃

(see Figure 4-10). Note that 𝐻̃ has size larger than 𝑘 (to be precise, it has size 𝑘 + ⌊𝑘/2⌋).

We first prove that 𝐻̃ is edge-satisfying. First, the set 𝒳𝑣′1
(𝐻̃) has coordinate arrays 𝑍* and

𝑍𝑣′1,𝑗
for 𝑗 ∈ [𝑘′], by part 1 of Definition 4.5.5, and has no coordinate arrays from part 2 of

Definition 4.5.5 as 𝑣′1 is the largest node of ≺𝐻 . By definition of 𝑍, stack 𝑆𝑣′1
(𝐻 ′) satisfies all

these coordinate arrays, and thus by Lemma 4.2.2 stack 𝑆𝑣′1
(𝐻𝑚𝑖𝑑) does as well, satisfying the

requirement of Definition 4.5.5 for node 𝑣′1. For 𝑖 ∈ [𝑠], the set of coordinate arrays in 𝒳𝑣𝑖(𝐻̃) is

the same as the set of coordinate arrays 𝒳𝑣𝑖(𝐻) plus the coordinate array 𝑍𝑣′1,𝑖
, and, if 𝑖 = 1, plus
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Figure 4-10: Claim 2, the configuration 𝐻̃ for Figure 4-9: all configurations on the path from 𝐻 to
𝐻𝑚𝑖𝑑 are subconfigurations of 𝐻̃ . By Lemma 4.5.3, showing 𝐻̃ is valid implies that the path from
𝐻 to 𝐻𝑚𝑖𝑑 is valid.

the coordinate arrays 𝑍* and 𝑍
𝑣′1,𝑣1
𝑣1,𝑗

for 𝑗 ∈ [𝑘′]. By definition of 𝑍, we have that 𝑆𝑣𝑖(𝐻̃) = 𝑆𝑣𝑖(𝐻)

satisfies coordinate array 𝑍𝑣′1,𝑖
. Furthermore, 𝑆𝑣1(𝐻̃) = 𝑆𝑣1(𝐻) satisfies coordinate arrays 𝑍* and

𝑍𝑣1,𝑗 for 𝑗 ∈ [𝑘′]. Since configuration 𝐻 is edge-satisfying and the above coordinate arrays are

satisfied, we conclude that configuration 𝐻̃ is edge-satisfying.

We now note that 𝐻𝑚𝑖𝑑 can be obtained from 𝐻 by applying the following half-operations

• Insert node 𝑣′1 as the largest node in the ordering

• Insert vectors into 𝑣′1 ⌊(𝑘 − 2)/2⌋ times.

• For each 𝑖 = 𝑠, 𝑠− 1, . . . , 2, delete vectors from 𝑆𝑣𝑖 until the stack is empty, and then delete

node 𝑣𝑖.

• Delete vectors from 𝑆𝑣1 until the stack has size ⌈(𝑘 − 2)/2⌉.

We can check that there are ⌊𝑘/2⌋ insertions and
∑︀𝑠

𝑖=1(1 + |𝑆𝑣𝑖 |) − (1 + ⌈𝑘 − 2⌉/2) = 𝑘 −

⌈𝑘/2⌉ = ⌊𝑘/2⌋ deletions. We can obtain 𝐻 from 𝐻𝑚𝑖𝑑 by alternating applying these insertions
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and deletions, giving a configurations 𝐻 = 𝐻0, 𝐻0.5, 𝐻1, . . . , 𝐻⌊𝑘/2⌋−0.5, 𝐻⌊𝑘/2⌋ = 𝐻𝑚𝑖𝑑, so that

applying the 𝑖th insertion to 𝐻𝑖−1 gives the size-𝑘 + 1 configuration 𝐻𝑖−0.5, and applying the

𝑖th deletion to 𝐻𝑖−0.5 gives the size-𝑘 configuration 𝐻𝑖. These half-operations indeed satisfy the

definition of half-operations: all the vector insertions/deletions are legal, the single node insertion

is legal as 𝑣′1 is inserted as the largest node, and all the node deletions are legal as the deleted nodes

are always the second-largest node in the ordering. Furthermore, if we perform only the insertions,

we obtain configuration 𝐻̃ . Hence, any 𝑖 = 0, 0.5, . . . , ⌊𝑘/2⌋, we can obtain configuration 𝐻𝑖

from configuration 𝐻̃ by applying vector deletions at node 𝑣′1 until stack 𝑆𝑣′1
is the right size,

and then applying the first ⌊𝑖⌋ node/vector deletions above (at nodes 𝑣𝑠, 𝑣𝑠−1, . . . ). Thus, for 𝑖 =

0, 0.5, . . . , ⌊𝑘/2⌋ configuration 𝐻𝑖 is a subconfiguration of configuration 𝐻̃ . Since configuration

𝐻̃ is valid, by Lemma 4.5.3, each 𝐻𝑖 and 𝐻𝑖+0.5 is valid, so we have a sequence of ⌊𝑘/2⌋ valid full

operations that gives 𝐻𝑚𝑖𝑑 from 𝐻 . □

With Claim 2, we have nearly proved the No case. It remains to show that 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑 are

at distance either 0 or 1, depending on the parity of 𝑘.

If 𝑘 is even, then 𝐻𝑚𝑖𝑑 can be obtained by applying a flip to 𝐻 ′𝑚𝑖𝑑, and thus the two configura-

tions are at distance 0 in the Diameter graph 𝐺. Thus, there is a length 2 · ⌊𝑘/2⌋ = 𝑘 path from 𝐻

to 𝐻 ′ through 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑 by Claim 2.

If 𝑘 is odd, then 𝐻𝑚𝑖𝑑 is distance 1 from 𝐻 ′𝑚𝑖𝑑: 𝐻 ′𝑚𝑖𝑑 is obtained from 𝐻𝑚𝑖𝑑 by applying a

vector insertion at node 𝑣′1, giving a configuration 𝐻𝑚𝑖𝑑,+, followed by a flip, giving a config-

uration 𝐻 ′𝑚𝑖𝑑,+, followed by a vector deletion at node 𝑣1, giving configuration 𝐻𝑚𝑖𝑑. The flip

can be done because 𝐻𝑚𝑖𝑑,+ and 𝐻 ′𝑚𝑖𝑑,+ both have two nodes, each of which has a stack of size

⌈(𝑘 − 2)/2⌉. We now check these half-operations are all valid operations, by checking that con-

figurations 𝐻𝑚𝑖𝑑,+ and 𝐻 ′𝑚𝑖𝑑,+ are valid configurations. Since no vectors are deleted at node 𝑣′1

from 𝐻𝑚𝑖𝑑,+ to 𝐻 ′𝑚𝑖𝑑, we have 𝑆𝑣′1
(𝐻𝑚𝑖𝑑,+) = 𝑆𝑣′1

(𝐻 ′𝑚𝑖𝑑) is a substack of 𝑆𝑣′1
(𝐻 ′), and similarly

𝑆𝑣1(𝐻𝑚𝑖𝑑,+) = 𝑆𝑣1(𝐻𝑚𝑖𝑑) is a substack of 𝑆𝑣1(𝐻). Hence, by construction of 𝑍 and Lemma 4.2.1,

stack 𝑆𝑣′1
(𝐻𝑚𝑖𝑑,+) = 𝑆𝑣′1

(𝐻 ′𝑚𝑖𝑑) satisfies coordinate array 𝑍𝑣′1,𝑗
for all 𝑗 ∈ [𝑘′] and also satisfies

coordinate array 𝑍*, and the stack 𝑆𝑣1(𝐻𝑚𝑖𝑑,+) = 𝑆𝑣1(𝐻𝑚𝑖𝑑) at the root node of 𝐻𝑚𝑖𝑑,+ satisfies

𝑍𝑣1,𝑗 for all 𝑗 ∈ [𝑘′] and also satisfies coordinate arrays 𝑍𝑣′1,1
and 𝑍*. Hence, configuration 𝐻𝑚𝑖𝑑,+
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is edge-satisfying, and thus a valid configuration. By a symmetric argument, configuration 𝐻 ′𝑚𝑖𝑑,+

is valid. Hence, configurations 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑 are adjacent in the diameter instance with an edge

of weight 1, and we have a path from 𝐻 to 𝐻 ′ through 𝐻𝑚𝑖𝑑 and 𝐻 ′𝑚𝑖𝑑 of length 1 + 2 · ⌊𝑘/2⌋ = 𝑘

by Claim 2.

In either case, we have shown that, when 𝐴 has no 𝑘 orthogonal vectors, then for any two

configurations 𝐻 and 𝐻 ′, there is a length 𝑘 path from 𝐻 to 𝐻 ′. This completes the proof of the

no case.

4.5.5 Yes case.

We now prove that the Diameter of 𝐺 is at least 2𝑘 − 1 in the Yes case. Suppose 𝐴 has an

orthogonal 𝑘-tuple (𝑎1, . . . , 𝑎𝑘). Throughout this section fix 𝑣 ∈ [2𝑘′] to be an arbitrary edge

label (say 𝑣 = 1). Let 𝐻 be the 1-stack configuration with a single node 𝑣 assigned with a stack

𝑆𝑣(𝐻) = (𝑎1, . . . , 𝑎𝑘−1) (and a trivial ordering). Let 𝐻 ′ be the 1-stack configuration with a single

node labeled 𝑣 assigned with a stack 𝑆𝑣(𝐻
′) = (𝑎𝑘, . . . , 𝑎2). We claim configurations 𝐻 and 𝐻 ′

are at distance 2𝑘 − 1 in the Diameter graph 𝐺.

Consider a path 𝐻0 = 𝐻,𝐻1, . . . , 𝐻𝑟+1 = 𝐻 ′ from 𝐻 to 𝐻 ′ using edges of 𝐺, and assume for

contradiction this path has length 2𝑘− 2 (if it has length less than 2𝑘− 2, we may assume without

loss of generality that in one of the 𝑡-stack vertices for 𝑡 ≥ 2, there are trivial valid full operations

(e.g., node insertion followed by node deletion), which give self loop edges of weight 1, increasing

the path length to 2𝑘 − 2). This path contains some valid full operation edges, possibly some

weight-0 flip edges if 𝑘 is even, and possibly some weight-0 permutation edges between equivalent

configurations. By Corollary 4.5.1, we may assume without loss of generality that all weight-0

permutation edges are at the end of the path, and furthermore if there are multiple permutations

𝜋1, . . . , 𝜋ℓ : [2𝑘′] → [2𝑘′], we may replace them by a single permutation 𝜋 = 𝜋1 ∘ · · · 𝜋ℓ by

Lemma 4.5.1. Hence, we may assume that our path has 2𝑘−2 valid full operation edges, followed

by a single weight-0 edge applying a permutation 𝜋.

Thus, we may assume that 𝑟 = 2𝑘− 2, and configuration 𝐻 ′ is 𝜋(𝐻2𝑘−2) for some 𝜋 : [2𝑘′]→

[2𝑘′], so that configuration 𝐻2𝑘−2 contains a single stack at node 𝑣′ := 𝜋−1(𝑣), and so that for
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𝑖 = 1, . . . , 2𝑘 − 2, configuration 𝐻𝑖 can be reached from 𝐻𝑖−1 by an operation edge, and possibly

a flip edge. For each 𝑖 = 0, . . . , 2𝑘 − 3, the valid full operation on 𝐻𝑖 has one valid vector/node

insertion, possibly followed by a flip operation, followed by one valid vector/node deletion, pos-

sibly followed by a flip, so we can let 𝐻𝑖+0.5 denote the result of only applying the insertion and

possibly a flip to 𝐻𝑖, so that 𝐻𝑖+1 is the result of applying a deletion, possibly followed by a flip,

to 𝐻𝑖+0.5. By definition of a valid half-operation, configuration 𝐻𝑖+0.5 is valid (and has size 𝑘+1).

The following two claims reason about the stacks and the edge-constraints that must be on the

path.

Claim 3. If an edge (𝑤,𝑤′) appears in configuration 𝐻𝑖 for some integer 𝑖 = 1, . . . , 2𝑘−3, it also

appears (with the corresponding edge-constraint) in configurations 𝐻𝑖−0.5 and 𝐻𝑖+0.5.

Proof. Configuration 𝐻𝑖+0.5 is obtained by applying a vector or node insertion to 𝐻𝑖, possibly

followed by a flip, so no node, and thus no edge is deleted from 𝐻𝑖 to 𝐻𝑖+0.5. Configuration 𝐻𝑖

is obtained by applying a vector or node deletion to 𝐻𝑖−0.5, possibly followed by a flip, so 𝐻𝑖−0.5

is obtained by possibly applying a flip to 𝐻𝑖, followed by a node or vector insertion, and again no

edge is deleted. □

Claim 4. For 0 ≤ 𝑠 ≤ 𝑘 − 1, we have 𝑆𝑣(𝐻𝑠) and 𝑆𝑣(𝐻𝑠+0.5) both contain (𝑎1, . . . , 𝑎𝑘−1−𝑠) as a

substack. For 𝑘 − 1 ≤ 𝑠 ≤ 2𝑘 − 2, we have 𝑆𝑣′(𝐻𝑠) and 𝑆𝑣′(𝐻𝑠−0.5) both contain (𝑎𝑘, . . . , 𝑎2𝑘−𝑠)

as a substack.

Proof. For the first item, we have 𝑆𝑣(𝐻0) = (𝑎1, . . . , 𝑎𝑘−1), and each of the first 𝑠 full operations

deletes at most one vector from this stack, so stack 𝑆𝑣(𝐻𝑠) has (𝑎1, . . . , 𝑎𝑘−1−𝑠) as a substack. By

Claim 3, 𝑆𝑣(𝐻𝑖+0.5) does as well. Similarly, we have stack 𝑆𝑣(𝐻2𝑘−2) = (𝑎𝑘, . . . , 𝑎2). Applying

2𝑘 − 2 − 𝑠 full operations from 𝐻2𝑘−2 gives 𝐻𝑠, but each operation deletes at most one vector

from the starting stack 𝑆𝑣′(𝐻2𝑘−2) = (𝑎𝑘, . . . , 𝑎2). Hence, stack 𝑆𝑣(𝐻𝑠) has (𝑎𝑘, . . . , 𝑎2𝑘−𝑠) as a

substack, and by Claim 3, stack 𝑆𝑣(𝐻𝑠−0.5) does as well. □

Let 𝑠 be the largest index such that node 𝑣 is in configurations 𝐻0, . . . , 𝐻𝑠 (𝑠 exists because 𝐻0

contains node 𝑣). Let 𝑠′ be the smallest index such that node 𝑣′ is in configurations 𝐻𝑠′ , . . . , 𝐻2𝑘−2

(again 𝑠′ exists because 𝐻2𝑘−2 contains node 𝑣′). By the maximality of 𝑠 (and since we assume no
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permutation edges are used in 𝐻0, . . . , 𝐻2𝑘−2), node 𝑣 has an empty stack in configuration graph

𝐻𝑠. Node 𝑣 also has a size 𝑘 − 1 stack in 𝐻0. Since each valid full operation can delete at most

one vector from some stack, we have that 𝑠 ≥ 𝑘− 1. Similarly, we have that 𝑠′ ≤ 𝑘− 1, so 𝑠′ ≤ 𝑠.

Thus, nodes 𝑣 and 𝑣′ both appear in each of the configurations 𝐻𝑠′ , . . . , 𝐻𝑠. We have three cases,

and in each case, we show that our path contradicts Lemma 4.2.3.

Case 1. 𝑣 = 𝑣′. This implies that 𝑠′ = 0 and 𝑠 = 𝑟, and node 𝑣 appears in every configuration

𝐻0, . . . , 𝐻2𝑘−2. We have that the stack 𝑆𝑣(𝐻0) = (𝑎1, . . . , 𝑎𝑘−1), and 𝑆𝑣(𝐻2𝑘−2) = (𝑎𝑘, . . . , 𝑎2).

Thus, to obtain 𝑆𝑣(𝐻𝑟) from 𝑆𝑣(𝐻0), one needs to apply 𝑘 − 1 vector deletions followed by 𝑘 − 1

vector insertions. Since each valid full operation applies at most one vector insertion followed by

at most one vector deletion, the first 𝑘−1 full operations of our path must include a vector deletion

at node 𝑣, and the last 𝑘 − 1 edges must include a vector insertion at node 𝑣, inserting the vectors

𝑎𝑘, . . . , 𝑎2 in that order. In particular, we have 𝑆𝑣(𝐻𝑘) = (𝑎𝑘).

Because valid full operations must have one endpoint with at least two nodes, 𝐻0 to 𝐻1 op-

eration must include a node insertion of some node 𝑤 ̸= 𝑣 with an edge (𝑣, 𝑤). By Claim 3

the edge (𝑣, 𝑤) with an edge constraint 𝑋𝑣,𝑤 appears in configuration 𝐻0.5, so stack 𝑆𝑣(𝐻0.5) =

(𝑎1, . . . , 𝑎𝑘−1) satisfies coordinate array 𝑋𝑣,𝑤
* . Furthermore, since there are no node-deletions in

the first 𝑘− 1 valid full operations (because each full operation deletes either a vector or node, not

both), we know the edge (𝑣, 𝑤) exists in each of 𝐻1, . . . , 𝐻𝑘−1. By Claim 3 the edge (𝑣, 𝑤) labeled

with the edge constraint 𝑋𝑣,𝑤 also exist in configuration 𝐻𝑘−0.5. Additionally, as we reasoned

earlier, 𝑆𝑣(𝐻𝑘−0.5) = (𝑎𝑘), so stack (𝑎𝑘) satisfies coordinate array 𝑋𝑣,𝑤
* . However, this means that

stacks (𝑎1, . . . , 𝑎𝑘−1) and (𝑎𝑘) both satisfy 𝑋𝑣,𝑤
* , which is a contradiction of Lemma 4.2.3.

Case 2. 𝑣 ̸= 𝑣′ and nodes 𝑣 and 𝑣′ are adjacent in configuration 𝐻𝑠′ . Clearly we have

𝑠′ ≥ 1 and 𝑠 ≤ 2𝑘 − 3 in this case. In configuration 𝐻𝑠′ , node 𝑣′ is a non-root leaf node with an

empty stack 𝑆𝑣′(𝐻𝑠′) = ∅ and incident edge (𝑣, 𝑣′). Furthermore, from configuration 𝐻𝑠′ to 𝐻𝑠+1,

node 𝑣 is deleted, but node 𝑣′ is in configurations 𝐻𝑠′ , . . . , 𝐻𝑠+1. Hence, by Lemma 4.5.4, we have

(𝑠+ 1)− 𝑠′ ≥ 𝑘 − 1.

By Claim 3, both configurations 𝐻𝑠′−0.5 and 𝐻𝑠+0.5 contain the edge (𝑣, 𝑣′) with edge-

constraint 𝑋𝑣,𝑣′ . By Claim 4, in configuration 𝐻𝑠′−0.5, node 𝑣 is labeled with a stack that contains
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(𝑎1, . . . , 𝑎𝑘−𝑠′) as a substack, so by Lemma 4.2.1, stack (𝑎1, . . . , 𝑎𝑘−𝑠′) satisfies coordinate array

𝑋𝑣,𝑣′
* . Similarly, by Claim 4, in configuration 𝐻𝑠+0.5, node 𝑣′ is labeled with a stack that contains

(𝑎𝑘, . . . , 𝑎2𝑘−1−𝑠) as a substack, so stack (𝑎𝑘, . . . , 𝑎2𝑘−1−𝑠) satisfies coordinate array 𝑋𝑣,𝑣′
* . Since

𝑘− 𝑠′ ≥ (2𝑘− 1− 𝑠)− 1, we have that, for 𝑗 = 𝑘− 𝑠′, both stacks (𝑎1, . . . , 𝑎𝑗) and (𝑎𝑘, . . . , 𝑎𝑗+1)

satisfies coordinate array 𝑋𝑣,𝑣′
* , which is a contradiction by Lemma 4.2.3.

Case 3. 𝑣 ̸= 𝑣′ and nodes 𝑣 and 𝑣′ are not adjacent in configuration 𝐻𝑠′ . In any config-

uration, the root node is adjacent to all other vertices, so 𝑣 and 𝑣′ must both be non-root nodes.

Suppose that in configuration 𝐻𝑠′ , the root node is 𝑤 = 𝜌(𝐻𝑠′). Since only leaf nodes in a config-

uration can be deleted, and since nodes 𝑣 and 𝑣′ are not deleted in 𝐻𝑠′ , . . . , 𝐻𝑠, we have that node

𝑤 exists and has degree at least two in each of 𝐻𝑠′ , . . . , 𝐻𝑠, and therefore must be the root node in

each of 𝐻𝑠′ , . . . , 𝐻𝑠. In particular, since the total order ≺𝐻 and root node of a configuration 𝐻 can

only be changed when there are at most two vertices, no full operations from 𝐻𝑠′ to 𝐻𝑠 include flip

operations. Consequently, nodes 𝑣 and 𝑣′ have the same order with respect to orderings ≺𝐻𝑠′
and

≺𝐻𝑠

Assume without loss of generality that 𝑣 ≺𝐻𝑠′
𝑣′ and 𝑣 ≺𝐻𝑠 𝑣′ (the reverse direction is sym-

metric). Let 𝑡′ be the largest index such that node 𝑤 is in configuration 𝐻𝑡′ (𝑡′ ≤ 2𝑘 − 3 because

configuration 𝐻2𝑘−2 only contains node 𝑣′). By maximality of 𝑡′, from configuration 𝐻𝑡′ to 𝐻𝑡′+1,

node 𝑤 is deleted, so by Lemma 4.5.4, 𝑡′−𝑠′ ≥ 𝑘−2. By Claim 3, both 𝑣 and 𝑣′ are in 𝐻𝑠′−0.5. Let

𝑖𝑣 be such that 𝑣 is the 𝑖𝑣th smallest node in configuration 𝐻𝑠′−0.5 according to ≺𝐻𝑠′−0.5
. Because

𝑣 ≺𝐻𝑠′−0.5
𝑣′, and since configuration 𝐻𝑠′−0.5 is valid, Definition 4.5.5 gives that stack 𝑆𝑣(𝐻𝑠′−0.5)

satisfies coordinate array 𝑋𝑣′,𝑤
𝑣′,𝑖𝑣

. By Claim 4, (𝑎1, . . . , 𝑎𝑘−𝑠′) is a substack of 𝑆𝑣(𝐻𝑠′−0.5), so by

Lemma 4.2.1, stack (𝑎1, . . . , 𝑎𝑘−𝑠′) also satisfies coordinate array 𝑋𝑣′,𝑤
𝑣′,𝑖𝑣

. On the other hand, by

Claim 4, (𝑎𝑘, . . . , 𝑎2𝑘−1−𝑡′) is a substack of 𝑆𝑣(𝐻𝑡′+0.5). Additionally, by Claim 3, edge (𝑣′, 𝑤) is

also in 𝐻𝑡′+0.5, so stack 𝑆𝑣(𝐻𝑡′+0.5), and thus stack (𝑎𝑘, . . . , 𝑎2𝑘−1−𝑡′), satisfies coordinate array

𝑋𝑣′,𝑤
𝑣′,𝑖𝑣

. Since 𝑘 − 𝑠′ ≥ (2𝑘 − 1 − 𝑡) − 1, we have that for 𝑗 = 𝑘 − 𝑠′, stacks (𝑎1, . . . , 𝑎𝑗) and

(𝑎𝑘, . . . , 𝑎𝑗+1) satisfy the same coordinate array 𝑋𝑣′,𝑤
𝑣′,𝑖𝑣

, which is a contradiction by Lemma 4.2.3.

In all cases of 𝑣 and 𝑣′, we have shown a contradiction. Thus, the path from configuration 𝐻

to configuration 𝐻 ′ in the Diameter instance 𝐺 cannot have length 2𝑘 − 2. Thus, when 𝐴 has 𝑘
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orthogonal vectors, the Diameter of 𝐺 is at least 2𝑘 − 1. This completes the proof.

4.6 Main theorem for 𝑘 = 5

In this section, we prove Theorem 4.1.1 (again) for 𝑘 = 5. This proof shows how the 𝑘 = 4

proof in Section 4.3 can be easily modified to give a hardness reduction for 𝑘 = 5. We include this

proof because it is simpler than the 𝑘 = 5 instantiation of the general-𝑘 proof in Section 4.5, so

it may help to reader gain intuition for the general construction. To avoid confusion, we highlight

the main differences between the proof in this section and the general proof specialized to 𝑘 = 5.

• In the general proof specialized to 𝑘 = 5, vertices have up to three stacks. In this proof,

vertices have up to two stacks. This difference is the main simplification.

• To make this simplification work, we include “coordinate change edges” (as in the 𝑘 = 4

proof). By contrast, the general proof does not have such edges.

• To make this simplification work, we also let coordinate arrays constrain stacks differently.

In the general construction, if a coordinate array 𝑥 constrains two stacks 𝑆 and 𝑆 ′, that means

both 𝑆 and 𝑆 ′ satisfy 𝑥. Here, we only require 𝑆 ∘ 𝑆 ′ or 𝑆 ′ ∘ 𝑆 to satisfy 𝑥.

Theorem 4.6.1. Assuming SETH, for all 𝜀 > 0 a (9
5
−𝜀)-approximation of Diameter in unweighted,

undirected graphs on 𝑛 vertices needs 𝑛5/4−𝑜(1) time.

Proof. Start with a 5-OV instance Φ given by a set 𝐴 ⊂ {0, 1}d with |𝐴| = 𝑛𝑂𝑉 and d = 𝑐 log 𝑛𝑂𝑉 .

We can check in time 𝑛4
𝑂𝑉 where there are 4 orthogonal vectors in 𝐴, if so, we know Φ has 5

orthogonal vectors, so assume otherwise. We construct a graph with 𝑂̃(𝑛4
𝑂𝑉 ) vertices and edges

from the 5-OV instance such that (1) if Φ has no solution, any two vertices are at distance 5, and

(2) if Φ has a solution, then there exists two vertices at distance 9. Any (9/5 − 𝜀)-approximation

for Diameter distinguishes between graphs of diameter 5 and 9. Since solving Φ needs 𝑛5−𝑜(1)
𝑂𝑉 time

under SETH, a 9/5− 𝜀 approximation of diameter needs 𝑛5/4−𝑜(1) time under SETH.
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Construction of the graph The vertex set 𝐿1 ∪ 𝐿2 is defined on

𝐿1 = {(𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐴4},

𝐿2 =
{︀
({𝑆1, 𝑆2}, 𝑥, 𝑦) : 𝑆1, 𝑆2 are stacks with |𝑆1|+ |𝑆2| = 3,

𝑥, 𝑦 ∈ [d]3 are coordinate arrays such that

𝑆1 ∘ 𝑆2 satisfies 𝑥 and 𝑆2 ∘ 𝑆1 satisfies 𝑦, OR

𝑆1 ∘ 𝑆2 satisfies 𝑦 and 𝑆2 ∘ 𝑆1 satisfies 𝑥
}︀

(4.6)

Throughout, we identify tuples (𝑎, 𝑏, 𝑐, 𝑑) and ({𝑆1, 𝑆2}, 𝑥, 𝑦) with vertices of 𝐺, and we de-

note vertices in 𝐿1 and 𝐿2 by (𝑎, 𝑏, 𝑐)𝐿1 and ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 respectively. The (undirected un-

weighted) edges are the following.

• (𝐿1 to 𝐿2) Edge between (𝑎, 𝑏, 𝑐, 𝑑)𝐿1 and ({(𝑎, 𝑏, 𝑐), ()}, 𝑥, 𝑦)𝐿2 if stack (𝑎, 𝑏, 𝑐, 𝑑) satisfies

both 𝑥 and 𝑦.

• (vector change in 𝐿2) For some vector 𝑎 ∈ 𝐴 and stacks 𝑆1, 𝑆2 with |𝑆1| ≥ 1, an edge

between ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 and ({popped(𝑆1), 𝑆2 + 𝑎}, 𝑥, 𝑦)𝐿2 if both vertices exist.

• (vector change in 𝐿2, part 2) For some vector 𝑎 ∈ 𝐴 and stacks 𝑆1, 𝑆2 with |𝑆1| ≥ 1, an edge

between ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 and ({popped(𝑆1) + 𝑎, 𝑆2}, 𝑥, 𝑦)𝐿2 if both vertices exist.

• (coordinate change in 𝐿2) Edge between ({𝑆1, 𝑆2}, 𝑥, 𝑦)𝐿2 and ({𝑆1, 𝑆2}, 𝑥′, 𝑦′)𝐿2 if both

vertices exist.

There are 𝑛4
𝑂𝑉 vertices in 𝐿1 and at most 𝑛3

𝑂𝑉 d8 vertices in 𝐿2. Note that each vertex of 𝐿1

has 𝑂(d8) neighbors, each vertex of 𝐿2 has 𝑂(𝑛𝑂𝑉 + d) neighbors. The total number of edges

and vertices, and thus the construction time, is 𝑂(𝑛4
𝑂𝑉 d8) = 𝑂̃(𝑛4

𝑂𝑉 ). We now show that this

construction has diameter 5 when Φ has no solution and diameter at least 9 when Φ has a solution.

5-OV no solution Assume that the 5-OV instance 𝐴 ⊂ {0, 1}d has no solution, so that no five

(or four or three or two) vectors are orthogonal. We begin with the following lemma:
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Lemma 4.6.1. If stacks (𝑎, 𝑏) and (𝑎′) satisfy 𝑥, then (𝑎, 𝑏, 𝑎′) and (𝑎′, 𝑎, 𝑏) satisfy 𝑥. If stacks

(𝑎, 𝑏) and (𝑎′, 𝑏′) satisfy coordinate array 𝑥, then the stack (𝑎, 𝑏, 𝑏′) satisfies coordinate array 𝑥. If

stacks (𝑒′, 𝑎′, 𝑏′) and (𝑎) satisfy coordinate array 𝑥, then stack (𝑎, 𝑎′, 𝑏′) satisfies coordinate array

𝑥.

Proof. For the first item, (𝑎, 𝑏, 𝑎′) satisfies 𝑥 because (𝑎, 𝑏) satisfies 𝑥 and 𝑎′ is 1 in every coordinate

of 𝑥. Similarly, (𝑎′, 𝑎, 𝑏) satisfies 𝑥 because 𝑎 and 𝑎′ are 1 in every coordinate of 𝑥, and 𝑏 is 1 in at

least 3 coordinates of 𝑥.

For the second item, since (𝑎, 𝑏) and (𝑎′, 𝑏′) satisfy 𝑥, we have 𝑎[𝑥[𝑖]] = 1 for 𝑖 ∈ [4], and there

exists 𝐼2, 𝐽2 ⊂ [4] of size 3 such that 𝑏[𝑥[𝑖]] = 1 for 𝑖 ∈ 𝐼2 and 𝑏′[𝑥[𝑖]] = 1 for 𝑖 ∈ 𝐽2. We have

|𝐼2∩𝐽2| = |𝐼2|+ |𝐽2|− |𝐼2∪𝐽2| ≥ 3+3− 4 = 2. Thus, 𝐼1 ⊃ 𝐼2 ⊃ (𝐼2∩𝐽2) certifies that (𝑎, 𝑏, 𝑏′)

satisfies 𝑥.

For the third item, because stack (𝑒′, 𝑎′, 𝑏′) satisfies 𝑥, there exists [4] = 𝐼1 ⊃ 𝐼2 ⊃ 𝐼3 with

𝑎′[𝑥[𝑖]] = 1 for 𝑖 ∈ 𝐼2 and 𝑏′[𝑥[𝑖]] = 1 for 𝑖 ∈ 𝐼3. Since 𝑎[𝑥[𝑖]] = 1 for all 𝑖 ∈ [4], we thus have

𝐼1 ⊃ 𝐼2 ⊃ 𝐼3 certifies that (𝑎, 𝑎′, 𝑏′) satisfies 𝑥. □

We show that any pair of vertices have distance at most 4, by casework on which of 𝐿1, 𝐿2 the

two vertices are in.

• Both vertices are in 𝐿1: Let the vertices be (𝑎, 𝑏, 𝑐, 𝑑)𝐿1 and (𝑎′, 𝑏′, 𝑐′, 𝑑′)𝐿1 . By

Lemma 4.2.2 there exists coordinate array 𝑥 satisfied by both stacks (𝑎, 𝑏, 𝑐, 𝑑) and

(𝑎′, 𝑏′, 𝑐′, 𝑑′). Then

(𝑎, 𝑏, 𝑐, 𝑑)𝐿1 − ({(), (𝑎, 𝑏, 𝑐)}, 𝑥, 𝑥)𝐿2

− ({(𝑎, 𝑏), (𝑎′)}, 𝑥, 𝑥)𝐿2

− ({(𝑎), (𝑎′, 𝑏′)}, 𝑥, 𝑥)𝐿2

− ({(), (𝑎′, 𝑏′, 𝑐′)}, 𝑥, 𝑥)𝐿2 − (𝑎′, 𝑏′, 𝑐′, 𝑑′)𝐿1 (4.7)

is a valid path. Indeed, the first edge and second vertex are valid because (𝑎, 𝑏, 𝑐, 𝑑) satisfies

𝑥 (and thus, by Lemma 4.2.1, stack (𝑎, 𝑏, 𝑐) satisfies 𝑥). By the same reasoning the last edge
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and fifth vertex are valid. The third vertex is valid because (𝑎) and (𝑎′, 𝑏′) both satisfy 𝑥 and

thus both (𝑎, 𝑎′, 𝑏′) and (𝑎′, 𝑏′, 𝑎) satisfy 𝑥 by the first part of Lemma 4.6.1. By the same

reasoning, the fourth vertex is valid.

• One vertex is in 𝐿1 and the other vertex is in 𝐿2 with stacks of size 1 and 2: Let the ver-

tices be (𝑎, 𝑏, 𝑐, 𝑑)𝐿1 and ({(𝑎′, 𝑏′), (𝑒′)}, 𝑥′, 𝑦′)𝐿2 . By Lemma 4.2.2, there exists a coordinate

array 𝑥 that is satisfied by stacks (𝑎, 𝑏, 𝑐, 𝑑) and (𝑎′, 𝑏′, 𝑒′), and there exists a coordinate array

𝑦 satisfied by both stacks (𝑎, 𝑏, 𝑐, 𝑑) and (𝑒′, 𝑎′, 𝑏′). We claim the following is a valid path:

(𝑎, 𝑏, 𝑐, 𝑑)𝐿1 − ({(𝑎, 𝑏, 𝑐), ()}, 𝑥, 𝑦)𝐿2

− ({(𝑎′), (𝑎, 𝑏)}, 𝑥, 𝑦)𝐿2

− ({(𝑎′, 𝑏′), (𝑎)}, 𝑥, 𝑦)𝐿2

− ({(𝑎′, 𝑏′), (𝑒′)}, 𝑥, 𝑦)𝐿2 − ({(𝑎′, 𝑏′), (𝑒′)}, 𝑥′, 𝑦′)𝐿2 . (4.8)

The first edge and second vertex are valid because (𝑎, 𝑏, 𝑐, 𝑑) satisfies 𝑥.

For the third vertex, we have (𝑎, 𝑏, 𝑐, 𝑑) and (𝑎′, 𝑏′, 𝑒′) satisfy coordinate array 𝑥, so by

Lemma 4.2.1, stacks (𝑎, 𝑏) and (𝑎′) satisfy coordinate array 𝑥. Then by the first part of

Lemma 4.6.1, stack (𝑎′, 𝑎, 𝑏) satisfies 𝑥. Similarly, (𝑎, 𝑏, 𝑐, 𝑑) and (𝑒′, 𝑎′, 𝑏′) satisfy coordi-

nate array 𝑦, so stacks (𝑎, 𝑏) and (𝑒′, 𝑎′) satisfy coordinate array 𝑦, so by the second part of

Lemma 4.6.1, stack (𝑎, 𝑏, 𝑎′) satisfies 𝑦. Thus, the third vertex ({(𝑎′), (𝑎, 𝑏)}, 𝑥, 𝑦)𝐿2 is valid.

For the fourth vertex, we similarly have stacks (𝑎′, 𝑏′) and (𝑎) satisfy 𝑥, so stack (𝑎′, 𝑏′, 𝑎)

satisfy 𝑦. Additionally, stacks (𝑒′, 𝑎′, 𝑏′) and (𝑎) satisfy 𝑦 so (𝑎, 𝑎′, 𝑏′) satisfies 𝑦. Thus the

fourth vertex ({(𝑎′, 𝑏′), (𝑎)}, 𝑥, 𝑦)𝐿2 is valid.

The fifth vertex ({(𝑎′, 𝑏′), (𝑒′)}, 𝑥, 𝑦)𝐿2 is valid because (𝑎′, 𝑏′, 𝑒′) satisfies 𝑥 and (𝑒′, 𝑎′, 𝑏′)

satisfy 𝑦 by construction of 𝑥 and 𝑦.

Hence, this is a valid path.

• Both vertices are in 𝐿2 and have two stacks of size 1 and 2: Let the vertices be

({(𝑎, 𝑏), (𝑒)}, 𝑥′, 𝑦′)𝐿2 and ({(𝑎′, 𝑏′), (𝑒′)}, 𝑥′′, 𝑦′′)𝐿2 . By Lemma 4.2.2, there exists a co-

103



ordinate array 𝑥 that is satisfied by (𝑎, 𝑏, 𝑒) and (𝑒′, 𝑎′, 𝑏′), and there exists a coordinate array

𝑦 satisfied by both stacks (𝑒, 𝑎, 𝑏) and (𝑎′, 𝑏′, 𝑒′). Then the following is a valid path:

({(𝑎, 𝑏), (𝑒)}, 𝑥′, 𝑦′)𝐿2 − ({(𝑎, 𝑏), (𝑒)}, 𝑥, 𝑦)𝐿2

− ({(𝑎, 𝑏), (𝑎′)}, 𝑥, 𝑦)𝐿2

− ({(𝑎), (𝑎′, 𝑏′)}, 𝑥, 𝑦)𝐿2

− ({(𝑒′), (𝑎′, 𝑏′)}, 𝑥, 𝑦)𝐿2 − ({(𝑎′, 𝑏′), (𝑒′)}, 𝑥′′, 𝑦′′)𝐿2 . (4.9)

By construction of coordinate arrays 𝑥 and 𝑦, vertices ({(𝑎, 𝑏), (𝑒)}, 𝑥, 𝑦)𝐿2 and

({(𝑎′, 𝑏′), (𝑒′)}, 𝑥, 𝑦)𝐿2 are valid. We now show vertex ({(𝑎, 𝑏), (𝑎′)}, 𝑥, 𝑦)𝐿2 is valid, and the

fact that vertex ({(𝑎), (𝑎′, 𝑏′)}, 𝑥, 𝑦)𝐿2 is valid follows by a symmetric argument. We have

stacks (𝑎, 𝑏) and (𝑒′, 𝑎′) satisfy 𝑥, so (𝑎, 𝑏, 𝑎′) satisfies 𝑥 by the second part of Lemma 4.6.1.

Furthermore (𝑒, 𝑎, 𝑏) and (𝑎′) satisfy 𝑦, so stack (𝑎′, 𝑎, 𝑏) satisfies 𝑦 by the third part of

Lemma 4.6.1.

• One vertex is in 𝐿2 with two stacks of size 3 and 0: For every vertex 𝑢 =

({(𝑎, 𝑏, 𝑐), ()}, 𝑥, 𝑦)𝐿2 in 𝐿2 with stacks of size 3 and 0, any vertex of the form 𝑣 =

(𝑎, 𝑏, 𝑐, 𝑑)𝐿1 in 𝐿1 has the property that the neighborhood of 𝑢 is a superset of the neigh-

borhood of 𝑣 (by consider coordinate change edges from 𝑢). Thus, any vertex that 𝑣 can

reach in 5 edges can also be reached by 𝑢 is 5 edges. In particular, since any two vertices

in 𝐿1 are at distance at most 5, any vertex in 𝐿1 is distance at most 5 from any vertex in 𝐿2

with stacks of size 3 and 0. Applying a similar reasoning, any two vertices in 𝐿2 with stacks

of size 3 and 0 are at distance at most 5, and any vertex in 𝐿2 with stacks of size 3 and 0 is

distance at most 5 from any vertex in 𝐿2 with stacks of size 2 and 1.

We have thus shown that any two vertices are at distance at most 5, proving the diameter is at most

5.

5-OV has solution Now assume that the 5-OV instance has a solution. That is, assume there

exists 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 ∈ 𝐴 such that 𝑎1[𝑖] · 𝑎2[𝑖] · 𝑎3[𝑖] · 𝑎4[𝑖] · 𝑎5[𝑖] = 0 for all 𝑖. Since we assume

there are no 4 orthogonal vectors, we may assume that 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are pairwise distinct.
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Suppose for contradiction there exists a path of length at most 8 from 𝑢0 = (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝐿1

to 𝑢6 = (𝑎5, 𝑎4, 𝑎3, 𝑎2)𝐿1 . Since all vertices in 𝐿2 have self-loops with trivial coordinate-

change edges, we may assume the path has length exactly 8. Let the path be 𝑢0 =

(𝑎1, 𝑎2, 𝑎3, 𝑎4)𝐿1 , 𝑢1, . . . , 𝑢8 = (𝑎5, 𝑎4, 𝑎3, 𝑎2)𝐿1 . We may assume the path never visits 𝐿1 ex-

cept at the ends: if 𝑢𝑖 = (𝑆)𝐿1 ∈ 𝐿1, then 𝑢𝑖−1 = ({popped(𝑆), ()}, 𝑥, 𝑦)𝐿2 and 𝑢𝑖+1 =

({popped(𝑆), ()}, 𝑥′, 𝑦′)𝐿2 are in 𝐿2, and in particular 𝑢𝑖−1 and 𝑢𝑖+1 are adjacent by a coordi-

nate change edge, so we can replace the path 𝑢𝑖−1 − 𝑢𝑖 − 𝑢𝑖+1 with 𝑢𝑖−1 − 𝑢𝑖+1 − 𝑢𝑖+1, where the

last edge is a self-loop.

For 𝑖 = 1, 2, 3, 4, let 𝑝𝑖 denote the largest index such that 𝑢0, 𝑢1, . . . , 𝑢𝑝𝑖 all contain a stack that

has stack (𝑎1, . . . , 𝑎𝑖) as a substack. In this way, 𝑝4 = 0. For 𝑖 = 1, . . . , 4, let 𝑞𝑖 be the smallest

index such that vertices 𝑢𝑞𝑖 , . . . , 𝑢8 all contain a stack with stack (𝑎5, . . . , 𝑎6−𝑖) as a substack. In

this way, 𝑞4 = 8. We show that,

Claim 5. For 𝑖 = 1, . . . , 4, between vertices 𝑢𝑝𝑖 and 𝑢𝑞5−𝑖
, there must be a coordinate change edge.

Proof. Suppose for contradiction there is no coordinate change edge between 𝑢𝑝𝑖 and 𝑢𝑞5−𝑖
.

First, consider 𝑖 = 4. Here, 𝑢𝑝𝑖 = 𝑢0 = (𝑎1, 𝑎2, 𝑎3, 𝑎4)𝐿1 . Then, 𝑢𝑞1 is a vertex of the form

({𝑆1, 𝑆2}, 𝑥, 𝑦) where (𝑎5) is a substack of 𝑆1. Since there is no coordinate change edge, we must

have 𝑢1 = ({(𝑎1, 𝑎2, 𝑎3), ()}, 𝑥, 𝑦) for the same coordinate arrays 𝑥 and 𝑦, so stack (𝑎1, 𝑎2, 𝑎3, 𝑎4)

satisfies both 𝑥 and 𝑦. Then 𝑆1, and thus (𝑎5), satisfies one of 𝑥 and 𝑦, so there is some coordinate

array satisfied by both (𝑎1, 𝑎2, 𝑎3, 𝑎4) and (𝑎5), which is a contradiction of Lemma 4.2.3 By a

similar argument, we obtain a contradiction with 𝑖 = 1.

Now suppose 𝑖 = 3. Vertex 𝑢𝑝3 is of the form ({(𝑎1, 𝑎2, 𝑎3), ()}, 𝑥, 𝑦). Then stack (𝑎1, 𝑎2, 𝑎3)

satisfies both coordinate arrays 𝑥 and 𝑦. Vertex 𝑢𝑞2 is of the form ({𝑆 ′1, 𝑆 ′2}, 𝑥, 𝑦) where (𝑎5, 𝑎4)

is a substack of 𝑆 ′1. Then stack 𝑆 ′1 ∘ 𝑆 ′2 satisfies one of 𝑥 or 𝑦, and thus (𝑎5, 𝑎4), a substack of

𝑆 ′1 ∘ 𝑆 ′2, satisfies one of 𝑥 or 𝑦. Thus, there is some coordinate array satisfied by both (𝑎5, 𝑎4)

and (𝑎1, 𝑎2, 𝑎3), which is a contradiction of Lemma 4.2.3. By a similar argument, we obtain a

contradiction with 𝑖 = 2.
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Thus, we have shown that for all 𝑖 = 1, . . . , 4, there must be a coordinate change edge between

𝑢𝑝𝑖 and 𝑢𝑞5−𝑖
. □

Since coordinate change edges do not change any vectors, by maximality of 𝑝𝑖, the edge

𝑢𝑝𝑖𝑢𝑝𝑖+1 cannot be a coordinate change edge for all 𝑖 = 1, . . . , 4. Similarly, by minimality of

𝑞𝑖, the edge 𝑢𝑞𝑖−1𝑢𝑞𝑖 cannot be a coordinate change edge for all 𝑖 = 1, . . . , 4.

Consider the set of edges

𝑢𝑝4𝑢𝑝4+1, 𝑢𝑝3𝑢𝑝3+1, 𝑢𝑝2𝑢𝑝2+1, 𝑢𝑝1𝑢𝑝1+1, 𝑢𝑞4−1𝑢𝑞4 , 𝑢𝑞3−1𝑢𝑞3 , 𝑢𝑞2−1𝑢𝑞2 , 𝑢𝑞1−1𝑢𝑞1 . (4.10)

By above, none of these edges are coordinate change edges. These edges are among the 8 edges

𝑢0𝑢1, . . . , 𝑢7𝑢8. Additionally, the edges 𝑢𝑝𝑖𝑢𝑝𝑖+1 for 𝑖 = 1, . . . , 4 are pairwise distinct, and the

edges 𝑢𝑞𝑖−1𝑢𝑞𝑖 for 𝑖 = 1, . . . , 4 are pairwise distinct. Edge 𝑢𝑝4𝑢𝑝4−1 cannot be any of 𝑢𝑞𝑖−1𝑢𝑞𝑖 for

𝑖 = 1, . . . , 4, because we assume our orthogonal vectors 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are pairwise distinct and

𝑢𝑝4−1 = 𝑢1 does not have any stack containing vector 𝑎5. Similarly, 𝑢𝑞4−1𝑢𝑞4 cannot be any of

𝑢𝑝𝑖𝑢𝑝𝑖+1 for 𝑖 = 1, . . . , 4. Thus, the edges in (4.10) have at least 5 distinct edges, so our path has at

most 3 coordinate change edges. By Claim 5, there must be at least one coordinate change edge.

We now casework on the number of coordinate change edges.

Case 1: the path 𝑢0, . . . , 𝑢8 has one coordinate change edge. By Claim 5, since vertex

𝑢𝑝4 = 𝑢0 is before the coordinate change edge, edge 𝑢𝑞1−1𝑢𝑞1 must be after the coordinate change

edge, and similarly edge 𝑢𝑝1𝑢𝑝1+1 must be before the coordinate change edge. Then all of the

edges in (4.10) are pairwise distinct, so then the path has 8 edges from (4.10) plus a coordinate

change edge, for a total of 9 edges, a contradiction.

Case 2: the path has two coordinate change edges. Again, by Claim 5, for 𝑖 = 1, . . . , 4,

edges 𝑢𝑞𝑖−1𝑢𝑞𝑖 must be after the first coordinate change edge, and edge 𝑢𝑝𝑖𝑢𝑝𝑖+1 must be before

the second coordinate change edge. Since we have 8 edges total, we have at most 6 distinct edges

from (4.10), so there must be at least two pairs (𝑖, 𝑗) such that the edges 𝑢𝑝𝑖𝑢𝑝𝑖+1 and 𝑢𝑞𝑗−1𝑢𝑞𝑗 are

equal, and by above this edge must be between the two coordinate change edges. Thus, each of

𝑢𝑝4𝑢𝑝4+1, 𝑢𝑝3𝑢𝑝3+1, 𝑢𝑝2𝑢𝑝2+1, 𝑢𝑝1𝑢𝑝1+1 and 𝑢𝑞4−1𝑢𝑞4 , 𝑢𝑞3−1𝑢𝑞3 , 𝑢𝑞2−1𝑢𝑞2 , 𝑢𝑞1−1𝑢𝑞1 have at least two
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edges between the two coordinate change edges. This means that vertices 𝑢𝑝2 , 𝑢𝑝1 , 𝑢𝑞2 , 𝑢𝑞1 are all

between the two coordinate change edges. By Claim 5, vertices 𝑢𝑝3 and 𝑢𝑞3 cannot be between the

two coordinate change edges. Thus, we must have 𝑢𝑝1𝑢𝑝1+1 = 𝑢𝑞2−1𝑢𝑞2 and 𝑢𝑝2𝑢𝑝2+1 = 𝑢𝑞1−1𝑢𝑞1 .

Since we use at most 8 edges total and exactly 6 distinct edges from (4.10), we have 𝑞1 = 𝑝1 =

𝑝2 + 1 = 𝑞2 − 1. However, this is impossible, because that means node 𝑢𝑝1 = 𝑢𝑞1 has two stacks,

one containing vector 𝑎1 and one containing vector 𝑎5. By maximality of 𝑝1, the stack containing

vector 𝑎1 has no other vectors, and by minimality of 𝑞1, the stack containing vector 𝑎5 has no other

vectors, so vertex 𝑢𝑝1 = 𝑢𝑞1 has two stacks with a total of only two vectors, a contradiction of the

definition of a vertex in 𝐿2.

Case 3: the path has three coordinate change edges. Since the distinct edges of (4.10) are

𝑢𝑝4𝑢𝑝4+1, 𝑢𝑝3𝑢𝑝3+1, 𝑢𝑝2𝑢𝑝2+1, 𝑢𝑝1𝑢𝑝1+1, 𝑢𝑞4−1𝑢𝑞4 , (4.11)

we must have

𝑢𝑝3𝑢𝑝3+1 = 𝑢𝑞1−1𝑢𝑞1

𝑢𝑝2𝑢𝑝2+1 = 𝑢𝑞2−1𝑢𝑞2

𝑢𝑝1𝑢𝑝1+1 = 𝑢𝑞3−1𝑢𝑞3

(4.12)

Hence, by Claim 5, there must be a coordinate change edge between any two edges in (4.11), so

we must have four coordinate change edges, a contradiction.

This proves that there cannot be a length 8 path from (𝑎1, 𝑎2, 𝑎3, 𝑎4) to (𝑎5, 𝑎4, 𝑎3, 𝑎2), showing

that the diameter is at least 9, as desired.

□
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Chapter 5

Finding Short Cycles: The Girth

This chapter was written with Virginia Vassilevska Williams and focuses on computing the girth of

graphs. The girth is one of the most basic graph parameters, and its computation has been studied

for many decades. Under widely believed fine-grained assumptions, computing the girth exactly is

known to require 𝑚𝑛1−𝑜(1) time, both in sparse and dense 𝑚-edge, 𝑛-node graphs, motivating the

search for fast approximations. Fast good quality approximation algorithms for undirected graphs

have been known for decades. For the girth in directed graphs, until recently the only constant

factor approximation algorithms ran in 𝑂(𝑛𝜔) time, where 𝜔 < 2.373 is the matrix multiplication

exponent. These algorithms have two drawbacks: (1) they only offer an improvement over the

𝑚𝑛 running time for dense graphs, and (2) the current fast matrix multiplication methods are

impractical. The first constant factor approximation algorithm that runs in 𝑂(𝑚𝑛1−𝜀) time for

𝜀 > 0 and all sparsities 𝑚 was only recently obtained by Chechik et al. [STOC 2020]; it is also

combinatorial.

It is known that a better than 2-approximation algorithm for the girth in dense directed un-

weighted graphs needs 𝑛3−𝑜(1) time unless one uses fast matrix multiplication. Meanwhile, the

best known approximation factor for a combinatorial algorithm running in 𝑂(𝑚𝑛1−𝜀) time (by

Chechik et al.) is 3. Is the true answer 2 or 3?

The main result of this chapter is a (conditionally) tight approximation algorithm for directed

graphs. First, we show that under a popular hardness assumption, any algorithm, even one that
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exploits fast matrix multiplication, would need to take at least 𝑚𝑛1−𝑜(1) time for some sparsity 𝑚 if

it achieves a (2−𝜀)-approximation for any 𝜀 > 0. Second we give a 2-approximation algorithm for

the girth of unweighted graphs running in 𝑂̃(𝑚𝑛3/4) time, and a (2 + 𝜀)-approximation algorithm

(for any 𝜀 > 0) that works in weighted graphs and runs in 𝑂̃(𝑚
√
𝑛) time. Our algorithms are

combinatorial.

We also obtain a (4 + 𝜀)-approximation of the girth running in 𝑂̃(𝑚𝑛
√
2−1) time, improving

upon the previous best 𝑂̃(𝑚
√
𝑛) running time by Chechik et al. Finally, we consider the computa-

tion of roundtrip spanners. We obtain a (5+𝜀)-approximate roundtrip spanner on 𝑂̃(𝑛1.5/𝜀2) edges

in 𝑂̃(𝑚
√
𝑛/𝜀2) time. This improves upon the previous approximation factor (8 + 𝜀) of Chechik et

al. for the same running time.

5.1 Introduction.

One of the most basic and well-studied graph parameters is the girth, i.e. the length of the

shortest cycle in the graph. Computing the girth in an 𝑚-edge, 𝑛-node graph can be done by

computing all pairwise distances, that is, solving the All-Pairs Shortest Paths (APSP) problem.

This gives an 𝑂̃(𝑚𝑛) time algorithm for the general version of the girth problem: directed or

undirected integer weighted graphs and no negative weight cycles1.

The 𝑂̃(𝑚𝑛) running time for the exact computation of the girth is known to be tight, up to

𝑛𝑜(1) factors, both for sparse and dense weighted graphs, under popular hardness hypotheses from

fine-grained complexity [VW10, LVW18]. In unweighted graphs or graphs with integer weights

of magnitude at most 𝑀 , one can compute the girth in 𝑂̃(𝑀𝑛𝜔) time [Sei95, IR78, RV11, CGS15]

where 𝜔 < 2.373 is the exponent of 𝑛 × 𝑛 matrix multiplication [Vas12, Le 14]. This improves

upon 𝑚𝑛 only for somewhat dense graphs with small weights, and moreover is not considered very

practical due to the large overhead of fast matrix multiplication techniques.

Due to the subcubic equivalences of [VW10], however, it is known that even in unweighted

1If the weights are nonnegative, running Dijkstra’s algorithm suffices. If there are no negative weight cycles, one
can use Johnson’s trick to make the weights nonnegative at the cost of a single SSSP computation which can be
achieved for instance in 𝑂̃(𝑚

√
𝑛 log𝑀) time if 𝑀 is the largest edge weight magnitude via Goldberg’s algorithm

[Gol93], so as long as the weights have at most 𝑂̃(
√
𝑛) bits, the total time is 𝑂̃(𝑚𝑛).
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dense graphs, any algorithm that computes the girth in 𝑂(𝑛3−𝜀) time needs to use fast matrix

multiplication techniques, unless one can obtain a subcubic time combinatorial Boolean Matrix

Multiplication (BMM) algorithm. Thus, under popular fine-grained complexity assumptions, if

one wants to have a fast combinatorial algorithm, or an algorithm that is faster than 𝑚𝑛 for sparser

graphs, one needs to resort to approximation.

Fast approximation algorithms for the girth in undirected graphs have been known since the

1970s, starting with the work of Itai and Rodeh [IR78]. The current strongest result shows a 2-

approximation in 𝑂̃(𝑛5/3) time [RV12]; note that if the graph is dense enough this algorithm is

sublinear in the input. Such good approximation algorithms are possible for undirected graphs

because of known strong structural properties. For instance, as shown by Bondy and Simonovits

[BS74], for any integer 𝑘 ≥ 2, if a graph has at least 100𝑘𝑛1+1/𝑘 edges, then it must contain a 2𝑘

cycle, and this gives an immediate upper bound on the girth. There are no such structural results

for directed graphs, making the directed girth approximation problem quite challenging.

Zwick [Zwi02] showed that if the maximum weight of an edge is 𝑀 , one can obtain in

𝑂̃(𝑛𝜔 log(𝑀/𝜀)/𝜀) time a (1 + 𝜀)-approximation for APSP, and this implies the same for the

girth of directed graphs. As before, however, this algorithm does not run fast in sparse graphs, and

can be considered impractical.

The first nontrivial approximation algorithms (both for sparse graphs and combinatorial) for

the girth of directed graphs were achieved by Pachocki et al. [PRS+18]. The current best result

by Chechik et al. [CLRS19, CLRS20] achieves for every integer 𝑘 ≥ 1, a randomized 𝑂(𝑘 log 𝑘)-

approximation algorithm running in time 𝑂̃(𝑚1+1/𝑘). The best approximation factor that Chechik

et al. obtain in 𝑂(𝑚𝑛1−𝜀) time for 𝜀 > 0 is 3, in 𝑂̃(𝑚
√
𝑛) time.

What should be the best approximation factor attainable in 𝑂(𝑚𝑛1−𝜀) time for 𝜀 > 0? It is

not hard to show (see e.g. [Vas08a], the construction in Thm 4.1.3) that graph triangle detection

can be reduced to triangle detection in a directed graph whose cycle lengths are all divisible by 3.

This, coupled with the combinatorial subcubic equivalence between triangle detection and BMM

[VW10] implies that any 𝑂(𝑛3−𝜀) time algorithm for 𝜀 > 0 that achieves a (2− 𝛿)-approximation

for the girth implies an 𝑂(𝑛3−𝜀/3) time algorithm for BMM, and hence fast matrix multiplication
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techniques are likely necessary for faster (2− 𝜀)-approximation of the directed girth.

5.1.1 Our results

We first give a simple extension to the above hardness argument for (2 − 𝜀)-approximation,

giving a conditional lower bound on the running time of (2 − 𝜀)-girth approximation algorithms

under the so called 𝑘-Cycle hardness hypothesis [AHR+19, PVW20, LVW18].

The 𝑘-Cycle hypothesis states that for every 𝜀 > 0, there is a 𝑘 such that 𝑘-cycle in 𝑚-edge

directed unweighted graphs cannot be solved in 𝑂(𝑚2−𝜀) time (on a 𝑂(log 𝑛) bit word-RAM).

The hypothesis is consistent with all known algorithms for detecting 𝑘-cycles in directed

graphs, as these run at best in time 𝑚2−𝑐/𝑘 for various small constants 𝑐 [YZ04, AYZ97, LVW18,

DDV19], even using powerful tools such as matrix multiplication. Moreover, as shown by Lincoln

et al. [LVW18] any 𝑂(𝑚𝑛1−𝜀) time algorithm (for 𝜀 > 0) that, for odd 𝑘, can detect 𝑘-cycles in

𝑛-node 𝑚-edge directed graphs with 𝑚 = Θ(𝑛1+2/(𝑘−1)), would imply an 𝑂(𝑛𝑘−𝛿) time algorithm

for 𝑘-clique detection for 𝛿 > 0. If the cycle algorithm is “combinatorial”, then the clique algo-

rithm would be “combinatorial” as well, and since all known 𝑂(𝑛𝑘−𝛿) time 𝑘-clique algorithms

use fast matrix multiplication, such a result for 𝑘-cycle would be substantial.

In Section 5.5, with a very simple reduction we show:

Theorem 5.1.1. Suppose that for some constants 𝜀 > 0 and 𝛿 > 0, there is an 𝑂(𝑚2−𝜀) time

algorithm that can compute a (2 − 𝛿)-approximation of the girth in an 𝑚-edge directed graph.

Then for every constant 𝑘, one can detect whether an 𝑚-edge directed graph contains a 𝑘-cycle,

in 𝑂(𝑚2−𝜀) time, and hence the 𝑘-Cycle Hypothesis is false.

Thus, barring breakthroughs in Cycle and Clique detection algorithms, we know that the

best we can hope for using an 𝑂(𝑚𝑛1−𝜀) time algorithm for the girth of directed graphs is a 2-

approximation. The proof of Theorem 5.1.1 is presented in section 5.5.

The main result of this chapter is the first ever 𝑂(𝑚𝑛1−𝜀) time for 𝜀 > 0 2-approximation

algorithm for the girth in directed graphs. This result is conditionally tight via the above discussion.

Theorem 5.1.2. There is an 𝑂̃(𝑚𝑛3/4) time randomized algorithm that 2-approximates the girth in

directed unweighted graphs whp. For every 𝜀 > 0, there is a (2 + 𝜀)-approximation algorithm for
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the girth in directed graphs with integer edge weights that runs in 𝑂̃(𝑚
√
𝑛/𝜀) time. The algorithms

are randomized and are correct whp.

If one wanted to obtain a (4 + 𝜀)-approximation to the girth via Chechik et al.’s 𝑂(𝑘 log 𝑘)

approximation algorithms, the best running time one would be able to achieve is 𝑂̃(𝑚
√
𝑛). Here

we show how to get an improved running time for a (4 + 𝜀) approximation.

Theorem 5.1.3. For every 𝜀 > 0, there is a (4+𝜀)-approximation algorithm for the girth in directed

graphs with integer edge weights that runs in 𝑂̃(𝑚𝑛
√
2−1/𝜀) time. The algorithm is randomized

and correct whp.

In fact, we obtain a generalization of the above algorithms that improves upon the algorithms

of Chechik et al. for all constants 𝑘.

Theorem 5.1.4. For every 𝜀 > 0 and integer 𝑘 ≥ 1, there is a (2𝑘 + 𝜀)-approximation algorithm

for the girth in directed graphs with integer edge weights that runs in 𝑂̃(𝑚𝑛𝛼𝑘/𝜀) time, where

𝛼𝑘 > 0 is the solution to 𝛼𝑘(1 + 𝛼𝑘)
𝑘−1 = 1 − 𝛼𝑘. The algorithms are randomized and correct

whp.

For example, let’s consider 𝛼1 in the above theorem. It is the solution to 𝛼1 = 1 − 𝛼1, giving

𝛼1 = 1/2 and recovering the result of Theorem 5.1.2 for weighted graphs. On the other hand, 𝛼2

is the solution to 𝛼2(1 + 𝛼2) = 1− 𝛼2, which gives 𝛼2 =
√
2− 1 and recovering Theorem 5.1.3.

Finally, say we wanted to get a 6 + 𝜀 approximation, then we need 𝛼3, which is the solution

to 𝛼3(1 + 𝛼3)
2 = 1 − 𝛼3, giving 𝛼3 ≤ 0.354, and thus there’s an 𝑂̃(𝑚𝑛0.354/𝜀) time (6 + 𝜀)-

approximation algorithm. Note that there is only one positive solution to the equation defining 𝛼𝑘

in Theorem 5.1.4.

As 𝑘 grows, 𝛼𝑘 grows as Θ(log 𝑘/𝑘), and so the algorithm from Theorem 5.1.4 has similar

asymptotic guarantees as the algorithm of Chechik et al. as it achieves an 𝑂(ℓ log ℓ) approximation

in 𝑂̃(𝑚𝑛1/ℓ) time. The main improvements lie in the improved running time for small constant

approximation factors.

Our approximation algorithms on weighted graphs can be found in section 5.4. If we are aiming

for an algorithm running in 𝑇 (𝑛,𝑚) time, we first suppose that the maximum edge weight of the
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graph is 𝑀 and we obtain an algorithm in 𝑇 (𝑛,𝑚) log𝑀 time. We then show how to remove the

log𝑀 factor at the end of section 5.4.

Roundtrip Spanners. Both papers that achieved nontrivial combinatorial approximation algo-

rithms for the directed girth were also powerful enough to compute sparse approximate roundtrip

spanners.

A 𝑐-approximate roundtrip spanner of a directed graph 𝐺 = (𝑉,𝐸) is a subgraph 𝐻 = (𝑉,𝐸 ′)

of 𝐺 such that for every 𝑢, 𝑣 ∈ 𝑉 , 𝑑𝐻(𝑢, 𝑣) + 𝑑𝐻(𝑣, 𝑢) ≤ 𝑐 · (𝑑𝐺(𝑢, 𝑣) + 𝑑𝐺(𝑣, 𝑢)). Similar to

what is known for spanners in undirected graphs, it is known [CD19] that for every integer 𝑘 ≥ 2

and every 𝑛, every 𝑛-node graph contains a (2𝑘 − 1 + 𝑜(1))-approximate roundtrip spanner on

𝑂(𝑘𝑛1+1/𝑘 log 𝑛) edges; the 𝑜(1) error can be removed if the edge weights are at most polynomial

in 𝑛 and the result then is optimal, up to log factors under the Erdös girth conjecture.

The best algorithms to date for computing sparse roundtrip spanners, similarly to the girth,

achieve an 𝑂(𝑘 log 𝑘) approximation in 𝑂̃(𝑚1+1/𝑘) time [CLRS20]. The best constant factor ap-

proximation achieved for roundtrip spanners in 𝑂(𝑚𝑛1−𝜀) time for 𝜀 > 0 is again achieved by

Chechik et al.: a (8 + 𝜀) approximate 𝑂(𝑛1.5)-edge (in expectation) roundtrip spanner can be

computed in 𝑂̃(𝑚
√
𝑛) expected time. We improve this latter result:

Theorem 5.1.5. There is an 𝑂̃(𝑚
√
𝑛 log2(𝑀)/𝜀2) time randomized algorithm that computes a

(5+𝜀)-approximate roundtrip spanner on 𝑂̃(𝑛1.5 log2(𝑀)/𝜀2) edges whp, for any 𝑛-node 𝑚-edge

directed graph with edge weights in {1, . . . ,𝑀}.

5.2 Preliminary Lemmas

We begin with some preliminary lemmas. The first two will allow us to decrease all degrees to

roughly 𝑚/𝑛, while keeping the number of vertices and edges roughly the same. The last lemma,

implicit in [CLRS19], is a crucial ingredient in our algorithms.

The following lemma was proven by Chechik et al. [CLRS19]:

Lemma 5.2.1. Given a directed graph 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛, |𝐸| = 𝑚, we can in 𝑂(𝑚 + 𝑛)

time construct a graph 𝐺′ = (𝑉 ′, 𝐸 ′) with 𝑉 ⊆ 𝑉 ′, so that |𝑉 ′| ≤ 𝑂(𝑛), |𝐸 ′| ≤ 𝑂(𝑚 + 𝑛), for
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every 𝑣 ∈ 𝑉 ′, 𝑑𝑒𝑔(𝑣) ≤ ⌈𝑚/𝑛⌉, and so that for every 𝑢, 𝑣 ∈ 𝑉 , 𝑑𝐺′(𝑢, 𝑣) = 𝑑𝐺(𝑢, 𝑣), and so

that any path 𝑝 between some nodes 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 in 𝐺′ (possibly 𝑢 = 𝑣) is in one-to-one

correspondence with a path in 𝐺 of the same length.

The proof of the above lemma introduces edges of weight 0, even if the graph was originally

unweighted. In the lemma below which is proved in Section 5.6, we show how for an unweighted

graph we can achieve essentially the same goal, but without adding weighted edges. This turns out

to be useful for our unweighted girth approximation.

Lemma 5.2.2. Given a directed unweighted graph 𝐺 = (𝑉,𝐸) and |𝑉 | = 𝑛, |𝐸| = 𝑚, we can

in 𝑂̃(𝑚 + 𝑛) time construct an unweighted graph 𝐺′ = (𝑉 ′, 𝐸 ′) with 𝑉 ⊆ 𝑉 ′, so that |𝑉 ′| ≤

𝑂(𝑛 log 𝑛), |𝐸 ′| ≤ 𝑂(𝑚 + 𝑛 log 𝑛), for every 𝑣 ∈ 𝑉 ′ out-deg(𝑣) ≤ ⌈𝑚/𝑛⌉, and so that there is

an integer 𝑡 such that for every 𝑢, 𝑣 ∈ 𝑉 , 𝑑𝐺′(𝑢, 𝑣) = 𝑡 · 𝑑𝐺(𝑢, 𝑣), and so that any path 𝑝 between

some nodes 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 in 𝐺′ (possibly 𝑢 = 𝑣) is in one-to-one correspondence with a path

in 𝐺 of length 1/𝑡 of the length of 𝑝.

In particular, the lemma will imply that the girth of 𝐺′ is exactly 𝑡 times the girth of 𝐺, and that

given a 𝑐-roundtrip spanner of 𝐺′, one can in 𝑂̃(𝑚 + 𝑛) time obtain from it a 𝑐-roundtrip spanner

of 𝐺. We note that it is easy to obtain the same result but where both the in- and out-degrees are

𝑂(𝑚/𝑛) (see the proof in the Section 5.6).

Now we can assume that the degree of each node is no more than 𝑂(𝑚/𝑛). This will allow us

for instance to run Dijkstra’s algorithm or BFS from a vertex within a neighborhood of 𝑤 nodes in

𝑂̃(𝑚𝑤/𝑛) time.

Another assumption we can make without loss of generality is that our given graph 𝐺 is

strongly connected. In linear time we can compute the strongly connected components and then

run any algorithm on each component separately. We know that any two vertices in different

components have infinite roundtrip distance.

A final lemma (implicit in [CLRS19]) will be very important for our algorithms:

Lemma 5.2.3. Let 𝐺 = (𝑉,𝐸) be a directed graph with |𝑉 | = 𝑛 and integer edge weights in

{1, . . . ,𝑀}. Let 𝑆 ⊆ 𝑉 with |𝑆| > 𝑐 log 𝑛 (for 𝑐 ≥ 100/ log(10/9)) and let 𝑑 be a positive integer.
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Let 𝑅 be a random sample of 𝑐 log 𝑛 nodes of 𝑆 and define 𝑆 ′ := {𝑠 ∈ 𝑆 | 𝑑(𝑠, 𝑟) ≤ 𝑑, ∀𝑟 ∈ 𝑅}.

Suppose that for every 𝑠 ∈ 𝑆 there are at most 0.2|𝑆| nodes 𝑣 ∈ 𝑉 so that 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) ≤ 𝑑.

Then |𝑆 ′| ≤ 0.8|𝑆|.

Proof. The proof will consist of two parts. First we will show that the number of ordered pairs

𝑠, 𝑠′ ∈ 𝑆 for which 𝑑(𝑠, 𝑠′), 𝑑(𝑠′, 𝑠) ≤ 𝑑 is small. Then we will show that if |𝑆 ′| > 0.8|𝑆|, then

with high probability, the number of ordered pairs 𝑠, 𝑠′ ∈ 𝑆 for which 𝑑(𝑠, 𝑠′), 𝑑(𝑠′, 𝑠) ≤ 𝑑 is large,

thus obtaining a contradiction.

(1) If for every 𝑠 ∈ 𝑆 there are at most 0.2|𝑆| nodes 𝑣 ∈ 𝑉 so that 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) ≤ 𝑑, then the

number of ordered pairs 𝑠, 𝑠′ ∈ 𝑆 for which 𝑑(𝑠, 𝑠′), 𝑑(𝑠′, 𝑠) ≤ 𝑑 is clearly at most 0.2|𝑆|2.

(2) Suppose now that |𝑆 ′| > 0.8|𝑆|. First, consider any 𝑠 ∈ 𝑆 for which there are at least 0.1|𝑆|

nodes 𝑠′ ∈ 𝑆 such that 𝑑(𝑠, 𝑠′) > 𝑑. The probability that 𝑑(𝑠, 𝑟) ≤ 𝑑 for all 𝑟 ∈ 𝑅 is then at most

0.9𝑐 log𝑛 ≤ 1/𝑛100. Thus, via a union bound, with high probability at least 1 − 1/𝑛99, for every

𝑠 ∈ 𝑆 ′, there are at least 0.9|𝑆| nodes 𝑠′ ∈ 𝑆 such that 𝑑(𝑠, 𝑠′) ≤ 𝑑.

Now, if |𝑆 ′| > 0.8|𝑆|, with high probability, there are at least 0.8|𝑆| × 0.9|𝑆| = 0.72|𝑆|2

ordered pairs (𝑠, 𝑠′) with 𝑠, 𝑠′ ∈ 𝑆 and 𝑑(𝑠, 𝑠′) ≤ 𝑑. There are at most
(︀|𝑆|

2

)︀
≤ |𝑆|2/2 ordered pairs

(𝑠, 𝑠′) such that exactly one of {𝑑(𝑠, 𝑠′) ≤ 𝑑, 𝑑(𝑠′, 𝑠) ≤ 𝑑} holds. Hence, with high probability

there are at least 0.22|𝑆|2 > 0.2|𝑆|2 ordered pairs (𝑠, 𝑠′) with 𝑠, 𝑠′ ∈ 𝑆 and both 𝑑(𝑠, 𝑠′) ≤ 𝑑 and

𝑑(𝑠′, 𝑠) ≤ 𝑑. Contradiction. □

5.3 2-Approximation for the Girth in Unweighted Graphs

Here we show how to obtain a genuine 2-approximation for the girth in unweighted graphs.

Theorem 5.3.1. Given a directed unweighted graph 𝐺 on 𝑚 edges and 𝑛 nodes, one can in

𝑂̃(𝑚𝑛3/4) time compute a 2-approximation to the girth.

Note that this is the first part of Theorem 5.1.2. The pseudocode for the algorithm of Theorem

5.3.1 can be found in Algorithm 1, and we will refer to it at each stage of the proof.

We will consider two cases for the girth: when it is ≥ 𝑛𝛿 and when it is < 𝑛𝛿, for some 𝛿 > 0

we will eventually set to 1/4. We will assume that all out-degrees in the graph are 𝑂(𝑚/𝑛).

116



5.3.1 Large girth.

Pick a random sample 𝑅 of 100𝑛1−𝛿 log 𝑛 nodes, run BFS to and from each 𝑠 ∈ 𝑅. Return

min
𝑠∈𝑅

min
𝑣 ̸=𝑠

𝑑(𝑠, 𝑣) + 𝑑(𝑣, 𝑠).

If the girth is ≥ 𝑛𝛿, with high probability, 𝑅 will contain a node 𝑠 on the shortest cycle 𝐶.

Since any cycle must contain two distinct nodes, min𝑠∈𝑅 min𝑣 ̸=𝑠 𝑑(𝑠, 𝑣) + 𝑑(𝑣, 𝑠) is the weight of

a shortest cycle that contains some node of 𝑅, and with high probability it must be the girth. Thus

in 𝑂̃(𝑚𝑛1−𝛿) time we have computed the girth exactly. See Procedure HIGHGIRTH in Algorithm

1.

5.3.2 Small girth.

Now let us assume that the girth is at most 𝑛𝛿. For a vertex 𝑢 and integer 𝑗 ∈ {0, . . . , 𝑛𝛿},

define

𝐵𝑗(𝑢) := {𝑥 ∈ 𝑉 | 𝑑(𝑢, 𝑥) = 𝑗} and 𝐵̄𝑗(𝑢) := {𝑥 ∈ 𝑉 | 𝑑(𝑢, 𝑥) ≤ 𝑗}.

We will try all choices of integers 𝑖 from 3 to 𝑛𝛿 to estimate the girth when it is ≤ 𝑖.

Our algorithm first computes a random sample 𝑄 of size 𝑂(𝑛1−𝑡 log 𝑛) for a parameter 𝑡, does

BFS from and to all nodes in 𝑄, and computes for each 𝑖 ∈ {1, . . . , 𝑛𝛿}, 𝑉 ′𝑖 = {𝑣 ∈ 𝑉 | ∃𝑞 ∈

𝑄 : 𝑑(𝑣, 𝑞) ≤ 𝑖 and 𝑑(𝑞, 𝑣) ≤ 𝑖}. The running time needed to do this for all 𝑖 ≤ 𝑛𝛿 is 𝑂̃(𝑚𝑛1−𝑡+𝛿)

2.

If 𝑉 ′𝑖 ̸= ∅, the girth of 𝐺 must be ≤ 2𝑖.

Now, pick the smallest 𝑖 for which 𝑉 ′𝑖+1 ̸= ∅. Then 𝑉 ′𝑘 = ∅ for all 𝑘 ≤ 𝑖, and we have certified

that the girth is ≤ 2𝑖 + 2. If the girth is ≥ 𝑖 + 1, we already have a 2-approximation. Otherwise,

the girth must be ≤ 𝑖.

Consider any 𝑢 ∈ 𝑉 , and 𝑗 ≤ 𝑖. Suppose that for all 𝑗 ≤ 𝑖, |𝐵𝑗(𝑢)| ≤ 100𝑛𝑡. Then, for 𝑢 and

for all 𝑣 ∈ 𝐵𝑗(𝑢) for 𝑗 ≤ 𝑖, we could compute the distances from 𝑢 to 𝑣 in 𝐺 efficiently: We do

this by running BFS from 𝑢 but stopping when a vertex outside of ∪𝑖𝑗=0𝐵
𝑗(𝑢) is found. Note that

2The running time is actually less, 𝑂̃(𝑛2−𝑡+𝛿 +𝑚𝑛1−𝑡) but this won’t matter for our algorithm.
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the number of vertices in ∪𝑖𝑗=0𝐵
𝑗(𝑢) is 𝑂(𝑛𝑡 · 𝑖), and since we assumed that the degree of every

vertex is 𝑂(𝑚/𝑛), we get a total running time of 𝑂(𝑚𝑛𝑡−1 · 𝑖). If this works for all vertices 𝑢, then

we would be able to compute all distances up to 𝑖 exactly in total time 𝑂(𝑚 · 𝑖𝑛𝑡) ≤ 𝑂(𝑚𝑛𝑡+𝛿).

Unfortunately, however, some 𝐵𝑗(𝑢) balls can be larger than 100𝑛𝑡. In this case, for every

𝑗 ≤ 𝑖, we will compute a small set of nodes 𝐵′𝑗(𝑢) that will be just as good as 𝐵𝑗(𝑢) for computing

short cycles.

Claim 6. Fix 𝑖: 1 ≤ 𝑖 ≤ 𝑛𝛿. Suppose that for every 𝑗 ≤ 𝑖 we are given black box access to sets

𝐵′𝑗(𝑢) ⊆ 𝐵̄𝑗(𝑢) of nodes such that (1) In 𝑡(𝑛) time we can check whether a node is in 𝐵′𝑗(𝑢), (2)

|𝐵′𝑗(𝑢)| ≤ 100𝑛𝑡 whp, and (3) for any cycle 𝐶 of length ≤ 𝑖 containing 𝑢, and every 𝑗 ≤ 𝑖, any

node of 𝐶 that is in 𝐵𝑗(𝑢) is also in 𝐵′𝑗(𝑢).

Then there is an 𝑂(𝑚𝑛𝑡−1+𝛿𝑡(𝑛)) time algorithm that can find a shortest cycle through 𝑢,

provided that cycle has length ≤ 𝑖.

Proof. Let us assume that there is some cycle 𝐶 of length ≤ 𝑖 containing 𝑢. Also, assume that we

are given the sets 𝐵′𝑗(𝑢) for all 𝑗 ≤ 𝑖 as in the statement of the lemma.

Then we can compute a modified BFS out of 𝑢. We will show by induction that when consid-

ering distance 𝑗 ≤ 𝑖, our modified BFS will have found a set 𝑁𝑗(𝑢) of nodes such that for every

𝑥 ∈ 𝑁𝑗(𝑢), 𝑑(𝑢, 𝑥) ≤ 𝑗, and so that for any cycle 𝐶 of length ≤ 𝑖 containing 𝑢, any node of 𝐶 that

is in 𝐵𝑗(𝑢) is also in 𝑁𝑗(𝑢).

Initially, 𝑁0(𝑢) = {𝑢}, so the base case is fine. Let’s make the induction hypothesis for 𝑗 that

for every 𝑥 ∈ 𝑁𝑗(𝑢), 𝑑(𝑢, 𝑥) ≤ 𝑗, and for a shortest cycle 𝐶 of length ≤ 𝑖 containing 𝑢, any node

of 𝐶 that is in 𝐵𝑗(𝑢) is also in 𝑁𝑗(𝑢).

Our modified BFS proceeds as follows: Given 𝑁𝑗(𝑢), we go through each 𝑧 ∈ 𝑁𝑗(𝑢), and if

𝑧 ∈ 𝐵′𝑗(𝑢), we go through all out-neighbors 𝑦 of 𝑧, and if 𝑦 has not been visited until now, we

place 𝑦 into 𝑁𝑗+1(𝑢). See Procedure MODBFS in Algorithm 1 (parameter 𝑡 is set to 1/2 here).

Clearly, since 𝑑(𝑢, 𝑧) ≤ 𝑗 (by the induction hypothesis), we have that 𝑑(𝑢, 𝑦) ≤ 𝑗 + 1 for each

out-neighbor 𝑦 of 𝑧. Now consider a shortest cycle 𝐶 containing 𝑢 of length ≤ 𝑖. To complete the

induction we only care about 𝑗 < |𝐶|.

Assume that the induction hypothesis for 𝑗 holds. Let 𝑥 be the node on 𝐶 at distance 𝑗 + 1
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from 𝑢 along 𝐶, and let 𝑥′ be its predecessor on 𝐶, i.e. the node on 𝐶 at distance 𝑗 from 𝑢 along

𝐶. Since 𝐶 is a shortest cycle containing 𝑢 and since 𝑥′ ̸= 𝑥, we must have that 𝑑(𝑢, 𝑥′) = 𝑗 so

that 𝑥′ ∈ 𝐵𝑗(𝑢). Also, either 𝑢 = 𝑥, or 𝑑(𝑢, 𝑥) = 𝑗 + 1 and so 𝑥 ∈ 𝐵𝑗+1(𝑢).

We know by the induction hypothesis that 𝑥′ ∈ 𝑁𝑗(𝑢) and also that 𝑥′ ∈ 𝐵′𝑗(𝑢) by the defi-

nition of 𝐵′𝑗(𝑢). Thus, we would have gone through the edges out of 𝑥′, and 𝑥 would have been

discovered. If 𝑢 = 𝑥, then the cycle 𝐶 will be found. Otherwise, 𝑑(𝑢, 𝑥) = 𝑗 + 1, and 𝑥 cannot

have been visited until now, so our modified BFS will insert 𝑥 into 𝑁𝑗+1(𝑢) thus completing the

induction.

The running time of the modified BFS is determined by the fact that there are 𝑖 ≤ 𝑛𝛿 levels,

each of 𝑁𝑗(𝑢) ∩ 𝐵′𝑗(𝑢) contains ≤ 𝑂(𝑛𝑡) nodes, and we traverse the 𝑂(𝑚/𝑛) edges out of every

𝑥 ∈ 𝑁𝑗(𝑢) ∩ 𝐵′𝑗(𝑢). The running time is thus asymptotically 𝑡(𝑛) × 𝑛𝛿 × 𝑛𝑡 × 𝑚/𝑛 which is

𝑂(𝑚𝑛𝑡+𝛿−1𝑡(𝑛)). □

Now we want to explain how to compute the sets 𝐵′𝑗(𝑢). We use Lemma 5.2.3 from the

preliminaries. Suppose that the girth is at most 𝑖 and for every 𝑘 ≤ 𝑖, 𝑉 ′𝑘 = ∅.

Let 𝑢 be a node on a cycle 𝐶 of length at most 𝑖. Let 𝑥 be any node on 𝐶 so that 𝑥 ∈ 𝐵𝑗(𝑢) for

some integer 𝑗 ≤ 𝑖. Then we must have that for every 𝑦 ∈ 𝐵̄𝑗(𝑢) :

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, 𝑦) ≤ |𝐶| − 𝑑(𝑢, 𝑥) + 𝑑(𝑢, 𝑦) ≤ 𝑖− 𝑗 + 𝑗 = 𝑖.

This inequality is crucial for our algorithm. See Figure 5-1 for a depiction of it.

In other words, we obtain that 𝑥 is in {𝑤 ∈ 𝐵𝑗(𝑢) | 𝑑(𝑤, 𝑦) ≤ 𝑖, ∀𝑦 ∈ 𝐵̄𝑗(𝑢)}.

Suppose that we are able to pick a random sample 𝑅𝑗(𝑢) of 𝑐 log 𝑛 vertices from 𝐵̄𝑗(𝑢) (we

will show how later). Then we can define

𝐵̄′𝑗(𝑢) := {𝑧 ∈ 𝐵̄𝑗(𝑢) | 𝑑(𝑧, 𝑦) ≤ 𝑖, ∀𝑦 ∈ 𝑅𝑗(𝑢)}.

Using Lemma 5.2.3 we will show that if |𝐵̄𝑗(𝑢)| ≥ 10𝑛𝑡, then |𝐵̄′𝑗(𝑢)| ≤ 0.8𝐵̄𝑗(𝑢) and if 𝑥

is in {𝑤 ∈ 𝐵𝑗(𝑢) | 𝑑(𝑤, 𝑦) ≤ 𝑖, ∀𝑦 ∈ 𝐵̄𝑗(𝑢)}, then whp 𝑥 ∈ 𝐵̄′𝑗(𝑢). We will then repeat the

argument to obtain 𝐵′𝑗(𝑢) of size 𝑂(𝑛𝑡).
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Figure 5-1: Here there is a cycle of length 𝑔 containing 𝑢. A node 𝑥 on the cycle is at distance 𝑗
from 𝑢 along the cycle and another node 𝑦 is at distance≤ 𝑗 from 𝑢. Then the distance from 𝑥 to 𝑦
is at most 𝑔 since one way to go from 𝑥 to 𝑦 is to go from 𝑥 to 𝑢 along the cycle at a cost of 𝑔 − 𝑗,
and then from 𝑢 to 𝑦 at a cost of≤ 𝑗. If the cycle is a shortest cycle containing 𝑢 and if 𝑥 ̸= 𝑢, then
the distance in the graph from 𝑢 to 𝑥 is 𝑗, as the path along the cycle needs to be a shortest path.

Consider any 𝑠 ∈ 𝑉 with at least 0.2|𝐵̄𝑗(𝑢)| nodes 𝑣 ∈ 𝑉 so that 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) ≤ 𝑖. As

|𝐵̄𝑗(𝑢)| ≥ 10𝑛𝑡 (as otherwise we would be done), 0.2|𝐵̄𝑗(𝑢)| ≥ 2𝑛𝑡, and so with high probability,

for 𝑠 with the property above, our earlier random sample 𝑄 contains some 𝑞 with 𝑑(𝑠, 𝑞), 𝑑(𝑞, 𝑠) ≤

𝑖, and so 𝑉 ′𝑖 ̸= ∅ which we assumed didn’t happen. Thus with high probability, for every 𝑠 ∈ 𝑉 ,

there are at most 0.2|𝐵̄𝑗(𝑢)| nodes 𝑣 ∈ 𝑉 so that 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) ≤ 𝑖. Hence we also have that

every 𝑧 ∈ 𝐵̄𝑗(𝑢) has at most 0.2|𝐵̄𝑗(𝑢)| nodes 𝑣 ∈ 𝑉 so that 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) ≤ 𝑖.

Thus we can apply Lemma 5.2.3 to 𝐵̄𝑗(𝑢) and conclude that |𝐵̄′𝑗(𝑢)| ≤ 0.8|𝐵̄𝑗(𝑢)|, while also

any node 𝑥 ∈ 𝐵𝑗(𝑢) on the cycle 𝐶 (containing 𝑢) is also in 𝐵̄′𝑗(𝑢).

We will iterate this process until we arrive at a subset of 𝐵̄𝑗(𝑢) that is smaller than 10𝑛𝑡 and

still contains all 𝑥 ∈ 𝐵𝑗(𝑢) on an ≤ 𝑖-length cycle 𝐶.

We do this as follows. Let 𝐵𝑗
0(𝑢) = 𝐵̄𝑗(𝑢). For each 𝑘 = 0, . . . , 2 log 𝑛, let 𝑅𝑗

𝑘(𝑢) be a

random sample of 𝑂(log 𝑛) vertices of 𝐵𝑗
𝑘(𝑢). Define 𝐵𝑗

𝑘+1(𝑢) = {𝑧 ∈ 𝐵𝑗
𝑘(𝑢) | 𝑑(𝑧, 𝑦) ≤ 𝑖, ∀𝑦 ∈

∪𝑘ℓ=0𝑅
𝑗
ℓ(𝑢)}. We get that for each 𝑘, |𝐵𝑗

𝑘(𝑢)| ≤ 0.8𝑘|𝐵̄𝑗(𝑢)| so that at the end of the last iteration,

|𝐵𝑗
2 log𝑛(𝑢)| ≤ 10𝑛𝑡 and we can set 𝐵′𝑗(𝑢) to 𝐵𝑗

2 log𝑛(𝑢).

It is not immediately clear how to obtain the random sample 𝑅𝑗
𝑘(𝑢) from 𝐵𝑗

𝑘(𝑢) as 𝐵𝑗
𝑘(𝑢) is

unknown. We do it in the following way, adapting an argument from Chechik et al. [CLRS20].

For each 𝑗 ≤ 𝑖 and 𝑘 ≤ 2 log 𝑛 we independently obtain a random sample 𝑆𝑗,𝑘 of 𝑉 by sampling
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each vertex independently with probability 𝑝 = 100 log 𝑛/𝑛𝑡. For each of the (in expectation)

𝑂(𝑛1−𝑡+𝛿 log2(𝑛)) vertices in the sets 𝑆𝑗,𝑘 we run BFS to and from them, to obtain all their dis-

tances.

Now, for 𝑗 ≤ 𝑖 and 𝑘, to obtain the random sample 𝑅𝑗
𝑘(𝑢) of the unknown 𝐵𝑗

𝑘(𝑢), we assume

that we already have 𝑅𝑗
ℓ(𝑢) for ℓ < 𝑘, and define

𝑇 𝑗
𝑘 (𝑢) = {𝑠 ∈ 𝑆𝑗,𝑘 | 𝑠 ∈ 𝐵̄𝑗(𝑢) and 𝑑(𝑠, 𝑦) ≤ 𝑖, ∀𝑦 ∈ ∪ℓ<𝑘𝑅

𝑗
ℓ(𝑢)}.

Forming the set 𝑇 𝑗
𝑘 (𝑢) is easy since we have the distances 𝑑(𝑠, 𝑣) for all 𝑠 ∈ 𝑆𝑗,𝑘 and 𝑣 ∈ 𝑉 , so we

can check whether 𝑠 ∈ 𝐵̄𝑗(𝑢) and 𝑑(𝑠, 𝑦) ≤ 𝑖, ∀𝑦 ∈ ∪ℓ<𝑘𝑅
𝑗
ℓ(𝑢) in polylogarithmic time for each

𝑠 ∈ 𝑆𝑗,𝑘. See Procedure RANDOMSAMPLES in Algorithm 1.

Now since 𝑆𝑗,𝑘 is independent from all our other random choices, 𝑇 𝑗
𝑘 (𝑢) is a random sample

of 𝐵𝑗
𝑘(𝑢) essentially created by selecting each vertex with probability 𝑝. If 𝐵𝑗

𝑘(𝑢) ≥ 100𝑛𝑡, with

high probability, 𝑇 𝑗
𝑘 (𝑢) has at least 10 log 𝑛 vertices so we can pick 𝑅𝑗

𝑘(𝑢) to be a random sample

of 10 log 𝑛 vertices of 𝑇 𝑗
𝑘 (𝑢), and they will also be a random sample of 10 log 𝑛 vertices of 𝐵𝑗

𝑘(𝑢).

Once we have the sets 𝑅𝑗
𝑘(𝑢) for each 𝑢 and 𝑗 ≤ 𝑖, 𝑘 ≤ 2 log 𝑛, we run our modified BFS

from each 𝑢 from Claim 6 where when we are going through the vertices 𝑥 ∈ 𝑁𝑗(𝑢) we check

whether 𝑥 ∈ 𝐵′𝑗(𝑢) by checking whether 𝑑(𝑥, 𝑟) ≤ 𝑖 for every 𝑟 ∈ ∪𝑘𝑅𝑗
𝑘(𝑢). This only gives a

polylogarithmic overhead so we can run the modified BFS in time 𝑂̃(𝑚𝑛𝑡−1+𝛿) time. We can run

it through all 𝑢 ∈ 𝑉 in total time 𝑂̃(𝑚𝑛𝑡+𝛿) time, and in this time we will be able to compute the

length of the shortest cycle if that cycle is of length ≤ 𝑖.

Putting it all together. In 𝑂̃(𝑚𝑛1−𝛿) time we compute the girth exactly if it is ≥ 𝑛𝛿. In

𝑂̃(𝑚𝑛1−𝑡+𝛿) time, we obtain 𝑖 so that we have a 2-approximation of the girth if the girth is > 𝑖. In

additional 𝑂̃(𝑚𝑛1−𝑡+𝛿 +𝑚𝑛𝑡+𝛿) time we compute the girth exactly if it is ≤ 𝑖.

To optimize the running time we set 𝑡 = 1/2, 1−𝛿 = 0.5+𝛿, obtaining 𝛿 = 1/4, and a running

time of 𝑂̃(𝑚𝑛3/4). The final algorithm is in Algorithm 1.
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Algorithm 1: 2-Approximation algorithm for the girth in unweighted graphs.
1 Procedure HIGHGIRTH(𝐺 = (𝑉,𝐸))

2 Let 𝑅 ⊆ 𝑉 be a uniform random sample of 100𝑛3/4 log𝑛 nodes.
3 foreach 𝑠 ∈ 𝑅 do
4 Do BFS from 𝑠 in 𝐺

5 Let 𝑔 be the length of the shortest cycle found by the BFS searches.
6 Return 𝑔.

7 Procedure RANDOMSAMPLES(𝐺 = (𝑣,𝐸), 𝑖)

8 foreach 𝑗 ∈ {1, . . . , 𝑖} do
9 foreach 𝑘 ∈ {1, . . . , 2 log𝑛} do

10 Let 𝑆𝑗,𝑘 ⊆ 𝑉 be a uniform random sample of 100
√
𝑛 log𝑛 vertices.

11 foreach 𝑠 ∈ 𝑆𝑗,𝑘 do
12 Do BFS to and from 𝑠 to compute for all 𝑣, 𝑑(𝑠, 𝑣) and 𝑑(𝑣, 𝑠).

13 foreach 𝑢 ∈ 𝑉 do
14 foreach 𝑗 ∈ {1, . . . , 𝑖} do
15 𝑅𝑗(𝑢)← ∅.
16 foreach 𝑘 ∈ {1, . . . , 2 log𝑛} do
17 𝑇 𝑗

𝑘 (𝑢)← {𝑠 ∈ 𝑆𝑗,𝑘 | 𝑑(𝑢, 𝑠) ≤ 𝑗 and for all 𝑦 ∈ 𝑅𝑗(𝑢) : 𝑑(𝑠, 𝑦) ≤ 𝑖}.
18 if |𝑇 𝑗

𝑘 (𝑢)| < 10 log𝑛 then
19 𝑅𝑗(𝑢)← 𝑅𝑗(𝑢) ∪ 𝑇 𝑗

𝑘 (𝑢)

20 Exit this loop (over 𝑘).

21 else
22 Let 𝑅𝑗

𝑘(𝑢) be a uniform random sample of 10 log𝑛 nodes from 𝑇 𝑗
𝑘 (𝑢).

23 𝑅𝑗(𝑢)← 𝑅𝑗(𝑢) ∪𝑅𝑗
𝑘(𝑢).

24 Return the sets 𝑅𝑗(𝑢) for all 𝑗 ≤ 𝑖, 𝑢 ∈ 𝑉 , and 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) for all 𝑠 ∈ ∪𝑗,𝑘𝑆𝑗,𝑘 and 𝑣 ∈ 𝑉 .

25 Procedure MODBFS(𝐺 = (𝑣,𝐸), 𝑢, 𝑖, 𝑅1(𝑢), . . . , 𝑅𝑖(𝑢)), 𝑑(·)
26 // 𝑑(·) contains 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) for all 𝑠 ∈ ∪𝑗,𝑘𝑆𝑗,𝑘 and 𝑣 ∈ 𝑉 .
27 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑← empty hash table
28 𝑁0 ← {𝑢}
29 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑.𝑖𝑛𝑠𝑒𝑟𝑡(𝑢)

30 foreach 𝑗 from 0 to 𝑖− 1 do
31 𝑁𝑗+1 ← empty linked list
32 foreach 𝑥 ∈ 𝑁𝑗 do
33 if for every 𝑠 ∈ 𝑅𝑗(𝑢), 𝑑(𝑥, 𝑠) ≤ 𝑖 then
34 foreach 𝑦 s.t. (𝑥, 𝑦) ∈ 𝐸 and 𝑦 /∈ 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑 do
35 if 𝑦 = 𝑢 then
36 Stop and return 𝑗 + 1

37 𝑁𝑗+1.𝑖𝑛𝑠𝑒𝑟𝑡(𝑦)

38 𝑉 𝑖𝑠𝑖𝑡𝑒𝑑.𝑖𝑛𝑠𝑒𝑟𝑡(𝑦)

39 Return∞ // No ≤ 𝑖 length cycle found through 𝑢



1 Procedure GIRTHAPPROX(𝐺 = (𝑉,𝐸))

2 𝑔ℎ𝑖𝑔ℎ ← HIGHGIRTH(𝐺)

3 Let 𝑄 ⊆ 𝑉 be a uniform random sample of 100𝑛1/2 log𝑛 nodes.
4 foreach 𝑠 ∈ 𝑄 do
5 Do BFS from and to 𝑠 in 𝐺

6 Let 𝑖 be the minimum integer s.t. ∃𝑠 ∈ 𝑄 and ∃𝑣 ∈ 𝑉 with 𝑑(𝑠, 𝑣) ≤ 𝑖+ 1 and 𝑑(𝑣, 𝑠) ≤ 𝑖+ 1.
7 𝑔𝑚𝑒𝑑 ← 2(𝑖+ 1)

8 Let 𝑖 be the min of 𝑖 and 𝑛1/4

9 Run RANDOMSAMPLES(𝐺, 𝑖) to obtain sets 𝑅𝑗(𝑢) for all 𝑗 ≤ 𝑖, 𝑢 ∈ 𝑉 , and 𝑑(·) containing 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) for all
𝑠 ∈ ∪𝑗,𝑘𝑆𝑗,𝑘 and 𝑣 ∈ 𝑉

10 foreach 𝑢 ∈ 𝑉 do
11 𝑔𝑢 ← MODBFS(𝐺, 𝑢, 𝑖, 𝑅1(𝑢), . . . , 𝑅𝑖(𝑢), 𝑑(·))

12 𝑔 ← min{𝑔ℎ𝑖𝑔ℎ, 𝑔𝑚𝑒𝑑,min𝑢∈𝑉 𝑔𝑢}
13 Return 𝑔

5.4 Weighted Graphs: Girth and Roundtrip Spanner.

One of the main differences between our weighted and unweighted algorithms is that for

weighted graphs we do not go through each distance value 𝑖 up to 𝑛𝛿, but we instead process

intervals of possible distance values [(1 + 𝜀)𝑖, (1 + 𝜀)𝑖+1) for small 𝜀 > 0. This will affect the ap-

proximation, so that we will get a (2+𝑂(𝜀))-approximation. However, it will also enable us to have

a smaller running time of 𝑂̃(𝑚
√
𝑛 log(𝑀)/𝜀), and to be able to output an 𝑂̃(𝑛1.5 log(𝑀)/𝜀)-edge

(5+𝑂(𝜀))-approximate roundtrip spanner in 𝑂̃(𝑚
√
𝑛 log(𝑀)/𝜀2) time, where 𝑀 is the maximum

edge weight.

Fix 𝜀 > 0. For a vertex 𝑢 and integer 𝑗, define (differently from the previous section)

𝐵𝑗(𝑢) := {𝑥 ∈ 𝑉 | (1+𝜀)𝑗 ≤ 𝑑(𝑢, 𝑥) < (1+𝜀)𝑗+1} and 𝐵̄𝑗(𝑢) := {𝑥 ∈ 𝑉 | 𝑑(𝑢, 𝑥) < (1+𝜀)𝑗+1}.

We include a boundary case 𝐵∅(𝑢) := {𝑥 ∈ 𝑉 | 𝑑(𝑢, 𝑥) = 0}. Recall that we originally started

with a graph with positive integer weights, but our transformation to vertices of degree 𝑂(𝑚/𝑛)

created some 0 weight edges. We note that any distance of 0 involves at least one of the auxiliary

vertices and no roundtrip distance can be 0.

In our algorithms including our (2 + 𝜖)-approximation algorithm, we do a restricted version of
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Dijkstra from every vertex where before running these Dijkstras, we need to efficiently sample a

set of vertices 𝑅𝑗(𝑢) of size 𝑂(log 𝑛) from a subset of 𝐵𝑗(𝑢), without computing the set 𝐵𝑗(𝑢).

The following lemma is given as input the target approximation factor 2𝛽, a parameter 𝑖 as an

estimated size of cycles the algorithm is handling at a given stage and a parameter 𝛼 as the target

running time 𝑂̃(𝑚𝑛𝛼) of our algorithms. It outputs the sample sets in this running time. The proof

of the lemma is similar to the sampling method of the previous section and is included in section

5.6.

Lemma 5.4.1. Let 𝑀 be the maximum edge weight of the graph and suppose that 𝑖 ∈

{1, . . . , log1+𝜖 𝑀𝑛}, 𝛽 > 0 and 0 < 𝛼 < 1 are given. Suppose that 𝑄 is a given sampled set of size

𝑂̃(𝑛𝛼) vertices. Let 𝑑 = 𝛽(1 + 𝜖)𝑖+1. Let 𝑉 ′𝑖 = {𝑣 ∈ 𝑉 | ∃𝑞 ∈ 𝑄 : 𝑑(𝑣, 𝑞) ≤ 𝑑 and 𝑑(𝑞, 𝑣) ≤ 𝑑}.

In 𝑂̃(𝑚𝑛𝛼) time, for every 𝑢 ∈ 𝑉 and every 𝑗 = {1, . . . , log(1+𝜖)(𝑀𝑛)}, one can output a

sample set 𝑅𝑗
𝑖 (𝑢) of size 𝑂(log2 𝑛) from 𝑍𝑗

𝑖 (𝑢) = 𝐵̄𝑗(𝑢) ∖ 𝑉 ′𝑖 , where the number of vertices in

𝑍𝑗
𝑖 (𝑢) = 𝐵𝑗(𝑢) ∖ 𝑉 ′𝑖 of distance at most 𝑑 from all vertices in 𝑅𝑗

𝑖 (𝑢) is at most 𝑂(𝑛1−𝛼) whp.

Now we focus on our (2 + 𝑂(𝜖))-approximation algorithm for the girth and (5 + 𝑂(𝜖))-

approximate roundtrip spanner. We are going to prove the following Theorem, which consists

of Theorem 5.1.5 and the second part of Theorem 5.1.2 with a log𝑀 factor added to their running

times.

Theorem 5.4.1. Let 𝐺 be an 𝑛-node, 𝑚-edge directed graph with edge weights in {1, . . . ,𝑀}.

Let 𝜀 > 0. One can compute a (5 + 𝜀)-roundtrip spanner on 𝑂̃(𝑛1.5 log2𝑀/𝜀2) edges in

𝑂̃(𝑚
√
𝑛 log2(𝑀)/𝜀2) time, whp. In 𝑂̃(𝑚

√
𝑛 log(𝑀)/𝜀) time, whp, one can compute a (2 + 𝜀)-

approximation to the girth.

We will start with a sampling approach, similar to that in the unweighted girth approximation.

The pseudocode of the girth algorithm can be found in Algorithm 2, and we will refer to it at each

stage of the proof.

Lemma 5.4.2. Let 𝐺 = (𝑉,𝐸) be a directed graph with |𝑉 | = 𝑛 and integer edge weights in

{1, . . . ,𝑀}. Let 𝑑 be a positive integer, 𝜀 ≥ 0, and let 𝑄 ⊆ 𝑉 be a random sample of 100
√
𝑛 log 𝑛

vertices. In 𝑂̃(𝑚
√
𝑛) time we can compute shortest paths trees 𝑇 𝑖𝑛(𝑞), 𝑇 𝑜𝑢𝑡(𝑞) into and out of
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each 𝑞 ∈ 𝑄. Let 𝐻 be the subgraph of 𝐺 consisting of the edges of these trees 𝑇 𝑖𝑛(𝑞), 𝑇 𝑜𝑢𝑡(𝑞). Let

𝑉 ′ = {𝑣 ∈ 𝑉 | ∃𝑞 ∈ 𝑄, 𝑑(𝑣, 𝑞) ≤ 𝑑 and 𝑑(𝑞, 𝑣) ≤ 𝑑}. Then:

• Girth approximation: If 𝑉 ′ ̸= ∅, then the girth of 𝐺 is at most 2𝑑.

• Additive distance approximation: For any 𝑢, 𝑣 ∈ 𝑉 , if the shortest 𝑢 to 𝑣 path contains a

node of 𝑉 ′, then 𝑑𝐻(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑣) + 2𝑑.

• Sparsity: The number of edges in 𝐻 is 𝑂̃(𝑛1.5).

Proof. Given a directed 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛, |𝐸| = 𝑚 and edge weights in {1, . . . ,𝑀}, let

us first take a random sample 𝑄 ⊆ 𝑉 of 100
√
𝑛 log 𝑛 vertices. Run Dijkstra’s algorithm from and

to every 𝑞 ∈ 𝑄. Determine 𝑉 ′ ⊆ 𝑉 defined as those 𝑣 ∈ 𝑉 for which there is some 𝑞 ∈ 𝑄 with

𝑑(𝑣, 𝑞), 𝑑(𝑞, 𝑣) ≤ 𝑑. If 𝑉 ′ ̸= ∅, we get that the girth of 𝐺 is at most 2𝑑. Suppose that we insert all

edges of the in- and out- shortest paths trees rooted at all 𝑞 ∈ 𝑄 into a subgraph 𝐻 . Then we have

only inserted 𝑂̃(𝑛1.5) edges as each tree has ≤ 𝑛− 1 edges.

Consider some 𝑢, 𝑣 ∈ 𝑉 such that there is some node 𝑥 ∈ 𝑉 ′ on the shortest 𝑢 − 𝑣 path. Let

𝑞 ∈ 𝑄 be such that 𝑑(𝑥, 𝑞), 𝑑(𝑞, 𝑥) ≤ 𝑑. Then

𝑑𝐻(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑞) + 𝑑(𝑞, 𝑣) ≤ 𝑑(𝑢, 𝑥) + 𝑑(𝑥, 𝑞) + 𝑑(𝑞, 𝑥) + 𝑑(𝑥, 𝑣) ≤ 𝑑(𝑢, 𝑣) + 2𝑑.

□

Our approach below will handle the roundtrip spanner and the girth approximation at the same

time.

We will try all choices of integers 𝑖 from 0 to log1+𝜀(𝑀𝑛) to estimate roundtrip distances in

the interval [(1 + 𝜀)𝑖, (1 + 𝜀)𝑖+1), and to estimate the girth if it is < (1 + 𝜀)𝑖+1.

Fix a choice for 𝑖 for now.

Our algorithm first applies the approach of Lemma 5.4.2 by setting 𝑑 = (1 + 𝜀)𝑖+2 (we will

see later why). We compute a random sample 𝑄 of size 𝑂(
√
𝑛 log 𝑛), do Dijkstra’s from and to

all nodes in 𝑄, and add the edges of the computed shortest paths trees to our roundtrip spanner 𝐻 .
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We also compute

𝑉 ′𝑖 = {𝑣 ∈ 𝑉 | ∃𝑞 ∈ 𝑄 : 𝑑(𝑣, 𝑞) ≤ (1 + 𝜀)𝑖+2 and 𝑑(𝑞, 𝑣) ≤ (1 + 𝜀)𝑖+2}.

By Lemma 5.4.2, if 𝑉 ′𝑖 ̸= ∅, the girth of 𝐺 must be ≤ 2(1 + 𝜀)𝑖+2. For the choice of 𝑖 where

(1+𝜀)𝑖 ≤ 𝑔 ≤ (1+𝜀)𝑖+1, we will get an approximation factor of 2(1+𝜀)2 ≤ 2(1+3𝜀). Just as with

the algorithm for unweighted graphs, we can pick the minimum 𝑖 so that 𝑉 ′𝑖 ̸= ∅, use 2(1 + 𝜀)𝑖+2

as one of our girth estimates and then proceed from now on with a single value 𝑖 − 1 considering

only the interval [(1 + 𝜀)𝑖−1, (1 + 𝜀)𝑖).

By Lemma 5.4.2, we also get that for any 𝑢, 𝑣 ∈ 𝑉 for which the 𝑢-𝑣 shortest path contains a

node of 𝑉 ′𝑖 , 𝐻 gives a good additive estimate of 𝑑(𝑢, 𝑣), i.e. 𝑑(𝑢, 𝑣) ≤ 𝑑𝐻(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑣) + 2(1 +

𝜀)𝑖+2.

Suppose that also (1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) ≤ (1 + 𝜀)𝑖+1, and that we somehow also get a good

estimate for 𝑑(𝑣, 𝑢) (either because the 𝑣-𝑢 shortest path contains a node of 𝑉 ′, or by adding more

edges to 𝐻), so that also 𝑑(𝑣, 𝑢) ≤ 𝑑𝐻(𝑣, 𝑢) ≤ 𝑑(𝑣, 𝑢) + 2(1 + 𝜀)𝑖+2. Then,

𝑑(𝑢 ⇆ 𝑣) ≤ 𝑑𝐻(𝑢 ⇆ 𝑣) ≤ 𝑑(𝑢 ⇆ 𝑣)+4(1+𝜀)𝑖+2 ≤ 𝑑(𝑢 ⇆ 𝑣)(1+4(1+3𝜀)) ≤ 𝑑(𝑢 ⇆ 𝑣)(5+12𝜀).

In other words, we would get a 5+𝑂(𝜀)-roundtrip spanner, as long as by adding 𝑂̃(𝑛1.5) edges

to 𝐻 , we can get a good additive approximation to the weights of the 𝑢-𝑣 shortest paths that do not

contain nodes of 𝑉 ′𝑖 , for all 𝑢, 𝑣 with (1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) ≤ (1 + 𝜀)𝑖+1. We will in fact compute

these shortest paths exactly. For the girth 𝑔 itself, we will show how to compute it exactly, if no

node of 𝑉 ′𝑖 hit the shortest cycle, where 𝑖 is such that (1 + 𝜀)𝑖−1 ≤ 𝑔 ≤ (1 + 𝜀)𝑖.

Fix 𝑖. Let 𝑍𝑖 = 𝑉 ∖ 𝑉 ′𝑖 and 𝑑 = (1 + 𝜀)𝑖+1. We can focus on the subgraph induced by 𝑍𝑖.

Consider any 𝑢 ∈ 𝑍𝑖, and 𝑗 ≤ 𝑖. Define 𝑍𝑗
𝑖 (𝑢) = 𝑍𝑖 ∩ 𝐵𝑗(𝑢) and 𝑍𝑗

𝑖 (𝑢) = 𝑍𝑖 ∩ 𝐵̄𝑗(𝑢). We

also add the boundary case 𝑍∅𝑖 = 𝑍𝑖 ∩𝐵∅(𝑢) = {𝑥 ∈ 𝑍𝑖 | 𝑑(𝑢, 𝑥) = 0}.

If for all 𝑗 ∈ {∅} ∪ {1, . . . , 𝑖}, |𝑍𝑗
𝑖 (𝑢)| ≤ 100

√
𝑛, running Dijkstra’s algorithm from 𝑢 in the

graph induced by 𝑍𝑖, up to distance (1 + 𝜀)𝑖+1 would be cheap. Unfortunately, however, some

𝑍𝑗
𝑖 (𝑢) balls can be larger than 100

√
𝑛. In this case, similarly to our approach for the unweighted
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case, we will replace 𝑍𝑗
𝑖 (𝑢) with a set 𝑍 ′𝑗𝑖 (𝑢) ⊆ 𝑍𝑗

𝑖 (𝑢) of size 𝑂(
√
𝑛) with the guarantee that for

any 𝑣 ∈ 𝑉 with (1+ 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) < (1+ 𝜀)𝑖+1 for which the shortest 𝑢-𝑣 path does not contain

a node of 𝑉 ′𝑖 , every node of this 𝑢-𝑣 shortest path that is in 𝑍𝑗
𝑖 (𝑢) is also in 𝑍 ′𝑗𝑖 (𝑢).

The following lemma shows how to use such replacement sets.

Lemma 5.4.3. Let 𝑢 and 𝑖 be fixed. Suppose that for every 𝑗 ∈ {∅}∪{1, . . . , 𝑖} we are given black

box access to sets 𝑍 ′𝑗𝑖 (𝑢) ⊆ 𝑍𝑗
𝑖 (𝑢) of nodes such that (1) Checking whether a node 𝑧 is in 𝑍 ′𝑗𝑖 (𝑢)

takes 𝑡(𝑛) time, (2) |𝑍 ′𝑗𝑖 (𝑢)| ≤ 100
√
𝑛 whp, and (3) for any 𝑣 such that (1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) ≤

(1 + 𝜀)𝑖+1, and every 𝑗 ≤ 𝑖, every node on the shortest path 𝑃 from 𝑢 to 𝑣 that is in 𝑍𝑗
𝑖 (𝑢) is also

in 𝑍 ′𝑗𝑖 (𝑢).

Then there is an 𝑂̃(𝑚 log(𝑀)𝑡(𝑛)/(𝜀
√
𝑛)) time algorithm that finds a shortest path from 𝑢 to

any 𝑣 with (1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) ≤ (1 + 𝜀)𝑖+1 and s.t. the shortest 𝑢-𝑣 path does not contain a

node of 𝑉 ′𝑖 . The algorithm returns 𝑂̃(𝑛0.5 log(𝑀)/𝜀) edges whose union contains all these shortest

paths.

Proof. Assume we have the sets 𝑍 ′𝑗𝑖 (𝑢) for 𝑗 ∈ {∅} ∪ {1, . . . , 𝑖} as in the statement of the lemma.

Then we will define a modified Dijkstra’s algorithm out of 𝑢. The algorithm begins by placing

𝑢 in the Fibonacci heap with 𝑑[𝑢] = 0 and all other vertices with 𝑑[·] = ∞. When a vertex 𝑥

is extracted from the heap with estimate 𝑑[𝑥], we determine the 𝑗 for which (1 + 𝜀)𝑗 ≤ 𝑑[𝑥] <

(1+𝜀)𝑗+1; here 𝑗 could be the boundary case that we called ∅ if 𝑑[𝑥] = 0. Then we check whether 𝑥

is in 𝑍 ′𝑗𝑖 . If it is not, we ignore it and extract a new vertex from the heap. Otherwise if 𝑥 ∈ 𝑍 ′𝑗𝑖 , we

go through all its out-edges (𝑥, 𝑦), and if 𝑑[𝑦] > 𝑑[𝑥] + 𝑤(𝑥, 𝑦), we update 𝑑[𝑦] = 𝑑[𝑥] + 𝑤(𝑥, 𝑦).

For any new cycle to 𝑢 found, we update the best weight found, and in the end we return it. See

Procedure MODDIJKSTRA in Algorithm 2.

Since we only go through the edges of at most 𝑂(
√
𝑛 log(𝑀𝑛)/𝜀) vertices and the degrees are

all 𝑂(𝑚/𝑛), the runtime is 𝑂(𝑚 log(𝑀𝑛)/(𝜀
√
𝑛)). For the same reason, the modified shortest

paths tree whose edges we add to our roundtrip spanner has at most 𝑂(
√
𝑛 log(𝑀𝑛)/𝜀) edges.

Let 𝑣 be such that (1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) ≤ (1 + 𝜀)𝑖+1 and for which the shortest 𝑢-𝑣 path does

not contain a node of 𝑉 ′𝑖 . We will show by induction that our modified Dijkstra’s algorithm will

compute the shortest path from 𝑢 to 𝑣 exactly.
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The induction will be on the distance from 𝑢. Let’s call the nodes on the shortest 𝑢 to 𝑣

path, 𝑢 = 𝑢0, 𝑢1, . . . , 𝑢𝑡 = 𝑣. The induction hypothesis for 𝑢𝑘 is that 𝑢𝑘 is extracted from the

heap with 𝑑[𝑢𝑘] = 𝑑(𝑢, 𝑢𝑘). Let us show that 𝑢𝑘+1 will also be extracted from the heap with

𝑑[𝑢𝑘+1] = 𝑑(𝑢, 𝑢𝑘+1). The base case is clear since 𝑢 is extracted first.

When 𝑢𝑘 is extracted from the heap, by the induction hypothesis, 𝑑[𝑢𝑘] = 𝑑(𝑢, 𝑢𝑘). Let 𝑗 be

such that (1 + 𝜀)𝑗 ≤ 𝑑[𝑢𝑘] < (1 + 𝜀)𝑗+1. As no node on the 𝑢-𝑣 shortest path is in 𝑉 ′𝑖 , we get

that 𝑢𝑘 ∈ 𝑍𝑗
𝑖 . By the assumptions in the lemma, we also have that 𝑢𝑘 ∈ 𝑍 ′𝑗𝑖 . Thus, when 𝑢𝑘 is

extracted, we will go over its edges. In particular, (𝑢𝑘, 𝑢𝑘+1) will be scanned, and 𝑑[𝑢𝑘+1] will be

set to (or it already was) 𝑑[𝑢𝑘] + 𝑤(𝑢𝑘, 𝑢𝑘+1) = 𝑑(𝑢, 𝑢𝑘+1). This completes the induction.

It is also not hard to see that the girth will be computed exactly if 𝑢 is on a shortest cycle, the

girth is in [(1 + 𝜀)𝑖, (1 + 𝜀)𝑖+1) and 𝑉 ′𝑖 is empty. □

Now we compute the sets 𝑍 ′𝑗𝑖 (𝑢). First consider 𝑢, 𝑣 ∈ 𝑉 with (1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) <

(1 + 𝜀)𝑖+1. Let 𝑥 be any node on the 𝑢 to 𝑣 roundtrip path (cycle) so that 𝑥 ∈ 𝑍𝑗
𝑖 (𝑢) for some

integer 𝑗 ≤ 𝑖. Recall that this means (1 + 𝜀)𝑗 ≤ 𝑑(𝑢, 𝑥) < (1 + 𝜀)𝑗+1. Then for every 𝑦 with

𝑑(𝑢, 𝑦) < (1 + 𝜀)𝑗+1 and so for each 𝑦 ∈ 𝑍𝑗
𝑖 (𝑢) we must have (see Figure 5-2) that

𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑢) + 𝑑(𝑢, 𝑦) ≤ 𝑑(𝑢 ⇆ 𝑣)− 𝑑(𝑢, 𝑥) + 𝑑(𝑢, 𝑦) ≤ 𝑑(𝑢 ⇆ 𝑣)− (1 + 𝜀)𝑗 + (1 + 𝜀)𝑗+1

= 𝑑(𝑢 ⇆ 𝑣) + 𝜀(1 + 𝜀)𝑗 ≤ 𝑑(𝑢 ⇆ 𝑣) + 𝜀(1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣)(1 + 𝜀) ≤ (1 + 𝜀)𝑖+2.

In other words, 𝑥 must be in {𝑤 ∈ 𝑍𝑗
𝑖 (𝑢) | 𝑑(𝑤, 𝑦) ≤ (1 + 𝜀)𝑖+2, ∀𝑦 ∈ 𝑍𝑗

𝑖 (𝑢)}.

We apply Lemma 5.4.1 for 𝛽 = (1 + 𝜖) and 𝛼 = 1/2. It outputs sets 𝑅𝑗
𝑖 (𝑢) of size 𝑂(log2 𝑛)

vertices, where the number of vertices in 𝑍𝑗
𝑖 (𝑢) that are at distance (1 + 𝜖)𝑖+2 from all vertices

in 𝑅𝑗
𝑖 (𝑢) is 𝑂(

√
𝑛) (See Procedure RANDOMSAMPLESWT in Algorithm 2). So all vertices 𝑥 ∈

𝑍𝑗
𝑖 (𝑢) that are in a roundtrip path 𝑢− 𝑣 with (1 + 𝜀)𝑖 ≤ 𝑑(𝑢 ⇆ 𝑣) < (1 + 𝜀)𝑖+1 are in this set, so

we let 𝑍 ′𝑗𝑖 (𝑢) = {𝑤 ∈ 𝑍𝑗
𝑖 (𝑢)|𝑑(𝑤, 𝑦) ≤ (1 + 𝜖)𝑖+2, ∀𝑦 ∈ 𝑅𝑗

𝑖 (𝑢)}.

Now that we have the random samples, we implement the modified Dijkstra’s algorithm from

Lemma 5.4.3 with only a polylogarithmic overhead as follows:

Fix some 𝑗. Let’s look at the vertices 𝑥 with (1 + 𝜀)𝑗 ≤ 𝑑[𝑥] < (1 + 𝜀)𝑗+1 that the modified
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u

y< (1 + ε)j+1

d(u, x) ≥ (1 + ε)j

x

d(u� v)− d(u, x)

d(u� v)

v

So d(x, y) ≤ d(u � v) + ε(1 + ε)j

≤ d(u � v)(1 + ε)

Figure 5-2: Here 𝑢 and 𝑣 have roundtrip distance more than (1 + 𝜀)𝑗 . A node 𝑥 on the shortest 𝑢-𝑣
path is at distance at least (1 + 𝜀)𝑗 from 𝑢, and another node 𝑦 is at distance at most (1 + 𝜀)𝑗+1

from 𝑢. Then the distance from 𝑥 to 𝑦 is at most 𝑑(𝑢 ⇆ 𝑣)(1 + 𝜀) since one way to go from 𝑥 to
𝑦 is to go from 𝑥 to 𝑢 along the 𝑢-𝑣 roundtrip cycle at a cost of at most 𝑑(𝑢 ⇆ 𝑣)− (1 + 𝜀)𝑗 , and
then from 𝑢 to 𝑦 at a cost of at most (1 + 𝜀)𝑗+1.

Dijkstra’s algorithm extracts from the heap. Since 𝑑[𝑥] is always an overestimate, 𝑑(𝑢, 𝑥) ≤ 𝑑[𝑥] <

(1 + 𝜀)𝑗+1, and so 𝑥 ∈ 𝐵̄𝑗(𝑢). Now, since 𝑥 is already in 𝐵̄𝑗(𝑢), to check whether 𝑥 ∈ 𝑍 ′𝑗𝑖 (𝑢), we

only need to check whether 𝑥 ∈ 𝑍𝑖 (easy) and whether 𝑑(𝑥, 𝑦) ≤ (1+ 𝜀)𝑖+2 for all 𝑦 ∈ 𝑅𝑗
𝑖 (𝑢) (this

takes 𝑂(log2 𝑛) time since we have all the distances to the nodes in the random samples).

The final running time is 𝑂̃(𝑚
√
𝑛 log2(𝑀)/𝜀2) since we need to run the above procedure

𝑂(log(𝑀𝑛)/𝜀) times, once for each 𝑖, and each procedure costs 𝑂̃(𝑚 log(𝑀)
√
𝑛/𝜀) time. As

we mentioned before, to estimate the girth to within a (2 + 𝜀)-factor, we do not need to run the

procedure for all 𝑖 but (as with the algorithm for unweighted graphs), only for the minimum 𝑖 for

which 𝑉 ′𝑖+1 ̸= ∅. Thus the running time for the girth becomes 𝑂̃(𝑚
√
𝑛 log(𝑀)/𝜀). See Procedure

GIRTHAPPROXWT in Algorithm 2.

5.4.1 (4 + 𝜖)-Approximation Algorithm for the Girth in 𝑂̃(𝑚𝑛
√
2−1) Time

In this section we are going to prove the modified version of Theorem 5.1.3, where a log𝑀

factor is added to the running time with 𝑀 being the maximum edge weight.

Theorem 5.4.2. For every 𝜀 > 0, there is a (4 + 𝜀)-approximation algorithm for the girth in

directed graphs with edge weights in {1, . . . ,𝑀} that runs in 𝑂̃(𝑚𝑛
√
2−1 log(𝑀)/𝜀) time.
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130
Algorithm 2: 2 + 𝜀-Approximation algorithm for the girth in weighted graphs.
1 Procedure RANDOMSAMPLESWT(𝐺 = (𝑣,𝐸), 𝑖, 𝜀)

2 foreach 𝑗 ∈ {1, . . . , 𝑖} do
3 foreach 𝑘 ∈ {1, . . . , 2 log𝑛} do
4 Let 𝑆𝑗,𝑘 ⊆ 𝑉 be a uniform random sample of 100

√
𝑛 log𝑛 vertices.

5 foreach 𝑠 ∈ 𝑆𝑗,𝑘 do
6 Run Dijkstra’s to and from 𝑠 to compute for all 𝑣, 𝑑(𝑠, 𝑣) and 𝑑(𝑣, 𝑠).

7 foreach 𝑢 ∈ 𝑉 do
8 foreach 𝑗 ∈ {0, . . . , 𝑖} do
9 𝑅𝑗(𝑢)← ∅.

10 foreach 𝑘 ∈ {1, . . . , 2 log𝑛} do
11 𝑇 𝑗

𝑘 (𝑢)← {𝑠 ∈ 𝑆𝑗,𝑘 | 𝑑(𝑢, 𝑠) < (1 + 𝜀)𝑗+1 and for all 𝑦 ∈ 𝑅𝑗(𝑢) : 𝑑(𝑠, 𝑦) ≤ (1 + 𝜀)𝑖+2}.
12 if |𝑇 𝑗

𝑘 (𝑢)| < 10 log𝑛 then
13 𝑅𝑗(𝑢)← 𝑅𝑗(𝑢) ∪ 𝑇 𝑗

𝑘 (𝑢)

14 Exit this loop (over 𝑘).

15 else
16 Let 𝑅𝑗

𝑘(𝑢) be a uniform random sample of 10 log𝑛 nodes from 𝑇 𝑗
𝑘 (𝑢).

17 𝑅𝑗(𝑢)← 𝑅𝑗(𝑢) ∪𝑅𝑗
𝑘(𝑢).

18 Return the sets 𝑅𝑗(𝑢) for all 𝑗 ≤ 𝑖, 𝑢 ∈ 𝑉 , and 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) for all 𝑠 ∈ ∪𝑗,𝑘𝑆𝑗,𝑘 and 𝑣 ∈ 𝑉 .

19 Procedure MODDIJKSTRA(𝐺 = (𝑣,𝐸), 𝑢, 𝑖, 𝜀, 𝑅1(𝑢), . . . , 𝑅𝑖(𝑢)), 𝑑(·)
20 // 𝑑(·) contains 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) for all 𝑠 ∈ ∪𝑗,𝑘𝑆𝑗,𝑘 and 𝑣 ∈ 𝑉 .
21 𝐹 ← empty Fibonacci heap
22 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑← empty hash table
23 𝐹.𝑖𝑛𝑠𝑒𝑟𝑡(𝑢, 0)

24 𝑔𝑢 ←∞
25 while 𝐹 is nonempty do
26 (𝑥, 𝑑[𝑥])← 𝐹.𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑚𝑖𝑛

27 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑.𝑖𝑛𝑠𝑒𝑟𝑡(𝑥)

28 if for every 𝑠 ∈ 𝑅𝑗(𝑢), 𝑑(𝑥, 𝑠) ≤ (1 + 𝜀)𝑖+2 then
29 foreach 𝑦 s.t. (𝑥, 𝑦) ∈ 𝐸 do
30 if 𝑦 /∈ 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 then
31 if 𝑦 is in 𝐹 then
32 𝐹.𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝐾𝑒𝑦(𝑦, 𝑑[𝑥] + 𝑤(𝑥, 𝑦))

33 else
34 𝐹.𝑖𝑛𝑠𝑒𝑟𝑡(𝑦, 𝑑[𝑥] + 𝑤(𝑥, 𝑦))

35 if 𝑦 = 𝑢 then
36 𝑔𝑢 ← min{𝑔𝑢, 𝑑[𝑥] + 𝑤(𝑥, 𝑦)}

37 Return 𝑔𝑢



1 Procedure GIRTHAPPROXWT(𝐺 = (𝑉,𝐸), 𝜀)

2 Let 𝑄 ⊆ 𝑉 be a uniform random sample of 100𝑛1/2 log 𝑛 nodes.
3 foreach 𝑠 ∈ 𝑄 do
4 Do Dijkstra’s from and to 𝑠 in 𝐺

5 Let 𝑖 be the minimum integer s.t. ∃𝑠 ∈ 𝑄 and ∃𝑣 ∈ 𝑉 with 𝑑(𝑠, 𝑣) < (1 + 𝜀)𝑖+2 and
𝑑(𝑣, 𝑠) < (1 + 𝜀)𝑖+2.

6 𝑔𝑚𝑒𝑑 ← min𝑠∈𝑄,𝑣∈𝑉 𝑑(𝑠, 𝑣) + 𝑑(𝑣, 𝑠) // 𝑔𝑚𝑒𝑑 < 2(1 + 𝜀)𝑖+2

7 if 𝑖 < 0 then
8 // Here 𝑖 = −1 and 𝑑(𝑠, 𝑣) = 𝑑(𝑣, 𝑠) = 1

9 Return 𝑔𝑚𝑒𝑑

10 Run RANDOMSAMPLESWT(𝐺, 𝑖, 𝜀) to obtain sets 𝑅𝑗(𝑢) for all 𝑗 ≤ 𝑖, 𝑢 ∈ 𝑉 , and 𝑑(·) containing
𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) for all 𝑠 ∈ ∪𝑗,𝑘𝑆𝑗,𝑘 and 𝑣 ∈ 𝑉

11 foreach 𝑢 ∈ 𝑉 do
12 𝑔𝑢 ← MODDIJKSTRA(𝐺, 𝑢, 𝑖, 𝜀, 𝑅1(𝑢), . . . , 𝑅𝑖(𝑢), 𝑑(·))

13 𝑔 ← min{𝑔𝑚𝑒𝑑,min𝑢∈𝑉 𝑔𝑢}
14 Return 𝑔

Proof. Suppose that we want an 𝑂̃(𝑚𝑛𝛼) time girth approximation algorithm. Let 𝛽 = 2(1 + 𝜖).

As a first step, we sample a set 𝑄 of 𝑂̃(𝑛𝛼) vertices and do in and out Dijkstra from them.

We let 𝑉 ′𝑖 = {𝑣 ∈ 𝑉 | ∃𝑞 ∈ 𝑄 : 𝑑(𝑣, 𝑞) ≤ 𝛽(1 + 𝜀)𝑖+1 and 𝑑(𝑞, 𝑣) ≤ 𝛽(1 + 𝜀)𝑖+1}. If 𝑉 ′𝑖 ̸= ∅

for some 𝑖, then we have that the girth 𝑔 is at most 2𝛽(1 + 𝜖)𝑖+1. If (1 + 𝜖)𝑖 ≤ 𝑔 ≤ (1 + 𝜖)𝑖+1, this

is a 2𝛽(1 + 𝜖) ≤ 4(1 + 3𝜖) = 4 +𝑂(𝜖) approximation.

So take the minimum 𝑖 where 𝑉 ′𝑖+1 ̸= ∅. Let 𝑔′ = (1+ 𝜖)𝑖+1 be our current upper bound for the

girth 𝑔. We initially mark all vertices “on", meaning that they are not processed yet. For each on

vertex 𝑢, we either find the smallest cycle of length at most 𝑔′ passing through 𝑢 where all vertices

of the cycle are on, or conclude that there is no cycle of length at most 𝑔′ passing through 𝑢. When

a vertex 𝑢 is processed, we mark it as “off". We proceed until all vertices are off.

We apply Lemma 5.4.1 for 𝛽 = 2(1 + 𝜖). Note that since 𝑉 ′𝑖 = ∅, 𝑍𝑗
𝑖 (𝑢) = 𝐵𝑗(𝑢) is all the

vertices at distance [(1 + 𝜖)𝑗, (1 + 𝜖)𝑗+1) from 𝑢. The lemma outputs sets 𝑅𝑗
𝑖 (𝑢) ⊆ 𝑍𝑗

𝑖 (𝑢), where

|𝑅𝑗
𝑖 (𝑢)| = 𝑂(log2 𝑛) and the number of vertices in 𝐵𝑗(𝑢) at distance 𝛽𝑔′ from 𝑅𝑗

𝑖 (𝑢) is at most

𝑂(𝑛1−𝛼) whp. Fix some on vertex 𝑢. We do modified Dijkstra from 𝑢 up to vertices with distance

at most 𝑔′/2 from 𝑢 as follows:
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We begin by placing 𝑢 in the Fibonacci heap with 𝑑[𝑢] = 0 and all other on vertices with

𝑑[·] = ∞. When a vertex 𝑥 is extracted from the heap with estimate 𝑑[𝑥], we determine the 𝑗 for

which (1+𝜀)𝑗 ≤ 𝑑[𝑥] < (1+𝜀)𝑗+1; here 𝑗 could be the boundary case that we called ∅ if 𝑑[𝑥] = 0.

Then we check whether 𝑑(𝑥, 𝑟) ≤ 𝑔′− (1 + 𝜖)𝑗 + (1+ 𝜖)𝑗
′+1 for all 𝑟 ∈ 𝑅𝑗′

𝑖 (𝑢) for all 𝑗′. If 𝑥 does

not satisfy this condition, we ignore it and extract a new vertex from the heap. Otherwise, we go

through all its out-edges (𝑥, 𝑦), and if 𝑑[𝑦] > 𝑑[𝑥] +𝑤(𝑥, 𝑦), we update 𝑑[𝑦] = 𝑑[𝑥] +𝑤(𝑥, 𝑦). We

stop when the vertex 𝑢 extracted from the heap has 𝑑[𝑢] > 𝑔′/2.

Let 𝑆𝑖(𝑢) be the set of all the vertices visited in the modified out-Dijkstra. Simillarly, let 𝑇𝑖(𝑢)

be all the vertices visited in the analogous modified in-Dijkstra (using an analogous version of

Lemma 5.4.1).

Suppose that there is a vertex 𝑣 with 𝑑(𝑢 ⇆ 𝑣) ≤ 𝑔′, where all vertices in the 𝑢𝑣 cycle 𝐶

are on. Without loss of generality, suppose that 𝑑𝐶(𝑢, 𝑣) ≤ 𝑔′/2. So 𝑑(𝑢, 𝑣) ≤ 𝑔′/2. Moreover,

suppose that 𝑣 ∈ 𝑍𝑗
𝑖 (𝑢), i.e. (1 + 𝜖)𝑗 ≤ 𝑑(𝑢, 𝑣) ≤ (1 + 𝜖)𝑗+1. So for any vertex 𝑤 ∈ 𝑍𝑗′

𝑖 (𝑢) for

some 𝑗′ we have that 𝑑(𝑣, 𝑤) ≤ 𝑑(𝑣, 𝑢) + 𝑑(𝑢,𝑤) ≤ 𝑔′ − (1 + 𝜖)𝑗 + (1 + 𝜖)𝑗
′+1. Since all vertices

on the 𝑢𝑣 path that is part of the cycle are on and the length of this path is at most 𝑔′/2, we visit 𝑣

in the out-Dijkstra, i.e. 𝑣 ∈ 𝑆𝑖(𝑢). Similarly, if 𝑑(𝑣, 𝑢) ≤ 𝑔′/2, we visit 𝑣 in the in-Dijkstra and so

𝑣 ∈ 𝑇𝑖(𝑢).

If both 𝑆𝑖(𝑢) and 𝑇𝑖(𝑢) have size at most 𝑛𝛼, we do Dijkstra from 𝑢 in the induced subgraph on

𝑆𝑖(𝑢)∪𝑇𝑖(𝑢), and see if there is a cycle of length at most 𝑔′ passing through 𝑢 (and find the smallest

such cycle), which takes 𝑂(𝑚
𝑛
𝑛𝛼) time. We take the length of this cycle as one of our estimates.

The modified in and out Dijkstras take 𝑂(log2 𝑛. log𝑛𝑀
𝜀

.𝑛𝛼.𝑚
𝑛
), as checking the conditions for each

𝑥 extracted from the heap takes 𝑂(log2 𝑛. log𝑛𝑀
𝜀

) time. So in 𝑂̃( log𝑀
𝜀

𝑛𝛼.𝑚
𝑛
) time we process 𝑢 and

mark it as "off and proceed to another vertex.

Suppose 𝑆𝑖(𝑢) has size bigger than 𝑛𝛼 (the case where 𝑇𝑖(𝑢) has size bigger than 𝑛𝛼 is similar).

Note that by Lemma 5.4.1 we have |𝑆𝑖(𝑢)| ≤ 𝑂(𝑛1−𝛼) because for each 𝑟 ∈ 𝑅𝑗
𝑖 (𝑢), we have that

𝑑(𝑥, 𝑟) ≤ 𝑔′−(1+𝜀)𝑗+(1+𝜀)𝑗+1 ≤ 𝑔′+𝜀(1+𝜀)𝑗 ≤ 𝑔′+𝜀𝑔′/2 ≤ 𝛽𝑔′. So it is a subset of vertices

that are at distance at most 𝛽𝑔′ from all samples in 𝑅𝑗
𝑖 for all 𝑗. Our new goal is the following: We

want to either find the smallest cycle of length at most 𝑔′ passing through 𝑆𝑖(𝑢) that contains no
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off vertices, or say that there is no cycle of length ≤ 𝑔′ passing through any of the vertices in 𝑆𝑖(𝑢)

whp.

For this, we do another Modified Dijkstra from 𝑢 as follows:

We begin by placing 𝑢 in the Fibonacci heap with 𝑑[𝑢] = 0 and all other on vertices with

𝑑[·] = ∞. When a vertex 𝑥 is extracted from the heap with estimate 𝑑[𝑥], we determine the 𝑗 for

which (1+𝜀)𝑗 ≤ 𝑑[𝑥] < (1+𝜀)𝑗+1; here 𝑗 could be the boundary case that we called ∅ if 𝑑[𝑥] = 0.

Then we check whether 𝑑(𝑥, 𝑟) ≤ 𝛽𝑔′ = 2(1 + 𝜀)𝑔′ for all 𝑟 ∈ 𝑅𝑗
𝑖 (𝑢). If it is not, we ignore it

and extract a new vertex from the heap. Otherwise, we go through all its out-edges (𝑥, 𝑦), and if

𝑑[𝑦] > 𝑑[𝑥] +𝑤(𝑥, 𝑦), we update 𝑑[𝑦] = 𝑑[𝑥] +𝑤(𝑥, 𝑦). We stop when the vertex 𝑢 extracted from

the heap has 𝑑[𝑢] > 3𝑔′/2.

We show that if there is a cycle of length at most 𝑔′ going through 𝑣 ∈ 𝑆𝑖(𝑢) containing to off

vertex, all vertices of the cycle are among the vertices we visit in the modified Dijkstra: Suppose

that 𝑑(𝑤 ⇆ 𝑣) ≤ 𝑔′, and suppose that 𝑣 ∈ 𝑍𝑗
𝑖 (𝑢) and 𝑤 ∈ 𝑍𝑗′

𝑖 (𝑢). Then for every 𝑟 ∈ 𝑅𝑗′

𝑖 (𝑢), we

have that 𝑑(𝑤, 𝑟) ≤ 𝑑(𝑤, 𝑣)+𝑑(𝑣, 𝑟) ≤ 𝑔′−𝑑(𝑣, 𝑤)+ 𝑔′− (1+ 𝜀)𝑗 +(1+ 𝜀)𝑗
′+1. Since 𝑑(𝑣, 𝑤) ≥

(1+𝜀)𝑗
′−(1+𝜀)𝑗+1, we have 𝑑(𝑤, 𝑟) ≤ 2𝑔′+𝜀(1+𝜀)𝑗

′
+𝜀(1+𝜀)𝑗 ≤ 2𝑔′+3𝜀𝑔′/2+𝜀𝑔′/2 = 𝛽𝑔′.

Since the 𝑢𝑤 path that goes through 𝑣 is a path of length at most 𝛽𝑔′ that has no off vertices, we

visit 𝑤 in the modified Dijkstra.

By Lemma 5.4.1 the total number of vertices visited in the modified Dijkstra is at most

𝑂(𝑛1−𝛼). Let the subgraph on these vertices be 𝐺′. We recurse on 𝐺′, and find a 4 + 𝑂(𝜀)

approximation of the girth in 𝐺′. The girth in 𝐺′ is a lower bound on the minimum cycle of

length ≤ 𝑔′ passing through any vertex in 𝑆𝑖(𝑢) that has no off vertex. We take this value

as one of our estimates. So we have processed all vertices in 𝑆𝑖(𝑢) and we mark them off.

This takes 𝑂(𝑚
𝑛
. log𝑀

𝜀
.((𝑛1−𝛼)1+𝛼)), and we have marked off at least 𝑛𝛼 vertices. So we spend

𝑂(𝑚
𝑛
. log𝑀

𝜀
.𝑛1−𝛼2−𝛼) for processing each vertex. Letting 1−𝛼2−𝛼 = 𝛼, we have that 𝛼 =

√
2−1.

So the total running time is 𝑂̃(𝑚𝑛
√
2−1 log(𝑀)/𝜀). Our final estimate of the girth is the minimum

of all the estimates we get through processing vertices. □
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5.4.2 (2𝑘 + 𝜖)-Approximation Algorithm For the Girth

In this section we are going to prove a modified version of Theorem 5.1.4, where a log𝑀 factor

is added to the running time with 𝑀 being the maximum edge weight. The proof is a generalization

of the proof of Theorem 5.4.2.

Theorem 5.4.3. For every 𝜀 > 0 and integer 𝑘 ≥ 1, there is a (2𝑘 + 𝜀)-approximation algorithm

for the girth in directed graphs with edge weights in {1, . . . ,𝑀} that runs in 𝑂̃(𝑚𝑛𝛼𝑘 log(𝑀)/𝜀)

time, where 𝛼𝑘 > 0 is the solution to 𝛼𝑘(1 + 𝛼𝑘)
𝑘−1 = 1− 𝛼𝑘.

Suppose that we are aiming for a 2𝑘(1 + 𝑂(𝜖)) approximation algorithm for the girth, in

𝑂̃(𝑚𝑛𝛼 log𝑀/𝜀) time, where we set 𝛼 later. So basically we want to spend 𝑂̃(𝑚
𝑛

log𝑀
𝜀

𝑛𝛼) per

vertex. Let 𝛽 = 𝑘 + 𝑘2𝜖 + 𝑘𝜖 = 𝑘 + 𝑂(𝜀). As before, first we sample a set 𝑄 of 𝑂̃(𝑛𝛼) and do

in and out Dijkstra from each vertex 𝑞 ∈ 𝑄. Let 𝑖𝑚𝑖𝑛 be the minimum number 𝑖 such that the set

𝑉 ′𝑖 = {𝑣 ∈ 𝑉 | ∃𝑞 ∈ 𝑄 : 𝑑(𝑣, 𝑞) ≤ 𝛽(1 + 𝜀)𝑖+1 and 𝑑(𝑞, 𝑣) ≤ 𝛽(1 + 𝜀)𝑖+} is non-empty. So our

initial estimate of the girth is 2𝛽(1 + 𝜖)𝑖𝑚𝑖𝑛+1.

Let 𝑖 = 𝑖𝑚𝑖𝑛 − 1 and let 𝑔′ = (1 + 𝜀)𝑖+1 be our estimate of the girth. Initially we mark all

vertices as “on", and as we process each vertex, we either find a smallest cycle of length at most 𝑔′

with no “off" vertex, or we say that there is no cycle of length at most 𝑔′ passing through it whp,

and we mark the vertex as off.

We apply Lemma 5.4.1 for 𝛽 = 𝑘+𝑘2𝜖+𝑘𝜖 and the set 𝑄 as input. It gives us the sets 𝑅𝑗
𝑖 (𝑢) of

size 𝑂(log2 𝑛) for all 𝑗, such that the number of vertices in 𝐵̄𝑗(𝑢) = {𝑤 ∈ 𝑉 |𝑑(𝑢,𝑤) ≤ (1+𝜖)𝑗+1}

that are at distance at most 𝛽𝑔′ from all 𝑟 ∈ 𝑅𝑗
𝑖 (𝑢) is at most 𝑂(𝑛1−𝛼) whp.

We take an on vertex 𝑢 and do “modified" Dijkstra from (to) 𝑢, stopping at distance 𝑔′/2, such

that the set of vertices we visit contains any cycle of length 𝑔′ that passes through 𝑢 that has no off

vertex. We explain this modified Dijkstra later.

We call the set of vertices that we visit in the modified out-Dijkstra 𝑆1
𝑖 (𝑢). If 𝑆1

𝑖 (𝑢) ≤ 𝑛𝛼, we

do an analogous modified in-Dijkstra from 𝑢, and let 𝑇 1
𝑖 (𝑢) be the set of vertices visited in this

in-Dijkstra. If 𝑇 1
𝑖 (𝑢) ≤ 𝑛𝛼, then we do Dijkstra from 𝑢 in the subgraph induced by 𝑆1

𝑖 (𝑢)∪𝑇 1
𝑖 (𝑢),

and hence find a smallest cycle of length ≤ 𝑔′ that passes through 𝑢 with no off vertex. We take
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the length of this cycle as one of our estimates for the girth. If there is no such cycle, we don’t

have any estimate from 𝑢. Now we mark 𝑢 as off and proceed the algorithm by taking another on

vertex. Our modified Dijkstras takes 𝑂(log2 𝑛. log𝑀𝑛
𝜀

.𝑚
𝑛
|𝑆|) time if 𝑆 is the set of vertices visited

by the Dijkstra. Hence for processing 𝑢 we spend 𝑂(log2 𝑛. log𝑀𝑛
𝜀

.𝑚
𝑛
𝑛𝛼) time.

So suppose that either 𝑆1
𝑖 (𝑢) or 𝑇 1

𝑖 (𝑢) have size bigger than 𝑛𝛼. Without loss of generality

assume that |𝑆1
𝑖 (𝑢)| ≥ 𝑛𝛼 (the other case is analogous). For 1 ≤ 𝑙 ≤ 𝑘, define sets 𝑆𝑙

𝑖(𝑢) as

the set of on vertices 𝑤 ∈ 𝑉 such that there is a path of length at most (2𝑙 − 1)𝑔′/2 from 𝑢

to 𝑤 that contains no off vertex, and if 𝑤 ∈ 𝐵𝑗(𝑢), then for all 𝑟 ∈ 𝑅𝑗′

𝑖 (𝑢) for all 𝑗′, we have

𝑑(𝑤, 𝑟) ≤ (𝑙 + 𝑙2𝜀)𝑔′ + (1 + 𝜖)𝑗
′+1 − (1 + 𝜖)𝑗 . Once we explain our modified Dijkstras, it will be

clear that 𝑆1
𝑖 defined here is indeed the set of vertices visited in the first modified out-Dijkstra.

We set 𝑆0
𝑖 (𝑢) = {𝑢}. We prove the following useful lemma in the Section 5.6.

Lemma 5.4.4. For all 𝑙 ∈ {1, . . . , 𝑘}, we have that 𝑆𝑙−1
𝑖 (𝑢) ⊆ 𝑆𝑙

𝑖(𝑢). Moreover, if 𝑤 ∈ 𝑉 is in

a cycle of length at most 𝑔′ with some vertex in 𝑆𝑙−1
𝑖 (𝑢) such that the cycle contains no off vertex,

then we have 𝑤 ∈ 𝑆𝑙
𝑖(𝑢).

Our algorithm will do at most 𝑘 modified Dijkstras from 𝑢, where we prove that the set of

vertices visited in the 𝑙th Dijkstra is 𝑆𝑙
𝑖(𝑢). After performing each Dijkstra we decide if we continue

to the next modified Dijkstra from 𝑢 or proceed to another on vertex.

Suppose that at some point we know that the set 𝑆𝑙−1
𝑖 (𝑢) is the set of vertices visited in the

(𝑙 − 1)th modified Dijkstra, and we want to proceed to the 𝑙th Dijkstra. Our new goal is the

following: We want to catch a minimum cycle of length ≤ 𝑔′ passing through 𝑆𝑙
𝑖 with no off

vertex. For this, we do the 𝑙th modified Dijkstra form 𝑢 as follows.

We begin by placing 𝑢 in the Fibonacci heap with 𝑑[𝑢] = 0 and all other on vertices with

𝑑[·] = ∞. When a vertex 𝑥 is extracted from the heap with estimate 𝑑[𝑥], we determine the 𝑗 for

which (1+𝜀)𝑗 ≤ 𝑑[𝑥] < (1+𝜀)𝑗+1; here 𝑗 could be the boundary case that we called ∅ if 𝑑[𝑥] = 0.

Then we check whether 𝑑(𝑥, 𝑟) ≤ (𝑙+𝑙2𝜀)𝑔′−(1+𝜖)𝑗+(1+𝜖)𝑗
′+1 for all 𝑟 ∈ 𝑅𝑗′

𝑖 (𝑢) for all 𝑗′. If 𝑥

does not satisfy this condition, we ignore it and extract a new vertex from the heap. Otherwise, we

go through all its out-edges (𝑥, 𝑦), and if 𝑑[𝑦] > 𝑑[𝑥] + 𝑤(𝑥, 𝑦), we update 𝑑[𝑦] = 𝑑[𝑥] + 𝑤(𝑥, 𝑦).

We stop when the vertex 𝑢 extracted from the heap has 𝑑[𝑢] > (2𝑙 − 1)𝑔′/2.
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It is clear by definition that the set of vertices that this modified Dijkstra visits is 𝑆𝑙
𝑖(𝑢). Now if

|𝑆𝑙
𝑖(𝑢)| ≤ 𝑐(|𝑆𝑙−1

𝑖 (𝑢)|.𝑛𝛼)
1

1+𝛼 for some constant 𝑐, we recurse on the subgraph induced by 𝑆𝑙
𝑖(𝑢),

i.e. 𝐺[𝑆𝑙
𝑖(𝑢)], to get an 2𝑘 + 𝑂(𝜀) approximation of the girth on this subgraph. The girth in

𝐺[𝑆𝑙
𝑖(𝑢)] is a lower bound on the minimum cycle of length ≤ 𝑔′ passing through 𝑆𝑙−1

𝑖 (𝑢) with no

off vertex. So we take this value as one of our estimates and we mark all vertices of 𝑆𝑙−1
𝑖 (𝑢) as

off. The running time of this recursion is 𝑂̃(𝑚
𝑛

log𝑀
𝜀
|𝑆𝑙

𝑖(𝑢)|1+𝛼) as the average degree is 𝑂(𝑚
𝑛
).

Since we process 𝑆𝑙−1
𝑖 (𝑢) vertices in this running time, we spend 𝑂̃(𝑚

𝑛
log𝑀

𝜀
.|𝑆𝑙

𝑖(𝑢)|/|𝑆𝑙−1
𝑖 (𝑢)|) ≤

𝑂̃(𝑚
𝑛
. log𝑀

𝜀
.𝑛𝛼) for each vertex.

Note that |𝑆𝑘
𝑖 (𝑢)| ≤ 𝑂(𝑛1−𝛼). This is because for all 𝑥 ∈ 𝑆𝑘

𝑖 ∩ 𝐵𝑗(𝑢) and for all 𝑟 ∈ 𝑅𝑗
𝑖 (𝑢),

we have that 𝑑(𝑥, 𝑟) ≤ (𝑘 + 𝑘2𝜀)𝑔′ + (1 + 𝜖)𝑗+1 − (1 + 𝜖)𝑗 ≤ (𝑘 + 𝑘2𝜀)𝑔′ + 𝜖(1 + 𝜖)𝑗 ≤

(𝑘+𝑘2𝜀)𝑔′+ 𝜖(2𝑘−1)𝑔′/2 ≤ (𝑘+𝑘2𝜖+𝑘𝜀)𝑔′ = 𝛽𝑔′. So 𝑆𝑘
𝑖 (𝑢) is a subset of all vertices in 𝐵𝑗(𝑢)

with distance at most 𝛽𝑔′ from all 𝑟 ∈ 𝑅𝑗
𝑖 (𝑢), and so by Lemma 5.4.1 it has size at most 𝑂(𝑛1−𝛼).

When all vertices are marked off, we take the minimum value of all the estimates as our estimate

for 𝑔.

Since we have that 𝑆𝑙
𝑖(𝑢) ≤ 𝑂(𝑛1−𝛼), if we set 𝛼 appropriately, for some 𝑙 < 𝑘 we have that

|𝑆𝑙+1
𝑖 (𝑢)| ≤ (|𝑆𝑙

𝑖(𝑢)|.𝑛𝛼)
1

1+𝛼 . For 𝑘 = 1, setting 𝛼 = 1/2 gives us the algorithm of Theorem 5.4.1.

For 𝑘 > 1, the following lemma determines 𝛼. The proof of the lemma can be found in Section

5.6.

Lemma 5.4.5. For 𝑘 > 1, let the sets 𝑆𝑙
𝑖 for 𝑙 = 1, . . . , 𝑘 be such that 𝑆𝑙

𝑖 ⊆ 𝑆𝑙+1
𝑖 for all 𝑙 < 𝑘,

𝑆1
𝑖 ≥ 𝑛𝛼 and 𝑆𝑘

𝑖 ≤ 𝑂(𝑛1−𝛼). Let 0 < 𝛼 < 1 satisfy 𝛼(1 +𝛼)𝑘−1 = 1−𝛼. Then there is 𝑙 < 𝑘 and

a constant 𝑐 such that |𝑆𝑙+1
𝑖 | ≤ 𝑐(|𝑆𝑙

𝑖|.𝑛𝛼)
1

1+𝛼 .

Note that for 𝑘 = 2, Lemma 5.4.5 sets 𝛼 =
√
2− 1 and thus gives us the algorithm of Theorem

5.4.2.

5.4.3 Removing the log𝑀 factor

In this subsection we show how to remove the log𝑀 factor in the running times of our algo-

rithms where 𝑀 is the maximum edge weight, resulting in strongly polynomial algorithms.

Assume that we have a (2𝑘 + 𝜖)-approximation algorithm 𝐴 for the girth in 𝑂̃(𝑚𝑛𝛼𝑘 log𝑀/𝜖)
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running time for some 0 ≤ 𝛼𝑘 ≤ 1. We want to obtain an algorithm that gives us a (2𝑘 + 𝑂(𝜖))-

approximation of the girth in 𝑂̃(𝑚𝑛𝛼𝑘/𝜖) time.

First, suppose that we know the smallest number 𝑊 such that there is a cycle with all edge

weights at most 𝑊 . Then by the definition of 𝑊 we have that 𝑊 ≤ 𝑔 and 𝑔 ≤ 𝑛𝑊 . Moreover,

note that the edges of any cycle with total weight at most (2𝑘 +𝑂(𝜖))𝑔 cannot have weights more

than 3𝑘𝑛𝑊 , so we can remove any edge with weight more than 3𝑘𝑛𝑊 . Let 𝑅 = 𝑊𝜖/𝑛. Let 𝐻 be

a copy of 𝐺, with the weight 𝑤𝐺(𝑒) of the edge 𝑒 replaced by 𝑤𝐻(𝑒) = ⌊𝑤𝐺(𝑒)/𝑅⌋. Note that the

weights of 𝐻 are bounded by 𝑂(𝑛2/𝜖′).

Now consider a cycle 𝐶 in 𝐺. Suppose that 𝐶 has 𝑛𝐶 edges. Let 𝑤𝐺(𝐶) and 𝑤𝐻(𝐶) be the

sum of the edge-weights of 𝐶 in 𝐺 and 𝐻 respectively. For any edge 𝑒, we have that 𝑤𝐺(𝑒)−𝑅 ≤

𝑅 · 𝑤𝐻(𝑒) ≤ 𝑤𝐺(𝑒). This gives us

𝑤𝐺(𝐶)−𝑅𝑛𝐶 ≤ 𝑅 · 𝑤𝐻(𝐶) ≤ 𝑤𝐺(𝐶). (5.1)

Note that if 𝐶 is the cycle with minimum length in 𝐺, then we have that 𝑅𝑔′ ≤ 𝑅𝑤𝐻(𝐶) ≤ 𝑔,

where 𝑔′ is the girth of 𝐻 .

Now we apply algorithm 𝐴 on 𝐻 , which takes 𝑂̃(𝑚𝑛𝛼𝑘/𝜖) time. Suppose that it outputs a

cycle 𝐶 such that 𝑔′ ≤ 𝑤𝐻(𝐶) ≤ (2𝑘 + 𝜀)𝑔′. Since 𝑔 ≥ 𝑅𝑔′ and by equation 5.1 we have

𝑤𝐺(𝐶) ≤ 𝑅𝑤𝐻(𝐶) + 𝑅𝑛𝑐 ≤ (2𝑘 + 𝜀)𝑅𝑔′ + 𝑅𝑛 ≤ (2𝑘 + 2𝜀)𝑔. The last inequality uses the fact

that 𝑅𝑛 = 𝑊𝜀 ≤ 𝑔𝜀.

It suffices to show how we obtain 𝑊 . We sort the edges of 𝐺 in 𝑂̃(𝑚) time, so that the edge

weight are 𝑤1 ≤ . . . ≤ 𝑤𝑚. We find 𝑊 using binary search and DFS as follows: Suppose that we

are searching for 𝑊 in the interval 𝑤𝑖 ≤ . . . ≤ 𝑤𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚. Let 𝑟 = (𝑖 + 𝑗)/2, we

remove all the edges with weight more than 𝑤𝑟 and then do DFS in the remaining graph to see if

it has a cycle. If it does, we update 𝑗 = 𝑟, otherwise we update 𝑖 = 𝑟. Note that this process takes

𝑂̃(𝑚) time.
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5.5 Hardness

Our hardness result is based on the following 𝑘-Cycle hypothesis (see [LVW18, AHR+19,

PVW19]).

Hypothesis 5 (𝑘-Cycle Hypothesis). In the word-RAM model with 𝑂(log𝑚) bit words, for any

constant 𝜀 > 0, there exists a constant integer 𝑘, so that there is no 𝑂(𝑚2−𝜀) time algorithm that

can detect a 𝑘-cycle in an 𝑚-edge graph.

All known algorithms for detecting 𝑘-cycles in directed graphs with 𝑚 edges run at best in time

𝑚2−𝑐/𝑘 for various small constants 𝑐 [YZ04, AYZ97, LVW18, DDV19], even using powerful tools

such as fast matrix multiplication. Refuting the 𝑘-Cycle Hypothesis above would resolve a big

open problem in graph algorithms. Moreover, as shown by Lincoln et al. [LVW18] any algorithm

for directed 𝑘-cycle detection, for 𝑘-odd, with running time 𝑂(𝑚𝑛1−𝜀) for 𝜀 > 0 whenever 𝑚 =

Θ(𝑛1+2/(𝑘−1)) would imply an 𝑂(𝑛𝑘−𝛿) time algorithm for 𝑘-clique detection for 𝛿 > 0. If the

cycle algorithm is “combinatorial”, then the clique algorithm would be “combinatorial” as well,

and since all known 𝑂(𝑛𝑘−𝛿) time 𝑘-clique algorithms use fast matrix multiplication, such a result

for 𝑘-cycle would be substantial.

We will show that under Hypothesis 5, approximating the girth to a factor better than 2 would

require 𝑚𝑛1−𝑜(1) time, and so up to this hypothesis, our approximation algorithm is optimal for the

girth in unweighted graphs.

Theorem 5.5.1. Suppose that for some constants 𝜀 > 0 and 𝛿 > 0, there is an 𝑂(𝑚2−𝜀) time

algorithm that can compute a (2 − 𝛿)-approximation of the girth in an 𝑚-edge directed graph.

Then for every constant 𝑘, one can detect whether an 𝑚-edge directed graph contains a 𝑘-cycle,

in 𝑂(𝑚2−𝜀) time, and hence the 𝑘-Cycle Hypothesis is false.

Proof. The proof is relatively simple. Suppose that for some constants 𝜀 > 0 and 𝛿 > 0, there is

an 𝑂(𝑚2−𝜀) time algorithm that can compute a (2 − 𝛿)-approximation of the girth in an 𝑚-edge

directed graph.
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Now let 𝑘 ≥ 3 be any constant integer and let 𝐺 be an 𝑛-node, 𝑚-edge graph. First randomly

color each vertex of 𝐺 with one of 𝑘 colors. Let 𝐶 be any 𝑘-cycle in 𝐺. With probability 1/𝑘𝑘, for

each 𝑖 = 0, . . . , 𝑘 − 1, the 𝑖th vertex of 𝐶 is colored 𝑖.

Now, for each 0 ≤ 𝑖 ≤ 𝑘 − 1, let 𝑉𝑖 be the vertices colored 𝑖. For each vertex 𝑢 ∈ 𝑉𝑖, and each

directed edge (𝑢, 𝑣) out of 𝑢, keep (𝑢, 𝑣) if and only if 𝑣 ∈ 𝑉𝑖+1 where the indices are taken mod 𝑘.

This builds a graph 𝐺′ which is a subgraph of 𝐺 and contains a 𝑘-cycle if 𝐺 does with probability

≥ 1/𝑘𝑘.

𝐺′ has two useful properties. (1) Any cycle of 𝐺′ has length divisible by 𝑘, and (2) (which

follows from (1)) the girth of 𝐺′ is 𝑘 if 𝐺′ contains a 𝑘-cycle and it is ≥ 2𝑘 otherwise.

As 𝐺′ has at most 𝑚 edges (it is a subgraph of 𝐺), we can use our supposedly fast 2 − 𝛿

approximation algorithm to determine whether the girth is 𝑘 or larger in 𝑂(𝑚2−𝜀) time. By iter-

ating the construction 𝑂(𝑘𝑘 log 𝑛) times, we get that the 𝑘-cycle problem in 𝐺 can be solved in

𝑂̃(𝑘𝑘𝑚2−𝜀) time, and as 𝑘 is a constant, we are done. The approach can be derandomized with

standard techniques (e.g. [AYZ95]). □

5.6 Omitted proofs

Proof of Lemma 5.2.2. We start with a simple claim which is proved at the end:

Claim 7. Let 𝑞 ≥ 2 be an integer. Let 𝐿 ≥ 1 be an integer. There is a directed rooted tree with

≤ 3𝐿 nodes, 𝐿 leaves, with every node of outdegree ≤ 𝑞 and such that every root to leaf path has

the same length ⌈log𝑞 𝐿⌉.

The idea of the proof is to represent every edge (𝑢, 𝑣) of 𝐺 by a 𝑡-length path from 𝑢 to 𝑣 via

some auxiliary nodes, so that the total number of auxiliary nodes is small, and the degree of every

node is small as well.

Let 𝑞 = max{2, ⌈𝑚/𝑛⌉}. Consider some node 𝑢 and its out-neighbors 𝑣1, . . . , 𝑣𝑑𝑒𝑔(𝑢). Remove

the edge from 𝑢 to 𝑣𝑗 for each 𝑗. Let 𝑑 be the smallest power of 𝑞 that is larger than 𝑑𝑒𝑔(𝑢), i.e.

𝑞𝑑−1 < 𝑑𝑒𝑔(𝑢) ≤ 𝑞𝑑 and 𝑑 = ⌈log𝑞 𝑑𝑒𝑔(𝑢)⌉.

Using the construction of Claim 7, create a partial 𝑞-ary tree 𝑇𝑢 of at most 3⌈𝑑𝑒𝑔(𝑢)/𝑞⌉ aux-
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iliary nodes, with ⌈𝑑𝑒𝑔(𝑢)/𝑞⌉ leaves, and so that the leaves are all at depth ⌈log𝑞(⌈𝑑𝑒𝑔(𝑢)/𝑞⌉)⌉ =

𝑑 − 1. Then, make the original out-neighbors 𝑣1, . . . , 𝑣𝑑𝑒𝑔(𝑢) of 𝑢 children of the leaves of 𝑇𝑢 so

that every leaf of 𝑇𝑢 has at most 𝑞 children.

Let 𝑡 = ⌈log𝑞 𝑛⌉. Notice that since 𝑑𝑒𝑔(𝑢) < 𝑛, we have that 𝑑 ≤ 𝑡. If 𝑑 = 𝑡, set 𝑟𝑢 = 𝑢.

If 𝑑 < 𝑡, add another 𝑡 − 𝑑 new auxiliary nodes 𝑢1, . . . , 𝑢𝑡−𝑑, connect them into a directed path

𝑢1 → . . . → 𝑢𝑡−𝑑 and then add the edge (𝑢𝑡−𝑑, 𝑟𝑢). Let 𝑢1 = 𝑢. This completes a directed tree

𝑇 (𝑢) rooted at 𝑢 such that the number of edges on any root-to-leaf path is 𝑡. See Figure 5-3 for

example trees.

n = 10
deg(u) = 9 deg(u) = 6 deg(u) = 3

u u u

Figure 5-3: Here we give examples of the construction of 𝑇 (𝑢) when 𝑡 = 4 (e.g. when 𝑛 = 10),
and when the out-degree of 𝑢 is 9, 6 and 3.

The obtained graph is unweighted. Notice that for each 𝑗, the original edge (𝑢, 𝑣𝑗) is replaced

by a path in 𝑇 (𝑢) of length exactly 𝑡, and hence for every 𝑢, 𝑣 ∈ 𝑉 , 𝑑𝐺′(𝑢, 𝑣) = 𝑡𝑑𝐺(𝑢, 𝑣).

Since the auxiliary nodes do not create new cycles, any cycle 𝐶 in 𝐺′ must correspond to a

cycle in 𝐺 that can be obtained from 𝐶 by replacing each subpath between nodes of 𝑉 with the

edge corresponding to it, and the girth of 𝐺′ is exactly 𝑡 times the girth of 𝐺. Similarly, if we had

a 𝑐-roundtrip spanner over the new graph 𝐺′, we can obtain a 𝑐-spanner of 𝐺 by replacing each

auxiliary path between vertices of 𝑉 with the corresponding edge of 𝐺. The number of edges does

not increase.

Every vertex in the new graph has out-degree at most 𝑞. If we would like the in-degrees to be

bounded by 𝑞 as well, we can perform the same procedure (with edge directions reversed) on the

in-neighborhoods.

The total number of auxiliary vertices added to 𝑇 (𝑢) is

𝑡+ 3⌈𝑑𝑒𝑔(𝑢)/𝑞⌉ ≤ log 𝑛+ 3 + 3𝑛 · 𝑑𝑒𝑔(𝑢)/𝑚.
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Over all vertices the total number of auxiliary vertices is at most

∑︁
𝑢∈𝑉

[︂
log 𝑛+ 3 + 3

𝑛 · 𝑑𝑒𝑔(𝑢)
𝑚

]︂
= 𝑂(𝑛 log 𝑛).

□

Proof of Claim 7. It is easy to see that if 𝑞𝑑−1 < 𝐿 ≤ 𝑞𝑑, we can always take a complete 𝑞-ary

tree on 𝑞𝑑 leaves and remove enough leaves until we only have 𝐿. This would definitely achieve

the depth requirement. However, if we are not careful, we might have more than 3𝐿 nodes in the

tree. Here we do a more fine-tuned analysis to have both the size and the depth of the tree under

control.

Let us consider the 𝑞-ary representation of 𝐿: 𝐿 = 𝑎𝑑−1𝑞
𝑑−1 + 𝑎𝑑−2𝑞

𝑑−2 + . . .+ 𝑎0. Here each

𝑎𝑗 ∈ {0, . . . , 𝑞 − 1}.

We will show inductively how to build a rooted tree with out-degree ≤ 𝑞 so that every leaf is

at depth 𝑑. The base case is when 𝑑 = 1, so that 𝐿 = 𝑎0. Then we simply have a root with 𝑎0

children.

Suppose that 𝑑 > 1. Let us assume that for every integer ℓ < 𝑞𝑑−1 we can create a rooted tree

with outdegree at most 𝑞, ℓ children all of depth 𝑑− 1. Consider now 𝐿 = 𝑎𝑑−1𝑞
𝑑−1 + 𝑎𝑑−2𝑞

𝑑−2 +

. . . + 𝑎0. Create a root 𝑟 with 𝑎𝑑−1 + 1 children. The first 𝑎𝑑−1 children are roots of complete

𝑞-ary trees with 𝑞𝑑−1 leaves. These have depth 𝑑 − 1, and together with the edge from 𝑟 to their

roots, they have depth 𝑑. The last child of 𝑟 is a root of a directed tree formed inductively to have

𝑎𝑑−2𝑞
𝑑−2 + . . .+ 𝑎0 leaves (all of depth 𝑑− 1) and out-degree ≤ 𝑞. As 𝑑 = ⌈log𝑞 𝐿⌉, we are done

with the depth argument.

As for the number of nodes in the tree, we prove it by induction. The base case is when 𝑑 = 1,

so 𝐿 = 𝑎0 and the number of nodes in the tree is 𝐿 + 1 ≤ 3𝐿 (as 𝐿 ≥ 1). Suppose the number of

nodes in the tree is ≤ 3𝐿 for all 𝐿 < 𝑞𝑑−1. Consider 𝐿 = 𝑎𝑑−1𝑞
𝑑−1 + 𝑎𝑑−2𝑞

𝑑−2 + . . . + 𝑎0. The

number of nodes in the tree is then at most

1 + 𝑎𝑑−1
𝑞𝑑

𝑞 − 1
+ 3 · (𝐿− 𝑎𝑑−1𝑞

𝑑−1),
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where 1 is for the root, 𝑞𝑑

𝑞−1 is the number of nodes of a complete 𝑞-ary tree with 𝑞𝑑−1 leaves and

(𝐿 − 𝑎𝑑−1𝑞
𝑑−1) is the number of leaves left after the first 𝑎𝑑−1𝑞𝑑−1 are covered by the complete

𝑞-ary trees. The expression above is

≤ 3𝐿+ 1 +
𝑎𝑑−1
𝑞 − 1

(𝑞𝑑 − 1− 3𝑞𝑑 + 3𝑞𝑑−1) ≤ 3𝐿+
𝑎𝑑−1
𝑞 − 1

(−2𝑞𝑑 + 3𝑞𝑑−1 + 𝑞 − 2).

Now, since 𝑑 ≥ 2 (𝑑 = 1 was the base case), and 𝑞 ≥ 2, we have that

−2𝑞𝑑 + 3𝑞𝑑−1 + 𝑞 − 2 = 𝑞𝑑−1(3− 2𝑞) + 𝑞 − 2 ≤ −𝑞𝑑−1 + 𝑞 − 2 ≤ −2 < 0,

and hence the number of nodes is ≤ 3𝐿.

□

Proof of Lemma 5.4.1. First suppose that we are able to pick a random sample 𝑅𝑗
𝑖 (𝑢) of

𝑐 log 𝑛 vertices from 𝑍𝑗
𝑖 (𝑢). Then we can define 𝐵𝑗

𝑖 (𝑢) = {𝑧 ∈ 𝑍𝑗
𝑖 (𝑢) | 𝑑(𝑧, 𝑦) ≤ 𝑑, ∀𝑦 ∈ 𝑅𝑗

𝑖 (𝑢)}.

Consider any 𝑠 ∈ 𝑉 with at least 0.2|𝑍𝑗
𝑖 (𝑢)| nodes 𝑣 ∈ 𝑉 so that 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) ≤ 𝑑.

As 𝑍𝑗
𝑖 (𝑢) ≥ 10𝑛1−𝛼 (as otherwise we would be done and the sampled vertices would work),

0.2|𝑍𝑗
𝑖 (𝑢)| ≥ 2𝑛1−𝛼, and so with high probability, for 𝑠 with the property above, 𝑄 contains some

𝑞 with 𝑑(𝑠, 𝑞), 𝑑(𝑞, 𝑠) ≤ 𝑑, and so 𝑠 ∈ 𝑉 ′𝑖 . Thus with high probability, for every 𝑠 ∈ 𝑍𝑖, there are

at most 0.2|𝑍𝑗
𝑖 (𝑢)| nodes 𝑣 ∈ 𝑉 so that 𝑑(𝑠, 𝑣), 𝑑(𝑣, 𝑠) ≤ 𝑑.

We will iterate this sampling process until we arrive at a subset of 𝑍𝑗
𝑖 (𝑢) that is smaller than

10𝑛1−𝛼 that contains all the vertices in 𝑍𝑗
𝑖 (𝑢) with distance at most 𝑑 to all the sampled vertices,

as follows:

Let 𝑍𝑗
𝑖,0(𝑢) = 𝑍𝑗

𝑖 (𝑢). For each 𝑘 = 0, . . . , 2 log 𝑛, let 𝑅𝑗
𝑖,𝑘(𝑢) be a random sample of 𝑂(log 𝑛)

vertices of 𝑍𝑗
𝑖,𝑘(𝑢). Define 𝑍𝑗

𝑖,𝑘+1(𝑢) = {𝑧 ∈ 𝑍𝑗
𝑖 (𝑢) | 𝑑(𝑧, 𝑦) ≤ 𝑑∀𝑦 ∈ ∪𝑘ℓ=0𝑅

𝑗
𝑖,ℓ(𝑢)}. We get that

for each 𝑘, |𝑍𝑗
𝑖,𝑘(𝑢)| ≤ 0.8𝑘|𝑍𝑗

𝑖 (𝑢)| so that at the end of the last iteration, |𝑍𝑗
𝑖,2 log𝑛| ≤ 10𝑛1−𝛼.

Hence we get the set 𝑍 ′𝑗𝑖 (𝑢) that we are after as 𝑍𝑗
𝑖,2 log𝑛.

It is not immediately clear how to obtain the random sample 𝑅𝑗
𝑖,𝑘(𝑢) from 𝑍𝑗

𝑖,𝑘(𝑢) as 𝑍𝑗
𝑖,𝑘(𝑢)

is unknown. We do it in the following way. For each 𝑖, 𝑗, 𝑘 we independently obtain a random

sample 𝑆𝑖,𝑗,𝑘 of 𝑍𝑖 by sampling each vertex independently with probability 𝑝 = 100 log 𝑛/𝑛𝛼. For
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each of the (in expectation) 𝑂(𝑛𝛼 log4(𝑛)) vertices in the sets 𝑆𝑖,𝑗,𝑘 we run Dijkstra’s to and from

them, to obtain all their distances.

Now, for a fixed 𝑖, 𝑗 ≤ 𝑖, 𝑘, to obtain the random sample 𝑅𝑗
𝑖,𝑘(𝑢) of the unknown 𝑍𝑗

𝑖,𝑘(𝑢), we

assume that we already have 𝑅𝑗
𝑖,ℓ(𝑢) for ℓ < 𝑘, and define

𝑇 𝑗
𝑖,𝑘(𝑢) = {𝑠 ∈ 𝑆𝑖,𝑗,𝑘 | 𝑠 ∈ 𝑍𝑗

𝑖 (𝑢) and 𝑑(𝑠, 𝑦) ≤ 𝑑∀𝑦 ∈ ∪ℓ<𝑘𝑅
𝑗
𝑖,ℓ(𝑢).}

Forming the set 𝑇 𝑗
𝑖,𝑘(𝑢) is easy since we have the distances 𝑑(𝑠, 𝑣) for all 𝑠 ∈ 𝑆𝑖,𝑗,𝑘 and 𝑣 ∈ 𝑉 , so

we can check whether 𝑠 ∈ 𝐵̄𝑗(𝑢) and 𝑠 ∈ 𝑍𝑖 (thus checking that 𝑠 ∈ 𝑍𝑗
𝑖 (𝑢)) and 𝑑(𝑠, 𝑦) ≤ 𝑑∀𝑦 ∈

∪ℓ<𝑘𝑅
𝑗
𝑑,ℓ(𝑢) in polylogarithmic time for each 𝑠 ∈ 𝑆𝑖,𝑗,𝑘.

Now since 𝑆𝑖,𝑗,𝑘 is independent from all our other random choices, 𝑇 𝑗
𝑖,𝑘(𝑢) is a random sample

of 𝑍𝑗
𝑖,𝑘(𝑢) essentially created by selecting each vertex with probability 𝑝. If 𝑍𝑗

𝑖,𝑘(𝑢) ≥ 100𝑛1−𝛼,

with high probability, 𝑇 𝑗
𝑖,𝑘(𝑢) has at least 10 log 𝑛 vertices so we can pick 𝑅𝑗

𝑖,𝑘(𝑢) to be a random

sample of 10 log 𝑛 vertices of 𝑇 𝑗
𝑖,𝑘(𝑢), and they will also be a random sample of 10 log 𝑛 vertices

of 𝑍𝑗
𝑖,𝑘(𝑢). So we let 𝑅𝑗

𝑖 (𝑢) = ∪𝑘𝑅𝑗
𝑖,𝑘(𝑢), which has size 𝑂(log2 𝑛). The running time of this

sampling procedure comes from the Dijkstras we perform from 𝑆𝑖,𝑗,𝑘s and hence it is 𝑂̃(𝑚𝑛𝛼). □

Proof of Lemma 5.4.4. First it is clear that for all 𝑣 ∈ 𝑆𝑙−1
𝑖 (𝑢) and each 𝑟 ∈ 𝑅𝑗′

𝑖 (𝑢), we have

𝑑(𝑣, 𝑟) ≤ ((𝑙 − 1) + 𝜀(𝑙 − 1)2)𝑔′ + (1 + 𝜖)𝑗
′+1 − (1 + 𝜖)𝑗 ≤ (𝑙 + 𝜀𝑙2)𝑔′ + (1 + 𝜖)𝑗

′+1 − (1 + 𝜖)𝑗 ,

and so 𝑣 ∈ 𝑆𝑙
𝑖(𝑢).

Now suppose that for 𝑣 ∈ 𝑆𝑙−1
𝑖 (𝑢) and 𝑤 ∈ 𝑉 , we have 𝑑(𝑣 ⇆ 𝑤) ≤ 𝑔′. Suppose that

𝑣 ∈ 𝐵𝑗1(𝑢), 𝑤 ∈ 𝐵𝑗2(𝑢). For 𝑟 ∈ 𝑅𝑗3
𝑖 , we have

𝑑(𝑤, 𝑟) ≤ 𝑑(𝑤, 𝑣) + 𝑑(𝑣, 𝑟) ≤ 𝑑(𝑤, 𝑣) + ((𝑙 − 1) + (𝑙 − 1)2𝜀)𝑔′ + (1 + 𝜖)𝑗3+1 − (1 + 𝜖)𝑗1 .

If 𝑗1 ≥ 𝑗2, then since 𝑑(𝑤, 𝑣) ≤ 𝑔′, we have

𝑑(𝑤, 𝑟) ≤ (𝑙 + (𝑙 − 1)2𝜀)𝑔′ + (1 + 𝜖)𝑗3+1 − (1 + 𝜖)𝑗1 ≤ (𝑙 + 𝑙2𝜀)𝑔′ + (1 + 𝜖)𝑗3+1 − (1 + 𝜖)𝑗2 .

If 𝑗1 < 𝑗2, then we have 𝑑(𝑤, 𝑣) ≤ 𝑔′ − 𝑑(𝑣, 𝑤) ≤ 𝑔′ − [(1 + 𝜖)𝑗2 − (1 + 𝜖)𝑗1+1]. Using the fact
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that (1 + 𝜀)𝑗1 ≤ (𝑙 − 1)𝑔′ we have that

𝑑(𝑤, 𝑟) ≤ (𝑙 + (𝑙 − 1)2𝜀)𝑔′ + (1 + 𝜖)𝑗3+1 − (1 + 𝜖)𝑗2 + 𝜀(1 + 𝜀)𝑗1

≤ (𝑙 + (𝑙 − 1)2𝜀)𝑔′ + (1 + 𝜖)𝑗3+1 − (1 + 𝜖)𝑗2 + 𝜀(𝑙 − 1)𝑔′

≤ (𝑙 + 𝑙2𝜀)𝑔′ + (1 + 𝜖)𝑗3+1 − (1 + 𝜖)𝑗2 .

We have that 𝑑(𝑢,𝑤) ≤ 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑤) ≤ (2𝑙 − 3)𝑔′/2 + 𝑔′ ≤ (2𝑙 − 1)𝑔′/2. If the path 𝑣𝑤

contains no off vertex, then there 𝑢𝑤 path passing through 𝑣 contains no off vertex and so there is

a path of length at most (2𝑙 − 1)𝑔′/2 with all vertices. So 𝑤 ∈ 𝑆𝑙
𝑖(𝑢). □

Proof of Lemma 5.4.5. Assume that |𝑆𝑘
𝑖 | ≤ 𝐶𝑛1−𝛼 for some constant 𝐶 > 1. Suppose

that for all 𝑙 < 𝑘, we have that |𝑆𝑙+1
𝑖 | > 𝐶(|𝑆𝑙

𝑖|𝑛𝛼)
1

1+𝛼 . Using |𝑆1
𝑖 | > 𝑛𝛼, we have that |𝑆𝑘

𝑖 | >

𝐶𝑛
𝛼

(1+𝛼)1−𝑘 +𝛼
∑︀𝑘−1

𝑗=1
1

(1+𝛼)𝑗 . Since 1− 1
(1+𝛼)𝑘−1 = 𝛼

∑︀𝑘−1
𝑗=1

1
(1+𝛼)𝑗

and we have that 𝛼(1+𝛼)𝑘−1 = 1−𝛼

iff 𝛼 + 𝛼−1
(1+𝛼)𝑘−1 = 0, we obtain that |𝑆𝑘

𝑖 | > 𝐶𝑛1−𝛼, which is a contradiction. □

5.7 Most recent results on this problem

Following our results in this chapter, Chechik and Lifshitz [CL21] made the following improve-

ments. They provide a 𝑂̃(𝑛2) time algorithm that computes a 2-multiplicative approximation of

the girth of an 𝑛-node 𝑚-edge directed graph with non-negative edge weights. They also provide

an additional algorithm that computes a 2-multiplicative approximation of the girth in 𝑂̃(𝑚
√
𝑛)

time (recall that we give a 2+𝜖 approximation in this running time). Their results naturally provide

algorithms for improved constructions of 4-roundtrip spanners, the analog of spanners in directed

graphs.
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Chapter 6

Finding Long Shortest Paths and Short

Cycles: Variants

In this chapter we study variants of distance problems. First, we study a variant that imposes

constraints on which pairs of points we are interested in as opposed to considering all pairs of

points. Second, we study a symmetric distance measure for directed graphs. For both of these

variants we provide approximation algorithms and conditional lower bounds. We provide sufficient

background in each subsection and hence they can be read independently.

6.1 Bichromatic and 𝑆𝑇 distance problems

This section was written with authors Virginia Vassilevska Williams, Nikhil Vyas and Nicole

Wein and focuses on the first type of variants of distance problems.

Some of the most fundamental and well-studied graph parameters are the Diameter (the largest

shortest paths distance) and Radius (the smallest distance for which a “center” node can reach all

other nodes). The natural and important 𝑆𝑇 -variant considers two subsets 𝑆 and 𝑇 of the vertex

set and lets the 𝑆𝑇 -diameter be the maximum distance between a node in 𝑆 and a node in 𝑇 , and

the 𝑆𝑇 -radius be the minimum distance for a node of 𝑆 to reach all nodes of 𝑇 . The bichromatic

variant is the special case in which 𝑆 and 𝑇 partition the vertex set.
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In this section of this chapter we present a comprehensive study of the approximability of 𝑆𝑇

and Bichromatic Diameter, Radius, and Eccentricities, and variants, in graphs with and without

directions and weights. We give the first nontrivial approximation algorithms for most of these

problems, including time/accuracy trade-off upper and lower bounds. We show that nearly all

of our obtained bounds are tight under the Strong Exponential Time Hypothesis (SETH), or the

related Hitting Set Hypothesis.

For instance, for Bichromatic Diameter in undirected weighted graphs with 𝑚 edges, we

present an 𝑂̃(𝑚3/2) time 1 5/3-approximation algorithm, and show that under SETH, neither the

running time, nor the approximation factor can be significantly improved while keeping the other

unchanged.

6.1.1 Introduction

A fundamental and very well studied problem in algorithms is the Diameter of a graph, where

the output is the largest (shortest path) distance over all pairs of vertices. Over the years many

different algorithms have been developed for the problem, both in theory (e.g. [ACIM99, PRT12,

RV13, CLR+14, BRS+18]) and in practice (e.g. [CGLM12, TK11, MLH09]).

A very natural variant is the so called 𝑆𝑇 -Diameter problem [BRS+18]: given a graph and

two subsets 𝑆 and 𝑇 of its vertex set, determine the largest distance between a vertex of 𝑆 and a

vertex of 𝑇 . In the Subset version of 𝑆𝑇 -Diameter, we have 𝑆 = 𝑇 . Bichromatic Diameter is the

version of 𝑆𝑇 -Diameter for which 𝑆 and 𝑇 partition the vertex set. Besides Diameter, the Radius

(the smallest distance for which a “center” node can reach all other nodes) and Eccentricities (the

largest distance out of every vertex) problems are also very well studied, and analogous 𝑆𝑇 , Subset,

and Bichromatic versions are easy to define.

All of these parameters are simple to compute by computing all pairwise distances in the graph,

i.e. by solving All-Pairs Shortest Paths (APSP). In sparse 𝑛-node graphs, where the number of

edges 𝑚 is 𝑂̃(𝑛), APSP still needs Ω(𝑛2) time, as this is the size of the output, whereas it is apriori

unclear whether this much time is needed for computing the Diameter, Radius and Eccentricities

1𝑂̃ notation hides polylogarithmic factors.
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or their 𝑆𝑇 and bichromatic variants, as the output is small.

A related extremely well-studied problem in computational geometry is Bichromatic Diameter

on point sets (commonly known as Bichromatic Farthest Pair), where one seeks to determine the

farthest pair of points in a given set of points in space (see e.g. [Yao82, DG04, Wil18, AESW91,

KI92]). Another related problem is the Subset version of spanners (e.g. [Kle06, CGK13]), as well

as the 𝑆𝑇 version of spanners (e.g. [CE06, Kav17]). Furthermore, the 𝑆𝑇 , Subset, and Bichromatic

versions of many problems have been of great interest; for instance Steiner Tree, Subset TSP, and a

number of problems in computational geometry such as Bichromatic Matching (e.g. [Ind07]) and

Bichromatic Line Segment Intersection (e.g. [CEGS94]).

There are several known approximation algorithms for the standard version of Diameter, most

of which have been developed in the last 6 years. Trivially, running Dijkstra’s algorithm from an

arbitrary vertex gives a simple 𝑂̃(𝑚) time 2-approximation algorithm for directed and weighted

graphs. Non-trivial algorithms achieve an improved approximation factor with an increased run-

time: Building on Aingworth et al. [ACIM99], Roditty and Vassilevska W. [RV13] showed for

instance that an “almost” 1.5 approximation for Diameter can be computed in 𝑂̃(𝑚
√
𝑛) time in

𝑚-edge 𝑛-vertex directed weighted graphs—the approximation factor is 1.5 if the Diameter is di-

visible by 3, and there is a slight additive error otherwise. Chechik et al. [CLR+14] gave a true

1.5 approximation at the expense of increasing the runtime to 𝑂̃(𝑚𝑛2/3), and Cairo, Grossi and

Rizzi [CGR16] generalized the approach giving an 𝑂̃(𝑚𝑛1/(𝑘+1)) time, “almost” 2− 1/2𝑘 approx-

imation algorithm for all 𝑘 ≥ 1 which works only in undirected graphs.

In STOC’18, Backurs et al. [BRS+18] gave the first non-trivial approximation algorithms for

𝑆𝑇 -Diameter: an 𝑂̃(𝑚3/2) time 2-approximation and an 𝑂̃(𝑚) time 3-approximation. They also

showed that these algorithms cannot be improved significantly, unless the Strong Exponential Time

Hypothesis (SETH) fails. Backurs et al. did not provide algorithms for 𝑆𝑇 -Eccentricities or 𝑆𝑇 -

Radius, and they did not study the natural Subset and Bichromatic versions. They also only focused

on undirected graphs.

We study the following natural and fundamental questions:

How well can 𝑆𝑇 -Eccentricities and 𝑆𝑇 -Radius be approximated? Are any interesting
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approximation algorithms possible for directed graphs for any of the 𝑆𝑇 -variants? Does the

approximability of the problems change when one turns to the Subset versions in which 𝑆 = 𝑇 , or

the Bichromatic versions in which 𝑆 and 𝑇 are required to partition the vertex set?

Our Results

We present a comprehensive study of the approximability of the 𝑆𝑇 , Subset and Bichromatic

variants of the Diameter, Radius and Eccentricities problems in graphs, both with and without

directions and weights. We obtain the first non-trivial approximation algorithms for most of these

problems, including time/accuracy trade-off upper and lower bounds. We show that nearly all of

our approximation algorithms are tight under SETH (or under the related Hitting Set Hypothesis

for Radius). Additionally, we study a parameterized version of these problems.

Our results are summarized in Tables 6.1-6.4.

All our algorithms in 𝑚-edge, 𝑛-node graphs, run in 𝑂̃(𝑚3/2) time or in 𝑂̃(𝑚
√
𝑛) time when

a small additive error is allowed. For sparse graphs the 𝑚3/2 runtime beats the fastest APSP

algorithms [Cha07, PR05, Pet04] as they run in 𝑂̃(𝑚𝑛) time. The 𝑚
√
𝑛 time of the algorithms

that allow small additive error beat the APSP algorithms for every graph sparsity.

Bichromatic Diameter and Radius. Our first contribution is an algorithm with the same run-

ning time as the 2-approximation 𝑆𝑇 -Diameter algorithm of [BRS+18], achieving a better, 5/3

approximation for Bichromatic Diameter. In other words, when 𝑆 and 𝑇 partition the vertex set of

the graph, 𝑆𝑇 -Diameter can be approximated much better! Moreover, we show that under SETH,

neither the runtime nor the approximation factor of our algorithm can be improved. The result is

summarized in Theorem 6.1.1 below, and proven in Theorems 6.1.7 and 6.1.25.

Theorem 6.1.1. There is a randomized 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph

𝐺 = (𝑉,𝐸) with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate

𝐷′ such that 3𝐷𝑆𝑇/5 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 with high probability, where 𝐷𝑆𝑇 is the 𝑆𝑇 -Diameter of 𝐺.

Moreover, if there is an 𝑂(𝑚3/2−𝜀) time 5/3-approximation algorithm for some 𝜀 > 0, or if

there is an 𝑂(𝑚2−𝜀) time (5/3− 𝜀)-approximation algorithm for the problem, then SETH is false.

2with high probability means with probability at least 1− 1/𝑛𝑐 for all constants 𝑐.
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Upper Bounds Lower Bounds

Problem Runtime Approx. Comments Runtime Approx.

Diameter

𝑂(𝑚+ 𝑛 log 𝑛) almost 2 unweighted, tight 𝑚1+𝑜(1) 2− 𝛿

𝑂̃(𝑚
√
𝑛) almost 5/3 unweighted, nearly tight 𝑚

𝑘
𝑘−1
−𝑜(1) 2− 1

2𝑘−1 − 𝛿

𝑂̃(𝑚3/2) 5/3 weighted, tight " "

𝑂(𝑚|𝐵|) almost 3/2 unweighted, tight* 𝑚2−𝑜(1) 3/2− 𝛿

Radius

𝑂(𝑚+ 𝑛 log 𝑛) almost 2 unweighted

𝑂̃(𝑚
√
𝑛) almost 5/3 unweighted, nearly tight* 𝑚2−𝑜(1) 5/3− 𝛿

𝑂̃(𝑚3/2) 5/3 weighted, tight* " "

𝑂(𝑚|𝐵|) almost 3/2 unweighted, tight* 𝑚2−𝑜(1) 3/2− 𝛿

Eccentricities

𝑂(𝑚+ 𝑛 log 𝑛) 3 weighted, tight 𝑚1+𝑜(1) 3− 𝛿

𝑂̃(𝑚
√
𝑛) almost 2 unweighted, nearly tight 𝑚

𝑘
𝑘−1
−𝑜(1) 3− 2/𝑘 − 𝛿

𝑂̃(𝑚3/2) 2 weighted, tight " "

𝑂(𝑚|𝐵|) almost 5/3 unweighted, tight* 𝑚2−𝑜(1) 5/3− 𝛿

Table 6.1: Bichromatic undirected results. All of our parameterized algorithms and near-linear time
algorithms, except for directed Subset Radius and Eccentricities, are deterministic. The rest are
randomized and work with high probability2. Our lower bounds for Diameter and Eccentricities are
under SETH and our lower bounds for Radius are under the Hitting Set (HS) Hypothesis, defined
later. All of our lower bounds hold even for unweighted graphs. The trade-off lower bounds in
terms of 𝑘 hold for any integer 𝑘 ≥ 2. 𝛿 is any constant > 0. 𝐵 and 𝐵′ are parameters defined
in our parameterized algorithms. The lower bound constructions for the parameterized algorithms
have |𝐵| = 𝑂̃(1)
* Multiplicative approximation factor is tight, but not runtime.

We also obtain an 𝑂̃(𝑚
√
𝑛) time algorithm that achieves an “almost” 5/3-approximation: the

guarantee for unweighted graphs is 3𝐷𝑆𝑇/5 − 6/5 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 . We also obtain a near-linear

time algorithm for weighted graphs that returns an estimate 𝐷′ with 𝐷𝑆𝑇/2−𝑊/2 ≤ 𝐷′ ≤ 𝐷𝑆𝑇

where 𝑊 is the minimum weight of a 𝑆 × 𝑇 edge. Using our general theorem 6.1.25, we get that

this result is also essentially tight, as a (2− 𝜀)-approximation for 𝜀 > 0 running in near-linear time

would refute SETH.

To obtain our improvements for Bichromatic Diameter over the known 𝑆𝑇 -Diameter algo-
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Upper Bounds Lower Bounds

Problem Runtime Approx. Comments Runtime Approx.

Diameter 𝑂̃(𝑚3/2) 2 weighted, tight* 𝑚2−𝑜(1) 2− 𝛿

𝑂(𝑚|𝐵′|) almost 3/2 unweighted, tight* 𝑚2−𝑜(1) 3/2− 𝛿

Radius N/A N/A weighted, tight 𝑚2−𝑜(1) any finite

Eccentricities N/A N/A weighted, tight 𝑚2−𝑜(1) any finite

Table 6.2: Bichromatic directed results. See caption of Table 6.1.

Upper Bounds Lower Bounds

Problem Runtime Approx. Comments Runtime Approx.

Diameter

[BRS+18]

𝑂(𝑚+ 𝑛 log 𝑛) 3 weighted, tight 𝑚1+𝑜(1) 3− 𝛿

𝑂̃(𝑚
√
𝑛) almost 2 unw, nearly tight 𝑚

𝑘
𝑘−1
−𝑜(1) 3− 2/𝑘 − 𝛿

𝑂̃(𝑚3/2) 2 weighted, tight " "

Radius

𝑂(𝑚+ 𝑛 log 𝑛) 3 weighted

𝑂̃(𝑚
√
𝑛) almost 2 unw, nearly tight* 𝑚2−𝑜(1) 2− 𝛿

𝑂̃(𝑚3/2) 2 weighted, tight* " "

Eccentricities

𝑂(𝑚+ 𝑛 log 𝑛) 3 weighted, tight 𝑚1+𝑜(1) 3− 𝛿 [BRS+18]

𝑂̃(𝑚
√
𝑛) almost 2 unw, nearly tight 𝑚

𝑘
𝑘−1
−𝑜(1) 3− 2/𝑘 − 𝜖 [BRS+18]

𝑂̃(𝑚3/2) 2 weighted, tight " "

Table 6.3: ST undirected results. See caption of Table 6.1. unw means unweighted.

rithms, we crucially exploit the basic fact that as 𝑆, 𝑇 partition 𝑉 any path that starts from a vertex

𝑠 ∈ 𝑆 and ends in a vertex 𝑡 ∈ 𝑇 must cross a (𝑢, 𝑣) edge such that 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇 . While this fact

is clear, it not at all obvious how one might try to exploit it.

We explain our technique in more detail for the bichromatic diameter problem, and similar

ideas are used for our algorithms for the other problems. Let 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 be end-points

of an 𝑆𝑇 -Diameter path. Similarly to prior Diameter algorithms, our goal is to run Dijkstra’s

algorithm from some 𝑠 ∈ 𝑆 which is close to 𝑠*, and hence far from 𝑡*, or from some 𝑡 ∈ 𝑇
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Upper Bounds Lower Bounds

Problem Runtime Approx. Comments Runtime Approx.

Diameter 𝑂̃(𝑚) 2 weighted, directed, tight 𝑚2−𝑜(1) 2− 𝛿

Radius
𝑂̃(𝑚) 2 weighted, undirected, tight 𝑚2−𝑜(1) 2− 𝛿

𝑂̃(𝑚/𝛿) 2 + 𝛿 weighted, directed, tight up to an additive 𝛿 " "

Eccentricities 𝑂̃(𝑚/𝛿) 2 + 𝛿 weighted, directed, tight up to an additive 𝛿 𝑚2−𝑜(1) 2− 𝛿

Table 6.4: Subset results. See caption of Table 6.1.

which is close to 𝑡* and hence far from 𝑠* (by the triangle inequality). Our 5/3-approximation

algorithms are a delicate combination of two themes: (1) randomly sample nodes in 𝑆 and nodes

in 𝑇 – similarly to prior works, the sampling works well if there are many nodes of 𝑆 that are close

to 𝑠*, or if there are many nodes of 𝑇 that are close to 𝑡*. If (1) is not good enough, in theme

(2) we show that we can find a node 𝑤 ∈ 𝑆 close to 𝑡* for which we can “catch” an 𝑆 × 𝑇 edge

(𝑠, 𝑡) on the shortest 𝑤 → 𝑡* path, such that 𝑡 is close to 𝑡*. Theme (2) is our new contribution.

Because of theme (2), our algorithms are more complicated than the 𝑆𝑇 -Diameter algorithms, but

run in asymptotically the same time, and achieve a better approximation guarantee. In order to

better separate the ideas in our algorithms, we explain them in several steps, where Theme (1) can

be seen in the first steps and Theme (2) appears towards the last steps.

Following a similar approach to our Bichromatic Diameter algorithms, we develop similar al-

gorithms for Bichromatic Radius. First, we give a simple near-linear time almost 2-approximation

algorithm, and then we adapt the 5/3-approximation for Bichromatic Diameter to also give a 5/3-

approximation for Bichromatic Radius. Moreover, we show that any better approximation factor

requires essentially quadratic time, under the Hitting Set (HS) Hypothesis of [AVW16] (see also

[GIKW17]).

Theorem 6.1.2. There is a randomized 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph

𝐺 = (𝑉,𝐸) with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate

𝑅′ such that 𝑅𝑆𝑇 ≤ 𝑅′ ≤ 5𝑅𝑆𝑇/3 with high probability, where 𝑅𝑆𝑇 is the 𝑆𝑇 -Radius of 𝐺.

Moreover, if there is a 5/3− 𝜀 approximation algorithm running in 𝑂(𝑚2−𝛿) time for any 𝜀, 𝛿 > 0,
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then the HS Hypothesis is false.

Similarly to the Bichromatic Diameter algorithm, if one is satisfied with a slight additive error,

one can improve the runtime to 𝑂̃(𝑚
√
𝑛).

𝑆𝑇 -Eccentricities and 𝑆𝑇 -Radius. Prior work only considered 𝑆𝑇 -Diameter but did not con-

sider the more general 𝑆𝑇 -Eccentricities problem in which one wants to approximate for every

𝑠 ∈ 𝑆, 𝜀𝑆𝑇 (𝑠) := max𝑡∈𝑇 𝑑(𝑠, 𝑡).

Here we show that one can achieve exactly the same approximation factors for 𝑆𝑇 -

Eccentricities as for 𝑆𝑇 -Diameter. Since any conditional lower bound for 𝑆𝑇 -Diameter also

applies for the 𝑆𝑇 -Eccentricities problem, the algorithms we obtain are conditionally optimal,

similarly to the 𝑆𝑇 -Diameter algorithms in [BRS+18]. Interestingly, we show that the same con-

ditional lower bounds apply for Bichromatic Eccentricities (Proposition 6), and therefore our 𝑆𝑇 -

Eccentricities algorithms are optimal even for the Bichromatic case.

Theorem 6.1.3. There is a randomized 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph

𝐺 = (𝑉,𝐸) with nonnegative integer edge weights and 𝑆, 𝑇 ⊆ 𝑉 , can output for every 𝑠 ∈ 𝑆, an

estimate 𝜀′(𝑠) such that 𝜀𝑆𝑇 (𝑠)/2 ≤ 𝜀′(𝑠) ≤ 𝜀𝑆𝑇 (𝑠) with high probability. Moreover, if there is a

2 − 𝜀 approximation algorithm running in 𝑂(𝑚2−𝛿) time for any 𝜀, 𝛿 > 0 or a 2-approximation

algorithm running in 𝑂(𝑚3/2−𝜀) time for 𝜀 > 0, even for the Bichromatic case when 𝑇 = 𝑉 ∖ 𝑆,

then SETH is false.

Again, as before, one can improve the runtime to 𝑂̃(𝑚
√
𝑛) with a slight additive error, and

there is a simple near-linear time 3-approximation algorithm which is tight under SETH, similar

to the one in [BRS+18] for 𝑆𝑇 -Diameter. A simple argument shows that these algorithms imply

algorithms with the same running time and approximation factor for 𝑆𝑇 -Radius.

Bichromatic and 𝑆𝑇 Problems in Directed Graphs. Using simple reductions we first show

that there can be no 𝑂(𝑚2−𝜀) time (for 𝜀 > 0) algorithms that achieve any finite approximation

for 𝑆𝑇 -Diameter or 𝑆𝑇 -Eccentricities (under SETH), or 𝑆𝑇 -Radius (under HS). Interestingly, the

same holds for Bichromatic Eccentricities (under SETH, Proposition 7) and Bichromatic Radius

(under HS, Proposition 8), but not Bichromatic Diameter! Surprisingly, unlike those two prob-
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lems, Bichromatic Diameter does admit a finite, in fact 2-approximation algorithm running in

subquadratic time, and this algorithm is conditionally optimal:

Theorem 6.1.4. There is a randomized 𝑂̃(𝑚3/2) time algorithm, that given a directed graph 𝐺 =

(𝑉,𝐸) with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate 𝐷′

such that 𝐷𝑆𝑇/2 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 with high probability, where 𝐷𝑆𝑇 is the 𝑆𝑇 -Diameter of 𝐺.

Moreover, if there is an 𝑂(𝑚2−𝜀) time 2− 𝛿-approximation algorithm for the problem for some

𝜀, 𝛿 > 0, then SETH is false.

The previously known techniques for approximating Diameter in directed graphs fail here.

The main issue is that the prior techniques were general enough that they also gave algorithms for

Eccentricities and Radius as a byproduct. In the Bichromatic case, however, there is a genuine

difference between Diameter and Radius, as we noted above, and new techniques are needed.

Here again it turns out that combining theme (2) with a delicate argument is sufficient to get

conditionally tight algorithms under SETH.

Subset Versions. Recall that Subset Diameter, Radius, and Eccentricities are the versions of

the corresponding 𝑆𝑇 problems with the constraint that 𝑆 = 𝑇 . Interestingly, Subset Diameter,

Radius, and Eccentricities all exhibit the same sharp threshold behavior. For all three problems,

there are near-linear time algorithms that achieve a 2 (or almost 2) approximation, as well as

conditional lower bounds that show that there is no 2− 𝛿 approximation in 𝑚2−𝑜(1) time.

Parameterized Algorithms. We consider the Bichromatic Diameter, Radius, and Eccentricities

problems parameterized by the size of the boundary between the 𝑆 and 𝑇 sets. If 𝑆 ′ is the set of ver-

tices in 𝑆 that have a neighbor in 𝑇 , and 𝑇 ′ is the set of vertices in 𝑇 that have a neighbor in 𝑆, then

the boundary 𝐵 is whichever of 𝑆 ′ or 𝑇 ′ is smaller in size. Our lower bound constructions already

have small boundary so they rule out algorithms even for graphs with small boundary. However,

interestingly we obtain near-linear time algorithms for graphs with small boundary that achieve

better multiplicative approximation factors than the optimal non-parameterized algorithms. This

is not a contradiction because our parameterized algorithms have a constant additive error, while

the apparently contradictory lower bounds do not tolerate additive error.
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6.1.2 Preliminaries

Given a graph 𝐺 = (𝑉,𝐸) (directed or undirected, weighted or unweighted), let 𝑑(𝑢, 𝑣)

denote the distance from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉 . For a subset 𝑋 ⊆ 𝑉 and 𝑣 ∈ 𝑉 , define

𝑑(𝑣,𝑋) := min𝑥∈𝑋 𝑑(𝑣, 𝑥). Similarly 𝑑(𝑋, 𝑣) := min𝑥∈𝑋 𝑑(𝑥, 𝑣).

Unless otherwise stated, 𝑚 denotes the number of edges and 𝑛 the number of vertices of the un-

derlying graph. Without loss of generality, we can assume that all undirected graphs are connected,

and all directed graphs are weakly connected, so that 𝑚 ≥ 𝑛− 1.

The Eccentricity 𝜀(𝑣) of a vertex 𝑣 ∈ 𝑉 is max𝑢∈𝑉 𝑑(𝑣, 𝑢). The Diameter 𝐷(𝐺) of 𝐺 is

max𝑣∈𝑉 𝜀(𝑣), and the Radius 𝑅(𝐺) of 𝐺 is min𝑣∈𝑉 𝜀(𝑣).

Given 𝑆, 𝑇 ⊆ 𝑉 , we define analogous parameters as follows. The 𝑆𝑇 -Eccentricity 𝜀𝑆𝑇 (𝑣)

of 𝑣 ∈ 𝑆 is max𝑢∈𝑇 𝑑(𝑣, 𝑢). The 𝑆𝑇 -Diameter 𝐷𝑆𝑇 (𝐺) is max𝑣∈𝑆 𝜀𝑆𝑇 (𝑣), and the 𝑆𝑇 -Radius

𝑅𝑆𝑇 (𝐺) is min𝑣∈𝑆 𝜀𝑆𝑇 (𝑣).

The above parameters are called Bichromatic Eccentricities, Diameter, and Radius if 𝑆 and 𝑇

form a partition of 𝑉 , i.e. 𝑇 = 𝑉 ∖ 𝑆.

The above parameters are called Subset Eccentricities, Diameter, and Radius if 𝑆 = 𝑇 and are

notated with subscript 𝑆 instead of 𝑆𝑇 .

Preliminaries for algorithms

Lemma 6.1.1. Let 𝐺 = (𝑉,𝐸) be a (possibly directed and weighted graph) and let 𝑊 ⊆ 𝑉 .

Let 𝑔 ≥ Ω(ln𝑛) be an integer. Let 𝑆 ⊆ 𝑊 be a random subset of 𝑐(|𝑊 |/𝑔) ln𝑛 vertices for

some constant 𝑐 > 1. For every 𝑣 ∈ 𝑉 , let 𝑊 (𝑣) be the set of vertices 𝑥 ∈ 𝑊 for which

𝑑(𝑣, 𝑥) < 𝑑(𝑣, 𝑆). Then with probability at least 1 − 1/𝑛𝑐−1, for every 𝑣 ∈ 𝑉 , |𝑊 (𝑣)| ≤ 𝑔, and

moreover, if one takes the closest 𝑔 vertices of 𝑊 to 𝑣, they will contain 𝑊 (𝑣).

Proof. For each 𝑣 ∈ 𝑉 , imagine sorting the nodes 𝑥 ∈ 𝑊 according to 𝑑(𝑣, 𝑥). Define 𝑄𝑣 to be

the first 𝑔 nodes in this sorted order - those are the nodes of 𝑊 closest to 𝑣 (in the 𝑣 → 𝑥 direction).

We pick 𝑆 randomly by selecting each vertex of 𝑊 with probability (𝑐 ln𝑛)/𝑔. The probability

that a particular 𝑞 ∈ 𝑄𝑣 is not in 𝑆 is 1 − (𝑐 ln𝑛)/𝑔, and the probability that no 𝑞 ∈ 𝑄𝑣 is in 𝑆 is

(1− (𝑐 ln𝑛)/𝑔)𝑔 ≤ 1/𝑛𝑐. By a union bound, with probability at least 1− 1/𝑛𝑐−1, for every 𝑣 ∈ 𝑉 ,

we have that 𝑄𝑣 ∩ 𝑆 ̸= ∅.
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Now, for each particular 𝑣, say that 𝑤(𝑣) is a node in 𝑄𝑣 ∩ 𝑆. Since all nodes 𝑥 ∈ 𝑊 with

𝑑(𝑣, 𝑥) < 𝑑(𝑣, 𝑤(𝑣)) must be in 𝑄𝑣, and since 𝑑(𝑣, 𝑤(𝑣)) ≥ 𝑑(𝑣, 𝑆), we must have that 𝑊 (𝑣) ⊆

𝑄𝑣. Hence, with probability at least 1− 1/𝑛𝑐−1, for every 𝑣 ∈ 𝑉 , |𝑊 (𝑣)| ≤ 𝑔 and 𝑊 (𝑣) ⊆ 𝑄𝑣. □

Lemma 6.1.2. Let 𝐺 = (𝑉,𝐸) be a (possibly directed and weighted) graph. Let 𝑀,𝑊 ⊆ 𝑉 and

let 𝑆 ⊆ 𝑊 be a random subset of 𝑐(𝑛/𝑔) ln𝑛 vertices for some large enough constant 𝑐 and some

integer 𝑔 ≥ 1.

Then, for any 𝐷 > 0 and for any 𝑤 ∈ 𝑀 with 𝑑(𝑤, 𝑆) > 𝐷, if one takes the closest 𝑔 vertices

of 𝑊 to 𝑤, they will contain all nodes of 𝑊 at distance < 𝐷 from 𝑤, with high probability.

Proof. Let 𝑄 be the closest 𝑔 vertices of 𝑊 to 𝑤. By Lemma 6.1.1, with high probability 𝑄

contains all nodes of 𝑊 at distance < 𝑑(𝑤, 𝑆) from 𝑤, and hence 𝑄 contains all nodes of 𝑊 at

distance < 𝐷 from 𝑤, with high probability. □

We sometimes sample edges instead of vertices, so analogous lemmas to Lemmas 6.1.1 and

6.1.2 hold when the sample is from a set of edges. Here is the analogue of Lemma 6.1.2. The other

lemma is similar.

Lemma 6.1.3. Let 𝐺 = (𝑉,𝐸) be a (possibly directed and weighted graph) and let 𝑀,𝑊 ⊆ 𝑉 .

Let 𝐸 ′ ⊆ 𝐸 be a random subset of 𝑐(|𝐸|/𝑔) ln𝑛 edges for some large enough constant 𝑐 and some

integer 𝑔 ≥ 1. Let 𝑄 be the endpoints of edges in 𝐸 ′ that are in 𝑊 .

Then, for any 𝐷 > 0, and for any 𝑤 with 𝑑(𝑤, 𝑆) > 𝐷, if one takes the closest 𝑔 edges of 𝐸 ′ to

𝑤 wrt the distance from their 𝑊 endpoints, they will contain all edges of 𝐸 ′ whose 𝑊 endpoints

are at distance < 𝐷 from 𝑤, with high probability.

Preliminaries for lower bounds

The Strong Exponential Time Hypothesis (SETH) asserts that on a Word-RAM with 𝑂(log 𝑛)

bit words, there is no (2 − 𝜀)𝑛 time (possibly randomized) algorithm for some constant 𝜀 > 0

that can determine whether a given CNF-Formula with 𝑛 variables and 𝑂(𝑛) clauses is satisfi-

able. (This version of SETH is equivalent to the original formulation by Impagliazzo, Paturi and

Zane [IP01a].) By a result of Williams [Wil05], the following Orthogonal Vectors (OV) Problem

requires 𝑛2−𝑜(1)poly (𝑑) time (on a word-RAM with 𝑂(log 𝑛) bit words), unless SETH fails: given
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two sets 𝑈, 𝑉 ⊆ {0, 1}𝑑 with |𝑈 | = |𝑉 | = 𝑛 and 𝑑 = 𝜔(log 𝑛), determine whether there are

𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 with 𝑢 · 𝑣 = 0.

Given an arbitrary instance of OV with 𝑑 = 𝑂̃(1) (while respecting 𝑑 = 𝜔(log 𝑛), e.g. 𝑑 =

Θ(log2 𝑛)), consider the following graph representation, which we call the OV-graph: the vertex

set consists of a node for every 𝑢 ∈ 𝑈 , for every 𝑣 ∈ 𝑉 and for every coordinate 𝑐 ∈ [𝑑] = 𝐶, and

there is an edge (𝑥 ∈ 𝑈 ∪ 𝑉, 𝑐 ∈ 𝐶) if and only if 𝑥[𝑐] = 1. OV is then equivalent to the question

of whether there exist 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 such that 𝑑(𝑢, 𝑣) > 2. In fact, it is equivalent to distinguishing

whether for every 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , 𝑑(𝑢, 𝑣) = 2 (no OV-solution), or there is some 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉

such that 𝑑(𝑢, 𝑣) ≥ 4 (OV-solution). In other words, if we set 𝑆 = 𝑈, 𝑇 = 𝑉 , the 𝑆𝑇 -Diameter

of the OV-graph is 2 if and only if there is no OV-solution and at least 4 otherwise. Because the

OV graph has 𝑚 = 𝑂̃(𝑛), under SETH, any (2 − 𝛿)-approximation algorithm for 𝑆𝑇 -Diameter

requires 𝑚2−𝑜(1).

A related problem to OV is the Hitting Set (HS) problem [AVW16, GIKW17, Vas15]: given

two sets 𝑈, 𝑉 ⊆ {0, 1}𝑑 with |𝑈 | = |𝑉 | = 𝑛 and 𝑑 = 𝜔(log 𝑛), determine whether there is 𝑢 ∈ 𝑈

such that for all 𝑣 ∈ 𝑉 , 𝑢 · 𝑣 ̸= 0. A common hypothesis is that (on the word-RAM) HS requires

𝑛2−𝑜(1) time.

If we form the OV-graph on the HS instance input, then the HS problem becomes equivalent

to determining whether there is some 𝑢 ∈ 𝑈 such that for all 𝑣 ∈ 𝑉 , 𝑑(𝑢, 𝑣) ≤ 2. In other words,

if we set 𝑆 = 𝑈, 𝑇 = 𝑉 , the 𝑆𝑇 -Radius of the OV-graph is 2 if and only if there is a HS-solution

and at least 4 otherwise. Thus, under the HS hypothesis, any (2− 𝛿)-approximation algorithm for

𝑆𝑇 -Radius requires 𝑚2−𝑜(1).

Additionally for our constructions we assume that if there is a HS solution 𝑢′ then for all 𝑐 ∈ 𝐶,

𝑑(𝑢′, 𝑐) ≤ 3. This is because for every coordinate index 𝑖 there must be 𝑣 ∈ 𝑉 with 𝑣[𝑖] = 1 as

otherwise we can just delete the 𝑖𝑡ℎ bit from all vectors.

Let 𝑘 ≥ 2 be an integer. Then, a generalization of the OV problem is 𝑘-OV: given 𝑘 sets

𝑈1, . . . , 𝑈𝑘 ⊆ {0, 1}𝑑, are there 𝑢1 ∈ 𝑈1, . . . , 𝑢𝑘 ∈ 𝑈𝑘 so that
∑︀𝑑

𝑐=1

∏︀𝑘
𝑖=1 𝑢𝑖[𝑐] = 0? It is known

that, under SETH, when 𝑑 = 𝜔(log 𝑛), there is no 𝑛𝑘−𝑜(1) time algorithm for 𝑘-OV (in the word

RAM model) [Wil05].
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Similar to the OV-graph, Backurs et al. [BRS+18] define a graph for 𝑘-OV which we will refer

to as the 𝑘-OV-graph. We do not explicitly define the 𝑘-OV-graph here; instead we list its properties

in the following theorem.

Theorem 6.1.5 ([BRS+18]). Let 𝑘 ≥ 2. Given a 𝑘-OV instance consisting of sets

𝑊0,𝑊1, . . . ,𝑊𝑘−1 ⊆ {0, 1}𝑑, each of size 𝑛, we can in 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) time construct an un-

weighted, undirected graph with 𝑂(𝑛𝑘−1 + 𝑘𝑛𝑘−2𝑑𝑘−1) vertices and 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) edges that

satisfies the following properties.

1. The graph consists of 𝑘 + 1 layers of vertices 𝐿0, 𝐿1, 𝐿2, . . . , 𝐿𝑘. The number of nodes in

the sets is |𝐿0| = |𝐿𝑘| = 𝑛𝑘−1 and |𝐿1|, |𝐿2|, . . . , |𝐿𝑘−1| ≤ 𝑛𝑘−2𝑑𝑘−1.

2. 𝐿0 consists of all tuples (𝑎0, 𝑎1, . . . , 𝑎𝑘−2) where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖. Similarly, 𝐿𝑘 consists

of all tuples (𝑏1, 𝑏2, . . . , 𝑏𝑘−1) where for each 𝑖, 𝑏𝑖 ∈ 𝑊𝑖.

3. If the 𝑘-OV instance has no solution, then 𝑑(𝑢, 𝑣) = 𝑘 for all 𝑢 ∈ 𝐿0 and 𝑣 ∈ 𝐿𝑘.

4. If the 𝑘-OV instance has a solution 𝑎0, 𝑎1, . . . , 𝑎𝑘−1 where for each 𝑖, 𝑎𝑖 ∈ 𝑊𝑖 then if 𝛼 =

(𝑎0, . . . 𝑎𝑘−2) ∈ 𝐿0 and 𝛽 = (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑘, then 𝑑(𝛼, 𝛽) ≥ 3𝑘 − 2.

5. For all 𝑖 from 1 to 𝑘−1, for all 𝑣 ∈ 𝐿𝑖 there exists a vertex in 𝐿𝑖−1 adjacent to 𝑣 and a vertex

in 𝐿𝑖+1 adjacent to 𝑣.

Organization

In Section 6.1.3 we present our algorithms for Bichromatic Diameter, Eccentricities, and Ra-

dius. In Section 6.1.4 we present our algorithms for 𝑆𝑇 -Eccentricities and Radius. In Section 6.1.5

we present our algorithms for Subset Diameter, Eccentricities, and Radius. In Section 6.1.6 we

present our parameterized algorithms for Bichromatic Diameter, Radius, and Eccentricities. In

Section 6.1.7 we present all of our conditional lower bounds.

6.1.3 Algorithms for Undirected Bichromatic Diameter, Eccentricities and

Radius

Undirected Bichromatic Diameter

We begin with a simple near-linear time algorithm.
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Proposition 1. There is an 𝑂(𝑚 + 𝑛 log 𝑛) time algorithm, that given an undirected graph 𝐺 =

(𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, can output an estimate 𝐷′ such that 𝐷𝑆𝑇 (𝐺)/2−𝑊/2 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 ,

where 𝑊 is the minimum weight of an edge in 𝑆 × 𝑇 .

Proof. Let (𝑠, 𝑡) be a minimum weight edge of 𝐺 with 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 . Run Dijkstra’s algorithm

from 𝑠 and from 𝑡. Let 𝐷′ = max{max𝑡′∈𝑇 𝑑(𝑠, 𝑡′),max𝑠′∈𝑆 𝑑(𝑠
′, 𝑡)}. Let 𝑠* ∈ 𝑆, 𝑡* ∈ 𝑇 be

endpoints of an 𝑆𝑇 -Diameter path, i.e. 𝑑(𝑠*, 𝑡*) = 𝐷𝑆𝑇 . Then, suppose that max𝑡′∈𝑇 𝑑(𝑠, 𝑡′) <

𝐷𝑆𝑇/2 −𝑊/2. In particular, 𝑑(𝑠, 𝑡*) < 𝐷𝑆𝑇/2 −𝑊/2, and hence 𝑑(𝑠, 𝑠*) > 𝐷𝑆𝑇/2 +𝑊/2 by

the triangle inequality. Also by the triangle inequality,

𝐷𝑆𝑇/2 +𝑊/2 < 𝑑(𝑠, 𝑡) + 𝑑(𝑡, 𝑠*) ≤ 𝑤(𝑠, 𝑡) + max
𝑠′∈𝑆

𝑑(𝑠′, 𝑡).

Hence, 𝐷′ > 𝐷𝑆𝑇/2−𝑊/2, where 𝑊 is the minimum weight of an edge in 𝑆 × 𝑇 . □

Now we turn to our 5/3-approximation algorithms. Our first theorem is for unweighted graphs.

Later on, we modify the algorithm in this theorem to obtain an algorithm for weighted graphs as

well, and at the same time remove the small additive error that appears in the theorem below.

Theorem 6.1.6. There is an 𝑂̃(𝑚
√
𝑛) time algorithm, that given an unweighted undirected graph

𝐺 = (𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate 𝐷′ such that 3𝐷𝑆𝑇 (𝐺)/5 ≤ 𝐷′ ≤

𝐷𝑆𝑇 (𝐺) if 𝐷𝑆𝑇 (𝐺) is divisible by 5, and otherwise 3𝐷𝑆𝑇 (𝐺)/5− 6/5 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺).

Proof. Let 𝐷 = 𝐷𝑆𝑇 (𝐺) and let us assume that 𝐷 is divisible by 5. If 𝐷 is not divisible by 5, the

estimate we return will have a small additive error. For clarity of presentation, we omit the analysis

of the case where 𝐷 is not divisible by 5. However, we include such analyses in our proofs for

Bichromatic Radius (Theorem 6.1.9) and 𝑆𝑇 -Eccentricities (Theorem 6.1.14) and the analysis for

Diameter is analogous.

Suppose the (bichromatic) 𝑆𝑇 -Diameter endpoints are 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 and that the 𝑆𝑇 -

Diameter is 𝐷. The algorithm does not know 𝐷, but we will use it in the analysis.

(Algorithm Step 1): The algorithm first samples 𝑍 ⊆ 𝑆 of size 𝑐
√
𝑛 ln𝑛 uniformly at random.

For every 𝑧 ∈ 𝑍, run BFS, and let 𝐷1 = max𝑧∈𝑍,𝑡∈𝑇 𝑑(𝑧, 𝑡).
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(Analysis Step 1): If for some 𝑠′ ∈ 𝑍 we have that 𝑑(𝑠*, 𝑠′) ≤ 2𝐷/5, then 𝐷1 ≥ 𝑑(𝑠′, 𝑡*) ≥

𝐷 − 𝑑(𝑠*, 𝑠′) ≥ 3𝐷/5.

(Algorithm Step 2): Now, sample a set 𝑋 from 𝑇 of size 𝐶
√
𝑛 ln𝑛 uniformly at random for

large enough constant 𝐶. For every 𝑡 ∈ 𝑋 , run BFS and find the closest node 𝑠(𝑡) of 𝑆 to 𝑡. Run

BFS from every 𝑠(𝑡). Let 𝐷2 = max𝑡∈𝑋,𝑡′∈𝑇 𝑑(𝑠(𝑡), 𝑡′).

(Analysis Step 2): If 𝑠* is at distance≤ 𝐷/5 from some node 𝑡 of 𝑋 , then 𝑑(𝑠*, 𝑠(𝑡)) ≤ 2𝐷/5

(since 𝑠(𝑡) is closer to 𝑡 than 𝑠*), and so 𝐷2 ≥ 𝑑(𝑠(𝑡), 𝑡*) ≥ 3𝐷/5.

If neither 𝐷1, nor 𝐷2 are good approximations, it must be that 𝑑(𝑠*, 𝑋) > 𝐷/5 and 𝑑(𝑠*, 𝑍) >

2𝐷/5. Consider the nodes 𝑀 of 𝑆 that are at distance > 2𝐷/5 from 𝑍, then the node 𝑤 ∈𝑀 that

is furthest from 𝑋 among all nodes of 𝑀 . If neither 𝐷1, nor 𝐷2 was a good approximation, 𝑠* ∈𝑀

and since 𝑑(𝑠*, 𝑋) > 𝐷/5, we must have that 𝑑(𝑤,𝑋) > 𝐷/5 (and also 𝑑(𝑤,𝑍) > 2𝐷/5). In the

next step we will look for such a 𝑤.

(Algorithm Step 3): For each 𝑠 ∈ 𝑆 define 𝐷𝑠 to be the biggest integer which satisfies

𝑑(𝑠,𝑋) > 𝐷𝑠/5 and 𝑑(𝑠, 𝑍) > 2𝐷𝑠/5. Let 𝑤 = argmax𝐷𝑠 and 𝐷′ = max𝐷𝑠.

(Analysis Step 3): By Lemma 6.1.2 we have that whp, the number of nodes of 𝑇 at distance

≤ 𝐷′/5 from 𝑤 and the number of nodes of 𝑆 at distance≤ 2𝐷′/5 from 𝑤 are both≤
√
𝑛. Also if

neither 𝐷1, nor 𝐷2 are good approximations, it must be that 𝑑(𝑠*, 𝑋) > 𝐷/5 and 𝑑(𝑠*, 𝑍) > 2𝐷/5

and hence 𝐷′ ≥ 𝐷.

(Algorithm Step 4): Run BFS from 𝑤. Take all nodes of 𝑆 at distance ≤ 2𝐷′/5 from 𝑤, call

these 𝑆𝑤, and run BFS from them. Whp, |𝑆𝑤| ≤
√
𝑛, so that this BFS run takes 𝑂(𝑚

√
𝑛) time.

Let 𝐷3 := max𝑠∈𝑆𝑤,𝑡∈𝑇 𝑑(𝑠, 𝑡).

For every 𝑠 ∈ 𝑆𝑤, let 𝑡(𝑠) be the closest node of 𝑇 to 𝑠 (breaking ties arbitrarily). Run BFS

from each 𝑡(𝑠). Let 𝐷4 := max𝑠∈𝑆𝑤,𝑠′∈𝑆 𝑑(𝑠
′, 𝑡(𝑠)).

(Analysis Step 4): If 𝐷3 ≥ 3𝐷/5 or 𝐷4 ≥ 3𝐷/5, we are done, so let us assume that 𝐷3, 𝐷4 <

3𝐷/5. Since 𝐷3 < 3𝐷/5, and since 𝐷3 ≥ 𝑑(𝑤, 𝑡*), it must be that 𝑑(𝑤, 𝑡*) < 3𝐷/5. Let

𝑃𝑤𝑡* be the shortest 𝑤 to 𝑡* path. Consider the node 𝑏 on 𝑃𝑤𝑡* for which 𝑑(𝑤, 𝑏) = 2𝐷/5. If

𝑏 ∈ 𝑆, then since 𝐷′ ≥ 𝐷, 𝑏 ∈ 𝑆𝑤 and hence we ran BFS from 𝑡(𝑏). But since 𝑑(𝑏, 𝑡*) =

𝑑(𝑤, 𝑡*) − 2𝐷/5 < 𝐷/5, and 𝑑(𝑏, 𝑡(𝑏)) ≤ 𝑑(𝑏, 𝑡*) we have that 𝑑(𝑡(𝑏), 𝑡*) ≤ 2𝐷/5 and hence
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𝐷4 ≥ 𝑑(𝑠*, 𝑡(𝑏)) ≥ 𝐷 − 𝑑(𝑡(𝑏), 𝑡*) ≥ 3𝐷/5. Thus, if 𝐷4 < 3𝐷/5, it must be that 𝑏 ∈ 𝑇 .

(Algorithm Step 5): Take all nodes of 𝑇 at distance ≤ 𝐷′/5 from 𝑤, call these 𝑇𝑤 and run

BFS from them. Since 𝑑(𝑤,𝑋) > 𝐷′/5, whp |𝑇𝑤| ≤
√
𝑛, so this step runs in 𝑂(𝑚

√
𝑛) time. Let

𝐷5 = max𝑡∈𝑇𝑤,𝑠∈𝑆 𝑑(𝑡, 𝑠).

(Analysis Step 5): If 𝐷5 ≥ 3𝐷/5, we would be done, so assume that 𝐷5 < 3𝐷/5. Let 𝑎 be the

node on the shortest 𝑤 to 𝑡* path 𝑃𝑤𝑡* with 𝑑(𝑤, 𝑎) = 𝐷/5. Suppose that 𝑎 ∈ 𝑇 . Since 𝐷′ ≥ 𝐷,

𝑎 ∈ 𝑇𝑤 and we ran BFS from it. However, also 𝑑(𝑎, 𝑡*) = 𝑑(𝑤, 𝑡*) − 𝑑(𝑤, 𝑎) < 3𝐷/5 −𝐷/5 =

2𝐷/5, and hence 𝐷5 ≥ 𝑑(𝑎, 𝑠*) ≥ 𝑑(𝑡*, 𝑠*)− 𝑑(𝑡*, 𝑎) ≥ 𝐷 − 2𝐷/5 = 3𝐷/5. Since 𝐷5 < 3𝐷/5,

it must be that 𝑎 ∈ 𝑆.

Now, since 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑇 , somewhere on the 𝑎 to 𝑏 shortest path 𝑃𝑎𝑏, there must be an edge

(𝑠′, 𝑡′) with 𝑠′ ∈ 𝑆, 𝑡′ ∈ 𝑇 . Since 𝑠′ is before 𝑏, 𝑑(𝑤, 𝑠′) ≤ 2𝐷/5 ≤ 2𝐷′/5, and hence 𝑠′ ∈ 𝑆𝑤.

Thus we ran BFS from 𝑡(𝑠′). Since 𝑠′ has an edge to 𝑡′ ∈ 𝑇 , 𝑑(𝑠′, 𝑡(𝑠′)) ≤ 𝑑(𝑠′, 𝑡′) = 1. Also,

since 𝑑(𝑤, 𝑠′) ≥ 𝑑(𝑤, 𝑎) = 𝐷/5 and 𝑑(𝑤, 𝑡*) ≤ 3𝐷/5− 1, 𝑑(𝑠′, 𝑡*) ≤ 2𝐷/5− 1. Thus,

𝐷4 ≥ 𝑑(𝑡(𝑠′), 𝑠*) ≥ 𝑑(𝑠*, 𝑡*)−𝑑(𝑡(𝑠′), 𝑡*) ≥ 𝐷−𝑑(𝑡(𝑠′), 𝑠′)−𝑑(𝑠′, 𝑡*) ≥ 𝐷−1−2𝐷/5+1 = 3𝐷/5.

Hence if we set 𝐷′′ = max{𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5}, we get that 3𝐷/5 ≤ 𝐷′′ ≤ 𝐷. □

We now modify the algorithm for unweighted graphs, both making the algorithm work for

weighted graphs and removing the additive error, at the expense of increasing the runtime to

𝑂̃(𝑚3/2).

Theorem 6.1.7. There is an 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph 𝐺 = (𝑉,𝐸)

with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, can output an estimate 𝐷′ such that

3𝐷𝑆𝑇 (𝐺)/5 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 .

Proof. Suppose as before the (bichromatic) 𝑆𝑇 -Diameter endpoints are 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 and

that the 𝑆𝑇 -Diameter is 𝐷.

(Algorithm Modified Step 1): The algorithm here samples 𝐸 ′ ⊆ 𝐸 of size 𝑐
√
𝑚 ln𝑛 uni-

formly at random, for large enough 𝑐. Let 𝑍 be the endpoints of edges in 𝐸 ′ that are in 𝑆. For

every 𝑧 ∈ 𝑍, run Dijkstra’s algorithm, and let 𝐷1 = max𝑧∈𝑍,𝑡∈𝑇 𝑑(𝑧, 𝑡).
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(Analysis Step 1): If for some 𝑠′ ∈ 𝑍 we have that 𝑑(𝑠*, 𝑠′) ≤ 2𝐷/5, then 𝐷1 ≥ 𝑑(𝑠′, 𝑡*) ≥

𝐷 − 𝑑(𝑠*, 𝑠′) ≥ 3𝐷/5. Let us then assume that 𝑑(𝑠*, 𝑍) > 2𝐷/5.

(Algorithm Modified Step 2): Let 𝑋 be the endpoints of edges in 𝐸 ′ that are in 𝑇 . For every

𝑡 ∈ 𝑋 , run Dijkstra’s algorithm and find the closest node 𝑠(𝑡) of 𝑆 to 𝑡. Run Dijkstra’s algorithm

from every 𝑠(𝑡). Let 𝐷2 = max𝑡∈𝑋,𝑡′∈𝑇 𝑑(𝑠(𝑡), 𝑡′).

(Analysis Step 2): If 𝑠* is at distance≤ 𝐷/5 from some node 𝑡 of 𝑋 , then 𝑑(𝑠*, 𝑠(𝑡)) ≤ 2𝐷/5

(since 𝑠(𝑡) is closer to 𝑡 than 𝑠*), and so 𝐷2 ≥ 𝑑(𝑠(𝑡), 𝑡*) ≥ 3𝐷/5. Let us then assume that

𝑑(𝑠*, 𝑋) > 𝐷/5.

As before, if we consider the nodes 𝑀 of 𝑆 that are at distance > 2𝐷/5 from 𝑍, then the node

𝑤 ∈ 𝑀 that is furthest from 𝑋 among all nodes of 𝑀 , would have both 𝑑(𝑤,𝑍) > 2𝐷/5 and

𝑑(𝑤,𝑋) > 𝐷/5, as 𝑠* is in 𝑀 and satisfies 𝑑(𝑠*, 𝑋) > 𝐷/5. We will find a node 𝑤 with these

properties in the next step.

(Algorithm Unmodified Step 3): Perform exactly the same Step 3 as before, finding the largest

integer 𝐷′ such that there is some node 𝑤 ∈ 𝑆 with 𝑑(𝑤,𝑍) > 2𝐷′/5 and 𝑑(𝑤,𝑋) > 𝐷′/5.

(Analysis Step 3): Let 𝑤 ∈ 𝑆 be the node we found such that 𝑑(𝑤,𝑋) > 𝐷′/5, 𝑑(𝑤,𝑍) >

2𝐷′/5. By Lemma 6.1.3 we have that whp, the number of edges (𝑠, 𝑔) where 𝑠 ∈ 𝑆, 𝑔 ∈ 𝑉 and

𝑑(𝑤, 𝑠) ≤ 2𝐷′/5 and the number of edges (𝑡, 𝑔′) where 𝑡 ∈ 𝑇, 𝑔′ ∈ 𝑉 and 𝑑(𝑤, 𝑡) ≤ 𝐷′/5 is

at most
√
𝑚. Also, if 𝐷1, 𝐷2 < 3𝐷/5, then 𝐷′ ≥ 𝐷, so that we also have that the number of

edges (𝑠, 𝑏) where 𝑠 ∈ 𝑆 and 𝑑(𝑤, 𝑠) ≤ 2𝐷/5 and the number of edges (𝑡, 𝑏′) where 𝑡 ∈ 𝑇 and

𝑑(𝑤, 𝑡) ≤ 𝐷/5 is at most
√
𝑚, whp.

(Algorithm Modified Step 4): Run Dijkstra’s algorithm from 𝑤. Take all edges incident to

nodes of 𝑆 at dist ≤ 2𝐷′/5 from 𝑤. Call these edges 𝐸𝑆 and their endpoints 𝑆𝑤. Run Dijkstra’s

algorithm from both of their end points. Whp, |𝐸𝑆| ≤
√
𝑚 and so |𝑆𝑤| ≤ 2

√
𝑚, so that this

Dijkstra run takes 𝑂̃(𝑚3/2) time. Let 𝐷3 := max𝑡∈𝑆𝑤∩𝑇,𝑠∈𝑆 𝑑(𝑠, 𝑡).

For every 𝑠 ∈ 𝑆𝑤 ∩ 𝑆, determine a closest node 𝑡(𝑠) ∈ 𝑇 to 𝑠, and run Dijkstra’s algorithm

from 𝑡(𝑠) as well. This search also takes 𝑂(𝑚3/2) time. Let 𝐷4 := max𝑠∈𝑆𝑤∩𝑆,𝑠′∈𝑆 𝑑(𝑠
′, 𝑡(𝑠)).

(Analysis Step 4): If 𝑑(𝑤, 𝑡*) ≥ 3𝐷/5, or 𝐷3 ≥ 3𝐷/5 or 𝐷4 ≥ 3𝐷/5, we are done, so let us

assume that 𝑑(𝑤, 𝑡*), 𝐷3, 𝐷4 < 3𝐷/5.
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Now consider the node 𝑏 on the shortest 𝑤 to 𝑡* path 𝑃𝑤𝑡* for which 𝑑(𝑤, 𝑏) ≤ 2𝐷/5, but such

that the node 𝑏′ after it on 𝑃𝑤𝑡* has 𝑑(𝑤, 𝑏′) > 2𝐷/5.

Suppose that 𝑏 ∈ 𝑆. Then since 𝐷′ ≥ 𝐷, we have 𝑑(𝑤, 𝑏) ≤ 2𝐷′/5 and hence (𝑏, 𝑏′) ∈ 𝐸𝑆 . Let

us consider 𝑑(𝑏′, 𝑡*) = 𝑑(𝑤, 𝑡*)−𝑑(𝑏′, 𝑤). Since 𝑑(𝑤, 𝑡*) < 3𝐷/5 and 𝑑(𝑏′, 𝑤) > 2𝐷/5, 𝑑(𝑏′, 𝑡*) <

𝐷/5. If 𝑏′ ∈ 𝑇 , then since we ran Dijkstra’s algorithm from 𝑏′, we got 𝐷3 ≥ 𝐷 −𝐷/5 = 4𝐷/5.

If 𝑏′ ∈ 𝑆, then we ran Dijkstra’s algorithm from 𝑡(𝑏′) and 𝑑(𝑡(𝑏′), 𝑡*) ≤ 𝑑(𝑡(𝑏′), 𝑏′) + 𝑑(𝑏′, 𝑡*) ≤

2𝑑(𝑏′, 𝑡*) < 2𝐷/5, and hence 𝐷4 ≥ 𝑑(𝑡(𝑏), 𝑠*) ≥ 𝐷 − 2𝐷/5 = 3𝐷/5. Thus if neither 𝑑(𝑤, 𝑡*),

𝐷3, nor 𝐷4 are good approximations, then 𝑏 ∈ 𝑇 .

(Algorithm Modified Step 5): Take all edges incident to nodes of 𝑇 at dist ≤ 𝐷′/5 from 𝑤.

Call these edges 𝐸𝑇 and their endpoints that are in 𝑇 , 𝑇𝑤. Run Dijkstra’s algorithm from all nodes

in 𝑇𝑤.

Since 𝑑(𝑤,𝑋) > 𝐷′/5, whp |𝑇𝑤| ≤ 2
√
𝑚, so this step runs in 𝑂(𝑚3/2) time. Let 𝐷5 =

max𝑡∈𝑇𝑤,𝑠∈𝑆 𝑑(𝑡, 𝑠).

(Analysis Step 5): If 𝐷5 ≥ 3𝐷/5, we would be done, so assume that 𝐷5 < 3𝐷/5. Let 𝑎 be

the node on 𝑃𝑤𝑡* with 𝑑(𝑤, 𝑎) ≤ 𝐷/5 but so that the node 𝑎′ after 𝑎 on 𝑃𝑤𝑡* has 𝑑(𝑤, 𝑎′) > 𝐷/5.

Suppose that 𝑎′ ∈ 𝑇 . Since 𝐷′ ≥ 𝐷, (𝑎, 𝑎′) ∈ 𝐸𝑇 , 𝑎′ ∈ 𝑇𝑤 and we ran Dijkstra’s algorithm

from 𝑎′. However, also 𝑑(𝑎′, 𝑡*) = 𝑑(𝑤, 𝑡*) − 𝑑(𝑤, 𝑎′) < 3𝐷/5 − 𝐷/5 = 2𝐷/5, and hence

𝐷5 ≥ 𝑑(𝑎, 𝑠*) ≥ 𝑑(𝑡*, 𝑠*) − 𝑑(𝑡*, 𝑎′) ≥ 𝐷 − 2𝐷/5 = 3𝐷/5. Since 𝐷5 < 3𝐷/5, it must be that

𝑎′ ∈ 𝑆.

Now, since 𝑎′ ∈ 𝑆 and 𝑏 ∈ 𝑇 , somewhere on the 𝑎′ to 𝑏 shortest path 𝑃𝑎𝑏, there must be

an edge (𝑠′, 𝑡′) with 𝑠′ ∈ 𝑆, 𝑡′ ∈ 𝑇 . However, since 𝑠′ is before 𝑏, we have that 𝑑(𝑤, 𝑠′) ≤

𝑑(𝑤, 𝑏) ≤ 2𝐷/5 ≤ 2𝐷′/5. Thus, (𝑠′, 𝑡′) ∈ 𝐸𝑆 and we ran Dijkstra’s algorithm from 𝑡′. However,

𝑑(𝑡′, 𝑡*) = 𝑑(𝑤, 𝑡*) − 𝑑(𝑤, 𝑡′) ≤ 𝑑(𝑤, 𝑡*) − 𝑑(𝑤, 𝑎′) < 3𝐷/5 − 𝐷/5 = 2𝐷/5, and hence 𝐷3 ≥

𝑑(𝑡′, 𝑠*) ≥ 𝑑(𝑠*, 𝑡*)− 𝑑(𝑡′, 𝑡*) > 3𝐷/5.

Hence if we set 𝐷′′ = max{𝑑(𝑤, 𝑡*), 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5}, we get that 3𝐷/5 ≤ 𝐷′′ ≤ 𝐷. □

Undirected Bichromatic Radius

We begin with a simple near-linear time algorithm that achieves almost a 2-approximation.

Theorem 6.1.8. Let 𝐺 = (𝑉,𝐸) be an undirected graph with nonnegative edge weights 𝑤. Let
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𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆. There is an 𝑂(𝑚 + 𝑛 log 𝑛) time algorithm that outputs an estimate 𝑅′ such

that 𝑅𝑆𝑇 ≤ 𝑅′ ≤ 2𝑅𝑆𝑇 + min𝑠∈𝑆,𝑡∈𝑇,(𝑠,𝑡)∈𝐸 𝑤(𝑠, 𝑡). If 𝐺 is unweighted, the algorithm runs in

𝑂(𝑚+ 𝑛) time and 𝑅𝑆𝑇 ≤ 𝑅′ ≤ 2𝑅𝑆𝑇 + 1.

Proof. The algorithm is as follows. Let (𝑠, 𝑡) ∈ 𝐸 be the smallest weight edge among those with

𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . Run Dijkstra’s algorithm from 𝑠 and output 𝑅′ = max𝑡′∈𝑇 𝑑(𝑠, 𝑡′).

Clearly 𝑅𝑆𝑇 ≤ 𝑅′. Let 𝑠* ∈ 𝑆 be the true 𝑆𝑇 -center. Then for all 𝑡′ ∈ 𝑇 , 𝑑(𝑠, 𝑡′) ≤

𝑑(𝑠, 𝑠*) + 𝑅𝑆𝑇 . On the other hand, 𝑑(𝑠, 𝑠*) ≤ 𝑤(𝑠, 𝑡) + 𝑑(𝑡, 𝑠*) ≤ 𝑤(𝑠, 𝑡) + 𝑅𝑆𝑇 , and hence

𝑅′ ≤ 𝑤(𝑠, 𝑡) + 2𝑅𝑆𝑇 .

For unweighted graphs, 𝑤(𝑠, 𝑡) = 1 and we can run BFS instead of Dijkstra’s algorithm. □

We now present a 𝑂̃(𝑚
√
𝑛) algorithm for Bichromatic Radius, similar in spirit to our Bichro-

matic Diameter algorithm.

Theorem 6.1.9. There is an 𝑂̃(𝑚
√
𝑛) time algorithm, that given an undirected unweighted graph

𝐺 = (𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, can output estimates 𝑅′𝑆𝑇 such that 𝑅𝑆𝑇 ≤ 𝑅′𝑆𝑇 ≤ 5𝑅𝑆𝑇/3+

5/3. If 𝑅𝑆𝑇 is divisible by 3, 𝑅𝑆𝑇 ≤ 𝑅′𝑆𝑇 ≤ 5𝑅𝑆𝑇/3 + 1.

Proof. Let 𝑠* ∈ 𝑆 be the 𝑆𝑇 -center of 𝐺 and let 𝑅 = 𝑅𝑆𝑇 be the 𝑆𝑇 -Radius.

(Algorithm Step 1): The algorithm samples 𝑆1 ⊆ 𝑆 of size 𝑐
√
𝑛 ln𝑛 uniformly at random.

For every 𝑠 ∈ 𝑆1, run BFS and find 𝑡(𝑠) ∈ 𝑇 which is closest to 𝑠. Let 𝑇2 = {𝑡(𝑠) | 𝑠 ∈ 𝑆1}.

Then sample 𝑇1 ⊆ 𝑇 of size 𝑐
√
𝑛 ln𝑛 uniformly at random. For every 𝑡 ∈ 𝑇1, run BFS and

find 𝑠(𝑡) ∈ 𝑆 which is closest to 𝑡. Let 𝑆2 = {𝑠(𝑡) | 𝑡 ∈ 𝑇1}.

Let 𝑠0 ∈ 𝑆 be the node minimizing max𝑡∈𝑇1∪𝑇2 𝑑(𝑠0, 𝑡). Let 𝑅1 = max𝑡∈𝑇 𝑑(𝑠0, 𝑡). Let 𝑤 ∈ 𝑇

be the node maximizing 𝑑(𝑤, 𝑇1 ∪ 𝑇2).

(Analysis Step 1): We know that max𝑡∈𝑇1∪𝑇2 𝑑(𝑠
*, 𝑡) ≤ 𝑅, and hence max𝑡∈𝑇1∪𝑇2 𝑑(𝑠0, 𝑡) ≤ 𝑅.

Suppose that for every 𝑡 ∈ 𝑇 , 𝑑(𝑡, 𝑇1 ∪ 𝑇2) ≤ 2𝑅/3. Then, 𝑑(𝑠0, 𝑡) ≤ 𝑅 + 2𝑅/3 = 5𝑅/3 and

hence 𝑅1 ≤ 5𝑅/3 and 𝑠0 would be a good approximate center. Thus, we can assume that there

exists some 𝑡 with 𝑑(𝑡, 𝑇1 ∪ 𝑇2) > 2𝑅/3, and in particular, 𝑑(𝑤, 𝑇1 ∪ 𝑇2) > 2𝑅/3.

Moreover, suppose that there is some 𝑠 ∈ 𝑆1 such that 𝑑(𝑤, 𝑠) ≤ 𝑅/3. Then, 𝑑(𝑤, 𝑡(𝑠)) ≤

𝑑(𝑤, 𝑠) + 𝑑(𝑠, 𝑡(𝑠)) ≤ 2𝑑(𝑤, 𝑠) ≤ 2𝑅/3, contradicting the fact that 𝑑(𝑤, 𝑇1 ∪ 𝑇2) > 2𝑅/3. Thus,

we must have that 𝑑(𝑤, 𝑆1) > 𝑅/3.

163



Now, since 𝑇1 is random of size 𝑐
√
𝑛 ln𝑛, by Lemma 6.1.2, the number of nodes of 𝑇 at

distance ≤ 2𝑅/3 from 𝑤 is at most
√
𝑛, whp. Similarly, since 𝑆1 is random of size 𝑐

√
𝑛 ln𝑛, by

Lemma 6.1.2, the number of nodes of 𝑆 at distance ≤ 𝑅/3 from 𝑤 is at most
√
𝑛, whp.

(Algorithm Step 2): Run BFS from 𝑤. Take the closest
√
𝑛 nodes 𝑇𝑤 of 𝑇 at distance from

𝑤. Run BFS from all 𝑡 ∈ 𝑇𝑤, and find 𝑠(𝑡) ∈ 𝑆 closest to 𝑡. Run BFS from each 𝑠(𝑡).

Let 𝑅2 := min𝑡′∈𝑇𝑤 max𝑡∈𝑇 𝑑(𝑠(𝑡′), 𝑡).

(Analysis Step 2): Since |𝑇𝑤| ≤
√
𝑛, the runtime of this step is 𝑂(𝑚

√
𝑛).

Since 𝑤 ∈ 𝑇 , we know that 𝑑(𝑤, 𝑠*) ≤ 𝑅. Now consider the node 𝑏 on the shortest 𝑤 to 𝑠*

path 𝑃𝑤𝑠* for which 𝑑(𝑤, 𝑏) ≤ 2𝑅/3, but such that the node 𝑏′ after it on 𝑃𝑤𝑡* has 𝑑(𝑤, 𝑏′) > 2𝑅/3.

Since the graph is unweighted, we get that 𝑑(𝑤, 𝑏) = ⌊2𝑅/3⌋ ≥ 2𝑅/3− 2/3.

Let us consider 𝑑(𝑏, 𝑠*) = 𝑑(𝑤, 𝑠*)− 𝑑(𝑤, 𝑏). Since 𝑑(𝑤, 𝑠*) ≤ 𝑅 and 𝑑(𝑤, 𝑏) ≥ 2𝑅/3− 2/3,

𝑑(𝑏, 𝑠*) ≤ 𝑅/3 + 2/3.

Suppose that 𝑏 ∈ 𝑇 . By our previous argument, as 𝑑(𝑤, 𝑏) ≤ 2𝑅/3, 𝑏 must be in 𝑇𝑤. Then we

ran BFS from 𝑠(𝑏) and 𝑑(𝑠(𝑏), 𝑠*) ≤ 𝑑(𝑠(𝑏), 𝑏) + 𝑑(𝑏, 𝑠*) ≤ 2𝑑(𝑏, 𝑠*) ≤ 2𝑅/3 + 4/3, and hence

𝑅2 ≤ 2𝑅/3 +𝑅 + 4/3 = 5𝑅/3 + 4/3. Thus if 𝑅2 is not a good approximation, then 𝑏 ∈ 𝑆.

(Algorithm Step 3): Take the
√
𝑛 closest nodes of 𝑆 to 𝑤. Call these 𝑆𝑤. Run BFS from every

𝑠 ∈ 𝑆𝑤. Set 𝑅3 := min𝑠∈𝑆𝑤 max𝑡∈𝑇 𝑑(𝑠, 𝑡).

(Analysis Step 3): Since |𝑆𝑤| ≤
√
𝑛, the runtime of this step is 𝑂(𝑚

√
𝑛).

Let 𝑎 be the node on 𝑃𝑤𝑠* with 𝑑(𝑤, 𝑎) ≤ 𝑅/3 but so that the node 𝑎′ after 𝑎 on 𝑃𝑤𝑠* has

𝑑(𝑤, 𝑎′) > 𝑅/3. We have that 𝑑(𝑤, 𝑎) = ⌊𝑅/3⌋ ≥ 𝑅/3− 2/3.

Suppose that 𝑎 ∈ 𝑆. As 𝑑(𝑤, 𝑎) ≤ 𝑅/3 and 𝑎 is among the closest
√
𝑛 nodes to 𝑤 by our

previous argument, we ran BFS from 𝑎.

However, also 𝑑(𝑎, 𝑠*) = 𝑑(𝑤, 𝑠*) − 𝑑(𝑤, 𝑎) ≤ 𝑅 − 𝑅/3 + 2/3 = 2𝑅/3 + 2/3, and hence

𝑅3 ≤ 2𝑅/3 +𝑅 + 2/3 = 5𝑅/3 + 2/3. If 𝑅3 is not a good approximation, it must be that 𝑎 ∈ 𝑇 .

Now, since 𝑎 ∈ 𝑇 and 𝑏 ∈ 𝑆, somewhere on the 𝑎 to 𝑏 shortest path 𝑃𝑎𝑏, there must be an edge

(𝑡′, 𝑠′) with 𝑠′ ∈ 𝑆, 𝑡′ ∈ 𝑇 . However, since 𝑡′ is before 𝑏, we have that 𝑑(𝑤, 𝑡′) ≤ 𝑑(𝑤, 𝑏) ≤ 2𝑅/3.

Thus, 𝑡′ ∈ 𝑇𝑤 and we ran BFS from 𝑠(𝑡′). However, 𝑑(𝑡′, 𝑠(𝑡′)) ≤ 𝑑(𝑡′, 𝑠′) = 1, and hence

𝑑(𝑠(𝑡′), 𝑠*) ≤ 𝑑(𝑠(𝑡′), 𝑡′) + 𝑑(𝑡′, 𝑠*) ≤ 1 + 𝑑(𝑤, 𝑠*)− 𝑑(𝑤, 𝑡′) ≤ 1 +𝑅− 𝑑(𝑤, 𝑎) = 2𝑅/3 + 5/3.
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Hence for every 𝑡 ∈ 𝑇 , 𝑑(𝑠(𝑡′), 𝑡) ≤ 5𝑅/3+5/3. If 𝑅 is divisible by 3, the only source of additive

error is the +1 from using the edge (𝑡′, 𝑠(𝑡′)) instead of (𝑡′, 𝑠′).

Hence if we set 𝑅′ = min{𝑅1, 𝑅2, 𝑅3}, we have 𝑅 ≤ 𝑅′ ≤ 5𝑅/3 + 5/3. If 𝑅 is divisible by

3, 𝑅 ≤ 𝑅′ ≤ 5𝑅/3 + 1. □

We now use edge sampling to remove the additive error and make the algorithm work for

weighted graphs as well, at the expense of increasing the runtime to 𝑂̃(𝑚3/2).

Theorem 6.1.10. There is an 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph 𝐺 = (𝑉,𝐸)

with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, can output estimates 𝑅′𝑆𝑇 such that

𝑅𝑆𝑇 ≤ 𝑅′𝑆𝑇 ≤ 5𝑅𝑆𝑇/3.

Proof. Let 𝑠* ∈ 𝑆 be the 𝑆𝑇 -center of 𝐺 and let 𝑅 = 𝑅𝑆𝑇 be the 𝑆𝑇 -Radius.

(Algorithm Step 1): We sample 𝑐
√
𝑚 ln𝑛 edges 𝐸 ′ ⊆ 𝐸 uniformly at random. Let 𝑆1 be the

endpoints that are in 𝑆 and let 𝑇1 be the endpoints in 𝑇 . For every 𝑠 ∈ 𝑆1, run Dijkstra and find

𝑡(𝑠) ∈ 𝑇 which is closest to 𝑠. Let 𝑇2 = {𝑡(𝑠) | 𝑠 ∈ 𝑆1}.

For every 𝑡 ∈ 𝑇1, run Dijkstra and find 𝑠(𝑡) ∈ 𝑆 which is closest to 𝑡. Let 𝑆2 = {𝑠(𝑡) | 𝑡 ∈ 𝑇1}.

Let 𝑠0 ∈ 𝑆 be the node minimizing max𝑡∈𝑇1∪𝑇2 𝑑(𝑠0, 𝑡). Run Dijkstra from 𝑠0. Let 𝑅1 =

max𝑡∈𝑇 𝑑(𝑠0, 𝑡). Let 𝑤 ∈ 𝑇 be the node maximizing 𝑑(𝑤, 𝑇1 ∪ 𝑇2).

(Analysis Step 1): The algorithm runs in 𝑂̃(𝑚3/2) time.

We know that max𝑡∈𝑇1∪𝑇2 𝑑(𝑠
*, 𝑡) ≤ 𝑅, and hence max𝑡∈𝑇1∪𝑇2 𝑑(𝑠0, 𝑡) ≤ 𝑅.

Suppose that for every 𝑡 ∈ 𝑇 , 𝑑(𝑡, 𝑇1 ∪ 𝑇2) ≤ 2𝑅/3. Then, 𝑑(𝑠0, 𝑡) ≤ 𝑅 + 2𝑅/3 = 5𝑅/3 and

hence 𝑅1 ≤ 5𝑅/3 and 𝑠0 would be a good approximate center. Thus, we can assume that there

exists some 𝑡 with 𝑑(𝑡, 𝑇1 ∪ 𝑇2) > 2𝑅/3, and in particular, 𝑑(𝑤, 𝑇1 ∪ 𝑇2) > 2𝑅/3.

Moreover, suppose that there is some 𝑠 ∈ 𝑆1 such that 𝑑(𝑤, 𝑠) ≤ 𝑅/3. Then, 𝑑(𝑤, 𝑡(𝑠)) ≤

𝑑(𝑤, 𝑠) + 𝑑(𝑠, 𝑡(𝑠)) ≤ 2𝑑(𝑤, 𝑠) ≤ 2𝑅/3, contradicting the fact that 𝑑(𝑤, 𝑇1 ∪ 𝑇2) > 2𝑅/3. Thus,

we must have that 𝑑(𝑤, 𝑆1) > 𝑅/3.

Now, since 𝐸 ′ is random of size 𝑐
√
𝑚 ln𝑛, by Lemma 6.1.3, the number of edges (𝑡, 𝑔) where

𝑡 ∈ 𝑇, 𝑔 ∈ 𝑉 and 𝑑(𝑤, 𝑡) ≤ 2𝑅/3 is at most
√
𝑚, whp. Similarly, the number of edges (𝑠, 𝑔)

where 𝑠 ∈ 𝑆, 𝑔 ∈ 𝑉 and 𝑑(𝑠, 𝑤) ≤ 𝑅/3 is at most
√
𝑚, whp.
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(Algorithm Step 2): Run Dijkstra from 𝑤. Consider the edges (𝑡, 𝑏) with 𝑡 ∈ 𝑇 sorted in

nondecreasing order according to 𝑑(𝑤, 𝑡). Let 𝐸𝑇 be the first
√
𝑚 edges in this sorted order. Run

Dijkstra from both endpoints of each edge in 𝐸𝑇 . Call 𝑇𝑤 those endpoints that are in 𝑇 and 𝑆1
𝑤

those in 𝑆. Let 𝑅2 := min𝑠∈𝑆1
𝑤
max𝑡∈𝑇 𝑑(𝑠, 𝑡).

For every 𝑡 ∈ 𝑇𝑤, determine a closest node 𝑠(𝑡) ∈ 𝑇 to 𝑡, and run Dijkstra’s algorithm from

𝑠(𝑡) as well. Let 𝑅3 := min𝑡∈𝑇𝑤 max𝑡′∈𝑇 𝑑(𝑠(𝑡), 𝑡′).

(Analysis Step 2): Since |𝐸𝑇 | ≤
√
𝑚, the runtime of this step is 𝑂̃(𝑚3/2).

If 𝑅2 ≤ 5𝑅/3 or 𝑅3 ≤ 5𝑅/3, we are done. So let us assume that 𝑅2, 𝑅3 > 5𝑅/3. Also, since

𝑤 ∈ 𝑇 , we know that 𝑑(𝑤, 𝑠*) ≤ 𝑅.

Now consider the node 𝑏 on the shortest 𝑤 to 𝑠* path 𝑃𝑤𝑠* for which 𝑑(𝑤, 𝑏) ≤ 2𝑅/3, but such

that the node 𝑏′ after it on 𝑃𝑤𝑠* has 𝑑(𝑤, 𝑏′) > 2𝑅/3.

Suppose that 𝑏 ∈ 𝑇 . Then since 𝑑(𝑤, 𝑏) ≤ 2𝑅/3 and since by the previous argument the edges

from 𝑇 nodes at distance 2𝑅/3 from 𝑤 is at most
√
𝑚, (𝑏, 𝑏′) must be among the edges in 𝐸𝑇 . We

thus run Dijkstra’s from both 𝑏 and 𝑏′.

Let us consider 𝑑(𝑏′, 𝑠*) = 𝑑(𝑤, 𝑠*) − 𝑑(𝑤, 𝑏′). Since 𝑑(𝑤, 𝑠*) ≤ 𝑅 and 𝑑(𝑤, 𝑏′) > 2𝑅/3,

𝑑(𝑏′, 𝑠*) < 𝑅/3. If 𝑏′ ∈ 𝑆, then since we ran Dijkstra’s algorithm from 𝑏′, we got 𝑅2 ≤ 4𝑅/3.

If 𝑏′ ∈ 𝑇 , then we ran Dijkstra’s algorithm from 𝑠(𝑏′) and 𝑑(𝑠(𝑏′), 𝑠*) ≤ 𝑑(𝑠(𝑏′), 𝑏′) + 𝑑(𝑏′, 𝑠*) ≤

2𝑑(𝑏′, 𝑠*) < 2𝑅/3, and hence 𝑅3 ≤ 2𝑅/3 + 𝑅 = 5𝑅/3. Thus if neither 𝑅2, nor 𝑅3 are good

approximations, then 𝑏 ∈ 𝑆.

(Algorithm Step 3): Consider the edges (𝑠, 𝑏) with 𝑠 ∈ 𝑆 sorted in nondecreasing or-

der according to 𝑑(𝑤, 𝑠). Let 𝐸𝑆 be the first
√
𝑚 edges in this sorted order. Run Dijk-

stra from both endpoints of each edge in 𝐸𝑆 . Call 𝑆2
𝑤 those endpoints that are in 𝑆. Let

𝑅4 := min𝑠∈𝑆2
𝑤
max𝑡∈𝑇 𝑑(𝑠, 𝑡).

(Analysis Step 3): As |𝐸𝑆| =
√
𝑚, |𝑆𝑤| ≤ 2

√
𝑚, so this step runs in 𝑂̃(𝑚3/2) time.

If 𝑅4 ≤ 5𝑅/3, we would be done, so assume that 𝑅4 > 5𝑅/3. Let 𝑎 be the node on 𝑃𝑤𝑠*

with 𝑑(𝑤, 𝑎) ≤ 𝑅/3 but so that the node 𝑎′ after 𝑎 on 𝑃𝑤𝑠* has 𝑑(𝑤, 𝑎′) > 𝑅/3. Suppose that

𝑎′ ∈ 𝑆. Then since 𝑑(𝑤, 𝑎) ≤ 𝑅/3, (𝑎, 𝑎′) ∈ 𝐸𝑆 , 𝑎′ ∈ 𝑆2
𝑤 and we ran Dijkstra’s algorithm from 𝑎′.

However, also 𝑑(𝑎′, 𝑠*) = 𝑑(𝑤, 𝑠*)− 𝑑(𝑤, 𝑎′) < 𝑅−𝑅/3 = 2𝑅/3, and hence 𝑅4 ≤ 2𝑅/3 +𝑅 =
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5𝑅/3. Since 𝑅4 > 5𝑅/3, it must be that 𝑎′ ∈ 𝑇 .

Now, since 𝑎′ ∈ 𝑇 and 𝑏 ∈ 𝑆, somewhere on the 𝑎′ to 𝑏 shortest path 𝑃𝑎𝑏, there must be an edge

(𝑡′, 𝑠′) with 𝑠′ ∈ 𝑆, 𝑡′ ∈ 𝑇 . However, since 𝑡′ is before 𝑏, we have that 𝑑(𝑤, 𝑡′) ≤ 𝑑(𝑤, 𝑏) ≤ 2𝑅/3.

Thus, (𝑡′, 𝑠′) ∈ 𝐸𝑇 and we ran Dijkstra’s algorithm from 𝑠′. However, 𝑑(𝑠′, 𝑠*) = 𝑑(𝑤, 𝑠*) −

𝑑(𝑤, 𝑠′) ≤ 𝑑(𝑤, 𝑠*)− 𝑑(𝑤, 𝑎′) < 𝑅−𝑅/3 = 2𝑅/3, and hence 𝑅2 ≤ 𝑅 + 2𝑅/3 = 5𝑅/3.

Hence if we set 𝑅′ = min{𝑅1, 𝑅2, 𝑅3, 𝑅4}, we have 𝑅 ≤ 𝑅′ ≤ 5𝑅/3 □

Undirected Bichromatic Eccentricities.

In the next section we will give approximation algorithms for 𝑆𝑇 -Eccentricities in undirected

graphs which imply algorithms for bichromatic Eccentricities in undirected graphs with same guar-

antees. We reproduce them here for convenience.

Proposition 2. There is an 𝑂(𝑚 + 𝑛 log 𝑛) time algorithm, that given an undirected graph 𝐺 =

(𝑉,𝐸) with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate

𝜀′𝑆𝑇 (𝑣) for each node 𝑣 ∈ 𝑆 such that 𝜀𝑆𝑇 (𝑣)/3 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣).

Theorem 6.1.11. There is an 𝑂̃(𝑚
√
𝑛) time algorithm, that given an unweighted graph 𝐺 =

(𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, can output an estimate 𝜀′𝑆𝑇 (𝑣) for each 𝑣 ∈ 𝑆 such that 𝜀𝑆𝑇 (𝑣)/2−

5/2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣). If 𝜀𝑆𝑇 (𝑣) is divisible by 2, 𝜀𝑆𝑇 (𝑣)/2− 2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣).

Theorem 6.1.12. There is an 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph 𝐺 = (𝑉,𝐸)

with nonnegative integer edge weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output estimates 𝜀′𝑆𝑇 (𝑣) for

each 𝑣 ∈ 𝑆, such that 𝜀𝑆𝑇 (𝑣)/2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣).

Directed Bichromatic Diameter

Theorem 6.1.13. There is an 𝑂̃(𝑚3/2) time algorithm, that given a directed graph 𝐺 = (𝑉,𝐸)

with nonnegative integer weights and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, can output an estimate 𝐷′ such that

𝐷𝑆𝑇 (𝐺)/2 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺).

Proof. Suppose the (bichromatic) 𝑆𝑇 -Diameter endpoints are 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 and that the

𝑆𝑇 -Diameter is 𝐷. The algorithm does not know 𝐷, but we will use it in the analysis.
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(Algorithm Step 1): The algorithm first samples 𝐸 ′ ⊆ 𝐸 of size 𝑐
√
𝑚 ln𝑚 for large enough 𝑐

uniformly at random from the edges which go from 𝑆 to 𝑇 . Let 𝑅 be the set of 𝑆 nodes incident

to these edges. Define 𝐷1 = max𝑢∈𝑅,𝑡∈𝑇 𝑑(𝑢, 𝑡).

(Analysis Step 1): If there exists an 𝑠 ∈ 𝑅 with 𝑑(𝑠*, 𝑠) ≤ 𝐷/2 then we are done as by triangle

inequality 𝐷1 ≥ 𝑑(𝑠, 𝑡*) ≥ 𝑑(𝑠*, 𝑡*)− 𝑑(𝑠*, 𝑠) ≥ 𝐷/2.

(Algorithm Step 2): Let 𝑤 be the vertex in 𝑆 which maximizes 𝑑(𝑤,𝑅). Defining the distance

to an edge (𝑢, 𝑣) to be distance to 𝑢 we find the
√
𝑚 closest edges to 𝑤 which cross from 𝑆

to 𝑇 . Let 𝑃 be the set of 𝑇 nodes incident to these edges. Let 𝐷2 = max𝑠∈𝑆,𝑣∈𝑃 𝑑(𝑠, 𝑣) and

𝐷3 = max𝑡∈𝑇 𝑑(𝑤, 𝑡). Our estimate is 𝐷′ = max(𝐷1, 𝐷2, 𝐷3).

(Analysis Step 2): Note that all 3 estimates are underestimates so we will just bound 𝐷′ from

below. Suppose 𝐷3 ≥ 𝐷/2 then we are already done. So we can assume that 𝑑(𝑤, 𝑡*) < 𝐷/2.

Let (𝑠, 𝑡) be the first edge going from 𝑆 to 𝑇 in the shortest path from 𝑤 to 𝑡*. If 𝐷1 < 𝐷/2

then by Lemma 6.1.3, this edge is among the
√
𝑚 closest edges to 𝑤. Hence 𝐷2 ≥ 𝑑(𝑠*, 𝑡) ≥

𝑑(𝑠*, 𝑡*)− 𝑑(𝑡, 𝑡*) ≥ 𝐷 − 𝑑(𝑡, 𝑡*) ≥ 𝐷 − 𝑑(𝑤, 𝑡*) ≥ 𝐷/2 □

6.1.4 Algorithms for 𝑆𝑇 -Eccentricities and Radius

All of the algorithms in this section are for undirected graphs; we later prove that the directed

versions of these problems do not admit truly subquadratic algorithms with any finite approxima-

tion factor.

We do not give algorithms for 𝑆𝑇 -Diameter, as tight algorithms were already given

in [BRS+18].

𝑆𝑇 -Eccentricities

We begin with a near-linear time 3-approximation algorithm.

Proposition 3. There is an 𝑂(𝑚 + 𝑛 log 𝑛) time algorithm, that given an undirected graph 𝐺 =

(𝑉,𝐸) with nonnegative integer edge weights and 𝑆, 𝑇 ⊆ 𝑉 , can output an estimate 𝜀′𝑆𝑇 (𝑣) for

each node 𝑣 ∈ 𝑆 such that 𝜀𝑆𝑇 (𝑣)/3 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣).

Proof. The algorithm is as follows. Pick an arbitrary node 𝑡 ∈ 𝑇 and run Dijkstra’s algorithm from

it. Let 𝑡′ be a node in 𝑇 maximizing 𝑑(𝑡′, 𝑡), and run Dijkstra’s algorithm from 𝑡′. For each 𝑣 ∈ 𝑆,

168



output 𝜀′𝑆𝑇 (𝑣) = max{𝑑(𝑣, 𝑡), 𝑑(𝑣, 𝑡′)}.

Clearly 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣). Now suppose that 𝑣′ ∈ 𝑇 is the farthest node from 𝑣 in 𝑇 . So we have

𝜀𝑆𝑇 (𝑣) = 𝑑(𝑣, 𝑣′) ≤ 𝑑(𝑣, 𝑡) + 𝑑(𝑡, 𝑣′) ≤ 𝑑(𝑣, 𝑡) + 𝑑(𝑡, 𝑡′) ≤ 𝑑(𝑣, 𝑡) + 𝑑(𝑡, 𝑣) + 𝑑(𝑣, 𝑡′) ≤ 3𝜀′𝑆𝑇 (𝑣),

where the first and third inequalities are from triangle inequality and the second inequality is from

the definition of 𝑡′. □

Now we turn to our 2-approximation algorithms. Our first theorem is for unweighted graphs.

Later on, we modify the algorithm in this theorem to obtain an algorithm for weighted graphs as

well, and at the same time remove the small additive error that appears in the theorem below.

Theorem 6.1.14. There is an 𝑂̃(𝑚
√
𝑛) time algorithm, that given an undirected unweighted graph

𝐺 = (𝑉,𝐸) and 𝑆, 𝑇 ⊆ 𝑉 , can output an estimate 𝜀′𝑆𝑇 (𝑣) for each 𝑣 ∈ 𝑆 such that 𝜀𝑆𝑇 (𝑣)/2 −

5/2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣). If 𝜀𝑆𝑇 (𝑣) is divisible by 2, 𝜀𝑆𝑇 (𝑣)/2− 2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣).

Proof. For each 𝑣 ∈ 𝑆, let 𝑣′ be the farthest node from 𝑣, i.e. 𝑑(𝑣, 𝑣′) = 𝜀𝑆𝑇 (𝑣).

(Algorithm Step 1): The algorithm samples 𝑋 ⊂ 𝑉 of size 𝑐
√
𝑛 ln𝑛 uniformly at random.

For every 𝑥 ∈ 𝑋 , run BFS and find 𝑡(𝑥) ∈ 𝑇 which is closest to 𝑥 (if 𝑥 ∈ 𝑇 , 𝑡(𝑥) = 𝑥). Let

𝑇𝑋 = {𝑡(𝑥)|𝑥 ∈ 𝑋}.

Run BFS from each node 𝑡 ∈ 𝑇𝑋 . For each 𝑣 ∈ 𝑆 let 𝜀(1)𝑆𝑇 (𝑣) = max𝑡∈𝑇𝑋
𝑑(𝑣, 𝑡).

Let 𝑤 ∈ 𝑇 be the node maximizing 𝑑(𝑤, 𝑇𝑋).

(Analysis Step 1): This step of the algorithm runs in 𝑂̃(𝑚
√
𝑛).

Suppose there is some node 𝑡 ∈ 𝑇𝑋 such that 𝑑(𝑣′, 𝑡) ≤ 𝜀𝑆𝑇 (𝑣)/2. Then 𝑑(𝑣, 𝑡) ≥ 𝑑(𝑣, 𝑣′) −

𝑑(𝑣′, 𝑡) ≥ 𝜀𝑆𝑇 (𝑣)/2, and so 𝜀
(1)
𝑆𝑇 (𝑣) is a good approximation for 𝑣. Thus we can assume that

𝑑(𝑣′, 𝑇𝑋) > 𝜀𝑆𝑇 (𝑣)/2, and so 𝑑(𝑤, 𝑇𝑋) > 𝜀𝑆𝑇 (𝑣)/2. Now since 𝑋 is random of size 𝑐
√
𝑛 ln𝑛, by

Lemma 6.1.2, the number of nodes of 𝑇 at distance ≤ 𝜀𝑆𝑇 (𝑣)/2 from 𝑤 is at most
√
𝑛 whp.

Moreover, suppose that there is some node 𝑥 ∈ 𝑋 such that 𝑑(𝑤, 𝑥) ≤ 𝜀𝑆𝑇 (𝑣)/4. Then

𝑑(𝑤, 𝑡(𝑥)) ≤ 𝑑(𝑤, 𝑥) + 𝑑(𝑥, 𝑡(𝑥)) ≤ 2𝑑(𝑤, 𝑥) ≤ 𝜀𝑆𝑇 (𝑣)/2, contradicting the fact that 𝑑(𝑤, 𝑇𝑋) >

𝜀𝑆𝑇 (𝑣)/2. Thus, we must have that 𝑑(𝑤,𝑋) > 𝜀𝑆𝑇 (𝑣)/4.

Now, since 𝑋 is random of size 𝑐
√
𝑛 ln𝑛, by Lemma 6.1.2, the number of nodes at distance

≤ 𝜀𝑆𝑇 (𝑣)/4 from 𝑤 is at most
√
𝑛 whp.
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(Algorithm Step 2): Run BFS from 𝑤. For each 𝑣 ∈ 𝑆, let 𝜀(2)𝑆𝑇 (𝑣) = 𝑑(𝑣, 𝑤).

Take the closest
√
𝑛 nodes of 𝑉 ∖ 𝑇 to 𝑤. Call these 𝑌 . Run BFS from all 𝑦 ∈ 𝑌 , and let

𝑒(𝑦) = max𝑡∈𝑇 𝑑(𝑦, 𝑡). Let 𝜀(3)𝑆𝑇 (𝑣) = max𝑦∈𝑌 𝑒(𝑦)− 𝑑(𝑣, 𝑦).

(Analysis Step 2): If 𝑑(𝑣, 𝑤) ≥ 𝜀𝑆𝑇 (𝑣)/2, then 𝜀
(2)
𝑆𝑇 (𝑣) is a good estimate. So assume that

𝑑(𝑣, 𝑤) ≤ ⌈𝜀𝑆𝑇/2⌉ − 1 ≤ 𝜀𝑆𝑇/2− 1/2.

Now consider the node 𝑎 on the shortest 𝑤 to 𝑣 path 𝑃𝑤𝑣 for which 𝑑(𝑤, 𝑎) ≤ 𝜀𝑆𝑇 (𝑣)/4, but

such that the node 𝑎′ after it on 𝑃𝑤𝑣 has 𝑑(𝑤, 𝑎′) > 𝜀𝑆𝑇 (𝑣)/4. Since the graph is unweighted, we

get that 𝑑(𝑤, 𝑎) = ⌊𝜀𝑆𝑇 (𝑣)/4⌋ ≥ 𝜀𝑆𝑇 (𝑣)/4− 3/4.

If 𝑎 ∈ 𝑉 ∖ 𝑇 , then by the previous argument since 𝑑(𝑎, 𝑤) ≤ 𝜀𝑆𝑇 (𝑣)/4, 𝑎 ∈ 𝑌 and we run

BFS from 𝑎. Since 𝑒(𝑎) ≥ 𝑑(𝑎, 𝑣′) ≥ 𝑑(𝑣, 𝑣′)− 𝑑(𝑎, 𝑣) and 𝑑(𝑎, 𝑣) = 𝑑(𝑤, 𝑣)− 𝑑(𝑎, 𝑤), we have

𝑒(𝑎) ≥ 3𝜀𝑆𝑇 (𝑣)/4− 1/4. So 𝑒(𝑎)− 𝑑(𝑣, 𝑎) ≥ 𝜀𝑆𝑇 (𝑣)/2− 1/2. Moreover, if 𝑎′ is the farthest node

from 𝑎 in 𝑇 , then 𝜀𝑆𝑇 (𝑣) ≥ 𝑑(𝑣, 𝑎′) ≥ 𝑑(𝑎, 𝑎′) − 𝑑(𝑣, 𝑎) = 𝑒(𝑎) − 𝑑(𝑣, 𝑎), and hence 𝜀
(3)
𝑆𝑇 (𝑣) is a

good estimate.

So assume that 𝑎 ∈ 𝑇 .

(Algorithm Step 3): Take the closest
√
𝑛 nodes of 𝑇 to 𝑤. Call these 𝑇𝑤. Run BFS from all

𝑡 ∈ 𝑇𝑤 and find 𝑦(𝑡) ∈ 𝑉 ∖ 𝑇 . Run BFS from each 𝑦(𝑡), and let 𝑒(𝑦(𝑡)) = max𝑡′∈𝑇 𝑑(𝑦(𝑡), 𝑡′). Let

𝜀
(4)
𝑆𝑇 (𝑣) = max𝑡∈𝑇𝑤 𝑒(𝑦(𝑡))− 𝑑(𝑣, 𝑦(𝑡)).

(Analysis Step 3): Consider the node 𝑏 on 𝑃𝑤𝑣 for which 𝑑(𝑤, 𝑏) ≤ 3𝜀𝑆𝑇 (𝑣)/8, but such that

the node 𝑏′ after it on 𝑃𝑤𝑣 has 𝑑(𝑤, 𝑏′) > 3𝜀𝑆𝑇 (𝑣)/8. Since the graph is unweighted, we get that

𝑑(𝑤, 𝑏) = ⌊3𝜀𝑆𝑇 (𝑣)/8⌋ ≥ 3𝜀𝑆𝑇 (𝑣)/8− 7/8.

If 𝑏 ∈ 𝑇 , then since 𝑑(𝑤, 𝑏) ≤ 𝜀𝑆𝑇 (𝑣)/2, by previous argument 𝑏 ∈ 𝑇𝑤 and we run BFS from

𝑏. Since 𝑑(𝑣, 𝑏) = 𝑑(𝑤, 𝑣) − 𝑑(𝑤, 𝑏) ≤ 𝜀𝑆𝑇 (𝑣)/8 + 3/8, we have that 𝑑(𝑣, 𝑦(𝑏)) ≤ 𝑑(𝑣, 𝑏) +

𝑑(𝑏, 𝑦(𝑏)) ≤ 2𝑑(𝑣, 𝑏) ≤ 𝜀𝑆𝑇 (𝑣)/4 + 3/4. Similar to the previous step, we get that 𝑒(𝑦(𝑏)) −

𝑑(𝑣, 𝑦(𝑏)) ≥ 𝑑(𝑦(𝑏), 𝑣′) − 𝑑(𝑣, 𝑦(𝑏)) ≥ 𝑑(𝑣, 𝑣′) − 2𝑑(𝑣, 𝑦(𝑏)) ≥ 𝜀𝑆𝑇 (𝑣)/2 − 3/2. By considering

the farthest node from 𝑦(𝑏) in 𝑇 , we can show that 𝑒(𝑦(𝑏))−𝑑(𝑣, 𝑦(𝑏)) ≤ 𝜀𝑆𝑇 (𝑣) and hence 𝜀(4)𝑆𝑇 (𝑣)

is a good approximate. So if 𝜀(4)𝑆𝑇 (𝑣) is not a good approximate, it must be that 𝑏 ∈ 𝑉 ∖ 𝑇 .

Now, since 𝑎 ∈ 𝑇 and 𝑏 ∈ 𝑉 ∖ 𝑇 , somewhere on the 𝑎 to 𝑏 shortest path 𝑃𝑎𝑏, there must be an

edge (𝑡′, 𝑦′) with 𝑡′ ∈ 𝑇 and 𝑦′ ∈ 𝑉 ∖𝑇 . However, since 𝑡′ is on 𝑃𝑤𝑣, we have 𝑑(𝑤, 𝑡′) ≤ 𝑑(𝑣, 𝑤) <
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𝜀𝑆𝑇 (𝑣)/2. Thus, 𝑡′ ∈ 𝑇𝑤 and we run BFS from 𝑦(𝑡′). However, 𝑑(𝑡′, 𝑦(𝑡′)) ≤ 𝑑(𝑡′, 𝑦′) = 1, and

hence 𝑑(𝑦(𝑡′), 𝑣) ≤ 𝑑(𝑦(𝑡′), 𝑡′)+𝑑(𝑡′, 𝑣) ≤ 1+𝑑(𝑤, 𝑣)−𝑑(𝑤, 𝑡′) ≤ 1+𝜀𝑆𝑇 (𝑣)/2−1/2−𝑑(𝑤, 𝑎) ≤

𝜀𝑆𝑇 (𝑣)/4 + 5/4. So we get that

𝑒(𝑦(𝑡′))− 𝑑(𝑦(𝑡′), 𝑣) ≥ 𝑑(𝑦(𝑡′), 𝑣′)− 𝑑(𝑦(𝑡′), 𝑣) ≥ 𝑑(𝑣, 𝑣′)− 2𝑑(𝑦(𝑡′), 𝑣) ≥ 𝜀𝑆𝑇 (𝑣)/2− 5/2

Moreover, if 𝑦′ is the farthest node 𝑦(𝑡′) in 𝑇 , then 𝜀𝑆𝑇 (𝑣) ≥ 𝑑(𝑣, 𝑦′) ≥ 𝑑(𝑦′, 𝑦(𝑡′)) −

𝑑(𝑣, 𝑦(𝑡′)) = 𝑒(𝑦(𝑡′)) − 𝑑(𝑣, 𝑦(𝑡′)). Hence if for each 𝑣 ∈ 𝑆 we set 𝜀′𝑆𝑇 (𝑣) =

max{𝜀(1)𝑆𝑇 (𝑣), 𝜀
(2)
𝑆𝑇 (𝑣), 𝜀

(3)
𝑆𝑇 (𝑣), 𝜀

(4)
𝑆𝑇 (𝑣)}, we have 𝜀𝑆𝑇 (𝑣)/2− 5/2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣). □

We now use edge sampling to remove the additive error from the above algorithm and make the

algorithm work for weighted graphs as well, at the expense of increasing the runtime to 𝑂̃(𝑚3/2).

Theorem 6.1.15. There is an 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph 𝐺 = (𝑉,𝐸)

with nonnegative integer edge weights and 𝑆, 𝑇 ⊆ 𝑉 , can output estimates 𝜀′𝑆𝑇 (𝑣) for each 𝑣 ∈ 𝑆,

such that 𝜀𝑆𝑇 (𝑣)/2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣).

Proof. For each 𝑣 ∈ 𝑆, let 𝑣′ be the farthest node from 𝑣, i.e. 𝑑(𝑣, 𝑣′) = 𝜀𝑆𝑇 (𝑣).

(Algorithm Step 1): We sample 𝑐
√
𝑚 ln𝑛 edges 𝐸 ′ ⊆ 𝐸 uniformly at random. Run Dijkstra

from both endpoints of edges in 𝐸 ′ (we call these vertices 𝑉 (𝐸 ′)), and for each endpoint 𝑥, find

𝑡(𝑥) ∈ 𝑇 which is closest to 𝑥. Let 𝑇𝐸′ = {𝑡(𝑥)|𝑥 ∈ 𝑉 (𝐸 ′)}.

Run Dijkstra from each node in 𝑇𝐸′ , and for each 𝑣 ∈ 𝑆, let 𝜀(1)𝑆𝑇 (𝑣) = 𝑑(𝑣, 𝑇𝐸′).

Let 𝑤 ∈ 𝑇 be the node maximizing 𝑑(𝑤, 𝑇𝐸′).

(Analysis Step 1): Since 𝑉 (𝐸 ′) = 𝑂̃(
√
𝑚) = |𝑇𝐸′ |, this step takes 𝑂̃(𝑚3/2) time.

Suppose there is some node 𝑡 ∈ 𝑇𝐸′ such that 𝑑(𝑣′, 𝑡) ≤ 𝜀𝑆𝑇 (𝑣)/2. Then 𝑑(𝑣, 𝑡) ≥ 𝑑(𝑣, 𝑣′) −

𝑑(𝑣′, 𝑡) ≥ 𝜀𝑆𝑇 (𝑣)/2, and so 𝜀
(1)
𝑆𝑇 (𝑣) is a good approximation for 𝜀𝑆𝑇 (𝑣). Thus we can assume that

𝑑(𝑣′, 𝑇𝐸′) > 𝜀𝑆𝑇 (𝑣)/2, and so 𝑑(𝑤, 𝑇𝐸′) > 𝜀𝑆𝑇 (𝑣)/2. Now since 𝐸 ′ is random of size 𝑐
√
𝑚 ln𝑛,

by Lemma 6.1.3, the number of edges (𝑡, 𝑔) where 𝑡 ∈ 𝑇, 𝑔 ∈ 𝑉 and 𝑑(𝑤, 𝑡) ≤ 𝜀𝑆𝑇 (𝑣)/2 is at most
√
𝑚, whp.

Moreover, suppose that there is some edge (𝑥, 𝑏) ∈ 𝐸 ′ such that 𝑑(𝑤, 𝑥) ≤ 𝜀𝑆𝑇 (𝑣)/4. Then

𝑑(𝑤, 𝑡(𝑥)) ≤ 𝑑(𝑤, 𝑥) + 𝑑(𝑥, 𝑡(𝑥)) ≤ 2𝑑(𝑤, 𝑥) ≤ 𝜀𝑆𝑇 (𝑣)/2, contradicting the fact that 𝑑(𝑤, 𝑇𝐸′) >
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𝜀𝑆𝑇 (𝑣)/2. Thus, we must have that 𝑑(𝑤, 𝑉 (𝐸 ′)) > 𝜀𝑆𝑇 (𝑣)/4.

Now, since 𝐸 ′ is random of size 𝑐
√
𝑛 ln𝑛, by Lemma 6.1.3, the number of edges (𝑥, 𝑔) ∈ 𝐸 ′

where 𝑔 ∈ 𝑉 such that 𝑑(𝑤, 𝑥) ≤ 𝜀𝑆𝑇 (𝑣)/4 is at most
√
𝑚, whp.

(Algorithm Step 2): Run Dijkstra from 𝑤. For each 𝑣 ∈ 𝑆, let 𝜀(2)𝑆𝑇 (𝑣) = 𝑑(𝑣, 𝑤).

Consider the edges (𝑦, 𝑏) sorted in nondecreasing order according to 𝑑(𝑤, 𝑦). Let 𝐸 ′′ be the

first
√
𝑚 edges in this sorted order. Let 𝑌 be the endpoints of edges in 𝐸 ′′ that are in 𝑉 ∖ 𝑇 . Run

Dijkstra from each node in 𝑌 and let 𝑒(𝑦) = max𝑡∈𝑇 𝑑(𝑦, 𝑡). Let 𝜀(3)𝑆𝑇 (𝑣) = max𝑦∈𝑌 𝑒(𝑦)− 𝑑(𝑣, 𝑦).

(Analysis Step 2): Since |𝑌 | = 𝑂̃(
√
𝑚), this step takes 𝑂̃(𝑚3/2) time.

If 𝑑(𝑣, 𝑤) ≥ 𝜀𝑆𝑇 (𝑣)/2, then 𝜀
(2)
𝑆𝑇 (𝑣) is a good approximation. So assume that 𝑑(𝑣, 𝑤) <

𝜀𝑆𝑇 (𝑣)/2.

Now consider the node 𝑎 on the shortest 𝑤 to 𝑣 path 𝑃𝑤𝑣 for which 𝑑(𝑤, 𝑎) ≤ 𝜀𝑆𝑇 (𝑣)/4, but

such that the node 𝑎′ after it on 𝑃𝑤𝑣 has 𝑑(𝑤, 𝑎′) > 𝜀𝑆𝑇 (𝑣)/4.

Since 𝑑(𝑤, 𝑎) ≤ 𝜀𝑆𝑇 (𝑣)/4, by the previous argument the number of edges from the nodes at

distance 𝜀𝑆𝑇 (𝑣)/4 from 𝑤 is at most
√
𝑚, and so (𝑎, 𝑎′) must be among the edges in 𝐸 ′′. Suppose

that 𝑎′ ∈ 𝑉 ∖ 𝑇 . We thus run Dijkstra from 𝑎′.

Let us consider 𝑑(𝑎′, 𝑣) = 𝑑(𝑤, 𝑣) − 𝑑(𝑤, 𝑎′). Since 𝑑(𝑤, 𝑎′) > 𝜀𝑆𝑇 (𝑣)/4 and 𝑑(𝑤, 𝑣) <

𝜀𝑆𝑇 (𝑣)/2, 𝑑(𝑎′, 𝑣) < 𝜀𝑆𝑇 (𝑣)/4. Thus 𝑒(𝑎′) ≥ 𝑑(𝑎′, 𝑣′) ≥ 𝑑(𝑣, 𝑣′) − 𝑑(𝑎′, 𝑣) > 3𝜀𝑆𝑇 (𝑣)/4. So

𝑒(𝑎′)− 𝑑(𝑎′, 𝑣) > 𝜀𝑆𝑇 (𝑣)/2. Now if 𝑎′′ is the farthest node from 𝑎′ in 𝑇 , then 𝜀𝑆𝑇 (𝑣) ≥ 𝑑(𝑣, 𝑎′′) ≥

𝑑(𝑎′, 𝑎′′)− 𝑑(𝑣, 𝑎′) = 𝑒(𝑎′)− 𝑑(𝑣, 𝑎′), and hence 𝜀
(3)
𝑆𝑇 (𝑣) is a good approximation.

So we assume that 𝑎′ ∈ 𝑇 .

(Algorithm Step 3): Consider the edges (𝑡, 𝑏) with 𝑡 ∈ 𝑇 sorted in nondecreasing order ac-

cording to 𝑑(𝑤, 𝑡). Let 𝐸𝑇 be the first
√
𝑚 edges in this sorted order. Run Dijkstra from both

endpoints of each edge in 𝐸𝑇 (call these nodes 𝑉 (𝐸𝑇 )), and find 𝑦(𝑥) ∈ 𝑉 ∖ 𝑇 closest to 𝑥,

for each 𝑥 ∈ 𝑉 (𝐸𝑇 ). Run Dijkstra from each 𝑦(𝑥), and let 𝑒(𝑦(𝑥)) = max𝑡∈𝑇 𝑑(𝑦(𝑥), 𝑡). Let

𝜀
(4)
𝑆𝑇 (𝑣) = max𝑥∈𝑉 (𝐸𝑇 ) 𝑒(𝑦(𝑥))− 𝑑(𝑣, 𝑦(𝑥)).

(Analysis Step 3):

Consider the node 𝑏 on 𝑃𝑤𝑣 for which 𝑑(𝑤, 𝑏) ≤ 3𝜀𝑆𝑇 (𝑣)/8, but such that the node 𝑏′ after it

on 𝑃𝑤𝑣 has 𝑑(𝑤, 𝑏′) > 3𝜀𝑆𝑇 (𝑣)/8.
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Suppose that 𝑏′ ∈ 𝑇 , then since 𝑑(𝑤, 𝑏) ≤ 𝜀𝑆𝑇 (𝑣)/2, by the previous argument (𝑏, 𝑏′) ∈ 𝐸𝑇

and we run Dijkstra from 𝑦(𝑏′). Let us consider 𝑑(𝑦(𝑏′), 𝑣) ≤ 𝑑(𝑣, 𝑏′) + 𝑑(𝑏′, 𝑦(𝑏′)) ≤ 2𝑑(𝑣, 𝑏′).

Since 𝑑(𝑣, 𝑏′) = 𝑑(𝑣, 𝑤)−𝑑(𝑤, 𝑏′) < 𝜀𝑆𝑇 (𝑣)/8, 𝑑(𝑦(𝑏′), 𝑣) < 𝜀𝑆𝑇 (𝑣)/4. Similar as in the previous

step, we get that 𝜀𝑆𝑇 (𝑣) ≥ 𝑒(𝑦(𝑏′)) − 𝑑(𝑦(𝑏′), 𝑣) and also 𝑒(𝑦(𝑏′)) − 𝑑(𝑦(𝑏′), 𝑣) ≥ 𝑑(𝑦(𝑏′), 𝑣′) −

𝑑(𝑦(𝑏′), 𝑣) ≥ 𝑑(𝑣, 𝑣′) − 2𝑑(𝑦(𝑏′), 𝑣) > 𝜀𝑆𝑇 (𝑣)/2, thus 𝜀
(4)
𝑆𝑇 (𝑣) is a good approximation. So if

𝜀
(4)
𝑆𝑇 (𝑣) is not a good approximation, it must be that 𝑏′ ∈ 𝑉 ∖ 𝑇 .

Now, since 𝑎′ ∈ 𝑇 and 𝑏′ ∈ 𝑉 ∖ 𝑇 , somewhere on the 𝑎′ to 𝑏′ shortest path 𝑃𝑎′𝑏′ , there must be

an edge (𝑡, 𝑥) with 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝑉 ∖𝑇 . However, since 𝑡 is on 𝑃𝑤𝑣, we have 𝑑(𝑤, 𝑡) ≤ 𝑑(𝑣, 𝑤) <

𝜀𝑆𝑇 (𝑣)/2. Thus, (𝑡, 𝑥) ∈ 𝐸𝑇 and we run Dijkstra from 𝑥.

Let us consider 𝑦(𝑥). Since 𝑥 ∈ 𝑉 ∖ 𝑇 , 𝑦(𝑥) = 𝑥. Moreover since 𝑥 is after 𝑎′ on 𝑃𝑎′𝑏′ ,

𝑑(𝑤, 𝑥) ≥ 𝑑(𝑤, 𝑎′) > 𝜀𝑆𝑇 (𝑣)/4, and thus 𝑑(𝑥, 𝑣) = 𝑑(𝑣, 𝑤)− 𝑑(𝑤, 𝑥) < 𝜀𝑆𝑇 (𝑣)/4. So 𝑒(𝑦(𝑥))−

𝑑(𝑦(𝑥), 𝑣) = 𝑒(𝑥)− 𝑑(𝑥, 𝑣) ≥ 𝑑(𝑥, 𝑣′)− 𝑑(𝑥, 𝑣) ≥ 𝑑(𝑣, 𝑣′)− 2𝑑(𝑥, 𝑣) > 𝜀𝑆𝑇 (𝑣)/2.

Hence if for each 𝑣 ∈ 𝑆 we set 𝜀′𝑆𝑇 (𝑣) = max{𝜀(1)𝑆𝑇 (𝑣), 𝜀
(2)
𝑆𝑇 (𝑣), 𝜀

(3)
𝑆𝑇 (𝑣), 𝜀

(4)
𝑆𝑇 (𝑣)}, we have

𝜀𝑆𝑇 (𝑣)/2 ≤ 𝜀′𝑆𝑇 (𝑣) ≤ 𝜀𝑆𝑇 (𝑣). □

𝑆𝑇 -Radius

A simple argument shows that given any approximation algorithm for 𝑆𝑇 -Eccentricities, one

obtains an approximation algorithm for 𝑆𝑇 -Radius with the same approximation factor. First, run

the 𝑆𝑇 -Eccentricities algorithm and let 𝑣 be the vertex with the smallest estimated Eccentricity

𝜖′(𝑣). Then run Dijkstra’s algorithm from 𝑣 and report 𝜖𝑆𝑇 (𝑣) as the 𝑆𝑇 -Radius estimate 𝑅′. Let

𝑅 be the true 𝑆𝑇 -Radius of the graph and let 𝑐 be the true 𝑆𝑇 -center. If 𝛼 is the approximation

ratio for the 𝑆𝑇 -Eccentricities algorithm then 𝜖𝑆𝑇 (𝑣) ≤ 𝛼𝜖′(𝑣) ≤ 𝛼𝜖𝑆𝑇 (𝑣) and 𝜖𝑆𝑇 (𝑐) ≤ 𝛼𝜖′(𝑐) ≤

𝛼𝜖𝑆𝑇 (𝑐). By choice of 𝑣, 𝜖′(𝑣) ≤ 𝜖′(𝑐). Thus, 𝛼𝑅 = 𝛼𝜖𝑆𝑇 (𝑐) ≥ 𝛼𝜖′(𝑐) ≥ 𝛼𝜖′(𝑣) ≥ 𝜖𝑆𝑇 (𝑣) = 𝑅′.

Clearly 𝑅′ ≥ 𝑅, so 𝑅 ≤ 𝑅′ ≤ 𝛼𝑅.

Thus, we get the following theorems from our algorithms for 𝑆𝑇 -Eccentricities.

Theorem 6.1.16. There is an 𝑂(𝑚 + 𝑛 log 𝑛) time algorithm, that given an undirected graph

𝐺 = (𝑉,𝐸) with nonnegative integer edge weights and 𝑆, 𝑇 ⊆ 𝑉 , can output an estimate 𝑅′ such

that 𝑅𝑆𝑇/3 ≤ 𝑅′ ≤ 𝑅𝑆𝑇 .
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Theorem 6.1.17. There is an 𝑂̃(𝑚
√
𝑛) time algorithm, that given an undirected unweighted graph

𝐺 = (𝑉,𝐸) and 𝑆, 𝑇 ⊆ 𝑉 , can output an estimate 𝑅′ such that 𝑅𝑆𝑇/2− 5/2 ≤ 𝑅′ ≤ 𝑅𝑆𝑇 .

Theorem 6.1.18. There is an 𝑂̃(𝑚3/2) time algorithm, that given an undirected graph 𝐺 = (𝑉,𝐸)

with nonnegative integer edge weights and 𝑆, 𝑇 ⊆ 𝑉 , can output estimates 𝑅′ such that 𝑅𝑆𝑇/2 ≤

𝑅′ ≤ 𝑅𝑆𝑇 .

6.1.5 Algorithms for Subset Diameter, Eccentricities, and Radius

We obtain 2-approximations for Subset Diameter in directed graphs and Subset Radius in undi-

rected graphs simply by running Dijkstra’s algorithm from an arbitrary vertex 𝑠 ∈ 𝑆. We obtain an

almost 2-approximation in almost linear time for directed Subset Eccentricities (and thus directed

Subset Radius) by a slight modification of an algorithm for (non-Subset) Eccentricities in directed

graphs from [BRS+18].

Proposition 4 (Directed Subset Diameter). There is an 𝑂̃(𝑚) time algorithm, that given a directed

graph 𝐺 = (𝑉,𝐸) with nonnegative integer weights and 𝑆 ⊆ 𝑉 , outputs an estimate 𝐷′ such that

𝐷𝑆/2 ≤ 𝐷′ ≤ 𝐷𝑆 .

Proof. Run Dijkstra’s algorithm both “forward" and “backward" from 𝑠 to obtain 𝐷1 =

max𝑠′∈𝑆 𝑑(𝑠, 𝑠
′) and 𝐷2 = max𝑠′∈𝑆 𝑑(𝑠

′, 𝑠). Return 𝐷′ = max{𝐷1, 𝐷2}.

Let 𝑠*, 𝑡* ∈ 𝑆 be the true endpoints of the Subset Diameter. Then, by the triangle inequality

𝐷𝑆 ≤ 𝑑(𝑠*, 𝑠) + 𝑑(𝑠, 𝑡*). Then since 𝑑(𝑠*, 𝑠) ≤ 𝐷2 and 𝑑(𝑠, 𝑡*) ≤ 𝐷1, 𝐷𝑆 ≤ 𝐷1 + 𝐷2. Thus,

𝐷𝑆/2 ≤ max{𝐷1, 𝐷2} ≤ 𝐷𝑆 . □

Proposition 5 (Undirected Subset Radius). There is an 𝑂̃(𝑚) time algorithm, that given an undi-

rected graph 𝐺 = (𝑉,𝐸) with nonnegative integer weights and 𝑆 ⊆ 𝑉 , outputs an estimate 𝑅′

such that 𝑅𝑆/2 ≤ 𝐷′ ≤ 𝑅𝑆 .

Proof. Run Dijkstra’s algorithm from 𝑠 and return 𝑅′ = max𝑠′∈𝑆 𝑑(𝑠, 𝑠
′).

Let 𝑐* ∈ 𝑆 be the true center. Then since 𝑑(𝑐*, 𝑠′) ≤ 𝑅𝑆 for all 𝑠′ ∈ 𝑆, the triangle inequality

implies that for all 𝑠′, 𝑑(𝑠, 𝑠′) ≤ 2𝑅𝑆 . Thus, 𝑅𝑆 ≤ 𝑅′ ≤ 2𝑅𝑆 . □
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Theorem 6.1.19 (Directed Subset Eccentricities). Suppose that we are given a directed graph

𝐺 = (𝑉,𝐸) with nonnegative integer weights. For any 1 > 𝜏 > 0 we can in 𝑂̃(𝑚/𝜏) time output

for all 𝑣 ∈ 𝑆 an estimate 𝜀′(𝑣) such that 1−𝜏
2
𝜀𝑆(𝑣) ≤ 𝜀′(𝑣) ≤ 𝜀𝑆(𝑣).

Proof. The algorithm proceeds in iterations and maintains a set 𝑈 of nodes for which we still

do not have a good Eccentricity estimate. In each iteration either we get a good estimate for

many new vertices and hence remove them from 𝑈 , or we remove all vertices from 𝑈 that have

large Eccentricities, and for the remaining nodes in 𝑈 we have a better upper bound on their

Eccentricities. After a small number of iterations we have a good estimate for all vertices of the

graph. Initially 𝑈 = 𝑆 and we will end with |𝑈 | ≤ 𝑂(1). When |𝑈 | ≤ 𝑂(1) we can evaluate

𝜀𝑆(𝑣) for all 𝑣 ∈ 𝑈 in the total time of 𝑂(𝑚).

Also we maintain a value 𝐷 that upper bounds the largest Eccentricity of a vertex in 𝑈 . That

is, 𝜀𝑆(𝑣) ≤ 𝐷 for all 𝑣 ∈ 𝑈 . Initially we set 𝐷 = 𝑛𝐶 for some large enough constant 𝐶 > 0 (we

assume that the set 𝑆 is strongly connected). The algorithm proceeds in phases. Each phase takes

𝑂̃(𝑚) time and either |𝑈 | decreases by a factor of at least 2 or 𝐷 decreases by a factor of at least

1/(1− 𝜏). After 𝑂(log(𝑛)/𝜏) phases either |𝑈 | ≤ 𝑂(1) or 𝐷 < 1.

For a subset 𝑈 ⊆ 𝑉 of vertices and a vertex 𝑥 ∈ 𝑉 we define a set 𝑈𝑥 ⊆ 𝑆 to contain those

|𝑈𝑥| = |𝑈 |/2 vertices from 𝑈 that are closest to 𝑥 (according to distance 𝑑(·, 𝑥)). The ties are

broken by taking the vertex with the smaller id. Given a subset 𝑈 ⊆ 𝑉 of vertices and a threshold

𝐷, a phase proceeds as follows.

• We sample a set 𝐴 ⊆ 𝑈 of 𝑂(log 𝑛) random vertices from the set 𝑈 . By Lemma 6.1.1, with

high probability for all 𝑥 ∈ 𝑉 we have 𝐴 ∩ 𝑈𝑥 ̸= ∅.

• Let 𝑤 be the vertex in 𝑆 that maximizes 𝑑(𝐴,𝑤). We can find it by constructing a vertex 𝑦

adjacent to every vertex in 𝐴 and running Dijkstra’s algorithm from 𝑦.

• We consider two cases.

Case 𝑑(𝑈 ∖ 𝑈𝑤, 𝑤) ≥ 1−𝜏
2
𝐷. For all 𝑥 ∈ 𝑈 ∖ 𝑈𝑤 we have 1−𝜏

2
𝐷 ≤ 𝜀𝑆(𝑥) ≤ 𝐷 and we

assign the estimate 𝜀′(𝑥) = 1−𝜏
2
𝐷. This gives us that 1−𝜏

2
𝜀𝑆(𝑥) ≤ 1−𝜏

2
𝐷 = 𝜀′(𝑥) ≤ 𝜀𝑆(𝑥)

for all 𝑥 ∈ 𝑈 ∖ 𝑈𝑤. We update 𝑈 to be 𝑈𝑤. This decreases the size of 𝑈 by a factor of 2 as
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required.

Case 𝑑(𝑈 ∖ 𝑈𝑤, 𝑤) < 1−𝜏
2
𝐷. Set 𝑈 ′ = 𝑈 . For every vertex 𝑣 ∈ 𝑈 evaluate 𝑟𝑣 :=

max𝑥∈𝐴 𝑑(𝑣, 𝑥). We can evaluate these quantities by running Dijkstra’s algorithm from

every vertex in 𝐴 and following the incoming edges. If 𝑟𝑣 ≥ 1−𝜏
2
𝐷, then assign the es-

timate 𝜀′(𝑣) = 1−𝜏
2
𝐷 and remove 𝑣 from 𝑈 ′. Similarly as in the previous case we have

1−𝜏
2
𝜀𝑆(𝑣) ≤ 𝜀′(𝑣) ≤ 𝜀𝑆(𝑣) for all 𝑣 ∈ 𝑈 ∖ 𝑈 ′. Below we will show that for every 𝑣 ∈ 𝑈 ′

we have 𝜀𝑆(𝑣) ≤ (1 − 𝜏)𝐷. Thus we can update 𝑈 = 𝑈 ′ and decrease the threshold 𝐷 to

(1− 𝜏)𝐷 as required.

Correctness We have to show that, if there exists 𝑣 ∈ 𝑈 ′ such that 𝜀𝑆(𝑣) > (1 − 𝜏)𝐷, then

we will end up in the first case (this is the contrapositive of the claim in the second case). Since

𝑣 ∈ 𝑈 ′ we must have that 𝑑(𝑣, 𝑥) ≤ 1−𝜏
2
𝐷 for all 𝑥 ∈ 𝐴. Since 𝜀𝑆(𝑣) > (1 − 𝜏)𝐷, we must

have that there exists 𝑣′ ∈ 𝑆 such that 𝑑(𝑣, 𝑣′) > (1− 𝜏)𝐷. By the triangle inequality we get that

𝑑(𝑥, 𝑣′) > 1−𝜏
2
𝐷 for every 𝑥 ∈ 𝐴. By choice of 𝑤, we have 𝑑(𝐴,𝑤) > 1−𝜏

2
𝐷. Since 𝐴 ∩ 𝑈𝑤 ̸= ∅,

we have 𝑑(𝑈 ∖ 𝑈𝑤, 𝑤) ≥ 1−𝜏
2
𝐷 and we will end up in the first case.

The guarantee on the approximation factor follows from the description. □

Directed Subset Radius Using the argument from Section 6.1.4, we obtain an algorithm for

Directed Subset Radius from our algorithm for Directed Subset Eccentricities.

Theorem 6.1.20 (Directed Subset Radius). Suppose that we are given a directed graph 𝐺 = (𝑉,𝐸)

with nonnegative integer weights. For any 1 > 𝜏 > 0 we can in 𝑂̃(𝑚/𝜏) time output an estimate

𝑅′ such that 𝑅𝑆 ≤ 𝑅′ ≤ 2
1−𝜏𝑅𝑆 .

6.1.6 Parameterized Algorithms for Bichromatic Diameter, Radius, and Ec-

centricities

In this section we give algorithms for Bichromatic Diameter, Radius, and Eccentricities with

runtimes parameterized by the size of the boundary 𝐵. Let 𝑆 ′ be the set of vertices in 𝑆 that have

a neighbor in 𝑇 and let 𝑇 ′ be the set of vertices in 𝑇 that have a neighbor in 𝑆. Let 𝐵 be whichever

of 𝑆 ′ or 𝑇 ′ is smaller in size.
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Undirected Parameterized Bichromatic Diameter

Theorem 6.1.21. There is an 𝑂(𝑚|𝐵|) time algorithm, that given an unweighted undirected graph

𝐺 = (𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆, outputs an estimate 𝐷′ such that 2𝐷𝑆𝑇 (𝐺)/3 − 1 ≤ 𝐷′ ≤

𝐷𝑆𝑇 (𝐺).

Proof. (Algorithm): For all 𝑣 ∈ 𝑇 , we let 𝜀𝑆𝑇 (𝑣) = max𝑠∈𝑆 𝑑(𝑠, 𝑣) (𝜀𝑆𝑇 (𝑣) is already defined

for 𝑣 ∈ 𝑆). Suppose without loss of generality that 𝐵 ⊆ 𝑆 (a symmetric argument works for

𝐵 ⊆ 𝑇 ). For every vertex 𝑣 ∈ 𝐵, run BFS from 𝑣, let 𝑣𝑇 be an arbitrary neighbor of 𝑣 such

that 𝑣𝑇 ∈ 𝑇 , and run BFS from 𝑣𝑇 . Let 𝐷1 be the largest 𝑆 − 𝑇 distance found. That is, 𝐷1 =

max𝑣∈𝐵 max{𝜀𝑆𝑇 (𝑣), 𝜀𝑆𝑇 (𝑣𝑇 )}. Let 𝑠 ∈ 𝑆 be the farthest vertex from 𝐵. That is, 𝑠 is the vertex

in 𝑆 that maximizes 𝑑(𝑠, 𝐵). Then, we run BFS from 𝑠 and let 𝐷2 = 𝜀𝑆𝑇 (𝑠). Return 𝐷′ =

max{𝐷1, 𝐷2}.

(Analysis): Let 𝑠* ∈ 𝑆, 𝑡* ∈ 𝑇 be the true endpoints of the Bichromatic Diameter and let 𝐷

denote 𝐷𝑆𝑇 (𝐺). If 𝑠* is of distance at most 𝐷/3 + 1 from some vertex 𝑣 ∈ 𝐵 then by the triangle

inequality 𝑑(𝑣, 𝑡*) ≥ 2𝐷/3−1 so 𝐷1 ≥ 2𝐷/3−1 and we are done. If 𝑡* is of distance at most 𝐷/3

from some vertex 𝑣 ∈ 𝐵 then by the triangle inequality 𝑑(𝑣𝑇 , 𝑠
*) ≥ 2𝐷/3− 1 so 𝐷1 ≥ 2𝐷/3− 1

and we are done.

Now, if we are not already done, 𝑠* is of distance at least 𝐷/3+ 1 from every vertex in 𝐵, so 𝑠

is also of distance at least 𝐷/3 + 1 from every vertex in 𝐵. Additionally, 𝑡* is of distance at least

𝐷/3 from every vertex in 𝐵. We observe that the shortest path between 𝑠 and 𝑡* must contain a

vertex in 𝐵. Thus, 𝑑(𝑠, 𝑡*) = min𝑣∈𝐵 𝑑(𝑠, 𝑣) + 𝑑(𝑣, 𝑡*) ≤ (𝐷/3+ 1) + (𝐷/3) = 2𝐷/3+ 1. Thus,

𝐷2 ≥ 2𝐷/3 + 1 and we are done. □

Undirected Parameterized Bichromatic Radius

Theorem 6.1.22. There is an 𝑂(𝑚|𝐵|) time algorithm that, given an unweighted undirected graph

𝐺 = (𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, returns an estimate 𝑅′ such that 𝑅𝑆𝑇𝐺 ≤ 𝑅′ ≤ 3𝑅𝑆𝑇 (𝐺)/2+

3.

Proof. (Algorithm): If 𝐵 ⊆ 𝑆, we run BFS from all 𝑣 ∈ 𝐵 and let 𝑅1 be the minimum Eccen-

tricity found; that is, 𝑅1 = min𝑣∈𝐵 𝜀𝑆𝑇 (𝑣). If 𝐵 ⊆ 𝑇 , for every 𝑣 ∈ 𝐵, we let 𝑣𝑆 be an arbitrary
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neighbor of 𝑣 such that 𝑣𝑆 ∈ 𝑆, and run BFS from 𝑣𝑆 . In this case we let 𝑅1 = min𝑣∈𝐵 𝜀𝑆𝑇 (𝑣𝑆).

Let 𝑈 be the set of vertices that we have run BFS from so far.

Then, let 𝑠 ∈ 𝑆 be the vertex that is closest to all vertices in 𝑈 ; that is, let 𝑠 be the vertex that

minimizes max𝑣∈𝑈 𝑑(𝑠, 𝑣). Run BFS from 𝑠 and let 𝑅2 = 𝜀𝑆𝑇 (𝑠). Return min{𝑅1, 𝑅2}.

(Analysis): Let 𝑐* ∈ 𝑆 be the true center and let 𝑅 denote 𝑅𝑆𝑇 (𝐺); that is, 𝜀𝑆𝑇 (𝑐*) = 𝑅.

If there exists a vertex 𝑣 ∈ 𝑈 such that 𝑑(𝑐*, 𝑣) ≤ 𝑅/2, then since 𝑈 ⊆ 𝑆 and by the triangle

inequality, 𝜀𝑆𝑇 (𝑣) ≤ 3𝑅/2 and we are done.

If we are not done by the previous step, 𝑐* must be of distance at least 𝑅/2 from every vertex

in 𝑈 , and thus of distance at least 𝑅/2 − 1 from every vertex in 𝐵. We observe that the shortest

path between 𝑠 and any vertex in 𝑇 must contain a vertex in 𝐵. Thus, every vertex in 𝑇 must be of

distance at most 𝑅/2 + 1 from some vertex in 𝐵, and thus of distance at most 𝑅/2 + 2 from some

vertex in 𝑈 .

Since for all 𝑣 ∈ 𝑇 , 𝑑(𝑐*, 𝑣) ≤ 𝑅, the triangle inequality implies that for all 𝑣 ∈ 𝑈 , 𝑑(𝑐*, 𝑣) ≤

𝑅 + 1. Therefore, by choice of 𝑠, for all 𝑣 ∈ 𝑈 , 𝑑(𝑠, 𝑣) ≤ 𝑅 + 1. We claim that 𝜀𝑆𝑇 (𝑠) ≤ 3𝑅/2.

Consider an arbitrary vertex 𝑡 ∈ 𝑇 . Let 𝑢 be a vertex in 𝑈 such that 𝑑(𝑢, 𝑡) ≤ 𝑅/2 + 2; such a 𝑢

exists by the previous paragraph. Then, 𝑑(𝑠, 𝑢) + 𝑑(𝑢, 𝑡) ≤ (𝑅 + 1) + (𝑅/2 + 2) = 3𝑅/2 + 3.

Thus, 𝜀𝑆𝑇 (𝑠) ≤ 3𝑅/2 + 3. □

Undirected Parameterized Bichromatic Eccentricities

Theorem 6.1.23. There is an 𝑂(𝑚|𝐵|) time algorithm that, given an unweighted undirected graph

𝐺 = (𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, returns for every 𝑣 ∈ 𝑆 an estimate 𝜀′(𝑣) such that 3𝜀𝑆𝑇 (𝑣)/5−

1 ≤ 𝜀′(𝑣) ≤ 𝜀𝑆𝑇 (𝑣).

Proof. (Algorithm): Suppose 𝐵 ⊆ 𝑆. For every vertex 𝑢 ∈ 𝐵, we run BFS from 𝑢, let 𝑢′ be

the vertex in 𝑇 that maximizes 𝑑(𝑢, 𝑢′), and run BFS from 𝑢′. Then for every vertex 𝑢 ∈ 𝐵 we

let 𝑢𝑇 be an arbitrary neighbor of 𝑢 such that 𝑢𝑇 ∈ 𝑇 and run BFS from 𝑢𝑇 . Then, let 𝑡 ∈ 𝑇

be the farthest vertex from 𝐵; that is, 𝑡 is the vertex in 𝑇 that maximizes 𝑑(𝐵, 𝑡). Let 𝑇 ′′ be the

set of vertices in 𝑇 that we have run BFS from. For every vertex 𝑣 ∈ 𝑆, we return the estimate

𝜀′(𝑣) = max𝑡′′∈𝑇 ′′ 𝑑(𝑣, 𝑡′′).

We use a similar algorithm for when 𝐵 ⊆ 𝑇 : For every vertex 𝑢 ∈ 𝐵, we run BFS from 𝑢,
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let 𝑢′ be the vertex in 𝑇 that maximizes 𝑑(𝑢, 𝑢′), and run BFS from 𝑢′. Then, let 𝑡 ∈ 𝑇 be the

farthest vertex from 𝐵; that is, 𝑡 is the vertex in 𝑇 that maximizes min𝑢∈𝐵 𝑑(𝑢, 𝑡). Let 𝑇 ′′ be the

set of vertices in 𝑇 that we we have run BFS from. For every vertex 𝑣 ∈ 𝑆, we return the estimate

𝜀′(𝑣) = max𝑡′′∈𝑇 ′′ 𝑑(𝑣, 𝑡′′).

(Analysis): Suppose 𝐵 ⊆ 𝑆. If there exists a vertex in 𝑢 ∈ 𝐵 such that 𝑑(𝑣, 𝑢) ≥ 3𝜀𝑆𝑇 (𝑣)/5,

then 𝑑(𝑣, 𝑢𝑇 ) ≥ 3𝜀𝑆𝑇 (𝑣)/5 − 1 so we are done. On the other hand, suppose 𝐵 ⊆ 𝑇 . If there

exists a vertex in 𝑢 ∈ 𝐵 such that 𝑑(𝑣, 𝑢𝑇 ) ≥ 3𝜀𝑆𝑇 (𝑣)/5 − 1, then we are done. Otherwise, 𝑣 is

of distance at most 3𝜀𝑆𝑇 (𝑣)/5 from every vertex in 𝐵. Thus, regardless of whether 𝐵 ⊆ 𝑆 or 𝑇 , if

we are not already done, 𝑣 is of distance at most 3𝜀𝑆𝑇 (𝑣)/5 from every vertex in 𝐵.

Then, since every path from 𝑣 to any vertex in 𝑇 must contain a vertex in 𝐵, there must exist a

vertex in 𝑇 that is of distance at least 2𝜀𝑆𝑇 (𝑣)/5 from every vertex in 𝐵. In particular, 𝑡 must be of

distance at least 2𝜀𝑆𝑇 (𝑣)/5 from every vertex in 𝐵.

Let 𝑣′ be the true farthest vertex from 𝑣; that is, 𝑑(𝑣, 𝑣′) = 𝜀𝑆𝑇 (𝑣). If there exists a vertex in

𝑢 ∈ 𝐵 such that 𝑑(𝑣, 𝑢) ≤ 𝜀𝑆𝑇 (𝑣)/5, then by the triangle inequality 𝑑(𝑢, 𝑣′) ≥ 4𝜀𝑆𝑇 (𝑣)/5, so

𝑑(𝑢, 𝑢′) ≥ 4𝜀𝑆𝑇 (𝑣)/5. Applying the triangle inequality again, 𝑑(𝑣, 𝑢′) ≥ 3𝜀𝑆𝑇 (𝑣)/5, so we are

done. Otherwise, every vertex 𝑢 ∈ 𝐵 is of distance at least 𝜀𝑆𝑇 (𝑣)/5 from 𝑣.

We claim that if we are not already done, 𝑑(𝑣, 𝑡) ≥ 3𝜀𝑆𝑇 (𝑣)/5. We observe that every path

from 𝑣 to 𝑡 must contain a vertex in 𝐵. Let 𝑢 ∈ 𝐵 be a vertex on the shortest path from 𝑣 to 𝑡.

Then, 𝑑(𝑣, 𝑡) = 𝑑(𝑣, 𝑢) + 𝑑(𝑢, 𝑡) ≥ 𝜀𝑆𝑇 (𝑣)/5 + 2𝜀𝑆𝑇 (𝑣)/5 = 3𝜀𝑆𝑇 (𝑣)/5. □

Directed Parameterized Bichromatic Diameter

For Bichromatic Diameter in undirected graphs, we assumed that only one of 𝑆 ′ or 𝑇 ′ was

small (i.e. we set 𝐵 to be the smaller of the two); however for directed graphs we impose that both

𝑆 ′ and 𝑇 ′ are small, by defining a new parameter 𝐵′ = 𝑆 ′ ∪ 𝑇 ′.

Theorem 6.1.24. There is an 𝑂(𝑚|𝐵′|) time algorithm that, given an unweighted directed graph

𝐺 = (𝑉,𝐸) and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖𝑆, returns an estimate 𝐷′ such that 2𝐷𝑆𝑇 (𝐺)/3 ≤ 𝐷′ ≤ 𝐷𝑆𝑇 (𝐺).

Proof. (Algorithm): For all 𝑣 ∈ 𝑇 , we let 𝜀𝑆𝑇 (𝑣) denote max𝑠∈𝑆 𝑑(𝑠, 𝑣) (𝜀𝑆𝑇 (𝑣) is already defined

for 𝑣 ∈ 𝑆). Run forward BFS from every vertex in 𝑆 ′ and run backward BFS from every vertex in

𝑇 ′. Let 𝐷1 be the largest 𝑆 → 𝑇 distance found. That is, 𝐷1 = max𝑣∈𝐵′ 𝜀𝑆𝑇 (𝑣). Let 𝑠 ∈ 𝑆 be the
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farthest vertex from 𝐵′. That is, 𝑠 is the vertex in 𝑆 that maximizes 𝑑(𝑠, 𝐵′). Then, we run BFS

from 𝑠 and let 𝐷2 = 𝜀𝑆𝑇 (𝑠). Return max{𝐷1, 𝐷2}.

(Analysis): Let 𝑠* ∈ 𝑆 and 𝑡* ∈ 𝑇 be the true Bichromatic Diameter endpoints and let 𝐷

denote 𝐷𝑆𝑇 (𝐺). If there exists a vertex 𝑠′ ∈ 𝑆 ′ such that 𝑑(𝑠*, 𝑠′) ≤ 𝐷/3, then by the triangle

inequality, 𝑑(𝑠′, 𝑡*) ≥ 2𝐷/3 so 𝐷1 ≥ 2𝐷/3 and we are done. Similarly, if there exists a vertex

𝑡′ ∈ 𝑇 ′ such that 𝑑(𝑡′, 𝑡*) ≤ 𝐷/3, then by the triangle inequality, 𝑑(𝑠*, 𝑡′) ≥ 2𝐷/3 so 𝐷1 ≥ 2𝐷/3

and we are done.

Suppose we are not done. Then, for every vertex 𝑠′ ∈ 𝑆 ′, 𝑑(𝑠*, 𝑠′) > 𝐷/3 and for every vertex

𝑡′ ∈ 𝑇 ′, 𝑑(𝑡′, 𝑡*) > 𝐷/3. By choice of 𝑠, for all 𝑠′ ∈ 𝑆 ′, 𝑑(𝑠, 𝑠′) > 𝐷/3. We observe that every

path from 𝑠 to 𝑡* must contain an edge from a vertex in 𝑆 ′ to a vertex in 𝑇 ′. Let (𝑠′′ ∈ 𝑆 ′, 𝑡′′ ∈ 𝑇 ′)

be an edge on the shortest path from 𝑠 to 𝑡*. Then, 𝑑(𝑠, 𝑡*) = 𝑑(𝑠, 𝑠′′) + 𝑑(𝑠′′, 𝑡′′) + 𝑑(𝑡′′, 𝑡*) >

𝐷/3 + 1 +𝐷/3 = 2𝐷/3 + 1, so 𝐷2 ≥ 2𝐷/3 + 1. □

6.1.7 Conditional Lower Bounds

Bichromatic Diameter, Eccentricities, and Radius

Undirected Bichromatic Diameter The following theorem implies that our algorithms for undi-

rected Bichromatic Diameter from Theorem 6.1.7 and Proposition 1 are tight under SETH.

Theorem 6.1.25. Under SETH, for every 𝑘 ≥ 2, every algorithm that can distinguish between

Bichromatic Diameter 2𝑘−1 and 4𝑘−3 in undirected unweighted graphs requires 𝑚1+1/(𝑘−1)−𝑜(1)

time.

In particular setting 𝑘 = 2 and 3 in Theorem 6.1.25 implies that our 𝑚3/2 time 5/3-

approximation algorithm from Theorem 6.1.7 is tight in approximation factor and runtime, re-

spectively. Furthermore, setting 𝑘 to be arbitrarily large implies that our 𝑂̃(𝑚) time almost 2-

approximation algorithm from Proposition 1 is tight under SETH.

Theorem 6.1.25 follows from the following lemma.

Lemma 6.1.4. Let 𝑘 ≥ 2 be any integer. Given a 𝑘-OV instance, we can in 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) time con-

struct an unweighted, undirected graph with 𝑂(𝑘𝑛𝑘−1 + 𝑘𝑛𝑘−2𝑑𝑘−1) vertices and 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1)

edges that satisfies the following two properties.
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1. If the 𝑘-OV instance has no solution, then for all pairs of vertices 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇 we have

𝑑(𝑢, 𝑣) ≤ 2𝑘 − 1.

2. If the 𝑘-OV instance has a solution, then there exists a pair of vertices 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇 such

that 𝑑(𝑢, 𝑣) ≥ 4𝑘 − 3.

Proof.

Construction of the graph. We begin with the 𝑘-OV-graph from Theorem 6.1.5. Additionally,

we add 𝑘− 1 new layers of vertices 𝐿𝑘+1, . . . , 𝐿2𝑘−1, where each new layer contains 𝑛𝑘−1 vertices

and is connected to the previous layer by a matching. That is, each new layer contains one vertex

for every tuple (𝑎1, . . . , 𝑎𝑘−1) where 𝑎𝑖 ∈ 𝑊𝑖 for all 𝑖, and each (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑗 is connected

to its counterpart (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑗−1 by an edge, for all 𝑗.

We let 𝑆 = 𝐿0 and we let 𝑇 contain the rest of the vertices in the graph.

Correctness of the construction.

Case 1: The 𝑘-OV instance has no solution. By property 3 of Theorem 6.1.5 for all 𝑢 ∈ 𝑆 and

𝑣 ∈ 𝐿𝑘, 𝑑(𝑢, 𝑣) = 𝑘. Then, since 𝐿𝑘, . . . , 𝐿2𝑘−1 form a series of matchings, for all 𝑢 ∈ 𝑆 and

𝑣 ∈ 𝐿𝑘+1 ∪ · · · ∪ 𝐿2𝑘−1, 𝑑(𝑢, 𝑣) ≤ 2𝑘 − 1. Furthermore, property 5 of Theorem 6.1.5 implies that

for all 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝐿1 ∪ · · · ∪ 𝐿𝑘−1, 𝑑(𝑢, 𝑣) ≤ 2𝑘 − 1. Thus, we have shown that for all 𝑢 ∈ 𝑆

and 𝑣 ∈ 𝑇 we have 𝑑(𝑢, 𝑣) ≤ 2𝑘 − 1.

Case 2: The 𝑘-OV instance has a solution. Let (𝑎0, 𝑎1, . . . , 𝑎𝑘−1) be a solution to the 𝑘-OV in-

stance where 𝑎𝑖 ∈ 𝑊𝑖 for all 𝑖. We claim that 𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿2𝑘−1)) ≥

4𝑘 − 3. Since 𝐿𝑘, . . . , 𝐿2𝑘−1 form a series of matchings, every path from (𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆

to (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿2𝑘−1 contains the vertex (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑘. By property 4 of Theo-

rem 6.1.5, 𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈ 𝑆, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿𝑘) ≥ 3𝑘 − 2. Thus, 𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈

𝑆, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝐿2𝑘−1)) ≥ 4𝑘 − 3. □

Undirected Bichromatic Eccentricities The following proposition implies that our algorithms

for undirected Bichromatic Eccentricities from Theorem 6.1.12 and Proposition 2 are tight under

SETH.
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Proposition 6. Under SETH, for every 𝑘 ≥ 2, every algorithm that can distinguish between

Bichromatic Eccentricities 𝑘 and 3𝑘− 2 in undirected unweighted graphs requires 𝑚1+1/(𝑘−1)−𝑜(1)

time.

In particular setting 𝑘 = 2 and 3 in Theorem 6 implies that our 𝑚3/2 time 2-approximation algo-

rithm from Theorem 6.1.12 is tight under SETH in approximation factor and runtime, respectively.

Furthermore, setting 𝑘 to be arbitrarily large implies that our 𝑂̃(𝑚) time almost 3-approximation

algorithm from Proposition 2 is tight under SETH.

Proposition 6 follows from the following lemma.

Lemma 6.1.5. Let 𝑘 ≥ 2 be any integer. Given a 𝑘-OV instance, we can in 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1) time con-

struct an unweighted, undirected graph with 𝑂(𝑘𝑛𝑘−1 + 𝑘𝑛𝑘−2𝑑𝑘−1) vertices and 𝑂(𝑘𝑛𝑘−1𝑑𝑘−1)

edges that satisfies the following two properties. Let 𝑆0 be a particular subset of 𝑆.

1. If the 𝑘-OV instance has no solution, then for all vertices 𝑣 ∈ 𝑆0 we have 𝜀𝑆𝑇 (𝑣) ≤ 𝑘.

2. If the 𝑘-OV instance has a solution, then there exists a vertex 𝑣 ∈ 𝑆0 such that 𝜀𝑆𝑇 (𝑣) ≥

3𝑘 − 2.

Proof. We begin with the 𝑘-OV-graph from Theorem 6.1.5. Let 𝑇 = 𝐿𝑘 and let 𝑆 contain the rest

of the vertices in the graph. Let 𝑆0 = 𝐿0.

If the 𝑘-OV instance has no solution then by property 3 of Theorem 6.1.5 for all 𝑢 ∈ 𝐿0 and

𝑣 ∈ 𝑇 , 𝑑(𝑢, 𝑣) = 𝑘. Thus, for all 𝑢 ∈ 𝐿0, 𝜀𝑆𝑇 (𝑢) = 𝑘.

Suppose the 𝑘-OV instance has a solution (𝑎0, . . . , 𝑎𝑘−1). Then by property 4 of Theorem 6.1.5,

𝑑((𝑎0, . . . , 𝑎𝑘−2) ∈ 𝐿0, (𝑎1, . . . , 𝑎𝑘−1) ∈ 𝑇 ) ≥ 3𝑘 − 2, so 𝜀𝑆𝑇 (𝑎0, . . . , 𝑎𝑘−2) ≥ 3𝑘 − 2. □

Undirected Bichromatic Radius The following theorem implies that our 𝑂̃(𝑚3/2) time 5/3-

approximation algorithm for undirected Bichromatic Radius from Theorem 6.1.10 is tight in ap-

proximation factor under the HS hypothesis.

Theorem 6.1.26. Under the HS hypothesis, any algorithm for Bichromatic Radius that achieves

a (5/3 − 𝛿)-approximation factor for 𝛿 > 0 in 𝑚-edge undirected unweighted graphs requires

𝑚2−𝑜(1) time.
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Proof. Given an instance 𝑈, 𝑉 ⊆ {0, 1}𝑑 of OV, let 𝐺(𝑈, 𝑉 ) be its OV-graph. Create 𝐺′ which has

the same vertex set as 𝐺(𝑈, 𝑉 ) except instead of having a vertex for every 𝑣 ∈ 𝑉 it has two copies

𝑣1 ∈ 𝑉1 and 𝑣2 ∈ 𝑉2.

The edges for 𝐺′ are: for 𝑢 ∈ 𝑈, 𝑐 ∈ 𝐶, we add (𝑢, 𝑐) as an edge iff 𝑢[𝑐] = 1. For 𝑣 ∈ 𝑉, 𝑐 ∈ 𝐶,

we add (𝑐, 𝑣1) as an edge iff 𝑣[𝑐] = 1. For each 𝑣 ∈ 𝑉 we add an edge (𝑣1, 𝑣2). Set 𝑆 = 𝑈 and

𝑇 = 𝑉1 ∪ 𝑉2 ∪ 𝐶. The number of edges in the graph is 𝑂(𝑛𝑑).

Suppose that there is no HS solution, then for all 𝑢 ∈ 𝑈 there is some 𝑣 ∈ 𝑉 so that 𝑢 · 𝑣 = 0

and hence 𝑑(𝑢, 𝑣2) ≥ 5. If there is an HS solution 𝑢 ∈ 𝑈 , then for all 𝑡 ∈ 𝑇 , 𝑑(𝑢, 𝑡) ≤ 3. □

Directed Bichromatic Diameter The following theorem implies that our 𝑚3/2 2-approximation

algorithm for directed Bichromatic Diameter from Theorem 6.1.13 has a tight approximation factor

under SETH.

Theorem 6.1.27. Under SETH, any algorithm for directed Bichromatic Diameter that achieves a

(2− 𝛿)-approximation factor for 𝛿 > 0 in 𝑚-edge graphs requires 𝑚2−𝑜(1) time.

Proof. We will show that under SETH, for any positive integer ℓ, distinguishing between Bichro-

matic Diameter ℓ+ 1 and 2ℓ+ 1 requires 𝑚2−𝑜(1) time.

Given an instance 𝑈, 𝑉 ⊆ {0, 1}𝑑 of OV, let 𝐺(𝑈, 𝑉 ) be its OV-graph. Create 𝐺′ which has

the same vertex set as 𝐺(𝑈, 𝑉 ) except instead of having one vertex for every 𝑣 ∈ 𝑉 it has ℓ copies

𝑣𝑖 ∈ 𝑉𝑖 for 1 ≤ 𝑖 ≤ ℓ. It also has ℓ− 2 additional vertices: 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝ℓ−2}.

The edges of 𝐺′ are: for 𝑢 ∈ 𝑈, 𝑐 ∈ 𝐶, we add (𝑢, 𝑐) as an edge iff 𝑢[𝑐] = 1, and for

𝑐 ∈ 𝐶, 𝑣 ∈ 𝑉 , we add (𝑐, 𝑣1) as an edge iff 𝑣[𝑐] = 1. We add a matching going from 𝑉𝑖 to

𝑉𝑖+1 where edges join the nodes which are copies of each other. For each 𝑐 ∈ 𝐶, we add an

edge (𝑐, 𝑝1). We add a path from 𝑝1 to 𝑝ℓ−2. For each 𝑢 ∈ 𝑈 , we add an edge (𝑝ℓ−2, 𝑢). Set

𝑆 = 𝑈, 𝑇 = 𝐶 ∪ 𝑃 ∪ 𝑉1 ∪ 𝑉2 . . . 𝑉ℓ. The number of edges in the graph is 𝑂(𝑛𝑑).

Consider any 𝑢 ∈ 𝑈 . By construction, 𝑑(𝑢, 𝑧) ≤ ℓ + 1 for 𝑧 ∈ 𝐶 ∪ 𝑃 . Suppose that there is

no OV solution, then for all 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , 𝑢 · 𝑣 ̸= 0 and hence 𝑑(𝑢, 𝑣𝑖) ≤ ℓ+ 1. If there is an OV

solution 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , then, 𝑑(𝑢, 𝑣ℓ) ≥ 2ℓ+ 1 as the only path is through 𝑃 . □

Directed Bichromatic Eccentricities
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Proposition 7. Under SETH, any algorithm for Bichromatic Eccentricities that achieves a finite

approximation factor in 𝑚-edge directed graphs requires 𝑚2−𝑜(1) time.

Proof. Given an instance 𝑈, 𝑉 ⊆ {0, 1}𝑑 of OV, let 𝐺(𝑈, 𝑉 ) be its OV-graph. Now, direct the

edges from 𝑈 to 𝐶 and from 𝐶 to 𝑉 and set 𝑆 = 𝑈 ∪ 𝐶, 𝑇 = 𝑉 . Notice this is an instance of

Bichromatic Eccentricities.

Now, for every 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , if 𝑢 · 𝑣 ̸= 0, 𝑑(𝑢, 𝑣) = 2 and if 𝑢 · 𝑣 = 0, 𝑑(𝑢, 𝑣) = ∞ as there

is no path from 𝑢 to 𝑣. Thus, if there is an OV pair, then the 𝑆𝑇 -Eccentricity for every 𝑢 ∈ 𝑈 ⊆ 𝑆

is ∞, and otherwise it is 2. Any finite approximation to the 𝑆𝑇 -Eccentricities can distinguish

between∞ and 2, and thus can solve OV. (Notice, we do not even need the Eccentricities of nodes

in 𝐶.) Thus, there can be no 𝑚2−𝜀 time algorithm for 𝜀 > 0 that achieves a finite approximation

factor if SETH holds. □

Directed Bichromatic Radius

Proposition 8. Under the HS hypothesis, any algorithm for Bichromatic Radius that achieves a

finite approximation factor in 𝑚-edge directed graphs requires 𝑚2−𝑜(1) time.

Proof. The proof is similar to that for Bichromatic Eccentricities. Given an instance 𝑈, 𝑉 ⊆

{0, 1}𝑑 of HS, let 𝐺(𝑈, 𝑉 ) be its OV-graph. Now, direct the edges from 𝑈 to 𝐶 and from 𝐶 to 𝑉 ,

and add an extra node 𝑧 so that for every 𝑢 ∈ 𝑈 there is a directed edge (𝑢, 𝑧). Set 𝑆 = 𝑈 ∪ 𝐶,

𝑇 = 𝑉 ∪ {𝑧}.

First, if the 𝑆𝑇 -Radius is finite, the 𝑆𝑇 -center (the node achieving the Radius) must be in 𝑈 ,

since no node in 𝐶 can reach 𝑧, by construction. The distance 𝑑(𝑢, 𝑧) is 1 for all 𝑢 ∈ 𝑈 . For every

𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , if 𝑢 · 𝑣 ̸= 0, 𝑑(𝑢, 𝑣) = 2 and if 𝑢 · 𝑣 = 0, 𝑑(𝑢, 𝑣) = ∞ as there is no path from

𝑢 to 𝑣. Thus, if there is a HS solution, then the 𝑆𝑇 -Radius is 2, and otherwise it is∞. Any finite

approximation to the 𝑆𝑇 -Radius can distinguish between∞ and 2, and thus can solve HS. Thus,

there can be no 𝑚2−𝜀 time algorithm for 𝜀 > 0 that achieves a finite approximation factor if the HS

hypothesis holds. □
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𝑆𝑇 -Diameter, Eccentricities, and Radius

Undirected 𝑆𝑇 -Diameter and Eccentricities For undirected graphs, Backurs et al. [BRS+18]

give a time-accuracy trade-off lower bound for 𝑆𝑇 -Diameter that immediately extends to 𝑆𝑇 -

Eccentricities (since any Eccentricities algorithm gives a Diameter algorithm with the same run-

ning time and accuracy by taking the maximum of Eccentricities).

The following theorem shows that our algorithms for 𝑆𝑇 -Eccentricities from Theorem 6.1.15

and Proposition 3 are tight under SETH.

Theorem 6.1.28 ([BRS+18]). Under SETH, for every 𝑘 ≥ 2, every algorithm for 𝑆𝑇 -Diameter

(and thus 𝑆𝑇 -Eccentricities) that achieves a ((4𝑘 − 3)/(2𝑘 − 1)− 𝛿)-approximation for 𝛿 > 0 in

undirected unweighted graphs requires 𝑚1+1/(𝑘−1)−𝑜(1) time.

In particular, setting 𝑘 = 2 and 3 in Theorem 6.1.28 shows that our 𝑚3/2 time 2-approximation

algorithm for 𝑆𝑇 -Eccentricities from Theorem 6.1.15 is tight under SETH, in terms of both ap-

proximation factor and runtime. Furthermore, setting 𝑘 to be arbitrarily large implies that our 𝑂̃(𝑚)

time 3-approximation algorithm for 𝑆𝑇 -Eccentricities from Proposition 3 is tight under SETH.

Undirected 𝑆𝑇 -Radius The following proposition shows that our 𝑂̃(𝑚3/2) time 2-

approximation algorithm for undirected 𝑆𝑇 -Radius from Theorem 6.1.18 has a tight approxima-

tion factor under the HS hypothesis.

Proposition 9. Under the HS hypothesis, any algorithm for 𝑆𝑇 -Radius that achieves a (2 − 𝛿)-

approximation for 𝛿 > 0 in 𝑚-edge undirected graphs requires 𝑚2−𝑜(1) time.

Proof. Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of HS, let 𝐺 be the OV-graph defined on this instance.

Let 𝑆 = 𝑈 and 𝑇 = 𝑉 . Suppose that there is a node 𝑢 ∈ 𝑈 which is not orthogonal to any node

in 𝑉 . Then for each 𝑣 ∈ 𝑉 , 𝑑(𝑢, 𝑣) = 2 by using the coordinate node on which both 𝑢 and 𝑣 are

1. So in this case the 𝑆𝑇 -Radius is 2. Suppose on the other hand that no such node in 𝑈 exists,

so that for each node 𝑢 ∈ 𝑈, there is a node 𝑣 ∈ 𝑉 such that 𝑢 · 𝑣 = 0. Then 𝑑(𝑢, 𝑣) ≥ 4. Since

𝑆 = 𝑈 , the 𝑆𝑇 -Radius is at least 4 in this case.

So any (2− 𝛿)-approximation algorithm can distinguish between 𝑆𝑇 -Radius 2 and 4, and thus
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solve HS. Therefore, there can be no 𝑚2−𝜖 time algorithm for 𝜖 > 0 that achieves a (2 − 𝛿)-

approximation factor if HS hypothesis holds. □

Directed 𝑆𝑇 -Diameter

Proposition 10. Under SETH, any algorithm for 𝑆𝑇 -Diameter that achieves a finite approximation

factor in 𝑚-edge directed graphs requires 𝑚2−𝑜(1) time.

Proof. Given an instance 𝑈, 𝑉 ⊆ {0, 1}𝑑 of OV, let 𝐺(𝑈, 𝑉 ) be its OV-graph. Now, direct the

edges from 𝑈 to 𝐶 and from 𝐶 to 𝑉 and set 𝑆 = 𝑈 , 𝑇 = 𝑉 .

Now, for every 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 , if 𝑢 · 𝑣 ̸= 0, 𝑑(𝑢, 𝑣) = 2 and if 𝑢 · 𝑣 = 0, 𝑑(𝑢, 𝑣) = ∞ as there

is no path from 𝑢 to 𝑣. Thus, if there is an OV pair, then the 𝑆𝑇 -Diameter is∞, and otherwise it

is 2. Any finite approximation to the 𝑆𝑇 -Diameter can distinguish between∞ and 2, and thus can

solve OV. Thus, there can be no 𝑚2−𝜀 time algorithm for 𝜀 > 0 that achieves a finite approximation

factor if SETH holds. □

Directed 𝑆𝑇 -Eccentricities and Radius Propositions 7 and 8 immediately carry over to Di-

rected 𝑆𝑇 -Eccentricities and 𝑆𝑇 -Radius since the Bichromatic version is a special case of the 𝑆𝑇

version. We state the results here for convenience.

Proposition 11. Under SETH, any algorithm for 𝑆𝑇 -Eccentricities that achieves a finite approxi-

mation factor in 𝑚-edge directed graphs requires 𝑚2−𝑜(1) time.

Proposition 12. Under the HS hypothesis, any algorithm for 𝑆𝑇 -Radius that achieves a finite

approximation factor in 𝑚-edge directed graphs requires 𝑚2−𝑜(1) time.

Subset Diameter, Eccentricities, and Radius

Subset Diameter and Eccentricities The following proposition implies that our 𝑂̃(𝑚) time 2-

approximation algorithm for Subset Diameter from Proposition 4 is tight under SETH, and that our

near-linear time almost 2-approximation algorithm for Subset Eccentricities from Theorem 6.1.19

is essentially tight under SETH.

Proposition 13. Under SETH, any algorithm for Subset Diameter (and thus Subset Eccentricities)

that achieves a (2− 𝛿)-approximation factor for 𝛿 > 0 in 𝑚-edge directed graphs requires 𝑚2−𝑜(1)

time.
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Proof. Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of OV, we begin with the OV-graph defined on this

instance. We add a vertex 𝑢 adjacent to every vertex in 𝑈 and a vertex 𝑣 adjacent to every vertex

in 𝑉 . Let 𝑆 = 𝑈 ∪ 𝑉 .

If there is no OV solution, every pair of vertices 𝑠 ∈ 𝑈 , 𝑠′ ∈ 𝑉 𝑑(𝑠, 𝑠′) = 2. Also, every pair

of vertices 𝑠, 𝑠′ ∈ 𝑈 or 𝑠, 𝑠′ ∈ 𝑉 has 𝑑(𝑠, 𝑠′) = 2 due to the addition of the vertices 𝑢 and 𝑣.

On the other hand, if there is an OV solution, in the original OV-graph there exists 𝑠 ∈ 𝑈 ,

𝑠′ ∈ 𝑉 such that 𝑑(𝑠, 𝑠′) = 4. We note that the addition of the vertices 𝑢 and 𝑣 does not change

this fact. □

Subset Radius The following proposition implies that our 𝑂̃(𝑚) time 2-approximation algo-

rithm for Subset Radius from Proposition 5 is tight under the HS hypothesis.

Proposition 14. Under the HS hypothesis, any algorithm for Subset Radius that achieves a (2−𝛿)-

approximation factor for 𝛿 > 0 in 𝑚-edge undirected graphs requires 𝑚2−𝑜(1) time.

Proof. Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of HS, we begin with the OV-graph 𝑈 ∪ 𝐶 ∪ 𝑉 defined

on this instance. Then we add a vertex 𝑢 adjacent to every vertex in 𝑈 and a vertex 𝑣 adjacent to

𝑢. Let 𝑆 = 𝑈 ∪ 𝑉 ∪ {𝑣}.

If there is no HS solution, then in the original OV-graph, for all 𝑠 ∈ 𝑈 , there exists some 𝑠′ ∈ 𝑉

such that 𝑑(𝑠, 𝑠′) ≥ 4. We note that the addition of the vertices 𝑢 and 𝑣 does not change this fact.

Furthermore, for all vertices 𝑠 ∈ 𝑉 , 𝑑(𝑣, 𝑠) = 4. Thus, the Subset Radius is at least 4.

On the other hand, if there is a HS solution, then there exists a vertex 𝑠 ∈ 𝑈 such that for all

vertices 𝑠′ ∈ 𝑉 , 𝑑(𝑠, 𝑠′) = 2. Also, 𝑑(𝑠, 𝑣) = 2. Thus, the Subset Radius is 2. □

Parameterized Bichromatic Diameter, Eccentricities, and Radius

In this section we show that modifications of our lower bound constructions show that our

algorithms parameterized by the boundary size |𝐵| for Bichromatic Diameter, Eccentricities, and

Radius are conditionally tight. Recall that for undirected graphs, 𝑆 ′ is the set of vertices in 𝑆 that

have a neighbor in 𝑇 , 𝑇 ′ is the set of vertices in 𝑇 that have a neighbor in 𝑆, and 𝐵 is whichever

of 𝑆 ′ or 𝑇 ′ is smaller in size. Since these our parameterized algorithms for undirected graphs have

additive error, instead of showing that e.g. distinguishing between values 2 and 3 is hard, we will
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give results of the form “for all ℓ, distinguishing between e.g. 2ℓ and 3ℓ is hard". This proves that

even algorithms with constant additive error cannot achieve a better multiplicative approximation

factor than e.g. 3/2.

Undirected Parameterized Bichromatic Diameter The following theorem implies that the

multiplicative factor in our 𝑂̃(𝑚|𝐵|) time almost 3/2-approximation algorithm for undirected

Bichromatic Diameter from Theorem 6.1.21 is tight under SETH for |𝐵| = 𝜔(log 𝑛).

Theorem 6.1.29. For any integer ℓ > 0, under SETH any algorithm for Bichromatic Diameter in

undirected unweighted graphs that distinguishes between Bichromatic Diameter 4ℓ and 6ℓ requires

𝑚2−𝑜(1) time, even for graphs with |𝐵| = 𝑑 = 𝑂̃(1).

Proof.

Construction Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of OV, we begin with the OV-graph 𝑈 , 𝐶, 𝑉

defined on this instance. We add a new set 𝑈 ′ of 𝑛 vertices, one vertex for each vector in 𝑈 , and

connect each vertex in 𝑈 to its corresponding vertex in 𝑈 ′ to form a matching. Symmetrically, we

add a new set 𝑉 ′ of 𝑛 vertices, one vertex for each vector in 𝑉 , and connect each vertex in 𝑉 to

its corresponding vertex in 𝑉 ′ to form a matching. Then we subdivide each of the edges in the

graph into a path of length ℓ. Let 𝑇 contain 𝐶 ∪ 𝑉 ∪ 𝑉 ′ as well as the vertices on the subdivision

paths from 𝐶 to 𝑉 and from 𝑉 to 𝑉 ′. Let 𝑆 be the remaining vertices, that is, 𝑆 contains 𝑈 , 𝑈 ′,

the vertices that subdivide the edges between 𝑈 and 𝑈 ′, and the vertices that subdivide the edges

between 𝑈 and 𝐶.

Analysis We note that 𝑇 ′ = 𝐶 and |𝐶| = 𝑑 so |𝐵| = 𝑑 = 𝑂̃(1).

If the OV instance has no solution then for every pair of vertices 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , 𝑑(𝑢, 𝑣) = 2ℓ.

Every vertex in 𝑆 is at most distance ℓ from some vertex in 𝑈 and every vertex in 𝑇 is at most

distance ℓ from some vertex in 𝑉 so the Bichromatic Diameter is at most 4ℓ.

Suppose the OV instance has a solution 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 . We know that 𝑑(𝑢, 𝑣) ≥ 4ℓ. Let 𝑢′ be

the vertex in 𝑈 ′ that is matched to 𝑢 and let 𝑣′ be the vertex in 𝑉 ′ that is matched to 𝑣. We claim

that 𝑑(𝑢′, 𝑣′) ≥ 6ℓ. Since 𝑈,𝑈 ′ and 𝑉, 𝑉 ′ form matchings the only paths between 𝑢′ and 𝑣′ contain

𝑢 and 𝑣. Thus, 𝑑(𝑢′, 𝑣′) = 𝑑(𝑢′, 𝑢) + 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑣′) ≥ 6ℓ. □
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Undirected Parameterized Bichromatic Eccentricities The following proposition implies that

the multiplicative factor in our 𝑂̃(𝑚|𝐵|) time almost 5/3-approximation algorithm for undirected

Bichromatic Eccentricities from Theorem 6.1.23 is tight under SETH for |𝐵| = 𝜔(log 𝑛).

Proposition 15. For any integer ℓ > 0, under SETH any algorithm for Bichromatic Eccentricities

in undirected unweighted graphs that distinguishes for all vertices 𝑣 between 𝜀𝑆𝑇 (𝑣) = 3ℓ and

𝜀𝑆𝑇 (𝑣) = 5ℓ requires 𝑚2−𝑜(1) time, even for graphs with |𝐵| = 𝑑 = 𝑂̃(1).

Proof.

Construction Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of OV, we begin with the OV-graph 𝑈 , 𝐶, 𝑉

defined on this instance. We add a new set 𝑉 ′ of 𝑛 vertices, one vertex for each vector in 𝑉 , and

connect each vertex in 𝑉 to its corresponding vertex in 𝑉 ′ to form a matching. Then we subdivide

each of the edges in the graph into a path of length ℓ. Let 𝑆 contain 𝑈 , 𝐶, and the vertices that

subdivide the edges between 𝑈 and 𝐶. Let 𝑇 contain the remaining vertices.

Analysis We note that 𝑆 ′ = 𝐶 and |𝐶| = 𝑑 so |𝐵| = 𝑑 = 𝑂̃(1).

If there is no OV solution, then for all pairs of vertices 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , 𝑑(𝑢, 𝑣) = 2ℓ. Every

vertex in 𝑇 is of distance at most ℓ from some vertex in 𝑇 so for all vertices 𝑢 ∈ 𝑈 , 𝜀𝑆𝑇 (𝑢) ≤ 3ℓ.

If there is an OV solution 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 , 𝑑(𝑢, 𝑣) ≥ 4ℓ. Let 𝑣′ ∈ 𝑉 ′ be the vertex matching to

𝑣. Then, 𝑑(𝑢, 𝑣′) ≥ 5ℓ so 𝜀𝑆𝑇 (𝑣) ≥ 5ℓ. □

Undirected Parameterized Bichromatic Radius The following theorem implies that the mul-

tiplicative factor in our 𝑂̃(𝑚|𝐵|) time almost 3/2-approximation algorithm for undirected Bichro-

matic Radius from Theorem 6.1.22 is tight under the HS hypothesis for |𝐵| = 𝜔(log 𝑛).

Theorem 6.1.30. For any integer ℓ > 0, under the HS hypothesis any algorithm for Bichromatic

Radius in undirected unweighted graphs that distinguishes between Bichromatic Radius 4ℓ and 6ℓ

requires 𝑚2−𝑜(1) time, even for graphs with |𝐵| = 𝑑 = 𝑂̃(1).

Proof.

Construction Given an instance 𝑈, 𝑉 ∈ {0, 1}𝑑 of HS, we begin with two copies of the con-

struction from Theorem 6.1.29, 𝑈 ′1, 𝑈1, 𝐶1, 𝑉1, 𝑉 ′1 , and 𝑈 ′2, 𝑈2, 𝐶2, 𝑉2, 𝑉 ′2 . We then merge each

vertex in 𝑈 ′1 with its corresponding vertex in 𝑈 ′2.
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Analysis We note that 𝑇 ′ = 𝐶1 ∪ 𝐶2 and |𝐶1| = |𝐶2| = 𝑑 so |𝐵| = 2𝑑 = 𝑂̃(1).

It will be convenient to imagine that the graph is layered from left to right as 𝑉 ′2 , 𝑉2, 𝐶2, 𝑈2,

𝑈 ′1, 𝑈1, 𝐶1, 𝑉1, 𝑉 ′1 .

If there is no HS solution, then for all 𝑢1 ∈ 𝑈1, there exists some 𝑣1 ∈ 𝑉1 such that 𝑑(𝑢1, 𝑣1) ≥

4ℓ and for all 𝑢2 ∈ 𝑈2, there exists some 𝑣2 ∈ 𝑉2 such that 𝑑(𝑢2, 𝑣2) ≥ 4ℓ. Let 𝑢 be any vertex in

𝑆 that lies in 𝑈 ′1 or to the right of 𝑈 ′1. Since any path 𝑢 to a vertex in 𝑉 ′2 contains a vertex in 𝑈2,

there exists 𝑣 ∈ 𝑉 ′2 such that 𝑑(𝑢, 𝑣) ≥ 6ℓ. Symmetrically, if 𝑢 is a vertex in 𝑆 that lies to the left

of 𝑈 ′1, there exists 𝑣 ∈ 𝑉 ′1 such that 𝑑(𝑢, 𝑣) ≥ 6ℓ. Thus, the Bichromatic Radius is at least 6ℓ.

On the other hand, if there is a HS solution, then there exists a vertex 𝑢 ∈ 𝑈1 such that for all

vertices 𝑣 ∈ 𝑉1, 𝑑(𝑢, 𝑣) = 2ℓ. Let 𝑢′ be the vertex in 𝑈 ′1 matched to 𝑢 and let 𝑢′′ be the vertex in

𝑈2 matched to 𝑢′. Then, for all vertices 𝑣 ∈ 𝑉2, 𝑑(𝑢′′, 𝑣) = 2ℓ. Thus, for all vertices 𝑣 ∈ 𝑉1 ∪ 𝑉2,

𝑑(𝑢′, 𝑣) = 3ℓ, so for all vertices 𝑣 ∈ 𝑇 , 𝑑(𝑢′, 𝑣) ≤ 4ℓ. Thus, the Bichromatic Radius is at most 4ℓ.

□

Directed Parameterized Bichromatic Diameter Recall that for directed graphs, 𝑆 ′ is the set of

vertices in 𝑆 with an outgoing edge to a vertex in 𝑇 , 𝑇 ′ is the set of vertices in 𝑇 with an incoming

edge from a vertex in 𝑆, and 𝐵′ = 𝑆 ′∪𝑇 ′. We will show that the construction from Theorem 6.1.29

can be made to have small 𝐵′ (i.e. small 𝑆 ′ and 𝑇 ′), with a slight additive cost to the Diameter

values. The construction will remain undirected.

The following proposition implies that the multiplicative factor in our 𝑂̃(𝑚|𝐵′|) time almost

3/2-approximation algorithm for Directed Bichromatic Diameter from Theorem 6.1.24 is tight

under SETH for |𝐵′| = 𝜔(log 𝑛).

Proposition 16. For any integer ℓ > 0, under SETH any algorithm for Bichromatic Diameter in

directed unweighted graphs that distinguishes between Bichromatic Diameter 4ℓ + 1 and 6ℓ + 1

requires 𝑚2−𝑜(1) time, even for graphs with |𝐵| = 𝑑 = 𝑂̃(1).

Proof.

Construction We begin with the construction from Theorem 6.1.29. We replace each vertex

𝑐 ∈ 𝐶 by a pair of vertices 𝑐1, 𝑐2 and let (𝑐1, 𝑐2) be an edge. Let 𝐶1 and 𝐶2 be the set of all 𝑐1’s and
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𝑐2’s respectively. That is, 𝐶1 and 𝐶2 form a matching. For every edge originally between 𝑢 ∈ 𝑈

and 𝑐 ∈ 𝐶, we replace it with the undirected edge (𝑢, 𝑐1) and for every edge originally between

𝑐 ∈ 𝐶 and 𝑣 ∈ 𝑉 , we replace it with the undirected edge (𝑐2, 𝑣).

Analysis The correctness follows from the analysis of Theorem 6.1.29. Here, we get 4ℓ+ 1 and

6ℓ+ 1 instead of 4ℓ and 6ℓ due to the addition of the matching between 𝐶1 and 𝐶2. □

6.2 Min-distance problems in general graphs

This section was written with authors Virginia Vassilevska Williams, Nikhil Vyas, Nicole Wein,

Yinzhan Xu and Yuancheng Yu, and focuses on the second type of variants of distance problems

in general graphs. We study fundamental graph parameters such as the Diameter and Radius in

directed graphs, when distances are measured using a somewhat unorthodox but natural measure:

the distance between 𝑢 and 𝑣 is the minimum of the shortest path distances from 𝑢 to 𝑣 and from 𝑣

to 𝑢. The center node in a graph under this measure can for instance represent the optimal location

for a hospital to ensure the fastest medical care for everyone, as one can either go to the hospital,

or a doctor can be sent to help.

By computing All-Pairs Shortest Paths, all pairwise distances and thus the parameters we study

can be computed exactly in 𝑂̃(𝑚𝑛) time for directed graphs on 𝑛 vertices, 𝑚 edges and nonneg-

ative edge weights. Furthermore, this time bound is tight under the Strong Exponential Time

Hypothesis [Roditty-Vassilevska W. STOC 2013] so it is natural to study how well these param-

eters can be approximated in 𝑂(𝑚𝑛1−𝜀) time for constant 𝜀 > 0. Abboud, Vassilevska Williams,

and Wang [SODA 2016] gave a polynomial factor approximation for Diameter and Radius, as

well as a constant factor approximation for both problems in the special case where the graph is a

DAG. We greatly improve upon these bounds by providing the first constant factor approximations

for Diameter, Radius and the related Eccentricities problem in general graphs. Additionally, we

provide a hierarchy of algorithms for Diameter that gives a time/accuracy trade-off.
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6.2.1 Introduction

The diameter, radius and eccentricities of a graph are fundamental parameters that have

been extensively studied [Chu87, Hak64, CD94, Epp99, ACIM99, CDHP01, CDV02, DH04,

BMBST07, BK07, Wul08, Yus10, Cha12, FHW12, WY13, RV13, CLR+14, AGV15, BCH+15]

(and many others). The eccentricity of a vertex 𝑣 is the largest distance between 𝑣 and any other

vertex. The diameter is the maximum eccentricity of a vertex in the graph, thus measuring how

far apart two nodes can be, and the radius is the minimum eccentricity, measuring the maximum

distance to the most central node.

The distance between two vertices in an undirected graph is just the shortest path distance 𝑑(·, ·)

between them. For directed graphs, however, this notion of distance 𝑑 is no longer necessarily

symmetric, and rather than being a distance between two nodes, it measures the distance in a given

direction. Several related notions of pairwise distance that are symmetric have been studied. These

include the roundtrip distance [CW99] which for two vertices 𝑢 and 𝑣 is just 𝑑(𝑢, 𝑣) + 𝑑(𝑣, 𝑢), the

max-distance [AVW16] which is max{𝑑(𝑢, 𝑣), 𝑑(𝑣, 𝑢)}, and the min-distance [AVW16] which is

min{𝑑(𝑢, 𝑣), 𝑑(𝑣, 𝑢)}.

Each of these notions of distance has a particular application. For instance, one would have

to pay the roundtrip distance when going to the store and back. On the other hand, if one needs

medical assistance, one could either go to the hospital, or have a physician come to the home —

the time to receive care is then measured by the min-distance. Another example of min-distance

is in symmetric-key encryption: any pair of parties can create a shared private key by using only

one-way communication.

For each notion of distance, the diameter, radius and eccentricity parameters are well-defined.

Given the shortest path distances 𝑑(·, ·) for all vertices, the parameters for each distance measure

can be computed in 𝑂(𝑛2) time in 𝑛 vertex graphs. The fastest known algorithms for All-Pairs

Shortest Paths (APSP) [Wil14, Pet02, PR05] give the fastest known algorithms to compute these

parameters exactly, running in 𝑛3/ exp(
√
log 𝑛) time and 𝑂(𝑚𝑛 + 𝑛2 log log 𝑛), respectively on

𝑚-edge, 𝑛-vertex graphs. Furthermore, under the Strong Exponential Hypothesis, there is no

𝑂(𝑚2−𝜀) time algorithm for Diameter in unweighted graphs (and thus also for any of these notions
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of Diameter and Eccentricities in directed graphs) [RV13]. For Radius, the same lower bound

holds but under the “Hitting Set" conjecture [AVW16].

As exact computation is expensive, it makes sense to resort to approximation algorithms.

For the shortest path distance versions of Diameter, Eccentricities and Radius, there are sev-

eral fast algorithms that achieve various small constant approximation ratios [RV13, CLR+14,

CGR16, BRS+18]. For instance, for Diameter, a folklore linear time algorithm can achieve

a 2-approximation, and an 𝑂̃(𝑚3/2) time3 algorithm can achieve a 3/2-approximation [RV13,

CLR+14].

Many of these algorithms [RV13, CLR+14, BRS+18] work for any distance measure that sat-

isfies the triangle inequality. Thus they work for the shortest paths distance, max-distance and

roundtrip distance. The min-distance however does not satisfy the triangle inequality: e.g. you

might have edges (𝑥, 𝑦) and (𝑧, 𝑦), and thus the min-distance between 𝑥 and 𝑦 and between 𝑦

and 𝑧 are both 1, yet there may be no directed path between 𝑥 and 𝑧 in any direction, so that the

min-distance between them may be∞.

This issue makes it much more difficult to design fast approximation algorithms for Min-

Diameter, Min-Radius and Min-Eccentricities (the parameters of interest under the min-distance).

The only known nontrivial algorithms are by Abboud et al. [AVW16]. For Min-Diameter [AVW16]

gives a near-linear time 2-approximation algorithm if the input is a directed acyclic graph.

For general graphs, the only nontrivial fast approximation algorithm is an 𝑂̃(𝑚𝑛1−𝜀) time 𝑛𝜀-

approximation algorithm for any constant 𝜀 > 0. (No constant factor approximation algorithm is

known that runs significantly faster than just computing APSP.) For Min-Radius, [AVW16] gives

an 𝑂̃(𝑚
√
𝑛) time 3-approximation algorithm for directed acyclic graphs. For general graphs, they

only achieve a very weak 𝑛-approximation in near-linear time that checks if the Min-Radius is

finite. There are no known approximation algorithms for Min-Eccentricities faster than just com-

puting APSP.

3We use 𝑂̃ notation to hide polylogarithmic factors

193



Our Results

The main goal of this section is to obtain new fast, 𝑂(𝑚𝑛1−𝜀) time for some constant 𝜀 > 0,

algorithms for Min-Diameter, Min-Radius and Min-Eccentricities (thus beating the 𝑂̃(𝑚𝑛) time

of exact computation). We achieve this by developing powerful new techniques that can handle the

complications that arise due to the fact that the min-distance does not satisfy the triangle inequality.

Our results are as follows. For Min-Diameter we achieve a hierarchy of algorithms trading off

running time with approximation accuracy.

Theorem 6.2.1. For any integer 0 < ℓ ≤ 𝑂(log 𝑛), there is an 𝑂̃(𝑚𝑛1/(ℓ+1)) time randomized

algorithm that, given a directed weighted graph 𝐺 with edge weights non-negative and polynomial

in 𝑛, can output an estimate 𝐷̃ such that 𝐷/(4ℓ− 1) ≤ 𝐷̃ ≤ 𝐷 with high probability, where 𝐷 is

the min-diameter of 𝐺.

When we set ℓ = 1, we obtain an 𝑂̃(𝑚
√
𝑛) time 3-approximation algorithm, and when we set

ℓ = ⌈log 𝑛⌉, we get an 𝑂̃(𝑚) time 𝑂(log 𝑛)-approximation.

Our tradeoff achieves the first constant factor approximation algorithms for Min-Diameter in

general graphs that run in 𝑂(𝑚𝑛1−𝜀) time for constant 𝜀 > 0. Such a result was only known

for directed acyclic graphs, whereas for general graphs the only known efficient algorithm could

achieve an 𝑛𝜀-approximation.

For Min-Radius, we also achieve the first constant factor approximation algorithm for general

graphs running in 𝑂(𝑚𝑛1−𝜀) time for some constant 𝜀 > 0. Such a result was only known for

directed acyclic graphs, whereas for general graphs the only known efficient algorithm could only

check if the Min-Radius is finite.

Theorem 6.2.2. For any constant 𝛿 with 1 > 𝛿 > 0, there is an 𝑂̃(𝑚
√
𝑛/𝛿) time randomized

algorithm, that given a directed weighted graph 𝐺 with edge weights positive and polynomial in

𝑛, can output an estimate 𝑅′ such that 𝑅 ≤ 𝑅′ ≤ (3 + 𝛿)𝑅 with high probability, where 𝑅 is the

min-radius of 𝐺.

Finally, we obtain the first 𝑂(𝑚𝑛1−𝜀) time (for constant 𝜀 > 0) constant factor approximation

algorithms for the Min-Eccentricities of all vertices in a graph. For unweighted graphs we are able
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to obtain a close to 3 approximation in 𝑂̃(𝑚
√
𝑛) time. For weighted graphs, our approximation

factor grows to 5, while the running time is the same. Previously, the only algorithm to approximate

the Min-Eccentricities computed them exactly via an APSP computation.

Theorem 6.2.3. For any constant 𝛿 with 1 > 𝛿 > 0, there is an 𝑂̃(𝑚
√
𝑛/𝛿) time randomized

algorithm, that given a directed weighted graph 𝐺 = (𝑉,𝐸) with weights positive and polynomial

in 𝑛, can output an estimate 𝜀′(𝑠) for every vertex 𝑠 ∈ 𝑉 such that 𝜀(𝑠) ≤ 𝜀′(𝑠) ≤ (5+ 𝛿)𝜀(𝑠) with

high probability, where 𝜀(𝑠) is the min-eccentricity of vertex 𝑠 in 𝐺.

Theorem 6.2.4. For any constant 𝛿 with 1 > 𝛿 > 0, there is an 𝑂̃(𝑚
√
𝑛/𝛿2) time randomized

algorithm, that given a directed unweighted graph 𝐺 = (𝑉,𝐸), can output an estimate 𝜀′(𝑠) for

every vertex 𝑠 ∈ 𝑉 such that 𝜀(𝑠) ≤ 𝜀′(𝑠) ≤ (3 + 𝛿)𝜀(𝑠) with high probability, where 𝜀(𝑠) is the

min-eccentricity of the vertex 𝑠 in 𝐺.

Our Techniques

To obtain our results, we develop powerful new techniques which we outline below.

Partial search graphs. The idea of partial search graphs is used in the algorithms of

[AVW16] for Min-Radius and Min-Diameter on DAGs. These algorithms use the following high-

level framework: perform Dijkstra’s algorithm from some vertices and then perform a partial

Dijkstra’s algorithm from every vertex. The partial search from a vertex 𝑣 is with respect to a

carefully defined partial search graph 𝐺𝑣 ⊂ 𝐺. The crux of the analysis for the algorithms on

DAGs is to argue that if the executions of Dijkstra’s algorithm on the full graph did not find a good

estimate for the desired quantity (either min-diameter or min-radius), then the partial search from

some vertex 𝑣 returns a good estimate of the min-eccentricity of 𝑣, which in turn is a good estimate

for the desired quantity. In DAGs it is natural to define the partial search graphs 𝐺𝑣 by considering

a topological ordering of the vertices and letting each 𝐺𝑣 be some interval containing 𝑣 (though

defining the exact intervals requires some work). For general graphs it is completely unclear how

to even define such intervals since there is no natural notion of an ordering of the vertices, and thus

figuring out what the 𝐺𝑣’s should be is nontrivial. Our approach to overcoming this hurdle is to

carefully define a DAG-like structure in general graphs. Such a structure may be of independent

interest.
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Defining a DAG-like structure in general graphs. It would be ideal to directly reduce the

problem on general graphs to the problem on DAGs, however it is very unclear how to do this.

Instead, we recognize that it suffices to define a DAG-like structure in general graphs. As a first

step, we use the following idea. Suppose we have performed Dijkstra’s algorithm from a vertex 𝑣.

We let 𝑆𝑣 = {𝑢 : 𝑑(𝑢, 𝑣) < 𝑑(𝑣, 𝑢)} and we let 𝑇𝑣 = {𝑢 : 𝑑(𝑢, 𝑣) > 𝑑(𝑣, 𝑢)}4. Then, we partially

order the vertices so that the vertices in 𝑆𝑣 appear before 𝑣 and those in 𝑇𝑣 appear after 𝑣. We

note that this partial ordering is “DAG-like" because it is consistent with the topological ordering

of a DAG; that is, if we apply this partition into 𝑆𝑣 and 𝑇𝑣 to a DAG then there trivially exists a

topological ordering such that every vertex in 𝑆𝑣 appears before 𝑣 and every vertex in 𝑇𝑣 appears

after 𝑣. After partitioning into 𝑆𝑣 and 𝑇𝑣, we recursively partition each set to create a more precise

partial ordering. Importantly, we show that by recursively sampling vertices randomly, we can

guarantee that our partitioning is approximately balanced which is crucial for the runtime analysis.

The obtained partial ordering is the starting point for all of our algorithms.

Min-Diameter: graph augmentation. The Min-Diameter algorithm on DAGs from

[AVW16] relies heavily on the following key property of DAGs. Consider a topological order-

ing and the graphs induced by the first and second halves of the ordering; which are defined with

respect to the middle vertex in the ordering. For all pairs of vertices in the same half of the order-

ing, their min-distance in the graph induced by this half is the same as their min-distance in the

full graph. As previously mentioned, if we sample a vertex 𝑣, we can make sure that 𝑆𝑣 and 𝑇𝑣 are

approximately balanced, so that we can think of 𝑆𝑣 and 𝑇𝑣 as corresponding to the first and second

half of a DAG topological ordering, respectively. However it is unclear how to obtain a property of

𝑆𝑣 and 𝑇𝑣 analogous to the above key property of DAGs. In particular, the min-distance between a

pair of vertices in the graph induced by 𝑆𝑣 could be wildly different from their min-distance in the

full graph, since paths whose endpoints are in 𝑆𝑣 can contain vertices outside of 𝑆𝑣. To overcome

this hurdle, we augment the graph induced by 𝑆𝑣 and the graph induced by 𝑇𝑣 by carefully adding

edges so that distances within these augmented graphs approximate distances in the original graph.

4𝑢’s with 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) are added to either 𝑆𝑣 or 𝑇𝑣 as specified in the formal definition later
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Min-Radius: refined DAG-like structure Our Min-Radius algorithm is much more delicate

than our Min-Diameter algorithm due to the fact that for Min-Radius we care about small distances

instead of large distances. In particular, the graph augmentation idea from our Min-Diameter

algorithm does not help for Min-Radius because although the augmentations do not distort large

distances much, they heavily distort small distances. Furthermore, the previously mentioned DAG-

like structure for general graphs does not suffice for Min-Radius. However we use it as a starting

point to define a more refined DAG-like partial ordering. Most of our algorithm is concerned with

precisely arranging vertices in this partial ordering. Specifically, we structure the partial ordering

to satisfy roughly the following property: for every pair of vertices 𝑢, 𝑣 such that 𝑢 appears before

𝑣 in the partial ordering, 𝑑(𝑣, 𝑢) is large while 𝑑(𝑢, 𝑣) is small.

Notation

Given a graph 𝐺 = (𝑉,𝐸), 𝑛 = |𝑉 | and 𝑚 = |𝐸|. Graphs are directed and have non-negative

weights polynomial in 𝑛 unless otherwise specified. For any pair of vertices 𝑢 and 𝑣, the distance

from 𝑢 to 𝑣 𝑑(𝑢, 𝑣) is the length of the shortest directed path from 𝑢 to 𝑣. When the context is not

clear, we write 𝑑𝐺(𝑢, 𝑣) to specify the graph 𝐺. The min-distance between a pair of vertices 𝑢 and

𝑣 is 𝑑𝑚𝑖𝑛(𝑢, 𝑣) = min{𝑑(𝑢, 𝑣), 𝑑(𝑣, 𝑢)}. The min-diameter of a graph is max𝑢,𝑣∈𝑉 𝑑𝑚𝑖𝑛(𝑢, 𝑣). The

min-radius of a graph is min𝑣∈𝑉 max𝑢∈𝑉 𝑑𝑚𝑖𝑛(𝑢, 𝑣). For any vertex 𝑣, the min-eccentricity of 𝑣

is 𝜀(𝑣) = max𝑢∈𝑉 𝑑𝑚𝑖𝑛(𝑢, 𝑣). When the context is not clear, we say 𝜀𝐺(𝑣) to specify the graph

𝐺. Note that we do not use the min subscript to denote the min-eccentricity of a vertex. For an

algorithm with input size 𝑛 we use with high probability to denote the probability > 1− 1/𝑛𝑐 for

all constants 𝑐. We say some quantity is 𝑝𝑜𝑙𝑦(𝑛) to mean it is 𝑂(𝑛𝑐) for some fixed constant 𝑐. We

use 𝑂̃ notation to hide polylogarithmic factors.

Organization

In Section 6.2.2 we give an overview of all of our algorithms, in Section 6.2.3 we describe a

graph partitioning procedure that begins all of our algorithms, in Section 6.2.4 we describe our

Min-Diameter algorithms, in Section 6.2.5 we describe our Min-Radius algorithm, and in Sec-

tion 6.2.6 we describe our Min-Eccentricities algorithm.
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6.2.2 Overview of Algorithms

We use the algorithms from [AVW16] for Min-Diameter and Min-Radius on DAGs as inspira-

tion. For each problem, we first outline the DAG algorithm and then provide intuition for how to

apply these ideas to general graphs.

Min-Diameter

Algorithm for DAGs

We begin by outlining the 𝑂̃(𝑛 + 𝑚) time 2-approximation algorithm for Min-Diameter on

DAGs from [AVW16]. Consider a topological ordering of the vertices and perform Dijkstra’s

algorithm from the middle vertex 𝑣. Then recurse on the graphs induced by the vertices in the first

half (before 𝑣) and in the second half (after 𝑣). A key observation in the analysis is that if the true

endpoints 𝑠* and 𝑡* of the min-diameter fall on opposite sides of 𝑣 in the ordering, then the min-

eccentricity 𝜀(𝑣) of 𝑣 is a 2-approximation for the min-diameter 𝐷. This is because if 𝜀(𝑣) < 𝐷/2

and 𝑠* and 𝑡* fall on opposite sides of 𝑣 in the ordering, then 𝑑(𝑠*, 𝑣) < 𝐷/2 and 𝑑(𝑣, 𝑡*) < 𝐷/2

so 𝑑(𝑠*, 𝑡*) < 𝐷, a contradiction. So, suppose (without loss of generality) that 𝑠* and 𝑡* both fall

before 𝑣 in the ordering. Since the graph is a DAG, every path between 𝑠* and 𝑡* only uses vertices

before 𝑣 in the ordering. Thus, the min-distance between 𝑠* and 𝑡* in the graph induced by the first

half of the graph is still 𝐷.

Algorithm for general graphs

We now outline a precursor to our Min-Diameter algorithm for general graphs that mimics the

algorithm for DAGs. This 𝑂̃(𝑛 + 𝑚) time algorithm does not achieve a constant approximation

factor, however it provides intuition for our constant-factor approximation algorithms. We begin

by performing Dijkstra’s algorithm from a vertex 𝑣 and constructing 𝑆𝑣 and 𝑇𝑣 as defined in the

previous section. Analogously to the DAG algorithm if the true min-diameter endpoints 𝑠* and 𝑡*

fall into different sets 𝑆𝑣, 𝑇𝑣 then the min-eccentricity 𝜀(𝑣) is a 2-approximation. This is because

if 𝜀(𝑣) < 𝐷/2, 𝑠* ∈ 𝑆𝑣, and 𝑡* ∈ 𝑇𝑣 then 𝑑(𝑠*, 𝑣) < 𝐷/2 and 𝑑(𝑣, 𝑡*) < 𝐷/2 so 𝑑(𝑠*, 𝑡*) < 𝐷,

a contradiction. However, unlike the DAG algorithm, we cannot simply recurse independently on

the graphs induced by 𝑆𝑣 and 𝑇𝑣 since the shortest path between a pair of vertices in 𝑆𝑣 may not

be completely contained in 𝑆𝑣 (and analogously for 𝑇𝑣).
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To overcome this hurdle, before recursing we first augment the graphs induced by 𝑆𝑣 and 𝑇𝑣

by carefully adding edges so that distances within these augmented graphs approximate distances

in the original graph. Specifically, for every vertex 𝑢 ∈ 𝑆𝑣, we add the directed edge (𝑢, 𝑣)

with weight 0 and the directed edge (𝑣, 𝑢) with weight max{0, 𝑑(𝑣, 𝑢) − 𝜀(𝑣)}. This choice of

edges allows us to argue that the distances within the augmented graphs are approximations of

the distances in 𝐺 up to an additive error of 2𝜀(𝑣). Then, by returning the maximum of 𝜀(𝑣) and

the min-diameter estimates from recursing on the augmented graphs, we get an approximation

guarantee, which turns out to be a logarithmic factor. Intuitively, the approximation factor is

not constant because the recursion causes the distance distortion to compound at each level of

recursion.

To reduce the approximation factor to a constant, we would like to decrease the number of

recursion levels. To achieve this, we initially partition the graph into more than just two parts 𝑆𝑣

and 𝑇𝑣, by sampling more vertices. For our 𝑂̃(𝑚
√
𝑛) time 3-approximation, we perform a full

Dijkstra’s algorithm from 𝑂̃(
√
𝑛) vertices to define an ordered partition of the vertices into 𝑂̃(

√
𝑛)

parts of 𝑂̃(
√
𝑛) vertices each. Then we apply the above idea of adding weighted edges within

each part, however we must refine the definition of the graph augmentation to take into account

all of the 𝑂̃(
√
𝑛) vertices we initially perform Dijkstra’s algorithm from, instead of just 𝑣. Finally

we use brute force (without recursion) on each part in the partition by running an exact all-pairs

shortest paths algorithm.

To achieve our time-accuracy trade-off algorithm, we carefully combine ideas from the loga-

rithmic factor approximation and the 3-approximation algorithms. Specifically, we initially per-

form Dijkstra’s algorithm from fewer than
√
𝑛 vertices to define an ordered partition with larger

parts than in the 3-approximation. Then we augment the graph induced by each part and carry out

a constant number of recursion levels to further partition the graph before applying brute-force.

Min-Radius

Algorithm for DAGs

We begin by outlining the 𝑂̃(𝑚
√
𝑛) time 3-approximation algorithm for Min-Radius on DAGs

from [AVW16], which is very different from and more involved than the Min-Diameter algorithm
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on DAGs. We begin by considering a topological ordering of the vertices and performing Dijkstra’s

algorithm from a set 𝑊 of 𝑂̃(
√
𝑛) evenly spaced vertices including the first and last vertex. If a

vertex 𝑣 ∈ 𝑊 has min-eccentricity at most twice the true min-radius 𝑅 then we have obtained a 2-

approximation. (We do not know 𝑅 in advance but we repeatedly run the algorithm with different

values of 𝑅 to perform a binary search on 𝑅.)

Otherwise, we will define intervals in the ordering such that the min-center 𝑐 cannot be con-

tained in any of these intervals. A key observation is that if there is a pair of vertices (𝑢, 𝑣) such

that 𝑢 appears before 𝑣 in the topological ordering and 𝑑(𝑢, 𝑣) > 2𝑅, then the min-center 𝑐 cannot

fall between 𝑢 and 𝑣 in the topological ordering. This is because if it did, then 𝑑(𝑢, 𝑐) ≤ 𝑅 and

𝑑(𝑐, 𝑣) ≤ 𝑅, so 𝑑(𝑢, 𝑣) ≤ 2𝑅, a contradiction. We define the intervals that cannot contain 𝑐 as

follows: for all 𝑣 ∈ 𝑊 we let 𝑎𝑣 be the first vertex in the ordering such that 𝑑(𝑎𝑣, 𝑣) > 2𝑅 (if it

exists, otherwise 𝑎𝑣 = 𝑣) and define 𝑏𝑣 to be the last vertex in the ordering such that 𝑑(𝑣, 𝑏𝑣) > 2𝑅

(if it exists, otherwise 𝑏𝑣 = 𝑣). Then, the key observation implies that 𝑐 cannot fall in the interval

[𝑎𝑣, 𝑏𝑣] in the ordering. Now, we have a set of possibly overlapping intervals that cannot contain 𝑐.

We take the union of these intervals to get a set of disjoint intervals that cannot contain 𝑐.

Every vertex 𝑢 that does not appear in such an interval, falls between two consecutive intervals

𝐼𝑢 and 𝐼 ′𝑢. We define the partial search graph of 𝑢 to be the graph induced by the set of vertices in

𝐼𝑢 or 𝐼 ′𝑢 or between 𝐼𝑢 and 𝐼 ′𝑢. After performing the partial searches, the algorithm returns 3 times

the minimum min-radius of all partial search graph. Next we give the idea of the analysis, which

demystifies the factor of 3 in the returned value.

We claim that if the min-eccentricity of a vertex with respect to its partial search graph is at most

𝑅, then its min-eccentricity with respect to the full graph is at most 3𝑅, and the min-eccentricity

of the true min-center with respect to its partial search graph is at most 𝑅 (because for any path in

a DAG whose starting and ending points are in a certain interval, every vertex in the path is in that

interval). Thus, assuming the claim, 3𝑅 is a 3-approximation for the min-radius. We now outline

the proof of the claim. Let 𝑢 be the min-center with the minimum min-radius 𝑅 of all partial search

graphs. Let 𝑣 ∈ 𝑊 such that 𝑎𝑣 is the first vertex (in the topological order) of 𝐼𝑢, then 𝑣 ∈ 𝐼𝑢 and

𝑑(𝑣, 𝑢) ≤ 𝑅. Furthermore, by the definition of 𝑎𝑣, all vertices that appear before the beginning
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of the interval 𝐼𝑢 have distance at most 2𝑅 to 𝑣, and thus distance at most 3𝑅 to 𝑢. A symmetric

argument holds for vertices that appear after the end of the interval 𝐼 ′𝑢. Hence the min-eccentricity

of 𝑢 with respect to the full graph is at most 3𝑅.

This algorithm runs in time 𝑂(𝑚
√
𝑛) because the vertices of 𝑊 are evenly spaced so there

are no more than
√
𝑛 vertices between each pair of consecutive intervals. This implies that in the

partial searches, each edge is only scanned 𝑂(
√
𝑛) times. (Furthermore, repeatedly running the

algorithm to binary search for 𝑅 adds a logarithmic factor to the runtime.)

Algorithm for general graphs

We now give a high-level outline of our 𝑂̃(𝑚
√
𝑛) time 3-approximation algorithm for Min-

Radius. This algorithm is much more delicate than our Min-Diameter algorithm, hence more of

the details are deferred to the full description. We begin by running Dijkstra’s algorithm from a

set 𝑊 of 𝑂̃(
√
𝑛) randomly sampled vertices to recursively partition the vertices into 𝑆𝑣 and 𝑇𝑣 as

outlined in Section 6.2.1. This defines an initial DAG-like structure, however our analysis requires

constructing a much more refined DAG-like structure.

Perhaps counter-intuitively, it makes sense to place vertices that are far from each other in the

graph close to each other in the DAG-like structure. The reason for this is illuminated by the Min-

Radius algorithm on DAGs, in which we find pairs of vertices 𝑢, 𝑣 that are far from each other

and apply the key observation that the min-center cannot be between 𝑢 and 𝑣 in the topological

ordering. Intuitively, it is as if we collapse the interval between 𝑢 and 𝑣 in the DAG since we do

not have to search within this interval for the min-center. An analogous key observation is true for

general graphs: if there is a pair of vertices (𝑢, 𝑣) with 𝑑𝑚𝑖𝑛(𝑢, 𝑣) > 2𝑅, then either 𝑐 ∈ 𝑆𝑢 ∩ 𝑆𝑣

or 𝑐 ∈ 𝑇𝑢 ∩ 𝑇𝑣. This is because if 𝑐 ∈ 𝑇𝑢 ∩ 𝑆𝑣, then 𝑑(𝑢, 𝑐) ≤ 𝑅 and 𝑑(𝑐, 𝑣) ≤ 𝑅 so 𝑑(𝑢, 𝑣) ≤ 2𝑅,

a contradiction; the last case 𝑐 ∈ 𝑆𝑢 ∩ 𝑇𝑣 is symmetric. In our algorithm for general graphs, we

ensure that far vertices are near each other in the DAG-like structure by doing the following: we

let the far graph 𝐺𝑓𝑎𝑟 be an undirected graph on 𝑉 with an edge between 𝑢 ∈ 𝑊 and 𝑣 ∈ 𝑉

if 𝑑𝑚𝑖𝑛(𝑢, 𝑣) > 2𝑅. All vertices in 𝑊 that are in the same connected component in 𝐺𝑓𝑎𝑟 will

be grouped in the DAG-like structure. We let 𝐹𝑖 be the set of vertices in 𝑊 that are in the 𝑖𝑡ℎ

connected component of 𝐺𝑓𝑎𝑟.
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To construct the DAG-like structure, we show that precisely chosen groups of 𝐹𝑖s can be

merged to create supercomponents, which constitute a DAG-like structure in the following sense:

there is an ordering of supercomponents such that for every pair of vertices 𝑢, 𝑣 ∈ 𝑊 where the

supercomponent containing 𝑢 appears before that containing 𝑣, 𝑑(𝑢, 𝑣) is small and 𝑑(𝑣, 𝑢) is large.

Specifically, we define the close graph 𝐻 whose vertex set is the set of 𝐹𝑖s. We add a directed edge

between a pair of vertices in 𝐻 if there exists a short path (length ≤ 5𝑅) between the correspond-

ing 𝐹𝑖s. Then we merge all 𝐹𝑖s that appear in the same strongly connected component of 𝐻 into

a supercomponent. This contraction of strongly connected components of 𝐻 results in a DAG,

which defines the ordering of the supercomponents.

Now that we have arranged the vertices in 𝑊 into a DAG-like structure, we would like to fit

every vertex in the graph into this structure. Based on the precise way that we have defined the

supercomponents, we can use an intricate argument to show roughly the following property: for

every vertex 𝑣 there exists an 𝑖 such that for every vertex 𝑢 ∈ 𝑊 in the first 𝑖 supercomponents,

𝑑(𝑢, 𝑣) is small and for every vertex 𝑢 ∈ 𝑊 in the remaining supercomponents, 𝑑(𝑣, 𝑢) is small.

After fitting every vertex into the refined DAG-like ordering, we can define each partial search

graph to be an interval in the ordering that is large enough to contain several supercomponents.

In the algorithm for DAGs, there were two important properties of the partial search graphs: (1)

the min-eccentricity of the true min-center with respect to its partial search graph is at most 𝑅,

and (2) if the min-eccentricity of a vertex with respect to its partial search graph is at most 𝑅 then

its min-eccentricity with respect to the full graph is at most 3𝑅. We show that due to the precise

structure of the supercomponents, refinements of properties (1) and (2) are also true for general

graphs.

Intuitively, property (1) is roughly true because for every pair of vertices 𝑢, 𝑣 ∈ 𝑊 such that

𝑢’s supercomponent appears before 𝑣’s in the ordering, 𝑑(𝑣, 𝑢) > 5𝑅, since otherwise this pair of

supercomponents would be in the same strongly connected component of 𝐻 and would have been

merged into a single supercomponent. This implies that paths of length at most 𝑅 to or from the

min-center cannot stray beyond its partial search graph. Intuitively, property (2) is roughly true

because for every pair of vertices 𝑢, 𝑣 ∈ 𝑊 such that 𝑢’s supercomponents appears before 𝑣’s in
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the ordering, 𝑑(𝑢, 𝑣) ≤ 2𝑅 because otherwise, 𝑢 and 𝑣 would be in the same component of 𝐺𝑓𝑎𝑟

and thus be in the same supercomponent. Thus, like the argument for DAGs, for all 𝑢, all vertices

that appear before 𝑢’s partial search graph 𝐺𝑢 have distance at most 2𝑅 to each supercomponent

in 𝐺𝑢, and thus distance at most 3𝑅 to 𝑢. A symmetric argument holds for vertices after 𝑢 in the

ordering.

Min-Eccentricities

Our Min-Eccentricities algorithm is a modification of our Min-Radius algorithm. In our Min-

Radius algorithm, we identify a vertex whose min-eccentricity is at most about 3𝑅, where 𝑅 is the

true min-radius. In our Min-Eccentricities algorithm, we show that with some extra bookkeeping,

the algorithm can identify all vertices with min-eccentricity at most about 5𝜌 for any 𝜌. We run the

algorithm repeatedly, increasing 𝜌 by a factor of (1 + 𝛿) at each execution until we have estimated

the min-eccentricity of every vertex.

The major modification of the Min-Radius algorithm here is that if one of the vertices that

we run Dijkstra from has min-eccentricity at most 3𝜌, we cannot stop running the algorithm, as

we can in the Min-Radius algorithm. Instead, we use this vertex as a tool to find vertices with

min-eccentricity at most 5𝜌.

6.2.3 Preliminary Graph Partitioning

In this section we describe a graph partitioning procedure we use as a first step in our Min-

Diameter, Min-Radius, and Min-Eccentricities algorithms. The goal of this partitioning is to define

a DAG-like structure in general directed graphs.

Definition 6.2.1. Assign each vertex a unique ID from [𝑛]. For each vertex 𝑣, let 𝑆𝑣 = {𝑢 ∈ 𝑉 :

𝑑(𝑢, 𝑣) < 𝑑(𝑣, 𝑢) ∨ [𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) ∧ 𝐼𝐷(𝑢) < 𝐼𝐷(𝑣)]}. Let 𝑇𝑣 = 𝑉 ∖ (𝑆𝑣 ∪ {𝑣}).

The runtime of our algorithms relies on whether the partition into 𝑆𝑣 and 𝑇𝑣 is balanced. Using

the observation that if 𝑢 ∈ 𝑆𝑣, then 𝑣 ∈ 𝑇𝑢, the following lemma shows that for most vertices, the

partition is indeed approximately balanced.

Lemma 6.2.1. For any graph on 𝑛 vertices there are more than 𝑛
2

vertices 𝑣 such that |𝑆𝑣 |
8
≤ |𝑇𝑣| ≤

8|𝑆𝑣|.
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More generally, for any 𝑈 ⊆ 𝑉 , there are more than |𝑈 |
2

vertices 𝑣 ∈ 𝑈 such that |𝑆𝑣∩𝑈 |
8
≤

|𝑇𝑣 ∩ 𝑈 | ≤ 8|𝑆𝑣 ∩ 𝑈 |.

Proof. Since the first statement is a special case of the second statement with 𝑈 = 𝑉 , we prove

the more general statement. Let |𝑈 | = 𝑘. Let 𝑀 be a 𝑘 × 𝑘 matrix indexed by the vertices in 𝑈

where 𝑀𝑢,𝑣 = −1 if 𝑢 ∈ 𝑆𝑣 ∩ 𝑈 , 𝑀𝑢,𝑣 = 1 if 𝑢 ∈ 𝑇𝑣 ∩ 𝑈 , and 𝑀𝑢,𝑢 = 0 for 𝑢 ∈ 𝑈 . Note that

𝑀 is skew-symmetric, i.e., 𝑀𝑢,𝑣 = −𝑀𝑣,𝑢 for all 𝑢, 𝑣. For any 𝐴,𝐵 ⊆ 𝑈 , let 𝑀𝐵 be the 𝑘 × |𝐵|

submatrix consisting of the columns indexed by 𝐵, and let 𝑀𝐴,𝐵 the |𝐴| × |𝐵| submatrix of 𝑀𝐵

consisting of its rows indexed by 𝐴.

Suppose for contradiction there is a set 𝐶 ⊂ 𝑈 of 𝑘
4

vertices 𝑣 such that |𝑇𝑣 ∩ 𝑈 | > 8|𝑆𝑣 ∩ 𝑈 |.

Then 𝑀𝐶 contains at least 8
9
𝑘 · 𝑘

4
= 2

9
𝑘2 ones.

The 𝑘
4
× 𝑘

4
submatrix 𝑀𝐶,𝐶 is also skew-symmetric, so at most half of its entries are ones, i.e.,

𝑀𝐶,𝐶 contains at most 𝑘2

32
ones. Letting 𝐶 = 𝑈 ∖ 𝐶, we see that 𝑀𝐶,𝐶 has 3

4
𝑘 × 𝑘

4
= 3

16
𝑘2 entries,

and hence at most 3
16
𝑘2 ones. In total, 𝑀𝐶 contains at most 7

32
𝑘2 < 2

9
𝑘2 ones, contradiction.

Therefore the number of vertices 𝑣 ∈ 𝑈 such that |𝑇𝑣 ∩ 𝑈 | > 8|𝑆𝑣 ∩ 𝑈 | is less than 𝑘
4
, and

symmetrically the number of vertices 𝑣 ∈ 𝑈 such that |𝑇𝑣 ∩ 𝑈 | < |𝑆𝑣∩𝑈 |
8

is less than 𝑘
4
. Hence

more than half of the vertices 𝑣 ∈ 𝑈 have that |𝑆𝑣∩𝑈 |
8

< |𝑇𝑣 ∩ 𝑈 | < 8|𝑆𝑣 ∩ 𝑈 |. □

Next, we describe how we use Lemma 6.2.1 to recursively construct a balanced partition of the

vertices into a given number of of sets.

Lemma 6.2.2. Given a graph 𝐺 with 𝑛 vertices and a constant 𝑐 > 0, in 𝑂̃(𝑚𝑛1−𝑐) time we

can partition 𝑉 into disjoint sets 𝑊,𝑉1, 𝑉2,. . . ,𝑉𝑞+1, where 𝑞 = |𝑊 | = 𝑛1−𝑐, such that with high

probability:

1. for all 𝑖, |𝑉𝑖| = Θ(𝑛
𝑞
);

2. for all 𝑖 ̸= 𝑗, there exists a vertex 𝑤 ∈ 𝑊 such that either 𝑉𝑖 ⊆ 𝑆𝑤,𝑉𝑗 ⊆ 𝑇𝑤, or 𝑉𝑖 ⊆

𝑇𝑤,𝑉𝑗 ⊆ 𝑆𝑤;

3. for all 𝑈 ⊆ 𝑊 , let 𝑉𝑈 =

(︃⋂︁
𝑤∈𝑈

𝑆𝑤

)︃⋂︁⎛⎝ ⋂︁
𝑤∈𝑊∖𝑈

𝑇𝑤

⎞⎠, then 𝑉𝑈 ⊆ 𝑉𝑖 for some 𝑖 ∈ [𝑞 + 1].
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Proof. We begin with 𝑊 = ∅ and we will iteratively populate 𝑊 with vertices. We let 𝒱0 = {𝑉 }

and for all 𝑖 ∈ [𝑞] when we add the 𝑖𝑡ℎ vertex to 𝑊 , we will construct 𝒱𝑖 from 𝒱𝑖−1 by partitioning

the largest set in 𝒱𝑖−1 into two parts. After adding 𝑞 vertices to 𝑊 we will have constructed

𝒱𝑞 = {𝑉1 . . . 𝑉𝑞+1}.

For all 𝑖 ∈ [𝑞], let 𝐴𝑖, 𝐵𝑖 be the largest and smallest sets in 𝒱𝑖, respectively.

We describe how to construct 𝑊 and 𝒱𝑞 inductively. Suppose |𝑊 | = 𝑟 − 1 and we have

constructed 𝒱𝑟−1. By Lemma 6.2.1, if we randomly sample 𝑂(log2 𝑛) vertices from 𝐴𝑟−1, with

probability at least 1−2− log2 𝑛 = 1−𝑛− log𝑛 we will sample a vertex 𝑤𝑟 such that 𝐴𝑆 = 𝐴𝑟−1∩𝑆𝑤𝑟

and 𝐴𝑇 = 𝐴𝑟−1 ∩ 𝑇𝑤𝑟 differ by a factor of at most 8. We add 𝑤𝑟 to 𝑊 and let 𝒱𝑟 = 𝒱𝑟−1 ∪

{𝐴𝑆, 𝐴𝑇} ∖ {𝐴𝑟−1}.

By union bound over the 𝑞 = 𝑛1−𝑐 partitionings, with probability at least 1− 𝑛1−𝑐−log𝑛, every

partitioning produces two sets that differ in size by a factor of at most 8.

We prove property 1 by induction on |𝑊 | = 𝑟. Specifically, we will show that for all 𝑟 ∈ [𝑞],

|𝐴𝑟| ≤ 9|𝐵𝑟|. This implies that |𝐴𝑞| = 𝑂(|𝐵𝑞|), and property 1 follows. Lemma 6.2.1 implies

that |𝐴1| ≤ 9|𝐵1|. Assume inductively that |𝐴𝑟−1| ≤ 9|𝐵𝑟−1|. Since no subset grows in size,

|𝐴𝑟| ≤ |𝐴𝑟−1| and |𝐵𝑟| ≤ |𝐵𝑟−1|. If |𝐵𝑟| = |𝐵𝑟−1|, then |𝐴𝑟| ≤ |𝐴𝑟−1| ≤ 9|𝐵𝑟−1| = 9|𝐵𝑟|.

Otherwise, |𝐵𝑟| < |𝐵𝑟−1|, which implies that 𝐵𝑟 is one of the two sets obtained by partitioning

𝐴𝑟−1. In this case |𝐴𝑟−1| ≤ 9|𝐵𝑟| by Lemma 6.2.1. Hence |𝐴𝑟| ≤ |𝐴𝑟−1| ≤ 9|𝐵𝑟|, completing the

induction.

Property 2 follows from the partitioning procedure: for any 𝑖 ̸= 𝑗, if for all 𝑤 ∈ 𝑊 , 𝑉𝑖, 𝑉𝑗 ⊆ 𝑆𝑤

or 𝑉𝑖, 𝑉𝑗 ⊆ 𝑇𝑤 then 𝑉𝑖 ∪ 𝑉𝑗 would never have been partitioned.

Property 3 also follows from the partitioning procedure: observe that for all 𝑤 ∈ 𝑊 and all

𝑈 ⊆ 𝑊 , 𝑉𝑈 ⊆ 𝑆𝑤 or 𝑉𝑈 ⊆ 𝑇𝑤, so 𝑉𝑈 is never partitioned and thus 𝑉𝑈 ⊆ 𝑉𝑖 for some 𝑖 ∈ [𝑞 + 1].

Since we sample 𝑛1−𝑐 log2 𝑛 vertices and for all 𝑣 finding 𝑆𝑣, 𝑇𝑣 takes 𝑂(𝑚) time, the runtime

is 𝑂̃(𝑚𝑛1−𝑐).

□
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6.2.4 Min-Diameter Algorithm

Throughout this section, let 𝐷 be the min-diameter, and let 𝑠*, 𝑡* the endpoints of the min-

diameter. In this section we prove the time/accuracy trade-off theorem for Min-Diameter.

Theorem 6.2.5. For any integer 0 < ℓ ≤ 𝑂(log 𝑛), there is an 𝑂̃(𝑚𝑛1/(ℓ+1)) time randomized

algorithm that, given a directed weighted graph 𝐺 with edge weights non-negative and polynomial

in 𝑛, can output an estimate 𝐷̃ such that 𝐷/(4ℓ− 1) ≤ 𝐷̃ ≤ 𝐷 with high probability, where 𝐷 is

the min-diameter of 𝐺.

We first prove a special case of Theorem 6.2.5 where ℓ = 1.

An 𝑂̃(𝑚
√
𝑛) time 3-approximation

Theorem 6.2.6. (Theorem 6.2.5 with ℓ = 1) There is an 𝑂̃(𝑚
√
𝑛) time randomized algorithm,

that given a directed weighted graph 𝐺 = (𝑉,𝐸) with edge weights non-negative and polynomial

in 𝑛, can output an estimate 𝐷̃ such that 𝐷/3 ≤ 𝐷̃ ≤ 𝐷 with high probability, where 𝐷 is the

min-diameter of 𝐺.

Algorithm Description

Applying Lemma 6.2.2 with 𝑞 =
√
𝑛 we obtain a partition of the vertices into

𝑊,𝑉1, 𝑉2, . . . , 𝑉√𝑛+1.

We perform Dijkstra’s algorithm from every vertex in 𝑊 and define 𝐷′ = max𝑤∈𝑊 𝜀(𝑤). We

will later show that 𝐷′ is a good approximation of the Min-Diameter when 𝑠* and 𝑡* are not in the

same vertex set 𝑉𝑖.

For every 𝑖 ∈ [
√
𝑛 + 1], define 𝑊 𝑆

𝑖 = {𝑤 ∈ 𝑊 : 𝑉𝑖 ⊆ 𝑆𝑤}, and 𝑊 𝑇
𝑖 = {𝑤 ∈ 𝑊 : 𝑉𝑖 ⊆ 𝑇𝑤}.

Then, for every 𝑖, we construct two graphs 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 . The first graph 𝐺𝑆
𝑖 contains all vertices of

𝑉𝑖 and an additional node 𝑤𝑆
𝑖 . It has the following edges:

1. For every directed edge (𝑢, 𝑣) ∈ 𝐸 such that 𝑢, 𝑣 ∈ 𝑉𝑖, add this edge to 𝐺𝑆
𝑖 .

2. Add a directed edge from 𝑤𝑆
𝑖 to every 𝑣 ∈ 𝑉𝑖, with weight max

{︁
min𝑤∈𝑊𝑆

𝑖
𝑑(𝑤, 𝑣)−𝐷′, 0

}︁
,

and a directed edge from every 𝑣 ∈ 𝑉𝑖 to 𝑤𝑆
𝑖 with weight 0.
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The second graph 𝐺𝑇
𝑖 is symmetric to 𝐺𝑆

𝑖 . It contains all vertices in 𝑉𝑖 and an additional node 𝑤𝑇
𝑖 .

It has the following edges:

1. For every directed edge (𝑢, 𝑣) ∈ 𝐸 such that 𝑢, 𝑣 ∈ 𝑉𝑖, add this edge to 𝐺𝑇
𝑖 .

2. Add a directed edge from every 𝑣 ∈ 𝑉𝑖 to 𝑤𝑇
𝑖 , with weight

max
{︁
min𝑤∈𝑊𝑇

𝑖
𝑑(𝑣, 𝑤)−𝐷′, 0

}︁
, and add a directed edge from 𝑤𝑇

𝑖 to every 𝑣 ∈ 𝑉𝑖

with weight 0.

For all 𝑖, we run an exact all-pairs shortest paths algorithm on 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 . This allows us to

compute for all 𝑖 and all 𝑢, 𝑣 ∈ 𝑉𝑖 the quantity min{𝑑𝐺𝑆
𝑖
(𝑢, 𝑣), 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣)}, which we denote by

𝑑′𝑖(𝑢, 𝑣).

We choose the larger between 𝐷′ and max𝑖∈[√𝑛+1],𝑢,𝑣∈𝑉𝑖
min{𝑑′𝑖(𝑢, 𝑣), 𝑑′𝑖(𝑣, 𝑢)} as our final

estimate for the min-diameter.

Analysis

The following lemma will be used to show that 𝐷′ is a good estimate for the min-diameter if

𝑠* and 𝑡* happen to fall into different sets 𝑉𝑖

Lemma 6.2.3. For all vertices 𝑣, if either 𝑠* ∈ 𝑆𝑣, 𝑡* ∈ 𝑇𝑣, or 𝑡* ∈ 𝑆𝑣, 𝑠* ∈ 𝑇𝑣, then 𝜀(𝑣) ≥ 𝐷/2.

Proof. We only consider the case when 𝑠* ∈ 𝑆𝑣 and 𝑡* ∈ 𝑇𝑣 as the other case is symmetric. By way

of contradiction, assume that 𝜀(𝑣) < 𝐷/2, then we have 𝑑min(𝑠
*, 𝑣) < 𝐷/2 and 𝑑min(𝑡

*, 𝑣) < 𝐷/2.

Since 𝑠* ∈ 𝑆𝑣, 𝑑(𝑠*, 𝑣) = 𝑑min(𝑠
*, 𝑣) < 𝐷/2; similarly, since 𝑡* ∈ 𝑇𝑣, 𝑑(𝑣, 𝑡*) = 𝑑𝑚𝑖𝑛(𝑡

*, 𝑣) <

𝐷/2. Therefore, by the triangle inequality, 𝑑(𝑠*, 𝑡*) < 𝐷, a contradiction. □

The next two lemmas are used for the case where 𝑠* and 𝑡* fall into the same set 𝑉𝑖.

Lemma 6.2.4. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, 𝑑′𝑖(𝑢, 𝑣) ≤ 𝑑(𝑢, 𝑣); that is,

min{𝑑𝐺𝑆
𝑖
(𝑢, 𝑣), 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣)} ≤ 𝑑(𝑢, 𝑣).

Proof. Take any shortest path in the original graph 𝐺 from 𝑢 to 𝑣. If this path does not leave 𝑉𝑖,

then this path also exists in 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 , and thus the inequality is true.

It remains to prove for the case when the shortest 𝑢, 𝑣 path in the original graph leaves 𝑉𝑖. Let

𝑥 ̸∈ 𝑉𝑖 be any vertex on a shortest 𝑢, 𝑣 path. By Lemma 6.2.2, property 2, there exists 𝑤 ∈ 𝑊 such
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Figure 6-1: The case where 𝑢, 𝑣 ∈ 𝑆𝑤 and the shortest path from 𝑢 to 𝑣 contains a node 𝑥 ∈
𝑇𝑤 ∪ {𝑤}.

that 𝑥 ∈ 𝑆𝑤 ∪ {𝑤} and 𝑉𝑖 ⊆ 𝑇𝑤, or 𝑥 ∈ 𝑇𝑤 ∪ {𝑤} and 𝑉𝑖 ⊆ 𝑆𝑤. We first assume 𝑥 ∈ 𝑇𝑤 ∪ {𝑤}

and 𝑉𝑖 ⊆ 𝑆𝑤 as shown in Figure 6-1, and the other case is symmetric.

Since 𝑥 is on the shortest path from 𝑢 to 𝑣, we have 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑥, 𝑣). Also, we have 𝑑(𝑤, 𝑥) ≤

𝐷′, by definition of 𝐷′. Therefore,

𝑑(𝑢, 𝑣) ≥ 𝑑(𝑥, 𝑣)

≥ 𝑑(𝑥, 𝑣) + (𝑑(𝑤, 𝑥)−𝐷′)

≥ 𝑑(𝑤, 𝑣)−𝐷′

(6.1)

Now consider the path 𝑢 → 𝑤𝑆
𝑖 → 𝑣 in 𝐺𝑆

𝑖 . The first part 𝑢 → 𝑤𝑆
𝑖 costs 0, because there is an

edge from 𝑢 to 𝑤𝑆
𝑖 with weight 0; the second part 𝑤𝑆

𝑖 → 𝑣 costs at most max{0, 𝑑(𝑤, 𝑣) − 𝐷′}.

If 𝑑(𝑤, 𝑣) < 𝐷′, then 𝑑′𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) = 0 ≤ 𝑑(𝑢, 𝑣); otherwise, 𝑑′𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑆

𝑖
(𝑢, 𝑣) ≤

𝑑(𝑤, 𝑣)−𝐷′ ≤ 𝑑(𝑢, 𝑣), where the last step is Equation 6.1.

When 𝑥 ∈ 𝑆𝑤 ∪ {𝑤}, and 𝑉𝑖 ⊆ 𝑇𝑤, we have a symmetric argument: 𝑑(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑥) ≥

𝑑(𝑢, 𝑥) + (𝑑(𝑥,𝑤)−𝐷′) ≥ 𝑑(𝑢,𝑤) − 𝐷′. Consider the path 𝑢 → 𝑤𝑇
𝑖 → 𝑣 in 𝐺𝑇

𝑖 . The second

part 𝑤𝑇
𝑖 → 𝑣 costs 0, because there is an edge from 𝑤𝑇

𝑖 to 𝑣 with weight 0; the first part 𝑢 → 𝑤𝑇
𝑖

costs at most max{0, 𝑑(𝑢,𝑤) − 𝐷′}. If 𝑑(𝑢,𝑤) < 𝐷′, then 𝑑′𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑇
𝑖
(𝑢, 𝑣) = 0 ≤ 𝑑(𝑢, 𝑣);

otherwise, 𝑑′𝑖(𝑢, 𝑣) ≤ 𝑑𝐺𝑇
𝑖
(𝑢, 𝑣) ≤ 𝑑(𝑢,𝑤)−𝐷′ ≤ 𝑑(𝑢, 𝑣). □

Lemma 6.2.5. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, 𝑑′𝑖(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣)− 2𝐷′; that is,

𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣)− 2𝐷′ and 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣)− 2𝐷′.

Proof. We only provide full proof for 𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣) − 2𝐷′. The inequality for 𝐺𝑇

𝑖 can be

proved by a symmetrical argument. If the shortest path from 𝑢 to 𝑣 in 𝐺𝑆
𝑖 does not contain 𝑤𝑆

𝑖 ,
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Figure 6-2: A shortest 𝑢, 𝑣 path in 𝐺𝑆
𝑖 that contains 𝑤𝑆

𝑖 . The path goes from 𝑢, directly to 𝑤𝑆
𝑖 using

a weight 0 edge, then directly to a vertex 𝑥, and finally reaches 𝑣.

then this path also exists in the original graph 𝐺, and thus the inequality is true.

Otherwise, the shortest path from 𝑢 to 𝑣 in 𝐺𝑆
𝑖 contains 𝑤𝑆

𝑖 , as shown in Figure 6-2. All

edges on the shortest path from 𝑤𝑆
𝑖 to 𝑣 exist in the original graph 𝐺 except for the first edge

from 𝑤𝑆
𝑖 to some node 𝑥, since a shortest path cannot use the vertex 𝑤𝑆

𝑖 more than once. That is,

𝑑𝐺𝑆
𝑖
(𝑥, 𝑣) = 𝑑(𝑥, 𝑣).

By the definition of 𝑤𝑆
𝑖 and the edges incident to it, there exists a 𝑤 ∈ 𝑊 𝑆

𝑖 such that 𝑑(𝑤, 𝑥) ≤

𝑑𝐺𝑆
𝑖
(𝑤𝑆

𝑖 , 𝑥) +𝐷′. Thus, we have

𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) = 𝑑𝐺𝑆

𝑖
(𝑢,𝑤𝑆

𝑖 ) + 𝑑𝐺𝑆
𝑖
(𝑤𝑆

𝑖 , 𝑥) + 𝑑𝐺𝑆
𝑖
(𝑥, 𝑣)

= 𝑑𝐺𝑆
𝑖
(𝑤𝑆

𝑖 , 𝑥) + 𝑑𝐺𝑆
𝑖
(𝑥, 𝑣) since 𝑑𝐺𝑆

𝑖
(𝑢,𝑤𝑆

𝑖 ) = 0 by construction

= 𝑑𝐺𝑆
𝑖
(𝑤𝑆

𝑖 , 𝑥) + 𝑑(𝑥, 𝑣) from argument above

≥ 𝑑(𝑤, 𝑥)−𝐷′ + 𝑑(𝑥, 𝑣) by the definition of 𝑤

≥ 𝑑(𝑤, 𝑣)−𝐷′ by the triangle inequality

≥ (𝑑(𝑤, 𝑣)−𝐷′) + (𝑑(𝑢,𝑤)−𝐷′) since 𝑑(𝑢,𝑤) ≤ 𝐷′ by definition

≥ 𝑑(𝑢, 𝑣)− 2𝐷′ by the triangle inequality

□
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We are now ready to prove our approximation ratio guarantee: 𝐷/3 ≤ 𝐷̃ ≤ 𝐷.

Clearly 𝐷′ ≤ 𝐷 because 𝐷′ is the min-eccentricity of a vertex. By Lemma 6.2.4

max𝑖,𝑢∈𝑉𝑖,𝑣∈𝑉𝑖
min{𝑑′𝑖(𝑢, 𝑣), 𝑑′𝑖(𝑣, 𝑢)} ≤ max𝑖,𝑢∈𝑉𝑖,𝑣∈𝑉𝑖

𝑑𝑚𝑖𝑛(𝑢, 𝑣) ≤ 𝐷 . Therefore, we never over

estimate the Min-Diameter.

If 𝑠* ∈ 𝑊 or 𝑡* ∈ 𝑊 , then since we run Dijkstra from all vertices in 𝑊 we have 𝐷′ = 𝐷. So

assuming that 𝑠*, 𝑡* /∈ 𝑊 , we have two cases.

Case 1: 𝑠* and 𝑡* are not in the same vertex set 𝑉𝑖. By Lemma 6.2.2, property 2, there exists

𝑤 ∈ 𝑊 such that one of 𝑠* and 𝑡* is in 𝑆𝑤 and the other is in 𝑇𝑤, so by Lemma 6.2.3, 𝜀(𝑤) ≥ 𝐷/2.

Since 𝐷′ ≥ 𝜀(𝑤), we have 𝐷′ ≥ 𝐷/2.

Case 2: 𝑠* and 𝑡* are in the same vertex set 𝑉𝑖 for some 𝑖. By Lemma 6.2.5,

min (𝑑′𝑖(𝑠
*, 𝑡*), 𝑑′𝑖(𝑡

*, 𝑠*)) ≥ 𝑑𝑚𝑖𝑛(𝑠
*, 𝑡*) − 2𝐷′ = 𝐷 − 2𝐷′. Since max{𝐷 − 2𝐷′, 𝐷′} ≥ 𝐷/3,

we get a 3-approximation.

Runtime analysis It takes 𝑂̃(𝑚
√
𝑛) time to perform the partitioning from Lemma 6.2.2 and to

perform Dijkstra’s algorithm from all 𝑤 ∈ 𝑊 since |𝑊 | = 𝑂(
√
𝑛).

For all 𝑖, the number of vertices in 𝐺𝑆
𝑖 is |𝑉𝑖| + 1 = 𝑂(

√
𝑛) with high probability by property

1 of Lemma 6.2.2 and the number of edges is 𝑚𝑖 + 𝑂(
√
𝑛) where 𝑚𝑖 is the number of edges in

the graph induced by 𝑉𝑖. Hence we can run an all-pairs shortest paths algorithm on 𝐺𝑆
𝑖 in time

𝑂̃((𝑚𝑖 +
√
𝑛)
√
𝑛). Summing over all 𝑖 gives us 𝑂̃(𝑚

√
𝑛). The same analysis also works for 𝐺𝑖

𝑇 .

Time/accuracy trade-off algorithm

Algorithm Description

We begin by briefly outlining the differences between our trade-off algorithm and our 𝑂(𝑚
√
𝑛)

time algorithm. For our trade-off algorithm, instead of applying Lemma 6.2.2 to sample 𝑞 =
√
𝑛

vertices, we will apply Lemma 6.2.2 with a smaller value of 𝑞 to save time. This results in a smaller

set 𝑊 and larger sets 𝑉𝑖. In our 𝑂(𝑚
√
𝑛) time algorithm, we had time to apply brute force (i.e. run

all-pairs shortest paths) on the graphs 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 , however in our trade-off algorithm we do not.

Instead, we apply recursion. Simply constructing 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 and recursing on both of them does

not suffice because each recursive call only returns the min-diameter, whereas we require knowing

all distances. To overcome this issue, instead of constructing 𝐺𝑆
𝑖 and 𝐺𝑇

𝑖 separately, we construct
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a graph 𝐺𝑖 that combines these two graphs. Then, we show that it suffices to recurse on 𝐺𝑖 to

compute only its min-diameter rather than all distances.

The algorithm is as follows. We apply Lemma 6.2.2 with 𝑞 = 𝑂(𝑛1/(ℓ+1)) to partition the

vertices into 𝑊,𝑉1, 𝑉2, . . . , 𝑉𝑞+1. We perform Dijkstra’s algorithm from every vertex in 𝑊 and

define 𝐷′ = max𝑤∈𝑊 𝜀(𝑤). For every 𝑖 ∈ [
√
𝑛 + 1], we define 𝑊 𝑆

𝑖 = {𝑤 ∈ 𝑊 : 𝑉𝑖 ⊆ 𝑆𝑤}, and

𝑊 𝑇
𝑖 = {𝑤 ∈ 𝑊 : 𝑉𝑖 ⊆ 𝑇𝑤}. For every 𝑖 ∈ [𝑞 + 1], we construct the graph 𝐺𝑖 as follows. The

vertex set of 𝐺𝑖 is all vertices 𝑉𝑖 and two additional vertices 𝑤𝑆
𝑖 and 𝑤𝑇

𝑖 . It contains the following

edges:

1. For every directed edge (𝑢, 𝑣) ∈ 𝐸 such that 𝑢, 𝑣 ∈ 𝑉𝑖, add this edge to 𝐺𝑖.

2. Add a directed edge from 𝑤𝑆
𝑖 to every 𝑣 ∈ 𝑉𝑖, with weight max{min𝑤∈𝑊𝑆

𝑖
𝑑(𝑤, 𝑣)−𝐷′, 0},

and add a directed edge from every 𝑣 to 𝑤𝑆
𝑖 with weight 0.

3. Add a directed edge from every 𝑣 ∈ 𝑉𝑖 to 𝑤𝑇
𝑖 , with weight max{min𝑤∈𝑊𝑇

𝑖
𝑑(𝑣, 𝑤)−𝐷′, 0},

and add a directed edge from 𝑤𝑇
𝑖 to every 𝑣 ∈ 𝑉𝑖 with weight 0.

For all 𝑖, we recursively compute a (4ℓ − 5)-approximation for the Min-Diameter of 𝐺𝑖 by

calling the algorithm for ℓ − 1. We use the ℓ = 1 algorithm from the previous section as the base

case.

We choose the larger between 𝐷′ and the maximum approximated Min-Diameter over all 𝐺𝑖

as our final estimate.

Analysis

Before proving the main theorem for Min-Diameter, we need to prove two lemmas for 𝐺𝑖,

which are analogous to Lemma 6.2.4 and Lemma 6.2.5.

Lemma 6.2.6. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, 𝑑(𝑢, 𝑣) ≥ 𝑑𝐺𝑖
(𝑢, 𝑣).

Proof. Since 𝐺𝑆
𝑖 ⊆ 𝐺𝑖 and 𝐺𝑇

𝑖 ⊆ 𝐺𝑖, we have 𝑑𝐺𝑖
(𝑢, 𝑣) ≤ 𝑑𝐺𝑆

𝑖
(𝑢, 𝑣) and 𝑑𝐺𝑖

(𝑢, 𝑣) ≤ 𝑑𝐺𝑇
𝑖
(𝑢, 𝑣).

Then by Lemma 6.2.4, we have 𝑑(𝑢, 𝑣) ≥ min{𝑑𝐺𝑆
𝑖
(𝑢, 𝑣), 𝑑𝐺𝑇

𝑖
(𝑢, 𝑣)} ≥ 𝑑𝐺𝑖

(𝑢, 𝑣). □

Lemma 6.2.7. For every 𝑖, and every pair of vertices 𝑢, 𝑣 ∈ 𝑉𝑖, 𝑑𝐺𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣)− 4𝐷′.
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Proof. Consider the shortest path from 𝑢 to 𝑣 in 𝐺𝑖. If this path does not contain both 𝑤𝑆
𝑖 and 𝑤𝑇

𝑖 ,

then this path exists in 𝐺𝑆
𝑖 or 𝐺𝑇

𝑖 , and thus we can directly apply Lemma 6.2.5 to get 𝑑𝐺𝑖
(𝑢, 𝑣) ≥

𝑑𝐺𝑆
𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣)− 2𝐷′ , or 𝑑𝐺𝑖

(𝑢, 𝑣) ≥ 𝑑𝐺𝑇
𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣)− 2𝐷′.

Otherwise, the shortest path from 𝑢 to 𝑣 contain both 𝑤𝑆
𝑖 and 𝑤𝑇

𝑖 . Such path can only be one

of the following two forms:

• 𝑢 → 𝑤𝑆
𝑖 → 𝑥 → 𝑤𝑇

𝑖 → 𝑣 for some vertex 𝑥 ∈ 𝑉𝑖. The first half 𝑢 → 𝑤𝑆
𝑖 → 𝑥 is contained

in 𝐺𝑆
𝑖 , so we can apply Lemma 6.2.5 to get 𝑑𝐺𝑖

(𝑢, 𝑥) = 𝑑𝐺𝑆
𝑖
(𝑢, 𝑥) ≥ 𝑑(𝑢, 𝑥)−2𝐷′; similarly,

the second half 𝑥 → 𝑤𝑇
𝑖 → 𝑣 is contained in 𝐺𝑇

𝑖 so 𝑑𝐺𝑖
(𝑥, 𝑣) ≥ 𝑑(𝑥, 𝑣) − 2𝐷′. In total,

𝑑𝐺𝑖
(𝑢, 𝑣) = 𝑑𝐺𝑖

(𝑢, 𝑥) + 𝑑𝐺𝑖
(𝑥, 𝑣) ≥ (𝑑(𝑢, 𝑥)− 2𝐷′) + (𝑑(𝑥, 𝑣)− 2𝐷′) ≥ 𝑑(𝑢, 𝑣)− 4𝐷′.

• 𝑢 → 𝑤𝑇
𝑖 → 𝑥 → 𝑤𝑆

𝑖 → 𝑣 for some vertex 𝑥 ∈ 𝑉𝑖. We can similarly split this path to two

halves, and apply the same analysis as the previous case to get 𝑑𝐺𝑖
(𝑢, 𝑣) ≥ 𝑑(𝑢, 𝑣)− 4𝐷′.

□

We are now ready to prove our approximation ratio guarantee: 𝐷/(4ℓ − 1) ≤ 𝐷̃ ≤ 𝐷. We

prove the result inductively. When ℓ = 1, it is exactly Theorem 6.2.6. Now assume it is true for

ℓ− 1, and we will prove it for ℓ.

Clearly 𝐷′ ≤ 𝐷 because 𝐷′ is the min-eccentricity of a vertex. By induction, the (4ℓ − 5)-

approximation for the min-diameter of 𝐺𝑖 never exceeds the true min-diameter of 𝐺𝑖. Then by

Lemma 6.2.6, the min-diameter of 𝐺𝑖 does not exceed the min-diameter of 𝐺. Therefore, we never

over estimate the min-diameter.

If 𝑠* ∈ 𝑊 or 𝑡* ∈ 𝑊 , then since we run Dijkstra from all vertices in 𝑊 we have 𝐷′ = 𝐷. So

assuming that 𝑠*, 𝑡* /∈ 𝑊 , we have two cases.

Case 1: 𝑠* and 𝑡* are not in the same vertex set 𝑉𝑖. By Lemma 6.2.2, property 2, there exists

𝑤 ∈ 𝑊 such that one of 𝑠* and 𝑡* is in 𝑆𝑤 and the other is in 𝑇𝑤, so by Lemma 6.2.3, 𝜀(𝑤) ≥ 𝐷/2.

Since 𝐷′ ≥ 𝜀(𝑤), we have 𝐷′ ≥ 𝐷/2.

Case 2: 𝑠* and 𝑡* are in the same vertex set 𝑉𝑖 for some 𝑖. If 𝐷′ ≥ 𝐷/(4ℓ−1), 𝐷′ is already a good

approximation. So assume 𝐷′ < 𝐷/(4ℓ − 1). By Lemma 6.2.7, min{𝑑𝐺𝑖
(𝑠*, 𝑡*), 𝑑𝐺𝑖

(𝑡*, 𝑠*)} ≥

𝑑𝑚𝑖𝑛(𝑠
*, 𝑡*)− 4𝐷′ = 𝐷− 4𝐷′. Since we calculate a (4ℓ− 5)-approximation of 𝐺𝑖’s min diameter,
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our estimate is at least

(𝐷 − 4𝐷′)/(4ℓ− 5) ≥ (𝐷 − 4(𝐷/(4ℓ− 1)))/(4ℓ− 5) = 𝐷/(4ℓ− 1)

Runtime analysis It takes 𝑂̃(𝑚𝑛1/(ℓ+1)) time to perform the partitioning from Lemma 6.2.2 and

to perform Dijkstra’s algorithm from all 𝑤 ∈ 𝑊 since |𝑊 | = 𝑂(𝑛1/(ℓ+1)). For all 𝑖, the number of

vertices in 𝐺𝑖 is |𝑉𝑖|+ 2 = 𝑂(𝑛ℓ/(ℓ+1)) with high probability by Lemma 6.2.2, property 1, and the

number of edges is 𝑚𝑖 +𝑂(𝑛ℓ/(ℓ+1)) where 𝑚𝑖 is the number of edges in the graph induced by 𝑉𝑖.

By induction, it takes 𝑂̃
(︁
(𝑚𝑖 + 𝑛ℓ/(ℓ+1))

(︀
𝑛ℓ/(ℓ+1)

)︀1/ℓ)︁ time to compute a (4ℓ− 5)-approximation

of Min-Diameter of 𝐺𝑖 for each 𝑖. Summing over all 𝑖 gives us 𝑂̃(𝑚𝑛1/(ℓ+1)).

Note that we apply Lemma 6.2.2 at most 𝑝𝑜𝑙𝑦(𝑛) times in the recursion and this the only

randomization so the whole algorithm works with high probability.

6.2.5 Min-Radius Algorithm

Theorem 6.2.7. For any constant 𝛿 with 1 > 𝛿 > 0, there is an 𝑂̃(𝑚
√
𝑛/𝛿) time randomized

algorithm that, given a directed weighted graph 𝐺 = (𝑉,𝐸) with weights positive and polynomial

in 𝑛, can output an estimate 𝑅′ such that 𝑅 ≤ 𝑅′ ≤ (3+ 𝛿)𝑅 with high probability, where 𝑅 is the

min-radius of the 𝐺.

Proof. We fix a value 𝑟 and our algorithm either certifies that 𝑅 > 𝑟 or 𝑅 ≤ 3𝑟. Then by a binary

search argument we get a (3 + 𝛿)-approximation as follows. Let 𝛿′ = 𝛿/3. Starting from 𝑟 = 1,

we run the algorithm and increase 𝑟 for each run. If the output of the algorithm is that 𝑅 ≤ 3𝑟,

then we stop. Otherwise (if 𝑅 > 𝑟), we run the algorithm with the new value 𝑟𝑛𝑒𝑤 = (1 + 𝛿′)𝑟.

This contributes a multiplicative factor of log1+𝛿′ 𝑅 = 𝑂̃(1/𝛿) to the total runtime. Suppose that

for some value of 𝑟 we have 𝑅 ≤ 3𝑟. So from the previous run of the algorithm, we know that

𝑅 > 𝑟/(1 + 𝛿′). Letting 𝑅′ = 3𝑟, we have 𝑅 ≤ 3𝑟 = 𝑅′ < 3(1 + 𝛿′)𝑅 = (3 + 𝛿)𝑅, which means

that 𝑅′ is a (3 + 𝛿)-approximation. Now we present the algorithm.

Algorithm Step 1: Preliminaries

Let 𝑐 be the min-center (which is unknown). First we remove all the edges with weight more

than 𝑟, because if 𝑅 ≤ 𝑟, this removal does not change the min-radius. Then we sample a set 𝑊
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of
√
𝑛 vertices according to Lemma 6.2.2. For every vertex 𝑣 ∈ 𝑊 , we run Dijkstra’s algorithm

from and to 𝑣 to obtain the min-distance between 𝑣 and all other vertices. If there exists a vertex

𝑣 ∈ 𝑊 with 𝜀(𝑣) ≤ 3𝑟, we have certified that 𝑅 ≤ 3𝑟 so we are done.

Algorithm Step 2: Constructing the “far graph"

Now we can assume that for each 𝑣 ∈ 𝑊 , 𝜀(𝑣) > 3𝑟. We say that a pair of vertices is far if

their min-distance is more than 2𝑟, and let the far graph 𝐺𝑓𝑎𝑟 be an undirected unweighted graph

on 𝑉 defined as follows: for each 𝑢 ∈ 𝑊 and 𝑣 ∈ 𝑉 , (𝑢, 𝑣) is an undirected edge if 𝑢 and 𝑣 are far.

We partition 𝑊 based on the connected components of 𝐺𝑓𝑎𝑟. Specifically, for all 𝑖 define 𝑍𝑖 to be

the 𝑖𝑡ℎ connected component of 𝐺𝑓𝑎𝑟 which contains at least one vertex in 𝑊 . Let 𝐹𝑖 = 𝑊 ∩ 𝑍𝑖,

note that 𝐹𝑖 is non-empty.

Analysis Step 2

Remember that we defined 𝑆𝑈 =
⋂︀

𝑣∈𝑈 𝑆𝑣 and 𝑇𝑈 =
⋂︀

𝑣∈𝑈 𝑇𝑣.

By constructing 𝐺𝑓𝑎𝑟, we prune the set of candidate min-centers, as specified in the following

lemma.

Lemma 6.2.8. If 𝑅 ≤ 𝑟, then for any 𝐹𝑖 either 𝑐 ∈ 𝑆𝐹𝑖
or 𝑐 ∈ 𝑇𝐹𝑖

.

Proof. First note that we have 𝑆𝐹𝑖
∪ 𝑇𝐹𝑖

̸= 𝑉 ∖ 𝐹𝑖. We know that 𝑐 ̸∈ 𝐹𝑖 as 𝐹𝑖 ⊆ 𝑊 . By way

of contradiction, assume that there are two vertices 𝑢, 𝑣 ∈ 𝐹𝑖 such that 𝑐 ∈ 𝑆𝑢 ∩ 𝑇𝑣. Consider a

path in 𝐺𝑓𝑎𝑟 from 𝑢 to 𝑣. There must be a pair of adjacent vertices (𝑢′, 𝑣′) on the path such that

𝑐 ∈ 𝑆𝑢′ ∩ 𝑇𝑣′ . Then, by definition, 𝑢′ and 𝑣′ are far (with respect to the original graph 𝐺). Since

𝑐 ∈ 𝑆𝑢′ ∩ 𝑇𝑣′ , we have 𝑑(𝑣′, 𝑐) ≤ 𝑟 and 𝑑(𝑐, 𝑢′) ≤ 𝑟, so by the triangle inequality 𝑑(𝑣′, 𝑢′) ≤ 2𝑟.

Thus 𝑢′ and 𝑣′ are not far, a contradiction. □

Algorithm Step 3: Defining a DAG-like structure

a) Constructing the “close graph" The purpose of constructing the close graph is that it allows

us to either perform Dijkstra’s algorithm from some additional vertices and obtain a good estimate

(see step b), or “merge" some connected components of the far graph to further prune the set of

vertices that could be the min-center (see step c). The close graph 𝐺𝑐𝑙𝑜𝑠𝑒 is an unweighted directed
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graph with one vertex 𝑓𝑖 for each 𝐹𝑖. For all 𝑖 and 𝑗, let (𝑓𝑖, 𝑓𝑗) be an edge in 𝐺𝑐𝑙𝑜𝑠𝑒 if for some

𝑢 ∈ 𝐹𝑖 and some 𝑣 ∈ 𝐹𝑗 , 𝑑(𝑢, 𝑣) ≤ 5𝑟.

b) Additional Dijkstra We now perform Dijkstra’s algorithm from some additional vertices,

which are carefully chosen so that either we find a vertex with small min-eccentricity and are

done in this step, or we can define a DAG-like structure in the graph (step c). We compute the

strongly connected components (SCCs) of 𝐺𝑐𝑙𝑜𝑠𝑒. For each SCC 𝑄 = (𝑉𝑄, 𝐸𝑄), find 𝐸 ′𝑄 ⊆ 𝐸𝑄

with |𝐸 ′𝑄| ≤ 2|𝑉𝑄| such that 𝑄′ = (𝑉𝑄, 𝐸
′
𝑄) is strongly connected; it is simple to show that such

an 𝐸 ′𝑄 exists and we include the proof in subsection 6.2.7 for completeness (Lemma 6.2.19). Let

𝐸 ′ = ∪𝑄𝐸 ′𝑄. Note that every edge 𝑒 ∈ 𝐸 ′ corresponds to a path 𝑃𝑒 of length at most 5𝑟 in the

original graph 𝐺. For each 𝑒 ∈ 𝐸 ′, find an ordered set 𝑉𝑒 of at most 9 vertices on 𝑃𝑒 that divide

𝑃𝑒 into subpaths of length at most 𝑟; it is simple to show that such a 𝑉𝑒 exists and we include

the proof in subsection 6.2.7 for completeness (Lemma 6.2.18). We run Dijkstra’s algorithm from

every vertex in 𝑉𝑒 and if we find a vertex 𝑣 with 𝜀(𝑣) ≤ 3𝑟 then we are done.

c) Constructing the DAG of “supercomponents" Let 𝐻 be the DAG created by contracting

every strongly connected component of 𝐺𝑐𝑙𝑜𝑠𝑒 into a single vertex. That is, there is an edge from 𝑢

to 𝑣 in 𝐻 if the strongly connected component 𝑣 is reachable from the strongly connected compo-

nent 𝑢. Let 𝑘 be the number of vertices in 𝐻; we number the vertices in 𝐻 from 1 to 𝑘 according

to a topological ordering. For each 𝑗 ∈ [𝑘], we merge the set of 𝐹𝑖’s represented by vertex 𝑗 in 𝐻

into a supercomponent 𝑊𝑗 . Formally, if we define 𝐹𝑢 to be the connected component of 𝐺𝑓𝑎𝑟 that

contains 𝑢, a vertex 𝑢 ∈ 𝑊 is in supercomponent 𝑊𝑗 if 𝑓𝑢 is in the strongly connected component

of 𝐻 represented by vertex 𝑗.

d) Fitting the remaining vertices into the DAG structure In the previous step, we defined a

DAG-like structure on the vertices in 𝑊 . Now we place the rest of the vertices into this structure.

We partition the rest of the vertices based on whether they could potentially be the min-center.

We define the vertex sets 𝐶 and 𝐵 next and in the analysis we prove that 𝑐 ∈ 𝐶 (among other

properties of 𝐶 and 𝐵). We will use the following notation: for any distance 𝑑 > 0, let 𝑆𝑑
𝑣 = {𝑢 ∈

𝑆𝑣 : 𝑑(𝑢, 𝑣) ≤ 𝑑} and let 𝑇 𝑑
𝑣 = {𝑢 ∈ 𝑇𝑣 : 𝑑(𝑣, 𝑢) ≤ 𝑑}. Remember that for any set 𝑈 of vertices,

we defined 𝑆𝑑
𝑈 =

⋂︀
𝑣∈𝑈 𝑆𝑑

𝑣 , and 𝑇 𝑑
𝑈 =

⋂︀
𝑣∈𝑈 𝑇 𝑑

𝑣 .
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• For 𝑖 = 1, . . . , 𝑘 + 1, let 𝑣 ∈ 𝐶𝑖 if for all 𝑗 < 𝑖, 𝑣 ∈ 𝑇 2𝑟
𝑊𝑗

and for all 𝑗 ≥ 𝑖, 𝑣 ∈ 𝑆2𝑟
𝑊𝑗

. Let

𝐶 = ∪𝑘+1
𝑖=1𝐶𝑖.

• For 𝑖 = 2, . . . , 𝑘 + 1, let 𝑣 ∈ 𝐵𝑖 if 𝑣 /∈ 𝐶 and 𝑖 is the largest integer for which 𝑣 ∈ 𝑇 2𝑟
𝑊𝑖−1

.

Let 𝑣 ∈ 𝐵1 if there is no such 𝑖 and 𝑣 /∈ 𝐶. Let 𝐵 = ∪𝑘+1
𝑖=1𝐵𝑖.

Analysis Step 3

Figure 6-3 shows a summary of the structure of the graph which we will describe in the fol-

lowing observations and lemmas.

Figure 6-3: The graph structure for the sets 𝑊𝑖, 𝐵𝑖 and 𝐶𝑖. Solid lines are paths of length at most
2𝑟 between any member of the outgoing set to any member of the incoming set. Dashed lines
are paths of length at most 2𝑟 which might not exist between all pairs, which is expressed more
accurately in Lemma 6.2.11.

We first observe two important properties of supercomponents:

Observation 6.2.1. For every pair of vertices 𝑣𝑖 ∈ 𝑊𝑖 and 𝑣𝑗 ∈ 𝑊𝑗 with 𝑖 < 𝑗, 𝑑(𝑣𝑗, 𝑣𝑖) > 5𝑟.

This is true because if 𝑑(𝑣𝑗, 𝑣𝑖) ≤ 5𝑟, then there is an edge from 𝑓𝑗 to 𝑓𝑖 in 𝐺𝑐𝑙𝑜𝑠𝑒, so there is

an edge from 𝑗 to 𝑖 in 𝐻 . Since 𝑖 < 𝑗, this contradicts the topological ordering of 𝐻 .

Observation 6.2.2. For every pair of vertices 𝑣𝑖 ∈ 𝑊𝑖 and 𝑣𝑗 ∈ 𝑊𝑗 with 𝑖 < 𝑗, 𝑣𝑖 ∈ 𝑆2𝑟
𝑊𝑗

and

𝑣𝑗 ∈ 𝑇 2𝑟
𝑊𝑖

.

This is true because 𝑣𝑖 and 𝑣𝑗 are in different 𝐹𝑘’s since 𝑊𝑖 and 𝑊𝑗 are collections of disjoint

sets of 𝐹𝑖’s. So 𝑣𝑖 and 𝑣𝑗 are not far i.e. 𝑑𝑚𝑖𝑛(𝑣𝑖, 𝑣𝑗) ≤ 2𝑟 and by Observation 6.2.1 we know that
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𝑑(𝑣𝑗, 𝑣𝑖) > 5𝑟 > 2𝑟, so it must be that 𝑑(𝑣𝑖, 𝑣𝑗) ≤ 2𝑟. Since this is true for all vertices 𝑣𝑗 ∈ 𝑊𝑗 ,

we have 𝑣𝑖 ∈ 𝑆2𝑟
𝑊𝑗

. Similarly, 𝑣𝑗 ∈ 𝑇 2𝑟
𝑊𝑖

.

We now prove a refinement of Lemma 6.2.8 where we consider supercomponents instead of

far graph components. This further prunes the vertices that could potentially be the min-center.

Lemma 6.2.9. If 𝑅 ≤ 𝑟, then for each 𝑖 = 1, . . . , 𝑘, either 𝑐 ∈ 𝑆𝑊𝑖
or 𝑐 ∈ 𝑇𝑊𝑖

.

Proof. Fix 𝑖 and suppose by way of contradiction that there are nodes 𝑢, 𝑣 ∈ 𝑊𝑖 such that 𝑐 ∈

𝑆𝑢 ∩ 𝑇𝑣. By Lemma 6.2.8, 𝑢 and 𝑣 must be in different 𝐹𝑖’s say 𝐹𝑢 and 𝐹𝑣.

Recall that by the definition of a supercomponent, 𝑓𝑢 and 𝑓𝑣 are in the same strongly connected

component of 𝐺𝑐𝑙𝑜𝑠𝑒. So there is a path 𝑃 from 𝑓𝑢 to 𝑓𝑣 in 𝐺𝑐𝑙𝑜𝑠𝑒 such that all of its edges are in

𝐸 ′. By Lemma 6.2.8 Since 𝑐 ∈ 𝑆𝑢 ∩ 𝑇𝑣, we have that 𝑐 ∈ 𝑆𝐹𝑢 ∩ 𝑇𝐹𝑣 . So there are two consecutive

nodes 𝑓𝑗 and 𝑓𝑗′ on 𝑃 (in that order) such that 𝑐 ∈ 𝑆𝐹𝑗
∩ 𝑇𝐹𝑗′

.

Recall that each edge 𝑒 ∈ 𝐸 ′ corresponds to a path 𝑃𝑒 of length at most 5𝑟 in the original graph.

Let 𝑒 be the edge (𝑓𝑗, 𝑓𝑗′) and consider 𝑃𝑒 and 𝑉𝑒, where 𝑉𝑒 is the set of vertices that divides 𝑃𝑒

into subpaths of length at most 𝑟. Since the endpoints of 𝑃𝑒 are in 𝐹𝑗 and 𝐹𝑗′ respectively, there

exists a pair of vertices 𝑢′, 𝑣′ consecutive in 𝑉𝑒 (in that order) such that 𝑐 ∈ 𝑆𝑢′ ∩ 𝑇𝑣′ . We note that

𝑑(𝑢′, 𝑣′) ≤ 𝑟.

Now we claim that 𝜀(𝑣′) ≤ 3𝑟. This is because 𝑑(𝑣′, 𝑐) ≤ 𝑟 and 𝑑(𝑐, 𝑣′) ≤ 𝑑(𝑐, 𝑢′)+𝑑(𝑢′, 𝑣′) ≤

2𝑟. Consider an arbitrary vertex 𝑤 ∈ 𝑉 . Either 𝑑(𝑐, 𝑤) ≤ 𝑅 or 𝑑(𝑤, 𝑐) ≤ 𝑅. If 𝑑(𝑐, 𝑤) ≤ 𝑅 then

𝑑(𝑣′, 𝑤) ≤ 𝑑(𝑣′, 𝑐)+ 𝑑(𝑐, 𝑤) ≤ 2𝑟. If 𝑑(𝑤, 𝑐) ≤ 𝑅, then 𝑑(𝑤, 𝑣′) ≤ 𝑑(𝑤, 𝑐)+ 𝑑(𝑐, 𝑣′) ≤ 3𝑟. In this

case, the algorithm would have stopped after step 3b.

□

We now prove that 𝑐 ∈ 𝐶, which further prunes the vertices that could potentially be the

min-center.

Lemma 6.2.10. If 𝑅 ≤ 𝑟, then 𝑐 ∈ 𝐶.

Proof. By Lemma 6.2.9, either 𝑐 ∈ 𝑆𝑊𝑖
or 𝑐 ∈ 𝑇𝑊𝑖

. Since 𝑐 is the min-center and 𝑅 ≤ 𝑟, if

𝑐 ∈ 𝑆𝑊𝑖
then 𝑐 ∈ 𝑆2𝑟

𝑊𝑖
, and similarly if 𝑐 ∈ 𝑇𝑊𝑖

then 𝑐 ∈ 𝑇 2𝑟
𝑊𝑖

. We claim that for each 𝑖 < 𝑗,

𝑆2𝑟
𝑊𝑖
∩ 𝑇 2𝑟

𝑊𝑗
= ∅, which completes the proof. Suppose otherwise and let 𝑖 and 𝑗 be such that 𝑖 < 𝑗
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and there is a vertex 𝑣 ∈ 𝑆2𝑟
𝑊𝑖
∩ 𝑇 2𝑟

𝑊𝑗
. Then for every vertex 𝑣𝑖 ∈ 𝑊𝑖 and 𝑣𝑗 ∈ 𝑊𝑗 , 𝑑(𝑣𝑗, 𝑣) ≤ 2𝑟

and 𝑑(𝑣, 𝑣𝑖) ≤ 2𝑟, so 𝑑(𝑣𝑗, 𝑣𝑖) ≤ 4𝑟. This contradicts Observation 6.2.1. □

Now we prove that the vertices in 𝐵 fit into the DAG structure in a similar but weaker sense

than the vertices in 𝐶:

Lemma 6.2.11. Consider a node 𝑣 ∈ 𝐵𝑖. Then for all 𝑧 ≥ 𝑖 except for at most two values, we

have 𝑣 ∈ 𝑆2𝑟
𝑊𝑧

. And for all 𝑧 ≤ 𝑖 except for at most two values, we have 𝑣 ∈ 𝑇 2𝑟
𝑊𝑧

.

Proof. We first observe that there is at most one 𝑗 such that 𝑣 is far from some vertex in 𝑊𝑗 . This

is because if 𝑣 were far from two vertices 𝑢,𝑤 in different supercomponents, then 𝐺𝑓𝑎𝑟 would

contain the edges (𝑢, 𝑣) and (𝑤, 𝑣) making 𝑢 and 𝑤 in the same connected component of 𝐺𝑓𝑎𝑟, and

thus in the same supercomponent. We fix 𝑗 and consider two cases:

Case 1: Suppose by way of contradiction that for some node 𝑤 ∈ 𝑊𝑧 for some 𝑧 < 𝑖, 𝑧 ̸= 𝑗,

we have 𝑣 ∈ 𝑆2𝑟
𝑤 . We know that 𝑧 < 𝑖 − 1, since by definition of 𝐵𝑖, we have 𝑣 ∈ 𝑇 2𝑟

𝑊𝑖−1
. Let

𝑤′ ∈ 𝑊𝑖−1 be an arbitrary node, then 𝑑(𝑤′, 𝑤) ≤ 𝑑(𝑤′, 𝑣)+𝑑(𝑣, 𝑤) ≤ 2𝑟+2𝑟 < 5𝑟, a contradiction

to Observation 6.2.1.

Case 2: Now suppose that for some node 𝑤 ∈ 𝑊𝑧 for some 𝑧 > 𝑖, 𝑧 ̸= 𝑗, we have 𝑣 ∈ 𝑇 2𝑟
𝑤 . We

will show that 𝑗 = 𝑖 and 𝑧 = 𝑖 + 1; that is, for all 𝑧′ ≥ 𝑖 + 2, we have that 𝑣 ∈ 𝑆2𝑟
𝑊𝑧′

. If there

is some node 𝑤′ ∈ 𝑊𝑖 such that 𝑣 ∈ 𝑆2𝑟
𝑤′ , then 𝑑(𝑤,𝑤′) ≤ 𝑑(𝑤, 𝑣) + 𝑑(𝑣, 𝑤′) ≤ 2𝑟 + 2𝑟 < 5𝑟,

a contradiction to Observation 6.2.1. Assume that there is no such 𝑤′ i.e. 𝑑(𝑣, 𝑤′) > 2𝑟 for all

𝑤′ ∈ 𝑊𝑖. Then for every node 𝑤′ ∈ 𝑊𝑖, either 𝑣 and 𝑤′ are far or 𝑑(𝑤′, 𝑣) ≤ 2𝑟. If for all

𝑤′ ∈ 𝑊𝑖, 𝑑(𝑤′, 𝑣) ≤ 2𝑟, then 𝑣 ∈ 𝑇 2𝑟
𝑊𝑖

, which cannot happen since by the definition of 𝐵𝑖, 𝑖 is

the biggest integer that 𝑣 ∈ 𝑇 2𝑟
𝑊𝑖−1

. Thus, 𝑣 is far from some vertex in 𝑊𝑖 so we have that 𝑗 = 𝑖.

If 𝑧 > 𝑖 + 1, then by definition of 𝐵𝑖 there is some vertex 𝑢 ∈ 𝑊𝑖+1 such that 𝑣 ∈ 𝑆2𝑟
𝑢 . So

𝑑(𝑤, 𝑢) ≤ 𝑑(𝑤, 𝑣) + 𝑑(𝑣, 𝑢) ≤ 2𝑟 + 2𝑟 < 5𝑟, a contradiction to Observation 6.2.1. So it must be

that 𝑧 = 𝑖+ 1. So for all 𝑧′ ≥ 𝑖+ 2, we have that 𝑣 ∈ 𝑆2𝑟
𝑊𝑧′

. □

We have observed stronger properties than Lemma 6.2.11 for vertices 𝑣 ∈ 𝑊𝑖 (Observation

6.2.2) and 𝑣 ∈ 𝐶𝑖 (by definition), so we have the following corollary.
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Corollary 6.2.1. Lemma 6.2.11 is true for all 𝑣 ∈ 𝐵𝑖 ∪ 𝐶𝑖 ∪𝑊𝑖. Moreover, for such 𝑣’s, we have

𝑣 ∈ 𝑇 2𝑟
𝑊𝑖−1

.

Algorithm Step 4: Partial search

From each of the potential min-centers, we will run Dijkstra’s algorithm on a small subgraph

of 𝐺. For each 𝑖 = 1, . . . , 𝑘 + 1, let 𝐺𝑖 be the subgraph of 𝐺 induced by 𝑊𝑖−6 ∪ . . . ∪𝑊𝑖+3 ∪

𝐵𝑖−6 ∪ . . . ∪ 𝐵𝑖+3 ∪ 𝐶𝑖−5 ∪ . . . ∪ 𝐶𝑖+3. Define 𝐶𝑖 to be the set of nodes 𝑣 ∈ 𝐶𝑖 such that 𝑣 is

within min-distance 𝑟 from all vertices in 𝑊 (we know this set of nodes because we have already

run Dijkstra’s algorithm from and to every vertex in 𝑊 ). For every vertex 𝑣 in 𝐶𝑖, run Dijkstra’s

algorithm from 𝑣 with respect to the graph 𝐺𝑖. If 𝑣 is within min-distance 𝑟 from all nodes in

𝑈𝑖 = 𝐶𝑖 ∪ 𝐵𝑖−2 ∪ 𝐵𝑖−1 ∪ 𝐵𝑖, we will show that 𝑅 ≤ 3𝑟. If there is no such 𝑣, we will show that

𝑟 < 𝑅.

Analysis Step 4

The following two claims prove that our algorithm either certifies that 𝑅 > 𝑟 or 𝑅 ≤ 3𝑟.

Claim 8. For some 𝑖, if 𝑐 ∈ 𝐶𝑖 and 𝑅 ≤ 𝑟, then for all 𝑢 ∈ 𝑈𝑖, the min-distance between 𝑐 and 𝑢

with respect to 𝐺𝑖 is at most 𝑟.

Claim 9. If a vertex 𝑣 ∈ 𝐶𝑖 is within min-distance 𝑟 from all vertices in 𝑈𝑖 with respect to the

graph 𝐺𝑖, then 𝑅 ≤ 𝜀(𝑣) ≤ 3𝑟.

Proof of Claim 8. We will prove something slightly stronger: for all 𝑖 any shortest path in 𝐺 be-

tween two nodes 𝑢, 𝑢′ ∈ 𝑈𝑖 that has length at most 𝑟 is completely contained in 𝐺𝑖.

By way of contradiction, suppose that the shortest path 𝑃 from 𝑢 to 𝑢′ is not completely in 𝐺𝑖.

Define 𝑉𝑟 and 𝑉𝑙 to be sets of nodes on the right and left of 𝐺𝑖 respectively, i.e. 𝑉𝑟 = 𝑊𝑖+4 ∪ . . .∪

𝑊𝑘∪𝐵𝑖+4∪. . .∪𝐵𝑘+1∪𝐶𝑖+4∪. . .∪𝐶𝑘+1 and 𝑉𝑙 = 𝑊1∪. . .∪𝑊𝑖−7∪𝐵1∪. . .∪𝐵𝑖−7∪𝐶1∪. . .∪𝐶𝑖−6.

First suppose that 𝑃 contains some node 𝑣𝑟 ∈ 𝑉𝑟. There is some 𝑗 > 𝑖 + 3 such that 𝑣𝑟 ∈

𝐵𝑗 ∪ 𝐶𝑗 ∪𝑊𝑗 . So by Corollary 6.2.1, 𝑣𝑟 ∈ 𝑇 2𝑟
𝑊𝑗−1

. Furthermore, Corollary 6.2.1 implies that there

is some 𝑗′ ∈ {𝑖, 𝑖+ 1, 𝑖+ 2} such that 𝑢′ ∈ 𝑆2𝑟
𝑊𝑗′

. Pick 𝑤𝑗′ ∈ 𝑊𝑗′ and 𝑤𝑗−1 ∈ 𝑊𝑗−1. We have that

𝑑(𝑤𝑗−1, 𝑤𝑗′) ≤ 𝑑(𝑤𝑗−1, 𝑣𝑟) + 𝑑(𝑣𝑟, 𝑢
′) + 𝑑(𝑢′, 𝑤𝑗′) ≤ 2𝑟 + 𝑟 + 2𝑟 = 5𝑟. Since 𝑗 − 1 > 𝑗′, this

contradicts Observation 6.2.1. This case is shown in Figure 6-4.
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Figure 6-4: First case in Claim 8 where the path 𝑃 from 𝑢 to 𝑢′ passes through some vertex 𝑣𝑟 ∈ 𝑉𝑟.
In this figure 𝑗′ = 𝑖+1. The upper bound on the weight of each part of the path from 𝑊𝑗−1 to 𝑊𝑗′

is written on the edges.

Now suppose that 𝑃 contains some node 𝑣𝑙 in 𝑉𝑙. The argument in this case is symmetric to

the previous case. Since 𝑢 ∈ 𝑈𝑖, there is some 𝑗 ∈ {𝑖 − 2, 𝑖 − 1, 𝑖} such that 𝑢 ∈ 𝐵𝑗 ∪ 𝐶𝑗 , and

hence by Corollary 6.2.1, 𝑢 ∈ 𝑇 2𝑟
𝑊𝑗−1

. Furthermore, Corollary 6.2.1 implies that there is at least

one value 𝑗′ ∈ {𝑖 − 5, 𝑖 − 4, 𝑖 − 3} such that 𝑣𝑙 ∈ 𝑆2𝑟
𝑊𝑗′

. Pick 𝑤𝑗′ ∈ 𝑊𝑗′ and 𝑤𝑗−1 ∈ 𝑊𝑗−1. We

have that 𝑑(𝑤𝑗−1, 𝑤𝑗′) ≤ 𝑑(𝑤𝑗−1, 𝑢) + 𝑑(𝑢, 𝑣𝑙) + 𝑑(𝑣𝑙, 𝑤𝑗′) ≤ 2𝑟+ 𝑟+ 2𝑟 = 5𝑟. Since 𝑗′ < 𝑗 − 1,

this contradicts Observation 6.2.1. □

Proof of Claim 9. We show that for any node 𝑢 ∈ 𝑉 we have 𝑑𝑚𝑖𝑛(𝑢, 𝑣) ≤ 3𝑟. We have 3 cases:

Case 1: 𝑢 ∈ 𝑊 : From the definition of 𝐶𝑖, we know that 𝑣 has min-distance at most 𝑟 to all

vertices in 𝑊 .

Case 2: 𝑢 ∈ 𝐶𝑗 for some 𝑗 = 1, . . . , 𝑘 + 1. If 𝑗 = 𝑖, then 𝑢 ∈ 𝑈𝑖 so we know that 𝑑𝑚𝑖𝑛(𝑢, 𝑣) ≤ 𝑟.

If 𝑗 > 𝑖, then pick some vertex 𝑤𝑖 ∈ 𝑊𝑖. By the definition of 𝐶𝑖 and 𝐶𝑗 we know that 𝑑(𝑣, 𝑢) ≤

𝑑(𝑣, 𝑤𝑖) + 𝑑(𝑤𝑖, 𝑢) ≤ 𝑟 + 2𝑟 = 3𝑟. Similarly, if 𝑗 ≤ 𝑖− 1, pick some vertex 𝑤𝑖−1 ∈ 𝑊𝑖−1. Then

𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢,𝑤𝑖−1) + 𝑑(𝑤𝑖−1, 𝑣) ≤ 2𝑟 + 𝑟 = 3𝑟.

Case 3: 𝑢 ∈ 𝐵𝑗 for some 𝑗 = 1, . . . , 𝑘 + 1. If 𝑗 ∈ {𝑖 − 2, 𝑖 − 1, 𝑖}, then since 𝑣 ∈ 𝐶𝑖 we know

that 𝑑𝑚𝑖𝑛(𝑢, 𝑣) ≤ 𝑟. So first suppose that 𝑗 ≤ 𝑖 − 3. Then by Lemma 6.2.11, there is at least one

𝑗′ ∈ {𝑗 + 1, . . . , 𝑖− 1}, such that 𝑢 ∈ 𝑆2𝑟
𝑊𝑗′

. Pick some node 𝑤𝑗′ ∈ 𝑊𝑗′ . So by the definition of 𝐶𝑖

we have that 𝑑(𝑢, 𝑣) ≤ 𝑑(𝑢,𝑤𝑗′) + 𝑑(𝑤𝑗′ , 𝑣) ≤ 2𝑟+ 𝑟 = 3𝑟. Now suppose that 𝑗 ≥ 𝑖+1. Then by

definition of 𝐵𝑗 we know that 𝑢 ∈ 𝑇 2𝑟
𝑊𝑗−1

. Pick some vertex 𝑤𝑗−1 ∈ 𝑊𝑗−1. Since 𝑗 − 1 ≥ 𝑖 and by
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the definition of 𝐶𝑖, we have that 𝑑(𝑣, 𝑢) ≤ 𝑑(𝑣, 𝑤𝑗−1) + 𝑑(𝑤𝑗−1, 𝑢) ≤ 𝑟 + 2𝑟 = 3𝑟.

□

Runtime analysis

We analyze the running time of each step.

Step 1, preliminaries: 𝑂̃(𝑚
√
𝑛). This is because each Dijkstra in Step 1 takes 𝑂̃(𝑚) time and

|𝑊 | =
√
𝑛.

Step 2, constructing the “far graph”: 𝑂̃(𝑛
√
𝑛). Each edge in the far graph has at least one

endpoint in 𝑊 , and so the construction of the far graph takes 𝑂(𝑛
√
𝑛) time. Note that the existence

of each edge in the far graph was determined in Step 1.

Step 3, defining a DAG-like structure:

a, constructing the “close graph”: 𝑂̃(𝑛
√
𝑛). This is because the connected components of

the far graph can be determined in 𝑂(𝑛
√
𝑛) time since it has that many edges. The number of

components containing a node in 𝑊 are not more than |𝑊 |, and so the close graph which is on at

most |𝑊 | nodes can be constructed in time 𝑂(|𝑊 |2) = 𝑂(𝑛).

b, additional Dijkstra: 𝑂̃(𝑚
√
𝑛). This is because by Lemma 6.2.19, the number of vertices

we run Dijkstra from in SCC 𝑄 of the close graph is at most 9|𝐸𝑄| ≤ 18|𝑉𝑄|. Since the number

of vertices in close graph is at most |𝑊 |, we run Dijkstra from at most 18|𝑊 | = 𝑂̃(
√
𝑛) vertices.

Also running the algorithm of Lemma 6.2.19 takes 𝑂(|𝐸𝑄|) = 𝑂(|𝑉𝑄|2) for each SCC 𝑄, which

takes 𝑂(|𝑊 |2) = 𝑂̃(𝑛) time in total.

c, constructing the DAG of “supercomponents”: 𝑂̃(𝑛). This is because 𝐻 has at most |𝑊 |

vertices, so obtaining the DAG ordering of 𝐻 takes at most |𝑊 |2 = 𝑂̃(𝑛) time.

d, fitting the remaining vertices into the DAG structure: 𝑂̃(𝑛
√
𝑛). For each vertex in 𝑉 , it

takes 𝑂(|𝑊 |) time to see which set it belongs to, since it only depends on its distances to and from

the vertices in 𝑊 .

Step 4, partial search: 𝑂̃(𝑚
√
𝑛). The Dijkstras ran in 𝐺𝑖 take 𝑂̃(𝑚𝑖|𝐶𝑖|) time, where 𝑚𝑖 is the

number of edges with at least one endpoint in 𝐺𝑖. By Lemma 6.2.2, property 3, with high probabil-

ity |𝐶𝑖| = 𝑂(
√
𝑛). We know that 𝐶𝑖 ⊆ 𝐶𝑖 and so the running time of this step is 𝑂(

√
𝑛
∑︀𝑘+1

𝑖=1 𝑚𝑖).

Now since each node is in at most 10 𝐺𝑖s, we have that each edge is also in at most 20 𝐺𝑖s, and
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hence
∑︀𝑘+1

𝑖=1 𝑚𝑖 ≤ 20𝑚.

So overall the algorithm runs in 𝑂̃(𝑚
√
𝑛) time.

□

6.2.6 Min-Eccentricities Algorithm

The min-eccentricities algorithm is similar to the min-radius algorithm. Below we will describe

the modifications.

Theorem 6.2.8. For any constant 𝛿 with 1 > 𝛿 > 0, there is an 𝑂̃(𝑚
√
𝑛/𝛿) time randomized

algorithm, that given a directed weighted graph 𝐺 = (𝑉,𝐸) with weights positive and polynomial

in 𝑛, can output an estimate 𝜀′(𝑠) for every vertex 𝑠 ∈ 𝑉 such that 𝜀(𝑠) ≤ 𝜀′(𝑠) ≤ (5+ 𝛿)𝜀(𝑠) with

high probability, where 𝜀(𝑠) is the min-eccentricity of the vertex 𝑠 in 𝐺.

Proof. We fix a value 𝜌 and our algorithm certifies for each 𝑠 ∈ 𝑉 that either 𝜀(𝑠) > 𝜌 or 𝜀(𝑠) ≤ 5𝜌

with high probability. Starting from 𝜌 = 1, we will run the algorithm and increase 𝜌 for each run.

We will call the vertices for which we have certified 𝜀(𝑠) ≤ 5𝜌 for earlier values of 𝜌 as marked.

Let 𝛿′ = 𝛿/5. Starting from 𝜌 = 1, we run the algorithm. If the output of the algorithm is

that 𝜀(𝑠) ≤ 5𝜌 and 𝑠 was unmarked, then we will mark 𝑠 and set 𝜀′(𝑠) = 5𝜌. Then, we run the

algorithm with the new value 𝜌𝑛𝑒𝑤 = (1+𝛿′)𝜌. Since 𝜀(𝑠) ≤ 𝑝𝑜𝑙𝑦(𝑛) for all 𝑠 ∈ 𝑉 , this contributes

a multiplicative factor of log1+𝛿′ 𝑛 = 𝑂̃(1/𝛿) to the total runtime. Suppose that for some value of

𝜌 and for some vertex 𝑠 we have 𝜀(𝑠) ≤ 5𝜌 and 𝑠 was unmarked. From the previous run of the

algorithm, we know that 𝜀(𝑠) > 𝜌/(1 + 𝛿′). Then for 𝜀′(𝑠) = 5𝜌, we have 𝜀′(𝑠) ≥ 𝜀(𝑠) and

𝜀′(𝑠) ≤ 5(1 + 𝛿′)𝜀(𝑠) = (5 + 𝛿)𝜀(𝑠), which means that 𝜀′(𝑠) is a (5 + 𝛿)-approximation of 𝜀(𝑠).

After running the whole algorithm for this value of 𝜌 we will also mark all such vertices 𝑠. Now

we present the algorithm.

Throughout the algorithm 𝜌 behaves analogously to 𝑟 in the min-radius algorithm. Whenever

we say that a certain part of the algorithm is the same we mean that it is same after replacing 𝑟 by

𝜌. Note that any vertex 𝑠 with 𝜀(𝑠) = 𝜌 satisfies the property that its min-distance to any vertex is

at most 𝜌. This is analogous to the center vertex 𝑐 in the Min-Radius algorithm using 𝑟 = 𝜌.
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Algorithm Step 1: Preliminaries

First we remove all the edges with weight more than 𝜌, because if for a vertex 𝑠 with 𝜀(𝑠) ≤ 𝜌,

this removal does not change the min-eccentricity of 𝑠. Then we sample a set 𝑊 of
√
𝑛 vertices

according to Lemma 6.2.2. For every vertex 𝑣 ∈ 𝑊 , we run Dijkstra’s algorithm from and to

𝑣 to obtain the min-distance between 𝑣 and all other vertices. This means we know 𝜀(𝑣) for all

𝑣 ∈ 𝑊 and in particular we know if 𝜀(𝑣) > 𝜌 or 𝜀(𝑣) ≤ 3𝜌. We use the vertices in 𝑊 with

min-eccentricity less than 3𝜌 to detect vertices with min-eccentricity less than 5𝜌 in the graph.

Algorithm Step 2: Constructing the “far graph"

The far graph and the 𝐹𝑖’s are defined the same way as in the min-radius algorithm.

Analysis Step 2

The purpose of constructing 𝐺𝑓𝑎𝑟 is to prune the set of vertices that could potentially have low

min-eccentricity. Next we state a modified Lemma 6.2.8.

Lemma 6.2.12 (Modification of Lemma 6.2.8). If for a vertex 𝑠 ∈ 𝑉 ∖𝑊 , 𝜀(𝑠) ≤ 𝜌, then for any

𝐹𝑖, either 𝑠 ∈ 𝑆𝐹𝑖
or 𝑠 ∈ 𝑇𝐹𝑖

.

Proof. For 𝑠 ∈ 𝐹𝑖 note that 𝐹𝑖 ⊆ 𝑊 and hence we know 𝜀(𝑠) and have certified either 𝜀(𝑠) > 𝜌 or

𝜀(𝑠) ≤ 3𝜌. For the other vertices the proof is analogous to that of Lemma 6.2.8 □

Algorithm Step 3: Defining a DAG-like structure

a) Constructing the “close graph" The purpose of constructing the close graph is that it allows

us to perform Dijkstra’s algorithm from some additional vertices and certify some vertices as hav-

ing min-eccentricities ≤ 5𝜌. Then we “merge" some connected components of the far graph to

further prune the set of vertices that could be having small min-eccentricities (see step c). 𝐺𝑐𝑙𝑜𝑠𝑒 is

defined as in the min-radius algorithm.

b) Additional Dijkstra This step of the algorithm diverges from the min-radius algorithm at the

end, and hence we state it in full detail. Similar to the min-radius algorithm, we perform Dijkstra’s

algorithm from some additional vertices, which are chosen so that we detect more vertices with

low min-eccentricity and at the end define a DAG-like structure (step c). Recall that we compute

the strongly connected components (SCCs) of 𝐺𝑐𝑙𝑜𝑠𝑒. For each SCC 𝑄 = (𝑉𝑄, 𝐸𝑄), find 𝐸 ′𝑄 ⊆ 𝐸𝑄
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with |𝐸 ′𝑄| ≤ 2|𝑉𝑄| such that 𝑄′ = (𝑉𝑄, 𝐸
′
𝑄) is strongly connected (where the existence of 𝐸 ′𝑄 is

shown in Lemma 6.2.19). Let 𝐸 ′ = ∪𝑄𝐸 ′𝑄. Recall that every edge 𝑒 ∈ 𝐸 ′ corresponds to a path

𝑃𝑒 of length at most 5𝜌 in the original graph 𝐺. For each 𝑒 ∈ 𝐸 ′, find an ordered set 𝑉𝑒 of at most

9 vertices on 𝑃𝑒 that divide 𝑃𝑒 into sections of length at most 𝜌 (see Lemma 6.2.18). For each

𝑒 ∈ 𝐸 ′, we run Dijkstra’s algorithm from and to every vertex in 𝑉𝑒. This means we know 𝜀(𝑣)

for all 𝑣 ∈ 𝑉𝑒; and in particular we know whether 𝜀(𝑣) > 𝜌 or 𝜀(𝑣) ≤ 3𝜌. Now here is the new

part of the algorithm in this step: For every consecutive pair of vertices (𝑎, 𝑏) in 𝑉𝑒 over all 𝑒 with

𝜀(𝑎), 𝜀(𝑏) ≤ 3𝜌 we certify for all 𝑠 ∈ 𝑆𝜌
𝑏 ∩ 𝑇 𝜌

𝑎 that 𝜀(𝑠) ≤ 5𝜌.

c) Constructing the DAG of “supercomponents" The graphs 𝐻 , 𝑊𝑖’s and the “supercompo-

nents" are defined as in the min-radius algorithm.

d) Fitting the remaining vertices into the DAG structure In the previous step, we defined a

DAG-like structure on the vertices of 𝑊 . Now we place the rest of the vertices into this structure.

We partition the rest of the vertices based on whether they haven’t been certified to have eccen-

tricity ≤ 5𝜌 and could potentially have small eccentricity. Vertex sets 𝐶 and 𝐵 are defined as in

the min-radius algorithm. In the analysis we prove that all vertices which haven’t been certified to

have eccentricity ≤ 5𝜌 and could potentially have small eccentricity must be in 𝐶, among other

properties of 𝐶 and 𝐵.

Analysis Step 3

First note that one major difference of this algorithm and the min-radius algorithm is in part

b; in the min-radius algorithm we stop whenever we find a good approximate center among the

vertices in 𝑉𝑒s, but here we can only upper bound the eccentricity of some vertices by 5𝜌 if we find

vertices with eccentricity ≤ 3𝜌 among 𝑉𝑒s.

We first show that if for some vertex 𝑠 and for some consecutive pair of vertices (𝑎, 𝑏) in 𝑉𝑒

such that 𝜀(𝑎), 𝜀(𝑏) ≤ 3𝜌 and 𝑠 ∈ 𝑆𝜌
𝑏 ∩ 𝑇 𝜌

𝑎 , then 𝜀(𝑠) ≤ 5𝜌. This is derived by Lemma 6.2.13

which we state bellow, by the following substitution: let 𝑐 = 𝑠, 𝛾1 = 𝜌, 𝛾2 = 2𝜌 and 𝛾3 = 3𝜌.

Lemma 6.2.13. Consider vertices 𝑏, 𝑐 such that 𝑑(𝑏, 𝑐) ≤ 𝛾1, 𝑑(𝑐, 𝑏) ≤ 𝛾2 and 𝜀(𝑏) ≤ 𝛾3 then

𝜀(𝑐) ≤ 𝛾3 +max(𝛾1, 𝛾2).
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Proof. Consider a vertex 𝑣, as 𝜀(𝑏) ≤ 𝛾3 either 𝑑(𝑣, 𝑏) ≤ 𝛾3 or 𝑑(𝑏, 𝑣) ≤ 𝛾3. If 𝑑(𝑣, 𝑏) ≤ 𝛾3 then

𝑑(𝑣, 𝑐) ≤ 𝑑(𝑣, 𝑏) + 𝑑(𝑏, 𝑐) ≤ 𝛾3 + 𝛾1. Otherwise 𝑑(𝑏, 𝑣) ≤ 𝛾3 then 𝑑(𝑐, 𝑣) ≤ 𝑑(𝑐, 𝑏) + 𝑑(𝑏, 𝑣) ≤

𝛾3 + 𝛾2. In both cases 𝜀(𝑐) ≤ 𝛾3 +max(𝛾1, 𝛾2). □

Now we observe an important property of supercomponents with an analogous proof to that of

Observation 6.2.1.

Observation 6.2.3 (Modification of Observation 6.2.1). For every pair of vertices in 𝑣𝑖 ∈ 𝑊𝑖 and

𝑣𝑗 ∈ 𝑊𝑗 with 𝑖 < 𝑗, 𝑑(𝑣𝑗, 𝑣𝑖) > 5𝜌.

We now prove a modification of Lemma 6.2.9. This further prunes the vertices that could

potentially have small eccentricity.

Lemma 6.2.14 (Modification of Lemma 6.2.9). If for a vertex 𝑠 ∈ 𝑉 , 𝜀(𝑠) ≤ 𝜌 and we haven’t yet

certified 𝜀(𝑠) ≤ 5𝜌 then for each 𝑖 = 1, . . . , 𝑘, either 𝑠 ∈ 𝑆𝑊𝑖
or 𝑠 ∈ 𝑇𝑊𝑖

.

Proof. Fix 𝑖 and suppose by way of contradiction that there are nodes 𝑢, 𝑣 ∈ 𝑊𝑖 such that 𝑠 ∈

𝑆𝑢 ∩ 𝑇𝑣 and 𝜀(𝑠) ≤ 𝜌. By Lemma 6.2.12, 𝑢 and 𝑣 must be in different 𝐹𝑖’s say 𝐹𝑢 and 𝐹𝑣.

Recall that by the definition of a supercomponent, 𝑓𝑢 and 𝑓𝑣 are in the same strongly connected

component of 𝐺𝑐𝑙𝑜𝑠𝑒. So there is a path 𝑃 from 𝑓𝑢 to 𝑓𝑣 in 𝐺𝑐𝑙𝑜𝑠𝑒 such that all of its edges are in

𝐸 ′. By Lemma 6.2.12 since 𝑠 ∈ 𝑆𝑢∩𝑇𝑣, we have that 𝑠 ∈ 𝑆𝐹𝑢 ∩𝑇𝐹𝑣 . So there are two consecutive

nodes 𝑓𝑗 and 𝑓𝑗′ on 𝑃 (in that order) such that 𝑠 ∈ 𝑆𝐹𝑗
∩ 𝑇𝐹𝑗′

.

Recall that an edge 𝑒 ∈ 𝐸 ′ corresponds to a path 𝑃𝑒 of length at most 5𝜌 in the original

graph. Let 𝑒 be the edge (𝑓𝑗, 𝑓𝑗′) and consider 𝑃𝑒 and 𝑉𝑒. Since the endpoints of 𝑃𝑒 are in 𝐹𝑗

and 𝐹𝑗′ respectively, there exists a pair of vertices 𝑢′, 𝑣′ consecutive in 𝑉𝑒 (in that order) such that

𝑠 ∈ 𝑆𝑢′ ∩ 𝑇𝑣′ . We note that 𝑑(𝑢′, 𝑣′) ≤ 𝜌.

Recall that we assumed that 𝜀(𝑠) ≤ 𝜌. Note as well that 𝑑(𝑣′, 𝑠) ≤ 𝜌 and 𝑑(𝑠, 𝑣′) ≤ 𝑑(𝑠, 𝑢′) +

𝑑(𝑢′, 𝑣′) ≤ 2𝜌. Then, using Lemma 6.2.13 with 𝑏 = 𝑠, 𝛾3 = 𝜌, 𝑐 = 𝑣′, 𝛾1 = 2𝜌, 𝛾2 = 𝜌, we get

that 𝜀(𝑣′) ≤ 𝜌 +max{2𝜌, 𝜌} = 3𝜌. A symmetric argument holds for 𝑢′, giving 𝜀(𝑢′), 𝜀(𝑣′) ≤ 3𝜌.

In this case, the algorithm would have already marked 𝑠 in step 3b as it is in the intersection of

𝑆𝜌
𝑢′ ∪ 𝑇 𝜌

𝑣′ . □
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We now prove that for vertices 𝑠 which have small min-eccentricity and have not been certified

as such, 𝑠 ∈ 𝐶. The proof is analogous to that of Lemma 6.2.10.

Lemma 6.2.15 (Modification of Lemma 6.2.10). If for a vertex 𝑠 ∈ 𝑉 , 𝜀(𝑠) ≤ 𝜌 and we haven’t

yet certified 𝜀(𝑠) ≤ 5𝜌 then 𝑠 ∈ 𝐶.

Now we prove that the vertices in 𝐵 fit into the DAG structure in a similar but weaker sense

than the vertices in 𝐶. The proofs are analogous to those of Lemma 6.2.11 and Corollary 6.2.1.

Lemma 6.2.16 (Modification of Lemma 6.2.11). Consider a node 𝑣 ∈ 𝐵𝑖. Then for all 𝑧 ≤ 𝑖

except for at most two values, we have 𝑣 ∈ 𝑇 2𝜌
𝑊𝑧

. And for all 𝑧 ≥ 𝑖 except for at most two values,

we have 𝑣 ∈ 𝑆2𝜌
𝑊𝑧

.

Corollary 6.2.2 (Modification of Corollary 6.2.1). Lemma 6.2.16 is true for all 𝑣 ∈ 𝐵𝑖 ∪𝐶𝑖 ∪𝑊𝑖.

Moreover for all 𝑣 ∈ 𝐵𝑖 ∪ 𝐶𝑖 ∪𝑊𝑖, we have 𝑣 ∈ 𝑇 2𝜌
𝑊𝑖−1

.

Algorithm Step 4: Partial search

From each of the potential vertices with small min-eccentricity in 𝐶, we will run Dijkstra’s

algorithm on a small subgraph of 𝐺. 𝐺𝑖 and 𝑈𝑖 are defined as in the min-radius algorithm. Define

𝐶𝑖 to be the set of nodes 𝑣 ∈ 𝐶𝑖 such that 𝑣 is within min-distance 𝜌 from all vertices in 𝑊 (we

know this set of nodes because we have already run Dijkstra’s algorithm from and to every vertex

in 𝑊 ). From each node 𝑣 ∈ 𝐶𝑖 run Dijkstra’s algorithm from and to 𝑣 with respect to the graph 𝐺𝑖.

If 𝑣 is within min-distance 𝜌 from all nodes in 𝑈𝑖, we will show that this certifies that 𝜀(𝑠) ≤ 3𝜌

and otherwise 𝜀(𝑠) > 𝜌.

Analysis Step 4

The following two claims prove that our algorithm for vertices 𝑠 ∈ 𝐶 either certifies that

𝜀(𝑠) > 𝜌 or 𝜀(𝑠) ≤ 3𝜌. The proofs are analogous to those of Claim 8 and Claim 9.

Claim 10 (Modification of Claim 8). If 𝑠 ∈ 𝐶𝑖 and 𝜀(𝑠) ≤ 𝜌, then for all 𝑢 ∈ 𝑈𝑖, the min-distance

between 𝑐 and 𝑢 with respect to 𝐺𝑖 is at most 𝜌.

Claim 11 (Modification of Claim 9). If a vertex 𝑠 is within min-distance 𝜌 from all vertices in 𝑈𝑖

in 𝐺𝑖, then 𝜀(𝑠) ≤ 3𝜌.
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For all the vertices for which we haven’t certified either 𝜀(𝑠) ≤ 3𝜌 or 𝜀(𝑠) ≤ 5𝜌 we know that

𝜀(𝑠) > 𝜌 and can certify that.

□

The runtime is 𝑂̃(𝑚
√
𝑛) with analogous runtime analysis to that of the min-radius algorithm.

(3 + 𝛿)-approximation for unweighted graphs

In this part we show that given an unweighted graph, by a slight modification of the min-

eccentricity algorithm in Theorem 6.2.8, we are able to improve the approximation factor of the

min-eccentricity problem to match that of the min-radius problem, namely we present a (3 + 𝛿)-

approximation algorithm for every 𝛿 > 0.

Theorem 6.2.9. For any constant 𝛿 with 1 > 𝛿 > 0, there is an 𝑂̃(𝑚
√
𝑛/𝛿2) time randomized

algorithm, that given a directed unweighted graph 𝐺 = (𝑉,𝐸), can output an estimate 𝜀′(𝑠) for

every vertex 𝑠 ∈ 𝑉 such that 𝜀(𝑠) ≤ 𝜀′(𝑠) ≤ (3 + 𝛿)𝜀(𝑠) with high probability, where 𝜀(𝑠) is the

min-eccentricity of the vertex 𝑠 in 𝐺.

Proof. There are only two parts of the algorithm in Theorem 6.2.8 that change:

(1) Letting 𝛿′ = 𝛿/5, in each run of the algorithm, for each vertex 𝑠, we certify that either

𝜀(𝑠) > 𝜌 or 𝜀(𝑠) ≤ (3 + 𝛿′)𝜌 (instead of 𝜀(𝑠) ≤ 5𝜌). The subsequent changes follow naturally:

We start from 𝜌 = 1 and we run the algorithm and increase 𝜌 by a factor of (1 + 𝛿′). We call the

vertices for which we have certified 𝜀(𝑠) ≤ (3 + 𝛿′)𝜌 for earlier values of 𝜌 as marked, and if for

an unmarked vertex 𝑠 the output of the algorithm is 𝜀(𝑠) ≤ (3+ 𝛿′)𝜌, then we let 𝜀′(𝑠) = (3+ 𝛿′)𝜌.

If for some value of 𝜌 and for some vertex 𝑠 we have 𝜀(𝑠) ≤ (3 + 𝛿′)𝜌 and 𝑠 was unmarked, then

from the previous run of the algorithm, we know that 𝜀(𝑠) > 𝜌/(1 + 𝛿′). So for 𝜀′(𝑠) = (3 + 𝛿′)𝜌,

we have 𝜀′(𝑠) ≥ 𝜀(𝑠) and 𝜀′(𝑠) ≤ (3 + 𝛿′)(1 + 𝛿′)𝜀(𝑠) = (3 + 𝛿)𝜀(𝑠).

(2) In step 3, part b of the algorithm (Additional Dijkstra), recall that each edge 𝑒 ∈ 𝐸 ′ is a

path of length at most 5𝜌 in 𝐺. Now instead of dividing each 𝑒 into at most 9 subpaths of length at

most 𝜌, we divide it into subpaths of length at most 𝛿′𝜌/2 ≥ 1 using at most 20/𝛿′ − 1 = 𝑂(1/𝛿′)

vertices which we call 𝑉𝑒. The rest of this step follows naturally: We run Dijkstra from and to each

𝑣 ∈ 𝑉𝑒, so we know that whether 𝜀(𝑣) > 𝜌 or 𝜀(𝑣) < (2 + 𝛿′/2)𝜌. For every consecutive pair of

227



vertices (𝑎, 𝑏) in 𝑉𝑒 over all 𝑒 with 𝜀(𝑎), 𝜀(𝑏) ≤ (2 + 𝛿′/2)𝜌 we certify for all 𝑠 ∈ 𝑆𝜌
𝑏 ∩ 𝑇 𝜌

𝑎 that

𝜀(𝑠) ≤ (3 + 𝛿′)𝜌. This is indeed true by Lemma 6.2.13 (in the statement of the lemma, let 𝑐 = 𝑠,

𝛾1 = 𝛿𝜌/2, 𝛾2 = (1 + 𝛿/2)𝜌 and 𝛾3 = (2 + 𝛿′/2)𝜌).

First note that by this change the number of vertices that we do Dijkstra from/to in step 3(b)

of the algorithm is now 𝑂(|𝑊 |/𝛿′) = 𝑂̃(
√
𝑛/𝛿′) = 𝑂̃(

√
𝑛/𝛿) (see runtime analysis of step 3(b)

in Theorem 6.2.7). The runtime of the other steps are not changed, so the overall runtime of the

algorithm is 𝑂̃(𝑚
√
𝑛/𝛿2).

The main issue in the min-eccentricity algorithm that didn’t allow us to get a (3 + 𝛿′) approxi-

mation is that we could have potentially big weighted edges, and that didn’t let us divide 5𝜌-length

paths into smaller parts. The analysis of this part is due to Lemma 6.2.14, which is modified as in

Lemma 6.2.17.

□

Lemma 6.2.17 (Modification of Lemma 6.2.14). If for a vertex 𝑠 ∈ 𝑉 , 𝜀(𝑠) ≤ 𝜌 and we haven’t

yet certified 𝜀(𝑠) ≤ (3 + 𝛿′)𝜌 then for each 𝑖 = 1, . . . , 𝑘, either 𝑠 ∈ 𝑆𝑊𝑖
or 𝑠 ∈ 𝑇𝑊𝑖

.

Proof. The proof is similar to that of Lemma 6.2.14, with a change at the end of the argument

because of our finer division of paths. Fix 𝑖 and suppose by way of contradiction that there are

nodes 𝑢, 𝑣 ∈ 𝑊𝑖 such that 𝑠 ∈ 𝑆𝑢 ∩ 𝑇𝑣 and 𝜀(𝑠) ≤ 𝜌. Similar to Lemma 6.2.14, we can assume

that there are two vertices 𝑢′, 𝑣′ that we have done Dijkstra from such that 𝑠 ∈ 𝑆𝑢′ ∩ 𝑇𝑣′ and

𝑑(𝑢′, 𝑣′) ≤ 𝜌𝛿′/2.

Now we claim that 𝜀(𝑣′) ≤ (2 + 𝛿′/2)𝜌. Note that 𝑑(𝑣′, 𝑠) ≤ 𝜌 and 𝑑(𝑠, 𝑣′) ≤ 𝑑(𝑠, 𝑢′) +

𝑑(𝑢′, 𝑣′) ≤ (1 + 𝛿′/2)𝜌. Consider an arbitrary vertex 𝑤 ∈ 𝑉 . Either 𝑑(𝑠, 𝑤) ≤ 𝜌 or 𝑑(𝑤, 𝑠) ≤ 𝜌.

If 𝑑(𝑠, 𝑤) ≤ 𝜌 then 𝑑(𝑣′, 𝑤) ≤ 𝑑(𝑣′, 𝑠) + 𝑑(𝑠, 𝑤) ≤ 2𝜌. If 𝑑(𝑤, 𝑠) ≤ 𝜌, then 𝑑(𝑤, 𝑣′) ≤ 𝑑(𝑤, 𝑠) +

𝑑(𝑠, 𝑣′) ≤ (2 + 𝛿′/2)𝜌. A symmetric argument holds for 𝑢′. In this case, the algorithm would have

already marked 𝑠 in step 3b as it is in the intersection of 𝑆𝜌
𝑢′ ∩ 𝑇 𝜌

𝑣′ . □

6.2.7 Omitted Proofs

Lemma 6.2.18. Given a weighted graph 𝐺 and a path 𝑃 in 𝐺 from 𝑣 to 𝑢 of length at most 𝑧𝑟 for

some integers 𝑧 and 𝑟, one can find in 𝑂(|𝑃 |) time vertices 𝑣1, . . . , 𝑣𝑧′ such that 𝑧′ ≤ 2𝑧 − 1 and
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they divide 𝑃 into subpaths of length at most 𝑟 if there are no edges of weight more than 𝑟 on the

path. Equivalently, |𝑃𝑣𝑖𝑣𝑖+1
| ≤ 𝑟, for 𝑖 = 0, . . . , 𝑧, where 𝑣0 = 𝑣, 𝑣𝑧′+1 = 𝑢 and 𝑃𝑣𝑖𝑣𝑖+1

is the part

of the path 𝑃 between 𝑣𝑖 and 𝑣𝑖+1.

Proof. Start from 𝑣0 = 𝑣 and go through the path until the last vertex 𝑤 such that 𝑑(𝑣, 𝑤) ≤ 𝑟 but

𝑑(𝑣, 𝑤′) > 𝑟 where 𝑤′ is the node right after 𝑤 on the path. Note that since there are no edges of

weight more than 𝑟, such 𝑤 exists. Let 𝑣1 = 𝑤. Starting from 𝑣1, we can do the same and find

all vertices 𝑣2, . . . , 𝑣𝑧′ . It is remained to prove that 𝑧′ < 2𝑧. By the definition of 𝑣1, we know

that 𝑑(𝑣0, 𝑣2) > 𝑟. Similarly, we can argue that 𝑑(𝑣𝑖, 𝑣𝑖+2) > 𝑟 for all 𝑖 = 0, . . . , 𝑧′ − 1. So

𝑑(𝑣0, 𝑣2𝑖) > 𝑖𝑟. Since |𝑃 | ≤ 𝑧𝑟, we have 𝑧′ ≤ 2𝑧 − 1. We went through the vertices of 𝑃 once, so

the running time is linear in terms of the length of the path. □

Lemma 6.2.19. There is an algorithm that given a strongly connected graph 𝐻 = (𝑉,𝐸), outputs

in 𝑂(|𝐸|) time a subset 𝐸 ′ ⊆ 𝐸 of size at most 2(|𝑉 | − 1) such that 𝐻 ′ = (𝑉,𝐸 ′) is strongly

connected.

Proof. For any vertex 𝑣 do a BFS to and from 𝑣 and denote by 𝐸 ′ the union of edges in the two

computed BFS trees. 𝐻 ′ = (𝑉,𝐸 ′) is strongly connected as for every ordered pair of vertices (𝑎, 𝑏)

we can go from 𝑎 to 𝑏 by following the path 𝑎 → 𝑣 → 𝑏. It is clear that since 𝐸 ′ is the union of

two trees, |𝐸 ′| ≤ 2(|𝑉 | − 1).

□

6.3 Min-distance problems in directed acyclic graphs

This section was written with Jenny Kaufmann, and we focus on min-distance problems in

Directed Acyclic Graphs (DAGs).

Graph parameters such as the diameter, radius, and vertex eccentricities are not defined in a

useful way in DAGs using the standard measure of distance, since for any two nodes, there is no

path between them in one of the two directions. So it is natural to consider the distance between

two nodes as the length of the shortest path in the direction in which this path exists, motivating
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the definition of the min-distance in DAGs. Recall that The min-distance between two nodes 𝑢 and

𝑣 is the minimum of the shortest path distances from 𝑢 to 𝑣 and from 𝑣 to 𝑢.

As with the standard distance problems, the Strong Exponential Time Hypothesis

[Impagliazzo-Paturi-Zane 2001, Calabro-Impagliazzo-Paturi 2009] leaves little hope for comput-

ing min-distance problems faster than computing All Pairs Shortest Paths, which can be solved in

𝑂̃(𝑚𝑛) time. So it is natural to resort to approximation algorithms in 𝑂̃(𝑚𝑛1−𝜖) time for some

positive 𝜖. Abboud, Vassilevska W., and Wang [SODA 2016] first studied min-distance problems

achieving constant factor approximation algorithms on DAGs, and Dalirrooyfard et al [ICALP

2019] gave the first constant factor approximation algorithms on general graphs for min-diameter,

min-radius and min-eccentricities (see section 6.2). Abboud et al obtained a 3-approximation

algorithm for min-radius on DAGs which works in 𝑂̃(𝑚
√
𝑛) time, and showed that any (2 − 𝛿)-

approximation requires 𝑛2−𝑜(1) time for any 𝛿 > 0, under the Hitting Set Conjecture. We close

the gap, obtaining a 2-approximation algorithm which runs in 𝑂̃(𝑚
√
𝑛) time. As the lower bound

of Abboud et al only works for sparse DAGs, we further show that our algorithm is conditionally

tight for dense DAGs using a reduction from Boolean matrix multiplication. Moreover, Abboud

et al obtained a linear time 2-approximation algorithm for min-diameter along with a lower bound

stating that any (3/2 − 𝛿)-approximation algorithm for sparse DAGs requires 𝑛2−𝑜(1) time un-

der SETH. We close this gap for dense DAGs by obtaining a 3/2-approximation algorithm which

works in 𝑂(𝑛2.350) time and showing that the approximation factor is unlikely to be improved

within 𝑂(𝑛𝜔−𝑜(1)) time under the high dimensional Orthogonal Vectors Conjecture, where 𝜔 is the

matrix multiplication exponent.

6.3.1 Introduction

Min-distance is a particularly natural notion of distance in directed acyclic graphs (DAGs),

where the standard notion of distance is infinite in at least one direction for any given pair of

vertices in a DAG. For example, in a topologically ordered DAG where the edges are directed from

left to right, the min-diameter is simply the largest distance 𝑑(𝑢, 𝑣) where 𝑢 is to the left of 𝑣.

More formally, for a vertex 𝑣 ∈ 𝑉 , the min-eccentricity 𝜖(𝑣) is max𝑤∈𝑉 𝑑min(𝑣, 𝑤), or in other
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words, the largest min-distance between 𝑣 and any other vertex. The min-diameter of a graph is

max𝑣∈𝑉 𝜖(𝑣). Note that the min-diameter is the only meaningful notion of diameter for DAGs: all

other notions are infinite. The min-radius of a graph is min𝑣∈𝑉 𝜖(𝑣). A center is a vertex whose

min-eccentricity is equal to the min-radius of the graph.

All-Pairs Shortest Paths (APSP) is the problem of computing the distance between 𝑢 and 𝑣 for

every pair of vertices 𝑢, 𝑣 ∈ 𝑉 . In a graph 𝐺 with 𝑚 edges, 𝑛 vertices, and nonnegative edge

weights polynomial in 𝑛, APSP can easily be computed in 𝑂̃(𝑚𝑛) time5, by running Dijkstra’s

algorithm from every vertex6. Computing eccentricities, diameter, or radius with any of the notions

of distance is no harder than computing APSP.

For the standard notion of distance, under the Strong Exponential Time Hypothesis (SETH)

[IP01a, CIP09], there is no truly subquadratic time algorithm for diameter (and thus nor for eccen-

tricities) in unweighted graphs: that is, no such algorithm runs in time 𝑂(𝑚2−𝜖) for 𝜖 > 0 [RV13].

This lower bound also holds for the other notions of diameter (and eccentricities) [DWV+19]. For

radius, the same lower bound holds but under the Hitting Set Conjecture [AVW16].

Since quadratic time is expensive on large graphs, we resort to approximation algorithms.

Many constant factor approximation algorithms were known for all notions of diameter, eccen-

tricities and radius, except for the min-distance notion until recently. For example, for the standard

diameter and roundtrip diameter there is a folklore linear time 2-approximation algorithm, and for

max-diameter and standard diameter, a conditionally tight 3/2-approximation algorithm is known

in 𝑂̃(𝑚
√
𝑛) time [RV13].

Only recently Dalirrooyfard et al [DWV+19] showed constant factor approximation algorithms

for min-distance problems in general graphs that run in 𝑂(𝑚𝑛1−𝜖) time for some fixed 𝜖 > 0.

More specifically, they obtained a 3-approximation algorithm for min-diameter in 𝑂̃(𝑚
√
𝑛) time,

a (3+𝛿)-approximation algorithm for min-radius in 𝑂̃(𝑚
√
𝑛/𝛿) time, and a (3+𝛿)-approximation

algorithm for min-eccentricities in 𝑂̃(𝑚
√
𝑛/𝛿2) time, for any 𝛿 > 0.

The reason it is hard to obtain approximation algorithms for min-diameter, min-radius, and

min-eccentricities is that min-distance does not obey the triangle inequality. Hence the typical

5The tilde hides polylogarithmic factors.
6Faster algorithms are known by Pettie [Pet02] and Pettie and Ramachandran [PR02] for sparse graphs.
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Problem Upper bound Lower bound Reference

min-diameter 2 in 𝑂(𝑚) (3
2
− 𝛿) needs 𝑚2−𝑜(1) [AVW16]

3
2

in 𝑂(𝑛2.350) (dense, unweighted) (3
2
− 𝛿) needs 𝑛𝜔−𝑜(1) (*) this work

min-radius 3 in 𝑂̃(𝑚
√
𝑛) (2− 𝛿) needs 𝑚2−𝑜(1) [AVW16]

2 in 𝑂̃(min(𝑚
√
𝑛,𝑚2/3𝑛)) (2− 𝛿) needs 𝑛𝜔−𝑜(1) (*) this work

𝑘 in 𝑂̃(min(𝑚𝑛1/𝑘,𝑚
2𝑘−1

2𝑘−1𝑛)) this work

min-eccentri. 3 + 𝛿 in 𝑂̃(𝑚
√
𝑛/𝛿2) [DWV+19]

𝑘 + 𝛿 in 𝑂̃(min(𝑚𝑛1/𝑘/𝛿,𝑚
2𝑘−1

2𝑘−1𝑛/𝛿)) this work

Table 6.5: Results on min-distance problems on DAGs. The (*) marks lower bounds that are for
dense DAGs. Our (2−𝛿) lower bound for min-radius is based on Triangle Detection and our (3

2
−𝛿)

lower bound for min-diameter is based on high dimensional OV. Our 𝑘 and (𝑘+ 𝛿)-approximation
algorithms are for any integer 𝑘 ≥ 2. Conditionally tight bounds are in bold.

approaches to find algorithms that work for other notions of distance do not work for min-distance,

as they crucially rely on the triangle inequality.

On the bright side, since DAGs have more structure, it is easier to find algorithms for

them. The best known subquadratic time algorithm for min-diameter in DAGs is a linear time

2-approximation algorithm, and the best subquadratic time algorithm for min-radius is a 3-

approximation algorithm in 𝑂̃(𝑚
√
𝑛) time [AVW16]. However, neither of these algorithms were

proven to be conditionally tight.

Previously, the only known conditional lower bounds for these problems were due to Abboud,

Vassilevska W., and Wang [AVW16]. They showed that under the Orthogonal Vectors Conjecture

from fine-grained complexity (and consequently under SETH [Wil05]), there is no (3/2 − 𝛿)-

approximation algorithm for any 𝛿 > 0 for min-diameter which runs in truly subquadratic time

on sparse DAGs. Moreover, under the Hitting Set Conjecture, there is no (2 − 𝛿)-approximation

algorithm for any 𝛿 > 0 for min-radius which runs in truly subquadratic time on sparse DAGs.

Our results

We obtain fast algorithms for min-diameter, min-eccentricities and min-radius with improved

approximation factors. Our results can be seen in Table 6.5.
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Min-Eccentricities and Min-Radius

We obtain the first known subquadratic time (2 + 𝛿)-approximation algorithm for min-

eccentricities in DAGs for any 𝛿 > 0, and the first known subquadratic time 2-approximation

algorithm for min-radius in DAGs. These algorithms run in time 𝑂̃(min(𝑚
√
𝑛/𝛿,𝑚2/3𝑛)/𝛿) and

𝑂̃(min(𝑚
√
𝑛,𝑚2/3𝑛)) respectively. Note that our algorithms in this section are combinatorial:

they do not exploit fast matrix multiplication and are potentially practical. Our results are condi-

tionally optimal in both sparse and dense graphs: For sparse graphs, if the Hitting Set Conjecture

is true, then our min-radius result is tight and our min-eccentricity result is essentially tight, in the

sense that no approximation factor smaller than 2 can be achieved in subquadratic time for either

of these problems [AVW16]. For dense graphs, our 2-approximation algorithm works in 𝑂̃(𝑛7/3)

time, and we show that there is no (2 − 𝛿)-approximation algorithm for min-radius (and hence

min-eccentricities) in 𝑂(𝑛𝜔−𝜖) for 𝜖 > 0, if the best algorithm for Triangle Detection runs in time

Ω(𝑛𝜔−𝑜(1)). Here 𝜔 < 2.37286 [AV21] is the exponent of matrix multiplication.

More generally, we obtain a series of algorithms trading off runtime and accuracy.

Theorem 6.3.1. For integer 𝑘 ≥ 2 and every 𝛿 > 0, there is a (𝑘 + 𝛿)-approximation algorithm

for min-eccentricities in DAGs which runs in 𝑂̃(min(𝑚𝑛1/𝑘/𝛿,𝑚2𝑘−1/(2𝑘−1)𝑛/𝛿)) time.

For every integer 𝑘 ≥ 2, there is a 𝑘-approximation algorithm for min-radius in DAGs which

runs in 𝑂̃(min(𝑚𝑛1/𝑘,𝑚2𝑘−1/(2𝑘−1)𝑛)) time.

As mentioned earlier, the case 𝑘 = 2 gives a 2-approximation algorithm for min-radius running

in time 𝑂̃(min(𝑚
√
𝑛,𝑚2/3𝑛)). For 𝑚 = 𝑂̃(𝑛1.5), this matches the runtime and improves the

approximation factor of the previous best known algorithm for this problem (from [AVW16]). For

𝑚 = 𝜔(𝑛1.5+𝑜(1)), it improves both the approximation factor and the runtime.

Our min-eccentricity (2 + 𝛿)-approximation algorithm borrows a key idea from the 3-

approximation algorithm of [AVW16] and combines it with a new binary search technique. The

idea is to partition the DAG into intervals and do local APSP searches to find local paths, then

combine these local paths with “outer” paths to guarantee a low enough min-distance to any vertex

in the graph. In [AVW16], these outer paths were found by using a clever choice of intervals; our

algorithm instead applies binary search to find sets which can be used as jumping-off points for the
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outer paths, allowing us to shorten the lengths of these paths and also allowing us to approximate

all min-eccentricities, not only min-radius. Our (𝑘 + 𝛿)-approximation algorithm is achieved by

recursively running our approximation algorithm on the intervals instead of running local APSP,

which allows us to improve the runtime.

For sparse graphs, Abboud, Vassilevska W., and Wang [AVW16] already showed that a (2−𝛿)-

approximation for min-radius needs Ω(𝑚2−𝑜(1)) time under the Hitting Set Conjecture, so our

2-approximation algorithm is conditionally tight for sparse graphs. We show that the approxima-

tion factor of our algorithm is conditionally tight for the dense case as well by reducing Triangle

Detection to (2− 𝛿)-approximation of min-radius for any 𝛿 > 0. The best running time for Trian-

gle Detection in 𝑛-node graphs is conjectured to be Ω(𝑛𝜔−𝑜(1)) by many papers (see for example

[ABW15, BW17]), where 𝜔 < 2.37286 [AV21] is the exponent of fast matrix multiplication. Note

that, since 𝑚 = 𝑂(𝑛2), our algorithm runs in 𝑂̃(𝑛7/3) time, which is faster than 𝑂(𝑛𝜔) for the

current best bound on 𝜔. Since the algorithm of Theorem 6.3.1 is combinatorial, if we restrict

to combinatorial algorithms then there is no truly subcubic (meaning 𝑂(𝑛3−𝜖) for 𝜖 > 0) time

(2− 𝛿)-approximation algorithm for min-radius provided that there is no truly subcubic time com-

binatorial algorithm for Boolean matrix multiplication (BMM). This is because BMM and Triangle

Detection are subcubic equivalent [VW10]. Note that our reduction graph in Theorem 6.3.2 is an

unweighted DAG.

Theorem 6.3.2. If there is a 𝑇 (𝑛,𝑚)-time algorithm for (2 − 𝛿)-approximation of min-radius in

𝑂(𝑛)-node 𝑂̃(𝑚)-edge DAGs for some 𝛿 > 0, then there is an 𝑂̃(𝑇 (𝑛,𝑚) + 𝑚)-time algorithm

for Triangle Detection on graphs with 𝑛 nodes and 𝑚 edges.

Corollary 6.3.1. Assuming the best algorithm for Triangle Detection runs in time Ω(𝑛𝜔−𝑜(1)), there

is no algorithm for (2 − 𝛿)-approximation of min-radius in 𝑛-node dense DAGs that runs in time

𝑂(𝑛𝜔−𝜖) for any 𝛿, 𝜖 > 0.

Moreover, there is no 𝑂(𝑛3−𝜖)-time combinatorial algorithm for (2−𝛿)-approximation of min-

radius in 𝑛-node dense DAGs with 𝜖, 𝛿 > 0 if there is no 𝑂(𝑛3−𝜖′)-time combinatorial algorithm

for BMM with 𝜖′ > 0.
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Improving the running time using Fast Matrix Multiplication In DAGs with small integer

edge weights, we further improve the running times for all 𝑘 in Theorem 6.3.1 by applying a result

of Zwick in [Zwi02] on the runtime of APSP in such graphs. We describe our result in more detail

in Section 2. In particular, in DAGs with constant integer edge weights, including unweighted

DAGs, our result in the case 𝑘 = 2 is as follows:

Theorem 6.3.3. For every 𝛿 > 0, there is an 𝑂̃(min(𝑚
√
𝑛/𝛿,𝑚0.605𝑛/𝛿))-time (2 + 𝛿)-

approximation algorithm for min-eccentricities in DAGs with constant integer edge weights.

There is an 𝑂̃(min(𝑚
√
𝑛,𝑚0.605𝑛))-time 2-approximation algorithm for min-radius in DAGs

with constant integer edge weights.

Min-Diameter

We obtain a 3/2-approximation algorithm for min-diameter in unweighted DAGs, where the

approximation factor is conditionally optimal in dense graphs. Specifically, our algorithm im-

proves on the standard APSP runtime for any graph with 𝑚 = 𝜔(𝑛1+𝑜(1)) edges. This is the first

known 3/2-approximation algorithm for min-diameter in dense DAGs that runs faster than the

best constant factor approximation algorithm for APSP, which runs in 𝑂̃(𝑛𝜔) time in unweighted

directed graphs [Zwi02].

Theorem 6.3.4. There is an 𝑂(𝑚0.414𝑛1.522+𝑛2+𝑜(1))-time 3/2-approximation algorithm for min-

diameter in unweighted DAGs.

This algorithm relies on the sparse matrix multiplication algorithm of Yuster and Zwick

[YZ05]. In dense graphs with 𝑚 = 𝑂(𝑛2), its runtime is 𝑂(𝑛2.350). In relatively sparse graphs,

with 𝑚 = 𝑂(𝑛1.154+𝑜(1)), the second term dominates, so the runtime is 𝑂(𝑛2+𝑜(1)).

Our techniques, which mix known diameter techniques with sparse matrix multiplication, are

informally as follows: We first construct a covering set, which will intersect any sufficiently large

set. We run BFS from all vertices in the covering set, and check whether any min-distances found

were large. If not, then for each vertex 𝑢, we will define a set of vertices that are relatively “close”

to 𝑢 on its right; if this set is large it will intersect the covering set, allowing us to find paths from

𝑢 to some vertices to its right, using a “close” vertex in the covering set as a jumping-off point.
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The remaining vertices 𝑤, for which this method did not construct a 𝑢 → 𝑤 path, must have the

property that any 𝑢→ 𝑤 path must intersect a relatively small subset of the set of vertices “close”

to 𝑢 (note that this set may have been small to begin with, in which case we can skip the previous

step). Symmetrically, for each vertex 𝑤 we can construct the corresponding relatively small subset

of vertices “close” to 𝑤 on its left, and then to bound the min-distance between 𝑢 and 𝑤 we check

whether these two small subsets share a vertex in common. We use sparse matrix multiplication to

detect this set intersection.

The conditional lower bound of [AVW16] says that if the Orthogonal Vectors Conjecture is true

then min-diameter cannot be (3/2− 𝛿)-approximated in truly subquadratic time in sparse graphs.

There is no known 3/2-approximation algorithm for min-diameter on DAGs that works faster than

APSP, neither for dense graphs nor for sparse graphs. So the question is: Is 3/2 the right bound for

inapproximability of min-diameter in DAGs? We answer this question in the affirmative for dense

DAGs. Theorem 6.3.4 gives the first 3/2-approximation algorithm that works faster than APSP,

and it is optimal conditioned on high dimensional OV using the same reduction as [AVW16]. High

dimensional OV can be used for obtaining lower bounds for dense graphs. In high dimensional

OV, the dimension of the vectors can be as big as 𝑂(𝑛), and using a simple reduction to Boolean

matrix multiplication, the best known algorithm for it is in time 𝑂(𝑛𝜔).

High dimensional OV gives a conditional lower bound of Ω(𝑛𝜔−𝑜(1)) time for (3/2 − 𝛿)-

approximation of min-diameter for any 𝛿 > 0. Our algorithm gives an upper bound of 𝑂(𝑛2.350) for

𝑚 = Θ(𝑛2), which is faster than 𝑂(𝑛𝜔) for the current best bound on 𝜔. We note while we provide

tight results for dense DAGs, the gap between the lower bound and upper bound for computing

min-diameter on sparse DAGs is still open.

Preliminaries

All graphs in this section are directed graphs. Given a graph 𝐺, 𝑛 denotes the number of

vertices and 𝑚 denotes the number of edges. We will assume 𝑚 ≥ 𝑛 − 1 since otherwise all

min-eccentricities are infinite, a case that is easily checked. All edge weights are assumed to be

nonnegative and polynomial in 𝑛; if 𝑤𝑚𝑎𝑥 is the maximum edge weight and 𝑤𝑚𝑖𝑛 is the minimum

edge weight, we let 𝑀 = max{𝑤𝑚𝑎𝑥, 1/𝑤𝑚𝑖𝑛}. We write 𝐺[𝑆] to denote the subgraph of 𝐺
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induced by vertex set 𝑆. For a vertex 𝑣, we write 𝑁 in
𝐷(𝑣) (respectively, 𝑁 out

𝐷 (𝑣)) to denote the set

of vertices 𝑢 such that 𝑑(𝑢, 𝑣) ≤ 𝐷 (respectively, 𝑑(𝑣, 𝑢) ≤ 𝐷).

For 𝑣 ∈ 𝑉 and 𝑊 ⊆ 𝑉 , we define 𝑑min(𝑊, 𝑣) = 𝑑min(𝑣,𝑊 ) as min𝑤∈𝑊 𝑑min(𝑣, 𝑤), and we

define the min-eccentricity of 𝑊 as 𝜖(𝑊 ) = max𝑣∈𝑉 𝑑min(𝑊, 𝑣).

Given two sets 𝑈,𝑊 ⊆ 𝑉 , if every 𝑢 ∈ 𝑈 appears prior to (respectively, after) every 𝑤 ∈ 𝑊

in a topological ordering of the vertices of 𝐺, we say that 𝑈 is the left (respectively, right) of 𝑊

with respect to the topological ordering. When 𝑈 or 𝑊 consists of a single vertex {𝑥}, we omit

the brackets. If 𝑊 ⊆ 𝑈 ⊆ 𝑉 , we denote the subset of vertices in 𝑈 that lie to the left (right) of

𝑊 by 𝐿𝑈(𝑊 ) (respectively, 𝑅𝑈(𝑊 )). If 𝑈 = 𝑉 , we omit the subscript. A vertex set 𝑊 is called

topologically consecutive with respect to a topological ordering if its vertices are consecutive; i.e.,

if 𝑊 = 𝑉 ∖ (𝐿(𝑊 ) ∪ 𝑅(𝑊 )). In general, the relevant topological ordering will be clear, and we

will omit reference to it.

Let 𝜔(1, 𝑟, 1) be the exponent of the runtime of multiplying 𝑛 × 𝑛𝑟 by 𝑛𝑟 × 𝑛 matrices. Let

𝜔 = 𝜔(1, 1, 1) be the square matrix multiplication exponent. [AV21] showed that 𝜔 < 2.37286.

For specifying lower bounds, we use the following problems with their corresponding running

time conjectures.

Orthogonal Vectors (OV) Given two lists 𝐴,𝐵 of 𝑛 𝑑-dimensional Boolean vectors, determine

whether there are vectors 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 such that 𝑎 and 𝑏 are orthogonal; i.e. there is no 𝑖 ∈ [𝑑]

such that the 𝑖th bits of both 𝑎 and 𝑏 are 1. When 𝑑 = Ω(log 𝑛), the OV Conjecture [Wil05] says

that there is no algorithm that can solve the OV problem in time 𝑂(𝑛2−𝜖) for any fixed 𝜖 > 0. The

OV Conjecture is implied by the Strong Exponential Time Hypothesis (SETH) [Wil05].

High Dimensional Orthogonal Vectors In high dimensional OV, the dimension 𝑑 can be as high

as 𝑂(𝑛). There is a simple reduction from high dimensional OV to matrix multiplication: Given

two lists 𝐴 = {𝑎1, . . . , 𝑎𝑛}, 𝐵 = {𝑏1, . . . , 𝑏𝑛} of 𝑑-dimensional Boolean vectors, let 𝑀 and 𝑁 be

two 𝑛×𝑑 and 𝑑×𝑛 Boolean matrices, where 𝑀 [𝑖, 𝑗] = 1 if 𝑎𝑖 is 1 in bit 𝑗, and 𝑁 [𝑗, 𝑘] = 1 if 𝑏𝑘 is 1

in bit 𝑗, for 𝑗 = 1, . . . , 𝑑 and 𝑖, 𝑘 = 1, . . . , 𝑛. If 𝑀𝑁 has a zero entry, the vector pair corresponding

to that entry are orthogonal. This gives a 𝑂(𝑛𝜔) algorithm for high dimensional OV, and there are

no faster algorithms known for it up to polylogarithmic factors. Moreover, OV is equivalent to the

237



problem of distinguishing diameter 2 vs 3 [RV13], and so high dimensional OV is equivalent to

distinguishing diameter 2 vs 3 in dense graphs. A well-known open problem is whether diameter

2 vs 3 can be solved faster than matrix multiplication (see for example [ACIM99]). Hence, it is

conjectured that high dimensional OV cannot be solved in 𝑂(𝑛𝜔−𝜖) time for any 𝜖 > 0.

Hitting Set (HS) Given two lists 𝐴,𝐵 ∈ {0, 1}𝑑, determine whether there is a vector 𝑎 ∈ 𝐴 that

is not orthogonal to any vector 𝑏 ∈ 𝐵. When 𝑑 = Ω(log 𝑛), the Hitting Set Conjecture [AVW16]

says that there is no algorithm that can solve the Hitting Set problem in time 𝑂(𝑛2−𝛿) for any fixed

𝛿 > 0.

Boolean Matrix Multiplication (BMM) We abbreviate multiplying two Boolean 𝑛×𝑛 matrices

over the (AND, OR)-semiring by BMM. It is conjectured that there is no combinatorial algorithm

solving BMM in 𝑂(𝑛3−𝜖) time for any fixed 𝜖 > 0, and the best algebraic algorithm for it is in

𝑂(𝑛𝜔+𝑜(1)) time for 𝜔 < 2.37286 [AV21].

Triangle Detection [VW10] Given a tripartite graph 𝐺(𝐴,𝐵,𝐶,𝐸) where 𝐴, 𝐵 and 𝐶 are the

three parts of the vertex set and 𝐸 is the edge set, determine if there are 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, and 𝑐 ∈ 𝐶

such that 𝑎𝑏𝑐 is a triangle. Vassilevska W. and Williams [VW10] showed that considering only

combinatorial algorithms, Triangle Detection and BMM are subcubic equivalent, meaning that a

truly subcubic combinatorial algorithm in one results in a truly subcubic combinatorial algorithm

in the other. Moreover, the best (algebraic) algorithm for Triangle Detection is through BMM.

Thus the best running time for Triangle Detection is 𝑂(𝑛𝜔), and it is conjectured (see for example

[ABW15, BW17]) that there is no algorithm faster than 𝑂(𝑛𝜔) for detecting a triangle.

6.3.2 Min-Eccentricities and Min-Radius

We present two different versions of our min-eccentricity and min-radius approximation algo-

rithms, one which works in general weighted DAGs and is combinatorial and one with a lower

runtime upper bound which only works in DAGs with small integer edge weights. The algorithms

are identical except in how they compute APSP; the former computes APSP in the standard com-

binatorial way, while the latter uses Zwick’s fast APSP algorithm for graphs with small integer

edge weights. Here, 𝜇(𝑡) is the value satisfying 𝜔(1, 𝜇(𝑡), 1) = 1 + 2𝜇(𝑡)− 𝑡.
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Theorem 6.3.5 ([Zwi02]). APSP can be computed in 𝑂(𝑛2+𝜇(𝑡)) time in directed graphs with

integer edge weights bounded by 𝑛𝑡, where 𝑡 < 3− 𝜔.

Both versions of our algorithms use a common technique to compute min-distances to and from

a vertex set. Given a graph 𝐺 and a vertex set 𝑊 ⊆ 𝑉 , we construct a graph 𝐺′ by adding a vertex

𝑦 and adding weight-0 edges (𝑤, 𝑦) for all 𝑤 ∈ 𝑊 . We then run Dijkstra into 𝑦 in 𝐺′. We refer

to this procedure as running Dijkstra into 𝑊 . The symmetric procedure, in which the weight-0

edges point out of an added vertex 𝑦′ and we run Dijkstra out of 𝑦′, will be referred to as running

Dijkstra out of 𝑊 . Then for 𝑥 ∈ 𝑉 , 𝑑min(𝑥,𝑊 ) = min(𝑑(𝑥, 𝑦), 𝑑(𝑦′, 𝑥)), a value which we can

now compute. We added |𝑊 | edges and ran Dijkstra in 𝐺′, so in total the procedure takes time

𝑂(|𝑊 |+𝑚 log 𝑛) = 𝑂(𝑚 log 𝑛).

Our min-eccentricity and min-radius approximation algorithms will be based on the following

proposition. Let 𝑐𝑘(𝜏) =
2𝑘−2(1+𝜏)

2𝑘−1(1+𝜏)−𝜏 .

Proposition 17. For any 𝑘 ≥ 2, there is an 𝑂(min(𝑚𝑛1/𝑘 log2 𝑛,𝑚2𝑘−1/(2𝑘−1)𝑛 log2 𝑛))-time al-

gorithm which takes as input a DAG 𝐺 and a parameter 𝑟, and certifies for each vertex 𝑣 that

𝜖(𝑣) > 𝑟 or that 𝜖(𝑣) ≤ 𝑘𝑟.

In DAGs with integer edge weights bounded by 𝑛𝑡, where 𝑡 < 3 − 𝜔, there is a version of this

algorithm which runs in 𝑂(min(𝑚𝑛1/𝑘 log2 𝑛,𝑚𝑐𝑘(𝜇(𝑡))𝑛 log2 𝑛))-time.

In [GU17], Le Gall and Urrutia showed that 𝜇 = 𝜇(0) < 0.529. Thus in DAGs with con-

stant integer edge weights (so that 𝑡 = 0), the runtime of the algorithm of Proposition 17 is

𝑂̃(min(𝑚𝑛1/𝑘,𝑚𝑐𝑘(0.529)𝑛)) time. When 𝑘 = 2, 𝑐𝑘(0.529) < 0.605, leading to the special case

stated in Theorem 6.3.3.

The algorithms of Proposition 17 will be described and proven correct in subsection 2.1, and

their runtimes will be analyzed in Lemma 6.3.1 in subsection 6.3.2. Then by binary searching over

𝑟 ∈ [0,𝑀𝑛], these algorithms can be used to obtain the min-eccentricity approximation algorithms

of Theorems 6.3.6 and 6.3.7 and the min-radius approximation algorithms of Theorems 6.3.8 and

6.3.9.

Theorem 6.3.6. Let 𝑘 ≥ 2 be an integer. For any 𝛿 > 0, there is an 𝑂̃(min(𝑚𝑛1/𝑘/𝛿,
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𝑚2𝑘−1/(2𝑘−1)𝑛/𝛿))-time algorithm which, given a DAG 𝐺, outputs for every vertex 𝑣 ∈ 𝑉 an

estimate 𝜖′(𝑣) such that 𝜖(𝑣) ≤ 𝜖′(𝑣) < (𝑘 + 𝛿)𝜖(𝑣).

Theorem 6.3.7. Let 𝑘 ≥ 2 be an integer. For any 𝛿 > 0, there is an 𝑂̃(min(𝑚𝑛1/𝑘/𝛿,

𝑚𝑐𝑘(𝜇(𝑡))𝑛/𝛿)) time algorithm which, given a DAG 𝐺 with integer edge weights bounded by 𝑛𝑡 for

𝑡 < 3− 𝜔, outputs for every vertex 𝑣 ∈ 𝑉 an estimate 𝜖′(𝑣) such that 𝜖(𝑣) ≤ 𝜖′(𝑣) < (𝑘 + 𝛿)𝜖(𝑣).

Proof. First we have all the vertices as “unmarked.” We do binary search in [0,𝑀𝑛] by starting

with 𝑟 = 1 in Proposition 17 and incrementing 𝑟′ = (1 + 𝛿/𝑘)𝑟 at each step. At each step, we

run the algorithm given in Proposition 17, and for each unmarked 𝑣 that is reported as having

𝜖(𝑣) ≤ 𝑘𝑟, we set 𝜖′(𝑣) = 𝑘𝑟 and mark 𝑣. At the end we set 𝜖′(𝑣) = ∞ for any remaining

unmarked vertices.

Suppose a vertex 𝑣 was marked at the step corresponding to 𝑟. Then 𝑟/(1+ 𝛿/𝑘) < 𝜖(𝑣) ≤ 𝑘𝑟,

so 𝜖(𝑣) ≤ 𝜖′(𝑣) = 𝑘𝑟 < (𝑘+𝛿)𝜖(𝑣). The binary search adds an 𝑂(log1+𝛿/𝑘 𝑀𝑛) = 𝑂((log𝑀𝑛)/𝛿)

factor to the runtime. Since log𝑀𝑛 is polylogarithmic in 𝑛, this gives the time bounds stated. □

Theorem 6.3.8. Let 𝑘 ≥ 2 be an integer. There is an 𝑂̃(min(𝑚𝑛1/𝑘, 𝑚2𝑘−1/(2𝑘−1)𝑛))-time algo-

rithm which, given a DAG 𝐺, outputs an approximation 𝑅′ such that if 𝑅 is the min-radius of 𝐺,

𝑅 ≤ 𝑅′ < 𝑘𝑅.

Theorem 6.3.9. Let 𝑘 ≥ 2 be an integer. There is an 𝑂̃(min(𝑚𝑛1/𝑘, 𝑚𝑐𝑘(𝜇(𝑡))𝑛))-time algorithm

which, given a DAG 𝐺 with integer edge weights bounded by 𝑛𝑡 for 𝑡 < 3− 𝜔, outputs an approx-

imation 𝑅′ such that if 𝑅 is the min-radius of 𝐺, 𝑅 ≤ 𝑅′ < 𝑘𝑅.

Proof. We do binary search in [0,𝑀𝑛], running the algorithm given by Proposition 17 at each step

as follows: We keep two numbers 𝐴𝑖 and 𝐵𝑖 at step 𝑖 which are the lower bound and upper bound

to the min-radius 𝑅. At step 1 we have 𝐴1 = 0 and 𝐵1 = 𝑀𝑛. At step 𝑖, we have 𝐴𝑖, 𝐵𝑖 such that

𝐴𝑖 < 𝑅 ≤ 𝐵𝑖. Let 𝐶𝑖 = 𝐵𝑖 − 𝑘𝐴𝑖. If 𝐶𝑖 is smaller than the minimum positive edge weight, then

any path of length at most 𝐵𝑖 must have length at most 𝑘𝐴𝑖, so in this case we terminate the binary

search and let 𝑅′ = 𝑘𝐴𝑖. We now have 𝑅 ≤ 𝑅′ < 𝑘𝑅 as desired.

If 𝐶𝑖 is not smaller than the minimum positive edge weight, let 𝑟 = 𝐴𝑖 +
𝐶𝑖

𝑘+1
, and run the

algorithm given by Proposition 17. If the algorithm reports that there is a vertex 𝑣 with 𝜖(𝑣) < 𝑘𝑟,
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then let 𝐴𝑖+1 = 𝐴𝑖 and 𝐵𝑖+1 = 𝑘𝑟 = 𝑘𝐴𝑖+
𝑘

𝑘+1
𝐶𝑖, as we have the min-radius is between 𝐴𝑖+1 and

𝐵𝑖+1. Note that in this case 𝐶𝑖+1 = 𝐵𝑖+1 − 𝑘𝐴𝑖+1 = 𝑘
𝑘+1

𝐶𝑖. Otherwise, if the algorithm reports

that every vertex has 𝜖(𝑣) ≥ 𝑟, then the min-radius is at least 𝐴𝑖+1 := 𝑟 = 𝐴𝑖 +
𝐶𝑖

𝑘+1
and is less

than 𝐵𝑖+1 := 𝐵𝑖. In this case 𝐶𝑖+1 = 𝐵𝑖 − 𝑘(𝐴𝑖 +
𝐶𝑖

𝑘+1
) = 𝑘

𝑘+1
𝐶𝑖. Thus, at each step, the size of

𝐶𝑖 shrinks by a factor of 𝑘
𝑘+1

. Hence, for constant 𝑘, the algorithm will in 𝑂(log𝑀𝑛) steps find

bounds 𝐴𝑖, 𝐵𝑖 such that 𝐶𝑖 is smaller than the minimum positive edge weight.

□

Algorithm Description and Correctness

We now describe and prove the correctness of the algorithm of Proposition 17 by induction on

𝑘. For convenience, we use 𝑘 = 1 as a base case; in this case we simply run an APSP computation.

Our algorithm for 𝑘 > 1 is as follows.

First, topologically sort the vertices and partition them into 𝑝 consecutive sets 𝑊1, . . .𝑊𝑝 of

size |𝑊𝑖| = 𝑛/𝑝. The runtime-minimizing value of 𝑝 will be chosen later.

For each 𝑖, run Dijkstra to and from 𝑊𝑖. If 𝜖(𝑊𝑖) > 𝑟, then we can report 𝜖(𝑤) > 𝑟 for all

𝑤 ∈ 𝑊𝑖. Otherwise, 𝜖(𝑊𝑖) ≤ 𝑟. In this case, we will apply Claim 12, below, twice. Recall that

for 𝑆 ⊆ 𝑊 ⊆ 𝑉 , 𝐿𝑊 (𝑆) is the set of vertices in 𝑊 that are to the left of all vertices in 𝑆 in the

topological ordering.

Claim 12. Let 𝑊 ⊆ 𝑉 be a topologically consecutive subset of a topologically ordered DAG 𝐺,

and let 𝑟 be a parameter such that 𝜖(𝑊 ) ≤ 𝑟. In 𝑂(𝑚 log2 𝑛) time, one can find a nonempty

topologically consecutive subset 𝑆 ⊆ 𝑊 such that:

(a) 𝜖(𝑆) ≤ 𝑟.

(b) If 𝑤 ∈ 𝐿𝑊 (𝑆), 𝜖(𝑤) > 𝑟.

(c) If |𝑆| > 1, all vertices 𝑠 ∈ 𝑆 satisfy 𝜖(𝑠) > 𝑟.

Proof. We will use a binary search argument to find 𝑆. We will induct on an index 𝑗. Let 𝑆0 = 𝑊 .

Assume that 𝑆𝑗 ⊆ 𝑊 is topologically consecutive, that 𝜖(𝑆𝑗) ≤ 𝑟, and that for every 𝑤 ∈ 𝐿𝑊 (𝑆𝑗),
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𝜖(𝑤) > 𝑟. These all hold for 𝑗 = 0. If 𝑆𝑗 = {𝑠} consists of a single vertex, let 𝑆 = 𝑆𝑗; then we

are done.

Otherwise, let 𝑆𝑗
𝐿 be the subset of 𝑆𝑗 containing its first |𝑆𝑗|/2 vertices in the topological

ordering and let 𝑆𝑗
𝑅 = 𝑆𝑗 ∖ 𝑆𝑗

𝐿. So 𝑆𝑗
𝐿 and 𝑆𝑗

𝑅 are the left and right halves of 𝑆𝑗 , respectively;

hence both 𝑆𝑗
𝐿 and 𝑆𝑗

𝑅 are topologically consecutive. See Figure 6-5.

Figure 6-5: 𝑆𝑗 is partitioned into two halves, 𝑆𝑗
𝐿 and 𝑆𝑗

𝑅.

Run Dijkstra from 𝑆𝑗
𝐿 and from 𝑆𝑗

𝑅. If either of these sets has min-eccentricity at most 𝑟, we

will continue the induction: If 𝜖(𝑆𝑗
𝐿) ≤ 𝑟, we let 𝑆𝑗+1 = 𝑆𝑗

𝐿. Then 𝐿𝑊 (𝑆𝑗+1) = 𝐿𝑊 (𝑆𝑗), so for

every 𝑤 ∈ 𝐿𝑊 (𝑆𝑗+1), 𝜖(𝑤) > 𝑟. Alternatively, if 𝜖(𝑆𝑗
𝐿) > 𝑟 but 𝜖(𝑆𝑗

𝑅) ≤ 𝑟, we let 𝑆𝑗+1 = 𝑆𝑗
𝑅.

Then 𝐿𝑊 (𝑆𝑗+1) = 𝐿𝑊 (𝑆𝑗) ∪ 𝑆𝑗
𝐿, so for every 𝑤 ∈ 𝐿𝑊 (𝑆𝑗+1), 𝜖(𝑤) > 𝑟.

Otherwise, 𝜖(𝑆𝑗
𝐿) > 𝑟 and 𝜖(𝑆𝑗

𝑅) > 𝑟. In this case we halt the induction and let 𝑆 = 𝑆𝑗 . Every

𝑤 ∈ 𝐿𝑊 (𝑆𝑗) ∪ 𝑆𝑗 satisfies 𝜖(𝑤) > 𝑟, so 𝑆 has the properties desired.

At each step, the size of the set 𝑆𝑗 halves, so there are at most log |𝑊 | ≤ log 𝑛 iterations. In

each iteration, we perform a constant number of Dijkstras, so the runtime is 𝑂(𝑚 log2 𝑛). □

For each 𝑖 such that 𝜖(𝑊𝑖) ≤ 𝑟, let 𝑆𝑖 be the subset constructed by applying Claim 12 to the set

𝑊 = 𝑊𝑖. For each 𝑤 ∈ 𝐿𝑊𝑖
(𝑆𝑖), we report that 𝜖(𝑤) > 𝑟; this holds by Claim 12b. If 𝑆𝑖 consists

of a single vertex {𝑠}, we can determine that for any 𝑣 ∈ 𝐿(𝑊𝑖), 𝑑min(𝑣, 𝑠) ≤ 𝜖(𝑠) ≤ 𝑟 ≤ 𝑘𝑟, by

Claim 12a. Otherwise, |𝑆𝑖| > 1, so we report that 𝜖(𝑠) > 𝑟 for all 𝑠 ∈ 𝑆𝑖; this holds by Claim 12c.

Using a recursive application of our algorithm to the graph 𝐺𝑖 = 𝐺[𝑊𝑖], we can certify, for

every vertex 𝑤 ∈ 𝑊𝑖, that 𝜖𝐺𝑖
(𝑤) > 𝑟 or that 𝜖𝐺𝑖

(𝑤) ≤ (𝑘−1)𝑟. Consider any 𝑤 ∈ 𝑅𝑊𝑖
(𝑆𝑖). If we

determined that 𝜖𝐺𝑖
(𝑤) > 𝑟, we report that 𝜖(𝑤) > 𝑟; this holds since 𝜖(𝑤) ≥ 𝜖𝐺𝑖

(𝑤). Otherwise,

consider any 𝑣 ∈ 𝐿(𝑊𝑖). Since 𝜖(𝑆𝑖) ≤ 𝑟, there is some 𝑠 ∈ 𝑆𝑖 such that 𝑑min(𝑣, 𝑠) = 𝑑(𝑣, 𝑠) ≤ 𝑟.

Then since 𝜖𝐺𝑖
(𝑤) ≤ (𝑘 − 1)𝑟 and since 𝑤 is to the right of 𝑠 in the topological ordering, we have
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Figure 6-6: A representation of the 𝑣 → 𝑤 and 𝑤 → 𝑣′ paths, via the sets 𝑆𝑖 and 𝑆 ′𝑖 constructed
with Claim 12. The outer subpaths are of length ≤ 𝑟, and the inner subpaths are of length ≤
(𝑘 − 1)𝑟.

𝑑min(𝑣, 𝑤) ≤ 𝑑(𝑣, 𝑠) + 𝑑(𝑠, 𝑤) ≤ 𝑟 + (𝑘 − 1)𝑟 = 𝑘𝑟. See Figure 6-6.

Thus, our algorithm has certified for each 𝑤 ∈ 𝑊𝑖 that 𝜖(𝑤) > 𝑟 or that 𝑑min(𝑣, 𝑤) ≤ 𝑘𝑟

for all 𝑣 ∈ 𝐿(𝑊𝑖). By a symmetric argument, we can construct the set 𝑆 ′𝑖 obtained by applying

Claim 12 to the graph 𝐺 with the edges reversed; see Figure 6-6. Then as above we can determine

for each 𝑤 ∈ 𝑊𝑖 that 𝜖(𝑤) > 𝑟 or that 𝑑min(𝑤, 𝑣
′) ≤ 𝑘𝑟 for all 𝑣′ ∈ 𝑅(𝑊𝑖). Since 𝑊𝑖 is a

topologically consecutive set, 𝑉 ∖𝑊𝑖 = 𝐿(𝑊𝑖)∪𝑅(𝑊𝑖). So for any 𝑤 ∈ 𝑊𝑖, if we determine that

𝑑min(𝑤, 𝑣) ≤ 𝑘𝑟 for all 𝑣 ∈ 𝐿(𝑊𝑖) and for all 𝑣 ∈ 𝑅(𝑊𝑖) we report that 𝜖(𝑤) ≤ 𝑘𝑟; otherwise we

report 𝜖(𝑤) > 𝑟.

Runtime Analysis

In this section we analyze the runtime of the algorithm of Proposition 17, and we give full

descriptions of how to prove Theorems 6.3.6-6.3.9 from Proposition 17 using binary search.

Recall that 𝑐𝑘(𝜏) =
2𝑘−2(1+𝜏)

2𝑘−1(1+𝜏)−𝜏 .

Lemma 6.3.1. The algorithm of Proposition 17 runs in time

𝑂(min(𝑚𝑛1/𝑘 log2 𝑛,𝑚2𝑘−1/(2𝑘−1)𝑛 log2 𝑛))

assuming APSP computations are done in 𝑂̃(𝑚𝑛) time.

On graphs with integer edge weights bounded by 𝑛𝑡 for 𝑡 < 3− 𝜔, the algorithm runs in time

𝑂(min(𝑚𝑛1/𝑘 log2 𝑛,𝑚𝑚𝑐𝑘(𝜇(𝑡))

𝑛 log2 𝑛)),

assuming APSP computations are done in 𝑂(𝑛2+𝜇(𝑡)) time using Zwick’s fast APSP algorithm
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[Zwi02].

Proof. To simultaneously analyze both versions of the algorithm, our algorithm’s runtime will be

described in terms of a placeholder 𝜏 , such that APSP computations within the algorithm are done

in 𝑂(𝑛2+𝜏 log 𝑛) time. To obtain the runtime bound for general weighted DAGs, we will let 𝜏 = 1,

and note 𝑐𝑘(1) =
2𝑘−1

2𝑘−1 . To obtain the runtime bound for DAGs with integer edge weights bounded

by 𝑛𝑡 for 𝑡 < 3− 𝜔, we will let 𝜏 = 𝜇(𝑡).

Topologically sorting the graph takes 𝑂(𝑚 log 𝑛) time which is absorbed into the final runtime.

In order to use 𝑘 = 1 as a base case, our inductive hypothesis will assume a slightly

weaker claim about the runtime: in the inductive step for 𝑘, we will assume there is an

𝑂(min(𝑚𝑛1/(𝑘−1) log2 𝑛, 𝑛2𝑐𝑘−1(𝜏)+1 log2 𝑛))-time algorithm which certifies for each 𝑣 ∈ 𝑉 that

𝜖(𝑣) > 𝑟 or that 𝜖(𝑣) ≤ (𝑘 − 1)𝑟. Note that 𝑛2𝑐𝑘−1 ≥ 𝑚𝑐𝑘−1 . Then in the base case where 𝑘 = 1,

APSP takes time 𝑂(min(𝑚𝑛 log 𝑛, 𝑛2+𝜏 log 𝑛)), satisfying the inductive hypothesis.

Consider 𝑘 > 1. Running Dijkstra to and from 𝑊𝑖 for each 𝑖 takes 𝑂(𝑚𝑝 log 𝑛). It takes

time 𝑂(𝑚𝑝 log2 𝑛) to apply Claim 12 twice for each 𝑖, to construct sets 𝑆𝑖 and symmetric sets 𝑆 ′𝑖

(constructed in the same way as the sets 𝑆𝑖 but with left and right swapped, pictured in Figure 6-6).

We also do recursive calls of our algorithm on at most 𝑝 subgraphs, induced by sets 𝑊𝑖. Below,

we analyze the runtime of the recursive calls in two different ways, giving us two upper bounds on

the algorithm’s runtime.

Analysis 1 Let 𝑚𝑖 = |𝐸(𝐺[𝑊𝑖])|; then note
∑︀

𝑖 𝑚𝑖 ≤ 𝑚. For each 𝑖, the recur-

sive call on 𝑊𝑖 takes time 𝑂(𝑚𝑖(𝑛/𝑝)
1/(𝑘−1) log2 𝑛), so in total the recursive calls take time

𝑂(𝑚(𝑛/𝑝)1/(𝑘−1) log2 𝑛). Let 𝑝 = 𝑛1/𝑘, so that 𝑚𝑝 = 𝑚(𝑛/𝑝)1/(𝑘−1). Then the runtime is

𝑂(𝑚𝑛1/𝑘 log2 𝑛).

Analysis 2 Since |𝑊𝑖| = 𝑛/𝑝, a recursive call on 𝐺[𝑊𝑖] takes time 𝑂((𝑛/𝑝)2𝑐𝑘−1(𝜏)+1 log2 𝑛).

We do at most 𝑝 such calls, so the total runtime of the recursive calls is 𝑂((𝑛/𝑝)2𝑐𝑘−1(𝜏)𝑛 log2 𝑛).

Now, we choose 𝑝 so that 𝑚𝑝 = (𝑛/𝑝)2𝑐𝑘−1(𝜏)𝑛. Then 𝑚 = (𝑛/𝑝)2𝑐𝑘−1(𝜏)+1. Recall that 𝑐𝑘(𝜏) =
2𝑘−2(1+𝜏)

2𝑘−1(1+𝜏)−𝜏 and note that 2𝑐𝑘−1(𝜏) + 1 = 2𝑘−1(1+𝜏)−𝜏
2𝑘−2(1+𝜏)−𝜏 = 2𝑐𝑘−1(𝜏)

𝑐𝑘(𝜏)
. Thus, 𝑚𝑐𝑘(𝜏) = (𝑛/𝑝)2𝑐𝑘−1(𝜏). So

the runtime of the algorithm is 𝑂((𝑛/𝑝)2𝑐𝑘−1(𝜏) ·𝑛 log2 𝑛) = 𝑂(𝑚𝑐𝑘(𝜏)𝑛 log2 𝑛). Since 𝑚 = 𝑂(𝑛2),

this satisfies the inductive hypothesis. □
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Lower Bounds

In this section, using an essentially linear time reduction, we reduce Triangle Detection to

(2− 𝛿)-approximation of min-radius.

Reminder of Theorem 6.3.2 If there is a 𝑇 (𝑛,𝑚)-time algorithm for (2 − 𝛿)-approximation of

min-radius in 𝑂(𝑛)-node 𝑂̃(𝑚)-edge DAGs for some 𝛿 > 0, then there is an 𝑂̃(𝑇 (𝑛,𝑚)+𝑚)-time

algorithm for Triangle Detection on graphs with 𝑛 nodes and 𝑚 edges.

Proof. We are going to use two gadgets from previous works:

• DAG gadget [AVW16]: Given a set 𝑋 of 𝑛 nodes 𝑣1, . . . , 𝑣𝑛 and a constant integer parameter

𝑡 ≥ 2, the gadget creates a DAG 𝐷𝐺𝑡(𝑋) with at most 𝑂(𝑛) nodes and 𝑂(𝑛 log 𝑛) edges

such that in the topological order of 𝐷𝐺𝑡(𝑋), 𝑣𝑖 < 𝑣𝑖+1, and for any two nodes of 𝐷𝐺𝑡(𝑋)

𝑥, 𝑦 where 𝑥 < 𝑦 in the topological order, 𝑑(𝑥, 𝑦) ≤ 𝑡+ 1.

• Connectivity gadget [AR18]: Let 𝑋 = {𝑣1, . . . , 𝑣𝑛}, and let 𝑋 ′ = {𝑣′1, . . . , 𝑣′𝑛} be a copy of

𝑋 , where both 𝑋 and 𝑋 ′ are independent sets. Then we can add a connectivity gadget 𝑈(𝑋)

along with edges from 𝑋 to 𝑈(𝑋) and from 𝑈(𝑋) to 𝑋 ′, such that |𝑈(𝑋)| = 𝑂(log 𝑛), for

all 𝑖 ̸= 𝑗 we have 𝑑(𝑣𝑖, 𝑣
′
𝑗) = 2, and there is no path from 𝑣𝑖 to 𝑣′𝑖.

Now let 𝐺 = (𝐴,𝐵,𝐶,𝐸𝐺) be an instance of Triangle Detection, with 𝑛 nodes and 𝑚 edges.

We create a DAG 𝐺* such that if 𝐺 has a triangle (YES case), the min-radius of 𝐺* is 𝑡 + 1, and

if 𝐺 doesn’t have a triangle (NO case), the min-radius of 𝐺* is 2𝑡. We let 𝑡 be an integer such

that 2 − 𝛿/2 < 2𝑡
𝑡+1

, so that a fast (2 − 𝛿)-approximation algorithm is also a fast ( 2𝑡
𝑡+1
− 𝛿/2)-

approximation algorithm, and hence it can distinguish min-diameter 𝑡+ 1 vs 2𝑡.

We define 𝐺* as follows: 𝐺* has 𝐴, 𝐵, and 𝐶 as part of its vertex set. Let 𝐴′1, 𝐴
′
2, . . . , 𝐴

′
𝑡+1

be copies of 𝐴. Add 𝐸𝐺(𝐴,𝐵) to 𝐺* with edges directed from 𝐴 to 𝐵, and add 𝐸𝐺(𝐵,𝐶) with

edges directed from 𝐵 to 𝐶. For any 𝑐 ∈ 𝐶 and 𝑎 ∈ 𝐴, add an edge from 𝑐 to 𝑎′ ∈ 𝐴′2 if 𝑎 and 𝑐

are attached in 𝐺, where 𝑎′ is the copy of 𝑎 in 𝐴′2. For each 𝑖 = 1, . . . , 𝑡, connect the copy of 𝑎 in

𝐴′𝑖 to the copy of 𝑎 in 𝐴′𝑖+1 for all 𝑎 ∈ 𝐴.

Now we add the two gadgets. Add the connectivity gadget 𝑈(𝐴) between 𝐴 and 𝐴′1. Add

two copies of 𝐷𝐺𝑡(𝐴) sharing 𝐴, and denote the union of these copies by 𝐷𝐴𝐺(𝐴). Also add a
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node 𝑦, and add edges from all nodes in 𝐴 to 𝑦; this guarantees that the center of 𝐺* must be in

𝐷𝐴𝐺(𝐴).

To make all nodes in 𝐴 at distance 𝑡 + 1 to 𝐴′1, make 𝑡− 1 copies of 𝑈(𝐴), 𝑈1, . . . , 𝑈𝑡−1. For

each 𝑖 = 1, . . . , 𝑡 − 1, connect the copy of 𝑢 in 𝑈𝑖 to the copy of 𝑢 in 𝑈𝑖+1, for any 𝑢 ∈ 𝑈(𝐴),

where 𝑈𝑡 = 𝑈(𝐴). Add edges from all nodes in 𝐴 ∪𝐵 ∪ 𝐶 to all nodes in 𝑈1.

To make all nodes in 𝐴 at distance 𝑡 + 1 to 𝐵 and 𝐶, let 𝑥1, . . . , 𝑥𝑡 be a path of length

𝑡 − 1. Connect all nodes of 𝐴 to 𝑥1, and connect 𝑥𝑡 to all nodes of 𝐵 ∪ 𝐶. See Fig-

ure 6-7 for the construction. Note that 𝐺* is a DAG, with the order of sets of vertices being

𝐷𝐴𝐺(𝐴), 𝑦, 𝑥1, . . . , 𝑥𝑡, 𝐵, 𝐶, 𝑈1, . . . , 𝑈𝑡−1, 𝑈(𝐴), 𝐴′1, . . . , 𝐴
′
𝑡+1. Moreover, 𝐺*[𝐴 ∪ 𝐵 ∪ 𝐶 ∪ 𝐴2]

has 𝑚 edges corresponding to the original edges of 𝐺*, and besides those we only added 𝑂(𝑛 log 𝑛)

edges to 𝐺*. So 𝐺* has 𝑂(𝑛) nodes and 𝑂(𝑚+ 𝑛 log 𝑛) edges.

A

B

C

A′
1 A′

2 A′
3

A′
t+1

U1 U2 Ut = U(A)
x1

xt

DAG(A) y

Figure 6-7: Graph 𝐺* created from the Triangle Detection instance 𝐺. Blue edges are edges in 𝐺,
red edges are between two nodes that are copies of the same vertex. Purple edges are part of the
connectivity gadget. Dashed lines are subpaths.

We will show that if the Triangle Detection instance is a YES instance, then there is a node

𝑎 ∈ 𝐴 such that 𝜖(𝑎) = 𝑡 + 1. If the Triangle Detection instance is a NO instance, then we show

that for all nodes in 𝐺*, their min-eccentricity is at least 2𝑡.

YES case. Let 𝑎𝑏𝑐 be a triangle in 𝐺. We show that 𝜖(𝑎) = 𝑡 + 1. Note that 𝑑min(𝑎, 𝑎̄) ≤ 𝑡 + 1

for all 𝑎̄ ∈ 𝐷𝐴𝐺(𝐴). We already know that 𝑑(𝑎, 𝑠) ≤ 𝑡 + 1 for any 𝑠 ∈ 𝐵 ∪ 𝐶 ∪ {𝑥1, . . . , 𝑥𝑡, 𝑦}.

For any 𝑢 ∈ 𝑈𝑖 for 𝑖 ≤ 𝑡+ 1, 𝑑(𝑎, 𝑢) ≤ 𝑡+ 1 using the path going through 𝑈1, . . . 𝑈𝑖−1. Since for

any 𝑧′ ∈ 𝐴′1, there is a 𝑢 ∈ 𝑈(𝐴) that has an edge to 𝑧′, we have 𝑑(𝑎, 𝑧′) ≤ 𝑡 + 1. Now for all
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𝑧′ ∈ 𝐴′2 where 𝑧′ is a copy of 𝑧 ∈ 𝐴 and 𝑧 ̸= 𝑎, we have 𝑑(𝑎, 𝑧′) = 3 through 𝑈(𝐴) and 𝐴′1 (using

the edges of the connectivity gadget). For 𝑧 = 𝑎, using the triangle edges going from 𝐴 to 𝐵 to 𝐶,

we have that 𝑑(𝑎, 𝑧′) = 3. So for all 𝑧′ ∈ 𝐴′2 ∪ . . . ∪ 𝐴′𝑡+1, we have 𝑑(𝑎, 𝑧′) ≤ 𝑡+ 1.

NO case. Suppose that there is no triangle in 𝐺. First, note that the min-eccentricities of the

vertices outside 𝐷𝐴𝐺(𝐴) are infinite, because there is no path between them and 𝑦. Moreover, if

𝑧 ∈ 𝐷𝐴𝐺(𝐴) ∖𝐴, it has a copy 𝑧′ ∈ 𝐷𝐴𝐺(𝐴) ∖𝐴 (in the other copy of 𝐷𝐺𝑡(𝐴)), and there is no

path between 𝑧 and 𝑧′. This is because this path must go through 𝐴, and since 𝐷𝐴𝐺(𝐴) consists

of two copies of 𝐷𝐺𝑡(𝐴) sharing 𝐴, the set of nodes in 𝐴 that 𝑧 has a path to (from) is exactly the

same as the set of nodes in 𝐴 that 𝑧′ has a path to (from). So there is no 𝑎 ∈ 𝐴 such that that 𝑧 has

a path to 𝑎 and 𝑧′ has a path from 𝑎.

Now it remains to compute the min-eccentricities of the vertices in 𝐴. Let 𝑎 ∈ 𝐴, and let

𝑎′𝑡+1 ∈ 𝐴′𝑡+1 be the copy of 𝑎. We show that 𝑑(𝑎, 𝑎′𝑡+1) = 2𝑡. Let 𝑃 be a shortest path from 𝑎

to 𝑎′𝑡+1. First note that any path from 𝑎 to 𝑎′𝑡+1 must go through 𝑎′2 ∈ 𝐴′2, where 𝑎′2 is a copy of

𝑎, and we have 𝑑(𝑎′2, 𝑎
′
𝑡+1) = 𝑡 − 1. We also know that there is no path from 𝑎 to 𝑎′2 using the

edges from 𝐴 to 𝑈(𝐴), because this path would need to contain a path between 𝑎 and 𝑎′1 ∈ 𝐴1 in

𝐺*[𝐴 ∪ 𝑈(𝐴) ∪ 𝐴′1], and from the construction of the connectivity gadget there is no such path.

If 𝑃 does not use any 𝐶 × 𝐴′2 edge, then the path must go through 𝑈𝑖 for all 𝑖, and hence it is of

length 2𝑡. So if the min-eccentricity of 𝑎 is smaller than 2𝑡, the path 𝑃 uses a 𝐶 ×𝐴′2 edge 𝑐𝑎′2 for

some 𝑐 ∈ 𝐶. If 𝑥1 is on the 𝑎𝑐 path, then the path goes through 𝑥𝑖 for all 𝑖, and hence it is of length

2𝑡. Then 𝑥1 is not on the path, so the 𝑎𝑐 path must go through 𝐵. In particular, there is a 𝑏 ∈ 𝐵

such that 𝑎𝑏, 𝑏𝑐 ∈ 𝐸(𝐺*). Since 𝑐𝑎′2 ∈ 𝐸(𝐺*), this implies that 𝑎𝑏𝑐 is a triangle in 𝐺, which is a

contradiction. So 𝜖(𝑎) ≥ 2𝑡.

□

6.3.3 Min-diameter

Our min-diameter approximation algorithm relies on Yuster and Zwick’s fast sparse matrix

multiplication algorithm. Here, we define 𝛼 = max{0 ≤ 𝑟 ≤ 1 | 𝜔(1, 𝑟, 1) = 2} and 𝛽 = 𝜔−2
1−𝛼 .

Theorem 6.3.10 ([YZ05]). If 𝐴 and 𝐵 are 𝑛 by 𝑛 matrices with at most 𝑙 nonzero entries each,
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then 𝐴 and 𝐵 can be multiplied in 𝑂(𝑙
2𝛽
𝛽+1𝑛

2−𝛼𝛽
𝛽+1 + 𝑛2+𝑜(1)) time.7

This sparse matrix multiplication algorithm will be used to prove the following proposition.

Proposition 18. There is an 𝑂(𝑚
2𝛽

3𝛽+1𝑛
4𝛽+2−𝛼𝛽

3𝛽+1
+𝑜(1) + 𝑛2+𝑜(1))-time algorithm which, given an

unweighted DAG 𝐺 and a parameter 𝐷′, reports that the min-diameter 𝐷 of 𝐺 satisfies 𝐷 ≤ 3𝐷′

2

or that it satisfies 𝐷 > 𝐷′.

The algorithm of Proposition 18 will be described and proven to work in subsection 3.1, and

its runtime will be analyzed in Lemma 6.3.3 in subsection 6.3.3. Then Proposition 18 allows us to

obtain the min-diameter approximation algorithm given in Theorem 6.3.11 below.

Theorem 6.3.11. There is an 𝑂(𝑚
2𝛽

3𝛽+1𝑛
4𝛽+2−𝛼𝛽

3𝛽+1
+𝑜(1) + 𝑛2+𝑜(1))-time algorithm which, given an

unweighted DAG 𝐺, outputs an estimate 𝐷0 for its min-diameter 𝐷 such that 𝐷 ≤ 𝐷0 <
3𝐷
2

.

Proof. To obtain our approximation 𝐷0, we binary search over 𝐷′ in [0, 𝑛] by applying the algo-

rithm of Proposition 18 logarithmically many times; note that polylogarithmic factors are 𝑛𝑜(1) so

they do not affect the runtime bound. Let 𝐶 be the smallest value found in the binary search such

that the algorithm reports that 𝐷 ≤ 3𝐶
2

; then 𝐷 > 𝐶 − 1. Let 𝐷0 = 3𝐶
2

. Then 𝐷 ≤ 𝐷0 < 3𝐷
2

, as

desired. □

Note that since 𝛼 > 0.31389 [GU17] and 𝜔 < 2.37286 [AV21], we can use 𝛽 ≃ 0.5435. This

gives the runtime of 𝑂(𝑚0.414𝑛1.522 + 𝑛2+𝑜(1)) stated in Theorem 6.3.4.

Algorithm Description and Correctness

Our algorithm takes as input an unweighted DAG 𝐺, an integer 𝐷′, and a parameter 𝜖 ∈ [0, 1],

and reports that 𝐷 > 𝐷′ or that 𝐷 ≤ 3𝐷′

2
. (The runtime-minimizing value of 𝜖 will be determined

later.)

If at any point, a BFS finds a pair of vertices at min-distance more than 𝐷′, the algorithm

reports that 𝐷 > 𝐷′; hence in what follows we will assume that this does not occur. We initially

have all pairs of vertices “unmarked,” and mark the pairs for which we know that there is a path

from one to the other of length at most 3𝐷′

2
.

7To be precise, given known bounds 𝛼 ≥ 𝑎, 𝜔 ≤ 𝑐, one can define 𝑏 = 𝑐−2
1−𝑎 , and then equivalents of Theorem

6.3.10 hold for any such pair of values 𝑎, 𝑏, not just for the “true” values 𝛼, 𝛽. This is implicit in [YZ05].
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The algorithm first takes two preliminary steps: it topologically sorts the graph, and it con-

structs for each vertex two topologically sorted lists, one of its in-neighbors and one of its out-

neighbors.

Our algorithm will then use the greedy set cover algorithm, described in the following lemma.

This lemma, and a related randomized version, are standard techniques used in graph distance

algorithms (see for example [ACIM99, RV13, CLR+14, AWW16]). A proof may be found in

[VWSK16].

Lemma 6.3.2. Let |𝑉 | = 𝑛, let 𝑝 = 𝑂(𝑛), and let 𝑋1, . . . 𝑋𝑝 ⊆ 𝑉 be sets of size |𝑋𝑖| ≥ 𝑛𝜖 for

𝜖 ∈ [0, 1]. Then there is an 𝑂(𝑛1+𝜖)-time algorithm which constructs a set 𝑆 ⊆ 𝑉 of size 𝑂̃(𝑛1−𝜖)

such that 𝑆 ∩𝑋𝑖 ̸= ∅ for all 𝑖.

For any 𝑢 ∈ 𝑉 , if |𝑁 out
𝐷′/2(𝑢)| < 𝑛𝜖 let 𝑋𝑢 = 𝑁 out

𝐷′/2(𝑢) and otherwise let 𝑋𝑢 be the left-most 𝑛𝜖

vertices in 𝑁 out
𝐷′/2(𝑢). So in particular, |𝑋𝑢| ≤ 𝑛𝜖. We can compute 𝑋𝑢 as follows: we maintain a

list of the≤ 𝑛𝜖 left-most vertices we have found so far that are at distance < 𝐷′/2 from 𝑢. At each

step, for each vertex in the list, we consider its left-most out-neighbor that is not yet in our set; we

add the left-most such out-neighbor to the set. We halt when there are no more such out-neighbors

not in our set, or after adding 𝑛𝜖 vertices to our set. Likewise, for any 𝑤 ∈ 𝑉 , let 𝑌𝑤 = 𝑁 in
𝐷′/2(𝑤)

if |𝑁 in
𝐷′/2(𝑤)| < 𝑛𝜖, and otherwise let 𝑌𝑤 consist of the right-most 𝑛𝜖 vertices in 𝑁 in

𝐷′/2(𝑤). We

can compute the sets 𝑌𝑤 in a manner symmetric to how we computed the sets 𝑋𝑢. Then we can

use Lemma 6.3.2 to construct a set 𝑆 of size 𝑂̃(𝑛1−𝜖) such that for all 𝑢 having |𝑁 out
𝐷′/2(𝑢)| ≥ 𝑛𝜖,

𝑆 ∩𝑋𝑢 is nonempty, and for all 𝑤 having |𝑁 in
𝐷′/2(𝑤)| ≥ 𝑛𝜖, 𝑆 ∩ 𝑌𝑤 is nonempty.

Run BFS into and out of every 𝑠 ∈ 𝑆. We may assume that 𝑑min(𝑠, 𝑥) ≤ 𝐷′ for all 𝑠 ∈ 𝑆, 𝑥 ∈

𝑉 .

We will construct matrices 𝐴 and 𝐵 with rows and columns indexed by vertices in 𝑉 , as

follows: For each vertex 𝑡 ∈ 𝑋𝑢, let 𝐴[𝑢, 𝑡] = 1. For each vertex 𝑡 ∈ 𝑌𝑤, let 𝐵[𝑡, 𝑤] = 1. Multiply

𝐴 and 𝐵 using the sparse matrix multiplication algorithm of Theorem 6.3.10.

Now, we will consider any pair of vertices (𝑢,𝑤) where 𝑢 is to the left of 𝑤, 𝑢 ∈ 𝑅(𝑁 in
𝐷′/2(𝑤)∩

𝑆), and 𝑤 ∈ 𝐿(𝑁 out
𝐷′/2(𝑢) ∩ 𝑆). We have that (𝐴 · 𝐵)[𝑢,𝑤] > 0 if and only if 𝑑(𝑢,𝑤) ≤ 𝐷′.

Indeed, if 𝑑(𝑢,𝑤) ≤ 𝐷′, then there is some intermediate vertex 𝑡 such that 𝑑(𝑢, 𝑥) ≤ 𝐷′/2 and
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𝑑(𝑥,𝑤) ≤ 𝐷′/2. Suppose that 𝑡 ̸∈ 𝑋𝑢. Then since 𝑋𝑢 is defined as the left-most 𝑛𝜖 vertices

in 𝑁 out
𝐷′/2(𝑢), this implies that |𝑁 out

𝐷′/2(𝑢)| > 𝑛𝜖 and hence that |𝑋𝑢| = 𝑛𝜖. Then there is some

𝑠 ∈ 𝑆 ∩𝑋𝑢. Since 𝑡 ̸∈ 𝑋𝑢, 𝑡 is to the right of all vertices in 𝑋𝑢, and in particular 𝑡 is to the right

of 𝑠. This implies 𝑡 ̸∈ 𝐿(𝑁 out
𝐷′/2(𝑢) ∩ 𝑆). But since 𝑤 ∈ 𝐿(𝑁 out

𝐷′/2(𝑢) ∩ 𝑆) and 𝑡 lies between 𝑢

and 𝑤, this is a contradiction. Thus, 𝑡 must be in 𝑋𝑢, and by symmetry, 𝑡 is in 𝑌𝑤. So 𝐴[𝑢, 𝑡] = 1

and 𝐵[𝑡, 𝑤] = 1, meaning (𝐴 · 𝐵)[𝑢,𝑤] > 0. Likewise, if (𝐴 · 𝐵)[𝑢,𝑤] > 0, then there exists

𝑡 ∈ 𝑋𝑢 ∩ 𝑌𝑤 such that 𝑑(𝑢, 𝑡) ≤ 𝐷′/2 and 𝑑(𝑡, 𝑤) ≤ 𝐷′/2, so 𝑑(𝑢,𝑤) ≤ 𝐷′. Therefore, we will

mark all pairs (𝑢,𝑤) such that (𝐴 ·𝐵)[𝑢,𝑤] > 0.

Now, consider any 𝑢 ∈ 𝑉 and any 𝑤 ̸∈ 𝐿(𝑁 out
𝐷′/2(𝑢) ∩ 𝑆) to the right of 𝑢. We mark the pair

(𝑢,𝑤). If such a 𝑤 exists, then there is some 𝑠 ∈ 𝑁 out
𝐷′/2(𝑢) ∩ 𝑆 such that 𝑠 is to the left of or is

equal to 𝑤. By assumption, 𝑑(𝑠, 𝑤) ≤ 𝐷′, so 𝑑(𝑢,𝑤) ≤ 𝑑(𝑢, 𝑠) + 𝑑(𝑠, 𝑤) ≤ 𝐷′/2 + 𝐷′ = 3𝐷′

2
.

By a symmetric argument, for any 𝑤 ∈ 𝑉 and any 𝑢 ̸∈ 𝑅(𝑁 in
𝐷′/2(𝑤) ∩ 𝑆) to the left of 𝑤, we have

that 𝑑(𝑢,𝑤) ≤ 3𝐷′

2
, so again we mark any such pair (𝑢,𝑤). Thus, since we have assumed that

𝜖(𝑠) ≤ 3𝐷′

2
for all 𝑠 ∈ 𝑆, the algorithm will mark all pairs of vertices 𝑢,𝑤 ∈ 𝑉 except those for

which we have simultaneously that 𝑢 ∈ 𝑅(𝑁 in
𝐷′/2(𝑤) ∩ 𝑆) and 𝑤 ∈ 𝐿(𝑁 out

𝐷′/2(𝑢) ∩ 𝑆).

Finally, check whether there exists an unmarked pair (𝑢,𝑤). If so, report that 𝐷 > 𝐷′. Other-

wise, report that 𝐷 ≤ 3𝐷′

2
.

Runtime Analysis

Here we analyze the runtime of the algorithm of Proposition 18.

Lemma 6.3.3. The algorithm of Proposition 18 runs in time 𝑂̃(𝑚
2𝛽

3𝛽+1𝑛
4𝛽+2−𝛼𝛽

3𝛽+1
+𝑜(1) + 𝑛2+𝑜(1)).

Proof. Topologically sorting the graph takes 𝑂(𝑚 log 𝑛) time which is absorbed into the final run-

time. Constructing for each vertex topologically ordered lists of its in-neighbors and out-neighbors

can be done in time 𝑂̃(𝑛2).

Computing the covering set 𝑆 takes time 𝑂̃(𝑛1+𝜖) and running BFS from its vertices takes

time 𝑂(𝑛1−𝜖𝑚 log 𝑛). Checking for each pair (𝑢,𝑤) whether 𝑢 ∈ 𝐿(𝑁 out
𝐷′/2(𝑢) ∩ 𝑆) and 𝑤 ∈

𝐿(𝑁 out
𝐷′/2(𝑢) ∩ 𝑆) can be done in 𝑂̃(𝑛2) time.

For a fixed 𝑢, to compute 𝑋𝑢, we maintain a list of the at most 𝑛𝜖 left-most vertices we have

found that are at distance < 𝐷′/2 from 𝑢. For each vertex, we store its left-most out-neighbor that
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is not yet in our set. At each step, we find the left-most such out-neighbor of any vertex in the list;

this takes time 𝑂(𝑛𝜖), and updating the list to reflect that this out-neighbor has been added to our

set takes time 𝑂(𝑛𝜖). At each step we add a vertex to our set 𝑋𝑢, so there are at most 𝑂(𝑛𝜖) steps.

Hence, constructing 𝑋𝑢 for a fixed 𝑢 takes 𝑂(𝑛2𝜖) time. Then constructing all sets 𝑋𝑢, 𝑌𝑤 takes

𝑂(𝑛1+2𝜖) time altogether.

Finally, note that there are at most 𝑛𝜖 1s in each row of 𝐴, since we only set 𝐴[𝑢, 𝑡] = 1 if

𝑡 ∈ 𝑋𝑢. Thus, 𝐴 contains at most 𝑛1+𝜖 1s. By symmetry, the same holds for 𝐵. Then multiplying

𝐴 and 𝐵 can be done in time 𝑂(𝑛(1+𝜖) 2𝛽
𝛽+1

+ 2−𝛼𝛽
𝛽+1

+𝑜(1) + 𝑛2+𝑜(1)), using Yuster and Zwick’s fast

sparse matrix multiplication (Theorem 6.3.10).

Then the total runtime is:

𝑂̃(𝑛1−𝜖𝑚+ 𝑛1+2𝜖 + 𝑛(1+𝜖) 2𝛽
𝛽+1

+ 2−𝛼𝛽
𝛽+1

+𝑜(1) + 𝑛2+𝑜(1))

Let 𝛾 be the largest value such that 𝑛𝛾 = 𝑂(𝑚). Let 𝜖 = 𝛼𝛽+(𝛽+1)(𝛾−1)
3𝛽+1

; this value is chosen

because it sets the first and third terms in the above runtime equal (up to 𝑛𝑜(1) factors), hence

asymptotically minimizing their sum. Substituting the value of 𝜖 and simplifying, the runtime of

the algorithm is:

𝑂̃(𝑛
2𝛽

3𝛽+1
𝛾+ 4𝛽+2−𝛼𝛽

3𝛽+1
+𝑜(1) + 𝑛

2𝛽+2
3𝛽+1

𝛾+𝛽−1+2𝛼𝛽
3𝛽+1 + 𝑛2+𝑜(1))

We note that 3𝛽 − 3𝛼𝛽 > 3(𝜔 − 2) ≥ 0 > −1, giving:

4𝛽 + 2− 𝛼𝛽 > 2 + (𝛽 − 1 + 2𝛼𝛽) ≥ 2𝛾 + (𝛽 − 1 + 2𝛼𝛽)

Thus, the first term of the above runtime dominates the second. Substituting 𝑛𝛾 = 𝑂(𝑚),

and noting that the polylogarithmic factors in the runtime are of order 𝑛𝑜(1), the runtime is

𝑂(𝑚
2𝛽

3𝛽+1𝑛
4𝛽+2−𝛼𝛽

3𝛽+1
+𝑜(1) + 𝑛2+𝑜(1)), as desired.

□
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