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Abstract

Robust, high-fidelity readout is central to quantum device performance. Overcoming poor
readout is therefore an increasingly urgent challenge for devices based on solid-state spin de-
fects, particularly given their rapid adoption in quantum sensing, quantum information, and
tests of fundamental physics. However, in spite of experimental progress in specific systems,
solid-state spin sensors still lack a universal technique for high-fidelity readout. One leading
research avenue is to engineer state-of-the-art microwave delivery systems which improve the
coherent control of large spin ensembles as they are manipulated for readout. Another is
to develop novel readout techniques that go beyond measuring optical fluorescence signals,
which are often difficult to detect, and unique only to some solid-state spin systems. In this
thesis, I discuss these two approaches, and begin by designing a three dimensional microwave
resonator that overcomes the many shortcomings of conventional microwave delivery systems,
which limit the readout fidelity of devices employing large spin systems. Next, I demonstrate
a novel readout technique that provides high-fidelity, room-temperature readout of an en-
semble of nitrogen-vacancy centers via strong coupling to a dielectric microwave cavity. This
strong collective interaction allows the spin ensemble’s microwave transition to be probed
directly, thereby overcoming the optical photon shot noise limitations of conventional fluo-
rescence readout. Applying this technique to magnetometry, I first build a proof-of-concept
magnetometer with the capability of measuring magnetic fields along a single vector axis,
with a sensitivity better than the optical shot noise limit of the system. I then expand on
the initial demonstration, by building a prototype capable of measuring three-dimensional
dynamic vector fields with high sensitivity. While the current device performance is limited
by technical noise, the method promises what has long been elusive for quantum sensors
based on solid-state spin ensembles: a clear path to readout at the spin-projection limit.

Thesis Supervisor: Dirk R. Englund
Title: Associate Professor of Electrical Engineering and Computer Science
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List of Figures

2-1 Loop gap resonator and exciter antenna board. (a) The metallic res-

onator employs a five-loop four-gap architecture. Microwaves are coupled

into the LGR via the exciter antenna, which is fabricated on a printed cir-

cuit board. (b) Line drawing of LGR. (c) Exciter antenna. A feedline, 50:50

power splitter, and balun (balanced unbalanced) feed the split ring resonator,

which is coupled to the LGR. The split-ring resonator has an inductance of

36 nH and a capacitance of 16 fF. All spatial dimensions are in mm. Optional

mounting holes and radial access port for laser excitation are not shown. . . 32

2-2 Frequency tuning and impedance matching of LGR composite de-

vice. (a) The resonant frequency 𝑓0 is adjusted by translating the sapphire

shims in the four capacitive gaps. In the absence of a stub tuner, the LGR

composite device exhibits 𝑆11 values between -10 and -20 dB from 2.5 to

3.5 GHz, indicating ≳ 90% of power delivered to the LGR composite device

contributes to 𝐵1 in this range. (b) Nearly perfect critical coupling can be

achieved with a stub tuner, allowing practically all incident MW power to

contribute to 𝐵1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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2-3 Measurement contrast inhomogeneity. (a) Effective contrast variation

due to inhomogeneities in the MW magnetic field generated by the split-

ring resonator. Cross-sections are shown at y = 0 mm in the xz plane (top)

perpendicular to the split-ring resonator plane with ring centerline at x = 0

mm and the fabrication plane at z = -0.1 mm, and at z = 0.25 mm in the XY

plane (bottom) parallel to the split-ring resonator plane. The measurement

volume is separated from the split-ring resonator plane by a distance 0.1 mm

for improved MW field uniformity within the volume and is indicated by the

white dashed lines. (b) Effective contrast variation due to inhomogeneities in

the MW magnetic field generated by the loop gap resonator. Cross-sections

are shown at y = 0 mm in the xz plane (top) along the LGR symmetry

axis with the LGR centered at z = 0 mm, and at z = 0 mm in the XY

plane (bottom) perpendicular to the LGR symmetry axis. The measurement

volumes are indicated by the white dashed lines. . . . . . . . . . . . . . . . . 37

2-4 LGR driving of an NV ensemble. (a) The NV electron spin resonance

spectrum (—) measured under the application of bias field 𝐵0 with the LGR

tuned to resonant frequency 𝑓0 = 2.84 GHz. The bias field allows individual

addressing of all eight NV resonances, arising from the combination of the

two allowed magnetic dipole transitions with the four possible NV orienta-

tions. The NV hyperfine structure is obscured by MW power broadening and

the contrast variation between the NV resonances is attributed primarily to

the 𝑆11 line-shape, where the NV resonances closer to the LGR resonant fre-

quency 𝑓0 are driven more strongly and thus exhibit higher contrast. The 𝑆11

parameter is shown before (- - -) and after (- - -) shifting the LGR resonant

frequency 𝑓0 to the target NV resonance. Arrows indicate corresponding y

axes. (b) Typical data depicting Rabi oscillations under MW excitation at

the target NV resonance frequency indicated in (a). Data (∘) is fit (—) to an

exponentially decaying sinusoid. . . . . . . . . . . . . . . . . . . . . . . . . . 40
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2-5 𝐵1 field uniformity of LGR composite device. (a) An NV-containing 4.5

mm × 4.5 mm diamond plate is placed in the LGR central loop, and the Rabi

frequency is measured where indicated (•,•,•,•) to characterize 𝐵1. (b) The 𝐵1

field is simulated in an axial slice at the resonator center (symmetry plane of

the LGR). The 𝐵1 field distribution is approximately radially symmetric, with

the leading order deviation resulting from the exciter antenna. Dashed lines

indicate the 32 mm2 and 11 mm2 areas within which the 𝐵1 field uniformity

is evaluated. (c) 𝐵1 field measurements (∘,∘,∘,∘) at the points depicted in (a)

and simulations (–,–,–,–) along each locus of points are in good agreement.

Error bars indicate 1-sigma uncertainty for the 𝐵1 measurement. Dashed lines

indicate the radial boundaries of the 32 mm2 and 11 mm2 areas over which 𝐵1

field uniformity is evaluated. The measured 𝐵1 uniformity is given for each

area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-6 Simulated 𝐵1 field along LGR symmetry axis. The symmetry plane of

the LGR is located at 𝑧 = 0 mm. The edges of the LGR are at 𝑧 = ±2.5

mm, and the split-ring resonator is located at position 𝑧 = 4.0 mm. The

presence of the split-ring resonator shifts the point of maximal 𝐵1 off center

to 𝑧0 = −0.4 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
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3-1 Experimental setup for MW cavity readout of NV- centers in dia-

mond. (a) Level diagram. The NV- ground-state spin triplet (3A2) exhibits a

2.87 GHz zero-field splitting between the |𝑚𝑠 = 0⟩ and degenerate |𝑚𝑠 = ±1⟩

states. This degeneracy may be lifted by application of a bias magnetic field

𝐵0, allowing individual addressing of either the |𝑚𝑠 = 0⟩ ↔ |𝑚𝑠 = −1⟩ or

|𝑚𝑠 = 0⟩ ↔ |𝑚𝑠 = +1⟩ transitions. Optical pumping with 532 nm light ini-

tializes spins to the |𝑚𝑠 = 0⟩ state via a non-radiative decay path (1A1 → 1E).

(b) Microwave cavity magnetic field. Interactions between the interrogation

photons and the NV- ensemble can be enhanced by placing the diamond inside

a cavity resonant with the applied photons. As illustrated in the axial cut of

the composite cavity, the diamond (solid black) is placed near the antinode

of the magnetic field (white arrows) created by the two dielectric resonators

(black dashed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3-2 Device schematic. Applied MWs near-resonant with both the cavity and

spin transitions are split into a signal component which interrogates the com-

posite cavity through a circulator (lower branch) and a reference component

(upper branch). Microwaves reflected from the composite cavity are amplified

before being mixed with the reference component by an IQ mixer whose dual

outputs are digitized. Alternatively, reflected MWs can be read out via a MW

crystal detector or measured directly using an oscilloscope with sufficiently

high sampling rate. Transmission measurements employ only an amplifier

and a crystal detector. A photodiode monitoring red fluorescence allows si-

multaneous optical readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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3-3 Readout on an IQ mixer. Measured in-phase and quadrature channels

of an IQ mixer during MW cavity readout at 5 dBm of applied MW power.

The MW drive 𝜔𝑑 is set to the bare cavity frequency 𝜔𝑐, and, using the test

coil, the spin-cavity detuning (𝜔𝑠 − 𝜔𝑐) is swept from −15 MHz to 15 MHz.

Finally, the phase of reference component (See Fig 3-2) is adjusted manually

until the dispersive and absorptive signals are isolated to the quadrature and

in-phase channels of the mixer, respectively. Data was taken under lower

MW irradiation than in Figures 2-3 to avoid saturating the output of the

low noise amplifier. The voltage signal here is measured after amplification

and mixing with an effective gain (comprised of the amplifier gain 18 dB and

mixer conversion loss 10.5 dB) of 7.5 dB. (a) Readout using a diamond with

imhomogeneous linewidth 8 MHz. Hyperfine are not discernible due to high

crystal strain. (b) Readout using a diamond with imhomogeneous linewidth

1 MHz. Hyperfine features are discernible, but partially obscured due to MW

power broadening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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3-4 Comparison of contrast and linewidth in MW cavity readout mag-

netic resonance and ODMR. The signal associated with the NV- |𝑚𝑠 =

0⟩ ↔ |𝑚𝑠 = +1⟩ magnetic resonance is recorded simultaneously using MW

cavity readout (blue solid line) and conventional optical readout (red solid

line). The MW cavity readout realizes contrasts 𝐶 = 0.97 and 𝐶 = 0.98, lim-

ited by imperfect circulator isolation, while conventional optical readout real-

izes contrast 𝐶 = 0.05 and 𝐶 = 0.01. For ease of comparison with the ODMR

lineshape, MW cavity readout is performed here using a phase-insensitive

measurement of reflected MW power, rather than the phase-sensitive tech-

nique. Fits from the inhomogeneously-broadened numberical model (blue

dashed line) and a Lorentzian model of ODMR (red dashed line) are also

shown. The inset shows both readout signals scaled to the same peak-to-peak

values, highlighting the ≈ 2× narrowing of the magnetic resonance feature

observed with MW cavity readout. The left-right asymmetry in the MW

cavity readout signal is attributed to a ≈ −20 kHz detuning of the applied

microwaves from the bare cavity resonance. The applied MW power is 10 dBm. 55

4-1 Strong ensemble-cavity coupling under ambient conditions. The spin

resonance frequency is swept relative to the bare cavity resonance (horizontal

axis) by varying the applied magnetic field; simultaneously varying the MW

drive frequency (vertical axis) reveals the spin-ensemble-modified composite

cavity resonance. Data are recorded both in reflection (a) and transmission

(b). The data are fit (c - d) to (3.2) and (4.2) using a 2D nonlinear least-

squares solver. The fit gives 𝑔eff = 2𝜋× 0.70 MHz; see Methods for additional

fit parameters. Each plot is normalized to unity, and recorded data is taken

with −56 dBm of MW drive power. . . . . . . . . . . . . . . . . . . . . . . . 61

16



4-2 Optimizing MW cavity readout for magnetometry. The 2.901 GHz

reflection signal is terminated into the 50 Ω input of a 40 GS/s oscilloscope.

The reflected RMS voltage into 50 Ω is plotted vs the spin-cavity detuning for

various MW powers. Above approximately 10 dBm, MW-induced broadening

of the NV- ground state transition reduces the achievable magnetic sensitivity

of the sensor; consequently 10 dBm is the near-optimal applied MW power. . 63

4-3 MW cavity readout magnetometer sensitivity. Based on noise spec-

tral density measured during magnetometer operation (blue solid line), we

project a sensitivity of ≈ 3 pT/
√

Hz in the band from 5 kHz to 10 kHz, where

sensitivity approaches the limit set by the measured noise floor of the ampli-

fier and digitizer electronics (red solid line). Also depicted are the optical-

readout shot-noise limit (black short dashed line) of the experimental setup,

the calculated Johnson-Nyquist noise limit (black long dashed line) of 0.5

pT/
√

Hz and the optical-pumping-limited spin-projection limit (black dotted

line). The optical-pumping-limited spin-projection limit is bounded above

and below (gray shaded box) to illustrate uncertainty arising from estimating

the optical pumping relaxation time 𝑇 op
1 . Magnetometry is performed using

the phase-sensitive technique of recording reflected MW voltage through the

IQ mixer; IQ traces are shown in section 3.2.4. . . . . . . . . . . . . . . . . 64

4-4 Broadband magnetometry using Cr3+ ions in sapphire. The noise

spectral density measured during magnetometer operation ( ) yields a pro-

jected sensitivity of ≈10 pT
√

Hz in the low-noise band between 4 kHz and

6 kHz. The projected sensitivity approaches the noise floor set by amplifier,

mixer, and readout electronics ( ). The thermal-noise-limited sensitivity ( )

of 1.1 pT/
√

Hz is also depicted. . . . . . . . . . . . . . . . . . . . . . . . . . 68
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5-1 The NV center in diamond and cavity readout spectrum (a) The

NV− exists in equal number along four different crystallographic orientations

in the diamond lattice. When employed as a magnetometer, each of the four

orientations NV𝜆, NV𝜑, NV𝜅, NV𝜒 measures the component of the magnetic

field projected along its symmetry axis. (b) The NV− ground-state triplet

(3A2) exhibits a 𝐷 ≈ 2𝜋× 2.87 GHz zero-field splitting between the |𝑚𝑠 = 0⟩

and degenerate |𝑚𝑠 = ±1⟩ spin states. In the presence of a magnetic field

�⃗�(𝑡) the |𝑚𝑠 = ±1⟩ sublevels experience a Zeeman splitting proportional to

the projection of the magnetic field along the NV symmetry axis. Above-

band optical excitation (typically performed with a 532 nm laser) initializes

the NV− spins into the |𝑚𝑠 = 0⟩ spin state via a non-radiative decay path (1A1

−→ 1E). (c) Cavity-enhanced microwave readout absorption spectrum under

the application of an AC magnetic bias field with frequency 𝜔AC = 2𝜋 × 2

kHz. The magnetic bias field projects onto the four NV orientations causing

the Zeeman shifts shown in (b). As NV orientations NV𝜆, NV𝜑, and NV𝜅

cross 𝜔𝑐, MWs reflect from the cavity (which are subsequently measured)

creating the depicted readout spectrum in (c). For each half-cycle of the

magnetic field, both the |𝑚𝑠 = +1⟩ spin state (solid-lines) and the |𝑚𝑠 = −1⟩

spin state (dashed lines) cross 𝜔𝑐. Differences in the amount of reflected

MW voltage between NV orientations arise from differences in the vacuum

coupling 𝑔𝑠 of each NV axis with the lineraly polarized MW field. Asymmetries

between |𝑚𝑠 = ±1⟩ spin states in each half-cycle of the spectrum are due to

asymmetries in the cavity resonance profile. . . . . . . . . . . . . . . . . . . 73

18



5-2 Experimental setup and MW signal chain (a) For better mechanical

stabilization and heat sinking, a high NV− density cushion-cut diamond is

cleaved along the depicted angles (𝜑 = 22.2∘ and 𝜃 = 32∘), such that the

normal vector to the newly created plane is �⃗�𝐵 = (−0.53, 0.23, 0.82) in the

diamond coordinate system (where 𝑧′ is oriented normal to the table facet).

A bias magnetic field applied along �⃗�𝐵 equally splits the NV energy levels as

depicted in fig. 5-1b. Also depicted are the NV symmetry axes as oriented

in the diamond, defined in terms of the diamond lattice vectors. (b) The

newly cleaved face of the diamond is affixed to a semi-insulating wafer of sil-

icon carbide (SiC) and enclosed between two concentric dielectric resonators

which form the composite MW cavity. The composite cavity is centered inside

an alumina ceramic shield with interior surfaces coated in 10 𝜇m of silver to

reduce radiative MW losses, and held in place using Rexolite spacers (some

additional Rexolite structural components are omitted for clarity). A bias

field coil produces the AC magnetic bias field �⃗�AC oriented along �⃗�𝐵 in the

diamond reference frame. (c) Microwave device schematic. A 4 MHz mod-

ulated MW tone, resonant with the composite cavity, is split into a signal

component (lower branch) which interrogates the cavity through a circulator

and a reference component (upper branch). Microwaves reflected from the

cavity are then amplified before being mixed with the reference component

by an IQ mixer. A small amount of reflected MW power (-10 dB) is split off

and directed to a Pound-locked-loop which locks the MW carrier tone to the

cavity resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
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5-3 Vector magnetometry demonstration (a) A three-axis Helmholtz coil

simultaneously applies test fields 𝐵𝑥(𝑡) = 5.13 𝜇T, 𝐵𝑦(𝑡) = 5.92 𝜇T, and

𝐵𝑧(𝑡) = 4.97 𝜇T at the frequencies 𝜔𝑥/(2𝜋) = 24 Hz (- -), 𝜔𝑦/(2𝜋) = 10

Hz (- -), and 𝜔𝑧/(2𝜋) = 43 Hz (- -), respectively. Under the application of

an AC magnetic bias field at frequency 𝜔AC/(2𝜋) = 2 kHz, the test fields

are upmodulated, away from base-band 1/f noise, to the sum and difference

frequencies 𝜔AC ±𝜔𝑗=𝑥,𝑦,𝑧. The full cavity readout spectrum is encoded in the

harmonics of 𝜔AC up to ≈ 750 kHz. (b) - (d) Amplitude spectral densities of

the magnetic field dependent peaks ∆𝜏𝑖,rms (where 𝑖 = 𝜆, 𝜑, 𝜅 represents the

respective NV axis) of 1 second of collected data. The insets depict the time

series data ∆𝜏𝑖(𝑡) for each respective peak, after filtering. (e) - (f) Amplitude

spectral densities of the measured fields in the laboratory frame of reference,

extracted from ∆𝜏𝑖 after the application of the inverse linear transformation

matrix A−1. Insets depict the time series data for each axis 𝐵𝑥(𝑡), 𝐵𝑦(𝑡), and

𝐵𝑧(𝑡). Residual cross talk between axes is present, but we calculate its effect

to be on the order of 1% or better. . . . . . . . . . . . . . . . . . . . . . . . 80

5-4 Vector sensitivities (a) - (c) Power spectral densities of each Cartesian axis

in the absence of applied magnetic fields and after filtering. Colored dashed

lines (– –,– –,– –) indicate the bandwidth normalized sensitivity (in pT/
√

Hz)

as computed by equation (5.2). Black dashed lines (– –) indicate the average

estimated broadband sensitivity per NV axis in the absence of magnetic bias

field noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A-1 The NV center structure. (a) Example of one NV center orientation within

the diamond crystal structure. (b) The NV electronic energy level structure. 90
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B-1 Electromagnetic field and equivalent circuit representations of the

dielectric resonator (a) Illustration of physical resonator and TE01𝛿 mode

with impedance 𝑍 looking in to coupling loop. (b) Parallel RLC circuit as

extracted from electromagnetic field model. Coupling is implicitly contained

within calculated circuit components. (c) Circuit in (b) transformed as series

RLC circuit. Coupling represented by mutual inductance 𝐿𝑚 between loop

inductance 𝐿0 and series resonator inductance 𝐿𝑠. (d) Mutual inductance

coupling represented as ideal transformer with ratio 𝑛 : 1 and lumped element

components of Eq. (C.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C-1 Full lumped element circuit model Illustration of the ideal-transformer-

coupled parallel RLC circuit with out- and input couplings. The lumped

element components are Eq. (C.2) and the input and output coupling turns

ratios are 𝑛1 and 𝑛2 respectively. . . . . . . . . . . . . . . . . . . . . . . . . 104

F-1 RLC resonant AC bias field circuit (a) The resonant bias field circuit

consists of tank circuit comprised of the coil inductance L and the parallel

capacitance C1. Matching the load impedance Z0 to the tank circuit is ac-

complished using a series capacitor C2. (b) The Q is measured by applying

an AM modulated square wave to the AC bias field coil while measuring the

signal decay (—) using a proximal and concentric pickup coil. We fit (—) the

envelope of the decaying sinusoid to extract the coil Q factor. . . . . . . . . 120

F-2 Optimizing bias field frequency Using a non-resonant circuit configuration

we measure the maximum signal-to-noise ratio of the cavity readout spectrum

in figure 5-1 at varying frequencies. The plateau between 2 kHz and 4 kHz
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G-1 Accuracy error bias field drift Changing the magnetic bias field amplitude

|�⃗�AC| (inset top right) causes changes in the cavity readout spectrum (inset
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of |�⃗�AC|, changes ∆|�⃗�AC| will cause an error in the magnetometer output. We

measure how robust the magnetometer output is by sweeping ∆|�⃗�AC| over a

±300 𝜇T range, while applying a 10 Hz test field with constant amplitude of

5.1 𝜇T (3.6 𝜇T rms), and recording the magnetometer output. . . . . . . . . 124

G-2 Magnetometer drift suppression Changes in the cavity readout spectrum

due to mechanical drifts or temperature are suppressed by adding the peaks

of both the |𝑚𝑠 = ±1⟩ spin states. We operate the magnetometer over a 10

second period, and induce a change in the diamond temperature by increasing

the laser power by 1 W at the 1 second mark. After 4 seconds, we again reduce
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Chapter 1

Introduction

The term quantum sensor describes a host of different technologies [10, 13, 86, 88, 139, 170],

designed for a multitude of different modalities [32, 47, 74, 92, 107, 113, 116, 156, 175, 179]

and application spaces [43, 121, 173, 181]. Although technologies vary greatly, each device

class shares the same basic function: it exploits quantum phenomena to measure weak

or nanoscale signals. The advantage quantum sensors therefore have over their classical

counterparts, lies in that their outputs are tied to fundamental constants which are not

affected by the mechanical or electrical properties of the device [29]. Quantum sensors have

therefore achieved a number of impressive feats including record breaking sensitivity [36,141],

and stability [22,47,114]. By improving the ability to measure incredibly small signals at long

timescales, humanity unlocks the capability to, for example, explore new physics [59, 104],

develop new medical devices [37, 130], and even peer deeper into the history of our own

universe [45,104].

Among sensor modalities, magnetometry has garnered particular interest as a vast array

of natural phenomena produce magnetic fields which convey information about their under-

lying physical systems. For example, measuring the weak magnetic signatures of the brain

produced by neuronal activity, can allow the examination of the neural correlates of motor

coordination, and describe their breakdown in movement disorders [25, 68, 133]. Paleomag-

netic studies of primitive meteorites can yield insights into planetary formation within solar

nebulae [61]. And studies of the magnetic field produced by charge carriers, can aid in un-

derstanding the complex nature of transport phenomena in all modern electronics, opening

25



pathways to engineering smaller and more efficient devices [157].

Among magnetometry applications, many require the ability to measure both the mag-

nitude and direction of the magnetic fields under study [19,41,63,67,96,98,99,165,166,168].

In three dimensional space, this is usually accomplished by measuring the projection of the

vector field along three linearly independent axes. As a result, vector-projection magne-

tometers use multiple sensors aligned along different orientations, which can lead to heading

errors if these orientations drift over time [100,128]. Solid-state quantum sensors are there-

fore attracting wide interest, as their fixed crystallographic axes allow for complete vector

field sensing, free from systematic drifts [41, 97, 103, 115]. The negatively charged nitrogen-

vacancy (NV−) defect center in diamond is a particularly promising solid-state platform, as

it combines the capability for long term stability, high dynamic range, and low power oper-

ation into a single compact sensor package [85, 151]. The NV− center’s excellent coherence

properties at room temperature also allow high sensitivity operation [11, 12, 17], however

NV-based magnetometer systems have been held back by poor readout [14], and have yet to

perform even close to the standard quantum limit.

Conventionally, NV centers and other solid-state systems are read out via optically de-

tected magnetic resonance (ODMR). However, spin readout via optical excitation and fluo-

rescence detection destroys the information stored by a spin defect with only a few scattered

photons. Imperfect optical collection then ensures that on average far less than one fluo-

rescence photon is typically detected per spin [156]. Moreover, spin fluorescence contrast

(i.e., the normalized difference in signal from the qubit states) is far below unity, which

further reduces the quantum information that conventional readout can extract from a given

spin. Hence, quantum sensors employing solid-state spin ensembles with conventional optical

readout exhibit sensitivities much worse than the spin-projection noise limit, with readout

fidelities ℱ ≪ 1 limited by shot noise on the detected fluorescence [14]. Here ℱ = 1 charac-

terizes a measurement at the spin-projection noise limit, and 1/ℱ denotes the measurement

uncertainty relative to that limit. In response, many alternative readout methods have been

proposed and demonstrated [26, 71, 77, 81, 112, 142, 146, 149], but so far these techniques ei-

ther introduce substantial overhead time [23,71,77,81,102,112,142] (diminishing achievable

sensitivity) or offer only modest improvements over conventional optical readout [31,149].
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Regardless of the readout method employed, and with few exceptions [3,167], solid-state

spin systems require the application of microwave magnetic fields. Conventional optical

readout in particular, requires that the applied field is strong and homogeneous to ensure

little degradation to the spin fluorescence contrast. As the magnetic sensitivity is improved

by increasing the number of interrogated spins [47,156], many devices employ large diamond

samples with high NV densities. For most microwave systems however, magnetic fields de-

crease by the distance squared between the sample and antenna, which makes engineering

large volume strong and homogeneous microwave fields exceptionally challenging. This thesis

therefore begins in chapter 2, by introducing a novel microwave delivery system which over-

comes the many shortcomings of conventional microwave architectures that limit the optical

readout fidelity of devices employing large solid-state spin ensembles. To overcome the sen-

sitivity limitation due to shot noise on the detected fluorescence, Chapter 3 then shows that

readout can be performed directly by measuring the interaction between the microwave field

and the spin ensemble. As such interactions are generally too weak on their own to cause any

perceptible changes in a microwave field, they can be enhanced by many orders of magnitude

by placing the spin ensemble into a high-quality factor microwave resonator. Chapter 4 ap-

plies this technique to magnetometry by developing a proof-of-concept magnetometer which

overcomes the shot noise limitation inherent in conventional optical readout, and measures

magnetic fields with high sensitivity along a single vector orientation, albeit with measure-

ment ambiguities if the field is not perfectly aligned with the sensing axis. Finally, Chapter

5 expands on the initial demonstration by developing a full vector magnetometer, capable

of measuring three dimensional dynamic vector fields with high-sensitivity.
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Chapter 2

Broadband loop gap resonator for

nitrogen

This chapter is adapted from:

"Broadband loop gap resonator for nitrogen vacancy centers in diamond," E. R.

Eisenach, J. F. Barry, L. M. Pham, R. G. Rojas, D. R. Englund, and D. A. Braje.

Review of Scientific Instruments 89, 094705 (2018)

2.1 Introduction

With notably few exceptions [3,167], all NV applications rely on employing microwave (MW)

magnetic fields to drive dipole transitions between the NV ground state Zeeman sublevels.

A number of these applications additionally require generation of strong and uniform MW

magnetic fields over large areas (≳10 mm2) or volumes (≳30 mm3) [40,61,66,96,171]. In this

chapter, I discuss the design considerations for a suitable MW delivery mechanism, fabricate

a hole-and-slot type loop gap resonator (LGR), and evaluate its performance for relevant

NV applications.

Two examples of application modalities that benefit significantly from large detection ar-

eas and volumes are multi-channel imagers and highly sensitive, single-channel bulk sensors,

respectively. In the case of multi-channel imagers, increasing the detection area extends the

measurement field-of-view, whereas for bulk sensors, increasing the detection volume can
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considerably enhance measurement sensitivity. For example, the shot-noise-limited sensitiv-

ity of an NV magnetometer is approximately given by [156]

𝜂 ≈ ℏ
gsµB

1

𝐶
√
𝛽𝜏

1√
𝑁
, (2.1)

where 𝑁 is the number of NV sensors, 𝜏 is the duration of the measurement, 𝐶 is the

measurement contrast, 𝛽 is the number of photons collected per NV per measurement, µB

is the Bohr magneton, gs ≈ 2.003 is the ground state NV- Landé g-factor [57], and ℏ is

the reduced Planck constant. The magnetic sensitivity can be improved by increasing 𝑁 ,

achievable through higher NV density or larger detection volumes. However, NV ensemble

coherence times, which limit the optimal measurement time 𝜏 , depend inversely on NV

density [156]. As a result, without employing alternate techniques, there is a practical

upper bound on the NV density after which further sensitivity enhancements are attained

by increasing the measurement volume. Therefore, generating MW magnetic fields over

large volumes can increase the number 𝑁 of NV sensors addressed and consequently improve

measurement sensitivity. For application modalities such as those discussed above, the MW

field also requires both high power and uniformity over the full measurement region in order

to achieve high-fidelity quantum-state manipulation and consequently high measurement

contrast 𝐶. Finally, a MW delivery geometry with maximal optical access enables the

collection of maximal number of photons 𝛽 per NV per measurement.

2.2 Resonantly enhanced microwave driving

Standard approaches to applying MW drive to NV ensembles or other solid state spin sys-

tems include shorted coaxial loops [34, 40], microstrip waveguides [6, 178], coplanar waveg-

uides [80,177], and other coaxial transmission line approaches [111]. While such broadband

approaches allow arbitrary drive frequency, the lack of resonant enhancement forces a com-

promise between the volume addressed (assuming a fixed homogeneity is required) and MW

magnetic field strength, denoted 𝐵1. Planar lumped-element resonators such as split-ring

resonators [18,178], planar-ring resonators [134,160], omega resonators [72,73,143,160], and
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patch antennas [178] forego the flexibility of broadband solutions in favor of resonantly en-

hanced magnetic fields, thus enabling MW driving over larger regions. For example, the

split-ring resonator presented by Bayat et al. achieves a MW field strength of 𝐵1 = 5.6 G

at 27 dBm of input power and a fractional root-mean-square inhomogeneity of 𝜎rms ≈ 4.4%

over a ∼ 1 mm2 area [18]. However, such planar structures are ill-suited to providing good

𝐵1 homogeneity away from the plane of fabrication. The community has addressed this

shortcoming by employing a variety of three-dimensional resonators. Enclosed metallic cav-

ity resonators [132], enclosed dielectric resonators [28, 44, 95], and certain three-dimensional

lumped element resonators [7] all allow for good homogeneity over large volumes but unfor-

tunately offer restricted optical access. As all-optical initialization and readout is a primary

benefit for many solid-state spin systems, including NV-diamond [50], such a trade-off is

incompatible with many existing and envisioned applications [135]. Open dielectric res-

onators [83, 94] provide good homogeneity and exhibit improved optical access, but with

high Q-factors (in excess of 1,000) and consequently narrow bandwidths. As a result, such

resonators are generally not able to drive multiple NV Zeeman resonances simultaneously or

in rapid sequence, as is necessary for a number of magnetometry applications employing NV

ensembles [39,40,103,136,177].

To address these shortcomings in a single MW delivery option, I present a three-dimensional

tunable LGR, which is capable of generating strong, uniform MW magnetic fields over large

length-scales and broad frequency bands while also allowing a high degree of optical ac-

cess. The design is based on the anode block of a hole-and-slot-type cavity magnetron and

utilizes resonant enhancement to achieve the desired MW drive strengths over large areas

(>50 mm2) and volumes (>250 mm3). The design has an open geometry; for interrogation

volumes centered within the LGR, approximately half of the 4𝜋 solid angle remains optically

accessible. Importantly, for semi-standardized commercial diamond plates (2-4.5 mm side

lengths with 0.5 mm thickness) this solution allows maximal access to the diamond’s large

front and back faces. The open access, good homogeneity, and high 𝐵1 fields over the 8 mm

diameter by 5 mm thickness cylindrical volume make the device well-suited both for wide-

field magnetic imaging—applicable to studies of living systems [15, 46, 92, 96], early earth

rocks or meteorites [61, 66], single cells [67], electronic devices [144], etc.—and for single-
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feed the split ring resonator, which is coupled to the LGR. The split-ring resonator has an
inductance of 36 nH and a capacitance of 16 fF. All spatial dimensions are in mm. Optional
mounting holes and radial access port for laser excitation are not shown.

channel bulk sensing [2,15,31,40,171] targeting, for example, geosurveying or space weather

monitoring.

2.3 Microwave resonator design

A standard hole-and-slot LGR with 𝑛 outer loops may be approximated as 𝑛 coupled LC

resonators oscillating in tandem [172]. Circulating currents around the central and outer

loops create a total inductance 𝐿, given by [172]

𝐿 ≈ 1
1
𝐿𝑐

+ 1
𝑛𝐿𝑜

, (2.2)
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where 𝐿𝑐 and 𝐿𝑜 denote the inductance of the central loop and of a single outer loop,

respectively. Similarly, the 𝑛 narrow capacitive gaps create a total capacitance C, which is

given by [60]

𝐶 ≈ 𝜖𝑟𝜖0𝐴

𝑛𝑑
, (2.3)

where 𝐴 and 𝑑 are the capacitive gap side wall area and separation, respectively. The

resonant frequency of the LGR is therefore given by

𝑓0 =
1

2𝜋
√
𝐿𝐶

. (2.4)

In practice, the central loop diameter is set to ∼5-10 mm, corresponding to the typical

size of a diamond plate, whereas 𝑑 is limited by practical machining tolerances and 𝜖𝑟 by

physically available materials. The capacitive gap area 𝐴 is constrained by the dual LGR

design objectives of (i) maintaining optical accessibility, which limits the thickness of the

LGR device, and (ii) bounding 𝑓0 above the target resonant frequency in order to allow for

further tuning via shims (discussed below). Additionally, while increasing the number 𝑛 of

loops and gaps can improve 𝐵1 uniformity [120], this approach results in a denser mode

spectrum [60] and increases the likelihood of cross-mode excitations deleteriously altering

the field distribution within the central loop. As a compromise, our design employs 𝑛 = 4

outer loops [Fig. 2-1b], thus allowing for percent-scale uniformity over the specified area and

volume (see section 2.6.1) while locating the closest eigenmode more than 1.5 GHz below

the TE01 eigenmode.

The LGR detailed in this work consists of a central loop of radius 𝑟𝑐 = 4 mm surrounded

by 𝑛 = 4 symmetrically arranged outer loops of radius 𝑟𝑜 = 3 mm, as shown in fig. 2-1b. The

outer loops return magnetic flux to the central loop and therefore oscillate antisymmetrically

with the central loop (180∘ out of phase). The side walls of the capacitive gaps are separated

by 𝑑 = 260 µm. With these dimensions, Eqns. 2.2 and 2.3 predict 𝐿 = 8.7 nH and 𝐶 = 0.17

pF respectively, resulting in an expected resonant frequency for the naked air-gapped LGR of

𝑓0 = 4.1 GHz, approximately 1.2 GHz above the NV resonance frequencies. For comparison,

the measured 𝑓0 for the air-gapped resonator is in the 4.6-4.9 GHz range. The discrepancy

between the calculated and measured 𝑓0 arises from the use of idealized physical models in
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Eqs. 2.2 and 2.3, which do not account for higher order effects such as fringing electric or

magnetic fields at the loop-gap boundary [172].

The LGR resonant frequency 𝑓0 is additionally tuned by inserting and translating di-

electric shims in the LGR’s capacitive gaps, thereby increasing total capacitance 𝐶 until 𝑓0

overlaps the NV resonance frequencies as desired. As shimming material, we employ 200 µm

thick C-plane sapphire, which is commercially available in semiconductor grade 50.8 mm

diameter wafers, can be cut on standard wafer dicing saws, has a high relative permittivity

of 𝜖𝑟 = 11.5 parallel to the C-plane [162] (allowing for a large tuning of 𝑓0), and exhibits

low dielectric loss (Tan 𝛿< .0001 at 3 GHz [69,162]). The sapphire shims are cut to lengths

longer than the 𝑙𝑐 = 4 mm radial length of the capacitive gaps, wrapped in PTFE thread

tape, and securely wedged into the 𝑛 = 4 capacitive gaps. The sapphire shims are then

translated radially until the desired value of 𝑓0 is attained. To confirm that this method

of securing the shims is stable, we measured the LGR S-parameter spectrum over 48 hours

(Keysight N5232A PNA-L). During this time period, no shifts in the resonant frequency

𝑓0 were observed down to the approximate precision of the measurement (∼ 1 MHz). For

applications with stricter mechanical stability requirements, the shims can be additionally

secured post-tuning by applying low-loss epoxy or optical adhesive. The shims are positioned

so that excess shim length extends into the outer rather than the central loop, in order to

minimally perturb the central loop 𝐵1 field. Radially symmetric shim configurations produce

the highest 𝐵1 field homogeneity, as asymmetries in shim placement perturb the desired TE01

field distribution. Insertion and removal of diamonds in the LGR center loop has a negligible

effect on 𝑓0, as the large electric fields of the TE01 mode are predominantly confined to the

capacitive gaps, both in the case of the naked air-gapped LGR and to a larger extent in the

case of the sapphire-shimmed LGR.

2.4 Resonator coupling

Incident MW power 𝑃 is inductively coupled into the LGR by an exciter antenna, composed

of a split ring resonator that is differentially driven by a microstrip balun, as shown in Fig.

2-1c. The differential driving mitigates common-mode noise on the two traces, which might
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Figure 2-2: Frequency tuning and impedance matching of LGR composite device.
(a) The resonant frequency 𝑓0 is adjusted by translating the sapphire shims in the four
capacitive gaps. In the absence of a stub tuner, the LGR composite device exhibits 𝑆11

values between -10 and -20 dB from 2.5 to 3.5 GHz, indicating ≳ 90% of power delivered
to the LGR composite device contributes to 𝐵1 in this range. (b) Nearly perfect critical
coupling can be achieved with a stub tuner, allowing practically all incident MW power to
contribute to 𝐵1.

otherwise couple to the split-ring resonator. Although the microstrip balun is designed to

match the feed-line and the split ring component of the exciter antenna at frequencies near

2.87 GHz, good matching is achieved over the broader range from 2.5 GHz to 3.5 GHz.

For drive frequencies between 2.5 and 3.5 GHz, the exciter antenna board couples more

than 90% of incident MW power into the LGR, as shown in fig. 2-2a. For a specific fixed

frequency, the impedance matching may be further optimized by inserting a stub tuner

between the MW source and the exciter antenna board [Fig. 2-2b]. Modification of the

exciter circuit impedance via the stub tuner leaves the antenna magnetic field distribution

largely unperturbed.

A via shield along a portion of the balun helps reduce interference and cross-talk between

traces, controls the trace impedance, and reduces radiative losses along the balun’s 𝜋-phase

delay arm. The exciter antenna is fabricated from a 1 oz. copper trace with immersion silver

finish on 1.524 mm thick dielectric (Rogers RO4350B, 𝜖𝑟 = 3.66 at 3 GHz). Although the

proximity of the split ring resonator perturbs the field distribution inside the LGR, both
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simulations and measurements confirm this effect is small and not the dominant inhomo-

geneity source (see section 2.6.1). For applications intolerant of such perturbations or those

requiring maximal diamond optical access, we achieved similar success inductively coupling

a small coil of radius ≈ 𝑟𝑜 to one of the outer loops [89], where the coil is translated (via

mechanical stage) until the desired coupling is achieved. We expect this coupling method to

be particularly suitable for laboratory or clinical imaging applications.

2.5 Effects of microwave field inhomogeneity on magnetic

sensitivity

Section 2.1 discusses the ways in which the MW delivery design affects magnetic sensitivity,

given approximately by Eq. 2.1. In particular, the degree of optical accessibility affects the

number of photons 𝛽 collected per NV per measurement; the volume over which the MW field

is generated affects the number 𝑁 of NV sensors that can be addressed in a measurement; and

the strength and uniformity of the MW field affect the measurement contrast 𝐶. To provide

more detail on the last dependency and to illustrate the importance of field uniformity, we

simulated the measurement contrast achieved with the LGR design presented in this work

and compared it against that achieved using solely the split-ring resonator design depicted

in fig. 2-1c.

As discussed previously, split-ring resonators provide resonant enhancement and higher

MW field uniformity compared to more conventional broadband approaches, such as loops,

waveguides, and other coaxial transmission line geometries. However, split-ring resonators

and other planar designs exhibit poor uniformity perpendicular to the plane of fabrication,

and further, the MW magnetic field direction often varies significantly near the electrically

conducting elements. Both effects cause variation in the NV Rabi frequency Ω𝑅 over the

measurement volume, consequently degrading the average measurement contrast and sensi-

tivity. To illustrate, we first simulated the MW magnetic vector field generated in a volume

above the split-ring resonator and in an equivalent volume centered in the central cavity

of the LGR. We then calculated NV Rabi frequency, which, as discussed in section 2.6.1,
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Figure 2-3: Measurement contrast inhomogeneity. (a) Effective contrast variation due
to inhomogeneities in the MW magnetic field generated by the split-ring resonator. Cross-
sections are shown at y = 0 mm in the xz plane (top) perpendicular to the split-ring resonator
plane with ring centerline at x = 0 mm and the fabrication plane at z = -0.1 mm, and at
z = 0.25 mm in the XY plane (bottom) parallel to the split-ring resonator plane. The
measurement volume is separated from the split-ring resonator plane by a distance 0.1 mm
for improved MW field uniformity within the volume and is indicated by the white dashed
lines. (b) Effective contrast variation due to inhomogeneities in the MW magnetic field
generated by the loop gap resonator. Cross-sections are shown at y = 0 mm in the xz plane
(top) along the LGR symmetry axis with the LGR centered at z = 0 mm, and at z = 0
mm in the XY plane (bottom) perpendicular to the LGR symmetry axis. The measurement
volumes are indicated by the white dashed lines.

is proportional to the MW magnetic field component transverse to the NV symmetry axis.

However, since NV centers can be oriented along any of four possible crystallographic di-

rections in single-crystal diamond, it was necessary to separately calculate Rabi frequencies

corresponding to each NV orientation.

To relate NV Rabi frequency to measurement contrast, we note that in most standard

pulsed measurement protocols, finite MW pulses are applied to coherently manipulate the

NV spin states. For example, a MW 𝜋 pulse of Rabi frequency Ω𝑅 and duration 𝜏 = (𝜋/Ω𝑅)

may be applied to transfer the NV spin from the 𝑚𝑠 = 0 to the 𝑚𝑠 = +1 ground-state spin
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sublevel. However, when the MW magnetic field and consequently the NV Rabi frequency are

inhomogeneous over the measurement volume, the amount of rotation a MW pulse of fixed

duration induces on an NV spin likewise varies over the volume. Thus, we next calculated the

effective contrast 𝐶eff as a function of Rabi frequency Ω𝑅 for each NV orientation, employing

a fixed MW pulse duration 𝜏 :

𝐶eff =
𝐶0

2
[1− cos(Ω𝑅𝜏)] , (2.5)

where 𝐶0 is the maximal contrast, achieved when the NV spin undergoes a perfect 𝜋 rotation.

In an NV ensemble measurement, the normalized effective contrast is given by the average of

all four NV orientations. Considering a measurement volume given by a cylinder of radius 1

mm and thickness 0.5 mm, we show cross-sectional slices of the normalized effective contrast

for the split-ring resonator [Fig. 2-3a] and LGR [Fig. 2-3b]. The fixed MW pulse duration

𝜏 was set for each resonator individually using the duration of a 𝜋-pulse at the center-

points of the cylindrical measurement volumes. The regions of high spatial variation near

the electrically conducting elements of the split-ring resonator are the result of significant

deviation in the MW field direction combined with the sinusoidal dependence in Eq. 2.5. Note

that performing NV spin rotations significantly greater than the targeted 𝜋-rotation yields

unpredictable behavior; consequently, operation in these highly fringed regions is ill-advised.

The volume-averaged effective contrast is 0.79𝐶0 for the split-ring geometry and 0.995𝐶0 for

the LGR geometry. From Eq. 2.1, this ≈25% difference in contrast corresponds to a 25%

improvement in magnetic sensitivity achieved by the LGR compared to that achieved by the

less uniform split-ring resonator.

Finally, it is worth noting that the LGR design’s MW field is uniform over such an

extended spatial range that even a larger measurement volume defined by a cylinder of

radius 3 mm and thickness 1 mm results in only a ≈ 3% reduction in effective contrast

averaged over the 18x increased measurement volume, which is proportional to the number

𝑁 of NV sensors addressed. Thus, taking advantage of the LGR’s uniform MW field to

increase the measurement volume yields a net improvement in the magnetic sensitivity by a

factor of ≈4.
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2.6 Microwave loop gap resonator performance

2.6.1 Strength and homogeneity

The strength and homogeneity of 𝐵1 within the LGR central loop is evaluated employing

standard NV techniques, as described in detail in Ref. [119] and elsewhere [33,106]. A {100}-

cut diamond plate containing ∼ 1× 1014 NV/cm3 is mounted at the center of the LGR with

the <100> crystallographic axis collinear with the LGR axis. A rare earth magnet creates a

static magnetic bias field 𝐵0, which shifts the energies of the 𝑚𝑠 = ±1 ground-state Zeeman

sublevels. The energy shifts are given to first order by [156]

∆𝐸 ≈ gsµB𝑚𝑠�⃗�0 · �̂�𝑖, (2.6)

where �̂�𝑖 denotes a unit vector oriented along one of the four diamond crystallographic axes.

By judicious choice of �⃗�0, all eight energy levels and associated 𝑚𝑠=0↔𝑚𝑠=±1 magnetic

dipole transitions can be isolated as shown in Fig. 2-4a. The resonator is tuned to excite a

single NV transition, yielding Rabi oscillations [Fig. 2-4b]. The data is fit to an exponentially

decaying sinusoid in order to extract the Rabi frequency Ω𝑅, from which the magnitude of

𝐵1 can be calculated as

𝐵1 =
√
3
ℏΩ𝑅

gsµB
. (2.7)

In this geometry, the 𝐵1 field is oriented along the [100] crystallographic axis of the diamond,

degenerately offset from all four NV axis orientations by half the tetrahedral bond angle

𝜃tet/2 = ArcCos 1√
3
≈ 54∘. NV Rabi oscillations are driven by the 𝐵1 field component

transverse to the NV symmetry axis, reducing the Rabi frequency by
√︀

2/3 [134]. Accounting

for the rotating wave approximation introduces another factor of 1/
√
2, resulting in the

conversion factor
√
3 in Eq. 2.7. To ensure �⃗�0 is consistent for all measurements across

the LGR central loop [Fig. 2-5a], the confocal excitation volume is held fixed with respect

to the 𝐵0-generating permanent magnet, and the diamond and LGR composite device are

translated together. We employ a long working distance objective (Mitutoyo 378-803-3, M

Plan Apo 10× NA=0.28) to collect the NV fluorescence; the 34 mm working distance is

necessary to minimize perturbation of the 𝐵1 field by the metal objective housing. Future
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Figure 2-4: LGR driving of an NV ensemble. (a) The NV electron spin resonance
spectrum (—) measured under the application of bias field 𝐵0 with the LGR tuned to
resonant frequency 𝑓0 = 2.84 GHz. The bias field allows individual addressing of all eight NV
resonances, arising from the combination of the two allowed magnetic dipole transitions with
the four possible NV orientations. The NV hyperfine structure is obscured by MW power
broadening and the contrast variation between the NV resonances is attributed primarily to
the 𝑆11 line-shape, where the NV resonances closer to the LGR resonant frequency 𝑓0 are
driven more strongly and thus exhibit higher contrast. The 𝑆11 parameter is shown before
(- - -) and after (- - -) shifting the LGR resonant frequency 𝑓0 to the target NV resonance.
Arrows indicate corresponding y axes. (b) Typical data depicting Rabi oscillations under
MW excitation at the target NV resonance frequency indicated in (a). Data (∘) is fit (—)
to an exponentially decaying sinusoid.

NV wide-field imaging applications may require ceramic-tipped objectives.

Application of incident MW power 𝑃 ≈ 42 dBm yields an axially oriented 𝐵1 at the

center of the LGR with magnitude 4.7 G. The corresponding Rabi frequency Ω𝑅 = 2𝜋× 7.7

MHz for NV centers oriented at half the tetrahedral bond angle relative to the LGR axis.

Qualitatively, as shown in fig. 2-5c, 𝐵1 displays a minimum at the LGR center, increases in

magnitude with increasing radial displacement from the center, and is approximately radially

symmetric. The highest homogeneity is therefore expected at the LGR center.

The 𝐵1 field uniformity is quantitatively characterized using both the fractional root-

mean-square inhomogeneity 𝜎rms and the fractional peak-to-peak variation 𝜎pp =
[︀
𝐵max

1 −

𝐵min
1

]︀
/𝐵average

1 . The use of both metrics facilitates comparison with alternative existing

designs. Over a 32 mm2 circular area axially centered in the LGR central loop, we observe

𝜎rms=3.2% and 𝜎pp=10.5%, as shown in fig. 2-5c. Over a smaller 11 mm2 circular area, we
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observe 𝜎rms=1.6% and 𝜎pp=3%.

The LGR performance is modeled using a commercial finite element MW simulation

package (Ansys HFSS). Simulations include the exciter antenna board and indicate that its

magnetic field drops by a factor of >15 at a distance 4 mm away from the plane of fabri-

cation. In addition, the electrically-conductive exciter antenna causes a small perturbation

to the otherwise radially symmetric field (<2% maximum azimuthal variation) [Fig. 2-5b].

The simulation predicts 𝐵1 ≈ 4.8 G at the LGR center with incident MW power 𝑃 = 42

dBm. Within a 32 mm2 circular area centered in the LGR central loop, simulations indicate

𝜎rms = 3.8% and 𝜎pp = 11%, whereas within a smaller 11 mm2 circular area, simulations

indicate 𝜎rms =1% and 𝜎pp =2%. These simulation results are in good agreement with the

measurements.

As a three-dimensional cavity resonator, the LGR provides better axial field uniformity

than planar-only geometries [7, 83, 95]. For example, for a 3.14 mm3 cylindrical volume (1

mm radius disk with 1 mm thickness), simulations yield 𝜎rms = 0.8%, 𝜎pp = 3.7%, and an

average 𝐵1 of 4.8 G.

2.6.2 Resonator power handling

Heat loads applied to the LGR composite system are expected to result in thermal drift and

other non-linearities, degrading device performance and measurement reproducibility. For

example, thermal expansion of the resonator slightly alters the values of L and C, causing

the resonant frequency to shift. The main source of direct heating in the LGR composite

system is incident MW power. Under the approximation that all MW power is dissipated

by the finite resistivity of the titanium alloy, the heat load is expected to be the product of

the MW power and the MW duty cycle. Fortunately, in standard pulsed NV measurement

protocols, the MW power is applied with low duty cycle (in this work < 1.3%), resulting in

little heating of the resonator. For example, the Rabi frequency measurements performed in

this work employed a maximum MW pulse duration of 1 µs with input power 42 dBm. Using

the specific heat capacity of Ti-6A-4V grade 5 titanium [≈ 0.526 J/(g·K)] and the resonator

mass (≈ 14 g), a single MW pulse induces at most a ∼ 2 µK increase in the average LGR

temperature.
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Figure 2-5: 𝐵1 field uniformity of LGR composite device. (a) An NV-containing 4.5
mm × 4.5 mm diamond plate is placed in the LGR central loop, and the Rabi frequency is
measured where indicated (•,•,•,•) to characterize 𝐵1. (b) The 𝐵1 field is simulated in an
axial slice at the resonator center (symmetry plane of the LGR). The 𝐵1 field distribution
is approximately radially symmetric, with the leading order deviation resulting from the
exciter antenna. Dashed lines indicate the 32 mm2 and 11 mm2 areas within which the
𝐵1 field uniformity is evaluated. (c) 𝐵1 field measurements (∘,∘,∘,∘) at the points depicted
in (a) and simulations (–,–,–,–) along each locus of points are in good agreement. Error
bars indicate 1-sigma uncertainty for the 𝐵1 measurement. Dashed lines indicate the radial
boundaries of the 32 mm2 and 11 mm2 areas over which 𝐵1 field uniformity is evaluated.
The measured 𝐵1 uniformity is given for each area.

Measurements show the cavity resonant frequency shifts down by ∼ 6 MHz/Watt of time-

averaged power applied to the device. Detailed analysis of thermal effects are beyond the

scope of this chapter. For applications where heat loads induce undesirably large temperature

shifts, the resonator can be affixed to an electrically insulating heat sink or heat spreader to

more efficiently dissipate the input heat.

The LGR composite system may also experience indirect heating due to optical driving,

which is applied in most NV measurements, typically at higher duty cycles compared to
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those of MW driving. For example, the Rabi frequency measurements performed in this

work employed an optical drive power of 13 mW at a duty cycle of ∼84%. Assuming at most

half of the optical power is absorbed into the diamond as heat, the estimated increase in

the diamond’s equilibrium temperature is <1 K. Since the diamond is not in contact with

the MW resonator, such a temperature change has negligible effect on the LGR temperature

for the measurements performed in this work. However, significantly higher optical drive

powers may be used in a number of the applications expected to benefit from employing the

LGR design for MW delivery. For example, we have observed optical powers in excess of 4

W to increase the diamond equilibrium temperature by ≳250 K. In this case, properly heat

sinking the diamond can reduce indirect heating effects on the LGR.

It is also worth noting that heating of the system can additionally cause thermal expansion

of the diamond mounting material, consequently displacing the diamond as a function of

temperature. In this case, the LGR provides an important benefit: due to the high degree

of MW field uniformity over long length-scales, the MW magnetic field experienced by the

diamond is minimally affected by small displacements in its position within the resonator

cavity. For example, displacing a 4 mm x 4 mm x 1 mm diamond axially by 0.1 mm

causes a <0.05% change in the average MW field strength. However, if desired, diamond

displacement can be minimized by employing mounting material with high heat capacity,

low thermal expansion, and/or high thermal conductivity.

2.6.3 Axial field uniformity

Figure 2-6 plots the simulated magnitude of 𝐵1 along the LGR’s symmetry axis, illustrating

the improved axial field uniformity possible with three-dimensional cavity resonators [7, 83,

95], compared to that of planar-only geometries. The presence of the split ring resonator

at 𝑧 = 4.024 mm perturbs 𝐵1 inside the LGR, shifting the point of maximal 𝐵1 down by

0.4 mm, away from the split ring resonator. Within a cylindrical volume of 3.14 mm3 (1

mm radius and 1 mm thickness), centered around the point of maximal 𝐵1, the simulation

predicts 𝜎rms = 0.78% and 𝜎pp = 3.7%. For a larger cylindrical volume of 12.6 mm3 (2

mm radius and 1 mm thickness), the simulation predicts 𝜎rms = 2% and 𝜎pp = 8%. These

dimensions are comparable to those of commercially available single-crystal diamonds.
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Figure 2-6: Simulated 𝐵1 field along LGR symmetry axis. The symmetry plane of the
LGR is located at 𝑧 = 0 mm. The edges of the LGR are at 𝑧 = ±2.5 mm, and the split-ring
resonator is located at position 𝑧 = 4.0 mm. The presence of the split-ring resonator shifts
the point of maximal 𝐵1 off center to 𝑧0 = −0.4 mm.

Outside of the LGR cavity, the simulated magnitude of 𝐵1 decays approximately expo-

nentially as a function of distance from the LGR surface in the near field, resulting in a

hundred-fold reduction in the field magnitude approximately 1.5 cm from either surface (in

the absence of the split ring resonator). In the far field (>10𝜆), the LGR behaves like a

dipole, with the MW field falling off as 𝑧−3, where 𝑧 is the axial distance from the LGR

center.

2.7 Discussion

The device presented here exhibits further benefits, along with extensions tailored for specific

applications. For example, for ubiquitously employed pulsed measurement protocols, a short

ring-down time

𝜏ring =
𝑄

𝜋𝑓0
, (2.8)
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(i.e., the characteristic time for 𝐵1 to decay to 1/𝑒 times its maximum value) is necessary

for high-fidelity pulse shape control. Although techniques to compensate for long ring-

down times are effective [24,117,152], shorter native values of 𝜏ring are nonetheless generally

desired [118, 129]. The observed loaded quality factor 𝑄𝐿 = 36 corresponds to a ring-down

time of 𝜏ring = 4 ns, making the device suitable for standard pulsed protocols [78,148].

Due to square-root scaling of 𝐵1 with incident MW power (𝐵1 ∝
√
𝑃 ), higher power

handling can allow for stronger 𝐵1 fields. The non-planar resonator design allows for other-

wise higher incident MW powers as currents circulate over an extended 2D surface (versus

the 1D edge for a planar structure). Further, the metallic LGR thermal mass and thermal

conductivity allow efficient heat transfer and sinking, resulting in improved device stability

and power handling. The LGR composite device is expected to allow > 100 W for CW

and pulsed operation, limited by dielectric breakdown of air in the 260 µm capacitive gaps.

Should available MW power be constrained, stronger 𝐵1 can be achieved by fabricating the

LGR from a more electrically conductive material (e.g. silver or copper) at the expense of

bandwidth. In such circumstances, the bandwidth can be continuously adjusted above its

minimum value by over-coupling the resonator (at the expense of reduced 𝑄𝐿).

While the presented LGR is 5 mm thick, the fundamental hole-and-slot approach is

expected to be feasible for a variety of thicknesses. A thicker device will provide better

field uniformity at the expense of optical access. In contrast, for applications requiring MW

delivery over a thin planar volume, we expect the LGR can be fabricated via deposition

on an appropriate insulating substrate, as discussed in Refs. [159, 160]. We have found

semi-insulating silicon carbide [136] suitable due to the material’s high thermal conductivity

(≈490 W/(m·K) [125, 127], high Young’s modulus, moderate cost, and wide availability in

semi-conductor grade wafers. Our simulations suggest the planar LGR approach can offer

modest improvements in 𝐵1 homogeneity over split ring resonators.

As discussed previously, although the exciter antenna facilitates a compact, vibration-

resistant, and portable device, this component introduces non-idealities in both field unifor-

mity and optical access (see section 2.6.3). As similar scattering parameters are obtained by

inductively coupling a small coil to one of the LGR outer loops, this latter solution may find

favor for applications requiring maximal optical access and, furthermore, requires no PCB
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fabrication.

2.8 Conclusion

In summary, this chapter presents an S-band tunable loop gap resonator (LGR), which

provides strong, homogeneous, and directionally uniform broadband microwave (MW) drive

for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device

provides drive field amplitudes approaching 5 G over a circular area ≳ 50 mm2 or cylindrical

volume ≳ 250 mm3. The wide 80 MHz device bandwidth allows driving all NV Zeeman

resonances for bias magnetic fields below 20 G. The device realizes percent-scale MW drive

inhomogeneity; we measure a fractional root-mean-square inhomogeneity 𝜎rms = 1.6% and a

peak-to-peak variation 𝜎pp = 3% over a circular area of 11 mm2 and 𝜎rms = 3.2% and 𝜎pp =

10.5% over a larger 32 mm2 circular area. We demonstrate incident MW power coupling

to the LGR using two methodologies: a printed circuit board-fabricated exciter antenna for

deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style

imaging. The inductive coupling coil allows for approximately 2𝜋 steradian combined optical

access above and below the device, ideal for envisioned and existing NV imaging and bulk

sensing applications.
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Chapter 3

Cavity-enhanced microwave readout of

solid-state spin sensors

Portions of this chapter have appeared in print in the following publication:

"Cavity-enhanced microwave readout of a solid-state spin sensor," E. R. Eisenach,

J. F. Barry, M. F. O’Keeffe, J. M. Schloss, M. H. Steinecker, D. R. Englund, and

D. A. Braje. Nature Communications 12, Article number: 1357 (2021)

3.1 Introduction

Quantum devices employing optically active solid-state spin ensembles promise broad util-

ity [32,47,70,113,156] but are plagued by poor readout [14]. In this chapter, I demonstrate

a non-optical readout technique for solid-state spin-ensemble sensors. The technique lever-

ages strong collective coupling between a dielectric resonator cavity and a spin ensemble

at room temperature. Similar coupled spin-cavity systems have recently been harnessed

to demonstrate a room-temperature maser [28] and Dicke superradiance [27, 48]. Related

cavity quantum electrodynamics (CQED) effects have also been employed for quantum in-

formation applications in cryogenic solid-state [5,8,9,76,91,95,124,126] and superconducting

qubit [20, 163, 174] systems. Cavities also have been used to great effect in electron param-

agnetic resonance (EPR) to amplify weak signals from samples under study [122], including
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for the observation of the spectrum of a nitrogen-vacancy (NV) center in diamond on illumi-

nation with light [101]. Quantitative EPR spectroscopy remains an area of active research

for biological, medical, and industrial applications [52]. Here I report the use of a strongly

coupled, room temperature spin-cavity system for sensor applications, providing in detail

new insights into optimization of such systems for sensing.

This advance promises what has long been elusive for quantum sensors based on solid-

state spin ensembles: a clear avenue to readout at the spin-projection limit. Because the

sensor’s limiting noise source is independent of the number of polarized spin defects 𝑁 , the

device’s sensitivity is expected to improve linearly with increasing 𝑁 until the spin-projection

limit is reached.

3.2 Results

The readout technique operates by measuring changes in an applied MW field following

cavity-enhanced interactions with a spin ensemble. When the MW frequency is tuned near-

resonant with the spin defect’s resonance frequency, both absorptive and dispersive interac-

tions occur [158]. These interactions encode the spin resonance in the amplitude and phase

of the transmitted or reflected MWs. While the absorptive and dispersive interactions may

be too weak on their own to cause perceptible changes in the MW field, even for a size-

able spin ensemble, these effects can be enhanced more than ten-thousandfold by placing

the ensemble in a high-quality-factor cavity resonant with the applied MWs. Dispersion

and absorption by the spin ensemble then modify the resonance frequency and linewidth of

the composite cavity-spin system, respectively. Consequently, detection of the transmission

through or reflection from the composite cavity provides readout of the spin resonance [52].

3.2.1 Experimental setup

In the experiments described here, NV- defects are continuously initialized by applying

532 nm laser light. This optical pumping preferentially populates the spin-1 NV- ground-state

sublevel |𝑚𝑠 = 0⟩, spin-polarizing the NV- ensemble, as shown in the energy level diagram

in Fig. 3-1a. At zero magnetic field, the defect has a splitting 𝐷 ≈ 2.87 GHz between the
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Figure 3-1: Experimental setup for MW cavity readout of NV- centers in diamond.
(a) Level diagram. The NV- ground-state spin triplet (3A2) exhibits a 2.87 GHz zero-field
splitting between the |𝑚𝑠 = 0⟩ and degenerate |𝑚𝑠 = ±1⟩ states. This degeneracy may be
lifted by application of a bias magnetic field 𝐵0, allowing individual addressing of either the
|𝑚𝑠 = 0⟩ ↔ |𝑚𝑠 = −1⟩ or |𝑚𝑠 = 0⟩ ↔ |𝑚𝑠 = +1⟩ transitions. Optical pumping with 532 nm
light initializes spins to the |𝑚𝑠 = 0⟩ state via a non-radiative decay path (1A1 → 1E). (b)
Microwave cavity magnetic field. Interactions between the interrogation photons and the
NV- ensemble can be enhanced by placing the diamond inside a cavity resonant with the
applied photons. As illustrated in the axial cut of the composite cavity, the diamond (solid
black) is placed near the antinode of the magnetic field (white arrows) created by the two
dielectric resonators (black dashed).

|𝑚𝑠 = 0⟩ state and the |𝑚𝑠 = ±1⟩ states. Application of a tunable bias magnetic field �⃗�0

lifts the degeneracy of the |𝑚𝑠 = ±1⟩ states, allowing either of the |𝑚𝑠 = 0⟩ ↔ |𝑚𝑠 = ±1⟩

MW transitions to be individually addressed spectroscopically. The external bias field �⃗�0

is oriented along the diamond’s ⟨100⟩ axis to project equally onto all four NV- orientations.

The MWs are applied with drive frequency 𝜔𝑑 near-resonant with the |𝑚𝑠 = 0⟩ ↔ |𝑚𝑠 = +1⟩

transition (with resonance frequency 𝜔𝑠), and we restrict our discussion to the effective two-

level system formed by these states.

The composite MW cavity consists of two concentric cylindrical dielectric resonators sur-

rounding a high-NV--density diamond mounted on a mechanical support wafer. We define

the bare cavity resonance frequency 𝜔𝑐 as the resonance frequency of the system in the ab-

sence of laser-induced spin polarization. Positioning the diamond at the MW magnetic field

anti-node, as shown in Fig. 3-1b, maximizes the ensemble-photon coupling. An adjustable
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input coupling loop couples the MW field into the composite cavity. A circulator allows for

reflection measurements, while a supplementary output coupling loop allows for transmis-

sion measurements, as depicted in Fig. 3-2. The composite MW cavity exhibits an unloaded

quality factor of 𝑄0 = 22, 000.

We use a natural, brilliant-cut diamond with volume 𝑉dia = 25 mm3 which was subse-

quently HPHT-processed and irradiated following the Lucent process [161]. From electron

paramagnetic resonance (EPR) measurements and comparison with a reference sample, the

NV- density is estimated to be [NV-] = 5 ± 2.5 ppm, corresponding to a total NV- number

𝑁tot = 2 ± 1 × 1016. As a natural diamond, the sample displays substantial strain and ex-

hibits an inhomogeneous dephasing time 𝑇 *
2 of 40 ns. The P1 centers (as interrogated via

EPR) exhibit a full-width-half-maximum linewidth of 910 kHz, of which approximately 300

kHz can be attributed to broadening from 13C spins [14]. The residual 610 kHz linewidth

suggests an approximate total nitrogen concentration [NT]=18 ppm [17], while integration

of the P1 EPR signal suggests [N0
𝑠] = 22 ppm. For simplicity we assume [NT] = 20 ppm,

which corresponds to an estimated NV- decoherence time 𝑇2 = 8 µs. The value of [NV0] is

evaluated using the method of Alsid et al to be [NV0] = 1± 0.5 ppm [4].

The diamond is affixed to a semi-insulating wafer of silicon carbide (SiC) for mechanical

support and located coaxially between two cylindrical dielectric resonators (relative dielectric

𝜖𝑟 ≈ 34, radius 𝑎 = 8.17 mm, cylindrical length 𝐿 = 7.26 mm, with a 4 mm diameter center-

cut hole). The combined diamond-resonator composite cavity has a resonance frequency

𝜔𝑐 = 2𝜋 × 2.901 GHz and an unloaded quality factor 𝑄0 ≈ 22000. The composite cavity

is centered inside an aluminum shield (inner diameter = 50.8 mm, length = 89 mm) to

reduce radiative losses. NV- centers within the diamond are continuously polarized into the

|𝑚𝑠 = 0⟩ Zeeman sublevel energy level by approximately 12 W of 532 nm optical excitation.

A neodymium-iron-boron permanent magnet applies a 19.2 G static magnetic field �⃗�perm

along the diamond’s ⟨100⟩ axis. An additional test coil applies a tunable magnetic field

(�⃗�coil) along the same direction; the total bias field �⃗�0 can then be varied over the range

19.2± 25 G.

Fig. 3-2 depicts the main MW circuit components. Microwaves (produced by a Keysight

E8257D PSG) at frequency 𝜔𝑑 are split into a signal and reference component, with the signal
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Figure 3-2: Device schematic. Applied MWs near-resonant with both the cavity and spin
transitions are split into a signal component which interrogates the composite cavity through
a circulator (lower branch) and a reference component (upper branch). Microwaves reflected
from the composite cavity are amplified before being mixed with the reference component by
an IQ mixer whose dual outputs are digitized. Alternatively, reflected MWs can be read out
via a MW crystal detector or measured directly using an oscilloscope with sufficiently high
sampling rate. Transmission measurements employ only an amplifier and a crystal detector.
A photodiode monitoring red fluorescence allows simultaneous optical readout.

components passing through an attenuator and circulator before coupling into the composite

cavity. The MWs are inductively coupled to the composite cavity by a wire loop (the

input coupling loop) mounted on a translation stage. MWs reflected from the cavity can be

measured in one of three ways: directly via the 50 Ω termination of an oscilloscope; through

an amplifier followed by a crystal detector (which measures a correlate of the reflected power);

or through an amplifier to the RF port of an IQ mixer, with the local oscillator (LO) port

driven by the reference MW component. Transmission occurs through an additional wire

loop (the output coupling loop) on a translation stage and is measured on a crystal detector.
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3.2.2 Spin-cavity interaction

The interaction between a MW photon and a single spin is described by the Jaynes-Cummings

Hamiltonian [38],

ℋ = ℏ𝜔𝑐�̂�
†�̂�+

1

2
ℏ𝜔𝑠�̂�𝑧 + ℏ𝑔𝑠

(︀
�̂�†�̂�− + �̂��̂�+

)︀
, (3.1)

where �̂�† and �̂� are the creation and annihilation operators respectively (for photons at the

bare cavity frequency 𝜔𝑐); 𝜔𝑠 is the spin resonance frequency; and �̂�𝑧, �̂�+, and �̂�− are the

Pauli-Z, raising, and lowering operators. The single-spin-photon coupling 𝑔𝑠 at the cavity

antinode is 𝑔𝑠 = 𝛾
2
n⊥

√︁
ℏ𝜔𝑐𝜇0

𝑉cav
[7,137,180], where 𝛾 is the electron gyromagnetic ratio, 𝜇0 is the

vacuum permeability, ℏ is the reduced Plank constant, and 𝑉cav is the mode volume of the

microwave cavity resonance. The coefficient n⊥ ≤ 1 is a geometrical factor, which is required

because only the component of the cavity field transverse to the spin quantization axis can

drive transitions (and the spin quantization axis may be set by a crystallographic axis, at an

energy scale much greater than that of the coupling between the magnetic field and the spin).

When the cavity and spin resonances are nearly degenerate, which is the regime employed

in this work, the hybridized spin-cavity modes result in the familiar spectroscopic feature

known as Rabi splitting.

For an ensemble of 𝑁 polarized spins, the Jaynes-Cummings model is generalized to

the Tavis-Cummings model [87, 155], with 𝑔𝑠 replaced by the effective collective coupling

𝑔eff = 𝑔𝑠
√
𝑁 [42]. Predictions of this model are consistent with measurements of the MW re-

sponse of solid-state spin ensembles strongly coupled to dielectric resonators at room temper-

ature [27,28]. Since the MW cavity magnetic field varies by only a small amount (≈ ±3.5%)

over the diamond volume, we assume each spin has an identical coupling strength 𝑔𝑠.

In order to provide connection with the physical parameters of the experimental ap-

paratus, it is convenient to develop a description of the system in terms of an equivalent

circuit model (the full derivation of which is described in the Appendix B-E). The result-

ing RLC circuit model provides expressions for the reflection and transmission coefficients,

which can then be formulated in terms of the quantum mechanical parameters of the system.

With an ensemble undergoing constant optical-pumping-induced spin polarization at a rate
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𝜅op = 1/𝑇 op
1 , the voltage reflection coefficient is given by

Γ = −1 +
𝜅𝑐1

𝜅𝑐
2 + 𝑗(𝜔𝑑 − 𝜔𝑐) +

𝑔2eff
𝜅𝑠
2
+𝑗(𝜔𝑑−𝜔𝑠)+

𝑔2s 𝑛cav·𝜅𝑠/(2𝜅op)
𝜅𝑠
2 −𝑗(𝜔𝑑−𝜔𝑠)

, (3.2)

where the cavity loss rate 𝜅𝑐 ≡ 𝜅𝑐0 + 𝜅𝑐1 + 𝜅𝑐2 is the sum of the unloaded, input port,

and output port loss rates, respectively; 𝜅𝑠 = 2/𝑇2 is the homogeneous width of the spin

resonance (with decoherence time 𝑇2); and 𝑛cav is the average number of cavity photons.

In section B I derive the corresponding expression for the transmission coefficient. Here,

to simplify the presentation, we have omitted in (3.2) integration over the inhomogeneous

distribution of spin resonance frequencies; this distribution can be included following the

methods of Refs. [49,90]. We find that the inhomogeneous linewidth must be accounted for

to produce optimal agreement in numerical models used to fit the experimental data. The

reflection and transmission equations including integration over the inhomogeneous linewidth

are discussed and depicted in Appendix E.

3.2.3 Readout mechanism

To understand the readout mechanism, we first consider only the dispersive effect of the NV-

ensemble, neglecting the effect of absorption. (This simplification is valid for sufficiently high

MW power, where the absorptive effect is suppressed relative to the dispersive effect). With

𝜔𝑠 = 𝜔𝑐 (and neglecting absorption), reflection from the cavity remains unchanged regardless

of the state of the NV- ensemble (e.g., regardless of whether optical spin-polarization light is

applied). As 𝜔𝑠 shifts away from 𝜔𝑐, however, the NV- ensemble produces a dispersive shift

that modifies the composite cavity’s resonance frequency, resulting in an increase in reflected

MW power. Moreover, the dispersive effect produces a phase shift in the reflected voltage

Γ𝑉In relative to the incident MWs (where Γ is the complex reflection coefficient and 𝑉In is the

incident MW voltage), and the sign of this phase shift depends on the sign of 𝜔𝑠 − 𝜔𝑐. This

allows the use of a phase-sensitive measurement technique by monitoring the quadrature

port of an IQ mixer. Because the voltage on this port changes sign for deviations of 𝜔𝑠

above or below 𝜔𝑐, with a zero-crossing for 𝜔𝑠 = 𝜔𝑐, this measurement technique inherently
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Figure 3-3: Readout on an IQ mixer. Measured in-phase and quadrature channels of an
IQ mixer during MW cavity readout at 5 dBm of applied MW power. The MW drive 𝜔𝑑 is set
to the bare cavity frequency 𝜔𝑐, and, using the test coil, the spin-cavity detuning (𝜔𝑠−𝜔𝑐) is
swept from −15 MHz to 15 MHz. Finally, the phase of reference component (See Fig 3-2) is
adjusted manually until the dispersive and absorptive signals are isolated to the quadrature
and in-phase channels of the mixer, respectively. Data was taken under lower MW irradiation
than in Figures 2-3 to avoid saturating the output of the low noise amplifier. The voltage
signal here is measured after amplification and mixing with an effective gain (comprised of
the amplifier gain 18 dB and mixer conversion loss 10.5 dB) of 7.5 dB. (a) Readout using
a diamond with imhomogeneous linewidth 8 MHz. Hyperfine are not discernible due to
high crystal strain. (b) Readout using a diamond with imhomogeneous linewidth 1 MHz.
Hyperfine features are discernible, but partially obscured due to MW power broadening.

provides unity contrast.

3.2.4 Cavity-enhanced readout and comparison to ODMR

Readout as measured through the IQ mixer is depicted in Fig. 3-3. The signal corresponds

to 5 dBm of incident MW power and the phase on the reference arm is set such that the

dispersive effect of the cavity is isolated to the quadrature channel and the absorption effect

is isolated to the in-phase channel. Depicted are the responses to two different diamonds sub-

jected to the same experimental conditions. For example, Fig. 3-3b illustrates the response

using a diamond that has discernible hyperfine features.

The readout method also provides a cavity-mediated narrowing of the magnetic resonance

54



0.0

N
or

m
. 

co
lle

ct
ed

 f
lu

or
es

ce
n
ce

 

N
or

m
. 

re
fl
ec

te
d
 M

W
 p

ow
er

0.05

0.97

0 5 10 15 20-5-10-15-20

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

B0 (Gauss)
0

x19

3 6 9-3-6-9

) ( (MHz2)/𝜔 −𝜔 )( cs

0.0

N
or

m
. 

co
lle

ct
ed

 f
lu

or
es

ce
n
ce

 

N
or

m
. 

re
fl
ec

te
d
 M

W
 p

ow
er

0.01

0.98

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20-5-10-15-20
) ( (MHz2)/𝜔 −𝜔 )( cs

B0 (Gauss)
0 3 6 9-3-6-9

Figure 3-4: Comparison of contrast and linewidth in MW cavity readout mag-
netic resonance and ODMR. The signal associated with the NV- |𝑚𝑠 = 0⟩ ↔ |𝑚𝑠 = +1⟩
magnetic resonance is recorded simultaneously using MW cavity readout (blue solid line)
and conventional optical readout (red solid line). The MW cavity readout realizes con-
trasts 𝐶 = 0.97 and 𝐶 = 0.98, limited by imperfect circulator isolation, while conventional
optical readout realizes contrast 𝐶 = 0.05 and 𝐶 = 0.01. For ease of comparison with
the ODMR lineshape, MW cavity readout is performed here using a phase-insensitive mea-
surement of reflected MW power, rather than the phase-sensitive technique. Fits from the
inhomogeneously-broadened numberical model (blue dashed line) and a Lorentzian model of
ODMR (red dashed line) are also shown. The inset shows both readout signals scaled to the
same peak-to-peak values, highlighting the ≈ 2× narrowing of the magnetic resonance fea-
ture observed with MW cavity readout. The left-right asymmetry in the MW cavity readout
signal is attributed to a ≈ −20 kHz detuning of the applied microwaves from the bare cavity
resonance. The applied MW power is 10 dBm.

feature. This narrowing is illustrated in Fig. 3-4, which shows the MW cavity readout mag-

netic resonance signals of two different diamonds plotted alongside simultaneously recorded

conventional optically-detected magnetic resonance (ODMR) signals. The MW cavity read-

out feature of Fig. 3-4a exhibits a FWHM linewidth of 4 MHz, while the ODMR linewidth

is 8.5 MHz (FWHM). To understand this narrowing, consider the resonance feature asso-

ciated with reflection from the bare cavity (i.e., the composite cavity without laser light

applied) vs. MW drive frequency 𝜔𝑑. The cavity linewidth 𝜅𝑐 is independent of the spin

resonance linewidth 𝜅𝑠 and, in principle, can be made narrower than the spin resonance

by improving the cavity quality factor 𝑄0. The linewidth of the cavity-mediated magnetic

resonance feature, however, is a function of both the cavity linewidth and the spin resonance
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linewidth; roughly speaking, the former determines the dispersive shift needed to reflect 80%

input power, while the latter partially determines the size of the dispersive shift for a given

change in magnetic field. Moreover, the size of the dispersive shift for a given change in

magnetic field is not determined solely by the spin resonance linewidth; the size of this shift

increases with increased cooperativity. Thus, the cavity-mediated linewidth can be narrower

than the spin resonance linewidth for sufficiently large values of 𝑔eff and sufficiently small

values of 𝜅𝑐. The cavity-mediated narrowing is advantageous to magnetometer operation,

as narrower magnetic resonance features can be localized with greater precision. The line

narrowing effect is in agreement with expected behavior from the numerical model including

inhomogeneous broadening, as shown in Fig. 3-4.

The data in Fig. 3-4 are collected employing the crystal detector to measure reflected

MW power. The MW drive is set to the bare cavity resonance, 𝜔𝑑 = 𝜔𝑐. The input coupling

loop is critically coupled to the composite cavity, and the output coupling loop is removed,

so that 𝜅𝑐 = 𝜅𝑐0/2. The spin transition frequency 𝜔𝑠 is tuned across the cavity resonance 𝜔𝑐

by varying the value of �⃗�coil as detailed above. An auxiliary photodiode allows simultaneous

measurement of the NV- fluorescence signal. In this measurement configuration, the contrast

is slightly below unity due primarily to the imperfect isolation of the MW circulator. (For

CW measurements, as performed here, we define the contrast 𝐶 = 𝑎−𝑏
𝑎

where 𝑎 and 𝑏 denote

the respective maxima and minina signal values when the bias field is swept over the magnetic

resonance.)

3.3 Conclusion

The MW cavity readout method demonstrated here offers compelling advantages over al-

ternative approaches for bulk solid-state quantum sensors. First, the method realizes unity

contrast and circumvents the photon shot noise limitations inherent to conventional optical

readout. In addition, unlike alternative optical readout techniques, MW cavity readout does

not introduce deleterious overhead time in the measurement process. Although demonstrated

here using NV- centers in diamond, MW cavity readout can be performed on other solid-state

crystals and paramagnetic spins, and is not exclusive to the small minority demonstrating
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optical fluorescence with significant spin-state dependence. For example, di-vacancy [56] and

silicon-vacancy centers [108] in silicon carbide can be optically spin polarized, but these de-

fects display poor fluorescence contrast between spin states [30]; thus, cavity-enhanced MW

readout could offer advantages for sensors based on these defects. As a demonstration, in

the following chapter, I briefly present and discuss cavity-enhanced MW readout performed

on chromium defects in sapphire (see section 4.6). Due to the high natural abundance of

chromium defects, the larger zero field splitting, and the dielectric properties of the host

crystal, no optical pumping is required to see a strong spin-cavity interaction. Finally, the

cavity-enhanced MW readout technique promises favorable scaling; the measurement SNR

increases linearly with the number (𝑁) of defects interrogated, allowing for readout at the

spin-projection limit for sufficiently large 𝑁 .
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Chapter 4

Magnetometry using cavity-enhanced

microwave readout

Portions of this chapter have appeared in print in the following publications:

"Cavity-enhanced microwave readout of a solid-state spin sensor," E. R. Eisenach,

J. F. Barry, M. F. O’Keeffe, J. M. Schloss, M. H. Steinecker, D. R. Englund, and

D. A. Braje. Nature Communications 12, Article number: 1357 (2021)

"Thermally-Polarized Solid-State Spin Sensor" R. Wilcox, E. R. Eisenach, J. F.

Barry, M. H. Steinecker, M. F. O’Keeffe, D. R. Englund, and D. A. Braje. Phys.

Rev. Applied 17, 044004 (2022)

4.1 Introduction

In this Chapter, I demonstrate magnetometry using the cavity-enhanced microwave readout

technique and an ensemble of NV- centers in diamond–though the method has broad appli-

cability to any paramagnetic defect with a microwave (MW) resonance (provided there is a

means of inducing spin polarization). In addition to providing unity measurement contrast

and circumventing the shot-noise limitation inherent to conventional optical spin readout,

the readout method introduces no substantial overhead time to measurements and results

in a cavity-mediated narrowing of the magnetic resonance features. This narrowing is par-
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ticularly advantageous in magnetometry, as a narrower magnetic resonance feature can be

localized in frequency with greater precision. Because the sensor’s limiting noise source is

independent of the number of polarized spin defects 𝑁 , the device’s sensitivity is expected

to improve linearly with increasing 𝑁 until the spin-projection limit is reached.

4.2 Results

4.2.1 Cooperativity and sensitivity

Neglecting absorption, the imaginary part of the reflection coefficient of eq. (3.2) can be

approximately expressed in a more illuminating form within a particular regime relevant

to magnetometry. For critical input coupling (𝜅𝑐1 = 𝜅𝑐0), no output coupling (𝜅𝑐2 = 0),

and 𝜔𝑑 = 𝜔𝑐, the reflection coefficient in the limiting case of small spin-cavity detunings

(|𝜔𝑠 − 𝜔𝑐| ≪ 𝜅𝑠/2) is approximately given by

Im[Γ] ≈ 8𝑔2eff
(𝜅*

𝑠)
2𝜅𝑐

(𝜔𝑐 − 𝜔𝑠) , (4.1)

where 𝜅*
𝑠 characterizes the inhomogeneous linewidth. This approximate expression is valid

for 𝑛cav high enough to saturate the homogeneous linewidth 𝑛cav ≫ 𝜅𝑜𝑝𝜅𝑠

2𝑔2𝑠
but below the

number to produce substantial power broadening 𝑛cav ≲ 𝜅𝑜𝑝𝜅*
𝑠

2𝑔2𝑠
. Equation 4.1 highlights the

potential of this technique for high-sensitivity magnetometry, as Im[Γ] is proportional to

spin-cavity detuning.

The prefactor 8𝑔2s𝑁
(𝜅*

𝑠)
2𝜅𝑐

in (4.1) is closely related to the collective cooperativity, a di-

mensionless figure of merit for the ensemble-cavity coupling strength typically defined as

𝜉 =
4𝑔2eff
𝜅𝑠𝜅𝑐

[154]. To maximize spin readout fidelity, it is important to engineer the coopera-

tivity of the ensemble-cavity system to be as large as possible.

4.2.2 Strong ensemble-cavity coupling at room temperature

The system’s cooperativity is experimentally determined from the avoided crossing observed

in recorded reflected and transmitted MW power, which are measured as the spin resonance
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Figure 4-1: Strong ensemble-cavity coupling under ambient conditions. The spin
resonance frequency is swept relative to the bare cavity resonance (horizontal axis) by varying
the applied magnetic field; simultaneously varying the MW drive frequency (vertical axis)
reveals the spin-ensemble-modified composite cavity resonance. Data are recorded both in
reflection (a) and transmission (b). The data are fit (c - d) to (3.2) and (4.2) using a 2D
nonlinear least-squares solver. The fit gives 𝑔eff = 2𝜋×0.70 MHz; see Methods for additional
fit parameters. Each plot is normalized to unity, and recorded data is taken with −56 dBm
of MW drive power.

frequency 𝜔𝑠 and MW drive frequency 𝜔𝑑 vary with respect to the bare cavity resonance

𝜔𝑐. These measurements, shown in Fig. 4-1, are performed at low MW drive power to

avoid perturbing the system. Reflection and transmission data in Fig. 4-1 are collected

simultaneously. For both transmission and reflection measurements, the MWs are detected

using a crystal detector operating in the linear regime. During this measurement, both the

input and output coupling loops are undercoupled, resulting in a full-width-half-maximum

(FWHM) loaded cavity linewidth of 𝜅𝑐 = 2𝜋 × 200 kHz (given the measured loaded quality

factor 𝑄𝐿 = 14500) . �⃗�coil is increased from approximately -6.8 G to +6.8 G (altering 𝜔𝑠)
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in steps of 0.068 G while the MW drive 𝜔𝑑/(2𝜋) is varied relative to 𝜔𝑐/(2𝜋) over the range

-800 kHz to +800 kHz. At each step of the bias field (�⃗�coil) sweep and at each MW drive

frequency, the reflected and transmitted MWs are measured. The 2D power data are then fit

to the square of the voltage reflection (eq. (3.2)) and the square of the voltage transmission,

given by

𝑇 =

√
𝜅𝑐1𝜅𝑐2

𝜅𝑐

2
+𝑗(𝜔𝑑−𝜔𝑐)+

𝑔2eff
𝜅𝑠
2
+𝑗(𝜔𝑑−𝜔𝑠)+

𝑔2𝑠𝑛cav·𝜅𝑠/(2𝜅op)
𝜅𝑠
2 −𝑗(𝜔𝑑−𝜔𝑠)

. (4.2)

The reflection and transmission coefficients are consistent with those derived from a quantum

mechanical treatment of the electromagnetic field [64,75,153] using input-output theory [62,

164]. The final fit parameters are 𝑔eff = 2𝜋× 0.70 MHz, 𝜅𝑐0 = 2𝜋× 125 kHz, 𝜅𝑐1 = 2𝜋× 25.3

kHz, 𝜅𝑐2 = 2𝜋 × 33.4 kHz, and 𝜅𝑠 = 2𝜋 × 5.24 MHz. Here, the fit 𝜅𝑠 should be interpreted

as an effective linewidth including inhomogeneous broadening. Because the spin resonance

linewidth arises from both homogeneous (e.g., dipolar interactions) and inhomogeneous (e.g.,

strain) mechanisms, with differing effects on the behavior of the system, the appropriate value

of 𝜅𝑠 for calculating the cooperativity is not obvious. We model the cooperativity, including

inhomogeneous broadening, using the method of Ref. [176]. This analysis produces a value

𝜉 = 1.8 under the experimental conditions used for measurement (i.e., 𝜅𝑐 = 2𝜋 × 200 kHz)

or 𝜉 = 2.8 assuming negligible losses to input and output coupling (i.e., 𝜅𝑐 = 𝜅𝑐0).

4.2.3 Optimizing applied microwave power

While useful for characterizing spin-cavity coupling strength, operation at low applied MW

power is undesirable for high-fidelity spin readout due to the fixed contribution of John-

son noise. Applying higher MW power minimizes the fractional contribution of Johnson

noise, but higher applied power will also produce deleterious broadening of the spin ensem-

ble resonance; the optimum power is set by a balance between these two considerations.

To optimize MW cavity readout for magnetometry, we investigate the spin-cavity system

behavior at higher MW powers by plotting the reflection signal as a function of 𝜔𝑠−𝜔𝑐 for a

range of MW amplitudes (Fig. 4-2). For incident MW powers above -20 dBm the fractional

absorption is suppressed, resulting in little reflected power on resonance. We use the slope
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Figure 4-2: Optimizing MW cavity readout for magnetometry. The 2.901 GHz
reflection signal is terminated into the 50 Ω input of a 40 GS/s oscilloscope. The reflected
RMS voltage into 50 Ω is plotted vs the spin-cavity detuning for various MW powers. Above
approximately 10 dBm, MW-induced broadening of the NV- ground state transition reduces
the achievable magnetic sensitivity of the sensor; consequently 10 dBm is the near-optimal
applied MW power.

𝜕𝑉RMS/𝜕(𝜔𝑠 − 𝜔𝑐) as a figure of merit to determine the optimal applied MW power for best

signal-to-noise ratio, which, for the selected diamond, occurs at 10 dBm. As shown in Fig. 4-

2, an increase in the applied MW power above 10 dBm yields a reduced slope due to excessive

MW power broadening of the spin resonance. We therefore empirically determine that ap-

proximately 10 dBm is optimal for the present system, resulting in a maximum reflected

power of −2.4 dBm. The high peak reflected MW power (3.0 × 1020 MW photons/second)

for the NV- ensemble of ≈ 1.4× 1015 polarized spins, combined with unity contrast, ensures

that MW photon shot noise does not limit the achievable readout fidelity.
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Figure 4-3: MW cavity readout magnetometer sensitivity. Based on noise spectral
density measured during magnetometer operation (blue solid line), we project a sensitivity
of ≈ 3 pT/

√
Hz in the band from 5 kHz to 10 kHz, where sensitivity approaches the limit

set by the measured noise floor of the amplifier and digitizer electronics (red solid line). Also
depicted are the optical-readout shot-noise limit (black short dashed line) of the experimental
setup, the calculated Johnson-Nyquist noise limit (black long dashed line) of 0.5 pT/

√
Hz and

the optical-pumping-limited spin-projection limit (black dotted line). The optical-pumping-
limited spin-projection limit is bounded above and below (gray shaded box) to illustrate
uncertainty arising from estimating the optical pumping relaxation time 𝑇 op

1 . Magnetometry
is performed using the phase-sensitive technique of recording reflected MW voltage through
the IQ mixer; IQ traces are shown in section 3.2.4.

4.2.4 Device magnetic sensitivity

For magnetometry, MWs reflected from the composite cavity are amplified, band-pass fil-

tered, and mixed with an attenuated and phase-shifted reference component. The reflected

signal is mixed to base band using an IQ mixer. The phase of the reference component, which

drives the mixer local oscillator (LO) port, is adjusted until the absorptive (∝ Re[Γ]𝑉In) and

dispersive (∝ Im[Γ]𝑉In) components are isolated to the in-phase (I) and quadrature (Q)

channels respectively.
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The magnetometry sensisitivity is then characterized by monitoring the Q channel as a

1 µT (RMS) field is applied via the test coil. The test field is calibrated using the known

dependence of the ODMR resonances on applied field. The RMS amplitude of the test field

is checked with a commercial magnetometer and also via calculation from the known coil

geometry and applied current. The magnetometer sensitivity is given by

𝜂 =
𝑒𝑛

𝑉Dig/𝐵RMS
test

, (4.3)

where 𝑒𝑛 is the RMS voltage noise floor (at the digitizer) of the double-sided spectrum (20

nV/
√

Hz, which occurs between 5 and 10 kHz), 𝐵RMS
test is a 1 µT RMS amplitude magnetic

field at 10 Hz frequency, and 𝑉Dig is the RMS voltage recorded at the digitizer in response

to the test magnetic field.

Although applying higher MW power decreases fractional Johnson noise, it also broadens

the dispersive resonance feature [1]. Hence, there exists an optimal power 𝑃 to achieve a

maximum absolute value of the slope |𝑑 (Im[Γ]𝑉RMS) /𝑑𝜔𝑠| (where 𝑉RMS is the RMS incident

MW voltage) and thus maximal sensitivity to changes in 𝜔𝑠. For the present system, we

empirically determine that 𝑃 = 10 dBm is optimal (see section 4.2.3), which results in a

maximum reflected power of −2.4 dBm.

In the high-MW-drive-power (i.e., primarily dispersive) regime, the maximal slope is

achieved in the Q channel when 𝜔𝑠 = 𝜔𝑐 = 𝜔𝑑. By using only the permanent magnet to set

𝜔𝑠 = 𝜔𝑐, we ensure that the test coil current source does not contribute to the noise floor of

the magnetometer.

The magnetometer is calibrated with a 10 Hz test magnetic field with a 1 µT root-mean-

square (RMS) amplitude. The measured noise spectrum is scaled using this known magnetic

field value to produce a noise spectrum in magnetic field units, and we project a minimum

sensitivity of 3.2 pT/
√

Hz from approximately 5 to 10 kHz (see Fig. 4-3). For a 1 nT test

field measured over 1 second, this projected minimum sensitivity corresponds to a signal-to-

noise ratio (SNR) of ≈310, compared to a photon-shot-noise-limited SNR of ≈40 for optical

readout in this apparatus. In the following chapter, DC signals are upmodulated to this

low-noise band by application of an AC magnetic bias field.
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4.3 Microwave photon noise limit to readout fidelity

It is instructive to calculate the expected inverse readout fidelity 𝜎𝑅 = 1/ℱ in the absence of

thermal (Johnson-Nyquist) and other technical noise (e.g. phase noise). The inverse readout

fidelity (equal to the factor over spin projection noise) is

𝜎𝑅 =

√︃
1 +

1

𝐶2𝑛avg
, (4.4)

where 𝐶 is the readout contrast (fringe visibility) and 𝑛avg represents the average number

of MW photons collected per NV- per measurement. At 10 dBm of applied MW power,

the composite cavity reflects a maximum −2.4 dBm, which corresponds to 3.0 × 1020 MW

photons/second. We assume 𝑁 = 1.4× 1015, 𝑇 op
1 = 130 µs, and 𝐶 = 1. This crude estimate

gives 𝑛avg = 28, resulting in 𝜎𝑅 = 1.017 and ℱ = .983. Employing instead 𝑇2 = 8 µs results

in 𝜎𝑅 = 1.254 and ℱ = .798. Employing 𝑇 *
2 = 40 ns yields 𝜎𝑅 = 10.7 and ℱ = 0.093.

For any of these timescales, the shot-noise-limited sensitivity 𝜂sh = 𝜎𝑅𝜂
op
sp is substantially

less than the Johnson-Nyquist-limited sensitivity, so that the readout is not limited by MW

photon shot noise.

4.4 Johnson-noise sensitivity limit

Johnson-Nyquist (thermal) noise degrades the microwave signal following interaction with

the composite cavity. The composite cavity produces Johnson-Nyquist noise 𝑉JN =
√
4𝑘𝐵𝑇𝑅𝑠∆𝑓 ,

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the cavity’s temperature, 𝑅𝑠 is the equivalent resis-

tance of the composite cavity, and ∆𝑓 is the single-sided measurement bandwidth. Assuming

that the cavity is impedance matched to the termination resistance 𝑅 = 50 Ω, this produces

a noise voltage
√
𝑘𝐵𝑇𝑅∆𝑓 at the measurement device. The Johnson-Nyquist-limited sensi-

tivity is then given by

𝜂JN =

√
𝑘𝐵𝑇𝑅

𝐹1 · 𝐹2 ·
[︁
𝑑(Im[Γ]𝑉RMS)

𝑑𝐵0

]︁
max

, (4.5)

where Im[Γ]𝑉RMS is the quadrature component of the reflected RMS MW voltage, 𝐵0 is the

magnetic field, and 𝐹1 and 𝐹2 are factors of order unity depending on details of the signal
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and the processing architecture respectively. For scenarios where the phase of the signal

is assumed to be known (as in this work), 𝐹1 =
√
2. For architectures where all signal is

isolated into the quadrature channel of the mixer (as in this work), we expect 𝐹2 =
√
2. At

10 dBm of applied MW power, we then estimate 𝑑(Im[Γ]𝑉RMS)
𝑑𝐵0

≈ 0.05 V/G (Fig. 4-2), yielding

𝜂JN ≈ 0.5 pT/
√

Hz.

4.5 Spin-projection sensitivity limit

The spin-projection-limited magnetic sensitivity is given by [29]

𝜂sp ≈ ℏ
𝑔𝑒µ𝐵

1√
𝑁𝜏

, (4.6)

where 𝜏 is the free precession time. For a Ramsey measurement scheme, it is nearly optimal

to choose a precession time equal to the dephasing time, 𝑇 *
2 [14]. Although there is no explicit

precession time in a CW measurement scheme, we make the substitution 𝜏 = 𝑇 *
2 in the above

equation as a crude estimate of the effective precession time. For our measurement scheme,

two additional factors must be considered, each of which degrades the spin-projection-noise-

limited sensitivity. First, the projection of the magnetic field on each NV− orientation

is 𝐵0/
√
3, so that the magnetic sensitivity is a factor

√
3 larger than naïvely expected.

Second, the finite time required (on average) to optically initialize a spin, 𝑇 op
1 , produces an

effective duty cycle for the measurement of 𝜏/𝑇 op
1 (assuming 𝑇 op

1 ≫ 𝜏). Again making the

substitution 𝜏 = 𝑇 *
2 , this effects a degredation of the sensitivity by the factor

√︀
𝑇 op
1 /𝑇 *

2 . With

these modifications, the appropriate spin-projection-limited sensitivity for this measurement

scheme (in the absence of all technical noise) is approximately given by

𝜂op
sp ≈

√
3

ℏ
𝑔𝑒µ𝐵

1√︀
𝑁𝑇 *

2

√︃
𝑇 op
1

𝑇 *
2

. (4.7)

To compute 𝑇 op
1 , we assume that 𝑀 green photons are required, on average, to polarize one

NV- center. We expect 𝑀 > 1 due to the limited asymmetry of decay to |𝑚𝑠 = 0⟩ through

the intersystem crossing and because green photons may be “wasted” through radiative decay
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Figure 4-4: Broadband magnetometry using Cr3+ ions in sapphire. The noise spec-
tral density measured during magnetometer operation ( ) yields a projected sensitivity of
≈10 pT

√
Hz in the low-noise band between 4 kHz and 6 kHz. The projected sensitiv-

ity approaches the noise floor set by amplifier, mixer, and readout electronics ( ). The
thermal-noise-limited sensitivity ( ) of 1.1 pT/

√
Hz is also depicted.

or absorption by substitutional nitrogen, NV0, and other defects. We crudely guess the value

of 𝑀 is between between 1 and 10. We calculate 𝑇 op
1 as

𝑇 op
1 = 𝑀

𝑁

𝑅pho
(4.8)

where 𝑅pho is the number of photons per second applied to the NV ensemble. For 𝑀 = 3,

assuming 12 W of 532 nm light and 𝑁 = 1.4 × 1015 polarized NV- centers, we have 𝑇 op
1 =

130 µs and 𝜂op
sp = 75 fT/

√
Hz.

4.6 Thermally-polarized magnetometry

Although the cavity-enhanced MW readout technique is inherently non-optical, in the above

described experiments using NV centers in diamond, a laser is still required to spin-polarize a
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sizeable ensemble. Unfortunately, the light source is often the primary driver of complexity

and power consumption in a sensor. However, considerable efforts are being made today

for device simplification and miniaturization [31, 85, 93, 150]. Although laser initialization

provides a strongly polarized ensemble (ex. ∼ 80% for NVs), with enough defects concen-

trated at the cavity anti-node, strong coupling can be achieved passively via thermal spin

polarization (∼ 0.05% in some ensembles). The requirements are two fold: first, a zero

field splitting (ZFS) must exist by which a net population difference between two states can

occur in thermal equilibrium; and second, a sufficient number of defects must couple to the

cavity to overcome the low net-spin polarization. Such requirements are met, for example,

by chromium ions (Cr+) in sapphire (also known as ruby). In this section I briefly describe

cavity-enhanced readout measurements of a ruby crystal, using an experimental setup which

has been configured for high-sensitivity magnetometry [169].

Cr3+ ions in ruby have spin 𝑆 = 3
2

and exhibit a 2𝜋 × 11.5 GHz ZFS between the

|𝑚𝑠 = +3
2
⟩ and |𝑚𝑠 = +1

2
⟩ states. At 293 K, the net population difference between these

two states is 0.047%, corresponding to a polarized spin density of ∼ 7×1015 cm−3. The ruby

crystal serves as its own high-quality factor dielectric resonator, which increases the volume

of the spin ensemble that couples to the electromagnetic mode of the cavity.

Employing a similar experimental setup and MW signal chain described in section 3.2.1

and 4.2.4, the ruby-based magnetometer achieves an optimal sensitivity of 𝜂 = 9.7 pT/
√

Hz

at 5 kHz (See Fig. 4-4). This measurement shows the applicability of the cavity-enhanced

MW readout technique to defect centers other than the NV center in diamond. Furthermore,

the ruby-based device is the first entirely non-optical solid-state spin sensor. By removing

the need for optical spin polarization, solid-state spin sensors can be made smaller, lighter,

and more power efficient. The challenges of light delivery, including heat loads and laser

noise are also avoided entirely.
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4.7 Conclusion

The projected sensitivity of the present NV-based magnetometer is among the highest re-

ported broadband sensitivities of devices employing NV ensembles. For example, the best

NV-ensemble-based broadband magnetometers employing conventional optical readout have

achieved sensitivities ranging from 0.9 pT/
√

Hz [58] to 15 pT/
√

Hz [15]. The projected sen-

sitivity using MW cavity readout is limited by phase noise of the interrogation microwaves,

Johnson-Nyquist (thermal) noise, and vibration-induced changes in the coupling to the com-

posite cavity. Phase noise manifests as frequency fluctuations, which cause variations in

reflected power unrelated to the magnetic field value. Selection of a lower-phase-noise MW

source would reduce these fluctuations. Vibration-induced fluctuations could be reduced by

engineering a more robust cavity coupling mechanism. Together, these changes could allow

the Johnson-Nyquist-noise limit of 0.5 pT/
√

Hz (see Fig. 4-3) to be reached. Crucially, unlike

shot noise, these limiting noise sources remain fixed as the signal strength increases. There-

fore, there exists a straightforward path to improving sensitivity toward the spin-projection

limit: augmenting the signal through increasing the collective cooperativity 𝜉. Cooperativity

can be improved by increasing the number of polarized spins, increasing the cavity quality

factor, or reducing the spin-resonance linewidth [16]. Furthermore, pulsed measurement

protocols could be employed to avoid sensitivity degradation due to MW power broadening.
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Chapter 5

Vector magnetometry using

cavity-enhanced microwave readout

Portions of this chapter will appear in print in the following publication:

"Vector magnetometry using cavity-enhanced microwave readout of a solid-state

spin sensor," E. R. Eisenach, J. M. Schloss, L. M. Pham, D. R. Englund, and D.

A. Braje. In Preparation.

5.1 Introduction

Solid-state quantum sensors are attracting wide interest as magnetometers, because their

fixed crystallographic axes allow for complete vector field sensing, free from systematic drifts

and heading errors [41,97,103,115]. The negatively charged nitrogen-vacancy (NV−) defect

center in diamond is a particularly promising platform as it combines the capability for long

term stability, high dynamic range, and low power operation into a single compact sensor

package [85, 151]. The NV− center’s excellent coherence properties at room temperature

also allow high sensitivity operation [11,12,17], however poor readout has kept the platform

from performing even close to the standard quantum limit [14]. In response, many alterna-

tive readout methods have been proposed and demonstrated [26,71,77,81,112,142,146,149],

including the recently discovered technique of cavity-enhanced microwave (MW) readout.

Although the previous demonstration of cavity readout projected sensitivities in the single
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picotesla regime, the experimental implementation was held back by 1/f noise at low fre-

quencies. Furthermore, the demonstration was constrained to sensing only along a single

vector axis, with measurement ambiguities if the fields were not perfectly aligned with the

sensing axis. In this chapter, we expand on the cavity readout technique, and demonstrate

high sensitivity measurements of three dimensional dynamic vector fields. We enable vector

functionality via application of an AC magnetic bias field. By judicious choice of the AC field

frequency and direction, the projection of a dynamic field along each NV axis (Fig 5-1a) can

be separately read out in the low-noise band of the readout electronics. The AC bias field

also allows us to introduce a measurement scheme which suppresses drift related errors by

up to two orders of magnitude, suggesting the capability for long term stable operation. Our

magnetometer demonstrates an average broadband sensitivity of 160 pT/
√

Hz per axis lim-

ited by magnetic noise of the AC magnetic bias field. With minor improvements to the bias

field coil geometry and excitation circuitry, we project that the magnetometer can achieve

an average broadband sensitivity of 35 pT/
√

Hz. With further improvements to the NV−

density and spin coherence properties of the diamond sample, we expect the magnetometer

to achieve sub-picotesla magnetic sensitivities.

5.2 Magnetometry method

Similar to previous demonstrations of vector magnetometry using NV− centers in diamond,

we apply a magnetic bias field along the crystallographic orientation which equally separates

the spin transition frequencies of different NV axes (Fig. 5-1b) [39,136]. In this work however,

we oscillate the bias magnetic field at a frequency 𝜔AC which serves two primary purposes:

one, as the NV−s are read out via the interaction between the spin resonance frequency

and a single MW cavity mode, the AC field sweeps the resonance frequency of each NV

orientation sequentially passed the cavity resonance (at 𝜔𝑐); and two, the modulation of the

spin resonances due to the AC field encodes the spin information at 𝜔AC and its harmonics

(𝜔AC+𝑛𝜔AC, 𝑛 = 1, 2, 3, ...), effectively up-converting signals of interest away from base-band

1/f noise, and into the low-phase-noise region of the readout electronics.

For the current experimental implementation (discussed in more detail below), sweeping
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Figure 5-1: The NV center in diamond and cavity readout spectrum (a) The NV−

exists in equal number along four different crystallographic orientations in the diamond
lattice. When employed as a magnetometer, each of the four orientations NV𝜆, NV𝜑, NV𝜅,
NV𝜒 measures the component of the magnetic field projected along its symmetry axis. (b)
The NV− ground-state triplet (3A2) exhibits a 𝐷 ≈ 2𝜋×2.87 GHz zero-field splitting between
the |𝑚𝑠 = 0⟩ and degenerate |𝑚𝑠 = ±1⟩ spin states. In the presence of a magnetic field �⃗�(𝑡)
the |𝑚𝑠 = ±1⟩ sublevels experience a Zeeman splitting proportional to the projection of
the magnetic field along the NV symmetry axis. Above-band optical excitation (typically
performed with a 532 nm laser) initializes the NV− spins into the |𝑚𝑠 = 0⟩ spin state via a
non-radiative decay path (1A1 −→ 1E). (c) Cavity-enhanced microwave readout absorption
spectrum under the application of an AC magnetic bias field with frequency 𝜔AC = 2𝜋 × 2
kHz. The magnetic bias field projects onto the four NV orientations causing the Zeeman
shifts shown in (b). As NV orientations NV𝜆, NV𝜑, and NV𝜅 cross 𝜔𝑐, MWs reflect from
the cavity (which are subsequently measured) creating the depicted readout spectrum in (c).
For each half-cycle of the magnetic field, both the |𝑚𝑠 = +1⟩ spin state (solid-lines) and the
|𝑚𝑠 = −1⟩ spin state (dashed lines) cross 𝜔𝑐. Differences in the amount of reflected MW
voltage between NV orientations arise from differences in the vacuum coupling 𝑔𝑠 of each
NV axis with the lineraly polarized MW field. Asymmetries between |𝑚𝑠 = ±1⟩ spin states
in each half-cycle of the spectrum are due to asymmetries in the cavity resonance profile.
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all four NV spin resonances across 𝜔𝑐 requires a field amplitude in excess of 250 G. At such

strong fields, gradients across the diamond are large enough to induce substantial broadening

of the measured resonances. We therefore restrict ourselves to three NV orientations (NV𝜆,

NV𝜑, and NV𝜅) oriented along linearly independent vector axes which are sufficient to recon-

struct the three dimensional vector field. Figure 5-1c shows the cavity readout absorption

spectrum as the spin resonances sequentially interact with the cavity. In the proximity of

each cross-over point between a spin resonance and 𝜔𝑐, MWs are reflected off of the cavity

resulting in a cavity-enhanced spin-resonance profile. A perturbing field �⃗�sens causes the

spin resonance to shift in frequency, which changes the time (𝜏±𝑖=𝜆,𝜑,𝜅, where the sign refers

to each respective |𝑚𝑠 = ±1⟩ spin state) at which the spin resonance crosses 𝜔𝑐. We can

then relate changes in the cross-over times to �⃗�sens by measuring shifts in the peaks of the

cavity-enhanced spin-resonance spectrum. We then apply a calibrated linear transformation

matrix to the measured peak-shifts and construct the Cartesian magnetic field components

in the laboratory frame of reference.

Finally, because the AC field changes sign over the course of a full oscillation period, the

method interrogates both the |𝑚𝑠 = ±1⟩ spin states of each NV orientation. In analogy to

conventional NV magnetometry methods [40], we make use of both spin states to subtract

out temperature-dependent resonance shifts of the spins and the MW cavity. For each half

cycle of the AC bias field depicted in Fig. 5-1c, the peaks move common mode with changes in

�⃗�sens, and differential mode for changes in the NV zero field splitting due to temperature (−74

kHz/K [14]), changes in the cavity frequency 𝜔𝑐 (≈ +3 kHz/K), and changes in the AC bias

field amplitude. By summing the half-cycle responses of both |𝑚𝑠 = ±1⟩ peaks, we reduce

errors due to drifts in temperature by almost two orders of magnitude (See Appendix G.2).

5.3 Experimental setup

For mechanical stability and heat sinking, we cleave a brilliant-cut diamond with a {100}

table facet and ⟨100⟩ edges at an angle 𝜃 = 32∘ and 𝜑 = 22.2∘ (Fig. 5-2a). The total

diamond volume after cleaving is 𝑉dia ≈ 6 mm3, and, from electron paramagnetic resonance

(EPR) measurements, the
[︀
NV−]︀ density is estimated as 3 ppm, corresponding to a total
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Figure 5-2: Experimental setup and MW signal chain (a) For better mechanical
stabilization and heat sinking, a high NV− density cushion-cut diamond is cleaved along the
depicted angles (𝜑 = 22.2∘ and 𝜃 = 32∘), such that the normal vector to the newly created
plane is �⃗�𝐵 = (−0.53, 0.23, 0.82) in the diamond coordinate system (where 𝑧′ is oriented
normal to the table facet). A bias magnetic field applied along �⃗�𝐵 equally splits the NV
energy levels as depicted in fig. 5-1b. Also depicted are the NV symmetry axes as oriented
in the diamond, defined in terms of the diamond lattice vectors. (b) The newly cleaved face
of the diamond is affixed to a semi-insulating wafer of silicon carbide (SiC) and enclosed
between two concentric dielectric resonators which form the composite MW cavity. The
composite cavity is centered inside an alumina ceramic shield with interior surfaces coated
in 10 𝜇m of silver to reduce radiative MW losses, and held in place using Rexolite spacers
(some additional Rexolite structural components are omitted for clarity). A bias field coil
produces the AC magnetic bias field �⃗�AC oriented along �⃗�𝐵 in the diamond reference frame.
(c) Microwave device schematic. A 4 MHz modulated MW tone, resonant with the composite
cavity, is split into a signal component (lower branch) which interrogates the cavity through a
circulator and a reference component (upper branch). Microwaves reflected from the cavity
are then amplified before being mixed with the reference component by an IQ mixer. A
small amount of reflected MW power (-10 dB) is split off and directed to a Pound-locked-
loop which locks the MW carrier tone to the cavity resonance.
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NV number NV− = 4.8 × 1015. The sample exhibits an inhomogeneous dephasing time

𝑇 *
2 of 300 ns, corresponding to a natural full-width half-max (FWHM) linewidth of ≈ 1

MHz. The cleaved face of the diamond is glued to a 50.8 mm diameter, 300 µm thick semi-

insulating wafer of silicon-carbide (SiC) for mechanical stabilization and heat sinking. To

correct for a 3∘ miscut of the diamond, we insert a fused silica shim between the diamond

and SiC wafer. The diamond is then enclosed in between two cylindrical dielectric resonators

(𝑄0 ≈ 27, 000 and relative dielectric 𝜖𝑟 ≈ 34) each with a 4 mm diameter center cut hole

(Fig. 5-2b). The separation between the two resonators is adjusted, so that the combined

diamond-resonator composite cavity resonates at 𝜔𝑐 = 2𝜋 × 2.9 GHz. We choose 𝜔𝑐 with

the following considerations in mind: a composite cavity resonance too close to 𝐷 results

in frequency-adjacent spin resonances passing 𝜔𝑐 in too close a succession, causing their

resonance profiles to obscure one another; a higher composite cavity resonance, on the other

hand, requires a stronger AC magnetic bias field magnitude to interrogate the NV axes.

The composite cavity is then placed at the center of an alumina ceramic shield with a

50.8 mm inner diameter. The shield is wrapped in 151 turns of 20 gauge magnet wire and

the resulting bias coil is made to resonate with a Q of 6 at the frequency 𝜔AC = 2𝜋 × 2 kHz

(See Appendix F.1 for information on the bias field resonant circuit; and Appendix F.2 for

information on the choice of 𝜔AC). By resonantly driving the bias field coil we increase the

circuit efficiency by the Q-factor, and reject low frequency noise which could otherwise couple

to the sensor. In the resonant configuration ≈ 1.5 Arms of current produces the necessary

bias magnetic field amplitude to sweep three-of-four NV orientations across 𝜔𝑐. The inner

surfaces of the shield are coated in ≈ 10 µm of silver to reduce radiative losses of the MW

composite cavity. At 10 µm, the silver coating is thick enough to fully shield MW signals from

the cavity (where the skin depth at 3 GHz is ≈ 1.2 µm), yet thin enough to not attenuate the

AC magnetic bias field. The maximum bias field amplitude is 𝐵max ≈ 53 G and is measured

at 2 kHz using a calibrated pick-up loop and a commercial magnetometer. We measure

the magnetic bias field unit vector direction �⃗�𝐵 = [−0.53, 0.231, 0.82], and the diamond

strain parameters �⃗�𝑧 =
[︀
𝑀𝜒

𝑧 , 𝑀
𝜅
𝑧 , 𝑀

𝜑
𝑧 , 𝑀

𝜆
𝑧

]︀
= [140, −160, −171, −154] kHz at DC using

optically detected magnetic resonance (ODMR). Finally, the diamond is illuminated with

3 W of 532 nm laser light, which continuously polarizes the NV- centers into the |𝑚𝑠 = 0⟩
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sublevel.

The MW signal chain and main MW circuit components are depicted in fig. 5-2c. Mi-

crowaves at frequency 𝜔𝑑 are split into a signal arm (lower branch) which interrogates the

cavity through a circulator, and a reference arm (upper branch) which, after passing through

a variable phase shifter, terminates in the local oscillator (LO) port of an IQ mixer. As the

cavity slope decreases farther from the composite cavity resonance, detunings between the

MW drive tone and the cavity resonance (i.e. steady state conditions in which 𝜔𝑑 ̸= 𝜔𝑐) re-

sult in worse sensitivities. To maintain high sensitivity, we therefore lock the MW drive tone

to the composite-cavity resonance such that 𝜔𝑑 = 𝜔𝑐. To accomplish this, we split off a small

amount of the MW power reflected from the cavity (≈ −10 dB) as feedback for a Pound-

locked-loop, and adjust the locked-loop gain and PI corner to provide a 1 Hz bandwidth

which compensates for slow cavity resonance drifts due to temperature. Because changes in

the cavity resonance due to coupling to the spin ensemble occur at ∼ 𝜔AC/(2𝜋) ≫ 1 Hz,

they are unaffected by the lock. We determine that approximately -10 dBm of delivered

MW power is optimal for the present system, by adjusting the incident MW power while

monitoring the reflected signal voltage.

For the vector demonstration discussed below, we place the composite cavity sensor at

the center of a 3-axis commercial Helmholtz coil. To reduce distortion of the AC magnetic

bias field due to the non-magnetic optical table and breadboard, the composite cavity sensor

is mounted on a 7.5 cm high ceramic pedestal, which is suspended 30 cm above the optical

table on an 80/20 T-slot aluminum beam. Two flanking aluminum breadboards, separated

from the composite cavity sensor by 10 cm, hold beam-steering mirrors to allow the laser

light to impinge on the diamond. Finite element magnetostatic simulations (FEMM) of

the experimental setup show distortions of the AC magnetic bias field due to the flanking

breadboards, and the aluminum beam to be 1% or better. The magnetic fields applied

by the Helmholtz coils are calibrated using a commercial magnetometer, and compared to

fields calculated using the factory provided calibration numbers. For our measurement of

the device sensitivity, the composite cavity sensor is removed from the Helmholtz coil, and

placed in a 5-layer Mu-metal magnetic shield to ensure that stray magnetic signals in the

laboratory do not affect the measured sensitivity.
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5.4 Vector magnetometry demonstration

The responses of the NV spin-resonances to a sensing field �⃗�sens(𝑡) are linearized using a

technique analogous to the one discussed in [136]. The magnetic signals are encoded in time,

and we can construct a matrix A which provides a linear map of the components of �⃗�sens

onto changes in the peaks of the spin-resonance features,⎡⎢⎢⎢⎣
∆𝜏𝜆

∆𝜏𝜑

∆𝜏𝜅

⎤⎥⎥⎥⎦
sens

= A

⎡⎢⎢⎢⎣
𝐵𝑥

𝐵𝑦

𝐵𝑧

⎤⎥⎥⎥⎦
sens

, (5.1)

where ∆𝜏𝑖=𝜆,𝜅,𝜑,𝜒 = (∆𝜏+𝑖 + ∆𝜏−𝑖)/2 represents a shift in the measured NV--axis center

hyperfine peaks in the cavity-enhanced spin-resonance spectrum (Appendix G.1). After

determining A, the matrix inverse A−1 transforms measured shifts ∆𝜏𝑖 into the magnetic

field �⃗�sens in the laboratory frame of reference.

To demonstrate full reconstruction of a measured magnetic field vector, each axis of the

Helmholtz coil simultaneously applies a time-varying sinusoidal test field to the composite

sensor. The test field frequency content, and the calibrated 𝑥, 𝑦, 𝑧 vector component am-

plitudes, are listed in table 5.1 (the fields applied along each Cartesian axis are separated

in frequency only to make clear the extent to which they can be reconstructed in the lab-

oratory frame of reference). Figure 5-3a shows the voltage spectral density of one second

of data acquisition. The NV- cavity readout spectrum is encoded at 𝜔AC and harmonics

up to ≈ 2𝜋 × 0.75 MHz; the test fields are encoded at the sum and difference frequencies

𝜔AC ± 𝜔𝑗=𝑥,𝑦,𝑧. The spectrum is high-pass filtered at 1900 Hz and low-pass filtered using

a Savitzgy-Golay (S-G) filter of order 2 and frame length of 19 samples, corresponding to

a 3dB cutoff frequency of ≈ 0.75 MHz. After filtering, the NV- hyperfine features of each

full-cycle of the AC magnetic bias field are peak fit using polynomial interpolation. Because

each full-cycle of the AC magnetic bias field samples the magnetic field twice (𝐹𝑠 = 𝜔𝐴𝐶/𝜋),

the working bandwidth of the device is Nyquist limited to the bias field frequency.

Time traces of the peaks after summation of the |𝑚𝑠 = ±1⟩ features (summation of

the cross-over times for both spin states reduces the effects of temperature drifts in the
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�⃗�sens 𝜔𝑗=𝑥,𝑦,𝑧 |𝐵𝑗=𝑥,𝑦,𝑧| calibrated (µT) |𝐵𝑗=𝑥,𝑦,𝑧| measured (µT) % deviation
𝐵𝑥(𝑡) 2𝜋 × 24 Hz 5.13 5.11 0.39
𝐵𝑦(𝑡) 2𝜋 × 10 Hz 5.92 5.89 0.51
𝐵𝑧(𝑡) 2𝜋 × 43 Hz 4.97 4.94 0.60

Table 5.1: Applied and measured magnetic test field information.

diamond and cavity; see Appendix G.2) and corresponding amplitude spectral densities are

depicted in fig. 5-3b-d. After digital low-pass filtering with a 3dB cutoff at 210 Hz, band-pass

filtering at 60 Hz and 120 Hz, and high-pass filtering at 1 Hz, we apply the inverse A−1 of

the transformation matrix to the time traces, and extract the laboratory-frame magnetic

vector field components 𝐵𝑥(𝑡), 𝐵𝑦(𝑡), 𝐵𝑧(𝑡) (Fig. 5-3e-g). The single-sided equivalent noise

bandwidth (𝑓ENBW) after filtering is ≈ 208 Hz. The resulting RMS test field amplitudes and

their deviation from calibrated values are listed in table 5.1. We find agreement within 0.6%

or better between the calibrated values and those extracted using the cavity readout vector

magnetometer. This discrepancy falls within an expected range given the factory calibrated

0.4% uniformity of the Helmholtz coil field, and the 8 cm3 uncertainty in the placement of

the commercial magnetometer’s sensing element. Finally, we determine the sensor dynamic

range by applying a monotonically increasing static magnetic field (first in 𝑥, then 𝑦, then 𝑧)

until the adjacent resonances of different NV orientations obscure one another, or until the

AC bias field can no longer sweep either |𝑚𝑠 = ±1⟩ spin state across the cavity resonance.

We find the dynamic range in 𝑥 to be 1 mT, 1.1 mT in 𝑦, and 1.6 mT in 𝑧.

5.5 Device sensitivity

We evaluate the sensitivity of the device by moving the sensor into a magnetically shielded

environment, and taking magnetometry measurements in the absence of applied fields. We

take one second of data, extract the time traces of ∆𝜏𝑖(𝑡), and transform them into the

laboratory frame by applying A−1. The power spectral density (PSD) of each Cartesian

direction (Fig. 5-4a-c) integrated over the sensing bandwidth, yields measurement variances
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Figure 5-3: Vector magnetometry demonstration (a) A three-axis Helmholtz coil simul-
taneously applies test fields 𝐵𝑥(𝑡) = 5.13 𝜇T, 𝐵𝑦(𝑡) = 5.92 𝜇T, and 𝐵𝑧(𝑡) = 4.97 𝜇T at the
frequencies 𝜔𝑥/(2𝜋) = 24 Hz (- -), 𝜔𝑦/(2𝜋) = 10 Hz (- -), and 𝜔𝑧/(2𝜋) = 43 Hz (- -), respec-
tively. Under the application of an AC magnetic bias field at frequency 𝜔AC/(2𝜋) = 2 kHz,
the test fields are upmodulated, away from base-band 1/f noise, to the sum and difference
frequencies 𝜔AC ± 𝜔𝑗=𝑥,𝑦,𝑧. The full cavity readout spectrum is encoded in the harmonics of
𝜔AC up to ≈ 750 kHz. (b) - (d) Amplitude spectral densities of the magnetic field dependent
peaks ∆𝜏𝑖,rms (where 𝑖 = 𝜆, 𝜑, 𝜅 represents the respective NV axis) of 1 second of collected
data. The insets depict the time series data ∆𝜏𝑖(𝑡) for each respective peak, after filtering.
(e) - (f) Amplitude spectral densities of the measured fields in the laboratory frame of ref-
erence, extracted from ∆𝜏𝑖 after the application of the inverse linear transformation matrix
A−1. Insets depict the time series data for each axis 𝐵𝑥(𝑡), 𝐵𝑦(𝑡), and 𝐵𝑧(𝑡). Residual cross
talk between axes is present, but we calculate its effect to be on the order of 1% or better.
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𝜎2
𝐵𝑥

, 𝜎2
𝐵𝑦

, 𝜎2
𝐵𝑧

. We then compute the sensitivity per axis as [136],

𝜂𝑗 =

√︃
𝜎2
𝐵𝑗

2𝑓ENBW
. (5.2)

The evaluated sensitivities are 𝜂𝑥 = 161pT/
√

Hz, 𝜂𝑦 = 119pT/
√

Hz, and 𝜂𝑧 = 192pT/
√

Hz

which are limited by magnetic noise on the AC bias field. We determine magnetic noise as

our limitation in two ways: One, using a dynamic signal analyzer we measure the voltage

noise spectral density of the source and amplifier during operation, use the measured value to

compute the bandwidth normalized magnetic noise density using the known coil impedance

and geometry, and finally compare the result to the vector norm of our sensitivities. Two,

keeping all other parameters fixed, we ensure the sensitivity of each axis scales linearly with

the amplifier gain by taking measurements at different gain settings.

We also estimate the sensitivity in the absence of magnetic noise by measuring the slopes

[𝑑𝑉𝑖,rms/𝑑𝑡]max of the resonances in fig. 5-1c. The sensitivity of each NV orientation can then

be calculated as

𝜂slope
𝑖 ≈ 𝑒𝑛

[𝑑𝑉𝑖,rms/𝑑𝑡]max
·
[︂
𝑑𝐵𝑖(𝑡)

𝑑𝑡

]︂
𝑡=𝜏𝑖

, (5.3)

where 𝑒𝑛 = 35 nV/
√

Hz is the RMS noise floor of the double-sided spectrum at 2 kHz, and

[𝑑𝐵𝑖(𝑡)/𝑑𝑡]𝑡=𝜏𝑖
is the slope of the bias field projected along the NV axis 𝑖 = 𝜆, 𝜑, 𝜅 at the cross-

over time 𝜏𝑖. Using equation (5.3), we compute 𝜂slope
𝜆 = 17pT/

√
Hz, 𝜂slope

𝜑 = 27pT/
√

Hz, and

𝜂slope
𝜅 = 62pT/

√
Hz.

5.6 Discussion

The sensor exhibits different sensitivities along each axis due to NV-orientation-dependent

couplings 𝑔𝑠,𝑖 to the MW field (See Appendix H). Because only the component of the MW

field projected onto a plane perpendicular to the NV axis drives the transition |𝑚𝑠 = 0⟩ −→

|𝑚𝑠 = ±1⟩, the axis most aligned with the MW magnetic field, and coincidentally the AC

magnetic bias field, exhibits the weakest coupling. The differences in 𝑔𝑠,𝑖 are readily observed

in the absorption spectrum of fig. 5-1c, where the amount of reflected MW voltage depends
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Figure 5-4: Vector sensitivities (a) - (c) Power spectral densities of each Cartesian axis in
the absence of applied magnetic fields and after filtering. Colored dashed lines (– –,– –,– –)
indicate the bandwidth normalized sensitivity (in pT/

√
Hz) as computed by equation (5.2).

Black dashed lines (– –) indicate the average estimated broadband sensitivity per NV axis
in the absence of magnetic bias field noise.
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on which NV-axis is being interrogated by the cavity. The effect on the sensitivity is at most

of order unity, and can be mitigated by rotating the cavity such that the MW field projects

equally onto all four axes.

While the sensor is limited by noise on the AC magnetic bias field, there exist simple

strategies to enable the full sensitivity of the device. Shrinking the bias field coil either

by reducing the shield diameter, or by placing the coil inside the shield would reduce the

current, and consequently the voltage, necessary to produce the AC bias field at the diamond.

Simulations using finite element electromagnetics (FEMM) software suggest that reducing

the coil and shield diameter by 50%, while maintaining the same number of turns, or placing

the reduced coil within the confines of the shield, would reduce the necessary current to

≈ 0.38 Arms. As a result, a low power amplifier with improved voltage noise could be

employed, which would drive the magnetic noise down more than an order of magnitude.

Shrinking the coil even further is possible, but would have to be met with changes to the

cavity design as simulations in ANSYS HFSS show an inverse relationship between the coil

diameter and cavity resonance frequency. To compensate for an increase in the resonance

frequency, the resonator height could be increased [82], or additional dielectric material could

be added to the cavity with minimal effect on 𝑔𝑠.

Beyond improving the performance of the AC bias field, the device sensitivity can be

enhanced by more than an order of magnitude by increasing the number of polarized spins per

NV axis 𝑁𝑖, and reducing the spin resonance linewidth 𝜅*
𝑠. Simulations using the numerical

model described in [55] suggest that a diamond of the same size with an NV density of

5ppm and a 500 ns 𝑇 *
2 can achieve sub-picotesla sensitivities at the same input laser power.

Finally, while the analysis found in [169] suggests that improving the Q above ∼ 30, 000 in

our device would yield little increase in the sensitivity, an improvement in the spin-photon

coupling 𝑔𝑠 could be achieved via mode engineering techniques [35], or by introducing a

circularly polarized MW mode.
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5.7 Conclusion

This chapter demonstrates three-dimensional dynamic vector magnetometry using the re-

cently developed cavity-enhanced microwave readout technique (see chapter 3). The mag-

netometer architecture relies on an AC magnetic bias field which modulates DC signals of

interest into the low-noise band of the interrogation electronics. By choosing the direction of

the AC field appropriately, the magnetic field projection along three-of-four diamond tetra-

hedral axes is measured and reconstructed in the laboratory frame. Because the AC field

allows measurement of both |𝑚𝑠 = ±1⟩ spin states, we introduce a unique measurement

scheme which reduces systematic errors due to temperature drifts by up to two orders of

magnitude. Locking of the MW drive tone to the composite cavity further serves to mitigate

drifts in the sensitivity. The magnetometer achieves an average broadband sensitivity of 160

pT/
√

Hz per Cartesian axis, limited by technical noise of the experimental device, but is

expected to reach sensitivities of better than 17 pT/
√

Hz per NV axis. While the device

presented here is operated in CW mode, pulsed measurement protocols could be employed

to reduce the effects of microwave power broadening on the spin ensemble.
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Chapter 6

Summary and outlook

This thesis discussed two approaches to improving the readout fidelity of solid-state spin-

ensembles. First, the loop gap resonator is presented as a means for applying strong and

ultra-homogeneous MWs to large diamond sample sizes. For sample volumes of 3 mm3 or

less, the resonator provides field strengths of 4.8 G with an RMS uniformity of 𝜎rms =

0.8%, a drastic improvement over commonly employed planar-only geometries [7,83,95]. For

bulk sensing, the sensitivity is often improved by increasing the total number of addressed

NV centers, by either using samples with higher NV-densities or larger detection volumes.

However, as the NV ensemble coherence time depends inversely on NV density [17], there

exists an upper bound on the NV density after which larger sample sizes are utilized to

further improve the sensitivity. For example, by increasing the interrogated volume by

almost an order of magnitude, one can improve the sensitivity of a hypothetical NV-based

magnetometer by more than a factor of 3. As discussed in section 2.5, increasing the sample

size must be met with a larger volume of strong and homogeneous MWs to mitigate any

deleterious effects on the readout fidelity. For the loop gap resonator, increasing the volume

by an order of magnitude from 1 mm3 incurs only a 3% reduction in the overall magnetic field

homogeneity across the entire sample volume. Finally, the loop gap resonator has an open

geometry, which allows for nearly half of the 4𝜋 solid angle to remain optically accessible.

In a single compact design therefore, the loop gap resonator both improves on the MW

magnetic field homogeneity, and allows the use of ever larger sample volumes. With these

combined capabilities, we expect the device to be useful for bulk sensing [2, 15, 31, 40, 171]
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and particularly imaging applications [15, 61,66,67,84,96,173].

As optical fluorescence readout is intrinsically limited to low readout fidelities for devices

based on ensembles of NV centers [14], this thesis discusses a novel readout method which

provides high-fidelity, room temperature readout via strong collective coupling to a dielec-

tric MW cavity. The cavity-enhanced readout technique is applicable to a host of solid-state

crystals and paramagnetic defects, but is largely demonstrated using an ensemble of NV

centers in diamond (cavity-enhanced microwave readout of chromium defects in sapphire

is also briefly discussed). The technique is then applied to magnetometry and we project

one of the highest reported broadband sensitivities of a device employing NV ensembles.

In the current configuration, the sensitivity is limited by phase noise on the driving MW

signal, and thermal noise of the readout electronics. Unlike shot noise however, these re-

main fixed as the signal strength increases, unlocking a straight forward path to improving

the sensitivity toward the spin-projection limit: by increasing the spin-photon collective co-

operativity parameter. Room-temperature magnetometry with sensitivity approaching the

spin-projection limit would enable an increase in the utility of solid-state quantum sensors,

for example in magnetoencephalography [25] and magnetocardiography [110] devices. In

addition to magnetometry, we expect that this technique will find broad application in pre-

cision tests of fundamental physics [59], precision frequency generation [27], and electric field

sensing [32,51].

Finally, this thesis demonstrates the ability of the high-sensitivity cavity-enhanced MW

readout technique to be used in applications that require measurements of the total magnetic

vector field. The capability of vector magnetometry is achieved using an AC magnetic bias

field to sequentially interrogate spin resonances of different NV orientations. Because the AC

field sweeps both the |𝑚𝑠 = ±1⟩ spin states across the cavity resonance, we introduce a mea-

surement scheme which suppresses errors in the magnetometer output due to temperature

fluctuations by almost two orders of magnitude. Finally, by modulating the NV resonances,

the AC bias field upconverts fields of interest into the low-noise band of the readout electron-

ics, enabling high measurement sensitivity. While our implementation is limited by technical

noise, the method promises highly competitive sensitivities with the potential for magnetom-

etry at the spin projection limit [53, 55]. Furthermore, it remains broadly applicable to a
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number of other solid-state defects [169], and thus promises the development of new quantum

sensors that do not rely on the optical properties of the sensor species. We envision future

applications in magnetoencephalography [25, 68, 133], magnetocardiography [110], magnetic

anomaly detection [140,182], and space weather monitoring [145].
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Appendix A

The nitrogen vacancy center in diamond

The negatively-charged NV color center (NV-) is a deep band gap impurity within the

diamond crystal lattice (Fig. A-1a). The point defect’s 𝐶3𝑣 symmetry results in a 3A2

spin-triplet ground state and a 3E spin-triplet excited state, separated by a zero phonon

line (ZPL) of 637 nm [105]. Spin-spin interactions give rise to a zero-field splitting in the

ground-state spin triplet, shifting the 𝑚𝑠 = ±1 states with respect to the 𝑚𝑠 = 0 state by

Dgs ≈ 2.87 GHz (Fig. A-1b). In the presence of a static magnetic field 𝐵0, the 𝑚𝑠 = ±1

sublevels experience Zeeman splitting proportional to the projection of the magnetic field

along the NV symmetry axis. Above-band optical excitation (typically performed with a 532-

nm laser) results in phononic relaxation of the NV spin within the 3E excited state, followed

by fluorescent emission in a broad band. While these optical transitions are generally spin-

preserving, an alternate decay path through a pair of metastable singlet states (1A1 and 1E)

results in preferential relaxation from the 𝑚𝑠 = ±1 excited states to the 𝑚𝑠 = 0 ground state

that is non-radiative in the typical 637 − 800 nm fluorescence band. This behavior under

optical excitation has two major consequences: (1) an optical means of polarizing the NV

spin, and (2) optical detection via spin-state-dependent fluorescence intensity.

Measurement of the NV electron spin resonance spectrum can be performed by sweeping

the carrier frequency of the MW drive field and monitoring NV fluorescence in the visi-

ble band. Generally, the continuous optical excitation pumps the NV spin population into

the more fluorescent 𝑚𝑠 = 0 state; however, when the carrier frequency is resonant with

an NV spin transition, the NV spin population is cycled into an 𝑚𝑠 = ±1 state, caus-

89



532 nm

637 nm
1042 nm

Dgs

2gsµBBz

m  = -1s

m  = 0s

m  = +1s

C

V

C

CC

C

C

C

N

C
C

C

C

C
C

C

(a)

637 nm 1042 nm

(b)

3A2

E3

1A1

E1

Figure A-1: The NV center structure. (a) Example of one NV center orientation within
the diamond crystal structure. (b) The NV electronic energy level structure.

ing decreased fluorescence intensity, which appears as a dip in the electron spin resonance

spectrum [79, 131]. Since the NV symmetry axis may be aligned along one of four possi-

ble crystal-defined orientations—each orientation being equally thermodynamically likely in

low strain diamond—the electron spin resonance spectrum can contain up to eight distinct

non-degenerate NV resonances, which probe different field components. The different orien-

tations act as basis vectors, which collectively span three dimensional space, and allow the

total vector field to be reconstructed [39,79,136].
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Appendix B

Electromagnetic theory of dielectric

resonators

In this section, I analyze the the electromagnetic fields of a dielectric cavity in order to extract

the equivalent lumped element circuit components necessary to build a more convenient

RLC model. Initially, I consider the case where only the input loop couples to the resonator

(Fig. B-1a). From there I derive multiple equivalent circuit models, with circuit component

values determined from analysis of the fields of the dielectric resonator’s mode of interest

(Fig B-1b-c). Finally, I extract the bare resonator lumped element circuit components which

are necessary to build a circuit model which can be generalized to any number of coupled

input or output loops (Fig B-1d).

B.1 Electric and magnetic field components

The electric and magnetic fields of a dielectric resonator are modeled as a dielectric wave

guide which is open at both ends. Furthermore, we consider the outer boundary of the

resonator with radius 𝑎 as a perfect magnetic conductor which makes the tangential magnetic

field component vanish at the sidewalls. We start by considering travelling waves for both
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dielectric resonator (a) Illustration of physical resonator and TE01𝛿 mode with impedance
𝑍 looking in to coupling loop. (b) Parallel RLC circuit as extracted from electromagnetic field
model. Coupling is implicitly contained within calculated circuit components. (c) Circuit
in (b) transformed as series RLC circuit. Coupling represented by mutual inductance 𝐿𝑚

between loop inductance 𝐿0 and series resonator inductance 𝐿𝑠. (d) Mutual inductance
coupling represented as ideal transformer with ratio 𝑛 : 1 and lumped element components
of Eq. (C.2).

the electric and magnetic fields in cylindrical coordinates,

𝐸(𝜌, 𝜑, 𝑧) =
[︁
𝜌𝐸𝜌(𝜌, 𝜑) + 𝜑𝐸𝜑(𝜌, 𝜑) + 𝑧𝐸𝑧(𝜌, 𝜑)

]︁
𝑒±𝑗𝛽𝑧

𝐻(𝜌, 𝜑, 𝑧) =
[︁
𝜌𝐻𝜌(𝜌, 𝜑) + 𝜑𝐻𝜑(𝜌, 𝜑) + 𝑧𝐻𝑧(𝜌, 𝜑)

]︁
𝑒±𝑗𝛽𝑧.
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We plug the above equations into the source free Maxwell equations,

∇× 𝐸 = −𝑗𝜔𝜇𝐻

∇×𝐻 = 𝑗𝜔𝜖𝐸
(B.1)

and compute the curl using the grad operator in cylindrical coordinates
[︁

𝜕
𝜕𝜌
, 1
𝜌

𝜕
𝜕𝜑
, 𝜕
𝜕𝑧

]︁
,

𝜌

[︂
1

𝜌

𝜕𝐸𝑧

𝜕𝜑
− (±𝑗𝛽)𝐸𝜑

]︂
+ 𝜑

[︂
(±𝑗𝛽)𝐸𝜌 −

𝜕𝐸𝑧

𝜕𝜌

]︂
+ 𝑧

[︂
𝜕𝐸𝜑

𝜕𝜌
+

𝐸𝜑

𝜌
− 𝜕𝐸𝜌

𝜕𝜑

]︂
=

− 𝑗𝜔𝜇
(︁
𝜌𝐻𝜌 + 𝜑𝐻𝜑 + 𝑧𝐻𝑧

)︁

𝜌

[︂
1

𝜌

𝜕𝐻𝑧

𝜕𝜑
− (±𝑗𝛽)𝐻𝜑

]︂
+ 𝜑

[︂
(±𝑗𝛽)𝐻𝜌 −

𝜕𝐻𝑧

𝜕𝜌

]︂
+ 𝑧

[︂
𝜕𝐻𝜑

𝜕𝜌
+

𝐻𝜑

𝜌
− 𝜕𝐻𝜌

𝜕𝜑

]︂
=

𝑗𝜔𝜖
(︁
𝜌𝐸𝜌 + 𝜑𝐸𝜑 + 𝑧𝐸𝑧

)︁
.

We then equate each vector component (for both 𝐸 and 𝐻) and solve for the transverse

fields 𝐸𝜌, 𝐸𝜑, and 𝐻𝜌, 𝐻𝜑

𝐻𝜌 =
−𝑗𝛽

𝑘2
𝑐

𝜕𝐻𝑧

𝜕𝜌

𝐸𝜑 =
𝑗𝜔𝜇

𝑘2
𝑐

𝜕𝐻𝑧

𝜕𝜌

𝐻𝜑 = 0

𝐸𝜌 = 0,

(B.2)

where we define the wave number 𝑘2
𝑐 = 𝛽2 + 𝑘2

0 and 𝑘2
0 = 𝜔2𝜖0𝜇0. Finally, to find the

full expression for the transverse magnetic and electric field components, we solve for the

longitudinal part of the magnetic field 𝐻𝑧. 𝐻𝑧 is found by solving the Helmholtz equation,

(︀
∇2 + 𝑘2

)︀
𝐻𝑧 = 0, (B.3)
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with the appropriate longitudinal boundary conditions for the dielectric resonator of length

L,

𝑘 =

⎧⎪⎨⎪⎩
√
𝜖𝑟
√
𝜖0𝜇0𝜔 =

√
𝜖𝑟𝑘0 |𝑧| < 𝐿/2

√
𝜖0𝜇0𝜔 = 𝑘0 |𝑧| > 𝐿/2

with 𝑘0 as the free space resonant frequency wavenumber. 𝐻𝑧 must vanish at 𝜌 = 𝑎 and

be finite at 𝜌 = 0 which precludes higher order Bessel functions. Matching the boundary

conditions and solving for 𝐻𝑧 yields,

𝐻𝑧 = 𝐻1𝐽0(𝑘𝑐𝜌)𝑒
±𝑗𝛽𝑧, (B.4)

where 𝐻1 is the field amplitude, 𝐽𝑛(𝑥) are Bessel functions of the first kind of order 𝑛,

𝑘𝑐 =
𝑝01
𝑎

, and 𝐽0(𝑝01) = 0. Finally, plugging 𝐻𝑧 into (B.2) yields

𝐸𝜑 =
𝑗𝜔𝜇0𝐻1

𝑘𝑐
𝐽 ′
0(𝑘𝑐𝜌)𝑒

±𝑗𝛽𝑧

𝐻𝜌 = ±𝑗𝛽𝐻1

𝑘𝑐
𝐽 ′
0(𝑘𝑐𝜌)𝑒

±𝑗𝛽𝑧,

(B.5)

where the prime indicates a spatial derivative. Considering resonator boundaries the longi-

tudinal magnetic field becomes,

𝐻𝑧 = 𝐻1𝐽0(𝑘𝑐𝜌) cos 𝛽𝑧, |𝑧| < 𝐿

2

𝐻𝑧 = 𝐻1 cos
𝛽𝐿

2
𝐽0(𝑘𝑐𝜌)𝑒

−𝛼(|𝑧|−𝐿/2), |𝑧| > 𝐿

2

(B.6)

The radial magnetic field is

𝐻𝜌 = −𝑗𝛽

𝑘𝑐
𝐻1𝐽

′
0(𝑘𝑐𝜌) sin 𝛽𝑧, |𝑧| < 𝐿

2

𝐻𝜌 = ∓𝑗𝛼

𝑘𝑐
𝐻1 cos

𝛽𝐿

2
𝐽 ′
0(𝑘𝑐𝜌)𝑒

−𝛼(|𝑧|−𝐿/2), |𝑧| > 𝐿

2

(B.7)
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and the electric field is

𝐸𝜑 =
𝑗𝜔𝜇0

𝑘𝑐
𝐻1𝐽

′
0(𝑘𝑐𝜌) cos 𝛽𝑧, |𝑧| < 𝐿

2

𝐸𝜑 =
𝑗𝜔𝜇0

𝑘𝑐
𝐻1 cos

𝛽𝐿

2
𝐽 ′
0(𝑘𝑐𝜌)𝑒

−𝛼(|𝑧|−𝐿/2), |𝑧| > 𝐿

2
.

(B.8)

We can simplify equations (B.6) - (B.8) by pulling out the longitudinal dependence 𝑓(𝑧) and

including the Bessel function identity 𝐽 ′
0(𝑥) = −𝐽1(𝑥),

𝐻𝑧 = 𝐻1𝐽0(𝑘𝑐𝜌)𝑓(𝑧),

𝐻𝜌 = −𝑗𝛽

𝑘𝑐
𝐻1𝐽1(𝑘𝑐𝜌)𝑓

′(𝑧),

𝐸𝜑 = −𝑗𝜔𝜇0

𝑘𝑐
𝐻1𝐽1(𝑘𝑐𝜌)𝑓(𝑧).

(B.9)

and

𝑓(𝑧) =

⎧⎪⎨⎪⎩cos 𝛽𝑧, |𝑧| < 𝐿
2

cos 𝛽𝐿
2
𝑒−𝛼(|𝑧|−𝐿/2), |𝑧| > 𝐿

2

(B.10)

B.2 Power dissipated in the dielectric resonator

Dielectric losses in the resonator are due to bound charges and dipole relaxation, and almost

entirely contribute to dissipation of the stored electric energy. We therefore start with the

transverse electric field component in (B.9) and solve for the dissipated power as

𝑃𝑑 =
1

2

∫︁
resonator

𝑑𝑣 𝜎 |𝐸𝜑|2 =
1

2

∫︁
𝑧

∫︁
𝜌

∫︁
𝜑

𝜎|𝐸𝜑|2𝜌 𝑑𝜑𝑑𝜌𝑑𝑧. (B.11)

Since only electric fields within the resonator dissipate real power we have,

|𝐸𝜑|2 =
(︂
𝜔𝜇0

𝑘𝑐

)︂2

𝐻2
1𝐽

2
1 (𝑘𝑐𝜌)cos2(𝛽𝑧),

and computing the integral in (B.11) we have

𝑃𝑑 =
𝑎2𝜋𝜎𝐿

4

(︂
𝜔𝜇0

𝑘𝑐

)︂2

𝐻2
1𝐽1(𝑝01)

2

(︂
1 +

1

𝛽𝐿
sin(𝛽𝐿)

)︂
, (B.12)
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where 𝜎 = 𝜔𝜖′′ = 𝜔 𝜖𝑟𝜖0 tan(𝛿), and 𝑝01 ≈ 2.4.

B.3 Stored electric and magnetic energy

Again, we begin by considering the electric field component of the mode in (B.9) and the

electric energy

𝑊𝑒 =
1

4

∫︁
all space

𝑑𝑣 𝜖|𝐸𝜑|2. (B.13)

This time however, we have to integrate over all space since the mode extends past the

bounds of the dielectric resonator.

𝑊𝑒,resonator =
𝑎2𝜋𝜖𝐿

8

(︂
𝜔𝜇0

𝑘𝑐

)︂2

𝐻2
1𝐽1(𝑝01)

2

(︂
1 +

1

𝛽𝐿
sin(𝛽𝐿)

)︂
𝑊𝑒,outside =

𝑎2𝜋𝜖

4

(︂
𝜔𝜇0

𝑘𝑐

)︂2

𝐻2
1𝐽1(𝑝01)

2cos2
(︂
𝛽𝐿

2

)︂
𝛼−1.

and adding both together yields the total electric energy stored in the electromagnetic mode,

𝑊𝑒 =
𝑎2𝜋𝜖𝐿

4

(︂
𝜔𝜇0

𝑘𝑐

)︂
𝐻2

1𝐽1(𝑝01)
2

[︂
1

2

(︂
1 +

1

𝛽𝐿
sin(𝛽𝐿)

)︂
+

1

𝜖𝑟𝛼𝐿
cos2

(︂
𝛽𝐿

2

)︂]︂
. (B.14)

Because the magnetic field has two vector components (one along z, the other along 𝜌)

we have to consider both 𝐻𝑧 and 𝐻𝜌 when computing the magnetic energy 𝑊𝑚 stored in the

mode,

𝑊𝑚 =
1

4

∫︁
all space

𝑑𝑣 𝜇|𝐻|2 = 1

4

∫︁
all space

𝑑𝑣 𝜇 (𝐻2
𝑧 +𝐻2

𝜌), (B.15)

which yields,

𝑊𝑚,resonator =
𝑎2𝜋𝐿𝜇0

4
𝐻2

1𝐽1(𝑝01)
2

(︂
1− 𝛽2

𝑘2
𝑐

)︂
1

2𝛽𝐿
sin(𝛽𝐿)

𝑊𝑚,outside =
𝑎2𝜋𝐿𝜇0

4
𝐻2

1𝐽1(𝑝01)
2

(︂
1 +

𝛽2

𝑘2
𝑐

)︂(︂
1

2
+

1

𝛼𝐿
cos2

(︂
𝛽𝐿

2

)︂)︂
.

Finally, adding everything together yields
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𝑊𝑚 =
𝑎2𝜋𝐿𝜇0

4
𝐻2

1𝐽1(𝑝01)
2

[︂(︂
1 +

𝛽2

𝑘2
𝑐

)︂(︂
1

2
+

1

𝛼𝐿
cos2

(︂
𝛽𝐿

2

)︂)︂
+

(︂
1− 𝛽2

𝑘2
𝑐

)︂
1

2𝛽𝐿
sin(𝛽𝐿)

]︂
(B.16)

B.4 Computing coupled circuit parameters from stored

energy

To compute the total impedance (𝑍) looking into the loop we consider ohm’s law,

𝑍* =
𝑉 *

𝐼*
=

1

2

𝑉 *𝑉
1
2
𝐼*𝑉

=
|𝑉 |2

2𝑃
. (B.17)

The total complex power 𝑃 drawn by the loop-coupled resonator is the real power attributed

to dielectric loss 𝑃𝑑 and the reactive power 𝑃𝑟 attributed to the net energy stored in the

electromagnetic field,

𝑃 = 𝑃𝑑 + 𝑃𝑟 = 𝑃𝑑 + 2 𝑗𝜔 (𝑊𝑚 −𝑊𝑒). (B.18)

The induced electric potential 𝑉 arises from integrating the electric field along the loop, or,

by use of Stoke’s theorem, integrating the magnetic field over the loop area,

𝑉 =

∮︁
𝑙

𝐸 · 𝑑𝑙 =
∫︁
𝑆

∇× 𝐸 · 𝑑𝑆 = −𝑗𝜔𝜇

∫︁
𝑆

𝐻 · 𝑑𝑆. (B.19)

Since the transverse component of 𝐻 lies parallel to 𝑑𝑆 (ie.
∫︀
𝑆
𝐻𝜌 · 𝑑𝑆 = 0) we only have

to consider the longitudinal component 𝐻𝑧. Approximating the field to be uniform over the

loop area (𝐴) yields,

𝑉 = −𝑗𝜔𝜇

∫︁
𝑆

𝐻𝑧 · 𝑑𝑆 = −𝑗𝜔𝜇𝐻1cos
(︂
𝛽𝐿

2

)︂
𝑒−𝛼𝑑𝐴, (B.20)

where 𝑑 is the distance between the loop and the top of the resonator. Finally,

|𝑉 |2 = (𝜔𝜇)2𝐻2
1cos2

(︂
𝛽𝐿

2

)︂
𝑒−2𝛼𝑑𝐴2. (B.21)
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We compactify our notation somewhat by defining the following from equations (B.12),(B.14),

and (B.16)

X = 1 +

(︂
1

𝛽𝐿
sin(𝛽𝐿)

)︂
Y =

[︂(︂
1 +

𝛽2

𝑘2
𝑐

)︂(︂
1

2
+

1

𝛼𝐿
cos2

(︂
𝛽𝐿

2

)︂)︂
+

(︂
1− 𝛽2

𝑘2
𝑐

)︂
1

2𝛽𝐿
sin(𝛽𝐿)

]︂
Z =

[︂
1

2

(︂
1 +

1

𝛽𝐿
sin(𝛽𝐿)

)︂
+

1

𝜖𝑟𝛼𝐿
cos2

(︂
𝛽𝐿

2

)︂]︂
.

(B.22)

Combining equations (B.12), (B.14), and (B.16) into (B.18), and consequently (B.18) and

(B.21) into (B.17), we find the loop-coupled-resonator admittance as

𝑌 =
𝑎4𝜋𝜎𝐿

2𝐴2𝑝201
𝐽1(𝑝01)

2cos−2

(︂
𝛽𝐿

2

)︂
𝑒2𝛼𝑑 · X

− 𝑗𝜔−1𝜋𝑎
2𝐿

𝜇𝐴2
𝐽1(𝑝01)

2cos−2

(︂
𝛽𝐿

2

)︂
𝑒2𝛼𝑑 · Y

𝑗𝜔
𝜋𝑎4𝐿𝜖

𝑝201𝐴
2
𝐽1(𝑝01)

2cos−2

(︂
𝛽𝐿

2

)︂
𝑒2𝛼𝑑 · Z. (B.23)

The above equation has a real part (∝ X), an imaginary magnetic part (∝ Y), and an

imaginary electric part (∝ Z) which act as the resistive, inductive, and capacitive components

of the impedance, respectively. The admittance 𝑌 therefore has the form

𝑌 =
1

𝑅𝑝

+
1

𝑗𝜔𝐿𝑝

+ 𝑗𝜔𝐶𝑝. (B.24)

By matching terms with 𝑗𝜔, we identify the parameters that make up the lumped element

circuit components of an analogous parallel RLC resonator (Fig. B-1b).

𝑅𝑝 =
2𝐴2𝑝201
𝜋𝑎4𝐿𝜎

[𝐽1(𝑝01)]
−2 cos2

(︂
𝛽𝐿

2

)︂
𝑒−2𝛼𝑑 · X−1

𝐿𝑝 =
𝜇𝐴2

𝜋𝑎2𝐿
[𝐽1(𝑝01)]

−2 cos2
(︂
𝛽𝐿

2

)︂
𝑒−2𝛼𝑑 · Y−1

𝐶𝑝 =
𝜋𝑎4𝐿𝜖

𝐴2𝑝201
𝐽1(𝑝01)

2 cos−2

(︂
𝛽𝐿

2

)︂
𝑒2𝛼𝑑 · Z.

(B.25)
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It’s important to note that the lumped element circuit components in (B.25) implicitly

contain the mutual inductance 𝐿𝑚 between the loop and the resonator. As a result, the

values will change as a function of the coupling. However, the parallel circuit in Fig. B-1b

can be transformed into an equivalent series RLC circuit representation [109] with explicit

coupling between the loop and resonator (Fig. B-1c). In the next section, I compute the

bare resonator inductance 𝐿𝑠 and the mutual inductance 𝐿𝑚, discover their relationship to

the coupled parallel inductance 𝐿𝑝, and compute the other uncoupled series lumped element

circuit components.

B.5 Bare resonator lumped element circuit components

We can calculate the inductance 𝐿𝑠 of the bare resonator directly from the magnetic energy

and current in the resonator. The displacement current density 𝐽𝑑 = 𝜖𝜕�⃗�/𝜕𝑡 gives the

current

𝐼 =

∫︁
𝐽𝑑 · 𝑑�⃗� =

2𝜖𝑟𝑘
2
0𝐻1 sin

𝛽𝐿
2

𝑘2
𝑐𝛽

. (B.26)

Using the average magnetic energy 𝑊𝑚 = 𝐿𝑠𝐼
2/4 then gives the resonator inductance

𝐿𝑠 =
𝜇0𝜋 𝑎2𝐿𝑘4

𝑐𝛽
2

4𝜖2𝑟𝑘
4
0

𝐽1(𝑥01)
2

sin2 𝛽𝐿
2

· Y (B.27)

and we find, as expected, that 𝐿𝑠 is independent of the coupling loop area or coupling loop

distance above the resonator.

The mutual inductance 𝐿𝑚 can be explicitly calculated from the voltage induced in the

coupling loop due to current in the resonator,

𝑉 = 𝐿𝑚
𝑑𝐼

𝑑𝑡
= 𝑗𝜔𝐿𝑚𝐼. (B.28)

We have already computed 𝐼 from equation (B.26) and 𝑉 in (B.20), then

𝐿𝑚 =
𝑉

𝑗𝜔𝐼
=

𝜇𝐴𝑘2
𝑐𝛽

2𝜖𝑟𝑘2
0

cot
(︂
𝛽𝐿

2

)︂
𝑒−𝛼𝑑. (B.29)

To discover the relationship between 𝐿𝑠, 𝐿𝑚, and 𝐿𝑝 we start by considering that the
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mutual inductance between two loops can be represented as 𝐿𝑚 = 𝑀
√
𝐿1𝐿2, where 𝐿1,2 are

the arbitrary inductances of the two mutually coupled loops, and 𝑀 is a unitless coupling

coefficient. We know that the bare resonator inductance 𝐿𝑠 is independent of the coupling

and thus the mutual inductance will follow

𝐿2
𝑚 = 𝑀2𝐿0𝐿𝑠, (B.30)

where the quantity 𝑀2𝐿0 is to be discovered. Solving for the product 𝑀2𝐿0, and plugging

in for 𝐿𝑚 and 𝐿𝑠 yields

𝑀2𝐿0 =
𝐿2
𝑚

𝐿𝑠

=
𝜇𝐴2

𝜋𝑎2𝐿
[𝐽1(𝑝01)]

−2 cos2
(︂
𝛽𝐿

2

)︂
𝑒−2𝛼𝑑 · Y−1. (B.31)

Comparing (B.31) to (B.25) we find that 𝑀2𝐿0 = 𝐿𝑝. The relationship between 𝐿𝑚, 𝐿𝑠 and

𝐿𝑝 therefore is

𝐿2
𝑚 = 𝐿𝑝𝐿𝑠, (B.32)

and will aid in deriving the rest of the uncoupled series lumped element circuit components

(𝑅𝑠 and 𝐶𝑠). We begin by noting that on resonance, both coupled and uncoupled circuits

should resonate at the same frequency

1√︀
𝐿𝑝𝐶𝑝

=
1√
𝐿𝑠𝐶𝑠

. (B.33)

Solving for 𝐶𝑠 and using the relationship in (B.32) we find

𝐶𝑠 =
𝐿2
𝑝

𝐿2
𝑚

𝐶𝑝. (B.34)

We find the relationship between resistances from the Q-factor

𝑄 =
𝜔𝐿𝑝

𝑅𝑝

=
𝑅𝑠

𝜔𝐿𝑠

, (B.35)
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where, solving for 𝑅𝑠 and using the relationship 𝜔 = 1/
√
𝐿𝑠𝐶𝑠, and equation (B.32),

𝑅𝑠 =
𝐿2
𝑚

𝐿𝑝𝐶𝑝𝑅𝑝

. (B.36)

To summarize, the relationship between the coupled parallel circuit elements depicted in

Fig. B-1b and the uncoupled series circuit elements depicted in Fig. B-1c is

𝐿𝑠 =
𝐿2
𝑚

𝐿𝑝

,

𝐶𝑠 =
𝐶𝑝𝐿

2
𝑝

𝐿2
𝑚

,

𝑅𝑠 =
𝐿2
𝑚

𝐶𝑝𝐿𝑝𝑅𝑝

.

(B.37)

These circuit values represent the bare resonator apart from the coupling loop. In the

following section, we use the uncoupled series circuit components to build a lumped element

circuit model which can easily facilitate multiple coupling loops, and for which introducing

the spin-ensemble-coupled admittance is a simple exercise in classical circuit theory.

B.6 Comparing analytical and numerical RLC values

Using the equations in B.37 we can compute values for the series equivalent circuit compo-

nents given the cavity parameters in section 3.2.1. We calculate

𝐿𝑠 = 3.88 nH, 𝐶𝑠 = 0.776 pF, and𝑅𝑠 = 3.17 mΩ. (B.38)

Using ANSYS HFSS we can obtain the equivalent series RLC circuit component values

of the bare cavity (i.e. the resonator cavity and diamond system in the absence of any

spin polarization by the laser) which are computed using the following procedure: first,

finite element modeling software (Ansys HFSS) calculates the �⃗� and �⃗� fields for a given

stored energy in the cavity; next, the Ampere-Maxwell law is applied to determine the RMS

displacement current 𝐼RMS
𝐷 ; third, the stored magnetic energy is set equal to 1

2
𝐿𝑠(𝐼

RMS
𝐷 )2

to determine the value of 𝐿𝑠; and finally, the capacitance is determined from the resonant
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frequency and the inductance, with 𝐶𝑠 = 1
𝜔2
𝑐𝐿𝑠

. The series resistance 𝑅𝑠 is computed by

first experimentally measuring the composite cavity’s unloaded quality factor 𝑄0, with 𝑅𝑠 =

1
𝑄0

√︁
𝐿𝑠

𝐶𝑠
. This procedure gives

𝐿𝑠 = 3.75 nH, 𝐶𝑠 = 0.803 pF, and𝑅𝑠 = 3.15 mΩ. (B.39)

These results quantitatively agree with the analytical model of the electromagnetic fields of

the resonator TE01𝛿 mode described above to within 3.5%.
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Appendix C

Generalized circuit model

For ease of analysis a further transformation can then be made, where the parallel RLC

circuit described by the lumped elements in Eq. (B.25) is replaced by an ideal-transformer-

coupled parallel RLC circuit with lumped elements constructed from the series equivalent

RLC circuit (Fig. B-1c). The benefit of this construction is three fold: far from resonance the

correct phase relationship between the voltage and current is maintained, the lumped element

components remain independent from the coupling which allows for introducing an arbitrary

number of additional loop couplings without loss of generality, and, finally, computation of

the circuit reflection (and transmission in the case of added output couplings) coefficient

becomes a trivial exercise in classical circuit theory.

C.1 Transformer coupled circuit

We rewrite Eq. (B.25) in terms of the series equivalent circuit values Eq. (B.37) and an

effective turns ratio 𝑛 : 1, where we follow traditional electrical engineering convention and

define 𝑛 as the ratio of primary-to-secondary turns of an ideal transformer. The effective

turns ratio is given by

𝑛 =
𝐿𝑚

𝐿𝑠

=
𝐿𝑝

𝐿𝑚

. (C.1)
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Figure C-1: Full lumped element circuit model Illustration of the ideal-transformer-
coupled parallel RLC circuit with out- and input couplings. The lumped element components
are Eq. (C.2) and the input and output coupling turns ratios are 𝑛1 and 𝑛2 respectively.

The modification of the series inductance as a result of this transformation is given by

𝐿′
𝑠 = 𝐿𝑠 − 𝑛2𝐿0, where 𝐿0 is the loop inductance. Here, however, we have 𝑛2𝐿0 << 𝐿𝑠,

and thus we set 𝐿′
𝑠 ≈ 𝐿𝑠 [109]. The ideal-transformer-coupled parallel RLC lumped element

circuit components are

𝐿 = 𝐿𝑠 (C.2)

𝐶 = 𝐶𝑠 (C.3)

𝑅 =
𝜔2𝐿2

𝑠

𝑅𝑠

. (C.4)

As a result of this construction, we can add an additional output coupler (1:𝑛) to compute

the transmission coefficient without modifying the lumped element circuit components in

the model (Fig. C-1). We write the effective turns ratio of the input and output coupler as

𝑛1 and 𝑛2 respectively. Critical coupling of the input loop alone (with no output coupling)

is achieved when 𝑛1 =
√︀
𝑍0/𝑅, where 𝑍0 is the input line impedance (typically 50 Ω).

The effective turns ratios can be controlled by changing the distance from the loop to the

resonator.
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C.2 Generalized reflection and transmission coefficients

The circuit representation for a ideal-transformer coupled parallel RLC resonator is depicted

in Fig. C-1. As mentioned above, we define the turns ratio 𝑛𝑎, where 𝑎 represents the index

of the coupled line, as

𝑛𝑎 =
𝑁𝑝

𝑁𝑠

, (C.5)

where 𝑁𝑝 is the number of turns on the primary coil and 𝑁𝑠 the number on the secondary

coil. As a result, the voltage and current relations at the transformer are as follows,

𝑉𝑠 =
𝑁𝑠

𝑁𝑝

𝑉𝑝 =
1

𝑛1

𝑉𝑝,

𝐼𝑠 =
𝑁𝑝

𝑁𝑠

𝐼𝑝 = 𝑛1𝐼𝑝.

(C.6)

We then write out the open- and closed-circuit equations in therms of the voltages across

and the currents through each inductor,

𝑉𝑝 = 𝑛1𝑉𝑠 + 0𝐼𝑠

𝐼𝑝 = 0𝑉𝑠 +
1

𝑛1

𝐼𝑠.
(C.7)

From here we build the matrix for the transformer as,

�̃�1 =

⎡⎣𝑛1 0

0 1
𝑛1

⎤⎦ . (C.8)

We identify 𝑍0 as 𝑉𝑝/𝐼𝑝, then

𝑍0 =
𝑉𝑝

𝐼𝑝
=

𝑛1𝑉𝑠

1
𝑛1
𝐼𝑠

= 𝑛2
1

𝑉𝑠

𝐼𝑠
= 𝑛2

1𝑍.
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On resonance, the capacitive and inductive reactances cancel each other out and 𝑍 = 𝑅.

Consequently, a critically coupled resonator has turns ratio

𝑛1 =

√︂
𝑍0

𝑅
. (C.9)

Given this construction, we identify, for transmission configurations depicted in Fig. C-1 the

out-coupling transformer as the inverse of the in-coupling transformer,

�̃�2 =

⎡⎣ 1
𝑛2

0

0 𝑛2

⎤⎦ . (C.10)

In matrix form, the parallel admittance is represented as,

𝑌 =

⎡⎣ 1 0

𝑌 1

⎤⎦ , (C.11)

and the full circuit response is computed by

𝐴𝑖𝑗 = �̃�1𝑌 �̃�2 =

⎡⎣ 𝑛1/𝑛2 0

𝑌/(𝑛1𝑛2) 𝑛2/𝑛1

⎤⎦ .

We can now build the circuit reflection (Γ) and transmission (T) coefficients by use of [123]

Γstruct =
𝐴00 + 𝐴01/𝑍0 − 𝐴10𝑍0 − 𝐴11

𝐴00 + 𝐴01/𝑍0 + 𝐴10𝑍0 + 𝐴11

(C.12)

Tstruct =
2

𝐴00 + 𝐴01/𝑍0 + 𝐴10𝑍0 + 𝐴11

, (C.13)

the result of which are the generalized circuit reflection and transmission coefficients with

input impedance 𝑍0 and parallel resonator admittance 𝑌 ,

Γ =
𝑛2
1 + 𝑛2

2 − 𝑌 𝑍0

𝑛2
1 + 𝑛2

2 + 𝑌 𝑍0

, (C.14)

T =
2𝑛1𝑛2

𝑛2
1 + 𝑛2

2 + 𝑌 𝑍0

. (C.15)
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We can now simply substitute in the admittance of the RLC resonator once we have deter-

mined how the spin ensemble modifies the bare resonator impedance.

C.3 Spin-coupled resonator admittance

To incorporate the spin ensemble’s effect on the composite cavity response, consider the

contribution of the spin-ensemble magnetization to the flux through the resonator. When

a coil of inductance 𝐿 is filled with a material of magnetic susceptibility 𝜒𝑚, its inductance

increases to 𝐿(1 + 𝜒𝑚) [147]. For the model investigated here, the complex susceptibility

modifies the series inductance to 𝐿(1 + 𝜒′ − 𝑗𝜒′′).

𝑌 =
1

𝑅
+

1

𝑗𝜔𝐿(1 + 𝜒)
+ 𝑗𝜔𝐶. (C.16)

Using the approximation that 𝜒 << 1 the total admittance of the composite cavity can be

written as

𝑌 ≈ 1

𝑅
+

1

𝑗𝜔𝐿
+ 𝑗𝜔𝐶 − 𝜒

𝑗𝜔𝐿
. (C.17)

When 𝜒 is then written in terms of its real and imaginary components, we can collect terms

and write the admittance in a more illuminating form

𝑌 ≈
[︂
1

𝑅
+

𝜒′′

𝜔𝐿

]︂
+

[︂
1

𝑗𝜔𝐿
(1− 𝜒′) + 𝑗𝜔𝑑𝐶

]︂
. (C.18)

Eq (C.18) shows the contribution of the absorption to the real part and the dispersion to

the imaginary part of the impedance. Now that we’ve identified how the spin-ensemble mag-

netization influences the composite resonator’s admittance, we can build the spin-coupled

reflection and transmission coefficients by introducing (C.17) into the generalized circuit

reflection and transmission coefficients of Eqs. (C.14) and (C.15),

Γ = −1 +
2𝑛2

1/𝑍0

1/𝑅 + 𝑗2𝐶(𝜔𝑑 − 𝜔𝑐) + 𝑛2
1/𝑍0 + 𝑛2

2/𝑍0 − 𝜒(𝑗𝜔𝑑𝐿)−1
(C.19)

𝑇 =
2𝑛1𝑛2/𝑍0

1/𝑅 + 𝑗2𝐶(𝜔𝑑 − 𝜔𝑐) + 𝑛2
1/𝑍0 + 𝑛2

2/𝑍0 − 𝜒(𝑗𝐿𝜔𝑑)−1
. (C.20)

107



Here we have replaced 𝜔 = 𝜔𝑑 and 𝜔𝑐 = 1/
√
𝐿𝐶; a necessary distinction in order to decouple

the driving field from the bare cavity resonance.
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Appendix D

Spin ensemble dynamics

This section aims at calculating the components of the spin-ensemble’s complex magnetic

susceptibility 𝜒 = 𝜒′ − 𝑗𝜒′′ by analyzing the dynamics of a spin magnetization �⃗� which is

subjected to a magnetic vector field �⃗�. As a result of this analysis we will be able to build the

final reflection and transmission coefficients which entirely describe the spin-ensemble-cavity-

coupled system. The Bloch equations [21], describe the time evolution of the magnetization

components, and introduce the phenomenological longitudinal relaxation 𝑇1 and transverse

relaxation 𝑇2

�̇�𝑥 = 𝛾 (𝑀𝑦𝐻𝑧 −𝑀𝑧𝐻𝑦)−
1

𝑇2

𝑀𝑥 (D.1)

�̇�𝑦 = 𝛾 (𝑀𝑧𝐻𝑥 −𝑀𝑥𝐻𝑧)−
1

𝑇2

𝑀𝑦 (D.2)

�̇�𝑧 = 𝛾 (𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)−
1

𝑇1

(𝑀𝑧 −𝑀0), (D.3)

where 𝛾 is the spin gyromagnetic ratio, and 𝑀0 = 𝜒0𝐻0 is the equilibrium magnetization

due to a static spin susceptibility 𝜒0 in a static magnetic field 𝐻0. We now consider such a

static magnetic field, and introduce a dynamic field 𝐻1 rotating at an angular frequency 𝜔

such that

�⃗� = �̂� [𝐻1cos 𝜔𝑡] + 𝑦 [𝐻1sin 𝜔𝑡] + 𝑧 [𝐻0] . (D.4)
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In the frame rotating at 𝜔 the magnetization components become

�̃�𝑥 = �̃�𝑥cos 𝜔𝑡− �̃�𝑦sin 𝜔𝑡 (D.5)

�̃�𝑥 = �̃�𝑥sin 𝜔𝑡+ �̃�𝑦cos 𝜔𝑡 (D.6)

�̃�𝑧 = 𝑀𝑧, (D.7)

which yields

˙̃𝑀𝑥 = −�̃�𝑥

𝑇2

+ (𝜔 − 𝜔0)�̃�𝑦 (D.8)

˙̃𝑀𝑦 = −(𝜔 − 𝜔0)�̃�𝑥 −
�̃�𝑦

𝑇2

− 𝜔1𝑀𝑧 (D.9)

˙̃𝑀𝑧 = 𝜔1�̃�𝑦 −
1

𝑇1

(�̃�𝑧 −𝑀0). (D.10)

Here we have defined 𝜔0 = −𝛾𝐻0 and 𝜔1 = −𝛾𝐻1. We are only interested in the steady

state solutions ( ˙̃𝑀𝑥 = ˙̃𝑀𝑦 =
˙̃𝑀𝑧 = 0) of eqs. (D.8)-(D.10) since we will be driving the spins

using a single continuous microwave tone. Solving the steady-state coupled equations for the

magnetization components in the rotating frame yields,

�̃�𝑥 =
(𝜔 − 𝜔0)𝛾𝐻1𝑇

2
2

1 + ((𝜔 − 𝜔0)𝑇2)2 + 𝛾2𝐻2
1𝑇1𝑇2

𝑀0 (D.11)

�̃�𝑦 =
𝛾𝐻1𝑇2

1 + ((𝜔 − 𝜔0)𝑇2)2 + 𝛾2𝐻2
1𝑇1𝑇2

𝑀0 (D.12)

�̃�𝑧 =
1 + ((𝜔 − 𝜔0)𝑇2)

2

1 + ((𝜔 − 𝜔0)𝑇2)2 + 𝛾2𝐻2
1𝑇1𝑇2

𝑀0. (D.13)

We now evaluate the steady-state solution to the Bloch equations under the application of a

linearly polarized field 𝐻(𝑡) = 𝐻1cos 𝜔𝑡. We note that the susceptibility 𝜒 obeys �⃗� = 𝜒�⃗�,

and as such can be evaluated by [1]

𝜒′ =
�̃�𝑥

2𝐻1

(D.14)

𝜒′′ =
�̃�𝑦

2𝐻1

. (D.15)
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Replacing 𝑀0 = 𝜒0𝐻0 = −𝜒0𝜔0/𝛾 yields the magnetic susceptibilities

𝜒′ = −1

2
𝜒0

𝜔0(𝜔 − 𝜔0)𝑇
2
2

1 + (𝜔 − 𝜔0)2𝑇 2
2 +

(︂
𝛾𝐻1

2

)︂2

𝑇1𝑇2

(D.16)

𝜒′′ =
1

2
𝜒0

𝜔0𝑇2

1 + (𝜔 − 𝜔0)2𝑇 2
2 +

(︂
𝛾𝐻1

2

)︂2

𝑇1𝑇2

. (D.17)

To aid in deriving the final reflection and transmission coefficients we substitute 𝜔 for the

driving field 𝜔𝑑, 𝜔0 with the spin resonance frequency 𝜔𝑠, and rewrite the complex suscepti-

bility into the compact form,

𝜒 = −𝜒0𝜔𝑠𝑇2

2

𝑗

1 + 𝑗(𝜔𝑑 − 𝜔𝑠)𝑇2 +

(︀
𝛾 𝐵⊥

1 /2
)︀2

𝑇 op
1 𝑇2

1− 𝑗(𝜔𝑑 − 𝜔𝑠)𝑇2

. (D.18)

Here, 𝐵⊥
1 = n⊥𝐵1 is the projection of the driving field (𝜇0𝐻1 = 𝐵1) onto the plane per-

pendicular to each of the NV axes (consequently n⊥ =
√︁

2
3
), 𝑇 op

1 is the optical pumping

relaxation time (in analogy to the thermalization time 𝑇1 for an NMR system), and 𝑇2 is

the decoherence time.
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Appendix E

Quantum mechanical system parameters

E.1 Vacuum magnetic field 𝐵𝑣

In this section we outline the steps that go into calculating the single spin-photon coupling

rate 𝑔𝑠. The single spin-photon coupling describes the coupling of a single spin to the vacuum

field in the cavity. We start by considering the time-averaged energy density in the TE01𝛿

mode of the cavity,

⟨ℰ⟩ =
∫︁

all space

1

4
𝜖0 |𝐸|2 𝑑3�⃗�⏟  ⏞  

𝑊𝑒

+

∫︁
all space

1

4
𝜇0 |𝐻|2 𝑑3�⃗�⏟  ⏞  

𝑊𝑚

. (E.1)

Where ⟨ℰ⟩ = 𝑊𝑒 + 𝑊𝑚 and, on resonance 𝑊𝑒 = 𝑊𝑚. Then, making the on-resonance

approximation we find

⟨ℰ⟩ = 2 𝑊𝑚. (E.2)

In section B.3 we calculated the magnetic energy stored in the mode on resonance as (see

eq. B.16),

𝑊𝑚 =
𝑎2𝜋𝐿𝜇0

4
𝐻2

1 [𝐽1(𝑝01)]
2 · Y. (E.3)

Plugging into eq. E.2 we get

⟨ℰ⟩ = ℏ𝜔 = 2
𝜋𝑎2𝐿

4
[𝐽1(𝑝01)]

2 𝜇0 𝐻
2
1 · Y. (E.4)
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Now we note a few things:

1. 𝜋𝑎2𝐿 is the total resonator volume and we’ll call it 𝑉res.

2. [𝐽1(𝜌01)]
2 is unitless and is ≈ (1/2)2.

3. Y is also unitless and is ≈ 0.8 for our experimental system.

Now using 𝜇0𝐻1 = 𝐵𝑣 we have,

𝐵𝑣 =
√
2

√︃
𝜇0 ℏ𝜔

𝑉res [𝐽1(𝑝01)]2 Y
, (E.5)

which describes the vacuum B-field in the cavity, at the TE01𝛿 mode anti-node. We identify

that the factor [𝑉res [𝐽1(𝑝01)]
2 Y] represents the area in the center of the cavity over which

the field amplitude is maximally concentrated. This collection of terms is often referred to

as the cavity mode volume which, for an arbitrary cavity geometry, is calculated as

𝑉cav =

∫︀
|B(r)|2𝑑𝑉
|Bmax|2

. (E.6)

The RMS-vacuum B-field at the cavity anti-node then is described by the equation

𝐵RMS
𝑣 =

√︂
𝜇0 ℏ𝜔
𝑉cav

. (E.7)

E.2 Single spin-photon coupling 𝑔𝑠

The transition dipole moment 𝑚0 and the oscillating magnetic field �⃗�1 projected onto the

transverse plane induce Rabi oscillations ΩR.

ℏΩR =
𝑚0

2
n⊥𝐵RMS

𝑣 . (E.8)

Here 𝐵RMS
𝑣 (�⃗�) is the RMS vacuum B-field in the cavity at the spin defect location �⃗� and

n⊥ denotes the projection of �̂�RMS
𝑣 onto a plane perpendicular to the NV axis (i.e., the

component of �⃗�RMS
𝑣 capable of driving a transition |𝑚𝑠 = 0⟩ → |𝑚𝑠 = ±1⟩). We take �⃗�RMS

𝑣 ‖

114



�⃗�1, where �⃗�1 is the magnetic field of the cavity-enhanced MW drive. The factor of 1
2

results

from a combination of the rotating wave approximation and the linear polarization of 𝐵1 in

the lab frame. For estimation purposes, we can assume the 𝐵1 field projects equally onto

all four NV axes so that n⊥ =
√︁

2
3
. Assuming the spins are located at the cavity antinode,

which is a reasonable approximation for this geometry, we have

𝑔𝑠 =
𝑚0

2ℏ
n⊥𝐵RMS

𝑣 , (E.9)

where we have replaced ΩR with 𝑔𝑠 since we are interested in oscillations between a single

spin in the cavity and the vacuum field. Here 𝑚0 = −𝑔𝑒 𝜇𝐵 𝑚𝑠, where for the NV 𝑚𝑠 =

{−1, 0,+1}. Then for 𝑚0 = 𝑔𝑒𝜇𝐵 and 𝑚𝑠 = −1,

𝑔𝑠 =
𝛾

2
n⊥𝐵

RMS
𝑣 , (E.10)

where 𝛾 = 𝑔𝑒𝜇𝐵

ℏ is the spin gyromagnetic ratio. Finally, inserting eq. (E.7) into the above we

have [138,180],

𝑔𝑠 =
𝛾

2
n⊥

√︂
𝜇0 ℏ𝜔
𝑉cav

. (E.11)

Based on finite element software modeling of the cavity (ANSYS HFSS), we find that

𝑔𝑠/(2𝜋) = 0.02±0.001 Hz. When the number of cavity photons 𝑛cav ≫ 1, the Rabi frequency

Ω𝑅 can be approximated as

Ω𝑅 ≈ 𝛾n⊥

√︂
ℏ𝜔𝑐𝜇0

𝑉cav

√
𝑛cav. (E.12)

Then we have

𝑔𝑠 =
Ω𝑅

2
√
𝑛cav

. (E.13)

E.3 Cooperativity 𝜉

The collective cooperativity is given by [154]

𝜉 =
4𝑔2eff
𝜅𝑐𝜅𝑠

, (E.14)
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where 𝜅𝑐 = 𝜔𝑐/𝑄𝐿 is the cavity loss rate and 𝜅𝑠 is the spin decoherence time (each in angular

frequency units).

E.4 Reflection and transmission using quantum mechan-

ical parameters

In this section, I introduce 𝜒 as given in eq. (D.18) back into the reflection eq. (C.19) and

transmission eq. (C.20) and make the appropriate substitutions in order to formulate the

resulting equations in terms of the quantum mechanical parameters of the system.

We identify 𝜅𝑐0 = 1/(𝑅𝐶), 𝜅𝑐1 = 𝑛2
1/(𝑍0𝐶), and 𝜅𝑐2 = 𝑛2

2/(𝑍0𝐶). Furthermore, the

approximation 𝜔𝑑 ≈ 𝜔𝑐 and the substitutions 𝜅𝑠 = 2/𝑇2 and 𝜅op = 1/𝑇 op
1 and the relationship

(︂
𝛾
𝐵⊥

1

2

)︂2

= 𝑔2𝑠𝑛cav (E.15)

between the single-spin-photon coupling 𝑔𝑠 and the driving magnetic field 𝐵1, along with the

relationship

𝑔2eff =
𝜒0

4
𝜔𝑐𝜔𝑠 (E.16)

between the effective collective coupling 𝑔eff and the static susceptibility 𝜒0, gives the reflec-

tion and transmission expressions

Γ = −1 +
𝜅𝑐1

𝜅𝑐0+𝜅𝑐1+𝜅𝑐2

2
+ 𝑗(𝜔𝑑 − 𝜔𝑐) +

𝑔eff2

𝜅𝑠
2
+𝑗(𝜔𝑑−𝜔𝑠)+

𝑔2𝑠𝑛cav𝜅𝑠/(2𝜅𝑜𝑝)
𝜅𝑠
2 −𝑗(𝜔𝑑−𝜔𝑠)

(E.17)

T =

√
𝜅𝑐1𝜅𝑐2

𝜅𝑐0+𝜅𝑐1+𝜅𝑐2

2
+ 𝑗(𝜔𝑑 − 𝜔𝑐) +

𝑔eff2

𝜅𝑠
2
+𝑗(𝜔𝑑−𝜔𝑠)+

𝑔2𝑠𝑛cav𝜅𝑠/(2𝜅𝑜𝑝)
𝜅𝑠
2 −𝑗(𝜔𝑑−𝜔𝑠)

. (E.18)

These are equivalent to those obtained through the circuit QED treatment [38, 65]. To

incorporate the inhomogeneous distribution of spin resonance frequencies, we integrate the

spin response over the appropriate probability density function 𝜌(∆) where, for example, for

inhomogeneous distributions due to crystal strain, 𝜌(∆) is given by a Gaussian probability
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density function. The full reflection and transmission coefficients become

Γ = −1 +
𝜅𝑐1

𝜅𝑐0+𝜅𝑐1+𝜅𝑐2

2
+ 𝑗(𝜔𝑑 − 𝜔𝑐) +

∫︁ ∞

−∞
𝜌(∆)

[︃
𝑔2eff

𝜅𝑠
2
+𝑗(𝜔𝑑−𝜔𝑠−Δ)+

𝑔2𝑠𝑛cav𝜅𝑠/(2𝜅𝑜𝑝)
𝜅𝑠
2 −𝑗(𝜔𝑑−𝜔𝑠−Δ)

]︃
𝑑∆

(E.19)

𝑇 =

√
𝜅𝑐1𝜅𝑐2

𝜅𝑐0+𝜅𝑐1+𝜅𝑐2

2
+ 𝑗(𝜔𝑑 − 𝜔𝑐) +

∫︁ ∞

−∞
𝜌(∆)

[︃
𝑔2eff

𝜅𝑠
2
+𝑗(𝜔𝑑−𝜔𝑠−Δ)+

𝑔2𝑠𝑛cav𝜅𝑠/(2𝜅𝑜𝑝)
𝜅𝑠
2 −𝑗(𝜔𝑑−𝜔𝑠−Δ)

]︃
𝑑∆

. (E.20)
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Appendix F

AC bias field optimization

F.1 Bias field resonant circuit

The AC magnetic bias field is produced by a 49 mm long, three-layer coil of 20 American

Wire Gauge (AWG) magnet wire. The total inductance of the coil is 𝐿 = 1.03 mH which

was measured using an HP4192A LF impedance analyzer at 2 kHz. The equivalent series

resistance (R) at 2 kHz is 1.1 Ω and was measured using the same device. The resonant

circuit topology is depicted in Fig. F-1a. Capacitor 𝐶1 = 5.27 𝜇F along with the bias field

coil 𝐿 build the parallel resonant circuit. Capacitor 𝐶2 = 0.95 𝜇F acts as an impedance

matching reactance which allows maximum power transfer from the RF source to the load

at 2 kHz. We measure the coil Q-factor by applying an AM modulated square wave with a 70

Hz modulation frequency and 100% AM modulation depth (Fig. F-1b). We fit the envelope

of the decaying sinusoid to an exponential function, and extract a Q factor of ≈ 6 [54].

F.2 Bias field frequency optimization

The finite time required (on average) to optically initialize a spin (𝑇 𝑜𝑝
1 ) places a constraint

on the AC magnetic bias field frequency. To determine the optimal sweeping frequency, we

operate the bias field coil in a non-resonant configuration, and apply frequencies between 100

Hz and 10 kHz while measuring the maximal reflected voltage. Because the coil reactance

is frequency dependent, we adjust the amplifier gain to ensure the same field magnitude
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Figure F-1: RLC resonant AC bias field circuit (a) The resonant bias field circuit
consists of tank circuit comprised of the coil inductance L and the parallel capacitance C1.
Matching the load impedance Z0 to the tank circuit is accomplished using a series capacitor
C2. (b) The Q is measured by applying an AM modulated square wave to the AC bias field
coil while measuring the signal decay (—) using a proximal and concentric pickup coil. We
fit (—) the envelope of the decaying sinusoid to extract the coil Q factor.

is applied for each measurement. We apply the working laser power (3W) and, at each

frequency, measure the signal to noise ratio (SNR) of the reflected MW signal. The SNR

increases almost linearly until approximately 1.5 kHz at which point the curve flattens out

(Fig. F-2). The SNR begins to decrease at 5 kHz which quantitatively agrees with our

estimate 𝑇 𝑜𝑝
1 ≈ 50 𝜇𝑠 as it takes up to 5𝑇 𝑜𝑝

1 to fully initialize the ensemble. We choose to

operate the bias field at 2 kHz because it offers near optimal SNR while maintaining a low

coil reactance. A high coil reactance increases the necessary voltage and consequently the

power required to apply the minimum field necessary to sweep three-of-four NV resonances
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Figure F-2: Optimizing bias field frequency Using a non-resonant circuit configuration
we measure the maximum signal-to-noise ratio of the cavity readout spectrum in figure 5-1
at varying frequencies. The plateau between 2 kHz and 4 kHz indicates that for optimal
sensitivity, the AC bias field frequency can lie anywhere within that range.

past the cavity resonance.
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Appendix G

Calibrating the magnetometer output

G.1 Calibration matrix

We relate a shift in the peaks in the cavity readout spectrum ∆𝜏𝑖 of a particular NV axis

𝑖 = 𝜆, 𝜅, 𝜑, 𝜒 to changes in the magnetic field via a linear transformation matrix A,

A =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜕𝜏𝜆
𝜕𝐵𝑥

𝜕𝜏𝜆
𝜕𝐵𝑦

𝜕𝜏𝜆
𝜕𝐵𝑧

𝜕𝜏𝜑
𝜕𝐵𝑥

𝜕𝜏𝜑
𝜕𝐵𝑦

𝜕𝜏𝜑
𝜕𝐵𝑧

𝜕𝜏𝜅
𝜕𝐵𝑥

𝜕𝜏𝜅
𝜕𝐵𝑦

𝜕𝜏𝜅
𝜕𝐵𝑧

𝜕𝜏𝜒
𝜕𝐵𝑥

𝜕𝜏𝜒
𝜕𝐵𝑦

𝜕𝜏𝜒
𝜕𝐵𝑧

⎤⎥⎥⎥⎥⎥⎥⎦ . (G.1)

In our implementation we measure three-of-four orientations, and thus use a reduced matrix

where the last row (corresponding to shifts of 𝜏𝜒) is dropped. We determine A experimentally

by applying perturbing fields ∆𝐵𝑗=𝑥,𝑦,𝑧 and measuring changes in the peaks ∆𝜏±𝑖. Each

element of A is then determined by computing

𝜕𝜏𝑖
𝜕𝐵𝑗

=
∆𝜏+𝑖 +∆𝜏−𝑖

2∆𝐵𝑗

. (G.2)

To determine how robust A is to changes in the AC magnetic bias field amplitude, we apply

a 10 Hz, 10.2 𝜇Tpp (3.6 𝜇T rms) test field to the diamond and adjust the peak-to-peak AC

magnetic bias field amplitude in steps of ≈ 55 𝜇T taking a field measurement at each step.

The results are depicted in figure G-1 along with two insets: one illustrating the change
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Figure G-1: Accuracy error bias field drift Changing the magnetic bias field amplitude
|�⃗�AC| (inset top right) causes changes in the cavity readout spectrum (inset bottom left).
Because the calibration matrix A is measured at a specific value of |�⃗�AC|, changes ∆|�⃗�AC|
will cause an error in the magnetometer output. We measure how robust the magnetometer
output is by sweeping ∆|�⃗�AC| over a ±300 𝜇T range, while applying a 10 Hz test field with
constant amplitude of 5.1 𝜇T (3.6 𝜇T rms), and recording the magnetometer output.

in the magnetic bias field amplitude, another illustrating how the cavity-enhanced readout

spectrum changes as the amplitude is varied. The slope, plotted in red, gives the sensitivity

of the magnetometer output to changes in the bias field amplitude (assuming A remains

static). A 10 𝜇T change in the bias magnetic field amplitude changes the magnetometer

output by less than 0.5% (≈ 11 nT) indicating that the magnetometer is robust to changes

in the AC magnetic bias field amplitude. Drifts in the NV zero field splitting 𝐷, as well as

the cavity frequency 𝜔𝑐, also affect the magnetometer output and are covered in Appendix

section G.2.
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G.2 Drift suppression scheme

By measuring the both the |𝑚𝑠 = ±1⟩ spin states over a half cycle of the AC magnetic bias

field, we can introduce a measurement scheme which suppresses errors due to temperature

fluctuations of both the cavity and spins. As the system temperature changes, the NV zero

field splitting 𝐷 is modified as 𝐷 + 𝛽𝑇 ∆𝑇 , where 𝛽𝑇 = −74 kHz/K [40] and ∆𝑇 is the

change in temperature in Kelvin. Likewise, the resonance frequency of the composite cavity

can either increase or decrease depending on material properties and design. For our system

we measure the cavity to shift ≈ +3 kHz/K. The changes in resonance frequencies manifest as

differential mode shifts of the peaks of the cavity readout spectrum. Changes in the magnetic

field however, manifest as common mode shifts. By adding the peaks corresponding to the

|𝑚𝑠 = ±1⟩ spin states of each NV orientation, drifts in 𝐷 and 𝜔𝑐 can be largely suppressed.

To determine the degree of suppression, we first operate the magnetometer at 1.5 W of laser

power, while applying a 1 𝜇T rms oscillating test field along the z-direction. At the 1s

mark (see fig. G-2), we increase the laser power by 1 W (to a total of 2.5 W applied to the

diamond) which increases the temperature of the diamond by ≈ 25 K. After 4 s, we return

the laser to its original power setting and allow the temperature to return to its equilibrium

value. Data are collected for 10 seconds during this process, and capture drifts in the peaks

as the laser power is adjusted. Fig. G-2 depicts the response of the |𝑚𝑠 = ±1⟩ spin states

of NV orientation 𝜆. The peaks drift by ±0.18 𝜇s as the laser power is increased, which

corresponds to an error in the measured DC level of ≈ 0.9 𝜇T in the x-direction, 1.1 𝜇T in

the y-direction, and 1.47 𝜇T in the z-direction. By summing the responses, the drifts largely

cancel and we measure a peak shift of only 0.002 𝜇s, corresponding to an error of ≈ 10 nT

in the x-direction, 12 nT in the y-direction, and 16 nT in the z-direction.
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Figure G-2: Magnetometer drift suppression Changes in the cavity readout spectrum
due to mechanical drifts or temperature are suppressed by adding the peaks of both the
|𝑚𝑠 = ±1⟩ spin states. We operate the magnetometer over a 10 second period, and induce
a change in the diamond temperature by increasing the laser power by 1 W at the 1 second
mark. After 4 seconds, we again reduce the laser power back to its initial value. Depicted
is the response of the NV𝜆 orientation |𝑚𝑠 = +1⟩ state (—), |𝑚𝑠 = −1⟩ state (—), and the
sum of both |𝑚𝑠 = ±1⟩ states (—). By adding the |𝑚𝑠 = ±1⟩ states we suppress the drift
in the peaks at the 5 second mark from ±0.18 𝜇s to 0.002 𝜇s.
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Appendix H

Orientation dependent spin-photon

coupling 𝑔𝑠

Because only the component of the MW field which projects onto the transverse plane of

the NV symmetry axis drives Rabi oscillations, the vacuum coupling 𝑔𝑠,𝑖 will differ between

NV orientations. For a MW field aligned perfectly transverse to the NV symmetry axis, the

single spin-photon coupling is

𝑔𝑠 =
𝛾

2
𝐵rms

𝑣 (r), (H.1)

where 𝛾 ≈ 2.8 MHz/Gauss is the electron gyromagnetic ratio, and 𝐵rms
𝑣 is the RMS vacuum

B-field in the cavity at the spin location r. For a spin at an angle 𝛿 relative to the plane,

(H) is modified by a multiplicative geometric factor

n = �⃗�− ||�⃗�|| �⃗� cos 𝛿, (H.2)

where �⃗� is the unit normal vector aligned with the MW polarization, and �⃗� is the unit

normal vector aligned with the NV symmetry axis. In the diamond coordinate system,

�⃗� = 𝑢𝐵 = (−0.53, 0.23, 0.82) and �⃗�𝜆 = (0,
√︀
2/3,−

√︀
1/3), �⃗�𝜑 = (0,−

√︀
2/3,−

√︀
1/3), �⃗�𝜅 =

(−
√︀
2/3, 0,

√︀
1/3), �⃗�𝜒 = (

√︀
2/3, 0,

√︀
1/3). Applying (H.2) yields n𝜆 = 0.96, n𝜑 = 0.75, n𝜅 =

0.43, and n𝜒 = 0.99. We find good agreement in comparing the ratios of the reflected MW

voltage between NV axes in fig. 5-1c and the values computed here. Additional differences
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in the reflected MW voltage between axes arise from differences in the number of polarized

NVs between orientations due to the linear polarization of the pump laser.
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