
Testing, Learning, and Optimization in High
Dimensions

by

Khashayar Gatmiry
B.S., Sharif University of Technology (2019)

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Masters of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2022
Certified by. .

Stefanie Jegelka
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. .

Jonathan Kelner
Professor of Mathematics

Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee of Graduate Students

2

Testing, Learning, and Optimization in High Dimensions

by

Khashayar Gatmiry

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the

requirements for the degree of
Masters of Science

Abstract

In this thesis we study two separate problems: (1) What is the sample complexity
of testing the class of Determinantal Point Processes? and (2) Introducing a new
analysis for optimization and generalization of deep neural networks beyond their
linear approximation. For the first problem, we characterize the optimal sample
complexity up to logarithmic factors by proposing almost matching upper and lower
bounds. For the second problem, we propose a new regime for the parameters and the
algorithm of a three layer network model which goes beyond the Neural tangent kernel
(NTK) approximation; as a result, we introduce a new data dependent complexity
measure which generalizes the NTK complexity measure introduced by [Arora et al.,
2019a]. We show that despite nonconvexity, a variant of Stochastic gradient descent
(SGD) converges to a good solution for which we prove a novel generalization bound
that is proportional to our complexity measure.

Thesis Supervisor: Stefanie Jegelka
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Jonathan Kelner
Title: Professor of Mathematics

3

4

Contents

1 Introduction 9

1.1 Testing Determinantal point processes 10

1.2 Optimization and Generalization in Deep Learning 11

2 Testing DPPs 13

2.1 Introduction . 13

2.2 Related work . 15

2.3 Notation and definitions . 17

2.4 Main results . 19

2.5 An Algorithm for Testing DPPs . 21

2.5.1 Correctness of the Testing Algorithm for (𝛼, 𝜁)-normal DPPs . 23

2.5.2 Extension to general DPPs . 25

2.6 Lower bound . 26

2.7 Discussion . 29

2.8 Proof of the Learning Guarantee . 30

2.9 Uniform Lower Bound on the Smallest Singular Value of 𝐾 − 𝐼𝐽 . . . 38

2.10 Lower Bound for Testing Log-submodular Distributions 41

2.11 Coupling DPPs . 45

2.12 A More Detailed Proof of Theorem 1 47

2.13 Modification of DPP-Tester for distinguishing (𝛼, 𝜁)-normal DPPs

from the 𝜖-far set of just the (𝛼, 𝜁)-normal DPPs 50

2.14 Analysis of DPP-Tester2 . 52

2.15 Time complexity of DPP-Tester . 53

5

2.16 Lower bound on the Sample Complexity of Distinguishing the Uniform

distribution from ℱ . 55

2.17 Experiments . 56

3 Optimization and Adaptive Generalization of three layer Neural

Networks 59

3.1 Introduction . 59

3.2 Setup and approximation by kernels 63

3.2.1 Kernel approximations, decomposition and adaptivity 64

3.3 Data dependent complexity measure and generalization 66

3.3.1 Generalization . 67

3.3.2 Underlying Concept class . 68

3.3.3 Interaction of layers beyond the linear approximation 69

3.3.4 Comparison with Kernel fitting 71

3.4 Algorithm: Projected Stochastic Gradient Descent 73

3.5 High Level Idea of the PSGD Analysis 75

3.6 Detailed proofs . 78

3.6.1 Stronger Generalization bounds for polynomials 79

3.6.2 The Doubling Trick . 81

3.6.3 Amount of Overparameterization 84

3.6.4 PSD property of 𝐾∞ . 84

3.6.5 Complexity upper bound . 85

3.6.6 Complexity measure and the 𝜁-norm 86

3.6.7 Core Generalization Result . 88

3.6.8 Structure of the proof, setting 𝑚3, and further definitions . . . 92

3.6.9 Proof of Theorem 2 . 96

3.6.10 Optimization . 98

3.6.11 Rademacher Complexity . 103

3.6.12 Constructing 𝑊 *, 𝑉 * . 113

3.6.13 Existence of a good direction 138

6

3.6.14 Existence of a good direction Helper Lemmas 146

3.6.15 Bounding the worst-case Senario 165

3.6.16 Convergence . 179

3.6.17 Process from a higher view: definition of the (𝑋) sequence . . 188

3.6.18 Bounding the MGF of 𝑋𝑖’s . 192

3.6.19 Proof of Theorem 7 . 195

3.6.20 Gaussian Smoothing . 195

3.6.21 Basic Tools . 206

3.7 Appendix . 221

3.7.1 Smoothness coefficients . 221

3.7.2 Representation Lemmas . 231

3.7.3 Coupling for ∇̂𝑊 , ∇̂𝑉 . 238

3.7.4 Handling the Injected Noise by PSGD 248

4 Conclusion 253

7

8

Chapter 1

Introduction

In this modern era of data science, we have observed a dramatic increase in the

computation power and resources; consequently, more and more sophisticated models

are being used among various inference tasks. Moreover, given the inherent complexity

of lots of datasets today, one often requires considering a rich enough family of models;

Particularly, this family should be able to describe the underlying data distribution to

an acceptable level. In fact, the right choice of modeling is critical in the success of the

prediction task later on; it is worthy to mention that picking a good model is usually

tied up with having a good domain knowledge in the related field. As an example

of a modeling choice, the family of Determinantal point processes has been empoyed

successfully in machine learning tasks in which one requires to model diversity and

repulsion in the sampled subsets of a ground set. We will elaborate more on this

parameteric family shortly.

On the other hand, this rise of complexity in statistical models is in spite of the

fact that often times we can only have access to a limited number of samples from

the underlying generative process; while in many cases, the parameter count of the

model, i.e. the number of “degrees of freedom” exceeds the number of samples. This

phenomenon is known as overparameterization, and is regarded as one of the major

reasons for the success of deep learning. As a result, acquiring a more refined view of

the sample complexity in various inference tasks has become vital. In this regard, the

computational overhead of the related algorithm and its tradeoff with the statistical

9

aspects is of both theoretical and practical interest, as ultimately we would have to

run the algorithm on a computer.

In this thesis, we study the complexity of inference tasks in two important settings:

(1) Testing the family of Determinantal Point processes, and (2) Learning a predictor

using overparameterized neural networks. In the following, we first focus on the topic

of distribution testing, then move on to optimization and generalization for deep

learning.

1.1 Testing Determinantal point processes

The general framework of distribution testing is, that given a class of distributions 𝒞

and observing samples from an underlying distribution 𝑞, one asks whether 𝑞 is in 𝒞

or it is 𝜖-far from it in some distance 𝑑 between probability measures. The question of

interest here is how many samples one needs to observe to be able to solve this decision

problem with at least a constant chance of success. Distribution testing has obtained

decent amount of attention in the community recently [Paninski, 2008, Batu et al.,

2001, Acharya et al., 2015, Diakonikolas et al., 2018, Chan et al., 2014, Diakonikolas

and Kane, 2016, Batu et al., 2004, Aliakbarpour et al., 2019]. In this thesis, we ask

this question for the class of Determinantal Point Processes which we introduce next.

Determinantal point processes (DPP) are an important parametric family of

distributions over subsets of a finite or infinite ground set that have recently been

popularized in the machine learning community due to their ability to model diversity

and repulsion [Macchi, 1975, Hough et al., 2006, Kulesza and Taskar, 2012, Li et al.,

2016b, Kulesza and Taskar, 2012]. A DPP over subsets of a ground set of cardinality

𝑛 can be characterized by an 𝑛 by 𝑛 matrix 𝐾, where the marginal probabilities can

be computed as

P(𝐴 ⊆ 𝒥) = det(𝐾𝐴).

Above, 𝐾𝐴 is the principal submatrix of 𝐾 corresponding to subset 𝐴. What makes

10

DPPs particularly attractive for various ML tasks is their ability to model what is

called negative dependence between the elements of the ground set, i.e. given that a

fixed element is in the sampled subset, the chance of another element being in the

subset decreases.

In particular, given the vast popularity of deploying DPPs in different machine

learning tasks these days, it is important to study mechanisms by which we can

test the hypothesis that a given dataset has been generated by an underlying DPP

distribution, or is at least close to one. In this thesis, we settle the question of sample

complexity in testing DPPs and prove that it almost scales as
√
𝑁/𝜖2, where 𝑁 is

the size of the support and is exponentially large in the cardinality of the ground set,

and 𝜖 is the target accuracy that we require in ℓ1 distance. Next, we move on to the

second topic, i.e. optimization and generalization in neural networks.

1.2 Optimization and Generalization in Deep Learn-

ing

Over the past decades, deep learning has been quite successful in many learning and

prediction tasks [Krizhevsky et al., 2012, Silver et al., 2016, Hinton et al., 2012]; this

has triggered a vast interest in trying to mathematically understand the surprising

generalization behavior of neural nets [Neyshabur et al., 2015, Bartlett et al., 2017,

Dziugaite and Roy, 2017]. Although many approaches have been proposed ignoring

the computational properties of the optimization algorithm, it has become clear

that in order to understand the generalization phenomenon in deep learning, the

training algorithm indeed plays an important role and introduces some kind of implicit

regularization [Chizat and Bach, 2018, Mei et al., 2018].

In this regard, many researchers have stepped in to study the landscape of the

loss [Nguyen and Hein, 2017, Soltanolkotabi et al., 2018, Kawaguchi, 2016b]. Since

the introduction of the concept of Neural Tangent Kernel (NTK) in the work of [Jacot

et al., 2018], there has been a line of work in understanding the generalization of

11

neural networks in an algorithmic way by relating the learned network to the RKHS

space of the NTK. Later on, Arora et al. [2019a] showed a non-asymptotic analysis by

introducing a data dependent complexity measure that captures the generalization

behavior of two layer neural networks, all through the lens of NTK. Moreover, there

has been an interest in the community in going beyond the NTK, which is the result of

a linear approximation, and taking alternative, potentially more powerful viewpoints

toward understanding the optimization and generalization properties [Allen-Zhu et al.,

2019a, Sirignano and Spiliopoulos, 2020, Javanmard et al., 2020].

In this thesis, we introduce a different point of view on how one can go beyond the

NTK analysis by considering a specialized variant of Stochastic gradient descent (SGD)

for training a deliberately chosen three-layer network architecture. As a result of going

to this new regime that we introduce, we show a generalization of the data-dependent

complexity introduced by authors in [Arora et al., 2019a], which also makes it robust

when having noise in the labels. To achieve this, we study the nonconvex landscape

of the regularized loss function with the ℓ2 norm of the weights and show a novel

convergence phenomenon. Our techniques root in the fact that SGD can in general

escape saddle points of the objective [Ge et al., 2015a].

The work in this thesis regarding the DPP testing problem has been published in

the following:

[1] Gatmiry, Khashayar, Maryam Aliakbarpour, and Stefanie Jegelka. "Testing

Determinantal Point Processes." Advances in Neural Information Processing Systems

33 (2020): 12779-12791.

[2] Gatmiry, Khashayar, Stefanie Jegelka, and Jonathan Kelner. "Optimization and

Adaptive Generalization of Three layer Neural Networks." International Conference

on Learning Representations. 2021

12

Chapter 2

Testing DPPs

Abstract

Determinantal point processes (DPPs) are popular probabilistic models of diversity.
In this thesis, we investigate DPPs from a new perspective: property testing of
distributions. Given sample access to an unknown distribution 𝑞 over the subsets of
a ground set, we aim to distinguish whether 𝑞 is a DPP distribution, or 𝜖-far from
all DPP distributions in ℓ1-distance. In this work, we propose the first algorithm
for testing DPPs. Furthermore, we establish a matching lower bound on the sample
complexity of DPP testing, up to logarithmic factors. This lower bound also implies a
new hardness result for the problem of testing the more general class of log-submodular
distributions.

2.1 Introduction

Determinantal point processes (DPPs) are a rich class of discrete probability dis-

tributions that were first studied in the context of quantum physics [Macchi, 1975]

and random matrix theory [Dyson, 1962]. Initiated by the seminal work of [Kulesza

and Taskar, 2012], DPPs have gained a lot of attention in machine learning, due to

their ability to naturally capture notions of diversity and repulsion. Moreover, they

are easy to define via a similarity (kernel) matrix, and, as opposed to many other

probabilistic models, offer tractable exact algorithms for marginalization, conditioning

and sampling [Anari et al., 2016, Hough et al., 2006, Kulesza and Taskar, 2012, Li et al.,

2016b]. Therefore, DPPs have been explored in a wide range of applications, including

13

video summarization [Gong et al., 2014b,a], image search [Kulesza and Taskar, 2011b,

Affandi et al., 2014], document and timeline summarization Lin and Bilmes [2012],

recommendation [Wilhelm et al., 2018], feature selection in bioinformatics [Batmanghe-

lich et al., 2014], modeling neurons [Snoek et al., 2013], and matrix approximation

[Dereziński and Mahoney, 2020, Deshpande et al., 2006, Li et al., 2016a].

A Determinantal Point Process is a distribution over the subsets of a ground set

[𝑛] = {1, 2, . . . 𝑛}, and parameterized by a marginal kernel matrix 𝐾 ∈ R𝑛×𝑛 with

eigenvalues in [0, 1], whose (𝑖, 𝑗)th entry expresses the similarity of items 𝑖 and 𝑗.

Specifically, the marginal probability that a set 𝐴 ⊆ [𝑛] is observed in a random

𝒥 ∼ Pr𝐾 [.] is P(𝐴 ⊆ 𝒥) = det(𝐾𝐴), where 𝐾𝐴 is the principal submatrix of 𝐾

indexed by 𝐴. This implies P({𝑖, 𝑗} ⊆ 𝒥) = det(𝐾{𝑖,𝑗}) = 𝐾𝑖,𝑖𝐾𝑗,𝑗 −𝐾2
𝑖,𝑗 for items 𝑖

and 𝑗, which means similar items are less likely to co-occur in 𝒥 .

Despite the wide theoretical and applied literature on DPPs, one question has not

yet been addressed: Given a sample of subsets, can we test whether it was generated by

a DPP? This question arises, for example, when trying to decide whether a DPP may

be a suitable mathematical model for a dataset at hand. To answer this question, we

study DPPs from the perspective of property testing. Property testing aims to decide

whether a given distribution has a property of interest, by observing as few samples

as possible. In the past two decades, property testing has received a lot of attention,

and questions such as testing uniformity, independence, identity to a known or an

unknown given distribution, and monotonicity have been studied in this framework

Canonne [2015], Rubinfeld [2012].

More precisely, we ask How many samples from an unknown distribution are

required to distinguish, with high probability, whether it is a DPP or 𝜖-far from the

class of DPPs in ℓ1-distance? Given the rich mathematical structure of DPPs, one

may hope for a tester that is exceptionally efficient. Yet, we show that testing is still

not easy, and establish a lower bound of Ω(
√
𝑁/𝜖2) for the sample size of any valid

tester, where 𝑁 = 2𝑛 is the size of the domain. In fact, this lower bound applies to the

broader class of log-submodular measures, and may hence be of wider interest given

the popularity of submodular set functions in machine learning. Even more generally,

14

the lower bound holds for testing any subset of log-submodular distributions that

include the uniform measure.

We note that the
√
𝑁 dependence on the domain size is not uncommon in distri-

bution testing, since it is required even for testing simple structures such as uniform

distributions [Paninski, 2008]. However, achieving the optimal sample complexity

is nontrivial. We provide the first algorithm for testing DPPs; it uses �̃�(
√
𝑁/𝜖2)

samples. This algorithm achieves the lower bound and hence settles the complexity of

testing DPPs. Moreover, we show how prior knowledge on bounds of the spectrum

of 𝐾 or its entries 𝐾𝑖𝑗 can improve logarithmic factors in the sample complexity.

Our approach relies on testing via learning. As a byproduct, our algorithm is the

first to provably learn a DPP in ℓ1-distance, while previous learning approaches only

considered parameter recovery in 𝐾 [Urschel et al., 2017, Brunel et al., 2017], which

does not imply recovery in ℓ1-distance.

In short, we make the following contributions:

• We show a lower bound of Ω(
√
𝑁/𝜖2) for the sample complexity of testing

any subset of the class of log-submodular measures which includes the uniform

measure, implying the same lower bound for testing DPP distributions and

strongly Rayleigh [Borcea et al., 2009] measures.

• We provide the first tester for the family of DPP distributions using �̃�(
√
𝑁/𝜖2)

samples. The sample complexity is optimal with respect to 𝜖 and the domain

size 𝑁 , up to logarithmic factors, and does not depend on other parameters.

Additional assumptions on 𝐾 can improve the algorithm’s complexity.

• As a byproduct of our algorithm, we give the first algorithm to learn DPP

distributions in ℓ1 distance.

2.2 Related work

Distribution testing. Hypothesis testing is a classical tool in statistics for inference

about the data and model [Neyman and Pearson, 1933, Lehmann and Romano, 2005].

15

About two decades ago, the framework of distribution testing was introduced, to view

such statistical problems from a computational perspective [Goldreich and Ron, 2011,

Batu et al., 2013]. This framework is a branch of property testing [Rubinfeld and Sudan,

1996], and focuses mostly on discrete distributions. Property testing analyzes the non-

asymptotic performance of algorithms, i.e., for finite sample sizes. By now, distribution

testing has been studied extensively for properties such as uniformity [Paninski, 2008],

identity to a known [Batu et al., 2001, Acharya et al., 2015, Diakonikolas et al.,

2018] or unknown distribution [Chan et al., 2014, Diakonikolas and Kane, 2016],

independence [Batu et al., 2001], monotonicity [Batu et al., 2004, Aliakbarpour et al.,

2019], k-modality [Daskalakis et al., 2014], entropy estimation [Batu et al., 2005, Wu

and Yang, 2016], and support size estimation [Raskhodnikova et al., 2009, Valiant and

Valiant, 2017, Wu et al., 2019]. The surveys [Canonne, 2015, Rubinfeld, 2012] provide

further details.

Testing submodularity and real stability. Property testing also includes

testing properties of functions. As opposed to distribution testing, where observed

samples are given, testing functions allows an active query model: given query access

to a function 𝑓 : 𝒳 → 𝒴, the algorithm picks points 𝑥 ∈ 𝒳 and obtains values 𝑓(𝑥).

The goal is to determine, with as few queries as possible, whether 𝑓 has a given

property or is 𝜖-far from it. Closest to our work in this different model is the question

of testing submodularity, in Hamming distance and ℓ𝑝-distance Chakrabarty and

Huang [2012], Seshadhri and Vondrák [2014], Feldman and Vondrak [2016], Blais and

Bommireddi [2016], since any DPP-distribution is log-submodular. In particular, Blais

and Bommireddi [2016] show that testing submodularity with respect to any ℓ𝑝 norm

is feasible with a constant number of queries, independent of the function’s domain

size. The vast difference between this result and our lower bound for log-submodular

distributions lies in the query model – given samples versus active queries – and

demonstrates the large impact of the query model. DPPs also belong to the family of

strongly Rayleigh measures [Borcea et al., 2009], whose generating functions are real

stable polynomials. Raghavendra et al. [2017] develop an algorithm for testing real

stability of bivariate polynomials, which, if nonnegative, correspond to distributions

16

over two items.

Learning DPPs. The problem of learning DPPs has been of great interest

in machine learning. Unlike testing, in learning one commonly assumes that the

underlying distribution is indeed a DPP, and aims to estimate the marginal kernel 𝐾.

It is well-known that maximum likelihood estimation for DPPs is a highly non-concave

optimization problem, conjectured to be NP-hard [Brunel et al., 2017, Kulesza, 2012].

To circumvent this difficulty, previous work imposes additional assumptions, e.g., a

parametric family for 𝐾 [Kulesza and Taskar, 2011b,a, Affandi et al., 2014, Kulesza and

Taskar, 2012, Bardenet and AUEB, 2015, Lavancier et al., 2015], or low-rank structure

[Gartrell et al., 2016, 2017, Dupuy and Bach, 2018]. A variety of optimization and

sampling techniques have been used, e.g., variational methods [Djolonga and Krause,

2014, Gillenwater et al., 2014, Bardenet and AUEB, 2015], MCMC [Affandi et al., 2014],

first order methods [Kulesza and Taskar, 2012], and fixed point algorithms [Mariet

and Sra, 2015]. Brunel et al. [2017] analyze the asymptotic convergence rate of the

Maximum likelihood estimator. To avoid likelihood maximization, Urschel et al. [2017]

propose an algorithm based on the method of moments, with statistical guarantees.

Its complexity is determined by the cycle sparsity property of the DPP. We further

discuss the implications of their result in our context in Section 2.4. Using similar

techniques, Brunel [2018] considers learning the class of signed DPPs, i.e., DPPs that

allow skew-symmetry, 𝐾𝑖,𝑗 = ±𝐾𝑗,𝑖.

2.3 Notation and definitions

Throughout the thesis, we consider discrete probability distributions over subsets of a

ground set [𝑛] = {1, 2, . . . , 𝑛}, i.e., over the power set 2[𝑛] of size 𝑁 := 2𝑛. We refer

to such distributions via their probability mass function 𝑝 : 2[𝑛] → R≥0 satisfying∑︀
𝑆⊆[𝑛] 𝑝(𝑆) = 1. For two distributions 𝑝 and 𝑞, we use ℓ1(𝑞, 𝑝) = 1

2

∑︀
𝑆⊆[𝑛] |𝑞(𝑆)−𝑝(𝑆)|

to indicate their ℓ1 (total variation) distance, and 𝜒2(𝑞, 𝑝) =
∑︀

𝑆⊆[𝑛]
(𝑞(𝑆)−𝑝(𝑆))2

𝑝(𝑆)
to

indicate their 𝜒2-distance. Unlike the ℓ1-distance, the 𝜒2-distance is a pseudo-distance,

and can be lower bounded as 𝜒2(𝑞, 𝑝) ≥ 4ℓ1(𝑞, 𝑝)
2 by a simple application of the

17

Cauchy-Schwarz inequality.

Determinantal Point Processes (DPPs). A DPP is a discrete probability dis-

tribution parameterized by a positive semidefinite kernel matrix 𝐾 ∈ R𝑛×𝑛, with

eigenvalues in [0, 1]. More precisely, the marginal probability for any set 𝑆 ⊆ [𝑛]

to occur in a sampled set 𝒥 is given by the principal submatrix indexed by rows

and columns in 𝑆: Pr𝒥∼𝐾[[[𝑆 ⊆ 𝒥]]] = det(𝐾𝑆). We refer to the probability mass

function of the DPP by Pr𝐾[[[𝐽]]] = Pr𝒥∼𝐾[[[𝒥 = 𝐽]]]. A simple application of the

inclusion-exclusion principle reveals an expression in terms of the complement 𝐽 of 𝐽 :

Pr𝐾[[[𝐽]]] = | det(𝐾 − 𝐼𝐽)|. (2.1)

Distribution testing. We mathematically define a property 𝒫 to be a set of

distributions. A distribution 𝑞 has the property 𝒫 if 𝑞 ∈ 𝒫 . We say two distributions

𝑝 and 𝑞 are 𝜖-far from (𝜖-close to) each other, if and only their ℓ1-distance is at least

(at most) 𝜖. Also, 𝑞 is 𝜖-far from 𝒫 if and only if it is 𝜖-far from any distribution in 𝒫 .

We define the 𝜖-far set of 𝒫 to be the set of all distributions that are 𝜖-far from 𝒫.

We say an algorithm is an (𝜖, 𝛿)-tester for property 𝒫 if, upon receiving samples from

an unknown distribution 𝑞, the following is true with probability at least 1− 𝛿:

• If 𝑞 has the property 𝒫 , then the algorithm outputs accept.

• If 𝑞 is 𝜖-far from 𝒫 , then the algorithm outputs reject.

We refer to 𝜖 and 𝛿 as proximity parameter and confidence parameter, respectively.

Note that if we have an (𝜖, 𝛿)-tester for a property with a confidence parameter 𝛿 < 0.5,

then we can achieve an (𝜖, 𝛿′)-tester for an arbitrarily small 𝛿′ by multiplying the

sample size by an extra factor of Θ(log(𝛿/𝛿′)). This amplification technique Dubhashi

and Panconesi [1998] is a direct implication of the Chernoff bound when we run the

initial tester Θ(log(𝛿/𝛿′)) times and take the majority output as the answer.

18

2.4 Main results

We begin by summarizing our main results, and explain more proof details in Sec-

tions 2.5 and 2.6.

Upper bound. Our first result is the first upper bound on the sample complexity

of testing DPPs.

Theorem 1 (Upper Bound). Given samples from an unknown distribution 𝑞 over 2[𝑛],

there exists a deterministic (𝜖, 0.01)-tester for determining whether 𝑞 is a DPP or it is

𝜖-far from all DPP distributions. The tester uses

𝑂(𝐶𝑁,𝜖
√
𝑁/𝜖2) (2.2)

samples with logarithmic factors 𝐶𝑁,𝜖 = log2(𝑁)(log(𝑁) + log(1/𝜖)).

Importantly, the sample complexity of our upper bound grows as �̃�(
√
𝑁/𝜖2), which

is optimal up to a logarithmic factor (Theorem 2). With additional assumptions on

the spectrum and entries of 𝐾, expressed as (𝛼, 𝜁)-normal DPPs, we obtain a refined

analysis.

Definition 1. For 𝜁 ∈ [0, 0.5] and 𝛼 ∈ [0, 1], a DPP with marginal kernel 𝐾 is

(𝛼, 𝜁)-normal if:

1. the eigenvalues of 𝐾 are in the range [𝜁, 1− 𝜁]; and

2. for 𝑖, 𝑗 ∈ [𝑛] : 𝐾𝑖,𝑗 ̸= 0⇒ |𝐾𝑖,𝑗| ≥ 𝛼.

The notion of 𝛼-normal DPPs was also used in Urschel et al. [2017]. Since 𝐾

has eigenvalues in [0, 1], its entries 𝐾𝑖,𝑗 are at most one. Hence, we always assume

0 ≤ 𝜁 ≤ 0.5 and 0 ≤ 𝛼 ≤ 1.

Lemma 1. For (𝛼, 𝜁)-normal DPPs, with knowledge of 𝛼 and 𝜁, the factor in Theo-

rem 1 becomes 𝐶 ′
𝑁,𝜖,𝜁,𝛼 = log2(𝑁)(1 + log(1/𝜁) + min{log(1/𝜖), log(1/𝛼)}).

Even more, if at least one of 𝜖 or 𝛼 is not too small, i.e., if 𝜖 = Ω̃(𝜁−2𝑁−1/4) or

𝛼 = Ω̃(𝜁−1𝑁−1/4) hold, then 𝐶 ′
𝑁,𝜖,𝜁,𝛼 reduces to log2(𝑁). With a minor change in the

19

algorithm, the bound in Lemma 1 also holds for the problem of testing whether 𝑞 is

an (𝛼, 𝜁)-normal DPP, or 𝜖-far only from just the class of (𝛼, 𝜁)-normal DPPs, instead

of all DPPs (Section 2.13).

Our approach tests DPP distributions via learning: At a high-level, we learn a

DPP model from the data as if the data were generated from a DPP distribution.

Then, we use a new batch of data and test whether the DPP we learnt seems to have

generated the new batch of the data. More accurately, given samples from 𝑞, we

pretend 𝑞 is a DPP with kernel 𝐾*, and use a proper learning algorithm to estimate a

kernel matrix �̂�.

But, Urschel et al. [2017] derive a lower bound on the complexity of learning 𝐾*

which, in the worst case, may lead to a sub-optimal sample complexity for testing.

To reduce the sample complexity of learning, we do not work with a single accurate

estimate �̂�, but construct a set ℳ of candidate DPPs as potential estimates for 𝑞.

We show that, with only Θ(
√
𝑁/𝜖2) samples, we can obtain a setℳ such that, with

high probability, we can determine if 𝑞 is a DPP by testing if 𝑞 is close to any DPP in

ℳ. We prove that Θ(log(|ℳ|)
√
𝑁/𝜖2) samples suffice for this algorithm to succeed

with high probability.

Small-scale experiments in Section 2.17 validate the algorithm empirically.

Lower Bound. Our second main result is an information-theoretic lower bound,

which shows that the sample complexity of our tester in Theorem 1 is optimal up to

logarithmic factors.

Theorem 2 (Lower Bound). Given 𝜖 ≤ 0.0005 and 𝑛 ≥ 22, any (𝜖, 0.01)-tester needs

at least Ω(
√
𝑁/𝜖2) samples to distinguish if 𝑞 is a DPP or it is 𝜖-far from the class of

DPPs.

Given 𝛼 ∈ [0, 0.5], the same bound holds for distinguishing if 𝑞 is an (𝛼, 𝜁)-normal

DPP or it is 𝜖-far from the class of DPPs (or 𝜖-far from the class of (𝛼, 𝜁)-normal

DPPs).

In fact, we prove a more general result (Theorem 4): testing whether 𝑞 is in any

subclass ϒ of the family of log-submodular distributions that includes the uniform

20

distribution requires Ω(
√
𝑁/𝜖2) samples. DPPs are such a subclass [Kulesza and

Taskar, 2012]. A distribution 𝑓 over 2[𝑛] is log-submodular if for every 𝑆 ⊂ 𝑆 ′ ⊆ [𝑛] and

𝑖 /∈ 𝑆 ′, it holds that log(𝑓(𝑆 ′∪{𝑖}))− log(𝑓(𝑆 ′)) ≤ log(𝑓(𝑆 ∪{𝑖}))− log(𝑓(𝑆)). Given

the interest in log-submodular distributions [Djolonga and Krause, 2014, Tschiatschek

et al., 2016, Djolonga et al., 2018, Gotovos et al., 2015, 2018], this result may be of

wider interest. Moreover, our lower bound applies to another important subclass ϒ,

strongly Rayleigh measures [Borcea et al., 2009], which underlie recent progress in

algorithms and mathematics [Gharan et al., 2011, Frieze et al., 2014, Spielman and

Srivastava, 2011, Anari and Gharan, 2015], and sampling in machine learning [Anari

et al., 2016, Li et al., 2017, 2016b].

Our lower bound stands in stark contrast to the constant sample complexity of

testing whether a given function is submodular Blais and Bommireddi [2016], implying

a wide complexity gap between access to given samples and access to an evaluation

oracle (see Section 2.2). We prove our lower bounds by a reduction from a randomized

instance of uniformity testing.

2.5 An Algorithm for Testing DPPs

We first construct an algorithm for testing the smaller class of (𝛼, 𝜁)-normal DPPs,

and then show how to extend this result to all DPPs via a coupling argument.

Our testing algorithm relies on learning: given samples from 𝑞, we estimate a

kernel �̂� from the data, and then test whether the estimated DPP has generated

the observed samples. The magnitude of any entry �̂�𝑖,𝑗 can be estimated from the

marginals for 𝑆 = {𝑖, 𝑗} and 𝑖, 𝑗, since Pr𝐾 [𝑆] = 𝐾𝑖,𝑖𝐾𝑗,𝑗−𝐾2
𝑖,𝑗 = Pr𝐾 [𝑖]Pr𝐾 [𝑗]−𝐾2

𝑖,𝑗 .

But, determining the signs is more challenging. Urschel et al. [2017] estimate signs

via higher order moments that are harder to estimate, but it is not clear whether

the resulting �̂� yields a sufficiently accurate estimate of the distribution to obtain

an optimal sample complexity for testing. Hence, instead, we construct a setℳ of

candidate DPPs such that, with high probability, there is a 𝑝 ∈ℳ that is close to 𝑞 if

and only if 𝑞 is a DPP. Our tester, Algorithm 1, tests closeness toℳ by individually

21

Algorithm 1 DPP-Tester
1: procedure DPP-Tester(𝜖, 𝛿, sample access to 𝑞)
2: ℳ← construct the set of DPP distributions as described in Theorem 3.
3: for each 𝑝 inℳ do
4: Use robust 𝜒2 − ℓ1 testing to check if 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500, or ℓ1(𝑞, 𝑝) ≥ 𝜖.
5: if the tester outputs accept then
6: Return accept.
7: Return reject

testing closeness of each candidate inℳ.

Constructing ℳ. The DPPs in ℳ arise from variations of an estimate for

𝐾*, obtained with Θ(
√
𝑁/𝜖2) samples. Via the above strategy, we first estimate the

magnitude |𝐾*
𝑖𝑗| of each matrix entry. Separating the case 𝐾*

𝑖𝑗 = 0, one can compute

confidence intervals for this estimation around +| ̂︀𝐾𝑖𝑗| and −| ̂︀𝐾𝑖𝑗|. We then pick

candidate entries from these confidence intervals, such that at least one is close to

the true 𝐾*
𝑖,𝑗. The candidate matrices 𝐾 are obtained by all possible combinations of

candidate entries Since these are not necessarily valid marginal kernels, we project

them onto the positive semidefinite matrices with eigenvalues in [0, 1]. Then, ℳ

is the set of all DPPs parameterized by these projected candidate matrices Π(𝐾).

Its cardinality is given in Theorem 3 and, as an explicit function of 𝑁 and 𝜖, in

Section 2.15.

If 𝑞 is a DPP with kernel 𝐾*, then, by construction, our candidates contain a �̃�

close to 𝐾*. The projection of �̃� remains close to 𝐾* in Frobenius distance. We show

that this closeness of the matrices implies closeness of the corresponding distributions

𝑞 and 𝑝 = PrΠ(�̃�)[[[.]]] in ℓ1-distance: ℓ1(𝑞, 𝑝) = 𝑂(𝜖). Conversely, if 𝑞 is 𝜖-far from being

a DPP, then it is, by definition, 𝜖-far fromℳ, which is a subset of all DPPs.

Testingℳ. To test whether 𝑞 is close toℳ, a first idea is to do robust ℓ1 identity

testing, i.e., for every 𝑝 ∈ ℳ, test whether ℓ1(𝑞, 𝑝) ≥ 𝜖 or ℓ1(𝑞, 𝑝) = 𝑂(𝜖). But, ℳ

can contain the uniform distribution, and it is known that robust ℓ1 uniformity testing

needs Ω(𝑁/ log𝑁) samples [Valiant and Valiant, 2017], as opposed to the optimal

dependence
√
𝑁 .

Hence, instead, we use a combination of 𝜒2 and ℓ1 distances for testing, and test

22

𝜒2(𝑞, 𝑝) = 𝑂(𝜖2) versus ℓ1(𝑞, 𝑝) ≥ 𝜖. This is possible with fewer samples [Acharya et al.,

2015]. To apply this robust 𝜒2-ℓ1 identity testing (described in Section 2.5.1), we must

prove that, with high probability, there is a 𝑝 inℳ with 𝜒2(𝑞, 𝑝) = 𝑂(𝜖2) if and only if

𝑞 is a DPP. Theorem 3, proved in Section 2.8, asserts this result if 𝑞 is an (𝛼, 𝜁)-normal

DPP. This is stronger than its ℓ1 correspondent, since 4ℓ21(𝑞, 𝑝) ≤ 𝜒2(𝑞, 𝑝).

To prove Theorem 3, we need to control the distance between the atom probabilities

of 𝑞 and 𝑝. We analyze these atom probabilities, which are given by determinants, via

a lower bound on the smallest singular values 𝜎𝑛 of the family of matrices {𝐾 − 𝐼𝐽 :

𝐽 ⊆ [𝑛]}.

Lemma 2. If the kernel matrix 𝐾 has all eigenvalues in [𝜁, 1 − 𝜁], then, for every

𝐽 ⊆ [𝑛]:

𝜎𝑛(𝐾 − 𝐼𝐽) ≥ 𝜁(1− 𝜁)/
√
2.

Lemma 2 is proved in Section 2.9. In Theorem 3, we observe 𝑚 = ⌈(ln(1/𝛿) +

1)
√
𝑁/𝜖2⌉ samples from 𝑞, and use the parameter 𝜍 := ⌈200𝑛2𝜁−1min{2𝜉/𝛼,

√︀
𝜉/𝜖}⌉,

with 𝜉 := 𝑁− 1
4

√︀
log(𝑛) + 1.

Theorem 3. Let 𝑞 be an (𝛼, 𝜁)-normal DPP distribution with marginal kernel 𝐾*.

Given the parameters defined above, suppose we have 𝑚 samples from 𝑞. Then, one

can generate a set ℳ of DPP distributions of cardinality |ℳ| = (2𝜍 + 1)𝑛
2, with 𝜍

defined as above, such that, with probability at least 1−𝛿, there is a distribution 𝑝 ∈ℳ

with 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500.

2.5.1 Correctness of the Testing Algorithm for (𝛼, 𝜁)-normal

DPPs

Next, we show that with high probability, our resulting testing algorithm succeeds

with high probability. This finishes the proof of Lemma 1. For simplicity, we set the

confidence parameter in Algorithm 1 to 𝛿 = 0.01. In this case, DPP-Tester aims to

output accept if 𝑞 is a (𝛼, 𝜁)-normal DPP, and reject if 𝑞 is 𝜖-far from all DPPs, in

both cases with probability at least 0.99.

23

To finish the proof for the adaptive sample complexity, we need to argue that our

DPP-Tester succeeds with high probability, i.e., that with high probability all of the

identity tests, with each 𝑝 ∈ ℳ, succeed. The algorithm uses robust 𝜒2-ℓ1 identity

testing [Acharya et al., 2015], to test 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500 versus ℓ1(𝑞, 𝑝) ≥ 𝜖. In our

framework, the 𝜒2-ℓ1 identity tester works as follows. It uses a Poissonization trick

that simplifies the analysis. Given the average sample size 𝑚, the 𝜒2-ℓ1 tester first

samples 𝑚′ ∼ Poisson(𝑚), then obtains 𝑚′ samples from 𝑞. For each 𝑝 ∈ℳ, it then

computes the statistic

𝑍(𝑚) =
∑︁

𝐽⊆[𝑛]: 𝑝(𝐽)≥𝜖/50𝑁

(𝑁(𝐽)−𝑚𝑝(𝐽))2 −𝑁(𝐽)

𝑚𝑝(𝐽)
, (2.3)

where 𝑁(𝐽) is the number of samples that are equal to set 𝐽 , and compares 𝑍(𝑚) with

the threshold 𝐶 = 𝑚𝜖2/10.

Acharya et al. [2015] show that for 𝑚 = Θ(
√
𝑁/𝜖2), 𝑍(𝑚) concentrates around its

mean, which is strictly below 𝐶 if 𝑝 satisfies 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500, and strictly above

𝐶 if ℓ1(𝑞, 𝑝) ≥ 𝜖. Let ℰ1 be the event that all these robust tests, for every 𝑝 ∈ ℳ,

simultaneously answer correctly. To make sure that ℰ1 happens with high probability,

we use amplification (Section 2.3): while we use the same set of samples to test against

every 𝑝 ∈ℳ, we multiply the sample size by Θ(log(|ℳ|)) to be confident that each

test answers correctly with probability at least 1−𝑂(|ℳ|−1). A union bound then

implies that ℰ1 happens with arbitrarily large constant probability.

Theorem 3 states that, indeed, with Θ(
√
𝑁/𝜖2) samples, if 𝑞 is an (𝛼, 𝜁)-normal

DPP, then ℳ contains a distribution 𝑝 such that 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500, with high

probability. We call this event ℰ2. DPP-Tester succeeds in the case ℰ1 ∩ ℰ2: If 𝑞 is

an (𝛼, 𝜁)-normal DPP, then at least one 𝜒2-ℓ1 test accepts 𝑝 and consequently the

algorithm accepts 𝑞 as a DPP. Conversely, if 𝑞 is 𝜖-far from all DPPs, then ℓ1(𝑞, 𝑝) ≥ 𝜖

for every 𝑝 ∈ℳ, so all the 𝜒2-ℓ1 tests reject simultaneously and DPP-Tester rejects 𝑞

as well. With a union bound on the events ℰ𝑐1 and ℰ𝑐2 , it follows that ℰ1 ∩ ℰ2 happens

with arbitrarily large constant probability too, independent of whether 𝑞 is a DPP or

not.

24

Adding the sample complexities for generating ℳ and for the 𝜒2-ℓ1 tests and

observing log(|ℳ|) = 𝑂(1 + log(1/𝜁) + min{log(1/𝜖), log(1/𝛼)}) completes the proof

of Lemma 1.

2.5.2 Extension to general DPPs

Next, we generalize our testing result from (𝛼, 𝜁)-normal DPPs to general DPPs to

prove the general sample complexity in Theorem 1. The key idea is that, if some

eigenvalue of 𝐾* is very close to zero or one, we couple the process of sampling from

𝐾* with sampling from another kernel Π𝑧(𝐾
*) whose eigenvalues are bounded away

from zero and one, i.e., parameterizing a (0, 𝑧)-normal DPP. This coupling enables

us to test (0, 𝑧)-normal DPPs instead, by tolerating an extra failure probability, and

transfer the above analysis for (𝛼, 𝜁)-normal DPPs. We state our coupling argument

in the following Lemma, proved in Section 2.11.

Lemma 3. For a value 𝑧 ∈ [0, 1], we denote the projection of a marginal kernel 𝐾

onto the convex set {𝐴 ∈ 𝑆+
𝑛 | 𝑧𝐼 ≤ 𝐴 ≤ (1 − 𝑧)𝐼} by Π𝑧(𝐾), where 𝑆+

𝑛 is the set

of positive semidefinite matrices. For 𝑧 = 𝛿/2𝑚𝑛, consider the following stochastic

processes:

1. derive 𝑚 i.i.d samples {𝒥 (𝑡)
𝐾 }𝑚𝑡=1 from Pr𝐾[[[.]]];

2. derive 𝑚 i.i.d samples {𝒥 (𝑡)
Π𝑧(𝐾)}𝑚𝑡=1 from PrΠ𝑧(𝐾)[[[.]]].

There exists a coupling between (1) and (2) such that

Prcoupling

[︁[︁[︁
{𝒥 (𝑡)

𝐾 }
𝑚
𝑡=1 = {𝒥

(𝑡)
Π𝑧(𝐾)}

𝑚
𝑡=1

]︁]︁]︁
≥ 1− 𝛿.

We can use this coupling argument as follows. Suppose the constant 𝑐1 is such that

using 𝑐1𝐶𝑁,𝜖,𝛼,𝜁
√
𝑁/𝜖2 samples suffice for DPP-Tester to output the correct answer

for testing (𝛼, 𝜁)-normal DPPs, with probability at least 0.995. Such a constant exists

as we just proved. Now, we show that with 𝑚* = 𝑐2𝐶𝑁,𝜖
√
𝑁/𝜖2 samples for large

enough constant 𝑐2, we obtain a tester for the set of all DPPs. To this end, we use the

25

parameter setting of our algorithm for (0, 𝑧) normal DPPs, where 𝑧 = 0.005/(2𝑚*𝑛)

is a function of 𝑐2, 𝜖, and 𝑁 . One can readily see that 𝑐2 can be picked large enough,

such that 𝑚* ≥ 𝑐1𝐶𝑁,𝜖,0,𝑧
√
𝑁/𝜖2, with 𝑐2 being just a function of 𝑐1. This way, by the

definition of 𝑐1, the algorithm can test for (0, 𝑧)-normal DPPs with success probability

0.995. So, if 𝑞 is a (0, 𝑧)-normal DPP, or if it is 𝜖-far from all DPPs, then the algorithm

outputs correctly with probability at least 0.995.

It remains to check what happens when 𝑞 is a DPP with kernel 𝐾*, but not (0, 𝑧)-

normal. Indeed, DPP-Tester successfully decides this case too: due to our coupling,

the product distributions Pr
(𝑚*)
𝐾* [.] and Pr

(𝑚*)
Π𝑧(𝐾*)[.] over the space of data sets have

ℓ1-distance at most 0.005, so we have

Pr
(𝑚*)
𝐾* [Acceptance Region] ≥ Pr

(𝑚*)
Π𝑧(𝐾*) [Acceptance Region]−0.005 ≥ 0.995−0.005 =

0.99, where the last inequality follows from the fact that Π𝑧(𝐾
*) is an (0, 𝑧)-normal

DPP. Hence, for such 𝑐2, DPP-Tester succeeds with 𝑐2𝐶𝑁,𝜖
√
𝑁/𝜖2 samples to test all

DPPs with probability 0.99, which completes the proof of Theorem 1.

Learning DPPs. Our tester implicitly provides a method to learn a DPP 𝑞 in

ℓ1-distance: the 𝜒2 − ℓ1 tester can only accept candidate DPPs 𝑝 ∈ℳ for which we

either have 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500 or ℓ1(𝑞, 𝑝) < 𝜖. Since ℓ1(𝑞, 𝑝) ≤ 1/2
√︀
𝜒2(𝑞, 𝑝) < 𝜖, any

such 𝑝 is a DPP with distance ℓ1(𝑞, 𝑝) ≤ 𝜖 to the underlying distribution 𝑞. If 𝑞 is a

DPP, we will find such a 𝑝 with high probability.

2.6 Lower bound

Next, we establish the lower bound in Theorem 2 for testing DPPs, which implies

that the sample complexity of DPP-Tester is tight up to logarithmic factors. In fact,

our lower bound is more general: it applies to the problem of testing any subset ϒ

of the larger class of log-submodular distributions, whenever ϒ includes the uniform

measure:

Theorem 4. Let ϒ be any subset of log-submodular distributions that contains the

uniform measure. For 𝜖 ≤ 0.0005 and 𝑛 ≥ 22, given sample access to a distribution 𝑞

over subsets of [𝑛], any (𝜖, 0.01)-tester that checks whether 𝑞 ∈ ϒ or 𝑞 is 𝜖-far from all

26

log-submodular distributions requires Ω(
√
𝑁/𝜖2) samples.

One may also wish to test if 𝑞 is 𝜖-far only from the distributions in ϒ. A tester

for this question, however, would correctly return reject for any 𝑞 that is 𝜖-far from

the set of all log-submodular distributions, and can hence distinguish the cases in

Theorem 4 too. Hence, the lower bound extends to this question.

Theorem 2 is simply a consequence of Theorem 4: we may set ϒ to be the set of all

DPPs, or all (𝛼, 𝜁)-normal DPPs. Both classes include the uniform distribution over

2[𝑛], which is an (𝛼, 𝜁)-normal DPP with marginal kernel 𝐼/2, where 𝐼 is the 𝑛× 𝑛

identity matrix. By the same argument, the lower bound applies to distinguishing

(𝛼, 𝜁)-normal DPPs from the 𝜖-far set of all DPPs for 𝛼 ∈ [0, 0.5].

Proof of Theorem 4. To prove Theorem 4, we construct a hard uniformity

testing problem that can be decided by our desired tester for ϒ. In particular, we

construct a family ℱ , such that it is hard to distinguish between the uniform measure

and a randomly selected distribution ℎ from ℱ . While the uniform measure is in

ϒ, we will show that ℎ is far from the set of log-submodular distributions with high

probability. Hence, a tester for ϒ can, with high probability, correctly decide between

ℱ and the uniform measure.

We obtain ℱ by randomly perturbing the atom probabilities of the uniform measure

over 2[𝑛] by ±𝜖′/𝑁 , with 𝜖′ = 𝑐 · 𝜖 for a sufficiently large constant 𝑐 (specified in the

later sections). More concretely, for every vector 𝑟 ∈ {±1}𝑁 whose entries are indexed

by the subsets 𝑆 ⊆ [𝑛], we define the distribution ℎ𝑟 ∈ ℱ as

∀𝑆 ⊆ [𝑛] : ℎ𝑟(𝑆) ∝ ℎ̄𝑟(𝑆) =
1 + 𝑟𝑆𝜖

′

𝑁
,

where ℎ̄𝑟 is the corresponding unnormalized measure.

We assume that ℎ𝑟 is selected from ℱ uniformly at random, i.e., each entry 𝑟𝑆

is a Rademacher random variable independent from the others. In particular, it is

known that distinguishing such a random ℎ𝑟 from the uniform distribution requires

Ω(
√
𝑁/𝜖′2) samples [Diakonikolas and Kane, 2016, Paninski, 2008].

To reduce this uniformity testing problem to our testing problem for ϒ and obtain

27

the lower bound Ω(
√
𝑁/𝜖′2) = Ω(

√
𝑁/𝜖2) for the sample complexity of our problem,

it remains to prove that ℎ𝑟 is 𝜖-far from the class of log-submodular distributions with

high probability. Hence, Lemma 4 finishes the proof.

Lemma 4. For 𝜖 ≤ 0.0005, 𝑛 ≥ 22 and 𝑐 = 1024, a distribution ℎ𝑟 drawn uniformly

from ℱ is 𝜖-far from all log-submodular distributions with probability at least 0.99.

Proof sketch for Lemma 4. We fix an arbitrary log-submodular distribution

𝑓 and first show that (1) the ℓ1-distance ℓ1(𝑓, ℎ̄𝑟) between 𝑓 and the unnormalized

measure ℎ̄𝑟 is large with high probability, independent of 𝑓 (we define the ℓ1-distance

of general measures the same as for probability measures). Then, (2) we show that if

ℓ1(𝑓, ℎ̄𝑟) is large, ℓ1(𝑓, ℎ𝑟) is also large.

To address (1), we define a family 𝒮𝑟 of subsets that, as we prove, satisfies:

(P1) With high probability, 𝒮𝑟 has cardinality at least 𝑁/64.

(P2) For every 𝑆 ∈ 𝒮𝑟, there is a contribution of at least 𝜖′/8𝑁 to ℓ1(𝑓, ℎ̄𝑟) from the

term 𝑉𝑆 defined as

𝑉𝑆 :=1
2
|ℎ̄𝑟(𝑆)− 𝑓(𝑆)|+ 1

2
|ℎ̄𝑟(𝑆 ∪ {1})− 𝑓(𝑆 ∪ {1})|+

1
2
|ℎ̄𝑟(𝑆 ∪ {2})− 𝑓(𝑆 ∪ {2})|+ 1

2
|ℎ̄𝑟(𝑆 ∪ {1, 2})− 𝑓(𝑆 ∪ {1, 2})|.

Together, the above properties imply that ℓ1(ℎ̄𝑟, 𝑓) ≥ (𝑁/64)× (𝜖′/8𝑁) = 𝜖′/512.

We define the important family 𝒮𝑟 as

𝒮𝑟 := {𝑆 ⊆ [𝑛] ∖ {1, 2} | 𝑟(𝑆∪{1,2}) = 1, 𝑟(𝑆∪{2}) = −1, 𝑟(𝑆∪{1}) = −1}.

Property (P1) follows from a Chernoff bound for the random variables 1{𝑆 ∈

𝒮𝑟}, ∀𝑆 ⊆ [𝑛] ∖ {1, 2}, where 1{.} is the indicator function. For proving Property P2,

we distinguish two cases, depending on the ratio 𝑓((𝑆 ∪ {1, 2})/𝑓(𝑆 ∪ {2}). One of

these cases relies on the definition of log-submodularity.

Finally, to show that (2) a large ℓ1(𝑓, ℎ̄𝑟) implies a large ℓ1(𝑓, ℎ𝑟), we control the

normalization constant
∑︀

𝑆⊆[𝑛] ℎ̄𝑟(𝑆). The full proof may be found in Section 2.10.

28

2.7 Discussion

In this thesis, we initiate the study of distribution testing for DPPs. Our lower bound

of Ω(
√
𝑁/𝜖2), where 𝑁 is the domain size 2𝑛, shows that, despite the rich mathematical

structure of DPPs, testing whether 𝑞 is a DPP or 𝜖-far from it has a sample complexity

similar to uniformity testing. This bound extends to related distributions that have

gained interest in machine learning, namely log-submodular distributions and strongly

Rayleigh measures. Our algorithm DPP-Tester demonstrates that this lower bound is

tight for DPPs, via an almost matching upper bound of �̃�(
√
𝑁/𝜖2).

One may wonder what changes when using the moment-based learning algorithm

from [Urschel et al., 2017] instead of the learner from Section 2.5, which yields optimal

testing sample complexity. With [Urschel et al., 2017], we obtain a single estimate

�̂�new for 𝐾*, apply a single robust 𝜒2-ℓ1 test against Pr�̂�new[[[.]]], and return its output.

The resulting algorithm DPP-Tester2 shows a statistical-computational tradeoff: since

it performs only one test, it gains in running time, but its sample complexity could be

larger: Theorem 5, proved in Section 2.14, states upper bounds that are is no longer

logarithmic in 𝛼 and 𝜁, and larger than 𝑂(
√
𝑁/𝜖2).

Theorem 5. To test against the class of (𝛼, 𝜁)-normal DPPs, DPP- Tester2 needs

𝑂
(︁
𝑛4 log(𝑛)/𝜖2𝛼2𝜁2 + ℓ(4/𝛼)2ℓ log(𝑛) +

√
𝑁/𝜖2

)︁
samples, and runs in time 𝑂(𝑁𝑛3 +

𝑛6 +𝑚𝑛2), where 𝑚 is the number of input samples and ℓ is the cycle sparsity1 of the

graph corresponding to the non-zero entries of 𝐾*.

Assuming a constant cycle sparsity may improve the sample complexity, but our

lower bound still applies even with assumptions on cycle sparsity.

While the results in this thesis focus on sample complexity for general DPPs,

it is an interesting avenue of future work to study whether additional structural

assumptions, or a widening to strongly log-concave measures [Anari et al., 2018, 2019],

can lead to further statistical and computational benefits or tradeoffs.

1The cycle sparsity of a graph is the smallest ℓ′ such that the cycles with length at most ℓ′

constitute a basis for the cycle space of the graph.

29

2.8 Proof of the Learning Guarantee

In this section, we prove Theorem 3. First, recall the definition of (𝛼, 𝜁)-normal DPPs

(Definition 1) below.

Definition 1. For 𝜁 ∈ [0, 0.5] and 𝛼 ∈ [0, 1], a DPP with marginal kernel 𝐾 is

(𝛼, 𝜁)-normal if:

1. The eigenvalues of 𝐾 are in the range [𝜁, 1− 𝜁]; and

2. For 𝑖, 𝑗 ∈ [𝑛] : 𝐾𝑖,𝑗 ̸= 0⇒ |𝐾𝑖,𝑗| ≥ 𝛼.

We assume that 𝑛 is the size of the ground set with 𝑁 = 2𝑛. We set 𝑚 =

⌈(ln(1/𝛿) + 1)
√
𝑁/𝜖2⌉ to be the number of samples, and use the parameter 𝜍 :=

⌈200𝑛2𝜁−1min{2𝜉/𝛼,
√︀
𝜉/𝜖}⌉, with 𝜉 := 𝑁− 1

4

√︀
log(𝑛) + 1. Below, we restate Theo-

rem 3 for convenience.

Theorem 3. Let 𝑞 be an (𝛼, 𝜁)-normal DPP distribution with marginal kernel 𝐾*.

Given the parameters defined above, suppose we have 𝑚 samples from 𝑞. Then, one can

generate a set ℳ of DPP distributions with cardinality |ℳ| = (2𝜍 + 1)𝑛
2, such that,

with probability at least 1− 𝛿, there is a distribution 𝑝 ∈ℳ with 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500.

Proof of Theorem 3. To prove Theorem 3, first we estimate each entry of the marginal

kernel 𝐾* and generate the set ℳ of our candidate DPPs, which contains a DPP

𝑝 ∈ℳ whose marginal kernel is close to 𝐾* in the Frobenius distance. Then, we show

that that the closeness between the marginal kernels of 𝑝 and 𝑞 implies the desired

upper bound in 𝜒2-distance and ℓ1-distance of the two distributions. We start by

introducing the initial estimate �̂� which is obtained by estimating the entries of 𝐾*

from our samples.

Estimating entries of 𝐾𝐾𝐾*: Note that one can write the entries of the matrix

30

𝐾* in terms of the marginal probabilities of subsets of size one and two as follows:

Pr𝒥∼𝐾*[[[𝑖 ∈ 𝒥]]] = det
(︀[︀
𝐾*
𝑖,𝑖

]︀)︀
= 𝐾*

𝑖,𝑖, (2.4)

Pr𝒥∼𝐾*[[[{𝑖, 𝑗} ⊆ 𝒥]]] = det

⎛⎝⎡⎣ 𝐾*
𝑖,𝑖 𝐾*

𝑖,𝑗

𝐾*
𝑗,𝑖 𝐾*

𝑗,𝑗

⎤⎦⎞⎠ = 𝐾*
𝑖,𝑖𝐾

*
𝑗,𝑗 −𝐾*

𝑖,𝑗
2. (2.5)

Given the sampled subsets {𝒥 (𝑡)}𝑚𝑡=1, we can estimate the above marginal probabilities

using the number of appearances of every single element and every pair of elements

among 𝒥 (1),𝒥 (2), ...,𝒥 (𝑚). We use 1𝐸 to denote the indicator variable of the event

𝐸. For each 𝑖 ∈ [𝑛], we estimate 𝐾*
𝑖,𝑖 by the average of the 1{{𝑖} ⊆ 𝒥 (𝑡)}’s:

�̂�𝑖,𝑖 :=
1

𝑚

𝑚∑︁
𝑡=1

1{{𝑖} ⊆ 𝒥 (𝑡)} .

We also denote the averages of the 1{{𝑖, 𝑗} ⊆ 𝒥 (𝑡)}’s by �̂�𝑖,𝑗.

�̂�𝑖,𝑗 :=
1

𝑚

𝑚∑︁
𝑡=1

1{{𝑖, 𝑗} ⊆ 𝒥 (𝑡)} .

Using the estimates �̂�𝑖,𝑗, �̂�𝑖,𝑖, and �̂�𝑗,𝑗, we can also estimate 𝐾*
𝑖,𝑗

2 by the term

�̂�𝑖,𝑖�̂�𝑗,𝑗−�̂�𝑖,𝑗 , based on Equation (2.5). To derive confidence intervals for our estimates,

we use the Hoeffding bound and a union bound, which implies that with probability

at least 1− 𝛿:

∀𝑖 ∈ [𝑛] : �̂�𝑖,𝑖 ∈ [Pr𝒥∼𝐾*[[[𝑖 ⊆ 𝒥]]]− 𝜉𝜖 , Pr𝒥∼𝐾*[[[𝑖 ⊆ 𝒥]]] + 𝜉𝜖] , (2.6)

∀{𝑖, 𝑗} ⊆ [𝑛], 𝑖 ̸= 𝑗 : �̂�𝑖,𝑗 ∈ [Pr𝒥∼𝐾*[[[{𝑖, 𝑗} ⊆ 𝒥]]]− 𝜉𝜖 , Pr𝒥∼𝐾*[[[{𝑖, 𝑗} ⊆ 𝒥]]] + 𝜉𝜖] ,

(2.7)

where 𝜉 := 𝑁− 1
4

√︀
log(𝑛) + 1. Note that Equation (2.5) does not reveal any information

about the sign of 𝐾*
𝑖,𝑗. However, we can estimate its magnitude |𝐾*

𝑖,𝑗|. Thus, we

31

consider the following two estimates for 𝐾*
𝑖,𝑗:

∀{𝑖, 𝑗} ⊆ [𝑛], 𝑖 ̸= 𝑗 :
�̂�

(+)
𝑖,𝑗 :=

√︁
max{�̂�𝑖,𝑖�̂�𝑗,𝑗 − �̂�𝑖,𝑗 , 0} ,

�̂�
(−)
𝑖,𝑗 := −

√︁
max{�̂�𝑖,𝑖�̂�𝑗,𝑗 − �̂�𝑖,𝑗 , 0} .

(2.8)

Now, let �̂�𝑖,𝑗 be whichever of �̂�(+)
𝑖,𝑗 or �̂�(−)

𝑖,𝑗 that has the same sign as 𝐾*
𝑖,𝑗. Then,

according to Equations (2.6), (2.7), and (2.8), we achieve:

⃒⃒⃒
�̂�2
𝑖,𝑗 −𝐾*2

𝑖,𝑗

⃒⃒⃒
≤
⃒⃒⃒
𝐾*
𝑖,𝑖𝐾

*
𝑗,𝑗 − �̂�𝑖,𝑖�̂�𝑗,𝑗

⃒⃒⃒
+ |Pr𝒥∼𝐾*[[[{𝑖, 𝑗} ⊆ 𝒥]]]− �̂�𝑖,𝑗|

≤ max{|(𝐾*
𝑖,𝑖 + 𝜉𝜖)(𝐾*

𝑗,𝑗 + 𝜉𝜖)−𝐾*
𝑖,𝑖𝐾

*
𝑗,𝑗|, |(𝐾*

𝑖,𝑖 − 𝜉𝜖)(𝐾*
𝑗,𝑗 − 𝜉𝜖)−𝐾*

𝑖,𝑖𝐾
*
𝑗,𝑗|}+ 𝜉𝜖

≤ 3𝜉𝜖+ (𝜉𝜖)2 ≤ 4𝜉𝜖,

where we used 𝜉𝜖 ≤ 1 and that ∀𝑖, 𝑗 ∈ [𝑛] : |𝐾*
𝑖,𝑗| ≤ 1. Moreover, using the fact that

�̂�𝑖,𝑗 and 𝐾*
𝑖,𝑗 have the same sign,

|�̂�𝑖,𝑗 −𝐾*
𝑖,𝑗|2 ≤ |�̂�𝑖,𝑗 −𝐾*

𝑖,𝑗‖�̂�𝑖,𝑗 +𝐾*
𝑖,𝑗| = |�̂�2

𝑖,𝑗 −𝐾*2
𝑖,𝑗| ≤ 4𝜉𝜖,

which gives

|�̂�𝑖,𝑗 −𝐾*
𝑖,𝑗| ≤ 2

√︀
𝜉𝜖. (2.9)

On the other hand, we have the lower bound 𝛼 on the absolute value of the non-zero

entries of 𝐾* from the 𝛼-normality condition (1), so for non-zero 𝐾*
𝑖,𝑗 we have:

|�̂�𝑖,𝑗 −𝐾*
𝑖,𝑗| ≤

4𝜉𝜖

|�̂�𝑖,𝑗 +𝐾*
𝑖,𝑗|

=
4𝜉𝜖

|�̂�𝑖,𝑗|+ |𝐾*
𝑖,𝑗|
≤ 4𝜉𝜖

𝛼
. (2.10)

Combining Equation (2.10) and Equation (2.9), we obtain:

|�̂�𝑖,𝑗 −𝐾*
𝑖,𝑗| ≤ 2𝜖min

{︃
2𝜉

𝛼
,

√︂
𝜉

𝜖

}︃
. (2.11)

Note that by dropping the 𝛼-normality condition, we still have the bound |�̂�𝑖,𝑗 −

32

𝐾*
𝑖,𝑗| ≤ 2

√
𝜉𝜖. Hence, the upper bound in Equation (2.11) holds even by setting 𝛼 = 0,

which is equivalent to having no 𝛼-normality for 𝐾*.

Generating candidate matrices and DPPs forℳℳℳ: Our goal is to eventually

bound the 𝜒2-distance between 𝑞 and our estimated distribution. To achieve this goal

(as we see shortly), it is enough that one estimates each entry of 𝐾* up to an additive

error of

℘ :=
𝜖𝜁

100𝑛2
. (2.12)

In some natural parameter regimes, i.e. when 𝜖 = Ω̃(𝜁−2𝑁− 1
4) or 𝛼 = Ω̃(𝜁−1𝑁− 1

4), ℘

is larger than the upper bound that we already have in Equation (2.11) and so we can

return the distribution of �̂� as our estimate for 𝑞. However, if this is not the case, we

need more candidates to make sure at least one of them is close to𝐾*
𝑖,𝑗 . Note that𝐾*

𝑖,𝑗 is

already in the range
[︁
�̂�𝑖,𝑗 − 2𝜖min

{︁
2𝜉/𝛼,

√︀
𝜉/𝜖
}︁
, �̂�𝑖,𝑗 + 2𝜖min

{︁
2𝜉/𝛼,

√︀
𝜉/𝜖
}︁]︁

with

high probability. Therefore, we divide this range into 𝜍 := ⌈2𝜖min
{︁
2𝜉/𝛼,

√︀
𝜉/𝜖
}︁
/℘⌉ =

⌈200𝑛2𝜁−1min{2𝜉/𝛼,
√︀
𝜉/𝜖}⌉ intervals of equal length. This way, it is guaranteed that

the true 𝐾*
𝑖,𝑗 is ℘-close to one of the midpoints of these intervals (except when 𝐾*

𝑖,𝑗 is

zero which we handle separately). As discussed, this partitioning (is called bracketing

technique in the literature of learning theory) allows the algorithm to achieve the

optimal sample complexity.

Now, we claim that there are 2𝜍 + 1 candidates for 𝐾*
𝑖,𝑗. This number comes from

the fact that we do not know whether �̂�𝑖,𝑗 is equal to �̂�(+)
𝑖,𝑗 or �̂�(−)

𝑖,𝑗 a priori. Thus, each

option provides 𝜍 candidates. Also, we have to consider the case 𝐾*
𝑖,𝑗 = 0 separately

because the lower bound 𝛼 only holds for non-zero entries 𝐾*
𝑖,𝑗 . By considering all the

combinations of candidates for each entry, we obtain a set 𝑀 of matrices. Since each

entry has a ℘-close candidate, there exists a matrix �̃� ∈𝑀 such that all of its entries

are ℘-close to the true kernel matrix 𝐾*. Therefore, this matrix is (𝑛℘)-close to 𝐾*

in the Frobenius distance. As we discussed in section 2.5, we project each 𝐾 ∈ 𝑀

onto the set of valid marginal kernels and consider the set of candidate distributions

ℳ := {PrΠ(𝐾)[[[.]]]|𝐾 ∈ 𝑀}. The projection, Π(𝐾), is with respect to the Frobenius

33

distance between matrices, and it is easy to see that computing it is equivalent to

rounding up the eigenvalues of 𝐾 that are negative to zero, and rounding down the ones

that are greater than one to one. Now for the DPP distribution 𝑝 = PrΠ(�̃�)[[[.]]] ∈ℳ,

we prove the following claims:

(C1) The kernels Π(�̃�) and 𝐾* are close in operator norm:

‖Π(�̃�)−𝐾*‖2 ≤
𝜖𝜁

100𝑛
.

(C2) The singular values of Π(�̃�) are in the range [99𝜁/100, 1− 99𝜁/100].

For the first claim (C1), it is enough to write

‖Π(�̃�)−𝐾*‖2 ≤ ‖Π(�̃�)−𝐾*‖𝐹 = ‖Π(�̃�)− Π(𝐾*)‖𝐹 ≤ ‖�̃� −𝐾*‖𝐹 ≤ 𝑛℘ =
𝜖𝜁

100𝑛
.

(2.13)

where ‖.‖2 and ‖.‖𝐹 refer to matrix operator norm and Frobenius norm respectively.

The first inequality holds because the spectral norm is bounded by the Frobenius

norm, the first equality follows from the fact that 𝐾* is a valid marginal kernel, and

the second inequality is because of the contraction property of projection.

Next, we prove the second claim (C2). Using the variational characterization of

the Operator norm and noting the fact that Π(�̃�)−𝐾* is symmetric (thus its singular

values are the absolute values of its eigenvalues), we have

‖Π(�̃�)−𝐾*‖2 = max
𝑣,‖𝑣‖2=1

|𝑣𝑇 (Π(�̃�)−𝐾*)𝑣|.

Combining this with Equation (2.13) then implies the following for every normalized

vector ‖𝑣‖2 = 1:

− 𝜖𝜁

100𝑛
≤ 𝑣𝑇 (Π(�̃�)−𝐾*)𝑣 ≤ 𝜖𝜁

100𝑛
. (2.14)

34

Since Pr𝐾*[[[.]]] is 𝜁-normal due to our assumption, we also have

𝜁 ≤ 𝑣𝑇𝐾*𝑣 ≤ 1− 𝜁. (2.15)

Combining Inequalities (2.14) and (2.15) yields

𝑣𝑇Π(�̃�)𝑣 ≥ 𝜁 − 𝜖𝜁

100𝑛
≥ 𝜁 − 𝜁

100
=

99𝜁

100
,

and similarly

𝑣𝑇Π(�̃�)𝑣 ≤ 1− 𝜁 + 𝜖𝜁

100𝑛
≤ 1− 99𝜁

100
,

for any arbitrary normalized vector 𝑣. Finally, using the variational characterization

of the smallest and largest eigenvalues, we obtain that all eigenvalues of Π(�̃�) are

in the range [99𝜁/100, 1− 99𝜁/100]. Note that the singular values of Π(�̃�) are the

absolute values of its eigenvalues, simply because Π(�̃�) is symmetric, which completes

the proof of the second claim (C2). We use these claims (C1), (C2) in the next part.

Closeness in parameter space implies closeness of the distributions: In this

part of the proof, we show that closeness between 𝐾* and Π(�̃�) in operator norm

ensures the closeness of the distributions 𝑞 and 𝑝 with respect to the 𝜒2-distance and

ℓ1-distance. This result is based on the following Lemma, whose proof we defer to the

end of this section.

Lemma 5. For arbitrary symmetric matrices 𝐵 and 𝐸, we have

⃒⃒⃒
| det(𝐵 + 𝐸)| − | det(𝐵)|

⃒⃒⃒
≤ | det(𝐵)|𝑛‖𝐸‖2

𝜎𝑛(𝐵)

(︂
‖𝐸‖2
𝜎𝑛(𝐵)

+ 1

)︂𝑛−1

,

where 𝜎𝑛(𝐵) is the smallest singular value of 𝐵.

Now consider an arbitrary set 𝐽 ⊆ [𝑛] and its complement 𝐽 . Recall that Equa-

tion (2.1) gives:

𝑝(𝐽) = | det(Π(�̃�)− 𝐼𝐽)| , 𝑞(𝐽) = | det(𝐾* − 𝐼𝐽)|.

35

Therefore, setting 𝐵 := Π(�̃�)− 𝐼𝐽 and 𝐸 := 𝐾* − Π(�̃�) in Lemma 5, we can upper

bound |𝑞(𝐽)− 𝑝(𝐽)| as

|𝑞(𝐽)− 𝑝(𝐽)| ≤ 𝑝(𝐽)
𝑛‖𝐸‖2
𝜎𝑛(𝐵)

(︂
‖𝐸‖2
𝜎𝑛(𝐵)

+ 1

)︂𝑛−1

. (2.16)

Furthermore, from the second claim (C2) of the previous part, the singular values of

Π(�̃�) are in the range [99𝜁/100, 1− 99𝜁/100], which means the kernel matrix Π(�̃�)

satisfies the condition of Lemma 2. Therefore, from Lemma 2, the smallest singular

value of 𝐵 is lower bounded as 𝜎𝑛(𝐵) ≥ 99𝜁/100(1−99𝜁/100)√
2

≥ 99𝜁

200
√
2
, where we used

1 − 99𝜁/100 > 1/2. Combining this with the first claim (C1) of the previous part

implies
‖𝐸‖2
𝜎𝑛(𝐵)

≤ 2
√
2𝜖

99𝑛
.

Hence, Equation (2.16) gives:

|𝑞(𝐽)− 𝑝(𝐽)| ≤ 𝑝(𝐽)
2
√
2𝜖

99

(︃
2
√
2𝜖

99𝑛
+ 1

)︃𝑛−1

≤ 𝜖

25
𝑝(𝐽), (2.17)

where the last inequality follows from

(︃
2
√
2𝜖

99𝑛
+ 1

)︃𝑛−1

<

(︃
2
√
2

99𝑛
+ 1

)︃𝑛−1

<
99

50
√
2
∀𝑛 ∈ N.

Note that 𝐽 ⊆ [𝑛] is arbitrary, so Equation (2.17) finally yields the desired bound on

the ℓ1-distance and 𝜒2-distance between 𝑞 and 𝑝:

ℓ1(𝑞, 𝑝) =
1

2

∑︁
𝐽⊆[𝑛]

|𝑞(𝐽)− 𝑝(𝐽)| ≤
∑︁
𝐽⊆[𝑛]

𝜖

50
𝑝(𝐽) =

𝜖

50
,

𝜒2(𝑞, 𝑝) =
∑︁
𝐽⊆[𝑛]

(𝑞(𝐽)− 𝑝(𝐽))2

𝑝(𝐽)
<
∑︁
𝐽⊆[𝑛]

𝜖2

500
𝑝(𝐽) =

𝜖2

500
.

Proof of Lemma 5. Let 𝜎1 ≥ · · · ≥ 𝜎𝑛 be the singular values of𝐵. For every 0 ≤ 𝑘 ≤ 𝑛,

36

we denote 𝑠𝑘 the 𝑘th elementary symmetric function on the singular values of 𝐵, i.e.

𝑠0 = 1, ∀ 1 ≤ 𝑘 ≤ 𝑛 : 𝑠𝑘 =
∑︁

1≤𝑖1<...<𝑖𝑘≤𝑛

𝜎𝑖1 . . . 𝜎𝑖𝑘 ,

Note that since 𝐵 is symmetric, the singular values are the absolute values of the

eigenvalues, which implies the relation | det(𝐵)| = 𝜎1 · · · 𝜎𝑛.

Now Corollary 2.7 of [Ipsen and Rehman, 2008] states the following determinant’s

perturbation inequality:

⃒⃒⃒
det(𝐵 + 𝐸)− det(𝐵)

⃒⃒⃒
≤

𝑛∑︁
𝑖=1

𝑠𝑛−𝑖‖𝐸‖𝑖2.

From this, we can derive

⃒⃒⃒
| det(𝐵 + 𝐸)| − | det(𝐵)|

⃒⃒⃒
≤
⃒⃒⃒
det(𝐵 + 𝐸)− det(𝐵)

⃒⃒⃒
≤

𝑛∑︁
𝑖=1

𝑠𝑛−𝑖‖𝐸‖𝑖2

= | det(𝐵)|
𝑛∑︁
𝑖=1

𝑠𝑛−𝑖
𝜎1 . . . 𝜎𝑛

‖𝐸‖𝑖2,

where in the last equality, we multiplied and divided the sum by | det(𝐵)|. Moving

forward, we bound 𝑠𝑛−𝑖 by
(︀
𝑛
𝑖

)︀
𝜎1 · · ·𝜎𝑛−𝑖:

⃒⃒⃒
| det(𝐵 + 𝐸)| − | det(𝐵)|

⃒⃒⃒
≤ | det(𝐵)|

𝑛∑︁
𝑖=1

(︂
𝑛

𝑖

)︂
𝜎1 . . . 𝜎𝑛−𝑖
𝜎1 . . . 𝜎𝑛

‖𝐸‖𝑖2

= | det(𝐵)|
𝑛∑︁
𝑖=1

(︂
𝑛

𝑖

)︂
1

𝜎𝑛−𝑖+1 . . . 𝜎𝑛
‖𝐸‖𝑖2

≤ | det(𝐵)|
𝑛∑︁
𝑖=1

(︂
𝑛

𝑖

)︂(︂
‖𝐸‖2
𝜎𝑛

)︂𝑖
≤ | det(𝐵)|𝑛

𝑛∑︁
𝑖=1

(︂
𝑛− 1

𝑖− 1

)︂(︂
‖𝐸‖2
𝜎𝑛

)︂𝑖
= | det(𝐵)|𝑛 ‖𝐸‖2

𝜎𝑛

𝑛−1∑︁
𝑖=0

(︂
𝑛− 1

𝑖

)︂(︂
‖𝐸‖2
𝜎𝑛

)︂𝑖
= | det(𝐵)|𝑛‖𝐸‖2

𝜎𝑛

(︂
‖𝐸‖2
𝜎𝑛

+ 1

)︂𝑛−1

.

37

2.9 Uniform Lower Bound on the Smallest Singular

Value of 𝐾 − 𝐼𝐽

In this section, we prove Lemma 2: given a marginal kernel 𝐾 whose eigenvalues are

in the range [𝜁, 1− 𝜁], we prove the uniform lower bound 𝜁(1− 𝜁)/
√
2 on the singular

values of the family of matrices {𝐾 − 𝐼𝐽}𝐽⊆[𝑛]. This Lemma is used in the proof of

Theorem 3 and enables us to control the distances between the atom probabilities of

Pr𝐾[[[.]]] and PrΠ(�̃�)[[[.]]].

Proof of Lemma 2. Let 𝜆1 ≥ ... ≥ 𝜆𝑛 be the eigenvalues of 𝐾 and 𝑣1, ..., 𝑣𝑛 be an

orthonormal set of their corresponding eigenvectors. We fix a subset 𝐽 ⊆ [𝑛] and lower

bound the smallest singular value of 𝐾 − 𝐼𝐽 based on its variational characterization:

𝜎𝑛(𝐾 − 𝐼𝐽) = min
‖𝑣‖2=1

√︀
𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣. (2.18)

Given a normalized vector 𝑣: ‖𝑣‖2 = 1, we represent 𝑣 in the basis {𝑣𝑖}𝑛𝑖=1 as

𝑣 =
∑︀𝑛

𝑖=1 𝛼𝑖𝑣𝑖. Because {𝑣𝑖}𝑛𝑖=1 is orthonormal, we have

1 = ‖𝑣‖2 =
𝑛∑︁
𝑖=1

𝛼2
𝑖 ‖𝑣𝑖‖2 =

𝑛∑︁
𝑖=1

𝛼2
𝑖 .

Now we can express 𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣 as:

𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣 =

(︃
𝑛∑︁
𝑖=1

𝛼𝑖𝑣𝑖

)︃𝑇

(𝐾 − 𝐼𝐽)2
(︃

𝑛∑︁
𝑖=1

𝛼𝑖𝑣𝑖

)︃
=

∑︁
1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗𝑣
𝑇
𝑖 (𝐾 − 𝐼𝐽)2𝑣𝑗

=
∑︁

1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗𝑣
𝑇
𝑖 𝐾

2𝑣𝑗 +
∑︁

1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗
(︀
𝑣𝑇𝑖 𝐼

2
𝐽𝑣𝑗 − 𝑣

𝑇
𝑖 𝐾𝐼𝐽𝑣𝑗 − 𝑣𝑇𝑖 𝐼𝐽𝐾𝑣𝑗

)︀
.

Observe that 𝑣𝑖𝑇𝐾2𝑣𝑖 = 𝜆2𝑖 ‖𝑣𝑖‖2 = 𝜆2𝑖 and 𝑣𝑖
𝑇𝐾2𝑣𝑗 = 𝜆𝑖𝜆𝑗𝑣𝑖

𝑇𝑣𝑗 = 0 for 𝑖 ̸= 𝑗.

38

We define some additional notation here: For any subset 𝐽 ⊆ [𝑛], let (𝑣𝑖)𝐽 be the

restriction of 𝑣𝑖 into support 𝐽 . We also denote the inner product of the vectors 𝑣𝑖 and

𝑣𝑗 restricted to 𝐽 by
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽
. Using these notations, we can further simplify the terms

𝑣𝑖
𝑇 𝐼2

𝐽
𝑣𝑗, 𝑣𝑖𝑇𝐾𝐼𝐽𝑣𝑗 and 𝑣𝑖𝑇 𝐼𝐽𝐾𝑣𝑗 to

⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽
, 𝜆𝑖
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽
, and 𝜆𝑗

⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽

respectively.

Substituting them above results in

𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣 =
𝑛∑︁
𝑖=1

𝛼2
𝑖𝜆

2
𝑖 +

∑︁
1≤𝑖,𝑗≤𝑛

(1− 𝜆𝑖 − 𝜆𝑗)𝛼𝑖𝛼𝑗
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽

=
𝑛∑︁
𝑖=1

𝛼2
𝑖𝜆

2
𝑖 −

∑︁
1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗𝜆𝑖𝜆𝑗
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽
+

∑︁
1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗(1− 𝜆𝑖)(1− 𝜆𝑗)
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽

where the last equality simply follows from the Equation (1− 𝜆𝑖)(1− 𝜆𝑗) = 1− 𝜆𝑖 −

𝜆𝑗 + 𝜆𝑖𝜆𝑗. Now substituting
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽

by
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
−
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽

in the second term above,

we obtain

𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣

=
𝑛∑︁
𝑖=1

𝛼2
𝑖𝜆

2
𝑖 −

∑︁
1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗𝜆𝑖𝜆𝑗
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
+
∑︁

1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗𝜆𝑖𝜆𝑗
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽
+

∑︁
1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗(1− 𝜆𝑖)(1− 𝜆𝑗)
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽

=
𝑛∑︁
𝑖=1

𝛼2
𝑖𝜆

2
𝑖 −

𝑛∑︁
𝑖=1

𝛼2
𝑖𝜆

2
𝑖 +

∑︁
1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗𝜆𝑖𝜆𝑗
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽
+

∑︁
1≤𝑖,𝑗≤𝑛

𝛼𝑖𝛼𝑗(1− 𝜆𝑖)(1− 𝜆𝑗)
⟨︀
𝑣𝑖, 𝑣𝑗

⟩︀
𝐽

=
⃦⃦⃦ 𝑛∑︁
𝑖=1

𝛼𝑖𝜆𝑖(𝑣𝑖)𝐽

⃦⃦⃦2
+
⃦⃦⃦ 𝑛∑︁
𝑖=1

𝛼𝑖(1− 𝜆𝑖)(𝑣𝑖)𝐽
⃦⃦⃦2
. (2.19)

Hence, it suffices to derive a lower bound on
⃦⃦⃦∑︀𝑛

𝑖=1 𝛼𝑖𝜆𝑖(𝑣𝑖)𝐽

⃦⃦⃦2
+
⃦⃦⃦∑︀𝑛

𝑖=1 𝛼𝑖(1 −

𝜆𝑖)(𝑣𝑖)𝐽

⃦⃦⃦2
independent from 𝐽 . To this end, we define the column vectors 𝑤1 =(︁

𝛼𝑖𝜆𝑖

)︁𝑛
𝑖=1

, 𝑤2 =
(︁
𝛼𝑖(1−𝜆𝑖)

)︁𝑛
𝑖=1

. Furthermore, define 𝑅 :=

(︂
𝑣1

⃒⃒⃒⃒
. . .

⃒⃒⃒⃒
𝑣𝑛

)︂
as the matrix

with 𝑣𝑖 as its 𝑖th column, and let 𝑣′1
𝑇 , ..., 𝑣′𝑛

𝑇 be the rows of 𝑅. Because {𝑣𝑖}𝑛𝑖=1 is an

orthonormal set, 𝑅 is a unitary matrix, so {𝑣′𝑗}𝑛𝑗=1 is also an orthonormal set. Next, let

39

𝑉 and 𝑉 𝑇 be the subspaces spanned by the set of vectors {𝑣′𝑗}𝑗∈𝐽 and {𝑣′𝑗}𝑗∈𝐽 respec-

tively. Because {𝑣′𝑗}𝑛𝑗=1 is an orthonormal set, the subspaces 𝑉 and 𝑉 ⊥ are orthogonal

to each other. Let 𝜈1 =
∑︀

𝑗∈𝐽(𝑣
′
𝑗
𝑇𝑤1)𝑣

′
𝑗 and 𝜈1

⊥ =
∑︀

𝑗∈𝐽(𝑣
′
𝑗
𝑇𝑤1)𝑣

′
𝑗 be the projec-

tions of 𝑤1 onto 𝑉 and 𝑉 ⊥ respectively. Similarly, define 𝜈2 =
∑︀

𝑗∈𝐽(𝑣
′
𝑗
𝑇𝑤2)𝑣

′
𝑗 and

𝜈2
⊥ =

∑︀
𝑗∈𝐽(𝑣

′
𝑗
𝑇𝑤2)𝑣

′
𝑗 as the projections of 𝑤2 onto 𝑉 and 𝑉 ⊥. Now by decomposing

𝑤1 on 𝑉 and 𝑉 ⊥, we can write

𝑤1 = 𝜈1 + 𝜈1
⊥.

Similarly, we have

𝑤2 = 𝜈2 + 𝜈2
⊥.

Moreover, from the orthonormality of 𝑣′1, ..., 𝑣′𝑛, we obtain

‖𝜈1⊥‖2 =
⃦⃦⃦∑︁
𝑗∈𝐽

(𝑣′𝑗
𝑇
𝑤1)𝑣

′
𝑗

⃦⃦⃦2
=
∑︁
𝑗∈𝐽

(𝑣′𝑗
𝑇
𝑤1)

2 =
∑︁
𝑗∈𝐽

(
𝑛∑︁
𝑖=1

𝑅𝑗,𝑖(𝑤1)𝑖)
2

=
∑︁
𝑗∈𝐽

(
𝑛∑︁
𝑖=1

(𝑣𝑖)𝑗(𝑤1)𝑖)
2 =

⃦⃦⃦ 𝑛∑︁
𝑖=1

𝛼𝑖𝜆𝑖(𝑣𝑖)𝐽

⃦⃦⃦2
.

Similarly, one obtains

‖𝜈2‖2 =
⃦⃦⃦∑︁
𝑗 /∈𝐽

(𝑣′𝑗
𝑇
𝑤2)𝑣

′
𝑗

⃦⃦⃦2
=
⃦⃦⃦ 𝑛∑︁
𝑖=1

𝛼𝑖(1− 𝜆𝑖)(𝑣𝑖)𝐽
⃦⃦⃦2
.

Combining the last two equations with Equation (2.19), we obtain

𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣 = ‖𝜈2‖2 + ‖𝜈1⊥‖2. (2.20)

Now, it suffices to bound ‖𝜈2‖2 + ‖𝜈1⊥‖2. Note that

‖𝑤1‖2 =
𝑛∑︁
𝑖=1

𝛼2
𝑖𝜆

2
𝑖 ≤

∑︁
𝛼2
𝑖 = 1,

‖𝑤2‖2 =
𝑛∑︁
𝑖=1

𝛼2
𝑖 (1− 𝜆𝑖)2 ≤

∑︁
𝛼2
𝑖 = 1.

40

which implies ‖𝜈1‖, ‖𝜈2‖, ‖𝜈1⊥‖, ‖𝜈2⊥‖ ≤ 1. Moreover, the condition 𝜁 ≤ 𝜆𝑖 ≤ 1 − 𝜁

implies 𝜆𝑖(1− 𝜆𝑖) ≥ 𝜁(1− 𝜁). Therefore, on one hand, we get

⟨︀
𝑤1, 𝑤2

⟩︀
=

𝑛∑︁
𝑖=1

𝜆𝑖(1− 𝜆𝑖)𝛼2
𝑖 ≥ 𝜁(1− 𝜁)

𝑛∑︁
𝑖=1

𝛼2
𝑖 = 𝜁(1− 𝜁). (2.21)

On the other hand,

⟨︀
𝑤1, 𝑤2

⟩︀
=
⟨︀
𝜈1 + 𝜈1

⊥, 𝜈2 + 𝜈2
⊥⟩︀ = ⟨︀𝜈1, 𝜈2⟩︀+ ⟨︀𝜈1⊥, 𝜈2⊥⟩︀

≤ ‖𝜈1‖‖𝜈2‖+ ‖𝜈1⊥‖‖𝜈2⊥‖ ≤ ‖𝜈2‖+ ‖𝜈1⊥‖

≤
√︀

2(‖𝜈2‖2 + ‖𝜈1⊥‖2) =
√︀

2𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣. (2.22)

where the last equality follows from Equation (2.20). Combining Equations (2.21)

and (2.22), we conclude 𝑣𝑇 (𝐾 − 𝐼𝐽)2𝑣 ≥ 𝜁2(1− 𝜁)2/2. Recall that 𝑣 is an arbitrary

normalized vector, and 𝐽 is an arbitrary subset of [𝑛], so the variational characterization

of 𝜎𝑛 in Equation (2.18) yields the desired lower bound 𝜎𝑛(𝐾 − 𝐼𝐽) ≥ 𝜁(1− 𝜁)/
√
2 for

every 𝐽 ⊆ [𝑛].

2.10 Lower Bound for Testing Log-submodular Dis-

tributions

In this section, we rigorously prove Lemma 4, which in turn completes the proof of

Theorem 4. We assume that 𝜖′, ℱ , ℎ𝑟 and ℎ̄𝑟 are defined as in Section 2.6.

Detailed Proof of Lemma 4. Given 𝜖′ ≤ 2
3

and a log-submodular distribution 𝑓 , we

first show that the ℓ1-distance between 𝑓 and the unnormalized measure ℎ̄𝑟 is large

with high probability independent of 𝑓 (we define the ℓ1-distance of general measures

the same as for probability measures.) To this end, we define the following family of

subsets based on ℎ𝑟, that is random:

𝒮𝑟 := {𝑆 ⊆ [𝑛] ∖ {1, 2} | 𝑟(𝑆∪{1,2}) = 1, 𝑟(𝑆∪{2}) = −1, 𝑟(𝑆∪{1}) = −1}. (2.23)

41

We prove that 𝒮𝑟 has the following properties:

(P1) With high probability, the cardinality of 𝒮𝑟 is at least 𝑁/64.

(P2) For every 𝑆 ∈ 𝒮𝑟, there is a contribution of at least 𝜖′/8𝑁 to the ℓ1-distance

between ℎ̄𝑟 and 𝑓 from the term 𝑉𝑆 defined as

𝑉𝑆 :=
1

2
|ℎ̄𝑟(𝑆)− 𝑓(𝑆)|+

1

2
|ℎ̄𝑟(𝑆 ∪ {1})− 𝑓(𝑆 ∪ {1})|+

1

2
|ℎ̄𝑟(𝑆 ∪ {2})− 𝑓(𝑆 ∪ {2})|+

1

2
|ℎ̄𝑟(𝑆 ∪ {1, 2})− 𝑓(𝑆 ∪ {1, 2})|.

Note that based on these two properties, one can simply derive

ℓ1(ℎ̄𝑟, 𝑓) ≥
𝑁

64
× 𝜖′

8𝑁
=

𝜖′

512
(2.24)

with high probability.

To show that the event 𝒬1 := {|𝒮𝑟| ≥ 𝑁/64} happens with high probability for the

first property (P1), we use a Chernoff bound for the random variables 1{𝑆 ∈ 𝒮𝑟}, ∀𝑆 ⊆

[𝑛] ∖ {1, 2}, where 1{.} is the indicator function. Clearly, for each 𝑆 ⊆ [𝑛] ∖ {1, 2}, we

have E[1{𝑆 ∈ 𝒮𝑟}] = Pr[[[𝑆 ∈ 𝒮𝑟]]] = 1/8, and E[|𝒮𝑟|] = 𝑁/32. Therefore,

Pr[[[𝒬𝑐1]]] = Pr

⎡⎣⎡⎣⎡⎣ ∑︁
𝑆∈[𝑛]∖{1,2}

1{𝑆 ∈ 𝒮𝑟} <
(︂
1− 1

2

)︂
E[|𝒮𝑟|]

⎤⎦⎤⎦⎤⎦ ≤ exp

(︂
−0.5𝑁

32
(
1

2
)2
)︂

= exp

(︂
− 𝑁

256

)︂
.

We conclude for 𝑛 ≥ 𝑛1 = 11, 𝒬1 happens with probability at least 0.995.

We now prove the second property (P2). Fix a set 𝑆 ∈ 𝒮𝑟 and define the constant

𝜌 := 1+𝜖′

1−3𝜖′/4
. To prove 𝑉𝑆 ≥ 𝜖′

8𝑁
, we consider two cases:

Case 1: 𝑓(𝑆∪{1,2})
𝑓(𝑆∪{2}) ≤ 𝜌

Here, we formalize a helper inequality in the following Lemma, and prove it at the

end of this section.

Lemma 6. For 𝑎, 𝑏 ≥ 0, the condition 𝑎
𝑏
≤ 𝜌 implies |1 + 𝜖′ − 𝑎|+ |1− 𝜖′ − 𝑏| ≥ 𝜖′

4
.

42

Now from 𝑆 ∈ 𝒮𝑟, we get ℎ̄𝑟(𝑆 ∪ {1, 2}) = 1+𝜖′

𝑁
and ℎ̄𝑟(𝑆 ∪ {2}) = 1−𝜖′

𝑁
. Hence,

𝑉𝑆 ≥
1

2
|ℎ̄𝑟(𝑆 ∪ {1, 2})− 𝑓(𝑆 ∪ {1, 2})|+

1

2
|ℎ̄𝑟(𝑆 ∪ {2})− 𝑓(𝑆 ∪ {2})|

=
1

2

⃒⃒⃒1 + 𝜖′

𝑁
− 𝑓(𝑆 ∪ {1, 2})

⃒⃒⃒
+

1

2

⃒⃒⃒1− 𝜖′
𝑁
− 𝑓(𝑆 ∪ {2})

⃒⃒⃒
≥ 𝜖′

8𝑁
,

where the last inequality follows from Lemma 6, by setting 𝑎 = 𝑁𝑓(𝑆 ∪ {1, 2}), 𝑏 =

𝑁𝑓(𝑆 ∪ {2}).

Case 2: 𝑓(𝑆∪{1,2})
𝑓(𝑆∪{2}) > 𝜌

In this case, the log-submodularity property allows us to write

log(𝑓(𝑆 ∪ {1}))− log(𝑓(𝑆)) ≥ log(𝑓(𝑆 ∪ {1, 2}))− log(𝑓(𝑆 ∪ {2})) > log(𝜌),

or equivalently
𝑓(𝑆 ∪ {1})

𝑓(𝑆)
> 𝜌 =

1 + 𝜖′

1− 3𝜖′/4
. (2.25)

Note that from 𝑆 ∈ 𝒮𝑟, we have ℎ̄𝑟(𝑆∪{1}) = 1−𝜖′
𝑁

. If 𝑓(𝑆∪{1}) is larger than 1−3𝜖′/4
𝑁

,

then

𝑉𝑆 ≥
1

2
|ℎ̄𝑟(𝑆 ∪ {1})− 𝑓(𝑆 ∪ {1})| >

1

2

(︁1− 3𝜖′/4

𝑁
− 1− 𝜖′

𝑁

)︁
=

𝜖′

8𝑁

and we are done. Otherwise, we have 𝑓(𝑆 ∪ {1}) ≤ 1−3𝜖′/4
𝑁

. Combining this with

Equation (2.25) gives:

𝑓(𝑆) ≤ 𝜌−1𝑓(𝑆 ∪ {1}) ≤ 1− 3𝜖′/4

1 + 𝜖′
× 1− 3𝜖′/4

𝑁
≤ 1− 𝜖′

𝑁
− 𝜖′

4𝑁
,

where the last inequality follows from the condition 𝜖′ ≤ 2
3
. Finally, we obtain

𝑉𝑆 ≥
1

2
|ℎ̄𝑟(𝑆)− 𝑓(𝑆)| ≥

1

2

(︁1− 𝜖′
𝑁
− (

1− 𝜖′

𝑁
− 𝜖′

4𝑁
)
)︁
=

𝜖′

8𝑁
,

which completes the proof for the second property (P2). Therefore, under the oc-

currence of 𝒬1, we conclude from Equation (2.24) that ℓ1(ℎ̄𝑟, 𝑓) ≥ 𝜖′

512
. To show the

ℓ1-distance between ℎ𝑟 and 𝑓 is also large, we control the normalization constant

43

𝐿𝑟 :=
∑︀

𝑆⊆[𝑛] ℎ̄𝑟(𝑆). Define the event 𝒬2 := {1 − 4𝜖′√
𝑁
≤ 𝐿𝑟 ≤ 1 + 4𝜖′√

𝑁
} . A simple

Hoeffding bound for the random variables 1+𝑟𝑆𝜖
′

𝑁
, ∀𝑆 ⊆ [𝑛], implies that 𝒬2 happens

with probability at least 0.995. Now under the occurrence of 𝒬1 ∩ 𝒬2 and assuming

𝑛 ≥ 𝑛2 = 22, we can write:

2ℓ1(ℎ𝑟, 𝑓) =
∑︁
𝑆⊆[𝑛]

|ℎ𝑟(𝑆)− 𝑓(𝑆)| =
∑︁
𝑆⊆[𝑛]

⃒⃒⃒ ℎ̄𝑟(𝑆)
𝐿𝑟

− 𝑓(𝑆)
⃒⃒⃒

≥
∑︁
𝑆⊆[𝑛]

|ℎ̄𝑟(𝑆)− 𝑓(𝑆)| −
∑︁
𝑆⊆[𝑛]

ℎ̄𝑟(𝑆)
⃒⃒⃒1− 𝐿𝑟

𝐿𝑟

⃒⃒⃒
≥ 𝜖′

256
− 4𝜖′

𝐿𝑟
√
𝑁

∑︁
𝑆⊆[𝑛]

ℎ̄𝑟(𝑆) ≥ 𝜖′(
1

256
− 4√

𝑁
) ≥ 𝜖′(

1

256
− 1

512
) =

𝑐𝜖

512
.

A union bound for the events 𝑄𝑐
1 and 𝑄𝑐

2 implies that 𝒬1∩𝒬2 happens with probability

at least 0.99. Note that 𝒬1 and 𝒬2 does not depend on 𝑓 . Setting 𝑐 = 1024, we

conclude that with probability at least 0.99, ℓ1(ℎ𝑟, 𝑓) ≥ 𝜖 for any log-submodular

distribution 𝑓 , given that 𝜖 = 𝜖′/𝑐 ≤ 2
3×1024

and 𝑛 ≥ max{𝑛1, 𝑛2} = 22, which

completes the proof of Lemma 4.

Proof of Lemma 6. Here, we prove Lemma 6, which we used above. First note that if

𝑏 ≥ 𝑎, then clearly |𝑏− (1− 𝜖′)|+ |𝑎− (1 + 𝜖′)| ≥ 2𝜖′ > 𝜖′

4
. So we assume 𝑏 < 𝑎.

Now define 𝑡 := 𝑎− (1 + 𝜖′), so that 𝑎 = 1 + 𝜖′ + 𝑡. Then, we can write

|𝑏− (1− 𝜖′)|+ |𝑎− (1 + 𝜖′)| = | 𝑏
𝑎
(1 + 𝜖′ + 𝑡)− (1− 𝜖′)|+ |𝑡|

≥ | 𝑏
𝑎
(1 + 𝜖′)− (1− 𝜖′)| − | 𝑏

𝑎
𝑡|+ |𝑡|

= | 𝑏
𝑎
(1 + 𝜖′)− (1− 𝜖′)|+ (1− 𝑏

𝑎
)|𝑡|.

The condition 𝑎
𝑏
≤ 𝜌 implies 𝑏

𝑎
(1 + 𝜖′) ≥ 1− 3𝜖′

4
. Therefore

|𝑏− (1− 𝜖′)|+ |𝑎− (1 + 𝜖′)| ≥ 𝜖′

4
+ (1− 𝑏

𝑎
)|𝑡| ≥ 𝜖′

4
.

where the last inequality follows from the fact that 1− 𝑏
𝑎
> 0.

44

2.11 Coupling DPPs

In this section, we fully introduce and prove the coupling argument of Lemma 3.

Given a value 0 < 𝑧 ≤ 0.5 and a DPP whose marginal kernel has eigenvalues that are

outside the range [𝑧, 1− 𝑧], the goal is to couple it with another DPP, which has a

marginal kernel with all eigenvalues in [𝑧, 1− 𝑧], such that the data sets generated

from these two DPPs are equal with high probability.

Proof of Lemma 3. Let 𝑉 be an orthonormal set of the eigenvectors of 𝐾. For each

𝑣 ∈ 𝑉 , let 𝜆𝑣 be its corresponding eigenvalue. To introduce our coupling, we need

to define the class of elementary DPPs [Kulesza and Taskar, 2012]. A DPP is called

elementary if the eigenvalues of its marginal kernel are either zero or one. For each

subset 𝑉 ′ ⊆ 𝑉 of the eigenvectors of 𝐾, we consider the elementary DPP Pr𝐾𝑉 ′[[[.]]]

with marginal kernel 𝐾𝑉 ′
:=
∑︀

𝑣∈𝑉 ′ 𝑣𝑣𝑇 . It is well-known that any DPP can be viewed

as a mixture of its corresponding elementary DPPs [Kulesza and Taskar, 2012], i.e.

Pr𝐾[[[.]]] =
∑︁
𝑉 ′⊆𝑉

(︁
Π𝑣∈𝑉 ′𝜆𝑣Π𝑣/∈𝑉 ′(1− 𝜆𝑣)

)︁
Pr𝐾𝑉 ′[[[.]]]. (2.26)

Using this mixture formulation, we can sample a set from Pr𝐾[[[.]]] as follows: For each

eigenvector 𝑣 ∈ 𝑉 , we sub-sample 𝑣 with probability 𝜆𝑣 to obtain the random subset

𝑉 ′ of 𝑉 , then we sample 𝒥𝐾 from the elementary DPP with marginal kernel 𝐾𝑉 ′ . We

call this sampling scheme “elementary sampling:”

• (1) For each 𝑣 ∈ 𝑉 , sample 𝑦𝑣 ∼ Bernoulli(𝜆𝑣), add 𝑣 ∈ 𝑉 ′ if 𝑦𝑣 = 1.

• (2) sample 𝒥𝐾 ∼ Pr𝐾𝑉 ′[[[.]]]

According to the mixture formulation in Equation (2.26), the elementary sampling

scheme samples 𝒥𝐾 according to Pr𝐾[[[.]]].

One can readily see that the projected matrix Π𝑧(𝐾) has the same eigenvectors as

45

𝐾 but with corresponding eigenvalues {�̄�𝑣}𝑣∈𝑉 , where

�̄�𝑣 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜆𝑣 if 𝜆𝑣 ∈ [𝑧, 1− 𝑧]

𝑧 if 𝜆𝑣 < 𝑧

1− 𝑧 if 𝜆𝑣 > 1− 𝑧

(2.27)

This fact follows from applying the 2-Weilandt-Hoffman inequality [Tao, 2012] for

the projection operator Π𝑧(.). We can similarly sample 𝒥Π𝑧(𝐾) ∼ PrΠ𝑧(𝐾)[[[.]]] with

the above elementary sampling scheme. Next, we define a coupling between 𝒥𝐾 and

𝒥Π𝑧(𝐾) as follows:

• (1) For each 𝑣 ∈ 𝑉 , sample 𝑥𝑣 ∼ Uniform[0, 1]. Then add 𝑣 to 𝑉 ′
1 if 𝑥𝑣 ∈ [0, 𝜆𝑣],

and add 𝑣 to 𝑉 ′
2 if 𝑥𝑣 ∈ [0, �̄�𝑣].

• (2) if 𝑉 ′
1 = 𝑉 ′

2 , then sample 𝒥 ∼ Pr
𝐾𝑉 ′

1
[[[.]]] and set 𝒥𝐾 = 𝒥Π𝑧(𝐾) = 𝒥 . Otherwise,

independently sample 𝒥𝐾 ∼ Pr
𝐾𝑉 ′

1
[[[.]]], 𝒥Π𝑧(𝐾) ∼ Pr

𝐾𝑉 ′
2
[[[.]]].

By looking at the marginal distributions of the sets 𝒥𝐾 and 𝒥Π𝑧(𝐾) sampled above, we

observe that 𝒥𝐾 ∼ Pr𝐾[[[.]]], 𝒥Π𝑧(𝐾) ∼ PrΠ𝑧(𝐾)[[[.]]], i.e. the marginals of the coupling

are as one would expect. Furthermore, if the sampled sets 𝑉 ′
1 and 𝑉 ′

2 in the first

step of the sampling are equal, then 𝒥𝐾 = 𝒥Π𝑧(𝐾). Therefore, to lower bound

Prcoupling
[︀[︀[︀
𝒥𝐾 = 𝒥Π𝑧(𝐾)

]︀]︀]︀
, it is enough to upper bound Prcoupling[[[𝒲]]] for the event

𝒲 := {𝑉 ′
1 ̸= 𝑉 ′

2}. But we can expand 𝒲 as

𝒲 =
⋃︁
𝑣∈𝑉

(︁
{𝑣 ∈ 𝑉 ′

1 , 𝑣 /∈ 𝑉 ′
2} ∪ {𝑣 ∈ 𝑉 ′

2 , 𝑣 /∈ 𝑉 ′
1}
)︁
.

Note that for each 𝑣 ∈ 𝑉 , {𝑣 ∈ 𝑉 ′
1 , 𝑣 /∈ 𝑉 ′

2}∪{𝑣 ∈ 𝑉 ′
2 , 𝑣 /∈ 𝑉 ′

1} happens with probability

|𝜆𝑣 − �̄�𝑣|. From Equation (2.27), we observe that |𝜆𝑣 − �̄�𝑣| ≤ 𝑧 for every 𝑣 ∈ 𝑉 .

Therefore, using a union bound, we obtain

Prcoupling[[[𝒲]]] ≤ 𝑛𝑧.

46

Using the definition 𝑧 = 𝛿/2𝑚𝑛, we conclude that

Prcoupling
[︀[︀[︀
𝒥𝐾 = 𝒥Π𝑧(𝐾)

]︀]︀]︀
≥ 1−Prcoupling[[[𝒲]]] ≥ 1− 𝑛𝑧 = 1− 𝛿

2𝑚
. (2.28)

Using this coupling to generate the samples {𝒥 (𝑡)
𝐾 }𝑚𝑡=1 and {𝒥 (𝑡)

Π𝑧(𝐾)}𝑚𝑡=1, we can

write

Prcoupling

[︁[︁[︁
{𝒥 (𝑡)

𝐾 }
𝑚
𝑡=1 = {𝒥

(𝑡)
Π𝑧(𝐾)}

𝑚
𝑡=1

]︁]︁]︁
=
(︁
Prcoupling

[︀[︀[︀
𝒥𝐾 = 𝒥Π𝑧(𝐾)

]︀]︀]︀)︁𝑚
≥
(︁
1− 𝛿

2𝑚

)︁𝑚
For a real number 𝑢, we have the inequality

(1− 1

𝑢
)𝑢 ≤ 𝑒−1,

and for 𝑢 ≥ 2, we have

(1− 1

𝑢
)𝑢 ≥ 𝑒−

𝑢
𝑢−1 ≥ 𝑒−2.

Applying these inequalities, we finally obtain

Prcoupling

[︁[︁[︁
{𝒥 (𝑡)

𝐾 }
𝑚
𝑡=1 = {𝒥

(𝑡)
Π𝑧(𝐾)}

𝑚
𝑡=1

]︁]︁]︁
≥
(︂(︁

1− 𝛿

2𝑚

)︁ 2𝑚
𝛿

)︂ 𝛿
2

≥ 𝑒−𝛿 ≥ 1− 𝛿.

2.12 A More Detailed Proof of Theorem 1

In this section, we take a more elaborate look at the proof of Theorem 1. The proof is

mentioned in Section 2.5.2.

Detailed proof of Theorem 1. Lemma 1 tells us there exists a constant 𝑐1 such that

𝑐1𝐶𝑁,𝜖,𝛼,𝜁
√
𝑁/𝜖2 samples suffice for DPP-Tester to successfully test against (𝛼, 𝜁)-

normal DPPs, with probability at least 0.995. For the general problem of testing

against any DPP (i.e. without having the normality conditions), we prove that

47

𝑚* = 𝑐2𝐶𝑁,𝜖
√
𝑁/𝜖2 samples suffice to succeed with probability at least 0.99, as long

as 𝑐2 ≥ 𝑐1max{23, 2 log(𝑐1) + 23}. To test against all DPPs, we use the parameter

setting of DPP-Tester for (0, 𝑧)-normal DPPs, where we define 𝑧 := 0.005/2𝑚*𝑛. The

key idea is that via the coupling argument of Lemma 3, we can reduce the analysis for

testing against all DPPs to the analysis for testing against only (0, 𝑧)-normal DPPs.

To this end, we use the following Lemma. The derivation of the inequality in Lemma 7

is based on elementary algebraic operations, and we differ its proof to the end of this

section.

Lemma 7. For constant 𝑐2 picked as large as 𝑐2 ≥ 𝑐1max{23, 2 log(𝑐1)+ 23}, we have

𝑚* ≥ 𝐶𝑁,𝜖,0,𝑧
√
𝑁/𝜖2. (2.29)

Therefore, we pick 𝑐2 ≥ 𝑐1max{23, 2 log(𝑐1) + 23} to satisfy the inequality 𝑚* ≥

𝐶𝑁,𝜖,0,𝑧
√
𝑁/𝜖2. This means that given 𝑚* samples, according to the definition of 𝑐1,

our tester can test against (0, 𝑧)-normal DPPs with success probability at least 0.995.

Therefore, if the underlying distribution 𝑞 is an (0, 𝑧)-normal DPP, or if it is 𝜖-far

from all DPPs, then DPP-Tester outputs correctly with probability at least 0.995. It

remains to show that the algorithm can also handle a DPP with kernel 𝐾*, which is not

(0, 𝑧)-normal. To see this, note that because of the particular choice of 𝑧, our coupling

argument in Lemma 3 implies that the product distributions Pr
(𝑚*)
𝐾* [.] and Pr

(𝑚*)
Π𝑧(𝐾*)[.]

over the space of data sets have ℓ1-distance at most 0.005. This follows from the fact

that for two arbitrary random variables 𝑋 and 𝑌 over the same underlying space,

with probability distributions 𝑃𝑋 and 𝑃𝑌 , we have the following characterization of

their ℓ1-distance:

ℓ1(𝑃𝑋 , 𝑃𝑌) = inf
coupling(𝑋,𝑌)

Prcoupling[[[𝑋 ̸= 𝑌]]].

Therefore, we have ℓ1
(︁
Pr

(𝑚*)
𝐾* [.],Pr

(𝑚*)
Π𝑧(𝐾*)[.]

)︁
≤ 0.005. From this, we can relate the

probability of the tester’s acceptance region under Pr
(𝑚*)
𝐾* [.], to the same probability

48

under Pr
(𝑚*)
Π𝑧(𝐾*)[.]:

Pr
(𝑚*)
𝐾* [Acceptance Region] ≥ Pr

(𝑚*)
Π𝑧(𝐾*) [Acceptance Region]−0.005 ≥ 0.995−0.005 = 0.99,

where the last inequality follows from the fact that PrΠ𝑧(𝐾*)[[[.]]] is an (0, 𝑧)-normal

DPP, according to the definition of Π𝑧(𝐾
*). Hence, for 𝑐2 ≥ max{23, 2 log(𝑐1) + 23},

DPP-Tester, with the particular choice of its parameter 𝜍 with respect to (0, 𝑧)-normal

DPPs, succeeds given 𝑐2𝐶𝑁,𝜖
√
𝑁/𝜖2 samples to test all DPPs with probability at least

0.99. This completes the proof of Theorem 1.

Proof of Lemma 7. As usual, log(.) denotes the natural logarithm. Inequality (2.29)

boils down to

𝑐2𝐶𝑁,𝜖 ≥ 𝑐1𝐶𝑁,𝜖,0,𝑧,

or equivalently

𝑐2 log
2(𝑁)(log(𝑁) + log(1/𝜖)) ≥ 𝑐1 log

2(𝑁)(1 + log(1/𝑧) + log(1/𝜖))

⇔ 𝑐2(log(𝑁) + log(1/𝜖)) ≥ 𝑐1(1 + log(1/0.0025) + log(𝑚*) + log(𝑛) + log(1/𝜖)).

(2.30)

Using the inequality log(𝑥) ≤ 𝑥− 1 for 𝑥 > 0, we get:

log(𝑚*) = log(𝑐2𝐶𝑁,𝜖
√
𝑁/𝜖2)

= log(𝑐2) + 2 log(log(𝑁)) + log(log(𝑁) + log(1/𝜖)) +
1

2
log(𝑁) + 2 log(1/𝜖)

≤ log(𝑐2) + 2(log(𝑁)− 1) + log(𝑁) + log(1/𝜖)− 1 +
1

2
log(𝑁) + 2 log(1/𝜖)

= log(𝑐2)− 2 +
7

2
log(𝑁) + 3 log(1/𝜖). (2.31)

Substituting Inequality (2.31) in Inequality (2.30), it is enough to satisfy

𝑐2
𝑐1
≥ log(𝑐2)− 1 + log(1/0.0025) + 7/2 log(𝑁) + 4 log(1/𝜖) + log(𝑛)

log(𝑁) + log(1/𝜖)
:= 𝜚.

49

We further upper bound 𝜚 using the inequalities log(𝑛) < 1
2
log(𝑁) + 1 and log(𝑁) ≥

0.69:

𝜚 <
log(𝑐2) + 6 + 8 log(𝑁) + 4 log(1/𝜖)

log(𝑁) + log(1/𝜖)

=
log(𝑐2) + 6

log(𝑁) + log(1/𝜖)
+

8 log(𝑁) + 4 log(1/𝜖)

log(𝑁) + log(1/𝜖)

≤ 1.5 log(𝑐2) + 9 +
8(log(𝑁) + log(1/𝜖))

log(𝑁) + log(1/𝜖)

= 1.5 log(𝑐2) + 17.

Therefore, it is enough to satisfy 𝑐2/𝑐1 ≥ 1.5 log(𝑐2) + 17. But setting 𝑐2/𝑐1 = 𝑐3, this

means we should choose 𝑐3 large enough so that 𝑐3 ≥ 1.5 log(𝑐3) + 1.5 log(𝑐1) + 17.

One can readily check that 𝑐3 ≥ max{23, 2 log(𝑐1) + 23} satisfies this inequality.

Consequently, it is enough to pick 𝑐2 as large as 𝑐2 ≥ 𝑐1max{23, 2 log(𝑐1) + 23}, which

completes the proof of Lemma 7. Note that 𝑐1max{23, 2 log(𝑐1) + 23} is almost a

linear function of 𝑐1.

2.13 Modification of DPP-Tester for distinguishing

(𝛼, 𝜁)-normal DPPs from the 𝜖-far set of just the

(𝛼, 𝜁)-normal DPPs

Here, we explain how to manipulate the tester to work when we want to distinguish if

𝑞 is an (𝛼, 𝜁)-normal DPP, or 𝜖-far only from the class of (𝛼, 𝜁)-normal DPPs. We

suggest that the reader first read the proof of Theorem 3.

The only part we change in the algorithm is the way we generate the set of

candidate DPPsℳ; we build the set of candidate marginal kernels 𝑀 the same way as

in the proof of Theorem 3. Given a candidate kernel matrix 𝐾 ∈𝑀 and an arbitrary

entry 𝐾𝑖,𝑗, depending on whether 𝐾𝑖,𝑗 is zero, or picked from the confidence interval

around �̂�(+)
𝑖,𝑗 or �̂�(−)

𝑖,𝑗 , we define the value 𝛼𝑖,𝑗(𝐾) to be zero, +𝛼, or −𝛼 respectively.

Now when we are in the case where the underlying distribution is DPP, according to

50

the way we generate 𝑀 , with high probability there exists a �̃� ∈𝑀 , such that �̃�𝑖,𝑗

is ℘-close to 𝐾*
𝑖,𝑗 for every 𝑖, 𝑗 ∈ [𝑛], and furthermore, 𝛼𝑖,𝑗(�̃�) is zero if 𝐾*

𝑖,𝑗 = 0, or

has the same sign as 𝐾*
𝑖,𝑗 if 𝐾*

𝑖,𝑗 ̸= 0 (℘ is defined in Equation (2.12)). Our goal is to

exploit this property of 𝛼𝑖,𝑗(�̃�)’s to redefineℳ, so that the candidate DPPs inℳ

are (𝛼, 𝜁)-normal. To this end, for each matrix 𝐾 ∈𝑀 , instead of projecting 𝐾 onto

the set of PSD matrices with eigenvalues in [0, 1], we project onto the following convex

body with respect to the Frobenius distance, which is a subset of (𝛼, 𝜁)-normal DPPs:

𝐷𝐾 := {𝐴 ∈ 𝑆+
𝑛 | 𝜁.𝐼 ⪯ 𝐴 ⪯(1− 𝜁)𝐼, ∀𝑖, 𝑗 ∈ [𝑛] :

𝐴𝑖,𝑗/𝛼𝑖,𝑗(𝐾) ≥ 1 if𝛼𝑖,𝑗(𝐾) ̸= 0, or𝐴𝑖,𝑗 = 0 if𝛼𝑖,𝑗(𝐾) = 0},

and generateℳ as

ℳ := {PrΠ𝐷𝐾
(𝐾)[[[.]]]|𝐾 ∈𝑀},

where we denote by Π𝐷𝐾
the projection map onto 𝐷𝐾 . Particularly, it is clear that

𝐷𝐾 is a subset of (𝛼, 𝜁)-normal DPPs, and as the intersection of convex sets, 𝐷𝐾 is

also convex, so projection on 𝐷𝐾 is well-defined.

Now when 𝑞 is a DPP with marginal kernel 𝐾*, we know it is (𝛼, 𝜁)-normal, so

for every 𝑖, 𝑗 ∈ [𝑛] : |𝐾*
𝑖,𝑗| ≥ 𝛼. Combining this with the property that 𝛼𝑖,𝑗(�̃�) is

zero if 𝐾*
𝑖,𝑗 = 0, or it has the same sign as 𝐾*

𝑖,𝑗 if 𝐾*
𝑖,𝑗 ̸= 0, we obtain that 𝐾* ∈ 𝐷�̃� .

This means Π𝐷�̃�
(𝐾*) = 𝐾*. Using this relation with the contraction property of

projection, we obtain

‖Π𝐷�̃�
(�̃�)−𝐾*‖𝐹 = ‖Π𝐷�̃�

(�̃�)− Π𝐷�̃�
(𝐾*)‖𝐹 ≤ ‖�̃� −𝐾*‖𝐹 .

Therefore, by substituting the projection Π(𝐾) in our algorithm by Π𝐷𝐾
(𝐾) for

every 𝐾 ∈𝑀 , the inequality in Equation (2.13) in the proof of Theorem 3 remains

to hold, and the rest of the proof for the 𝜒2-distance bound follows accordingly. On

the other hand, with the new projection Π𝐷𝐾
(𝐾) instead of Π(𝐾), the DPPs that

are generated inℳ are all (𝛼, 𝜁)-normal, so if we are in the case that 𝑞 is 𝜖-far from

(𝛼, 𝜁)-normal DPPs, it is also 𝜖-far from ℳ. Consequently, our 𝜒2-ℓ1 tests are able

51

to distinguish the two cases as before, and we obtain an (𝜖, 0.99)-tester with sample

complexity Θ(
√
𝑁/𝜖2) for this modified version of our testing problem.

We should note that computing Π𝐷𝐾
(𝐾) is trickier than Π(𝐾); for Π(𝐾), comput-

ing the Singular value decomposition (SVD) of 𝐾 is enough (or we can use iterative

algorithms to get an approximate solution faster), but computing Π𝐷𝐾
(𝐾) is a general

convex problem and is solvable via convex programming approaches.

2.14 Analysis of DPP-Tester2

In this section, we show the argument in Theorem 5, which is a direct consequence of

the sample and time complexities for the moment-based learning algorithm in [Urschel

et al., 2017].

Proof of Theorem 5. Recall from the proof of Theorem 3 that estimating each entry

of 𝐾* up to accuracy ℘, defined in Equation (2.12), is enough to prove the desired

bound 𝜒2(𝑞, 𝑝) ≤ 𝜖2/500, which in turn enables the final 𝜒2-ℓ1 tester to work correctly.

Now let 𝒟𝑛 be the set of 𝑛× 𝑛 diagonal matrices with +1 or −1 on their diagonal.

For any 𝐷 ∈ 𝒟𝑛, the marginal kernel 𝐷𝐾*𝐷 induces the same DPP distribution

as 𝐾* does. In other words, 𝐾* is identifiable only up to the multiplication of its

rows and columns by ±1. With this in mind, to get the final guarantee for closeness

of the DPP distributions when we use the moment-based learning algorithm, i.e.

𝜒2
(︁
𝑞,Pr𝐾new[[[.]]]

)︁
≤ 𝜖2/500, it is enough that for some 𝐷 ∈ 𝒟𝑛, we estimate the matrix

𝐷𝐾*𝐷 entrywise with accuracy ℘. In fact, the moment-based learning algorithm

gives us such a guarantee; according to [Urschel et al., 2017], in order to compute a

℘-accurate estimate of 𝐾* in pseudo-distance, the moment-based algorithm requires

𝑂

(︂(︁
1

𝛼2℘2 + ℓ(4
𝛼
)2ℓ
)︁
log(𝑛)

)︂
samples, where the pseudo-distance of matrices 𝐾1 and

𝐾2 is defined as

𝜌(𝐾1, 𝐾2) = min
𝐷∈𝒟𝑛

⃒⃒⃒
𝐷𝐾1𝐷 −𝐾2

⃒⃒⃒
∞

= min
𝐷∈𝒟𝑛

max
𝑖,𝑗∈[𝑛]

⃒⃒
(𝐷𝐾1𝐷)𝑖,𝑗 − (𝐾2)𝑖,𝑗

⃒⃒
.

Now substituting ℘ from Equation (2.12), the sample complexity of the moment-based

52

algorithm as a subroutine in DPP-Tester2 becomes

𝑚 = 𝑂

(︂
𝑛4 log(𝑛)

𝜖2𝛼2𝜁2
+ ℓ(

4

𝛼
)2ℓ log(𝑛)

)︂
, (2.32)

where ℓ is the cycle sparsity2 of the graph with vertices [𝑛], whose edges correspond

to the non-zero entries of 𝐾*.

Adding the complexity of the final 𝜒2-ℓ1 test to the learning complexity in Equa-

tion (2.32), the overall sample complexity of DPP-Tester2 is:

𝑂

(︂
𝑛4 log(𝑛)

𝜖2𝛼2𝜁2
+ ℓ(

4

𝛼
)2ℓ log(𝑛) +

√
𝑁

𝜖2

)︂
.

For the time complexity, the run-time of the moment-based algorithm is 𝑂(𝑛6 +𝑚𝑛2)

in the worst-case due to [Urschel et al., 2017], and the run-time of the 𝜒2-ℓ1 test is

𝑂(𝑁𝑛3 +𝑚), as we have to compute Pr𝐾new[[[𝐽]]] for each 𝐽 ⊆ [𝑛], requiring an SVD

in time 𝑂(𝑛3). Adding them up results in an overall run time of

𝑂(𝑁𝑛3 + 𝑛6 +𝑚𝑛2) = 𝑂(𝜖4𝑚2𝑛3 + 𝑛6 +𝑚𝑛2) = Poly(𝑚,𝑛)

for DPP-Tester2, where the above equality follows from our sample complexity lower

bound 𝑚 = Ω(
√
𝑁/𝜖2).

2.15 Time complexity of DPP-Tester

In this section, we analyze the time complexity of DPP-Tester.

For each 𝑝 ∈ℳ, to apply the robust 𝜒2-ℓ1 test of Acharya et al. [2015], one has to

compute the statistic 𝑍(𝑚) defined in Equation (2.3). To compute 𝑍(𝑚), one should

compute 𝑝(𝐽) for every 𝐽 ⊆ [𝑛], which requires a determinant calculation in time

𝑂(𝑛3). Therefore, each robust 𝜒2 − ℓ1 testing takes time 𝑂(𝑁𝑛3). There is another

𝑂(𝑚) pre-processing time for computing 𝑁(𝐽)’s. Moreover, computing the projection

2The cycle sparsity of a graph is the smallest ℓ′ such that the cycles with length at most ℓ′

constitute a basis for the cycle space of the graph.

53

matrix Π(𝐾) for every 𝐾 ∈𝑀 requires the Singular value decomposition (SVD) of

𝐾, which takes time 𝑂(𝑛3). This is because we project with respect to the Frobenius

distance, and it follows from the 2-Weilandt-Hoffman inequality [Tao, 2012] that

computing Π(𝐾) can equivalently be done by rounding down the eigenvalues of 𝐾

that are larger than one to one, and rounding up the eigenvalues that are negative

to zero. Computing the initial estimate of the marginal kernel, i.e. �̂� in the proof

of Theorem 3, also takes time at most 𝑂(min{𝑁,𝑚}𝑛2). Therefore, the overall time

complexity becomes

𝑂(|ℳ|𝑁𝑛3 +𝑚).

To have a time complexity upper bound only in terms of the main variables 𝑛, 𝜖,

note that based on what was discussed in section 2.5.2, for the general DPPs without

the knowledge of 𝜁 and 𝛼, we set the normality parameters in our algorithm as

(𝛼, 𝜁) = (0, 𝑧), where 𝑧 is 0.005/(2𝑚*𝑛), for 𝑚* = 𝑂(𝐶𝑁,𝜖
√
𝑁/𝜖2). Substituting

𝐶𝑁,𝜖 = log2(𝑁)(log(𝑁) + log(1/𝜖)), we get that 𝑧−1 = 𝑂
(︁
(𝑛4 + 𝑛3 log(1/𝜖))

√
𝑁/𝜖2

)︁
.

Substituting 𝜁 = 𝑧 in Theorem 3, in the definition of 𝜍 and ignoring 𝛼 in the min

term, we obtain the following worst-case scenario upper bound on 𝜍:

𝜍 =𝑂((𝑛2𝜁−1
√︀
𝜉/𝜖) = 𝑂

(︁
𝑛2(𝑛4 + 𝑛3 log(1/𝜖))

√
𝑁/𝜖2)𝑁− 1

8 log
1
4 (𝑛)𝜖−0.5

)︁
(2.33)

=𝑂
(︁
𝜖−2.5(𝑛6 + 𝑛5 log(1/𝜖))𝑁

3
8 log

1
4 (𝑛)

)︁
. (2.34)

Therefore,

|ℳ| = 𝑂
(︁
𝜖−2.5(𝑛6 + 𝑛5 log(1/𝜖))𝑁

3
8 log

1
4 (𝑛)

)︁𝑛2

.

But notice that our matrices are symmetric, hence, we only have to consider different

candidates for at most 𝑛(𝑛+ 1)/2 entries, which reduces the size of |ℳ| to

|ℳ| = 𝑂
(︁
𝜖−2.5(𝑛6 + 𝑛5 log(1/𝜖))𝑁

3
8 log

1
4 (𝑛)

)︁𝑛(𝑛+1)/2

.

54

2.16 Lower bound on the Sample Complexity of Dis-

tinguishing the Uniform distribution from ℱ

In this section, we give a high-level sketch of the approach that Diakonikolas and

Kane [2016] use, to argue a lower bound of Ω(
√
𝑁/𝜖2) on the sample complexity of

the problem of testing the uniform distribution against ℎ𝑟, randomly selected from ℱ .

Proof. Suppose that we observe samples from the underlying distribution 𝑔, where 𝑔

can either be ℎ𝑟 or the uniform distribution. We flip a random coin 𝑋, and based on

that set 𝑔 to the uniform distribution, or to ℎ𝑟, a distribution randomly selected from

ℱ . For every 𝑆 ⊆ [𝑛], let 𝑁(𝑆) be the number of samples that are equal to 𝑆. We

aim to show that given the number of samples satisfy 𝑚 = 𝑜(
√
𝑁/𝜖2), the information

in the collection of random variables 𝒜 = {𝑁(𝑆)|𝑆 ⊆ [𝑛]} is not enough to guess the

value of 𝑋 strictly better than random guessing, say with success probability greater

than 0.51.

To begin, we use the following Lemma without proof, which is exactly Lemma 3.2.

in page 19 of [Diakonikolas and Kane, 2016]. This is a classical result in Information

theory:

Lemma 8. For random variables 𝑋 and 𝒜, if there exist a function mapping 𝒜 to 𝑋

such that 𝑓(𝒜) = 𝑋 with probability at least 0.51, then we have the following bound

on their mutual information:

𝐼(𝑋;𝒜) ≥ 2.10−4.

Based on Lemma 8, it is enough to show that 𝐼(𝑋;𝒜) = 𝑜(1). To continue, we

use the Poissonization trick; instead of directly deriving 𝑚 samples from 𝑔, we sample

𝑚′ from the Poisson distribution with parameter 𝑚, namely 𝑚′ ∼ Poisson(m), then

derive 𝑚′ samples from 𝑔. Using this trick, we still have 𝑚′ = Θ(𝑚) samples with

high probability, so it is enough to bound 𝐼(𝑋,𝒜) for 𝒜 with respect to the new

sampling scheme with Poissonization. Based on properties of the Poisson distribution,

the new scheme is equivalent to deriving 𝑁(𝑆) ∼ Poisson(𝑚𝑔(𝑆)) for each set 𝑆 ⊆ [𝑛]

55

independent from the others. Furthermore, we showed in the proof of Theorem 4

that 𝐿𝑟 = Θ(1) with high probability, so by using 𝑚𝐿𝑟 instead of 𝑚 samples, the

order of sample size does not change. But now, in the case 𝑔 = ℎ𝑟, 𝑁(𝑆) is sampled

according to 𝑁(𝑆) ∼ Poisson(𝑚𝐿𝑟ℎ𝑟(𝑆)) = Poisson(𝑚ℎ̄𝑟(𝑆)). Thus, one can readily

see that again, we can substitute ℎ𝑟 by its unnormalized counterpart ℎ̄𝑟 in our Poisson

sampling.

Finally, assuming the sampling scheme 𝑁(𝑆) ∼ Poisson(𝑚ℎ̄𝑟(𝑆)), ∀𝑆 ⊆ [𝑛], we

bound 𝐼(𝑋,𝒜). Note that given the value of 𝑋, the random variables {𝑁(𝑆)} are

independent, so we have the following bound on the mutual information:

𝐼(𝑋;𝒜) ≤
∑︁
𝑆⊆[𝑛]

𝐼(𝑋;𝑁(𝑆)). (2.35)

It is enough to bound each of the terms 𝐼(𝑋;𝑁(𝑆)). For that, we bring without proof

Lemma 3.3. from [Diakonikolas and Kane, 2016], page 20:

Lemma 9. If 𝑁(𝑆) ∼ Poisson(𝑚ℎ̄(𝑆)) for 𝑋 = 0 and 𝑁(𝑆) ∼ Poisson(𝑚/𝑁) for

𝑋 = 1, then:

𝐼(𝑋;𝑁(𝑆)) = 𝑂(𝑚2𝜖4/𝑁2).

From this Lemma and Equation (2.35), we get 𝐼(𝑋;𝒜) = 𝑜(𝑚2𝜖4/𝑁) = o(1).

Combining this with Lemma 8, we conclude that we need at least Ω(
√
𝑁/𝜖2) samples

to non-trivially guess 𝑋 from the observed samples. This completes the proof of the

promised lower bound on the sample complexity of the problem of testing uniform

distribution against ℱ . For more details and the proof of Lemmas 8 and 9, we refer

the reader to [Diakonikolas and Kane, 2016].

2.17 Experiments

Finally, we perform small-scale synthetic experiments as a proof of concept.

We generate random DPPs for 𝑛 = 4 by randomly generating kernel matrices

56

𝐾. We draw the eigenvalues of each 𝐾 uniformly from [0, 1], and use eigenvectors of

random matrices with entries uniformly sampled from [0, 1]. To generate a Θ(𝜖)-far

distribution from the class of DPPs, we use our lower bound approach in section 2.6: we

add a random perturbation of ± 𝜖
𝑁

to each atom probability of the uniform distribution

over 2𝑛. Lemma 4 implies that for sufficiently large 𝑛 and small 𝜖, with high probability,

we are Θ(𝜖) far from the class of DPPs, where the constant in Θ(𝜖) is in the range

[1/1024, 1]. Since we do not know the exact value of this constant, we use the constant

1/2 to compute the algorithm’s acceptance threshold: 𝐶 = 𝑚(𝜖
2
)2/10.

We simplified the algorithm slightly in two ways: (1) instead of projecting the

candidate matrices, we just ignore the ones that have an eigenvalue outside the range

[0, 1]; (2) Instead of checking multiple candidate entries in the confidence intervals for

each 𝐾*
𝑖𝑗, we only consider the two signed values +| ̂︀𝐾𝑖𝑗| and −| ̂︀𝐾𝑖𝑗|. The results are

obtained by averaging the empirical probabilities over 20 runs.

3 32 33 34 35 36 37 38 39

Sample size in K

0.00

0.25

0.50

0.75

Detection and False alarm

Detection

False alarm

Figure 2-1: Detection and False Alarm rates of the testing algorithm for various
numbers of samples and 𝜖 = 0.02.

Figure 2-1 shows the performance of our tester for various number of samples:

detection rate when the underlying distribution is a DPP (blue bars), and False Alarm

rate when it is Θ(𝜖) far from the class of DPPs (orange bars). For 𝜖 = 0.02, and the 𝐶

we picked here, the algorithm correctly accepts most DPPs, but needs more samples

to correctly reject non-DPPs.

Our adaptive sample complexity has a weak logarithmic dependence on 𝜁−1; as a

reminder, 𝜁 measures how close the eigenvalues of 𝐾 are to zero or one. The coupling

57

0 5 10 15

Spectrum mean

0.0

0.1

0.2

D
et

ec
ti

on
er

ro
r

C =2.5 σ =0.1

C =2.5 σ =0.2

C =0.1 σ =0.1

C =0.1 σ =0.2

C =0.025 σ =0.1

C =0.025 σ =0.2

Figure 2-2: Detection errors of the testing algorithm for DPP kernel matrices with
eigenvalues sampled from a conditional normal distribution, with different means,
variances, and over multiple choices of the algorithm’s threshold 𝐶.

argument in Lemma 3 got rid of this dependence, for 𝜁 below some threshold. This

theory motivates the question how much the accuracy of our tester depends on the

spectrum of 𝐾, in particular, on the distribution of its eigenvalues. To investigate this

for 𝑛 = 4, we sample the eigenvalues of 𝐾 from a normal distribution with mean on

one of the equidistant points 0.05, 0.1, . . . , 0.9, 0.95 and standard deviations 0.1 or 0.2,

conditioned on the interval [0, 1].

Figure 2-2 shows the results for a variety of parameters. The 𝑥-axis is the mean of

the normal distribution, while the 𝑦-axis is the empirical value of the error probability

in Detection (i.e. recovering the underlying DPP), averaged over 100 runs for each

setting of the parameters. The sample size is 10000 here. The results suggest that the

detection accuracy is only very weakly affected by the mean of the eigenvalues of 𝐾

and, in particular, the error does not increase a lot at the boundaries.

58

Chapter 3

Optimization and Adaptive

Generalization of three layer Neural

Networks

Abstract

While there has been substantial recent work studying generalization of neural networks,
the ability of deep networks in automating the process of feature extraction still evades
a thorough mathematical understanding. As a step toward this goal, we analyze
learning and generalization of a three-layer neural network with ReLU activations in
a regime that goes beyond the linear approximation of the network and is hence not
captured by the common Neural Tangent Kernel. We show that despite nonconvexity
of the empirical loss, a variant of SGD converges in polynomially many iterations to a
good solution that generalizes. In particular, our generalization bounds are adaptive:
they automatically optimize over a family of kernels that includes the Neural Tangent
Kernel to provide the tightest bound.

3.1 Introduction

The ability of overparameterized neural networks trained by (stochastic) gradient

descent to generalize well on test data [Krizhevsky et al., 2012, Silver et al., 2016, Hinton

et al., 2012], even if they perfectly fit the the training data, has intrigued theoretical

researchers and led to many approaches for generalization bounds [Neyshabur et al.,

59

2015, Bartlett et al., 2017, Neyshabur et al., 2018, Dziugaite and Roy, 2017, Wei

et al., 2019, Golowich et al., 2018, Arora et al., 2018b, Zhou et al., 2018, Konstantinos

et al., 2017]. This generalization ability is tied to the optimization procedure, i.e., the

trajectory of the training algorithm in a non-convex loss landscape, and the structure

of the data.

Hence, several recent works study the training of neural networks. For instance,

Safran and Shamir [2018] address the role of overparametrization in avoiding bad local

minima, and Zhang et al. [2016] empirically show that overparametrized networks

trained by SGD can even perfectly fit to random labels. Within the popular frame-

work of the Neural Tangent Kernel (NTK) [Jacot et al., 2018], which uses a linear

approximation of the network at initialization, several works analyze the optimization

trajectory and show global convergence of (S)GD to a global optimum of the empirical

loss [Allen-Zhu et al., 2019b, Li and Liang, 2018, Zou et al., 2018, Du et al., 2018].

Extending the viewpoint to generalization, Arora et al. [2019a,b] exploit the kernel-like

behaviour of two-layer networks close to their initialization to prove generalization for

the final network, showing that two-layer neural networks generalize as well as Kernel

Ridgeless Regression (KRLR) with the NTK. Cao and Gu [2019] show a tighter bound

with a Neural Tangent Random Feature Model. The kernel approach, however, has two

main limitations: First, while KRLR can generalize well in specific high dimensional

regimes [Liang et al., 2020], there is theoretical and empirical evidence that it can be

inconsistent with noise [Rakhlin and Zhai, 2019]. Is there an approach for analyzing

neural networks that shows they perform at least as well as KRLR, but is also robust

to noise?

Second, importantly, neural networks are known to outperform traditional statis-

tical methods in many regimes as they are able to automate the process of feature

extraction from data, as opposed to kernel methods that work with a fixed feature

representation. This poses the question of other, adaptive, regimes beyond the linear

network approximation. In this realm, Wu et al. [2018] show generalization bounds

that, instead of the NTK norm, scale with respect to another functional norm. This

norm corresponds to the minimum RKHS norm of the function among a family of

60

kernels, i.e., their method in a sense picks the best kernel in this family. However,

this result ignores the computational aspect of the problem. Are there particular

nonlinear regimes beyond NTK for which a gradient-type polynomial-time algorithm,

in a way, adaptively chooses a suitable kernel?

Going beyond the NTK view, a line of work convexifies the optimization problem

via an approximation of SGD dynamics with a continuous time gradient flow in the

space of probability measures on the hidden units of the network, equipped with the

Wasserstein metric [Mei et al., 2018, Chizat and Bach, 2018, Mei et al., 2019, Wei

et al., 2018, Sirignano and Spiliopoulos, 2020, Javanmard et al., 2019, Lu et al., 2020].

Taking another perspective, Allen-Zhu et al. [2018] consider a three-layer network

model that is not captured by the NTK approximation, and learn an underlying

concept class by exploiting saddle-point escape theory for nonconvex SGD [Ge et al.,

2015a]. However, evaluating the complexity measure of Allen-Zhu et al. [2018] is

rather involved, and only aligns well with functions that are described by a particular

network. Whether one can recover the NTK bound (e.g. the NTK norm) from these

results is not clear. For the NTK setting, in contrast, Arora et al. [2019a] develop a

purely data dependent generalization bound. Going beyond two layers, is it possible

to prove a data-dependent complexity measure beyond the NTK regime that recovers

the NTK result [Arora et al., 2019a] as a special case?

In this work, we address the above questions:

• We consider a regime for 3-layer neural networks that is not captured by the NTK

approximation and show that, despite nonconvexity, a variant of projected SGD

finds a good solution, as measured by the regularized empirical loss, importantly,

after polynomially many iterations.

• We introduce a new function norm ‖.‖𝜁 as the minimum RKHS norm with respect

to a family of kernels 𝒦, which is upper bounded by the NTK norm up to constants.

We show that for an arbitrary function 𝑓 , the generalization gap of the trained

network scales by ‖𝑓‖𝜁 . This makes our generalization bound adaptive, in the sense

that it scales with the best kernel in 𝒦. As a byproduct, our bounds are comparable

with kernel regression bounds simultaneously with all kernels in 𝒦. We hope that

61

our techniques motivate researchers to prove such adaptive generalization bounds

for deeper networks, which can potentially result in stronger depth separation.

• We show generalization bounds with a new data-dependent complexity measure that

generalizes the NTK-based complexity in [Arora et al., 2019a]. Up to logarithmic

factors, our bounds are upper bounded by those NTK-based bounds and hence

improve over them (if one substitutes their Lipschitz loss with a smooth one) – see

Section 3.6.1 for a simple explicit example. Importantly, our bound can also handle

noisy distributions as opposed to [Arora et al., 2019a].

Further Related work. While the idea of a learning algorithm that combines

multiple kernels has been employed for a while in the community [Sonnenburg et al.,

2006, Rakotomamonjy et al., 2007, Duan et al., 2012], our understanding of the

connections between deep learning and multiple kernel learning is yet in its infancy.

Recently, Dou and Liang [2020] define a time-varying kernel based on the network

weights and show that the limit of the gradient flow converges to a suitable dynamic

kernel, in the sense that the residual of the link function onto its RKHS could be in a

smaller ranked space compared to the orthogonal complement of the RKHS. Ghorbani

et al. [2019] analyze the difference between training a two layer ReLU network and its

NTK or random feature simplifications, for a mixture of Gaussians input distribution

and quadratic target functions. Ignoring the computational hardness imposed by

nonconvexity, Bach [2017] prove a dimension dependent generalization bound beyond

NTK. In another line of work, Chizat and Bach [2020] study gradient flow on losses

with exponential tail and its relation to the max margin solution. Wei et al. [2019]

show an interesting separation between the learning power of two layer ReLU networks

and their NTK approximation, by showing a sample complexity gap for an artificially

constructed distribution.

With a different approach, Allen-Zhu and Li [2020] analyze multi-layer networks

with quadratic activations, and prove generalization bounds polynomial in the di-

mension and precision by assuming an underlying teacher network, which shows a

remarkable algorithmic depth separation. The problem of depth separation for neural

62

networks and more generally their expressive power has been investigated by several

researchers before [Raghu et al., 2017, Daniely, 2017, Barron, 1994, Funahashi, 1989,

Safran and Shamir, 2016, Safran et al., 2019]. The assumption of an underlying teacher

network that one seeks to recover is common, too [Li and Yuan, 2017, Zhong et al.,

2017, Brutzkus and Globerson, 2017]. Other works focus mainly on the algorithm and

use other techniques, such as tensor factorization, to find a global optimum [Tian,

2016, Bakshi et al., 2019, Janzamin et al., 2015, Zhong et al., 2017]. Finally, many

authors study the loss landscape under various assumptions [Freeman and Bruna, 2016,

Nguyen and Hein, 2017, Soudry and Carmon, 2016, Soltanolkotabi et al., 2018, Ge

et al., 2017], some of them consider the simplified case of deep linear networks [Arora

et al., 2018a, Saxe et al., 2013, Bartlett et al., 2018, Kawaguchi, 2016a].

3.2 Setup and approximation by kernels

We analyze a 3-layer ReLu neural network from inputs 𝑥 ∈ R𝑑 to outputs 𝑦 ∈ R of

the form

𝑓𝑉 ′,𝑊 ′(𝑥) = 1√
𝑚2
𝑎𝑇𝜎

(︁
(𝑉 (0) + 𝑉 ′)𝑊 𝑠 1√

𝑚1
𝜎((𝑊 (0) +𝑊 ′)𝑥)

)︁
, (3.1)

where 𝑎 ∈ R𝑚2 is a vector of random signs, 𝑉 (0) ∈ R𝑚2×𝑚3 and 𝑊 (0) ∈ R𝑚1×𝑑 are

random weight initializations with i.i.d Gaussian entries 𝑉 (0)
𝑗,𝑘 ∼ 𝒩 (0, 𝜅22),𝑊

(0)
𝑗,𝑘 ∼

𝒩 (0, 𝜅21), and 𝑊 𝑠 ∈ R𝑚3×𝑚1 is a random sign matrix, which is roughly a random

projection and change of coordinates into a lower dimensional space. We refer to

𝑊 𝑠 1√
𝑚1
𝜎((𝑊 (0) +𝑊 ′)𝑥) as the first layer and 1√

𝑚2
𝑎𝑇𝜎((𝑉 (0) + 𝑉 ′)(.)) as the second

layer. The algorithm trains weight matrices 𝑉 ′ and 𝑊 ′, and 𝑊 𝑠, 𝑎 are fixed. We

assume that the outputs are a.s. bounded by a constant, |𝑦𝑖| ≤ 𝐵, and ‖𝑥𝑖‖ = 1.

As loss ℓ(., .), we use the squared loss. We denote the training (empirical) loss of a

function 𝑓 on our data {𝑥𝑖}𝑛𝑖=1, {𝑦𝑖}𝑛𝑖=1 and the expected loss with respect to the data

63

distribution (population loss) by

𝑅𝑛(𝑓) =
1
𝑛

∑︁𝑛

𝑖=1
ℓ(𝑓(𝑥𝑖), 𝑦𝑖), and 𝑅(𝑓) = Eℓ(𝑓(𝑥), 𝑦),

respectively. Sometimes, we refer to the vector of labels (𝑦𝑖)
𝑛
𝑖=1 by 𝑦. Finally, ℋ𝐾 is

the space of functions with bounded RKHS-norm of kernel 𝐾, and the notation �̃�

hides log factors.

3.2.1 Kernel approximations, decomposition and adaptivity

Kernel approximations of neural networks play an important role in our analysis.

First, a common approximation is the NTK. The Neural Tangent kernel for a 2-layer

ReLu network is

𝐻∞(𝑥1, 𝑥2) = ⟨𝑥1, 𝑥2⟩ · 𝐹2

(︁
⟨𝑥1, 𝑥2⟩/(‖𝑥1‖‖𝑥2‖)

)︁
, for 𝐹2(𝑥) =

1
4
+ arcsin(𝑥)/(2𝜋).

(3.2)

To introduce adaptivity, a key part of our analysis is to approximate the second layer in

the 3-layer network by a product kernel𝐾∞⊙𝐺 that decomposes into a “fixed” part𝐾∞

and an “adaptive” part 𝐺. To define these kernels, for every 𝑖 ∈ [𝑛], let 𝜑(0)(𝑥𝑖) be the

output of the first layer of the network at initialization, 𝜑(0)(𝑥𝑖) =
1√
𝑚1
𝑊 𝑠𝜎(𝑊 (0)𝑥𝑖),

and 𝜑(0)(𝑥𝑖) + 𝜑′(𝑥𝑖) be that output for weights 𝑊 (0) +𝑊 ′. The adaptive kernel 𝐺

captures the dot product between the learned weights:

𝐺(𝑥𝑖, 𝑥𝑗) = ⟨𝜑′(𝑥𝑖), 𝜑
′(𝑥𝑗)⟩. (3.3)

This form of 𝐺 motivates the complexity measure we define in the next section,

if one thinks of the entries of 𝜑′ as bounded NTK-norm functions of the input.

Next, we consider the second layer, where the part 𝐾∞ arises from roughly stable

activations. To formalize this stability, let Sgn(𝑉 𝑥) be the diagonal matrix whose

diagonal contains the coordinate-wise signs of the vector 𝑉 𝑥. If we assume that

Sgn
(︀
(𝑉 (0)+𝑉 ′)(𝜑(0)(𝑥𝑖)+𝜑

′(𝑥𝑖))
)︀
≈ Sgn

(︀
𝑉 (0)𝜑(0)(𝑥𝑖)

)︀
– we prove a rigorous statement

64

in Section 3.6.12 – then

𝑓𝑊 ′,𝑉 ′(𝑥𝑖) =
1√
𝑚2
𝑎𝑇 (𝑉 (0) + 𝑉 ′)(𝜑(0)(𝑥𝑖) + 𝜑′(𝑥𝑖)) (3.4)

≈
⟨
𝑉 (0) + 𝑉 ′, 1√

𝑚2
𝑎𝑇Sgn

(︁
𝑉 (0)𝜑(0)(𝑥𝑖)

)︁(︁
𝜑(0)(𝑥𝑖) + 𝜑′(𝑥𝑖)

)︁𝑇⟩
. (3.5)

Focusing on the adaptive part 𝜑′(𝑥) of the first layer, we write

⟨
𝑉 (0) + 𝑉 ′, 1√

𝑚2
𝑎𝑇Sgn

(︀
𝑉 (0)𝜑(0)(𝑥𝑖)

)︀
𝜑′(𝑥𝑖)

𝑇
⟩
:=
⟨
𝑉 (0) + 𝑉 ′,ϒ(𝑥𝑖)

⟩
(3.6)

and can then view the second layer as a function in the RKHS of the product kernel

⟨ϒ(𝑥𝑖),ϒ(𝑥𝑗)⟩ =: �̃�∞(𝑥𝑖, 𝑥𝑗)𝐺(𝑥𝑖, 𝑥𝑗). This defines the new kernel �̃�∞, which we

simplify into the kernel 𝐾∞ that is independent of initialization (𝐾∞ is defined in

Equation (3.8)). To do so, we first observe that �̃�∞ concentrates around

E𝑤∼𝒩 (0,𝜅22𝐼)
1{𝑤𝑇𝜑(0)(𝑥𝑖)}1{𝑤𝑇𝜑(0)(𝑥𝑗)} = 𝐹2

(︁ ⟨𝜑(0)(𝑥𝑖), 𝜑
(0)(𝑥𝑗)⟩

‖𝜑(0)(𝑥𝑖)‖‖𝜑(0)(𝑥𝑗)‖

)︁
.

Moreover, the Gaussian initialization and assumption ‖𝑥𝑖‖ = 1 imply that ⟨𝜑(0)(𝑥𝑖), 𝜑
(0)(𝑥𝑗)⟩

concentrates around 𝑚3𝐹3(⟨𝑥𝑖, 𝑥𝑗⟩), for 𝐹3 : [−1, 1]→ [0, 1
2
] defined as

𝐹3(𝑥) =
1
2𝜋

√
1− 𝑥2 + 1

4
𝑥+ 1

2𝜋
𝑥 arcsin(𝑥), (3.7)

so �̃�∞(𝑥𝑖, 𝑥𝑗) ≈ 𝐹2(2𝐹3(⟨𝑥𝑖, 𝑥𝑗⟩)) =: 𝐾∞(𝑥𝑖, 𝑥𝑗). (3.8)

For general 𝑥1, 𝑥2 not necessarily unit norm, we define𝐾∞(𝑥1, 𝑥2) = 𝐾∞(𝑥1/‖𝑥1‖, 𝑥2/‖𝑥2‖).

It is easy to check that the coefficients in the Taylor series of 𝐹2 and 𝐹3 are

nonnegative. Combining this with Schur’s Product Theorem implies 𝐾∞ is PSD

(Section 3.6.4). We also denote the data kernel matrix on (𝑥𝑖)
𝑛
𝑖=1 by 𝐾∞ and 𝐻∞.

Like Arora et al. [2019a], we assume the data distribution is (𝜆0, 𝛿, 𝑛)-non-degenerate

with respect to𝐻∞ and𝐾∞, i.e., with probability at least 1−𝛿, the smallest eigenvalues

of 𝐻∞ and 𝐾∞ are at least 𝜆0 > 0.

65

3.3 Data dependent complexity measure and gener-

alization

The emergence of𝐺⊙𝐾∞ above gives rise to an adaptive kernel-like complexity measure

that will determine generalization bounds. Intuitively, this complexity measure reflects

the two layers. Here, we view 𝐺 as the Gram matrix of some “ideal” first-layer feature

functions 𝑔𝑘. We measure the complexity of the prediction function via the RKHS of

𝐴 := 𝐺⊙𝐾∞, and allow a flexible choice of the features 𝑔𝑘. The 𝑔𝑘 may be viewed

as feature representation of 𝜑′ in Equation (3.3): 𝐺(𝑥𝑖, 𝑥𝑗) :=
∑︀
𝑔𝑘(𝑥𝑖)𝑔𝑘(𝑥𝑗). To

regularize this choice, we penalize the complexity of the features 𝑔𝑘 via the NTK norm.

Alternatively, the features 𝑔𝑘 are flexible but have bounded NTK norm.

For a labeling 𝑓 * ∈ R𝑛 of the 𝑛 data points and fixed 𝐺, this leads to the complexity

𝜁(𝑓 *, 𝐺) = 𝑓 *𝑇𝐴−1𝑓 * · ⟨𝐻∞−1, 𝐺⟩ = 𝑓 *𝑇𝐴−1𝑓 *
∑︁𝑚3

𝑘=1
‖𝑔𝑘‖2𝐻∞ ; 𝐴 = 𝐺⊙𝐾∞,

(3.9)

where 𝑚3 is the number of intermediate features. The choice of 𝑚3 is discussed in

Section 3.6.13. Our data-dependent complexity measure implicitly selects the 𝐺 (or

equivalently the feature vectors 𝑔𝑘) that leads to the tightest bound, trading off data

fit and function complexity:

ℑ = ℑ((𝑥𝑖)𝑛𝑖=1, (𝑦𝑖)
𝑛
𝑖=1) := min

𝑓*∈R𝑛

{︁
2𝑛𝑅𝑛(𝑓

*) +𝜛min
𝐺≻0

𝜁(𝑓 *, 𝐺)
}︁
, (3.10)

where we use a log factor 𝜛 = 𝑂(log(𝑛)3 + log(1/𝜆0)).

To make the relation to adaptive kernel spaces even more explicit, assume that

the 𝑔𝑘 are bounded as
∑︀

𝑘 ‖𝑔𝑘‖2𝐻∞ ≤ 1. Then we define a family 𝒦 of corresponding

kernels of the form

𝐾{𝑔}(𝑥1, 𝑥2) = 𝐾∞(𝑥1, 𝑥2)
(︀∑︁

𝑔∈{𝑔}
𝑔(𝑥1)𝑔(𝑥2)

)︀
, (3.11)

i.e., 𝒦 := {𝐾{𝑔}| {𝑔} finite,
∑︀

𝑔∈{𝑔} ‖𝑔‖2𝐻∞ ≤ 1}. With this notation, the complexity

66

measure is

ℑ((𝑥𝑖), (𝑦𝑖)) = min
𝑓*∈R𝑛

{︁
2𝑛𝑅𝑛(𝑓

*) +𝜛min
𝐾∈𝒦

𝑓 *𝑇𝐾−1𝑓 *
}︁
. (3.12)

Hence, this measure may be understood as searching for the most efficient and effective

feature representation within a family of RKHSs.

We may also relate this complexity measure to the NTK-based complexity measure

𝑦𝑇𝐻∞−1𝑦 [Arora et al., 2019a]. For any labeling 𝑓 *, let 𝑓 * ∈ ℋ𝐻∞ be the function

with minimum NTK norm that maps 𝑥𝑖’s to 𝑓 *
𝑖 ’s, so ‖𝑓 *‖𝐻∞ = 𝑓 *𝑇𝐻∞−1𝑓 *. If we

set {𝑔} = {𝑓 */‖𝑓 *‖}, then one can show (Section 3.6.5)

𝑓 *𝑇𝐾−1

{𝑓*/‖𝑓*‖}𝑓
* ≤ 4𝑓 *𝑇 (𝑓 *𝑓 *𝑇)−1𝑓 * × ‖𝑓 *‖2 = 4‖𝑓 *‖2 = 4𝑓 *𝑇𝐻∞−1𝑓 *, (3.13)

which implies

ℑ ≤ min
𝑓*∈R𝑛

{︁
2𝑛𝑅𝑛(𝑓

*) + (4𝜛)𝑓 *𝑇𝐻∞−1𝑓 *
}︁
.

One can further set 𝑓 * = 𝑦 above and obtain

ℑ ≤ (4𝜛1)𝑦
𝑇𝐻∞−1𝑦. (3.14)

3.3.1 Generalization

With the complexity ℑ in hand, we can now state our generalization result. It assumes

optimization by a Projected Stochastic Gradient Descent (PSGD), described in detail

in Section 3.4.

Theorem 6. Suppose we run Projected Stochastic Gradient Descent (PSGD) on the

regularized empirical risk with parameters as in Section 3.4, and |𝑦𝑖| ≤ 𝐵 a.s.. Then,

with high probability (e.g. 0.99) over the randomness of data, initialization and noise

of the gradient steps, PSGD converges in 𝑝𝑜𝑙𝑦(𝐵 ∨ 1/𝐵, 1/𝜆0, 𝑛) iterations to a solution

67

(𝑊PSGD, 𝑉PSGD) with population risk bounded as

𝑅(𝑓𝑊PSGD,𝑉PSGD) ≤
ℑ((𝑥𝑖)𝑛𝑖=1, (𝑦𝑖)

𝑛
𝑖=1)

𝑛
+
𝐵2𝜛

𝑛
. (3.15)

As a side remark, the factor 2 in front of 𝑅𝑛(𝑓
*) in the definition of ℑ in (3.12)

is not special and a similar generalization bound can be obtained for any 𝛾 > 1.

Substituting the upper bound on the complexity in Equation (3.14), one recovers

an NTK-based generalization bound that scales with 𝑦𝑇𝐻∞−1𝑦/𝑛 up to log factors,

which is roughly the square of the generalization bound presented in [Arora et al.,

2019a]. The reason for the faster squared rate here is that we are considering smooth

losses, while they work with a bounded Lipschitz loss. Indeed, it is not hard to apply

a more rigorous uniform convergence analysis from [Srebro et al., 2010] to also obtain

a faster squared rate for the approach used in [Arora et al., 2019a].

Since Equation (3.14) is an upper bound on our complexity, our result generalizes

and tightens the NTK bound [Arora et al., 2019a]. To illustrate the flexibility of our

complexity measure, we show in Section 3.6.1 a simple explicit example of functions

represented as polynomial series where our bound improves upon the NTK bound.

Notably, we only substitute low-rank matrices 𝐺 in our complexity measure for this

construction. We leave further investigation of our complexity measure for arbitrary

𝐺’s to future work.

3.3.2 Underlying Concept class

Instead of data dependent generalization bounds, one may study the generalization

gap with respect to some concept class. The complexity measure ℑ implicitly uses

the following adaptive norm on the space of functions from R𝑑, the infimum of the

RKHS norms for the family of kernels 𝒦:

‖𝑓‖𝜁 = inf
𝐾{𝑔}∈𝒦

‖𝑓‖𝐾{𝑔} . (3.16)

68

It is not hard to check that ‖.‖𝜁 is in fact a norm, and that the inf is achieved by a

particular set {𝑔}. Similar to the derivation of the upper bound on the complexity

measure in Equation (3.14), by setting {𝑔} = {𝑓 */‖𝑓 *‖𝐻∞}, we obtain the following

NTK upper bound:

‖𝑓‖𝜁 ≤ 4‖𝑓‖𝐻∞ . (3.17)

This leads to a function-dependent generalization bound which bounds the risk of the

learned network against an arbitrary function 𝑓 with ‖𝑓‖𝜁 <∞.

Theorem 7. For any measurable function 𝑓 : R𝑑 → R, in the same setting as

Theorem 6, the population risk of the trained network can be bounded as

𝑅(𝑓𝑊PSGD,𝑉PSGD) ≤ 2𝑅(𝑓) +𝑂
(︀
𝜛

‖𝑓‖2𝜁+𝐵
2

𝑛

)︀
. (3.18)

As in the data-dependent case, the factor 2 on 𝑅(𝑓) can be reduced to any constant

𝛾 > 1.

3.3.3 Interaction of layers beyond the linear approximation

Here, we give a high level intuition on how the adaptivity is achieved in our regime

compared to NTK. In the NTK approach, for every input 𝑥, the neural net 𝑓𝑊,𝑉 (𝑥)

is approximated by its linear approximation at (𝑊 (0), 𝑉 (0)) (the initialized network),

𝑓𝑊,𝑉 (𝑥) = ⟨∇𝑊,𝑉 𝑓𝑊 (0),𝑉 (0)(𝑥), (𝑊 −𝑊 (0), 𝑉 − 𝑉 (0))⟩. The NTK approximation works

as long as (𝑊,𝑉) are close enough to their initialization that the linear approxi-

mation remains accurate and the interaction of weights between layers is negligible.

Specifically, the features 𝜑′(𝑥𝑖) behave almost linearly with respect to 𝑊 − 𝑊 (0)

as ‖𝑊 − 𝑊 (0)‖ is taken to be small and the sign pattern Sgn
(︀
(𝑊 (0) + 𝑊 ′)𝑥𝑖

)︀
is

proven not to change much compared to Sgn
(︀
𝑊 (0)𝑥𝑖

)︀
. Additionally, the NTK-type

analysis needs the following two conditions to be satisfied: (1) the sign pattern of

𝜑(0)(𝑥𝑖) +𝜑′(𝑥𝑖) with respect to 𝑉 (0) + 𝑉 ′ remains almost the same as the sign pattern

of 𝜑(0)(𝑥) with respect to 𝑉 (0), and (2) the weight changes 𝑊 ′ and 𝑉 ′ should not

69

interact, which means the “interaction” term, 1√
𝑚2
𝑎𝑇Sgn

(︁
𝑉 (0)𝜑(0)(𝑥𝑖)

)︁
𝑉 ′𝜑′(𝑥𝑖) ≈

0, should be negligible. Therefore, the non-negligible terms for the NTK are:

(1) 1√
𝑚2
𝑎𝑇Sgn

(︁
𝑉 (0)𝜑(0)(𝑥𝑖)

)︁
𝑉 (0)𝜑′(𝑥𝑖), which is almost linear in 𝑊 ′ (recall that 𝜑′(𝑥𝑖)

depends on 𝑊 ′), and (2) 1√
𝑚2
𝑎𝑇Sgn

(︁
𝑉 (0)𝜑(0)(𝑥𝑖)

)︁
𝑉 ′𝜑(0)(𝑥𝑖) which is linear in 𝑉 ′. This

approach has two important implications: (1) it convexifies the optimization (for

convex loss), as the approximation is now linear in 𝑊 ; and (2) it simplifies proving

generalization, as it works with the class of functions in the RKHS space of some

fixed kernel. However, this simplification leaves no room for the ability of the neural

network to learn intermediate feature representations.

In our regime, in contrast, we enforce the condition ∀𝑗, 𝑖 : 𝑉 ′
𝑗 ⊥ 𝜑(0)(𝑥𝑖) (⋆), which

implies the second (2) above is zero, while the interaction term is not negligible any

more and the network behaves similar to a quadratic function with respect to (𝑊 ′, 𝑉 ′)

(for fixed 𝑥𝑖). Condition (⋆) is critical both in proving the convergence of the algorithm

as well as bounding the Rademacher complexity of the class of networks with bounded

weights. Rather than working with a fixed kernel, the interaction term enables us to

use the first layer for representing the input in a suitable feature space, which can

be interpreted as picking a suitable kernel, then use the second layer to describe the

output based on those features. This is also indirectly encoded in our complexity

measure. In addition to enforcing the orthogonality condition (⋆) (in the SGD variant),

conditions for entering our regime are that the overparameterization 𝑚1,𝑚2,𝑚3 and

𝜅1, 𝜅2 are within a specific range with respect to each other. We listed these relations

in Section 3.6.3.

To illustrate the benefit of going to this more involved regime, denote the class

of neural networks with bounded Frobenius norms ‖𝑊 ′‖ ≤ 𝛾1, ‖𝑉 ′‖ ≤ 𝛾2 by 𝒢𝛾1,𝛾2
(and a bit more structure which we elaborate upon in the proofs); it turns out that

𝒢𝛾1,𝛾2 roughly includes ℋ𝐾(𝑂(𝛾1𝛾2)) for every kernel 𝐾 ∈ 𝒦, in the sense that each

𝑓 ∈ ℋ𝐾(𝑂(𝛾1𝛾2)) is well-approximated within 𝐺𝛾1,𝛾2 to arbitrarily small error on fixed

input (the error goes down with the size of the network). On the other hand, we

show that the Rademacher Complexity (RC) of 𝒢𝛾1,𝛾2 behaves similar to the RC of

the NTK class ℋ𝐻∞(𝑂(𝛾1𝛾2))! As our algorithm guarantees finding a network with

70

sufficiently small empirical risk within 𝒢𝛾1,𝛾2 , this phenomenon underlies our adaptive

generalization bounds.

Compared to previous work that provides an adaptive kernel analysis still for a

two layer model [Dou and Liang, 2020] (although their analysis is for the gradient

flow and non-algorithmic), our model requires an additional layer so it can, in a sense,

“simulate” the process of feature extraction in one layer to be used in the next layer.

3.3.4 Comparison with Kernel fitting

We compare our generalization bounds with some kernel fitting rates. Given a kernel

𝐾 with 𝐾(𝑥, 𝑥) ≤ 1 for every 𝑥 : ‖𝑥‖ ≤ 1, suppose we want to fit a function from

ℋ𝐾(𝐵
′), i.e. having 𝐾-RKHS norm bounded by 𝐵′. In the realizable setting, when

there is an underlying 𝑓 ** ∈ ℋ𝐾(𝐵
′) with zero risk, Empirical Risk Minimization

(ERM) enjoys a fast rate using the smoothness of the loss [Srebro et al., 2010]. The

Rademacher Complexity bound R(ℋ𝐾(𝐵
′)) ≤ 𝑂(𝐵

′
√
𝑛
) then implies

𝑅(𝑓ERM) ≤ �̃�(𝐵′2/𝑛) (3.19)

for the squared loss, which is minimax optimal up to log factors. To compare to the

neural network, we substitute 𝑓 ** into Theorem 2. To relate the 𝐵 in our bound to 𝐵′,

assume for simplicity of exposition that ‖𝑓‖𝜁 = ‖𝑓‖𝐾* for some 𝐾* ∈ 𝒦 (otherwise

we can use a convergent sequence). Observing that 𝐾{𝑔}(𝑥, 𝑥) ≤ 1 for every kernel

𝐾{𝑔} ∈ 𝒦, we obtain that |𝑓 **(𝑥)| ≤ ‖𝑓 **‖𝐾* = ‖𝑓 **‖𝜁 (Section 3.6.6). Combining

this fact with the realizability assumption, we can then upper bound the parameter 𝐵

in Theorem 2 by ‖𝑓 **‖𝜁 , and obtain

𝑅(𝑓𝑊PSGD,𝑉PSGD) = �̃�(‖𝑓 **‖𝜁2/𝑛). (3.20)

71

If we further take 𝐾 to be in 𝒦, then Equation (3.20) combined with ‖𝑓 **‖𝜁 ≤

‖𝑓 **‖𝐾 ≤ 𝐵′ implies:

𝑅(𝑓𝑊PSGD,𝑉PSGD) = �̃�(𝐵′2/𝑛),

that is, for every kernel 𝐾 ∈ 𝒦, our deep learning approach almost achieves the

conventional kernel bound in Equation (3.19).

Repeating the uniform risk bound stated in Theorem 1 in [Srebro et al., 2010]

for ℋ𝐾(𝐵
′) where 𝐵′ is set to all powers of two, followed by a union bound, one can

easily obtain a fast rate of

𝑅(𝑓𝐾𝑅𝐿𝑅) ≤ �̃�
(︁𝑦𝑇𝐾−1𝑦

𝑛
+
𝐵2

𝑛

)︁
, (3.21)

for the solution of KRLR in the general case (not realizable) for the squared loss. On

the other hand, for a 𝐵-bounded Lipschitz loss, we instead get a slow rate for KRLR:

𝑅(𝑓𝐾𝑅𝐿𝑅) ≤ �̃�
(︁√︂𝑦𝑇𝐾−1𝑦

𝑛
+

𝐵√
𝑛

)︁
,

where 𝐵 is an a.s. bound on |𝑦| as before. This bound is similar to Arora et al. [2019a].

Note that our data dependent generalization bound in Theorem 6 already achieves the

fast rate for KRLR in (3.21) for any 𝐾 ∈ 𝒦. Finally, in the non-realizable case, we still

have the following fast rate for ERM regarding the hypothesis class ℋ𝐾(𝐵
′) [Srebro

et al., 2010]:

𝑅(𝑓𝐸𝑅𝑀) ≤ �̃�(𝑅(𝑓 **) + 𝐵′2+𝐵2

𝑛
),

where now 𝑓 ** := argmin𝑓∈ℋ𝐾(𝐵′)𝑅(𝑓), while Theorem 2 also implies (again for every

𝐾 ∈ 𝒦):

𝑅(𝑓𝑊PSGD,𝑉PSGD) ≤ �̃�
(︀
𝑅(𝑓 **) +

‖𝑓**‖2𝜁+𝐵
2

𝑛

)︀
= �̃�

(︀
𝑅(𝑓 **) + 𝐵′2+𝐵2

𝑛

)︀
.

72

3.4 Algorithm: Projected Stochastic Gradient De-

scent

In this section, we describe our algorithm PSGD, presented as pseudocode in Figure 2,

which is roughly Stochastic Gradient Descent modified to project out a low-dimensional

random subspace from the second-layer weights. PSGD approximately runs SGD on a

smoothed version of the following loss function (𝜓1, 𝜓2 are defined in Section 3.6.2)

𝐿1(𝑊
′, 𝑉 ′) = 𝑅𝑛(𝑓𝑊 ′,𝑉 ′) + 𝜓1‖𝑊 ′‖2 + 𝜓2‖𝑉 ′‖2.

Compared to standard SGD, our algorithm makes two modifications: (1) it uses

randomized smoothing to alleviate the non-smoothness of the ReLUs, (2) it ensures

that the weights in the second layer are orthogonal to the data features 𝜑(0)(𝑥)

computed by the first layer at initialization. This helps to control layer interactions as

pointed out in Section 3.3.3. For smoothing, we add Gaussian smoothing matrices 𝑊 𝜌

and 𝑉 𝜌 to the weights with i.i.d. entries drawn from 𝒩 (0, 𝛽2
1/𝑚1) and 𝒩 (0, 𝛽2

2/𝑚2)

respectively, for 𝛽2 = 𝑂𝑝((𝜅1
√
𝑚1)

−1(𝜅2
√
𝑚2)

−2/3), 𝛽1 = 𝑂𝑝(𝑚
2
3𝜅2
√
𝑚2(𝜅1

√
𝑚1)

−1).

To simplify the exposition, 𝑂𝑝(.) is hiding the dependencies on the basic parameters

𝐵, 𝑛, 1/𝜆0 and log factors. Our convergence proof uses the loss with respect to this

smoothed network.

For the projection, let Φ⊥ ⊂ R𝑚2×𝑚3 be the subspace of weights of the second layer

whose rows are orthogonal to the first-layer data representations 𝜑(0)(𝑥𝑖)’s ∀𝑖 ∈ [𝑛] at

initialization:

𝑉 ′ ∈ Φ⊥ ↔ ∀𝑗 ∈ [𝑚2], ∀𝑖 ∈ [𝑛] : 𝑉 ′
𝑗,𝜑

(0)(𝑥𝑖) = 0. (3.22)

In summary, at point (𝑊 ′, 𝑉 ′), the algorithm samples a random (𝑥𝑖, 𝑦𝑖) from the data,

as well as smoothing matrices 𝑊 𝜌,1, 𝑉 𝜌,1,𝑊 𝜌,2, 𝑉 𝜌,2. It then computes an unbiased

estimate for the gradient (∇̂𝑊 , ∇̂𝑉), adds additional normalized Gaussian noise

73

matrices Ξ1,Ξ2 and moves in this direction with step size 𝜂 = 1/poly(𝑛,𝐵∨1/𝐵, 1/𝜆0):

(𝑊 ′, 𝑉 ′)← (𝑊 ′, 𝑉 ′) + 𝜂
(︁
∇̂𝑊 + Ξ1/(

√
𝑚1‖Ξ1‖), ProjΦ⊥(∇̂𝑉 + Ξ2/‖Ξ2‖)

)︁
. (3.23)

Parameters. Our results apply to the overparameterized regime, when the size of

the network, i.e. parameters 𝑚1,𝑚2,𝑚3 are polynomially large in 𝑛,𝐵 ∨ 1/𝐵, 1/𝜆0.

This guarantees that the network has suitable function representation capacity, and

PSGD is able to find a good local direction at every iteration. The regularization

coefficients 𝜓1, 𝜓2 can be set with respect to any candidate (𝑓 *, 𝐺) for our complexity

measure (3.9). In Section 3.6.2, we introduce a simple doubling trick that handles

the case when we do not have access to an optimal candidate solution. With such

an 𝑓 *, as we describe in Remark 1, define 𝜈 := max{𝑅𝑛(𝑓
*)/2, 𝐵2/𝑛}, and set

𝜓1 = 𝜈/4, 𝜓2 = 𝜈/(4𝜁(𝑓 *, 𝐺)), where 𝑓 * is the projection of 𝑓 * along the span of

eigenvectors of 𝐴 with eigenvalue as large as Ω(1/𝑛2). We list the suitable regime for

overparameterization in Section 3.6.3.

Algorithm 2 PSGD(Projected Stochastic Gradient Descent)
Input: network architecture 𝑚1,𝑚2,𝑚3, initialization parameters 𝜅1, 𝜅2, smoothing

parameters 𝛽1, 𝛽2, training set (𝑥𝑖, 𝑦𝑖)
𝑛
𝑖=1, label parameter 𝐵, (𝑓 *, 𝐺) from the

complexity measure
1: Gaussian initialization 𝑊 (0)

𝑗,𝑘 ← 𝒩 (0, 𝜅1), 𝑉
(0)
𝑗,𝑘 ← 𝒩 (0, 𝜅2)

2: Define parameters 𝜓1, 𝜓2, 𝜈, 𝜂, subspace Φ⊥, and objective 𝐿1 as described in
Section 3.4

3: while 𝐿1(𝑊
′, 𝑉 ′) > 𝑅𝑛(𝑓

*) + 2𝜈 do
4: Gaussian matrices 𝑊 𝜌,1

𝑗,𝑘 ,𝑊
𝜌,2
𝑗,𝑘 ← 𝒩 (0,

𝛽2
1

𝑚1
), 𝑉 𝜌,1

𝑗,𝑘 , 𝑉
𝜌,2
𝑗,𝑘 ← 𝑁(0,

𝛽2
2

𝑚2
)

5: Sample data (𝑥𝑖, 𝑦𝑖) uniformly at random
6: Compute gradient estimates

7:

{︃
∇̂𝑊 = ℓ̇(𝑓𝑊 ′+𝑊 𝜌,1,𝑉 ′+𝑉 𝜌,1(𝑥𝑖), 𝑦𝑖)∇𝑊𝑓𝑊 ′+𝑊 𝜌,2,𝑉 ′+𝑉 𝜌,2(𝑥𝑖) + 2𝜓1𝑊

′,

∇̂𝑉 = ℓ̇(𝑓𝑊 ′+𝑊 𝜌,1,𝑉 ′+𝑉 𝜌,1(𝑥𝑖), 𝑦𝑖)∇𝑉 𝑓𝑊 ′+𝑊 𝜌,2,𝑉 ′+𝑉 𝜌,2(𝑥𝑖) + 2𝜓2𝑉
′

8: Move as (𝑊 ′, 𝑉 ′) ← (𝑊 ′, 𝑉 ′) + 𝜂
(︁
∇̂𝑊 + Ξ1/(

√
𝑚1‖Ξ1‖), ProjΦ⊥(∇̂𝑉 +

Ξ2/‖Ξ2‖)
)︁

9: Return (𝑊 ′, 𝑉 ′)

74

3.5 High Level Idea of the PSGD Analysis

The reason for considering a Frobenius norm regularizer in PSGD is that we want the

weights to remain close to their initialization so the final network is in the class 𝒢𝛾1,𝛾2
for suitably chosen 𝛾1, 𝛾2; while still reducing the nonconvex empirical loss 𝑅𝑛(𝑓𝑊 ′,𝑉 ′).

We prove convergence for PSGD by building on ideas from Allen-Zhu et al. [2018],

with a framework based on the classic result that SGD can escape saddle points for

nonconvex functions. Compared to them, we take a different approach driven by our

purely data-dependent complexity measure. We augment this by a careful Rademacher

complexity analysis of the class 𝒢𝛾1,𝛾2 in Section 3.6.11.

Construction of a good Network To study the loss landscape, similar to [Allen-

Zhu et al., 2018], we show the existence of a good local update at reasonable points

(𝑊 ′, 𝑉 ′), using the ideal pair (𝑊 *, 𝑉 *) that we carefully construct from our complexity

measure. Here, we sketch our proof for constructing (𝑊 *, 𝑉 *). Let (𝑊 ′, 𝑉 ′) be the

current weights of the algorithm. Fix a sample 𝑖 ∈ [𝑛]. In Section 3.6.12, we use 𝐺

to construct 𝑊 * for the first layer weights with decomposition 𝑊 * =
∑︀𝑚3

𝑘=1𝑊
*
𝑘 and

𝑂(1) bounded norm, such that 𝜑*(𝑥𝑖)𝑘 := 1√
𝑚1
𝑊 𝑠Sgn

(︁
(𝑊 (0) +𝑊 ′)𝑥𝑖

)︁
𝑊 *𝑥𝑖. This

decomposition ensures for every 𝑘, 𝑘′ ∈ [𝑚3], negating 𝑊 *
𝑘 only negates 𝜑*(𝑥𝑖)𝑘′ when

𝑘′ = 𝑘 and has no effect on 𝜑*(𝑥𝑖)𝑘′ for 𝑘′ ̸= 𝑘. This way, we can easily generate any

arbitrary sign flip of the entries of 𝜑*(𝑥𝑖). We use this property to generate a suitable

random descent direction.

Next, we construct a suitable weight matrix 𝑉 * for the second layer which maps

the features 𝜑*(𝑥𝑖) into 𝑓 *
𝑖 (recall the definition of the complexity measure). The

key here is that we consider a regime where the norm of 𝜑(0)(𝑥𝑖) is typically larger

than that of 𝜑′(𝑥𝑖) and 𝜑*(𝑥𝑖), so it is very likely that the sign pattern in the second

layer is determined by 𝜑(0)(𝑥𝑖) in most rows. In such a scenario, the condition

𝑉 ′
𝑗 ⊥ 𝜑(0)(𝑥𝑖) becomes vital as the interaction of 𝑉 ′ with 𝜑(0)(𝑥𝑖) is problematic for

both generalization and optimization. From the standpoint of generalization, without

excluding this interaction, one can exploit the large size of 𝜑(0)(𝑥𝑖) and build a network

within the class 𝒢𝛾1,𝛾2 corresponding to a complex function that overfits the data.

75

Indeed, we utilize the large magnitude of 𝜑(0) and its orthogonality to the rows of 𝑉 ′

in the RC bound. On the other hand, since the weights of the first layer does not

affect 𝜑(0)(𝑥𝑖), the interaction of 𝑉 ′ and 𝜑(0)(𝑥𝑖) is problematic for the algorithm’s

convergence, particularly in proving the existence of a local descent direction. This is

the rationale behind our orthogonality constraint (3.22).

Finally, the 𝜑*(𝑥𝑖)’s, the above control on the signs, and the fact that ⟨𝜑(0)(𝑥𝑖1), 𝜑
(0)(𝑥𝑖2)⟩

concentrates around 𝑚3E𝑤∼𝑁(0,𝜅1𝐼)[𝜎(𝑤
𝑇𝑥𝑖1)𝜎(𝑤

𝑇𝑥𝑖2)] which recovers the structure

of the kernel 𝐾∞ (Section 3.2), give rise to the kernel 𝐺⊙𝐾∞ in the second layer.

Using this structure, we construct 𝑉 * that maps 𝜑*(𝑥𝑖)’s to 𝑓 *
𝑖 ’s, which has additional

good properties, including 𝑂(𝑓 *𝑇 (𝐺⊙𝐾∞)−1𝑓 *)-bounded norm, and rows that are

orthogonal to 𝜑(0)(𝑥𝑖)’s. For more details, see Section 3.6.12.

Nonexistence of Bad Saddle Points Next, we want to exploit (𝑊 *, 𝑉 *) to prove

the existence of a good direction along which the objective decreases locally. Moving

along (𝑊 *, 𝑉 *) is the first idea, which fails as the cross terms created between 𝑊 ′, 𝑉 *

and 𝑉 ′,𝑊 * cannot be bounded effectively. Instead, we randomly perturb 𝑊 * and

𝑉 * in a coupled way and prove a reduction in expectation. We elaborate more on

this suitable random direction. Multiplying random signs Σ𝑘 onto 𝑊 *
𝑘 , we define

the sum 𝑊 *
Σ =

∑︀𝑚3

𝑘=1Σ𝑘𝑊
*
𝑘 . We also multiply the same signs to the columns of 𝑉 *

and project it back onto Φ⊥ to obtain 𝑉 *
Σ . Then, we move in the random direction

(
√
𝜂𝑊 *

Σ − 𝜂𝑊/2,
√
𝜂𝑉 *

Σ − 𝜂𝑉/2); this update creates additional cross terms in the

objective that we must bound to prove a local reduction argument. A key point here

is that we prove with high probability the norm of the weights is always bounded.

This norm restriction enables us to substitute terms that we do not have control over

by their worst-case supremum. We refer to Section 3.6.13 for similar techniques.

Convergence of PSGD Finally, we use the fact that SGD escapes good saddle

points [Ge et al., 2015b]. For proving the existence of a good random direction to

escape saddle points above, we use that the norm of weights is uniformly bounded

along all iterations; this bound, in fact, is looser than the bound that we show for

76

the final weights of the network. Yet, this additional restriction cannot be addressed

by the classical nonconvex theory of SGD. Consequently, we refine and adapt the

proof of [Ge et al., 2015b] to incorporate this additional constraint. At a high level,

Ge et al. [2015b] work with a supermartingale based on the loss value. To guarantee

the additional norm restriction, it is initially tempting to apply Azuma-Hoeffding

concentration to bound the upward deviations of this process. However, this fails

as the process has a two-fold behavior, depending on how large the gradient is. At

the core of our refinement proof here, we instead directly bound the MGF of the

martingale using Doob’s maximal inequality. We refer to Section 3.6.16 for more

details.

77

3.6 Detailed proofs

The following contains different main sections of the proof. Lower-level lemmas may

be found in Section 3.7.

3.6.1 Stronger Generalization bounds for polynomials 79

3.6.2 The Doubling Trick . 81

3.6.3 Amount of Overparameterization 84

3.6.4 PSD property of 𝐾∞ . 84

3.6.5 Complexity upper bound . 85

3.6.6 Complexity measure and the 𝜁-norm 86

3.6.7 Core Generalization Result . 88

3.6.8 Structure of the proof, setting 𝑚3, and further definitions . . . 92

3.6.9 Proof of Theorem 2 . 96

3.6.10 Optimization . 98

3.6.11 Rademacher Complexity . 103

3.6.12 Constructing 𝑊 *, 𝑉 * . 113

3.6.13 Existence of a good direction 138

3.6.14 Existence of a good direction Helper Lemmas 146

3.6.15 Bounding the worst-case Senario 165

3.6.16 Convergence . 179

3.6.17 Process from a higher view: definition of the (𝑋) sequence . . 188

3.6.18 Bounding the MGF of 𝑋𝑖’s . 192

3.6.19 Proof of Theorem 7 . 195

3.6.20 Gaussian Smoothing . 195

3.6.21 Basic Tools . 206

78

3.6.1 Stronger Generalization bounds for polynomials

In this section, we prove an explicit generalization bound for functions represented

as a polynomial sum. Note that the bounds in Arora et al. [2019a] for polynomials

assume the monomials with degree larger than one to have even powers, while here

we do not impose this restriction. In addition, different from Arora et al. [2019a], our

bounds remain meaningful in the noisy case (recall our Theorem 2).

More specifically, we bound the 𝜁 norm of such functions. Consider the target

function 𝑠 with the following power series formula:

𝑦 = 𝑠(𝑥) =
∞∑︁
𝑝=1

𝑎𝑝(𝑤
𝑇
𝑝 𝑥)

𝑝, (3.24)

where 𝑎𝑝 ∈ R and 𝑤𝑝 ∈ R𝑑. We can write

𝑠(𝑥) = 𝑔1(𝑥) +
𝑑∑︁

𝑘=1

𝑥𝑘𝑔
𝑘
2(𝑥), (3.25)

where 𝑥𝑘 denotes the 𝑘th entry of vector 𝑥 here and

𝑔1(𝑥) =
∑︁

𝑝∈𝐴1:={𝑝=1 or 𝑝 even}

𝑎𝑝(𝑤
𝑇
𝑝 𝑥)

𝑝,

and for all 𝑘 ∈ [𝑑]:

𝑔𝑘2(𝑥) =
∑︁

𝑝∈𝐴2:={𝑝>2, 𝑝 odd}

𝑤𝑝𝑘𝑎𝑝(𝑤
𝑇
𝑝 𝑥)

𝑝−1.

Then, using the Taylor series of 𝑥(1
4
+ arcsin(𝑥)

2𝜋
) =

∑︀∞
𝑝=1 𝛾𝑝𝑥

𝑝 for |𝑥| ≤ 1, the RKHS

ℋ(𝐻∞) of the NTK can be identified by square-summable sequences of reals (𝑎𝑝′)
∞
𝑝′=1

with dot product

⟨(𝑎𝑝′)∞𝑝′=1, (𝑏𝑝′)
∞
𝑝′=1⟩ =

∞∑︁
𝑝′=1

𝛾𝜆(𝑝′)𝑎𝑝′𝑏𝑝′ ,

where 𝜆(𝑝′) : Z≥0 → Z≥0 such that it maps zero to zero, the first 𝑑 positive integers

are mapped to one, the next 𝑑2 ones are mapped to 2, etc. Moreover, the RKHS

79

mapping Ψ : R𝑑 → ℋ(𝐻∞) from the Euclidean space is:

Ψ(𝑥) = ‖𝑥‖
(︁
𝑥′1, ..., 𝑥

′
𝑑, (𝑥

′
𝑘1
𝑥′𝑘2)𝑘1,𝑘2∈[𝑑], . . . , (𝑥

′
𝑘1
𝑥′𝑘2 . . . 𝑥

′
𝑘𝑝)𝑘1,...,𝑘𝑝∈[𝑑], . . .

)︁
,

where 𝑥′ = 𝑥/‖𝑥‖ and in the notation above we are presenting a sequence of sequences,

by which we mean the inner sequences simply unfold. Using this identification, one

can see using the linear representations of 𝑔1, 𝑔𝑘2 in ℋ:

‖𝑔1‖2𝐻∞ =
∑︁
𝑝∈𝐴1

𝛾𝑝𝑎
2
𝑝‖𝑤𝑝‖

2𝑝
2 , (3.26)

‖𝑔𝑘2‖2𝐻∞ =
∑︁
𝑝∈𝐴2

𝛾𝑝𝑤𝑝
2
𝑘𝑎

2
𝑝‖𝑤𝑝‖

2(𝑝−1)
2 . (3.27)

Summing above and noting the linear representation of 𝑔:

‖𝑔1‖2𝐻∞ +
𝑑∑︁

𝑘=1

‖𝑔𝑘2‖2𝐻∞ =
∑︁
𝑝∈𝐴1

𝛾𝑝𝑎
2
𝑝‖𝑤𝑝‖

2𝑝
2 +

∑︁
𝑝∈𝐴2

𝛾𝑝𝑎
2
𝑝‖𝑤𝑝‖

2𝑝
2 =

∞∑︁
𝑝=1

𝛾𝑝𝑎
2
𝑝‖𝑤𝑝‖

2𝑝
2 = ‖𝑔‖2𝐻∞ .

(3.28)

Now for {𝑔} := {𝑔′𝑘}𝑑+1
𝑘=1 := {𝑔1}∪{𝑔𝑘2}𝑑𝑘=1, we consider the kernel 𝐾{𝑔}. Expanding the

Tailor series of 𝐹2(2𝐹3)(𝑥) =
∑︀∞

𝑝=0 𝜇𝑝𝑥
𝑝, we find the identification (ℎ𝑘𝑝′)𝑘∈[𝑑+1],𝑝′=0,...,∞

with dot product
∞∑︁
𝑝′=0

𝜇𝜆(𝑝′)

𝑑+1∑︁
𝑘=1

ℎ𝑘𝑝′𝑞
𝑘
𝑝′ ,

with RKHS map

Ψ2(𝑥) =
(︁
𝑔′1(𝑥), . . . , 𝑔

′
𝑑+1(𝑥), 𝑥

′
1𝑔

′
1(𝑥), . . . , 𝑥

′
1𝑔

′
𝑑+1(𝑥), . . . , 𝑥

′
𝑑𝑔

′
1(𝑥), . . . ,

𝑥′𝑑𝑔
′
𝑑+1(𝑥), (𝑥

′
𝑘1
𝑥′𝑘2𝑔

′
𝑘(𝑥))𝑘1,𝑘2∈[𝑑],𝑘∈[𝑑+1], . . . , (𝑥

′
𝑘1
𝑥′𝑘2 . . . 𝑥

′
𝑘𝑝𝑔

′
𝑘(𝑥))𝑘1,...,𝑘𝑝∈[𝑑],𝑘∈[𝑑+1], . . .

)︁
.

Now, we compute the norm of function 𝑠 with respect to 𝐾{𝑔}, combining the above

representation and dot product with Equation (3.25) and the fact that we work with

80

unit norm 𝑥, so 𝑥′ = 𝑥:

‖𝑠‖2𝐾{𝑔}
= 𝜇0 + (𝑑+ 1)𝜇1. (3.29)

Plugging the above and Equation (3.28) into the definition of ‖.‖𝜁 in (3.16), we

conclude

‖𝑠‖2𝜁 ≤ ‖𝑠‖2𝐾{𝑔}
(‖𝑔1‖2𝐻∞ +

𝑑∑︁
𝑘=1

‖𝑔𝑘2‖2𝐻∞) ≤ (𝜇0 + (𝑑+ 1)𝜇1)
∞∑︁
𝑝=1

𝛾𝑝𝑎
2
𝑝‖𝑤𝑝‖

2𝑝
2 . (3.30)

Note that if the odd exponents (except possibly one) in the definition of 𝑠 in (3.24)

are zero, then we could consider only the function 𝑔1 and kernel 𝐾𝑔1 , which would

have implied a bound of 𝜇0

∑︀∞
𝑝=1 𝛾𝑝𝑎

2
𝑝‖𝑤𝑝‖

2𝑝
2 .

3.6.2 The Doubling Trick

For the SGD optimization, we set the regularization coefficients in the loss 𝐿1 as

𝜓1 = 𝜈/4, 𝜓2 = 𝜈/(4𝜁(𝑓 *, 𝐺)), (3.31)

with 𝜈 := max{𝑅𝑛(𝑓
*)/2, 𝐵2/𝑛}. This assumes we know the 𝑓 * and 𝐺 that minimize

the adaptation within the complexity measure (3.12). To achieve generalization bound

in Theorem 6, here, we explain how to use a simple doubling trick to get over the fact

that we might not know these optimal solutions 𝑓 * and 𝐺. The proof here is based on

the generalization result in Theorem 3.

Theorem 1. Without explicitly knowing the exact value of the complexity measure,

i.e., the optimal solution of Equation (3.12), one can still achieve the generalization

bound in Theorem 6.

Proof of Theorem 1

Our core generalization result is in Theorem 3. The proof of Theorem 1 is sim-

ply adding a doubling trick on top of the argument of Theorem 3. We also prove

81

Theorem 2 as a consequence of Theorem 1 in Section 2. In the rest of the proofs,

for simplicity, we refer to (𝑊PSGD, 𝑉PSGD) by (𝑊 ′, 𝑉 ′). Let 𝑓 **, 𝐺* be the optimal

solution to (3.10). With a simple rescaling of 𝐺*, we can assume ⟨𝐻∞−1, 𝐺*⟩ = 1.

(Note that the complexity does not change by such rescaling). Now one can exploit

the condition ‖𝑦𝑖‖∞ ≤ 𝐵, and consider the setting 𝑓 * = 0 to get the following trivial

upper bound on the complexity measure:

ℑ((𝑥𝑖), (𝑦𝑖)) ≤ 2𝑛𝐵2.

Therefore,

2𝑛𝑅𝑛(𝑓
**) + 𝑓 **𝐴−1𝑓 **(𝑐′𝜛) ≤ 2𝑛𝐵2. (3.32)

Using Equation (3.32) and the optimality of (𝑓 **, 𝐺*):

𝑅𝑛(𝑓
**) ≤ 𝐵2,

𝜁 = 𝜁(𝑓 **, 𝐺*) ≤ 2𝑛𝐵2. (3.33)

Combining the first equation above with the definition of 𝜈 in Equation (3.41), we

get

𝐵2/𝑛 ≤ 𝜈 ≤ 𝐵2. (3.34)

To initialize 𝜓1 and 𝜓2, we use Equations (3.31) for any 𝑓 * and 𝐺, and as a result

we get a generalization bound as in Equation (3.45). However, to achieve the best

possible rate characterized by our complexity measure in Theorem 6 without explicitly

computing the answer of (3.12), we use a simple doubling trick; for every pair (𝜁 ′, 𝜈 ′)

such that 𝜁 ′ is a power of 2 between 𝐵2 and 2𝑛𝐵2, and 𝜈 ′ is a power of two between

𝐵2/𝑛 and 𝐵2, we initialize 𝜓1, 𝜓2 as in Equation (3.31) and run the algorithm, then

return the network which minimizes the empirical loss after the required polynomial

number of steps. This is to make sure that the value of the loss will go at some point

82

below the PSGDstopping threshold on the loss, since the stopping threshold depends

on 𝑅𝑛(𝑓
**) which we are not aware of. Another way to resolve this issue, to have an

early stop when the value of the loss pass the threshold is to again run a doubling

trick on the value of 𝑅𝑛(𝑓
**) for every fixed value of 𝜈 and 𝜁, and run PSGD with stop

threshold 𝑅𝑛(𝑓
**) + 2𝜈 (here, 𝑅𝑛(𝑓

**) is set using the doubling trick variable). This

approach works because our final upper bound on the risk ignores the constants (note

that the doubling trick introduce additional constants). Moreover, since 𝜈 ≥ 𝐵2/𝑛 by

definition, we don’t need to run 𝑅𝑛(𝑓
**) over values smaller than Ω(𝐵2/𝑛), since it

does not change the order of 𝑅𝑛(𝑓
**)+2𝜈. Particularly, combining this with the upper

bound on 𝑅𝑛(𝑓
**), we only need to run the doubling trick for 𝑅𝑛(𝑓

**) in the interval

(Ω(𝐵2/𝑛), 𝑂(𝐵2)). Now let 𝜈 ′ be the power of 2 within 𝜈(𝐺*, 𝑓 **)/2 ≤ 𝜈 ′ < 𝜈(𝐺*, 𝑓 **).

If we are in the case

𝑓 **𝑇𝐴−1𝑓 ** < 𝐵2, (3.35)

then for 𝜁 ′ equal to the smallest power of two larger than 𝐵2, when we run PSGD with

pair (𝜈 ′, 𝜁 ′), by Theorem 3:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 2𝑅𝑛(𝑓
*) + 𝑐′′𝜛

2𝐵2 +𝐵2

𝑛
≤ ℑ((𝑥𝑖)

𝑛
𝑖=1, (𝑦𝑖)

𝑛
𝑖=1)

𝑛
+ 𝑐′

𝐵2𝜛

𝑛
. (3.36)

Because we return the minimum upper bound on the risk (the tighter lower bound

of Equation (3.44)) among all such powers of two, we certainly achieve the above

rate in (3.36). Otherwise, if 𝑓 **𝑇𝐴−1𝑓 ** ≥ 𝐵2, let 𝜁 ′ be the power of two within

𝑓 *𝑇𝐴−1𝑓 * ≤ 𝜁 ′ ≤ 2𝑓 *𝑇𝐴−1𝑓 *, then again it is easy to check that conditions of

Theorem 3 are satisfied, hence we get the following generalization bound:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 2𝑅𝑛(𝑓
**) + 𝑐′′𝜛

(𝜁 ′ +𝐵2)

𝑛
≤ 2𝑅𝑛(𝑓

**) + 𝑐′′𝜛
2𝜁(𝑓 **, 𝐺*) +𝐵2

𝑛
(3.37)

≤ ℑ((𝑥𝑖)
𝑛
𝑖=1, (𝑦𝑖)

𝑛
𝑖=1)

𝑛
+ 𝑐′

𝐵2𝜛

𝑛
, (3.38)

which proves the bound of Theorem 6.

83

3.6.3 Amount of Overparameterization

In this section, to provide high-level insight, we indicate the right order of magnitude

that our overparameterization should be in, with respect to one another. Note that

the exact coefficients in these inequalities would depend on the basic parameters

𝐵, 1/𝜆0, 𝑛, which we have avoided here for sake of simplicity. We refer the reader to

our main proof (mostly Sections 3.6.12, 3.6.13) for more details.

𝜅1𝜅2𝑚3 << 1,

𝜅2
√
𝑚2 >> 1,

𝜅1
√
𝑚3 >> 𝜅2

√
𝑚2,

𝑚1 >> 𝑚4
3,

𝜅1
√
𝑚1 >> 𝑚

3/2
3 ,

𝜅2 << 1/
√
𝑚3

√
𝑚3𝜅2 << 1/

√
𝑚3

√
𝑚2 >> 𝑚

3/2
3 𝜅1𝜅2

𝑚3
3(𝜅2𝑚2) << 𝜅1𝑚1

𝑚1,𝑚2,𝑚3, 1/𝜅1, 1/𝜅2 = poly(𝑛,𝐵 ∨ 1/𝐵, 1/𝜆0).

In addition, we set the smoothing parameters as

𝛽2 := Θ𝑝

(︁
(𝜅1
√
𝑚3)

−1(
√
𝑚2𝜅2)

− 2
3

)︁
,

𝛽1 := Θ𝑝

(︁
𝑚3

√
𝑚3/(𝜅1

√
𝑚1)

)︁
,

where Θ𝑝 only shows polynomial dependencies on the overparameterization.

3.6.4 PSD property of 𝐾∞

The Schur product theorem states that for PSD matrices 𝐴 and 𝐵, 𝐴⊙𝐵 is also PSD.

Now given an analytic function 𝐹 whose Tailor series coefficients are all nonnegative,

84

Suppose we apply 𝐹 on some PSD matrix 𝐴 entrywise, denoted by 𝐹 (𝐴), under the

condition that the entries of 𝐴 are in the radius of convergence of 𝐹 , then using Schur

product theorem, it is straightforward that 𝐹 (𝐴) is also PSD.

Using the above property, one can then check that the Tailor series of the defined

functions 𝐹2 and 𝐹3 are nonnegative, hence, the application of the function 𝐹2(2𝐹3(𝑥))

on the gram matrix of (𝑥𝑖)𝑛𝑖=1 is a PSD matrix, (note that
⃒⃒⃒
⟨𝑥𝑖, 𝑥𝑗⟩

⃒⃒⃒
≤ 1 is in the

convergence radius of 𝐹2(2𝐹3(𝑥)).) thus 𝐾∞ is indeed a kernel.

3.6.5 Complexity upper bound

First we mention a simple fact that hadamard product respects matrix orderings.

Given PSD matrices 𝐴,𝐵,𝐶 such that 𝐴 ⪯ 𝐵, the fact that 𝐴 ⊙ 𝐶 ⪯ 𝐵 ⊙ 𝐶 is an

easy consequence of the Schur Product Theorem; indeed, 𝐵 − 𝐴 is PSD by definition,

so (𝐵 − 𝐴)⊙ 𝐶 = 𝐵 ⊙ 𝐶 − 𝐴⊙ 𝐶 is also PSD.

Next, it is easy to check that the Tailor series of arcsin(𝑥) has all nonnegative

coefficients. Therefore, for a PSD matrix 𝑋, as we discussed in Section 3.6.4, ap-

plying arcsin entrywise on 𝑋, namely arcsin𝑋, is also PSD. Setting 𝑋 equal to the

entrywise application of 2𝐹3 to the gram matrix of datapoints (𝑥𝑖)
𝑛
𝑖=1, we realize the

matrix arcsin
(︁
2𝐹3

(︁(︁
⟨𝑥𝑖, 𝑥𝑗⟩

)︁
1≤𝑖,𝑗≤𝑛

)︁)︁
is also PSD. Noting the definition of 𝐾∞ in

Equation (3.8), we conclude that for the data kernel matrix 𝐾∞ we have

𝐾∞ ≥ 1

4
11

𝑇 ,

where 1 is the all ones 𝑛-dimensional vector.

Combining the two mentioned facts, we can lower bound the matrix 𝐾 = 𝐾∞ ⊙𝐺

for any matrix 𝐺 as

𝐾 = 𝐾∞ ⊙𝐺 ≥ 1

4
11

𝑇 ⊙𝐺 =
1

4
𝐺.

Substituting the rank one matrix 𝑓 *𝑓 *𝑇 for the 𝑛-dimensional vector 𝑓 * in Equa-

tion (3.13):

85

𝐾−1

{𝑓*/‖𝑓*‖} = 𝐾∞ ⊙ 𝑓 *𝑓 *𝑇/‖𝑓 *‖2 ≥ 1

4
𝑓 *𝑓 *𝑇/‖𝑓 *‖2. (3.39)

The inequality used in (3.13) then follows from Equation (3.39).

3.6.6 Complexity measure and the 𝜁-norm

This is a brief section regarding some basic properties of ℑ and ‖.‖𝜁 .

First, note that the two versions of the complexity measure in Equations (3.10)

and (3.11) are equivalent, as for any finite set of functions {𝑔}, we can define the

gram matrix with respect to the feature vectors of these functions on data, and for an

arbitrary nonzero PSD 𝐺 we can consider a Cholesky factorization for 𝐺 as 𝐺 = �̄�𝑇 �̄�,

then define the functions {𝑔𝑘} as the minimum-NTK norm functions which map the

input to the features corresponding to �̄�. This observation further implies we can

suppose the factor matrix �̄� is in R𝑛×𝑛, and there is a set of at most 𝑛 functions

{𝑔𝑘}𝑛𝑘=1 which corresponds to this 𝐺.

Next, we show that for an arbitrary function 𝑓 , its sup norm over the unit ball is

bounded by its 𝜁 norm:

sup
‖𝑥‖=1

|𝑓(𝑥)| ≤ ‖𝑓‖𝜁 . (3.40)

Note that for a kernel 𝐾 which satisfies 𝐾(𝑥, 𝑥) ≤ 1, using Cauchy Schwarz we simply

obtain

𝑓(𝑥) ≤ ‖𝑓‖𝐾
√︀
𝐾(𝑥, 𝑥) ≤ ‖𝑓‖𝐾 ,

where recall that ‖.‖𝐾 is the norm corresponding to the RKHS space of 𝐾. Hence, to

show (3.40), it suffice to show that for all kernels 𝐾 ∈ 𝒦 and unit norm 𝑥 we have

𝐾(𝑥, 𝑥) ≤ 1. To see this fact, note that the norm of each 𝑥 ∈ R𝑑 in the NTK-space is

𝐻∞(𝑥, 𝑥) = 1
2
. Therefore, for each function 𝑔 with bounded-NTK norm, again using

86

Cauchy Schwarz:

|𝑔(𝑥)| ≤ 1

2
‖𝑔‖𝐻∞ .

As a result, for a family of functions {𝑔} with
∑︀

𝑔∈{𝑔} ‖𝑔‖2𝐻∞ ≤ 1, we have on every

unit norm 𝑥:

∑︁
𝑔∈{𝑔}

𝑔(𝑥)2 ≤ 1.

On the other hand, it is easy to check that for every unit norm 𝑥, we have𝐾∞(𝑥, 𝑥) ≤ 1
2
,

so for every such {𝑔}, we have by definition

𝐾{𝑔}(𝑥) ≤ 1,

which completes the proof of Equation (3.40).

87

3.6.7 Core Generalization Result

In this section, we prove our core generalization result for the trained network,

Theorem 3, which underlies our generalization bounds in Theorems 6 and 2. Recall

that in the rest of the proofs, we refer to the solution (𝑊PSGD, 𝑉PSGD) returned by

PSGD simply by (𝑊 ′, 𝑉 ′).

Theorem 3. Suppose we have a good candidate pair (𝑓 *, 𝐺) regarding our complexity

measure in (3.10) that satisfies ⟨𝐻∞−1, 𝐺⟩ ≤ 1, 𝑓 *𝑇𝐴−1𝑓 * ≤ 𝜁 (recall 𝐴 = 𝐺 ⊙

𝐻∞), and that 𝑓 * has zero projection onto the directions of eigenvectors of 𝐴 whose

eigenvalues are smaller than 𝑂(1/𝑛2) (the last condition can be relaxed, see the next

remark). Then, for

𝜈 = max{𝑅𝑛(𝑓
*)/4, 𝐵2/𝑛}, (3.41)

if we are given 𝜈/2 ≤ 𝜈 ′ ≤ 𝜈, and we set

𝜓1 =
𝜈 ′

4
, (3.42)

𝜓2 =
𝜈 ′

4𝜁
, (3.43)

then for the solution (𝑊 ′, 𝑉 ′) returned by PSGD we have the following generalization

bound:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 5

4
𝑅𝑛(𝑓𝑊 ′,𝑉 ′) + 𝑐′′′𝜛

(𝜁 +𝐵2)

𝑛
(3.44)

≤ 5

3
𝑅𝑛(𝑓

*) + 𝑐′′𝜛
(𝜁 +𝐵2)

𝑛
, (3.45)

for constants 𝑐′′, 𝑐′′′ and log factor 𝜛 = log(𝑛)3 + log(1/𝜆0).

Remark 1. Given a pair (𝑓 *, 𝐺) satisfying ⟨𝐻∞−1, 𝐺⟩ ≤ 1, 𝑓 *𝑇𝐴−1𝑓 * ≤ 𝜁, one can

project out the directions that are along the eigenvectors of 𝐴 with eigenvalues smaller

than Ω(1/𝑛2) to obtain 𝑓 *, then use the pair (𝑓 *, 𝐺) in Theorem 3. This way, the third

condition mentioned in Theorem 3 also becomes true. As we show in Lemma 51, by

88

switching 𝑓 * to 𝑓 * the quantity 𝑓 *𝑇𝐴−1𝑓 * does not increase, and the quantity 𝑅𝑛(𝑓
*)

is multiplied by a constant 𝑐 > 1 arbitrarily close to one, then adds up with 𝑂(𝐵2/𝑛).

This means that the bounds in Theorem 3 for the pair (𝑓 *, 𝐺) translates into similar

bounds for (𝑓 *, 𝐺) albeit with a bit worse contants. It is straightforward to see that

with small enough choice of 𝑐 and careful AM-GM inequality that we apply inthe proof

of Theorem 3, one can end up with the same constants regarding the pair (𝑓 *, 𝐺) as

declared in Theorem 3. For a more careful discussion on this, we refer the reader to

the proof of Lemma 19.

Proof of Theorem 3

Almost all of our proofs in the rest are in the aim of proving Theorem 3. Cru-

cially, to prove this Theorem, we need to establish two big results:

1. We need to show that the final network has small training loss, and is within

the class 𝒢𝛾1,𝛾2 for some suitable 𝛾1, 𝛾2. This is handled by Theorem 4 in

Section 3.6.10. We define the class 𝒢𝛾1,𝛾2 roughly as the class of networks

with norm bounds ‖𝑊 − 𝑊 (0)‖ ≤ 𝛾1, ‖𝑉 − 𝑉 (0)‖ ≤ 𝛾2 where the rows of

𝑉 − 𝑉 (0) are orthogonal to the subspace Φ, plus an additional structure defined

in Section 3.6.11. This task, on its own, has three main steps in our proof:

(a) we construct a “good” underlying network, Section 3.6.12

(b) we find a “good” random direction and study the landscape of the objective,

Section 3.6.13

(c) we prove the convergence, Section 3.6.16

2. The Rademacher Complexity of the class 𝒢𝛾1,𝛾2 needs to be suitably bounded.

This is handled by Theorem 5 in Section 3.6.11.

With access to these results, here we show how Theorem 3 follows by a simple

application of the generalization bound in [Srebro et al., 2010]. Specifically, for fixed

constants 𝑧1, 𝑧3 and every integer 𝑖 ≥ 0, we use Theorem 1 of [Srebro et al., 2010]

for the class 𝒢𝑧1,𝛾𝑖 , 𝛾𝑖 = 2𝑖 × 𝐵/𝑧3 with confidence probability 1 − 2−𝑖𝛿3, which,

89

with a union bound, implies that with probability at least 1 − 𝛿3, for every 𝑖 and

𝑓𝑊 ′,𝑉 ′ ∈ 𝒢𝑧1,𝛾𝑖 :

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 𝑅𝑛(𝑓𝑊 ′,𝑉 ′) +𝐾(
√︁
𝑅𝑛(𝑓𝑊 ′,𝑉 ′)(

√︃
log(𝑛)1.5ℛ(𝒢𝑧1,𝛾𝑖) +

√︂
𝑏 log(1/(2−𝑖𝛿3))

𝑛
)

(3.46)

+ log(𝑛)3ℛ(𝒢𝑧1,𝛾𝑖)2 +
𝑏 log(1/(2−𝑖𝛿3))

𝑛
), (3.47)

where ℓ(𝑓𝑊 ′,𝑉 ′(𝑥), 𝑦) is a.s. bounded by 𝑏 for function within the class 𝒢𝑧1,𝛾𝑖 , and 𝐾

is a universal constant. In the following, we aim to further bound the Rademacher

complexity ℛ and parameter 𝑏.

Applying the AM-GM inequality with respect to ratio 𝑧4 > 0 for the second term:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ (1 + 𝑧4)𝑅𝑛(𝑓𝑊 ′,𝑉 ′) +𝐾2/𝑧4

(︁
log(𝑛)1.5ℛ(𝒢𝑧1,𝛾𝑖) +

√︂
𝑏 log(1/(2−𝑖𝛿3))

𝑛

)︁2
+ log(𝑛)3ℛ(𝒢𝑧1,𝛾𝑖)2 +

𝑏 log(1/(2−𝑖𝛿3))

𝑛

≤ (1 + 𝑧4)𝑅𝑛(𝑓𝑊 ′,𝑉 ′) +𝐾2/𝑧4

(︁
log(𝑛)1.5ℛ(𝒢𝑧1,𝛾𝑖) +

√︂
𝑏 log(1/(2−𝑖𝛿3))

𝑛

)︁2
+ log(𝑛)3ℛ(𝒢𝑧1,𝛾𝑖)2 +

𝑏 log(1/(2−𝑖𝛿3))

𝑛

≤ (1 + 𝑧4)𝑅𝑛(𝑓𝑊 ′,𝑉 ′) + (2𝐾2/𝑧4 + 1) log(𝑛)3ℛ(𝒢𝑧1,𝛾𝑖)2 + (2𝐾2/𝑧4 + 1)
𝑏 log(1/(2−𝑖𝛿3))

𝑛
.

(3.48)

Now let 𝛾* be the smallest number of the form 2𝑖𝐵/𝑧3 (for some 𝑖) which is not

smaller than 𝑧2
√
𝜁. This definition implies

𝛾* ≤ max{2𝑧2
√︀
𝜁, 𝐵/𝑧3}. (3.49)

Now Theorem 5 in Section 3.6.11 bounds the Rademacher complexity:

ℛ(𝒢𝑧1,𝛾*) ≤
2𝑧1𝛾

*
√
𝑛
. (3.50)

On the other hand, from Theorem 4 by setting 𝑧1, 𝑧2 =
√
40, we get 𝑓𝑊 ′,𝑉 ′ ∈ 𝒢𝑧1,𝛾* .

90

Moreover, from Lemma 43, for 𝑓𝑊 ′,𝑉 ′ ∈ 𝒢𝑧1,𝛾* , we have for every ‖𝑥‖ ≤ 1:

|𝑓𝑊 ′,𝑉 ′(𝑥)| ≤ 2𝑧1𝛾
*, (3.51)

so the loss ℓ(𝑓𝑊 ′,𝑉 ′(𝑥), 𝑦) can be bounded by (𝐵 + 2𝑧1𝛾
*)2 using the 1 smoothness

property. Therefore, for the class 𝒢𝑧1,𝛾* we can set 𝑏 = (𝐵 + 2𝑧1𝛾
*)2. Combining this

with Equation (3.50) and plugging into Equation (3.48):

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ (1 + 𝑧4)𝑅𝑛(𝑓𝑊 ′,𝑉 ′) + (2𝐾2/𝑧4 + 1) log(𝑛)3
4𝑧21𝛾

*2

𝑛

+ (2𝐾2/𝑧4 + 1)
(𝐵 + 2𝑧1𝛾

*)2 log(1/(2−𝑖
*
𝛿3))

𝑛
.

Furthermore, by definition of 𝛾*, we have 2𝑖 ≤ 2𝑧2𝑧3
√
𝜁/𝐵:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ (1 + 𝑧4)𝑅𝑛(𝑓𝑊 ′,𝑉 ′) + (2𝐾2/𝑧4 + 1)4𝑧21(log(𝑛)
3 + 2 log(2𝑧2𝑧3

√︀
𝜁/𝐵))

4𝑧21𝛾
*2

𝑛

(3.52)

+ (2𝐾2/𝑧4 + 1)
2𝐵2 log(2𝑧2𝑧3

√
𝜁/𝐵)

𝑛
. (3.53)

Now applying the upper bound on 𝛾*:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ (1 + 𝑧4)𝑅𝑛(𝑓𝑊 ′,𝑉 ′) + (2𝐾2/𝑧4 + 1)4𝑧21(log(𝑛)
3 (3.54)

+ 2 log(2𝑧2𝑧3
√︀
𝜁/𝐵))

4𝑧21(2𝑧2
√
𝜁 + 2𝐵/𝑧3)

2

𝑛
(3.55)

+ (2𝐾2/𝑧4 + 1)
2𝐵2 log(2𝑧2𝑧3

√
𝜁/𝐵)

𝑛
. (3.56)

If 𝜁 > 𝐵2, in the third term above we substitute 𝐵 by
√
𝜁. Finally, similar to the

bound we stated in Equation (3.14), note that we have the following trivial bound for

𝜁:

𝜁 ≤ 𝑦𝑇𝐻∞−1𝑦 ≤ 4𝑛𝐵2/𝜆0, (3.57)

i.e. there is no point in considering larger 𝜁’s, which implies log(2𝑧2𝑧3
√
𝜁/𝐵) =

91

𝑂(log(𝑛) + log(1/𝜆0)). Plugging this above and picking 𝑧4 = 1/3 show the proof

of Equation (3.44). Furthermore, applying Equation (3.69) in Theorem 4 to the

𝑅𝑛(𝑓𝑊 ′,𝑉 ′) term in Equation (3.44) further gives the second Equation (3.45).

Remark 2. In the same setting of Theorem 3, if we have 𝜈/2 ≤ 𝜈 ′ but not generally

upper bounded by 𝜈, then PSGD leads to the following generalization bound:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 𝑅𝑛(𝑓
*) + 𝜈 ′ + 𝑐′′′′𝜛

(𝜁 +𝐵2)

𝑛
,

using a similar argument as we did for Theorem 3.

3.6.8 Structure of the proof, setting 𝑚3, and further definitions

Throughout the proof, (𝑊 ′, 𝑉 ′) represents the pair of matrices of the current iteration

of PSGD, (𝑊 *, 𝑉 *) are the “ideal” matrices that we construct in Section 3.6.12, (𝑊 𝜌, 𝑉 𝜌)

and refers to the gaussian smoothing matrices. Importantly, note that our squared loss

ℓ(𝑓, 𝑦) is zero at 𝑓 = 𝑦. We have tried to make the lower level proofs into sub-lemmas

and create a manageable hierarchy as much as we could, to make the document more

clear and readable.

Similar to the conditions in Theorem 3, through out most of the proofs we assume

that we are given a pair (𝑓 *, 𝐺) with a slightly more general setting of Theorem 3:

𝑓 *𝑇𝐴−1𝑓 * ≤ 𝜁2, for 𝐴 = 𝐺⊙𝐾∞,

⟨𝐺, 𝐻∞⟩ ≤ 𝜁1.

Particularly, 𝜁1, 𝜁2 appear in Section 3.6.13. Because we are allowed to rescale 𝐺, we

do not really gain much by assuming this more general setting, though we pick to

work with the general setting as the abstraction makes the proof more straightforward

to understand.

We refer to the parameters𝐵, 1/𝜆0, 𝑛 as the “basic parameters”, 𝑚1,𝑚2,𝑚3, 1/𝜅1, 𝜅2

as the “overparameterization”, and 𝛽1, 𝛽2 as the “smoothing parameters.” By the phrase

“having enough overparameterization” we mean it suffices to pick the overparameteri-

92

zation 𝑚1,𝑚2,𝑚3, 1/𝜅1, 1/𝜅2 only polynomially large in the basic parameters.

Throughout the proof, we denote the change in the output of the first layer at

𝑊 (0) +𝑊 ′ +𝑊 𝜌 compared to the initialization value by 𝜑(2)(𝑥𝑖), i.e.

𝜑(2)(𝑥𝑖) =
1√
𝑚1

𝑊 𝑠𝜎((𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖)− 𝜑(0)(𝑥𝑖),

while recall that 𝜑′(𝑥𝑖) has a similar definition except without the smoothing matrix

𝑊 𝜌. Although our model is a three layer network, throughout the proof, we refer to

the parts 𝑊 𝑠 1√
𝑚1
𝜎((𝑊 (0)+𝑊 ′)𝑥) and 1√

𝑚2
𝑎𝑇𝜎

(︁
(𝑉 (0)+𝑉 ′)(.)

)︁
as the “first layer” and

“second layer,” respectively.

Also, we sometimes refer to the binary sign pattern of vector 𝑥 multiplied to matrix

𝑊 by 𝐷𝑊,𝑥 (𝐷𝑊,𝑥 := Sgn(𝑊𝑥)), i.e. the 𝑗th diagonal entry of 𝐷𝑊,𝑥 is one if 𝑊 𝑇
𝑗, 𝑥 ≥ 0,

and is zero otherwise. To refer to the 𝑗th row of 𝑊 as a vector, we sometimes drop

the comma in 𝑊𝑗, and write it as 𝑊𝑗.

For brevity, we denote the Frobenius norm ‖𝑊‖𝐹 of matrix by ‖𝑊‖, and the

Euclidean norm of a vector 𝑥 by ‖𝑥‖. For matrices 𝑊1,𝑊2 we denote their natural dot

product by ⟨𝑊1,𝑊2⟩ := tr(𝑊 𝑇
1 𝑊2). We refer to the smallest eigenvalue of a matrix by

𝜆min(.). We write ℛ(.) for the Rademacher complexity of a function class. We refer to

the smoothed version of the network by 𝑓 ′
𝑊 ′,𝑉 ′(𝑥), defined by

𝑓 ′
𝑊 ′,𝑉 ′(𝑥) = E𝑊 𝜌,𝑉 𝜌𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥).

In the proof, we mainly work with the loss over the smoothed network 𝑓 ′, defined as

𝐿(𝑊 ′, 𝑉 ′) = 𝑅𝑛(𝑓
′
𝑊 ′,𝑉 ′) + 𝜓1‖𝑊 ′‖2 + 𝜓2‖𝑉 ′‖2. (3.58)

Our algorithm, PSGD can be regarded roughly as an SGD over 𝐿.

Similar to what we discussed in section 3.3, let the functions {𝑔𝑘}𝑚3
𝑘=1 be some

feature representation whose gram matrix is equal to 𝐺 and ⟨𝐻∞, 𝐺⟩ =
∑︀𝑚3

𝑘=1 ‖𝑔𝑘‖2𝐻∞ .

In such setting, it is not hard to check that we can assume each 𝑔𝑘 is the minimum

norm NTK function which maps (𝑥𝑖)
𝑛
𝑖=1 to (𝑔𝑘(𝑥𝑖))

𝑛
𝑖=1’s. Indeed, if this is not the

93

case for some 𝑔𝑘, we can project the RKHS representation of 𝑔𝑘 onto the span of the

representations of (𝑥𝑖)𝑛𝑖=1, which can only decrease the complexity measure. Hence we

can represent 𝑔𝑘 ∈ ℋ𝐻∞ as a linear combination of basic functions 𝐻∞(𝑥𝑖, .) on data

points:

∀𝑘 ∈ [𝑚3], 𝑔𝑘(𝑥) :=
𝑛∑︁
𝑖=1

𝒱𝑘,𝑖𝐻∞(𝑥𝑖, 𝑥). (3.59)

Here, the sum of squared-𝐻∞ norms of 𝒱𝑘 is bounded as

∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ =
∑︁
𝑘

‖𝑔𝑘‖2𝐻∞ = ⟨𝐻∞, 𝐺⟩ ≤ 𝜁1. (3.60)

For each 𝑖 ∈ [𝑛], we refer to the feature representation vector (𝑔𝑘(𝑥𝑖))𝑚3
𝑘=1 on 𝑥𝑖 as �̄�𝑖.

Note that we have the relationship

�̄�𝑖 = (𝐻∞
𝑖, 𝒱𝑘)

𝑚3
𝑘=1, (3.61)

where 𝐻∞
𝑖, is the 𝑖th row of 𝐻∞. In the analysis, we work with a bound 𝜉 on the

quantity max𝑘 ‖𝒱𝑘‖ which should be bounded polynomially by other basic parame-

ters; in particular, it is defined in Lemma 19 and is used to bound a cross term in

Lemma 23. However, max𝑘 ‖𝒱𝑘‖ might not be effectively bounded for an arbitrary

feature representation. Fortunately, we can remedy this by a simple trick; for every

natural number 𝑠, one can substitute every 𝑔𝑘 by 𝑠 copies of 𝑔𝑘/
√
𝑠, without changing

the gram matrix 𝐺. Therefore, for any 𝛿, one can increase the multiset of functions

(𝑔𝑘) to a bigger set (𝑔𝑘), by adding at most 𝑂(𝜁1/𝛿) functions, making sure of the

following for the new functions:

∀𝑘 : 𝒱𝑇𝑘 𝐻∞𝒱𝑘 = ‖𝑔𝑘‖2𝐻∞ ≤ 𝛿. (3.62)

(This is because
∑︀

𝑘 ‖𝑔𝑘‖2𝐻∞ ≤ 1). Furthermore, observe that for each gram matrix 𝐺,

we have an 𝑛-dimensional feature representation (𝑔𝑘)
𝑛
𝑘=1 for𝐺 according to the Cholesky

factorization. Combining these facts, we conclude, to guarantee Equation (3.62), in

94

the worst case, we need 𝑚3 to be as large as 𝑛+𝑂(𝜁1/𝛿).

Finally, observing the following inequality

‖𝒱𝑘‖2 ≤ ‖𝒱𝑘‖2𝐻∞/𝜆0 ≤ ‖𝑔𝑘‖2𝐻∞/𝜆0. (3.63)

in order to guarantee max𝑘 ‖𝒱𝑘‖ ≤ 𝜉 we need to take 𝑚3 as large as 𝑛+𝑂(𝜁1/(𝜉
2𝜆0)),

which is indeed bounded polynomially by the basic parameters because of the same

condition for 1/𝜉. This computation also brings into sight an important point:

“Although each gram matrix 𝐺 is representable by 𝑛 features, in order for the

algorithm to be able to find a suitable network, 𝑚3 might need to be larger than 𝑛.”

Moreover, for every 1 ≤ 𝑘, 𝑖 ≤ 𝑛, we define the matrices 𝑍𝑘
𝑖 ∈ R𝑚𝑑 as

𝑍𝑖
𝑘 = 1/

√
𝑚1

(︁
𝑊 𝑠
𝑘,𝑗1{𝑊

(0)
𝑗

𝑇𝑥𝑖}𝑥𝑖
)︁𝑚1

𝑗=1
, (3.64)

where in the above notation, 𝑗 is enumerating the columns of the matrix. We also

define the following matrices which we use in our construction later:

𝑊+
𝑘
𝑇
= 𝑊 𝑘+𝑇 =

𝑛∑︁
𝑖=1

𝒱𝑘,𝑖𝑍𝑖
𝑘, (3.65)

and 𝑊+ as

𝑊+ =

𝑚3∑︁
𝑘=1

𝑊 𝑘+.

Finally, to avoid unnecessary complication, we often argue high probability

bounds without an explicit representation of their dependency on the chance of failure

(which is a negligible logarithmic factor). We also ignore all constants and log factors,

and mainly work with the notation ≲ which ignores constants; we write 𝑎 ≲ 𝑏 ± 𝑐

as a short form for 𝑏−𝑂(𝑐) ≤ 𝑎 ≤ 𝑏+𝑂(𝑐). As there are several hierarchies of new

parameters that are defined based on lower-level ones, we rename the new parameters

and continue viewing them as black-box. This makes the proofs more readable, since

we also do not care about the exact dependency of the underlying parameters most of

the time, rather we are interested in their orders of magnitude, for example that a given

95

parameter goes to zero polynomially fast with respect to the overparameterization,

etc. Due to the large number of symbols that we have to work with, we might use a

symbol more than once, of course when it is clear from the context which one we are

refering to.

3.6.9 Proof of Theorem 2

In this section, we prove Theorem 2, stated below.

Theorem 2. For any function 𝑓 : R𝑑 → R, in the same setting as Theorem 6, the

population risk of the trained network (𝑊 ′, 𝑉 ′) can be bounded as

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 2𝑅(𝑓) +𝑂
(︁
𝛼𝜛
‖𝑓‖2𝜁 +𝐵2

𝑛

)︁
. (3.66)

Proof of Theorem 2

Theorem 2 is a simple consequence of Theorem 6; for the given function 𝑓 , we apply

Theorem 2 with the smaller coefficient 𝛾 = 4
3

for 𝑅𝑛(𝑓
*), regarding the complexity

upper bound, by setting 𝑓 * := (𝑓(𝑥𝑖))
𝑛
𝑖=1:

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 4

3
𝑅𝑛(𝑓

*) + (𝛼𝜛) min
𝐾∈𝒦

𝑓 *𝑇𝐾−1𝑓 *

𝑛
+
𝐵2𝛼𝜛

𝑛

=
4

3
𝑅𝑛(𝑓) + (𝛼𝜛) min

𝐾∈𝒦

𝑓 *𝑇𝐾−1𝑓 *

𝑛
+
𝐵2𝛼𝜛

𝑛
.

On the other hand, because 𝑓 *𝑇𝐾−1𝑓 * is the minimum-RKHS norm of a function

with respect to kernel 𝐾 which maps 𝑥𝑖’s to 𝑓 *
𝑖 and 𝑓 is one such function, we have

𝑓 *𝑇𝐾−1𝑓 * ≤ ‖𝑓‖𝐾 . This inequality implies

min
𝐾∈𝒦

𝑓 *𝑇𝐾−1𝑓 * ≤ ‖𝑓‖𝜁 ,

so we obtain

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ 4

3
𝑅𝑛(𝑓) + (𝛼𝜛)

‖𝑓‖2𝜁 +𝐵2

𝑛
. (3.67)

96

Therefore, it remains to bound 𝑅𝑛(𝑓) by 𝑅(𝑓).

As we showed in Section 3.6.6, for every input 𝑥 we have 𝑓(𝑥) ≤ ‖𝑓‖𝜁 , so for

every data (𝑥, 𝑦), by the fact that |𝑦| ≤ 𝐵 a.s. and 𝛼 smoothness of the loss, we have

ℓ(𝑓(𝑥), 𝑦) ≤ 𝛼(‖𝑓‖𝜁 + 𝐵)2. Moreover, note that the random variable ℓ(𝑓(𝑥), 𝑦) has

mean 𝑅(𝑓). It is easy to check that in this setting, the variance of ℓ(𝑓(𝑥), 𝑦) is at

most 𝑅(𝑓)𝛼(‖𝑓‖𝜁 + 𝐵)2. Therefore, an application of the Bernstein inequality, we

have with high probability over the dataset

𝑅𝑛(𝑓) ≤ 𝑅(𝑓) +𝑂

(︃√︂
𝑅(𝑓)𝛼(‖𝑓‖𝜁 +𝐵)2

𝑛
+
𝛼(‖𝑓‖𝜁 +𝐵)2

𝑛

)︃
≤ 3

2
𝑅(𝑓) +𝑂

(︂
𝛼(‖𝑓‖𝜁 +𝐵)2

𝑛

)︂
.

Plugging this back to Equation (3.67) completes the proof. As a result, the learned

network can compete with any function that has reasonably small ‖𝑓‖𝜁 :

𝑅(𝑓𝑊 ′,𝑉 ′) ≤ min
𝑓

{︁
2𝑅(𝑓) +𝑂(𝛼𝜛

‖𝑓‖2𝜁 +𝐵2

𝑛
)
}︁
.

97

3.6.10 Optimization

In this section, we glue together

• the existence of a good random direction that we prove in Section 3.6.13

• the convergence analysis of PSGD that we do based on the work Ge et al. [2015b]

in Section 3.6.16.

Theorem 4. In the same setting of Theorem 3, assume the network (𝑊 ′, 𝑉 ′) returned

by PSGD, has sufficient polynomially large “overparameterization”. Then, for the

solution (𝑊 ′, 𝑉 ′) returned by PSGD we have

𝐿(𝑊 ′, 𝑉 ′) ≤ 𝑅𝑛(𝑓
*) + 𝜈, (3.68)

which further implies

𝑅𝑛(𝑓𝑊 ′,𝑉 ′) ≤ 𝑅𝑛(𝑓
*) + 2𝜈, (3.69)

‖𝑊 ′‖2 ≤ 40, ‖𝑉 ′‖2 ≤ 40𝜁. (3.70)

Moreover, for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚1], 𝑗 /∈ 𝑃 for 𝑃 defined in 10, we have that

sign((𝑊
(0)
𝑗 +𝑊 ′

𝑗)
𝑇𝑥𝑖) and sign(𝑊

(0)
𝑗

𝑇
𝑥𝑖) are the same.

Proof of Theorem 4

Let ϒ ∈ R𝑚2(𝑚3−𝑛)×𝑚2𝑚3 be a matrix whose rows are an orthonormal basis for

the space of matrices whose rows are orthogonal to span({𝜑(0)(𝑥𝑖)}𝑛𝑖=1), i.e. Φ⊥, as

defined in (3.22). Then, we consider a linear change of coordinates for the subspace

Φ⊥, regarding the second layer weights, as 𝑣′ = ϒvec(𝑉 ′) where vec(.) splits out the

vectorized version of a matrix. For consistent notation, we also denote 𝑤′ = 𝑊 ′, so

we now have a new coordinate system (𝑤′, 𝑣′) ∈ R𝑚2(𝑚3−𝑛)×𝑚1𝑑 for pairs of weights

(𝑊 ′, 𝑉 ′) such that 𝑉 ′ ∈ Φ⊥. We also define the loss function

𝐿Π(𝑤 := (𝑤′, 𝑣′)) = 𝐿(𝑊 ′, 𝑉 ′),

98

with respect to the change of coordinate.

Now it is easy to see that running PSGD on 𝐿 in the normal coordinates is equivalent

to running stochastic gradient descent on 𝐿Π with respect to (𝑤′, 𝑣′). Moreover,

because multiplying to matrix ϒ is an orthonormal change of coordinates for Φ⊥ and

because 𝑉 ′ is already in 𝜑⊥ at each step of PSGD, then ‖𝑣′‖ = ‖𝑉 ′‖, so the conditions

‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2 are equivalent to ‖𝑤′‖ ≤ 𝐶1, ‖𝑣′‖ ≤ 𝐶2. Furthermore, by

our construction, the random matrix 𝑉 *
Σ is in the subspace Φ⊥, so the norm bounds

‖𝑊 *‖ ≤ 𝜁1, ‖𝑉 *‖ ≤ 𝜁2 are equivalent to ‖𝑤*‖ ≤ 𝜁1, ‖𝑣*‖ ≤ 𝜁2 for 𝑤* := 𝑊 *
Σ and

𝑣* := ϒvec(𝑉 *).

Now we apply the result of Theorem 6 on 𝐿Π with parameter 𝜈 set as 𝜈 ′ (recall

the definition of 𝜈 ′ from Theorem 3), 𝜁2 := 𝜁 and 𝜁1 := 1, and Δ := 𝑅𝑛(𝑓
*), as

defined in Theorem 3. More specifically, based on our arguments above regarding

the natural isometry in the change of coordinate, any pair (𝑤′, 𝑣′) in the domain

‖𝑤′‖ ≤ 𝐶1, ‖𝑣′‖ ≤ 𝐶2, 𝐿Π(𝑤′, 𝑣′) ≥ 𝑅𝑛(𝑓
*) + 𝜈 ′ translates into a pair (𝑊 ′, 𝑉 ′) in the

domain ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2, 𝐿(𝑊 ′, 𝑉 ′) ≥ 𝑅𝑛(𝑓
*) + 𝜈 ′, for which by Theorem 6

there exists (𝑊 *
Σ, 𝑉

*
Σ) such that

EΣ𝐿(𝑊
′ − 𝜂/2𝑊 ′ +

√
𝜂𝑊 *

Σ, 𝑉
′ − 𝜂/2𝑉 ′ +

√
𝜂𝑉 *

Σ) ≤ 𝐿(𝑊 ′, 𝑉 ′)− 𝜂𝜈 ′/4. (3.71)

Translating back to the change of coordinates:

EΣ𝐿
Π(𝑤′ − 𝜂/2𝑤′ +

√
𝜂𝑤*

Σ, 𝑣
′ − 𝜂/2𝑣′ +√𝜂𝑣*Σ) ≤ 𝐿(𝑤′, 𝑣′)− 𝜂𝜈 ′/4. (3.72)

Now we apply Lemma 53 to translate this into an argument about the landscape

of 𝐿Π. As a result, applying the bounds in Equations (3.107) and (3.127), we obtain

that for (𝑤′, 𝑣′) such that

𝐿Π(𝑤′, 𝑣′) ≥ 𝑅𝑛(𝑓
*) + 𝜈 ′,

99

we should either have

‖∇𝐿Π(𝑤′, 𝑣′)‖ ≥ 𝜈/4

4
√︀
‖𝑤′‖2 + ‖𝑣′‖2

=
𝜈/4

4
√︀
‖𝑊 ′‖2 + ‖𝑉 ′‖2

=
𝜈

16
√︀
𝐶2

1 + 𝐶2
2

,

or

𝜆𝑚𝑖𝑛

(︁
∇2𝐿Π(𝑤′, 𝑣′)

)︁
≤ − 𝜈/4

2minΣ(‖𝑤*‖2 + ‖𝑣*‖2)

= − 𝜈

2minΣ(‖𝑊 *
Σ‖2 + ‖𝑉 *

Σ‖2)

≤ − 𝜈

16(𝜁1 + 𝜁2)

= − 𝜈

16(1 + 𝜁)
.

Next, we want to apply Theorem 7 by setting

𝛾 =
𝜈

16(1 + 𝜁)
,

ℵℓ = 𝑅𝑛(𝑓
*) + 𝜈 ′,

and Lipschitz parameters 𝜌1, 𝜌2, 𝜌3 = 𝑝𝑜𝑙𝑦(𝐵,𝐶1, 𝐶2,𝑚1,𝑚2,𝑚3) set as described in

Section 3.7.1, Theorem 9. Also, note that as prescribed by Theorem 7, we set

𝐶1 :=
ℵ+ 4𝑙

𝜓1

,

𝐶2 :=
ℵ+ 4𝑙

𝜓2

, (3.73)

where 𝑙 = 𝑂(1) depends on our desired chance of success for the algorithm, specified

in Theorem 7. Finally, note that Theorem 7 needs to work with a bounded noise on

the gradient whose covariance matrix is bounded between two multipliers of identity.

The point of injecting extra noise to SGD in PSGD is in fact because of this covariance

100

condition that we need in Theorem 7. On the other hand, note that in general, because

of the gaussian smoothing that we use, the noise vector is not supported on a bounded

domain, which makes it a bit harder to apply Hoeffding type concentration. To remedy

this, we introduce a coupling between our unbounded noise vector for 𝐿(𝑊 ′, 𝑉 ′) and

another noise random variable whose support is bounded, which with high probability

is equal to the real noise, along all iterations. In Corollary, we further translate this

coupling for the objective 𝐿Π after change of cooridnates, and write down the exact

dependencies of the parameters 𝑄, 𝜎1 and 𝜎2, which are all polynomial in the basic

parameters and the overparameterization.

Hence, the conditions of Theorem 7 are satisfied, so we conclude that after at most

𝑝𝑜𝑙𝑦(𝜌1, 𝜌2, 𝜌3, 𝑄,ℵ, 𝐶1, 𝐶2, 1/𝛾, log(𝜎1/𝜎2)) = 𝑝𝑜𝑙𝑦(𝐵,𝑚1,𝑚2,𝑚3, 𝐶1, 𝐶2, 𝜁1, 𝜁2) = 𝑝𝑜𝑙𝑦(𝑛,𝐵∨

1/𝐵, 1/𝛾0) number of iterations, PSGD reach a point 𝑤𝑡 in some iteration 𝑡 with

𝐿Π(𝑤𝑡) ≤ ℵℓ.

Translating back this 𝑤𝑡 = (𝑤′
𝑡, 𝑣

′
𝑡) by multiplying the 𝑣′𝑡 part to ϒ𝑇 , we get a pair

(𝑊 ′
𝑡 , 𝑉

′
𝑡) with objective value bounded as

𝐿(𝑊 ′
𝑡 , 𝑉

′
𝑡) ≤ 𝑅𝑛(𝑓

*) + 𝜈 ′. (3.74)

But note that we obviously have the condition ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2 through

the whole iterations, for the choice of 𝐶1, 𝐶2 in Equation (3.73). Therefore, using

Lemma 43, for every 𝑖 ∈ [𝑛]:

|𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖)| = 𝑂(𝐶1, 𝐶2), (3.75)

|𝑓𝑊 ′,𝑉 ′(𝑥𝑖)| = 𝑂(𝐶1, 𝐶2) (3.76)

From Equations (3.76), as also stated in Theorem 9, we know that for all 𝑖 ∈ [𝑛], ℓ(., 𝑦𝑖)

is𝑂(𝐶1𝐶2)+𝐵
2-Lipschitz at points 𝑓𝑊 ′,𝑉 ′(𝑥𝑖) and 𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖), so we can bound the differ-

ence |ℓ(𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖)−ℓ(𝑓𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖)| by (𝑂(𝐶1𝐶2)+𝐵

2)|𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖)−𝑓𝑊 ′,𝑉 ′(𝑥𝑖)|,

which in turn can become arbitrarily small having enough overparameterization using

Lemma 44, in particular, we force it to be smaller than 𝑂(𝜈 ′/(𝐵2 + 𝐶1𝐶2)) (recall

101

𝜈 ′ ≥ 𝜈/2 ≥ 𝐵2/(2𝑛)). As a result, we get |ℓ(𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖)− ℓ(𝑓𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖)| = 𝑂(𝜈)

for every 𝑖 ∈ [𝑛], which in turn implies |𝐿(𝑊 ′, 𝑉 ′) − 𝐿1(𝑊
′, 𝑉 ′)| ≤ 𝜈 by picking

small constants, where recall that the objective 𝐿1 is the same as 𝐿 but without the

smoothing. Now applying this bound to Equation (3.74), we get

𝐿1(𝑊
′
𝑡 , 𝑉

′
𝑡) ≤ 𝑅𝑛(𝑓

*) + 2𝜈 ′.

Therefore, as PSGD check the values of 𝐿1 in the loop, it terminates at such pair

(𝑊𝑡, 𝑉𝑡). From this point onward, we refer to the returned (𝑊 ′
𝑡 , 𝑉

′
𝑡) as just (𝑊 ′, 𝑉 ′).

Opening the definition of 𝐿1(𝑊
′, 𝑉 ′), we clearly get

𝑅𝑛(𝑓𝑊 ′,𝑉 ′) ≤ 𝐿1(𝑊
′, 𝑉 ′) ≤ 𝑅𝑛(𝑓

*) + 2𝜈 ′ ≤ 𝑅𝑛(𝑓
*) + 2𝜈. (3.77)

Furthermore, noting the setting of 𝜓1, 𝜓2 in Theorem 3 and the fact that 𝜈 ′ ≥ 𝜈/2 ≥

𝑅𝑛(𝑓
*)/8, we get

‖𝑊 ′‖2 ≤ 4(𝑅𝑛(𝑓
*) + 2𝜈 ′)

𝜈 ′
≤ 40, (3.78)

‖𝑉 ′‖2 ≤ 4𝜁(𝑅𝑛(𝑓
*) + 2𝜈 ′)

𝜈 ′
≤ 40𝜁, (3.79)

which completes the proof. The fact that for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚1], 𝑗 /∈ 𝑃 we have

that sign((𝑊
(0)
𝑗 +𝑊 ′

𝑗)
𝑇𝑥𝑖) and sign(𝑊

(0)
𝑗

𝑇
𝑥𝑖) are the same follows from Lemma 10.

102

3.6.11 Rademacher Complexity

In this section we show the proof for our Rademacher Complexity bound, which is

used in Theorem 3.

Theorem 5. Let 𝐺𝛾1,𝛾2 be the class of neural nets with weights (𝑊,𝑉) in our three layer

setting, such that ‖𝑊 −𝑊 (0)‖ ≤ 𝛾1, ‖𝑉 −𝑉 (0)‖ ≤ 𝛾2, where for every 𝑗 ∈ [𝑚2], 𝑖 ∈ [𝑛]:

𝑉 ′
𝑗 ⊥ 𝜑(0)(𝑥𝑖), and for every 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚1], 𝑗 /∈ 𝑃 for 𝑃 ⊆ [𝑚1] defined in

Lemma 10, it satisfies sign((𝑊
(0)
𝑗 +𝑊 ′

𝑗)𝑥𝑖) = sign(𝑊 (0)𝑥𝑖). Then, for large enough

overparameterization, we have the following bound on the Rademacher complexity:

ℛ(𝒢𝛾1,𝛾2) ≤
2𝛾1𝛾2√

𝑛
.

Proof of Theorem 5

Here, we do not have the smoothing matrices 𝑊 𝜌, 𝑉 𝜌 anymore. In this section,

unlike the optimization section that we used {𝑥′𝑖}𝑛𝑖=1 to denote the output of the first

layer by incorporating also the smoothing matrices, here we define it without them:

𝑥′𝑖 =
1√
𝑚1

𝑊 𝑠𝜎((𝑊 (0) +𝑊 ′)𝑥𝑖).

Now define the matrices

𝑍 ′
𝑖 = 1/

√
𝑚2

(︁
𝑎𝑗1{𝑉 (0)

𝑗, 𝑥
′
𝑖 ≥ 0}𝑥′𝑖

)︁𝑚2

𝑗=1
,

𝑍 ′
𝑖
+
= 1/

√
𝑚2

(︁
𝑎𝑗(1{𝑉𝑗,𝑥′𝑖 ≥ 0} − 1{𝑉 (0)

𝑗, 𝑥
′
𝑖 ≥ 0})𝑥′𝑖

)︁𝑚2

𝑗=1
.

To bound the 𝑍 ′
𝑖
+ part, note that substituting 𝐶1 by 𝛾1 in lemma 15 and assuming

conditions

𝑚1 = Ω̃(𝑚4
3),

2𝐶
3/2
1√
𝜅1

(
𝑛3𝑚3

3

𝑚1𝜆0
)1/4 ≤ 𝛾1,

103

(we can use this result because we do not have the smoothing matrix 𝑊 𝜌 here), we

get with high probability over the initialization for every 𝑖 ∈ [𝑛]:

‖𝜑′(𝑥𝑖)‖ = ‖𝑥′𝑖 − 𝜑(0)(𝑥𝑖)‖ ≲ 𝛾1. (3.80)

Therefore, we can write

|trace(𝑉 𝑍 ′
𝑖
+
)| = 1√

𝑚2

|
∑︁
𝑗

𝑎𝑗1{sign(𝑉𝑗,𝑥′𝑖) ̸= sign(𝑉 (0)
𝑗, 𝑥

′
𝑖)}𝑉𝑗,𝑥′𝑖|

≤ 1√
𝑚2

∑︁
𝑗

1{sign(𝑉𝑗,𝑥′𝑖) ̸= sign(𝑉 (0)
𝑗, 𝑥

′
𝑖)}|𝑉𝑗,𝑥′𝑖|

≤ 1√
𝑚2

∑︁
𝑗

1{|𝑉 (0)
𝑗, 𝑥

′
𝑖| ≤ |(𝑉𝑗, − 𝑉

(0)
𝑗,)𝑥′𝑖|}

(︁
|(𝑉𝑗, − 𝑉 (0)

𝑗,)𝑥′𝑖|+ |𝑉
(0)
𝑗, 𝑥

′
𝑖|
)︁

≤ 1
√
𝑚2

∑︁
𝑗

1{|𝑉 (0)
𝑗, 𝑥

′
𝑖| ≤ |(𝑉𝑗, − 𝑉

(0)
𝑗,)𝑥′𝑖|}

(︁
2|(𝑉𝑗, − 𝑉 (0)

𝑗,)𝑥′𝑖|
)︁
.

≤ 1
√
𝑚2

∑︁
𝑗

1{|𝑉 (0)
𝑗, 𝑥

′
𝑖|, |(𝑉𝑗, − 𝑉

(0)
𝑗,)𝑥′𝑖| ≤ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3min(𝛾1, ‖𝑥′𝑖‖)}
(︁
2|(𝑉𝑗, − 𝑉 (0)

𝑗,)𝑥′𝑖|
)︁

+
1√
𝑚2

∑︁
𝑗

1{|(𝑉𝑗, − 𝑉 (0)
𝑗,)𝑥′𝑖| ≥ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3min(𝛾1, ‖𝑥′𝑖‖)}
(︁
2|(𝑉𝑗, − 𝑉 (0)

𝑗,)𝑥′𝑖|
)︁
.

Now using the fact that 𝑉𝑗 − 𝑉 (0)
𝑗 is orthogonal to 𝜑(0)(𝑥𝑖)’s:

𝐿𝐻𝑆 ≤
2𝛾

2/3
2 (𝜅2

𝑚2
)1/3𝛾1

√
𝑚2

∑︁
𝑗

1{|𝑉 (0)
𝑗, 𝑥

′
𝑖| ≤ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3‖𝑥′𝑖‖}

+
2
√
𝑚2

∑︁
𝑗

1{‖𝑉𝑗, − 𝑉 (0)
𝑗, ‖‖𝑥′𝑖 − 𝜑(0)(𝑥𝑖)‖ ≥ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3𝛾1}‖𝑉𝑗, − 𝑉 (0)
𝑗, ‖‖𝑥′𝑖 − 𝜑(0)(𝑥𝑖)‖.

104

Next, using the upper bound on ‖𝑥′𝑖 − 𝜑(0)(𝑥𝑖)‖:

𝐿𝐻𝑆 ≲
2𝛾

2/3
2 (𝜅2

𝑚2
)1/3𝛾1

√
𝑚2

∑︁
𝑗

(1{|𝑉 (0)
𝑗, 𝑥

′
𝑖| ≤ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3‖𝑥′𝑖‖}.

+
𝛾1√
𝑚2

∑︁
𝑗

1{‖𝑉𝑗, − 𝑉 (0)
𝑗, ‖ ≳ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3}‖𝑉𝑗, − 𝑉 (0)
𝑗, ‖

≲
𝛾
2/3
2 (𝜅2

𝑚2
)1/3𝛾1

√
𝑚2

∑︁
𝑗

(1{|𝑉 (0)
𝑗, 𝑥

′
𝑖| ≤ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3‖𝑥′𝑖‖}

+
𝛾1√
𝑚2

√︃∑︁
𝑗

1{‖𝑉𝑗, − 𝑉 (0)
𝑗, ‖2 ≥ 𝛾

4/3
2 (

𝜅2
𝑚2

)2/3}
√︃∑︁

𝑗

‖(𝑉𝑗, − 𝑉 (0)
𝑗,)‖2

≤
𝛾
2/3
2 (𝜅2

𝑚2
)1/3𝛾1

√
𝑚2

(︁∑︁
𝑗

1{|𝑉 (0)
𝑗, 𝑥

′
𝑖| ≤ 𝛾

2/3
2 (

𝜅2
𝑚2

)1/3‖𝑥′𝑖‖}
)︁
+

𝛾22𝛾1√
𝑚2

× (
𝑚2

𝜅2
)1/3

1

𝛾
2/3
2

.

Then, applying the first argument of Lemma 38, we have with high probability

over the randomness of 𝑉 (0):

𝐿𝐻𝑆 ≤
𝛾
2/3
2 (𝜅2

𝑚2
)1/3𝛾1

√
𝑚2

(
𝑚2

𝜅2
(
𝜅2
𝑚2

)1/3𝛾
2/3
2) +

𝛾22𝛾1√
𝑚2

× (
𝑚2

𝜅2
)1/3

1

𝛾
2/3
2

≤ 𝛾
4/3
2 𝛾1

(𝜅2
√
𝑚2)

1/3
+

𝛾
4/3
2 𝛾1

(𝜅2
√
𝑚2)

1/3

≲
𝛾
4/3
2 𝛾1

(𝜅2
√
𝑚2)

1/3
.

105

Therefore, we can write:

ℛ(𝒢𝛾1,𝛾2)|(𝑥𝑖),(𝑦𝑖) =
1

𝑛
E𝜖 sup

𝑉,𝑊∈𝑆

𝑛∑︁
𝑡=1

𝜖𝑖𝑓𝑉,𝑊 (𝑥𝑖)

=
1

𝑛
E𝜖 sup

𝑉,𝑊∈𝑆

𝑛∑︁
𝑖=1

𝜖𝑖𝑎
𝑇𝜎(1/

√
𝑚2𝑉𝑊

𝑠𝜎(1/
√
𝑚1𝑊𝑥𝑖))

=
1

𝑛
E𝜖 sup

𝑉,𝑊∈𝑆

𝑛∑︁
𝑖=1

𝜖𝑖𝑎
𝑇𝜎(1/

√
𝑚2𝑉 𝑥

′
𝑖)

=
1

𝑛
E𝜖 sup

𝑊∈𝑆
sup
𝑉 ∈𝑆

𝑛∑︁
𝑖=1

𝜖𝑖trace(𝑉 (𝑍 ′
𝑖 + 𝑍 ′

𝑖
+
))

≲
1

𝑛
E𝜖 sup

𝑊,𝑉 ∈𝑆

𝑛∑︁
𝑖=1

𝜖𝑖trace(𝑉 𝑍 ′
𝑖) +

𝛾
4/3
2 𝛾1

(𝜅2
√
𝑚2)

1/3

≤ 1

𝑛
E𝜖 sup

𝑊∈𝑆
sup
𝑉 ∈𝑆

trace(𝑉 (
𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖)) +

𝛾
4/3
2 𝛾1

(𝜅2
√
𝑚2)

1/3

=
1

𝑛
E𝜖 sup

𝑊∈𝑆
sup
𝑉 ∈𝑆

trace((𝑉 − 𝑉 (0))(
𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖))

+
1

𝑛
E𝜖 sup

𝑊∈𝑆
trace(𝑉 (0)(

𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖)) +

𝛾
4/3
2 𝛾1

(𝜅2
√
𝑚2)

1/3
. (3.81)

For the first term, for every 𝑗 ∈ [𝑚2], define 𝐻𝑗 to be the set of 𝑖’s in [𝑛] where

the 𝑗th column of 𝑍 ′
𝑖 is non-zero, i.e.

𝐻𝑗 = {𝑖 ∈ [𝑛] : 𝑉
(0)
𝑗 𝑥′𝑖 ≥ 0}.

Here, we use the crucial assumption that (𝑉 − 𝑉 (0))𝑗
𝑇
𝜑(0)(𝑥𝑖) = 0, so we can drop the

𝜑(0)(𝑥𝑖) term when 𝑥′𝑖 is multiplied to 𝑉 − 𝑉 (0). Using this trick and applying Cauchy

Schwarz, we bound the first term as:

1

𝑛
E𝜖 sup

𝑊,𝑉 ∈𝑆
trace((𝑉 − 𝑉 (0))(

𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖))

≤ 1

𝑛
E𝜖‖𝑉 − 𝑉 (0)‖ sup

𝑊∈𝑆

⎯⎸⎸⎷ 1

𝑚2

𝑚2∑︁
𝑗=1

‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝜑(2)(𝑥𝑖)‖2.

106

Further using Jensen’s inequality:

1

𝑛
E𝜖 sup

𝑊,𝑉 ∈𝑆
trace((𝑉 − 𝑉 (0))(

𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖))

≤ ‖𝑉 − 𝑉
(0)‖

𝑛

⎯⎸⎸⎷E𝜖
1

𝑚2

𝑚2∑︁
𝑗=1

sup
𝑊∈𝑆
‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝜑(2)(𝑥𝑖)‖2. (3.82)

Using Equation (3.111) of Lemma 15 (note that we do not have the smoothing

matrix 𝑊 𝜌 here, so we are allowed to use this result), we obtain

‖⟨𝑊 −𝑊 (0), 𝑍𝑘
𝑖 ⟩ − 𝜑′(𝑥𝑖)‖ ≲

2𝐶
3/2
1√
𝜅1

(
𝑛3𝑚3

3

𝑚1𝜆0
)1/4,

where 𝑍𝑘
𝑖 ’s are defined in Equation (3.299).

Plugging this back in (3.82):

E𝜖 sup
𝑊∈𝑆
‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝜑
′(𝑥𝑖)‖2

≤ E𝜖 sup
𝑊∈𝑆

(︁
‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖⟨𝑊 −𝑊 (0), 𝑍𝑘
𝑖 ⟩‖+

2𝐶
3/2
1√
𝜅1

(
𝑛3𝑚3

3

𝑚1𝜆0
)1/4
)︁2

≲ E𝜖 sup
𝑊∈𝑆
‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖⟨𝑊 −𝑊 (0), 𝑍𝑘
𝑖 ⟩‖2 +

𝐶3
1

𝜅1
(
𝑛3𝑚3

3

𝑚1𝜆0
)1/2

= E𝜖 sup
𝑊∈𝑆

𝑚3∑︁
𝑘=1

(︁
trace((𝑊 −𝑊 (0))(

∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘
𝑖))
)︁2

+
𝐶3

1

𝜅1
(
𝑛3𝑚3

3

𝑚1𝜆0
)1/2. (3.83)

Now for every fixed dataset, with high probability over the randomness of 𝑊 𝑠, for

every 𝑘1 ̸= 𝑘2:

⃒⃒⃒
⟨
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘1
𝑖 ,
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘2
𝑖 ⟩
⃒⃒⃒
≤

∑︁
𝑖1,𝑖2∈𝐻𝑗

⃒⃒⃒
⟨𝑍𝑘1

𝑖1
, 𝑍𝑘2

𝑖2
⟩
⃒⃒⃒

=
1

𝑚1

∑︁
𝑖1,𝑖2∈𝐻𝑗

⃒⃒⃒ 𝑚1∑︁
𝑗=1

𝑊 𝑠
𝑘1,𝑗

𝑊 𝑠
𝑘2,𝑗
⟨𝑥𝑖1 , 𝑥𝑖2⟩1{𝑊

(0)
𝑗, 𝑥𝑖1 ≥ 0}1{𝑊 (0)

𝑗, 𝑥𝑖2 ≥ 0}
⃒⃒⃒

But note that because ⟨𝑥𝑖1 , 𝑥𝑖2⟩ ≤ 1, the variables 𝑊 𝑠
𝑘1,𝑗

𝑊 𝑠
𝑘2,𝑗
⟨𝑥𝑖1 , 𝑥𝑖2⟩1{𝑊

(0)
𝑗, 𝑥𝑖1 ≥

107

0}1{𝑊 (0)
𝑗, 𝑥𝑖2 ≥ 0} are subgaussian with parameter one with respect to the randomness

of 𝑊 𝑠. Hence, with high probability over the randomness of 𝑊 𝑠, we get

⃒⃒⃒
⟨
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘1
𝑖 ,
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘2
𝑖 ⟩
⃒⃒⃒
≲

1

𝑚1

∑︁
𝑖1,𝑖2∈𝐻𝑗

√
𝑚1 ≤

𝑛2

√
𝑚1

. (3.84)

Therefore, with high probability over the randomness of 𝑊 (0) and 𝑊 ′ and the dataset,

we get Equation (3.84). In order to get rid of the high probability argument on the

dataset, we use the stronger Equation (3.300) in Lemma 55 which uniformly bounds

⟨𝑍𝑘1(𝑥), 𝑍𝑘2(𝑥′)⟩ by log(𝑚1)𝑑/𝑚1 for any 𝑥, 𝑥′, which in turn gives

⃒⃒⃒
⟨
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘1
𝑖 ,
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘2
𝑖 ⟩
⃒⃒⃒
≤

∑︁
𝑖1,𝑖2∈𝐻𝑗

⃒⃒⃒
⟨𝑍𝑘1

𝑖1
, 𝑍𝑘2

𝑖2
⟩
⃒⃒⃒
≲
𝑛2𝑑 log(𝑚1)√

𝑚1

,

with high probability, independent of the choice of dataset. This bounds is slightly

worse comapred to (3.84), but still efficient for our purpose.

Furthermore, a similar bound to Equation (3.84) can be obtained in a more

adversarial situation when we also take maximum against the choice of the dataset.

Note that the entries of
∑︀

𝑖∈𝐻𝑗
𝜖𝑖𝑍

𝑘
𝑖 for 1 ≤ 𝑘 ≤ 𝑚3 can differ only in a sign.

Therefore, their norms are all equal. Now suppose that 𝒞𝑗 is the random variable of

the norm of these variables:

𝒞𝑗 := ‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘
𝑖 ‖.

Then, by substituting 𝑟𝑘 = 1
𝒞𝑗

∑︀
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘
𝑖 in Lemma 49, we get

𝑚3∑︁
𝑘=1

(︁
trace((𝑊 −𝑊 (0))(

∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘
𝑖))
)︁2
≤ 𝒞2𝑗 (1 +𝑚2

3𝑂(
𝑛2𝑑 log(𝑚1)√

𝑚1𝒞𝑗
2))‖𝑊 −𝑊 (0)‖2𝐹

(3.85)

= (𝒞2𝑗 +
𝑛2𝑚2

3𝑑 log(𝑚1)√
𝑚1

)‖𝑊 −𝑊 (0)‖2𝐹 . (3.86)

108

Now recall from Equation (3.80), we have

‖𝜑′(𝑥𝑖)‖ ≤ 𝛾1. (3.87)

Hence, we can apply Corollary 5.1 with 𝜑(2)(𝑥𝑖) and 𝐶1 substituted by 𝜑′(𝑥𝑖) and 𝛾1

respectively, to argue with high probability over the initialization, there exists a set

𝑃𝑖 such that for every 𝑖 ∈ [𝑛] and 𝑗 /∈ 𝑃𝑖, sign of 𝑉𝑗𝑇𝑥′𝑖 is the same as 𝑉 (0)
𝑗

𝑇
𝜑(0)(𝑥𝑖),

and moreover,

|𝑃𝑖| ≲
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
𝑚2.

Now let

�̄�𝑗 = {𝑖 ∈ [𝑛] : 𝑉
(0)
𝑗 𝜑(0)(𝑥𝑖) ≥ 0}.

Note that for 𝑗 /∈ 𝑃 =
⋃︀
𝑖 𝑃𝑖, we have 𝐻𝑗 = �̄�𝑗. Now note that the norm of each∑︀

𝑖∈𝐻𝑗
𝜖𝑖𝑍

𝑘
𝑖 is at most one. for each index 1 ≤ ℓ ≤ 𝑚1𝑑, as the random variables∑︀

𝑖∈�̄�𝑗
𝜖𝑖(𝑍

𝑘
𝑖)ℓ are

∑︀
𝑖∈�̄�𝑗

(𝑍𝑘
𝑖)

2
ℓ ≤

∑︀
𝑖∈[𝑛](𝑍

𝑘
𝑖)

2
ℓ subgaussian, we have with probability at

least 1− 1
𝑛

over the randomness of 𝜖𝑖’s, for every 1 ≤ ℓ ≤ 𝑚1𝑑 and every 1 ≤ 𝑗 ≤ 𝑚2:

⃒⃒⃒ ∑︁
𝑖∈�̄�𝑗

𝜖𝑖(𝑍
𝑘
𝑖)ℓ

⃒⃒⃒
≤
√︃∑︁

𝑖∈[𝑛]

(𝑍𝑘
𝑖)

2
ℓ log(𝑚1𝑑𝑚2𝑛),

which implies for every 𝑗 ∈ [𝑚2]:

‖
∑︁
𝑖∈�̄�𝑗

𝜖𝑖𝑍
𝑘
𝑖 ‖2 ≤

∑︁
ℓ

∑︁
𝑖∈[𝑛]

(𝑍𝑘
𝑖)

2
ℓ log(𝑚1𝑑) ≤ 𝑛 log(𝑚1𝑑𝑚2𝑛).

Name this event ℬ, so

P(ℬ) ≤ 1

𝑛
.

Note that although 𝐻𝑗 might depend on the randomness of 𝜖𝑖’s, �̄�𝑗 does not, and

109

if 𝑗 /∈ 𝑃 , we obtain

𝒞𝑗 = ‖
∑︁
𝑖∈�̄�𝑗

𝜖𝑖𝑍
𝑘
𝑖 ‖ ≤

√︀
𝑛 log(𝑚1𝑑𝑚2𝑛).

Moreover, note that we also have the following worse case bound:

𝒞𝑗 = ‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘
𝑖 ‖ ≤

∑︁
𝑖∈�̄�𝑗

‖𝑍𝑘
𝑖 ‖ ≤ 𝑛.

Applying the last two inequalities into Equations (3.279) and (3.86):

E𝜖
1

𝑚2

𝑚2∑︁
𝑗=1

sup
𝑊∈𝑆
‖
∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝜑
′(𝑥𝑖)‖2

≤ 𝐶3
1

𝜅1
(
𝑛3𝑚3

3

𝑚1𝜆0
)1/2 +

1

𝑚2

𝑚2∑︁
𝑗=1

E𝜖 sup
𝑊∈𝑆

𝑚3∑︁
𝑘=1

(︁
trace((𝑊 −𝑊 (0))(

∑︁
𝑖∈𝐻𝑗

𝜖𝑖𝑍
𝑘
𝑖))
)︁2

≤ 𝐶3
1

𝜅1
(
𝑛3𝑚3

3

𝑚1𝜆0
)1/2 +

1

𝑚2

E𝜖1{ℬ}
∑︁
𝑗∈𝑃

(𝐶2
𝑗 +

𝑛2𝑚2
3𝑑 log(𝑚1)√
𝑚1

)‖𝑊 −𝑊 (0)‖2𝐹

+
1

𝑚2

E𝜖1{ℬ}
∑︁
𝑗 /∈𝑃

(𝐶2
𝑗 +

𝑛2𝑚2
3𝑑 log(𝑚1)√
𝑚1

)‖𝑊 −𝑊 (0)‖2𝐹

+
1

𝑚2

E𝜖1{ℬ𝑐}
𝑚2∑︁
𝑗=1

(𝐶2
𝑗 +

𝑛2𝑚2
3𝑑 log(𝑚1)√
𝑚1

)‖𝑊 −𝑊 (0)‖2𝐹

≤ 𝐶3
1

𝜅1
(
𝑛3𝑚3

3

𝑚1𝜆0
)1/2 + ‖𝑊 −𝑊 (0)‖2𝐹

[︁ |𝑃 |
𝑚2

(︁
𝑛2 +

𝑛2𝑚2
3𝑑 log(𝑚1)√
𝑚1

)︁
+ 2
(︁
𝑛+

𝑛2𝑚2
3𝑑 log(𝑚1)√
𝑚1

)︁]︁
≤ 𝐶3

1

𝜅1
(
𝑛3𝑚3

3

𝑚1𝜆0
)1/2 + 𝛾21

[︁
𝑛3
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
+
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3𝑛3𝑚2
3𝑑 log(𝑚1)√
𝑚1

+ 2
𝑛2𝑚2

3𝑑 log(𝑚1)√
𝑚1

+ 2𝑛
]︁
.

(3.88)

Next, we analyze the term 1
𝑛
E𝜖 sup𝑊∈𝑆 trace(𝑉 (0)(

∑︀𝑛
𝑖=1 𝜖𝑖𝑍

′
𝑖)). Noting that ‖𝜑(0)(𝑥𝑖)‖ ≲

𝜅1
√
𝑚3 with high probability and using Equation (3.87):

‖
𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖‖𝐹 ≤

𝑛∑︁
𝑖=1

‖𝑍 ′
𝑖‖𝐹 ≤

𝑛∑︁
𝑖=1

‖𝑥′𝑖‖ ≤
∑︁
𝑖

(‖𝜑′(𝑥𝑖)‖+ ‖𝜑(0)(𝑥𝑖)‖) ≲ 𝑛(
√
𝑚3𝜅1 + 𝛾1).

(3.89)

110

Hence

1

𝑛
E𝜖 sup

𝑊∈𝑆
trace(𝑉 (0)(

𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖)) =

1

𝑛
E𝜖 sup

𝑊∈𝑆

𝑛∑︁
𝑖=1

𝜖𝑖trace(𝑉 (0)𝑍 ′
𝑖)

=
1

𝑛
E𝜖 sup

𝑊∈𝑆

𝑛∑︁
𝑖=1

𝜖𝑖

(︁ 1√
𝑚2

𝑚2∑︁
𝑗=1

𝑎𝑗𝑉
(0)
𝑗, 𝑥

′
𝑖1{𝑉

(0)
𝑗, 𝑥

′
𝑖 ≥ 0}

)︁
.

=
1

𝑛
E𝜖 sup

𝑊∈𝑆

𝑛∑︁
𝑖=1

𝜖𝑖
1√
𝑚2

𝑎𝑇𝜎(𝑉 (0)𝑥′𝑖) ≤ sup
𝑊∈𝑆

1√
𝑚2

𝑎𝑇𝜎(𝑉 (0)𝑥′𝑖).

But using Lemma 39:

𝐿𝐻𝑆 ≲ 𝜅2
√
𝑚3‖𝑥′𝑖‖.

Applying a similar bound as we did in Equation (3.89) on ‖𝑥′𝑖‖:

‖𝑥′𝑖‖ ≤ ‖𝜑(0)(𝑥𝑖)‖+ ‖𝜑′(𝑥𝑖)‖ ≲ 𝜅1
√
𝑚3 + 𝛾1.

Substituting above, we get

1

𝑛
E𝜖 sup

𝑊∈𝑆
trace(𝑉 (0)(

𝑛∑︁
𝑖=1

𝜖𝑖𝑍
′
𝑖)) ≤ 𝜅2

√
𝑚3(𝜅1

√
𝑚3 + 𝛾1). (3.90)

Finally, Substituting Equations (3.88) into (3.82), then combining it with (3.90)

into (3.81), we obtain a bound on Rademacher complexity which holds w.h.p over

both the randomness of the initialization and the dataset:

ℛ(𝒢𝛾1,𝛾2)|𝑥,𝑦 ≲

√︃
𝐶3

1

𝜅1
(
𝑛3𝑚3

3

𝑚1𝜆0
)1/2 (3.91)

+
𝛾1𝛾2
𝑛

√︃
𝑛3
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
+
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3𝑛3𝑚2
3𝑑 log(𝑚1)√
𝑚1

+ 2
𝑛2𝑚2

3𝑑 log(𝑚1)√
𝑚1

+ 2𝑛

(3.92)

+ 𝜅2
√
𝑚3(𝜅1

√
𝑚3 + 𝛾1) +

𝛾
4/3
2 𝛾1

(𝜅2
√
𝑚2)

1/3
.

Having enough overparameterization, we have for every dataset (𝑥, 𝑦) (i.e. worst-case

111

Rademacher complexity):

ℛ(𝒢𝛾1,𝛾2)|𝑥,𝑦 ≤ 2𝛾1𝛾2/
√
𝑛. (3.93)

Note that for the bound (3.93) to hold, the overparameterization should be

picked poly large in 𝛾1, 𝛾2, as well as in other basic parameters. However, noting

Equations (3.49) and (3.57) in the proof of Theorem 3, we set 𝛾1 = 1, 𝛾2 ≥ Ω(𝐵, 𝑛, 1/𝛾0)

in Theorem 3, so 𝛾1𝛾2 is at most poly in the basic parameters. Therefore, again the

overparameterization can be picked polynomially large in the basic only parameters

(i.e. independent of 𝛾1, 𝛾2 or 𝜁).

112

3.6.12 Constructing 𝑊 *, 𝑉 *

This section consists of two subsections; First, we prove a structural result for the first

layer weights (𝑊 ′, 𝑉 ′) that the algorithm visits, then construct a weight matrix 𝑊 * for

the first layer with some good properties. Second, we do the same thing for the second

layer (however, the structure of the first and second layers are completely different).

Through out this section, we assume we have the norm bounds ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2.

Notably, we rely on a number of basic Lemmas more related to the representation

power of the network, which we defer their proof into a later Section 3.7.2 and refer

to them here as needed.

First Layer, Construction of 𝑊 *

Lemma 10. Suppose 𝑚1 ≥ 16𝑛2𝑚2
3/𝜆

2
0. Let 𝑃𝑖 = {𝑗 ∈ [𝑚1]| |𝑊 (0)

𝑗 𝑥𝑖| ≤ 𝑐2/
√
𝑚1}

and 𝑃 = ∪𝑃𝑖. During SGD iterations, suppose we have ‖𝑊 ′‖𝐹 ≤ 𝐶1. Then, for a

value 𝑐2 satisfying

2𝐶1

√
𝑛𝑚3/

√
𝜆0 ≤ 𝑐2 ≤ 𝜅1𝜆0

√
𝑚1/(2𝑛

2),

with high probability ∀𝑖:

|𝑃𝑖| ≲ 𝑐2
√
𝑚1/𝜅1,

and for 𝑗 /∈ 𝑃 , during the whole algorithm we have

‖𝑊 ′
𝑗‖ ≤

√
𝑛𝑚3𝐶1√
𝑚1𝜆0

+ 𝑐2/(4
√
𝑚1) ≤ 𝑐2/(2

√
𝑚1),

𝑐2/
√
𝑚2 ≤ |𝑊

(0)
𝑗 𝑥𝑖|.

So the signs of neurons outside 𝑃 never changes. In particular, we can set 𝑐2 as

small as 𝑐2 = 𝐶1
√
𝑛𝑚3/

√
𝜆0. In the rest of the proof (i.e. other sections), we set 𝑐2

to this value.

Proof of Lemma 10

113

Define the matrix

𝑍𝑖
𝑘 =

1√
𝑚1

(𝑊 𝑠
𝑘,𝑗𝑥𝑖1{∀𝑖 : 𝑊

(0)
𝑗

𝑇𝑥𝑖 ≥ 𝑐2/
√
𝑚1})𝑛𝑗=1.

Let 𝑃𝑖 be the set of indices 𝑗 such that 1{𝑊 (0)
𝑗

𝑇𝑥𝑖 ≥ 𝑐2/
√
𝑚1} is zero. First of all,

note that by Bernstein inequality:

|𝑃𝑖| ≤ 𝑐2
√
𝑚1/𝜅1 +𝑂(

√︁
𝑐2
√
𝑚1/𝜅1 + 1) ≲ 𝑐2

√
𝑚1/𝜅1.

Now suppose that until the current iteration of the algorithm the assumption has

been true, i.e. the signs of the neurons outside of 𝑃 have never changed. As a result,

due to the specific update of the SGD for both of the terms E𝑍ℓ(𝑓𝑉 ′,𝑊 ′(𝑥), 𝑦) and

‖𝑊 ′‖2𝐹 , if we define 𝑊 ′|𝑃 to be the restriction of 𝑊 ′ to indices that are not in 𝑃 (i.e.

the columns in 𝑃 are equal to zero), then we can write

𝑊 ′|𝑃 𝑇 =

𝑚3∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝛼𝑘,𝑖𝑍
𝑖
𝑘. (3.94)

An issue here is that we also have some injected noise by PSGD into 𝑊 ′ which violates

Equation (3.94). To handle the injected noise as well, we define the subspace Φ′ of

R𝑚1×𝑑 matrices to be the set of vectors with arbitrary rows for 𝑗 ∈ [𝑚1] with 𝑗 ∈ 𝑃 ,

while restricted to the other rows 𝑗 /∈ 𝑃 in should be in the span of (𝑍𝑖
𝑘)𝑖,𝑘. Then, we

decompose 𝑊 ′ into subspaces Φ′ and Φ′⊥ respectively as 𝑊 ′ = 𝑊 ′(1) +𝑊 ′(2), where

𝑊 ′(1) ∈ Φ′,𝑊 ′(2) ∈ Φ′⊥. Here, we want to prove ‖𝑊 ′(1)
𝑗 ‖ ≤ 𝑐2/(4

√
𝑚1). We handle

the ‖𝑊 ′(2)
𝑗 ‖ part in Section 54. So instead of 𝑊 ′|𝑃 in Equation (3.94) we consider

𝑊 ′(1)|𝑃 :

𝑊 ′(1)|𝑃
𝑇
=

𝑚3∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝛼𝑘,𝑖𝑍
𝑖
𝑘. (3.95)

We handle the other part 𝑊 ′(2) in Section 54. Now exactly similar to the drivation in

114

Lemma 47, we can state with high probability

𝐶2
1 ≥ ‖𝑊 ′‖2 ≥ ‖𝑊 ′(1)‖2

≥ ‖𝑊 ′(1)|𝑃‖2 ≥
𝑚3∑︁
𝑘=1

‖
𝑛∑︁
𝑖=1

𝛼𝑘,𝑖𝑍
𝑖
𝑘‖2 −𝑂(𝑛𝑚3/

√
𝑚1)

∑︁
𝑘

‖𝛼𝑘‖2. (3.96)

Note that we are exploiting the fact that the norm ‖𝑊 ′‖ remains bounded by 𝐶1.

Now using a Hoeffding bound for matrix 𝐻∞′ defined below, we write:

𝐻∞′
𝑖1,𝑖2

:= E𝑤:𝒩 (0,R𝑑)1{∀𝑖 : |𝑤𝑇𝑥𝑖| ≥ 𝑐2/
√
𝑚1}𝑥𝑇𝑖1𝑥𝑖2(1{𝑤

𝑇𝑥𝑖1 ≥ 0}1{𝑤𝑇𝑥𝑖2 ≥ 0})

= E𝑤:𝒩 (0,R𝑑)(1{𝑤𝑇𝑥𝑖1 ≥ 0}1{𝑤𝑇𝑥𝑖2 ≥ 0})𝑥𝑇𝑖1𝑥𝑖2

±𝑂(E1{∃𝑖 : |𝑤𝑇𝑥𝑖| ≤ 𝑐2/
√
𝑚1}(1{𝑤𝑇𝑥𝑖1 ≥ 0}1{𝑤𝑇𝑥𝑖2 ≥ 0}))𝑥𝑇𝑖1𝑥𝑖2

= 𝐻∞
𝑖1,𝑖2
±𝑂(𝑛𝑐2/(

√
𝑚1𝜅1)‖𝑥𝑖1‖‖𝑥𝑖2‖)

= 𝐻∞
𝑖1,𝑖2
±𝑂(𝑛𝑐2/(

√
𝑚1𝜅1)). (3.97)

Now opening Equation (3.96) and using the property 𝑐2 ≤ 𝑘1𝜆0
√
𝑚1/(2𝑛

2), we get

𝐿𝐻𝑆 =
∑︁
𝑘

∑︁
𝑖1,𝑖2

𝛼𝑘,𝑖1𝛼𝑘,𝑖2⟨𝑍𝑖1
𝑘 , 𝑍

𝑖2
𝑘 ⟩ −𝑂(𝑛𝑚3/

√
𝑚1

∑︁
𝑘

‖𝛼𝑘‖2)

=
∑︁
𝑘

∑︁
𝑖1,𝑖2

𝛼𝑘,𝑖1𝛼𝑘,𝑖2(𝐻
∞′
𝑖1,𝑖2
±𝑂(1/

√
𝑚1))−𝑂(𝑛𝑚3/

√
𝑚1

∑︁
𝑘

‖𝛼𝑘‖2)

≥
∑︁
𝑘

∑︁
𝑖1,𝑖2

𝛼𝑘,𝑖1𝛼𝑘,𝑖2𝐻
∞
𝑖1,𝑖2
± ‖𝛼𝑘‖21𝑂(𝑛𝑐2/

√
𝑚1𝜅1)−𝑂(𝑛𝑚3/

√
𝑚1

∑︁
𝑘

‖𝛼𝑘‖2)

≥
∑︁
𝑘

𝛼𝑇𝑘𝐻
∞𝛼𝑘 −𝑂(𝑛𝑐2/

√
𝑚1𝜅1)

∑︁
𝑘

‖𝛼𝑘‖21 −𝑂(𝑛𝑚3/
√
𝑚1

∑︁
𝑘

‖𝛼𝑘‖2)

≥
∑︁
𝑘

𝛼𝑇𝑘𝐻
∞𝛼𝑘 −𝑂(𝑐2𝑛2/

√
𝑚1𝜅1)

∑︁
𝑘

‖𝛼𝑘‖22 −𝑂(𝑛𝑚3/
√
𝑚1

∑︁
𝑘

‖𝛼𝑘‖2)

= (𝜆0 −𝑂(𝑛𝑚3/
√
𝑚1)−𝑂(𝑐2𝑛2/

√
𝑚1𝜅1))

∑︁
𝑘

‖𝛼𝑘‖2

≥ 𝜆0/2
∑︁
𝑘

‖𝛼𝑘‖2.

115

For the last line to hold, we need enough overparameterization. This implies

∑︁
𝑘

‖𝛼𝑘‖2 ≲ 𝐶2
1/𝜆0.

Now again, exactly similar to the derivation in Lemma 47, for 𝑗 /∈ 𝑃 we have

‖𝑊 ′(1)
𝑗 ‖ ≤

√
𝑛𝑚3/

√
𝑚1

√︃∑︁
𝑘

‖𝛼𝑘‖2 ≲
√
𝑚3𝑛𝐶1/

√︀
𝑚1𝜆0,

which completes most of the proof. For the rest, we are left to show that for the other

part 𝑊 ′(2), we have ‖𝑊 ′(2)
𝑗 ‖ ≤ 𝑐2/(4

√
𝑚1), which we do in Section 54.

Lemma 11. Under condition 𝑚3𝑛/
√
𝑚1 ≤ 𝜆0/4, there exist matrices {𝑊 *

𝑘 }
𝑚3
𝑘=1 ∈

R𝑚1×𝑑 s.t. for every 𝑘 ̸= 𝑘′ ∈ [𝑚3] and 𝑖 ∈ [𝑛]:

⟨𝑊 *
𝑘 , 𝑍

𝑖
𝑘′⟩ = 0,

‖𝑊 *
𝑘 −𝑊+

𝑘 ‖ ≲
𝑛
√
𝑚3

𝜆0
√
𝑚1

‖𝒱𝑘‖𝐻∞ ,

|⟨𝑊 *
𝑘 , 𝑍

𝑖
𝑘⟩ − ⟨𝑊+

𝑘 , 𝑍
𝑖
𝑘⟩| ≲

𝑛
√
𝑚3

𝜆0
√
𝑚1

‖𝒱𝑘‖𝐻∞ .

Furthermore, for 𝑘1 ̸= 𝑘2:

|⟨𝑊 *
𝑘1
,𝑊 *

𝑘2
⟩| ≤ 𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)‖𝒱𝑘1‖𝐻∞‖𝒱𝑘2‖𝐻∞ . (3.98)

Proof of Lemma 11

Let

𝑊+
𝑘 =

∑︁
𝑖

𝒱𝑘,𝑖𝑍𝑖
𝑘.

we want to compute the norm of the projection 𝑃 (𝑊+
𝑘) of 𝑊+

𝑘 onto the subspace

116

spanned by all 𝑍𝑖
𝑘′ for 𝑘′ ̸= 𝑘 and 𝑖 ∈ [𝑛]:

‖𝑃 (𝑊+
𝑘)‖

2 = (⟨𝑊+
𝑘 , 𝑍

𝑖
𝑘′⟩)𝑇𝑘′ ̸=𝑘,𝑖∈[𝑛]

(︁
⟨𝑍𝑖1

𝑘1
, 𝑍𝑖2

𝑘2
⟩
)︁−1

(𝑘1,𝑖1),(𝑘2,𝑖2)∈[𝑚3]−{𝑘}×[𝑛]
(⟨𝑊+

𝑘 , 𝑍
𝑖
𝑘′⟩)𝑘′ ̸=𝑘,𝑖∈[𝑛],

(3.99)

where the first and third terms are vectors and the middle term is a matrix. Now note

that for each 𝑘′, 𝑘1, 𝑘2 ̸= 𝑘, by Hoeffding inequality:

(︁
⟨𝑍𝑖1

𝑘′ , 𝑍
𝑖2
𝑘′ ⟩
)︁
𝑖1,𝑖2∈[𝑛]

= 𝐻∞ + (±1/
√
𝑚1)𝑖1,𝑖2∈[𝑛], (3.100)

⟨𝑊+
𝑘 , 𝑍

𝑖
𝑘′⟩ = ⟨

∑︁
𝑖

𝒱𝑘,𝑖𝑍𝑖
𝑘, 𝑍

𝑖
𝑘′⟩ ≲

1√
𝑚1

∑︁
𝑖

|𝒱𝑘,𝑖|

≤
√
𝑛√
𝑚1

‖𝒱𝑘‖

≤
√
𝑛√

𝑚1𝜆0
‖𝒱𝑘‖𝐻∞ . (3.101)

Therefore,

‖(⟨𝑊+
𝑘 , 𝑍

𝑖
𝑘′⟩)𝑇𝑘′ ̸=𝑘,𝑖∈[𝑛]‖ ≤ 𝑛

√︂
𝑚3

𝑚1𝜆0
‖𝒱𝑘‖𝐻∞ . (3.102)

Now Equation (3.100) implies for small enough 𝑚1

𝜆𝑚𝑖𝑛(
(︁
⟨𝑍𝑖1

𝑘′ , 𝑍
𝑖2
𝑘′ ⟩
)︁
𝑖1,𝑖2∈[𝑛]

) ≥ 𝜆0/2, (3.103)

as long as 𝜆0 ≥ 2𝑛/𝑚1. Moreover, define 𝐴 to be the block version of

𝐴′ =
(︁
⟨𝑍𝑖1

𝑘1
, 𝑍𝑖2

𝑘2
⟩
)︁−1

(𝑘1,𝑖1),(𝑘2,𝑖2)∈[𝑚3]−{𝑘}×[𝑛]
,

i.e. for 𝑘1 = 𝑘2 they are the same but for 𝑘1 ̸= 𝑘2 𝐴 is zero. Then

𝜆𝑚𝑖𝑛(𝐴) ≥ 𝜆0/2,

because the eigenvalues of each block is at least 𝜆0/2 using Equation (3.103). But

117

note that

‖𝐴′ − 𝐴‖2 ≤ ‖𝐴′ − 𝐴‖𝐹 ≤ 𝑚3𝑛/
√
𝑚1.

So as long as 𝑚3𝑛/
√
𝑚1 ≤ 𝜆0/4, we have 𝜆𝑚𝑖𝑛(𝐴) ≥ 𝜆0/4. Combining this fact

with Equation (3.102) and plugging it into Equation (3.99), we obtain

‖𝑃 (𝑊+
𝑘)‖

2 ≲
𝑛2𝑚3

𝑚1𝜆20
‖𝒱𝑘‖2𝐻∞ .

Now define 𝑊 *
𝑘 = 𝑊+

𝑘 − 𝑃 (𝑊
+
𝑘). Then

‖𝑊 *
𝑘 −𝑊+

𝑘 ‖ = ‖𝑃 (𝑊
+
𝑘)‖ ≲

𝑛
√
𝑚3

𝜆0
√
𝑚1

‖𝒱𝑘‖𝐻∞ ,

|⟨𝑊 *
𝑘 −𝑊+

𝑘 , 𝑍
𝑖
𝑘⟩| ≤ ‖𝑃 (𝑊+

𝑘)‖‖𝑍
𝑖
𝑘‖ ≲

𝑛
√
𝑚3

𝜆0
√
𝑚1

‖𝒱𝑘‖𝐻∞ .

Furthermore, note that 𝑊 *
𝑘2

is orthogonal to 𝑊+
𝑘1

for 𝑘1 ̸= 𝑘2, so

|⟨𝑊 *
𝑘1
,𝑊 *

𝑘2
⟩| = |⟨𝑊+

𝑘1
− 𝑃 (𝑊+

𝑘1
),𝑊 *

𝑘2
⟩|

= |⟨𝑃 (𝑊+
𝑘1
),𝑊+

𝑘2
− 𝑃 (𝑊+

𝑘2
)⟩|

≤ ‖𝑃 (𝑊+
𝑘1
)‖‖𝑊+

𝑘2
− 𝑃 (𝑊+

𝑘2
)‖

≤ ‖𝑃 (𝑊+
𝑘1
)‖(‖𝑊+

𝑘2
‖+ ‖𝑃 (𝑊+

𝑘2
)‖). (3.104)

But note that

‖𝑊+
𝑘 ‖ = ‖

∑︁
𝑖

𝒱𝑘,𝑖𝑍𝑖
𝑘‖ ≤

∑︁
𝑖

|𝒱𝑘,𝑖|‖𝑍𝑖
𝑘‖ ≤

∑︁
𝑖

|𝒱𝑘,𝑖| ≤
√
𝑛‖𝒱𝑘‖2. ≤

√
𝑛

𝜆0
‖𝒱𝑘‖𝐻∞ .

Therefore, we can bound Equation (3.104) as:

|⟨𝑊 *
𝑘1
,𝑊 *

𝑘2
⟩| ≤ 𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)‖𝒱𝑘1‖𝐻∞‖𝒱𝑘2‖𝐻∞ .

Lemma 12. There exists a matrix 𝑊+2
𝑘 such that for every 𝑗 ∈ 𝑃 , 𝑊+2

𝑘 𝑗 = 0, and

|trace(𝑊+2
𝑘 𝑍𝑘

𝑖)− �̄�𝑖,𝑘| ≤ 𝐶1

√
𝑚3𝑛

2/(𝜆0𝜅1
√
𝑚1)‖𝒱𝑘‖𝐻∞ .

118

Proof of Lemma 12

Define 𝑊+2
𝑘 to be equal to 𝑊+

𝑘 for 𝑗 /∈ 𝑃 and equal to zero vector otherwise. Then,

by Lemma 47: (note that |𝑃𝑖| ≤ 𝐶1
√
𝑛𝑚3
√
𝑚1/(

√
𝜆0𝜅1))

|trace(𝑊+
𝑘 𝑍

𝑘
𝑖)− trace(𝑊+2

𝑘 𝑍𝑘
𝑖)| ≤ 1/

√
𝑚1

∑︁
𝑗∈𝑃

|𝑊+
𝑘 𝑗𝑥𝑖|

≤ |𝑃 |√
𝑚1

‖𝑊+
𝑘 ‖

≤
√
𝑛𝑚3/(𝑚1

√︀
𝜆0) |𝑃 |‖𝒱𝑘‖𝐻∞

≤ 𝐶1𝑚3𝑛
2/((𝜆0𝜅1

√
𝑚1) ‖𝒱𝑘‖𝐻∞ .

Combining this with Lemma 46, the desired result follows.

Lemma 13. Under condition 𝑚3𝑛/
√
𝑚1 ≤ 𝜆0/4, there exist matrix 𝑊 *

𝑘 ’s exactly

satisfying the same conditions in Lemma 11 but with respect to 𝑊+2
𝑘 instead of 𝑊+

𝑘 ,

and moreover, for 𝑗 ∈ 𝑃 we have 𝑊 *
𝑘 𝑗 = 0.

Proof of Lemma 13

We can repeat the exact same procedure of Lemma 11 for 𝑊+2
𝑘 . Using the bound in

Equation (3.97), we have

(︁
⟨𝑍𝑖1

𝑘′ , 𝑍
𝑖2
𝑘′ ⟩
)︁
𝑖1,𝑖2∈[𝑛]

= 𝐻 ′∞ +𝑂(±1/
√
𝑚1)𝑖1,𝑖2∈[𝑛]

= 𝐻∞ + (±𝑛𝑐2/
√
𝑚1𝜅1)𝑖1,𝑖2∈[𝑛] +𝑂(±1/

√
𝑚1)𝑖1,𝑖2∈[𝑛]

= 𝐻∞ + (±𝑛𝑐2/
√
𝑚1𝜅1)𝑖1,𝑖2∈[𝑛],

so as long as

𝑛2𝑐2/
√
𝑚1𝜅1 = 𝑛2𝐶1

√
𝑛𝑚3/(𝜅1

√︀
𝑚1𝜆0) ≤ 𝜆0/2,

with similar argument as in Lemma 11, we get

𝜆𝑚𝑖𝑛(
(︁
⟨𝑍𝑖1

𝑘′ , 𝑍
𝑖2
𝑘′ ⟩
)︁
𝑖1,𝑖2∈[𝑛]

) ≥ 𝜆0/2.

119

Moreover,

⟨𝑊+2
𝑘 , 𝑍𝑖

𝑘′⟩ = ⟨
∑︁
𝑖

𝒱𝑘,𝑖𝑍𝑖
𝑘, 𝑍

𝑖
𝑘′⟩ ≲

1√
𝑚1

∑︁
𝑖

|𝒱𝑘,𝑖|

≤
√
𝑛√
𝑚1

‖𝒱𝑘‖

≤
√
𝑛√

𝑚1𝜆0
‖𝒱𝑘‖𝐻∞ .

Thus, using the same argument as before the proof is complete.

Lemma 14. Suppose

𝑚1 ≥ 𝑛7𝑚3/𝜆0.

During SGD, suppose we are currently at (𝑉 ′,𝑊 ′) with 𝑊 ′ ≤ 𝐶1. For any matrix

𝑊1, we denote the signs of the first layer imposed by 𝑊1 by 𝐷𝑊1,𝑥𝑖. Then with high

probability, there exists 𝑊 * =
∑︀

𝑘∈[𝑚3]
𝑊 *
𝑘 such that 𝑊 *

𝑘 ’s is orthogonal to all other

𝑍𝑖
𝑘′’s for 𝑘′ ̸= 𝑘, and for every 𝑖 ∈ [𝑛], we have:

‖ 1√
𝑚1

𝑊 𝑠𝐷𝑊 (0)+𝑊 ′,𝑥𝑖𝑊
*𝑥𝑖 − �̄�𝑖‖∞ ≲

𝑛𝑚3√
𝑚1𝜆0

[︁
1 +

𝑛𝐶1

𝜅1

]︁
‖𝒱𝑘‖𝐻∞ := ℜ‖𝒱𝑘‖𝐻∞ .

Moreover, we have

‖𝑊 *
𝑗 ‖ ≤

√
𝑛𝑚3/(

√︀
𝑚1𝜆0)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ +
𝑛
√
𝑚3

𝜆0
√
𝑚1

(
∑︁
𝑘

‖𝒱𝑘‖𝐻∞) := 𝜚

√︂
𝑚3

𝑚1

, (3.105)

Particularly, for any diagonal sign matrix Σ ∈ R𝑚3×𝑚3, we have

‖𝑊 *
Σ‖2𝐹 ≤ (

𝑛
√
𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

) + (1 +𝑂(𝑛/(𝜆0
√
𝑚1) +

𝑛2𝑚3

𝜆20𝑚1

)))
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

(3.106)

which, by having enough overparameterization, implies

‖𝑊 *
Σ‖𝐹 ≤

√︃
2
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ =
√︀

2𝜁1, (3.107)

120

where

𝑊 *
Σ :=

𝑚3∑︁
𝑘=1

Σ𝑘𝑊
*
𝑘 . (3.108)

Moreover, we have

1√
𝑚1

𝑊 𝑠𝐷𝑊 (0)+𝑊 ′,𝑥𝑖𝑊
*
Σ𝑥𝑖 = Σ

1√
𝑚1

𝑊 𝑠𝐷𝑊 (0)+𝑊 ′,𝑥𝑖𝑊
*𝑥𝑖. (3.109)

Proof of Lemma 14

From Lemma 12, we have

|�̄�𝑖,𝑘 − trace(𝑊+2
𝑘 𝑍𝑖

𝑘)| ≤ 𝐶1𝑚3𝑛
2/(𝜆0𝜅1

√
𝑚1) ‖𝒱𝑘‖𝐻∞ .

Combining this with the result of Lemma 13, we get:

|�̄�𝑖,𝑘 − trace(𝑊 *
𝑘𝑍

𝑖
𝑘)| ≲

[︁ 𝑛√𝑚3

𝜆0
√
𝑚1

+
𝐶1𝑚3𝑛

2

𝜆0𝜅1
√
𝑚1

]︁
‖𝒱𝑘‖𝐻∞

=
𝑛𝑚3√
𝑚1𝜆0

[︁
1 +

𝑛𝐶1

𝜅1

]︁
‖𝒱𝑘‖𝐻∞ . (3.110)

On the other hand, based on the property that 𝑊 *
𝑘 𝑗 = 0 for 𝑗 ∈ 𝑃 and its orthogonal

property from Lemma 13, for 𝑗 ∈ 𝑃 we get

1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0)+𝑊 ′,𝑥𝑖𝑊

*𝑥𝑖 =
1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0),𝑥𝑖𝑊

*𝑥𝑖

= trace(𝑊 *𝑍𝑖
𝑘) = trace(𝑊 *

𝑘𝑍
𝑖
𝑘)

=
1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0),𝑥𝑖𝑊

*
𝑘𝑥𝑖,

which combined with Equation (3.110) completes the proof. From the above, Equa-

121

tion (3.109) is also clear. Finally, note that by Lemma 47 we have

‖𝑊+2
𝑗‖ ≤

√
𝑛𝑚3/(

√︀
𝑚1𝜆0)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

which Combined with Lemma 13 implies

‖𝑊 *
𝑗 ‖ ≤

√
𝑛𝑚3/(

√︀
𝑚1𝜆0)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ +
𝑛
√
𝑚3

𝜆0
√
𝑚1

(
∑︁
𝑘

‖𝒱𝑘‖𝐻∞) := 𝜚

√︂
𝑚3

𝑚1

,

while the other claims follows from Lemma 48 and Lemma 13, combined with Equa-

tion (3.98):

‖𝑊 *
Σ‖2𝐹 ≤

∑︁
𝑘

‖𝑊 *
𝑘 ‖2 +

∑︁
𝑘1 ̸=𝑘2

|⟨𝑊 *
𝑘1
,𝑊 *

𝑘2
⟩|

≤
∑︁
𝑘

‖𝑊 *
𝑘 ‖2 +

𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)(
∑︁
𝑘

‖𝒱𝑘‖𝐻∞)2

≤
∑︁
𝑘

‖𝑊 *
𝑘 ‖2 +

𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)
√
𝑛(
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞)

≤
∑︁
𝑘

‖𝑊 *
𝑘 ‖2 +

𝑛
√
𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)𝜁1

≤ 𝑛
√
𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)𝜁1 +
∑︁
𝑘

‖𝑊+2
𝑘 ‖

2 +
𝑛2𝑚3

𝜆20𝑚1

∑︁
𝑘

‖𝒱𝑘‖2𝐻∞

≤ 𝑛
√
𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)𝜁1 +
∑︁
𝑘

‖𝑊+
𝑘 ‖

2 +
𝑛2𝑚3

𝜆20𝑚1

∑︁
𝑘

‖𝒱𝑘‖2𝐻∞

≲
𝑛
√
𝑛

𝜆20

√
𝑚3√
𝑚1

(1 +

√
𝑚3√
𝑚1

)𝜁1 + (1 +𝑂(𝑛/(𝜆0
√
𝑚1) +

𝑛2𝑚3

𝜆20𝑚1

))𝜁1.

Next, we move on to construct 𝑉 * for the second layer.

Second Layer, Construction of 𝑉 *

In this section, we present a couple of lemmas that step by step lead to the construction

of 𝑉 *. we remind the reader that 𝜑(0)(𝑥𝑖) is the output of the first layer at initialization

weights, 𝜑′(𝑥𝑖) and 𝜑(2)(𝑥𝑖) are the changes in the output of the first layer when 𝑊 ′

and 𝑊 ′ +𝑊 𝜌 are added, respectively, and finally 𝜑*(𝑥𝑖) is the optimal features that

122

are generated by the matrix 𝑊 * but with the sign pattern of 𝑊 (0) +𝑊 ′, i.e.

𝜑*(𝑥𝑖) =
1√
𝑚1

𝑊 𝑠𝐷𝑊 (0)+𝑊 ′,𝑥𝑖𝑊
*𝑥𝑖.

We also define 𝑥′𝑖 as

𝑥′𝑖 = 𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖) =
1√
𝑚1

𝑊 𝑠𝜎((𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖).

To begin, we state a lemma to bound the magnitude of ‖𝜑′(𝑥𝑖)‖, given that the

norm of 𝑊 ′ is bounded by 𝐶1 and the sign pattern Sgn
(︁
(𝑊 (0) + 𝑊 ′)𝑥𝑖

)︁
satisfies

condition stated for the set of indices 𝑃 in Lemma 10. Later on, we exploit this

Lemma in Lemma 42 to state bounds for ‖𝜑(2)(𝑥𝑖)‖.

Lemma 15. Let the matrix 𝑊 ′ with norm bound ‖𝑊 ′‖ ≤ 𝐶1, such that the signs of

(𝑊
(0)
𝑗 +𝑊 ′

𝑗)𝑥𝑖 and 𝑊 (0)
𝑗 𝑥𝑖 can be different only for 𝑗 ∈ 𝑃 , for 𝑃 defined in Lemma 10.

(Note that for 𝑊 ′ at every step of the algorithm, this is automatically satisfied by

Lemma 10) Then

‖𝜑′(𝑥𝑖)‖ ≤
2𝐶

3/2
1√
𝜅1

(
𝑛3𝑚3

3

𝑚1𝜆0
)1/4 + (1 +𝑂(𝑚2

3/
√
𝑚1))𝐶1.

Particularly for large enough 𝑚1 compared to 𝑛,𝑚3, 𝜆0, 𝜅1, 𝐶1, we have

‖𝜑′(𝑥𝑖)‖ ≲ 𝐶1.

Proof of Lemma 15

We write

|𝜑′
𝑘(𝑥𝑖)− ⟨𝑊 ′, 𝑍𝑖

𝑘⟩| ≤ 2/
√
𝑚1

∑︁
𝑗∈𝑃

|𝑊 ′
𝑗𝑥𝑖| ≤ 2/

√
𝑚1

∑︁
𝑗∈𝑃

‖𝑊 ′
𝑗‖

≤ 2
√︀
|𝑃 |/
√
𝑚1‖𝑊 ′‖𝐹 ≤

2𝐶
3/2
1√
𝜅1

(
𝑛3𝑚3

𝑚1𝜆0
)1/4, (3.111)

123

where the last line follows from the bound on |𝑃 | from Lemma 10.

On the other hand, because by Hoeffding we know that ⟨𝑍𝑖
𝑘, 𝑍

𝑖
𝑘′⟩ ≲ 1/

√
𝑚1 by

Lemma 49, we get

𝑚3∑︁
𝑘=1

⟨𝑊 ′, 𝑍𝑖
𝑘⟩2 ≤ (1 +𝑂(𝑚2

3/
√
𝑚1))‖𝑊 ′‖2𝐹 ≤ (1 +𝑂(𝑚2

3/
√
𝑚1))𝐶

2
1 .

Combining this with Equation (3.111), we get

‖𝜑′(𝑥𝑖)‖ ≤
√︃∑︁

𝑘

|𝜑(2)
𝑘 (𝑥𝑖)− ⟨𝑊 ′, 𝑍𝑖

𝑘⟩|2 +
√︃∑︁

𝑘

⟨𝑊 ′, 𝑍𝑖
𝑘⟩2

≤ 2𝐶
3/2
1√
𝜅1

(
𝑛3𝑚3

3

𝑚1𝜆0
)1/4 + (1 +𝑂(𝑚2

3/
√
𝑚1))𝐶1. (3.112)

Next, we prove a structural lemma regarding the sign pattern in the second layer

when we feed in 𝑥′𝑖 to it, with the important message that the dominance of sign

patterns are specified by 𝜑(0)(𝑥𝑖).

Lemma 16. Suppose we have 𝑚3𝜅
2
1 ≳ 𝐶2

1 , 𝜅2
√
𝑚2 ≥ 𝐶2, and 𝑚1 satisfies the condition

on Lemma 15. If we have the condition ‖𝜑(2)(𝑥𝑖)‖ ≲ 𝐶1, which happens under the high

probability event 𝐸𝑐 defined in Lemma 42, then for every 𝑖 ∈ [𝑛], there exist a subset

𝑃𝑖 which might depend on 𝑊 (0), 𝑉 (0),𝑊 ′, 𝑉 ′, such that

|𝑃𝑖| ≲
(︁(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
+ (𝑐3 +

𝐶2
1

𝑐23𝑚3𝜅21
)(

𝐶2
2

𝜅22𝑚2

)1/3
)︁
𝑚2.

Moreover, for every 𝑖 ∈ [𝑛], for 𝑗 /∈ 𝑃𝑖,:

2

3
|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≥ |𝑉 (0)

𝑗 𝜑(2)(𝑥𝑖)|+ |𝑉 ′
𝑗 (𝜑

(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))|,

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≳ (

𝜅2
𝑚2

)1/3𝐶
2/3
2 𝑐3‖𝜑(0)(𝑥𝑖)‖,

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≳ (

𝜅2
𝑚2

)1/3𝐶
2/3
2 𝑐3‖𝑥′𝑖‖.

Proof of Lemma 16

124

By assumption, we know that during the algorithm, we have ‖𝑉 ′‖ ≤ 𝐶2. Also,

we know by Lemma 42 that under 𝐸𝑐:

‖𝜑(2)(𝑥𝑖)‖ ≤ 2𝐶1.

Define the set

𝑃 ′
𝑖 = {𝑗| |𝑉

(0)
𝑗 𝜑(0)(𝑥𝑖)| ≤ 𝑐3(

𝜅2
𝑚2

)1/3𝐶
2/3
2 ‖𝜑(0)(𝑥𝑖)‖} (3.113)

and 𝑃 ′ = ∪𝑃 ′
𝑖 . We have

P(|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≤ 𝑐3(

𝜅2
𝑚2

)1/3𝐶
2/3
2 ‖𝜑(0)(𝑥𝑖)‖) ≤ 𝑐3(

𝜅2
𝑚2

)1/3𝐶
2/3
2 /𝜅2,

so by Bernstein, with high probability:

|𝑃 ′
𝑖 | ≤ 𝑚2𝐶

2/3
2 𝑐3(

𝜅2
𝑚2

)1/3/𝜅2 +

√︂
𝑚2𝐶

2/3
2 𝑐3(

𝜅2
𝑚2

)1/3/𝜅2 + 1 ≲ 𝑐3𝑚2𝐶
2/3
2 (

𝜅2
𝑚2

)1/3/𝜅2,

so with high prob.

|𝑃 ′
𝑖 | ≲ 𝑐3𝐶

2/3
2 (

𝑚2

𝜅2
)2/3. (3.114)

On the other hand, Note that

𝜑
(0)
𝑘 (𝑥𝑖) =

𝑚1∑︁
𝑗=1

1/
√
𝑚1𝑊

𝑠
𝑘,𝑗𝜎(𝑊

(0)
𝑗 𝑥𝑖) (3.115)

is subGaussian with parameter 𝜎2 = 𝑂(1/𝑚1

∑︀
𝑗 𝜎(𝑊

(0)
𝑗 𝑥𝑖)

2). Furthermore, note that

if we compute the variance of 𝜑(0)
𝑘 (𝑥𝑖) with respect to the randomness of 𝑊 𝑠:

E𝜑(0)
𝑘 (𝑥𝑖)

2 = 1/𝑚1

𝑚1∑︁
𝑗=1

𝜎(𝑊
(0)
𝑗 𝑥𝑖)

2 := ℵ

125

which itself concentrates around 1/2𝜅21‖𝑥𝑖‖2 = 1/2𝜅21 by another Bernstein, i.e.

ℵ = 1/2𝜅21(1 ± 𝑂(1/
√
𝑚1)). Therefore, by concentration of subexponential vari-

ables (Bernstein), it is not hard to see that the squared norm of the vector 𝜑(0)(𝑥𝑖) is

(𝑚3𝜅
4
1, 𝜅2)-subexponential and concentrates around 𝑚3ℵ, i.e.

‖𝜑(0)(𝑥𝑖)‖2 = 𝑚3ℵ ±𝑂(𝜅21
√
𝑚3) = 𝑚3𝜅

2
1/2±𝑂(𝑚3𝜅

2
1/
√
𝑚1)±𝑂(𝜅21

√
𝑚3), (3.116)

with high probability. Combining this with the fact that ‖𝜑(2)(𝑥𝑖)‖ ≲ 𝐶1 implies

with high probability:

‖𝜑(0)(𝑥𝑖)‖
‖𝜑(2)(𝑥𝑖)‖

≳

√
𝑚3𝜅1
𝐶1

. (3.117)

Now define 𝑃 ′′
𝑖 = {𝑗| |𝑉 ′

𝑗𝑥
′
𝑖| ≥ |𝑉

(0)
𝑗 𝜑(0)(𝑥𝑖)|/3}. If 𝑗 ∈ 𝑃 ′′

𝑖 − 𝑃 ′
𝑖 , then by Equa-

tion (3.117), with high probability

‖𝑉 ′
𝑗 ‖‖𝜑(2)(𝑥𝑖)‖ ≥ |𝑉 ′

𝑗𝜑
(2)(𝑥𝑖)| = |𝑉 ′

𝑗 (𝜑
(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))| = |𝑉 ′

𝑗𝑥
′
𝑖|

≥ |𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|/3 ≳ 𝑐3(

𝜅2
𝑚2

)1/3𝐶
2/3
2 ‖𝜑(0)(𝑥𝑖)‖,

or

‖𝑉 ′
𝑗 ‖2 ≳ 𝑐23(

𝜅2
𝑚2

)2/3𝐶
4/3
2

𝑚3𝜅
2
1

𝐶2
1

.

But note that ‖𝑉 ′‖2𝐹 ≤ 𝐶2
2 by our assumption, which implies

|𝑃 ′′
𝑖 − 𝑃 ′

𝑖 | ≲ 𝐶2
2/[𝑐

2
3(
𝜅2
𝑚2

)2/3𝐶
4/3
2

𝑚3𝜅
2
1

𝐶2
1

] =
𝐶

2/3
2 𝐶2

1

𝑐23𝑚3𝜅21
(
𝑚2

𝜅2
)2/3. (3.118)

Now combining Equations (3.114) and (3.118), we finally obtain

|𝑃 ′′
𝑖 | = |𝑃 ′′

𝑖 − 𝑃 ′
𝑖 |+ |𝑃 ′

𝑖 | ≲ (𝑐3 +
𝐶2

1

𝑐23𝑚3𝜅21
)𝐶

2/3
2 (

𝑚2

𝜅2
)2/3.

126

Now define the set

𝑃 ′′′
𝑖 = {𝑗| |𝑉 (0)

𝑗 𝜑(2)(𝑥𝑖)| ≥ |𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|/3}. (3.119)

Note that for every 𝑗 ∈ [𝑚2], 𝑉
(0)
𝑗 𝜑(0)(𝑥𝑖) is gaussian with variance ‖𝜑(0)(𝑥𝑖)‖ over the

randomness of 𝑉 (0)
𝑗 , so

P(𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖) ≤ 𝛼𝜅2‖𝜑(0)(𝑥𝑖)‖) ≲ 𝛼.

Therefore, if we define the set

𝑄𝑖 = {𝑗 ∈ [𝑚2]| |𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≤ 𝛼𝜅2‖𝜑(0)(𝑥𝑖)‖},

then for large enough 𝑚2, by Bernstein with high prob.:

|𝑄𝑖| ≲ 𝛼𝑚2. (3.120)

Now note that 𝜑(0)(𝑥𝑖) is fixed during the algorithm. On the other hand, by random

matrix theory, we know that with high probability, the eigenvalues of the matrix 𝑉 (0)

are in (𝜅2(
√
𝑚2 −

√
𝑚3), 𝜅2(

√
𝑚2 +

√
𝑚3)). Therefore, even if the vector 𝜑(2)(𝑥𝑖) is

picked adversarialy (because it keeps changing during the algorithm), we get that with

high probability over the randomness of 𝑉 (0):

|𝑉 (0)𝜑(2)(𝑥𝑖)‖2 ≤ 𝜅22(
√
𝑚2 +

√
𝑚3)

2‖𝜑(2)(𝑥𝑖)‖2 ≲ 𝜅22𝑚2‖𝜑(2)(𝑥𝑖)‖2. (3.121)

Moreover, because ‖𝜑(2)(𝑥𝑖)‖ ≲ 𝐶1 and from Equation (3.116), with high probabil-

ity over the randomness of 𝑊 (0):

‖𝜑(0)(𝑥𝑖)‖
‖𝜑(2)(𝑥𝑖)‖

≳

√
𝑚3𝜅1
𝐶1

.

This means that for 𝑗 ∈ 𝑃 ′′′
𝑖 −𝑄𝑖, combining these inequalities we conclude with high

127

probability

|𝑉 (0)
𝑗 𝜑(2)(𝑥𝑖)| ≥ |𝑉 (0)

𝑗 𝜑(0)(𝑥𝑖)|/3 ≳ 𝛼𝜅2‖𝜑(0)(𝑥𝑖)‖ ≥ 𝛼𝜅2

√
𝑚3𝜅1
𝐶1

‖𝜑(2)(𝑥𝑖)‖,

which combined with (3.121) implies

‖𝑃 ′′′
𝑖 ‖ ≲

𝑚2𝐶
2
1

𝑚3𝜅21𝛼
2
.

Balancing this term with the one in Equation (3.120), we set

𝛼 :=
𝐶

2/3
1

𝑚
1/3
3 𝜅

2/3
1

,

which implies

|𝑃 ′′′
𝑖 | ≲ |𝑃 ′′′

𝑖 −𝑄𝑖|+ |𝑄𝑖| ≤
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
𝑚2.

Defining 𝑃𝑖 = 𝑃 ′′
𝑖 ∪ 𝑃 ′′′

𝑖 , we finally get

|𝑃𝑖| ≲
(︁(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
+ (𝑐3 +

𝐶2
1

𝑐23𝑚3𝜅21
)𝐶

2/3
2 (

1

𝜅22𝑚2

)1/3
)︁
𝑚2.

Clearly by the definition of 𝑃 ′′
𝑖 and 𝑃 ′′′

𝑖 the proof is complete.

Corollary 5.1. Under the condition ‖𝜑(2)(𝑥𝑖)‖ ≲ 𝐶1 (which happens under the event

𝐸𝑐 defined in Lemma 42), setting 𝑐3 :=
𝐶

2/3
1

𝑚
1/3
3 𝜅

2/3
1

(
𝜅22𝑚2

𝐶2
2
)1/3 in the previous Lemma, we

obtain ∀𝑖 ∈ [𝑛]:

|𝑃𝑖| ≲
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
𝑚2.

Also for 𝑗 /∈ 𝑃𝑖, the conditions in (3.113) and (3.119) becomes the same as

|𝑊 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≤ 𝜅2

𝐶
2/3
1

𝑚
1/3
3 𝜅

2/3
1

‖𝜑(0)(𝑥𝑖)‖.

128

Hence, for every 𝑖 ∈ [𝑛] and for 𝑗 /∈ 𝑃𝑖, with high probability:

2

3
|𝑊 (0)

𝑗 𝜑(0)(𝑥𝑖)| ≥ |𝑊 (0)
𝑗 𝜑(2)(𝑥𝑖)|+ |𝑊 ′

𝑗(𝜑
(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))|, (3.122)

|𝑊 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≳ 𝜅2

𝐶
2/3
1

𝑚
1/3
3 𝜅

2/3
1

‖𝜑(0)(𝑥𝑖)‖ ≳ 𝜅2(
√
𝑚3𝜅1𝐶

2
1)

1/3, (3.123)

|𝑊 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≳

𝐶
2/3
1

𝑚
1/3
3 𝜅

2/3
2

‖𝑥′𝑖‖. (3.124)

Next, we state concentration result for the gram matrix of 𝜑(0)(𝑥𝑖)’s.

Lemma 17. For every 𝑖1, 𝑖2 ∈ [𝑛], with high probability over the randomness of 𝑊 (0)

and 𝑉 (0) we have

⟨𝜑(0)(𝑥𝑖1), 𝜑
(0)(𝑥𝑖2)⟩ = 𝑚3E𝜎(𝑊 (0)

𝑗 𝑥𝑖1)𝜎(𝑊
(0)
𝑗 𝑥𝑖2)±𝑂(𝑚3𝜅

2
1/
√
𝑚1 +

√
𝑚3𝜅

2
1).

Proof of Lemma 17

First, we compute the expectation:

E⟨𝜑(0)(𝑥𝑖1), 𝜑
(0)(𝑥𝑖2)⟩ = 1/𝑚1

∑︁
𝑗1,𝑗2∈[𝑚1]

∑︁
𝑘∈[𝑚3]

E𝑊 𝑠
𝑘,𝑗1
𝑊 𝑠
𝑘,𝑗2
𝜎(𝑊

(0)
𝑗1
𝑥𝑖1)𝜎(𝑊

(0)
𝑗2
𝑥𝑖2)

= 1/𝑚1

∑︁
𝑗1 ̸=𝑗2

E
∑︁
𝑘∈[𝑚3]

𝑊 𝑠
𝑘,𝑗1
𝑊 𝑠
𝑘,𝑗2
𝜎(𝑊

(0)
𝑗1
𝑥𝑖1)𝜎(𝑊

(0)
𝑗2
𝑥𝑖2) +𝑚3/𝑚1

∑︁
𝑗∈[𝑚1]

𝜎(𝑊
(0)
𝑗 𝑥𝑖1)𝜎(𝑊

(0)
𝑗 𝑥𝑖2).

But 𝜎(𝑊 (0)
𝑗1
𝑥𝑖1)𝜎(𝑊

(0)
𝑗2
𝑥𝑖2) is (𝑚1𝜅

4
1, 𝜅

2
1)-sub-exponential, so

∑︁
𝑗∈[𝑚1]

𝜎(𝑊
(0)
𝑗 𝑥𝑖1)𝜎(𝑊

(0)
𝑗 𝑥𝑖2) = 𝑚1E𝜎(𝑊 (0)

𝑗 𝑥𝑖1)𝜎(𝑊
(0)
𝑗 𝑥𝑖2)±𝑂(

√
𝑚1𝜅

2
1),

which means with high probability:

E⟨𝜑(0)(𝑥𝑖1), 𝜑
(0)(𝑥𝑖2)⟩ = 𝑚3E𝜎(𝑊 (0)

𝑗 𝑥𝑖1)𝜎(𝑊
(0)
𝑗 𝑥𝑖2)±𝑂(𝑚3𝜅

2
1/
√
𝑚1).

On the other side, we know that 𝜑(0)
𝑘 (𝑥𝑖1) is subgaussian with parameters 𝜎2 =

1/𝑚1

∑︀
𝑗(𝑊

(0)
𝑗 𝑥𝑖1)

2 := ℵ1 and 𝜎2 = 1/𝑚1

∑︀
𝑗(𝑊

(0)
𝑗 𝑥𝑖2)

2 := ℵ2 respectively. On the

129

other hand, we know that by Bernstein w.h.p

ℵ1 = 1/2𝜅21(1±𝑂(1/
√
𝑚1)),

ℵ2 = 1/2𝜅21(1±𝑂(1/
√
𝑚1)).

Hence, 𝜑(0)
𝑘 (𝑥𝑖1)𝜑

(2)
𝑘 (𝑥𝑖2) is (ℵ1ℵ2,

√
ℵ1ℵ2)-subexponential, and so ⟨𝜑(0)(𝑥𝑖1), 𝜑

(0)(𝑥𝑖2)⟩

is (𝑚3ℵ1ℵ2,
√
ℵ1ℵ2)-subexponential. Therefore, applying another Bernstein on the

top, we get

⟨𝜑(0)(𝑥𝑖1), 𝜑
(0)(𝑥𝑖2)⟩ = E⟨𝜑(0)(𝑥𝑖1), 𝜑

(0)(𝑥𝑖2)⟩ ±𝑂(
√
𝑚3

√︀
ℵ1ℵ2)

= 𝑚3E𝜎(𝑊 (0)
𝑗 𝑥𝑖1)𝜎(𝑊

(0)
𝑗 𝑥𝑖2)±𝑂(𝑚3𝜅

2
1/
√
𝑚1)±

√
𝑚3𝜅

2
1

2
(1±𝑂(1/

√
𝑚1))

= 𝑚3E𝜎(𝑊 (0)
𝑗 𝑥𝑖1)𝜎(𝑊

(0)
𝑗 𝑥𝑖2)±𝑂(𝑚3𝜅

2
1/
√
𝑚1 +

√
𝑚3𝜅

2
1).

Now we define the matrix 𝐿𝑖 ∈ R𝑚3×𝑚2 , with its 𝑗th column 𝐿𝑖,𝑗 equal to

𝑎𝑗√
𝑚2

1{𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖) ≥ 0}𝜑*(𝑥𝑖).

First, we state the following lemma which characterize a concentration result for the

gram matrix of (𝐿𝑖)𝑛𝑖=1.

Lemma 18. With high probability, we have the following approximation:

⟨𝐿𝑖1 , 𝐿𝑖2⟩ = ⟨𝜑*(𝑥𝑖1), 𝜑
*(𝑥𝑖2)⟩

[︁
𝐹2

(︁
2𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩)

)︁
±𝑂(𝑚−1/4

1 +𝑚
−1/4
2 +𝑚

−1/4
3)

]︁
.

Proof of Lemma 18

By Hoeffding:

⟨𝐿𝑖1 , 𝐿𝑖2⟩ = 1/𝑚2

∑︁
𝑗∈𝑚2

𝜑*(𝑥𝑖1)
𝑇𝜑*(𝑥𝑖2)1{𝑉

(0)
𝑗 𝜑(1)(𝑥𝑖1) ≥ 0}1{𝑉 (0)

𝑗 𝜑(1)(𝑥𝑖2) ≥ 0}

= 𝜑*(𝑥𝑖1)
𝑇𝜑*(𝑥𝑖2)

(︁
E1{𝑉 (0)

𝑗 𝜑(1)(𝑥𝑖1) ≥ 0}1{𝑉 (0)
𝑗 𝜑(1)(𝑥𝑖2) ≥ 0} ±𝑂(1/

√
𝑚2)

)︁
= 𝜑*(𝑥𝑖1)

𝑇𝜑*(𝑥𝑖2)
(︁
𝐹2

(︁
⟨𝜑(1)(𝑥𝑖1), 𝜑

(1)(𝑥𝑖2)⟩/(‖𝜑(1)(𝑥𝑖1)‖‖𝜑(1)(𝑥𝑖2)‖)
)︁
±𝑂(1/

√
𝑚2)

)︁
,

130

where recall

𝐹2(𝑥) = 1/4 + arcsin(𝑥)/2𝜋,

measures the angle between two unit vectors based on their dot product. Now notice

that according to Lemma 17, with high probability:

⟨𝐿𝑖1 , 𝐿𝑖2⟩/⟨𝜑*(𝑥𝑖1), 𝜑
*(𝑥𝑖2)⟩

= 𝐹2

(︁ 𝑚3E𝜎(𝑊 (0)
𝑗 𝑥𝑖1)𝜎(𝑊

(0)
𝑗 𝑥𝑖2)±𝑂((𝑚3/

√
𝑚1 +

√
𝑚3)𝜅

2
1)√︁

(𝑚3E𝜎(𝑊 (0)
𝑗 𝑥𝑖1)

2 ±𝑂((𝑚3/
√
𝑚1 +

√
𝑚3)𝜅

2
1))(𝑚3E𝜎(𝑊 (0)

𝑗 𝑥𝑖2)
2 ±𝑂(...)

±𝑂(1/
√
𝑚2)

)︁
= 𝐹2

(︁𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩)±𝑂(1/
√
𝑚1 + 1/

√
𝑚3)

1/2±𝑂(1/
√
𝑚1 + 1/

√
𝑚3)

±𝑂(1/
√
𝑚2)

)︁
,

where recall 𝐹3 : [−1,+1]→ [−1/2, 1/2] is defined as:

𝐹3(𝑥) :=

√
1− 𝑥2
2𝜋

+
𝑥

4
+
𝑥 arcsin𝑥

2𝜋
.

It is easy to see 𝐹3 has the property that for unit vectors 𝑥1, 𝑥2 and 𝑤 sampled as

standard normal:

𝐹3(⟨𝑥1, 𝑥2⟩) = E𝜎(𝑤𝑇𝑥1)𝜎(𝑤𝑇𝑥2).

But because |𝐹3(.)| = 𝑂(1), we have

⟨𝐿𝑖1 , 𝐿𝑖2⟩/⟨𝜑*(𝑥𝑖1), 𝜑
*(𝑥𝑖2)⟩ = 𝐹2

(︁
2𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩)±𝑂(1/

√
𝑚1 + 1/

√
𝑚2 + 1/

√
𝑚3)

)︁
.

Now notice that the derivative of 𝐹2, i.e. 1/2𝜋
√
1− 𝑥2 is increasing in the interval

(0, 1), so for a fixed 𝛿, the maximum of |𝐹2(𝑥)− 𝐹2(𝑥− 𝛿)| happens at 𝑥 = 1. On the

other hand, by writing the first order approximation of arcsin(1− 𝑡2) around 𝑡 = 0

and upper bounding its derivative in the interval [0, 1], we get that for 0 ≤ 𝛿 ≤ 1:

arcsin(1− 𝛿) ≥ arcsin(1)− 2
√
𝛿.

131

Therefore, 𝐹2(𝑥± 𝛿) = 𝐹2(𝑥)±𝑂(
√
𝛿). Hence:

⟨𝐿𝑖1 , 𝐿𝑖2⟩/⟨𝜑*(𝑥𝑖1), 𝜑
*(𝑥𝑖2)⟩ = 𝐹2

(︁
2𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩)

)︁
±𝑂(

√︁
1/
√
𝑚1 + 1/

√
𝑚2 + 1/

√
𝑚3)

= 𝐹2

(︁
2𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩)

)︁
±𝑂(𝑚−1/4

1 +𝑚
−1/4
2 +𝑚

−1/4
3),

which completes the proof.

Finally, we are ready to construct the weights 𝑉 * for the second layer.

Construction of 𝑉 *

Lemma 19. Let

ℜ =
𝑛
√
𝑚3√

𝑚1𝜆0

[︁
1 +

𝑛𝐶1

𝜅1

]︁
.

Suppose we have the condition that for every 𝑘 ∈ [𝑚3]:

max
𝑘
‖𝒱𝑘‖ ≤ 𝜉, (3.125)

where recall the definition of 𝒱𝑘 in Equation (3.59). We assume enough overparame-

terization to make sure ℜ < 1. Recall for the matrix 𝐴 defined by

𝐴 =
(︁
⟨�̄�𝑖1 , �̄�𝑖2⟩𝐹2(2𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩))

)︁
1≤𝑖1,𝑖2≤𝑛

, (3.126)

we have

(𝑓 *(𝑥𝑖))
𝑛
𝑖=1

𝑇𝐴−1(𝑓 *(𝑥𝑖))
𝑛
𝑖=1 ≤ 𝜁2.

Then, there exists weight matrix 𝑉 * which only depends on the random initializations

𝑊 (0), 𝑉 (0) (e.g. not on 𝑉 ′ and 𝑊 ′) for the second layer, such that having enough

overparameterization

‖𝑉 *‖2𝐹 ≤ 2𝜁2, (3.127)

132

and for every 𝑗 ∈ [𝑚2]:

‖𝑉 *
𝑗 ‖∞ ≤

(1 + ℜ)𝑛
√
𝑛𝜁2√

𝑚2

𝜉 := 𝜚3𝜉/
√
𝑚2, (3.128)

‖𝑉 *
𝑗 ‖2 ≤

1√
𝑚2

𝑛(1 + ℜ)

√︃
𝜁2
∑︀

𝑘 ‖𝒱𝑘‖2𝐻∞

𝜆0
:= 𝜚2/

√
𝑚2, (3.129)

and further under the high probability event 𝐸𝑐 defined in Lemma 42:

| 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 ′,𝑥𝑖𝑉
𝜑(𝑥𝑖)− 𝑓 *(𝑥𝑖)| ≲

(︀ 𝐶1√
𝑚3𝜅1

)︀1/3
(1 + ℜ)

√︃
𝜁2
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ := ℜ3.

(3.130)

Proof of Lemma 19

Let

𝑉 * =
𝑛∑︁
𝑖=1

𝒱*
𝑖 𝐿𝑖,

be the minimum norm vector which maps 𝐿𝑖’s to 𝑓 *(𝑥𝑖)’s. As a result, for the matrix

𝐿 =
(︁
⟨𝐿𝑖1 , 𝐿𝑖2⟩

)︁
𝑖1,𝑖2

it is easy to see

‖𝑉 *‖2𝐹 = (𝑓 *(𝑥𝑖))
𝑛
𝑖=1

𝑇𝐿−1(𝑓 *(𝑥𝑖))
𝑛
𝑖=1.

Now combining Lemmas 14 and 50, we get

‖𝜑*(𝑥𝑖)‖∞ ≤ (1 + ℜ)𝜉, (3.131)

‖𝜑*(𝑥𝑖)‖ ≤ (1 + ℜ)
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ , (3.132)

and

⟨|𝜑*(𝑥𝑖1), 𝜑
*(𝑥𝑖2)⟩ − ⟨�̄�𝑖1 , �̄�𝑖2⟩| ≤ (2ℜ+ ℜ2)

∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

133

Now by Lemma 18:

|⟨𝐿𝑖1 , 𝐿𝑖2⟩ − 𝐴𝑖1,𝑖2| ≲ (2ℜ+ ℜ2)(
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞)
⃒⃒⃒
𝐹2

(︁
2𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩)

)︁⃒⃒⃒
+ ⟨�̄�𝑖1 , �̄�𝑖2⟩(𝑚

−1/4
1 +𝑚

−1/4
2 +𝑚

−1/4
3)

+ other cross term.

By applying ⟨�̄�𝑖1 , �̄�𝑖2⟩ ≤ ‖�̄�𝑖1‖‖�̄�𝑖2‖ we get

𝐿𝐻𝑆 ≤ (
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞)
(︁
(2ℜ+ ℜ2)

⃒⃒⃒
𝐹2

(︁
2𝐹3(⟨𝑥𝑖1 , 𝑥𝑖2⟩)

)︁⃒⃒⃒
+ (𝑚

−1/4
1 +𝑚

−1/4
2 +𝑚

−1/4
3)

)︁
≲ (
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞)
(︁
ℜ+𝑚

−1/4
1 +𝑚

−1/4
2 +𝑚

−1/4
3

)︁
.

Therefore,

‖𝐴−
(︁
⟨𝐿𝑖1 , 𝐿𝑖2⟩

)︁
𝑖1,𝑖2
‖2 ≤ ‖𝐴−

(︁
⟨𝐿𝑖1 , 𝐿𝑖2⟩

)︁
𝑖1,𝑖2
‖𝐹

≤ 𝑛(
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞)
(︁
ℜ+𝑚

−1/4
1 +𝑚

−1/4
2 +𝑚

−1/4
3

)︁
:= ℜ2.

Note that ℜ2 naturally goes to zero (with poly dependence) as ℜ → 0 and

𝑚1,𝑚2,𝑚3 are large enough. Now if all of the eigenvalues of the matrix 𝐴 are Ω(1/𝑛2),

then if we overparameterize enough such that ℜ2 = 𝑂(1/𝑛2) with small enough

constant so that ℜ2 is less than half of the smallest eigenvalue of 𝐴, then for the 𝑖th

eigenvalue 𝜆𝑖 of 𝐴 and 𝐿 we can write

𝜆𝑖(𝐿) ≥ 𝜆𝑖(𝐴)−ℜ2 ≥ 𝜆𝑖(𝐴)/2,

so

𝜆𝑖(𝐿
−1) ≤ 2𝜆𝑖(𝐴

−1),

which implies the property

‖𝑉 *‖2𝐹 ≤ 2𝜁2. (3.133)

134

However, 𝐴 might have very small eigenvalues. To remedie this, we use Lemma 51;

we can substitute 𝑓 * with some 𝑓 * such that

𝑅𝑛(𝑓 *) ≤ 2𝑅𝑛(𝑓
*) +

𝐵2

𝑛
, (3.134)

𝑓 *𝑇𝐴−1𝑓 * ≤ 𝑓 *𝑇𝐴−1𝑓 *, (3.135)

where 𝑓 * is on the subspace of eigenvectors of 𝐴 whose eigenvalues are larger than

Ω(1/𝑛2). But it is easy to check that in the context of Theorem 3, such substitution

results in a 𝑓 *𝑇𝐴−1𝑓 * ≤ 𝑓 *𝑇𝐴−1𝑓 * ≤ 𝜁 and 𝑣(𝑓 *) parameter (as defined in (3.41))

with respect to 𝑓 * which satisfies 𝜈/2 ≤ 𝜈. Note that the algorithm is with respect

to the setting 𝜈, however we want to exploit generalization bound with respect to 𝑓 *

whose parameter is 𝜈 as it enables us to use our analysis in this Lemma. Furthermore,

note that using Equation (3.134) we can further upper bound the empirical risk of

𝑓 * with that of 𝑓 *, which makes it straightforward to derive a similar generalization

bound as in (3.45) with respect to 𝑓 *, of course with a change of constants. Note

that 𝑓 * is just the sum of 𝐴-eigenbasis directions in 𝑓 * whose eigenvalues are larger

than Ω(1/𝑛2). Hence, given a pair (𝑓 *, 𝐺), as we also point out in remark 1, we can

construct the suitable pair (𝑓 *, 𝐺) algorithmically and then use that pair to initialize

the parameters of the algorithm (namely 𝜁 and 𝜈). Otherwise, if we are not explicitly

given a pair (𝑓 *, 𝐺) and instead want to run the doubling trick described in Theorem 1,

we do not even have any additional computation; since using Theorem 1, within the

framework of the doubling trick, the risk of the final network is competitive with

respect to any choice of (𝑓 *, 𝐺). Note that as we mentioned in Lemma 51, the constant

2 is arbitrary and can be reduced to any number less than 2, and it is easy to see that

one can pick choice of constants along the way such that we end up with a factor two

behind the risk (first) term in the definition of our complexity measure.

Therefore, without loss of generality we can use substitute 𝑓 * by 𝑓 * and still obtain

Equation (3.133).

135

On the other hand, the definition of 𝑉 * implies

1√
𝑚2

𝑎𝑇𝐷𝑉 (0),𝑥𝑖𝑉
𝜑(𝑥𝑖) = 𝑓 *(𝑥𝑖).

But note that by Corollary 5.1, under the high probability event 𝐸𝑐 defined in

Lemma 42, 𝐷𝑉 (0),𝑥𝑖 and 𝐷𝑉 (0)+𝑉 ′,𝑥𝑖 can only be different in the index set 𝑃𝑖 and

|𝑃𝑖| ≲
(︀ 𝐶2

1

(𝑚3𝜅21)

)︀1/3
𝑚2,

Therefore, for all 𝑖 ∈ [𝑛]:

| 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 ′,𝑥𝑖𝑉
𝜑(𝑥𝑖)−

1√
𝑚2

𝑎𝑇𝐷𝑉 (0),𝑥𝑖𝑉
𝜑(𝑥𝑖)|

≤1/
√
𝑚2

∑︁
𝑗∈𝑃

|𝑉 *
𝑗 𝜑

*(𝑥𝑖)|

≤1/
√
𝑚2

∑︁
𝑗∈𝑃

‖𝑉 *
𝑗 ‖‖𝜑*(𝑥𝑖)‖

≤

√︁
|𝑃 |
√
𝑚2

‖𝑉 *‖(1 + ℜ)
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞

≲
(︀ 𝐶1√

𝑚3𝜅1

)︀1/3√︀
𝜁2(1 + ℜ)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ ,

which proves the first claim. On the other hand, we get:

2𝜁2 ≥ ‖𝑉 *‖2𝐹 ≥ 𝒱𝑇𝐿𝒱 .

But because 𝜆𝑚𝑖𝑛(𝐿) ≳ 1/𝑛2, we get

𝒱𝑇𝐿𝒱 ≳ ‖𝒱‖22/𝑛2,

which implies

‖𝒱‖2 ≲ 𝑛
√︀
𝜁2.

136

But now using Equation (3.131), we can write

|𝑉 *
𝑗,𝑘| ≤

𝑛∑︁
𝑖=1

|𝒱𝑖||𝐿𝑖𝑗,𝑘| ≤
1√
𝑚2

‖𝜑*(𝑥𝑖)‖∞
∑︁
𝑖

|𝒱𝑖|

≲
(1 + ℜ)𝜉√

𝑚2

∑︁
𝑖

|𝒱𝑖| ≤ (1 + ℜ)𝜉
√
𝑛‖𝒱‖/

√
𝑚2

≲
(1 + ℜ)𝑛

√
𝑛𝜁2√

𝑚2

𝜉,

which proves the other part. Moreover,

‖𝑉 *
𝑗 ‖2 ≤ ‖𝒱‖2

1√
𝑚2

(
∑︁
𝑖

‖𝜑*(𝑥𝑖)‖22) ≤
1√
𝑚2

𝑛(1 + ℜ)
√︃
𝜁2
∑︁
𝑘

‖𝒱𝑘‖2𝐻∞/𝜆0. (3.136)

137

3.6.13 Existence of a good direction

Our aim in this section is to show that if the objective value is above certain threshold,

there exists a good random direction which reduces the objective in expectation.

Particularly our aim is to prove the following theorem (informal):

Theorem 6. For a given pair (𝑓 *, 𝐺) with

⟨𝐻∞, 𝐺⟩ ≤ 𝜁1,

𝑓 *𝑇 (𝐾∞ ⊙𝐺)−1𝑓 * ≤ 𝜁2,

𝑅𝑛(𝑓
*) ≤ Δ,

recall the ideal random matrices (𝑊 *
Σ, 𝑉

*
Σ) constructed in Section 3.6.12, where Σ is a

random diagonal sign matrix. Specifically, 𝑊 *
Σ is defined in Equation (3.108), and 𝑉 *

Σ

is the projection of the rows of matrix 𝑉 * onto the orthogonal subspace spanned by

(𝜑(0)(𝑥𝑖))
𝑛
𝑖=1.

Using the parameter setting for 𝑖 = 1, 2

𝜓𝑖 =
𝜈

4𝜁𝑖
, (3.137)

with respect to an arbitrary parameter 𝜈 > 0, then for every pair (𝑊 ′, 𝑉 ′) such that

‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2 and

𝐿(𝑊 ′, 𝑉 ′) ≥ Δ+ 𝜈, (3.138)

for parameters 𝑚1,𝑚2,𝑚3, 1/𝜅1, 1/𝜅2 polynomially large enough in 𝐵, 1/𝜆0, 𝑛, 𝐶1, 𝐶2

and small enough step size 𝜂, we have

EΣ𝐿(𝑊
′ − 𝜂/2𝑊 ′ +

√
𝜂𝑊 *

Σ, 𝑉
′ − 𝜂/2𝑉 ′ +

√
𝜂𝑉 *

Σ) ≤ 𝐿(𝑊 ′, 𝑉 ′)− 𝜂𝜈/4. (3.139)

In order to prove the above theorem, we first state and prove the following lemma

which is the core of Theorem 6.

138

Lemma 20. For matrices (𝑊 *, 𝑉 *) constructed in Section 3.6.12, specifically for their

random coupling (𝑊 *
Σ, 𝑉

*
Σ) as denoted above, we have:

EΣℓ(𝑓
′
(1−𝜂/2)𝑊 ′+

√
𝜂𝑊 *

Σ,(1−𝜂/2)𝑉 ′+
√
𝜂𝑉 *

Σ
(𝑥𝑖), 𝑦𝑖) ≤ (1− 𝜂)ℓ(𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖) + 𝜂ℓ(𝑓 *(𝑥𝑖), 𝑦𝑖)± 𝜂℘,

where ℘ goes to zero with polynomially large overparameterization (the exact dependence

is revealed via the proof).

Proof of Lemma 20

For brevity, we use the notation 𝐷′,𝜌 here to refer to the diagonal binary sign matrix

when the input is multiplied by the sum of weight and smoothing matrices. It will be

clear in the context of the equation that what the “input” and the “weight” matrices are.

This notation is also defined and used in Lemma 37). Here, we bound multiple cross

terms that are created as a result of moving in the random direction. To simplify the

presentation and avoid confusing recursions in the proof, we have made a sublemma

for each of these cross terms and has deferred its proof to Section 3.6.14. We use

difference sub-indices of the symbol ℜ to illustrate terms that go to zero by growing

the overparameterization in our architecture.

We start by using Lemma 37,

EΣℓ(𝑓
′
(1−𝜂/2)𝑊 ′+

√
𝜂𝑊 *

Σ,(1−𝜂/2)𝑉 ′+
√
𝜂𝑉 *

Σ
(𝑥𝑖), 𝑦𝑖)

=EΣℓ(E𝑊 𝜌,𝑉 𝜌𝑓(1−𝜂/2)𝑊 ′+
√
𝜂𝑊 *

Σ+𝑊
𝜌,(1−𝜂/2)𝑉 ′+

√
𝜂𝑉 *

Σ+𝑉 𝜌(𝑥𝑖), 𝑦𝑖)

=EΣℓ
(︁
E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *

Σ)𝑊
𝑠

𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌 +

√
𝜂𝑊 *

Σ)𝑥𝑖 + ℜ8𝜂, 𝑦𝑖

)︁
=EΣℓ

(︁
E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

+𝜂𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

]︁
+
√
𝜂E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

]︁
+ℜ8𝜂, 𝑦𝑖

)︁
.

139

Now using the notation introduced in Lemma 27, we have

𝑊 𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖 = 𝜑(0)(𝑥𝑖) + (1− 𝜂/2)𝜑(2)(𝑥𝑖) +

𝜂

2
𝜑(2)′(𝑥𝑖).

By Lemma 27, we have the following bound for 𝜑(2)′(𝑥𝑖):

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)𝜑(2)′(𝑥𝑖)

⃒⃒⃒
≲ (𝜅2

√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5.

Therefore, Combining this with Lemma 29, we get

= EΣℓ
(︁
E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠(𝜑(0)(𝑥𝑖) + (1− 𝜂/2)𝜑(2)(𝑥𝑖))

+ 𝜂𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

]︁
+
√
𝜂E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+ 𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

]︁
±𝑂((𝜅2

√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5𝜂)±𝑂(ℜ8𝜂), 𝑦𝑖

)︁
= EΣℓ

(︁
E𝑊 𝜌,𝑉 𝜌

[︁
(1− 𝜂)𝑎𝑇𝐷′,𝜌(𝑉

(0) + 𝑉 ′ + 𝑉 𝜌)𝑊 𝑠(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))

+ 𝜂𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

]︁
+
√
𝜂E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+ 𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

]︁
±𝑂(𝜂(ℜ′

6 + ℜ4 + (
√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)))

±𝑂((𝜅2
√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5𝜂)±𝑂(ℜ8𝜂), 𝑦𝑖

)︁
.

= EΣℓ
(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+
√
𝜂E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+ 𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

]︁
±𝑂(𝜂(ℜ′

6 + ℜ4 + (
√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)))

±𝑂((𝜅2
√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5𝜂)±𝑂(ℜ8𝜂), 𝑦𝑖

)︁
.

Moreover, using the notation 𝜑*′(𝑥𝑖) introduced in Lemma 24 and the bound in

140

Lemma 26, we can rewrite the second term as:

𝐿𝐻𝑆 = EΣℓ
(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ(𝜑

(𝑥𝑖) + 𝜑′(𝑥𝑖))

+
√
𝜂E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+ 𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

]︁
±𝑂(𝜂(ℜ′

6 + ℜ4 + (
√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)))

±𝑂((𝜅2
√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5𝜂)±𝑂(ℜ8𝜂), 𝑦𝑖

)︁
= EΣℓ

(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖)

+
√
𝜂E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+ 𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

]︁
±𝑂(𝜂ℜ10)±𝑂(𝜂(ℜ′

6 + ℜ4 + (
√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)))±𝑂((𝜅2

√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5𝜂)

±𝑂(ℜ8𝜂), 𝑦𝑖

)︁
. (3.140)

Now we write the gradient-lipshitz inequality for ℓ at point

𝑝
(1)
Σ := (1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖)± 𝜂℘1,

and regarding the following vector, where ℘1 is the sum of all the noise terms above

and goes to zero by over parameterization:

𝑝
(2)
Σ :=

√
𝜂E𝑊 𝜌,𝑉 𝜌

[︁
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

+ 𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

]︁
.

Hence, using the 1 smoothness of ℓ(., 𝑦𝑖):

𝐿𝐻𝑆 ≤ EΣℓ
(︁
𝑝
(1)
Σ

)︁
+ EΣℓ̇(𝑝)

√
𝜂𝑝

(2)
Σ +

1

2
𝜂EΣ(𝑝

(2)
Σ)2. (3.141)

141

But note that

EΣℓ̇(𝑝)
√
𝜂𝑝

(2)
Σ = ℓ̇(𝑝)

√
𝜂EΣ𝑝

(2)
Σ = 0. (3.142)

On the other hand, using the notation of Lemma 24 and the result of Lemma 25:

EΣ

(︁
E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝑊 𝑠𝐷′,𝜌𝑊
*
Σ𝑥𝑖

)︁2
= EΣ

(︁
E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)(Σ𝜑*(𝑥𝑖) + 𝜑*′
Σ(𝑥𝑖))

)︁2
≤ 4EΣ

(︁
E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)Σ𝜑*(𝑥𝑖)
)︁2

+ 4EΣ

(︁
E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌)𝜑*′
Σ(𝑥𝑖)

)︁2
≲ ℜ2

12 + ℜ2
11. (3.143)

Moreover, using again the result on 𝜑(2)′(𝑥𝑖) from Lemma 27 and the fact that 𝜑(0)(𝑥𝑖)

is orthogonal to the rows of 𝑉 *
Σ :

E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

= 𝑎𝑇𝐷′,𝜌𝑉
*
Σ(𝜑

(0)(𝑥𝑖) + (1− 𝜂/2)𝜑(2)(𝑥𝑖))

+
𝜂

2
𝑎𝑇𝐷′,𝜌𝑉

*
Σ𝜑

(2)′(𝑥𝑖)

= (1− 𝜂

2
)𝑎𝑇𝐷′,𝜌𝑉

*
Σ𝜑

(2)(𝑥𝑖)

+
𝜂

2
𝑎𝑇𝐷′,𝜌𝑉

*
Σ𝑊

𝑠𝐷′,𝜌𝜑
(2)′(𝑥𝑖)

≲ (1− 𝜂

2
)𝑎𝑇𝐷′,𝜌𝑉

*
Σ𝜑

(2)(𝑥𝑖)±ℜ5.

Combining the last Equation with Lemma 23:

EΣ

(︁
E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉

*
Σ𝑊

𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌)𝑥𝑖

)︁2
≲ (1− 𝜂

2
)2𝑎𝑇𝐷′,𝜌𝑉

*
Σ𝑊

𝑠𝐷′,𝜌𝜑
(2)(𝑥𝑖) + ℜ2

5

≲ ℜ2
0 + ℜ2

5. (3.144)

142

Combining Equations (3.143) and (3.144):

EΣ(𝑝
(2)
Σ)2 ≲ ℜ2

11 + ℜ2
12 + ℜ2

0 + ℜ2
5 := ℘2. (3.145)

Combining Equations (3.142) and (3.145), plugging into (3.141), and reopening the

definition of 𝑝(1)Σ :

𝐿𝐻𝑆 ≲ EΣℓ
(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖)± 𝜂℘1, 𝑦𝑖

)︁
+ 𝜂𝜇2℘2.

(3.146)

Now note that we can easily bound the magnitude of the term 𝜂E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖)

as:

|E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖)| ≤ E𝑊 𝜌,𝑉 𝜌|𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖)|

≤ ‖𝑉 *
Σ‖𝐹‖𝜑*(𝑥𝑖)‖ ≤ ‖𝑉 *‖𝜑*(𝑥𝑖)‖ ≤

√︀
2𝜁2(1 + ℜ)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ ,

while using Lemma 43:

|𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖)| ≤ (𝜅2

√
𝑚3 + 𝛽2)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3𝛽1

)︁
+ 𝐶2(𝐶1 +

√
𝑚3𝛽1),

which is 𝑂(𝐶1𝐶2) for enough overparameterization and smoothing parameters 𝛽1, 𝛽2

as defined in 3.6.20. Furthermore, from Equations (3.132) and (3.127), we easily see

that

E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖) ≤
√︀
2𝜁2(1 + ℜ)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

Now taking 𝜂 small enough so that the bound 𝜂
√
2𝜁2(1 + ℜ)

√︀∑︀
𝑘 ‖𝒱𝑘‖2𝐻∞ and 𝜂℘1

both also be bounded of order 𝑂(𝐶1𝐶2), we observe that the term inside the argument

of ℓ(., 𝑦𝑖) Equation in (3.146) is 𝑂(𝐶1𝐶2). Hence, we can use the Lipschitz parameter

of ℓ in the interval [−𝑂(𝐶1𝐶2), 𝑂(𝐶1𝐶2)], given by Lemma 9 to take out the noise

143

term:

𝐿𝐻𝑆 ≲ EΣℓ
(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌𝑉
*
Σ𝜑

*(𝑥𝑖), 𝑦𝑖

)︁
± 𝜂℘1 + 𝜂𝑂(𝐶1𝐶2 +𝐵)℘2.

(3.147)

Now by applying Lemma 28 and writing the Lipchitz property of ℓ at point (1 −

𝜂)𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖) = 𝑂(𝐶1𝐶2):

𝐿𝐻𝑆 ≲ EΣℓ
(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂𝑓 *(𝑥𝑖)± 𝜂ℜ9, 𝑦𝑖

)︁
± 𝜂℘1 + 𝜂𝑂(𝐶1𝐶2 +𝐵)℘2

:= EΣℓ
(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂𝑓 *(𝑥𝑖), 𝑦𝑖

)︁
± 𝜂ℜ9 ± 𝜂℘1 + 𝜂𝑂(𝐶1𝐶2 +𝐵)℘2

= ℓ
(︁
(1− 𝜂)𝑓 ′

𝑊 ′,𝑉 ′(𝑥𝑖) + 𝜂𝑓 *(𝑥𝑖), 𝑦𝑖

)︁
± 𝜂℘,

where the last line is just definition. Now Convexity of ℓ finishes the proof.

Next, using Lemma 20 we prove Theorem 6.

Restating Theorem 6 In the same setting as Theorem 6 and having enough

overparameterization such that ℘ ≤ 𝜈
8

(℘ defined in Lemma 20) and polynomially

small enough step size 𝜂, we have

EΣ𝐿(𝑊
′ − 𝜂𝑊 ′ +

√
𝜂𝑊 *

Σ, 𝑉
′ − 𝜂𝑉 ′ +

√
𝜂𝑉 *

Σ) ≤ 𝐿(𝑊 ′, 𝑉 ′)− 𝜂𝜈/4.

Proof of Theorem 6

First, note that taking expectation w.r.t Σ:

EΣ‖(1− 𝜂/2)𝑊 ′ +
√
𝜂𝑊 *

Σ‖2 = EΣ(1− 𝜂/2)2‖𝑊 ′‖2 + 2(1− 𝜂/2)√𝜂⟨𝑊 ′,

𝑚3∑︁
𝑘=1

Σ𝑘𝑊
*
𝑘 ⟩+ 𝜂‖

𝑚3∑︁
𝑘=1

Σ𝑘𝑊
*
𝑘 ‖2

= (1− 𝜂/2)2‖𝑊 ′‖2 + 𝜂
∑︁
𝑘

‖𝑊 *
𝑘 ‖2,

which by orthogonality of 𝑊 *
𝑘 ’s:

𝐿𝐻𝑆 = (1− 𝜂/2)2‖𝑊 ′‖2 + 𝜂‖𝑊 *‖2 = (1− 𝜂)‖𝑊 ′‖2 + 𝜂‖𝑊 *‖2 + 𝜂2‖𝑊 ′‖2.

144

Similarly for 𝑉 ′:

EΣ‖(1−𝜂/2)𝑉 ′+
√
𝜂𝑉 *

Σ‖ = (1−𝜂/2)2‖𝑉 ′‖2+𝜂EΣ‖𝑉 *Σ‖2 = (1−𝜂)‖𝑉 ′‖2+𝜂‖𝑉 *‖2+𝜂2‖𝑉 ′‖2.

Now using Lemma 20:

EΣ𝐿(𝑊
′ − 𝜂/2𝑊 ′ +

√
𝜂𝑊 *

Σ, 𝑉
′ − 𝜂/2𝑉 ′ +

√
𝜂𝑉 *

Σ)

≤ (1− 𝜂)E𝒵ℓ(𝑓
′
𝑊 ′,𝑉 ′(𝑥), 𝑦) + 𝜂E𝒵ℓ(𝑓

*(𝑥), 𝑦)

+ (1− 𝜂)
(︁
𝜓1‖𝑊 ′‖2 + 𝜓2‖𝑉 ′‖2

)︁
+ 𝜂
(︁
𝜓1‖𝑊 *‖2 + 𝜓2‖𝑉 *‖2

)︁
+ 𝜂
(︁
℘+ 𝜂(‖𝑊 ′‖2 + ‖𝑉 ′‖2)

)︁
≤ 𝐿(𝑊 ′, 𝑉 ′)− 𝜂

(︁
𝐿(𝑊 ′, 𝑉 ′)−Δ− 𝜓1𝜁1 − 𝜓2𝜁2

)︁
+ 𝜂
(︁
℘+ 𝜂(‖𝑊 ′‖2 + ‖𝑉 ′‖2)

)︁
,

which by the choice of 𝜓𝑖’s is equal to

𝐿𝐻𝑆 ≤ 𝐿(𝑊 ′, 𝑉 ′)− 𝜂
(︁
𝐿(𝑊 ′, 𝑉 ′)−Δ− 𝜈/2

)︁
+ 𝜂
(︁
℘+ 𝜂(‖𝑊 ′‖2 + ‖𝑉 ′‖2)

)︁
𝐿𝐻𝑆 ≤ 𝐿(𝑊 ′, 𝑉 ′)− 𝜂𝜈/2 + 𝜂

(︁
℘+ 𝜂(‖𝑊 ′‖2 + ‖𝑉 ′‖2)

)︁
.

Moreover, using the condition

℘ ≤ 𝜈/8,

and picking 𝜂 as small as

𝜂(‖𝑊 ′‖2 + ‖𝑉 ′‖2) ≤ 𝜂(𝐶2
1 + 𝐶2

2) ≤ 𝜈/8,

we finally get

𝐿𝐻𝑆 ≤ 𝐿(𝑊 ′, 𝑉 ′)− 𝜂𝜈/4.

145

3.6.14 Existence of a good direction Helper Lemmas

In this section, we state and prove the core lemmas that are used in the proof

of Lemma 20. Notably, through all of this section, we assume the norm bounds

‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2 and that as our usual assumption, the rows of 𝑉 ′ are orthogonal

to 𝜑(0)(𝑥𝑖)’s for all 𝑖 ∈ [𝑛]. A notation that we use throughout the proofs is 𝑉 *
Σ which

refers to the projectiono of 𝑉 *Σ onto the orthogonal subspace to (𝜑(0)(𝑥𝑖))
𝑛
𝑖=1.

Lemma 21. Let 𝑃 (.) be the projection operator onto the subspace spanned by (𝜑(0)(𝑥𝑖))
𝑛
𝑖=1.

Also, we denote the projection of rows of 𝑉 *Σ onto the orthogonal subspace to

(𝜑(0)(𝑥𝑖))
𝑛
𝑖=1 by 𝑉 *

Σ 𝑗. Then

EΣ‖𝑉 *
Σ 𝑗 − 𝑉

*
𝑗 Σ)‖2 ≤ 𝜚23𝜉

2𝑛/𝑚2,

with high probability

‖𝑉 *
Σ 𝑗 − 𝑉

*
𝑗 Σ)‖ ≲

𝜚3𝜉
√
𝑛√

𝑚2

,

Proof of Lemma 21

By Equation (3.129), we have ‖𝑉 *
𝑗 ‖∞ ≤ 𝜚3𝜉/

√
𝑚2. Now suppose that 𝑢1, ..., 𝑢𝑛

are an orthonormal basis for the subspace 𝑠𝑝𝑎𝑛(𝜑(0)(𝑥𝑖))
𝑛
𝑖=1. Then

EΣ‖𝑉 *
Σ 𝑗 − 𝑉

*
𝑗 Σ)‖2 = EΣ‖𝑃 (𝑉 *

𝑗 Σ)‖2 =
∑︁
𝑖

∑︁
𝑘

𝑉 *
𝑗
2

𝑘
𝑢𝑖

2
𝑘 ≤ ‖𝑉 *

𝑗 ‖2∞𝑛 ≤ 𝜚23𝜉
2𝑛/𝑚2.

Also, by Hoeffding, with high probability:

‖𝑃 (𝑉 *
𝑗 Σ)‖2 =

∑︁
𝑖

(

𝑚3∑︁
𝑘=1

𝑉 *
𝑗 𝑘
𝑢𝑖𝑘Σ𝑘)

2 ≲ 𝑛‖𝑉 *
𝑗 ‖2∞,

which implies the second part.

Lemma 22. The first cross term goes away because of the definition of 𝑉 *
Σ . (inside

the expectations is zero almost surely)

146

EΣ

(︁
E𝑉 𝜌,𝑊 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

(0)(𝑥𝑖)]
)︁2

= 0.

Lemma 23. Second cross term:

EΣ

(︁
E𝑉 𝜌,𝑊 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

(2)(𝑥𝑖)]
)︁2

(3.148)

≲ 𝜉2((1 + ℜ)2𝑛𝜁2 + 𝜚23𝑛)(𝐶
2
1 +𝑚3𝛽

2
1) = ℜ2

0. (3.149)

Proof of Lemma 23

This time we use Equation (3.129) in Lemma 19 and Lemma 21:

EΣ

(︁
E𝑉 𝜌,𝑊 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

(2)(𝑥𝑖)]
)︁2

≤ EΣ

(︁
E𝑉 𝜌,𝑊 𝜌1/

√
𝑚2

∑︁
𝑗

|𝑉 *
Σ 𝑗𝜑

(2)(𝑥𝑖)|
)︁2

≤ 1

𝑚2

EΣ,𝑉 𝜌,𝑊 𝜌

(︁∑︁
𝑗

|𝑉 *
Σ 𝑗𝜑

(2)(𝑥𝑖)|
)︁2

≤ E𝑉 𝜌,𝑊 𝜌𝐸Σ

∑︁
𝑗

|𝑉 *
Σ 𝑗𝜑

(2)(𝑥𝑖)|2

≲ 𝐸𝑉 𝜌,𝑊 𝜌𝐸Σ

∑︁
𝑗

|(𝑉 *
Σ 𝑗 − 𝑉

*
𝑗 Σ)𝜑

(2)(𝑥𝑖)|2 +
∑︁
𝑗

|𝑉 *
𝑗 Σ𝜑

(2)(𝑥𝑖)|2

≲ E𝑉 𝜌,𝑊 𝜌𝐸Σ

∑︁
𝑗

‖𝑉 *
Σ 𝑗 − 𝑉

*
𝑗 Σ)‖2‖𝜑(2)(𝑥𝑖)‖2 +

∑︁
𝑗

‖𝑉 *
𝑗 ‖2∞‖𝜑(2)(𝑥𝑖)‖22

≲ ((1 + ℜ)2𝑛𝜁2𝜉2 + 𝜚23𝜉
2𝑛)E𝑉 𝜌,𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖22.

Now according to Lemma 42, we have

E𝑉 𝜌,𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖2 ≲ 𝐶1
2 +𝑚3𝛽1

2,

which completes the proof.

Lemma 24. We get an additional term 𝜑*′(𝑥𝑖) as a result of smoothing which we

147

define as

𝜑*′(𝑥𝑖) =
1√
𝑚1

𝑊 𝑠𝐷𝑊 (0)+𝑊 ′+𝑊 𝜌,𝑥𝑖𝑊
*
Σ𝑥𝑖 − 𝜑*

Σ(𝑥𝑖). (3.150)

Then

P(𝜑*′(𝑥𝑖) ̸= 0) ≤ 𝑚1 exp {−𝑐22/(8𝛽2
1)}.

Moreover, we have the following inequality almost surely (over the randomness of 𝑊 𝜌):

‖𝜑*′(𝑥𝑖)‖∞ ≲

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

Proof of Lemma 24

According to Lemma 10, for 𝑗 /∈ 𝑃 , for every 𝑖 ∈ [𝑛] we have

|(𝑊 (0)
𝑗 +𝑊 ′

𝑗)𝑥𝑖| ≥ 𝑐2/2
√
𝑚1.

Now note that as long as the sign patterns for 𝑗 /∈ 𝑃 does not change, 𝜑*′(𝑥𝑖) will be

zero. Therefore by union bound

P(𝜑*′(𝑥𝑖) ̸= 0) ≤
𝑚1∑︁
𝑗=1

P(sign change in 𝑗) ≤ 𝑚1P(|(𝑊 (0)
𝑗 +𝑊 ′

𝑗)𝑥𝑖| ≤ |𝑊
𝜌
𝑗 𝑥𝑖|)

≤ 𝑚1P(|𝑊 𝜌
𝑗 𝑥𝑖| ≥ 𝑐2/(2

√
𝑚1)).

But (𝑊 𝜌
𝑗)𝑥𝑖 is Gaussian with variance 𝛽2

1/𝑚1. Hence

𝐿𝐻𝑆 ≲ 𝑚1 exp {−𝑐22/(8𝛽2
1)},

148

which proves the first part. For the second part, according to Equation (3.106) in

Lemma 14, for every 𝑘 ∈ [𝑚3]:

|𝜑*′
𝑘(𝑥𝑖)| ≤ |

1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0)+𝑊 ′+𝑊 𝜌,𝑥𝑖𝑊

𝑥𝑖|+ |𝜑
𝑘(𝑥𝑖)| (3.151)

≤ 2/
√
𝑚1

∑︁
𝑗

‖𝑊 *
𝑗 ‖ ≤ 2‖𝑊 *‖𝐹 ≲

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ , (3.152)

which implies the second part.

Lemma 25. Fourth Extra term:

E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)𝜑*′(𝑥𝑖)]

≲ (𝜅2
√
𝑚2𝑚3 + 𝐶2 +

√
𝑚3𝛽2) 𝑚1 exp {−𝑐22/(8𝛽2

1)}
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ := ℜ11.

Proof of Lemma 25

Note that with high probability over the randomness of 𝑉 (0), we have ‖𝑉 (0)‖𝐹 ≲
√
𝑚2𝑚3𝜅2. Now according to Lemma 24 and using the fact that ‖𝑉 ′‖𝐹 ≤ 𝐶2:

≤ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

‖𝑎‖‖𝑉 (0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′‖2‖𝜑*′(𝑥𝑖)‖

= E𝑊 𝜌,𝑉 𝜌‖𝑉 (0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′‖𝐹‖𝜑*′(𝑥𝑖)‖

≤
√︁
E𝑉 𝜌(‖𝑉 (0) + (1− 𝜂/2)𝑉 ′‖2𝐹 + ‖𝑉 𝜌‖2𝐹) 𝑚1 exp {−𝑐22/(8𝛽2

1)}
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞

≲
√︁
‖𝑉 (0)‖2𝐹 + ‖𝑉 ′‖2𝐹 +𝑚3𝛽2

2 𝑚1 exp {−𝑐22/(8𝛽2
1)}
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞

≲ (𝜅2
√
𝑚2𝑚3 + 𝐶2 +

√
𝑚3𝛽2) 𝑚1 exp {−𝑐22/(8𝛽2

1)}
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ .

Lemma 26. Fifth extra term:

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

*′(𝑥𝑖)]
⃒⃒⃒
≲
√︀
𝜁2𝑚1 exp {−𝑐22/(8𝛽2

1)}
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ := ℜ10.

149

Proof of Lemma 26

Similar to the previous Lemma, the inner expectation can be bounded as:

≤ E
1√
𝑚2

‖𝑎‖‖𝑉 *
Σ‖𝐹‖𝜑*′(𝑥𝑖)‖ ≤ E‖𝑉 *‖𝐹‖𝜑*′(𝑥𝑖)‖ ≲

√︀
𝜁2𝑚1 exp {−𝑐22/(8𝛽2

1)}
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ .

Lemma 27. We have another extra term as a product of the movement −𝜂/2𝑊 ′ in

the first layer:

𝜑(2)′(𝑥𝑖) =
2

𝜂
√
𝑚1

[︀
𝑊 𝑠𝐷𝑊 (0)+𝑊 𝜌+𝑊 ′(𝑊 (0)+𝑊 𝜌+(1−𝜂/2)𝑊 ′)𝑥𝑖−𝜑(0)(𝑥𝑖)−(1−𝜂/2)𝜑(2)(𝑥𝑖)

]︀
.

Then

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

(2)′(𝑥𝑖)
⃒⃒⃒

≲

√︃
𝜁2𝑚3

(︁ 𝛽2
1

𝑚1

+
𝑐2𝐶2

1√
𝑚1𝜅1

+𝑚1 exp {−𝑐22/(8𝛽2
1)}𝐶2

1

)︁
:= ℜ5. (3.153)

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)𝜑(2)′(𝑥𝑖)

⃒⃒⃒
≲ (𝜅2

√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5. (3.154)

Proof of Lemma 27

First we prove the following approximation argument (for all 𝑘 ∈ [𝑚3]):

E𝑊 𝜌|𝜑(2)′(𝑥𝑖)𝑘|2 ≤
𝛽2
1

𝑚1

+
𝑐2𝐶

2
1√

𝑚1𝜅1
+𝑚1 exp {−𝑐22/(8𝛽2

1)}𝐶2
1 . (3.155)

We have

𝐿𝐻𝑆 = E𝑊 𝜌

⃒⃒⃒ 1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0)+𝑊 𝜌+𝑊 ′,𝑥𝑖(𝑊

(0) +𝑊 𝜌)𝑥𝑖 −
1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0),𝑥𝑖𝑊

(0)𝑥𝑖

⃒⃒⃒2

≲ E𝑊 𝜌

⃒⃒⃒ 1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0)+𝑊 𝜌,𝑥𝑖(𝑊

(0) +𝑊 𝜌)𝑥𝑖 −
1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0),𝑥𝑖𝑊

(0)𝑥𝑖

⃒⃒⃒2
150

+E𝑊 𝜌

⃒⃒⃒ 1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0)+𝑊 𝜌,𝑥𝑖(𝑊

(0) +𝑊 𝜌)𝑥𝑖−
1√
𝑚1

𝑊 𝑠
𝑘𝐷𝑊 (0)+𝑊 𝜌+𝑊 ′,𝑥𝑖(𝑊

(0) +𝑊 𝜌)𝑥𝑖

⃒⃒⃒2
By the independence of 𝑊 𝜌

𝑗 ’s, the first term can be upper bounded as

= E𝑊 𝜌

1

𝑚1

𝑚1∑︁
𝑗=1

(︁
(𝑊

(0)
𝑗 +𝑊 𝜌

𝑗)𝑥𝑖1{(𝑊
(0)
𝑗 +𝑊 𝜌

𝑗)𝑥𝑖 ≥ 0} −𝑊 (0)
𝑗 𝑥𝑖1{𝑊 (0)

𝑗 𝑥𝑖 ≥ 0}
)︁2

=

≤ 1

𝑚1

𝑚1∑︁
𝑗=1

E𝑊 𝜌|𝑊 𝜌
𝑗 𝑥𝑖|2 =

1

𝑚1

∑︁ 𝛽2
1

𝑚1

=
𝛽2
1

𝑚1

.

For the second term, note that for every 𝑗 /∈ 𝑃 , the 𝑗th entries of 𝐷𝑊 (0)+𝑊 𝜌,𝑥𝑖 and

𝐷𝑊 (0)+𝑊 𝜌+𝑊 ′,𝑥𝑖 are different only if 𝑊 𝜌
𝑗 can make a sign change in the 𝑗th row, i.e.

|(𝑊 (0)
𝑗 +𝑊 ′

𝑗)𝑥𝑖| ≤ |𝑊
𝜌
𝑗 𝑥𝑖| should happen. We denote this event for every 𝑗 /∈ 𝑃 by �̃�𝑗 .

Furthermore, if this happens for some 𝑗, then the value of (𝑊 (0) +𝑊 𝜌)𝑗𝑥𝑖 is upper

bounded by |𝑊 ′
𝑗𝑥𝑖|. Now similar to our discussion in Lemma 24 and using the result

of Lemma 10:

P(∪𝑗 /∈𝑃 �̃�𝑗) = P(sign change in some 𝑗 /∈ 𝑃) ≤
𝑚1∑︁
𝑗 /∈𝑃

P(sign change in 𝑗)

≤ 𝑚1P(|(𝑊 (0)
𝑗 +𝑊 ′

𝑗)𝑥𝑖| ≤ |𝑊
𝜌
𝑗 𝑥𝑖|) ≤ 𝑚1P(|𝑊 𝜌

𝑗 𝑥𝑖| ≥ 𝑐2/(2
√
𝑚1)).

But note that (𝑊 𝜌
𝑗)𝑥𝑖 is Gaussian with variance 𝛽2

1/𝑚1. Hence

𝐿𝐻𝑆 ≲ 𝑚1 exp {−𝑐22/(8𝛽2
1)},

So finally we can write

≲
𝛽2
1

𝑚1

+ E𝑊 𝜌

1

𝑚1

(
∑︁
𝑗∈𝑃

|𝑊 ′
𝑗𝑥𝑖|)2 + 𝐸𝑊 𝜌

1

𝑚1

(1{∪𝑗 /∈𝑃 �̃�𝑗}
∑︁
𝑗 /∈𝑃

|𝑊 ′
𝑗𝑥𝑖|)2

≲
𝛽2
1

𝑚1

+
|𝑃 |
𝑚1

‖𝑊 ′‖2 + P(∪𝑗 /∈𝑃 �̃�𝑗)‖𝑊 ′‖2

≤ 𝛽2
1

𝑚1

+
𝑐2𝐶

2
1√

𝑚1𝜅1
+𝑚1 exp {−𝑐22/(8𝛽2

1)}𝐶2
1 .

151

which completes the proof for Equation (3.155). This immediately implies

E𝑊 𝜌‖𝜑(2)′(𝑥𝑖)‖ ≤
√︁

E𝑊 𝜌‖𝜑(2)′(𝑥𝑖)‖2 ≤

√︃
𝑚3(

𝛽2
1

𝑚1

+
𝑐2𝐶2

1√
𝑚1𝜅1

+𝑚1 exp {−𝑐22/(8𝛽2
1)}𝐶2

1).

Now we first prove Equation (3.153):

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

(2)′(𝑥𝑖)]
⃒⃒⃒
≤ E𝑊 𝜌

1√
𝑚2

‖𝑎‖‖𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ‖𝐹‖𝜑(2)′(𝑥𝑖)]|‖

≤ ‖𝑉 *
Σ‖𝐹E𝑊 𝜌‖𝜑(2)′(𝑥𝑖)]|‖ ≤ ‖𝑉 *‖𝐹E𝑊 𝜌‖𝜑(2)′(𝑥𝑖)]|‖

≲

√︃
𝜁2𝑚3(

𝛽2
1

𝑚1

+
𝑐2𝐶2

1√
𝑚1𝜅1

+𝑚1 exp {−𝑐22/(8𝛽2
1)}𝐶2

1).

To prove Equation (3.154):

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)𝜑(2)′(𝑥𝑖)

⃒⃒⃒
≲ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

‖𝑎‖‖𝐷𝑉 (0)+𝑉 𝜌+(1−𝜂/2)𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)‖𝐹‖𝜑(2)′(𝑥𝑖)‖

≲ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

‖𝑎‖‖𝑉 (0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′‖𝐹‖𝜑(2)′(𝑥𝑖)‖

≲
1√
𝑚2

‖𝑎‖
√︁

E𝑉 𝜌(‖𝑉 (0)‖2 + ‖𝑉 𝜌‖2𝐹 + ‖(1− 𝜂/2)𝑉 ′‖2𝐹)E𝑊 𝜌‖𝜑(2)′(𝑥𝑖)‖

≲
√︁
(𝜅22𝑚2𝑚3 +𝑚3𝛽2

2 + 𝐶2
2)ℜ5 ≲ (𝜅2

√
𝑚2𝑚3 +

√
𝑚3𝛽2 + 𝐶2)ℜ5.

Lemma 28. Closeness condition:

EΣ

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

*
Σ(𝑥𝑖)]− 𝑓 *(𝑥𝑖)

⃒⃒⃒
≲ ℜ9,

where

ℜ9 := 𝜚3𝜉
√
𝑛(1 + ℜ)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ + ℜ3 (3.156)

+𝑚2

(︁
exp {−(𝑚2𝜅

2
2𝐶

4
2)

1/3/(2𝛽2
2)}+𝑚1 exp{−𝐶2

1/(8𝑚3𝛽
2
1)}
)︁√︀

𝜁2(1 + ℜ)
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ .

(3.157)

152

Proof of Lemma 28

Note that by Corollary 5.1 and according to the proof of Equation 3.130 in Lemma 19,

if for every 𝑗 /∈ 𝑃 we don’t have a sign change in 𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
𝜑(𝑥𝑖), then get

| 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
𝜑(𝑥𝑖)− 𝑓 *(𝑥𝑖)| ≤ ℜ3.

Also, note that we need the event 𝐸𝑐 (defined in Lemma 42) to happen in order to be

able to use Corrolary 5.1. Hence, given a 𝑊 𝜌 for which 𝐸𝑐 happens, we upper bound

the probability of sign change with respect to the randomness of 𝑉 𝜌. We define the

following event with respect to the randomness of 𝑉 𝜌 when conditioned on a 𝑊 𝜌 for

which 𝐸𝑐 happens (𝑃𝑖’s are defined in Lemma 16):

𝑆𝐶 := {∃𝑗 /∈ 𝑃𝑖 s.t.|𝑉 𝜌
𝑗 𝑥

′
𝑖| ≳ (

𝜅2
𝑚2

)1/3𝐶
2/3
2 ‖𝑥′𝑖‖}.

Now from the result in Corollary 5.1 we have ≤ 1{sign change in 𝑗 /∈ 𝑃𝑖} ≤ 1{𝑆𝐶}.

Therefore,

𝐸1{sign change} ≤ 1{𝑆𝐶} ≤
∑︁
𝑗 /∈𝑃𝑖

P(|𝑉 𝜌
𝑗 𝑥

′
𝑖| ≳ (

𝜅2
𝑚2

)1/3𝐶
2/3
2 ‖𝑥′𝑖‖)

≤ 𝑚2P(|𝑉 𝜌
𝑗 𝑥

′
𝑖| ≳ (

𝜅2
𝑚2

)1/3𝐶
2/3
2 ‖𝑥′𝑖‖).

But note that (𝑉 𝜌
𝑗)𝑥

′
𝑖 is Gaussian with variance 𝛽2

2‖𝑥′𝑖‖2/𝑚2. Hence

𝐿𝐻𝑆 ≲ 𝑚2 exp {−(𝑚2𝜅
2
2𝐶

4
2)

1/3/(2𝛽2
2)}. (3.158)

Now let 𝐷 be a sign matrix random variable such that if 𝐸𝑐 and 𝑆𝐶𝑐 both happens,

then it is equal to the valid sign matrix 𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖 , and otherwise it is equal to an

arbitrary valid sign matrix in the case when both 𝐸𝑐 and 𝑆𝐶𝑐 happen. Now using

153

Equation (3.117) we have with high probability over the initialization:

EΣ

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
*
Σ𝜑

*
Σ(𝑥𝑖)]− 𝑓 *(𝑥𝑖)

⃒⃒⃒
≤ EΣ

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
*
Σ − 𝑉 *Σ)𝜑*

Σ(𝑥𝑖)]

+ EΣ

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
Σ𝜑

Σ(𝑥𝑖)]− 𝑓 *(𝑥𝑖)

≤ E𝑊 𝜌,𝑉 𝜌EΣ

⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
*
Σ − 𝑉 *Σ)𝜑*

Σ(𝑥𝑖)
⃒⃒

+ EΣ

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖𝑉
𝜑(𝑥𝑖)]− 𝑓 *(𝑥𝑖)

⃒⃒⃒
≤ E𝑊 𝜌,𝑉 𝜌EΣ

1

𝑚2

∑︁
𝑗

‖𝑉 *
Σ 𝑗 − 𝑉

*
𝑗 Σ‖‖𝜑*

Σ(𝑥𝑖)‖

+ EΣ

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 [

(︁ 1√
𝑚2

𝑎𝑇𝐷𝑉 *𝜑*(𝑥𝑖)− 𝑓 *(𝑥𝑖)
)︁

+ 1{𝑆𝐶 ∪ 𝐸}
(︁ 1√

𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 ′,𝑥𝑖𝑉
𝜑(𝑥𝑖)−𝐷

)︁
]
⃒⃒⃒

≤ E𝑊 𝜌,𝑉 𝜌EΣ
1

𝑚2

∑︁
𝑗

‖𝑉 *
Σ 𝑗 − 𝑉

*
𝑗 Σ‖‖𝜑*

Σ(𝑥𝑖)‖

+ EΣ

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌

[︁(︁ 1√
𝑚2

𝑎𝑇𝐷𝑉 *𝜑*(𝑥𝑖)− 𝑓 *(𝑥𝑖)
)︁⃒⃒⃒

+ EΣE𝑊 𝜌,𝑉 𝜌

⃒⃒⃒
1{𝑆𝐶 ∪ 𝐸}

(︁ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 ′,𝑥𝑖𝑉
𝜑(𝑥𝑖)−

1√
𝑚2

𝑎𝑇𝐷𝑉 *𝜑*(𝑥𝑖)
)︁]︁⃒⃒⃒

≤ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

∑︁
𝑗

√︁
EΣ‖𝑉 *

Σ 𝑗 − 𝑉 *
𝑗 Σ‖2‖𝜑*(𝑥𝑖)‖

+ ℜ3 + 2P(𝑆𝐶 ∪ 𝐸)max
𝐷′

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷′𝑉 *𝜑*(𝑥𝑖)
⃒⃒⃒
.

Now note that for any sign matrix 𝐷′, we have the following bound:

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷′𝑉 *𝜑*(𝑥𝑖)
⃒⃒⃒
≤ 1√

𝑚2

‖𝑎‖‖𝑉 *‖𝐹‖𝜑*(𝑥𝑖)‖ ≲
√︀
𝜁2(1 + ℜ)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

Also, applying a union bound and using Lemmas 42

P(𝑆𝐶 ∪ 𝐸) ≤ P(𝑆𝐶) + P(𝐸)

≲ exp {−(𝑚2𝜅
2
2𝐶

4
2)

1/3/(2𝛽2
2)}+𝑚1 exp{−𝐶2

1/(8𝑚3𝛽
2
1)}.

154

Hence, also applying Lemma 49, we further write

𝐿𝐻𝑆 ≲ 𝜚3𝜉
√
𝑛(1 + ℜ)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ + ℜ3

+𝑚2

(︁
exp {−(𝑚2𝜅

2
2𝐶

4
2)

1/3/(2𝛽2
2)}+𝑚1 exp{−𝐶2

1/(8𝑚3𝛽
2
1)}
)︁√︀

𝜁2(1 + ℜ)
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ .

Lemma 29. Suppose we have 𝑚3𝜅
2
1 ≥ 𝐶2

1 . Then, for the following basic term we

have:

E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)(𝜑(0)(𝑥𝑖) + (1− 𝜂/2)𝜑(2)(𝑥𝑖))

≲ (1− 𝜂)E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))

±𝜂
(︁
ℜ′

6 + ℜ4 + (
√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)

)︁
,

where

ℜ4 := 𝐶2(𝐶1 +
√
𝑚3𝛽1)𝑚2 exp{−𝐶4/3

2 (
√
𝑚2𝜅2)

2/3/8𝛽2
2}+

𝐶
1/3
2

(
√
𝑚2𝜅2)

1/3
𝐶2(𝐶1 +

√
𝑚3𝛽1),

ℜ′
6 := 𝑚1 exp{−𝐶2

1/(8𝑚3𝛽
2
1)}
√
𝑚3𝜅1(

√
𝑚2 + 𝛽2) + ℜ6,

and ℜ6 is defined in Lemma 31.

Proof of Lemma 29

155

First, note that by orthogonality of 𝜑(0)(𝑥𝑖) to the rows of 𝑉 ′:

𝐿𝐻𝑆 − 𝜂/2E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖)

= 𝐿𝐻𝑆 − 𝜂/2E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)𝜑(0)(𝑥𝑖)

= (1− 𝜂/2)E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂/2)𝑉 ′)(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))]

= (1− 𝜂/2)2E𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))]

+ (1− 𝜂/2)(𝜂/2)E𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))] (3.159)

But note that for the second term:

E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))]

≲ E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))]

± 1√
𝑚2

∑︁
𝑗: sign change

|𝑉 ′
𝑗 (𝜑

(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))|

= E𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)(𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖))]

± 1√
𝑚2

∑︁
𝑗: sign change

|𝑉 ′
𝑗𝜑

(2)(𝑥𝑖)|. (3.160)

Now conditioned on 𝑥′𝑖, by the result of Lemma 40 we know there exists a set of indices

𝑂 ⊆ [𝑚2], s.t. |𝑂| ≤ 𝐶
2/3
2

(
√
𝑚2𝜅2)

2/3𝑚2 and for 𝑗 /∈ 𝑂 we have

|𝑉 (0)
𝑗 𝑥′𝑖| ≥

𝐶
2/3
2 (
√
𝑚2𝜅2)

1/3

√
𝑚2

‖𝑥′𝑖‖

and

|𝑉 ′
𝑗𝑥

′
𝑖| ≤

𝐶
2/3
2 (
√
𝑚2𝜅2)

1/3

2
√
𝑚2

‖𝑥′𝑖‖.

Now for 𝑗 ∈ [𝑚2], define the event

𝑅𝑗 = {|𝑊 𝜌
𝑗 𝑥

′
𝑖| ≥

𝐶
2/3
2 (
√
𝑚2𝜅2)

1/3

2
√
𝑚2

‖𝑥′𝑖‖},

156

and 𝑅 = ∪𝑗𝑅𝑗. First, note that using Gaussian tail bound, 𝑅 is a rare event:

P(𝑅) ≤
∑︁
𝑗

P(𝑅𝑗) ≤ 𝑚2 exp{−𝐶4/3
2 (
√
𝑚2𝜅2)

2/3/8𝛽2
2}.

Now for 𝑗 /∈ 𝑂 and under 𝑅𝑐, clearly we have that the signs of (𝑉 (0)
𝑗 + 𝑉 𝜌

𝑗)𝑥
′
𝑖 and

(𝑉
(0)
𝑗 + 𝑉 𝜌

𝑗 + 𝑉 ′
𝑗)𝑥

′
𝑖 are the same. Therefore, applying Lemma 42, we can argue under

𝑅𝑐:

E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

∑︁
𝑗: sign change

|𝑉 ′
𝑗𝜑

(2)(𝑥𝑖)| ≤ E𝑊 𝜌

1√
𝑚2

∑︁
𝑗∈𝑂

|𝑉 ′
𝑗𝜑

(2)(𝑥𝑖)|

≤

√︃
|𝑂|
𝑚2

‖𝑉 ′‖𝐸𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖ ≤
𝐶

1/3
2

(
√
𝑚2𝜅2)

1/3
𝐶2(𝐶1 +

√
𝑚3𝛽1).

Hence, overall, using Cauchy-Shwartz

E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

∑︁
𝑗: sign change

|𝑉 ′
𝑗𝜑

(2)(𝑥𝑖)| ≤ ‖𝑉 ′‖E𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖P(𝑅)+
𝐶

1/3
2

(
√
𝑚2𝜅2)

1/3
𝐶2(𝐶1+

√
𝑚3𝛽1)

≤ 𝐶2(𝐶1 +
√
𝑚3𝛽1)𝑚2 exp{−𝐶4/3

2 (
√
𝑚2𝜅2)

2/3/8𝛽2
2}+

𝐶
1/3
2

(
√
𝑚2𝜅2)

1/3
𝐶2(𝐶1 +

√
𝑚3𝛽1) := ℜ4.

(3.161)

On the other hand, using Lemma 39, we have with high probability over the randomness

of initialization

1√
𝑚2

𝑎𝑇𝐷𝑉 (0),𝑥𝑖𝑉
(0)𝜑(2)(𝑥𝑖) ≤

√
𝑚3𝜅2‖𝜑(2)(𝑥𝑖)‖.

157

Hence:

E𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(2)(𝑥𝑖)]

≤ E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0),𝑥𝑖𝑉
(0)𝜑(2)(𝑥𝑖) +

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝜑

(2)(𝑥𝑖)|]

≤ E𝑊 𝜌

1√
𝑚2

𝑎𝑇𝐷𝑉 (0),𝑥𝑖𝑉
(0)𝜑(2)(𝑥𝑖) + 𝛽2E𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖

≲ (
√
𝑚3𝜅2 + 𝛽2)E𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖

≲ (
√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1). (3.162)

Combining Equations (3.161) and (3.162) into Equation (3.160):

⃒⃒⃒
E𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(2)(𝑥𝑖)]

⃒⃒⃒
≲ ℜ4 + (

√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1).

(3.163)

Moreover, for the first term in (3.159), using Equation (3.162) and Lemmas 42 and

Lemma 39 we have

|E𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)𝜑(2)(𝑥𝑖)]|

≲ |E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)𝑉 (0)𝜑(2)(𝑥𝑖)|+ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝜑

(2)(𝑥𝑖)|+
1√
𝑚2

∑︁
𝑗

|𝑉 ′
𝑗𝜑

(2)(𝑥𝑖)|

≲ 𝜅2
√
𝑚3(𝐶1 + 𝛽1

√
𝑚3) + (𝐶2 + 𝛽2)E𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖

≲ 𝜅2
√
𝑚3(𝐶1 + 𝛽1

√
𝑚3) + (𝐶2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1). (3.164)

158

Substituting Equations (3.163) and (3.164) into Equation (3.159), we finally get

𝐿𝐻𝑆 − 𝜂/2E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖)

≲ (1− 𝜂/2)2E𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)𝜑(2)(𝑥𝑖)]

± 𝜂

2

(︁
ℜ4 + (

√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)

)︁
≲ (1− 𝜂)E𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)𝜑(2)(𝑥𝑖)]

± 𝜂2

4

⃒⃒⃒
E𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)𝜑(2)(𝑥𝑖)]

⃒⃒⃒
± 𝜂

2

(︁
ℜ4 + (

√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)

)︁
≲ (1− 𝜂)E𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)𝜑(2)(𝑥𝑖)]

± 𝜂2(𝜅2
√
𝑚3(𝐶1 + 𝛽1

√
𝑚3) + (𝐶2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1))

± 𝜂
(︁
ℜ4 + (

√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)

)︁
. (3.165)

Now by picking 𝜂 small enough so that the second term is dominated by the third

term we get:

𝐿𝐻𝑆 − 𝜂/2E𝑊 𝜌,𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖) (3.166)

≲ (1− 𝜂)E𝑉 𝜌 [
1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + 𝑉 ′)𝜑(2)(𝑥𝑖)] (3.167)

± 𝜂
(︁
ℜ4 + (

√
𝑚3𝜅2 + 𝛽2)(𝐶1 +

√
𝑚3𝛽1)

)︁
. (3.168)

Now we aim to bound the term E𝑊 𝜌,𝑉 𝜌 [1√
𝑚2
𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉

(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖).

First assume that we are in the event 𝐸𝑐 defined in Lemma 42, i.e. we have ‖𝜑(2)(𝑥𝑖)‖ ≲

𝐶1. Conditioned on such 𝑊 𝜌, we now work with the randomness of the initialization

and 𝑉 𝜌. Note that the random matrix 𝑉 (0) + 𝑉 𝜌 jointly over the randomness of 𝑉 𝜌

and the initialization is also Gaussian, and its variance is

𝜅22 ≤ 𝜅22 +
𝛽2
2

𝑚2

≤ 2𝜅22, (3.169)

159

where the inequality follows from the fact that 𝜅2 ≥ 1√
𝑚2

and 𝛽2 ≤ 1. Therefore,

applying Lemma 31 for the random matrix 𝑉 (0) in the Lemma as 𝑉 (0) + 𝑉 𝜌 here, the

bound does not change up to constants because of the inequality (3.169). Hence, with

high probability, lets say with prob. 1 − 𝛿1 this time over both the randomness of

initialization and 𝑉 𝜌:

ℒ =
⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖)

⃒⃒⃒
≤ ℜ6 (3.170)

This means that with probability at least 1−
√
𝛿1 over the random initialization, then

we have (3.170) with prob. at least 1 −
√
𝛿1 over the randomenss of 𝑉 𝜌. We name

the latter high probability statement as (⋆). Moreover, note that by Lemma 41 and

assuming 𝑚3 log(𝑚2) < 𝑚2, we have the following almost surely bound (also note that

𝑉 𝜌
𝑗 𝜑

(0)(𝑥𝑖) is Gaussian with std 𝛽2√
𝑚2
‖𝜑(0)(𝑥𝑖)‖):

E𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖)

⃒⃒⃒
(3.171)

= E𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖)

⃒⃒⃒
(3.172)

≤ 1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|+ E𝑉 𝜌

1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 𝜌
𝑗 𝜑

(0)(𝑥𝑖)| (3.173)

≲ ‖𝜑(0)(𝑥𝑖)‖ sup
‖𝑥′‖=1

1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 𝑥′|+ 1√

𝑚2

𝑚2∑︁
𝑗=1

𝛽2√
𝑚2

‖𝜑(0)(𝑥𝑖)‖ (3.174)

≲ ‖𝜑(0)(𝑥𝑖)‖(
√
𝑚2 + 𝛽2). (3.175)

Furthermore, note because each variable |𝑉 𝜌
𝑗 𝜑

(0)(𝑥𝑖)| is 𝛽2√
𝑚2
‖𝜑(0)(𝑥𝑖)‖ subGaussian.

Therefore, ℒ is subGaussian with parameter ‖𝜑(0)(𝑥𝑖)‖𝛽2 with respect to the random-

ness of 𝑉 𝜌. Now the point is that the high probability argument in (⋆) is much stronger

than what one can get from the subGaussian ineqaulity with parameter ‖𝜑(0)(𝑥𝑖)‖𝛽2
(with the corresponding expectation term ‖𝜑(0)(𝑥𝑖)‖(

√
𝑚2 + 𝛽2)). However, the disad-

vantage of (⋆) is that it only works for a fixed 𝛿1. In other words, at least it is not

obvious from this argument that why for a fixed 𝑊 (0) in a high probaiblity region of

the random initialization, whether we can send 𝛿1 to zero by growing the constant

160

behind ℜ6 with logarithmic rate log(1/𝛿). This makes our job hard for bounding the

expectation with respect to 𝑉 𝜌 if we only wish to rely on (⋆). Therefore, we combine

it with the inequality that we get from the subGaussian parameter that we introudced

above. More rigorously, we define the thresholding parameter

℧ := ‖𝜑(0)(𝑥𝑖)‖(
√
𝑚2 + 𝛽2) + ‖𝜑(0)(𝑥𝑖)‖𝛽2 log(‖𝜑(0)(𝑥𝑖)‖(

√
𝑚2 + 𝛽2)/ℜ6)

= Θ
(︁
‖𝜑(0)(𝑥𝑖)‖(

√
𝑚2 + 𝛽2 log(‖𝜑(0)(𝑥𝑖)‖(

√
𝑚2 + 𝛽2)/ℜ6))

)︁
,

for which we have

E
[︁
ℒ| ℧ ≤ ℒ

]︁
P(℧ ≤ ℒ) ≲ ℜ6.

we divide the range of values for ℒ into three parts:

E[ℒ] = E
[︁
ℒ| ℒ ≤ ℜ

]︁
P(ℒ ≤ ℜ6)

+ E
[︁
ℒ| ℜ6 ≤ ℒ ≤ ℧

]︁
P
(︁
ℜ6 ≤ ℒ ≤ ℧

)︁
+ E

[︁
L| ℧ ≤ ℒ

]︁
P(℧ ≤ ℒ)

≤ 𝐸
[︁
ℒ| ℒ ≤ ℜ6

]︁
+ P(ℜ6 ≤ ℒ ≤ ℧) + ℜ6

≲ ℜ6 +
√
𝛿1℧.

Now by choosing 𝛿1 ≲ 1/℧, we conclude with high probability over initialization and

conditioned on 𝑊 𝜌’s such that 𝐸𝑐 happens we have

E𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)𝜑(0)(𝑥𝑖)

⃒⃒⃒
= E[ℒ] ≲ ℜ6.

Finally, we integrate also with respect to 𝑊 𝜌. To control the random variable when

𝐸 happens, we use the bound in (3.175) and the fact that 𝐸 is a rare event due to

Lemma 42:

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0)+𝑉 𝜌)𝜑(0)(𝑥𝑖)

⃒⃒⃒
≲ P(𝐸)‖𝜑(0)(𝑥𝑖)‖(

√
𝑚2+𝛽2)+P(𝐸𝑐)ℜ6

161

≤ 𝑚1 exp{−𝐶2
1/(8𝑚3𝛽

2
1)}
√
𝑚3𝜅1(

√
𝑚2 + 𝛽2) + ℜ6 := ℜ′

6.

Substituting this into (3.168) the proof is finally complete.

Lemma 30. Third cross term: with high probability over initialization, we have

EΣ

(︁
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′)Σ𝜑*(𝑥𝑖)]

)︁2
≲ 𝜉2(𝑚1 exp{−𝐶2

1/(8𝑚3𝛽
2
1)}(𝜅22𝑚2𝑚3 + 𝛽2

1𝑚3) + ℜ2
7𝐶

2
2) := ℜ2

12.

Proof of Lemma 30

Note that the way we defined the matrix 𝑊 * and as a result 𝜑*(𝑥𝑖) only depends on the

randomness of 𝑊 (0), not on 𝑊 ′ or the randomness of 𝑉 (0). Now using Equation (3.131)

and Jensen inequality we can write (for vector 𝑣, the notation 𝑣2⊙ is another vector

with each entry as the second power of the corresponding entry in 𝑣):

= EΣ

(︁
E𝑊 𝜌,𝑉 𝜌 [

1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′)Σ𝜑*(𝑥𝑖)]

)︁2
≤ EΣE𝑊 𝜌,𝑉 𝜌

(︁ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′)Σ𝜑*(𝑥𝑖)

)︁2
= E𝑊 𝜌,𝑉 𝜌EΣ

(︁
⟨ 1√

𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′) , Σ𝜑*(𝑥𝑖)⟩

)︁2
= E𝑊 𝜌,𝑉 𝜌

⟨(︁ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′)

)︁2⊙
, 𝜑*(𝑥𝑖)

2⊙
⟩

≤ E𝑊 𝜌,𝑉 𝜌

⃦⃦⃦ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′)

⃦⃦⃦2
2

⃦⃦⃦
𝜑*(𝑥𝑖)

⃦⃦⃦2
∞

≤ 𝜉2E𝑊 𝜌,𝑉 𝜌

⃦⃦⃦ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌 + (1− 𝜂)𝑉 ′)

⃦⃦⃦2
2

≤ 2𝜉2E𝑊 𝜌,𝑉 𝜌

⃦⃦⃦ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)

⃦⃦⃦2
2
+ 2𝜉2E𝑊 𝜌,𝑉 𝜌

⃦⃦⃦ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(1− 𝜂)𝑉
′
⃦⃦⃦2
2

≤ 𝜉2E𝑊 𝜌,𝑉 𝜌

⃦⃦⃦ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)

⃦⃦⃦2
2
+ 𝜉2(1− 𝜂)2‖𝑉 ′‖2𝐹

≤ 𝜉2E𝑊 𝜌,𝑉 𝜌

⃦⃦⃦ 1√
𝑚2

𝑎𝑇𝐷𝑉 (0)+𝑉 𝜌+𝑉 ′,𝑥𝑖(𝑉
(0) + 𝑉 𝜌)

⃦⃦⃦2
2
+ 𝜉2(1− 𝜂)2𝐶2

2 .

Now under the event 𝐸𝑐 defined in Lemma 42 we get that ‖𝜑(2)(𝑥𝑖)‖ ≲ 𝐶1, so we can

162

bound the above as

≤ 𝜉2E𝑉 𝜌 sup
‖𝑉 ′‖≤𝐶2,𝑉 ′⊥𝜑(0)(𝑥𝑖),‖𝑥′‖≤𝐶1

1

𝑚2

⃦⃦⃦∑︁
𝑗

𝑎𝑗1{(𝑉 (0)
𝑗 + 𝑉 𝜌

𝑗 + 𝑉 ′
𝑗)(𝜑

(0)(𝑥𝑖) + 𝑥′) ≥ 0}(𝑉 (0)
𝑗 + 𝑉 𝜌

𝑗)
⃦⃦⃦2

(3.176)

+ 𝜉2(1− 𝜂)2𝐶2
2 . (3.177)

Now defining

ℒ2 :=
1

𝑚2

⃦⃦⃦∑︁
𝑗

𝑎𝑗1{(𝑉 (0)
𝑗 + 𝑉 𝜌

𝑗 + 𝑉 ′
𝑗)(𝜑

(0)(𝑥𝑖) + 𝑥′) ≥ 0}(𝑉 (0)
𝑗 + 𝑉 𝜌

𝑗)
⃦⃦⃦2
,

to bound the first term, we want to apply Lemma 32 using the same trick that we

did in the proof of Lemma 29. Note that ℒ2 is the same term as Γ2
𝑥′,𝑉 ′ in Lemma 32

except that it is defined with respect to 𝑉 (0) + 𝒱𝜌 instead of 𝑉 (0). On the other

hand, note that 𝑉 (0) + 𝑉 𝜌 has Gaussian entries with variance 𝜅22 +
𝛽2
2

𝑚2
and we know

𝜅22 ≤ 𝜅22 +
𝛽2
2

𝑚2
≤ 2𝜅22, which means the argument of Lemma 32 holds true here up to

constants:

sup
‖𝑉 ′‖≤𝐶2,𝑉 ′⊥𝜑(0)(𝑥𝑖),‖𝑥′‖≤𝐶1

ℒ2 ≲ ℜ2
7.

This holds with probability say 1 − 𝛿2 over the randomness of both 𝑉 (0) and 𝑉 𝜌.

Therefore, with probability 1−
√
𝛿2 over the initialization, then with probability at

least 1−
√
𝛿2 over the randomness of 𝑉 𝜌 we have the above. Moreover, with a simple

Cauchy-Swuartz we get the following almost surely bound:

ℒ2 ≲ ‖𝑉 (0)‖2𝐹 + ‖𝑉 𝜌‖2𝐹 . (3.178)

Now the variable ‖𝑉 𝜌‖2 is subexponential with parameter (𝛽4
1𝑚

2
3, 𝛽

2
1𝑚3). Furthermore,

with high probability we have ‖𝑉 (0)‖2𝐹 ≲ 𝑚2𝑚3𝜅
2
2. Therefore, taking

℧2 := Θ
(︁
𝜅22𝑚2𝑚3 + 𝛽2

1𝑚3 log
(︀
(𝜅22𝑚2𝑚3 + 𝛽2

1𝑚3)/ℜ7

)︁)︁
,

163

then one can easily see by the subexponential tail:

E[ℒ2| ℒ2 ≥ ℧2] = Θ
(︁
℧2

)︁
,

P(ℒ2 ≥ ℧2) ≤ ℜ2
7/℧2.

Hence, we can apply the same trick as Lemma 29 as

E[ℒ2] = E
[︁
ℒ2| ℒ2 ≤ ℜ2

7

]︁
P(ℒ2 ≤ ℜ2

7)

+ E
[︁
ℒ2| ℜ2

7 ≤ ℒ2 ≤ ℧2

]︁
P
(︁
ℜ2

7 ≤ ℒ2 ≤ ℧2

)︁
+ E

[︁
ℒ2| ℧2 ≤ ℒ2

]︁
P(℧2 ≤ ℒ2)

≲ 𝐸
[︁
ℒ2| ℒ2 ≤ ℜ2

7

]︁
+ P(ℜ2

7 ≤ ℒ2 ≤ ℧2) + ℜ2
7

≲ ℜ2
7 +
√
𝛿2℧2.

Now taking 𝛿2 ≲ ℜ4
7/℧2

2, we finally get that conditioned on 𝑊 𝜌’s where 𝐸 happens,

then

E𝑉 𝜌ℒ2 ≤ ℜ2
7.

On the other hand, to handle the case when 𝐸 happens, we can use the bound

in (3.178) as it does not depend on the occurrence of 𝐸 as well:

E𝑊 𝜌,𝑉 𝜌ℒ2 ≤ P(𝐸)E𝑉 𝜌(‖𝑉 (0)‖2 + ‖𝑉 𝜌‖2) + P(𝐸𝑐)ℜ2
7

≲ 𝑚1 exp{−𝐶2
1/(8𝑚3𝛽

2
1)}(𝜅22𝑚2𝑚3 + 𝛽2

1𝑚3) + ℜ2
7.

Plugging this back into (3.177) we finally get

𝐿𝐻𝑆 ≲ 𝜉2(𝑚1 exp{−𝐶2
1/(8𝑚3𝛽

2
1)}(𝜅22𝑚2𝑚3 + 𝛽2

1𝑚3) + ℜ2
7) + 𝜉2𝐶2

2 .

164

3.6.15 Bounding the worst-case Senario

Lemma 31. Suppose 𝑚3 ≥ log(𝑚2) and
√
𝑚3𝜅1 ≳ 𝐶1. We define the sign matrices

𝐷𝑥′

𝑉 (0)+𝑉 ′,𝑥𝑖
and 𝐷𝑥′

𝑉 (0),𝑥𝑖
with respect to the multiplications

(𝑉 (0) + 𝑉 ′)(𝜑(0)(𝑥𝑖) + 𝑥′),

and

𝑉 (0)(𝜑(0)(𝑥𝑖) + 𝑥′).

Then, with high probability:

sup
‖𝑥′‖≲𝐶1,‖𝑉 ′‖𝐹≤𝐶2,𝑉 ′⊥𝜑(0)

1√
𝑚2

𝑎𝑇𝐷𝑥′

𝑉 (0)+𝑉 ′,𝑥𝑖
𝑉 (0)𝜑(0)(𝑥𝑖)

≲
(︁ (𝐶1𝐶2)

4/3

(
√
𝑚2𝜅2)

1/3(
√
𝑚3𝜅1)

1/3
+

(𝐶1𝐶2)
2/3𝑚

2/3
3 (𝜅1𝜅2)

1/3
√︀

log(𝑚2)

𝑚
1/3
2

)︁(︁
1 + log(𝑚2)

𝐶
1/3
1 (𝜅2

√
𝑚2)

2/3

𝐶
2/3
2 (𝜅1

√
𝑚3)

1/3

)︁
+
𝑚

3/2
3 𝜅1𝜅2√
𝑚2

√︀
log(𝑚2)(log(𝑚3) + log(log(𝑚2))) + 𝜅1𝜅2

√︀
𝑚3 log(𝑚2) := ℜ6.

Proof of Lemma 31

Consider a cover for the euclidean ball of radius 𝐶1 in R𝑚3 with precision 𝜖, i.e.

𝐵𝐶1(𝜖). So for every 𝑥′ ∈ R𝑚3 , there exists an 𝑥 ∈ 𝐵𝐶1(𝜖) such that ‖𝑥− 𝑥′‖ ≤ 𝜖, and

|𝐵𝐶1(𝜖)| ≲ (1
𝜖
)𝑚3 . Now fix 𝑥′ and 𝑥. We have

Γ𝑥′,𝑉 ′ :=
1√
𝑚2

𝑎𝑇𝐷𝑥′

𝑉 (0)+𝑉 ′,𝑥𝑖
𝑉 (0)𝜑(0)(𝑥𝑖) =

1√
𝑚2

𝑚2∑︁
𝑗=1

𝑎𝑗1{(𝑉 (0)
𝑗 +𝑉 ′

𝑗)(𝜑
(0)(𝑥𝑖)+𝑥

′) ≥ 0}𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖).

Now by a union bound, because each variable 𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖) is Gaussian with parameter

𝜅2‖𝜑(0)(𝑥𝑖)‖ and using Equation (3.116), with high probability we have for every

𝑗 ∈ [𝑚2]:

𝑉
(0)
𝑗 𝜑(0)(𝑥𝑖) ≲ 𝜅2‖𝜑(0)(𝑥𝑖)‖

√︀
log(𝑚2) ≲ 𝜅1𝜅2

√︀
𝑚3 log(𝑚2). (3.179)

165

Therefore, by Hoeffding over the randomness of the Bernoulli variables 𝑎𝑗, for a fixed

𝑥′ with high probability:

Γ𝑥′ :=
1√
𝑚2

𝑚2∑︁
𝑗=1

𝑎𝑗1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 𝜑(0)(𝑥𝑖) ≲ 𝜅1𝜅2
√︀
𝑚3 log(𝑚2).

On the other hand, We know that the VC-dimension of the class of binary functions

with respect to halfspaces in R𝑚3 is 𝑚3+1. Therefore, the set of different sign patterns

in matrices 𝐷𝑥′

𝑉 (0),𝑥𝑖
is bounded by 𝑚𝑚3+1

2 , i.e. for

𝒟 = {𝐷𝑥′

𝑉 (0),𝑥𝑖
| 𝑥′ ∈ R𝑚3},

we have

|𝒟| ≲ 𝑚𝑚3+1
2 .

Therefore, by taking a union bound over all sign matrices in 𝒟, we get with high

probability

sup
𝑥′

Γ𝑥′ ≲ 𝜅1𝜅2
√︀
𝑚3 log(𝑚2)

√︀
log(𝑚2

𝑚3+1) = 𝜅1𝜅2𝑚3 log(𝑚2). (3.180)

Now for a threshold 𝑟 which satisfies

𝑟 ≥ 2
√
𝑚3𝜅2𝜖, (3.181)

we define

𝒥𝑥,𝑟 = {𝑗 ∈ [𝑚2]| |𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥)| ≤ 𝑟}.

Now by Equation (3.116)and the assumption of the Lemma
√
𝑚3𝜅1 ≳ 𝐶1, we have

‖𝜑(0)(𝑥𝑖) + 𝑥‖ ≤ ‖𝜑(0)(𝑥𝑖)‖+ ‖𝑥‖ ≲
√
𝑚3𝜅1 + 𝐶1. (3.182)

‖𝜑(0)(𝑥𝑖) + 𝑥‖ ≥ ‖𝜑(0)(𝑥𝑖)‖ − ‖𝑥‖ ≳
√
𝑚3𝜅1 − 𝐶1 ≳

√
𝑚3𝜅1. (3.183)

166

Hence, 𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥) is Gaussian with standard deviation at least Ω(𝜅2

√
𝑚3𝜅1).

Therefore,

P(|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥)| ≤ 𝑟) ≲

𝑟√
𝑚3𝜅1𝜅2

.

This implies

E[|𝒥𝑥,𝑟|] ≲
𝑟√

𝑚3𝜅1𝜅2
𝑚2. (3.184)

On the other hand, note that |𝒥𝑥,𝑟| is the sum of 𝑚2 Bernoulli random variables, so it

is subGaussian with parameter 𝑚2. Therefore, with high probability

|𝒥𝑥,𝑟| ≲
𝑟√

𝑚3𝜅1𝜅2
𝑚2 +

√
𝑚2.

Now taking maximum over all 𝑥 ∈ 𝐵𝐶1(𝜖) and exploiting the subGaussian tail of the

random variables, we get with high probability

max
𝑥∈𝐵𝐶1

(𝜖)
|𝒥𝑥,𝑟| ≲

𝑟√
𝑚3𝜅1𝜅2

𝑚2 +
√︀
𝑚2 log(|𝐵𝐶1(𝜖)|) ≲

𝑟√
𝑚3𝜅1𝜅2

𝑚2 +
√︀
𝑚2𝑚3 log(1/𝜖).

(3.185)

Moreover, consider a threshold 1 < 𝜃, such that 𝑒−𝜃2/8 ≤ 𝑚2/𝑚3, and define the

following set of indices

𝒥 (2)
𝑥′,𝜃 := {𝑗 ∈ [𝑚2]| |𝑉 (0)

𝑗 𝑥′| ≥ 𝜃𝜅2𝐶1}.

Then, using Lemma 38 and noting the fact that the standard deviation of Gaussians

in 𝑉 (0) is 𝜅2 and that ‖𝜑(2)(𝑥𝑖)‖ ≤ 𝐶1, with high probability:

sup
𝑥′: ‖𝑥′‖=1

|𝒥 (2)
𝑥′,𝜃| ≤ 𝑚3(log(𝑚3) + log(log(𝑚2))). (3.186)

Now note that for each 𝑗 ∈ [𝑚2], ‖𝑉 (0)
𝑗 ‖2 is subexponential with parameters (𝑚3𝜅

4
2, 𝜅

2
2),

which means that with high probability:

max
𝑗
‖𝑉 (0)

𝑗 ‖2 ≲ 𝑚3𝜅
2
2 +
√
𝑚3𝜅

2
2

√︀
log(𝑚2) + 𝜅22 log(𝑚2).

167

But with condition 𝑚3 ≥ log(𝑚2), we can further upper bound it as

max
𝑗
‖𝑉 (0)

𝑗 ‖2 ≲ 𝑚3𝜅
2
2.

Now for fixed 𝑥, 𝑥′, for 𝑗 ∈ 𝒥𝑥,𝑟 we have

|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)| ≤ |𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥)|+ |𝑉 (0)
𝑗 (𝑥′ − 𝑥)|

≤ |𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥)|+ ‖𝑉 (0)

𝑗 ‖‖𝑥′ − 𝑥‖

≲ 𝑟 +
√
𝑚3𝜅2𝜖.

On the other hand, for 𝑗 /∈ 𝒥 (2)
𝑥′,𝜃:

|𝑉 (0)
𝑗 𝑥′| ≤ 𝜃𝜅2𝐶1. (3.187)

Therefore, for 𝑗 ∈ 𝒥𝑥,𝑟 − 𝒥 (2)
𝑥′,𝜃:

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)| ≤ |𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|+ |𝑉 (0)
𝑗 𝑥′| ≲ 𝑟 +

√
𝑚3𝜅2𝜖+ 𝜃𝜅2𝐶1. (3.188)

In a similar fashion, if 𝑗 /∈ 𝒥𝑥,𝑟, then using assumption (3.181):

|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)| ≥ |𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥)| − |𝑉 (0)
𝑗 (𝑥− 𝑥′)| ≳ 𝑟 −

√
𝑚3𝜅2𝜖 ≥ 𝑟/2.

(3.189)

168

Hence, using the fact that 𝜑(0)(𝑥𝑖) is orthogonal to 𝑉 ′
𝑗 :

⃒⃒⃒
1{(𝑉 (0)

𝑗 + 𝑉 ′
𝑗)(𝜑

(0)(𝑥𝑖) + 𝑥′) ≥ 0} − 1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}

⃒⃒⃒
≤ 1{|𝑉 ′

𝑗 (𝜑
(0)(𝑥𝑖) + 𝑥′)| ≳ |𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|}

≤ 1{|𝑉 ′
𝑗𝑥

′| ≳ |𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|}

≤ 1{‖𝑉 ′
𝑗 ‖‖𝑥′‖ ≳ |𝑉

(0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|}

≤ 1{‖𝑉 ′
𝑗 ‖𝐶1 ≳ |𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|}

≤ 1{‖𝑉 ′
𝑗 ‖ ≳

|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|

2𝐶1

+
𝑟

4𝐶1

}. (3.190)

Now by triangle inequality and Equations (3.190), (3.188), (3.187) and the fact that

169

‖𝑉 ′‖𝐹 ≤ 𝐶2, we can write:

|Γ𝑥′ − Γ𝑥′,𝑉 ′ |

≤ 1√
𝑚2

∑︁
𝑗∈𝒥𝑥,𝑟−𝒥 (2)

𝑥′,𝜃

⃒⃒⃒
1{(𝑉 (0)

𝑗 + 𝑉 ′
𝑗)(𝜑

(0)(𝑥𝑖) + 𝑥′) ≥ 0} − 1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}

⃒⃒⃒
|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

+
1√
𝑚2

∑︁
𝑗 /∈(𝒥𝑥,𝑟∪𝒥 (2)

𝑥′,𝜃)

⃒⃒⃒
1{(𝑉 (0)

𝑗 + 𝑉 ′
𝑗)(𝜑

(0)(𝑥𝑖) + 𝑥′) ≥ 0} − 1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}

⃒⃒⃒
|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

+
1√
𝑚2

∑︁
𝑗∈𝒥 (2)

𝑥′,𝜃

⃒⃒⃒
1{(𝑉 (0)

𝑗 + 𝑉 ′
𝑗)(𝜑

(0)(𝑥𝑖) + 𝑥′) ≥ 0} − 1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}

⃒⃒⃒
|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

≤ 1√
𝑚2

|𝒥𝑥,𝑟 − 𝒥 (2)
𝑥′,𝜃| max

𝑗∈𝒥𝑥,𝑟−𝒥 (2)

𝑥′,𝜃

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

+
1√
𝑚2

∑︁
𝑗 /∈(𝒥𝑥,𝑟∪𝒥 (2)

𝑥′,𝜃)

1{‖𝑉 ′
𝑗 ‖ ≳

|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|

2𝐶1

+
𝑟

4𝐶1

}|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

+
1√
𝑚2

|𝐽 (2)
𝑥′,𝜃|max

𝑗∈𝑚2

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

≤ 1√
𝑚2

|𝒥𝑥,𝑟 − 𝒥 (2)
𝑥′,𝜃| max

𝑗∈𝒥𝑥,𝑟−𝒥 (2)

𝑥′,𝜃

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

+
1√
𝑚2

∑︁
𝑗 /∈(𝒥𝑥,𝑟∪𝒥 (2)

𝑥′,𝜃)

1{‖𝑉 ′
𝑗 ‖ ≳

|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|

2𝐶1

+
𝑟

4𝐶1

}(|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|+ 𝜃𝜅2𝐶1)

+
1√
𝑚2

|𝐽 (2)
𝑥′,𝜃|max

𝑗∈𝑚2

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

≲
1√
𝑚2

|𝒥𝑥,𝑟 − 𝒥 (2)
𝑥′,𝜃| max

𝑗∈𝒥𝑥,𝑟−𝒥 (2)

𝑥′,𝜃

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

+
1√
𝑚2

∑︁
𝑗 /∈(𝒥𝑥,𝑟∪𝒥 (2)

𝑥′,𝜃)

1{‖𝑉 ′
𝑗 ‖ ≳

𝑟

𝐶1

}(𝐶1‖𝑉 ′
𝑗 ‖+ 𝜃𝜅2𝐶1)

+
1√
𝑚2

|𝐽 (2)
𝑥′,𝜃|max

𝑗∈𝑚2

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

≲
1√
𝑚2

|𝒥𝑥,𝑟 − 𝒥 (2)
𝑥′,𝜃|(𝑟 +

√
𝑚3𝜅2𝜖+ 𝜃𝜅2𝐶1) +

𝐶1√
𝑚2

√︂
#
(︁
𝑗 : ‖𝑉 ′

𝑗 ‖ ≳
𝑟

𝐶1

)︁
‖𝑉 ′‖2𝐹

170

+
1√
𝑚2

#
(︁
𝑗 : ‖𝑉 ′

𝑗 ‖ ≳
𝑟

𝐶1

)︁
𝜃𝜅2𝐶1 +

1√
𝑚2

|𝒥 (2)
𝑥′,𝜃|max

𝑗∈𝑚2

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|

≲
1√
𝑚2

|𝒥𝑥,𝑟 − 𝒥 (2)
𝑥′,𝜃|(𝑟 +

√
𝑚3𝜅2𝜖+ 𝜃𝜅2𝐶1) +

𝐶2
1𝐶

2
2√

𝑚2𝑟

+
𝐶3

1𝐶
2
2√

𝑚2𝑟
2
𝜃𝜅2 +

1√
𝑚2

|𝒥 (2)
𝑥′,𝜃|max

𝑗∈𝑚2

|𝑉 (0)
𝑗 𝜑(0)(𝑥𝑖)|.

Now using Equations (3.197), (3.186), (3.179), and (3.181), and the bound on |𝒥 (2)
𝑥′,𝜃|

from Lemma 38, we write

≲
1√
𝑚2

|𝒥𝑥,𝑟|(𝑟 + 𝜃𝜅2𝐶1) +
1√
𝑚2

|𝒥 (2)
𝑥′,𝜃|𝜅1𝜅2

√︀
𝑚3 log(𝑚2) +

𝐶2
1𝐶

2
2√

𝑚2𝑟
+

𝐶3
1𝐶

2
2√

𝑚2𝑟
2
𝜃𝜅2

≤ 1√
𝑚2

(︁ 𝑟√
𝑚3𝜅1𝜅2

𝑚2 +
√︀
𝑚2𝑚3 log(1/𝜖)

)︁
(𝑟 + 𝜃𝜅2𝐶1)

+
1√
𝑚2

(︁
𝑚3(log(𝑚3) + log(log(𝑚2)))

)︁
𝜅1𝜅2

√︀
𝑚3 log(𝑚2) +

𝐶2
1𝐶

2
2

𝑟
√
𝑚2

+
𝐶3

1𝐶
2
2√

𝑚2𝑟
2
𝜃𝜅2.

≤ 1√
𝑚2

(︁ 𝑟√
𝑚3𝜅1𝜅2

𝑚2 +
√︀
𝑚2𝑚3 log(1/𝜖)

)︁
(𝑟 + 𝜃𝜅2𝐶1)

+
𝑚

3/2
3 𝜅1𝜅2√
𝑚2

√︀
log(𝑚2)(log(𝑚3) + log(log(𝑚2))) +

𝐶2
1𝐶

2
2

𝑟
√
𝑚2

+
𝐶3

1𝐶
2
2√

𝑚2𝑟
2
𝜃𝜅2. (3.191)

Now setting

𝑟* := (𝐶1𝐶2)
2/3𝑚

1/6
3 (𝜅1𝜅2)

1/3

𝑚
1/3
2

.

By this choice, from (3.191) we obtain

|Γ𝑥′−Γ𝑥′,𝑉 ′ | ≤
(︁ (𝐶1𝐶2)

4/3

(
√
𝑚2𝜅2)

1/3(
√
𝑚3𝜅1)

1/3
+
(𝐶1𝐶2)

2/3𝑚
2/3
3 (𝜅1𝜅2)

1/3
√︀
log(1/𝜖)

𝑚
1/3
2

)︁(︁
1+𝜃

𝐶
1/3
1 (𝜅2

√
𝑚2)

2/3

𝐶
2/3
2 (𝜅1

√
𝑚3)

1/3

)︁

+
𝑚

3/2
3 𝜅1𝜅2√
𝑚2

√︀
log(𝑚2)(log(𝑚3) + log(log(𝑚2))).

Now we set

𝜃* := 3 log(𝑚2),

which also satisfies the condition of Lemma 38 and combining with Equation (3.180),

171

we get that with high probability

|Γ𝑥′,𝑉 ′ | ≤ |Γ𝑥′,𝑉 ′ − Γ𝑥′ |+ |Γ𝑥′|

≲
(︁ (𝐶1𝐶2)

4/3

(
√
𝑚2𝜅2)

1/3(
√
𝑚3𝜅1)

1/3
+

(𝐶1𝐶2)
2/3𝑚

2/3
3 (𝜅1𝜅2)

1/3
√︀

log(1/𝜖)

𝑚
1/3
2

)︁
×
(︁
1 + log(𝑚2)

𝐶
1/3
1 (𝜅2

√
𝑚2)

2/3

𝐶
2/3
2 (𝜅1

√
𝑚3)

1/3

)︁
+
𝑚

3/2
3 𝜅1𝜅2√
𝑚2

√︀
log(𝑚2)(log(𝑚3) + log(log(𝑚2))) + 𝜅1𝜅2

√︀
𝑚3 log(𝑚2),

where ‖𝑥′‖ ≲ 𝐶2 and ‖𝑉 ′‖𝐹 ≤ 𝐶2, ∀𝑗 : 𝑉 ′
𝑗𝜑

(0)(𝑥𝑖) = 0. We also need to satisfy

condition (3.181), which regarding this choice for 𝜃 = 𝜃* becomes

𝑟* = (𝐶1𝐶2)
2/3𝑚

1/6
3 (𝜅1𝜅2)

1/3

𝑚
1/3
2

≥ 2
√
𝑚3𝜅2𝜖, (3.192)

for which it suffices to set

𝜖* := (𝐶1𝐶2)
2/3 𝜅

1/3
1

2(𝑚2𝑚3)1/3𝜅
2/3
2

,

Substituting this choice of 𝜖 above and picking the overparameterization large

enough to dominate the magnitude of 𝐶1, 𝐶2 so that log(1/𝜖*) ≲ log(𝑚2), the proof is

complete.

172

Lemma 32. Under the following condition

(
√
𝑚2𝜅2)

1/3(
√
𝑚3𝜅1)

2/3 ≥ log−7/6(𝑚2)(𝐶1𝐶2)
1/3,

with high probability we have

sup
‖𝑥′‖≲𝐶1,‖𝑉 ′‖𝐹≤𝐶2,𝑉 ′⊥𝜑(0)

1√
𝑚2

‖
∑︁
𝑗

𝑎𝑗1{(𝑉 (0)
𝑗 + 𝑉 ′

𝑗)(𝜑
(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 ‖

≲
√
𝑚3𝜅2 log(𝑚2) +

(
√
𝑚2𝜅2)

1/3

(
√
𝑚3𝜅1)

2/3
(𝐶1𝐶2)

2/3 log1/6(𝑚2) := ℜ7.

Proof of Lemma 32

Similar to Lemma 31, define the helper functions Γ𝑥′ and Γ𝑥′,𝑉 ′ as

Γ𝑥′,𝑉 ′ =
1√
𝑚2

‖
∑︁
𝑗

𝑎𝑗1{(𝑉 (0)
𝑗 + 𝑉 ′

𝑗)(𝜑
(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 ‖, (3.193)

Γ𝑥′ =
1√
𝑚2

‖
∑︁
𝑗

𝑎𝑗1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 ‖. (3.194)

First we bound sup𝑥′ Γ𝑥′ . To this end, note that because 𝑉 (0)
𝑗 ∈ R𝑚3 and the VC-

dimension of half-planes is 𝑚3 + 1, then by Sauer’s Lemma, the set

𝒟 = {𝐷𝑥′

𝑉 (0),𝑥𝑖
| 𝑥′ ∈ R𝑚3 , ‖𝑥′‖ ≲ 𝐶1}

of all sign pattern matrices has cardinality at most

|𝒟| ≤ 𝑚𝑚3+1
2 .

Now note that with high probability, the entries of the matrix 𝑉 (0) are all less than

𝑂(𝜅2
√︀

log(𝑚2𝑚3)). On the other hand, for each fixed sign pattern 𝐷𝑥′

𝑉 (0),𝑥𝑖
, we have

173

for the sum with respect to this sign pattern:

‖ 1√
𝑚2

∑︁
𝑗

𝑎𝑗1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 ‖2 (3.195)

is (𝑚3𝜅
4
2 log

2(𝑚2𝑚3), 𝜅
2
2 log(𝑚2𝑚3)) sub-exponential with respect to the randomness

of 𝑎, because each entry of the vector 1√
𝑚2

∑︀
𝑗 𝑎𝑗1{𝑉

(0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 is

(𝜅2
√︀

log(𝑚2𝑚3))-subGaussian. Therefore, with high probability we have

‖ 1√
𝑚2

∑︁
𝑗

𝑎𝑗1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 ‖2

≤ E𝑎[‖
1√
𝑚2

∑︁
𝑗

𝑎𝑗1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 ‖2] + deviation

≲ 𝑚3𝜅
2
2 log(𝑚2𝑚3) +

√
𝑚3𝜅

2
2 log(𝑚2𝑚3) + 𝜅22 log(𝑚2𝑚3).

Similarly, if we take a union bound over all sign matrices in 𝒟 and using the fact that

𝑚2 > 𝑚3:

sup
𝑥′

Γ2
𝑥′ = sup

𝑥′∈R𝑚3

‖ 1√
𝑚2

∑︁
𝑗

𝑎𝑗1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}𝑉 (0)

𝑗 ‖2

≲ 𝑚3𝜅
2
2 log(𝑚2𝑚3) +

√
𝑚3𝜅

2
2 log(𝑚2𝑚3)

√︁
log(𝑚𝑚3+1

2) + 𝜅22 log(𝑚2𝑚3) log(𝑚
𝑚3+1
2)

≲ 𝑚3𝜅
2
2 log

2(𝑚2),

which implies

sup
𝑥′

Γ𝑥′ ≲
√
𝑚3𝜅2 log(𝑚2). (3.196)

Moreover, defining 𝒥𝑣,𝑥 similar to Lemma 31 and using the similar approach we get

with high probability

max
𝑥∈𝐵𝐶1

(𝜖)
|𝒥𝑥,𝑟| ≲

𝑟√
𝑚3𝜅1𝜅2

𝑚2 +
√︀
𝑚2 log(|𝐵𝐶1(𝜖)|) ≲

𝑟√
𝑚3𝜅1𝜅2

𝑚2 +
√︀
𝑚2𝑚3 log(1/𝜖).

(3.197)

174

Now for simplifying the analysis, we assume that for indices 𝑗 ∈ 𝒥𝑥,𝑟 we can change

the sign pattern with no cost on 𝑉 ′, i.e. we can pick any subset of them. Therefore,

we first compute a high probability upper bound on the following quantity:

1√
𝑚2

sup
𝑆⊂𝒥𝑥,𝑟,±signs

‖
∑︁
𝑗∈𝑆

±𝑉 (0)
𝑗 ‖.

If we form the matrix 𝑉 (0)(𝒥𝑥,𝑟) be the matrix which only keeps the rows with indices

in 𝒥𝑥,𝑟, then the above quantity can be computed as

1√
𝑚2

sup
𝑆⊂𝒥𝑥,𝑟,±signs

‖
∑︁
𝑗∈𝑆

±𝑉 (0)
𝑗 ‖ =

1√
𝑚2

sup
𝑣∈{0,1,−1}|𝒥𝑥,𝑟 |

‖𝑣𝑇𝑉 (0)(𝒥𝑥,𝑟)‖

≤ 1√
𝑚2

𝜆max(𝑉
(0)(𝒥𝑥,𝑟)) sup ‖𝑣‖ ≤

1√
𝑚2

𝜆max(𝑉
(0)(𝒥𝑥,𝑟))|𝒥𝑥,𝑟|,

where 𝜆𝑚𝑎𝑥 is the maximum singular value of the matrix. Now by random matrix

theory, we know for a fixed 𝑥 and arbitrary 𝑡 ≥ 0, the following argument holds:

P(𝜆max(𝑉
(0)(𝒥𝑥,𝑟))/𝜅2 ≳

√
𝑚3 +

√︁
|𝒥𝑥,𝑟|+ 𝑡) ≤ 2𝑒−𝑐𝑡

2

. (3.198)

Therefore, as |𝒟| ≤ 𝑚𝑚3+1
2 , we get with high probability

max
𝑥∈𝐵𝐶1

(𝜖)
𝜆max(𝑉

(0)(𝒥𝑥,𝑟)) ≲ 𝜅2(
√
𝑚3 +

√︁
|𝒥𝑥,𝑟|+

√︁
log(𝑚𝑚3+1

2))

≤ 𝜅2
√︀
log(𝑚2)𝑚3 + 𝜅2

√︁
|𝒥𝑥,𝑟|.

Therefore, with high probability

sup
𝑥∈𝐵𝐶1

(𝜖)

1√
𝑚2

sup
𝑆⊂𝒥𝑥,𝑟

‖
∑︁
𝑗∈𝑆

𝑉
(0)
𝑗 ‖ ≤

𝜅2√
𝑚2

(
√︁

log(𝑚2)𝑚3|𝒥𝑥,𝑟|+ |𝒥𝑥,𝑟|). (3.199)

On the other hand, as in Equation (3.189) in the proof of Lemma 31, for 𝑗 /∈ 𝒥𝑥,𝑟 we

have:

|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)| ≥ |𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥)| − |𝑉 (0)
𝑗 (𝑥− 𝑥′)| ≳ 𝑟 −

√
𝑚3𝜅2𝜖. (3.200)

175

Picking

𝜖* :=
𝑟

2
√
𝑚3𝜅2

,

we get for 𝑗 /∈ 𝒥𝑥,𝑟
|𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)| ≳ 𝑟.

Now similar to the derivation in (3.190) we have

⃒⃒⃒
1{(𝑉 (0)

𝑗 + 𝑉 ′
𝑗)(𝜑

(0)(𝑥𝑖) + 𝑥′) ≥ 0} − 1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0}

⃒⃒⃒
≤ 1{‖𝑉 ′

𝑗 ‖𝐶1 ≳ |𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′)|}

≤ 1{‖𝑉 ′
𝑗 ‖ ≳

𝑟

𝐶1

}.

Hence, because ‖𝑉 ′‖𝐹 ≤ 𝐶2, the number of indices for which 1{(𝑉 (0)
𝑗 + 𝑉 ′

𝑗)(𝜑
(0)(𝑥𝑖) +

𝑥′) ≥ 0} ̸= 1{𝑉 (0)
𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0} is at most 𝑙 = (𝐶1𝐶2)2

𝑟2
. Therefore, we bound the

following quantity to use in the analysis:

sup
𝑆⊂[𝑚2] & |𝑆|≤𝑙,±signs

‖
∑︁
𝑗∈𝑆

±𝑉 (0)
𝑗 ‖. (3.201)

But if we define for 𝑚2 < 𝑗 ≤ 2𝑚2,

𝑉
(0)
𝑗 = −𝑉 (0)

𝑗−𝑚2
,

then

sup
𝑆⊂[𝑚2] & |𝑆|≤𝑙,±signs

‖
∑︁
𝑗∈𝑆

±𝑉 (0)
𝑗 ‖ ≤ sup

𝑆⊂[2𝑚2] & |𝑆|≤𝑙
‖
∑︁
𝑗∈𝑆

𝑉
(0)
𝑗 ‖.

Now note that each entry of
∑︀

𝑗∈𝑆 𝑉
(0)
𝑗 is

√
𝑙𝜅2 subGaussian. Hence, the quantity

176

‖
∑︀

𝑗∈𝑆 𝑉
(0)
𝑗 ‖2 is (𝑚3𝑙

2𝜅42, 𝑙𝜅
2
2) subexponential. Therefore, we have with high probability

sup
|𝑆|≤𝑙
‖
∑︁
𝑗∈𝑆

𝑉
(0)
𝑗 ‖2 ≲ E‖

∑︁
𝑗∈𝑆

𝑉
(0)
𝑗 ‖2 +

√
𝑚3𝑙𝜅

2
2

√︃
log

(︂
2𝑚2

𝑙

)︂
+ 𝑙𝜅22 log

(︂
2𝑚2

𝑙

)︂

≲ 𝑚3𝑙𝜅
2
2 +
√
𝑚3𝑙𝜅

2
2

√︃
log

(︂
2𝑚2

𝑙

)︂
+ 𝑙𝜅22 log

(︂
2𝑚2

𝑙

)︂
≲ 𝑚3𝑙𝜅

2
2 +
√
𝑚3𝑙

3/2𝜅22
√︀
log(𝑚2) + 𝑙2𝜅22 log(𝑚2).

Hence

sup
|𝑆|≤𝑙
‖
∑︁
𝑗∈𝑆

𝑉
(0)
𝑗 ‖ ≲

√
𝑚3

√
𝑙𝜅2 + 𝑙𝜅2

√︀
log(𝑚2).

Now using Equation , we can write

|Γ𝑥′ − Γ𝑥′,𝑉 ′ |

≤ 1√
𝑚2

‖
∑︁
𝑗∈𝒥𝑥,𝑟

(1{(𝑉 (0)
𝑗 + 𝑉 ′

𝑗)(𝜑
(0)(𝑥𝑖) + 𝑥′) ≥ 0} − 1{𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0})𝑉 (0)
𝑗 ‖

+
1√
𝑚2

‖
∑︁
𝑗 /∈𝒥𝑥,𝑟

(1{(𝑉 (0)
𝑗 + 𝑉 ′

𝑗)(𝜑
(0)(𝑥𝑖) + 𝑥′) ≥ 0} − 1{𝑉 (0)

𝑗 (𝜑(0)(𝑥𝑖) + 𝑥′) ≥ 0})𝑉 (0)
𝑗 ‖

≤ 1√
𝑚2

sup
𝑆⊂𝒥𝑥,𝑟,±signs

‖
∑︁
𝑗∈𝑆

±𝑉 (0)
𝑗 ‖

+
1√
𝑚2

sup
𝑆⊂[𝑚2] & |𝑆|≤(

𝐶1𝐶2
𝑟

)2,±signs

‖
∑︁
𝑗∈𝑆

±𝑉 (0)
𝑗 ‖

≤ 𝜅2√
𝑚2

(
√︁

log(𝑚2)𝑚3|𝒥𝑥,𝑟|+ |𝒥𝑥,𝑟|) +
1√
𝑚2

(︁√
𝑚3

√
𝑙𝜅2 + 𝑙𝜅2

√︀
log(𝑚2)

)︁
≤ 𝜅2√

𝑚2

(︁ 𝑟𝑚2√
𝑚3𝜅1𝜅2

+

√︂
𝑚2𝑚3 log(

√
𝑚3𝜅2
𝑟

)
)︁1/2

(
√︀
log(𝑚2)𝑚3 +

√︁
|𝒥𝑥,𝑟|)

+
1√
𝑚2

(︁√
𝑚3(𝐶1𝐶2/𝑟)𝜅2 + (𝐶1𝐶2/𝑟)

2𝜅2
√︀

log(𝑚2)
)︁

≲
𝜅2√
𝑚2

(︁ 𝑟𝑚2√
𝑚3𝜅1𝜅2

+

√︂
𝑚2𝑚3 log(

√
𝑚3𝜅2
𝑟

)
)︁

+
1√
𝑚2

(︁√
𝑚3(𝐶1𝐶2/𝑟)𝜅2 + (𝐶1𝐶2/𝑟)

2𝜅2
√︀

log(𝑚2)
)︁
.

177

Combining this with (3.196):

|Γ𝑥′,𝑉 ′ | ≲
√
𝑚3𝜅2 log(𝑚2) (3.202)

+
𝑟
√
𝑚2√

𝑚3𝜅1
+ 𝜅2

√︂
𝑚3 log(

√
𝑚3𝜅2
𝑟

) +
1√
𝑚2

(︁√
𝑚3(𝐶1𝐶2/𝑟)𝜅2 + (𝐶1𝐶2/𝑟)

2𝜅2
√︀

log(𝑚2)
)︁
.

(3.203)

Now setting

𝑟* :=
𝑚

1/6
3 (𝜅1𝜅2)

1/3

𝑚
1/3
2

(𝐶1𝐶2)
2/3 log1/6(𝑚2),

we get

𝐿𝐻𝑆 ≲
√
𝑚3𝜅2 log(𝑚2) +

(
√
𝑚2𝜅2)

1/3

(
√
𝑚3𝜅1)

2/3
(𝐶1𝐶2)

2/3 log1/6(𝑚2) (3.204)

+ 𝜅2𝑚
1/2
3 log1/2(𝑚2) +

𝑚
1/3
3 𝜅

2/3
2 (𝐶1𝐶2)

1/3

𝑚
1/6
2 𝜅

1/3
1 log1/6(𝑚2)

(3.205)

≲
√
𝑚3𝜅2 log(𝑚2) +

(
√
𝑚2𝜅2)

1/3

(
√
𝑚3𝜅1)

2/3
(𝐶1𝐶2)

2/3 log1/6(𝑚2) (3.206)

+
𝑚

1/2
3 𝜅2(𝐶1𝐶2)

1/3

(
√
𝑚2𝜅2)

1/3(
√
𝑚3𝜅1)

1/3 log1/6(𝑚2)
. (3.207)

Now under the condition

(
√
𝑚2𝜅2)

1/3(
√
𝑚3𝜅1)

2/3 ≥ log−7/6(𝑚2)(𝐶1𝐶2)
1/3,

The final term is dominated by the first term, which finally completes the proof.

178

3.6.16 Convergence

The goal of this section is to prove Theorem 7.

Theorem 7. Letting ℵ = 4𝐵2, by Corollary 8.1, we have 𝐿Π(0) ≤ ℵ. We define

the domain 𝒟𝑙 := {‖𝑤′‖ ≤ 𝐶1 := ℵ+4𝑙
𝜓1

, ‖𝑣′‖ ≤ 𝐶2 := ℵ+4𝑙
𝜓2
}. For a large enough

constant 𝑙 = 𝑂(1) and function 𝐿Π(𝑤 := (𝑤′, 𝑣′)) : R𝑁 → R. Moreover, suppose

𝐿Π is 𝜌1 Lipschitz, 𝜌2 gradient Lipschitz, and 𝜌3 hessian Lipschitz in the domain 𝒟𝑙
(𝜌1, 𝜌2, 𝜌3 ≥ 1), in the sense that their first, second, and third directional derivatives

in an arbitrary unit direction is bounded by the corresponding parameters. Suppose we

have access to the gradient of 𝐿Π at each point in 𝒟𝑙 plus a zero mean noise vector

$ such that 𝜎2
1𝐼 ≤ E$$𝑇 ≤ 𝜎2

2𝐼 and ‖$‖ ≤ 𝑄 almost surely. Also, suppose for a

threshold ℵℓ ≤ ℵ, if 𝐿Π(𝑤) ≥ ℵℓ and 𝑤 ∈ 𝒟𝑙, then we have at least one of the following

conditions holds:

(1) ‖∇𝐿Π(𝑤)‖ ≥ 𝜈

16
√︀
𝐶2

1 + 𝐶2
2

, (3.208)

(2) 𝜆min(∇2𝐿Π(𝑤)) ≤ −𝛾. (3.209)

Then starting from 𝑤0 = 0, with probability at least 0.999 after at most

𝑝𝑜𝑙𝑦(𝜌1, 𝜌2, 𝜌3, 𝑄,ℵ, 𝐶1, 𝐶2, 1/𝛾, log(𝜎1/𝜎2)) number of iterations, we reach a point 𝑤𝑡

such that 𝐿Π(𝑤𝑡) ≤ ℵℓ.

Our proof here is a refined version of that in Ge et al. [2015a]. As we mentioned in

section 3.5, the key fact that we are using in the other parts of our proof is a uniform

upper bound ‖𝑤′‖ ≤ 𝐶1, ‖𝑣′‖ ≤ 𝐶2 which is unjustified by only naively using Ge

et al. [2015a]. Here, first we restate a refined version of Lemmas 14 and 16 in Ge

et al. [2015a] in Lemmas 33 and 35 respectively, and then use them to also bound the

upward deviations of 𝐿Π. Moreover, to avoid writing repeated proofs and overwhelm

the reader, we mostly treat the arguments in Lemma 16 of Ge et al. [2015a] as blackbox

and use them for our purpose here. A point to mention before we start, unlike Lemma

14 of Ge et al. [2015a] where the dependency on other parameters than the step size 𝜂

is more explicit, Lemma 16 hides the dependencies on all the other parameters (which

179

is polynomial). Here, we follow the same style.

We refer to the trajectory of the steps of algorithm by (𝑤𝑡)𝑡≥0. In Lemmas of this

section, To avoid introducing new notation and complicating things, we refer to the

current point of the algorithm by 𝑤0, while for the next point of the algorithm we

use 𝑤1 (in Lemma 33), and 𝑤𝑇 (in Lemma 35) respectively. Also, similar to Ge et al.

[2015a], �̃� and Ω̃ below means we are looking at the dependency on 𝜂.

Lemma 33. Suppose 𝐿Π(𝑤0) ≤ ℵ+ 2𝑙, and consider a parameter 𝜒 > 1 which can

be set arbitrarily. For every point 𝑤0 such that 𝐿Π(𝑤0) ≤ ℵ + 2𝑙, ‖∇𝐿Π(𝑤0)‖ ≥

2
√︁
𝜂(𝑄2 + 𝜎2

2𝑁)𝜌2𝜌21(2𝜒+ 1
2
), then for 𝑤1 := 𝑤0 − 𝜂(∇𝐿Π(𝑤0) + $) and random

variable R1 (depending on 𝑤0) defined as

E𝐿Π(𝑤1)− 𝐿Π(𝑤0) = −𝜂2R2
1, (3.210)

we have R1 = Ω̃(1) a.s., and almost surely:

⃒⃒⃒
𝐿Π(𝑤1)− 𝐿Π(𝑤0)

⃒⃒⃒
≤ 𝜂R1/

√
𝜌2𝜒.

(the expectation is over the randomness of $).

This lemma is a tuned version of Lemma 14 in Ge et al. [2015a]. First, note that

the condition 𝐿Π(𝑤0) ≤ ℵ + 2𝑙 assures the smoothness coefficients 𝜌1, 𝜌2 and 𝜌3 for

𝐿Π by Corollary ??. We follow similar to Ge et al. [2015a] (picking 𝜂 < 1/(2𝜌2)):

E𝐿Π(𝑤1)− 𝐿Π(𝑤0) ≤ −
𝜂

2
‖∇𝐿Π(𝑤0)‖2 +

𝜂2𝜎2
2𝜌2𝑁

2

≤ −𝜂
4
‖∇𝐿Π(𝑤0)‖2 − 𝜂2(𝜎2

2𝑁 +𝑄2)𝜌2𝜌
2
1(2𝜒+

1

2
) +

𝜂2𝜎2
2𝜌2𝑁

2

≤ −𝜂
4
‖∇𝐿Π(𝑤0)‖2 − 2𝜂2𝑄2𝜌2𝜌

2
1𝜒. (3.211)

where we used the fact that 𝜌1 ≥ 1. On ther other hand, 𝐿Π is 𝜌1 Lipcshitz, so we

180

have almost surely

|𝐿Π(𝑤1)− 𝐿Π(𝑤0)| ≤ 𝜌1𝜂(‖∇𝐿Π(𝑤0) +$‖) ≤ 𝜌1𝜂(‖∇𝐿Π(𝑤0)‖+ ‖$‖)

≤ 𝜌1𝜂(‖∇𝐿Π(𝑤0)‖+𝑄). (3.212)

(To be completely precise, we should justify that we can write the Lipschitz inequality

at point 𝑤0, we also need to make sure that 𝑤1 remains in the domain that we have

the Lipschitz parameter in, i.e. 𝒟𝑙. To see why this is true, see the next Corollary).

Therefore

(𝜌2𝜒)
⃒⃒⃒
𝐿Π(𝑤1)− 𝐿Π(𝑤0)

⃒⃒⃒2
≤ 2𝜂2𝜌21𝜌2𝜒‖∇𝐿Π(𝑤0)‖2 + 2𝜌2𝜒𝜂

2𝜌21𝑄
2. (3.213)

Taking

𝜂 ≤ (8𝜌21𝜌2𝜒)
−1, (3.214)

we get from Equation (3.211):

E𝐿Π(𝑤1)− 𝐿Π(𝑤0) ≤ −2𝜂2𝜌21𝜌2𝜒‖∇𝐿Π(𝑤0)‖2 − 2𝜌2𝜒𝜂
2.𝜌21𝑄

2. (3.215)

Combining Equations (3.213) and (3.215), we see that

(𝜌2𝜒)
⃒⃒⃒
𝐿Π(𝑤1)− 𝐿Π(𝑤0)

⃒⃒⃒2
≤ −(E𝐿Π(𝑤1)− 𝐿Π(𝑤0)).

Hence, if we define

E𝐿Π(𝑤1)− 𝐿Π(𝑤0) := −𝜂2R2
1,

we get

⃒⃒⃒
𝐿Π(𝑤1)− 𝐿Π(𝑤0)

⃒⃒⃒
≤ 𝜂R1/

√
𝜌2𝜒, (3.216)

181

and from Equation (3.215), that

R2
1 ≥ 2𝜌21𝜌2𝜒‖∇𝐿Π(𝑤0)‖2 + 2𝜌2𝜒𝜌

2
1𝑄

2 ≥ 2𝜌2𝜒𝜌
2
1𝑄

2 = Ω̃(1).

Moreover, because the function is 𝜌1-Lipshitz at the domain point 𝑤0, we get from

Equation (3.212):

−𝜂2R2
1 = E𝐿Π(𝑤1)− 𝐿Π(𝑤0) ≥ −𝜂𝜌1(‖∇𝐿Π(𝑤0)‖+𝑄) ≥ −𝜂𝜌1(𝜌1 +𝑄) ≥ − 1

𝜌2𝜒
,

by taking

𝜂 ≤ (𝜌1(𝜌1 +𝑄)𝜌2𝜒)
−1,

which implies

𝜂R1 ≤
1
√
𝜌2𝜒

.

This, combined with Equation (3.216) and triangle inequality implies:

⃒⃒⃒
𝐿Π(𝑤1)− E𝐿Π(𝑤1)

⃒⃒⃒
≤ 𝜂R1/

√
𝜌2𝜒+ 𝜂2R2

1 ≤ 2𝜂R1/
√
𝜌2𝜒. (3.217)

Lemma 34. As long as the value of the function at some 𝑤 is bounded by ℵ + 2𝑙

(𝐿Π(𝑤) ≤ ℵ+2𝑙), then 𝜂 can be picked small enough (polynomially in other parameters),

namely 𝜂 ≤ 𝑙/(‖∇𝐿Π(𝑤0)‖+𝑄), so that the change of the function by a step is bounded

by 𝑙.

Let 𝜓 = min{𝜓1, 𝜓2}. First, note that as the function is bounded by ℵ+ 2𝑙, we

have the Lipschitz parameter 𝜌1, hence ‖∇𝐿Π(𝑤)‖ ≤ 𝜌1. Therefore, the change in 𝑤

in a step is bounded as

‖∇𝐿Π(𝑤) +$‖ ≤ 𝑄+ 𝜌1.

So by picking

𝜂 ≤
(︁√︃ℵ+ 3𝑙

𝜓
−

√︃
ℵ+ 2𝑙

𝜓

)︁
/(𝑄+ 𝜌1),

we guarantee that the value of 𝑤 after a step remains in the ball of radius
√︁

ℵ+3𝑙
𝜓

,

182

hence we still have the smoothing parameters even after one step. Therefore, now we

can use the Lipcshitz parameter 𝜌1 to bound the value of the function after one step

as it is written in Equation Equation (3.212). Using this Equation, it is enough to

pick 𝜂 as small as:

𝜂 ≤ 𝑙/(‖∇𝐿Π(𝑤0)‖+𝑄), (3.218)

so that the change in the function would be at most 𝑙 as desired.

Lemma 35. For a fixed point 𝑤0 s.t. 𝐿Π(𝑤0) ≤ ℵ + 2𝑙, suppose we pick 𝜂 small

enough such that

S(𝜂) := 2

√︂
𝜂(𝑄2 + 𝜎2

2𝑁)𝜌2𝜌21(2𝜒+
1

2
) <

𝜈

16
√︀
𝐶2

1 + 𝐶2
2

.

Then, note that for ‖∇𝐿Π(𝑤0)‖ ≤ S(𝜂), condition 3.209 implies:

𝜆𝑚𝑖𝑛

(︁
∇2𝐿Π(𝑤0)

)︁
≤ 𝛾.

Then, using the notation E𝑇 for the high probability event corresponding to Equations

(36) and (44) in Ge et al. [2015a], for small enough 𝜂 (polynomially small w.r.t other

parameters), for R2 defined as

E[𝐿Π(𝑤𝑇)− 𝐿Π(𝑤0)]1{E𝑇} = −R2
2𝜂

2, (3.219)

we have almost surely

⃒⃒⃒
[𝐿Π(𝑤𝑇)− 𝐿Π(𝑤0)]1{E𝑇}

⃒⃒⃒
≤ R2𝜂/

√
𝜌2𝜒. (3.220)

Note that in the expectations above 𝑤0 is assumed fixed. Furthermore, we can assume

P(E𝑇) ≥ 1− �̃�(𝜂5).

This Lemma is a tuned version of Lemma 16 in Ge et al. [2015a]. We change

a couple of things here. First, we consider an implicit coupling that if 𝑤𝑡 exits 𝒟𝑙

183

we do not move it anymore, i.e. 𝑤𝑡′ = 𝑤𝑡, ∀𝑡′ ≥ 𝑡, which means the noise vectors

also becomes zero, i.e. $𝑡′ = 0,∀𝑡′ ≥ 𝑡. This way, the sequence of noise vectors

remain bounded by 𝑄, because if 𝑤𝑡 is inside 𝒟𝑙, then by assumption ‖$𝑡‖ ≤ 𝑄, while

otherwise $𝑡 = 0. We denote the event that the sequence 𝑤0, . . . 𝑤𝑇 remain in 𝐷𝑙 by

ℰ𝑇 , where 𝑇 is defined in Lemma 16 of Ge et al. [2015a].

Note that we also have the smoothing parameters 𝜌1, 𝜌2, 𝜌3 for all (𝑤𝑡) because of

this coupling. In fact, we will use a more strict coupling; we consider the event E𝑇

to be the high probability event corresponding to the bounds in Equations (44) and

(36) of Ge et al. [2015a] holding for all 𝑡 ≤ 𝑇 ; We will see that E𝑇 ⊆ ℰ𝑇 at the end of

this proof, but for now we assume it is true. An important point to note here is that

in Ge et al. [2015a], P(E𝑇) is bounded by 𝑂(𝜂2). However, the exponent dependency

of 𝜂 in this bound comes from Azuma-Hoeffding type inequalities, particularly used in

Equations (60) and (42) in Ge et al. [2015a], in which by considering larger constants

one can easily get higher exponents. For our analysis, a bit stronger dependence of 𝜂5

is required.

Also, because the distribution of our noise depends on the point 𝑤, our sequence of

noise vectors ($𝑡) is a martingale instead of being i.i.d, so we apply Azuma-Hoeffding

inequality instead of the simple Hoeffdings in Lemma 16 of Ge et al. [2015a]. (because

we are also sampling a random (𝑥𝑖, 𝑦𝑖) to compute the estimate of the gradient, this

could be simplified to the case where we compute the actual gradient and then inject

an i.i.d noise vector in each step, but it is an overhead to compute the actual gradient,

so here we choose to analyze the more complicated case.)

Next, notice the definition of Λ and Λ̃ right after Equation (66) in Ge et al. [2015a],

which in our notation translates to

Λ̃ := ∇𝐿Π(𝑤0)
𝑇 𝛿 +

1

2
𝛿𝑇ℋ𝛿, Λ = ∇𝐿Π(𝑤0)

𝑇 𝛿 +
1

2
𝛿𝑇ℋ𝛿 + 𝛿𝑇ℋ𝛿 + 𝜌3

6
‖𝛿 + 𝛿‖3.

(3.221)

where

𝛿 = �̃�𝑇 − 𝑤0, 𝛿 = 𝑤𝑇 − �̃�𝑇 ,

184

for (�̃�𝑡) which is a coupled sequence with (𝑤𝑡) as defined in Ge et al. [2015a]. Note

that we apply the coupling for the sequence �̃�𝑡 as well, i.e. if 𝑤𝑡+1 = 𝑤𝑡, we also set

�̃�𝑡+1 = �̃�𝑡.

To show Equation (3.219), we want to use Equation (67) in Ge et al. [2015a],

though we only use the expansion for the first term which is under 1{ℰ𝑇}, i.e.

E[𝐿Π(𝑤𝑇)− 𝐿Π(𝑤0)]1E𝑇
= EΛ̃1E𝑇

+ EΛ1E𝑇
. (3.222)

First of all, as it is mentioned in Lemma 16 of [Ge et al., 2015a], in the case where

the noise vector 𝜎12𝐼 ≤ E$$𝑇 ≤ 𝜎2
2𝐼 instead of having E$$𝑇 = 𝜎2𝐼 for a fixed 𝜎,

in order to still get a negative term of order 𝜂 in Equation (68) of [Ge et al., 2015a],

we just need the size of 𝑇max to be as large as 𝑂(1
𝛾𝜂
(log 𝑑+ log 𝜎2

𝜎1
)), and it does not

change the order of 𝜂 in any other part of Lemma 16. Now similar to Equation (68)

of [Ge et al., 2015a], if w.l.o.g we assume the smallest eigenvalue 𝛾0 corresponds to

𝑖 = 1:

EΛ̃1E𝑇
≤1

2

𝑁∑︁
𝑖=1

𝜆𝑖

𝑇−1∑︁
𝜏=0

1{𝜆𝑖<0}(1− 𝜂𝜆𝑖)2𝜏𝜂2𝜎2
1P(E𝑇)+ (3.223)

1

2

𝑁∑︁
𝑖=1

𝜆𝑖

𝑇−1∑︁
𝜏=0

1{𝜆𝑖≥0}(1− 𝜂𝜆𝑖)2𝜏𝜂2𝜎2
2 (3.224)

≤ 𝜂2

2

[︁
𝜎2
2

𝑁 − 1

𝜂
− 𝛾0𝜎2

1P(E𝑇)
𝑇−1∑︁
𝜏=0

(1 + 𝜂𝛾0)
2𝜏
]︁
≤ −𝜂𝜎

2
1

2
. (3.225)

where in the last line we use the fact that P(E𝑇) ≤ 1/2 plus the additional

log(𝜎2/𝜎1) factor. Second, note that our threshold S(𝜂) for the size of gradient in

Lemmas 33 and 35 has the same order of 𝜂 compared to that of Lemmas 14 and 16

in Ge et al. [2015a]. Therefore, the arguments in Lemma 16 that considers the order

of 𝜂 and treat the other parameters as constants is true here as well. Hence, we still

have Equation (69) of Ge et al. [2015a] which is under the event ℰ𝑇 . Applying it to

Equation (3.222),

185

Hence, finally by a similar derivation of Equation (67) in Ge et al. [2015a]:

E[𝐿Π(𝑤𝑇)− 𝐿Π(𝑤0)]1{E𝑇} ≤ −Ω̃(𝜂). (3.226)

Next, we turn to prove the second bound (3.220). Combining Equations (36)

and (44) in [Ge et al., 2015a], we get with high probability (we use the final high

probability parameter of Lemma 16 which is the result of a union bound over all the

high probability arguments which is equivalent to the occurrence of E𝑇), i.e. when E𝑇

happens,

‖𝑤𝑇 − 𝑤0‖ ≤ �̃�(𝜂
1
2 log

1

𝜂
). (3.227)

Picking 𝜂 small enough such that for the bound above we have

𝑂(𝜂
1
2 log

1

𝜂
) ≤

√︃
ℵ+ 3𝑙

𝜓
−

√︃
ℵ+ 2𝑙

𝜓
,

we get for every �̄� in the line connecting 𝑤0 to 𝑤𝑇 :

‖�̄�‖ ≤

√︃
ℵ+ 3𝑙

𝜓
,

which implies that 𝐿Π has the smoothing parameters 𝜌1, 𝜌2, 𝜌3 along 𝑤0 to 𝑤𝑇 . There-

fore, by the 𝜌2-gradient smoothness property of 𝐿Π:

‖∇𝐿Π(�̄�)−∇𝐿Π(𝑤0)‖ ≤ 𝜌2‖𝑤0 − �̄�‖ ≤ 𝑂(𝜌2𝜂
1
2 log

1

𝜂
).

Combining the assumption of the Lemma ‖∇𝐿Π(𝑤0)‖ ≤ �̃�(𝜂
1
2), we get

‖∇𝐿Π(�̄�)‖ = �̃�(𝜂1/2 log(1/𝜂)).

(The last �̃� also hides the dependency on 𝜌2). Now integrating over the derivative

186

along the direction from 𝑤0 to 𝑤𝑇 :

𝐿Π(𝑤𝑇) = 𝐿Π(𝑤0) +

∫︁ 1

𝑡=0

∇𝐿Π(𝑡𝑤0 + (1− 𝑡)𝑤𝑇)𝑇 (𝑤𝑇 − 𝑤0)𝑑𝑡.

Therefore, using (3.227) one more time, under the event ℰ𝑇 :

|𝐿Π(𝑤𝑇)− 𝐿Π(𝑤0)| ≤
∫︁ ⃒⃒⃒
∇𝐿Π(𝑡𝑤0 + (1− 𝑡)𝑤𝑇)𝑇 (𝑤𝑇 − 𝑤0)

⃒⃒⃒
𝑑𝑡

≤
∫︁ 1

0

‖∇𝐿Π(𝑡𝑤0 + (1− 𝑡)𝑤𝑇‖‖𝑤𝑇 − 𝑤0‖𝑑𝑡

≤ �̃�(𝜂1/2 log 1/𝜂)‖𝑤𝑇 − 𝑤0‖ = �̃�(𝜂 log2 1/𝜂).

Hence

⃒⃒⃒
[𝐿Π(𝑤𝑇)− 𝐿Π(𝑤0)]1{E𝑇}

⃒⃒⃒
≤ �̃�(𝜂 log2 1/𝜂), (3.228)

which

Now comparing Equations (3.226) and (3.228), it is clear that one can pick 𝜂 small

enough (again polynomially small in the other parameters) such that for some random

variable R2, which also depends on 𝜂, so that equations (3.219) and (3.220) hold.

It remains to show ℰ𝑇 ⊆ E𝑇 . This is desirable as up until now we have only

proved (3.219) and (3.220) for the coupled sequence (which does not move outside the

ball 𝐷𝑙), but we know that under the event ℰ𝑇 , the coupled sequence and the original

sequence are the same, which automatically implies the conclusion for the original

sequence. Notice that the bound in (3.228) is an a.s. upper bound on the change of

the function value under the event ℰ𝑇 for every 1 ≤ 𝑡 ≤ 𝑇 . Therefore, by picking

𝜂 small enough (polynomially) s.t. the quantity 𝑂(𝜂 log(1/𝜂)2) in Equation (3.228)

is bounded by 𝑙, we again make sure that the value of function during these steps

changes by at most 𝑙 compared to 𝑤0, i.e. for every 1 ≤ 𝑡 ≤ 𝑇 :

⃒⃒⃒
[𝐿Π(𝑤𝑡)− 𝐿Π(𝑤0)]1{E𝑡}

⃒⃒⃒
≤ 𝑙, (3.229)

187

hence, remains bounded by ℵ+ 3𝑙. This implies E𝑇 ⊆ ℰ𝑇 as promised.

3.6.17 Process from a higher view: definition of the (𝑋) se-

quence

The goal here is to find a 𝑤* with 𝐿Π(𝑤*) ≤ ℵℓ using Lemmas 33 and 35 (recall the

definition of ℵℓ from Theorem 7). The main result of this section is Lemma 36. For

this purpose we define a useful coupling: to begin, as done in Ge et al. [2015a], define

a sequence of times 𝜏𝑖 inductively in the following way: To define 𝜏𝑖+1 based on 𝜏𝑖, if

the condition

ℵℓ ≤ 𝐿Π(𝑤𝜏𝑖+1
) ≤ ℵ+ 2𝑙 (3.230)

does not hold, then just set 𝜏𝑖+1 = 𝜏𝑖 ⋆(1). Otherwise, using the conditions (3.209),

we are either in the situation of Lemma 33 or Lemma 35 by setting the value of 𝑤0 in

these Lemmas as 𝑤0 = 𝑤𝜏𝑖 . In the first case, define 𝜏𝑖+1 = 𝜏𝑖 + 1 ⋆(2). In the latter

case, Let E𝑇 be the same high probability event that we consider in Lemma (35),

which happens when the aggregate behavior of the noise vectors is normal, as a result

of which 𝑤 remains close to the starting point 𝑤0. Note that from Lemma 35, we

know P(E𝑇) ≥ 1 − 𝑂(𝜂5). Now if the event E𝑇 happens, define 𝜏𝑖+1 := 𝜏𝑖 + 𝑇 ⋆(3),

for 𝑇 also from Lemma 35 and defined originally in Lemma 16 of Ge et al. [2015a],

while otherwise, define 𝜏𝑖+1 = 𝜏𝑖 ⋆(4). Moreover, if E𝑇 does not happen, define the

rest of 𝜏𝑖′ ’s equal to 𝜏𝑖: 𝜏𝑖′ = 𝜏𝑖 for every 𝑖′ ≥ 𝑖. At the same time, we define the

monotone increasing events {𝒢𝑖}, where 𝒢𝑖 happens in the case ⋆(4), and 𝒢𝑖+1 happens

in case ⋆(4). Also, 𝒢𝑖 happens if any of the previous 𝒢𝑖′ ’s happen for 𝑖′ < 𝑖; in other

words, 𝒢𝑖 is included in 𝒢𝑖+1. We use these events to bound the probability that the

process remains above ℵℓ. Moreover, define the sequence of random variables (𝑋𝑖) as

𝑋𝑖 := 𝐿Π(𝑤𝜏𝑖). Note that by Lemma 34 and Equation (3.229) in Lemma 35, we have

ℵℓ− 𝑙 ≤ 𝑋𝑖 ≤ ℵ+ 3𝑙. The key idea behind defining 𝑋𝑖’s is that we want to bound the

MGF of 𝐿Π(𝑤𝑡), without worrying about falling out of the assumptions of Lemmas 33

and 35. With the definition of (𝑋𝑖) and 𝒢𝑖, we are ready to state the theorem which

188

roughly says the sequence 𝜏𝑖 will most likely stop after a number of steps.

Lemma 36. Let 𝒬𝑅 :=
⋃︀∞
𝑖=1

(︁
{ 𝜏𝑖 ≤ 𝑅} ∩ 𝒢𝑖

)︁
. Then, for some

𝑅 =
𝑂(log(1/𝛿1))(ℵ+ 3𝑙)

𝜃𝜂2
, (3.231)

we have P(𝒬𝑅) ≤ 𝛿1. In other words, after 𝑅 iterations of PSGD, the defined sequence

(𝑋𝑖) above has either been in situation ⋆(1) or ⋆(4). Here, 𝜃 depends polynomially in

the other parameters.

Proof of Lemma 36

By Equations (3.210) and (3.226) in Lemmas 33 and 35, there exist a constant

𝜃 depending polynomially on all parameters except 𝜂 such that

E[𝑋𝑖+1 −𝑋𝑖| 𝒢𝑖] ≤ −𝜃(𝜏𝑖+1 − 𝜏𝑖)𝜂2. (3.232)

Now for some constant 𝐶 that we specify later, define the random time 𝚤 as the

largest 𝑖 where 𝜏𝑖 ≤ 𝐶/𝜂2. Using the fact that 𝒢𝑖−1 ⊆ 𝒢𝑖, for every 𝑖 we have a.s.:

𝑋𝑖+11{𝒢𝑖} −𝑋𝑖1{𝒢𝑖−1} = 1{𝒢𝑖 − 𝒢𝑖−1}(−𝑋𝑖) + (𝑋𝑖+1 −𝑋𝑖)1{𝒢𝑖}.

189

Now summing this for 𝑖 = 1 to 𝚤, taking expectation from both sides and using (3.232):

E𝑋𝚤+11{𝒢𝚤} −𝑋0 =
∞∑︁
𝑖=1

E1{𝒢𝑖 − 𝒢𝑖−1}(−𝑋𝑖)1{𝚤 ≥ 𝑖}

+
∞∑︁
𝑖=1

(𝑋𝑖+1 −𝑋𝑖)1{𝒢𝑖 ∩ {𝚤 ≥ 𝑖}}

≤
∞∑︁
𝑖=1

E(1{𝒢𝑖} − 1{𝒢𝑖−1})(−𝑋𝑖)

+
∞∑︁
𝑖=1

E(𝑋𝑖+1 −𝑋𝑖

⃒⃒⃒
𝒢𝑖 ∩ {𝚤 ≥ 𝑖})P(𝒢𝑖 ∩ {𝚤 ≥ 𝑖})

≤ sup
𝑖

sup |𝑋𝑖|

+ 𝜃
∞∑︁
𝑖=1

E(−(𝜏𝑖+1 − 𝜏𝑖)𝜂2
⃒⃒⃒
𝒢𝑖 ∩ {𝚤 ≥ 𝑖})P(𝒢𝑖 ∩ {𝚤 ≥ 𝑖})

= sup
𝑖

sup |𝑋𝑖| − 𝜂2𝜃
∞∑︁
𝑖=1

E(𝜏𝑖+1 − 𝜏𝑖)1{𝒢𝑖 ∩ {𝚤 ≥ 𝑖}}.

Now using Lemma 34, we know that in except when E𝑇 happens (in which we stop

the time sequence 𝜏𝑖), the increments of 𝑋𝑖 are at most 𝑙. Therefore, the value of 𝑋𝑖’s

always remain bounded by ℵ+ 3𝑙, hence:

𝐿𝐻𝑆 ≤ ℵ+ 3𝑙 − 𝜃𝜂2
∞∑︁
𝑖=1

E(𝜏𝑖+1 − 𝜏𝑖)1{𝒢𝑖 ∩ {𝚤 ≥ 𝑖}}.

Also, by restricting the integration of the second term to the part
⋃︀∞
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥

2𝐶/𝜂2}
)︁

of the sample space, we know that under the event {𝚤 ≥ 𝑖}, 𝒢𝑖 automatically

190

happens when 𝜏𝑖+1 ̸= 𝜏𝑖 (it is easy to check). Therefore:

𝐿𝐻𝑆 ≤ ℵ+ 3𝑙 − 𝜃𝜂2E1{
∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶/𝜂2}

)︁
}

∞∑︁
𝑖=1

(𝜏𝑖+1 − 𝜏𝑖)1{𝒢𝑖 ∩ {𝚤 ≥ 𝑖}}

= ℵ+ 3𝑙 − 𝜃𝜂2E1{
∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶/𝜂2}

)︁
}

∞∑︁
𝑖=1

(𝜏𝑖+1 − 𝜏𝑖)1{𝚤 ≥ 𝑖}

= ℵ+ 3𝑙 − 𝜃𝜂2E1{
∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶/𝜂2}

)︁
}

𝚤∑︁
𝑖=1

(𝜏𝑖+1 − 𝜏𝑖)

= ℵ+ 3𝑙 − 𝜃𝜂2E1{
∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶/𝜂2}

)︁
}𝜏𝚤+1.

Now by the definition of 𝚤, 𝜏𝚤+1 ≥ 𝐶/𝜂2. Hence, we can write

𝐿𝐻𝑆 ≤ ℵ+ 3𝑙 − 𝜃𝜂2E1{
∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶/𝜂2}

)︁
}(𝐶/𝜂2)

ℵ+ 3𝑙 − 𝐶𝜃P
(︁ ∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶/𝜂2}

)︁)︁
.

But note that 𝑋𝑖’s are a.s. bounded between 0 and ℵ + 3𝑙, which implies the LHS

above is at least −(ℵ+ 3𝑙). Therefore, we finally get:

P(
∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶/𝜂2}

)︁
) ≤ 2ℵ+ 6𝑙

𝐶𝜃
.

Picking 𝐶 = 𝐶* := 2(2ℵ+ 6𝑙)/𝜃:

P(
∞⋃︁
𝑖=1

(︁
𝒢𝑖 ∩ {𝜏𝑖 ≥ 𝐶*/𝜂2}

)︁
) ≤ 1

2
. (3.233)

Note that the differences between 𝜏𝑖’s is at most 𝑇max = �̃�(1/𝜂) Ge et al. [2015a].

Hence, again for 𝜂 polynomially small in other parameters, (3.233) implies that for

𝑅 = 2𝐶*/𝜂2, there exists �̃� = 𝑝𝑜𝑙𝑦(.) such that after �̃� iterations on the main sequence

(𝑤𝑡), the corresponding sequence (𝜏𝑖) has either been in ⋆(1) or ⋆(4) with chance at

least 1/2. Repeating this argument log(1/𝛿1) times (using the markov property of the

191

process) we conclude the proof.

3.6.18 Bounding the MGF of 𝑋𝑖’s

Next, we want to exploit 𝑋𝑖’s to bound the upward deviation of 𝐿Π(𝑤𝑡). For a fix 𝜃

the goal here is to bound E[exp{𝜃𝑋𝑖}] (this is a different 𝜃!). More precisely, let 𝐹𝑡 be

the sub-sigma field generated by variables 𝑤𝑡 from time zero to 𝑡, and ℱ𝑖 := 𝐹𝜏𝑖 be

the sigma field of the stop time 𝜏𝑖. Then, obviously, 𝑋𝑖 is measurable w.r.t ℱ𝑖. We

prove the following theorem:

Theorem 8. For any 𝜃 > 0, the sequence (E𝑒𝜃(𝑋𝑖−𝑋0))∞𝑖=1 is a supermartingale with

respect to the filteration (ℱ𝑖),

We proceed inductively by jointly conditioning on the previous 𝑋𝑖 and whether 𝒢𝑖
has happened or not, and whether we are in situation ⋆(2) or ⋆(3). We have

E[exp{𝜃(𝑋𝑖+1 −𝑋0)}| ℱ𝑖]

= E[exp{𝜃(𝑋𝑖+1 −𝑋𝑖 +𝑋𝑖 −𝑋0)}1{𝒢𝑖}|ℱ𝑖]

+ E[exp{𝜃(𝑋𝑖+1 −𝑋𝑖 +𝑋𝑖 −𝑋0)}1{𝒢𝑖 ∩ ⋆(2)}|ℱ𝑖]

+ E[exp{𝜃(𝑋𝑖+1 −𝑋𝑖 +𝑋𝑖 −𝑋0)}1{𝒢𝑖 ∩ ⋆(3)}|ℱ𝑖].

Now by the a.s. bounds of Lemmas 33 and 35:

E[𝑋𝑖+1 −𝑋𝑖| 𝒢𝑖, 𝑤𝜏𝑖𝑠.𝑡. ⋆ (2)] = −R2
1𝜂

2,

E[𝑋𝑖+1 −𝑋𝑖| 𝒢𝑖, 𝑤𝜏𝑖𝑠.𝑡. ⋆ (3)] = −R2
2𝜂

2,

(𝑋𝑖+1 −𝑋𝑖)1{𝒢𝑖} = 0. (a.s.)

Where R1 and R2 are r.v. defined in Lemmas 33 and 35 and are clearly ℱ𝑖 measurable.

This implies

E[(𝑋𝑖+1 −𝑋𝑖)1{𝒢𝑖, 𝑤𝜏𝑖𝑠.𝑡. ⋆ (2)}| ℱ𝑖] = −R2
1𝜂

2
1{𝒢𝑖, 𝑤𝜏𝑖𝑠.𝑡. ⋆ (2)},

192

E[(𝑋𝑖+1 −𝑋𝑖)1{𝒢𝑖, 𝑤𝜏𝑖𝑠.𝑡. ⋆ (3)}| ℱ𝑖] = −R2
2𝜂

2
1{𝒢𝑖, 𝑤𝜏𝑖𝑠.𝑡. ⋆ (3)}.

Now we mention the following fact:

Fact For a 𝜎 subGaussian random variable 𝑋 we have E[exp{𝜃𝑋}] ≤ exp{𝜃2𝜎2}.

Using the a.s. bounds of Lemmas 33 and 35, we get that conditioned on {𝒢𝑖, 𝑤𝜏𝑖 𝑠.𝑡. ⋆

(2)}, 𝑋𝑖+1−E𝑋𝑖+1 is a.s. bounded by 2𝜂𝜃R1/(𝜌2𝜒), and conditioned on {𝒢𝑖, 𝑤𝜏𝑖 𝑠.𝑡. ⋆

(3)}, 𝑋𝑖+1 − E𝑋𝑖+1 is bounded by 2𝜂𝜃R2/(𝜌2𝜒). Therefore, using the above fact

E
[︁
exp{𝜃(𝑋𝑖+1 − E(𝑋𝑖+1| 𝒢𝑖, 𝑤𝜏𝑖 𝑠.𝑡. ⋆ (2)))}

⃒⃒⃒
𝒢𝑖, 𝑤𝜏𝑖 𝑠.𝑡. ⋆ (2)

]︁
≤ exp{4𝜂2𝜃2R2

1/(𝜌2𝜒)},

(3.234)

E
[︁
exp{𝜃(𝑋𝑖+1 − E(𝑋𝑖+1| 𝒢𝑖, 𝑤𝜏𝑖 𝑠.𝑡. ⋆ (3)))

⃒⃒⃒
𝒢𝑖, 𝑤𝜏𝑖 𝑠.𝑡. ⋆ (3)}

]︁
≤ exp{4𝜂2𝜃2R2

2/(𝜌2𝜒)},

(3.235)

which implies in the notation of conditional expectation on sigma field:

E
[︁
exp{𝜃(𝑋𝑖+1 − E(𝑋𝑖+1|ℱ𝑖))}1{𝒢𝑖, ⋆(2)}

⃒⃒⃒
ℱ𝑖
]︁
≤ exp{4𝜂2𝜃2R2

1/(𝜌2𝜒)}1{𝒢𝑖, ⋆(2)},

(3.236)

E
[︁
exp{𝜃(𝑋𝑖+1 − E(𝑋𝑖+1|ℱ𝑖))}1{𝒢𝑖, ⋆(3)}

⃒⃒⃒
ℱ𝑖
]︁
≤ exp{4𝜂2𝜃2R2

2/(𝜌2𝜒)}1{𝒢𝑖, ⋆(3)}.

(3.237)

193

Now we write:

𝐿𝐻𝑆 ≤ E[exp{𝜃(𝑋𝑖+1 −𝑋0)}1{𝒢𝑖}| ℱ𝑖]

+E[exp{𝜃(𝑋𝑖+1 − E[𝑋𝑖+1| ℱ𝑖])} exp{𝜃(E[𝑋𝑖+1| ℱ𝑖]−𝑋𝑖)} exp{𝜃(𝑋𝑖 −𝑋0)}1{𝒢𝑖 ∩ ⋆(2)}| ℱ𝑖]

+E[exp{𝜃(𝑋𝑖+1 − E[𝑋𝑖+1| ℱ𝑖])} exp{𝜃(E[𝑋𝑖+1| ℱ𝑖]−𝑋𝑖)} exp{𝜃(𝑋𝑖 −𝑋0)}1{𝒢𝑖 ∩ ⋆(3)}|ℱ𝑖]

≤ exp{𝜃(𝑋𝑖 −𝑋0)}1{𝒢𝑖}

+ exp{𝜃(𝑋𝑖 −𝑋0)}E[exp{𝜃2R2
1𝜂

2/(𝜌2𝜒)} exp{−𝜃(R2
1𝜂

2)}1{𝒢𝑖 ∩ ⋆(2)}| ℱ𝑖]

+ exp{𝜃(𝑋𝑖 −𝑋0)}E[exp{𝜃2R2
2𝜂

2/(𝜌2𝜒)} exp{−𝜃(R2
2𝜂

2)}1{𝒢𝑖 ∩ ⋆(3)}| ℱ𝑖]

≤ exp{𝜃(𝑋𝑖 −𝑋0)}E
[︁(︁
1{𝒢𝑖}

+ exp{𝜃2R2
1𝜂

2/(𝜌2𝜒)− 𝜃(R2
1𝜂

2)}1{𝒢𝑖 ∩ ⋆(2)}

+ exp{𝜃2R2
2𝜂

2/(𝜌2𝜒)− 𝜃(R2
2𝜂

2)}1{𝒢𝑖 ∩ ⋆(3)}
)︁
| ℱ𝑖

]︁
.

Now setting 𝜃 := 1 and picking 𝜒 ≥ 1/𝜌2:

𝐿𝐻𝑆 ≤ exp{(𝑋𝑖 −𝑋0)}E
[︁
1{𝒢𝑖}+ 1{𝒢𝑖 ∩ ⋆(2)}+ 1{𝒢𝑖 ∩ ⋆(3)}| ℱ𝑖

]︁
.

= exp{𝑋𝑖 −𝑋0}.

Now by hypothesis of Induction we have

E[exp{𝑋𝑖+1 −𝑋0}] = E[E[exp{𝑋𝑖+1 −𝑋0}| ℱ𝑖]] ≤ E[exp{𝑋𝑖 −𝑋0}] ≤ 1,

which finishes the proof of step of induction.

Now using Doob’s Maximal inequality for positive supermartingales and 𝑅 defined

in (3.231):

P(sup
1≤𝑖≤𝑅

(𝑋𝑖 −𝑋0) ≥ 𝑧)

= P(sup
1≤𝑖≤𝑅

exp{𝑋𝑖 −𝑋0} ≥ exp{𝑧}) ≤ E[exp{𝑋𝑅 −𝑋0}]/ exp{𝑧} ≤ 𝑒−𝑧. (3.238)

194

3.6.19 Proof of Theorem 7

Finally with the developed tools, we are ready to prove Theorem 7.

of Theorem 7 Starting from 𝑤0 = 0 with 𝐿Π(𝑤0) ≤ ℵ, we use Equation (3.238) to get

P(sup1≤𝑖≤𝑅 exp{𝑋𝑖 −𝑋0} ≥ Ω(log(1/𝛿1))) ≤ 𝛿1. Therefore, setting 𝑙 = Θ(log(1/𝛿1))

and a union bound implies with probability at least 1− 2𝛿1 we should have gotten

into situation ⋆(1) or ⋆(4) without the value of 𝑋𝑖 exceeding ℵ + 2𝑙. On the other

hand, using Lemma 35 we know that E𝑇 happens with probability at least 1− �̃�(𝜂5)

for every 1 ≤ 𝑡 ≤ 𝑅 which is equal to 𝜏𝑖 for some 𝑖 and when we are in the situation of

Lemma 35. As a result, the chance that even one of E𝑇 ’s happen along 𝑅 iterations is

at most

𝑅�̃�(𝜂5) = 𝜂3
𝑂(log(1/𝛿1))(ℵ+ 3𝑙)

𝜃
.

But picking 𝜂 small enough with respect to log(𝛿1) and other parameters, we conclude

that with probability at least 1 − 3𝛿, after 𝑅 rounds, we should have gotten into

situation ⋆(1) and not ⋆(4) and not exceeding ℵ+ 2𝑙, which means that 𝑋𝑖 = 𝐿Π(𝑤𝜏𝑖)

has gotten under the threshold ℵℓ. Note that as soon as that happens, we terminate

the algorithm. We elaborate on this more in Section 3.6.10.

3.6.20 Gaussian Smoothing

In this section, we describe our smoothing scheme and the approximation that it

provides which enables us to keep the signs from the case 𝜂 = 0. Recall that we use

Gaussian smoothing matrices 𝑉 𝜌
𝑗,𝑘 ∼ 𝒩 (0, 𝛽2

1/𝑚1) and 𝑊 𝜌
𝑗,𝑘 ∼ 𝒩 (0, 𝛽2

2/𝑚2). Here, we

will particularly specify lower bounds for 𝛽1 and 𝛽2 in order for our sign approximation

to be precise. On the other hand, we normally prefer the smoothing noise to be as low

as possible so the primary and smoothed functions are close, so we set 𝛽1, 𝛽2 equal to

their lower bounds, and use this setting in the other parts.

To begin fix one of the inputs 𝑥𝑖. In order to reduce and simplify the amount of nota-

tions, we refer to the sign pattern matrix (diagonal sign matrix) of both the first and sec-

ond layers by 𝐷 with the appropriate indices. More specifically, for the first layer, we re-

fer to Sgn(𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖 by𝐷′,𝜌 and Sgn(𝑊 (0) + (1− 𝜂/2)𝑊 ′ +𝑊 𝜌 +
√
𝜂𝑊 *)𝑥𝑖

195

by 𝐷′,𝜌. Similarly, for the second layer, of course depending on the input vec-

tor, we refer to the sign matrix with respect to the matrices 𝑉 (0) + 𝑉 ′ + 𝑉 𝜌 and

𝑉 (0) + (1− 𝜂/2)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 * by by 𝐷′.𝜌 and 𝐷′,𝜌,𝜂, respectively. We introduce two

new notations as well for the output of the first layer with respect to different matrix

and sign patterns:

𝑥′(1) := 𝑊 𝑠𝐷′,𝜌(𝑊
(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +

√
𝜂𝑉 *)𝑥𝑖, (3.239)

𝑥′(2) := 𝑊 𝑠𝐷′,𝜌,𝜂(𝑊
(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +

√
𝜂𝑉 *)𝑥𝑖. (3.240)

For further brevity, we sometimes refer to 𝑥′(2) by 𝑥′.

Now we are ready to mention our approximation theorem regarding the smoothing

and the sign changes.

Lemma 37. Under the conditions 𝜅1
√
𝑚3 ≳ 𝐶1+𝛽1

√
𝑚3 and 𝑚2 ≥ 𝑚3 log(𝑚2), then

for every 𝑖 ∈ [𝑛]:

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 𝑎𝑇𝐷′,𝜌,𝜂(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑊 𝑠𝐷′,𝜌,𝜂(𝑊

(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +
√
𝜂𝑉 *)𝑥𝑖

− 𝑎𝑇𝐷′,𝜌(𝑉
(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +

√
𝜂𝑉 *)𝑊 𝑠𝐷′,𝜌(𝑊

(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +
√
𝜂𝑉 *)𝑥𝑖

⃒⃒⃒
≤ 𝜂𝜚22𝛽

−1
2

[︁
(𝐶1 +

√
𝑚3𝛽1)

2/(𝜅1
√
𝑚3) +

[︁√
𝑚3𝑚1𝛽1 + 𝐶1

]︁
exp{−𝐶2

1/(8𝑚3𝛽
2
1)}
]︁

×
[︁
exp {−𝐶4/3

2 (
√
𝑚2𝜅2)

2/3/(8𝛽2
2)}+

𝐶
2/3
2

(
√
𝑚2𝜅2)

2/3

]︁
+ 𝜂
(︁
𝜅2
√
𝑚2 + 𝐶1

)︁(︁
exp{−𝑐22/(32𝛽2

1)}+
𝑐2

𝜅1
√
𝑚1

)︁𝜚2𝑚3

√
𝑚3

𝛽1
:= 𝜂ℜ8. (3.241)

Proof of Lemma 37

196

We can bound the Left hand side above as

𝐿𝐻𝑆 ≤⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌𝑎𝑇𝐷′,𝜌,𝜂(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑊 𝑠𝐷′,𝜌,𝜂(𝑊

(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +
√
𝜂𝑊 *)𝑥𝑖

− 𝑎𝑇𝐷′,𝜌(𝑉
(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +

√
𝜂𝑉 *)𝑊 𝑠𝐷′,𝜌,𝜂(𝑊

(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +
√
𝜂𝑊 *)𝑥𝑖

⃒⃒⃒
+
⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑊 𝑠𝐷′,𝜌,𝜂(𝑊

(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +
√
𝜂𝑊 *)𝑥𝑖

− 𝑎𝑇𝐷′,𝜌(𝑉
(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +

√
𝜂𝑉 *)𝑊 𝑠𝐷′,𝜌(𝑊

(0) + (1− 𝜂)𝑊 ′ +𝑊 𝜌 +
√
𝜂𝑊 *)𝑥𝑖

⃒⃒⃒
.

:= 𝐴1 + 𝐴2. (3.242)

We bound 𝐴1 and 𝐴2 separately. First, we start with 𝐴1.

Let 𝑃𝑖 be the set of indices 𝑗 for which 1{|(𝑉 (0)
𝑗 + 𝑉 ′

𝑗)𝑥
′| ≤ 𝑅*𝜅2‖𝑥′‖} happens.

Then, from Lemma 40, we have |𝑃𝑖| ≲ 𝑅*𝑚2. Now for 𝑗 ∈ [𝑚2], we write

1{sign change in the𝑗th neuron} × |amount of change| (3.243)

≤ 1{𝑉 𝜌
𝑗 𝑥

′ ∈ (−𝑉 (0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′ + 𝜂𝑉 ′

𝑗𝑥
′ −√𝜂𝑉 *

𝑗 𝑥
′,−𝑉 (0)

𝑗 𝑥′ − 𝑉 ′
𝑗𝑥

′)} × 1√
𝑚2

(|𝜂𝑉 ′
𝑗𝑥

′|+ |√𝜂𝑉 *
𝑗 𝑥

′|)

(3.244)

Moreover, note that

|𝑉 ′
𝑗𝑥

′| = |𝑉 ′
𝑗 (𝑥

′ − 𝜑(0)(𝑥𝑖))|,

|𝑉 *
𝑗 𝑥

′| = |𝑉 *
𝑗 (𝑥

′ − 𝜑(0)(𝑥𝑖))|.

Also, because ‖𝑉 ′
𝑗 ‖ ≤ ‖𝑉 ′‖ ≤ 2𝐶2 plus using Equation (3.129), we can further upper

bound the above indicator as:

≤ 1{𝑉 𝜌
𝑗 𝑥

′ ∈ (−𝑉 (0)
𝑗 𝑥′−𝑉 ′

𝑗𝑥
′−(𝜂‖𝑉 ′

𝑗 ‖+
√
𝜂‖𝑉 *

𝑗 ‖)min{‖𝑥′‖, ‖𝑥′−𝜑(0)(𝑥𝑖)‖},−𝑉 (0)
𝑗 𝑥′−𝑉 ′

𝑗𝑥
′)}

× 1√
𝑚2

(𝜂‖𝑉 ′
𝑗 ‖+

√
𝜂‖𝑉 *

𝑗 ‖)‖𝑥′ − 𝜑(0)(𝑥𝑖)‖

≤ 1{𝑉 𝜌
𝑗 𝑥

′ ∈ (−𝑉 (0)
𝑗 𝑥′−𝑉 ′

𝑗𝑥
′−(2𝜂𝐶2+

√
𝜂𝜚2/
√
𝑚2)min{‖𝑥′‖, ‖𝑥′−𝜑(0)(𝑥𝑖)‖},−𝑉 (0)

𝑗 𝑥′−𝑉 ′
𝑗𝑥

′)}

197

× 1√
𝑚2

(2𝜂𝐶2 +
√
𝜂𝜚2/
√
𝑚2)‖𝑥′ − 𝜑(0)(𝑥𝑖)‖.

Taking √𝜂 ≤ 𝜚/(2𝐶2

√
𝑚2), we can further upper bound as

≲ 1{𝑉 𝜌
𝑗 𝑥

′ ∈ (−𝑉 (0)
𝑗 𝑥′−𝑉 ′

𝑗𝑥
′−2√𝜂𝜚2min{‖𝑥′−𝜑(0)(𝑥𝑖)‖, ‖𝑥′‖}/

√
𝑚2,−𝑉

(0)
𝑗 𝑥′−𝑉 ′

𝑗𝑥
′)}

×(√𝜂𝜚2/𝑚2)‖𝑥′ − 𝜑(0)(𝑥𝑖)‖.

Therefore, conditioned on 𝑥′:

E𝑉 𝜌 [1{sign change in the𝑗th neuron} × |amount of change| | 𝑥′] ≤

P(𝑉 𝜌
𝑗 𝑥

′ ∈ (−𝑉 (0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′ − 2
√
𝜂𝜚2min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖, ‖𝑥′‖}/

√
𝑚2,−𝑉

(0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′))

×(√𝜂𝜚2/𝑚2)‖𝑥′ − 𝜑(0)(𝑥𝑖)‖.

Now notice that for 𝑗 /∈ 𝑃𝑖, we have

| − 𝑉 (0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′| ≥ 𝑅*𝜅2‖𝑥′‖.

Also, note that the variable 𝑉 𝜌
𝑗 𝑥

′ is gaussian with variance ‖𝑥′‖𝛽2/
√
𝑚2 Therefore,

conditioned on 𝑥′, for 𝑗 /∈ 𝑃𝑖, we have (note that 𝑥′ does not depend on the randomness

of 𝑉 𝜌):

P(𝑉 𝜌
𝑗 𝑥

′ ∈ (−𝑉 (0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′ − 2
√
𝜂𝜚2min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖, ‖𝑥′‖}/

√
𝑚2,−𝑉

(0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′))

≲ exp {min{| − 𝑉 (0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′ − 2
√
𝜂𝜚2‖𝑥′‖/

√
𝑚2|, | − 𝑉

(0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′|}/(
√
2‖𝑥′‖𝛽2/

√
𝑚2)}2

×(‖𝑥′‖𝛽2/
√
𝑚2)

−1 × (
√
𝜂𝜚2min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖, ‖𝑥′‖}/

√
𝑚2).

This equation follows from the fact that

P(𝑎 ≤ 𝒩 ≤ 𝑏) ≲
|𝑎− 𝑏|
𝜎

𝑒min2{𝑎,𝑏}/𝜎2

. (3.245)

198

On the other hand, note that for √𝜂 ≲ 𝐶
2/3
2 (

√
𝑚2𝜅2)

1/3

𝜚2
we have:

𝑅*𝜅2‖𝑥′‖/2 =
𝐶

2/3
2 (
√
𝑚2𝜅2)

1/3

2
√
𝑚2

‖𝑥′‖ ≥ 2
√
𝜂𝜚2‖𝑥′‖/

√
𝑚2

which implies

≲ exp {𝑅*𝜅2‖𝑥′‖/(2
√
2‖𝑥′‖𝛽2/

√
𝑚2)}2(

√
𝜂𝜚2/𝛽2)

≤ exp {−𝐶4/3
2 (
√
𝑚2𝜅2)

2/3/(8𝛽2
2)}(
√
𝜂𝜚2/𝛽2).

On the other side, for 𝑗 ∈ 𝑃𝑖, we can write

P(𝑉 𝜌
𝑗 𝑥

′ ∈ (−𝑉 (0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′ − 2
√
𝜂𝜚2min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖, ‖𝑥′‖}/

√
𝑚2 , −𝑉

(0)
𝑗 𝑥′ − 𝑉 ′

𝑗𝑥
′))

≲ (‖𝑥′‖𝛽2/
√
𝑚2)

−1(
√
𝜂𝜚2min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖, ‖𝑥′‖}/

√
𝑚2) = min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖/‖𝑥′‖, 1}

√
𝜂𝜚2/𝛽2.

Therefore, overall using the fact that ‖𝑉 *
𝑗 ‖ ≤ 𝜚2/

√
𝑚2, we can write

𝐴1 ≲
∑︁
𝑗 /∈𝑃

exp {−𝐶4/3
2 (
√
𝑚2𝜅2)

2/3/(8𝛽2
2)}(
√
𝜂𝜚2/𝛽2)min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖2/‖𝑥′‖, ‖𝑥′ − 𝜑(0)(𝑥𝑖)‖}

+
∑︁
𝑗∈𝑃

(
√
𝜂𝜚2/𝛽2)min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖/‖𝑥′‖, 1} × (

√
𝜂𝜚2/𝑚2)‖𝑥′ − 𝜑(0)(𝑥𝑖)‖

≲
[︁
𝑚2 × exp {−𝐶4/3

2 (
√
𝑚2𝜅2)

2/3/(8𝛽2
2)}(
√
𝜂𝜚2/𝛽2)× (

√
𝜂𝜚2/𝑚2)

+ 𝜂𝜚22𝛽
−1
2

|𝑃𝑖|
𝑚2

]︁
min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖2/‖𝑥′‖, ‖𝑥′ − 𝜑(0)(𝑥𝑖)‖}

≤ 𝜂𝜚22𝛽
−1
2 min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖2/‖𝑥′‖, ‖𝑥′ − 𝜑(0)(𝑥𝑖)‖}

×
[︁
exp {−𝐶4/3

2 (
√
𝑚2𝜅2)

2/3/(8𝛽2
2)}+

𝐶
2/3
2

(
√
𝑚2𝜅2)

2/3

]︁
. (3.246)

Next, we bound 𝐴2. First we bound E𝑊 𝜌‖𝑥′(1) − 𝑥′(2)‖. Recalling the setting

𝑐2 = 2
√
𝑛𝑚3𝐶1/

√
𝜆0 and the definition of in 𝑃 from Lemma 10, we obtain that for

199

𝑗 /∈ 𝑃 , we have for all 𝑖 ∈ [𝑛]:

|𝑊 (0)
𝑗 𝑥𝑖| ≥ 𝑐2/

√
𝑚1,

|𝑊 ′
𝑗𝑥𝑖| ≤ 𝑐2/(2

√
𝑚1),

which means for 𝑗 /∈ 𝑃 :

|(𝑊 (0)
𝑗 +𝑊 ′

𝑗)𝑥𝑖| ≥ 𝑐2/(2
√
𝑚1). (3.247)

Also, we have

|𝑃 | ≤ 𝑐2
√
𝑚1/𝜅1. (3.248)

Now using Equation (3.105) in Lemma 14, we can write for every 𝑖 ∈ [𝑛]:

𝑣𝑎𝑙𝑗 := 1{sign change in the𝑗th neuron} ×
⃒⃒⃒
amount of change

⃒⃒⃒
≤ 1{𝑊 𝜌

𝑗 𝑥𝑖 ∈ (−𝑊 (0)
𝑗 𝑥−𝑊 ′

𝑗𝑥𝑖 + 𝜂𝑊 ′
𝑗𝑥𝑖 −

√
𝜂𝑊 *

𝑗 𝑥𝑖,−𝑊
(0)
𝑗 𝑥𝑖 −𝑊 ′

𝑗𝑥𝑖)}

× 1√
𝑚1

(|√𝜂𝑊 *
𝑗 𝑥𝑖 + 𝜂𝑊 ′

𝑗𝑥𝑖|).

Using the fact that ‖𝑊 ′
𝑗‖ ≤ ‖𝑊 ′‖𝐹 ≤ 𝐶1, and Equation (3.105) (‖𝑊 *

𝑗 ‖ ≤ 𝜚
√︁

𝑚3

𝑚1
) and

picking √𝜂 ≤ 𝜚
√
𝑚3

𝐶1
√
𝑚1

, we obtain

≤ 1{𝑊 𝜌
𝑗 𝑥𝑖 ∈ (−𝑊 (0)

𝑗 𝑥𝑖 −𝑊 ′
𝑗𝑥𝑖 − 𝜂‖𝑊 ′

𝑗‖ −
√
𝜂‖𝑊 *

𝑗 ‖,−𝑊
(0)
𝑗 𝑥𝑖 −𝑊 ′

𝑗𝑥𝑖)}

× 1√
𝑚1

(
√
𝜂‖𝑊 *

𝑗 ‖+ 𝜂‖𝑊 ′
𝑗‖)

≤ 1{𝑊 𝜌
𝑗 𝑥𝑖 ∈ (−𝑊 (0)

𝑗 𝑥𝑖 −𝑊 ′
𝑗𝑥𝑖 − 2

√
𝜂𝜚

√
𝑚3√
𝑚1

,−𝑊 (0)
𝑗 𝑥𝑖 −𝑊 ′

𝑗𝑥𝑖)}

× 2√
𝑚1

(
√
𝜂𝜚

√︂
𝑚3

𝑚1

).

200

Now for 𝑗 /∈ 𝑃 , because 𝑊 𝜌
𝑗 𝑥𝑖 is Gaussian with std 𝛽1√

𝑚1
:

E𝑊 𝜌 [𝑣𝑎𝑙𝑗] ≤ P(𝑊 𝜌
𝑗 𝑥𝑖 ∈ (−𝑊 (0)

𝑗 𝑥𝑖 −𝑊 ′
𝑗𝑥𝑖 − 2

√
𝜂𝜚

√
𝑚3√
𝑚1

,−𝑊 (0)
𝑗 𝑥𝑖 −𝑊 ′

𝑗𝑥𝑖))×
1√
𝑚1

√
𝜂𝜚

√
𝑚3√
𝑚1

≲ exp−{min{| −𝑊 (0)
𝑗 𝑥𝑖 −𝑊 ′

𝑗𝑥𝑖 − 2
√
𝜂𝜚

√
𝑚3√
𝑚1

|, | −𝑊 (0)
𝑗 𝑥′ −𝑊 ′

𝑗𝑥
′|}/(
√
2𝛽1/
√
𝑚1)}2

× (𝛽1/
√
𝑚1)

−1 × (
√
𝜂𝜚

√
𝑚3√
𝑚1

)× 1√
𝑚1

√
𝜂𝜚

√
𝑚3√
𝑚1

.

Now from Equation (3.247) and by picking √𝜂 ≲ 𝑐2
𝜚
√
𝑚3

so that

2
√
𝜂𝜚

√
𝑚3√
𝑚1

≤ 𝑐2/(4
√
𝑚1),

then

𝐿𝐻𝑆 ≲ exp{−𝑐22/(32𝛽2
1)}𝜂

𝜚2𝑚3

𝛽1𝑚1

. (3.249)

On the other hand, for 𝑗 ∈ 𝑃 we have

E𝑣𝑎𝑙𝑗 ≤ P(𝑊 𝜌
𝑗 𝑥𝑖 ∈ (−𝑊 (0)

𝑗 𝑥𝑖 −𝑊 ′
𝑗𝑥𝑖 − 2

√
𝜂𝜚

√
𝑚3√
𝑚1

,−𝑊 (0)
𝑗 𝑥𝑖 −𝑊 ′

𝑗𝑥𝑖))×
1√
𝑚1

√
𝜂𝜚

√
𝑚3√
𝑚1

≲ (𝛽1/
√
𝑚1)

−1√𝜂𝜚
√
𝑚3√
𝑚1

×√𝜂𝜚
√
𝑚3

𝑚1

= 𝜂
𝜚2𝑚3

𝛽1𝑚1

. (3.250)

Now define the following random variable with respect to the randomness of 𝑊 𝜌:

𝑉 𝑎𝑙 :=

𝑚1∑︁
𝑗=1

1{sign change in the𝑗th neuron} × |amount of change|

then for every 𝑘 ∈ [𝑚3], we have

|𝑥′(1)𝑘 − 𝑥
′(2)
𝑘 | ≤ 𝑉 𝑎𝑙,

which implies

‖𝑥′(1) − 𝑥′(2)‖ ≤
√
𝑚3𝑉 𝑎𝑙.

201

But Combining Equations (3.249) and (3.250):

E𝑉 𝑎𝑙 ≤
(︁
exp{−𝑐22/(32𝛽2

1)}+
|𝑃 |
𝑚1

)︁
𝜂
𝜚2𝑚3

𝛽1

≤
(︁
exp{−𝑐22/(32𝛽2

1)}+
𝑐2

𝜅1
√
𝑚1

)︁
𝜂
𝜚2𝑚3

𝛽1
,

which implies

E𝑊 𝜌‖𝑥′(1) − 𝑥′(2)‖ ≤
(︁
exp{−𝑐22/(32𝛽2

1)}+
𝑐2

𝜅1
√
𝑚1

)︁
𝜂
𝜚2𝑚3

√
𝑚3

𝛽1
. (3.251)

Now we can write

⃒⃒⃒
𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑥′(2) − 𝑎𝑇𝐷′,𝜌(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑥′(1)

⃒⃒⃒
≤ 1√

𝑚2

𝑚2∑︁
𝑗=1

|(𝑉 (0)
𝑗 + (1− 𝜂)𝑉 ′

𝑗 + 𝑉 𝜌
𝑗 +
√
𝜂𝑉 *

𝑗)(𝑥
′(2) − 𝑥′(1))|

≤ 1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 (𝑥′(2) − 𝑥′(1))|+ (1− 𝜂)|𝑉 ′

𝑗 (𝑥
′(2) − 𝑥′(1))|+ |𝑉 𝜌

𝑗 (𝑥
′(2) − 𝑥′(1))|+√𝜂|𝑉 *

𝑗 (𝑥
′(2) − 𝑥′(1))|

=
1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 (𝑥′(2) − 𝑥′(1))|+ |𝑉 𝜌

𝑗 (𝑥
′(2) − 𝑥′(1))|+ 1√

𝑚2

𝑚2∑︁
𝑗=1

((1− 𝜂)‖𝑉 ′
𝑗 ‖+

√
𝜂‖𝑉 *

𝑗 ‖)‖𝑥′(2) − 𝑥′(1)‖

≤ 1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 (𝑥′(2) − 𝑥′(1))|+ |𝑉 𝜌

𝑗 (𝑥
′(2) − 𝑥′(1))|+

(︁
(1− 𝜂)‖𝑉 ′‖𝐹 +

√
𝜂‖𝑉 *‖𝐹

)︁
‖𝑥′(2) − 𝑥′(1)‖.

Now by Equation (3.127) in Lemma 19 (i.e. ‖𝑉 *‖𝐹 ≲
√
𝜁2) and the fact that

‖𝑉 ′‖𝐹 ≤ 𝐶2, and by taking
√
𝜂 ≤ 𝐶2√

𝜁2
,

we have

(︁
(1− 𝜂)‖𝑉 ′‖𝐹 +

√
𝜂‖𝑉 *‖𝐹

)︁
≲ 𝐶1, (3.252)

so we can bound the above as

𝐿𝐻𝑆 ≲
1√
𝑚2

𝑚2∑︁
𝑗=1

(︁
|𝑉 (0)
𝑗 (𝑥′(2) − 𝑥′(1))|+ |𝑉 𝜌

𝑗 (𝑥
′(2) − 𝑥′(1))|

)︁
+ 𝐶1‖𝑥′(2) − 𝑥′(1)‖.

202

Furthermore, using Lemma 41 and noting the fact that the entries of 𝑉 (0) are normal

with standard deviation 𝜅2, we get with high probability over the randomness of 𝑉 (0):

≲
1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 𝜌
𝑗 (𝑥

′(2)−𝑥′(1))|+
(︁
𝜅2
√
𝑚2+𝜅2

√︀
𝑚3(log(𝑚3) + log(log(𝑚2)))+𝐶1

)︁
‖𝑥′(2)−𝑥′(1)‖.

Now note that 𝑉 𝜌
𝑗 (𝑥

′(2) − 𝑥′(1)) is normal with standard deviation 𝛽2√
𝑚2
‖𝑥′(2) − 𝑥′(1)‖.

Hence, taking expectation with respect to 𝑉 𝜌:

E𝑉 𝜌

⃒⃒⃒
𝑎𝑇𝐷′,𝜌,𝜂(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑥′(2) − 𝑎𝑇𝐷′,𝜌,𝜂(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑥′(1)

⃒⃒⃒
≲
(︁
𝜅2
√
𝑚2 + 𝜅2

√︀
𝑚3(log(𝑚3) + log(log(𝑚2))) + 𝐶1

)︁
‖𝑥′(2) − 𝑥′(1)‖.

(3.253)

Finally, Combining Equation (3.246) and (3.253) and applying it to Equation (3.242)

implies with high probability over the random initialization:

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌 𝑎𝑇𝐷′,𝜌,𝜂(𝑉

(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +
√
𝜂𝑉 *)𝑊 𝑠𝑥′(2)

− 𝑎𝑇𝐷′,𝜌(𝑉
(0) + (1− 𝜂)𝑉 ′ + 𝑉 𝜌 +

√
𝜂𝑉 *)𝑊 𝑠𝑥′(1)

⃒⃒⃒
≤ 𝐴1 + 𝐴2

≲ E𝑊 𝜌𝜂𝜚22𝛽
−1
2 min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖2/‖𝑥′‖, ‖𝑥′ − 𝜑(0)(𝑥𝑖)‖}

×
[︁
exp {−𝐶4/3

2 (
√
𝑚2𝜅2)

2/3/(8𝛽2
2)}+

𝐶
2/3
2

(
√
𝑚2𝜅2)

2/3

]︁
+ E𝑊 𝜌

(︁
𝜅2
√
𝑚2 + 𝜅2

√︀
𝑚3(log(𝑚3) + log(log(𝑚2))) + 𝐶1

)︁
‖𝑥′(2) − 𝑥′(1)‖

Now notice that under 𝐸𝑐, using the assumption 𝜅1
√
𝑚3 ≳ 𝐶1+

√
𝑚3𝛽1 and Lemma 42

we have

‖𝑥′‖ ≥ ‖𝜑(0)(𝑥𝑖)‖ − ‖𝑥′ − 𝜑(0)(𝑥𝑖)‖

≥ 𝜅1
√
𝑚3 − (𝐶1 +

√
𝑚3𝛽1)

≳ 𝜅1
√
𝑚3,

203

and

‖𝑥′ − 𝜑(0)(𝑥𝑖)‖2 ≤ (𝐶1 +
√
𝑚3𝛽1)

2, (3.254)

which implies:

E𝑊 𝜌 min{‖𝑥′ − 𝜑(0)(𝑥𝑖)‖2/‖𝑥′‖, ‖𝑥′ − 𝜑(0)(𝑥𝑖)‖}

≤ E𝑊 𝜌1{𝐸𝑐}‖𝑥′ − 𝜑(0)(𝑥𝑖)‖2/‖𝑥′‖+ 1{𝐸}‖𝑥′ − 𝜑(0)(𝑥𝑖)‖

≲ (𝐶1 +
√
𝑚3𝛽1)

2/(𝜅1
√
𝑚3) + E𝑊 𝜌1{𝐸}‖𝑥′ − 𝜑(0)(𝑥𝑖)‖

≲ (𝐶1 +
√
𝑚3𝛽1)

2/(𝜅1
√
𝑚3) +

[︁√
𝑚3𝑚1𝛽1 + 𝐶1

]︁
exp{−𝐶2

1/(8𝑚3𝛽
2
1)}.

Substituting this above and further applying the result of Lemma 42 and Equa-

tion (3.251) and the assumption that 𝑚2 ≥ 𝑚3 log(𝑚2):

𝐴1 + 𝐴2 ≲ 𝜂𝜚22𝛽
−1
2

[︁
(𝐶1 +

√
𝑚3𝛽1)

2/(𝜅1
√
𝑚3) +

[︁√
𝑚3𝑚1𝛽1 + 𝐶1

]︁
exp{−𝐶2

1/(8𝑚3𝛽
2
1)}
]︁

×
[︁
exp {−𝐶4/3

2 (
√
𝑚2𝜅2)

2/3/(8𝛽2
2)}+

𝐶
2/3
2

(
√
𝑚2𝜅2)

2/3

]︁
+ 𝜂
(︁
𝜅2
√
𝑚2 + 𝐶1

)︁(︁
exp{−𝑐22/(32𝛽2

1)}+
𝑐2

𝜅1
√
𝑚1

)︁𝜚2𝑚3

√
𝑚3

𝛽1
,

which completes the proof.

Setting 𝛽1 and 𝛽2

As we mentioned, to minimize the amount of deviation of the smoothed function

compared to the original one, we prefer to choose 𝛽1, 𝛽2 as small as possible. (The

benefit of such choice, indeed, can be observed more explicitly in other parts of the

proof, e.g. Section 3.6.14.) Observing the bound in Equation (3.241) and noting that

we can easily make the exponential terms orders of magnitude smaller than the poly

204

terms, it is easy to find the following optimal setting for the smoothing parameters:

𝛽2 := Θ𝑝

(︁
(𝜅1
√
𝑚3)

−1(
√
𝑚2𝜅2)

− 2
3

)︁
,

𝛽1 := Θ𝑝

(︁
𝑚3

√
𝑚3/(𝜅1

√
𝑚1)

)︁
.

Using this setting, we still can make ℜ8 arbitrarily small. Here, we remind the reader

that𝑂𝑝 only cares about the non-logarithmic dependencies on the overparameterization,

i.e. 𝑚1,𝑚2,𝑚3, 𝜅1, 𝜅2.

205

3.6.21 Basic Tools

In this section, we introduce and prove some lemmas that we use in our analysis as

basic tools.

Lemma 38. Suppose 𝑉 (0) ∈ R𝑚2×𝑚3 has standard normal entries and 𝑎 is a random

sign vector. Suppose 𝑡ℎ𝑒𝑡𝑎 > 1, 𝑅 < 1 are given thresholds, such that

𝑚2𝑅 ≳ 𝑚3(log(1/𝑅) + log(𝑚3) + log(log(𝑚2)),

𝑒−𝜃
2/8 ≲ 𝑚3/𝑚2.

Then, for the following quantities:

𝑁1
𝑅(𝑥) = #

(︁
𝑗 ∈ [𝑚] : |𝑉 (0)

𝑗 𝑥| ≤ 𝑅
)︁

𝑁2
𝜃 (𝑥) = #

(︁
𝑗 ∈ [𝑚] : |𝑉 (0)

𝑗 𝑥| ≥ 𝜃
)︁
,

with high probability we have

sup
‖𝑥′‖=1

𝑁1
𝑅(𝑥

′) ≲ 𝑚2𝑅,

sup
‖𝑥′‖=1

𝑁2
𝜃 (𝑥

′) ≲ 𝑚3(log(𝑚3) + log(log(𝑚2))).

Proof of Lemma 38

Suppose 𝐵1(𝜖) is a cover for the Euclidean ball in R𝑚3 with precision 𝜖. We know

|𝐵1(𝜖)| ≲ (1/𝜖)𝑚3 .

Now for a fixed ‖𝑥‖ = 1, we have

P(𝑊 (0)
𝑗 𝑥 ≤ 2𝑅) ≲ 𝑅.

206

Therefore, using Bernstein, with high probability we have

#
(︁
𝑗 ∈ [𝑚2] : |𝑉 (0)

𝑗 𝑥| ≤ 2𝑅
)︁
≲ 𝑚2𝑅 +

√︀
𝑚2𝑅 + 1.

Hence, using union bound, we have with high probability

sup
𝑥∈𝐵1(𝜖)

#
(︁
𝑗 ∈ [𝑚] : |𝑉 (0)

𝑗 𝑥| ≤ 2𝑅
)︁
≲ 𝑚2𝑅 +

√︀
log |𝐵1(𝜖)|

√︀
𝑚2𝑅 + log |𝐵1(𝜖)|

= 𝑚2𝑅 +
√︀
𝑚2𝑅𝑚3 log(1/𝜖) +𝑚3 log(1/𝜖).

By picking

𝜖 ≲ 𝑅/(
√︀
𝑚3 log(𝑚2𝑚3)),

The assumption implies 𝑚2𝑅 ≥ 𝑚3 log(1/𝜖), which implies

𝐿𝐻𝑆 ≲ 𝑚2𝑅.

On the other hand, note that with high probability we have

sup
𝑗∈[𝑚2],𝑘∈[𝑚3]

|𝑉 (0)
𝑗,𝑘 | ≤

√︀
log(𝑚2𝑚3). (3.255)

Now for ‖𝑥′‖ = 1 which is not in the cover, if 𝑥 is the closest point to it in the

cover, i.e. 𝑥 ∈ 𝐵1(𝜖) and ‖𝑥− 𝑥′‖ ≤ 𝜖, then for every 𝑗 ∈ [𝑚2] we have

||𝑉 (0)
𝑗 𝑥| − |𝑉 (0)

𝑗 𝑥′|| ≤ ‖𝑉 (0)
𝑗 ‖‖𝑥− 𝑥′‖ ≤

√︀
𝑚3 log(𝑚2𝑚3)𝜖 ≤ 𝑅,

by picking a small enough constant. Therefore, for a 𝑗 that |𝑉 (0)
𝑗 𝑥| ≥ 2𝑅, then

|𝑉 (0)
𝑗 𝑥′| ≥ 2𝑅−𝑅 = 𝑅.

207

Therefore, we get that with high probability, for every ‖𝑥′‖ = 1:

sup
‖𝑥′‖=1

#
(︁
𝑗 ∈ [𝑚2] : |𝑉 (0)

𝑗 𝑥′| ≤ 𝑅
)︁
≲ 𝑚2𝑅.

For the second part, note that for ‖𝑥‖ = 1, by the tail bound for normal vars:

P(𝑊 (0)
𝑗 𝑥 ≥ 𝜃/2) ≲ 𝑒−𝜃

2/8.

Hence, again using Bernstein, we have with high probability

sup
𝑥∈𝐵1(𝜖)

#
(︁
𝑗 ∈ [𝑚2] : |𝑉 (0)

𝑗 𝑥| ≥ 𝜃/2
)︁
≲ 𝑚2𝑒

−𝜃2/8 +
√︀

log |𝐵1(𝜖)|
√︀
𝑚2𝑒−𝜃

2/8 + log |𝐵1(𝜖)|

≲ 𝑚2𝑒
−𝜃2/8 +

√︀
𝑚3 log(1/𝜖)

√︀
𝑚2𝑒−𝜃

2/8 +𝑚3 log(1/𝜖).

By picking

𝜖 ≲ 1/(
√︀
𝑚3 log(𝑚2𝑚3)),

and using the assumption 𝑚2𝑒
−𝜃2/8 ≲ 𝑚3, all terms are dominated by the third term

so we can bound the above as

sup
𝑥∈𝐵1(𝜖)

#
(︁
𝑗 ∈ [𝑚2] : |𝑉 (0)

𝑗 𝑥| ≥ 𝜃/2
)︁
≲ 𝑚3(log(𝑚3) + log(log(𝑚2))).

Now for ‖𝑥′‖ = 1 not in the cover, for the new 𝜖 we can write

||𝑉 (0)
𝑗 𝑥| − |𝑉 (0)

𝑗 𝑥′|| ≤ ‖𝑉 (0)
𝑗 ‖‖𝑥− 𝑥′‖ ≤

√︀
𝑚3 log(𝑚2𝑚3)𝜖 ≤ 1/2 ≤ 𝜃/2.

Hence, with high prob.

sup
‖𝑥′‖=1

#
(︁
𝑗 ∈ [𝑚2] : |𝑉 (0)

𝑗 𝑥| ≥ 𝜃
)︁
≲ 𝑚3(log(𝑚3) + log(log(𝑚2))).

208

Lemma 39. For 𝑥 ∈ R𝑑 and 𝑊 (0) ∈ R𝑚×𝑑 which has standard normal entries (and 𝑎

is a random sign vector), we have with high probability:

sup
‖𝑥‖=1

𝑓(𝑥) :=
1√
𝑚
𝑎𝑇𝜎(𝑊 (0)𝑥) ≤

√
𝑑.

Proof of Lemma 39

For the first part, we first compute an upper bound on

E sup
‖𝑥‖=1

1√
𝑚
𝑎𝑇𝜎(𝑊 (0)𝑥).

To do so, we use Dudley’s chaining. Note that the for 𝑥1, 𝑥2 ∈ R𝑑, the variable

𝜎(𝑊
(0)
𝑗 𝑥1) − 𝜎(𝑊

(0)
𝑗 𝑥2) is subGaussian with parameter ‖𝑥1 − 𝑥2‖, so the variable

𝑓(𝑥1) − 𝑓(𝑥2) is also subGaussian with parameter ‖𝑥1 − 𝑥2‖. Hence, by Dudley’s

integral:

E sup
‖𝑥‖=1

1√
𝑚
𝑎𝑇𝜎(𝑊 (0)𝑥) ≤

∫︁ 1

0

√︁
log(𝒩 (ℬ𝑑1 , 𝜖)) ≲

√
𝑑.

Now for a fixed 𝑥, note that

1√
𝑚
𝑎𝑇𝜎(𝑊1𝑥)−

1√
𝑚
𝑎𝑇𝜎(𝑊2𝑥) ≤

1√
𝑚

𝑚∑︁
𝑗=1

‖𝑊1𝑗 −𝑊2𝑗‖ ≤ ‖𝑊1 −𝑊2‖𝐹 .

Hence, the function 𝑓(𝑥) is 1-lipchitz with respect to 𝑊 and 𝑙2 norm, so is the function

sup 𝑓(𝑥). Hence, by Gaussian concentration, sup 𝑓(𝑥) is 1-subGaussian around its

mean, so we finally get with high probability

sup 𝑓(𝑥) ≲
√
𝑑+ 1 ≲

√
𝑑.

Lemma 40. For

𝑅* :=
𝐶

2/3
2

(
√
𝑚2𝜅2)

2/3
,

209

we have with high probability over the randomness of 𝑉 (0):

sup
𝑥′,𝑉 ′: ‖𝑉 ′‖≤𝐶2

#
(︁
𝑗 ∈ [𝑚2] : |(𝑉 (0)

𝑗 + 𝑉 ′
𝑗)𝑥

′| ≤ 𝑅*𝜅2‖𝑥′‖
)︁
≲ 𝑅*𝑚2.

Proof of Lemma 40

Note that obviously the condition of Lemma 38 is satisfied with this choice of 𝑅 = 𝑅*.

Therefore, with high probability we have for an arbitrary 𝑥′:

#
(︁
|𝑉 (0)
𝑗 𝑥′| ≤ 2𝑅*𝜅2‖𝑥′‖

)︁
≤ 𝑚2𝑅

*.

On the other hand, note that for 𝑗 ∈ [𝑚2] such that |𝑉 ′
𝑗𝑥

′| ≥ 𝑅𝜅2‖𝑥′‖, we have

‖𝑉 ′
𝑗 ‖‖𝑥′‖ ≥ |𝑉 ′

𝑗𝑥
′| ≥ 𝑅𝜅2‖𝑥′‖,

which implies

‖𝑉 ′
𝑗 ‖ ≥ 𝑅𝜅2.

Therefore, there are at most 𝐶2
2

𝑅2𝜅22
. Therefore, setting aside 𝑚2𝑅 +

𝐶2
2

𝑅2𝜅22
of 𝑗’s, for the

rest we have

|(𝑉 (0)
𝑗 + 𝑉 ′

𝑗)𝑥
′| ≥ |𝑉 (0)

𝑗 𝑥′| − |𝑉 ′
𝑗𝑥

′| ≥ 2𝑅𝜅2‖𝑥′‖ −𝑅𝜅2‖𝑥′‖ = 𝑅𝜅2‖𝑥′‖.

Setting 𝑅* as defined above balances the terms 𝑚2𝑅 and 𝐶2
2

𝑅2𝜅22
, which completes the

proof.

Lemma 41. If 𝑉 (0) ∈ R𝑚2×𝑚3 is a matrix with standard normal entries, then with

high probability

sup
‖𝑥′‖=1

1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 𝑥′| ≲

√
𝑚2 +

√︀
𝑚3(log(𝑚3) + log(log(𝑚2))).

Proof of Lemma 41

210

Let 𝐵1(𝜖) be a cover for the unit Euclidean ball with precision 𝜖, for which we

have |𝐵1(𝜖)| ≲ (1
𝜖
)𝑚3 . Now for a fixed 𝑥 ∈ 𝐵1(𝜖), note that because 𝑉 (0)

𝑗 𝑥 is a standard

normal variable, the random variable |𝑉 (0)
𝑗 𝑥′| − E|𝑉 (0)

𝑗 𝑥′| is 𝑂(1)-subGaussian, which

means 1√
𝑚2

∑︀𝑚2

𝑗=1(|𝑉
(0)
𝑗 𝑥′| − E|𝑉 (0)

𝑗 𝑥′|) is also 𝑂(1)−subGaussian. Now from the tail

of maximum of subGaussian variables:

sup
𝑥∈𝐵1(𝜖)

1√
𝑚2

𝑚2∑︁
𝑗=1

(|𝑉 (0)
𝑗 𝑥| − E|𝑉 (0)

𝑗 𝑥|) ≲
√︀
log(|𝐵1(𝜖)|) =

√︀
𝑚3 log(1/𝜖).

On the other hand, note that E|𝑉 (0)
𝑗 𝑥′|) = 𝑂(1), which implies w.h.p:

sup
𝑥∈𝐵1(𝜖)

1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 𝑥| ≲

√
𝑚2 +

√︀
𝑚3 log(1/𝜖).

Moreover, note that again by the tail of subGaussian variables, we have w.h.p:

max
𝑗∈[𝑚2],𝑘∈[𝑚3]

|𝑉 (0)
𝑗,𝑘 | ≲

√︀
log(𝑚2𝑚3),

which implies with high prob for every 𝑗 ∈ [𝑚2]:

‖𝑉 (0)
𝑗 ‖ ≲

√︀
𝑚3 log(𝑚2𝑚3).

Now by picking

𝜖 :=
(︁√︀

𝑚3 log(𝑚2𝑚3)
)︁−1

,

we get with high probability

sup
𝑥∈𝐵1(𝜖)

1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 𝑥| ≲

√
𝑚2 +

√︀
𝑚3(log(𝑚3) + log(log(𝑚2))). (3.256)

On the other hand, for an arbitrary 𝑥′ with ‖𝑥′‖ = 1, if 𝑥 ∈ 𝐵1(𝜖) is the representative

211

of 𝑥′, we have by definition ‖𝑥′ − 𝑥‖ ≤ 𝜖, which combined with (3.6.21) implies

⃒⃒⃒
|𝑉 (0)
𝑗 𝑥′| − |𝑉 (0)

𝑗 𝑥|
⃒⃒⃒
≤ |𝑉 (0)

𝑗 (𝑥′ − 𝑥)| ≤ ‖𝑉 (0)
𝑗 ‖‖𝑥′ − 𝑥‖,

≲
√︀
𝑚3 log(𝑚2𝑚3)

(︁√︀
𝑚3 log(𝑚2𝑚3)

)︁−1

≤ 1.

Therefore

⃒⃒⃒ 1√
𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 𝑥′| − 1√

𝑚2

𝑚2∑︁
𝑗=1

|𝑉 (0)
𝑗 𝑥|

⃒⃒⃒
≤
√
𝑚2. (3.257)

Combining Equations (3.256) and (3.257), we conclude the result.

212

Defining the rare events 𝐸𝑗

Lemma 42. For 𝑥′(2) defined in Equation (3.240) we have

E𝑊 𝜌‖𝑥′(2) − 𝜑(0)(𝑥𝑖)‖,E𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖ ≤ 𝐶1 +
√
𝑚3𝛽1,

E𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖2 ≲ 𝐶2
1 +𝑚3𝛽

2
1 .

Moreover, for the events

𝐸𝑗 = {|𝑊 𝜌
𝑗 𝑥𝑖| ≥ 𝐶1/

√
𝑚3𝑚1}, 𝐸 = ∪𝑗𝐸𝑗,

we have under 𝐸𝑐:

‖𝑥′(2) − 𝜑(0)(𝑥𝑖)‖, ‖𝜑(2)(𝑥𝑖)‖ ≲ 𝐶1.

Furthermore, 𝐸 happens rarely:

P(𝐸) ≲ 𝑚1 exp{−𝐶2
1/(8𝑚3𝛽

2
1)},

E𝑊 𝜌1{𝐸}‖𝜑(2)(𝑥𝑖)‖ ≤
[︁√

𝑚3𝑚1𝛽1 + 𝐶1

]︁
exp{−𝐶2

1/(8𝑚3𝛽
2
1)}.

E𝑊 𝜌1{𝐸}‖𝑥′(2) − 𝜑(0)(𝑥𝑖)‖ ≤
[︁√

𝑚3𝑚1𝛽1 + 𝐶1

]︁
exp{−𝐶2

1/(8𝑚3𝛽
2
1)}.

Finally, we have the following almost surely bound:

‖𝜑(2)(𝑥𝑖)‖ ≤ 𝐶1 +
√
𝑚3

𝑚1∑︁
𝑗=1

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖|.

Proof of Lemma 42

We start by writing

|𝑥′(2)𝑘 −
1√
𝑚1

𝑊 𝑠
𝑘𝜎(𝑊

(0) + (1− 𝜂)𝑊 ′ +
√
𝜂𝑊 *)𝑥𝑖| ≤

𝑚1∑︁
𝑗=1

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖|. (3.258)

213

Now notice that by Lemma 10, we know for every 𝑗 /∈ 𝑃 :

|𝑊 (0)
𝑗 𝑥𝑖| ≥ 𝑐2/

√
𝑚2, (3.259)

|(1− 𝜂)𝑊 ′
𝑗𝑥𝑖| ≤ 𝑐2/(2

√
𝑚1). (3.260)

In addition, by Equations in (3.105) from Lemma 14, for every 𝑗 ∈ [𝑚1]:

‖𝑊 *
𝑗 ‖ ≤ 𝜚1

√︂
𝑚3

𝑚1

,

so by picking

𝜂 ≤ 𝑐2/(4𝜚
√
𝑚3)

we obtain

𝜂|𝑊 *
𝑗 𝑥𝑖| ≤

𝑐2
4
√
𝑚1

. (3.261)

Combining this with Equations in (3.260), we see that the signs of (𝑊 (0)
𝑗 +(1− 𝜂)𝑊 ′

𝑗 +
√
𝜂𝑊 *

𝑗)𝑥𝑖 and 𝑊 (0)
𝑗 𝑥𝑖 are the same for 𝑗 /∈ 𝑃 .

Moreover, the matrix (1− 𝜂)𝑊 ′ +
√
𝜂𝑊 * satisfies

‖(1− 𝜂)𝑊 ′ +
√
𝜂𝑊 *‖ ≤ (1− 𝜂)𝐶1 +

√
𝜂
√︀
2𝜁2 ≤ 𝐶1,

by picking √𝜂 ≤ 𝐶1/
√
𝜁2. Hence, the conditions of Lemma 15 are satisfied and we

get:

‖ 1√
𝑚1

𝑊 𝑠𝜎(𝑊 (0) + (1− 𝜂)𝑊 ′ +
√
𝜂𝑊 *)𝑥𝑖 − 𝜑(0)(𝑥𝑖)‖ ≤ 𝐶1. (3.262)

Combining Equations (3.258) and (3.262):

‖𝑥′(2) − 𝜑(0)(𝑥𝑖)‖ ≤ 𝐶1 +
√
𝑚3

𝑚1∑︁
𝑗=1

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖|. (3.263)

214

In exactly similar fashion, one can derive

‖𝜑(2)(𝑥𝑖)‖ ≤ 𝐶1 +
√
𝑚3

𝑚1∑︁
𝑗=1

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖|. (3.264)

Now first of all, note

E𝑊 𝜌

𝑚1∑︁
𝑗=1

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖| ≤ 𝛽1,

which proves the first part of the claims. For the second part, note that by the

Gaussian tail bound

P(|𝑊 𝜌
𝑗 𝑥𝑖| ≥ 𝐶1/

√
𝑚3𝑚1) ≲ exp{−𝐶2

1/(8𝑚3𝛽
2
1)}.

Therefore,

P(𝐸) ≤
∑︁
𝑗

P(𝐸𝑗) ≤ 𝑚1 exp{−𝐶2
1/(8𝑚3𝛽

2
1)}.

Moreover

E𝑊 𝜌1{𝐸}
𝑚1∑︁
𝑗=1

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖| ≤ E𝑊 𝜌

1√
𝑚1

∑︁
𝑗2

∑︁
𝑗 ̸=𝑗2

1{𝐸𝑗2}|𝑊
𝜌
𝑗 𝑥𝑖|+

1√
𝑚1

∑︁
𝑗

E𝑊 𝜌1{𝐸𝑗}|𝑊 𝜌
𝑗 𝑥𝑖|,

=
[︁ 1√

𝑚1

∑︁
𝑗2

∑︁
𝑗 ̸=𝑗2

E𝑊 𝜌|𝑊 𝜌
𝑗 𝑥𝑖|+

1√
𝑚1

∑︁
𝑗

𝐸𝑊 𝜌 [|𝑊 𝜌
𝑗 𝑥𝑖|

⃒⃒⃒
𝐸𝑗]
]︁
P(𝐸𝑗)

≲
[︁
𝑚1𝛽1 + 𝐶1/

√
𝑚3

]︁
exp{−𝐶2

1/(8𝑚3𝛽
2
1)}.

Plugging this into (3.263) finishes the proof. Also, under 𝐸𝑐 by Equation (3.263)

we have

‖𝑥′(2) − 𝜑(0)(𝑥𝑖)‖, ‖𝜑(2)(𝑥𝑖)‖ ≲ 𝐶1.

215

Finally, exploiting Equation (3.264):

E𝑊 𝜌‖𝜑(2)(𝑥𝑖)‖2

≲ 𝐶2
1 +𝑚3

1

𝑚1

E𝑊 𝜌(
∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|)2 ≤ 𝐶2

1 +𝑚3E𝑊 𝜌

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|2

≤ 𝐶2
1 +𝑚3𝛽

2
1 .

216

Bounding the value of 𝑓 ′

The following Lemma provides a reasonable bound on the value of the smoothed

function.

Lemma 43. We have the following general bound on the values of the smoothed

function: With high probability over the initialization, for ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2 and

∀𝑖 ∈ [𝑛] (having small enough choices of 𝛽1, 𝛽2 described in Section 3.6.20):

|𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖)| ≲ (𝜅2

√
𝑚3 + 𝛽2)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3𝛽1

)︁
+ 𝐶2(𝐶1 +

√
𝑚3𝛽1),

which is 𝑂(𝐶1𝐶2) for large enough overparameterization as described in Section3.6.3.

Moreover, we have the following almost surely bound (with respect to the randomness

of 𝑊 𝜌 and 𝑉 𝜌):

|𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)|

≲ (𝜅2
√
𝑚3 + ‖𝑉 𝜌‖𝐹)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3(

1√
𝑚1

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|)

)︁
+ 𝐶2(𝐶1 +

√
𝑚3(

1√
𝑚1

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|)).

Notably, with slightly higher overparameterization, the high probability bound in (43)

holds even if we take supremum over 𝑥.

Proof of Lemma 43

Using Lemmas 39 and 42 and using the fact that 𝜑(0)(𝑥𝑖) is orthogonal to the

217

rows of 𝑉 ′ (recall 𝑥′𝑖 = 𝜑(0)(𝑥𝑖) + 𝜑(2)(𝑥𝑖)):

|𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)|

≤ 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0)𝑥′𝑖) +
1√
𝑚2

∑︁
𝑗

|(𝑉 𝜌
𝑗 + 𝑉 ′

𝑗)𝑥
′
𝑖|

≤ (𝜅2
√
𝑚3)‖𝑥′𝑖‖+

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′
𝑖|+ 𝐶2‖𝜑(2)(𝑥𝑖)‖

≤ (𝜅2
√
𝑚3 + ‖𝑉 𝜌‖𝐹)‖𝑥′𝑖‖+ 𝐶2‖𝜑(2)(𝑥𝑖)‖

≲ (𝜅2
√
𝑚3 + ‖𝑉 𝜌‖𝐹)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3(

1√
𝑚1

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|)

)︁
+ 𝐶2(𝐶1 +

√
𝑚3(

1√
𝑚1

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|)).

(3.265)

Note that above, if we apply the stronger worst-case norm bound of the first layer’s

output presented in Lemma 55, we would get sup𝑥,‖𝑥‖=1 |𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥)| is bounded

by the RHS, which in turn proves a stronger uniform bound on 𝑓 ′.

Similarly, this time by taking expectation with respect to 𝑊 𝜌 and 𝑉 𝜌:

|𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖)| = |E𝑊 𝜌,𝑉 𝜌𝑓𝑊 ′,𝑉 ′(𝑥𝑖)|

≤ E𝑊 𝜌,𝑉 𝜌|𝑓𝑊 ′,𝑉 ′(𝑥𝑖)|

= E𝑊 𝜌(𝜅2
√
𝑚3 + 𝛽2)‖𝑥′𝑖‖+ 𝐶2‖𝑥′𝑖 − 𝜑(0)(𝑥𝑖)‖

≲ (𝜅2
√
𝑚3 + 𝛽2)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3𝛽1

)︁
+ 𝐶2(𝐶1 +

√
𝑚3𝛽1).

Corollary 8.1. If we set 𝐶1 = 𝐶2 = 0 above, we get

|𝑓 ′
0,0(𝑥𝑖)| ≤ (𝜅2

√
𝑚3 + 𝛽2)

(︁√
𝑚3𝜅1 +

√
𝑚3𝛽1

)︁
,

the point being these terms go to zero by an order of 𝑂((
√
𝑚2𝜅2)

− 2
3). Therefore, taking

(
√
𝑚2𝜅2)

− 2
3 << 𝐵, we make sure that |𝑓 ′

0,0| < 𝐵, so by the 1 smoothness of ℓ and 𝐵

boundedness of the labels we get ℓ(𝑓 ′
0,0(𝑥𝑖), 𝑦𝑖) < 4𝐵2.

218

Bounding the difference between Original and Smoothed Functions

The following Lemma bounds the difference between the smoothed function and

original function of the network.

Lemma 44. Bound on the smoothing change under the assumption 𝑚2 ≥ 𝑚3 log(𝑚2):

with high probability over the initialization, for any (𝑊 ′, 𝑉 ′) with ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤

𝐶2:

|𝑓𝑊 ′,𝑉 ′(𝑥𝑖)− 𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖)|

≤ 𝛽2(𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3𝛽1) +

(︁
𝐶2 + 𝜅2

√
𝑚2

)︁√
𝑚3𝛽1.

Proof of Lemma 44

We write

|𝑓𝑊 ′,𝑉 ′(𝑥𝑖)− 𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖)| = |𝑓𝑊 ′,𝑉 ′(𝑥𝑖)− E𝑊 𝜌,𝑉 𝜌𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)|

=
⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌

(︁
𝑓𝑊 ′,𝑉 ′(𝑥𝑖)− 𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

)︁⃒⃒⃒
≤ E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒
𝑓𝑊 ′,𝑉 ′(𝑥𝑖)− 𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

⃒⃒⃒
.

In the following, 𝜎 means we apply Relu activation to the vector in front of it

(entrywise):

𝐿𝐻𝑆 ≤ E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′ + 𝑉 𝜌)
1√
𝑚1

𝑊 𝑠𝜎(𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖

− 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′)
1√
𝑚1

𝑊 𝑠𝜎(𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖

⃒⃒⃒
+E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′)
1√
𝑚1

𝑊 𝑠𝜎(𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖

− 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′)
1√
𝑚1

𝑊 𝑠𝜎(𝑊 (0) +𝑊 ′)𝑥𝑖

⃒⃒⃒
.

219

Now for the first term above, using the previous notation of 𝑥′𝑖 representing the output

of the first layer and using Lemma 42:

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′ + 𝑉 𝜌)
1√
𝑚1

𝑊 𝑠𝜎(𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖

− 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′)
1√
𝑚1

𝑊 𝑠𝜎(𝑊 (0) +𝑊 ′ +𝑊 𝜌)𝑥𝑖

⃒⃒⃒
≤ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′
𝑖|

≲ 𝛽2E𝑊 𝜌‖𝑥′𝑖‖

≤ 𝛽2E𝑊 𝜌,𝑉 𝜌(‖𝜑(0)(𝑥𝑖)‖+ ‖𝜑(2)(𝑥𝑖)‖)

≲ 𝛽2(𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3𝛽1). (3.266)

For the second term, by starting off with a simple triangle inequality:

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒ 1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′)𝑥′𝑖 −
1√
𝑚2

𝑎𝑇𝜎(𝑉 (0) + 𝑉 ′)(𝜑(0)(𝑥𝑖) + 𝜑(2)̸𝜌(𝑥𝑖))
⃒⃒⃒

≤ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

𝑚2∑︁
𝑗=1

⃒⃒⃒
(𝑉

(0)
𝑗 + 𝑉 ′

𝑗)(𝑥
′
𝑖 − 𝜑(0)(𝑥𝑖)− 𝜑(2)̸𝜌(𝑥𝑖))

⃒⃒⃒
≤ E𝑊 𝜌,𝑉 𝜌

1√
𝑚2

𝑚2∑︁
𝑗=1

⃒⃒⃒
𝑉

(0)
𝑗 (𝑥′𝑖 − 𝜑(0)(𝑥𝑖)− 𝜑(2)̸𝜌(𝑥𝑖))

⃒⃒⃒
+
⃒⃒⃒
𝑉 ′
𝑗 (𝑥

′
𝑖 − 𝜑(0)(𝑥𝑖)− 𝜑(2)̸𝜌(𝑥𝑖))|

⃒⃒⃒
≤ 𝐶2𝐸𝑊 𝜌‖𝑥′𝑖 − 𝜑(0)(𝑥𝑖)− 𝜑(2)̸𝜌(𝑥𝑖)‖+ E𝑊 𝜌

1√
𝑚2

𝑚2∑︁
𝑗=1

⃒⃒⃒
𝑉

(0)
𝑗 (𝑥′𝑖 − 𝜑(0)(𝑥𝑖)− 𝜑(2)̸𝜌(𝑥𝑖))

⃒⃒⃒
.

Now using Lemma 41:

≲
(︁
𝐶2 + 𝜅2

√
𝑚2

)︁
E𝑊 𝜌‖𝑥′𝑖 − 𝜑(0)(𝑥𝑖)− 𝜑(2)̸𝜌(𝑥𝑖)‖

≲
(︁
𝐶2 + 𝜅2

√
𝑚2

)︁√
𝑚3𝐸𝑊 𝜌

∑︁
𝑗

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖|

≲
(︁
𝐶2 + 𝜅2

√
𝑚2

)︁√
𝑚3𝛽1. (3.267)

Combining Equations (3.266) and (3.267) we conclude the proof.

220

3.7 Appendix

3.7.1 Smoothness coefficients

Recall that for a function 𝑓 ∈ 𝒞3 on R𝑑, we say it is 𝜇1 Lipschitz, 𝜇2 gradient Lipschitz,

and 𝜇3 hessian Lipschitz at point 𝑥 if for every unit direction 𝑣, | 𝑑
𝑑𝜆
𝑓(𝑥+ 𝜆𝑣)| ≤ 𝜇1,

| 𝑑2
𝑑𝜆2
𝑓(𝑥+ 𝜆𝑣)| ≤ 𝜇2, and | 𝑑2

𝑑𝜆2
𝑓(𝑥+ 𝜆𝑣)| ≤ 𝜇3.

The aim of this section is to bound the Lipschitz coefficients of the loss ℓ(, 𝑦) and

objective 𝐿(𝑊 ′, 𝑉 ′) in a bounded domain ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2. The following is

our main Theorem in this regard:

Theorem 9. For given values 𝐶1, 𝐶2 > 0, in the domain ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2, for

any label |𝑦| ≤ 𝐵, the loss function ℓ(., 𝑦) is 𝑂((𝐶1𝐶2 +𝐵2))-Lipschitz (having enough

overparameterization) and 1 gradient-Lipschitz 𝑥 = 𝑓 ′
𝑊 ′,𝑉 ′. Moreover, the loss function

𝐿(𝑊 ′, 𝑉 ′) is (𝑂(𝐶1𝐶2) + 𝐵)Ψ1 + 2(𝐶1 + 𝐶2) Lipschitz, Ψ2
1 + (𝑂(𝐶1𝐶2) + 𝐵)Ψ2 + 4

gradient Lipschitz, and 3Ψ2Ψ1 + (𝑂(𝐶1𝐶2) +𝐵)Ψ3 hessian Lipschitz, where Ψ1,Ψ2,Ψ3

are defined in Lemma 45.

Proof of Lemma 9

As in the proof of Lemma 45, let (�̃� , 𝑉) be a unit direction, i.e. ‖�̃�‖2 + ‖𝑉 ‖2 = 1.

Then, using Lemma 43, we know that for every 𝑖 ∈ [𝑛]: |𝑓 ′
𝑊 ′,𝑉 ′(𝑥𝑖)| = 𝑂(𝐶1𝐶2),

so by 1-smoothness of the loss and 𝐵-boundedness of the labels, we get that ℓ(., 𝑦)

is (𝑂(𝐶1𝐶2) + 𝐵) lipshcitz at point 𝑓 ′
𝑊 ′,𝑉 ′ . The gradient smoothness parameter

of the square loss ℓ is bounded by 1 and its third derivative is zero. Now using

these coefficients, we can easily compute the coefficients for 𝐿 as well by simple

221

differentiation:

| 𝑑
𝑑𝜆
ℓ(𝑓 ′

𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉
(𝑥𝑖), 𝑦𝑖)| = |ℓ̇(𝑓 ′, 𝑦𝑖)

𝑑

𝑑𝜆
𝑓 ′| ≤ (𝑂(𝐶1𝐶2) +𝐵)Ψ1.

| 𝑑
𝑑𝜆2

ℓ(𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖), 𝑦𝑖)| = |ℓ̈(𝑓 ′, 𝑦𝑖)(
𝑑

𝑑𝜆
𝑓 ′)2 + ℓ̇(𝑓 ′, 𝑦𝑖)

𝑑2

𝑑𝜆2
𝑓 ′| ≤ Ψ2

1 + (𝑂(𝐶1𝐶2) +𝐵)Ψ2.

| 𝑑
𝑑𝜆3

ℓ(𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖), 𝑦𝑖)| = |
...
ℓ (𝑓 ′, 𝑦𝑖)(

𝑑

𝑑𝜆
𝑓 ′)3 + 3ℓ̈(𝑓 ′, 𝑦𝑖)

𝑑2

𝑑𝜆2
𝑓 ′ 𝑑

𝑑𝜆
𝑓 ′ + ℓ̇(𝑓 ′, 𝑦𝑖)

𝑑3

𝑑𝜆3
𝑓 ′|

≤ Ψ3
1 + 3Ψ2Ψ1 + (𝑂(𝐶1𝐶2) +𝐵)Ψ3.

Moreover, note that

𝑑

𝑑𝜆
‖𝑊 ′ + 𝜆�̃�‖2 = 2⟨𝑊 ′ + 𝜆�̃� , �̃� ⟩

⃒⃒⃒
𝜆=0

= 2⟨𝑊 ′, �̃� ⟩ ≤ 2‖𝑊 ′‖ = 2𝐶1,

𝑑2

𝑑𝜆2
‖𝑊 ′ + 𝜆�̃�‖2 = ⟨�̃� , �̃� ⟩ = 2,

𝑑3

𝑑𝜆3
‖𝑊 ′ + 𝜆�̃�‖2 = 0,

and similarly for ‖𝑉 ′ + 𝜆𝑉 ‖2. Combining these results finishes the proof.

Above, we used parameters Ψ1,Ψ2,Ψ3, the Lipschitz coefficients of 𝑓 ′ in domain

‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2, which we bound in Lemma 45 below.

222

Computing the Lipschitz Coefficients of 𝑓 ′
𝑊 ′,𝑉 ′

In this section, we bound the Lipschitz coefficients of 𝑓 ′
𝑊 ′,𝑉 ′ in the domain ‖𝑊 ′‖ ≤

𝐶1, ‖𝑉 ′‖ ≤ 𝐶2 by 𝑝𝑜𝑙𝑦(𝑚1,𝑚2,𝑚3, 𝛽1, 𝛽2) functions.

Lemma 45. For every point (𝑊 ′, 𝑉 ′) in the domain ‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2, we have

the following bounds on the Lipschitz coefficients of 𝑓 ′
𝑊 ′,𝑉 ′ ((�̃� , 𝑉) is a unit direction

with ‖�̃�‖2 + ‖𝑉 ‖2 = 1):

⃒⃒⃒ 𝑑
𝑑𝜆
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

⃒⃒⃒
≲
𝑚2

𝛽2
2

(︁ 𝛽2√
𝑚2

√
𝑚3(𝜅1 + 𝐶1 + 𝛽1)

(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+

𝛽2
2√
𝑚2

√
𝑚3

(︁
𝜅1 + 𝐶1 + 𝛽1

)︁)︁
+
𝑚1

𝛽2
1

(︁√
𝑚3

(︁ 𝛽1√
𝑚1

(︁
𝜅1 + 𝐶1

)︁
+

𝛽2
1√
𝑚1

)︁(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+ 𝛽2
√
𝑚3

(︁ 𝛽1√
𝑚1

(︁
𝜅1 + 𝐶1

)︁
+

𝛽2
1√
𝑚1

)︁)︁
:= Ψ1,

𝑑2

𝑑𝜆2
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

≲
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁√︂

𝑚3

(︁
(𝜅2
√
𝑚3 + 𝐶2)2 + 𝛽2

2

)︁[︁
(𝜅1 + 𝐶1)2 + 𝛽2

1

]︁
:= Ψ2⃒⃒⃒ 𝑑3

𝑑𝜆3
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

⃒⃒⃒
≲
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁3/2√︂

𝑚3

(︁
(𝜅2
√
𝑚3 + 𝐶2)2 + 𝛽2

2

)︁[︁
(𝜅1 + 𝐶1)2 + 𝛽2

1

]︁
:= Ψ3

(3.268)

Proof of Lemma 45

Let

𝜌(𝑊 𝜌, 𝑉 𝜌) :=
1

(
√
2𝜋)𝑚2𝑚3+𝑚1𝑑(𝛽1/

√
𝑚1)

𝑚1𝑑(𝛽2/
√
𝑚2)

𝑚2𝑚3
exp{− ‖𝑊

𝜌‖2

2𝛽2
1/𝑚1

− ‖𝑉
𝜌‖2

2𝛽2
2/𝑚2

},

be the density function of the law of 𝑊 𝜌 and 𝑉 𝜌 which is a joint Gaussian. Then to

compute the derivative and second derivative of the function in the unit direction

(�̃� , 𝑉), s.t. ‖�̃�‖2𝐹 + ‖𝑉 ‖2𝐹 , we can write the value of the smoothed function as an

223

integration with density 𝜌, change variable, and then take derivatives:

𝑑

𝑑𝜆
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

=
𝑑

𝑑𝜆
E𝑊 𝜌,𝑉 𝜌𝑓𝑊 ′+𝜆�̃�+𝑊 𝜌,𝑉 ′+𝜆𝑉+𝑉 𝜌(𝑥𝑖)

=
𝑑

𝑑𝜆

∫︁
𝑓𝑊 ′+𝜆�̃�+𝑊 𝜌,𝑉 ′+𝜆𝑉+𝑉 𝜌(𝑥𝑖)𝜌(𝑊

𝜌, 𝑉 𝜌)𝑑(𝑊 𝜌, 𝑉 𝜌)

=
𝑑

𝑑𝜆

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)𝜌(𝑊

+ − (𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉))𝑑(𝑊+, 𝑉 +).

But one can easily see that for fixed 𝑉 ′ and 𝑉 , the set of functions 𝑓𝑊+,𝑉 +(𝑥𝑖)𝜌(𝑊
+−

(𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉)) for a small neighborhood of 𝜆 can simultaneously be

upper bounded by an integrable function. Hence, the Leibnitz rule holds here because

of dominated convergence theorem, and we can change the order of integration and

derivation:

=

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

𝑑

𝑑𝜆
𝜌(𝑊+ − (𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉))𝑑(𝑊+, 𝑉 +)

= −
∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

⟨
(�̃� , 𝑉), ((

𝛽2
1

𝑚1

)−1
(︁
𝑊+ − (𝑊 ′ + 𝜆�̃�)

)︁
, (
𝛽2
2

𝑚2

)−1
(︁
𝑉 + − (𝑉 ′ + 𝜆𝑉)

)︁
)
⟩

𝜌(𝑊+ − (𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉))𝑑(𝑊+, 𝑉 +)

=

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

⟨
(�̃� , 𝑉), (

𝑚1

𝛽2
1

𝑊 𝜌,
𝑚2

𝛽2
2

𝑉 𝜌)
⟩
𝜌(𝑊 𝜌, 𝑉 𝜌)𝑑(𝑊 𝜌, 𝑉 𝜌)

= E𝑊 𝜌,𝑉 𝜌

(︁𝑚1

𝛽2
1

⟨
�̃� ,𝑊 𝜌

⟩
+
𝑚2

𝛽2
2

⟨
𝑉 , 𝑉 𝜌

⟩)︁
𝑓𝑊 ′+𝜆�̃�+𝑊 𝜌,𝑉 ′+𝜆𝑉+𝑉 𝜌(𝑥𝑖)

(𝑥𝑖)
⃒⃒⃒
𝜆=0

= E𝑊 𝜌,𝑉 𝜌

(︁𝑚1

𝛽2
1

⟨
�̃� ,𝑊 𝜌

⟩
+
𝑚2

𝛽2
2

⟨
𝑉 , 𝑉 𝜌

⟩)︁
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖). (3.269)

224

Similarly we can compute the second derivative:

𝑑2

𝑑𝜆2
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

=
𝑑

𝑑𝜆

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

⟨
(�̃� , 𝑉), ((

𝛽2
1

𝑚1

)−1
(︁
𝑊+ − (𝑊 ′ + 𝜆�̃�)

)︁
, (
𝛽2
2

𝑚2

)−1
(︁
𝑉 + − (𝑉 ′ + 𝜆𝑉)

)︁
)
⟩

𝜌(𝑊+ − (𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉))𝑑(𝑊+, 𝑉 +)

=

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

[︁⟨
(�̃� , 𝑉), ((

𝛽2
1

𝑚1

)−1
(︁
𝑊+ − (𝑊 ′ + 𝜆�̃�)

)︁
, (
𝛽2
2

𝑚2

)−1
(︁
𝑉 + − (𝑉 ′ + 𝜆𝑉)

)︁
)
⟩2
−⟨

(�̃� , 𝑉), ((
𝛽2
1

𝑚1

)−1�̃� , (
𝛽2
2

𝑚2

)−1𝑉)
⟩]︁
𝜌(𝑊+ − (𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉))𝑑(𝑊+, 𝑉 +)

=

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

[︁⟨
(�̃� , 𝑉), (

𝑚1

𝛽2
1

𝑊 𝜌,
𝑚2

𝛽2
2

𝑉 𝜌)
⟩2

+
⟨
(�̃� , 𝑉), (

𝑚1

𝛽2
1

�̃� ,
𝑚2

𝛽2
2

𝑉)
⟩]︁
𝜌(𝑊 𝜌, 𝑉 𝜌)𝑑(𝑊 𝜌, 𝑉 𝜌)

= E𝑊 𝜌,𝑉 𝜌

[︁(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁2
−
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁]︁
𝑓𝑊 ′+𝜆�̃�+𝑊 𝜌,𝑉 ′+𝜆𝑉+𝑉 𝜌(𝑥𝑖)

(𝑥𝑖)
⃒⃒⃒
𝜆=0

= E𝑊 𝜌,𝑉 𝜌

[︁(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁2
−
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁]︁
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖).

(3.270)

Similarly for the third derivative:

𝑑3

𝑑𝜆3
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

𝑑

𝑑𝜆

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

[︁⟨
(�̃� , 𝑉), ((

𝛽2
1

𝑚1

)−1
(︁
𝑊+ − (𝑊 ′ + 𝜆�̃�)

)︁
, (
𝛽2
2

𝑚2

)−1
(︁
𝑉 + − (𝑉 ′ + 𝜆𝑉)

)︁
)
⟩2
−⟨

(�̃� , 𝑉), ((
𝛽2
1

𝑚1

)−1�̃� , (
𝛽2
2

𝑚2

)−1𝑉)
⟩]︁
𝜌(𝑊+ − (𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉))𝑑(𝑊+, 𝑉 +)

=

∫︁
𝑓𝑊+,𝑉 +(𝑥𝑖)

[︁⟨
(�̃� , 𝑉), ((

𝛽2
1

𝑚1

)−1
(︁
𝑊+ − (𝑊 ′ + 𝜆�̃�)

)︁
, (
𝛽2
2

𝑚2

)−1
(︁
𝑉 + − (𝑉 ′ + 𝜆𝑉)

)︁
)
⟩3

− 3
⟨
(�̃� , 𝑉), ((

𝛽2
1

𝑚1

)−1
(︁
𝑊+ − (𝑊 ′ + 𝜆�̃�)

)︁
, (
𝛽2
2

𝑚2

)−1
(︁
𝑉 + − (𝑉 ′ + 𝜆𝑉)

)︁
)
⟩

×
⟨
(�̃� , 𝑉),

(︁
(
𝛽2
1

𝑚1

)−1�̃� , (
𝛽2
2

𝑚2

)−1𝑉
)︁⟩]︁

𝜌(𝑊+ − (𝑊 ′ + 𝜆�̃�), 𝑉 + − (𝑉 ′ + 𝜆𝑉))𝑑(𝑊+, 𝑉 +)

= E𝑊 𝜌,𝑉 𝜌

[︁(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁3
− 3
(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁

𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)
]︁
.

225

Now for first derivative, exactly similar to the derivation in (3.265), we can write

⃒⃒⃒
E𝑊 𝜌,𝑉 𝜌

(︁𝑚1

𝛽2
1

⟨
�̃� ,𝑊 𝜌

⟩
+
𝑚2

𝛽2
2

⟨
𝑉 , 𝑉 𝜌

⟩)︁
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒
≤ E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒𝑚1

𝛽2
1

⟨
�̃� ,𝑊 𝜌

⟩
+
𝑚2

𝛽2
2

⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒
≤ E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒𝑚1

𝛽2
1

⟨
�̃� ,𝑊 𝜌

⟩
+
𝑚2

𝛽2
2

⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒(︁
𝜅2
√
𝑚3‖𝑥

′(2)
𝑖 ‖+ ‖𝑉 ′‖𝐹‖𝑥′(2)𝑖 ‖+ E𝑉 𝜌

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁

≤ E𝑊 𝜌,𝑉 𝜌

(︁⃒⃒⃒𝑚1

𝛽2
1

⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
+
⃒⃒⃒𝑚2

𝛽2
2

⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒)︁(︁
𝜅2
√
𝑚3‖𝑥

′(2)
𝑖 ‖+ ‖𝑉 ′‖𝐹‖𝑥′(2)𝑖 ‖+

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁

=
𝑚2

𝛽2
2

(︁
𝐸𝑉 𝜌

⃒⃒⃒⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒
𝐸𝑊 𝜌‖𝑥′(2)𝑖 ‖

(︁
𝜅2
√
𝑚3 + ‖𝑉 ′‖𝐹

)︁
+ E𝑊 𝜌E𝑉 𝜌

1√
𝑚2

⃒⃒⃒⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁

+
𝑚1

𝛽2
1

(︁(︁
E𝑊 𝜌‖𝑥′(2)𝑖 ‖

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒)︁(︁
𝜅2
√
𝑚3 + ‖𝑉 ′‖𝐹

)︁
+ E𝑊 𝜌

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
E𝑉 𝜌

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁

≲
𝑚2

𝛽2
2

(︁
𝐸𝑉 𝜌

⃒⃒⃒⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒
𝐸𝑊 𝜌‖𝑥′(2)𝑖 ‖

(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+ E𝑊 𝜌E𝑉 𝜌

1√
𝑚2

⃒⃒⃒⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁

+
𝑚1

𝛽2
1

(︁(︁
E𝑊 𝜌‖𝑥′(2)𝑖 ‖

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒)︁(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+ E𝑊 𝜌

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
E𝑉 𝜌

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁
,

where the last line follows because ‖𝑉 ′‖ ≲ 𝐶2. But notice that because ‖𝑉 ‖𝐹 ≤ 1,

‖�̃�‖𝐹 ≤ 1, then
⟨
𝑉 , 𝑉 𝜌

⟩
and

⟨
�̃� ,𝑊 𝜌

⟩
are Gaussian variables with variances at

most 𝛽2
2/𝑚2 and 𝛽2

1/𝑚1. Hence

𝐸𝑉 𝜌

⃒⃒⃒⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒
≲ 𝛽2/

√
𝑚2, (3.271)

𝐸𝑊 𝜌

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
≲ 𝛽1/

√
𝑚1. (3.272)

Similarly, using the same derivation as in (42), one can also get the following a.s.

bound (over the randomness of 𝑊 𝜌):

‖𝑥′(2)𝑖 ‖ ≲
√
𝑚3

(︁
𝜅1 + 𝐶1 +

1√
𝑚1

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|

)︁
, (3.273)

226

therefore

𝐸𝑊 𝜌‖𝑥′(2)𝑖 ‖ ≲
√
𝑚3

(︁
𝜅1 + 𝐶1 + 𝐸𝑊 𝜌

1√
𝑚1

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|

)︁
(3.274)

≲
√
𝑚3

(︁
𝜅1 + 𝐶1 + 𝛽1

)︁
. (3.275)

Moreover, for every 𝑗 ∈ [𝑚2]:

𝐸𝑉 𝜌

⃒⃒⃒⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒
|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 | ≤

√︂
𝐸𝑉 𝜌

⃒⃒⃒⟨
𝑉 , 𝑉 𝜌

⟩⃒⃒⃒2√︁
𝐸𝑉 𝜌|𝑉 𝜌

𝑗 𝑥
′(2)
𝑖 |2

=
𝛽2√
𝑚2

𝛽2√
𝑚2

‖𝑥′(2)𝑖 ‖ =
𝛽2
2

𝑚2

‖𝑥′(2)𝑖 ‖,

𝐸𝑊 𝜌

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
|𝑊 𝜌

𝑗 𝑥𝑖| ≤
𝛽2
1

𝑚1

. (3.276)

Similarly, using Equation (3.273) we bound

E𝑊 𝜌‖𝑥′(2)𝑖 ‖
⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
≲
√
𝑚3

(︁
E𝑊 𝜌

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒(︁
𝜅1 + 𝐶1

)︁
+ E𝑊 𝜌

1√
𝑚1

∑︁
𝑗

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
|𝑊 𝜌

𝑗 𝑥𝑖|
)︁

≤
√
𝑚3

(︁ 𝛽1√
𝑚1

(︁
𝜅1 + 𝐶1

)︁
+

𝛽2
1√
𝑚1

)︁
. (3.277)

Now applying these bounds (3.272), (3.275), (3.276), and (3.277) to (3.271) and using

the fact that

E𝑉 𝜌

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 | ≤ 𝛽2‖𝑥′(2)𝑖 ‖,

we get

𝐿𝐻𝑆 ≲
𝑚2

𝛽2
2

(︁ 𝛽2√
𝑚2

√
𝑚3(𝜅1 + 𝐶1 + 𝛽1)

(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+ E𝑊 𝜌

𝛽2
2√
𝑚2

‖𝑥′(2)𝑖 ‖
)︁

+
𝑚1

𝛽2
1

(︁√
𝑚3

(︁ 𝛽1√
𝑚1

(︁
𝜅1 + 𝐶1

)︁
+

𝛽2
1√
𝑚1

)︁(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+ E𝑊 𝜌

⃒⃒⃒⟨
�̃� ,𝑊 𝜌

⟩⃒⃒⃒
𝛽2‖𝑥′(2)𝑖 ‖

)︁
≲
𝑚2

𝛽2
2

(︁ 𝛽2√
𝑚2

√
𝑚3(𝜅1 + 𝐶1 + 𝛽1)

(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+

𝛽2
2√
𝑚2

√
𝑚3

(︁
𝜅1 + 𝐶1 + 𝛽1

)︁)︁
+
𝑚1

𝛽2
1

(︁√
𝑚3

(︁ 𝛽1√
𝑚1

(︁
𝜅1 + 𝐶1

)︁
+

𝛽2
1√
𝑚1

)︁(︁
𝜅2
√
𝑚3 + 𝐶2

)︁
+ 𝛽2
√
𝑚3

(︁ 𝛽1√
𝑚1

(︁
𝜅1 + 𝐶1

)︁
+

𝛽2
1√
𝑚1

)︁)︁
.

To make it easier for handling the second and third derivatives, we first bound the

227

expectations of 𝑓 2
𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

(𝑥𝑖) which enables us to use Cauchy-schwartz. Again

using similar derivation as in (3.265) and Equation (3.273):

E𝑊 𝜌,𝑉 𝜌𝑓 2
𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

(𝑥𝑖)

≤ E𝑊 𝜌,𝑉 𝜌

(︁
𝜅2
√
𝑚3‖𝑥

′(2)
𝑖 ‖+ 𝐶2‖𝑥′(2)𝑖 ‖+

1√
𝑚2

∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁2

≲ (𝜅2
√
𝑚3 + 𝐶2)

2E𝑊 𝜌‖𝑥′(2)𝑖 ‖2 + 𝐸𝑊 𝜌𝐸𝑉 𝜌

1

𝑚2

(︁∑︁
𝑗

|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |
)︁2

≲ (𝜅2
√
𝑚3 + 𝐶2)

2E𝑊 𝜌‖𝑥′(2)𝑖 ‖2 + 𝐸𝑊 𝜌

1

𝑚2

∑︁
𝑗

𝐸𝑉 𝜌
𝑗
|𝑉 𝜌
𝑗 𝑥

′(2)
𝑖 |2 + 𝐸𝑊 𝜌

1

𝑚2

∑︁
𝑗1 ̸=𝑗2

𝐸𝑉 𝜌
𝑗1
|𝑉 𝜌
𝑗1
𝑥
′(2)
𝑖 |𝐸𝑉 𝜌

𝑗2
|𝑉 𝜌
𝑗2
𝑥
′(2)
𝑖 |

≲ (𝜅2
√
𝑚3 + 𝐶2)

2E𝑊 𝜌‖𝑥′(2)𝑖 ‖2 + 𝐸𝑊 𝜌

𝛽2
2

𝑚2

‖𝑥′(2)𝑖 ‖2 + 𝐸𝑊 𝜌𝛽2
2‖𝑥

′(2)
𝑖 ‖2

𝑚(𝑚− 1)

𝑚2

≲
(︁
(𝜅2
√
𝑚3 + 𝐶2)

2 + 𝛽2
2

)︁
E𝑊 𝜌‖𝑥′(2)𝑖 ‖2

≲
(︁
(𝜅2
√
𝑚3 + 𝐶2)

2 + 𝛽2
2

)︁
𝐸𝑊 𝜌𝑚3

(︁
𝜅1 + 𝐶1 +

1√
𝑚1

∑︁
𝑗

|𝑊 𝜌
𝑗 𝑥𝑖|

)︁2
≲
(︁
(𝜅2
√
𝑚3 + 𝐶2)

2 + 𝛽2
2

)︁
𝑚3

[︁
(𝜅1 + 𝐶1)

2 +
1

𝑚1

∑︁
𝑗

E𝑊 𝜌|𝑊 𝜌
𝑗 𝑥𝑖|2 +

1

𝑚1

∑︁
𝑗1 ̸=𝑗2

E𝑊 𝜌
𝑗1
|𝑊 𝜌

𝑗1
𝑥𝑖|E𝑊 𝜌

𝑗1
|𝑊 𝜌

𝑗2
𝑥𝑖|
]︁

≲
(︁
(𝜅2
√
𝑚3 + 𝐶2)

2 + 𝛽2
2

)︁
𝑚3

[︁
(𝜅1 + 𝐶1)

2 +
𝛽2
1

𝑚1

+ 𝛽2
1

𝑚(𝑚− 1)

𝑚2

]︁
= 𝑚3

(︁
(𝜅2
√
𝑚3 + 𝐶2)

2 + 𝛽2
2

)︁[︁
(𝜅1 + 𝐶1)

2 + 𝛽2
1

]︁
. (3.278)

228

Now for the second derivative, we can proceed by applying Cauchy-Swartz:

𝑑2

𝑑𝜆2
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

≤ E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁2
−
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁⃒⃒⃒⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒
≤ E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒𝑚2
1

𝛽4
1

⟨�̃� ,𝑊 𝜌⟩2 − 𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2
2

𝛽4
2

⟨𝑉 , 𝑉 𝜌⟩2 − 𝑚2

𝛽2
2

‖𝑉 ‖2 + 2𝑚1𝑚2

𝛽2
1𝛽

2
2

⟨�̃� ,𝑊 𝜌⟩⟨𝑉 , 𝑉 𝜌⟩
⃒⃒⃒

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒
≤

√︃
E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒𝑚2
1

𝛽4
1

⟨�̃� ,𝑊 𝜌⟩2 − 𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2
2

𝛽4
2

⟨𝑉 , 𝑉 𝜌⟩2 − 𝑚2

𝛽2
2

‖𝑉 ‖2 + 2𝑚1𝑚2

𝛽2
1𝛽

2
2

⟨�̃� ,𝑊 𝜌⟩⟨𝑉 , 𝑉 𝜌⟩
⃒⃒⃒2

√︂
E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒2
.

Now note that the cross terms have expectation zero, so we get

=

√︃
E𝑊 𝜌,𝑉 𝜌

(︁𝑚2
1

𝛽4
1

⟨�̃� ,𝑊 𝜌⟩2−𝑚1

𝛽2
1

‖�̃�‖2
)︁2
+
(︁𝑚2

2

𝛽4
2

⟨𝑉 , 𝑉 𝜌⟩2 − 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁2
+

4𝑚2
1𝑚

2
2

𝛽4
1𝛽

4
2

E𝑊 𝜌,𝑉 𝜌⟨�̃� ,𝑊 𝜌⟩2⟨𝑉 , 𝑉 𝜌⟩2√︂
E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒2
≲

√︃
𝑚2

1

𝛽4
1

‖�̃�‖4 + 𝑚2
2

𝛽4
2

‖𝑉 ‖4 + 4𝑚1𝑚2

𝛽2
1𝛽

2
2

‖�̃�‖2‖𝑉 ‖2
√︂

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒2
≲
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁√︂

E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)(𝑥𝑖)

⃒⃒⃒2
.

Now applying Cauchy-shwartz and Equation (3.278) to above and combining it with

Equations (3.270):

𝑑2

𝑑𝜆2
𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

≲
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁√︂

𝑚3

(︁
(𝜅2
√
𝑚3 + 𝐶2)2 + 𝛽2

2

)︁[︁
(𝜅1 + 𝐶1)2 + 𝛽2

1

]︁
.

229

Similarly for the third derivative:

⃒⃒⃒ 𝑑3
𝑑𝜆3

𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

⃒⃒⃒
= E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁3
− 3
(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁⃒⃒⃒

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

⃒⃒⃒
≤

√︃
E𝑊 𝜌,𝑉 𝜌

[︁(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁3
− 3
(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁]︁2

√︂
E𝑊 𝜌,𝑉 𝜌

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

⃒⃒⃒2
. (3.279)

But note that

E𝑊 𝜌,𝑉 𝜌

[︁(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁3
− 3
(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁]︁2

≤ 2E𝑊 𝜌,𝑉 𝜌

(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁6

+ 18
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁2
E𝑊 𝜌,𝑉 𝜌

(︁𝑚1

𝛽2
1

⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2

⟨𝑉 , 𝑉 𝜌⟩
)︁2

Now note that 𝑚1

𝛽2
1
⟨�̃� ,𝑊 𝜌⟩+ 𝑚2

𝛽2
2
⟨𝑉 , 𝑉 𝜌⟩ is a normal variable with variance 𝑚1

𝛽2
1
‖�̃�‖2 +

𝑚2

𝛽2
2
‖𝑉 ‖2. Therefore, by the bound on the moments of normal random variables:

𝐿𝐻𝑆 ≲
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁3
. (3.280)

Plugging this into Equation (3.279) and also using Equation (3.278):

⃒⃒⃒ 𝑑3
𝑑𝜆3

𝑓 ′
𝑊 ′+𝜆�̃� ,𝑉 ′+𝜆𝑉

(𝑥𝑖)
⃒⃒⃒
𝜆=0

⃒⃒⃒
≲
(︁𝑚1

𝛽2
1

‖�̃�‖2 + 𝑚2

𝛽2
2

‖𝑉 ‖2
)︁3/2√︂

𝑚3

(︁
(𝜅2
√
𝑚3 + 𝐶2)2 + 𝛽2

2

)︁[︁
(𝜅1 + 𝐶1)2 + 𝛽2

1

]︁
.

230

3.7.2 Representation Lemmas

In this section, we prove lemmas mostly related to the representation power of the

network, which we mainly use in Section 3.6.12.

Representation Toolbox

Lemma 46. Recall the definitions of 𝑊+
𝑘 , and �̄�𝑖,𝑘 from Equations (3.65), and (3.61).

For all 𝑘, 𝑖 ∈ [𝑛]:

|�̄�𝑖,𝑘 − trace(𝑊+
𝑘 𝑍

𝑖
𝑘)| ≤

√︀
𝑛/(𝑚1𝜆0)‖𝒱𝑘‖𝐻∞ .

Proof of Lemma 46

trace(𝑊+
𝑘 𝑍

𝑖
𝑘) = trace(𝑍𝑖

𝑘

𝑛∑︁
𝑗=1

𝒱𝑘,𝑗𝑍𝑗
𝑘) =

𝑛∑︁
𝑖′=1

𝒱𝑘,𝑖′⟨𝑍𝑖
𝑘, 𝑍

𝑖′

𝑘 ⟩. (3.281)

But note

⟨𝑍𝑖
𝑘, 𝑍

𝑖′

𝑘 ⟩ = 1/𝑚1

𝑚1∑︁
𝑗=1

𝑊 ′
𝑘,𝑗

2
1{𝑊 (0)

𝑗
𝑇𝑥𝑖}1{𝑊 (0)

𝑗
𝑇𝑥𝑖′}⟨𝑥𝑖′ , 𝑥𝑖⟩

=
⟨𝑥𝑖′ , 𝑥𝑖⟩
𝑚1

𝑚1∑︁
𝑗=1

1{𝑊 (0)
𝑗

𝑇𝑥𝑖}1{𝑊 (0)
𝑗

𝑇𝑥𝑖′}.

Now note that ⟨𝑥𝑖′ , 𝑥𝑖⟩ ≤ 1, and 1{𝑊 (0)
𝑗

𝑇𝑥𝑖}1{𝑊 (0)
𝑗

𝑇𝑥𝑖′} is a Bernoulli with

E1{𝑊 (0)
𝑗

𝑇𝑥𝑖}1{𝑊 (0)
𝑗

𝑇𝑥𝑖′} = 1/4 + arcsin(⟨𝑥, 𝑦⟩)/2𝜋.

Therefore, by Hoeffding inequality we get

|⟨𝑍𝑖
𝑘, 𝑍

𝑖′

𝑘 ⟩ −𝐻∞
𝑖,𝑖′| = 𝑂(1/

√
𝑚1).

231

Hence, because obviously ‖𝐻∞‖2 ≤ 1, we get

trace(𝑊+
𝑘 𝑍

𝑖
𝑘) =

𝑛∑︁
𝑖′=1

𝒱𝑘,𝑖′𝐻∞
𝑖,𝑖′ +𝑂(1/

√
𝑚1)

𝑛∑︁
𝑖′=1

𝒱𝑘,𝑖′ = �̄�𝑖,𝑘 +𝑂(1/
√
𝑚1)

𝑛∑︁
𝑖′=1

𝒱𝑘,𝑖′ ,

which implies

|trace(𝑊+
𝑘 𝑍

𝑖
𝑘)− �̄�𝑖,𝑘| ≤ 𝑂(1/

√
𝑚1)
√
𝑛‖𝒱𝑘‖2

≲ 𝑂(
√
𝑛/(
√
𝑚1

√
𝜆0))‖𝒱𝑘‖𝐻∞

≤
√︀
𝑛/(𝑚1𝜆0)‖𝒱𝑘‖𝐻∞ .

Lemma 47. (Bounding the rows norm) For every 1 ≤ 𝑗 ≤ 𝑚1, we have

‖𝑊+
𝑗 ‖ ≤

√
𝑛𝑚3/(

√︀
𝑚1𝜆0)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

Furthermore, for every 𝑘 ∈ [𝑚3], we have

‖𝑊 𝑘+
𝑗 ‖ ≤

√
𝑛/
√︀
𝜆0𝑚1‖𝒱𝑘‖𝐻∞ . (3.282)

For the ease of notation, because here we want to work with row sub indices of

the matrix 𝑊+
𝑘 , we refer to it by 𝑊 𝑘+. Proof of Lemma 47

For a fixed 1 ≤ 𝑗 ≤ 𝑚1 we have with high probability over the randomness of

232

the sign matrix 𝑊 𝑠:

‖𝑊+
𝑗 ‖ = ‖

𝑚3∑︁
𝑘=1

𝑊 𝑘+
𝑗 ‖ = ‖

𝑚3∑︁
𝑘=1

𝑊 𝑠
𝑘,𝑗1/
√
𝑚1

𝑛∑︁
𝑖=1

𝒱𝑘,𝑖𝑥𝑖1{𝑊 (0)
𝑗 𝑥𝑖 ≥ 0}‖

≤
√
𝑚3/
√
𝑚1

⎯⎸⎸⎷ 𝑚3∑︁
𝑘=1

‖
𝑛∑︁
𝑖=1

𝒱𝑘,𝑖𝑥𝑖1{𝑊 (0)
𝑗 𝑥𝑖 ≥ 0}‖2

≤
√
𝑚3/
√
𝑚1

√︃∑︁
𝑘

(︁∑︁
𝑖

|𝒱𝑘,𝑖|
)︁2

≤
√
𝑚3/
√
𝑚1

√︃
𝑛
∑︁
𝑘

‖𝒱𝑘‖2

≤
√
𝑚3𝑛/(

√︀
𝑚1𝜆0)

√︃∑︁
𝑘

‖𝒱𝑘‖2𝐻∞ .

Furthermore, for every 𝑘 ∈ [𝑚3], we have

‖𝑊 𝑘+
𝑗 ‖ ≤ 1/

√
𝑚1

∑︁
𝑖

|𝒱𝑘,𝑖| ≤ (
√
𝑛/
√
𝑚1)‖𝒱𝑘‖2 ≤ (

√
𝑛/
√︀
𝜆0𝑚1)‖𝒱𝑘‖𝐻∞ .

Lemma 48. With high probability over the initialization, we have

‖𝑊 𝑘+‖2𝐹 ≤ (1±𝑂(𝑛/(𝜆0
√
𝑚1)))‖𝒱𝑘‖2𝐻∞ .

Proof of Lemma 48

Recall from the definition of 𝑊 𝑘+ in Equation (3.65):

‖𝑊 𝑘+‖2𝐹 = ‖
𝑛∑︁
𝑖=1

𝒱𝑘,𝑖𝑍𝑖
𝑘‖2𝐹 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑖′=1

𝒱𝑘,𝑖𝒱𝑘,𝑖′⟨𝑍𝑖
𝑘, 𝑍

𝑖′

𝑘 ⟩

=
𝑛∑︁
𝑖=1

𝑛∑︁
𝑖′=1

𝒱𝑘,𝑖𝒱𝑘,𝑖′(𝐻∞
𝑖,𝑖′ ±𝑂(1/

√
𝑚1)) ≲ 𝒱𝑇𝑘 𝐻∞𝒱𝑘 ±𝑂((‖𝒱𝑘‖1)2/

√
𝑚1)

= ‖𝒱𝑘‖2𝐻∞ ± ‖𝒱𝑘‖2𝐻∞𝑂(𝑛/(𝜆0
√
𝑚1)) = (1±𝑂(𝑛/(𝜆0

√
𝑚1)))‖𝒱𝑘‖2𝐻∞

233

Some Linear Algebra

Lemma 49. For 𝑛 ≤ 𝑠, let 𝑟1, . . . , 𝑟𝑛 be 𝑠-dimensional vectors that are approximately

normalized and orthogonal to one another, i.e. given some 𝛿 > 0, for every 1 ≤ 𝑖 ̸=

𝑗 ≤ 𝑛:

−𝛿 ≤ ⟨𝑟𝑖, 𝑟𝑗⟩ ≤ 𝛿, ‖𝑟𝑖‖2 ≤ 1 + 𝛿.

Then, for any vector 𝑣 we have

𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩2 ≤ (1 + 𝛿 + 𝑛(𝑛− 1)𝛿(1 + 𝛿)2)‖𝑣‖2.

Proof of Lemma 49

Define

𝑣1 =
𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩𝑟𝑖, 𝑣2 = 𝑣 − 𝑣1.

First, note that

𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩2 ≤ (1 + 𝛿)
𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩2‖𝑟𝑖‖2

= (1 + 𝛿)‖
∑︁
𝑖

⟨𝑣, 𝑟𝑖⟩𝑟𝑖‖2 − 2(1 + 𝛿)
∑︁

1≤𝑖 ̸=𝑗≤𝑛

⟨𝑣, 𝑟𝑖⟩⟨𝑣, 𝑟𝑖⟩⟨𝑟𝑖, 𝑟𝑗⟩

= (1 + 𝛿)‖𝑣1‖2 − 2(1 + 𝛿)
∑︁

1≤𝑖 ̸=𝑗≤𝑛

⟨𝑣, 𝑟𝑖⟩⟨𝑣, 𝑟𝑖⟩⟨𝑟𝑖, 𝑟𝑗⟩.

Next, we write

⟨𝑣1, 𝑣 − 𝑣1⟩ = ⟨𝑣,
𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩𝑟𝑖⟩ − ⟨
𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩𝑟𝑖,
𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩𝑟𝑖⟩

=
∑︁
𝑖

⟨𝑣, 𝑟𝑖⟩2 −
∑︁
𝑖

⟨𝑣, 𝑟𝑖⟩2 − 2
∑︁
𝑖 ̸=𝑗

⟨𝑣, 𝑟𝑖⟩⟨𝑣, 𝑟𝑗⟩⟨𝑟𝑖, 𝑟𝑗⟩

= −2
∑︁
𝑖 ̸=𝑗

⟨𝑣, 𝑟𝑖⟩⟨𝑣, 𝑟𝑗⟩⟨𝑟𝑖, 𝑟𝑗⟩.

234

Therefore

𝑛∑︁
𝑖=1

⟨𝑣, 𝑟𝑖⟩2 ≤ (1 + 𝛿)(‖𝑣1‖2 + ‖𝑣 − 𝑣1‖2)− 2(1 + 𝛿)
∑︁

1≤𝑖 ̸=𝑗≤𝑛

⟨𝑣, 𝑟𝑖⟩⟨𝑣, 𝑟𝑖⟩⟨𝑟𝑖, 𝑟𝑗⟩.

≤ (1 + 𝛿)(‖𝑣1‖2 + ‖𝑣 − 𝑣1‖2 + 2⟨𝑣1, 𝑣 − 𝑣1⟩)

+ 2(1 + 𝛿)
∑︁

1≤𝑖 ̸=𝑗≤𝑛

⟨𝑣, 𝑟𝑖⟩⟨𝑣, 𝑟𝑖⟩⟨𝑟𝑖, 𝑟𝑗⟩

≤ (1 + 𝛿)‖𝑣‖2 + 2(1 + 𝛿)
∑︁

1≤𝑖 ̸=𝑗≤𝑛

‖𝑣‖2‖𝑟𝑖‖‖𝑟𝑗‖𝛿

≤ (1 + 𝛿)‖𝑣‖2 + 2(1 + 𝛿)
∑︁

1≤𝑖 ̸=𝑗≤𝑛

‖𝑣‖2(1 + 𝛿)𝛿

= (1 + 𝛿)‖𝑣‖2 + 𝑛(𝑛− 1)𝛿(1 + 𝛿)2‖𝑣‖2

= (1 + 𝛿 + 𝑛(𝑛− 1)𝛿(1 + 𝛿)2)‖𝑣‖2,

which completes the proof.

In the following lemma, we state a trivial bound on the norm of �̄�𝑖 based on 𝜁1.

Bound on the norm of �̄�𝑖’s

Lemma 50. For every 𝑖 ∈ [𝑛], we have

‖�̄�𝑖‖ ≤
√︃∑︁

𝑘

‖𝒱𝑘‖2𝐻∞ =
√︀
𝜁1.

Proof of Lemma 50

By definition:

�̄�𝑇𝑖 =
(︁
𝐻∞
𝑖, 𝒱𝑘

)︁𝑚3

𝑘=1
.

Now consider the Cholskey factorization 𝐻∞ = 𝐾𝐾𝑇 . Because of the assumption

‖𝑥𝑖‖ = 1, we know that the diagonal of 𝐻∞ is all 1/2. Hence, for the 𝑖th row of 𝐾 we

have ‖𝐾𝑖‖ = 1/2. Now by Cauchy-Swartz, we have

𝑥2𝑖1 = ⟨
∑︁
𝑖

𝒱𝑘,𝑖𝐾𝑖, 𝐾𝑖1⟩2 ≤ ‖
∑︁
𝑖

𝒱𝑘,𝑖𝐾𝑖‖2‖𝐾𝑖1‖2 = 1/2‖𝒱𝑘‖2𝐻∞ .

235

Summing over 𝑖 and noting Equation (3.60) completes the proof.

Lemma 51. In the context of Lemma 19, for 𝜁2 ≤ 2𝑛𝐵2, one can substitute 𝑓 * by 𝑓 *

such that

𝑅𝑛(𝑓
*) ≤ 2𝑅𝑛(𝑓

*) +
𝐵2

𝑛
,

𝑓 *𝑇𝐴−1𝑓 * ≤ 𝑓 *𝑇𝐴−1𝑓 *,

and furthermore, 𝑓 * is in the subspace of eigenvectors of 𝐴 with eigenvaue larger than

Ω(1
𝑛2). Moreover, the constant 2 is arbitrary and can be changed to any constant more

than one, with the cost of an additional constant behind the second term.

Proof of Lemma 51

For an arbitrary 𝑖 ∈ [𝑛] and some given vector 𝑓 * (we will specify later), we de-

fine

𝛿 = |𝑓 *
𝑖 − 𝑓 *

𝑖 |,

and suppose the slope of ℓ(., 𝑦𝑖) at point 𝑓 *
𝑖 is equal to 𝑐. Then, using the convexity,

the fact that ℓ(𝑦𝑖, 𝑦𝑖) = 0, and the 1-smoothness of ℓ(., 𝑦𝑖), it is not hard to see the

following poincare inequality between the value and derivative of ℓ(., 𝑦𝑖) at point 𝑓 *
𝑖 :

𝑐 ≤
√︀

2ℓ(𝑓 *
𝑖 , 𝑦𝑖) := 2ℓ. (3.283)

where from now on, for brevity, we refer to ℓ(𝑓 *
𝑖 , 𝑦𝑖) by ℓ. Also, from the definition of

𝛿 and again using 1 smoothness property, it is easy to see that

ℓ(𝑓 *
𝑖 , 𝑦𝑖) ≤ (𝑐+ 𝛿)𝛿 + ℓ(𝑓 *

𝑖 , 𝑦𝑖) = (𝑐+ 𝛿)𝛿 + ℓ, (3.284)

236

Plugging Equation (3.283) into (3.284) and using AM-GM inequality:

ℓ(𝑓 *
𝑖 , 𝑦𝑖) ≤ 𝛿2 + 𝑐𝛿 + ℓ ≤ 𝛿2 +

√
2ℓ𝛿 + ℓ

≤ 𝛿2 + ℓ+ 𝛿2/2 + ℓ

≤ 2ℓ+ 3𝛿2/2.

Summing above for 𝑖 ∈ [𝑛], we obtain

𝑅𝑛(𝑓
*) ≤ 2𝑅𝑛(𝑓

*) + 3‖𝑓 * − 𝑓 *‖22/2. (3.285)

Now we write an eigendecomposition for 𝐴 as 𝐴 =
∑︀𝑛

𝑖=1 𝜆𝑖𝑢𝑖𝑢
𝑇
𝑖 for orthonormal

basis {𝑢𝑖}, and let 𝑓 * =
∑︀

𝑖 𝛾𝑖𝑢𝑖 be the representation of 𝑓 * in this basis. Then, from

our assumption, for arbitrary 𝜔 > 0

∑︁
𝑖

𝛾2𝑖 𝜆
−1
𝑖 = 𝑓 *𝑇𝐴−1𝑓 * ≤ 4𝑛𝐵2,

which implies

𝜔−1
∑︁

𝑖: 𝜆𝑖≤𝜔

𝛾2𝑖 ≤ 4𝑛𝐵2,

or equivalently

∑︁
𝑖: 𝜆𝑖≤𝜔

𝛾2𝑖 ≤ 4𝑛𝐵2𝜔, (3.286)

where notice that
∑︀

𝑖: 𝜆𝑖≤𝜔 𝛾
2
𝑖 is the squared norm of the projection of 𝑓 * onto the

directions whose eigenvalue is at most 𝜔. Now taking 𝜔 = 1
12𝑛2 and defining 𝑓 * by

keeping only the directions in the expansion of 𝑓 * in the eigenbasis of 𝐴, for which

𝜆𝑖 > 𝜔, completes the proof.

237

3.7.3 Coupling for ∇̂𝑊 , ∇̂𝑉

In general, because the gaussian smoothing matrices (𝑊 𝜌, 𝑉 𝜌) can become unbounded,

the gradient estimates (∇̂𝑊 , ∇̂𝑉) = ∇𝑊,𝑉 ℓ(𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖), 𝑦𝑖) also become un-

bounded. However, in analyzing the stochastic behavior of SGD and showing that it

can escape saddle points, it is convenient to assume the gradient’s noise vector is almost

surely bounded. The goal of this section is to introduce a coupling between (𝑊 𝜌, 𝑉 𝜌)

and another random variable that is a.s. bounded polynomially in other parameters.

As that the coupled random variables take different values is exponentially small while

the number of iterations in our algorithm is only polynomially large, without any

concern we instead work with this new random varaible, and with an overload of

notation we also denote it by (𝑊 𝜌, 𝑉 𝜌).

Lemma 52. For an arbitrary parameter 𝜒 >> 1, On any pair for (𝑊 ′, 𝑉 ′) with

‖𝑊 ′‖ ≤ 𝐶1, ‖𝑉 ′‖ ≤ 𝐶2, there exist a mean zero random vector Λ̄ with respect to the

randomness of the uniformly picked data point (𝑥𝑖, 𝑦𝑖) and the smoothing matrices

𝑊 𝜌,1, 𝑊 𝜌,2, 𝑉 𝜌,1, and 𝑉 𝜌,2 which define ∇̂𝑊 ′,𝑉 ′ (meaning it is a function of those

variables), such that with probability at least

1− 2 exp{−(𝜒2 − 1)𝑑𝑚1/4} − 2 exp{−(𝜒2 − 1)𝑚3𝑚2/4} := 1− 𝛿1,

we have

∇̂𝑊 ′,𝑉 ′ = ∇𝑊 ′,𝑉 ′𝐿(𝑊 ′, 𝑉 ′) + Λ̄, (3.287)

and finally Λ̄ is a.s. polynomially bounded, i.e. almost surely we have

‖Λ̄‖ ≤ poly(𝑚1,𝑚2,𝑚3, 𝐶1, 𝐶2, 𝐵, 𝜒).

Proof of Lemma 52

Remember that 𝑥′𝑖 was the output of the first layer (by considering the smooth-

238

ing matrix 𝑊 𝜌). Now with high probability over the initialization,

‖∇𝑊 ′𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)‖𝐹 = ‖∇𝑥′𝑖
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

𝑇𝐷(𝑥′𝑖)

𝑑𝑊 ′ ‖

‖∇𝑥′𝑖
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)‖‖

𝐷(𝑥′𝑖)

𝑑𝑊 ′ ‖

‖ 1√
𝑚2

𝑎𝑇𝐷𝑉 ′+𝑉 𝜌(𝑉 (0) + 𝑉 ′ + 𝑉 𝜌)‖‖ 1√
𝑚1

𝑚3∑︁
𝑘=1

diag(𝑊 𝑠
𝑘)𝐷𝑊 ′+𝑊 𝜌,𝑥𝑖𝑥

𝑇
𝑖 ‖𝐹

≤ (‖𝑉 (0)‖𝐹 + ‖𝑉 ′‖𝐹 + ‖𝑉 𝜌‖𝐹)
(︁ 1√

𝑚1

∑︁
𝑘

‖diag(𝑊 𝑠
𝑘)𝐷𝑊 ′+𝑊 𝜌,𝑥𝑖𝑥

𝑇
𝑖 ‖𝐹

)︁
≤ (𝜅2

√
𝑚2𝑚3 + 𝐶2 + ‖𝑉 𝜌‖𝐹)

(︁ 1√
𝑚1

∑︁
𝑘

‖diag(𝑊 𝑠
𝑘)𝐷𝑊 ′+𝑊 𝜌,𝑥𝑖𝑥

𝑇
𝑖 ‖𝐹

)︁
≤ (𝜅2

√
𝑚2𝑚3 + 𝐶2 + ‖𝑉 𝜌‖𝐹). (3.288)

On the other hand, using the final bound in Lemma 42:

‖∇𝑉 ′𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)‖𝐹 = ‖ 1√
𝑚2

diag(𝑎)𝐷𝑉 ′+𝑉 𝜌𝑥′𝑖
𝑇‖𝐹 ≤ ‖𝑥′𝑖‖

≤ 𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3

∑︁
𝑗

1√
𝑚1

|𝑊 𝜌
𝑗 𝑥𝑖|

≤ 𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3‖𝑊 𝜌‖𝐹 . (3.289)

Denoting ℓ̇(𝑓𝑊 ′+𝑊 𝜌,1,𝑉 ′+𝑉 𝜌,1 , 𝑦𝑖)∇𝑊 ′,𝑉 ′ℓ(𝑓𝑊 ′+𝑊 𝜌,2,𝑉 ′+𝑉 𝜌,2(𝑥𝑖), 𝑦𝑖) by ∇̃𝑊 ′,𝑉 ′ , then com-

bining Equations (3.288) and (3.289) and using the 1 gradient lipschitzness property

of the square loss,

‖∇̃𝑊 ′,𝑉 ′‖𝐹

= |𝑑(ℓ(𝑓, 𝑦𝑖))
𝑑𝑓

|
√︁
‖∇𝑊 ′𝑓𝑊 ′+𝑊 𝜌,2,𝑉 ′+𝑉 𝜌,2(𝑥𝑖)‖2𝐹 + ‖∇𝑉 ′𝑓𝑊 ′+𝑊 𝜌,2,𝑉 ′+𝑉 𝜌,2(𝑥𝑖)‖2𝐹

≤
(︁
|𝑓𝑊 ′+𝑊 𝜌1 ,𝑉 ′+𝑉 𝜌1 (𝑥𝑖)|+ |𝐵|

)︁(︁
𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3‖𝑊 𝜌,2‖𝐹 + 𝜅2

√
𝑚2𝑚3 + 𝐶2 + ‖𝑉 𝜌,2‖𝐹

)︁
.

(3.290)

239

Finally, applying Cauchy-Swartz to the second a.s. bound in Lemma 43 we have:

⃒⃒⃒
𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖)

⃒⃒⃒
≤ (𝜅2

√
𝑚3 + ‖𝑉 𝜌‖𝐹)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3‖𝑊 𝜌‖

)︁
+ 𝐶2(𝐶1 +

√
𝑚3‖𝑊 𝜌‖).

Combining this with (3.290):

‖∇̃𝑊 ′,𝑉 ′‖𝐹

≤
[︁
𝐵 + (𝜅2

√
𝑚3 + ‖𝑉 𝜌,1‖𝐹)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3‖𝑊 𝜌,1‖

)︁
+ 𝐶2(𝐶1 +

√
𝑚3‖𝑊 𝜌,1‖)

]︁
×
(︁
𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3‖𝑊 𝜌,2‖𝐹 + 𝜅2

√
𝑚2𝑚3 + 𝐶2 + ‖𝑉 𝜌,2‖𝐹

)︁
.

Therefore, using the Lipschitz bound in Theorem 9:

‖∇̃𝑊 ′,𝑉 ′ −∇𝑊 ′,𝑉 ′E(𝑥𝑖,𝑦𝑖)∼𝒵ℓ(𝑓
′
𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖)‖𝐹

≤ ‖∇̂𝑊 ′,𝑉 ′‖𝐹 + ‖E(𝑥𝑖,𝑦𝑖)∼𝒵∇𝑊 ′,𝑉 ′ℓ(𝑓𝑊 ′+𝑊 𝜌,𝑉 ′+𝑉 𝜌(𝑥𝑖), 𝑦𝑖)‖𝐹

≤
[︁
𝐵 + (𝜅2

√
𝑚3 + ‖𝑉 𝜌,1‖𝐹)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3‖𝑊 𝜌,1‖

)︁
+ 𝐶2(𝐶1 +

√
𝑚3‖𝑊 𝜌,1‖)

]︁
×
(︁
𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3‖𝑊 𝜌,2‖𝐹 + 𝜅2

√
𝑚2𝑚3 + 𝐶2 + ‖𝑉 𝜌,2‖𝐹

)︁
+ (𝑂(𝐶1𝐶2) +𝐵)Ψ1.

(3.291)

Now we define the following events

Ξ1 := {‖𝑊 𝜌1‖𝐹 ≥ 𝜒
√
𝑑𝛽1 ∨ ‖𝑊 𝜌2‖𝐹 ≥ 𝜒

√
𝑑𝛽1},

Ξ2 := {‖𝑉 𝜌1‖𝐹 ≥ 𝜒
√
𝑚3𝛽2 ∨ ‖𝑉 𝜌2‖𝐹 ≥ 𝜒

√
𝑚3𝛽2},

where recall we assume 𝜒 >> 1. Then, as we know the variable ‖𝑊 𝜌‖2𝐹 has mean

𝑑𝛽2
1 and is subexponential with parameters (𝑑𝛽4

1/𝑚1, 𝛽
2
1/𝑚1). Hence, by a union

240

bound and Bernstein (Note that 𝑊 𝜌,1,𝑊 𝜌,2 are independent):

P(Ξ1)

≤ 2P(‖𝑊 𝜌‖𝐹 ≥ 𝜒𝛽1
√
𝑑)

= 2P(‖𝑊 𝜌‖2𝐹 ≥ 𝜒2𝛽2
1𝑑)

≤ 4max
(︁
exp{−(𝜒2 − 1)2𝛽4

1𝑑
2/(4𝑑𝛽4

1/𝑚1)}, exp{−(𝜒2 − 1)𝛽2
1𝑑/(4𝛽

2
1/𝑚1)}

)︁
= 4max

(︁
exp{−(𝜒2 − 1)2𝑑𝑚1/4}, 2 exp{−(𝜒2 − 1)𝑑𝑚1/4}

)︁
≤ 2 exp{−(𝜒2 − 1)𝑑𝑚1/4}.

Similarly for ‖𝑉 𝜌‖𝐹 :

P(Ξ2) = P(‖𝑉 𝜌‖𝐹 ≥ 𝜒𝛽2
√
𝑚3) ≤ 4 exp{−(𝜒2 − 1)𝑚3𝑚2/4}.

Moreover, because of the subexponential tails of ‖𝑊 𝜌‖2𝐹 and ‖𝑉 𝜌‖2𝐹 , for each of

𝑊 𝜌,1 or 𝑊 𝜌2 , 𝑉 𝜌1 , or 𝑉 𝜌2 :

E(‖𝑊 𝜌‖𝐹 | Ξ1) ≲ 𝜒
√
𝑑𝛽1, E(‖𝑊 𝜌‖2𝐹 | Ξ1) ≲ 𝜒2𝑑𝛽2

1 .

E(‖𝑉 𝜌‖𝐹 | Ξ2) ≲ 𝜒
√
𝑚3𝛽2, E(‖𝑉 𝜌‖2𝐹 | Ξ2) ≲ 𝜒2𝑚3𝛽

2
2 .

Now Defining Ξ = Ξ1 ∪ Ξ2 and combining the above equations:

E(‖𝑊 𝜌‖1{Ξ}) ≤ E‖𝑊 𝜌‖(1{Ξ1}+ 1{Ξ2}) = E(‖𝑊 𝜌‖| Ξ1)P(Ξ1) + E(‖𝑊 𝜌‖)P(Ξ2)

≲ 𝜒
√
𝑑𝛽12 exp{−(𝜒2 − 1)𝑑𝑚1/4}+

√
𝑑𝛽12 exp{−(𝜒2 − 1)𝑚3𝑚2/4}

= 2
√
𝑑𝛽1(𝜒 exp{−(𝜒2 − 1)𝑑𝑚1/4}+ exp{−(𝜒2 − 1)𝑚3𝑚2/4}),

and

E‖𝑊 𝜌‖21{Ξ1} = E(‖𝑊 𝜌‖2| Ξ1)P(Ξ1)

≤ 2𝑑𝛽2
1𝜒

2 exp{−(𝜒2 − 1)𝑑𝑚1/4}.

241

Similarly

E(‖𝑉 𝜌‖1{Ξ}) ≤ 2
√
𝑚3𝛽2(exp{−(𝜒2 − 1)𝑑𝑚1/4}+ 𝜒 exp{−(𝜒2 − 1)𝑚3𝑚2/4}),

and

E(‖𝑉 𝜌‖21{Ξ2}) ≤ 2𝑚3𝛽
2
2𝜒

2 exp{−(𝜒2 − 1)𝑚3𝑚2/4}.

Applying these equations to (3.291) with Cauchy-Schwartz to get the upper bounds

E1{Ξ1}‖𝑊 𝜌,1‖‖𝑊 𝜌,2‖ ≤ E1{Ξ1}‖𝑊 𝜌‖2 and (E𝑊 𝜌‖𝑊 𝜌‖)2 ≤ E𝑊 𝜌‖𝑊 𝜌‖2 (for terms

with only one 𝑊 𝜌,𝑖 or 𝑉 𝜌,𝑖, we simply write them as 𝑊 𝜌 and 𝑉 𝜌):

E𝑊 𝜌,𝑉 𝜌‖∇̃𝑊 ′,𝑉 ′ −∇𝑊 ′,𝑉 ′E(𝑥𝑖,𝑦𝑖)∼𝒵ℓ(𝑓
′
𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖)‖𝐹1{Ξ}

≤ E𝑊 𝜌,𝑉 𝜌,(𝑥𝑖,𝑦𝑖)

[︁
𝐵 + (𝜅2

√
𝑚3 + ‖𝑉 𝜌,1‖𝐹)

(︁√
𝑚3𝜅1 + 𝐶1 +

√
𝑚3‖𝑊 𝜌‖

)︁
+ 𝐶2(𝐶1 +

√
𝑚3‖𝑊 𝜌‖)

]︁
×
(︁
𝜅1
√
𝑚3 + 𝐶1 +

√
𝑚3‖𝑊 𝜌‖𝐹 + 𝜅2

√
𝑚2𝑚3 + 𝐶2 + ‖𝑉 𝜌‖𝐹

)︁
+ 𝛼(𝑂(𝐶1𝐶2) +𝐵)Ψ1

=
[︁
𝐵 + (𝜅2

√
𝑚3)(

√
𝑚3𝜅1 + 𝐶1) + 𝐶1𝐶2

]︁
×
(︁
𝜅1
√
𝑚3 + 𝐶1 + 𝜅2

√
𝑚2𝑚3 + 𝐶2 +

√
𝑚3E𝑊 𝜌1{Ξ}‖𝑊 𝜌‖𝐹 + E𝑉 𝜌1{Ξ}‖𝑉 𝜌‖𝐹

)︁
+
(︁
𝐵 + (

√
𝑚3𝜅1 + 𝐶1)

√
𝑚3 + (𝜅2𝑚3 + 𝐶2

√
𝑚3) +

√
𝑚3(𝜅1

√
𝑚3 + 𝐶1 + 𝜅2

√
𝑚2𝑚3 + 𝐶2)

)︁
× (E𝑊 𝜌1{Ξ1}‖𝑊 𝜌‖𝐹E𝑉 𝜌‖𝑉 𝜌‖𝐹 + E𝑊 𝜌‖𝑊 𝜌‖𝐹E𝑉 𝜌1{Ξ2}‖𝑉 𝜌‖𝐹)

+ (𝐵 +
√
𝑚3𝜅1 + 𝐶1)(𝐸𝑉 𝜌1{Ξ2}‖𝑉 𝜌‖2 + P(Ξ1)E‖𝑉 𝜌‖2)

+ 𝐶2𝑚3(E𝑊 𝜌1{Ξ1}‖𝑊 𝜌‖2 + P(Ξ2)E‖𝑊 𝜌‖2)

+𝑚3(E𝑊 𝜌1{Ξ1}‖𝑊 𝜌‖2E𝑉 𝜌‖𝑉 𝜌‖+ E𝑊 𝜌‖𝑊 𝜌‖2E𝑉 𝜌1{Ξ2}‖𝑉 𝜌‖)

+
√
𝑚3(E𝑉 𝜌1{Ξ2}‖𝑉 𝜌‖2E𝑊 𝜌‖𝑊 𝜌‖+ E𝑉 𝜌‖𝑉 𝜌‖2E𝑊 𝜌1{Ξ1}‖𝑊 𝜌‖)

+ (𝑂(𝐶1𝐶2) +𝐵)Ψ1P(Ξ)

≤ (exp{−(𝜒2 − 1)𝑑𝑚1/4}+ 𝜒 exp{−(𝜒2 − 1)𝑚3𝑚2/4})poly(𝑚1,𝑚2,𝑚3) = negligible.

(3.292)

242

But note that

∇̂𝑊 ′,𝑉 ′ = ∇̃𝑊 ′,𝑉 ′ +∇𝑊 ′,𝑉 ′(𝜓1‖𝑊 ′‖2 + 𝜓2‖𝑉 ′‖2),

∇𝑊 ′,𝑉 ′𝐿(𝑊 ′, 𝑉 ′) = ∇𝑊 ′,𝑉 ′E(𝑥𝑖,𝑦𝑖)∼𝒵ℓ(𝑓
′
𝑊 ′,𝑉 ′(𝑥𝑖), 𝑦𝑖) +∇𝑊 ′,𝑉 ′(𝜓1‖𝑊 ′‖2 + 𝜓2‖𝑉 ′‖2).

Applying this to Equation (3.292), we get that if we define

Λ := ∇̂𝑊 ′,𝑉 ′ −∇𝑊 ′,𝑉 ′𝐿(𝑊 ′, 𝑉 ′),

then

E‖Λ1{Ξ}‖ ≤ (exp{−(𝜒2 − 1)𝑑𝑚1/4}+ 𝜒 exp{−(𝜒2 − 1)𝑚3𝑚2/4})poly(𝑚1,𝑚2,𝑚3).

On the other hand, note that using again Equation (3.291), we have the following a.s.

bound:

‖Λ1{Ξ𝑐}‖ = poly(𝑚1,𝑚2,𝑚3, 𝐶1, 𝐶2, 𝜒).

Defining

Λ1 = Λ1{Ξ𝑐},

Λ2 = 1{Ξ}E(Λ|Ξ),

Λ̄ = Λ1 + Λ2,

we get that with probability at least 1− P(Ξ):

∇̂𝑊 ′,𝑉 ′ = ∇𝑊 ′,𝑉 ′𝐿(𝑊 ′, 𝑉 ′) + Λ̄

and also note that

EΛ̄ = EΛ = 0.

243

Finally by the a.s. bound for Λ1, we have a.s.:

‖Λ̄‖ ≤ E𝑊 𝜌,𝑉 𝜌,(𝑥𝑖,𝑦𝑖)‖Λ1{Ξ}‖+ ‖Λ1{Ξ𝑐}‖

≤ (exp{−(𝜒2 − 1)𝑑𝑚1/4}+ 𝜒 exp{−(𝜒2 − 1)𝑚3𝑚2/4})poly(𝑚1,𝑚2,𝑚3) + poly(𝑚1,𝑚2,𝑚3)

= poly(𝑚1,𝑚2,𝑚3, 𝐶1, 𝐶2, 𝐵, 𝜒),

which completes the proof.

Corollary 9.1. It is easy to check that running PSGD with unbiased gradient estimate

∇̂𝑊 ′,𝑉 ′ is equivalent to running SGD after our change of coordinates, with unbiased

gradient estimate ∇̂𝑤′,𝑣′ := ϒ̄∇𝑊 ′,𝑉 ′, where ϒ̄ is the matrix for our change of coordinate,

which is equal to ϒ defined in Section 3.6.10 for the coordinates in 𝑉 ′ and simply

identity for the coordinates in 𝑊 ′. Therefore, projecting both sides in Equation (3.293)

of Lemma 52 onto Φ⊥ by multiplying ϒ implies that with high probability for all

iterations of the algorithm

∇̂𝑤′,𝑣′ = ϒ̄∇𝑊 ′,𝑉 ′𝐿Π(𝑊 ′, 𝑉 ′) + ϒ̄Λ̄

= ∇𝑤′,𝑣′𝐿
Π(𝑤′, 𝑣′) + ϒ̄Λ̄, (3.293)

where $̄ := ϒ̄Λ̄ (using the properties of Λ̄ in Lemma 52) is a mean zero noise vector with

almost surely bounded norm, i.e. ‖$̄‖ ≤ 𝑄′ for some 𝑄′ = poly(𝑚1,𝑚2,𝑚3, 𝐶1, 𝐶2).

(we dropped the 𝜒 parameters by considering constant high probability argument).

Finally, note that injecting noise (Ξ1/‖Ξ1‖,Ξ2/(
√
𝑚1‖Ξ2‖)) by PSGD results in

adding an extra zero mean noise (Ξ̃1, Ξ̃2) := (ϒ̄Ξ1/‖Ξ1‖, ϒ̄Ξ2/(
√
𝑚1‖Ξ2‖)) to the

gradient ∇𝑤′,𝑣′𝐿
Π(𝑤′, 𝑣′). Therefore, overall running SGD on 𝐿Π (which is equivalent

to PSGD on L) observe an unbiased noise vector defined as $:= $̄+ (Ξ̃1, Ξ̃2). Now it

is easy to check that the moment matrix of Ξ̃1 and Ξ̃2 are 𝜎′
1
2𝐼 and 𝜎′

2
2𝐼 for

𝜎′
1
2 :=

1

𝑚2
1𝑑
, (3.294)

𝜎′
2
2 :=

𝑚2(𝑚3 − 𝑛)
𝑚𝑚

2 3,
(3.295)

244

which implies the moment matrix of $ is upper bounded by

𝜎2
2𝐼 := (𝑄′/(𝑚2𝑚3 +𝑚1𝑑) + max{𝜎′

1
2, 𝜎′

2
2})𝐼,

and lower bounded by

𝜎2
2𝐼 := min{𝜎′

1
2, 𝜎′

2
2}𝐼,

i.e.

𝜎2
1𝐼E$$𝑇 ≤ 𝜎2

2𝐼.

(Note that we look at the new coordinates (𝑤′, 𝑣′) as a vectors, so the term E$$𝑇

makes sense.)

Moreover, ‖Ξ̃1‖ = 1/
√
𝑚1, ‖Ξ̃2‖ ≤ 1 almost surely, which implies the following

almost surely bound for $:

‖$‖ ≤ 𝑄 := 𝑄′ + 1 + 1/
√
𝑚1.

245

Lemma 53. Let 𝑔(𝑥) be a second order differentiable function over R𝑁 such that

at point 𝑥, there exist a random direction 𝑦 and deterministic direction 𝑧 and fixed

positive real 𝑟 with:

E𝑦 = 0,

E𝑦𝑔(𝑥+ 𝜂𝑧 +
√
𝜂𝑦) ≤ 𝑔(𝑥)− 𝜂𝑟.

Then, for the gradient and Hessian at point 𝑥, we have either

‖∇𝑔(𝑥)‖ ≥ 𝑟

4‖𝑧‖
,

or

𝜆𝑚𝑖𝑛

(︁
∇2𝑔(𝑥)

)︁
≤ − 𝑟

2‖𝑦‖2
.

Proof of Lemma 53

We write the second order tailor approximation of 𝑔 around 𝑥:

𝑔(𝑥+ 𝑤) = 𝑔(𝑥) +∇𝑔(𝑥)𝑇𝑤 +
1

2
𝑤𝑇∇2𝑔(𝑥)𝑤 + 𝑜(‖𝑤‖2).

Now substituting 𝑤 with 𝜂𝑧 +√𝜂𝑦 and taking expectation with respect to 𝑦, as we

send 𝜂 → 0 and using the fact that E𝑦 = 0:

E𝑦𝑔(𝑥+ 𝜂𝑧 +
√
𝜂𝑦) = 𝑔(𝑥) + E𝑦∇𝑔(𝑥)𝑇 (𝜂𝑧 +

√
𝜂𝑦) +

1

2
(𝜂𝑧 +

√
𝜂𝑦)𝑇∇2𝑔(𝑥)(𝜂𝑧 +

√
𝜂𝑦)

+ 𝑜(‖𝜂𝑧 +√𝜂𝑦‖2)

= E𝑦𝑔(𝑥) + 𝜂∇𝑔(𝑥)𝑇 𝑧 + 1

2
𝜂2𝑧𝑇∇2𝑔(𝑥)𝑧 + 𝜂

1

2
𝑦𝑇∇2𝑔(𝑥)𝑦 + 𝑜(𝜂‖𝑦‖2)

= E𝑦𝑔(𝑥) + 𝜂∇𝑔(𝑥)𝑇 𝑧 + 𝜂
1

2
𝑦𝑇∇2𝑔(𝑥)𝑦 + 𝑜(𝜂).

Combining the assumption with the above Equation, we get that for small enough 𝜂,

we have

𝜂∇𝑔(𝑥)𝑇 𝑧 + 𝜂
1

2
E𝑦𝑦𝑇∇2𝑔(𝑥)𝑦 ≤ −𝜂𝑟/2,

246

i.e.

∇𝑔(𝑥)𝑇 𝑧 + 1

2
E𝑦𝑦𝑇∇2𝑔(𝑥)𝑦 ≤ −𝑟/2,

which means we should either have

∇𝑔(𝑥)𝑇 𝑧 ≤ −𝑟/4,

which implies

‖∇𝑔(𝑥)‖ ≥ 𝑟

4‖𝑧‖
,

or

E𝑦𝑦𝑇∇2𝑔(𝑥)𝑦 ≤ −𝑟/2,

which implies

𝜆𝑚𝑖𝑛

(︁
∇2𝑔(𝑥)

)︁
≤ − 𝑟

2max𝑦∈support(𝑦) ‖𝑦‖2
.

247

3.7.4 Handling the Injected Noise by PSGD

In this section, we prove that having SGD injecting noise into our gradient estimates

mostly does not change the sign pattern of the first layer, namely among the set of

rows in 𝑃 defined in Lemma 10.

Lemma 54. Having enough overparameterization, with high probability, at every

iteration of the PSGD for 𝑊 ′(2) defined in the proof of Lemma 10, we have for every

𝑗 ∈ [𝑚1]:

‖𝑊 ′(2)
𝑗 ‖ ≤ 𝑐2/(4

√
𝑚1).

Proof of Lemma 54

Let Φ′ be the subspace of the first layer weight matrices which is zero in rows

𝑗 ∈ 𝑃 (𝑃 is defined in Lemma 10), while in other rows it is the span of 𝑍𝑘
𝑖 ’s, i.e. using

our notation 𝑍𝑖
𝑘 introduced in the proof of Lemma 10, we can write Φ′ is span(𝑍𝑘

𝑖)𝑖,𝑘.

Recall from Lemma 10 that we decompose the first layer weight 𝑊 ′ as 𝑊 ′(1)+𝑊 ′(2),

namely the parts in the subspace Φ′ and subspace Φ′⊥ respectively. Moreover, let

Ξ1/(
√
𝑚1‖Ξ1‖) = Ξ(1) + Ξ(2) be the decomposition of the injected noise at some

iteration of PSGD into subspaces Φ′ and Φ′⊥ respectively.

Now recall that the current 𝑊 ′ is the value of the previous iteration moved by the

gradient plus the injected noise:

𝑊 ′ = 𝑊 ′ − 𝜂(∇̂𝑊 ′ + Ξ(1) + Ξ(2))

= 𝑊 ′ − 𝜂
(︁
∇̃𝑊 ′ + 2𝜓1𝑊

′−,(1) + 2𝜓1𝑊
′−,(2) + Ξ(1) + Ξ(2)

)︁
,

where 𝑊 ′ is the weight of the previous iteration and 𝑊 ′−,(1),𝑊 ′−,(2) are again its

decomposition to Φ′ and Φ′⊥, where ∇̃𝑊 ′,𝑉 ′ is defined in Lemma 52. Applying

Lemma 33 for the previous iteration of the algorithm, we get ∇̃𝑊 ′ ∈ Φ′ since the bad

events 𝐸 defined in Lemma 42 occurs only with probability exponentially small (hence

union bound across all the iterations rules it out). Hence, the decomposition for the

248

current iteration becomes

𝑊 ′(1) = 𝑊 ′−,(1) − 𝜂(∇̂𝑊 ′ + 2𝜓1𝑊
′−,(1) + Ξ(1)), (3.296)

𝑊 ′(2) = (1− 2𝜂𝜓1)𝑊
′−,(2) + 𝜂Ξ(2). (3.297)

We handle the 𝑊 ′(1) part in Lemma 10 and prove that as long as ‖𝑊 ′(1)‖2 ≤ ‖𝑊 ′‖2

remains bounded by 𝐶2
1 , then the sign pattern of the first layer, when only considering

the 𝑊 ′(1) part, is specified by the initialization except within set 𝑃 ; here we handle

the 𝑊 ′(2) part as well.

Note that for every row 𝑗 ∈ [𝑚1], the variable

‖
(︁
Ξ1/(
√
𝑚1‖Ξ1‖)

)︁
𝑗
‖2 is (𝑂(1/(𝑚4

1𝑑)), 𝑂(1/(𝑚
2
1𝑑)))-subexponential with mean 1/𝑚1.

Therefore, with probability that is exponentially small in 𝑚1, ‖
(︁
Ξ1/(
√
𝑚1‖Ξ1‖)

)︁
𝑗
‖ is

bounded by 𝑂(1/𝑚1). It is not hard to see the same argument holds for the projection

of Ξ1/(
√
𝑚1‖Ξ1‖) onto Φ⊥, i.e. Ξ(2). Applying a union bound for all iterations,

again using the fact that we run PSGD for poly iterations while the chance of error

is exponentially small in 𝑚1, we can then argue that with high probability over the

noise of gradients, at every iteration and for every 𝑗 ∈ [𝑚1]:

‖Ξ(2)
𝑗 ‖ = �̃�(1/𝑚1). (3.298)

But applying trinagle inequality to Equation (3.297) and writing it in a telescope

form, particularly for the 𝑗th row, and further using the assumption in 3.298, we get

that ‖𝑊 ′(2)
𝑗 ‖ grows at most to 𝑂(1/(𝑚1𝜓1)); as we set 1/𝜓1 = 𝑂(𝑝𝑜𝑙𝑦(𝑛)), assuming

polynomially large enough 𝑚1 concludes the claim.

Bounding the Norm of the first Layer’s Output in the Worst Case

Lemma 55. Suppose 𝑊 ′ satisfies the assumption of Lemma 10, i.e. ‖𝑊 ′‖ ≤ 𝐶1, and

‖𝑊 ′
𝑗‖ ≤ 𝑐2/(2

√
𝑚1) except possible for indices in 𝑃 , also defined in 10. Then, with

249

high probability over initialization

sup
𝑥,‖𝑥‖=1

‖𝜑′(𝑥)‖ ≲ (1 +𝑂(𝑚2
3𝑑

2 log(𝑚1)
2/𝑚1))𝐶1 +

√
𝑚3

𝐶
3/2
1√
𝜅1

(
𝑛3𝑚3

𝑚1𝜆0
)1/4,

which is 𝑂(𝐶1) for large enough overparameterization.

Proof of Lemma 55

Note the because the VC-dimension of the class of binary functions with respect

to halfspaces in R𝑑 is 𝑑+ 1, the number of different sign patterns 𝐷𝑊 (0),𝑥 for different

𝑥 can be at most 𝑚𝑑+1
1 . Now similar to Equation (3.299), for 𝑘 ∈ [𝑚3] define

𝑍𝑘(𝑥) = 1/
√
𝑚1

(︁
𝑊 𝑠
𝑘,𝑗1{𝑊

(0)
𝑗

𝑇𝑥}𝑥
)︁𝑚1

𝑗=1
. (3.299)

Then, for 𝑘1 ̸= 𝑘2, as ‖𝑥‖ = 1:

⟨𝑍𝑘1(𝑥), 𝑍𝑘2(𝑥)⟩ =
1

𝑚1

𝑚1∑︁
𝑗=1

𝑊 𝑠
𝑘1,𝑗

𝑊 𝑠
𝑘2,𝑗

1{𝑊 (0)
𝑗

𝑇𝑥}

≤ 1

𝑚1

sup
𝑥

𝑚1∑︁
𝑗=1

𝐷𝑊 (0),𝑥𝑗,𝑗𝑊
𝑠
𝑘1,𝑗

𝑊 𝑠
𝑘2,𝑗

.

But for each fixed 𝐷𝑊 (0),𝑥, using Hoeffding bound, we have with probability 1− 𝛿:

1√
𝑚1

𝑚1∑︁
𝑗=1

𝐷𝑊 (0),𝑥𝑗,𝑗𝑊
𝑠
𝑘1,𝑗

𝑊 𝑠
𝑘2,𝑗

≲

√︃
log(1/𝛿)

𝑚1

.

Applying the above for all possible sign patterns with 𝛿 < 𝑂(1/𝑚1
𝑑+1) and a union

bound, we have with high probability

sup
𝑥,‖𝑥‖=1

⟨𝑍𝑘1(𝑥), 𝑍𝑘2(𝑥)⟩ ≤
1

𝑚1

sup
𝑥

𝑚1∑︁
𝑗=1

𝐷𝑊 (0),𝑥𝑗,𝑗𝑊
𝑠
𝑘1,𝑗

𝑊 𝑠
𝑘2,𝑗

≲ 𝑑 log(𝑚1)/
√
𝑚1.

We can even state the following stronger bound with respect to two adversarially

250

picked vectors 𝑥, 𝑥′:

sup
‖𝑥‖=1,‖𝑥′‖=1

⟨𝑍𝑘1(𝑥), 𝑍𝑘2(𝑥′)⟩ ≤
1

𝑚1

sup
𝑥

𝑚1∑︁
𝑗=1

𝐷𝑊 (0),𝑥𝑗,𝑗𝐷𝑊 (0),𝑥′𝑗,𝑗𝑊
𝑠
𝑘1,𝑗

𝑊 𝑠
𝑘2,𝑗

≲ 𝑑 log(𝑚1)/
√
𝑚1,

(3.300)

because each𝐷𝑊 (0),𝑥′𝑗,𝑗 has at most𝑚𝑑+1
1 cases as we discussed above, then𝐷𝑊 (0),𝑥𝑗,𝑗𝐷𝑊 (0),𝑥′𝑗,𝑗

has at most 𝑚𝑑+1
1 possible cases, and applying a similar Hoeffding bound for each of

them and a union bound as we did will imply (3.300). We will use this generalized

version in another section.

Now combining Equation (3.300) with the fact that ‖𝑊 ′‖ ≤ 𝐶1 and applying

Lemma 49:

sup
𝑥,‖𝑥‖=1

𝑚3∑︁
𝑘=1

⟨𝑊 ′, 𝑍𝑘(𝑥)⟩2 ≤ (1 +𝑂(𝑚2
3𝑑

2 log(𝑚1)
2/𝑚1))𝐶

2
1 . (3.301)

On the other hand, setting 𝑚2 = 𝑚1, 𝑚3 = 𝑑, and 𝑅 = 𝑐2/(2
√
𝑚1𝜅1) in Lemma 38,

we get with high probability

#
(︁
𝑗 ∈ [𝑚] : |𝑉 (0)

𝑗 𝑥| ≤ 𝑐2/(2
√
𝑚1)

)︁
≤ 𝑚1𝑐2/(2

√
𝑚1) =

√
𝑚1𝑐2/(2𝜅1).

Noting that ‖𝑊 ′
𝑗‖ ≤ 𝑐2/(2

√
𝑚1) for 𝑗 /∈ 𝑃 , we conclude that with high probability,

for any 𝑥, 1{(𝑊 (0) +𝑊 ′)𝑇𝑗 𝑥 ≥ 0} and 1{𝑊 (0)
𝑗

𝑇𝑥 ≥ 0} can be different in at most
√
𝑚1𝑐2/(2𝜅1) of the 𝑗’s outside of [𝑚1] ∖ 𝑃 . Therefore, as we have also |𝑃 | ≲

𝑛𝑐2
√
𝑚1/𝜅1 from Lemma 10, we conclude that with high probability, for any 𝑥, there

251

are at most 𝑂(𝑛𝑐2
√
𝑚1/𝜅1) sign changes by adding 𝑊 ′ to 𝑊 (0). This further implies:

|𝜑′
𝑘(𝑥)− ⟨𝑊 ′, 𝑍𝑘(𝑥)⟩| ≤ 2/

√
𝑚1

∑︁
𝑗: Sgn(𝑊 (0)

𝑗
𝑇 𝑥)̸=Sgn((𝑊 (0)+𝑊 ′)𝑇𝑗 𝑥)

|𝑊 ′
𝑗𝑥|

≤ ‖𝑊 ′‖2
√︂⃒⃒⃒
{𝑗| Sgn(𝑊 (0)

𝑗
𝑇𝑥) ̸= Sgn((𝑊 (0) +𝑊 ′)𝑇𝑗 𝑥)}

⃒⃒⃒
/
√
𝑚1

≲ 𝐶1

√︁
𝑛𝑐2
√
𝑚1/𝜅1/

√
𝑚1

=
𝐶

3/2
1√
𝜅1

(
𝑛3𝑚3

𝑚1𝜆0
)1/4.

Combining this with (3.301), we conclude with high probability:

sup
𝑥,‖𝑥‖=1

‖𝜑′(𝑥)‖ ≲ (1 +𝑂(𝑚2
3𝑑

2 log(𝑚1)
2/𝑚1))𝐶1 +

√
𝑚3

𝐶
3/2
1√
𝜅1

(
𝑛3𝑚3

𝑚1𝜆0
)1/4,

which completes the proof.

252

Chapter 4

Conclusion

In this thesis we studied two closely related problems under a high dimensional setting:

testing and learning.

For testing, we settled the sample complexity of testing the important class of DPP

distributions; we showed that the exponential dependence in the sample complexity,

which is due to the exponential size of the support, is unavoidable. However, this

does not rule out the opportunity of adding further constaints to the class of DPPs

in the hope of breaking the exponential barrier in the compelxity. As an example, a

natural assumption to investigate is if one assumes a low rank structure in the kernel

of the DPP distribution. In this regard, an interesting question is also designing

computationally efficient algorithms for the task of testing.

For learning with a deep network, we investigated a particular regime regarding a

three-layer network model which goes beyond the NTK approximation of the network,

and show (1) convergence of a deliberately-chosen variant of SGD in training, and (2)

generalization of the trained network with respect to a new data-dependent complexity

measure which gneneralizes the NTK-based compelxity measure proposed in Arora

et al. [2018a]. An interesting question for future is to try to generalize and strengthen

these ideas for multi-layer networks to achieve algorithmic depth-separation results, in

regimes that go beyond NTK regarding function classes that are hard to learn with

shallower networks.

253

254

Bibliography

Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for
properties of distributions. In Advances in Neural Information Processing Systems
(NIPS), pages 3591–3599, 2015.

Raja Hafiz Affandi, Emily Fox, Ryan Adams, and Ben Taskar. Learning the parameters
of determinantal point process kernels. In Int. Conference on Machine Learning
(ICML), pages 1224–1232, 2014.

Maryam Aliakbarpour, Themis Gouleakis, John Peebles, Ronitt Rubinfeld, and Anak
Yodpinyanee. Towards testing monotonicity of distributions over general posets. In
Conference on Learning Theory (COLT), pages 34–82, 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning
performs deep learning. arXiv preprint arXiv:2001.04413, 2020.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization
in overparameterized neural networks, going beyond two layers. arXiv preprint
arXiv:1811.04918, 2018.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in
overparameterized neural networks, going beyond two layers. Advances in neural
information processing systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning, pages
242–252. PMLR, 2019b.

N. Anari and S. Oveis Gharan. The Kadison-Singer problem for strongly Rayleigh
measures and applications to asymmetric TSP. In IEEE Symposium on Foundations
of Computer Science (FOCS), 2015.

Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte Carlo Markov Chain
algorithms for sampling strongly Rayleigh distributions and determinantal point
processes. In Conference on Learning Theory (COLT), 2016.

Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials,
entropy, and a deterministic approximation algorithm for counting bases of matroids.
In IEEE Symposium on Foundations of Computer Science (FOCS), 2018.

255

Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave
polynomials II: High-dimensional walks and an FPRAS for counting bases of a
matroid. In Symposium on Theory of Computing (STOC), 2019.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of
gradient descent for deep linear neural networks. arXiv preprint arXiv:1810.02281,
2018a.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization
bounds for deep nets via a compression approach. In International Conference on
Machine Learning, pages 254–263. PMLR, 2018b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neural
networks. In International Conference on Machine Learning, pages 322–332. PMLR,
2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong
Wang. On exact computation with an infinitely wide neural net. arXiv preprint
arXiv:1904.11955, 2019b.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The
Journal of Machine Learning Research, 18(1):629–681, 2017.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified
neural networks in polynomial time. In Conference on Learning Theory, pages
195–268. PMLR, 2019.

Rémi Bardenet and Michalis Titsias RC AUEB. Inference for determinantal point
processes without spectral knowledge. In Advances in Neural Information Processing
Systems (NIPS), pages 3393–3401, 2015.

Andrew R Barron. Approximation and estimation bounds for artificial neural networks.
Machine learning, 14(1):115–133, 1994.

Peter Bartlett, Dylan J Foster, and Matus Telgarsky. Spectrally-normalized margin
bounds for neural networks. arXiv preprint arXiv:1706.08498, 2017.

Peter Bartlett, Dave Helmbold, and Philip Long. Gradient descent with identity
initialization efficiently learns positive definite linear transformations by deep residual
networks. In International conference on machine learning, pages 521–530. PMLR,
2018.

Nematollah Kayhan Batmanghelich, Gerald Quon, Alex Kulesza, Manolis Kellis, Polina
Golland, and Luke Bornn. Diversifying sparsity using variational determinantal
point processes. arXiv preprint arXiv:1411.6307, 2014.

256

Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and
Patrick White. Testing random variables for independence and identity. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 442–451, 2001.

Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing
monotone and unimodal distributions. In Symposium on Theory of Computing
(STOC), pages 381–390, 2004.

Tugkan Batu, Sanjoy Dasgupta, Ravi Kumar, and Ronitt Rubinfeld. The complexity
of approximating the entropy. SIAM Journal on Computing, 35(1):132–150, 2005.

Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing closeness of discrete distributions. Journal of the ACM, 60(1):4:1–4:25,
2013.

Eric Blais and Abhinav Bommireddi. Testing submodularity and other properties of
valuation functions. arXiv preprint arXiv:1611.07879, 2016.

J. Borcea, P. Bränden, and T.M. Liggett. Negative dependence and the geometry of
polynomials. Journal of American Mathematical Society, 22:521–567, 2009.

Victor-Emmanuel Brunel. Learning signed determinantal point processes through the
principal minor assignment problem. In Advances in Neural Information Processing
Systems (NIPS), pages 7365–7374, 2018.

Victor-Emmanuel Brunel, Ankur Moitra, Philippe Rigollet, and John Urschel. Rates
of estimation for determinantal point processes. In Conference on Learning Theory
(COLT), volume 65 of Proceedings of Machine Learning Research, pages 343–345.
PMLR, 2017.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet
with gaussian inputs. In International conference on machine learning, pages
605–614. PMLR, 2017.

Clément L. Canonne. A survey on distribution testing: Your data is big. but is it
blue? Electronic Colloquium on Computational Complexity (ECCC), 22:63, 2015.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent
for wide and deep neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Deeparnab Chakrabarty and Zhiyi Huang. Testing coverage functions. In International
Colloquium on Automata, Languages, and Programming, pages 170–181. Springer,
2012.

Siu-on Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algorithms
for testing closeness of discrete distributions. In SIAM-ACM Symposium on Discrete
Algorithms (SODA), pages 1193–1203, 2014.

257

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. arXiv preprint arXiv:1805.09545,
2018.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss. In Conference on Learning Theory,
pages 1305–1338. PMLR, 2020.

Amit Daniely. Depth separation for neural networks. In Conference on Learning
Theory, pages 690–696. PMLR, 2017.

Constantinos Daskalakis, Ilias Diakonikolas, and Rocco A. Servedio. Learning 𝑘-modal
distributions via testing. Theory of Computing, 10(20):535–570, 2014. doi: 10.
4086/toc.2014.v010a020. URL http://www.theoryofcomputing.org/articles/
v010a020.

Michał Dereziński and Michael W. Mahoney. Determinantal Point Processes in
Randomized Numerical Linear Algebra. arXiv e-prints, art. arXiv:2005.03185, May
2020.

A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and
projective clustering via volume sampling. Symposium on Theory of Computing
(STOC), 2:225–247, 2006.

Ilias Diakonikolas and Daniel M. Kane. A new approach for testing properties of
discrete distributions. In FOCS, pages 685–694, 2016.

Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Sample-optimal
identity testing with high probability. In International Colloquium on Automata,
Languages, and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

Josip Djolonga and Andreas Krause. From MAP to marginals: Variational inference
in Bayesian submodular models. In Advances in Neural Information Processing
Systems (NIPS), pages 244–252, 2014.

Josip Djolonga, Stefanie Jegelka, and Andreas Krause. Provable variational infer-
ence for constrained log-submodular models. In Advances in Neural Information
Processing Systems (NIPS), 2018.

Xialiang Dou and Tengyuan Liang. Training neural networks as learning data-
adaptive kernels: Provable representation and approximation benefits. Journal of
the American Statistical Association, pages 1–14, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. arXiv preprint arXiv:1810.02054,
2018.

258

http://www.theoryofcomputing.org/articles/v010a020
http://www.theoryofcomputing.org/articles/v010a020

Lixin Duan, Ivor W Tsang, and Dong Xu. Domain transfer multiple kernel learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):465–479,
2012.

D Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomised algorithms. Draft Manuscript, http://www.brics.dk/ale/papers. html,
1998.

Christophe Dupuy and Francis Bach. Learning determinantal point processes in
sublinear time. In Proceedings of the Twenty-First International Conference on
Artificial Intelligence and Statistics, volume 84 of Proceedings of Machine Learning
Research, pages 244–257, 2018.

Freeman J Dyson. Statistical theory of the energy levels of complex systems. i. Journal
of Mathematical Physics, 3(1):140–156, 1962.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than
training data. arXiv preprint arXiv:1703.11008, 2017.

Vitaly Feldman and Jan Vondrak. Optimal bounds on approximation of submodular
and xos functions by juntas. SIAM Journal on Computing, 45(3):1129–1170, 2016.

C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network
optimization. arXiv preprint arXiv:1611.01540, 2016.

A. Frieze, N. Goyal, L. Rademacher, and S. Vempala. Expanders via random spanning
trees. SIAM Journal on Computing, 43(2):497–513, 2014.

Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural networks, 2(3):183–192, 1989.

Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Bayesian low-rank determinantal
point processes. In Proceedings of the 10th ACM Conference on Recommender
Systems, pages 349–356. ACM, 2016.

Mike Gartrell, Ulrich Paquet, and Noam Koenigstein. Low-rank factorization of
determinantal point processes. In Proc. AAAI Conference on Artificial Intelligence,
2017.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online
stochastic gradient for tensor decomposition. In Conference on learning theory,
pages 797–842. PMLR, 2015a.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points
— online stochastic gradient for tensor decomposition. In Peter Grünwald, Elad
Hazan, and Satyen Kale, editors, Proceedings of The 28th Conference on Learning
Theory, volume 40 of Proceedings of Machine Learning Research, pages 797–842,
Paris, France, 03–06 Jul 2015b. PMLR. URL http://proceedings.mlr.press/
v40/Ge15.html.

259

http://proceedings.mlr.press/v40/Ge15.html
http://proceedings.mlr.press/v40/Ge15.html

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks
with landscape design. arXiv preprint arXiv:1711.00501, 2017.

S. Oveis Gharan, A. Saberi, and M. Singh. A randomized rounding approach to the
traveling salesman problem. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 550–559, 2011.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limita-
tions of lazy training of two-layers neural networks. arXiv preprint arXiv:1906.08899,
2019.

Jennifer A Gillenwater, Alex Kulesza, Emily Fox, and Ben Taskar. Expectation-
maximization for learning determinantal point processes. In Advances in Neural
Information Processing Systems (NIPS), pages 3149–3157, 2014.

Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs.
In Studies in Complexity and Cryptography. Miscellanea on the Interplay between
Randomness and Computation, pages 68–75. Springer, 2011.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample
complexity of neural networks. In Conference On Learning Theory, pages 297–299.
PMLR, 2018.

Boqing Gong, Wei-Lun Chao, Kristen Grauman, and Fei Sha. Diverse sequential subset
selection for supervised video summarization. In Advances in Neural Information
Processing Systems (NIPS), pages 2069–2077. Curran Associates, Inc., 2014a.

Boqing Gong, Wei-Lun Chao, Kristen Grauman, and Fei Sha. Diverse sequential subset
selection for supervised video summarization. In Advances in Neural Information
Processing Systems (NIPS), pages 2069–2077, 2014b.

Alkis Gotovos, S. Hamed Hassani, and Andreas Krause. Sampling from probabilistic
submodular models. In Advances in Neural Information Processing Systems (NIPS),
December 2015.

Alkis Gotovos, Hamed Hassani, Andreas Krause, and Stefanie Jegelka. Discrete
sampling using semigradient-based product mixtures. In Uncertainty in Artificial
Intelligence (UAI), August 2018.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al.
Deep neural networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Balint Virag. Determinantal
processes and independence. Probability Surveys, 3:206–229, 2006.

260

Ilse CF Ipsen and Rizwana Rehman. Perturbation bounds for determinants and
characteristic polynomials. SIAM Journal on Matrix Analysis and Applications, 30
(2):762–776, 2008.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. Advances in neural information
processing systems, 31, 2018.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. arXiv
preprint arXiv:1506.08473, 2015.

A. Javanmard, M. Mondelli, and A. Montanari. Analysis of a two-layer neural network
via displacement convexity. ArXiv, abs/1901.01375, 2019.

Adel Javanmard, Marco Mondelli, and Andrea Montanari. Analysis of a two-layer
neural network via displacement convexity. The Annals of Statistics, 48(6):3619–
3642, 2020.

Kenji Kawaguchi. Deep learning without poor local minima. In nips, 2016a.

Kenji Kawaguchi. Deep learning without poor local minima. Advances in neural
information processing systems, 29, 2016b.

Pitas Konstantinos, Mike Davies, and Pierre Vandergheynst. Pac-bayesian mar-
gin bounds for convolutional neural networks-technical report. arXiv preprint
arXiv:1801.00171, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

Alex Kulesza and Ben Taskar. Learning determinantal point processes. In Proceedings
of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11,
page 419–427, Arlington, Virginia, USA, 2011a. AUAI Press. ISBN 9780974903972.

Alex Kulesza and Ben Taskar. k-dpps: Fixed-size determinantal point processes. In
Int. Conference on Machine Learning (ICML), pages 1193–1200, 2011b.

Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning.
Foundations and Trends® in Machine Learning, 5(2–3):123–286, 2012.

John A. Kulesza. Learning with Determinantal Point Processes. PhD thesis, University
of Pennsylvania, 2012.

Frédéric Lavancier, Jesper Møller, and Ege Rubak. Determinantal point process
models and statistical inference. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 77(4):853–877, 2015.

261

Erich L. Lehmann and Joseph P. Romano. Testing statistical hypotheses. Springer
Texts in Statistics. Springer, 2005.

Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast DPP sampling for Nyström with
application to kernel methods. In Int. Conference on Machine Learning (ICML),
2016a.

Chengtao Li, Suvrit Sra, and Stefanie Jegelka. Fast mixing markov chains for Strongly
Rayleigh measures, DPPs, and constrained sampling. In Advances in Neural
Information Processing Systems (NIPS), 2016b.

Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Polynomial time algorithms for dual
volume sampling. In Advances in Neural Information Processing Systems (NIPS),
2017.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via
stochastic gradient descent on structured data. arXiv preprint arXiv:1808.01204,
2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with
relu activation. arXiv preprint arXiv:1705.09886, 2017.

Tengyuan Liang, Alexander Rakhlin, et al. Just interpolate: Kernel “ridgeless”
regression can generalize. Annals of Statistics, 48(3):1329–1347, 2020.

Hui Lin and Jeff Bilmes. Learning mixtures of submodular shells with application
to document summarization. In Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, UAI’12, page 479–490. AUAI Press, 2012.
ISBN 9780974903989.

Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, , and Lexing Ying. A mean-field analysis
of deep resnet and beyond: Towards provable optimization via overparameterization
from depth. In icml, 2020.

Odile Macchi. The coincidence approach to stochastic point processes. Advances in
Applied Probability, 7(1):83–122, 1975.

Zelda Mariet and Suvrit Sra. Fixed-point algorithms for learning determinantal point
processes. In Int. Conference on Machine Learning (ICML), pages 2389–2397, 2015.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy of
Sciences, 115(33):E7665–E7671, 2018.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-
layers neural networks: dimension-free bounds and kernel limit. In Conference on
Learning Theory, pages 2388–2464. PMLR, 2019.

262

Jerzy Neyman and Egon Sharpe Pearson. Ix. on the problem of the most efficient
tests of statistical hypotheses. Philosophical Transactions of the Royal Society of
London. Series A, Containing Papers of a Mathematical or Physical Character, 231
(694-706):289–337, 1933.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control
in neural networks. In Conference on Learning Theory, pages 1376–1401. PMLR,
2015.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian ap-
proach to spectrally-normalized margin bounds for neural networks. In International
Conference on Learning Representations, 2018.

Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks.
In International conference on machine learning, pages 2603–2612. PMLR, 2017.

Liam Paninski. A coincidence-based test for uniformity given very sparsely-sampled
discrete data. IEEE TOIT, 54:4750–4755, 2008.

Prasad Raghavendra, Nick Ryder, and Nikhil Srivastava. Real stability testing. In
Innovations in Theoretical Computer Science, 2017.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein.
On the expressive power of deep neural networks. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 2847–2854. PMLR,
06–11 Aug 2017. URL http://proceedings.mlr.press/v70/raghu17a.html.

Alexander Rakhlin and Xiyu Zhai. Consistency of interpolation with laplace kernels is a
high-dimensional phenomenon. In Conference on Learning Theory, pages 2595–2623.
PMLR, 2019.

Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. More
efficiency in multiple kernel learning. In Proceedings of the 24th international
conference on Machine learning, pages 775–782, 2007.

Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds
for approximating distribution support size and the distinct elements problem. SIAM
Journal on Computing, 39(3):813–842, 2009.

Ronitt Rubinfeld. Taming big probability distributions. XRDS, 19(1):24–28, 2012.

Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

Itay Safran and Ohad Shamir. Depth separation in relu networks for approximating
smooth non-linear functions. arXiv preprint arXiv:1610.09887, 14, 2016.

263

http://proceedings.mlr.press/v70/raghu17a.html

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu
neural networks. In International Conference on Machine Learning, pages 4433–4441.
PMLR, 2018.

Itay Safran, Ronen Eldan, and Ohad Shamir. Depth separations in neural networks:
what is actually being separated? In Conference on Learning Theory, pages
2664–2666. PMLR, 2019.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. arXiv preprint
arXiv:1312.6120, 2013.

Comandur Seshadhri and Jan Vondrák. Is submodularity testable? Algorithmica, 69
(1):1–25, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks:
A central limit theorem. Stochastic Processes and their Applications, 130(3):1820–
1852, 2020.

Jasper Snoek, Richard Zemel, and Ryan P Adams. A determinantal point process
latent variable model for inhibition in neural spiking data. In Advances in Neural
Information Processing Systems (NIPS), pages 1932–1940, 2013.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into
the optimization landscape of over-parameterized shallow neural networks. IEEE
Transactions on Information Theory, 65(2):742–769, 2018.

Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large
scale multiple kernel learning. The Journal of Machine Learning Research, 7:
1531–1565, 2006.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training
error guarantees for multilayer neural networks. arXiv preprint arXiv:1605.08361,
2016.

D.A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM
J. Comput., 40(6):1913–1926, 2011.

Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. Smoothness, low noise and
fast rates. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems, volume 23. Curran As-
sociates, Inc., 2010. URL https://proceedings.neurips.cc/paper/2010/file/
76cf99d3614e23eabab16fb27e944bf9-Paper.pdf.

264

https://proceedings.neurips.cc/paper/2010/file/76cf99d3614e23eabab16fb27e944bf9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/76cf99d3614e23eabab16fb27e944bf9-Paper.pdf

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical
Soc., 2012.

Yuandong Tian. Symmetry-breaking convergence analysis of certain two-layered neural
networks with relu nonlinearity. Network, 100(1):1–1, 2016.

Sebastian Tschiatschek, Josip Djolonga, and Andreas Krause. Learning probabilis-
tic submodular diversity models via noise contrastive estimation. In Proc. Int.
Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

John Urschel, Victor-Emmanuel Brunel, Ankur Moitra, and Philippe Rigollet. Learning
determinantal point processes with moments and cycles. In Int. Conference on
Machine Learning (ICML), pages 3511–3520. JMLR. org, 2017.

Gregory Valiant and Paul Valiant. Estimating the unseen: Improved estimators for
entropy and other properties. JACM, 64(6):37:1–37:41, 2017.

Colin Wei, Jason Lee, Qiang Liu, and Tengyu Ma. On the margin theory of feedforward
neural networks. 2018.

Colin Wei, Jason Lee, Qiang Liu, and Tengyu Ma. Regularization matters: General-
ization and optimization of neural nets vs their induced kernel. 2019.

Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and
Jennifer Gillenwater. Practical diversified recommendations on YouTube with
Determinantal Point Processes. In ACM International Conference on Information
and Knowledge Management (CIKM), 2018.

Lei Wu, Chao Ma, and Weinan E. A priori estimates of the generalization error for
two-layer neural networks. 2018.

Yihong Wu and Pengkun Yang. Minimax rates of entropy estimation on large alphabets
via best polynomial approximation. IEEE Transactions on Information Theory, 62
(6):3702–3720, 2016.

Yihong Wu, Pengkun Yang, et al. Chebyshev polynomials, moment matching, and
optimal estimation of the unseen. The Annals of Statistics, 47(2):857–883, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery
guarantees for one-hidden-layer neural networks. In International conference on
machine learning, pages 4140–4149. PMLR, 2017.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P Adams, and Peter Orbanz. Non-
vacuous generalization bounds at the imagenet scale: a pac-bayesian compression
approach. arXiv preprint arXiv:1804.05862, 2018.

265

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent
optimizes over-parameterized deep relu networks. arxiv e-prints, art. arXiv preprint
arXiv:1811.08888, 2018.

266

	Introduction
	Testing Determinantal point processes
	Optimization and Generalization in Deep Learning

	Testing DPPs
	Introduction
	Related work
	Notation and definitions
	Main results
	An Algorithm for Testing DPPs
	Correctness of the Testing Algorithm for (,)-normal DPPs
	Extension to general DPPs

	Lower bound
	Discussion
	Proof of the Learning Guarantee
	Uniform Lower Bound on the Smallest Singular Value of K - I
	Lower Bound for Testing Log-submodular Distributions
	Coupling DPPs
	A More Detailed Proof of Theorem 1
	Modification of DPP-Tester for distinguishing (,)-normal DPPs from the -far set of just the (,)-normal DPPs
	Analysis of DPP-Tester2
	Time complexity of DPP-Tester
	Lower bound on the Sample Complexity of Distinguishing the Uniform distribution from F
	Experiments

	Optimization and Adaptive Generalization of three layer Neural Networks
	Introduction
	Setup and approximation by kernels
	Kernel approximations, decomposition and adaptivity

	Data dependent complexity measure and generalization
	Generalization
	Underlying Concept class
	Interaction of layers beyond the linear approximation
	Comparison with Kernel fitting

	Algorithm: Projected Stochastic Gradient Descent
	High Level Idea of the PSGD Analysis
	Detailed proofs
	Stronger Generalization bounds for polynomials
	The Doubling Trick
	Amount of Overparameterization
	PSD property of K
	Complexity upper bound
	Complexity measure and the -norm
	Core Generalization Result
	Structure of the proof, setting m3, and further definitions
	Proof of Theorem 2
	Optimization
	Rademacher Complexity
	Constructing W*, V*
	Existence of a good direction
	Existence of a good direction Helper Lemmas
	Bounding the worst-case Senario
	Convergence
	Process from a higher view: definition of the (X) sequence
	Bounding the MGF of Xi's
	Proof of Theorem 7
	Gaussian Smoothing
	Basic Tools

	Appendix
	Smoothness coefficients
	Representation Lemmas
	Coupling for W, V
	Handling the Injected Noise by PSGD

	Conclusion

