
Fast Algorithms for Bounded-Range LIS Approximation

by

Pachara Sawettamalya

B.S., Mathematics and Computer Science and Engineering,
Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2022

Certified by. .
Ronitt Rubinfeld

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Fast Algorithms for Bounded-Range LIS Approximation

by

Pachara Sawettamalya

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We introduce an improvement to additive approximation of Longest Increasing Subsequence
(LIS) of a sequence with a bounded number of unique elements. In particular, for a sequence
𝑓 of length 𝑛 with 𝑟 unique elements and 𝜖 additive error paramenter, we present an algorithm
that approximate the size of 𝑓 ’s LIS within ±𝜖𝑛 using 𝑂(𝑟𝜖−2) · 𝑝𝑜𝑙𝑦(log 𝜖−1) samples and
𝑂(𝑟𝜖−2) · 𝑝𝑜𝑙𝑦(log 𝑟, log 𝜖−1) runtime. Our approache introduces small adjustments to the
previously known algorithm for this problem, due to [5], resulting in a polynomial runtime
algorithm which uses less queries by a factor of 𝜖−1. Similar approaches can also be applied
to estimating edit distance to monotonicity in 2-dimenstional array and 𝐿1 edit distance of
a sequence within sublinear time using 𝑝𝑜𝑙𝑦(𝑟, 𝜖−1) queries.

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor

3

4

Acknowledgments

First and foremost, I would like to thank my parents for their constant support. Spending the

majority of the past six years abroad, I have left at home two people who love me the most:

mom and dad. Looking into my empty room day after day must have taken an emotional

toll on them, and I cannot imagine how difficult it would be. Thank you for your patience

and sacrifice, which make me who I am today. Above all, my parents always provide every

care, support, and counsel I need, making sure I still feel loved every moment, no matter

where I am. I owe my success to you, and I hope I make you proud today.

I would also like to extend my deepest gratitude to my research advisor Professor Ronitt

Rubinfeld for agreeing to supervise my research for the past two years. Ronitt is, without a

doubt, one of the most academically knowledgeable people I have ever known. But beyond

that, she is also kind, caring, enduring, and understanding. Learning from you has enlight-

ened my thoughts, and your guidance has opened up many avenues for my future. For that,

I also thank you.

Finally, I consider myself fortunate enough to be surrounded by a group of good friends

in the Boston area. Thank you all for making my six years in Boston a lively one, and I will

forever hold fond memories of our time together.

5

6

Contents

1 Introduction 11

2 Notations and Preliminaries 15

3 Additive LIS Approximation Algorithm 17

4 Improving Runtime via Dynamic Programming 25

4.1 Dynamic Programming Framework . 25

4.2 Restructuring 𝐴 . 28

4.3 Maximum-Ordered Oracle . 30

4.4 Finalizing Algorithm 1 . 33

5 Estimating Edit Distances in 2-Dimensional Array 35

5.1 Special Cases: Binary Arrays . 40

6 Estimating 𝐿1 Distance to Monotonicity in 1-Dimensional Sequence 43

6.1 Estimating 𝑑mono
1 of a Discrete-Ranged Function 43

6.2 Estimating 𝑑mono
1 of a Continuous-Ranged Function 48

7

8

List of Figures

3-1 Examples of the construction of 𝐿 and 𝑃 from 𝑀 . A sequence 𝑓 of length 18,

which is split into six blocks of three consecutive elements, is given (row 1)

along with its MIS 𝑀 (row 2). Each block 𝑖 is associated with 𝑉𝑖 which is the

set of its unique elements appearing in 𝑀 (row 3). To construct ℒ = (𝑙1, ..., 𝑙6),

we iterate for three rounds. Round 1 assigns those 𝑙𝑖 whose |𝑉𝑖| = 1 (row 6).

Round 2 assigns those 𝑙𝑖 whose |𝑉𝑖| ≥ 2 (row 7). Round 3 assigns those 𝑙𝑖

whose |𝑉𝑖| = 0 (row 8). Finally, we can construct pseudosolution 𝒫 from the

label ℒ just created (row 9). 19

4-1 Shown above is a demonstration of Maximum-Ordered Oracleℳ with 10 bins.

Initial values 𝛽1, ..., 𝛽10 are given on the first row. The data structure/sketch

is 𝒯 given in the last column. Four 𝑢𝑝𝑑𝑎𝑡𝑒𝑣𝑎𝑙’s are demonstrated along with

changes in 𝒯 (value updates indicated in green entries). Finally, two 𝑐𝑚𝑎𝑥

queries are performed at each timestep 𝑡 = 3, 4. 32

5-1 Demonstration of the mapping 𝜒 : ℱ𝐿 → 𝒟𝑟 with 𝑚 = 7, 𝑡 = 5, and 𝑟 = 4. . 39

6-1 Shown above is a grid reduction from 𝑓 (above) to Grid(𝑓) (below). Notice

that each column 𝑖 ∈ [𝑛] of Grid(𝑓) has 1s in its bottom 𝑓(𝑖) entries and 0s

in its top 𝑟 − 𝑓(𝑖) entries. 44

9

6-2 Shown above is a 1-dimensional sequence 𝑓 : [10] → [5] (row 1) with 𝑛 = 10

and 𝑟 = 5. The function 𝑔 : [10] → R (row 2) is one of possibly many of 𝑓 ’s

closest increasing functions with respect to 𝐿1 distance with 𝑑1(𝑓, 𝑔) = 6 :=

𝑑mono
1 (𝑓). The function ℎ : [10] → [𝑟] (row 3), generated via a randomized

process with 𝑝 = 0.6, is an increasing function who is expected to be at the

same 𝐿1 distance to 𝑓 as 𝑔 (in this case it is.) In other words, ℎ minimizes

𝑑1(𝑓, ℎ
) over range-[𝑟] functions ℎ, which yields 𝑑mono, int

1 (𝑓) = 𝑑1(𝑓, ℎ) = 6.

Theorem 26 states that 𝑑mono
1 (𝑓) = 𝑑mono, int

1 (𝑓). In other words, we can

optimize 𝑑mono
1 (𝑓) by looking up only those ℎ : [𝑛]→ [𝑟]. 46

10

Chapter 1

Introduction

The problem of finding the exact length of the longest increasing subsequence (LIS) of an

arbitrary sequence 𝑓 of length 𝑛, denoted by LIS(𝑓), is known to be solvable in 𝑂(𝑛 · log 𝑛)

using dynamic programming [3]. However, the algorithm posits two major drawbacks. The

first one being that computing the exact size of LIS is rather expensive – roughly in linear

time which can be bad if the input is big. Moreover, if we expect the input sequence to be

mostly sorted, it should not take as long as linear time to find |LIS(𝑓)|. In other words,

we can assume that most elements to already be in-order, so we only need to verify the

out-of-order elements which are expected to be only a small portion of the input sequence.

Second, an arbitrary sequence does not impose a constraint on the size of values pool.

If the sequence consists of Θ(𝑛) unique elements, it can take up Θ(𝑛) time and space to

represent the LIS alone. Analogously, if we limit the pool size to 𝑟, we can represent the LIS

using just 𝑂(𝑟) time and space by specifying the position of those (up to) 𝑟 transitions of

values in the LIS.

These dilemmas lead us to the study of a sublinear time algorithms for approximating the

length of LIS of a given sequence. Being able to approximate the size of LIS will potentially

make an impact on closely related problems such as estimating distance to monotonicity [1],

estimating length of the longest common subsequence [6], or even property testing [2]. In

particular, we raise the following question:

11

Problem 1. Given a sequence 𝑓 of 𝑛 numbers from a sized-𝑟 value pool, and the target

value OPT being the length of 𝑓 ’s longest increasing subsequence (LIS). How do we propose

an algorithm that outputs an approximation ̃︀𝐿 of the target within a small error range?

Ideally we want the error to be 𝜖-additive – meaning that |̃︀𝐿− OPT| ≤ 𝜖𝑛

Several attempts has been done to estimate such value. [7] gave a (1 + 𝜖)-multiplicative

approximation algorithm that runs in polylogarithmic time under the assumption that the

length of LIS is at least a constant factor of the sequence’s length. [6] relaxed this assumption

– giving a 𝑂(𝜆3) multiplicative approximation algorithm that runs in truly sublinear time

when 𝜆 = |LIS(𝑓)|/𝑛. Later [4] improved the approximation factor to 𝑂(𝜆𝜖) for arbitrary

𝜖 > 0 while maintaining sublinear runtime. In a similar fashion, we can view the problem of

estimating the size of LIS as a problem of estimating the hamming distance to monotonic-

ity. [1] gives a (2 + 𝜖)-multiplicative approximation of such distance that runs in 𝑂(log 𝑛)

with constant success probability; however, this does not guarantees the same multiplicative

approximation for |LIS(𝑓)|.

Perhaps one of the most recent developments are due to [5] where the authors presented an

𝜖-additive approximation algorithm using ̃︀𝑂(𝑟𝜖−3) samples. Nevertheless, no a comprehensive

runtime analysis was provided, which may be exponentially large due to the nature of their

algorithm. In our paper, we introduce a small tweak to their algorithm that can bring

the sample complexity down to ̃︀𝑂(𝑟𝜖−2) – improving by a factor of 1/𝜖. In particular,

we make adjustment to the algorithm in a fashion that we do less samplings, but more

in-depth analysis yields similar results. Moreover, we present a detailed analysis of the

algorithm which guarantees not only sample complexity but also runtime of ̃︀𝑂(𝑟𝜖−2). The

implementation relies on dynamic programming which will be covered later in section 4.

Formally, we present the following theorem.

Theorem 2. Given an additive error parameter 𝜖 < 1, confidence parameter 𝛿 < 1, and

a sized-𝑟 value pool 𝒱 . There exists an algorithm that takes in a sequence 𝑓 of length 𝑛

whose values are from 𝒱 , and output the approximation of |LIS(𝑓)| within 𝜖 · 𝑛 additive

error. The algorithm succeeds with probability at least 1 − 𝛿, have sample complexity

12

Θ(𝑟𝜖−2 log 𝜖−1 + 𝜖−2 log 𝛿−1), and runtime 𝑂((𝑟𝜖−2 log 𝜖−1 + 𝜖−2 log 𝛿−1) (log 𝑟 + log 𝜖−1)).

Finally, we give several extension of the algorithms – showing similar algorithms can be

used to approximate edit distance (to monotonicity) in 2-dimensional arrays and 𝐿1 distance

(to monotonicity) within small additive error using only 𝑝𝑜𝑙𝑦(𝑟, 𝜖−1) samples.

13

14

Chapter 2

Notations and Preliminaries

In this section, we define the notation used in this paper. For simplicity we will assume

that the pool of values of size 𝑟 is [𝑟]. Our length-𝑛 sequence 𝑓 can be viewed as a function

𝑓 : [𝑛]→ [𝑟]. For a (sub)sequence 𝑆, we let |𝑆| represent its length. For two (sub)sequences

𝑆, 𝑇 , we let 𝑆 ∩ 𝑇 be their common subsequence consisting of elements which appear at the

exact same positions in both 𝑆 and 𝑇 . With these notations, we observe that |𝑆 ∩ 𝑇 | is the

number of elements that appear at the same position in both 𝑆 and 𝑇 .

Given a sequence 𝑓 , we call 𝐵 a block of 𝑓 if it occupies consecutive elements in 𝑓 . For

a block 𝐵 and a value 𝑣 ∈ [𝑟], we let 𝑁(𝐵, 𝑣) be the number of occurrences of 𝑣 in 𝐵. For

a (sub)sequence 𝑆 and a block 𝐵 of 𝑓 , we let 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑆,𝐵) represent the part of 𝑆 that

occurs within 𝐵.

In section 3, we call ℒ = (𝑙1, ..., 𝑙𝑡) ∈ [𝑟]𝑡 a label iff 1 ≤ 𝑙1 ≤ ... ≤ 𝑙𝑡 ≤ 𝑟. Note that this

notation is borrowed from [5]. Finally, suppose that we partition 𝑓 into consecutive blocks

(𝐵1, ..., 𝐵𝑡) := ℬ. We let a pseudosolution with respect to the sequence 𝑓 , blocks ℬ, and

label ℒ, denoted, 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ) be a subsequence of 𝑓 which contains all 𝑙1’s from 𝐵1,

all 𝑙2’s from 𝐵2, and so on. Because 𝑙1 ≤ ... ≤ 𝑙𝑡, we then have 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ) being an

increasing subsequence.

In section 5, we explore an extension of LIS approximation into a 2-dimensional array

setting. In particular, suppose we have an 𝑚 × 𝑛 array 𝐴 ∈ [𝑟]𝑚×𝑛. We say that 𝐴 is

15

increasing iff 𝐴(𝑖, 𝑗) ≤ 𝐴(𝑖′, 𝑗′) for any (𝑖, 𝑗) ≲ (𝑖′, 𝑗′), meaning that 𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗′. We

call 𝑃 a partial array of 𝐴 iff 𝑃 consists of some entries of 𝐴. Informally, we can think of an

array as a table, and a partial array occupies some entries of such table. A partial array 𝑃

is increasing iff 𝐴(𝑖, 𝑗) ≤ 𝐴(𝑖′, 𝑗′) for any (𝑖, 𝑗) ≲ (𝑖′, 𝑗′) where (𝑖, 𝑗) and (𝑖′, 𝑗′) belongs to 𝑃 .

Finally, given an array 𝐴, say 𝑃 is 𝐴’s Largest Increasing Partial-Array, denoted LIPA(𝐴),

iff there is no increasing partial array whose size is larger than that of 𝑃 .

We note the the notations of block, label, pseudosolution, and agreement can be extended

to higher dimensional arrays. Specifically, given a 2-dimensional array 𝐴, call 𝐵 a block of

𝐴 if it occupies a rectangular portion of 𝐴. Suppose that we partition 𝐴 into consecutive

blocks 𝑝 × 𝑞 blocks {𝐵𝑖,𝑗 | (𝑖, 𝑗) ∈ [𝑝] × [𝑞]} := ℬ. Call ℒ ∈ [𝑟]𝑝×𝑞 a label iff ℒ𝑖,𝑗 ≤ ℒ𝑖′,𝑗′ for

any (𝑖, 𝑗) ≲ (𝑖′, 𝑗′) ∈ [𝑝] × [𝑞]. Finally, we let a pseudosolution with respect to the array 𝐴,

blocks ℬ, and label ℒ, denoted, 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝐴,ℬ,ℒ) be a partial array of 𝐴 which contains

all ℒ𝑖,𝑗’s from 𝐵𝑖,𝑗 for any (𝑖, 𝑗) ∈ [𝑝]× [𝑞].

16

Chapter 3

Additive LIS Approximation Algorithm

The core idea of our algorithm is as follows. We first split the input sequence 𝑓 into 𝑡

equal consecutive blocks called (𝐵1, ..., 𝐵𝑡) := ℬ. For each block 𝐵𝑖, we will take 𝑠 samples

uniformly and independently called 𝑆𝑖, and record the number of occurrences of each number

in [𝑟]. Informally, the samples 𝑆𝑖 approximately represent the distribution of values in 𝐵𝑖.

We collectively call the set of all 𝑡𝑠 samples taken 𝒮 := (𝑆1, ..., 𝑆𝑡).

Our goal is to, for every possible label ℒ = (𝑙1, ..., 𝑙𝑡), approximate |𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ)|

within a small additive error. To do so, for each 𝑖 ∈ [𝑡], we denote 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐵𝑖, 𝑙𝑖, 𝑆𝑖)

to be the number of occurrences of 𝑙𝑖 among the 𝑠 samples 𝑆𝑖 taken from block 𝐵𝑖. We

further denote denote 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮) =
∑︀

𝑖∈[𝑡] 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐵𝑖, 𝑙𝑖, 𝑆𝑖) to be the number

of agreements of samples 𝒮 with pseudosolution with respect to label ℒ = (𝑙1, ..., 𝑙𝑡), i.e.

𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ). We then claim that, 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,𝒫 ,𝒮), up to a normalization factor,

approximates 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,𝒫).

Below, we propose our algorithm. It is worth remarking that this algorithm does yield

the desired query complexity, but not the desired runtime, but it is more understandable and

easier to analyze correctness and error probability. Later on in section 4, we will improve it

to the desired runtime. Our algorithm resembles that of [5], but we change parameters and

structure of the algorithm to get a slightly better query complexity.

17

Algorithm 1 : LIS-Approximate
Input: 𝑟 ∈ Z+, length-𝑛 sequence 𝑓 where each entry in the sequence is an element of [𝑟],
additive error parameter 𝜖, confidence parameter 𝛿

1: 𝑡← 100𝑟/𝜖

2: Choose 𝑠 such that 𝑡𝑠 = 30000𝜖−2 · (𝑟 log (100𝑒𝜖−1) + log (2𝛿)−1)

3: 𝐴← empty 𝑡× 𝑟 array

4: split 𝑓 into 𝑡 equal consecutive blocks 𝐵1, ..., 𝐵𝑡

5: for each block 𝐵𝑖 do

6: uniformly and independently sample 𝑠 elements from 𝐵𝑖

7: for each 𝑗 ∈ [𝑟] do

8: 𝐴(𝑖, 𝑗)← the number of occurrences of 𝑗 in those 𝑠 samples

9: for every possible label ℒ = (𝑙1, ..., 𝑙𝑡) do

10: calculate 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮) =
∑︀

𝑖∈[𝑡] 𝐴(𝑖, 𝑙𝑖) =
∑︀

𝑖∈[𝑡] 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐵𝑖, 𝑙𝑖, 𝑆𝑖)

11: ℒ𝑚𝑎𝑥 ← label with largest 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ, ·,𝒮)

12: ̃︀𝐿← 𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ𝑚𝑎𝑥,𝒮)

13: output ̃︀𝐿
The correctness of this algorithm is equivalent to the following lemma.

Lemma 3. Let OPT = LIS(𝑓) be 𝑓 ’s LIS with size OPTVAL = |OPT|. Then with probability

at least 1− 𝛿, we have ̃︀𝐿 outputted by Algorithm 1 satisfies |̃︀𝐿− OPTVAL| ≤ 𝜖𝑛.

To prove this Lemma, we will instead prove a series of smaller claims. Our proof strategy

is based on the fact that we only need to consider maximal increasing subsequences (MIS) of

𝑓 because LIS(𝑓) must be maximal. Furthermore, any non-maximal increasing subsequence

can be extended by adding in-order elements to it until it is maximal. We claim that for every

MIS 𝑀 , there exists a pseudosolution that is close to it in size, and vice versa. Therefore, to

approximate LIS, which is the longest MIS, we can find instead the largest pseudosolution.

On a high level, we will show that for every MIS 𝑀 there exists some pseudosolution

𝒫𝑀 for which 𝑀 and 𝒫𝑀 = 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ𝑀) are close in size (Claim 4). Then Claim 6

18

Figure 3-1: Examples of the construction of 𝐿 and 𝑃 from 𝑀 . A sequence 𝑓 of length 18,
which is split into six blocks of three consecutive elements, is given (row 1) along with its
MIS 𝑀 (row 2). Each block 𝑖 is associated with 𝑉𝑖 which is the set of its unique elements
appearing in 𝑀 (row 3). To construct ℒ = (𝑙1, ..., 𝑙6), we iterate for three rounds. Round
1 assigns those 𝑙𝑖 whose |𝑉𝑖| = 1 (row 6). Round 2 assigns those 𝑙𝑖 whose |𝑉𝑖| ≥ 2 (row 7).
Round 3 assigns those 𝑙𝑖 whose |𝑉𝑖| = 0 (row 8). Finally, we can construct pseudosolution 𝒫
from the label ℒ just created (row 9).

shows that with high probability every pseudosolution 𝒫 = 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ) has its size

approximately ≈ 𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮). Therefore, we should be able to approximate

OPTVAL = |LIS(𝑓)| = max
MIS 𝑀

|𝑀 | ≈ max
label ℒ

|𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ)|

≈ 𝑛

𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ𝑚𝑎𝑥,𝒮)

= ̃︀𝐿.
Claim 8 offers an analysis of the magnitude of additive error |̃︀𝐿− OPT|.

Claim 4. For each of 𝑓 ’s maximal increasing subsequences 𝑀 , there exists a pseudosolution

𝒫 defined by a labeling ℒ = (𝑙1, ..., 𝑙𝑡), i.e. 𝒫 = 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ), such that ||𝑀 | − |𝒫|| ≤

𝑟𝑛/𝑡, where 𝑟, 𝑛, and 𝑡 are given in algorithm 1. With the parameters specified in Algorithm

1, the bound becomes 𝜖𝑛/100.

Proof. Recall that we split 𝑓 into 𝑡 blocks (𝐵1, ..., 𝐵𝑡) := ℬ. For each 𝑖 ∈ [𝑡], let 𝑉𝑖 be the

set of its values that appear in 𝑀 ∩𝐵𝑖.

We will then build ℒ = (𝑙1, ..., 𝑙𝑡) by iterating over 𝑉1, ..., 𝑉𝑡 for 3 rounds. In each round

19

we do as follows (see Figure 3-1.)

• Round 1: for those 𝑉𝑖 with |𝑉𝑖| = 1, set 𝑙𝑖 to be the (only) element of 𝑉𝑖.

• Round 2: for those 𝑉𝑖 with |𝑉𝑖| ≥ 2, set 𝑙𝑖 to be an arbitrary element of 𝑉𝑖

• Round 3: for those 𝑉𝑖 with |𝑉𝑖| = 0, set 𝑙𝑖 to be the closest 𝑙𝑗 that has already been

set.

We first need to verify that ℒ = (𝑙1, ..., 𝑙𝑡) is a valid labeling – i.e. 𝑙1 ≤ ... ≤ 𝑙𝑡. Notice

that in round 1 and round 2, we assign values to 𝑙𝑖 from 𝑉𝑖. As 𝑉𝑖’s are in non-decreasing

order (in accordance with 𝑀), there is no out-of-order 𝑙𝑖’s amongst those |𝑉𝑖| ≠ 0. In round

3, we fill in those 𝑙𝑖’s for |𝑉𝑖| ≠ 0 with their closest already-been-set 𝑙𝑗, we do not cause any

order violation. Therefore, the ordering 𝑙1 ≤ ... ≤ 𝑙𝑡 is guaranteed.

For those |𝑉𝑖| = 1, we notice that 𝑀 and 𝒫 are identical within 𝐵𝑖, as the label of 𝒫 for

block 𝐵𝑖 is the only element in 𝑀 ∩𝐵𝑖.

For those |𝑉𝑖| = 0, it means that 𝑀 does to take any elements in 𝐵𝑖. If 𝑙𝑖 = 𝑙𝑗 did appear

in 𝐵𝑖, we could have extended 𝑀 by adding in those 𝑙𝑗’s in 𝐵𝑖 which contradicts to the

maximality of 𝑀 . Therefore, within block 𝐵𝑖, no 𝑙𝑖 appears as well as 𝑀 , meaning that 𝑀

and 𝒫 are identical within 𝐵𝑖,

For those |𝑉𝑖| ≥ 2, within 𝐵𝑖, we have 𝑀 and 𝒫 differed by at most 𝑛/𝑡 elements since

they both are contained in a sized-(𝑛/𝑡) block 𝐵𝑖.

We also notice that there are at most 𝑟−1 blocks that make |𝑉𝑖| ≥ 2 since two consecutive

blocks of this type 𝐵𝑖 and 𝐵𝑗 can share at most 1 element in 𝑉𝑖 and 𝑉𝑗 (tail of prior block

and head of latter block) and the union of these 𝑉 ’s have to have at most 𝑟 elements. An

alternative-but-informal way to view this argument is to consider the worst case scenario

when 𝑉𝑖 = {𝑖, 𝑖+ 1} for 𝑖 ∈ [𝑟 − 1]. So we can have at most 𝑟 − 1 blocks with |𝑉𝑖| ≥ 2.

Therefore, we have ||𝑀 | − |𝒫|| ≤ (𝑟 − 1) · 𝑛
𝑡
≤ 𝜖𝑛/100, as wished.

20

Definition 5. Say a pseudosolution 𝒫 of label ℒ is bad (with respect to samples 𝒮) iff

||𝒫| − 𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)| > 𝜖𝑛/100. In other words, the agreement of ℒ with the

samples 𝒮 does not approximate 𝒫 .

The following claim argues that any pseudosolution is bad with small probability.

Claim 6. For any pseudosolution 𝒫 , we have Pr (𝒫 is bad) ≤ 2 · exp(−𝜖2𝑡𝑠/30000).

Proof. Let 𝒫 be a pseudosolution with respect to label ℒ = (𝑙1, ..., 𝑙𝑡).

For any 𝑖 ∈ [𝑡] and 𝑗 ∈ [𝑠], denote 𝑍𝑖,𝑗 to be an indicator random variable of the following

event: the 𝑗th sample of 𝑆𝑖 is 𝑙𝑖. This means 𝐴(𝑖, 𝑙𝑖) =
∑︀

𝑗∈[𝑠] 𝑍𝑖, 𝑗. Moreover, all the 𝑍𝑖,𝑗’s

are independent.

We realize that

𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮) =
∑︁
𝑖∈[𝑡]

𝐴(𝑖, 𝑙𝑖) =
∑︁
𝑖∈[𝑡]

∑︁
𝑗∈[𝑠]

𝑍𝑖,𝑗.

This means we can view 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,𝒫 ,𝒮) as a sum of 𝑡𝑠 independent Bernoulli random

variables although their biases are varied. We then can use Chernoff bound to upper bound

the probability that 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,𝒫 ,𝒮) deviates much from its mean. We also realize that

E [𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)] =
∑︁
𝑖∈[𝑡]

∑︁
𝑗∈[𝑠]

E(𝑍𝑖,𝑗)

=
∑︁
𝑖∈[𝑡]

∑︁
𝑗∈[𝑠]

|𝒫 ∩𝐵𝑖|
|𝐵𝑖|

=
𝑡𝑠

𝑛
·
∑︁
𝑖∈[𝑡]

|𝒫 ∩𝐵𝑖|

=
𝑡𝑠

𝑛
· |𝒫| .

We note that |𝒫| ≤ 𝑛 as 𝒫 is a subsequence of 𝑓 which has length at most 𝑛. Therefore,

21

we can evaluate:

Pr(𝒫 is bad) = Pr
(︁
||𝒫| − 𝑛

𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)| > 𝜖𝑛/100

)︁
= Pr

(︂⃒⃒⃒⃒
𝑡𝑠

𝑛
· |𝒫| − 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)

⃒⃒⃒⃒
>

𝜖𝑡𝑠

100

)︂
= Pr

(︂
|𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)− E(𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮))| > 𝜖𝑡𝑠

100

)︂
≤ 2 · exp

(︂
− 𝜖2𝑡2𝑠2

30000 · E[𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)]

)︂
= 2 · exp

(︂
− 𝜖2𝑡2𝑠2

30000 · (𝑡𝑠/𝑛) · |𝒫|

)︂
≤ 2 · exp

(︂
− 𝜖2𝑡2𝑠2

30000 · (𝑡𝑠/𝑛) · 𝑛

)︂
= 2 · exp

(︂
− 𝜖2𝑡𝑠

30000

)︂
, as wished.

Claim 7. With parameters specified in Algorithm 1, the probability that there’s no bad

pseudosolutions is at least 1− 𝛿.

Proof. We first ask how many pseudosolutions, i.e. labels, there are. We realize that in

order for ℒ = (𝑙1, ..., 𝑙𝑡) to be a pseudosolution, it is sufficient and necessary that 𝑙1 ≤ ... ≤ 𝑙𝑡

are chosen from {1, ..., 𝑟}. Choosing (𝑙1, ..., 𝑙𝑡) is equivalent to choosing to put 𝑟 − 1 bars

into 𝑡 slots 𝐵1, ..., 𝐵𝑡 so that 𝑟 − 1 bars split consecutive blocks 𝐵1, ..., 𝐵𝑡 into 𝑟 groups

(can be empty) which group 𝑖 is assigned value 𝑖. Thus, the number of pseudosolutions is

upper-bounded by

(︂
𝑡+ 𝑟 − 1

𝑟 − 1

)︂
≤

(︂
𝑒(𝑡+ 𝑟 − 1)

𝑟 − 1

)︂𝑟−1

≈ (100𝑒𝜖−1)𝑟−1 ≈ exp(𝑟 · log (100𝑒𝜖−1))

Thus, from the union bound, the probability that there’s no such bad pseudosolution is

22

at most

Pr(bad pseudosolution exists) ≤ 2 · exp
(︂
− 𝜖2𝑡𝑠

30000

)︂
· exp(𝑟 · log (100𝑒𝜖−1))

= 2 · exp
(︂
𝑟 · log (100𝑒𝜖−1)− 𝜖2𝑡𝑠

30000

)︂

By choosing 𝑡𝑠 = 30000𝜖−2 · (𝑟 log (100𝑒𝜖−1) + log (2𝛿)−1) = 𝑂(𝑟𝜖−2 log 𝜖−1 + 𝜖−2 log 𝛿−1),

such probability is upper bounded by 𝛿 as desired.

Claim 8. If there are no bad pseudosolutions, then
⃒⃒⃒̃︀𝐿− OPTVAL

⃒⃒⃒
≤ 𝜖𝑛.

Proof. Let 𝒫𝑚𝑎𝑥 = 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ𝑚𝑎𝑥) be the pseudosolution with respect to ℒ𝑚𝑎𝑥. First

we recall that 𝒫 not being bad means ||𝒫𝑚𝑎𝑥| − 𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ𝑚𝑎𝑥,𝒮)| ≤ 𝜖𝑛/100. This

implies ̃︀𝐿 = 𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ𝑚𝑎𝑥,𝒮) ≤ |𝒫𝑚𝑎𝑥|+ 𝜖𝑛/100 ≤ OPTVAL + 𝜖𝑛/100 since |𝒫𝑚𝑎𝑥|

is an increasing subsequence in 𝑓 whose length has to be at most OPTVAL = |LIS(𝑓)|.

Denote 𝒫OPT to be a pseudosolution that ||OPT| − |𝒫OPT|| ≤ 𝜖𝑛/100. Since OPT is an

LIS which in turn is maximal, the existence 𝒫OPT is given by Claim 4. Let ℒOPT be the

label corresponding to 𝒫OPT. The assumption that 𝒫OPT is not bad tells us that ||𝒫OPT| −
𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒOPT,𝒮)| ≤ 𝜖𝑛/100. From triangle inequality, we then have ||OPT| −

𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒOPT,𝒮)| ≤ 𝜖𝑛/50. We then have 𝑛

𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒOPT,𝒮) ≥ |OPT| −

𝜖𝑛/50 = OPTVAL − 𝜖𝑛/50. Recall that ℒ𝑚𝑎𝑥 is the label with largest 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ, ·,𝒮).

Therefore, ̃︀𝐿 = 𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ𝑚𝑎𝑥,𝒮) ≥ 𝑛

𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒOPT,𝒮) ≥ OPTVAL − 𝜖𝑛/50.

Therefore we now have −𝜖𝑛/100 ≤ ̃︀𝐿− OPTVAL ≤ 𝜖𝑛/50, which means |̃︀𝐿− OPTVAL| ≤

𝜖𝑛/50 ≤ 𝜖𝑛 as wished.

Combining Claim 8 and Claim 7 proves Lemma 3 – as there’s probability at least 1− 𝛿

that no bad pseudosolution exists, which implies
⃒⃒⃒̃︀𝐿− OPTVAL

⃒⃒⃒
≤ 𝜖𝑛.

23

24

Chapter 4

Improving Runtime via Dynamic

Programming

In this section, we address two major issues of Algorithm 1 that prevent us from getting a

fast runtime. The first issue is the exhaustive search of ℒ𝑚𝑎𝑥 which a naive implementation

requires iterations over an exponential number of labels. The second issue is the overkilling

process of filling up 𝑇 . We make a crucial reservation that 𝐴 is sparse, meaning that a large

fraction of 𝐴 is 0. Moreover, those zero entries of 𝐴 has little to no no use in updating entries

of 𝑇 . Thus, it should suffice to store only non-zero entries of 𝐴 and update 𝑇 properly.

The first issue is resolved by using dynamic programming (section 4.1) and the second

issue is resolved by restructuring 𝐴 so that it only records non-zero entries and implementing

a special data structure to store 𝑇 (section 4.2).

4.1 Dynamic Programming Framework

In Algorithm 1, we determine ℒ𝑚𝑎𝑥 by enumerating over all possible pseudosolutions. How-

ever, the total number of pseudosolution is, due to Claim ??, approximately exp(𝑟·log (100𝑒𝜖−1))

which is highly undesirable. Therefore we need to circumvent the exhaustive search. We will

resolve this problem by using dynamic programming. To be precise, we restate the problem of

25

finding ℒ𝑚𝑎𝑥 as follows. Each block 𝐵𝑖 has 𝑟 non-negative values 𝐴(𝑖, 1), ..., 𝐴(𝑖, 𝑟) for which

𝐴(𝑖, 𝑗) records 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐵𝑖, 𝑆𝑖, 𝑗) = the number of occurrences of 𝑗 among the 𝑠 samples

𝑆𝑖. We then want to determine the non-decreasing sequence (label) ℒ𝑚𝑎𝑥 = (𝑙1, ..., 𝑙𝑡) ∈ [𝑟]𝑡

that maximizes
∑︀

𝑖∈𝑡𝐴(𝑖, 𝑙𝑖). We propose the following algorithm.

The algorithm uses dynamic programming for finding ℒ𝑚𝑎𝑥. It assigns 𝑙1 ≤ 𝑙2 ≤ ... ≤ 𝑙𝑡

in order, and constructs a table 𝑇 which records 𝑇 (𝑖, 𝑣) which is, under a constraint that

𝑙𝑖 = 𝑣, the maximum summation of
∑︀

1≤𝑗≤𝑖 𝐴(𝑗, 𝑙𝑗). In other words, 𝑇 (𝑖, 𝑣) is the length of

longest increasing subsequence among the first 𝑖 blocks conditioned that 𝑙𝑖 = 𝑣. Once the

table 𝑇 is full, we can recover 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℒ𝑚𝑎𝑥) by looking up the maximum value in the

array 𝑇 , and can reconstruct ℒ𝑚𝑎𝑥 by backtracking assignments at each of 𝑡 blocks. The

correctness of Algorithm 2 is justified with its base cases and updating rules as follows.

Algorithm 2 : Find-Lmax-Dense(𝐴)
1: 𝑇 ← empty 𝑡× 𝑟 array initialized with 0’s

2: for 𝑣 ∈ [𝑟] do

3: 𝑇 (1, 𝑣)← 𝐴(1, 𝑣)

4: initialization of the first block

5: for 𝑖 = 1, ..., 𝑡− 1 do

6: for 𝑣 = 1, ..., 𝑟 do

7: 𝑇 (𝑖+ 1, 𝑣)← 𝐴(𝑖+ 1, 𝑣) + max1≤𝑢≤𝑣 𝑇 (𝑖, 𝑢)

8: (𝜏, 𝛾)← max𝜏∈[𝑡],𝛾∈[𝑟] 𝑇 (𝜏, 𝛾)

9: output the label ℒ𝑚𝑎𝑥 = (𝑙1, ..., 𝑙𝑡) that yields 𝑇 (𝜏, 𝛾)

Theorem 9. Algorithm 2 correctly determines ℒ𝑚𝑎𝑥 and runs in 𝑂(𝑟𝑡) time.

Proof. Notice that we begin with 𝑇 empty, and will constantly fill up the array 𝑇 (𝑖, 𝑣) in in

increasing order of (𝑖, 𝑣). Moreover, once we assign a value to 𝑇 (𝑖, 𝑣), it remains unchanged

throughout the algorithm. We will prove by strong induction the following statement, de-

26

noted by 𝐻(𝑖, 𝑣).

𝑇 (𝑖, 𝑣) = max
(𝑙1,...,𝑙𝑖=𝑣)∈[𝑟]𝑖
𝑙1≤...≤𝑙𝑖=𝑣

∑︁
𝑗∈[𝑖]

𝐴(𝑗, 𝑙𝑗).

For base cases, notice that 𝐻(1, 𝑣) means 𝑇 (𝑖, 𝑣) = 𝐴(1, 𝑣) which is trivially true due to

lines 2-3 of the algorithm.

Now we need to justify the induction step. Assume that 𝐻(𝑖′, 𝑤) is true for all 𝑖′ ≤ 𝑖 and

𝑤 ∈ [𝑟]. For any 𝑣 ∈ [𝑟], we can determine 𝑇 (𝑖+ 1, 𝑣) as follows.

𝑇 (𝑖+ 1, 𝑣) = 𝐴(𝑖+ 1, 𝑣) + max
1≤𝑢≤𝑣

𝑇 (𝑖, 𝑢)

= 𝐴(𝑖+ 1, 𝑣) + max
1≤𝑢≤𝑣

max
(𝑙1,...,𝑙𝑖=𝑢)∈[𝑟]𝑖
𝑙1≤...≤𝑙𝑖=𝑢

∑︁
𝑗∈[𝑖]

𝐴(𝑗, 𝑙𝑗)

= max
(𝑙1,...,𝑙𝑖+1=𝑣)∈[𝑟]𝑖+1

𝑙1≤...≤𝑙𝑖+1=𝑣

∑︁
𝑗∈[𝑖+1]

𝐴(𝑗, 𝑙𝑗)

which implies that 𝐻(𝑖+ 1, 𝑣) is true. This concludes the induction step.

Now we analyze the runtime. We notice that for each 𝑖 in line 4, we need to compute

max1≤𝑢≤𝑣 𝑇 (𝑖, 𝑢) for each 𝑣 ∈ [𝑟]. This can be done within 𝑂(𝑟) by iterating over 𝑇 (𝑖, 𝑢)’s

an increasing order of 𝑢, and record the maximum up to that moment. Overall, each round

of line 5-6 takes 𝑂(𝑟). This means the algorithm takes overall time 𝑂(𝑡𝑟), as wished.

Finally, to derive the largest summation
∑︀

𝑖∈𝑡 𝐴(𝑖, 𝑙𝑖) over all 𝑡 blocks, we can simply look

at 𝑇 (𝑡, 𝑟). Note that we can determine the (𝑙1, ..., 𝑙𝑡) that yields 𝑇 (𝑡, 𝑟) by keeping track of

𝑢 for each 𝑇 (𝑖 + 1, 𝑣) in line 6 of the algorithm, and then backtracking from 𝑇 (𝑡, 𝑟). The

details of the bookkeeping is omitted for reasons of succinctness.

In total, the algorithm runs in Θ(𝑡𝑟) = Θ(𝑟2𝜖−1) – which now improves from exponential

(in exhaustive search) to polynomial time.

27

4.2 Restructuring 𝐴

In the previous section, we notice that the runtime is also lower-bounded by the size of

𝐴 which is 𝑡 · 𝑟. However, we make another crucial observation that 𝐴 is indeed sparse,

meaning that only a small fraction is non-zero. This is because for any 𝑖 ∈ [𝑡], there are at

most 𝑠 = 𝑂(𝜖−1) out of 𝑟 entries of 𝐴(𝑖, ·) that are non-zero since we only do 𝑠 samples per

block. In particular, we denote 𝑈𝑖 ⊆ [𝑟] to be the set of unique values appearing in any of

the samples 𝑆𝑖 of block 𝐵𝑖. In other words, those numbers in 𝑈𝑖 occurs at least once in 𝑆𝑖,

and those not in 𝑈𝑖 do not occur in 𝑆𝑖; thus can be ignored. With this prior knowledge of 𝐴’s

sparsity, we can cut down the runtime of Algorithm 2 by proposing an alternative algorithm

for finding ℒ𝑚𝑎𝑥.

Algorithm 3 : Find-Lmax-Sparse(𝐴)
1: 𝑇 ← an empty look-up table

2: for 𝑖 ∈ [𝑡] in increasing order do

3: sort 𝑈𝑖 in an increasing order

4: for 𝑣 ∈ 𝑈1 in increasing order do

5: 𝑇 (1, 𝑣)← 𝐴(1, 𝑣)

6: for 𝑖 = 1, ..., 𝑡− 1 do

7: for 𝑣 ∈ 𝑈𝑖+1 do

8: 𝑇 (𝑖+ 1, 𝑣)← 𝐴(𝑖+ 1, 𝑣) + max 𝑗≤𝑖
𝑢≤𝑣,𝑢∈𝑈𝑗

𝑇 (𝑗, 𝑢)

9: (𝜏, 𝛾)← max𝜏∈[𝑡],𝛾∈𝑈𝜏 𝑇 (𝜏, 𝛾)

10: output the label ℒ𝑚𝑎𝑥 = (𝑙1, ..., 𝑙𝑡) that yields 𝑇 (𝜏, 𝛾)

We make a crucial note that runtime of the above algorithm is majorly dominated by

operations performed on 𝑇 (retrieve, update values) which we will discuss later. In this

section, we will only show the correctness of the algorithm. Then in section 4.3, we will

discuss the data structure which will be used to store 𝑇 .

In Algorithm 2, the 0s entries of 𝐴 do not contribute to maximization updates – thus

28

can be ignored. In other words, we only care about non-zero entries of 𝐴. Therefore, we

can redesign the structure of 𝐴 so that it only stores non-zero entries, which are at most 𝑠

entries per block (as we took 𝑠 samples per block.)

On a high level, Algorithm 2 and Algorithm 3 behave in the same way with slight modi-

fications on how to store information (𝐴 and 𝑇). But with these modifications, we no longer

have to update all 𝑇 (𝑖, 𝑣) for every 𝑖 ∈ [𝑡] and 𝑣 ∈ [𝑟]. We instead only need to update

𝑇 (𝑖, 𝑣) for those 𝑣 ∈ 𝑈𝑖 which is at most 𝑠 times for each 𝑖. We now justify the algorithm’s

correctness by discussing its updating rules.

Theorem 10. Algorithm 3 correctly determines ℒ𝑚𝑎𝑥.

Proof. The correctness proof of this algorithm is almost identical to that of Algorithm 2. We

are going to use induction on the following hypothesis, denoted 𝐻(𝑖, 𝑣) whenever 𝑣 ∈ 𝑆(𝑖).

𝑇 (𝑖, 𝑣) = max
(𝑙1,...,𝑙𝑖=𝑣)∈[𝑟]𝑖
𝑙1≤...≤𝑙𝑖=𝑣

𝑙1∈𝑈1,...,𝑙𝑖∈𝑈𝑖

∑︁
𝑘∈[𝑖]

𝐴(𝑘, 𝑙𝑘).

For base cases 𝑖 = 1 and 𝑣 ∈ 𝑆1, notice that 𝐻(1, 𝑣) means 𝑇 (𝑖, 𝑣) = 𝐴(1, 𝑣) which is

trivial due to lines 4-5. Now we need to justify the induction step. Let us assume that

𝐻(𝑖′, 𝑤) is true for all 𝑖′ ≤ 𝑖 and $𝑤 ∈ 𝑈𝑖. For any 𝑣 ∈ 𝑈𝑖+1, we can determine 𝑇 (𝑖+ 1, 𝑣) as

follows.

𝑇 (𝑖+ 1, 𝑣) = 𝐴(𝑖+ 1, 𝑣) + max
𝑗≤𝑖

𝑢≤𝑣,𝑢∈𝑈𝑗

𝑇 (𝑗, 𝑢)

= 𝐴(𝑖+ 1, 𝑣) + max
𝑗≤𝑖

𝑢≤𝑣,𝑢∈𝑈𝑗

max
(𝑙1,...,𝑙𝑗=𝑢)∈[𝑟]𝑗

𝑙1≤...≤𝑙𝑗=𝑢
𝑙1∈𝑈1,...,𝑙𝑗∈𝑈𝑗

∑︁
𝑘∈[𝑖]

𝐴(𝑘, 𝑙𝑘)

= max
(𝑙1,...,𝑙𝑖+1=𝑣)∈[𝑟]𝑖+1

𝑙1≤...≤𝑙𝑖+1=𝑣
𝑙1∈𝑈1,...,𝑙𝑖+1∈𝑈𝑖+1

∑︁
𝑘∈[𝑖+1]

𝐴(𝑘, 𝑙𝑘)

which implies that 𝐻(𝑖+ 1, 𝑣) is true. This concludes the induction step.

29

We can use the same bookkeeping technique to retrieve ℒ𝑚𝑎𝑥 once all 𝑇 (𝑖, 𝑣)’s are de-

termined. The runtime bottleneck of our algorithm is the derivation of max 𝑗≤𝑖
𝑢≤𝑣,𝑢∈𝑈𝑗

𝑇 (𝑗, 𝑢)

for every 𝑢 ∈ 𝑈𝑗. Naive implementation requires runtime as high as 𝑂(𝑡2𝑠). To reduce the

runtime, we first propose a useful data structure in which we call Maximum-Ordered Oracle.

4.3 Maximum-Ordered Oracle

In this section, we will discuss a special kind of oracle/data structure that will be useful

in reducing the runtime of Algorithm 3. In particular, we will use the oracle for storing 𝑇

which allows quick retrieval and updates.

Suppose that we have 𝑟 bins. Each bin contains one number at a time which can be

updated. Initially, at time 𝑡 = 0, each bin 𝑖 starts with a number 𝛽𝑖 := 𝑀𝑖,0. At each

timestep, we are allowed to increase the number in exactly one of the bins.

Formally, we denote 𝑀𝑖,𝑡 to be the number in bin 𝑖 at timestep 𝑡 (begins with 𝑡 = 0). At

timestep 𝑡, we can change the number in an arbitrary bin 𝑖 to 𝑐 for any 𝑐 > 𝑀𝑖,𝑡. As we only

change exactly one bin for each timestep, we will have 𝑀𝑖,𝑡+1 = 𝑐 and 𝑀𝑗,𝑡+1 = 𝑀𝑗,𝑡 for any

𝑗 ̸= 𝑖.

Define cumulative maximums of time 𝑡 to be an 𝑟-tuple (𝑚𝑖, ...,𝑚𝑟) where 𝑚𝑖 = max𝑗≤𝑖 𝑀𝑗,𝑡.

In other words, the cumulative maximum 𝑚𝑖 is the largest number among the first 𝑖 bins.

We say that the cumulative maximum increases at 𝑖 when 𝑚𝑖 > 𝑚𝑖−1, meaning that the

number in bin 𝑖 is strictly greater than all 𝑖− 1 prior bins.

We will build an oracle ℳ that supports the following operations (see Figure 4-1 for

demonstration.)

1. 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒(𝛽1, ..., 𝛽𝑟)

• Initializeℳ.

• Run in 𝑂(𝑟) time.

• Only called once at the beginning.

30

2. 𝑐𝑚𝑎𝑥(𝑖)

• Find the cumulative maximum 𝑚𝑖 = max(𝑀1,𝑡, ...,𝑀𝑖,𝑡) at the current time step

𝑡.

• Run in 𝑂(log 𝑟) time.

• Can be called at any point.

3. 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑎𝑙(𝑖, 𝑣)

• Update the value of bin 𝑖 to 𝑣 which is strictly greater than the current value 𝑀𝑖,𝑡.

• The execution of 𝑛 consecutive 𝑢𝑝𝑑𝑎𝑡𝑒𝑠_𝑣𝑎𝑙’s takes time 𝑂(𝑛 log 𝑟 + 𝑟).

• Calling 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑎𝑙 increments a timestep. In other words, the timestep 𝑡 means

that there has been 𝑡 value updates already performed.

In relation to Algorithm 3 for finding ℒ𝑚𝑎𝑥, we will have 𝑟 bins where bin 𝑣 contains the

maximum value of 𝑇 (·, 𝑣) that has already been assigned. For each 𝑖 = 1, ..., 𝑡− 1 in line 6,

it suffices to recover the cumulative maximum only once, and use it for every 𝑣 ∈ 𝑈𝑖+1. This

is as opposed to multiple look-ups for each 𝑣 ∈ 𝑈𝑖+1; thus should lower runtime as we desire.

Data Structure/Sketch. At any timestep 𝑘 when 𝑘 = number of values updates al-

ready performed, we want to keep track of all positions of changes in the cumulative max-

imums, along with the values they change into. That is; at time 𝑘, we record 𝑡𝑘 tuples

(𝑎1, 𝑏1), (𝑎2, 𝑏2), ..., (𝑎𝑡𝑘 , 𝑏𝑡𝑘), collectively called 𝒯𝑘, for which 𝑎𝑖’s are the positions where cu-

mulative maximums change, and 𝑏𝑖 is the value they changes into. In other words, for any

𝑎𝑖 ≤ 𝑙 < 𝑎𝑖+1, we have max(𝑀1,𝑡, ...,𝑀𝑙,𝑡) = 𝑏𝑖. We also keep 𝑎𝑖’s in an increasing order –

that is 1 ≤ 𝑎1 < ... < 𝑎𝑡𝑘 ≤ 𝑟.

Initialization. We can quickly go through 𝛽1, ...𝛽𝑟 and initialize the tuples 𝒯0 according

to data structure specified above. This takes time 𝑂(𝑟).

31

Figure 4-1: Shown above is a demonstration of Maximum-Ordered Oracleℳ with 10 bins.
Initial values 𝛽1, ..., 𝛽10 are given on the first row. The data structure/sketch is 𝒯 given in
the last column. Four 𝑢𝑝𝑑𝑎𝑡𝑒𝑣𝑎𝑙’s are demonstrated along with changes in 𝒯 (value updates
indicated in green entries). Finally, two 𝑐𝑚𝑎𝑥 queries are performed at each timestep 𝑡 = 3, 4.

cmax. Look at the current 𝒯𝑘. Find 𝑖 that 𝑎𝑖 ≤ 𝑣 < 𝑎𝑖+1 and output 𝑏𝑖. Finding such 𝑖

can be done via a binary search which takes time 𝑂(log 𝑟).

Update Values. Suppose that we are at a timestep 𝑘, that is we have done 𝑘 value updates

so far. Look at the current 𝒯𝑘. First, find 𝑗 that 𝑎𝑗 ≤ 𝑖 < 𝑎𝑗+1. This takes time 𝑂(log 𝑟) via

binary search.

1. If 𝑣 ≤ 𝑏𝑗, do nothing.

2. If 𝑣 > 𝑏𝑗, do as follows.

2.1. Add a tuple (𝑖, 𝑣) right after (𝑎𝑗, 𝑏𝑗).

2.2. For any 𝑗′ = 𝑗 + 1 to 𝑡𝑘, as long as 𝑏𝑗′ ≤ 𝑣, delete the tuple (𝑎𝑗′ , 𝑏𝑗′). Once we

encounter the first occurrence of 𝑏𝑗′ > 𝑣, we halt.

Suppose that we delete a total of 𝑑𝑘 tuples. The runtime of deletion is thus 𝑂(1 + 𝑑𝑘). In

total, at time step 𝑘, we spend time 𝑂(log 𝑟 + 𝑑𝑘).

32

Performing 𝑛 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑎𝑙𝑠 then takes time 𝑂(𝑛 log 𝑟+𝐷) where 𝐷 = 𝑑0+ ...+𝑑𝑛−1. Now

let us upper-bound 𝐷. We begin with 𝑡0 ≤ 𝑟 tuples at 𝒯0. During the 𝑛 updates, we add at

most 𝑛 tuples (at most 1 per update) and delete 𝐷 tuples. In the end, we have 𝑡𝑛 ≥ 1 tuples

at 𝒯𝑛. Therefore, we can write 1 ≤ 𝑡𝑛 ≤ 𝑡0 + 𝑛 −𝐷 ≤ 𝑟 + 𝑛 −𝐷 implying 𝐷 ≤ 𝑟 + 𝑛 − 1.

This concludes that the time spent for 𝑛 value updates is 𝑂(𝑛 log 𝑟 + 𝑟).

4.4 Finalizing Algorithm 1

Now we can finally integrate dynamic programming into LIS-Approximation via the use of

Maximum-Ordered Oracle. We first show that with the use of such oracle, Algortihm 3

(Find-Lmax-Sparse) can find ℒ𝑚𝑎𝑥 quickly.

Theorem 11. Using Maximum-Ordered Oracle, Algorithm 3 runs in 𝑂(𝑟 + 𝑡𝑠 log 𝑟𝑠).

Proof. Sorting 𝑈𝑖 for every 𝑖 ∈ [𝑡] takes 𝑂(𝑡𝑠 log 𝑠). The runtime bottleneck of our algorithm

is the derivation of max 𝑗≤𝑖
𝑢≤𝑣,𝑢∈𝑈𝑗

𝑇 (𝑗, 𝑢) for every 𝑢 ∈ 𝑈𝑗. To do so, we will use the maximum-

ordered oracle.

In particular, suppose that we have 𝑟 bins so that bin 𝑣 keeps track on the maximum

value of 𝑇 (·, 𝑣) that has already been assigned (this is exactly 𝑀𝑣,𝑡).

The initialization is equivalent to 𝛽𝑣 = 𝐴(1, 𝑣) if 𝑣 ∈ 𝑈1, and 0 otherwise. The process

takes 𝑂(𝑟) time.

Since we assign 𝑇 (𝑖, 𝑣)’s in an increasing order of 𝑖 and 𝑣 ∈ 𝑈𝑖, anytime we try to compute

max 𝑗≤𝑖
𝑢≤𝑣,𝑢∈𝑈𝑗

𝑇 (𝑗, 𝑢), we can simply ask for 𝑐𝑚𝑎𝑥(𝑣). Once we have assigned 𝑇 (𝑖 + 1, 𝑣), we

perform 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑎𝑙(𝑣, 𝑇 (𝑖+ 1, 𝑣)) iff 𝑇 (𝑖+ 1, 𝑣) > the value currently in bin 𝑣.

In total, we perform the initialization, 𝑡𝑠 rounds of 𝑐𝑚𝑎𝑥’s, and 𝑡𝑠 rounds of 𝑢𝑝𝑑𝑎𝑡𝑒_𝑣𝑎𝑙’s

which takes total time 𝑂(𝑟 + 𝑡𝑠 log 𝑟). Combining with the sorting time 𝑂(𝑡𝑠 log 𝑠), our

Algorithm 3 runs in 𝑂(𝑟 + 𝑡𝑠 log 𝑟𝑠)

The runtime of Algorithm 3 also dominates that of Algorithm 1, meaning that Algorithm

1 runs in 𝑂((𝑟𝜖−2 log 𝜖−1 + 𝜖−2 log 𝛿−1) (log 𝑟 + log 𝜖−1)). The number of samples we take is

still 𝑡𝑠 = Θ(𝑟𝜖−2 log 𝜖−1 + 𝜖−2 log 𝛿−1). These, togehter, proves Theorem 2.

33

34

Chapter 5

Estimating Edit Distances in

2-Dimensional Array

We consider the edit distance to monotonicity 𝑑mono
edit (·) of an array 𝐴 (of any dimension) to

be the smallest number of entries of 𝐴 needing alteration in order to make 𝐴 monotone.

When 𝐴 is a 1-dimensional array of length 𝑛, i.e. a sequence, we will have:

𝑑mono
edit (𝐴) = min

monotone sequence 𝐵
of length 𝑛

⎛⎝∑︁
𝑖∈[𝑛]

1𝐴(𝑖)̸=𝐵(𝑖)

⎞⎠
On the other hand, we have 𝑑mono

edit (𝐴) = |𝐴| − |LIS(𝐴)| since it suffices to change only

the entries that are not in LIS(𝐴) in order to make 𝐴 monotone. Therefore, to approximate

edit distance in 1-dimensional array, we can use Algorithm 3 to estimate |LIS(𝐴)| and then

subtract it from |𝐴| = 𝑛. The approximated edit distance also has 𝜖𝑛 additive error.

Approximating edit distance 𝑑mono
edit (·) of a 2-dimensional array can be done in a similar

fashion via extensions of Theorem 2 and Algorithm 3.. In particular, given an 𝑚× 𝑛 array

𝐴, we denote

𝑑mono
edit (𝐴) = min

monotone array 𝐵
of dimension 𝑚× 𝑛

⎛⎝ ∑︁
𝑖∈[𝑚],𝑗∈[𝑛]

1𝐴(𝑖,𝑗)̸=𝐵(𝑖,𝑗)

⎞⎠ .

Similar to the 1-dimensional cases, it suffices to additively approximate the size of 𝐴’s

35

Largest Increasing Partial-Array, denoted LIPA(𝐴), and subtract it from 𝑚𝑛. Formally, we

propose the following theorem.

Theorem 12. Let 𝐴 is a 𝑚× 𝑛 2-dimensional array (𝑚 ≤ 𝑛) whose entries are in [𝑟]. Let 𝜖

be an additive error parameter. Then there is an algorithm that estimates 𝑑mono
edit (𝐴) within

𝜖𝑚𝑛 additive error with probability at least 1− 𝛿 using Θ
(︀
𝑟2𝜖−3 log

(︀
1 + 𝜖𝑚

𝑟

)︀
+ 𝜖−2 log 𝛿−1

)︀
samples.

Algorithm 4 : LIS-Approximate
Input: 𝑟 ∈ Z+, 𝑚× 𝑛 array 𝑓 ∈ [𝑟]𝑚×𝑛, additive error parameter 𝜖, confidence parameter 𝛿
1: 𝑡← 100𝑟/𝜖

2: Choose 𝑠 such that 𝑡𝑚𝑠 = 30000𝜖−2 · (100𝑟2𝜖−1(1 + log(1 + 𝜖𝑚/100𝑟)) + log (2/𝛿)) ≈

Θ
(︀
𝑟2𝜖−3 log

(︀
1 + 𝜖𝑚

𝑟

)︀
+ 𝜖−2 log 𝛿−1

)︀
3: split 𝑓 into 𝑚× 𝑡 subarrays; each of size 1× (𝑛/𝑡); namely 𝐵𝑖,𝑗 for each 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑡]

4: for each 𝐵𝑖,𝑗 do

5: uniformly and independently sample 𝑠 elements from 𝐵𝑖,𝑗

6: for each 𝑘 ∈ [𝑟] do

7: 𝐴(𝑖, 𝑗, 𝑘)← the number of occurrences of 𝑘 in those 𝑠 samples

8: for every possible (monotone) label ℒ ∈ [𝑟]𝑚×[𝑡] do

9: calculate 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮) =
∑︀

𝑖∈[𝑚]

∑︀
𝑗∈[𝑡] 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(𝐵𝑖,𝑗, 𝑙𝑖,𝑗, 𝑆𝑖,𝑗)

10: ℒ𝑚𝑎𝑥 ← label with largest 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ, ·,𝒮)

11: ̃︀𝐿← 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ𝑚𝑎𝑥,𝒮)

12: output ̃︀𝐿
We make a crucial note that Algorithm 4 uses 𝑡𝑚𝑠 = Θ

(︀
𝑟2𝜖−3 log

(︀
1 + 𝜖𝑚

𝑟

)︀
+ 𝜖−2 log 𝛿−1

)︀
samples – matching the bound stated in theorem 12.

The correctness of Algorithm 4 is equivalent to the following lemma.

Lemma 13. Let OPT = LIPA(𝑓) be 𝑓 ’s LIPA with size OPTVAL = |OPT|. Then with

probability at least 1−𝛿, we have ̃︀𝐿 outputted by Algorithm 4 satisfies |̃︀𝐿−OPTVAL| ≤ 𝜖𝑚𝑛.

36

To justify its correctness, we will mimic the proof of correctness of Algorithm 1. We first

show every maximal increasing partial-array (MIPA) of 𝑓 has a pseudosolution that is close

to it in size. Therefore, to approximate LIPA, which is the largest MIPA, we can find instead

the largest pseudosolution.

For each of 𝑓 ’s maximal increasing subsequences 𝑀 , there exists a pseudosolution 𝒫

defined by a labeling ℒ = (𝑙1, ..., 𝑙𝑡), i.e. 𝒫 = 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ), such that ||𝑀 | − |𝒫|| ≤

𝑟𝑚𝑛/𝑡, where 𝑟,𝑚, 𝑛, and 𝑡 are given in Algorithm 4. With the parameters specified in

Algorithm 1, the bound becomes 𝜖𝑚𝑛/100.

Lemma 14. Let 𝐶 be a maximal increasing partial-array of 𝐴. Consider the intersection of

𝐶 with each of the 𝑚× 𝑡 subarrays as is step 3 in Algorithm 4. Let 𝑑(𝐶) be the number of

𝐶’s subarrays whose entries contain at least two distinct numbers. Then, 𝑑(𝐶) ≤ 𝑚(𝑟− 1).

Proof. Suppose, to the contrary, that 𝑑(𝐶) ≥ 𝑚(𝑟− 1). This means there must exist 𝑖 ∈ [𝑚]

for which at least 𝑟 subarrays among {𝐵𝑖,1, ..., 𝐵𝑖,𝑡} have at least two distinct values. Let

them be 𝐵𝑖,𝛼1 , ..., 𝐵𝑖,𝛼𝑘
for some 𝛼1 < ... < 𝛼𝑘 and 𝑘 ≥ 𝑟. Then, letting max𝐶𝑖,𝛼𝑗

and

min𝐶𝑖,𝛼𝑗
denote the largest and smallest number in 𝐵𝑖,𝛼𝑗

∩ 𝐶.

𝑘∑︁
𝑗=1

(︀
max𝐵𝑖,𝛼𝑗

−min𝐵𝑖,𝛼𝑗

)︀
≥

𝑘∑︁
𝑗=1

1 = 𝑘 ≥ 𝑟

On the other hand, we have

𝑘∑︁
𝑗=1

(︀
max𝐵𝑖,𝛼𝑗

−min𝐵𝑖,𝛼𝑗

)︀
= max𝐵𝑖,𝛼𝑘

−min𝐵𝑖,𝛼1 +
𝑘−1∑︁
𝑖=1

(︀
max𝐵𝑖,𝛼𝑗

−min𝐵𝑖,𝛼𝑗+1

)︀
≤ 𝑟 − 1

which is contradiction. Thus, we must have 𝑑(𝐶) ≤ 𝑚(𝑟 − 1).

Lemma 15. For each of 𝑓 ’s MIPA 𝐶, there exists a pseudosolution 𝒫 defined by a labeling

ℒ, i.e. 𝒫 = 𝑝𝑠𝑒𝑢𝑑𝑜𝑠𝑜𝑙(𝑓,ℬ,ℒ), such that ||𝐶| − |𝒫|| ≤ 𝑟𝑚𝑛/𝑡, where 𝑟, 𝑛, and 𝑡 are given in

Algorithm 4. With the parameters specified in Algorithm 4, the bound becomes 𝜖𝑚𝑛/100.

Proof. Construct ℒ as follows.

37

1. If 𝐵𝑖,𝑗 ∩ 𝒫 consists of only one number, let 𝑙𝑖,𝑗 be that number.

2. If 𝐵𝑖,𝑗 ∩ 𝒫 consists of two or more distinct numbers, choose 𝑙𝑖,𝑗 arbitrarily from those

numbers. Note that there are 𝑑(𝐶) ≤ 𝑚(𝑟 − 1) blocks of this category.

3. If 𝐵𝑖,𝑗 ∩𝒫 is empty, choose 𝑙𝑖,𝑗 arbitrarily so that it does not violate the partial orders

of those 𝑙𝑖,𝑗’s already set.

Then, 𝒫 and 𝐶 only differ in those blocks in scenario 2 (at most 𝑚(𝑟 − 1) blocks due to

Lemma 14, each of which has 𝑛/𝑡 elements. Therefore, we have ||𝐶|−|𝒫|| ≤ 𝑚(𝑟−1)(𝑛/𝑡) ≤

𝜖𝑚𝑛/100.

Lemma 16. There are at most
(︀
𝑚+𝑡
𝑚

)︀𝑟 unique pseudosolutions/labels.

Proof. Let 𝒢 be a 𝑚× 𝑡 grid. Say 𝑝 is 𝐺’s diagonal path iff 𝑝 starts at (0, 0), moves in either

rightward or upward direction (corresponding to horizontal and vertical lines), and ends at

(𝑚, 𝑡). Let 𝒟 be the set of all diagonal paths of 𝒢. It is a well-known fact |𝒟| =
(︀
𝑚+𝑡
𝑚

)︀
.

Denote ℱ𝐿 be the set of all labels (of some pseudosolutions).

Consider a mapping 𝜒 : ℱ𝐿 → 𝒟𝑟 such that 𝜒(ℒ) = (𝑝1, ..., 𝑝𝑟) where 𝑝𝑘 is a diagonal

path of 𝒢 determined as follows (see Figure 5-1 for demonstration.)

1. For row 𝑖, put a vertical line at the position 𝑗 which ℒ𝑖,𝑗 < 𝑘 and ℒ𝑖,𝑗+1 ≥ 𝑘.

2. Complete the diagonal path 𝑝𝑘 with horizontal lines.

The monotonicity of ℒ guarantees that the vertical lines appears in a left-to-right pattern;

thus creating a valid diagonal path.

Now we show that 𝜒 is an injection by decoding ℒ from 𝜒(ℒ) = (𝑝1, ..., 𝑝𝑟) which can be

done as follows.

1. Draw all 𝑟 diagonal paths 𝑝1, ..., 𝑝𝑟 on 𝒢.

38

(a) Label ℒ with dimension
7× 5 whose entries are in

𝑟 = 4 and in increasing order.

(b) 𝜒(ℒ) = (𝑝1, 𝑝2, 𝑝3, 𝑝4) drawn on a
7× 5 grid labelled by red, green, blue,
and pink diagonal paths respectively.

Figure 5-1: Demonstration of the mapping 𝜒 : ℱ𝐿 → 𝒟𝑟 with 𝑚 = 7, 𝑡 = 5, and 𝑟 = 4.

2. Assign ℒ𝑖,𝑗 to be the number of vertical lines that are in row 𝑖 and in the left of 𝒢𝑖,𝑗.

The correctness of such decoding is justified by the following fact: if ℒ𝑖,𝑗 = 𝑘, then there

are exactly 𝑘 vertical lines that are in row 𝑖 and in the left of 𝒢𝑖,𝑗 – one line from each of

𝑝1, ..., 𝑝𝑘.

Therefore, 𝜒 is an injection which implies that the number of unique labels is |ℱ𝐿| ≤

|𝒟𝑟| = |𝒟|𝑟 =
(︀
𝑚+𝑡
𝑚

)︀𝑟.
Definition 17. Say a pseudosolution 𝒫 of label ℒ is bad (with respect to samples 𝒮) iff

||𝒫| − 𝑛
𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)| > 𝜖𝑚𝑛/100. In other words, the agreement of ℒ with the

samples 𝒮 does not approximate 𝒫 .

The following claim argues that any pseudosolution is bad with small probability.

Claim 18. For any pseudosolution 𝒫 , we have Pr (𝒫 is bad) ≤ 2 · exp(−𝜖2𝑡𝑚𝑠/30000). Fur-

thermore, a bad pseudosolution exists with probability at most 2 ·exp(−𝜖2𝑡𝑚𝑠/30000)
(︀
𝑚+𝑡
𝑚

)︀𝑟.
39

Proof. Notice that 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮) is a sum of 𝑡𝑚𝑠 independent Bernoulli random vari-

ables. Furthermore, E(𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)) = 𝑡𝑠
𝑛
· |𝒫|. Therefore,

Pr (𝒫 is bad) = Pr(
⃒⃒⃒
|𝒫| − 𝑛

𝑡𝑠
· 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)

⃒⃒⃒
> 𝜖𝑚𝑛/100)

= Pr(|𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮)− E(𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡(ℬ,ℒ,𝒮))| > 𝜖𝑡𝑚𝑠/100)

≤ 2 · exp(−𝜖2𝑡𝑚𝑠/30000)

as wished. Finally, there are at most
(︀
𝑚+𝑡
𝑚

)︀𝑟 unique pseudosolutions (Lemma 16). The union

bound gives the final part of the claim.

Corollary 19. With the parameters specified in Algorithm 4, there is no bad pseudosolution

with probability at least 1− 𝛾.

Proof. The probability that a bad pseudosolution exists is at most

2 · exp(−𝜖2𝑡𝑚𝑠/30000)

(︂
𝑚+ 𝑡

𝑚

)︂𝑟

≤ 2 · exp(−𝜖2𝑡𝑚𝑠/30000) · exp(𝑟𝑡 · log 𝑒
(︁
1 +

𝑚

𝑡

)︁
)

= 2 exp(𝑟𝑡 · log 𝑒
(︁
1 +

𝑚

𝑡

)︁
− 𝜖2𝑡𝑚𝑠/30000)

= 2 · exp(− log (2/𝛾)) = 𝛾.

Claim 20. If there are no bad pseudosolutions, then
⃒⃒⃒̃︀𝐿− OPTVAL

⃒⃒⃒
≤ 𝜖𝑚𝑛.

Proof. The proof is identical to that of Theorem 8. The details of the proof is omitted for

reasons of succinctness.

5.1 Special Cases: Binary Arrays

In this section, we explore such algorithm in the special cases where we have additional

assumptions on the array.

40

Corollary 21. Let 𝐴 is a 𝑚×𝑛 2-dimensional array (𝑚 ≤ 𝑛) whose entries are in {0, 1}. Let

𝜖 < 1 be an additive error parameter. Then there is an algorithm that estimates 𝑑mono
edit (𝐴)

within 𝜖𝑚𝑛 additive error with probability at least 1−𝛿 using Θ(𝜖−3 log(1 + 𝜖𝑚) + 𝜖2 log 𝛿−1)

samples.

Proof. To see this, we change the parameters in Algorithm 4 with 𝑟 = 2. The number of

samples needed has become Θ(𝜖−3 log(1 + 𝜖𝑚) + 𝜖2 log 𝛿−1).

41

42

Chapter 6

Estimating 𝐿1 Distance to Monotonicity

in 1-Dimensional Sequence

Given two functions 𝑓, 𝑔 : [𝑛] → R. We define their 𝐿1 distance 𝑑1(𝑓, 𝑔) to be the smallest

change in total magnitude needed to equate 𝑓 and 𝑔. Formally, we define

𝑑1(𝑓, 𝑔) =
∑︁
𝑖∈[𝑛]

|𝑓(𝑖)− 𝑔(𝑖)|.

We also define the 𝐿1 distance to monotonicity of 𝑓 to be the smallest 𝐿1 distance to a

monotone function. In particular, we can write

𝑑mono
1 (𝑓) = min

monotone fn
𝑔:[𝑛]→R

𝑑1(𝑓, 𝑔) = min
monotone fn

𝑔:[𝑛]→R

∑︁
𝑖∈[𝑛]

|𝑓(𝑖)− 𝑔(𝑖)|.

6.1 Estimating 𝑑mono
1 of a Discrete-Ranged Function

For this section, we consider a function 𝑓 : [𝑛] → [𝑟]. Define the following optimization

problem.

Problem 22. Given a function 𝑓 : [𝑛]→ [𝑟]. We want to approximate 𝑓 ’s 𝐿1 distance to its

closest monotone function whose range is contained in [𝑟]. Formally, we want to approximate

43

(a) A sequence 𝑓 with 𝑛 = 10 and 𝑟 = 5.

(b) Grid reduction of 𝑓 , denoted Grid(𝑓).

Figure 6-1: Shown above is a grid reduction from 𝑓 (above) to Grid(𝑓) (below). Notice
that each column 𝑖 ∈ [𝑛] of Grid(𝑓) has 1s in its bottom 𝑓(𝑖) entries and 0s in its top 𝑟−𝑓(𝑖)
entries.

𝑑mono, int
1 (𝑓) = min

monotone fn
𝑔:[𝑛]→[𝑟]

𝑑1(𝑓, 𝑔) = min
monotone fn
𝑔:[𝑛]→[𝑟]

∑︁
𝑖∈[𝑛]

|𝑓(𝑖)− 𝑔(𝑖)|.

To do so, we view a 1-dimensional sequence 𝑓 : [𝑛] → [𝑟] as a binary 𝑟 × 𝑛 array

Grid(𝑓) ∈ {0, 1}𝑟×𝑛 and draw connection from varied distance functions. Formally, we

define grid reduction as follows.

Definition 23 (Grid Reduction). Given a a function 𝑓 : [𝑛]→ [𝑟]. Let grid-reduction of 𝑓 ,

denoted Grid(𝑓), to be an 𝑟 × 𝑛 array of 0’s and 1’s such that

Grid(𝑓)𝑖,𝑗 = 1 iff 𝑗 ≥ 𝑟 − 𝑓(𝑖) + 1 and 0 iff 𝑗 ≤ 𝑟 − 𝑓(𝑖) .

Furthermore, Grid(·) is an bijective mapping from a family of sequences in [𝑟]𝑛 to a family

of binary arrays in {0, 1}𝑟×𝑛. See Figure 6-1 for demonstration.

The following relates the 𝐿1 distance of 𝑓 and edit distance of Grid(𝑓) in a nice way.

Theorem 24. For any function 𝑓 : [𝑛]→ [𝑟], we have 𝑑mono
1 (𝑓) = 𝑑mono

edit (Grid(𝑓)).

44

The proof of this theorem follows directly from the following theorems.

Theorem 25. For any function 𝑓 : [𝑛]→ [𝑟], we have 𝑑mono, int
1 (𝑓) = 𝑑mono

edit (Grid(𝑓)).

Proof. We first show that 𝑑mono, int
1 (𝑓) ≥ 𝑑mono

edit (Grid(𝑓)). To do so, let ℎ be the closest

integer-valued monotone function to 𝑓 . Consider a monotone 0− 1 grid Grid(ℎ). Then,

𝑑mono
edit (Grid(𝑓)) ≤ 𝑑edit(Grid(𝑓),Grid(ℎ)) =

𝑛∑︁
𝑖=1

|𝑓(𝑖)− ℎ(𝑖)| = 𝑑1(𝑓, 𝑔) = 𝑑mono, int
1 (𝑓).

Now we will show that 𝑑mono
edit (Grid(𝑓)) ≥ 𝑑mono, int

1 (𝑓). To do so, let ℋ be the closest

monotone 0 − 1 grid to Grid(𝑓) in edit distance. Furthermore, let ℎ : [𝑛] → [𝑟] which

ℎ(𝑗) =
∑︀

𝑖∈[𝑟]ℋ𝑖,𝑗 for any 𝑗 ∈ [𝑟]. We first notice that ℎ is monotone and Grid(ℎ) = ℋ.

Furthermore, we have

𝑑mono, int
1 (𝑓) ≤ 𝑑1(𝑓, ℎ) =

∑︁
𝑖∈[𝑛]

|𝑓(𝑖)− ℎ(𝑖)| =
∑︁
𝑖∈[𝑛]

∑︁
𝑗∈[𝑟]

1ℋ𝑖,𝑗 ̸=Grid(𝑓)𝑖,𝑗

= 𝑑edit(Grid(𝑓),ℋ) = 𝑑mono
edit (Grid(𝑓))

as wished.

Theorem 26. For any function 𝑓 : [𝑛]→ [𝑟], we have 𝑑mono
1 (𝑓) = 𝑑mono, int

1 (𝑓).

Proof. First of all, it is trivial that 𝑑mono
1 (𝑓) ≤ 𝑑mono, int

1 (𝑓). Thus, it suffices to show that

𝑑mono, int
1 (𝑓) ≤ 𝑑mono

1 (𝑓).

Let 𝑔 : [𝑛] → R be the closest monotone function (w.r.t. 𝐿1 distance) to 𝑓 ; that is 𝑔

minimizes
∑︀

𝑖∈[𝑛] |𝑓(𝑖)− 𝑔(𝑖)|. Denote {𝑥} = 𝑥−⌊𝑥⌋ to be the fractional part of 𝑥. Consider

the following randomized process.

1. Uniformly choose 𝑝 ∼ (0, 1).

2. Construct ℎ : [𝑛]→ [𝑟] such that ℎ(𝑖) = ⌊𝑔(𝑖)⌋ if {𝑔(𝑖)} < 𝑝 and ⌈𝑔(𝑖)⌉ otherwise.

45

Figure 6-2: Shown above is a 1-dimensional sequence 𝑓 : [10] → [5] (row 1) with 𝑛 = 10
and 𝑟 = 5. The function 𝑔 : [10]→ R (row 2) is one of possibly many of 𝑓 ’s closest increasing
functions with respect to 𝐿1 distance with 𝑑1(𝑓, 𝑔) = 6 := 𝑑mono

1 (𝑓). The function ℎ : [10]→
[𝑟] (row 3), generated via a randomized process with 𝑝 = 0.6, is an increasing function who
is expected to be at the same 𝐿1 distance to 𝑓 as 𝑔 (in this case it is.) In other words,
ℎ minimizes 𝑑1(𝑓, ℎ

) over range-[𝑟] functions ℎ, which yields 𝑑mono, int
1 (𝑓) = 𝑑1(𝑓, ℎ) = 6.

Theorem 26 states that 𝑑mono
1 (𝑓) = 𝑑mono, int

1 (𝑓). In other words, we can optimize 𝑑mono
1 (𝑓)

by looking up only those ℎ : [𝑛]→ [𝑟].

First, let’s show that ℎ is monotone. Consider 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The monotonicity of 𝑔

implies 𝑔(𝑖) ≤ 𝑔(𝑗) which implies ⌊𝑔(𝑖)⌋ ≤ ⌊𝑔(𝑗)⌋. If ⌊𝑔(𝑖)⌋ ≤ ⌊𝑔(𝑗)⌋−1, then ℎ(𝑖) ≤ ⌈𝑔(𝑖)⌉ ≤

⌊𝑔(𝑖)⌋+ 1 ≤ ⌊𝑔(𝑗)⌋ ≤ ℎ(𝑗). Otherwise, ⌊𝑔(𝑖)⌋ = ⌊𝑔(𝑗)⌋. We suppose, for contradiction, that

ℎ(𝑖) > ℎ(𝑗) (so ℎ is not monotone). Note that this can only happen when ⌊𝑔(𝑖)⌋ = ⌊𝑔(𝑗)⌋.

Since ℎ(𝑖) > ℎ(𝑗), we have that ℎ(𝑖) = ⌈𝑔(𝑖)⌉ and ℎ(𝑗) = ⌊𝑔(𝑗)⌋. In other words, we

must have 𝑝 < {𝑔(𝑖)} and 𝑝 ≥ {𝑔(𝑗)} which implies {𝑔(𝑖)} > {𝑔(𝑗)}. However, we then have

𝑔(𝑖) = ⌊𝑔(𝑖)⌋+{𝑔(𝑖)} = ⌊𝑔(𝑗)⌋+{𝑔(𝑖)} > ⌊𝑔(𝑗)⌋+{𝑔(𝑗)} = 𝑔(𝑗), resulting in a contradiction

with the monotonicity of 𝑔.

Next, we will show that E [𝑑1(𝑓, ℎ)] = 𝑑1(𝑓, 𝑔). To show this, it suffices to show that for

arbitrary 𝑖 ∈ [𝑛], we have E (|𝑓(𝑖)− ℎ(𝑖)|) = |𝑓(𝑖)− 𝑔(𝑖)|, then use linearity of expectation.

To show it, notice that if 𝑔(𝑖) ∈ Z, then ℎ(𝑖) = 𝑔(𝑖) so we are done. Else, let 𝑔(𝑖) = 𝑥 + 𝑦

where 𝑥 = ⌊𝑔(𝑖)⌋ and 𝑦 = {𝑔(𝑖)} ∈ (0, 1). Then, E (|𝑓(𝑖)− ℎ(𝑖)|) = 𝑦 · |𝑓(𝑖)− (𝑥+1)|+ (1−

𝑦) · |𝑓(𝑖)− 𝑥|. We will show that it is equal to |𝑓(𝑖)− 𝑔(𝑖)|:

46

Case 1: 𝑓(𝑖) ≤ 𝑥. Consequently, we have 𝑓(𝑖) ≤ 𝑥 ≤ 𝑔(𝑖). Then,

E (|𝑓(𝑖)− ℎ(𝑖)|) = 𝑦 · |𝑓(𝑖)− (𝑥+ 1)|+ (1− 𝑦) · |𝑓(𝑖)− 𝑥|

= 𝑦 · ((𝑥+ 1)− 𝑓(𝑖)) + (1− 𝑦)(𝑥− 𝑓(𝑖))

= 𝑥+ 𝑦 − 𝑓(𝑖)

= 𝑔(𝑖)− 𝑓(𝑖)

= |𝑓(𝑖)− 𝑔(𝑖)|.

Case 2: 𝑓(𝑖) ≥ 𝑥+ 1. Consequently, we have 𝑓(𝑖) ≥ 𝑥+ 1 ≥ 𝑔(𝑖). Then,

E (|𝑓(𝑖)− ℎ(𝑖)|) = 𝑦 · |𝑓(𝑖)− (𝑥+ 1)|+ (1− 𝑦) · |𝑓(𝑖)− 𝑥|

= 𝑦 · (𝑓(𝑖)− (𝑥+ 1)) + (1− 𝑦) · (𝑓(𝑖)− 𝑥)

= 𝑓(𝑖)− (𝑥+ 𝑦)

= 𝑓(𝑖)− 𝑔(𝑖)

= |𝑓(𝑖)− 𝑔(𝑖)|.

As a result, we have shown that E [𝑑1(𝑓, ℎ)] = 𝑑1(𝑓, 𝑔) = 𝑑mono
1 (𝑓). This means there

must exists a monotone function ℎ* : [𝑛]→ [𝑟] such that 𝑑1(𝑓, ℎ*) ≤ 𝑑mono
1 (𝑓). Furthermore,

we know that 𝑑mono,int
1 (𝑓) ≤ 𝑑1(𝑓, ℎ

*) so we have 𝑑mono,int
1 (𝑓) ≤ 𝑑mono

1 (𝑓) as wished.

Theorem 27. Let 𝑓 : [𝑛]→ [𝑟]. Then there is an algorithm that estimates 𝑑mono
1 (𝑓) within

𝜖𝑛 additive error with probability at least 1 − 𝛿 using Θ(𝑟3𝜖−3 log (1 + 𝜖) + 𝑟2𝜖−2 log 𝛿−1)

samples.

Proof. Construct a Grid(𝑓) of dimension 𝑟 × 𝑛. Due to Theorem 24, it suffices to estimate

𝑑mono
edit (Grid(𝑓)), which can be done in Θ(𝑟3𝜖−3 log (1 + 𝜖)) queries via Theorem 12. We make

a remark that a query to an entry (𝑖, 𝑗) of Grid(𝑓) is equivalent to querying 𝑓(𝑗) and then

checking whether 𝑓(𝑗) ≤ 𝑛− 𝑖+ 1.

47

6.2 Estimating 𝑑mono
1 of a Continuous-Ranged Function

In this section, we generalize the range of 𝑓 ; from 𝑟 discrete (consecutive) values {1, .., 𝑟}

to a continuous range [0, 𝑟]. We will construct a new function, based on 𝑓 , whose range

is discrete and has a small number of unique elements with hopes that the 𝐿1 distance to

monotonicity of such function is close to that of 𝑓 . In particular, we propose the following

theorem.

Theorem 28. Given 𝑓 : [𝑛] → [0, 𝑟] and 𝑘 ∈ R+. Denote 𝑓𝑘 : [𝑛] → {0, 𝑘, 2𝑘, ..., ⌊𝑟/𝑘⌋ · 𝑘}

such that 𝑓𝑘(𝑖) = 𝑘 · ⌊𝑓(𝑖)/𝑘⌋. Then, we have |𝑑mono
1 (𝑓) − 𝑑mono

1 (𝑓𝑘)| ≤ 2𝑘𝑛. Further-

more, we can approximate 𝑑mono
1 (𝑓𝑘) within ±𝜖𝑛 error with probability at least 1 − 𝛿 using

Θ(𝑟3𝜖−3 log (1 + 𝜖/𝑘) + 𝑟2𝜖−2 log 𝛿−1) samples.

Proof. Let 𝑔 and 𝑓 *
𝑘 be the 𝑓 ’s and 𝑓𝑘’s closest monotone function with respect to 𝐿1 distance.

That is 𝑔 = argminmonotone ℎ 𝑑1(𝑓, ℎ) and 𝑓 *
𝑘 = argminmonotone ℎ 𝑑1(𝑓

*
𝑘 , ℎ). Finally, denote

𝑔𝑘 : [𝑛]→ 𝑘 · [⌊𝑟/𝑘⌋] such that 𝑔𝑘(𝑖) = 𝑘 · ⌊𝑔(𝑖)/𝑘⌋.

We first notice that 𝑑1(𝑓, 𝑓𝑘) ≤ 𝑘𝑛 and 𝑑1(𝑔, 𝑔𝑘) ≤ 𝑘𝑛 because 0 ≤ 𝑓(𝑖)− 𝑓𝑘(𝑖) < 𝑘 and

0 ≤ 𝑔(𝑖)− 𝑔(𝑖) < 𝑘 for any 𝑖 ∈ [𝑛]. Then,

𝑑mono
1 (𝑓) = 𝑑1(𝑓, 𝑔) ≥ 𝑑1(𝑓𝑘, 𝑔𝑘)− 𝑑1(𝑓, 𝑓𝑘)− 𝑑1(𝑔, 𝑔𝑘)

≥ 𝑑1(𝑓𝑘, 𝑓
*
𝑘)− 𝑘𝑛− 𝑘𝑛

= 𝑑mono
1 (𝑓𝑘)− 2𝑘𝑛.

Moreover,

𝑑mono
1 (𝑓𝑘) = 𝑑1(𝑓𝑘, 𝑓

*
𝑘) ≥ 𝑑1(𝑓, 𝑓

*
𝑘)− 𝑑1(𝑓, 𝑓𝑘)

≥ 𝑑1(𝑓, 𝑔)− 𝑘𝑛

= 𝑑mono
1 (𝑓)− 𝑘𝑛.

This concludes that |𝑑mono
1 (𝑓)− 𝑑mono

1 (𝑓𝑘)| ≤ 2𝑘𝑛 as wished.

48

Finally, we can approximate 𝑓𝑘 within ±𝜖𝑛 by approximating 𝑓𝑘/𝑘 within ±𝜖𝑛/𝑘. Plus,

𝑓𝑘/𝑘 has a small and discrete range {0, 1, 2, ..., ⌊𝑟/𝑘⌋} which allows us to approximate its 𝐿1

distance to monotonicity within an additive error±𝜖𝑛/𝑘 in Θ(𝑟3𝜖−3 log (1 + 𝜖/𝑘) + 𝑟2𝜖−2 log 𝛿−1)

samples by Theorem 12.

Theorem 29. Given 𝑓 : [𝑛] → [0, 𝑟]. Then there is an algorithm that estimates 𝑑
mono(𝑓)
1

within 𝜖𝑛 additive error with probability at least 1−𝛿 using Θ(𝑟3𝜖−3+𝑟2𝜖−2 log 𝛿−1) samples.

The algorithm succeeds with at least constant probability, though can be easily amplified to

1− 𝛿.

Proof. Set 𝑘 = 𝜖/8. Theorem 28 says |𝑑mono
1 (𝑓) − 𝑑mono

1 (𝑓𝑘)| ≤ 𝜖𝑛/4. Furthermore, we can

approximate 𝑑mono
1 (𝑓𝑘) within an additive error ±𝜖𝑛/4 using Θ(𝑟3𝜖−3+𝑟2𝜖−2 log 𝛿−1) samples,

which in turn is within an additive error ±𝜖𝑛/2 from 𝑑mono
1 (𝑓).

49

50

Bibliography

[1] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance
to a monotone function. Random Structures & Algorithms, 31(3):371–383, 2007.

[2] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and
Alex Samorodnitsky. Improved testing algorithms for monotonicity. In Randomization,
Approximation, and Combinatorial Optimization. Algorithms and Techniques, pages 97–
108. Springer, 1999.

[3] Michael L Fredman. On computing the length of longest increasing subsequences. Dis-
crete Mathematics, 11(1):29–35, 1975.

[4] Michael Mitzenmacher and Saeed Seddighin. Improved sublinear time algorithm for
longest increasing subsequence. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1934–1947. SIAM, 2021.

[5] Ilan Newman and Nithin Varma. New sublinear algorithms and lower bounds for lis
estimation, 2021.

[6] Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approximation al-
gorithms for lcs and lis with truly improved running times. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1121–1145. IEEE, 2019.

[7] Michael Saks and C Seshadhri. Estimating the longest increasing sequence in polyloga-
rithmic time. SIAM Journal on Computing, 46(2):774–823, 2017.

51

	Introduction
	Notations and Preliminaries
	Additive LIS Approximation Algorithm
	Improving Runtime via Dynamic Programming
	Dynamic Programming Framework
	Restructuring A
	Maximum-Ordered Oracle
	Finalizing Algorithm 1

	Estimating Edit Distances in 2-Dimensional Array
	Special Cases: Binary Arrays

	Estimating L1 Distance to Monotonicity in 1-Dimensional Sequence
	Estimating d1mono of a Discrete-Ranged Function
	Estimating d1mono of a Continuous-Ranged Function

