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ABSTRACT

This thesis addresses two problems. The first problem, which serves as a
background to the second problem, is a simple variation of the network design problem
where given a number of facilities and a set of nodes with associated demands, the
optimal set of links that would minimize the median problem (or the center problem) is
identified. The second problem is concerned with improving an existing network
through either reducing the length of existing links or adding new links to the network.
The total amount of link reduction or link addition is subject to a budget constraint,
where costs of reduction or addition may vary across arcs.

All problems are initially solved for a spanning tree, then solved again for a
network. All algorithms are written for the one-facility case. It will be shown, at the
end, that a k-facility problem may be reduced to a one-facility case through a simple
transformation.

Using the median objective function value as the measure of improvement, we
identify the links and the amounts to reduce in a given spanning tree or network. In the
spanning tree case, an iterative algorithm identifies the optimal strategy. This
procedure, however, when extended to the case of networks may not generate the
optimal solution. For some special situations, however, a nonlinear mixed integer
program can be formulated to determine the optimal strategy.

Using the center objective function value as the measure of improvement, we
identify the links and amounts to reduce in a given spanning tree or network. In the
spanning tree case, the solution is generated optimally. For the case of networks, a
calibrating algorithm that requires solving an integer program repeatedly can
determine the optimal solution.

A spanning tree or network may also be improved by adding new arcs. If we
are required to add only one arc to the spanning tree or network, the solution may be
determined optimally. If several arcs may be added, an iterative heuristic that
approximates the optimal strategy is presented for each objective function.
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Chanpter 1

INTRODUCTION

In the ficld of networks, there is a special class of problems known as facility
location problems. In their discrete form, facility location problems can be stated as
follows: given an undirected graph with nodes that have associated demands, a set of
points (or facility locations) of prespecified cardinality is chosen so as to minimize
either the sum of the weighted shortest paths from the vertices to any of the facilities,
or the maximum of the weighted distance from any of the vertices to the closest facility
to it. Depending on whether the first criterion was used or the second, the problem is
referred to as the median problem or the center problem respectively.

A second class of problems is known as network design problems. In its
simplest form, a network design problem can be described as follows: given an
undirected graph with nodes that have associated demands (to be referred henceforth
as a weighted network), one must construct a network, connecting all the nodes of the
graph, such that the sum of the shortest paths between all pairs of vertices is
minimized and the total length of the links does not exceed a specified budget.

1.1. The Problem

This thesis addresses two problems. The first problem, which serves as a
background to the second problem, is a simple variation of the network design problem
where given a number of facilities and a set of nodes with associated demands, the
optimal set of links that would minimize the median problem (or the center problem) is
identified.

The second problem, which comprise the bulk of the thesis, is concerned with
improving an existing network through either reducing the length of existing links or

adding new links to the network. By improving a network we mean reducing the
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median objective function value or the center objective function value. The appropriate
criterion to use will depend on the real-life application that motivated the problem. The
total amount of link reduction or link addition is subject to a budget constraint, where
costs of reduction or addition may vary across arcs.

1.2. Scope and Preview

To guide and facilitate the reading of the succeeding chapiers, we outline here
the organization of the thesis. All algorithms are written for the one-facility case. It
will be shown, at the end, that a k-facility problem may be reduced to a one-facility
case through a simple transformation. Hence, algorithms developed for the one-facility
problem will apply.

All problems are initially solved for a spanning tree, then solved again for a
network, extending related concepts and procedures whenever possible. Median
problems and center problems are discussed separately.

We begin our analysis in Chapter 2 by addressing the first problem described
in Section 1.1. Given a network with one-facility, the optimal spanning tree that
minimizes the median or center objectives is found to be the shortest path tree rooted
at the facility.

Chapters 3, 4, 5, and 6 address the second problem described ‘n Section 1.1.
Chapters 3 and 4 use the median objective function as the measure of improvement
and Chapters 5 and 6 use the center objective function.

In Chapter 3, we identify the links and the amounts to reduce in a given
spanning tree or network, to best improve the median objective function. The cost of
reducing an arc may or may not vary across arcs. In the spanning tree case, an
iterative algorithm identifies the optimal strategy . This procedure, however, when
extended to the case where we are given a network may not generate the optimal
solution. For some special situations, however, a nonlinear mixed integer program can

be formulated to determine the optimal strategy.
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In Chapter 4, we try to improve the median objective function value by adding
arcs to the given spanning tree or network. The cost of adding an arc may or may not
vary across arcs. If we are required to add only one arc to the spanning tree or
network, the solution may be determined optimally. If several arcs may be added, an
iterative heuristic that approximates the optimal strategy is presented. It is difficult to
solve this problem optimally because of the dependency of arcs on one another. This
property will be illustrated in Section 4.1.

In Chapter 5, we identify the links and amounts to reduce in a given spanning
tree or network, to best improve the center objective function. In the spanning tree
case, where the cost of reduction is equal for all arcs, the solution is generated
optimally by an iterative algorithm. However, the iterative algorithm cannot be
extended to the spanning tree case, where the costs of reduction vary across arcs.
Instead, a mixed integer program may be solved to obtain the optimal strategy. For
the case of aetworks, a calibrating algorithm that requires solving an integer program
repeatedly can determine the optimal solution.

In Chzapter 6, we try to improve the center objective function value by adding
arcs to the given spanning tree or network. The cost of adding an arc may or may not
vary across arcs. As in Chapter 4, if we are required to add only one arc, the solution
obtained from the suggested algorithm is optimal. However, if more than one arc may
be added, the algorithm we designed only approximates the optimal solution. Again,
this is due to the dependency of arcs on one another.

In Chapter 7, we will show how a k-facility problem may be transformed into a
one-facility problem.

1.3. A Brief Review of Related Literature

Magnanti and Wong (1984) compiled and reviewed the then-existing literature

on the network design problem and its various extensions. In its most general form,

the network design problem has been defined for a directed graph, with multiple
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commodities that have specific origins and destinations. Arcs have flow capacities and
routing costs that vary for each commodity. Inclusion of arcs in a network may incur
certain fixed costs (like construction expenses) and the selection of arcs may hence be
constrained by a budget. The objective function may be linear or nonlinear. If it is
linear, it is the sum of the cost incurred to move the commodities and the fixed costs
incurred when establishing the various arcs. When other factors, like congestion are
incorporated into the model, the objective function may become nonlinear. The network
design problem then solves for two sets of unknowns: the set of arcs to be included in
the network, as indicated by binary variables and the amount of flow of each
commodity on each chosen arc, as indicated by continuous variables.

From this general model, Magnanti and Wong have shown that other network
problems such as the minimal spanning tree problem, shortest path problem, traveling
salesman problem, vehicle routing problem, and facility location problem, among
others, may be derived by imposing certain conditions on the network specifications.

Johnson, Lenstra, and Rinnooy Kan (1978) established that the network design
problem defined on a weighted undirected graph is NP-complete. This justified
research into enumerative algorithms to find the optimal solution and into heuristic
procedures to determine reasonable approximations.

The problem was investigated by Scott (1969), Dionne and Florian (1979), and
Leblanc (1975) as a combinatorics problem of examining all the possible combinations
of zero-one arc incidences. In each case, the set of solutions is continually partitioned
into smaller subsets with the aim of eventually eliminating a subset from further
consideration. The criteria for branching and bounding differ among these three papers.
A large part of the literature according to Magnanti and Wong is devoted to finding
better lower bounds; they also noted that Bender's decomposition has also been used

to solve the network design problem optimally.
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The heuristics that have been devised employ variations of three basic steps:
add arcs one at a time to a feasible solution (for example, the minimal spanning tree
as suggested by Scott); delete arcs one at a time from a completely connected
network; and interchange arcs iteratively.

Since we are concerned with networks with known facility locations that
provide some service to the other nodes of the network, some concepts from facility
location theory will also be utilized. Given a network, denote a node in the network as
i, and denote the node set as I. We want to choose k points in the network:

X1,X2,..., Xk such that we minimize either:

Zy = 2 by min{d(xy,6), d(x2,0),...,d(00))

cr,
Zc = max [ min{d(xy,0), d(xp),....d (i) 1

where, h; = weight of node i

and d(xg,i) = shortest distance from point xo to node i, @ =1,2,....k

If we minimize Z34, we refer to the problem as the k-median problem. If we minimize
Zc, we refer to the problem as the k-center problem.

A theorem established by Hakimi (1964) states that there is at least one k-
node subset of I that minimizes Zp. Hence, the search for a set of optimal facility
 locations for the k-median problem may be confined to the set of nodes I.

There is no analogous theorem for the center problem. The optirnal facility
l(;cations may be anywhere in the network. Median and center facility location
problems are reviewed extensively in Handler and Mirchandani, Location on
Networks: Theorems and Algorithms (1979).

Essentially the problem addressed by this thesis is determining the proper set

of arcs to satisfy predetermined criteria under specified conditions. Inasmuch as
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network design problems solve for an optimal set of arcs and facility location problems
search for an optimal set of points, it is expected that the methods that will be applied
in this thesis are more closely related to the procedures used in solving the network
design problem.

Also, the Dijkstra algorithm, that solves for the shortest path tree rooted at a
specific node, and ordering algorithms which arrange variables in some ascending or

descending order are repeatedly used.
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Chapter 2
THE OPTIMAL SPANNING TREE

2.1 Optimal Subgraph for the One-Facility Median Problem
Given a set of weighted nodes N of an undirected graph, a fixed facility X, X €
N, we want to find a subgraph that minimizes the average distance (or the total

weighted distance) of the nodes to the facility, i.e.
minimize ZM = Y, hjd(X)

jeN
where hj = weight of the node j, h;20,j=1,2,...,N
and d(Xy) = shortest distance from node j to node X, d(X,) 20

It is obvious that the desired subgraph is a spanning tree.
Proof: Consider the shortest path tree T rooted at X, and let dp(X,j) be the
distance between node j and node X according to T. Suppose this is not the same as

the desired spanning iree that minimizes the median problem. Then there exists an

optimal spanning tree Ty, with shortest distances dp;(X,/) between node j and node

X, where
2 hidm(Xy) < 3 hdr(X)) a1
jeN jeN :
By definition,
dt(Xy) < dm(Xy) forallje€ N
= hd1(Xy) < hidm(Xy) since h;j 2 0

= Y, hidr(Xy) < Y, hdm(X,)
JEN JjeN

which contradicts (2.1). Hence, the shortest path tree T rooted at X must be the

spanning tree that minimizes the median objective function.
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2.2 Optimal Subgraph for the One-Facility Center Problem
In exactly the same manner as in Section 2.1, if the objective is to :
minimize Z¢ = max hd(X,))
we can show that T is the optimal solution. Otherwise there exists another spanning

tree Tc with shortest distances dc(X ) between node j and node X, where

max hjdc(Xy) < max hdt(X,) 2.2)
JEN JEN
By definition,
dr(Xy) < dc(Xy) for all JEN
= hj d1(Xy) <h;jdc(Xy) since hj 2 0
= max hj d1(Xy) < max h; dc(Xy)
JEN JEN

which contradicts (2.2). So the shortest path tree rooted at X must also be the
spanning tree that minimizes the center abjective function.
2.3 Determining the Objective Function Value

Given G(N U X,A) where X is the fixed facility, we can use the Dijkstra
Algorithm to find the shortest path tree, with the inclusion of counters that will
eventually provide the value of the median and center objective functions. Let these

counters be Zy and Zc, respectively. Every time a node j is closed, Zy is increased

by hid(X, j) and Zc takes the value of the maximum between the current Zc and

hjd(X, ). When all N nodes have been closed, the final values of Zy and Zc are equal

to the objective function values. The algorithm is more precisely described in Appendix

A.
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Chapter 3

LINK REDUCTIONS IN THE ONE-MEDIAN PROBLEM

3.1. Marginal Contibution of Arcs in a Spanning Tree to the Median Function
Suppose that given a spanning tree with a fixed facility, we want to fina the
arc with the largest marginal contribution to the median objective function.
If we could reduce any link, the link we would reduce to obtain maximum
improvement in the objective function would be the link with the highest marginal
contribution. This motivates the problem under consideration.

Consider the following illustration:

Figure 3.1

Let a;j, define the arc incident to ncdes i and j, where d(X,i) < d(Xj). A reduction of
ajj, by a marginal amount A will improve by A the following: d(X,/), and d(X,k) where

k is a node in the cutset performed on a;j (nodes J, k1, k2, ..., k6 in figure 3.1). All other
nodes are unaffected. The total improvement to Zy is I;j = A(Z he.) If we perform the
k
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‘cut on ap;, the total improvement to Zp is Ip; = I;j + Ah;, which is larger than I;;, If we
follow this line of thought, in general, as we move closer to the facility, I increases. To
obtain, maximum improvement in Z)4, we want to perform the reduction on some arc
axc incident to the facility X (using this notation, we henceforth call "c-nodes" those

nodes that are adjacent to the facility), and the corresponding improvement is Ixc =

A(z hi.), where k is a node in the cutset resulting from a cut on axc.
k

We confine the search for the desired arc to the various axc. For each cutset

formed from a cut on each of the axc, a corresponding weight 2 ht is associated; call
k

this weight Hc. A proposed algorithm (Algorithm C1) that determines this weight is
discussed in Appendix Cl. Finding the arc that has the largest marginal contribution
to ZMm reduces to identifying the arc axc whose corresponding cutset has the heaviest
weight.

To illustrate the preceding discussion, consider figure 3.1 again. The arcs

incident to the facility and the weights of their corresponding cutsets are tabulated

below:
axe H¢=hc+hd+hb+h,-+§,hk
aXc, He, =hc, + he + hg
aXcy He, = h¢3 + hg
axXcy Hc,=hc, +hp

The arc with the largest corresponding H-value has the largest marginal contribution
to ZM.
3.2. Link Reduction of Y Units in a Spanning Tree

Given a spanning tree and a fixed facility, we want to know which arcs should
be reduced and by how much, if we could reduce a total of Y arc-units throughout the

spanning tree, to obtain maximum improvement of Zp.
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This could translate physically to the improvement of certain existing systems
such that time or distance to the facility is reduced.

From Section 3.1, the arc with largest marginal contribution to Z)f can be
determined. Suppose we have Y nodes €1, €2, ..., Cy which are linked to the facility by

aXcy» 8Xcy» -» 2Xcy , Tespectively. The nodes have associated weights Hc,, He,, ---,Ho,

as discussed previously, and suppose that the nodes have been named in order so

that Hcl>H02>...>H°r

Step 1. It would be better to "invest" as much of our Y arc-units as possible in
axc,. If we require that an arc may not be reduced to zero length and that there is a
limit L* to how short an arc may be (where L* as specified by the decision maker is
less than or equal to the minimum of all the arc lengths in the spanning tree) we can
reduce axc, by:

1(X,c1) - L* units if Y >1(X,cy) - L*
or Y units if Y <i(X,cp)-L*

Step 2. If Y <1(X,c1) - L*, we are done, with improvement on Zy, I=YHc,.
Otherwise , let I =[1(X,c1) - L*] He. LetY=Y - [1(X,c1) - L*] = remaining budget. We
next examine what happens when an arc has been reduced to the limit.

Suppose axc, has been reduced to the length L*. One of three things may
OCCUF.

Case 1.

Besides X, there is only one node adjacent to ci, called ¢1—2. Since axc, has

been reduced to the limit L*, ¢j_,7 will act like a c-node. The node €12 will carry a
weight Hcl _yp = He, - hc,. Locate the place of Hcl _y2 in the order of remaining Hc's.

17



Case 2.

(2)
® O ® &

Besides x, there are ¢ nodes adjacent to cj. Since axc, has been reduced to

the limit L*, each of nodes €121 €122, ---» €120 acts like a c-node. We can find the
corresponding weights associated with the nodes €1-21» €122 --» €120 through
Algorithm C2 described in Appendix C2. We can find Hcl->21' HC1—+22’ ey Hcl—>2c and
we order these again with the remaining Hc's.

Case 3. c) is an end node. Do nothing.

Step 3. Having a new ordering of weights H, pick again the arc with the
largest Hc, and reduce it by:

1(X,c1) - L* units if Y >1(X,c;) - L*

or Y units if Y <1(X,cy) - L*
To determine the total improvement, add the improvement due to this reduction, which
is YHc, or [l(X,cl) - L*] He,, to any improvements made through previous iterations.
Repeat Steps 2 and 3 until Y has been exhausted or until all arcs in the spanning tree
have been reduced to the limit L*.
3.3 Link Reduction on Spanning Tree Arcs with Varying Costs

Suppose that it costs cij to reduce ajj by one unit and we have a budget of C
units. We want to know how to effect the reductions of the arcs of a spanning tree

with a fixed facility to best improve Zy.
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Section 3.2 becomes a special case of this problem, where the c;j are equal for
all links in the spanning tree. In the more general case examined in this section, since
arcs have different costs, reduction on ax¢ is not necessarily preferred.

For every node in the network j, we can calculate, Hj, the weight of all nodes
that follow j away from X through Algorithm C2. Knowing these weights Hj, the
reduction strategy that would best improve Zy in this spanning tree subject to our

budget constraint would be to reduce X;j units in arc a;; where X;j is given by the

following linear program:
maximize I=}Ex$ﬁ
subject to Z xifcij < C

1Gy) - xjj2 L* for all arcs
xij=0
For each arc we can define:
Tjj = % = amount of improvement per unit cost spent on a;;
We then order the different rjj from largest to smallest, and reduce as much as
possible the arc a;; that corresponds to the largest r;j . If the budget has not yet been
exhausted, move to the arc with the second highest rjj and reduce it as much as

possible. We go through the ordered list of rj; values to determine which a;; to reduce

next. Once we have exhausted the budget or reduced all arcs in the spanning tree to

the limit L*, we are done. More precisely, we can refer to the following algorithm.

Step 1. Order the different rj; from largest to smallest.

Step 2. Pick the arc with largest r;j and let the reduction on this arc be

Xij = I@ij)-L* if ci{l(iy) - L*] < C
5% otherwise

Since % is real and may be impractical physically we can require it to be l_%_l
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Step 3. Adjust C = C - (Cjj)(xjj). C is our remaining budget. If this value is zero,
we are done. Otherwise, we choose the arc with the next largest rjj and determine
the appropriate X;j, as defined in Step 2.

Step 4. Once the budget has been exhausted or all the arcs in the spanning tree
have been reduced to the limit L.*, we are done. However if we are using the I_Z:%
criterion, it is possible that we have some budget surplus and that we "skipped" arcs.

Example:

We have four arcs: A, B, C, D where,

Arc (o) Arc Length I(ar) Cost cq Ratio rg
A 15 20 10
B 20 20 9
C 40 4 3
D 8 2 2

Let L* = 5, C = 105. If we impose the L%_J criterion, ca[l(A) - L¥] = 20 [15 - 5] =
200 £ 105. Hence, xA = I_E%_I = le%i = 5. C = 105 - (20)(5) = 5. We move to
arc B since 1p = 9. ca[I(B) - L*] = 20 [20 - 5] =300 £ 5. hence xg = l_é%_l = LE%

= (0. We do not reduce arc B. cc[I(C) -L] =4 [40 - 5] = 140 £5. xc=l_i—_j =1 and

C=5-@)(1)=1. We move to arc D. cp[I(D) - L*] =2 [8 - 5] =6 £ 1. Hence,
XD = I_CQ];.J = I_% _l = (0 and C = 1. There is some budget leftover.

This algorithm, by construction allocates the budget to the "cheapest" arc. As
such the resulting strategy is optimal. We could use this technique in lieu of the linear
program mentioned initially.

3.4. Marginal Contribution of Arcs in a Network to the Median Function
Instead of a spanning tree, suppose we started with a graph with one facility

and we want to answer the questions about link reductions that were asked in the
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past sections. In the most general case, the problem was to define the arcs to reduce
and by how much, if each arc costs different to reduce and a budget constraint exists.

Given a network with a fixed facillity, determine which arc has the largest
marginal contribution to Zpy. (This is an extension of Section 3.1.)

To do this, create the shortest path tree (SPT) rooted at X. Arcs that are not in
the shortest path tree are irrelevant to Zys so their marginal contributions are zero.
The search is confined to arcs on the SPT and this reduces our problem to the case of
having a spanning tree as described in Section 3.1.

3.5. Link Reduction of Y Units in a Network

Given a network with a fixed facility, and a capacity to reduce Y arc-units, we
want to determine the links to reduce and by how much to obtain maximum
improvement on Z . (This is an extension of Section 3.2.)

3.5.1 Extending the Spanning Tree Solution

We start with the SPT rooted at X. From Section 3.4, we know that this
contains all the arcs that have marginal contributions to Z)4. Also, the arcs adjacent to
both X and a c-node gives a larger improvement to Zy when reduced compared with
other arcs of the spanning tree. But we simply cannot follow the technique in Section
3.2 (which briefly is reducing arcs in the SPT starting with the one with the heaviest
Hj, then the next heaviest, and so on by as much as allowed by Y and L*) because the
situation differs in one major aspect - the shortest path tree which is the current

solution may change as we reduce the length of some arcs.
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Ilustration.

(b)

Figure 3.2
Given the network in figure 3.2(a), the current SPT rooted at X is shown in figure
3.2(b). If ax is reduced by 2 units then the new network is shown in figure 3.2(c) and
the new SPT rooted at X is in figure 3.2(d). Arc aj2 which was previously not in the
SPT becomes part of it, and a3y is not a part of the SPT after the reduction. Therefore
with each reduction we may alter H, the weight of the c-nodes in the process because
H; depends on the underlying SPT. In the example, in the first SPT, H)y = h; and
H3 = h3 + hy and in the second SPT Hy = h; + hp and H3 = h3.
Consider the following:

nodes €1, €2,C3

arcs aXc,» @Xcy» AXcy

weights Hc, > Hc, > He,
according to our spanning tree T. We are going to make reductions in increments of
one to facilitate our algorithm. In this case, we are requiring that the reductions be
integers. We could impose however that reductions be made in any smaller

increments, for example halves or teaths of a unit, until we sufficiently meet the
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standards of detail set by the decision maker. If we reduce axc, by one, we improve
Zw. In the process, we may or may not alter T. If we do not, we can go on and reduce
aXc, again by one unit (because it still has the largest weight). But if we happened to
change T, we have shortened the paths along the subtree rooted at cj, which might
have made it more attractive for nodes rooted at cz orc3, to take paths through c;
leading to X. In other words, nodes originally weighed with Hc, or He; have been
absorbed by Hc,. So the new shortest path tree T' will yield new weights H'c, # Hc,,
H'c, # He,, but the "heaviest" remains the same because movement is from He, or He,
to He,. We are sure that H'¢, > Hc, and H'¢; > H'c;, so we can reduce axc, by one
more unit. In general, we can reduce axc, by:
Ye = LIXen-L*funits it Y>|1Xer) - L*]
Y units if Y <| 1X,e) - L* ]

fY < Ll(X,cl) - L*_], we are done. Otherwise, we are left with H'OZ and H'c3 the larger
of which we do not know. Also, we have to consider the c;_,y45-nodes (described in
Section 3.1) in the new T' in the evaluation of the new H'. weights.

A possible way of finding the new SPT is to perform the "modified" shortest
path tree algorithm described in Appendix C4. In this new spanning tree we have c-
nodes. But we have reduced aXc, to the limit. There are three cases that occur when
an arc has been reduced to the limit as discussed in Section 3.1. Whatever the case,
we can determine the arcs a;j (i may be X) closest to X that have not yet been reduced

to the limit, and the corresponding Hj's. Adjust Y to reflect the remaining amount of

the budget.
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Example.

Figure 3.3

When axc, has been reduced to the limit L*, the relevant arcs become
aXcy» 8Xc3, A, B, and C and the corresponding weights are
Hey Hego Hey 510 Hey e and Hey
We order the H.'s and pick the largest and reduce its corresponding arc as much as
possible. At this point we have completed an iteration. We begin the next iteration by
determining the new SPT. Repeat this procedure until Y is exhausted or until all arcs
in the current SPT have been reduced to the limit L*.
This procedure does not guarantee the optimal solution, however. Consider the

following network:

Figure 34 (a)
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The demand on the nodes are italicized (these are the hj's).Suppose we have the
capacity to reduce 15 units.

The SPT to the network in figure 3.4 (a) is

Figure 34 (b)
According to the solution suggested above, cut on the arc adjacent to the "heaviest"

subtree. This is axg. The new network is

Figure 34 (c)

and the new corresponding SPT is

Figure 3.4(d)
Improvement = 15(hs5 + hg) = 15(20 + 20) = 600 and ZMNew) = ZM - 600. Suppose

we reduced ax2 instead, by 15 units. The new network is
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Figure 3.4(e)

and the corresponding SPT is

1 30 20
OmONO
20 30
(D))
15 5 30 20
Figure 3.4(f)
Improvement = 15(hp+h;) + (60 - 55)hy = 15(15 + 15) + 5(35) = 625.
ZM(New) = ZM - 625. The second strategy is better than the first strategy.
3.5.2.The Nonlinear Programming Approach
Reexamining the problem, it appears that the approach should not be iterative
because succeeding decisions are largely influenced by the entire history of reductions.
In the example, if we reduce ax2 by larger than 10, it becomes more "profitable" to
reduce ax2 thereafter than axg , meaning for every one unit beyond 10 that ax2 is
reduced we get a larger improvement than from a one unit reduction on axg. But before
10 units, it is more "profitable” to reduce axq. With a reduction capacity of 15 units,
the initial advantage of axe over ax2 has been overcome by the fact that the 11th,
12th,..., 15th unit of reduction on ax2 improves Zpg more than the 11th, 12th,..., 15th
unit of reduction on ax¢. Because of this dependent nature, which was not considered
in the previous approach, a second approach is herein suggested. Whereas the former

is a mere heuristic, the following method is more precise, and in special situations

yield the optimal solution.
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Let us try the following approach: for each node n, (other than X), compute
I(n) = largest number of units the path X — n in the SPT is reduced that
does not cause a change (i. e. there is an indifference of paths) in
the shortest path tree at node n; anything larger than 1(n) will cause
a change of thc SPT at node n
= min [vpj = dX,n) + I(n,j) - d(X,j)] taken over all j such that apj
exists and apj is not part of the shortest path tree.
and label node n with 1(n) if 1(n) is less than the possibie number of units of reduction
in the path from X—n. (The possible number of units of reduction in the path from
X—n is determined by adding 1(i,j) - L* over all arcs in the said path.) Otherwise,
leave the node unlabelled. Order the labels 1(n) from smallest to largest and name
them 1;(n1), I2(n3), and so on.
For the network in figure 3.4(a),
atn = 1: 1(1) = min [vy3 = dX,1) + 1(1,3) - d(X,3)]
=min [vi3 =40 + 30 - 60]
=10
at n =3 1(3) = min [v3; = d(X,3) +1(3,1) - d(X,1), v35 = d(X,3) + I(3,5) - d(X,5)]
= min [v3] = 60+30 - 40, v35 = 60 + 20 -60]
=20
atn=5 1(5)=20
and 1(2) and 1(6) do not exist.
For Y € [0, 11(n1)]
We can reduce anywhere and not disturb any of the shortest paths. The SPT remains
unchanged. So it is optimal to cut Y units where we have the heaviest subtree of
nodes. Our problem reduces to the case where we are given a spanning tree, and we

follow the procedure described in Section 3.2. In the above example, if the budget was
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8 instead of 15, we would treat it as a spanning tree case and the optimal solution is
to reduce ax¢ by 8 units.
For Y € [li(n1), I2(n2)]

Case 1. nj is in the current heaviest subtree, and the first arc going out of X in this
subtree has lengih greater than Y + L*. Performing the reduction on the heaviest
subtree and even changing the SPT can only increase our benefits , so we should
reduce the arc closest to X in the heaviest subtree. In figure 3.4(a), if node 1 had a
weight of 30 instead of 15, and Y = 15 units, it is optimal to reduce ax2 by 15.

Case 2. nj is not in the current heaviest subtree, and both the arcs going out of X to
the heaviest subtree and n;'s subtree have length greater than Y + L*. If we cut Y
units from the heaviest subtree, we have an improvement of Y times the weight of the

heaviest subtree. If we cut Y units from ny's subtree, we have an improvement of Y
times the weight of nj's subtree+ z [Y - vn,p]Hp where p is a node that will be
p

pulled in by n; when Y >1i(n1). Pick the strategy which yields the larger
improvement. The discussion about figures 3.4(a) through 3.4(f) is precisely this case.
If we cut 15 units from the heaviest subtree, we have an improvement of 600 units. If
we cut 15 units from nj's (or node 2's) subtree, we have an improvement of 625 units.
The second strategy is better.

Case 3. If Y + L* is greater than the length of the initial arc going out of X in
the heaviest subtree or Y + L* is greater than the initial arc going out of X in the
subtree to which nj belongs to, the strategy may not be determined iteratively. Note

that changes in the SPT will occur if a reduction of more than 13(n]) occurs cn ihe

shortest path from X—n;. Denote the arcs that comprise this path ajj* and the

reductions on each arc as xjj*. Note that if 2 xij* = 11(n1), no nodes from other

subtrees are pulled into node nj and hence ny's subtree. Rather distances become

equal via the existing shortest path tree and via node nj. Actually changes in the
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shortest path tree may also occur if a reduction of Z xijj* is less than 1j(n)) as long
as an arc out of nj which is not in the current SPT is reduced appropriately. However,
we know that it is profitable to reduce wherever it is closest to X and we also know
that the number of aliowable units of reduction on the path from X—n; is greater than
11(n1), so we cannot reduce on an arc going out of n; unless the shortest path from
X—n; has been fully reduced, and these are the 2 xij*. In figure 3.4(a) the aj* arcs
are ax2 and ap). The SPT will change if xx2 + x21 > 10 = 1(1). However, even if xxo +
x21 S 10 as is the case when xx2 = x21 = 3, the SPT will change if a;3 is reduced
appropriately, say x13 =5. (Observe that xx2 + x21 +x13 = 11 and the path from X to
node 3 becomes shorter via nodes i and 2 than straight t. X.) However, it is more
profitable to reduce nodes closer to X , so we would not reduce ap; without first
reducing ax to the limit nor reduce 213 without first reducing az; to the limit.

The following figure is a portion of a larger network.

Figure 3.5

P1, P2, and p3 are somehow connected to X via other nodes currently ignored. The bold

lines are a-cs of the SPT and the narrow lines are other arcs in the network. The nodes

P1, P2, and p3 are candidates to be pulled in. Call the arcs that join them to nj an,p
and the amount to cut from them xp,p,. p4 is already attached to nj in the SPT.
Vn,p;» Vnypy» @Nd Vn,p, are the lengths needed to reduce the path X—n;—pk for

P1, P2, and p3 to have two indifferent paths to X. Any reduction larger than Vn,p, Will

)

\O



pull px towards n; in the new SPT. Sometimes, however, there are not enough
allowable units for reduction in the path X—n);—px to reach lengths of
Vn,p;» Vn;py» OT Vn,p, because each arc of the network should be L* units long.

Ifz Xij* + Xn,p, S Vn,p,» then Pk has not been pulled in by nj.

Ifz Xij* + Xn,p, > Vn,p,, then Pk has been pulled in by n)

Define Wy =0 if px has been pulled in

1 if px has not been pulled in

S0, 2, Xij* + Xn,p, S Vn,p, = Wi = 1and Y, Xij* + Xn,p, > Vn;p, = Wk = 0. This can

be translated to

2 Xij* + Xn,py - Buk, > Vn;p, (3.5.1)
Wi - By, S 1 (3.5.2)
Wi +Buy, 21 (3.5.3)
Uk + Uk, = 1 (3.5.4)
Y. Xif* + Xn,p, - Bt < Vo (3.5.5)
Wi - By, <0 (3.5.6)
Wi +Bty, 20 (3.5.7)
tiy ttkp=1 (3.5.8)

where B is a large positive number and u and t are binary variables.

Recall H;. It is conditional or. the SPT, hence, on what nodes have been pulled

already. So, the actual Hj after considering the pulling is called ﬁ, where
ﬁ.i=H.i' ; (1 - Wa)Hp,

where the nodes pa were originally counted in H;, implying that the a-nodes differ

across j-nodes.
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Example. Let us redefine the network in figure 3.4(a).

30 A 20 0
3 5
20 30
6
30
20

Figure 3.6(b)

LetY=15and L*=4.

1(1) = min[40 + 30 - 60, 40 +22 - 50] = 10

1(7) =50 +22 - 40 =32

1(3) =20

1(5) =20

1(2) and 1(6) do not exist.

Hj =15, Hz = 15+15 = 30, H3 = 35, H5 = 20, H = 20 +20 =40, H7 = 7.

Y is between 10 and 20, and pulling may only cccur at node 1. The p-nodes are nodes
3 and 7. For each H, the corresponding p,- nodes and H are listed as follows:
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H; =15 none Hj =15
Hy =30 none H_z =30
Hz =35-(1 - W3)35

H3 =35 3 3

Hs=20 none Hs =20

Hg = 40 none Hg =40

Hy=7 7 Hy=7-(1-Wy)7

ajj* are ax2 and a2).

We can now dcfine a nonlinear program that could give us the optimal strategy.

)y {[ (X xij* +xnyp,) - Vnyp JHp[1 - ka]}

(P3.5) maximize ( u:‘h od
counts the nodes
that could be
pulled by nl)
Y {xHj- Y (1-WpHi}
in SPT a
b::c:ol:lin the (a-nodes are
+ path from X special p-nodes
tony that originally
were counted
with Hj)
X {xiH)
+ arcs in SPT
on the path
from X to ny
subject to
xjj <1, j) - L* (3.5.9)
xij* < 1*@, j) - L* (3.5.10)
x“lpk < l(nl, pk) -L* (3.5. 1 1)
2 xif* + X Xij +2, Xnyp, = Y (35.12)
Y. %ij* + xn,p, - Bug, > vayp, (3.1 - 3.5.8 for each
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Wk - Buk2 <1 of the k nodes which
Wi + Buy, 21 may be pulled.)
ug, +ug, =1
2 Xij* + Xn,p, - Btk, < Vnp,
Wi - By, <0
Wik + By, 20
tiy + ty, = 1
Wk=0,1
Xij*, Xij, Xn,p, 2 0
Uk,» Uky» tky» tk, are binary variables
B is a large positive number
Equations (3.5.9), (3.5.10), and (3.5.11) are feasibility constraints, (3.5.12) is the
budget constraint, and (3.5.1)-(3.5.8) for each candidate for pulling records the SPT
changes that occur.

In our example, the program may be formulated as

Y {[(xx2 +x21 +x1) - vi] Hie [1 - Wi] }
k=3,7

maximize
+xx2(30) + x21(15) + xx7{7 - (1 - W7)7]
+xx3[35 - (1 - W3)35] + xx6(40) + x65(20)
or  maximize (xx2+x21 +x13 - 10)(35)(1 - W3)
+(xx2 + x21 + x17 - 12)(7)(1 - W7)
+xx2(30) + x21(15) + xx7[7 - (1 - W7)7]
+xx3[35 - (1 - W3)35] + xx6(40) + x65(20)
subject to  (feasibility constraints:)

xx2520-4=16 xx3<60-4=56
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x21<20-4=16 xx6<30-4=26
Xx7<50-4=46 X65<30-4=26
X17<22-4=18 x13<30-4=26
(budget constraint:)
xx2 +X21 + XX7 + Xx3 + Xx6 +X65 + X17 + X13= 15
(constraints for node 3)
xx2 +X21 - Bu3g; > 10
W3-Bujp <1
W3+ Bu3z 21
uzg+uzp=1
XX2 +X21 + Bt3; <10
W3-Bt32<0
W3 +Bt3220
131 +132=1
(constraints for node 7:)
xx2 +X21 -Bu7; > 12
W7-Buppsi
W7+ Bupp21
u7; +up2=1
Xx2 +X21 + Bt71 <12
W7-Bt72S0
W7 +Bt7220
t71 +t72=1
W3, W7, u and t are binary variables
XX2, X21, XX7, XX3, XX6, X65, X17, X132 0

B is a large positive number.
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Suppose L* = 18 (instead of 4), it becomes impossible to pull node 7 because
the maximum amount of reduction fromX =22 =1 - 7is (20 -18) + (20- 18 ) + (22 -
18) = 8 which is less than vy7 = 12. So node 7 is not a px-node in this case, and the
corresponding program is smaller.

Another way of making the program smaller is by including only the arcs within
the radius of Y possible reductions centered at X. This means that starting from X in
the SPT, we will measure in every possible outward direction Y reducible units. Arcs
beyond this radius will never be reduced because we have a budget of Y units only, so
these arcs will not be included in the formulation. In the preceding example, Y = 15.
Since axy yields 20 - 4 = 16 reducible units, we have no need need to examine a3
even though it is in the path from X to node 1. Similarly, a13, a17, and ags will not be
reduced. We can delete these arcs from the preceding formulation and the smaller
mixed integer program that results is described in Appendix CS5.

If two nodes, njo and njg, had the same label 1j(n;), we can formulate a
similar program as long as nj5 and njg do not share a common candidate for pulling
(i.e. pkx-node). With double-pulling, computations beccme harder, because we have to
note which node, nj A or njg, actually pulls the common pg-node.

3.5.3. Double-Pulling

Consider the following network:

Figure 3.7(a)
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and its corresponding SPT:

20 60 22
62
2 20 \XJ 30 6
Figure 3.7(b)

I(1) =10
1(3) = min [60 + 30 - 40, 60 + 20 - 52] = 18
1(5) = min [52 + 20 - 60, 52 + 20 - 62] = 10
1(8) =62 +20 - 52 =30
1(2) and 1(6) do not exist
1(1) = I(5). Node 3 may be pulled by node 1 and node 5.
After the reductions, if the length of the path X = 6 — 5 — 3 is denoted by
P(5) and the length of the path X & 2 = 1 — 3 is denoted by P(1), then node 3 is
pulled by the larger of P(5) - 12 and P(1) -10. Only when we know where node 3 was
pulled, if it was pulled at all, could we solve for the ﬁ}'s. If we know that
min [P(5) - 12, P(1) - 10] > 0, node 3 was pulled. It is not sufficient to have a variable
W3; we have to redefine it as W3 where m is the node that pulled it. In our example,
the new binary variables are W3 and W53 defined as :
if P(5) - 12 > P(1) -10, then W53 =0 and W13 =1
if P(5) - 12 <P(1) - 10 then W53 =1 and W33 =0

otherwise, W53 + W3 =1
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In general, (P3.5) may be modified by changing the objective function to

)y Y ([ %+ xmpy) - vinp, JHp,[1 - Wonp, 1}

m k
(nodes with (counts the nodes
tied I(n))  (hat could be

maximize

pulled by m)
X {wH- X - WpaHdl}
i a m
but ot uslptl}‘e (a-nodes are
+ path from X special p-nodes
to any m that originally
were counted
with Hj)
2 (xirHj)
+ arcs in SPT
on the path
from X to any m

The constraints have to incorporate the condition that for every path that has a chance
of pulling node p: P(m;), P(m3), P(m3), and so on then

if P(my) - Vm,p = max [P(m) - vmp], then w"‘xp =0 and all other Wpp = 1
m

if P(my) - Vm,p = Max [P(m) - vmp], then szp =0 and all other Wpp =1
m

and so on.
This would require an additional number of constraints and variables. Besides, the
formulation becomes more complicated when we have more common pg-nodes, and

more nodes having the same value of 1(n).
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3.5.4. Second-Order Pulling

Go back to figure 3.4(a) and the accompanying problem:

Figure 34 (a)

The demand on the nodes are italicized (these are the hj's). Suppose we have the
capacity to reduce 15 units.

The SPT to the network in figure 3.4 (a) is

O @
20 60 30

15 20 30 20
Figure 34 (b)

Make the slight change that Y = 35 instead of Y = 15 and L = 1. Second-order

pulling happens when we reduce ax, by 18 andap; by 17. The resulting network is

30 20

Figure 3.8(a)
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and the corresponding SPT is

Figure 3.8(b)
Node 3 has been pulled by node 1 by a sufficient amount for node 3 to still pull node 5.
Call candidates for second order pulling f-nodes., and the reduction on the arc

from pk to fr, Xp,f, .. The figure below shows the relationship between nj, p, and f

nodes.

Figure 3.9

The bold lines are lines in the SPT and the narrow lines are other arcs in the network.
Like figure 3.5, this is just a portion of a network.
Actual second-order pulling will occur if
[ xif* + Xnypy + Xpyfp,r - Vngpi > Vpylp,r
and the improvement this brings in due to fp,r is

[z Xij* + xnlpk + xpkfpkl' - vnlpk - vpkfpkf](prkl')
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We can introduce a dummy variable gfpkr that indicates if the second order node fp,r

has been pulled:
if[z xij* + anpk + xpkfpkr = v“lpk] > vpkfpk"' then gfpkr =0
otherwise, 1

Sfpk,=
Modify integer program (P3.5) to allow for second-order pulling. To the

objective function, add another term:

2 2 55 X+ Sy~ Voume” Yl Bl ) - )
P’

To the constraints add:

(1) a set of constraints similar to (3.5.1) - (3.5.8) that tranforms:
if [Z Xij* + x“lpk + xpkfpkr = anpk] > vpkfpkr, then gfpkr =0
otherwise, gfpkr =1

For each f-node there are 8 constraints.
(2) Hj has to be redefined to

Hj=Hj- Y, (1-WpHa- Y, (1 - Wp)Hp

a
{a-nodes are (b_m,},’es are
special p-nodes special £-nodes
that originally that originally
were counted were counted
with Hj) with Hj)

and the second term in the objective function becomes

Y [xiiH- Y a-WoH,- Y (- Wyl )
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