
TCAD-Informed Surrogate Models
of Semiconductor Devices

by

Samuel B. Chinnery

S.B. Electrical Science and Engineering
Massachusetts Institute of Technology, 2021

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

©Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 2, 2022

Certified by. .
Alan Edelman

Professor of Applied Mathematics
Thesis Supervisor

Certified by. .
Christopher Rackauckas

Research Affiliate
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

TCAD-Informed Surrogate Models
of Semiconductor Devices

by

Samuel B. Chinnery

Submitted to the Department of Electrical Engineering and Computer Science
on May 2, 2022, in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Extensive research has been conducted over the last half-century to develop models of semicon-
ductor devices for use in circuit analysis and simulation. Such models typically fall into one of two
categories: “Cheap” analytical models that can be solved quickly but introduce significant error,
and “expensive” physics-based models that achieve high accuracy at the price of prohibitive com-
putation time. As electronic circuits grow to contain billions of active devices, there is a pressing
need for new models that are both accurate and fast to compute.

In this thesis, we introduce Semiconductors.jl, a new semiconductor simulation tool writ-
ten in the Julia programming language. We use Semiconductors.jl to implement performant
surrogate models that approximate the behavior of fine-grained technology computer-aided de-
sign (TCAD) device models using a coarsified grid. The resulting surrogate models are shown to
approximate the current-voltage characteristics of the fine-grained models to within a maximum
error of 0.1% while using less than one tenth as many discretization nodes as the fine-grained
baseline model.

Thesis Supervisor: Alan Edelman
Title: Professor of Applied Mathematics

Thesis Supervisor: Christopher Rackauckas
Title: Research Affiliate

3

4

Contents

1 Introduction 13

2 Theory 15
2.1 Semiconductor physics . 15
2.2 Numerical methods . 24
2.3 Computational methods . 47
2.4 Related work . 49

3 Implementation 51
3.1 Computing environment . 51
3.2 Semiconductor simulator . 55
3.3 The model zoo . 81

4 Results 95
4.1 Numerical analysis . 95
4.2 Device characteristics . 100
4.3 Continuation . 113
4.4 Surrogatization . 113

5 Conclusion 127

A Derivations 129
A.1 Scharfetter-Gummel midpoint scheme . 129
A.2 Jacobian of 1D finite difference discretization . 133
A.3 Jacobian of finite volume discretization . 135

B Additional results 137
B.1 Diodes . 137
B.2 Bipolar transistors . 137
B.3 MOSFETs . 140

5

6

List of Figures

2.1 Electrostatic potential and electron and hole concentrations as a function of net
doping concentration under charge-neutrality conditions. 18

2.2 Illustration of boundary condition interface types in a simplified 2D MOSFET model.
Thickened regions of the device outline represent Ohmic contacts. 19

2.3 Example simulation of 1D diode under heavy reverse bias (VR = 50 V) showing
boundary layers in carrier concentrations: along entire device length (left), and near
the Ohmic contacts, with distance plotted in log-scale. 20

2.4 Relative error of Fermi-Dirac approximations given in [9] (left) and in [20] (right). . . 24
2.5 One-dimensional discretization grid for Van Roosbroeck system, showing quantities

defined at grid points (“on-grid unknowns”) and quantities defined between grid
points (“off-grid unknowns”). 26

2.6 Plot of Q(x) and Bernoulli function B(x) for x ∈ (−20, 20). 29
2.7 Example two-dimensional discretization grid for finite volume method with two

interior nodes, x[k] and x[l]. The boundary of the discretization is ∂Ω. 32
2.8 Concentration-weighted test functions for 1D diode under forward and reverse bias. 42
2.9 Illustration of naïve prediction and tangent prediction algorithms at a normal point

(left) and at a limit point (right). Figure adapted from [95]. 45
2.10 Illustration of the two PALC constraints N1 and N2 and their effect on the correction

step of the continuation algorithm. 46

3.1 Notation used in 2D vector discretization method. The tangent vectors ŝ1 through
ŝ3 point along the edges of the triangle as shown. 65

3.2 TCAD model of 1D diode generated by diode1d. The anode and cathode contacts
span the entire height of the device. 81

3.3 Default discretization grid for 1D diode generated by diode1d(2.0,2.0), showing
refinement about x = 0. The grid has 163 nodes and 162 cells (segments). 82

3.4 Doping profiles generated by diode1d(2.0,2.0), for a symmetric junction (left)
and an asymmetric junction (right). 83

3.5 TCAD model of 2D diode implemented by diode2d. The contact heights are equal
and are determined by the parameter hc. 84

3.6 Default discretization grid for 2D diode generated by diode2d(2.0,2.0,1.0,0.5),
showing refinement about x = 0. The grid has 459 nodes and 825 cells (triangles). . . 86

3.7 Discretization grid for 2D diode generated by diode2d(2.0,2.0,1.0,0.5,bgmesh=
true). The grid has 561 nodes and 1095 cells (triangles). 86

3.8 TCAD model of planar NPN transistor implemented by npn1. The emitter and
collector contacts are centered vertically along the device, and the base contact is
centered in the base region. 87

7

3.9 Default discretization grid for planar NPN transistor generated by npn1(5,1,10,
5,3,3,0.2), showing refinement about base-emitter and base-collector junctions.
The grid has 257 nodes and 461 cells (triangles). 89

3.10 Discretization grid for planar NPN transistor generated by npn1(5,1,10,5,3,3,
0.2,rectgrid=true). The grid has 240 nodes and 390 cells (triangles). 89

3.11 Doping profiles generated by npn1(5,1,10,5,3,3,0.2), plotted along the x axis
only. The region where x ∈ (5µm, 6µm) is the base region. 90

3.12 TCAD model of planar MOSFET implemented by mos1. The contacts along the top
of the device are the source, gate and drain, respectively. The bottom contact is the
bulk contact. 91

3.13 Default discretization grid for planar MOSFET generated by mos1(0.1,0.05,0.
2,0.05,0.002,0.1,0.025), showing refinement about source and drain diffusion.
The grid has 478 nodes and 870 cells (triangles). 93

3.14 Zoomed plot of gate oxide region in default MOSFET grid. 93

4.1 Relative error in direct, series and limit approximations of B(x). The “Limit” error
gives B(x) for x > 0 and x + B(x) for x < 0. The line labeled ϵ(1.0) is the Float64
machine epsilon ϵ(1.0) = 2−52 ≈ 2.220 × 10−16. 96

4.2 Relative error in direct, series and limit approximations of Q(x). The “Limit” error
gives 1/x −Q(x) for x > 0 and Q(x) − 1/x − 1 for x < 0. The line labeled ϵ(1.0) is the
Float64machine epsilon ϵ(1.0) = 2−52 ≈ 2.220 × 10−16. 97

4.3 Relative error in direct, series and limit approximations of B′(x). The “Limit” error
gives −B′(x) for x > 0 and 1 + B′(x) for x < 0. The line labeled ϵ(1.0) is the Float64
machine epsilon ϵ(1.0) = 2−52 ≈ 2.220 × 10−16. 97

4.4 Optimal small-value threshold search for B(x). For positive x, a minimum error
of roughly 3.4 × 10−16 was achieved using a small-value threshold of 0.295; for
negative x, a minimum error of roughly 2.8 × 10−16 was achieved using a small-
value threshold of 0.279. 98

4.5 Optimal small-value threshold search for Q(x). For positive x, a minimum error
of roughly 7.1 × 10−16 was achieved using a small-value threshold of 0.578; for
negative x, a minimum error of roughly 8.7 × 10−16 was achieved using a small-
value threshold of 0.584. 99

4.6 Optimal small-value threshold search for B′(x). For positive x, a minimum error
of roughly 6.7 × 10−16 was achieved using a small-value threshold of 0.982; for
negative x, a minimum error of roughly 4.2 × 10−16 was achieved using a small-
value threshold of 0.992. 99

4.7 Potential and carrier density in 1D diode generated by diode1d(2.0,2.0). Simu-
lations were performed at equilibrium (top), with a forward bias of 0.6 V (middle)
and with a reverse bias of 10.0 V (bottom). 101

4.8 Current-voltage characteristic of 1D diode generated by diode1d(2.0,2.0). Simu-
lations were performed with impact ionization (II), with field-dependent mobility
(FDM), and with both II and FDM. Convergence failed at VR = 113.85 V for the II
only case and at VR = 108.40 V for the II and FDM case. 102

4.9 Current-voltage characteristic of 1D diode generated by Padre TCAD. Simulations
were performed with impact ionization (II), with field-dependent mobility (FDM),
and with both II and FDM. Convergence failed at VR = 104.35 V for the II only case
and at VR = 105.35 V for the II and FDM case. 102

8

4.10 Spectra of Jacobian matrices generated by diode1d(2.0,2.0). The system Jaco-
bian has size 489 × 489. The condition numbers of the matrices are 1.090 × 1037,
7.556 × 1036, 4.970 × 1029 and 3.279 × 1028, from top to bottom in the legend. 104

4.11 Condition number of Jacobian matrices generated bydiode1d(2.0,2.0) for forward
and reverse bias voltages. The forward bias voltages are 0.0:0.01:1.0, and the
reverse bias voltages are 0.0:0.05:108.35. 104

4.12 Potential (top), electron density (middle) and hole density (bottom) in 2D diode gen-
erated by diode2d(2.0,2.0,1.0,0.5). Simulation was performed with a forward
bias of 0.6 V. 105

4.13 Potential in 2D diode with background mesh generated by diode2d(2.0,2.0,1.0,
0.5,bgmesh=true). Simulation was performed with a forward bias of 0.6 V. 106

4.14 Current-voltage characteristic of 2D diode generated by diode2d(2.0,2.0,1.0,0.
5). Simulations were performed with impact ionization (II), with field-dependent
mobility (FDM), and with both II and FDM. Convergence failed at VR = 113.70 V
for the II only case and at VR = 112.50 V for the II and FDM case. 107

4.15 Relative error between I-V curves of 2D diode and 1D diode, for forward (left) and
reverse (right) bias voltages. An increase in error near VR = 100 V for the II cases is
apparent due to the difference in breakdown voltages. 107

4.16 Electric field (top) and current density (bottom) in 2D diode model generated by
diode2d(2.0,2.0,1.0,0.5) with a forward bias of 0.6 V. Arrow length is propor-
tional to field magnitude; one arrow is plotted for each discretization node. 108

4.17 Potential (top), electron density (middle) and hole density (bottom) in NPN BJT
generated by npn1(5,1,10,5,3,3,0.2). Simulation was performed with IB =
5 × 10−7 Aµm−1 and VCE = 2 V. 109

4.18 Current-voltage characteristic of NPN BJT generated by npn1(5,1,10,5,3,3,0.2)
showing operation in forward and reverse active regions. Base current was varied
from IB = 1 × 10−7 Aµm−1 to IB = 9 × 10−7 Aµm−1 in five equal steps. 111

4.19 Large-signal forward current gain (βF) versus collector current for NPN BJT gener-
ated by npn1(5,1,10,5,3,3,0.2). Results are shown for the four built-in doping
profiles in npn1. 111

4.20 Electrostatic potential in n-channel MOSFET generated by mos1(0.1,0.05,0.2,0.
05,0.002,0.1,0.025). Simulation was performed with VDS = 1 V and VGS = 0.5 V. 112

4.21 Drain-source voltage I-V characteristic of n-channel MOSFET generated by mos1(0.
1,0.05,0.2,0.05,0.002,0.1,0.025). Gate-source voltage was varied from VGS =
0.1 V to VGS = 0.9 V in five equal steps. Simulations were performed with constant
mobility (left) and with field-dependent mobility (right). 114

4.22 Gate-source voltage I-V characteristic of n-channel MOSFET generated by mos1(0.
1,0.05,0.2,0.05,0.002,0.1,0.025). The drain-source voltage was varied from
VDS = 0.5 V to VDS = 1.5 V in five equal steps. Simulations were performed with
constant mobility (“Default”) and with field-dependent mobility (“FDM only”). . . . 114

4.23 Electric field (top) and current density (bottom) in n-channel MOSFET generated
by mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025) with VDS = 1 V and VGS = 0.5 V.
Arrow length is proportional to field magnitude; one arrow is plotted for each
discretization node. 115

4.24 I-V curves of reverse-biased 1D diode generated by Padre TCAD using arc-length
continuation. The first and second breakdown voltages were 105.4 V and 26.7 V for
the II and FDM case, and 104.3 V and 84.2 V for the II only case. 116

9

4.25 Comparison of I-V curves for 1D diode using fine and coarse discretization grids.
The fine-grained model was generated by diode1d(2.0,2.0), and the coarse-
grained model was generated by diode1d(2.0,2.0,ha=0.8,hb=0.16,hc=0.8). . . . 117

4.26 Loss gradients in surrogate model using three different bias voltage ranges. Plot
legends show the range of VF used to generate each gradient. Solid lines were
computed using 10 mV bias steps, and dashed lines were computed using 100 mV
bias steps. 118

4.27 Gradients of current with respect to doping profile in 1D diode model generated by
diode1d(2.0,2.0). Forward bias voltages from VF = 0.1 V to VF = 0.9 V are shown. 119

4.28 Loss progression showing training process for surrogate model of 1D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was
computed using 100 mV bias steps. 121

4.29 Optimal doping profile after 200 iterations of BFGS, using 100 mV bias steps to
compute loss. The dashed line gives the doping profile of the unoptimized surrogate
for reference. 121

4.30 Loss progression showing training process for surrogate model of 1D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was
computed using 10 mV bias steps. 122

4.31 Optimal doping profile after 200 iterations of BFGS, using 10 mV bias steps to
compute loss. The dashed line gives the doping profile of the unoptimized surrogate
for reference. 122

4.32 Loss progression showing overfitting in surrogate model of 1D diode after 862
iterations of BFGS (left); relative error between surrogate model and fine-grained
model (right). Loss was computed using 10 mV bias steps. 123

4.33 Optimal doping profile after 862 iterations of BFGS, using 10 mV bias steps to
compute loss. The dashed line gives the doping profile of the unoptimized surrogate
for reference. 123

4.34 Loss progression showing training process for surrogate model of 2D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was
computed using 100 mV bias steps. 125

4.35 Optimal doping profile after 148 iterations of BFGS, using 100 mV bias steps to
compute loss. A local minimum loss of 3.7437 × 10−5 was reached at termination. . . 125

4.36 Loss progression showing training process for surrogate model of 2D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was
computed using 100 mV bias steps, with the addition of VF = 0.01 V. 126

4.37 Optimal doping profile after 170 iterations of BFGS, using 100 mV bias steps to com-
pute loss, with the addition of VF = 0.01 V. A local minimum loss of 4.0720 × 10−5

was reached at termination. 126

A.1 Relative error between midpoint scheme and Scharfetter-Gummel discretization in
a 1D diode simulation under heavy forward bias (VF = 1.0 V, left) and light forward
bias (VF = 0.3 V, right). 131

A.2 Comparison of interpolation functions Q(x) and σ(x) (left); comparison of weight
functions B(x) and 1 − xσ(x) (right), for x ∈ (−20, 20). 132

A.3 Difference between interpolation functions (left) and weight functions (right) in
classical Scharfetter-Gummel discretization versus midpoint scheme discretization. . 132

10

B.1 Jacobian matrices of 1D diode generated by diode1d(2.0,2.0,ha=0.04,hb=0.04,
hc=0.04). The resulting model has an 11-point discretization grid with uniform
spacing. Bias conditions are labeled in the plot titles. 138

B.2 Potential (top), electron density (middle) and hole density (bottom) in 2D diode
generated by diode2d(2.0,2.0,1.0,0.5,rectgrid=true). Simulation was per-
formed with a forward bias of 0.6 V. 139

B.3 Potential (top), electron density (middle) and hole density (bottom) in NPN BJT gen-
erated by npn1(5,1,10,5,3,3,0.2,rectgrid=true). Simulation was performed
with IB = 5 × 10−7 Aµm−1 and VCE = 2 V. 141

B.4 Electric field (top) and current density (bottom) in NPN BJT generated by npn1(5,
1,10,5,3,3,0.2). Simulation was performed with IB = 5 × 10−7 Aµm−1 and VCE =
2 V. Arrow length is proportional to field magnitude; one arrow is plotted for each
discretization node. 142

B.5 Electric field (top) and current density (bottom) in n-channel MOSFET generated by
mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025) with VDS = 1 V and VGS = −0.5 V.
Arrow length is proportional to field magnitude; one arrow is plotted for each
discretization node. 143

11

12

Chapter 1

Introduction

There is a growing need for performant, accurate models of semiconductor devices. Simula-
tion is an integral part of the engineering design process, and many widely used simulators like
SPICE [104] use outdated models for transistors and diodes that have little use in modern elec-
tronics. The prevalence of complex semiconductor devices like heterojunction bipolar transistors
(HBTs) [58, 98], FinFETs [65] and vertical nanowire FETs [50], along with aggressive downscaling
of device dimensions into the 1 nm regime [29], has driven a shift toward physics-based device
simulators. Such simulators generally rely on technology computer-aided design (TCAD) models
of devices to accurately predict their physical characteristics [11]. This is accomplished by solving
a system of partial differential equations (PDEs) that govern the transport of electrons and holes
in the device.

Physics-based simulators provide superior accuracy to other simulation methods at the expense
of significantly increased runtime. While SPICE models are designed to give fast convergence in
a wide variety of operating conditions, the PDE systems arising in semiconductor physics are
often stiff, a term broadly used to describe difficult numerical problems. Circuit level simulations
based on TCAD models have thus historically been intractable due to computational expense and
convergence difficulties. One approach to circumvent this difficulty has been to apply traditional
machine learning techniques to electronic device simulation. Simply training a data-driven model
on the characteristics of a semiconductor device often lacks the predictive capability demanded by
high-volume engineering applications [69]. Any model used to simulate semiconductor devices
must be linked to the underlying physics when explainable, repeatable results are desired.

The emerging field of scientific machine learning seeks to establish a connection between compu-
tational physics and machine learning. A wide range of scientific machine learning tools have been
developed that promise to accelerate many domains within scientific computing [126]. Universal
differential equations (UDEs), which use machine learning techniques to augment models based
on differential equations, have gained particular attention in recent years. The advent of automatic
differentiation (AD), a class of techniques used to evaluate gradients of computer programs, has
allowed many computationally expensive models to be surrogatized in a resource-efficient manner
through the use of gradient-based optimization.

In this work, we leverage automatic differentiation to create surrogate models of semiconductor
devices in a physics-based simulation environment. We introduce Semiconductors.jl, a new
simulation tool built with the Julia programming language that contains a fully AD-compatible
device simulator. We propose several TCAD models of common diodes, bipolar junction transistors
(BJTs) and MOSFETs to serve as candidates for surrogatization. Using Semiconductors.jl and
other scientific machine learning packages, we create performant, coarse-grained surrogate models

13

of 1D and 2D silicon diodes and train the surrogates to minimize error in their I-V curves. The
trained surrogates are shown to be accurate to within a maximum error of 0.1% with respect to the
fine-grained baseline model.

The remainder of this thesis is structured as follows: Chapter 2 reviews the physics un-
derlying device simulation, introduces the key numerical and computational methods used by
Semiconductors.jl and discusses related work in surrogatization and inverse design. Chapter 3
describes the implementation of Semiconductors.jl and provides documentation for its public
methods. Chapter 4 presents experimental results on the characteristics and the surrogatization
of the device models implemented in Semiconductors.jl. Chapter 5 concludes the thesis and
outlines several directions for future work. Appendix A contains derivations related to the dis-
cretized semiconductor equations. Finally, Appendix B contains additional results on the character
of solutions to the semiconductor problem in the models implemented by Semiconductors.jl.

14

Chapter 2

Theory

2.1 Semiconductor physics

2.1.1 Compact models

Circuit-level simulation of semiconductor devices has traditionally relied on compact models, which
relate terminal voltages and currents directly through a set of equations. The model equations may
be derived empirically through curve-fitting, or the model may be a collection of simpler circuit
elements such as resistors and diodes whose behavior closely approximates that of the device of
interest. The most common models combine both approaches, using complex networks of passive
components whose values vary nonlinearly with operating conditions.

Perhaps the earliest example of a compact semiconductor model is the ubiquitous Shockley
diode equation, introduced in 1949 by physicist William Shockley [140]. Succinctly, the model
gives the current through a semiconductor diode as

I = IS

(︃
e

VD
VT − 1

)︃
,

where IS is a parameter, VD is the forward bias voltage, and VT = kT/q is the thermal voltage.
This model was instrumental in the development of early solid-state circuits and is widely used in
hand analysis to this day. The physics introduced in [140] naturally extended to bipolar junction
transistors (BJTs).

The modeling of BJTs began in 1954 with the Ebers-Moll model [34]. This model used identical
assumptions to the Shockley diode equation, leading to the following equations for collector
current (IC) and emitter current (IE):

IC = IS

(︃
e

VBE
VT − 1

)︃
− IS

αR

(︃
e

VBC
VT − 1

)︃
, IE =

IS

αF

(︃
e

VBE
VT − 1

)︃
− IS

(︃
e

VBC
VT − 1

)︃
,

where VBE is the base-emitter voltage, VBC is the base-collector voltage, IS is a device parameter,
and βF = αF/(1 − αF) and βR = αR/(1 − αR) are the forward and reverse current gains, which
were further assumed to be constant. This model was found to be overly simplistic in [56], in
which the authors derived the Gummel-Poon bipolar model, which has remained in widespread
use since its introduction in 1970. Most notably, the Gummel-Poon model allows βF to vary
with operating conditions, closely approximating the behavior of actual BJTs. Additionally, this
model incorporated the Early effect, which models the increase in collector current (IC) of a BJT as
collector-emitter voltage (VCE) is increased.

15

Table 2.1: Comparison of analytical BJT and MOS models.

Model
Device

type
Year

introduced
Number of
parameters Reference

Ebers-Moll BJT 1954 3 [34]
Gummel-Poon BJT 1970 21 [56]
SPICE Gummel-Poon BJT 1973 39 [104]
VBIC BJT 1995 85 [97]
Mextram 505 BJT 2017 121 [108]
Schichman-Hodges MOS 1968 14 [138]
SPICE empirical MOS 1973 22 [112]
BSIM3 v3.2 MOS 1998 144 [88]
BSIM4 v4.8.2 MOS 2020 349 [25]

The original Gummel-Poon model was considerably extended in the implementation of the
SPICE circuit simulator in 1973, resulting in a model today known as the “SPICE Gummel-Poon”
model, or SGP [104]. The SGP accounts for temperature dependence in numerous device char-
acteristics, in addition to the improvements offered by the standard Gummel-Poon model [141].
Further improvements to bipolar device modeling include the Vertical Bipolar Inter-Company
Model (VBIC) [97] and the Most EXquisite TRAnsistor Model (Mextram) [108], which require
on the order of 100 parameters to model complex effects such as parasitic substrate transistors
and avalanche breakdown of the base-collector junction. Table 2.1 shows the growth in model
complexity over time, both in these BJT models and in common MOS models.

2.1.2 Drift-diffusion model

Accurate, physics-based simulation of electronic devices requires a mathematical model for the
transport of charged particles in a semiconductor lattice. The primary charge carriers are electrons
and holes, which carry negative and positive charge, respectively. The most basic physical model
for carrier transport is the drift-diffusion model. This model accounts for both drift, carrier motion
due to excitation by an electric field, and diffusion, the tendency of carriers to move from areas of
high concentration to areas of lower concentration [43]. In other fields, the drift-diffusion model
is referred to as the convection-diffusion model, which has been used in applications ranging from
fluid flow models in physics to options valuation in finance [132].

The drift-diffusion model is usually formulated as a system of three coupled, nonlinear partial
differential equations (PDEs). The system results from coupling Poisson’s equation with the conti-
nuity equations, which ensure conservation of charge for electrons and holes [146]. The unknown
quantities are the electrostatic potentialψ, and two quantities relating to the carrier concentrations.
These may be either the electron and hole densities n and p, or the electron and hole quasi-Fermi
potentials ϕn and ϕp. Generally, the system is given as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇ · (εE) + q(n − p − Γ) = 0
G −U + 1

q∇ · Jn = 0

G −U − 1
q∇ · Jp = 0

, (2.1)

where ε is the permittivity at each point in space, Γ is the net ionized impurity concentration, E =
−∇ψ is the electric field, q is the electron charge, G and U are the net generation and recombination

16

rates, and Jn and Jp are the electron and hole current densities. The current densities may be
expressed in terms of ϕn and ϕp as

Jn = −qnµn∇ϕn, Jp = −qpµp∇ϕp, (2.2)

where µn and µp are the electron and hole mobilities [39].
With typical doping concentrations (on the order of 1 × 107 µm−3 or less), a semiconductor

is said to be nondegenerate, in which case the Boltzmann approximation for carrier distributions
holds [90, 121]. In this case, the quasi-Fermi potentials are approximated as

ϕn = ψ − VT ln
(︃ n
ni

)︃
, ϕp = ψ + VT ln

(︃ p
ni

)︃
, (2.3)

where VT = kT/q is the thermal voltage (≈ 25.85 mV at room temperature) and ni is the intrinsic
carrier concentration [39]. Substituting (2.3) into (2.2) gives the current densities as

Jn = −qnµn∇

(︃
ψ − VT ln

(︃ n
ni

)︃)︃
= −qnµn∇ψ + qµnVT∇n, (2.4)

Jp = −qpµp∇

(︃
ψ + VT ln

(︃ p
ni

)︃)︃
= −qpµp∇ψ − qµpVT∇p. (2.5)

Substituting (2.4) and (2.5) into (2.1) and recalling that E = −∇ψ gives the full system in terms of
only ψ, n and p: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∇ ·
(︁
ε∇ψ

)︁ − q(n − p − Γ) = 0
G −U + ∇ ·

(︁
µn

(︁
VT∇n − n∇ψ

)︁)︁
= 0

G −U + ∇ ·
(︂
µp

(︁
VT∇p + p∇ψ

)︁)︂
= 0

. (2.6)

This system is commonly referred to as the Van Roosbroeck system and was first formulated by Van
Roosbroeck in 1950 [156].

2.1.3 Equilibrium conditions

With appropriate boundary conditions, the Van Roosbroeck system can be solved for any operating
conditions to yield ψ, n and p when current flows through the device. In some cases, it is useful
to study a special case of this system where no current flows. This is referred to as the thermal
equilibrium state. In thermal equilibrium, the law of mass action requires np = n2

i [43]. This
assumption, along with the Boltzmann approximation, allows the carrier densities to be expressed
directly in terms of ψ as

n = ni exp
(︄
ψ

VT

)︄
, p = ni exp

(︄
− ψ

VT

)︄
. (2.7)

Clearly, np = ni2 in this case. Substituting the expressions from (2.7) into the first equation in (2.6)
allows the potential to be determined as the solution of only a single PDE:

∇ ·
(︁
ε∇ψ

)︁ − q
(︄
2ni sinh

(︄
ψ

VT

)︄
− Γ

)︄
= 0. (2.8)

Equation (2.8) is known as the Poisson-Boltzmann equation [43]. Unlike the Van Roosbroeck system,
it allows an entire semiconductor device to be simulated by solving only one differential equation
for ψ. When solved numerically by discretization, this reduces the number of coupled equations
by a factor of 3, leading to quicker nonlinear solves, and computational experience shows that the
Newton process is less likely to diverge with poor initial conditions when only this equation is
considered.

17

−10 −5 0 5 10
Net doping concentration (Γ/ni)

−2

−1

0

1

2
Po

te
nt

ia
l(
ψ

/
V

T
)

−10 −5 0 5 10
Net doping concentration (Γ/ni)

0

2

4

6

8

10

C
ar

ri
er

co
nc

en
tr

at
io

n

Electrons (n/ni)

Holes (p/ni)

Figure 2.1: Electrostatic potential and electron and hole concentrations as a function of net doping
concentration under charge-neutrality conditions.

2.1.4 Charge neutrality

A further simplification can be made to the Van Roosbroeck system by imposing charge neutrality.
This means that the charge carried by mobile electrons and holes in a region is exactly cancelled
by the fixed charge of the ionized dopant atoms. Equivalently, this requires that n − p = Γ in
charge-neutral regions. Substituting the equilibrium carrier concentrations from (2.7) gives the
potential in closed-form as a function of the doping concentration:

2ni sinh
(︄
ψ

VT

)︄
= Γ =⇒ ψ = VT sinh−1

(︃
Γ

2ni

)︃
. (2.9)

From (2.9) we may also determine n and p:

ψ = VT sinh−1
(︃
Γ

2ni

)︃
= VT ln

⎛
⎜⎜⎜⎜⎜⎜⎝
Γ

2ni
+

√︄

1 +
(︃
Γ

2ni

)︃2
⎞
⎟⎟⎟⎟⎟⎟⎠

=⇒ n = ni exp
(︄
ψ

VT

)︄
=
Γ

2
+

√︄

n2
i +

(︃
Γ

2

)︃2
, p = n − Γ = −Γ

2
+

√︄

n2
i +

(︃
Γ

2

)︃2
. (2.10)

Equations (2.9) and (2.10) are imposed at Dirichlet boundary conditions in device simulation [42,
105, 120]. Together, they describe an ohmic contact, an idealized metal-semiconductor interface
at which excess electrons and holes immediately recombine to achieve charge neutrality [43].
The behavior of the potential and carrier concentrations as a function of doping concentration
is illustrated in Figure 2.1. When |Γ| ≫ 0, the potential varies logarithmically with the doping
concentration. Additionally, the majority carrier concentration approaches |Γ| at high doping
concentrations, and the minority carrier concentration decreases to maintain np = ni2.

The charge-neutrality conditions are further useful as a method to provide initial guesses for
the coupled solution of the Van Roosbroeck system under non-equilibrium conditions [38]. Com-
putational experience shows that charge-neutrality initial conditions are necessary for convergence

18

Oxide

Bulk

Source Drain

Metal-
semiconductor

Metal-
insulator

Insulator-
semiconductor

Semiconductor-
semiconductor

Artificial
boundary

Figure 2.2: Illustration of boundary condition interface types in a simplified 2D MOSFET model.
Thickened regions of the device outline represent Ohmic contacts.

in many situations, particularly when large doping gradients are involved (as in the base-emitter
junction of a BJT).

2.1.5 Boundary conditions

In a semiconductor device, there are five types of interfaces along which boundary conditions
must be imposed:

1. Metal-semiconductor interface: Represents an ideal Ohmic contact.

2. Metal-insulator interface: Represents a metal or polysilicon contact bordering an insulator
region. Typically used to model gate contacts in field-effect transistors.

3. Semiconductor-semiconductor interface: Represents a junction between two semiconductor
materials with discontinuous parameters, such as permittivity, carrier lifetime, or intrinsic
carrier concentration. Does not apply to discontinuous doping profiles, which are naturally
handled through the PDE formulation. This enables simulation of heterojunction devices.

4. Semiconductor-insulator interface: Represents a semiconductor region bordered by an
insulating material. Typically used in gate regions of field-effect transistors or in other 2D
devices where a boundary mesh is necessary.

5. Artificial boundary: Represents a nonphysical exterior boundary. This is required so that
field lines in E, Jn and Jp are contained within the simulated region.

Figure 2.2 shows an example of each type of interface in a typical 2D MOSFET model. The
presence of semiconductor-semiconductor interfaces at the drain and source regions depends on
some discontinuous device parameter. The most common example in a MOSFET would be carrier
lifetimes, assuming the n-type and p-type silicon have different properties.

19

−2 −1 0 1 2
Position (µm)

10−7

10−5

10−3

10−1

101

103

C
ar

ri
er

co
nc

en
tr

at
io

n
(µm

−3
) Electrons

Holes

10−4 10−3 10−2 10−1

Distance from contact (µm)

10−7

10−5

10−3

10−1

101

103

C
ar

ri
er

co
nc

en
tr

at
io

n
(µm

−3
)

Electrons
Holes

Figure 2.3: Example simulation of 1D diode under heavy reverse bias (VR = 50 V) showing
boundary layers in carrier concentrations: along entire device length (left), and near the Ohmic
contacts, with distance plotted in log-scale.

Dirichlet boundary conditions are imposed at Ohmic contacts to enforce charge neutrality.
Specifically, the potential is constrained by (2.9) and the carrier concentrations are constrained
by (2.10). Under non-equilibrium conditions, (2.9) may be modified to include an external bias
voltage V:

ψ = V + VT sinh−1
(︃
Γ

2ni

)︃
, (2.11)

where V should be constant along each contact, but Γmay vary depending on the device of interest.
Importantly, this means that the Dirichlet boundary condition for the potential may have many
different values along a single contact; in fact, this is usually the case for 2D devices with contacts
in multiple orientations such as BJTs and MOSFETs.

This method of setting Dirichlet boundary conditions amounts to defining a voltage-controlled
contact, in that the contact voltage is an independent variable, and the current through it is
determined by the simulator. This method can occasionally create boundary layers near the contacts,
where the carrier concentrations abruptly increase over an unphysically small distance [93, 113].
Such boundary layers can lead to slow convergence with coarse meshes, and numerical error can
result near the contacts if appropriate discretization schemes are not used. The boundary layers
are less abrupt and can typically be resolved with uniform meshing if carrier concentrations are
used in the PDE system, but the boundary layer width may be extremely small (on the order of
1 × 10−30 m under heavy reverse bias) if quasi-Fermi potentials are used [37].

Figure 2.3 shows an example of boundary layers in the carrier concentrations for a 1D diode.
In this example, the donor and acceptor doping concentrations are ND = NA = 1 × 103 µm−3. The
junction is abrupt, and the applied reverse bias voltage is VR = 50 V. Under these non-equilibrium
conditions, boundary layers of approximately 1 nm width form near the Ohmic contacts in both
the electron and hole concentrations. This width would be much smaller if quasi-Fermi potentials
were used in the discretization instead of carrier concentrations—as the authors of [37] note, “it is
both physically questionable and numerically hopeless to resolve this length scale explicitly.”

20

Dirichlet boundary conditions are also enforced at metal-insulator interfaces to simulate gate
contacts. Typically, space charge inside the insulator regions is assumed to be negligible, so only
the Poisson equation is solved in those regions [120]. The potential at the surface of the insulator
region is then constrained by

ψ = V + ϕms, (2.12)

whereϕms is the metal workfunction difference potential [109]. A typical value for an n+polysilicon
contact with ND ≈ 1 × 108 µm−3 is ϕms = 550 mV [144]. More sophisticated models exist for
polysilicon contacts, but it is common to assume that any voltage dropped within the polysilicon
is negligible due to its high conductivity [170].

Neumann boundary conditions are enforced at all remaining interfaces [38, 105, 109, 120, 160].
Specifically, we require

E · n̂ = Jn · n̂ = Jp · n̂ = 0,

where n̂ is the outward-facing normal to the interface. This method of confining the electric field
and current density streamlines within the device can sometimes lead to unphysical results when
interactions between the device and its environment are important. In this case, a background
mesh can be used, where a large insulating region is added around the device of interest. The
permittivity of this insulating region can be changed to, for example, that of a vacuum or that of
air. This can also allow simultaneous solution of the Maxwell equations in 3D if a time-dependent
simulation is desired [32].

2.1.6 Recombination models

The quantity U in (2.6) is the net recombination rate. Accurate modeling of carrier recombination
is essential to non-equilibrium simulation of electronic devices. The three main recombination
processes in semiconductor devices are band-to-band radiative recombination, the Auger process
and Shockley-Read-Hall recombination [35, 38, 120, 146]. Radiative recombination occurs when a
conduction band electron spontaneously transitions to the valence band, emitting a photon in the
process. The radiative recombination rate is

UR = cr
(︂
np − n2

i

)︂
, (2.13)

where cr is typically 1.8 × 10−3 µm3/s in silicon [109].
The Auger effect was first observed in 1922 and results when an electron and hole recombine

directly, transferring energy to a third carrier in the process [101]. The Auger recombination rate is

UA = (cnn + cpp)
(︂
np − n2

i

)︂
, (2.14)

where cn is typically 1.0 × 10−7 µm6/s and cp is typically 2.3 × 10−7 µm6/s in silicon [109].
Shockley-Read-Hall recombination is the primary recombination process in most silicon semi-

conductors [42, 146]. The effect was first published in 1952 by William Shockley and William
Thornton Read and described a process by which carriers exchange energy with the semiconduc-
tor lattice in intermediate energy states called traps [139]. Traps are caused by impurities in the
semiconductor lattice, and the majority of Shockley-Read-Hall recombination is caused by traps
near the middle of the band gap [109]. The Shockley-Read-Hall recombination rate is

USRH =
np − n2

i

(n + ni)τp + (p + ni)τn
, (2.15)

21

where τn and τp are the carrier recombination lifetimes, which may vary significantly depending on
doping levels and fabrication processes [109].

In theory, the net recombination rate may be found by combining (2.13), (2.14) and (2.15) to
yield U = UR + UA + USRH. In practice, either U = UA + USRH [120] or just U = USRH [42, 89] is
used in numerical simulation due to the relative insignificance of the other mechanisms in most
silicon devices.

2.1.7 Scattering phenomena

Three quantities of great interest in the system in (2.6) are the generation rate G and the mobilitiesµn
and µp. These quantities are typically used to model scattering phenomena—interactions between
mobile charge carriers and the semiconductor lattice. In semiconductor physics coursework, it is
typically assumed that G = 0 and that the carrier mobilities are constant. While this simplifies
hand calculations and allows for intuitive understanding of electronic devices, these parameters
can vary over several orders of magnitude with numerous properties of the device [121].

It is well known that carrier mobility is significantly degraded in the presence of high electric
fields [43, 117, 146]. Under low-field conditions, the drift velocity of electrons and holes is
proportional to ∥E∥, the magnitude of the electric field. As the electric field is increased, mobile
carriers suffer an increasing number of collisions with the semiconductor lattice until they cannot
be accelerated any further. The velocity of the carriers at this point is known as the saturation
velocity, and numerous analytical models exist to simulate this effect computationally [43]. A
widely used model is the Caughey-Thomas model, first introduced by Caughey and Thomas in
1967 [16]. This model gives the mobilites as

µn =
µn0

(︂
1 + (∥E∥/Ecn)βn

)︂1/βn
, µp =

µp0
(︃
1 +

(︂
∥E∥/Ecp

)︂βp
)︃1/βp

, (2.16)

where µn0 and µp0 are the low-field mobilities, Ecn and Ecp are the critical electric fields, and βn and
βp are fitting parameters. The parameter values given in [16] are repeated below:

µn0 = 4.870 × 1010 µm2V−1s−1, µp0 = 1.375 × 1011 µm2V−1s−1,

Ecn = 1.95 V/µm, Ecp = 8.00 × 10−1 V/µm, βn = 2.0, βp = 1.0. (2.17)

Other values for the parameters have been proposed, but the original values given in (2.17) remain
common in the literature [35]. This model can also be extended to account for mobility degradation
at high doping levels; however, this effect can be negligible in non-degenerate semiconductors with
low doping levels [16].

Impact ionization is the process by which electrically excited charge carriers transfer energy
to atoms in the semiconductor lattice and generate additional charged carriers [146]. The effect
of impact ionization on the Van Roosbroeck system is similar to that of recombination, except
that carriers are added to the system instead of removed. Under high-field conditions, impact
ionization can be the dominant cause of current flow in a device, particularly in reverse-biased
PN junctions. The process by which current multiplies rapidly under heavy reverse bias in a PN
junction is known as avalanche breakdown and can be destructive at high current levels [31, 67].

In general, the rate of carrier generation due to impact ionization is

G =
1
q

(︂
αn∥Jn∥ + αp

⃦⃦
⃦Jp

⃦⃦
⃦
)︂
, (2.18)

22

where αn and αp are the ionization coefficients of electrons and holes [146]. Several expressions
exist for the ionization coefficients; their defining characteristic is that the coefficients increase
abruptly with ∥E∥ for at least some values of ∥E∥. This general form was proposed by Chynoweth
in 1958, who conjectured that the ionization coefficients could be written as a exp(−b/∥E∥) for some
constants a and b [19]. This conjecture was experimentally validated over the next three decades,
eventually leading to the model

αn = α
∞
n exp

(︃
− Ein

∥E∥
)︃
, αp = α

∞
p exp

(︄
− Eip

∥E∥
)︄
, (2.19)

where α∞n and α∞p are the limiting values of αn and αp as ∥E∥ → ∞, and Ein and Eip are constants.
Several values for these parameters are summarized by Selberherr in [136].

Other models for the ionization coefficients include the model proposed by Thornber in 1981,
which has the form

α =
q∥E∥

Ei
exp

(︄
− Fi

∥E∥(1 + ∥E∥/Fr) + FkT

)︄
,

where Ei, Fi, Fr and FkT are parameters with distinct values for electrons and holes [149]. More
recently, nonlocal models such as the lucky electron model have emerged that rely on values along the
entire device to compute the generation rate at a single point in space [72]. While all three models
have proven to be physically accurate in some situations, the expressions in (2.19) are often used
in device simulation for simplicity [35].

2.1.8 Extensions to drift-diffusion

As device dimensions have decreased, it has become necessary to revisit many of the classical
assumptions made in device physics. Modern device simulators must account for an increasing
number of nanometer-scale phenomena to produce reliable results [85]. Perhaps the most limiting
assumption of the system in (2.6) is the Boltzmann approximation, which only holds for nonde-
generate semiconductors. Modern silicon devices frequently make use of degenerate doping con-
centrations, with values on the order of 1 × 108 µm−3 or higher being common in 10 nm CMOS [87,
121]. The Boltzmann approximation can overestimate the carrier concentrations in degenerate
semiconductor regions and underestimate the electrostatic potential at Ohmic contacts [38].

To address this limit, the Fermi-Dirac statistics may instead be used to model carrier concen-
trations in device simulation. As a consequence of this choice, the quasi-Fermi potentials ϕn and
ϕp cannot generally be written in closed-form as a function of the carrier concentrations n and p.
Thus, the charge neutrality relationships in (2.10) and (2.9) no longer hold and must be determined
by a nonlinear solver [38]. The use of Fermi-Dirac statistics is further complicated by its use of the
Fermi-Dirac integral of order 1/2:

F1/2
(︁
η
)︁
=

2√
π

∫︂ ∞

0

√
x

ex−η + 1
dx . (2.20)

The function F1/2
(︁
η
)︁

is analytic for η ∈ R, but evaluating it numerically poses considerable diffi-
culty [77]. Several approximations have been proposed to allow accurate computation of (2.20)
with minimal overhead. An elegant approximation is given by Bednarczyk in [9]:

F1/2
(︁
η
)︁ ≈ 4

3
√
π

⎛
⎜⎜⎜⎜⎝

1

a
(︁
η
)︁−3/8 + exp

(︁−η)︁
⎞
⎟⎟⎟⎟⎠ , where

a
(︁
η
)︁
= η4 + 33.6η

(︂
1 − 0.68 exp

(︂
−0.17

(︁
η + 1

)︁2
)︂)︂
+ 50. (2.21)

23

−10 0 10 20
η

10−5

10−4

10−3

R
el

at
iv

e
er

ro
r

(B
ed

na
rc

zy
k)

−10 0 10 20
η

10−12

10−11

10−10

10−9

10−8

R
el

at
iv

e
er

ro
r

(C
od

y)
Figure 2.4: Relative error of Fermi-Dirac approximations given in [9] (left) and in [20] (right).

The error of this approximation is below 0.4% for all η ∈ R. Other approximations for F1/2
(︁
η
)︁

include that given in [20], which maintains an error below 1 × 10−8 for all η ∈ R but is more
computationally expensive to evaluate. The relative errors of these approximations are shown in
Figure 2.4. The exact values of F1/2

(︁
η
)︁

were computed using Mathematica 12.1, which gives the
integral as

F1/2
(︁
η
)︁
= −Li3/2 (−eη) = −

∞∑︂

k=1

e−kη

k3/2
,

where Li3/2(z) is the polylogarithm function of order 3/2.
Beyond carrier statistics, other physical models can replace or augment drift-diffusion if sub-

micron accuracy is desired. The hydrodynamic model allows the temperature of the charge carriers
to be different from the lattice temperature and accounts for energy conservation in both electrons
and holes [162]. Each additional temperature adds an equation to the Van Roosbroeck system,
resulting in a total of 5 coupled PDEs. The lattice temperature can additionally be modeled as non-
constant to account for self-heating effects. In this case, the heat equation is solved self-consistently
with the transport equations, resulting in a system of 6 equations if the hydrodynamic model is
used, or 4 equations if the drift-diffusion model is used [109]. More complex models include the
Boltzmann Transport Equation and quantum models based on the Schrödinger equation. Such
models often rely on a Monte Carlo approach to model carrier transport at the level of individual
electrons and holes and are considerably more expensive to evaluate than deterministic models [8,
130, 160, 161].

2.2 Numerical methods

2.2.1 Finite difference methods

Ordinary differential equations (ODEs) with only one independent variable can often be solved
using generic differential equation solvers such as those provided in DifferentialEquations.
jl [124]. For many partial differential equations (PDEs), however, it is difficult or impossible

24

to successfully apply general solution methods. The Van Roosbroeck system is no exception,
and many approaches have been developed to reliably and accurately provide convergence for
semiconductor problems.

At the core of any PDE solver is the discretization: a method for decoupling a PDE or a system
of PDEs into a system of algebraic equations. The most fundamental discretization is the finite
difference approach, which relies on the definition of the derivative as a limit. Given a grid x = x[i]
and a function f [k] ≜ f (x[k]), the forward difference of f at x[k] is

f ′[k] =
f [k + 1] − f [k]
x[k + 1] − x[k]

. (2.22)

Similarly, the reverse difference of f at x[k] is

f ′[k] =
f [k] − f [k − 1]
x[k] − x[k − 1]

. (2.23)

The approximations in (2.22) and (2.23) rely on the behavior of f on either side of the point x[k],
suggesting that an approximation considering both f [k + 1] and f [k − 1] could be more accurate.
In particular, we can average (2.22) and (2.23) to yield

f ′[k] =
1
2

(︄
f [k + 1] − f [k]
x[k + 1] − x[k]

+
f [k] − f [k − 1]
x[k] − x[k − 1]

)︄

=
1
2

(︄
f [k + 1]

x[k + 1] − x[k]
− f [k − 1]

x[k] − x[k − 1]
+

(︄
x[k + 1] − 2x[k] + x[k − 1]

(x[k + 1] − x[k]) (x[k] − x[k − 1])

)︄
f [k]

)︄
. (2.24)

The approximation in (2.24) is the central difference, which gives the derivative to a higher accuracy
than either (2.22) or (2.23) but requires the value of f at 3 grid points instead of 2. The central
difference can also be used to evaluate the second derivative of f :

f ′′[k] =
1
2

(︄
f ′[k + 1] − f ′[k]
x[k + 1] − x[k]

+
f ′[k] − f ′[k − 1]
x[k] − x[k − 1]

)︄

=
1
4
(︁
c1 f [k − 2] + c2 f [k − 1] + c3 f [k] + c4 f [k + 1] + c5 f [k + 2]

)︁
, (2.25)

where

c1 =
1

(x[k] − x[k − 1]) (x[k − 1] − x[k − 2])
,

c2 =
1

x[k] − x[k − 1]

(︄
1

x[k + 1] − x[k]
− 1

x[k − 1] − x[k − 2]

)︄
,

c3 = − 2
(x[k + 1] − x[k]) (x[k] − x[k − 1])

,

c4 =
1

x[k + 1] − x[k]

(︄
1

x[k + 2] − x[k + 1]
− 1

x[k] − x[k − 1]

)︄
,

c5 =
1

(x[k + 2] − x[k + 1]) (x[k + 1] − x[k])
.

The complexity of (2.25), along with its requirement of 5 values of f for each computation, motivates
consideration of a simpler approach.

25

Grid point Off-grid point

On-grid
unknowns

Off-grid
unknowns

Figure 2.5: One-dimensional discretization grid for Van Roosbroeck system, showing quantities
defined at grid points (“on-grid unknowns”) and quantities defined between grid points (“off-grid
unknowns”).

Since the central difference provides an accurate approximation to f ′ between the points x[k−1]
and x[k + 1], it is natural to assume that the forward difference is accurate between the points x[k]
and x[k + 1], and similarly for the reverse difference. This is indeed the case, and we may denote
the central difference of f at the midpoint of x[k] and x[k + 1] as

f ′
[︃
k +

1
2

]︃
≜ f ′

(︃
x
[︃
k +

1
2

]︃)︃
=

f [k + 1] − f [k]
x[k + 1] − x[k]

, where x
[︃
k +

1
2

]︃
≜

x[k + 1] + x[k]
2

. (2.26)

Using (2.26), we may evaluate the second derivative of f at x[k]:

f ′′[k] =
f ′[k + 1/2] − f ′[k − 1/2]
x[k + 1/2] − x[k − 1/2]

=
2

x[k + 1] − x[k − 1]

(︄
f [k + 1] − f [k]
x[k + 1] − x[k]

− f [k] − f [k − 1]
x[k] − x[k − 1]

)︄
. (2.27)

The expression in (2.27) is considerably simpler than that in (2.25) and requires only 3 values of f
per computation. This approach implies the use of a two-level grid, where functions are defined
at grid points x[i] and their derivatives are defined at the midpoints of grid intervals x[i + 1/2],
where i is an integer [48, 158].

We will now apply this approach to the system in (2.6), using only one spatial dimension
for simplicity. The grid used in this discretization is shown in Figure 2.5. The potential ψ and
carrier concentrations n and p are defined at grid points, and the electric field E = −ψ′ and current
densities Jn and Jp are defined between grid points. The Poisson equation in 1D reads

(−εψ′)′ + q(n − p − Γ) = 0. (2.28)

Assuming ε is constant between grid points, (2.28) can be discretized at x = x[k] by substituting
the central difference approximation for (−εψ′)′:

− 2
x[k + 1] − x[k − 1]

(︄
ε
[︃
k +

1
2

]︃ ψ[k + 1] − ψ[k]
x[k + 1] − x[k]

− ε
[︃
k − 1

2

]︃ ψ[k] − ψ[k − 1]
x[k] − x[k − 1]

)︄

+ q(n[k] − p[k] − Γ[k]) = 0. (2.29)

26

The electron and hole continuity equations in 1D are

G −U +
J′n
q
= 0, G −U −

J′p
q
= 0, (2.30)

where
Jn = −qµn(nψ′ − VTn′), Jp = −qµp(nψ′ + VTp′).

At each node, the electron continuity equation in (2.30) gives

G[k] −U[k] +
J′n[k]

q
= 0, (2.31)

and a similar discretization holds for the hole continuity equation. We apply the central difference
approximation to J′n[k]/q in (2.31) to yield

J′n[k]
q
=

2
x[k + 1] − x[k − 1]

(︄
Jn[k + 1/2] − Jn[k − 1/2]

q

)︄
, (2.32)

where

Jn[k + 1/2]
q

= µn

[︃
k +

1
2

]︃ (︄
n
[︃
k +

1
2

]︃ ψ[k] − ψ[k + 1]
x[k + 1] − x[k]

+ VT
n[k + 1] − n[k]
x[k + 1] − x[k]

)︄

=
µn[k + 1/2]VT

x[k + 1] − x[k]

(︄
n
[︃
k +

1
2

]︃ ψ[k] − ψ[k + 1]
VT

+ n[k + 1] − n[k]
)︄

(2.33)

The term n[k + 1/2] in (2.33) is problematic since we have assumed that the electron concentration
n is only defined at grid points, not between grid points. An intuitive approach would set

n
[︃
k +

1
2

]︃
=

n[k + 1] + n[k]
2

,

using the arithmetic mean of n between x[k] and x[k + 1]. This approach implicitly assumes that
n varies linearly between grid points, which is true only of the potential ψ [3, 159]. By contrast,
n and p can vary over several orders of magnitude along the length of a device, rendering the
assumption of linear variation inaccurate.

Many approaches exist to estimate n and p between grid points. The most well-known of these
approaches was introduced as an appendix to a 1969 paper by Scharfetter and Gummel [135]. The
derivation of n[k + 1/2] is shown here for electrons; analogous expressions hold for holes. We
assume that the current density Jn and the electric field E = −ψ′ are constant from x[k] to x[k + 1],
which is reasonable in most physical simulations [44]. We further assume that the electron and
hole mobilities are only field-dependent; that is, µn = µn(E) and µp = µp(E). Let x0 ∈ (x[k], x[k + 1])
be the point at which the central difference approximation for n′ holds. From (2.4), the current
density at x = x0 is

Jn(x0) = qµn

[︃
k +

1
2

]︃ (︃
n(x0)E

[︃
k +

1
2

]︃
+ VTn′(x0)

)︃
.

Substituting the central difference approximation of n′(x0),

Jn(x0) = qµn

[︃
k +

1
2

]︃ (︄
n(x0)E

[︃
k +

1
2

]︃
+ VT

(︄
n[k + 1] − n[k]
x[k + 1] − x[k]

)︄)︄
. (2.34)

27

Since Jn is constant between x[k] and x[k+ 1] by assumption, (2.34) must also hold for any n(x) and
n′(x) where x ∈ (x[k], x[k + 1]). We may equate this value of Jn with the value of Jn at the point
x = x0:

n(x)E
[︃
k +

1
2

]︃
+ VTn′(x) = n(x0)E

[︃
k +

1
2

]︃
+ VT

(︄
n[k + 1] − n[k]
x[k + 1] − x[k]

)︄
.

This expression can be rearranged to yield a first-order ODE in n(x):

n′(x) +
E[k + 1/2]

VT
n(x) −

(︄
E[k + 1/2]

VT
n(x0) +

n[k + 1] − n[k]
x[k + 1] − x[k]

)︄
= 0. (2.35)

Solving the ODE in (2.35) gives

n(x) = n(x0) +
VT

E[k + 1/2]

(︄
n[k + 1] − n[k]
x[k + 1] − x[k]

)︄
+ c exp

(︄
−E[k + 1/2]

VT
x
)︄

= n(x0) − VT

(︄
n[k + 1] − n[k]
ψ[k + 1] − ψ[k]

)︄
+ c exp

(︄
ψ[k + 1] − ψ[k]

VT

x
x[k + 1] − x[k]

)︄
, (2.36)

where c is a constant. Since (2.36) also holds at the endpoints of the interval x = x[k] and x[k + 1],
we must have n(x[k]) = n[k] and n(x[k + 1]) = n[k + 1], which gives a system of equations in the
unknown quantities c and n(x0):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n[k] = n(x0) − VT

(︄
n[k + 1] − n[k]
ψ[k + 1] − ψ[k]

)︄
+ c exp

(︄
ψ[k + 1] − ψ[k]

VT

x[k]
x[k + 1] − x[k]

)︄

n[k + 1] = n(x0) − VT

(︄
n[k + 1] − n[k]
ψ[k + 1] − ψ[k]

)︄
+ c exp

(︄
ψ[k + 1] − ψ[k]

VT

x[k + 1]
x[k + 1] − x[k]

)︄ . (2.37)

Solving the system in (2.37) gives

c =
n[k + 1] − n[k]

exp
(︂
ψ[k+1]−ψ[k]

VT

x[k+1]
x[k+1]−x[k]

)︂
− exp

(︂
ψ[k+1]−ψ[k]

VT

x[k]
x[k+1]−x[k]

)︂ (2.38)

and

n(x0) = n[k]

⎛
⎜⎜⎜⎜⎜⎜⎝1 − VT

ψ[k + 1] − ψ[k]
+

1

exp
(︂
ψ[k+1]−ψ[k]

VT

)︂
− 1

⎞
⎟⎟⎟⎟⎟⎟⎠+

n[k + 1]

⎛
⎜⎜⎜⎜⎜⎜⎝

VT

ψ[k + 1] − ψ[k]
− 1

exp
(︂
ψ[k+1]−ψ[k]

VT

)︂
− 1

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.39)

At this point, two approaches exist to define n[k + 1/2]. We could set n[k + 1/2] = n(x[k + 1/2]),
choosing the value of n that lies halfway between x[k] and x[k + 1]. While intuitive, this approach
would be inconsistent with our earlier assumption that the finite difference approximation for n′
holds only at x = x0. Another approach would be to accept the value given in (2.39) as n[k + 1/2],
with the knowledge that this value is generally different from the value at the midpoint. The
latter approach is favored in modern simulators, and indeed the definition n[k + 1/2] ≜ n(x0) has
been definitively accepted as the Scharfetter-Gummel discretization [44, 82]. This derivation will
be presented below; an alternate derivation using the “midpoint rule” n[k + 1/2] = n(x[k + 1/2]) is
presented in Appendix A.1.

28

−20 −10 0 10 20
x

0.2

0.4

0.6

0.8
Q

(x
)

−20 −10 0 10 20
x

0

5

10

15

20

B
(x

)
Figure 2.6: Plot of Q(x) and Bernoulli function B(x) for x ∈ (−20, 20).

Using (2.39) and applying a similar approach for n[k − 1/2], we can write

n
[︃
k +

1
2

]︃
≜ n[k] (1 −Q(δr)) + n[k + 1]Q(δr), (2.40)

n
[︃
k − 1

2

]︃
≜ n[k − 1] (1 −Q(δl)) + n[k]Q(δl), (2.41)

where

δr ≜
ψ[k + 1] − ψ[k]

VT
, δl ≜

ψ[k] − ψ[k − 1]
VT

(2.42)

and

Q(x) ≜
1
x
− 1

ex − 1
. (2.43)

An analogous process for the hole continuity equation gives

p
[︃
k +

1
2

]︃
≜ p[k]Q(δr) + p[k + 1] (1 −Q(δr)) , (2.44)

p
[︃
k − 1

2

]︃
≜ p[k − 1]Q(δl) + p[k] (1 −Q(δl)) . (2.45)

The function Q(x) as defined in (2.43) smoothly constructs a weighted average of, for example, n[k]
and n[k + 1] to produce n[k + 1/2], where the weights depend on the potential difference δr. This
function is analytic, but the singularity at x = 0 makes numerical evaluation difficult when |x| ≈ 0.
This difficulty can be circumvented by switching from direct evaluation to a Taylor expansion of
Q(x) for small x, namely:

Q(x) =
1
2
− x

12
+

x3

720
− x5

30 240
+

x7

1 209 600
− x9

47 900 160
+ · · · . (2.46)

This function is shown for x ∈ (−20, 20) in Figure 2.6.

29

We are now in a position to fully discretize the continuity equations. Using (2.33) and applying
a similar approach for the left midpoint, we can determine Jn[k + 1/2] and Jn[k − 1/2]:

Jn

[︃
k +

1
2

]︃
=
µn[k + 1/2]VT

x[k + 1] − x[k]

(︃
−n

[︃
k +

1
2

]︃
δr + n[k + 1] − n[k]

)︃
,

Jn

[︃
k − 1

2

]︃
=
µn[k − 1/2]VT

x[k] − x[k − 1]

(︃
−n

[︃
k − 1

2

]︃
δl + n[k] − n[k − 1]

)︃
.

An analogous process for the hole continuity equation gives

Jp

[︃
k +

1
2

]︃
= −µp[k + 1/2]VT

x[k + 1] − x[k]

(︃
p
[︃
k +

1
2

]︃
δr + p[k + 1] − p[k]

)︃
,

Jp

[︃
k − 1

2

]︃
= −µp[k − 1/2]VT

x[k] − x[k − 1]

(︃
p
[︃
k − 1

2

]︃
δl + p[k] − p[k − 1]

)︃
.

We now compute J′n[k]/q from (2.32). Substituting n[k + 1/2] and n[k − 1/2] from (2.40) and (2.41),

J′n[k]
q
=

2
x[k + 1] − x[k − 1]

(︄
µn[k − 1/2]VT

x[k] − x[k − 1]
(1 + δl − δlQ(δl)) n[k − 1]

− µn[k − 1/2]VT

x[k] − x[k − 1]
(1 − δlQ(δl)) n[k] − µn[k + 1/2]VT

x[k + 1] − x[k]
(1 + δr − δrQ(δr)) n[k]

− µn[k + 1/2]VT

x[k + 1] − x[k]
(1 − δrQ(δr)) n[k + 1]

)︄
. (2.47)

An analogous process for the hole continuity equation gives J′p[k]/q. Substituting p[k + 1/2] and
p[k − 1/2] from (2.44) and (2.45),

J′p[k]

q
= − 2

x[k + 1] − x[k − 1]

(︄
µp[k − 1/2]VT

x[k] − x[k − 1]
(1 − δlQ(δl)) p[k − 1]

− µp[k − 1/2]VT

x[k] − x[k − 1]
(1 + δl − δlQ(δl)) p[k] − µp[k + 1/2]VT

x[k + 1] − x[k]
(1 − δrQ(δr)) p[k]

− µp[k + 1/2]VT

x[k + 1] − x[k]
(1 + δr − δrQ(δr)) p[k + 1]

)︄
. (2.48)

Next, we define the Bernoulli function

B(x) =
x

ex − 1
. (2.49)

The Bernoulli function is similar to the function Q(x) in that it has a removable singularity at the
origin, which poses numerical difficulty for small x. For such x, we may use the Taylor expansion

B(x) = 1 − x
2
+

x2

12
− x4

720
+

x6

30 240
− x8

1 209 600
+

x10

47 900 160
− · · · . (2.50)

This function is shown for x ∈ (−20, 20) in Figure 2.6.
From the definition of B(x) in (2.49), we note the identities

B(x) = 1 − xQ(x), B(−x) = 1 + x − xQ(x). (2.51)

30

Using (2.51), we may rewrite (2.47) and (2.48) in terms of B(x). Combined with (2.29), this gives
the final system of three equations to be solved at each interior node in the simulation:

Fψ[k] = −q(n[k] − p[k] − Γ[k]) +
2

x[k + 1] − x[k − 1]

(︄

ε
[︃
k − 1

2

]︃ ψ[k − 1] − ψ[k]
x[k] − x[k − 1]

− ε
[︃
k +

1
2

]︃ ψ[k] − ψ[k + 1]
x[k + 1] − x[k]

)︄
= 0, (2.52)

Fn[k] = G[k] −U[k] +
2

x[k + 1] − x[k − 1]

(︄

µn[k − 1/2]VT

x[k] − x[k − 1]

(︂
B(−δl)n[k − 1] − B(δl)n[k]

)︂
−

µn[k + 1/2]VT

x[k + 1] − x[k]

(︂
B(−δr)n[k] − B(δr)n[k + 1]

)︂)︄
= 0, (2.53)

Fp[k] = G[k] −U[k] +
2

x[k + 1] − x[k − 1]

(︄

µp[k − 1/2]VT

x[k] − x[k − 1]

(︂
B(δl)p[k − 1] − B(−δl)p[k]

)︂
−

µp[k + 1/2]VT

x[k + 1] − x[k]

(︂
B(δr)p[k] − B(−δr)p[k + 1]

)︂)︄
= 0. (2.54)

In a 1D grid with N nodes, the non-equilibrium simulation can thus be completed by solving
equations (2.52) through (2.54) for nodes k = 2 through k = N− 1 and applying Dirichlet boundary
conditions at nodes k = 1 and k = N. The result is a system of 3N equations in 3N unknowns which
yields ψ, n and p at each grid point when solved.

2.2.2 Finite volume methods

With the 1D discretization complete, it is natural to wonder if the finite difference scheme might
generalize to higher dimensions. The answer is complicated; finite difference methods do exist in
2D and 3D, but their applications are increasingly limited since many assumptions made in the 1D
case do not easily generalize to higher dimensions. Some problems such as the Laplace problem
with Dirichlet boundary conditions

∇2 f (x) = 0, where x ∈ Ω
are easily discretized using finite differences in 2D and 3D [158]. Others, particularly those
requiring Neumann, Robin or mixed boundary conditions, are awkward to solve using finite
differences and often require the use of ghost nodes, fictitious grid nodes outside the device boundary
that must be included in the discretization [41, 160].

The difficulty of solving nonlinear PDE systems in 2D and 3D has motivated several discretiza-
tion methods that are used in physics simulators today. The most common of these methods are
the finite element method and the finite volume method. Instead of solving for the unknowns directly

31

Voronoi cells

Triangulation

Grid points

Figure 2.7: Example two-dimensional discretization grid for finite volume method with two
interior nodes, x[k] and x[l]. The boundary of the discretization is ∂Ω.

as in a finite difference scheme, the finite element method treats the unknown functions as a linear
combination of shape functions with unknown weights. The problem then is to determine the
weights themselves. The details of the finite element method will not be discussed here; while
many physics simulators have historically used the finite element method, modern semiconduc-
tor simulators often avoid this method due to its complexity and sensitivity to obtuse angles in
meshes [5, 38].

The finite volume method, occasionally referred to as the box method in the literature, circum-
vents many of the difficulties associated with implementing finite element methods [3, 14, 45, 75].
For the Van Roosbroeck system in particular, the finite volume method guarantees the positivity of
carrier concentrations and the enforcement of the maximum principle [38]. Additionally, the finite
volume method can be more intuitive than the finite element method and in many cases produces
identical discretizations to a finite difference scheme. The finite volume method can also be used
in time-dependent simulations. A brief introduction to the method will be given here, following
many of the details from [38] and [45].

Consider the discretization grid shown in Figure 2.7. This grid contains 2 interior points x[k]
and x[l] which do not lie on the boundary of the discretization (∂Ω) and 7 exterior points which
lie on ∂Ω. The grid points are connected to form triangles such that no grid point lies in the
circumcircle of any other triangle, forming what is known as a Delaunay triangulation. The regions
bounded by the perpendicular bisectors of the edges of each triangle are called Voronoi cells, and the
resulting tessellation is called a Voronoi diagram. When the edge of a triangle lies on ∂Ω, the Voronoi
cells containing that edge will intersect with ∂Ω. The Voronoi diagram has the property that the
Voronoi cell around each node contains all points closer to that node than to any other node. The
Delaunay triangulation can be generated using methods such as those described in [133] and [137].
In 3D, the triangulation is replaced by a tetrahedralization, which can be generated according to, for
example, [59].

The formulation of the finite volume method from [45] is repeated here, using the notation
of this thesis for clarity. Let ∇ · j(u) + f (u) = 0 be a (generally) nonlinear PDE to be solved for

32

x ∈ Ω, where u(x) is an unknown function. The function j(u) describes the flux of u through the
control volumes, and f (u) is the reaction term, so called due to its use in chemical reaction systems.
Integrating the PDE over a control volume ωk,	

ωk

(︁
∇ · j(u) − f (u)

)︁
dω = 0 =⇒

	
ωk

∇ · j(u) dω +
	

ωk

f (u) dω = 0. (2.55)

Applying Gauss’s theorem to the first term in (2.55) gives	
ωk

∇ · j(u) dω =
∮︂

∂ωk

j(u) · n̂ ds , (2.56)

where n̂ is the outward-facing normal to ∂ωk. Since the line integral runs along a number of
straight line segments forming ∂ωk, we can rewrite (2.56) as	

ωk

∇ · j(u) dω =
∑︂

l∈N[k]

∫︂

∂ωk∩∂ωl

j(u) · n̂[k, l] ds , where n̂[k, l] ≜
x[l] − x[k]
∥x[l] − x[k]∥ , (2.57)

and N[k] is the set of neighboring control volumes to ωk. We have assumed in (2.57) that there is
no outward flux of u through ∂Ω; that is, that

∫︂

∂ωk∩∂Ω
j(u) · n̂ ds = 0.

This is typical in semiconductor problems, since we enforce the homogeneous Neumann boundary
conditions E · n̂ = Jn · n̂ = Jp · n̂ = 0 along ∂Ω. Next, for each neighboring control volume ωl, we
define the flux approximation g j[k, l] such that

g j[k, l] ≈ (︁
j[k, l] · n̂[k, l]

)︁ ⃦⃦⃦x[l] − x[k]
⃦⃦
⃦, (2.58)

where j[k, l] is the value of j(u) along the boundary segment ∂ωk ∩ ∂ωl. Consequently, we can
rewrite ∫︂

∂ωk∩∂ωl

j(u) · n̂[k, l] ds ≈
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
g j[k, l], (2.59)

where |∂ωk ∩ ∂ωl| is the length of the boundary segment. Substituting (2.59) into (2.57) gives	
ωk

∇ · j(u) dω ≈
∑︂

l∈N[k]

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
g j[k, l]. (2.60)

This definition of g j[k, l] is convenient for PDEs of the form ∇ · (D∇u) − f (u) = 0, where D is a
diffusion coefficient [45]. In this case g j[k, l] = D(u[l] − u[k]), which is only possible since the
Voronoi diagram guarantees that x[l] − x[k] is perpendicular to the boundary segment ∂ωk ∩ ∂ωl,
allowing a finite difference approximation of the gradient. Additionally, this definition guarantees
flux conservation across each boundary segment when g j[k, l] = −g j[l, k].

Next, we seek to approximate the second term in (2.55). Assuming f (u) is constant in each
control volume, 	

ωk

f (u) dω = |ωk| f (u[k]) = |ωk| f [k], (2.61)

33

where |ωk| is the area of the control volume ωk. Combining (2.55), (2.60) and (2.61) gives the
algebraic equation

∑︂

l∈N[k]

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
g j[k, l] + |ωk| f [k] = 0. (2.62)

Equation (2.62) is solved at every node except those where Dirichlet boundary conditions are
specified. At nodes where Dirichlet boundary conditions are specified, we simply solve u[k]−b[k] =
0, where b[k] is the desired value of u[k]. This completes the discretization. In a 2D grid with N
nodes, this procedure yields a system of N nonlinear equations in N unknowns which yields u
at each grid point when solved. This procedure easily generalizes to coupled systems of PDEs,
where the discretization is repeated for each unknown function, resulting in a correspondingly
larger system of equations.

We now derive the finite volume discretization for the Van Roosbroeck system in 2D. This
discretization requires a flux discretization g and a reaction discretization f for each of the unknown
functions ψ, n and p. We will denote the flux discretizations by gψ, gn and gp, and the reaction
discretizations by fψ, fn and fp. Similarly to the 1D finite difference scheme, the flux discretization
requires access to the values of E = −∇ψ, Jn and Jp along the boundary segments ∂ωk ∩ ∂ωl,
which are generally between grid points. For the Poisson equation, we again assume a linear
variation in ψ between grid points, which implies an electric field that is constant on each triangle
of the discretization (but not generally on each control volume). As with the finite difference
scheme, this assumption is reasonable for most semiconductor problems [123]. We may thus use
the discretizations

gψ[k, l] = ε[k, l]
(︁
ψ[k] − ψ[l]

)︁
, fψ[k] = q

(︁
n[k] − p[k] − Γ[k]

)︁
, (2.63)

where ε[k, l] is the permittivity assigned to the triangle containing the edge between x[k] and x[l].
Note that this quantity can be different depending on which triangle the discretization is invoked
from, since a single edge typically belongs to two triangles. This allows the permittivity to be
piecewise constant, which can be useful in the simulation of heterojunction devices [109, 121].

As with the finite difference scheme, the discretization of the electron and hole continuity
equations is more involved. Similar numerical difficulties occur in 2D if simple arithmetic means
are used to estimate n and p between grid points. This would motivate a 2D scheme similar to the
1D Scharfetter-Gummel scheme discussed earlier. Such a scheme would seek to find n and p such
that Jn and Jp were constant on each triangle in the discretization. However, it was shown in [123]
that this requires

Ey

Ex
=

Jny

Jnx

for the electron continuity equation, where Ex, Ey, Jnx and Jny are the x and y components of E
and Jn, respectively. In other words, the Scharfetter-Gummel discretization does not exist in two
dimensions unless E and Jn are collinear. Thus, we must relax the assumption that the current
densities are constant on each triangle. A suitable assumption is instead that the current densities
are constant on each edge of the discretization but are allowed to vary within each triangle. Under
this assumption, the estimation of n and p between grid points is identical to the Scharfetter-
Gummel scheme in 1D, leading to the discretizations

gn[k, l] = µn[k, l]VT

(︄
B
(︄
−ψ[l] − ψ[k]

VT

)︄
n[k] − B

(︄
ψ[l] − ψ[k]

VT

)︄
n[l]

)︄
, fn[k] = U[k] − G[k], (2.64)

34

where µn has the value µn[k, l] in the triangle from which the discretization is invoked. Similar
discretizations result for the hole continuity equation:

gp[k, l] = µp[k, l]VT

(︄
B
(︄
ψ[l] − ψ[k]

VT

)︄
p[k] − B

(︄
−ψ[l] − ψ[k]

VT

)︄
p[l]

)︄
, fp[k] = U[k] − G[k], (2.65)

where µp[k, l] is defined similarly to µn[k, l]. This approach allows µn and µp to vary along the
device, which is necessary for simulating a field-dependent mobility [81].

We will now show that the finite volume discretization defined by (2.63) through (2.65) in 1D
yields identical residuals to the finite difference residuals in (2.52) through (2.54). We first note
that in 1D, the Voronoi boundary segments are zero-dimensional, so ∂ωk ∩ ∂ωl = 1 for all k, l. Each
node x[k] has an associated Voronoi cell bounded by the midpoints of the grid segments to its left
and right, such that

|ωk| = x[k + 1] − x[k − 1]
2

.

Additionally, the term ε[k, l] reduces to ε[k + 1/2] or ε[k − 1/2], since each node has only two
neighbors and N[k] = {k − 1, k + 1}. Similar notation applies for µn[k, l] and µp[k, l]. We also
note that gψ[k, l] = −gψ[l, k], gn[k, l] = −gn[l, k] and gp[k, l] = −gp[l, k] due to charge conservation.
Substituting (2.63), (2.64) and (2.65) into (2.62) gives the residuals

Fψ[k] = − ε[k − 1/2]
x[k] − x[k − 1]

(︁
ψ[k − 1] − ψ[k]

)︁
+

ε[k + 1/2]
x[k + 1] − x[k]

(︁
ψ[k] − ψ[k + 1]

)︁
+

x[k + 1] − x[k − 1]
2

(︁
q
(︁
n[k] − p[k] − Γ[k]

)︁)︁
= 0, (2.66)

Fn[k] = −µn[k − 1/2]VT

x[k] − x[k − 1]

(︂
B(−δl)n[k − 1] − B(δl)n[k]

)︂
+

µn[k + 1/2]VT

x[k + 1] − x[k]

(︂
B(−δr)n[k] − B(δr)n[k + 1]

)︂
+

x[k + 1] − x[k − 1]
2

(U[k] − G[k]) = 0, (2.67)

Fp[k] = −µp[k − 1/2]VT

x[k] − x[k − 1]

(︂
B(δl)p[k − 1] − B(−δl)p[k]

)︂
+

µp[k + 1/2]VT

x[k + 1] − x[k]

(︂
B(δr)p[k] − B(−δr)p[k + 1]

)︂
+

x[k + 1] − x[k − 1]
2

(U[k] − G[k]) = 0. (2.68)

Equations (2.66) through (2.68) are identical to (2.52) through (2.54) up to a scale factor of −2/(x[k+
1] − x[k − 1]).

Beyond the classical Scharfetter-Gummel scheme, other flux discretizations exist for the carrier
concentrations n and p. The midpoint scheme discussed in Appendix A.1 can be generalized to
higher dimensions using the flux discretizations

gn[k, l] = µn[k, l]VT

(︄ (︄
1 +

ψ[l] − ψ[k]
VT

(︄
1 − σ

(︄
ψ[l] − ψ[k]

VT

)︄)︄)︄
n[k]−

(︄
1 − ψ[l] − ψ[k]

VT
σ

(︄
ψ[l] − ψ[k]

VT

)︄)︄
n[l]

)︄
,

35

gp[k, l] = µp[k, l]VT

(︄ (︄
1 − ψ[l] − ψ[k]

VT
σ

(︄
ψ[l] − ψ[k]

VT

)︄)︄
p[k]−

(︄
1 +

ψ[l] − ψ[k]
VT

(︄
1 − σ

(︄
ψ[l] − ψ[k]

VT

)︄)︄)︄
p[l]

)︄
,

where σ(x) is the sigmoid function given in (A.3). Another discretization was introduced by
Slotboom in a 1973 paper on 2D simulation of BJTs [142]. The Slotboom discretization uses the flux
functions

gn[k, l] = µn[k, l]VT

(︄
S
(︄
−ψ[l] − ψ[k]

VT

)︄
n[k] − S

(︄
ψ[l] − ψ[k]

VT

)︄
n[l]

)︄
,

gp[k, l] = µp[k, l]VT

(︄
S
(︄
ψ[l] − ψ[k]

VT

)︄
p[k] − S

(︄
−ψ[l] − ψ[k]

VT

)︄
p[l]

)︄
,

where S(x) = e−x/2. This discretization is identical to the Scharfetter-Gummel discretization in (2.64)
and (2.65), except the Bernoulli function is replaced by S(x). The Slotboom discretization is
derived similarly to the Scharfetter-Gummel discretization, except Jn[x + 1/2] is estimated using
an integrating factor. This discretization has been shown to yield more accurate I-V curves in
1D semiconductors compared to the Scharfetter-Gummel scheme [47]. Further extensions to
the Scharfetter-Gummel scheme include discretizations using non-Boltzmann statistics [36] and
discretizations designed to reduce error due to the crosswind effect, which arises when the current
densities are not parallel to grid segments [61, 148].

2.2.3 Nonlinear solvers

The output of any PDE discretization is a large system of nonlinear algebraic equations that must
be solved to yield an approximate solution of the PDE system. Several nonlinear solvers exist for this
purpose. A nonlinear solver considers equations of the form F(z) = 0, where F is a vector-valued
function of the vector-valued unknown z. In the case of semiconductor problems, we typically
write

z =
[︂
ψ[1] n[1] p[1] ψ[2] n[2] p[2] · · · ψ[N] n[N] p[N]

]︂T
, (2.69)

where N is the number of nodes in the discretization. The function F is the residual

F(z) =
[︂
Fψ[1] Fn[1] Fp[1] Fψ[2] Fn[2] Fp[2] · · · Fψ[N] Fn[N] Fp[N]

]︂T
, (2.70)

where Fψ[k], Fn[k] and Fp[k] are given by, for example, (2.66) through (2.68) for a 1D discretization.
Nonlinear solvers typically require access to the Jacobian J = ∂F(z)/∂z . The Jacobian is an N × N
matrix that can be computed either manually (as in Appendix A.2 for 1D problems) or by using
automatic differentiation or (less commonly) finite differences. Since the Jacobian is typically
sparse, techniques such as graph coloring are often used for computational efficiency [46].

Newton’s method is one of the simplest and most widely used linear solvers, particularly
for systems arising from discretized PDEs. Beginning with an initial guess z = z0, each step of
Newton’s method computes

zn+1 = zn − (Jn)−1 Fn, (2.71)

where Jn and Fn are the Jacobian and residual computed using the values of z from the previous
iteration. In practice, the Jacobian inverse (Jn)−1 is not computed explicitly; we instead rewrite (2.71)
as

zn+1 = zn + xn, (2.72)

36

where xn is the Newton update, which is obtained by solving the linear system

− Jnxn = Fn. (2.73)

This is typically much more efficient than matrix inversion and avoids much of the numerical
instability introduced by iterative inversion methods like Gauss-Jordan elimination [116].

When the initial guess z0 is sufficiently close to the solution, Newton’s method provides
quadratic convergence. This means that the residual F(z) at each iteration is roughly the square root
of the residual at the previous iteration. Equivalently, the number of correct decimal digits in the
solution roughly doubles each iteration in a neighborhood of the actual solution [6]. The phrase
sufficiently close is key; Newton’s method can converge slowly or even diverge if z0 is not in a neigh-
borhood of the actual solution. Two techniques can be used to prevent slow convergence. First, z0
can be chosen based on some approximation of the actual solution to increase the probability of
convergence. In the case of semiconductor problems, a good starting point is the charge neutrality
conditions in (2.9) and (2.10) [38]. Alternatively, a different nonlinear solver can be used with a
high tolerance to give z0 from an imprecise initial condition. One choice is Gummel’s method, which
decouples the solution of ψ, n and p rather than solving all three variables simultaneously [153].
The resulting solution can be improved by applying a few iterations of Newton’s method until
convergence.

Occasionally, Newton’s method may fail to converge even given an accurate initial condition.
This can occur when J is nearly singular, which may result in devices with multiple stable operating
points or when large doping gradients are present. In this case, it is often beneficial to apply
an approximate Newton method to yield convergence. An approximate Newton method modifies
definition of the Newton update xn in (2.73) such that

−Mnxn = Fn,

where Mn is related to Jn. A common choice is Mn = Jn/dn, where dn ∈ (0, 1] is the damping ratio.
The Newton step in (2.72) can then be written as

zn+1 = zn − dn (Jn)−1 Fn. (2.74)

The iterative process described by (2.74) is known as a damped Newton method. At each step, the
damped Newton method applies an update to z in the same direction as the exact Newton method,
except the update is scaled by the damping ratio dn. When dn < 1, the updates are smaller than
those performed by the exact Newton method, which can often help convergence by preventing
large updates resulting from an ill-conditioned Jacobian.

The choice of damping ratio dn is critical to ensuring convergence in a reasonable number of
iterations. If the values of dn are too small, the sequence zn will converge slowly. If the values of
dn are too large, the Newton process may diverge. We must also have dn = 1 for some point in
the damped Newton process, since quadratic convergence is only guaranteed when dn = 1. One
algorithm for selecting dn is as follows:

1. Fix the initial damping ratio d1 ∈ (0, 1] according to the problem structure. Smaller initial
damping ratios are appropriate when difficult convergence is expected.

2. At each iteration, set dn+1 = max (Kdn, 1), whereK > 1 is the damping growth factor.

3. Apply the damped Newton update given in (2.74).

4. Repeat steps 1 through 3 until convergence.

37

This approach gives a simple method for choosing dn, but the parameter K must be set manually
depending on the device being simulated. Typical values might be K = 1.1 through K = 1.5, cor-
responding to less aggressive and more aggressive increases in dn. More sophisticated algorithms
exist for choosing the damping ratio, and some can provide convergence for any choice of z0 if
certain conditions on F are met [6, 24]. However, such algorithms still rely on parameters that
must be manually chosen, and it is unclear if the necessary conditions on F hold for the discretized
van Roosbroeck system.

Several criteria may be used to declare convergence in a Newton-like process. The most obvious
of these is a condition on the norm of the residual:

∥Fn∥ < ϵ1, (2.75)

where ϵ1 is a small value indicating the largest possible residual necessary to accept a candidate
solution. The criterion in (2.75) can be a good measure of convergence when all unknown quantities
are on roughly the same scale. In semiconductor problems, this is typically not the case, since
ψ may be on the order of a few volts, while n and p are typically at least 1 × 103 µm−3. As a
result, large values of the residuals Fn and Fp can mask smaller values of Fψ, and convergence
may be erroneously declared when portions of ψ are undergoing significant Newton updates. To
circumvent this issue, the residuals themselves can be scaled arbitrarily without modifying the
solution to the system. Some Newton solvers exploit this to use the residual-norm criterion for
convergence by scaling the system such that all elements on the diagonal of J are equal to 1 [24].

Rather than considering the residual, it can be beneficial to examine how much the solution
changes with each Newton step. Intuitively, the Newton process is likely to have converged if no
points in the solution change appreciably between steps. Specifically, we can require

∥zn − zn−1∥ < ϵ2, (2.76)

where ϵ2 is the largest possible update such that zn is accepted as the solution. The criterion
in (2.76) has the advantage of only considering changes in the unknown variables themselves,
which is more physically connected to the solution than are the residuals. The disadvantage of this
approach is that it requires an a priori estimate of the maximum allowable Newton update, which
can vary widely depending on the problem size, doping concentrations and device geometry.

Another related convergence criterion is similar to (2.76) but does not require a problem-
dependent tolerance. This is achieved by requiring

∥zn − zn−1∥
∥z1 − z0∥ < ϵ3, (2.77)

where ϵ3 is the largest possible update relative to the first update such that zn is accepted as the
solution. This criterion avoids the need for a tolerance set by the scale of the unknowns, but it
may still declare convergence erroneously in some cases, particularly when the concentrations n
and p vary widely along the device. In this case, proportionally large updates may be made in
the areas of the device with lower carrier concentrations, but these updates may be smaller than
the smallest updates in areas with high concentration. This can occasionally lead to unphysical
solutions where carrier concentrations become negative in regions where their magnitudes are
relatively small. This difficulty suggests a relative approach, where the updates in each unknown
are measured relative to the size of the unknowns. Such an approach can be difficult when the
unknowns are near or equal to zero, in which case large errors may be inaccurately computed in
an otherwise acceptable solution.

38

Due to the difficulty in choosing convergence criteria for Newton-like solvers, there is no
standard implementation. Many solvers use a combination of (2.76) and (2.77), where ϵ2 and ϵ3 are
referred to as the absolute tolerance and relative tolerance, respectively [45]. When multiple criteria
are used, the solver may terminate when any of the criteria are met, or it may require multiple
or all criteria to be met to ensure accurate convergence [24]. Extensions to the Newton method
presented here include the use of techniques to improve the accuracy of the linear solve used to
compute xn. One technique involves Dirichlet boundary conditions at Ohmic contacts. Instead
of directly solving, for example, ψ[k] − bψ[k] = 0 for some desired boundary value bψ[k], we can
solve P(ψ[k] − bψ[k]) = 0, where P ≫ 1 is a large penalty parameter. This admits the same solution
ψ[k] = bψ[k] but has been found to decrease the condition number of the Jacobian matrices arising
in certain discretizations [155]. Another technique involves the use of a preconditioner in the linear
solve, which can improve performance when an iterative linear solver is used [107].

2.2.4 Test functions

In semiconductor simulation, it is typically useful to know the voltage and current at each contact
in a device. In the Van Roosbroeck system, the voltage is set by the user in the form of Dirichlet
boundary conditions on the potential ψ. The current is more complicated to determine. The total
current through a contact is given by the flux integral

I =
∫︂

ci

J · n̂ ds , (2.78)

where ci ⊂ ∂Ω is the segment of the device boundary belonging to the ith contact and n̂ is the
outward-facing normal to ∂Ω. Direct evaluation of the integral in (2.78) can be difficult, since the
contact may contain only a few grid points at which the carrier concentrations n and p are known.
This section describes the method of test functions, which is used to accurately evaluate boundary
fluxes and compute terminal currents. This method was proposed by Markowich in 1985 [94] and
by Nanz in 1992 [106], and it has since been applied to finite volume simulations [38, 45].

Let Ti(x) be a smooth test function such that
∫︂

ci

J · n̂ ds =
∮︂

∂Ω
(Ti J) · n̂ ds . (2.79)

For (2.79) to hold, we must have Ti = 1 along ci and Ti = 0 along the remainder of ∂Ω. For such a
Ti, Gauss’s theorem then gives

I =
∮︂

∂Ω
(Ti J) · n̂ ds =

	
Ω

∇ · (Ti J) dω . (2.80)

Applying the product rule to (2.80) gives

I =
	
Ω

(∇Ti) · J dω +
	
Ω

Ti (∇ · J) dω . (2.81)

From the continuity equations in (2.1),

∇ · Jn = −q (G −U) , ∇ · Jp = q (G −U) .

Thus, since J = Jn + Jp,
∇ · J = ∇ ·

(︂
Jn + Jp

)︂
= ∇ · Jn + ∇ · Jp = 0,

39

verifying the conservation of charge. The second term in (2.81) vanishes, leaving

I =
	
Ω

(∇Ti) ·
(︂
Jn + Jp

)︂
dω . (2.82)

In a finite volume discretization, the integral in (2.82) can be approximated as [38, 45]

I = q
N∑︂

k=1

∑︂

l∈N[k]
l>k

|∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

(︂
gn[k, l] − gp[k, l]

)︂
(Ti[k] − Ti[l]) , (2.83)

where gn and gp are the electron and hole fluxes in (2.64) and (2.65) and N is the number of nodes
in the discretization. This approximation is possible since the electron and hole flux discretizations
can also be viewed as projections of the current densities onto the midpoint of the edge bounded
by x[k] and x[l]. The factor of q is necessary since the flux discretizations only account for the flux
of charge carriers, while the current densities refer to the flux of charge.

A few methods exist for determining the test function Ti(x). The test function must be smooth
in order for Gauss’s theorem to hold, and it must assume the appropriate boundary values along
∂Ω. Determining such a function generally requires solving a separate PDE along the device. The
simplest choice is the Laplace equation

∇2Ti = 0. (2.84)

In 1D, (2.84) simplifies to T′′i (x) = 0, which implies a linear test function along the device. In this
case, the test function can be determined analytically. Let x1 and x2 be the leftmost and rightmost
extents of the device, and let c1 and c2 be the left and right contacts. The test function giving
the current through c1 has the boundary conditions T1(x1) = 1 and T1(x2) = 0, which implies the
system ⎧⎪⎪⎨⎪⎪⎩

ax1 + b = 1
ax2 + b = 0

for some a, b. Solving the system gives

a = − 1
x2 − x1

, b =
x2

x2 − x1
.

The test function is thus
T1(x) = ax + b =

x2 − x
x2 − x1

. (2.85)

Similarly, the test function giving the current through c2 is

T2(x) = 1 − T1(x) =
x − x1

x2 − x1
. (2.86)

The expressions in (2.85) and (2.86) can be used for any 1D device, since such a device can have
only two contacts.

As an instructive example of the test function method, we can derive the expression for terminal
current in a 1D semiconductor with constant mobilities using the typical Laplace test function.
Since each node in this case has at most two neighbors, we can rewrite the sum in (2.83) as

I = ±q
N−1∑︂

k=1

1
x[k + 1] − x[k]

(︂
gn[k, k + 1] − gp[k, k + 1]

)︂
(T1[k] − T1[k + 1]) , (2.87)

40

where the sign of the current is determined by the choice of contact, since all the current flowing
into c1 must flow out of c2. The test function flux in (2.87) can be rewritten using (2.85) as

T1[k] − T1[k + 1] =
x2 − x[k]
x2 − x1

− x2 − x[k + 1]
x2 − x1

=
x[k + 1] − x[k]

x2 − x1
. (2.88)

Substituting (2.88) into (2.87),

I = ± q
x2 − x1

N−1∑︂

k=1

(︂
gn[k, k + 1] − gp[k, k + 1]

)︂
.

Substituting the carrier fluxes from (2.64) and (2.65),

I = ± qVT

x2 − x1

N−1∑︂

k=1

µn
(︂

B(−δr)n[k] − B(δr)n[k + 1]
)︂
−µp

(︂
B(δr)p[k] − B(−δr)p[k + 1]

)︂
. (2.89)

The expression in (2.89) is an average of the projections of the current onto the midpoints of grid
segments. This illustrates how the test function method can accurately estimate terminal currents:
even in difficult situations where computing the current from one or two projections would be
inaccurate, the test function considers all nodes in the discretization, which has a mitigating effect
on local numerical errors.

In higher dimensions, the PDE in (2.84) is easy to solve since the resulting finite volume
discretization is a linear system of equations. Solving the Laplace equation requires only one
linear solve, as opposed to more complex equations which require one linear solve for each
Newton iteration. In some simulations, however, the Laplace test function has been shown to
yield inaccurate estimates of the current, particularly in devices where the doping profile varies
abruptly over several orders of magnitude [106]. In such situations, it can be beneficial to define
a test function such that “In regions with large carrier concentrations the gradient of the weight
function should be small” [106]. Nanz proposed the function

∇ ·

(︃ n
ni
∇Tn,i

)︃
= 0 (2.90)

for the electron current and
∇ ·

(︃ p
ni
∇Tp,i

)︃
= 0 (2.91)

for the hole current, with the Dirichlet boundary conditions Tn,i(x) = Tp,i(x) = 1.1 for x ∈ ci and
Tn,i(x) = Tp,i(x) = −0.1 at all other contacts. The solutions to the PDEs (2.90) and (2.91) were then
clamped to the range [0, 1] and smoothed with the polynomial

s(x) = −2x3 + 3x2. (2.92)

Due to the modified boundary conditions, the smoothed test functions have a “plateau” near each
contact, which was shown to circumvent numerical issues typically associated with the Laplace
test function near the contact edges. This effect is shown in Figure 2.8, which shows the test
functions generated using (2.90) and (2.91) for a 1D diode under forward and reverse bias. The
reverse-biased diode has a large depletion region near x = 0, which causes large gradients in n
and p and leads to a more pronounced plateau effect. The forward-biased diode has a very small
depletion region, so the test functions appear smoother near x = 0.

41

−2 −1 0 1 2
Position (µm)

0.0

0.2

0.4

0.6

0.8

1.0
T 1

(x
)

Forward-biased (VF = 1 V)

Electrons
Holes

−2 −1 0 1 2
Position (µm)

0.0

0.2

0.4

0.6

0.8

1.0

T 1
(x

)

Reverse-biased (VR = 1 V)

Electrons
Holes

Figure 2.8: Concentration-weighted test functions for 1D diode under forward and reverse bias.

The concentration-weighted test functions described by (2.90) and (2.91), while occasionally more
accurate than the Laplace test function, are significantly more expensive to evaluate. First, they
require two separate test functions—one for electrons and one for holes—for each grid. Second,
due to their dependence on carrier concentrations, they must be re-evaluated for every operating
point of the device, unlike the Laplace test function which must only be evaluated once per grid
and can be reused for any operating point.

In addition to the test function method, other methods have been proposed to evaluate terminal
currents faster, more accurately, or both. Since the current field is conservative, Palm and Van de
Wiele noted that the current density can be derived from a current potential, which can be used
to evaluate terminal currents and the current field itself along the device [110]. Gusmeroli and
Spinelli proposed the residue method, which does not require the solution of a PDE to evaluate
the current but relies on the use of the continuous Galerkin discretization. The residue method
was additionally noted to have lower accuracy than the test function method at low currents [57].
The residue method was extended to 3D simulations including impact ionization in [96]. The test
function was applied to Monte Carlo simulations using the Boltzmann transport equation in [167].

2.2.5 Current boundary conditions

In device simulation, it is often useful to set terminal currents explicitly rather than determining
them during postprocessing. In this case, we can add one equation to the typical discretized system
to enforce the current [33, 55]. The method of test functions can be used to formulate the extra
equation as long as the test function is not solution-dependent like the concentration-weighted
test functions described by (2.90) and (2.91). The extra equation is then

FI(z) = I − q
N∑︂

k=1

∑︂

l∈N[k]
l>k

|∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

(︂
gn[k, l] − gp[k, l]

)︂
(Ti[k] − Ti[l]) = 0, (2.93)

where z is the vector of unknowns and I is the desired current value. We can solve the augmented
system using a damped Newton process similar to (2.74). The Newton update at each iteration is

42

given by solving ⎡
⎢⎢⎢⎢⎣

Jn
∂Fn
∂V

∂FI,n
∂zn

0

⎤
⎥⎥⎥⎥⎦ xn = −

[︄
Fn
FI,n

]︄
, (2.94)

where x ∈ RN+1, the unknown vector z is defined in (2.69), the residual F is defined in (2.70) and
Jn = ∂Fn/∂zn . Then, the updated solution and bias voltage are given by

[︄
zn+1
Vn+1

]︄
=

[︄
zn
Vn

]︄
+ xn. (2.95)

The gradient ∂FI/∂Z in (2.94) can be determined explicitly or via automatic differentiation. The
entries of the derivative ∂F/∂V are 1 at indices corresponding to the nodes in the current-controlled
contact and are 0 at all other indices, assuming Dirichlet boundary conditions are enforced without
penalty. The process in (2.94) and (2.95) can be generalized to an arbitrary number of current-
controlled contacts by allowing the residual FI to be vector-valued. Each additional current-
controlled contact adds a row and column to the block Jacobian in (2.95).

As noted in [105], this method of imposing a fixed current through a set of contacts can
lead to convergence problems. Computational experience shows that many current-controlled
simulations diverge unless aggressive damping is used in the Newton process to keep bias voltage
variation small between iterations. While this method allows either current or voltage to be set at
a contact, it can be extended to enforce arbitrary combinations of the two, allowing the inclusion
of simple circuits connected to the device terminals [73].

2.2.6 I-V curve tracing

The current-voltage characteristic, sometimes called an I-V curve, is a key indicator of the perfor-
mance and character of many semiconductor devices. It is therefore of interest in device simulation
to accurately generate I-V curves so that devices may be analyzed and comparisons may be made
among them. To generate an I-V curve, the voltage or current at one contact is varied while the
voltage and current at all other contacts is held constant. This requires many simulations; one
simulation must be performed for each set of bias conditions along the I-V curve. Since the New-
ton method is highly sensitive to initial conditions, it is critical that initial conditions be chosen
appropriately for each point on an I-V curve.

A general requirement for convergence using Newton-like nonlinear solvers is that the initial
guess be sufficiently close to the solution. Consider a simple device with two contacts, for which
it is desired to simulate the bias voltages (V1,V2, · · · ,VL), at which points the unknown currents
(I1, I2, · · · , IL) will be recorded. At each point on the curve, the vector-valued unknowns in the
discretization are (z1, z2, · · · , zL), where z is defined in (2.69). The naïve algorithm for tracing this
I-V curve is

1. Begin with an initial guess z0.

2. Solve F(zn) = 0, using z = zn−1 as an initial guess for the nonlinear solver.

3. Compute the current In using the solution zn.

4. Repeat steps 2 and 3 for n ∈ [1,L].

A problem arises when determining the initial guess z0. Without any a priori knowledge of the
character of z1, it is generally difficult to provide an initial guess such that the first nonlinear solve

43

converges. One solution is to choose V1 = 0, such that the device is in thermal equilibrium at the
first point on the I-V curve. Then, the Van Roosbroeck system reduces to the equilibrium case
of a single PDE, which is given in (2.8). This PDE can be solved for ψ, and (2.7) can be used to
compute n and p, thus giving z0. Computational experience shows that this uncoupled PDE is less
sensitive to initial conditions than the non-equilibrium Van Roosbroeck system, but some initial
guess is still needed for the thermal equilibrium problem. In some cases, we can guess z = 1N or
z = 0N and get convergence when large doping gradients are not involved. Alternatively, we can
estimate ψ from the charge neutrality condition in (2.9), which gives convergence for a wide range
of geometries and doping profiles [38].

For some devices, the naïve curve tracing scheme described above performs poorly or may fail
altogether. To understand why, we must analyze the character of solutions to the semiconductor
problem. Several theoretical results have been proven regarding the existence and uniqueness of
solutions to Van Roosbroeck system. Markowich showed in 1985 that, when solutions to the
Van Roosbroeck system exist, the I-V characteristic varies continuously with applied voltage.
This is due in part to the implicit value theorem [94]. In other words, the I-V characteristic is a
smooth curve in the current-voltage plane. Existence of a solution is guaranteed in the thermal
equilibrium case when impact ionization is negligible. Few results exist for non-negligible impact
ionization rates, except in very specific situations. In particular, existence has been proven for all
bias conditions in a 1D diode with a symmetric, piecewise constant doping profile with constant
mobilities [92].

Uniqueness is only guaranteed under specific conditions. For instance, it has been shown that
a unique solution exists in the thermal equilibrium case where V = 0 for all contacts, when impact
ionization is negligible [153]. Moreover, a unique solution exists even if V is nonzero for some
contacts, so long as the vector of bias voltages

V =
[︂
V1 V2 · · · VM

]︂T
,

where M is the number of contacts, is within a sphere of sufficiently small radius. The maximum
radius for which uniqueness holds is problem-dependent and can vary with the doping profile,
the mobilities µn and µp and any parameters of the geometry and discretization [94]. In general,
however, uniqueness does not hold, and the Van Roosbroeck system can admit one, several or
no solutions. The most common example of a device admitting multiple solutions is a diode in
avalanche breakdown, which can exhibit snap-back behavior near the breakdown voltage, leading
to an S-shaped I-V curve [33, 95]. Similar behavior has been observed in the simulation of
thyristors [153], bipolar transistors [7, 51] and CMOS devices [23].

The simulation of multivalued behavior of I-V curves poses considerable numerical difficulty
for two main reasons. First, it is typically necessary to include impact ionization in simulation to
produce a multivalued I-V curve. The dependence of the ionization rate G on the vector quantities
Jn, Jp and E is difficult to model in a finite-volume discretization, and several schemes have been
proposed to incorporate this phenomenon [80, 81, 151, 152]. Beyond the discretization, impact
ionization causes convergence problems for most nonlinear solvers. Kumashiro found that a major
source of this difficulty is a “positive feedback” effect between the ionization rate and the current
densities: An increase in G in one iteration of the nonlinear solve causes ∥Jn∥ and

⃦⃦
⃦Jp

⃦⃦
⃦ to increase,

which causes G to increase in the next iteration, and so on [80]. Second, the Jacobian of the
discretized PDE system is singular at turning points where the I-V curve becomes multivalued [74,
153]. Thus, while it is often possible to approach turning points in simulation, it can be difficult
or impossible to trace the I-V curve beyond the turning point without encountering convergence
issues.

44

I

V

Tangent
prediction

Naïve
prediction

I

V

Tangent
prediction

Naïve prediction
(no solutions exist)

Normal point Limit point

Figure 2.9: Illustration of naïve prediction and tangent prediction algorithms at a normal point
(left) and at a limit point (right). Figure adapted from [95].

Several techniques have been developed to overcome the difficulty of tracing multivalued I-V
curves. The naïve algorithm above is part of a more general class of algorithms called predictor-
corrector algorithms. Such algorithms can be used to trace I-V curves by using a predictor to guess
the next point on the curve. Since the guess will not generally be a solution of the PDE system, a
corrector is then used to find a point on the curve of solutions near the initial guess. When tracing
I-V curves, the corrector is a nonlinear solver, i.e. the Newton method. The predictor algorithm
can be one of several choices. One of the simplest and most widely-used predictors is the tangent
predictor, which will be discussed below.

To understand the tangent predictor, it is useful to first consider the naïve approach described
above as a simple predictor algorithm [74]. Consider the situation where it is desired to trace an
I-V curve from a point (V1, I1) to (V2, I2). This approach makes the prediction z2 = z1 and fixes the
bias voltage at some value V2, which is typically set such that adjacent points on the I-V curve are
separated by a fixed distance, i.e. V2 = V1 + ∆V. A Newton-like solver is then applied to correct
the predicted solution, yielding the solution z2. This solution is consistent with the bias voltage
V = V2, since that bias voltage was set externally via Dirichlet boundary conditions. This situation
is illustrated in Figure 2.9. On the left, the I-V curve is single-valued, and a solution exists for the
predicted voltage V = V1+∆V. The Newton solver converges to the desired solution, and the step
is successful. On the right, however, the I-V curve is multivalued for a range of bias voltages. In
this case, the naïve predictor attempts to set V = V1 + ∆V, but such a solution does not exist due
to the snapback behavior. The Newton solver diverges, and the step is unsuccessful.

The tangent predictor is able to overcome such limit points where the I-V curve becomes
multivalued. Consider the parametric I-V curve (V(s), I(s)), where I is computed from a high-
dimensional curve z(s) in the solution space RN. Instead of fixing the bias voltage, the tangent
predictor treats the bias voltage as an unknown variable in the discretized PDE system. The
resulting augmented system of equations has N + 1 unknowns, similar to the system used to set
current boundary conditions described in Section 2.2.5. Consider again the situation where it is

45

I

V

I

V

Prediction

PALC
constraint

PALC
constraint

Prediction

Figure 2.10: Illustration of the two PALC constraints N1 and N2 and their effect on the correction
step of the continuation algorithm.

desired to trace an I-V curve from a point (V1, I1) to (V2, I2). This approach makes the prediction
[︄
z2
V2

]︄
=

[︄
z1
V1

]︄
+ ∆σ

[︄
z1̇
V̇1

]︄
,

where ż = ∂z/∂s , V̇ = ∂V/∂s , and ∆σ is the desired length of the curve segment from (V1, I1)
to (V2, I2) [24]. Since the bias voltage is now unknown, it is acceptable for the prediction to lie
outside of the curve, even if no solutions exist with the given bias voltage. The second step of
the curve-tracing algorithm, the corrector, attempts to find a solution point near the prediction,
possibly with a different bias voltage. To correct the prediction and find a point on the I-V curve
that lies a distance of approximately ∆σ away from (V1, I1), we need a constraint to add to the
augmented system of equations.

There are a few constraints that can be added to enforce the step size requirement. One choice
is to force the tangent vector to have unit length, i.e. to require that

V̇(s)2 + İ(s)2 = 1. (2.96)

The use of the constraint in (2.97) along with the tangent predictor algorithm is known as arc-length
continuation. Typically, this constraint is not enforced exactly due to its nonlinearity. Instead,
pseudo arc-length continuation (PALC) is often used as a substitute, where (2.97) is enforced approx-
imately [74]. Two PALC constraints were introduced in [24]:

N1 = θİn(I − In) + (2 − θ)V̇n(V − Vn) − ∆σ = 0, (2.97)

and
N2 = (I − In)2 + (V − Vn)2 − (∆σ)2 = 0. (2.98)

The behavior of these two constraints is illustrated in Figure 2.10. The constraint N1 defines a
straight line that intersects with the tangent vector a distance ∆σ away from the point (V1, I1).
The slope of the line is determined by the parameter θ, which ranges from 0 to 2. When θ = 1,

46

the constraint line is perpendicular to the tangent vector [154]. The constraint N2 defines a circle
centered at (V1, I1) with radius ∆σ. This constraint will generally intersect with the I-V curve at
two points, but the Newton solver will likely converge to the solution nearest the prediction [24].

The constraints in (2.97) and (2.98) depend on appropriate scaling for the voltage and current.
For N1, a perpendicular line to the tangent vector is only desirable if V and I are on similar scales.
Typically this is not the case, and V can be on the order of a few volts, while I may be on the order
of microamps or less, depending on the device. In this case, the parameter θ should be very close
to 2, i.e. θ = 2 − 1 × 10−6 or so. Setting θ = 2 amounts to setting a current boundary condition,
where a fixed current step is taken at each point on the curve. Conversely, setting θ = 0 amounts
to setting a voltage boundary condition at the active contact. For N2, this scaling problem suggests
an alternate definition such as

N2 = θ
2(I − In)2 + (2 − θ)2(V − Vn)2 − (∆σ)2,

which defines an ellipse centered at (V1, I1). The parameter θ has a similar effect. Alternatively, if
modification to the constraints is not desired, the voltages or currents can be scaled after simulation,
before beginning the continuation algorithm.

As evidenced by the complexity of these continuation algorithms, tracing multivalued I-V
curves is highly nontrivial. The study of continuation methods led to the development of bifurcation
analysis, a field of mathematics concerned with related differential equations that exhibit branching
or admit multiple solutions. Similar continuation methods to the ones described here have been
compiled in software packages aimed at general elliptic PDE systems [4, 154]. Arc-length contin-
uation has also proven useful in modeling substrate currents and latchup phenomena in CMOS
circuits [23]. More generally, continuation has been applied to circuit-level simulators where mul-
tivalued transfer characteristics may be present [22]. Continuation can also be useful to iteratively
find DC operating points in large circuits when stepping directly to the desired bias conditions
causes convergence problems [131]. When solution branches exist that cannot be reached with
conventional continuation methods, deflated continuation can be used to find all possible solutions
to a system at a given operating point [40]. This can be useful to avoid the need to trace near
turning points where the system Jacobian becomes singular.

Several methods have also been proposed to trace I-V curves without requiring complex
continuation algorithms. One such algorithm was used to trace snapback behavior in bipolar
transistors and does not require adding equations to the PDE discretization. Instead of treating the
bias voltages as unknowns, this approach tries to guess points on either side of the I-V curve and
linearly interpolates between them to estimate the shape of the curve [7]. Another approach uses
automatic biasing, where a combination of a voltage source, a current source, and a resistor are used
to load the device such that only one operating point is possible for each load combination [51].
This scheme requires one or more equations to be added to the discretization, making its use in
simulation difficult. Unlike the other methods, however, it could easily be applied in a physical
curve tracer machine to give accurate measurements of breakdown and snapback parameters.

2.3 Computational methods

2.3.1 Automatic differentiation

Evaluating derivatives of computer programs is essential to many tasks in computational physics
and machine learning. Nonlinear solvers such as Newton’s method, for example, require the
Jacobian of a vector-valued function that may be prohibitively difficult to compute by hand. Many

47

optimization methods require the gradient of a loss function which may depend on thousands
or millions of model parameters. Historically, numerical derivatives were computed using finite
differencing. While this approach was suitable for simple problems, the resulting truncation error
often led iterative solvers to far worse performance than if the derivatives were computed by
hand [145]. Symbolic differentiation can achieve lower error than finite differencing by manipulating
equations algebraically. This approach, however, is seldom appropriate for scientific computing
where thousands of derivatives are computed in rapid succession. Another approach is automatic
differentiation (AD), which has similarities to both symbolic differentiation and numerical finite
differencing. It does not, however, incur truncation error, and in many cases provides comparable
accuracy to symbolic differentiation at significantly lower computational expense [54].

Automatic differentiation methods compute derivatives of computer programs by exploiting
the structure of the programs, and in many cases, of the programming language itself. The
two main AD methods are forward-mode and reverse-mode AD. Forward-mode AD operates in an
intuitive manner, treating each mathematical operation in a program as a separate step whose
derivative can be evaluated. The complete list of operations in a program and the dependencies
between different operations is known as a Wengert list [165]. Forward-mode AD works by
considering the value and derivative of each expression in a Wengert list, which are often called
primal and dual numbers, respectively. The derivatives of all the expressions in the Wengert
list are composed by applying the chain rule. Forward-mode AD has been implemented in
several software packages, most notably in the Julia package ForwardDiff.jl [129]. It is typically
implemented using operator overloading or by defining a special dual type, for which typical
arithmetic operations are defined, that holds both a primal value and its dual.

Rather than computing the derivative of each operation with respect to its inputs, reverse-
mode AD relies on the sensitivity of an input variable to each of the outputs of a function [54].
Reverse-mode AD also relies on the use of a Wengert list and composes intermediate results using
the chain rule. It is typically implemented using adjoint methods to compute the sensitivities [70]
or using source-to-source transformation, where a second program is generated from the code of the
first that computes the first program’s derivative [145]. Notable implementations of this method
include the Tapenade AD tool [60], which works with Fortran or C code, and Zygote.jl, which
works with Julia code [68].

Compared to forward-mode AD, reverse-mode AD is more efficient at computing gradients
of functions with fewer outputs than inputs. Such instances include many machine learning
models, when it is desired to compute the gradient of a scalar-valued loss function. Forward-
mode AD is more efficient at computing derivatives of vector-valued functions with more outputs
than inputs [54]. Both forward-mode and reverse-mode AD require a library of matrix derivative
results to compute derivatives and sensitivities of intermediate quantities. A collection of such
results is given in [49].

2.3.2 Scientific machine learning

Nearly every physical phenomena can be described by a differential equation or by a system
of differential equations. As illustrated in Section 2.1, a simple system of 3 PDEs can give an
accurate model of most semiconductor devices in 1D, 2D or 3D. Despite the simplicity of the
Van Roosbroeck system, the number of possible models for a given system grows exponentially
as increasingly many physical effects are considered. Impact ionization and field-dependent
mobilities are the most common extensions to the drift-diffusion model; many others exist when
simulation of nanoscale devices is desired [90]. Eventually, physical intuition must be replaced
with experimental data, as many parameters like ionization coefficients rely on empirical curve-

48

fitting to measured devices. This effect is pervasive in other fields of science and engineering. As
increasingly complex models become necessary, simple physics-based models must be augmented
by observational data. Scientific machine learning is a broad name given to a class of methods that
seeks to bridge the divide between physical models and data-driven optimization. This section will
briefly describe some of the common methods in scientific machine learning and the computational
tools that have been developed to implement them.

One of the earliest-developed techniques related to scientific machine learning is the neural
ordinary differential equation (neural ODE) [17]. The neural ODE relies on the ability of neural
networks (NNs) to act as universal approximators which can learn and accurately model the
behavior of a wide class of functions. This ability is enhanced by the use of nonlinear activation
functions like the Gaussian Error Linear Unit (GELU) [62]. NNs have classically been used for
supervised and unsupervised tasks, where they have been highly effective at detecting patterns in
structured and unstructured data, respectively. Recurrent neural networks can additionally be used
to construct discrete models of time-series data. It is often of interest to model continuous-time
data, in which a quantity does not change value at a well-defined frequency. Neural ODEs fill this
need by using a NN to parameterize the forcing function of an ODE. The resulting equation can
be solved on any timescale and can be trained on a wide variety of data. Neural ODEs have been
extended to stiff systems [78] and to problems requiring Bayesian inference [27]. Recently, the
Fourier neural operator was introduced to allow neural ODEs to learn an entire family of problems,
rather than a single equation [86].

The universal differential equation has been introduced as an extension to the philosophy under-
lying neural ODEs [126]. Neural ODEs use NNs to parameterize an entire differential equation
and are thus a purely data-driven approach. Many models call for a mix of physical and data-
based modeling, particularly when the model is used in a mission-critical application (as in much
of semiconductor simulation, where TCAD models are often used to make design decisions).
Universal differential equations fill this need by allowing for a differential equation model to be
partially parameterized by a NN while retaining some description of the underlying physics [125].
This approach extends on earlier physics related approaches like Physics-Informed Neural Net-
works (PINNs) [127] by leveraging AD capabilities to allow data-driven model creation without
requiring domain specific code. Universal differential equations have been applied in a wide
range of domains, from predicting the COVID-19 pandemic [26] to discovering missing physics
in climate models [128]. Beyond universal differential equations, other scientific machine learn-
ing techniques such as continuous time echo state networks (CTESNs) have been shown to yield
performant surrogates of systems with dynamics on multiple timescales [1].

2.4 Related work

Much of the groundwork for efficient surrogate modeling was laid by inverse design approaches in
disparate fields of engineering. Historically, engineering design has been accomplished using sets
of best practices and “rules of thumb,” and designers have often relied on intuition and experience
to meet a set of specifications. Inverse design, by contrast, begins with a set of specifications and
uses mathematical optimization to generate a design without prior knowledge of the character
of such a solution [21]. Much of the early applications of inverse design were directed toward
photonics [103], particularly in problems such as nanolenses and mode converters [2], photovoltaic
materials [169], wavelength demultiplexers [118] and grating couplers [134]. Recently, optical
metasurfaces have been constructed using inverse design, and some approaches have leveraged
automatic differentiation for faster simulation and optimization [21, 114].

49

The inverse design of metasurfaces prompted the development of a new surrogate approach:
physics-enhanced deep surrogates (PEDSs) [115]. The PEDS approach considers the simulation
of a metasurface using both a fine-grained geometry and a coarse-grained geometry. The fine-
grained geometry provides a more realistic simulation of the metasurface at the expense of higher
computational cost. The coarse-grained geometry is faster to simulate but introduced unacceptable
error compared to the fine-grained simulation. To develop a surrogate model, the PEDS approach
creates a residual geometry that is added to the downsampled geometry used in the coarse-grained
simulation. The residual geometry is generated by a neural network that can be trained to minimize
the error between the output of the coarse-grained simulation and the output of the fine-grained
simulation. Additionally, the neural network can be trained to generate residuals for a wide range
of input parameters, providing an efficient way to quickly create a surrogate without repeating
the lengthy training process.

A number of inverse design and surrogate methods have been applied in semiconductor-
related problems. Geometric programming has been used to optimize doping profiles in bipolar
transistors using an analytical model of the base transit time [71]. We note that this optimization
did not entail a physics-based simulation of the entire device and relied on minimization of a single
parameter. Geometric programming has also allowed inverse design of CMOS op-amps [63, 91,
157], multistage RF amplifiers [28], planar spiral inductors [102] and LC oscillators [64]. Traditional
surrogate methods including Latin hypercube sampling have been applied to model the power
consumption and bandwidth of a bipolar op-amps [168] and the drain current of 65 nm NMOS
and PMOS devices [166]. Various adaptive sampling techniques have also been used to train
surrogates of SPICE MOSFET models [143]. Forward-mode AD was used to perform sensitivity
analysis on systems derived from Maxwell’s equations in [66].

More recent works have focused on applying powerful machine learning methods to inverse
design problems. A neural network architecture was proposed in [100] to avoid overfitting in
TCAD-augmented machine learning. The architecture used an autoencoder to estimate the thick-
nesses of p-doped, intrinsic and n-doped regions in a p-i-n diode. This method also allowed inverse
design of the layer thicknesses to match simulation outputs to a hand-drawn I-V curve. Similar
autoencoder-based models were used to recover the metal workfunction of a Schottky diode from
its I-V curve in [30] and to predict FinFET I-V curves from device dimensions [99]. Differential
evolution techniques were used to design semiconducting boron sheets for 2D FETs in [171]. A
multilayer perceptron (MLP) model was trained to predict drain current, effective mobility and
electron density in a 3D FinFET in [76]. The same model was used in inverse design; the width,
thickness and backgate voltages of a device were designed from a desired subthreshold swing,
threshold voltage and mobility degradation. Deep neural networks have also been applied in
inverse design of tunnel field-effect transistors (TFETs) [164] and FinFET SRAM cells [172].

Considerable theoretical and experimental attention has been devoted to the optimization and
inverse design of doping profiles. Early theoretical work showed that doping profile recovery was
possible from stationary simulations in the limited unipolar case where p = 0 everywhere, given
an arbitrarily large set of I-V or C-V curve data [13]. This work supported earlier experimental
results that used black-box optimization to extract doping profiles from CMOS devices [83, 122].
It was later shown that the quality of the doping reconstruction depended on the amount of data
available, and it was conjectured that some doping profiles may be uniquely identifiable from
I-V data [84]. A stronger statement was proven in [12], which showed that the location of a P-N
junction could be uniquely identified using I-V and C-V data if the number of junctions is less than
or equal to two. Later experimental work showed that doping profile recovery was possible in 2D
and was robust to measurement noise [18]. Similar doping reconstructions were achieved in a 1D
finite-difference discretization of the Van Roosbroeck system using optimal control [147].

50

Chapter 3

Implementation

3.1 Computing environment

3.1.1 Packages used

This work was implemented using the Julia programming language [10], version 1.7.1. Much
of the framework for finite volume discretizations was provided or influenced by VoronoiFVM.
jl [45]. Finite volume grids were implemented using ExtendableGrids.jl and visualized using
GridVisualize.jl and PyPlot.jl. The Triangulate.jl package was used to generate boundary-
conforming Delaunay triangulations in all simulation models [137]. The SimplexGridFactory.
jl package was used to construct device geometries. Automatic differentiation was primar-
ily performed using Zygote.jl [68], and ForwardDiff.jl was used when nested AD was re-
quired [129]. Sparse matrix functionality was provided by SparseArrays.jl. Automatic spar-
sity detection was implemented using Symbolics.jl [52]. Our implementation of arc-length
continuation was influenced by BifurcationKit.jl [163]. Deflated continuation was also per-
formed using BifurcationKit.jl. Surrogate models were trained using DiffEqFlux.jl [126]
and GalacticOptim.jl.

3.1.2 Semiconductor simulation package

This section describes Semiconductors.jl, the simulation package created as part of this work.
The package acts as an interface to VoronoiFVM.jl by defining key physics functions and postpro-
cessing methods related to semiconductor simulation. It also provides an interface to quickly define
and modify TCAD models and their discretization grids. The core structure in Semiconductors.jl
is Semiconductors.Device. This structure defines the device model and contains information
about its geometry. The definition of this structure is given below:

� ⊵
struct Device

model::Model # Device model and parameters
grid::ExtendableGrids.ExtendableGrid # FVM discretization grid
b_types::Dict{Int64,String} # Boundary region types
r_types::Dict{Int64,String} # Cell region types

end� �
The first field, model::Model, contains the device model and simulation parameters and will

51

https://github.com/j-fu/ExtendableGrids.jl
https://github.com/j-fu/GridVisualize.jl
https://github.com/JuliaPy/PyPlot.jl
https://github.com/JuliaGeometry/Triangulate.jl
https://github.com/j-fu/SimplexGridFactory.jl
https://github.com/j-fu/SimplexGridFactory.jl
https://github.com/JuliaSparse/SparseArrays.jl
https://github.com/SciML/GalacticOptim.jl

be described below. The second field, grid::ExtendableGrids.ExtendableGrid, contains the
discretization grid. The grid object contains several adjacencies generated by ExtendableGrids.jl
that describe the relationships among nodes, edges, and faces in the discretization. We refer the
reader to the ExtendableGrids.jl documentation for further details on the grid object. The third
field, b_types::Dict{Int64,String} maps boundary regions in the grid to their boundary region
types. The boundary region type is a string which can take one of four values:

• "contact": Describes an ideal Ohmic contact. Dirichlet boundary conditions are enforced
in these regions.

• "exterior": Describes an artificial simulation boundary. Homogeneous Neumann bound-
ary conditions are enforced in these regions.

• "interior": Describes a semiconductor-semiconductor interface. Typically used to separate
regions in a device with discontinuous doping, permittivity or carrier lifetimes.

• "gate": Describes a gate contact. Dirichlet boundary conditions are enforced for the potential
in these regions.

The fourth field, r_types::Dict{Int64,String}maps regions in the grid to their cell region types.
The cell region type is a string which can take one of two values:

• "semiconductor": Describes a semiconductor region. The Poisson equation and both conti-
nuity equations are solved in these regions.

• "insulator": Describes an insulator region. Typically used in gate oxide layers and in
geometries containing a boundary mesh. Only the Poisson equation is solved in these
regions. Space charge is neglected in these regions, i.e. n = p = 0.

For b_types and r_types, the region numbers correspond to the boundary region numbers and
cell region numbers defined during the creation of grid.

Within each Semiconductors.Device is a Semiconductors.Model. The Model contains several
physical constants and parameters necessary to simulate a device. The definition of this structure
is given below:

� ⊵
mutable struct Model

e0::Float64 # Vacuum permittivity (constant)
q::Float64 # Electron charge (constant)
vt::Float64 # Thermal voltage at 300 K (constant)

er::Dict{Int64,Float64} # Relative permittivity by cell region
ni::Dict{Int64,Float64} # Intrinsic concentration by cell region
tn::Dict{Int64,Float64} # Electron lifetime by cell region
tp::Dict{Int64,Float64} # Hole lifetime by cell region
ew::Dict{Int64,Float64} # Metal-insulator workfunction by region

Intrinsic carrier concentration by boundary region
ni_boundary::Dict{Int64,Float64}

doping # Doping profile model (function)
recomb # Recombination model (function)

52

https://j-fu.github.io/ExtendableGrids.jl/stable/extendablegrid/

generation # Generation model (function)
mobility_n # Electron mobility model (function)
mobility_p # Hole mobility model (function)

fldmob::Bool # Toggle field-dependent mobility
impact::Bool # Toggle impact ionization

end� �
The structure is mutable to allow some parameters to be changed without recreating the Model. The
first three fields give the values of the vacuum permittivity ε0, the electron charge q and the thermal
voltage VT. The following values were used, according to the 2018 CODATA recommended
values [150]:

ε0 = 8.854 187 812 8 × 10−18 Fµm−1,

q = 1.602 176 634 × 10−19 C,

VT =
kT
q
= 25.851 999 786 435 5 mV,

where we have assumed T = 300 K. The device temperature can be altered by changing the value
of VT. The temperature is assumed to be constant along the length of the device; self-heating and
other thermal effects are not currently supported.

The next six fields define mappings between cell region numbers and material properties,
allowing those properties to be piecewise constant. The field er::Dict{Int64,Float64} gives the
unitless relative permittivity, which is typically 12.7 for silicon and 1 for air or vacuum, in each
cell region. The field ni::Dict{Int64,Float64} gives the intrinsic carrier concentration ni, which
is typically 1.1 × 10−2 µm−3 [146], in each cell region. The fields tn::Dict{Int64,Float64} and
tp::Dict{Int64,Float64} give the electron and hole lifetimes in each cell region. These quantities
are related to the density of crystal defects in the silicon lattice and can vary significantly across
fabrication processes [121]. We use the values τn = τp = 1 × 10−10 s for most devices in this work.

The field ew::Dict{Int64,Float64} gives the metal-insulator workfunction potential Ew/q in
each boundary region. This should only be defined for boundary regions of type "gate". We use
the value Ew/q = 550 mV in this work, which is typical for a degenerate polysilicon contact on
SiO2 [144]. The field ni_boundary::Dict{Int64,Float64} gives the intrinsic carrier concentration
ni in each boundary region. This field is used to compute charge-neutrality carrier concentrations
at Ohmic contacts. This field should only be defined for boundary regions of type "contact",
in which case it should take the value of ni for whichever semiconductor region it contacts. If
this value is required to vary along a contact, the contact should be split into multiple boundary
regions to allow a piecewise constant ni along the contact.

The next five fields define various physical models used by the simulator. The field doping
defines the doping profile of the device. It should be defined using the template shown below:

� ⊵
function doping(x,y,reg;boundary=false)

...
return (gamma)

end� �
53

The arguments x and y give the x and y-coordinate for which the doping should be evaluated.
The argument reg gives the cell region number if boundary==false or the boundary region if
boundary==true. The return value gamma should give the value of the doping at the point specified
by x, y and reg. This interface allows a wide range of doping profiles to be specified. The doping
can be a continuous function of x and y, a piecewise constant function of reg or a combination of
both.

The field recomb defines the device recombination model. In this work, only the Shockley-
Read-Hall recombination is used, which is defined as shown below:

� ⊵
function u_srh(n,p,ni,tn,tp)

u = n*p - niˆ2
u /= (n+ni)*tp + (p+ni)*tn
return (u)

end� �
The arguments n, p, ni, tn and tp give the electron and hole concentrations, intrinsic carrier
concentration, and electron and hole lifetimes at the node at which the recombination should
be evaluated, respectively. Additional recombination models such as the Auger model and the
spontaneous radiative recombination rate can be added by following this function template. The
field generation defines the device generation model. It should be defined using the template
shown below:

� ⊵
function generation(e_norm,jn_norm,jp_norm,device)

...
return (g)

end� �
The arguments e_norm, jn_norm and jp_norm give the least-squares approximations to the electric
field, electron current density and hole current density in the cell containing the node at which
the generation rate should be evaluated. This approximation is described in detail in Section 3.2.3.
The argument device gives the Semiconductors.Device instance for the device to be simulated.
This is included so that physical constants like q can be passed to the generation model. When
impact ionization is enabled in this work, the Selberherr model given in (2.19) is used with the first
set of parameters from Table 1 and Table 2 of [136], namely

α∞n = 1.0 × 102 µm−1, α∞p = 2.0 × 102 µm−1, Ein = 1.66 × 102 Vµm−1, Eip = 1.98 × 102 Vµm−1,

where we have converted length units from cm to µm as appropriate.
The fields mobility_n and mobility_p define the device mobility models. They should be

defined using the template shown below:

� ⊵
function mobility(n,p,e_norm,reg,fldmob)

...
return (u)

end� �
54

The arguments n and p give the average electron and hole concentrations along the edge at which
the mobility should be evaluated. These arguments are unused in the current implementation
but may be used in a future implementation including concentration-dependent mobilities. Con-
structing these averages can be nontrivial; see [81] for details of such an implementation. The
argument e_norm gives the least-squares approximation to the electric field in the cell containing
the edge at which the mobility should be evaluated. This approximation is described in detail
in Section 3.2.3. The argument reg gives the cell region number of the cell containing the edge
at which the mobility should be evaluated. This can be used if a piecewise constant mobility is
desired. The argument fldmob is set to true if a field-dependent mobility is to be simulated and
false if not. The return value u should give the value of the mobility at the point specified by reg.
The electron and hole mobility functions have identical argument and return value structures.

The remaining two fields in the Semiconductors.Model structure are fldmob::Bool and
impact::Bool. These are set by the user and indicate whether field-dependent mobility and/or
impact ionization should be included in the simulation, respectively.

3.2 Semiconductor simulator

3.2.1 Equilibrium solver

Two solvers were implemented using VoronoiFVM.jl to simulate instances of Semiconductors.
Device. An equilibrium solver was implemented using the Poisson-Boltzmann equation given
in (2.8), and a non-equilibrium solver was implemented using the full Van Roosbroeck system
given in (2.6). The equilibrium solver was mainly used to provide an initial condition for the non-
equilibrium solver when convergence problems were encountered. For details of the VoronoiFVM
API, we refer the reader to [45]. Initial conditions for the equilibrium solver were computed using
the charge-neutrality condition given in (2.9). In this reduced system, only the potential ψ is
unknown.

The function ic_equilibwas implemented to generate the charge-neutrality initial condition.
The function definition is shown below:

� ⊵
function ic_equilib(

d::Semiconductors.Device,
sys::VoronoiFVM.AbstractSystem{Tv,Ti}

) where {Tv,Ti}

...
return (ic)

end� �
The argument d::Semiconductors.Device is the Device instance to be simulated. The argu-
ment sys::VoronoiFVM.AbstractSystem{Tv,Ti} is the VoronoiFVM system containing the device
physics functions, the current solution and the system Jacobian. The types Tv and Ti are used
internally by VoronoiFVM to store values and integers, respectively. Typically, Tv==Float64 and
Ti==Int32. The return value ic is a 1 ×N VoronoiFVM.SparseSolutionArray if sparse unknown
storage is enabled, or a 1 × N VoronoiFVM.DenseSolutionArray if not, where N is the number
of nodes in the discretization. The assembly loop for ic follows a similar elementwise algorithm

55

to the VoronoiFVM PDE assembly loop eval_and_assemble, which is defined in vfvm_solver.jl.
The algorithm is given in pseudocode below:

� ⊵
n_cells is the number of cells (segments/triangles/tetrahedra) in the
discretization
for icell in 1:n_cells

nodes_per_cell is the number of nodes per cell (2 per segment, 3 per
triangle, 4 per tetrahedron)
for inode in 1:nodes_per_cell

Compute charge-neutral potential
...

Update the initial condition, or average it with whatever is
already there
if ic[1,node.index]==0.0

ic[1,node.index] = v
else

ic[1,node.index] = 0.5 * (ic[1,node.index]+v)
end

end
end� �

The algorithm loops over each cell in the discretization, and loops over each node within a cell.
This means that some nodes may be visited multiple times if they are on a boundary between
different cell regions. If the doping is region-dependent, this can lead to multiple potential values
being computed for the same node. To work around this, the algorithm averages the potential with
whatever is currently in the initial condition vector in the case that the node is visited multiple
times. This value will likely be different than the actual charge-neutral potential, but some error is
acceptable as long as the initial condition remains close enough to the solution to give convergence.

The function equilib was implemented to perform the thermal-equilibrium simulation. The
function definition is shown below:

� ⊵
function equilib(

device::Semiconductors.Device;
Plotter=nothing,
verbose=false,
unknown_storage=:sparse,
damp_initial=0.1

)

Solve system
...

return (solution)

end� �
56

https://github.com/j-fu/VoronoiFVM.jl/blob/master/src/vfvm_solver.jl

The argument device::Semiconductors.Device is the Device instance to be simulated. The
keyword argument Plotter can be set to a GridVisualize-compatible plotter, typically PyPlot, to
allow plotting of the equilibrium potential. The remaining keyword arguments verbose, unknown_
storage and damp_initial are passed to VoronoiFVM.solve! in a VoronoiFVM.SolverControl
instance. They dictate whether the solver will print debug information, whether to use sparse or
dense unknown storage and the initial damping ratio for the Newton solver, respectively. This
function is responsible for creating the physics callbacks defining the discretization. The flux,
source and reaction callbacks for this system are given below:

� ⊵
function flux!(f,u,edge)

eps = m.e0 * m.er[edge.region]
f[1] = eps * (u[1,1]-u[1,2])

end

function source!(f,node)
if device.r_types[node.region]=="semiconductor"

f[1] = m.q * m.doping(node[1],node[2],node.region)
end

end

function reaction!(f,u,node)
if device.r_types[node.region]=="semiconductor"

ni = m.ni[node.region]
f[1] = 2*m.q*ni * sinh(u[1]/m.vt)

end
end� �

Here, m is the Semiconductors.Model instance belonging to the device to be simulated. The source
and reaction terms are only defined in the semiconductor regions, i.e. the regions where device.
r_types[node.region]=="semiconductor". In all other regions, the source! and reaction!
callbacks leave the source and reaction terms unmodified at their default values of 0.0.

The boundary condition physics callback is more involved. Dirichlet boundary conditions
must be imposed at all Ohmic contacts using the charge-neutrality condition given in (2.9). This
is simple in 1D, since each contact is a single point and can have only one doping value. In
higher dimensions, the doping concentration can vary along the contact, requiring a multivalued
Dirichlet boundary condition. This functionality can be implemented with VoronoiFVM by using
the bcondition physics callback. The callback for this system is given in pseudocode below:

� ⊵
function bcond!(f,u,bnode)

Neumann BCs are assumed at non-contact boundaries
if device.b_types[bnode.region]=="contact"

Compute equilibrium carrier densities for each
boundary node
...

Apply Dirichlet BCs for potential and concentrations
boundary_dirichlet!(f,u,bnode,1,reg,v)

57

At gate contacts, potential is constrained by the
metal-insulator workfunction
elseif device.b_types[bnode.region]=="gate"

Look up workfunction and set Dirichlet condition for
potential only
boundary_dirichlet!(f,u,bnode,1,reg,m.ew[reg])

end
end� �

Here, the function VoronoiFVM.boundary_dirichlet! is used to apply a separate Dirichlet bound-
ary condition at each node, which amounts to setting a multivalued boundary condition along
the contact. No boundary conditions are set at non-contact boundary regions, and homogeneous
Neumann boundary conditions are imposed by default. Dirichlet boundary conditions are also im-
posed at gate contacts, where ψ = Ew/q since no external bias is applied in the thermal equilibrium
condition.

3.2.2 Non-equilibrium solver

The non-equilibrium solver must solve the full Van Roosbroeck system given in (2.6) forψ, n and p.
Its initial condition is either provided by the equilibrium solver or by a previous non-equilibrium
solution. To generate the initial condition from the output of the equilibrium solver, the carrier
concentrations are first computed using the Boltzmann approximations given in (2.7). The initial
condition for the non-equilibrium solver should be a 3 ×N AbstractArray, where the three rows
give the values of ψ, n and p. The array can be constructing by stacking the arrays for ψ, n and p
vertically, i.e. by using vcat.

The function non_equilib_syswas implemented to generate the VoronoiFVM.System defining
the physics callbacks for the non-equilibrium simulation. The function definition is shown below:

� ⊵
function non_equilib_sys(

device::Semiconductors.Device,
n_contacts::Int64;
unknown_storage=:sparse,
qfp=false,
auto_sparsity=false

)

Generate system
...

return (sys)

end� �
The argument device::Semiconductors.Device is the Device instance to be simulated. The ar-
gument n_contacts::Int64 gives the number of Ohmic contacts in the device to be simulated.
This value is required by the bias loop that sets Dirichlet boundary conditions. The keyword

58

argument unknown_storage dictates whether the Newton solver should use sparse or dense un-
known storage. The keyword argument qfp dictates whether the system should be discretized
using quasi-Fermi potentials. This feature is not currently implemented; early computational
experiments showed that the discretization using quasi-Fermi potentials led to slower solves and
caused convergence problems for some devices. The argument auto_sparsity dictates whether
the solver should use automatic Jacobian sparsity detection if either field-dependent mobility or
impact ionization is requested.

The physics callbacks used by non_equilib_sys are generated one of two ways. If a field-
dependent mobility or impact ionization is requested in simulation, the generic callback is used
to define a generic operator which performs the vector discretizations used to estimate E, Jn and Jp.
This case is described in detail in Section 3.2.3. If neither a field-dependent mobility nor impact
ionization is requested in simulation, the callbacks are defined by the function physics_noneq_
boltz. The definition of this function is shown below:

� ⊵
function physics_noneq_boltz(device::Semiconductors.Device)

...
return (flux!,source!,reaction!,bcond!)

end� �
The argument device::Semiconductors.Device is the Device instance to be simulated. The
return values flux!, source!, reaction! and bcond! are the physics callbacks. The flux callback
is given below:

� ⊵
function flux!(f,u,edge)

Poisson equation flux discretization via finite differencing
eps = m.e0*m.er[edge.region]
f[1] = eps*(u[1,1]-u[1,2])

Continuity equation flux discretizations via Scharfetter-Gummel
if device.r_types[edge.region]=="semiconductor"

Compute B(deltaV) for exponentially-fitted upwinding
bp,bm = fbernoulli_pm((u[1,2]-u[1,1])/m.vt)

Get electron and hole mobilities
un = m.mobility_n(0,0,0,edge.region,m.fldmob)
up = m.mobility_p(0,0,0,edge.region,m.fldmob)

Compute electron and hole fluxes
f[2] = un*m.vt * (u[2,1]*bm-u[2,2]*bp)
f[3] = up*m.vt * (u[3,1]*bp-u[3,2]*bm)

end
end� �

As before, m is the Semiconductors.Model instance belonging to the device to be simulated. This
callback is similar to the flux callback used in the equilibrium solver, with the addition of the

59

two continuity equations. The continuity equations are only solved in semiconductor regions;
elsewhere, it is assumed that n = p = 0. The arguments for n, p and e_norm to m.mobility_n
and m.mobility_p are set to the dummy value of 0.0 since a field-dependent mobility was not
requested. The source and reaction callbacks are given below:

� ⊵
function source!(f,node)

if device.r_types[node.region]=="semiconductor"
f[1] = m.q*m.doping(node[1],node[2],node.region)

end
end

function reaction!(f,u,node)
if device.r_types[node.region]=="semiconductor"

ni = m.ni[node.region]
tn = m.tn[node.region]
tp = m.tp[node.region]
recomb = m.recomb(u[2],u[3],ni,tn,tp)
f[1] = m.q*(u[2]-u[3])
f[2] = recomb
f[3] = recomb

end
end� �

These callbacks are identical to the ones used in the equilibrium solver, except that the recombina-
tion term is added to the reaction callback for the continuity equations. The boundary condition
callback for this system is identical to the one used in the equilibrium solver, except a nonzero
bias voltage is set at each contact, and Dirichlet boundary conditions are added for the carrier
concentrations:

� ⊵
function bcond!(f,u,bnode)

Get bias voltage of the current contact
bias = parameters(u)[reg]

Neumann BCs are assumed at non-contact boundaries
if device.b_types[bnode.region]=="contact"

Compute equilibrium carrier densities for each
boundary node
...

Apply Dirichlet BCs for potential and concentrations
boundary_dirichlet!(f,u,bnode,1,reg,v+bias)
boundary_dirichlet!(f,u,bnode,2,reg,n0)
boundary_dirichlet!(f,u,bnode,3,reg,p0)

At gate contacts, potential is constrained by the
metal-insulator workfunction
elseif device.b_types[bnode.region]=="gate"

Look up workfunction and set Dirichlet condition for

60

potential only
boundary_dirichlet!(f,u,bnode,1,reg,m.ew[reg]+bias)

end
end� �

Here, the bias voltage at each contact is stored in the solution array u using the VoronoiFVM.
parameters interface. This interface allows the bias voltages to be passed directly to VoronoiFVM.
solve! using the keyword argument params, which avoids the need to re-create or modify the
VoronoiFVM.System instance for each bias point.

The function non_equilib was implemented to simulate the VoronoiFVM.System created by
non_equilib_sys at multiple bias points to form an I-V curve. The function definition is shown
below:

� ⊵
function non_equilib(

device::Semiconductors.Device,
bias_list::AbstractArray,
ic::AbstractArray;
Plotter=nothing,
verbose=false,
damp_initial=1.0,
int_contacts=nothing,
tf_conc=false,
max_round=1000,
max_iterations=100,
catch_conv=false,
tol_absolute=1e-10,
tol_relative=1e-10,
return_tfs=false

)

...

if return_tfs
if tf_conc

return (j_list,sys,solution,tfs_n,tfs_p)
else

return (j_list,sys,solution,tfs)
end

else
return (j_list,sys,solution)

end

end� �
The argument device::Semiconductors.Device is the Device instance to be simulated. The
argument bias_list::AbstractArray is the list of bias points at which the device should be
simulated. This argument should be an L × M array, where L is the number of bias points to
simulate and M is the number of Ohmic contacts in device. The argument ic::AbstractArray is
the initial condition to be used for the damped Newton solver. This argument should be a 3 × N

61

array, where N is the number of nodes in the discretization. The three rows of ic should contain
the values of ψ, n and p, respectively, for each node in the discretization. The ordering of the nodes
is determined by the implementation of the discretization grid device.model.grid.

The keyword argument Plotter can be set to a GridVisualize-compatible plotter, typically
PyPlot, to allow plotting of the non-equilibrium potential. The keyword arguments verbose
and damp_initial are passed to VoronoiFVM.solve! in a VoronoiFVM.SolverControl instance.
They dictate whether the solver will print debug information and the initial damping ratio for
the Newton solver, respectively. The keyword argument int_contacts dictates the contacts at
which boundary integration should be performed to evaluate terminal currents. This argument
should be an AbstractVector containing the boundary region numbers of the contacts at which
terminal currents should be evaluated. The ordering of the columns in the return value j_list is
determined by the ordering of int_contacts.

The keyword argument tf_conc dictates whether the concentration-weighted test functions
defined in (2.90) and (2.91) should be used for boundary integration instead of the Laplace test
function defined in (2.84). Setting this argument to true will substantially increase simulation
time but can potentially improve the accuracy of terminal currents. The keyword argument
max_roud dictates the number of consecutive iterations within roundoff tolerance required to
accept a solution. This argument is passed directly to VoronoiFVM.solve! as a VoronoiFVM.
SolverControl instance; we refer the reader to the VoronoiFVM.jl documentation for more details
on this argument.

The keyword argument max_iterations dictates the maximum number of Newton iterations
that can be performed before a VoronoiFVM.ConvergenceError is thrown. The keyword argument
catch_conv dictates whether such convergence errors should be caught or allowed to terminate
the program. If catch_conv==true, the function non_equilib will return without error at the
current bias point and print the debug message "Caught ConvergenceError" to the console. This
is typically used when non_equilib is used as part of a larger curve-tracing algorithm in which
convergence errors are expected. The keyword arguments tol_absolute and tol_relative give
the absolute and relative tolerances for the Newton solver; these tolerances are defined as ϵ2 and
ϵ3 in (2.76) and (2.77), respectively. The keyword argument return_tfs dictates whether the test
functions used in boundary integration should be returned.

The return values of non_equilib can take one of three forms depending on the function
arguments. The first three return values are always j_list, sys and solution. The return
value j_list is a length(int_contacts) by size(bias_list,1) Matrix containing the terminal
currents at each of the desired Ohmic contacts, for each bias point in bias_list. The return value
sys is the VoronoiFVM.System generated by non_equilib_sys. This is typically used to avoid the
need to re-generate sys when other simulations are run using the same device. The return value
solution is a 3 ×N VoronoiFVM.SparseSolutionArray containing the values of ψ, n and p at the
last bias point in bias_list. The user must call non_equilibmultiple times if the full solution is
desired at multiple bias points.

The structure of the remaining return values is dictated by the keyword argument return_tfs.
If return_tfs==true, non_equilib returns five values, the last two of which are tfs_n and tfs_p.
Each of these return values is a length(int_contacts)-element Vector of Vector{Float64}s, each
element of which contains the concentration-weighted test function used for boundary integration
of electrons and holes, respectively, at the corresponding contact. The ordering of these return
values is determined by the ordering of the keyword argument int_contacts. If return_tfs=
=false, non_equilib returns four values, the last of which is tfs. This has an identical structure
to tfs_n and tfs_p and contains the Laplace test functions used for boundary integration at the
contacts specified by the keyword argument int_contacts.

62

https://j-fu.github.io/VoronoiFVM.jl/stable/solver/#VoronoiFVM.SolverControl

Test functions for boundary integration are typically generated using the VoronoiFVMmethod
testfunctionwith a VoronoiFVM.TestFunctionFactory instance. This method creates a Laplace
test function by creating a simple VoronoiFVM.System describing a finite volume discretization of
the Laplace equation. The resulting system of equations is linear and can be solved exactly with
a single Newton iteration. If a concentration-weighted test function is desired, a different system
must be created to discretize the concentration-weighted PDEs described in Section 2.2.4. The
function tf_sys was implemented in Semiconductors.jl to generate the discretization used in
such a test function. The function definition is shown below:

� ⊵
function tf_sys(

system::VoronoiFVM.AbstractSystem{Tv},
sol::VoronoiFVM.SparseSolutionArray,
device::Semiconductors.Device,
bc0::Vector,
bc1::Vector;
jp=false

) where Tv

Generate test function system
...

return (factory)

end� �
The argument system::VoronoiFVM.AbstractSystem{Tv} is the VoronoiFVM system containing
the device physics functions, the current solution and the system Jacobian. The argument sol::
VoronoiFVM.SparseSolutionArray contains the current solution at all nodes in the discretization.
This argument has size 3 × N, where the three rows give the values of ψ, n and p. The argument
device::Semiconductors.Device is the Device instance to be simulated.

The arguments bc0::Vector and bc1::Vector give the boundary region numbers of the in-
active contacts and the active contacts, respectively. The active contacts are the Ohmic contacts
through which boundary integration should be performed. The inactive contacts are all other
contacts. Typically, bc1 has length 1, corresponding to a single active contact. If multiple active
contacts are specified, the current through all active contacts will be summed together in the in-
tegration. The keyword argument jp dictates whether the test function will be used to compute
hole current. The function tf_sys is typically called twice, once with jp==false and once with
jp==true, to generate electron and hole current test functions, respectively.

The function tf_sys generates the callbacks used in the finite-volume discretization of the
concentration-weighted test function system. Specifically, we seek to discretize the PDEs given
by (2.90) and (2.91) for electrons and holes, respectively. By inspection of the PDEs, these dis-
cretizations should only have a flux part; their source and reaction terms are both zero. Using the
Scharfetter-Gummel discretization given in (2.64) and (2.65), we can determine the values of n and
p between grid segments in terms of the function Q(x), which is defined in (2.43). The resulting
fluxes for the electron and hole test functions are

gtn[k, l] =
(︄
Q

(︄
−ψ[l] − ψ[k]

VT

)︄
n[k] +Q

(︄
ψ[l] − ψ[k]

VT

)︄
n[l]

)︄
Tn[l] − Tn[k]

ni
, (3.1)

63

and

gtp[k, l] =
(︄
Q

(︄
ψ[l] − ψ[k]

VT

)︄
p[k] +Q

(︄
−ψ[l] − ψ[k]

VT

)︄
p[l]

)︄
Tp[l] − Tp[k]

ni
. (3.2)

The fluxes given in (3.1) and (3.2) are implemented in the flux physics callback passed to
VoronoiFVM.System by tf_sys. As described in Section 2.2.4, we impose the Dirichlet bound-
ary conditions Tn = Tp = 1.1 at active contacts and Tn = Tp = −0.1 at inactive contacts. These
boundary conditions are implemented in the bcondition physics callback.

The test function systems generated by tf_sys must be solved at each bias point to perform
terminal integration. The function tf_solvewas implemented to solve these systems and generate
the electron and hole current test functions for boundary integration. The function definition is
shown below:

� ⊵
function tf_solve(

factory::VoronoiFVM.TestFunctionFactory{Tv},
ic::Vector{Float64}

) where Tv

Solve test function system
...

return (sol_smooth)

end� �
The argument factory::VoronoiFVM.TestFunctionFactory{Tv} is the TestFunctionFactory in-
stance containing the test function system to be solved. The argument ic::Vector{Float64} con-
tains an initial condition to be used by the Newton solver when solving the test function system.
This initial condition is passed by Semiconductors.non_equilib at each bias point. It is initialized
to a vector of zeros before the first simulation, and it is updated to hold the test function used at the
previous bias point in subsequent simulations. No method is currently implemented to generate
an initial condition for the first simulation; consequently, if concentration-weighted test functions
are used, it is often best to start any I-V curve simulation with all applied bias voltages set to 0 V
and gradually ramp up to higher voltages to help convergence of the test function system.

The return value sol_smooth is a Vector{Float64} containing the smoothed test function. As
described in Section 2.2.4, the test function is smoothed by clamping the solution to the range [0, 1]
and smoothing the clamped solution using the polynomial s(x) defined in (2.92). Another choice
of smoothing function is s1(x) = sin2(πx/2), which has similar properties to s(x). Computational
experience shows that these two smoothing functions produce nearly identical currents when used
in boundary integration.

3.2.3 Vector discretization methods

The non-equilibrium solver included in Semiconductors.jl is capable of simulating a field-
dependent mobility, impact ionization, or both. These effects require modifications to the standard
VoronoiFVM finite volume discretization due to their dependence on the vector quantities E, Jn and
Jp. Several vector discretization methods for estimating these quantities in a finite volume discretiza-
tion are analyzed in [151] and [152]. The vector discretization used by Semiconductors.jl is an
implementation of the “element-based method” described in [151]. Our implementation finds the

64

Discretization
cell

Figure 3.1: Notation used in 2D vector discretization method. The tangent vectors ŝ1 through ŝ3
point along the edges of the triangle as shown.

least-squares approximation to the electric field and current densities on each discretization cell
(triangles in 2D, segments in 1D).

The vector discretization used by Semiconductors.jlwill be described here for a 2D geometry.
The generalization to 1D or 3D is straightforward. Consider an arbitrary discretization cell as
notated in Figure 3.1. We first seek to estimate the electric field E = −∇ψ, which is assumed to be
constant on the triangle. The tangent vectors ŝ1 through ŝ3 are

ŝ1 =
x3 − x2

∥x3 − x2∥ , ŝ2 =
x1 − x3

∥x1 − x3∥ , ŝ3 =
x2 − x1

∥x2 − x1∥ , (3.3)

where x1 through x3 are the points at each corner of the triangle. Using an identical approach to
the Voronoi finite volume flux discretization, we can write the projections of E onto ŝ1 through ŝ3
as E1 through E3, where

E1 = E · ŝ1 =
ψ[2] − ψ[3]
∥x3 − x2∥ , E2 = E · ŝ2 =

ψ[3] − ψ[1]
∥x1 − x3∥ , E3 = E · ŝ3 =

ψ[1] − ψ[2]
∥x2 − x1∥ . (3.4)

We can combine (3.3) and (3.4) into an overdetermined linear system SE = p, where

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
s1x s1y
s2x s2y
s3x s3y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦ , E =

[︄
Ex
Ey

]︄
, p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
E1
E2
E3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦ . (3.5)

The system in (3.5) can be solved by a least-squares approximation, which gives

E =
[︄
Ex
Ey

]︄
=

(︂
STS

)︂−1
STp. (3.6)

The solution in (3.6) can be computed in Julia using the backslash operator, which computes the
least-squares approximation of an overdetermined system.

65

For the electric field, the solution given in (3.6) is exact by construction; we should have
∥SE − p∥ = 0 to within machine precision since the finite-volume discretization assumes E is
constant on each triangle. For the current densities, however, the 2D Scharfetter-Gummel dis-
cretization implies a different current density along each edge, as described in Section 2.2.2 and
in [123]. In this case, the least-squares solution will not be exact but can still give a good approxi-
mation for Jn and Jp. Using a similar approach to (3.4), we can compute the projections of Jn and
Jp onto the triangle edges:

Jn1 = Jn · ŝ1 =
qµn[2, 3]VT

∥x3 − x2∥
(︄
B
(︄
−ψ[3] − ψ[2]

VT

)︄
n[2] − B

(︄
ψ[3] − ψ[2]

VT

)︄
n[3]

)︄
, (3.7)

Jp1 = Jp · ŝ1 =
qµp[2, 3]VT

∥x3 − x2∥
(︄
B
(︄
ψ[3] − ψ[2]

VT

)︄
p[2] − B

(︄
−ψ[3] − ψ[2]

VT

)︄
p[3]

)︄
. (3.8)

The remaining projections Jn2, Jp2, Jn3 and Jp3 are defined analogously to (3.7) and (3.8). We
have here assumed that the mobilities µn[2, 3] and µp[2, 3] have already been estimated from the
projections of E; in practice, this means that the electric field must be fully estimated before either
of the current densities are computed if a field-dependent mobility is desired.

The function cell_field_norms was implemented to estimate the magnitude of the electric
field and the electron and hole current densities in a discretization cell. The function definition is
shown below:

� ⊵
function cell_field_norms(

u::VoronoiFVM.SparseSolutionArray,
sys::VoronoiFVM.System,
device::Semiconductors.Device,
idx::VoronoiFVM.SparseSolutionIndices,
icell::Int32,
edge::VoronoiFVM.Edge,
edges_per_cell::Int32

)

Compute field magnitudes
...

return (e_norm,jn_norm,jp_norm)

end� �
The argument u::VoronoiFVM.SparseSolutionArray contains the current solution at all nodes in
the discretization. The argument sys::VoronoiFVM.System is the VoronoiFVM system containing
the device physics functions, the current solution and the system Jacobian. The argument device::
Semiconductors.Device is the Device instance to be simulated. The argument idx::VoronoiFVM.
SparseSolutionIndices is used to determine the indices of specific values of ψ, n and p in the
solution u. The argument icell::Int32 is the index of the discretization cell in which the fields
should be estimated. The argument edge::VoronoiFVM.Edge is used by VoronoiFVM._fill! to
get the indices of the nodes that lie on each edge of the discretization cell. The argument edges_
per_cell::Int32 contains the number of edges in each discretization cell. In 1D, edges_per_
cell==1; in 2D, edges_per_cell==3; in 3D, edges_per_cell==6 if device.grid uses a tetrahedral
tessellation.

66

The standard VoronoiFVM callback interface cannot be used to define the physics of the sim-
ulation if a field-dependent mobility or impact ionization is to be simulated. In the standard
interface, the flux callback can only access ψ, n and p at the two nodes on an edge. Similarly,
the reaction discretization can only access ψ, n and p at a single node. The vector discretization
scheme above depends on unknowns at all nodes in each discretization cell. In 2D, this means
that the flux discretization requires 3 values of ψ if a field-dependent mobility is desired, and the
reaction discretization requires 3 values of ψ, n and p if impact ionization is desired. In this case,
the generic callback in VoronoiFVM.Physics is used to define a generic operator that performs the
finite volume discretization.

The function _generic_noneq was implemented to perform the finite volume discretization
when vector discretization is required. The function definition is shown below:

� ⊵
function _generic_noneq!(

f,
u::AbstractArray{Tu},
sys::VoronoiFVM.AbstractSystem{Tv,Ti},
device::Semiconductors.Device;
tf=nothing

) where {Tu,Tv,Ti}

Compute residual, and compute boundary integral if requested
...

if tf==nothing
return (nothing)

else
return (integral)

end
end� �

The argument f contains the current residual at all nodes in the discretization. The argument
u::AbstractArray{Tu} contains the current solution at all nodes in the discretization. Both f
and u are passed by the VoronoiFVM assembly routine VoronoiFVM.eval_and_assemble. The type
Tu is used internally by VoronoiFVM to store the solution and to compute the system Jacobian.
Typically, Tu==Float64, but Tu==ForwardDiff.Dual is also possible during Jacobian evaluation.
The argument sys::VoronoiFVM.AbstractSystem{Tv,Ti} is the VoronoiFVM system containing
the device physics functions, the current solution and the system Jacobian. The types Tv and Ti are
used internally by VoronoiFVM to store values and integers, respectively. Typically, Tv==Float64
and Ti==Int32. The argument d::Semiconductors.Device is the Device instance to be simulated.

The keyword argument tf can be used to provide a test function for boundary integration. If
tf!=nothing, the function _generic_noneq computes the flux part of the boundary integrals of n
and p and returns it. If tf==nothing, the function _generic_noneq returns nothing. The return
value is used when boundary currents are requested in a simulation using a field-dependent
mobility, impact ionization or both. In this case, the standard VoronoiFVM.integrate method
will not work properly due to the use of the generic operator. The function integrate_generic
calls _generic_noneq to compute the flux part of the boundary integral and adds the source and
reaction terms in a separate loop. This function will be described in more detail below.

The function _generic_noneq implements an assembly loop similar to the elementwise al-

67

gorithm used in the VoronoiFVM PDE assembly loop eval_and_assemble, which is defined in
vfvm_solver.jl. The algorithm is given in pseudocode below:

� ⊵
n_cells is the number of cells (segments/triangles/tetrahedra) in the
discretization
for icell in 1:n_cells

Call cell_field_norms to estimate E, Jn, Jp if cell is in a
semiconductor region
...

Only do reaction discretization if impact ionization is enabled
if m.impact

for inode in 1:nodes_per_cell

Add reaction part of residual if cell is in a
semiconductor region
...

end
end

Only do flux discretization if field-dependent mobility is enabled
if m.fldmob

for iedge in 1: edges_per_cell

Add flux part of Poisson equation residual in all
regions
...

Add flux part of continuity equation residuals if cell
is in a semiconductor region
...

end
end

end� �
Here, the generic operator is only used to provide the residuals that cannot be defined using the
standard callback interface. Since impact ionization modifies the reaction terms of the residual, the
function _generic_noneq should only perform the reaction discretization if impact ionization is
enabled. Similarly, field-dependent mobilities only affect the carrier flux terms, so _generic_noneq
should only perform the flux discretization if field-dependent mobility is enabled. When either
of these terms is not defined by the generic operator, non_equilib uses the standard reaction!
or flux! callback defined by physics_noneq_boltz in creating the VoronoiFVM.System for the
simulation. These terms could also be defined by the generic operator, but the Jacobian eval-
uation is generally slower if only the generic operator is used. This is because the assembly
routine VoronoiFVM.eval_and_assemble differentiates each callback separately during Jacobian
evaluation, which allows the Jacobian to be assembled block-by-block instead of in a single pass.

When a generic operator is needed in the discretization, VoronoiFVM uses SparseDiffTools.jl

68

https://github.com/j-fu/VoronoiFVM.jl/blob/master/src/vfvm_solver.jl
https://github.com/JuliaDiff/SparseDiffTools.jl

to accelerate Jacobian evaluation by exploiting the sparsity of the residual function. This package
uses graph coloring to create a compressed representation of the Jacobian that is more easily
evaluated than the full Jacobian [46]. This method requires knowledge of the sparsity pattern of
the Jacobian, which defines the location of nonzero entries. Sparsity detection can be performed
automatically using Symbolics.jl [52]. This approach uses symbolic variables as arguments to
the generic operator to determine dependencies between its outputs and inputs. Computational
experience shows that this method is typically slow and can require several seconds to generate
a sparsity pattern when the generic operator is complex. It also requires the generic operator to
accept a vector of symbolic variables as its input, which can be nontrivial due to the number of
external functions called by _generic_noneq.

An alternative to automatic sparsity detection is to manually define a sparse matrix containing
the location of nonzero entries in the Jacobian. This is implemented in Semiconductors.jl by the
function _generic_noneq_sparsity. The function definition is shown below:

� ⊵
function _generic_noneq_sparsity(

sys::VoronoiFVM.AbstractSystem{Tv,Ti},
device::Semiconductors.Device

) where {Tv,Ti}

Generate sparsity pattern
...

return (sparsity)

end� �
The argument sys::VoronoiFVM.AbstractSystem{Tv,Ti} is the VoronoiFVM system containing
the device physics functions, the current solution and the system Jacobian. The argument d::
Semiconductors.Device is the Device instance to be simulated. The types Tv and Ti are used
internally by VoronoiFVM to store values and integers, respectively. Typically, Tv==Float64 and
Ti==Int32. The return value sparsity is a N ×N SparseArrays.SparseMatrixCSCwhose entries
are 1 where the corresponding Jacobian entry is nonzero and 0 otherwise. The implementation
of _generic_noneq_sparsity is identical to that of _generic_noneq, except it writes ones to the
sparsity pattern matrix instead of computing and modifying values in the residual.

The integrate method provided by VoronoiFVM for boundary current integration assumes
that the standard callback interface is used to define the discretization. When a generic operator
is used in the discretization, the currents given by integrate will generally be incorrect since
the residual terms contributed by the generic operator are not considered in the integration. To
resolve this, the function integrate_generic was implemented in Semiconductors.jl to allow
boundary current integration when a generic operator is used. This function contains code from
VoronoiFVM.integrate, which has been modified to improve performance and accommodate the
use of a generic operator. The function definition is shown below:

� ⊵
function integrate_generic(

system::VoronoiFVM.AbstractSystem{Tv,Ti},
tf::Vector{Tv},
U::AbstractArray{Tu,2},
device::Semiconductors.Device,

69

idx::VoronoiFVM.SparseSolutionIndices
) where {Tu,Tv,Ti}

Perform boundary integration for electron and hole current
...

return (integral)

end� �
The argument sys::VoronoiFVM.AbstractSystem{Tv,Ti} is the VoronoiFVM system containing
the device physics functions, the current solution and the system Jacobian. The argument tf::
Vector{Tv} is the test function to be used for terminal current integration. The argument U::
AbstractArray{Tu,2} is the current solution. The argument device::Semiconductors.Device
is the Device instance to be simulated. The argument idx::VoronoiFVM.SparseSolutionIndices
is used to determine the indices of specific values of ψ, n and p in the solution. The return
value integral is a 3-element Vector{Tu} containing the values of the boundary integration. In
VoronoiFVM.integrate, integral[1]would contain the flux of the electric field through the active
contact. Since this quantity is not physically meaningful, we do not compute it in integrate_
generic. The elements integral[2] and integral[3] contain the electron and hole currents
through the active contact. The currents must be multiplied by q to give a value in amps.

3.2.4 Continuation

Pseudo arc-length continuation was implemented to trace multivalued I-V curves. Our imple-
mentation uses VoronoiFVM data structures and assembly routines with a custom Newton solver
and tangent predictor to perform the continuation algorithm. Specifically, a VoronoiFVM.System
is used to store the device physics functions and the current Jacobian of the residual. An
interface was created to allow the residual and Jacobian to be computed on-demand using
VoronoiFVM.eval_and_assemble. This interface can be used by Semiconductors.jl, or the resid-
ual and Jacobian functions it provides can be passed to BifurcationKit.jl to perform any of
the continuation algorithms in that package. The data structures Semiconductors.IVState and
Semiconductors.IVCurve were created to hold the state of the nonlinear solver and of the con-
tinuation algorithm. This section describes the implementation of the VoronoiFVM continuation
interface, the IVState and IVCurve data structures and the arc-length continuation algorithm.

The Semiconductors.jl continuation interface is similar to the DifferentialEquations.jl
interface provided by VoronoiFVM.jl. The interface consists of three functions: _bk_res_jac!, bk_
residual and bk_jacobian. The function _bk_res_jac! is used internally by Semiconductors.jl
and should not be directly called by the user. This function uses VoronoiFVM.eval_and_assemble
to assemble both the residual and the Jacobian into a VoronoiFVM.System instance. It then stores
the hash of the current solution and the current parameter set in the System to ensure the same
residual and Jacobian are not evaluated multiple times. The parameter set is the set of bias voltages
applied to the contacts of the device to be simulated. The functions bk_residual and bk_jacobian
are defined as shown below:

� ⊵
function bk_residual(sys,u,p)

_bk_res_jac!(sys,u,p)
sys.history.nf += 1

70

f = copy(vec(sys.residual))
return (f)

end

function bk_jacobian(sys,u,p)
_bk_res_jac!(sys,u,p)
sys.history.njac += 1
j = sparse(sys.matrix)
return (j)

end� �
The arguments sys, u and p should contain the VoronoiFVM.System belonging to the device to be
simulated, the current solution, and the current parameter set, respectively.

The residual interface bk_residualmust return a copy of sys.residual to avoid external mod-
ification of the residual. This is necessary for proper operation of the continuation algorithm: In
the event that a continuation step fails, the algorithm must revert the residual stored in the IVState
instance to the residual from before the continuation step failed (i.e. before any Newton updates
took place). If sys.residual is modified, the algorithm will revert to an erroneous state and
convergence will likely fail. The same is true of the Jacobian interface bk_jacobian. This function
must also convert the Jacobian stored in sys to a SparseArrays.SparseMatrixCSC before returning
it. The Jacobian stored in sys is typically a ExtendableSparse.ExtendableSparseMatrix, which
is provided by ExtendableSparse.jl. This data structure is used to allow faster assembly of the
Jacobian, but it is not currently compatible with vcat or hcat, which are both necessary to assemble
the augmented system used in continuation.

The IVState and IVCurve structures were created to hold data used by the arc-length contin-
uation algorithm. The IVState structure contains the current state of the algorithm and several
parameters used by the Semiconductors.jl damped Newton solver. An abbreviated definition
of this structure is given below:

� ⊵
mutable struct IVState{Tz,Tv,Ti}

z::AbstractVector{Tz} # New solution (updated inplace)
v::Tv # New voltage (updated inplace)
i::Tv # New current (updated inplace)
zpred::AbstractVector{Tz} # Predicted solution
vpred::Tv # Predicted voltage
ipred::Tv # Predicted current
z0::AbstractVector{Tz} # Old solution
v0::Tv # Old voltage
i0::Tv # Old current
N::Tv # Arc length residual
bias::AbstractVector{Tv} # Bias vector
c_active::Ti # Active contact
dfdv::AbstractVector{Tv} # Vector derivative dF/dV
didz::AbstractVector{Tv} # Gradient vector dI/dz
dids::Tv # Scalar derivative dI/ds
dvds::Tv # Scalar derivative dV/ds
dzds::AbstractVector{Tv} # Vector derivative dz/ds
dndz::AbstractVector{Tv} # Gradient vector dN/dz
dndv::Tv # Scalar derivative dN/dV

end� �
71

https://github.com/j-fu/ExtendableSparse.jl

The field z::AbstractVector{Tz} is used to store the current solution at all nodes in the dis-
cretization. The damped Newton solver updates this field inplace each iteration. The field v::Tv
is used to store the current bias voltage at the active contact. Only one active contact is currently
supported by the arc-length continuation algorithm. The field i::Tv is used to store the terminal
current through the active contact. This field is updated by boundary integration at the end of
each Newton iteration to compute the current residual in the arc-length constraint. The fields
zpred::AbstractVector{Tz}, vpred::Tv and ipred::Tv are the solution, bias voltage and termi-
nal current predicted by the tangent predictor. The fields z0::AbstractVector{Tz}, v0::Tv and
i0::Tv are used to hold the solution, bias voltage and terminal current from the last successful
continuation step. If a continuation step fails, the fields z, v and i are reverted to these values
before retrying the step with a smaller step size ∆σ.

The field N::Tv contains the current arc-length residual; this is computed using either of the
constraints N1 or N2 defined in (2.97) and (2.98). The field bias::AbstractVector{Tv} holds the
current bias voltages at all active contacts in the device. This should be set to an initial value by
the user before running the continuation algorithm; the entry of bias corresponding to the active
contact is modified by the continuation algorithm, and all other entries are left unchanged. The
field c_active::Ti holds the number of the boundary region corresponding to the active contact.

The remaining seven fields hold derivatives used in the tangent vector computation and in
the assembly of the block Jacobian for the augmented system. The derivatives ∂I/∂s , ∂V/∂s and
∂z/∂s are computed by Semiconductors.get_tangent!, which implements the tangent expres-
sions given in [24]. The vector derivative ∂F/∂V is sparse, as described in Section 2.2.6. It is assem-
bled manually using the function Semiconductors.assemble_dfdv. The gradient vector ∂I/∂z is
computed by Semiconductors.assemble_didz!, which uses ReverseDiff.gradient to take the
gradient of the boundary integration function. The gradient vector ∂N/∂z and the scalar deriva-
tive ∂N/∂V are computed by Semiconductors.assemble_dndz_dndv!, which uses ReverseDiff.
gradient to take the gradient of the arc-length constraint and ForwardDiff.derivative to com-
pute the scalar derivative of the arc-length constraint.

A constructor was created for IVState to allow initialization of an IVState instance. The
constructor is defined as shown below:

� ⊵
function IVState(

ic::AbstractVector{Tz},
bias::AbstractVector{Tv},
c_active::Ti,
ds::Tv

) where {Tz,Tv,Ti}

...
return (s)

end� �
The argument ic::AbstractVector{Tz} gives the initial condition to be used by the continuation
algorithm. This should be a 3N × 1 Vector giving the values of ψ, n and p at each node in the
discretization. The initial condition can be generated from a solution produced by non_equilib by
passing the N×3 solution array to VoronoiFVM.values, which will reshape the solution to a vector.
The argument bias::AbstractVector{Tv} gives the initial bias voltages at each Ohmic contact in
the device to be simulated. These voltages should be equal to the bias voltages used to generate

72

the initial condition ic. If ic was generated by equilib, bias should be a vector of zeros. The
argument c_active::Ti gives the boundary region number corresponding to the active contact.
The argument ds::Tv sets the initial step size to be used by the continuation algorithm.

In addition to the values given by the arguments to the constructor, default values are set for
the following parameters:

• use_n1==true: The constraint N1, which defines a line emanating from the tangent vector at
a distance ∆σ, is used for arc-length continuation. Setting this field to false dictates that N2
should be used instead.

• log_j==false: The raw value of the terminal current is used in the parameterization of
the I-V curve. Setting this field to true dictates that the continuation algorithm should
parameterize the I-V curve by the base-10 logarithm of the current, which can be useful if
the current is expected to vary over several orders of magnitude.

• scale_j==1.0: No scaling is used for the current. Setting this field to a value other than 1.0
scales the current axis in the parameterization of the I-V curve.

• tol_abs==1e-10: The absolute tolerance of the damped Newton solver is set to ϵ2 = 1 × 10−10

using the convergence criterion given in (2.76).

• tol_rel==1e-10: The relative tolerance of the damped Newton solver is set to ϵ3 = 1 × 10−10

using the convergence criterion given in (2.77).

• tol_mono==1e-3: The damped Newton solver will terminate with an error if the residual
increases by a factor of more than 1/tol_mono between two iterations.

• damp_initial==1.0: No damping is used in the damped Newton solver by default. Setting
this field to a value less than 1.0 enables damping in the solver if n_damp>0.

• n_damp==0: No damping is used in the damped Newton solver by default. Setting this
field to a value greater than 0 dictates the number of damped Newton iterations that will be
performed by the solver if damp_initial<1.0.

• max_iters==10: A maximum of 10 Newton iterations will be performed at each continuation
step before retrying the step with a smaller step size.

The return value s is the IVState instance generated with the specified parameters.
The IVCurve structure contains the values on the I-V curve traced by the continuation algorithm

and several parameters used in curve tracing. The definition of this structure is given below:

� ⊵
mutable struct IVCurve{Tv,Ti}

v::AbstractVector{Tv} # Holds voltage
i::AbstractVector{Tv} # Holds current
tol_trunc::Tv # Truncation error tolerance
max_steps::Ti # Maximum continuation steps
step::Ti # Current step number
ds_decrease_factor::Tv # Factor to decrease ds by
ds_max_increase::Tv # Maximum increase of ds
trunc_error_norm::Tv # Norm of truncation error
dsmin::Tv # Minimum ds
n_solve::Ti # Number of Newton solves

73

n_solve_max::Ti # Maximum Newton solves
skip_restart::Bool # Whether to skip restart

end� �
The fields v::AbstractVector{Tv} and i::AbstractVector{Tv} are used to hold the bias voltage
and terminal current at each point on the I-V curve. Values are appended to v and i using
push! at the end of each continuation step so that they appear in the order the curve was traced.
The field tol_trunc::Tv dictates the maximum truncation error between two continuation steps
such that a restart is not required. The field max_steps::Ti contains the maximum number of
continuation steps that can be performed before the algorithm terminates with an error. The field
step::Ti holds the current continuation step number. The fields ds_decrease_factor::Tv and
ds_max_increase::Tv dictate the amount by which ∆σ decreases following an unsuccessful step
and the maximum amount by which ∆σ can increase following a successful step. The default
values are ds_decrease_factor==0.5 and ds_max_increase==2.0.

The field trunc_error_norm::Tv is used to store the norm of the truncation error following a
successful continuation step. Our implementation uses the step size selection algorithm described
in [24] which attempts to maintain trunc_error_norm<tol_trunc at each continuation step. If
this criterion is not met, the current continuation step is restarted and the step size is decreased
by ds_decrease_factor. The field dsmin::Tv dictates the minimum step size allowed by the
continuation algorithm. If the step size falls below dsmin, the algorithm will terminate with an
error. The field n_solve::Ti holds the number of Newton solves performed by the continuation
algorithm in the current run. The field n_solve_max::Tidictates the maximum number of Newton
solves allowed by the continuation algorithm. This is typically used to prevent long runtimes of the
continuation algorithm when the step size becomes vanishingly small. The field skip_restart::
Bool is used internally by the continuation algorithm to indicate that a restart has already been
attempted in the current continuation step. This field should not be modified by the user.

A constructor was created for IVCurve to allow initialization of an IVCurve instance. The
constructor is defined as shown below:

� ⊵
function IVCurve(

state::IVState{Tz,Tv,Ti},
vmin::Tv,
vmax::Tv,
dsmin::Tv

) where {Tz,Tv,Ti}

...
return (s)

end� �
The argument state::IVState{Tz,Tv,Ti} is the IVState instance which will be used to trace the
I-V curve. This argument is necessary in the constructor to ensure type consistency. The arguments
vmin::Tv and vmax::Tv are currently unused but may be implemented in a future revision to allow
lower and upper bounds to be set for the active contact bias voltage. The argument dsmin::Tv sets
the minimum step length allowed by the continuation algorithm. In addition to the values given
by the arguments to the constructor, default values are set for the following parameters:

74

• tol_trunc==0.1: A maximum truncation error of 0.1 is allowed between continuation steps;
truncation error exceeding this value will trigger a restart of the current continuation step.
This field should be set relative to the scaling of the voltage and current at the active contact.

• max_steps==10: A maximum of 10 continuation steps will be performed before the continu-
ation algorithm terminates with an error.

• ds_decrease_factor==0.5: The step length ∆σ is decreased by this factor if a restart is
required due to the truncation error criterion or a convergence error in the damped Newton
solver. Setting this field to a value closer to 1 decreases the step size less aggressively in such
situations.

• ds_max_increase==2.0: The step length ∆σ is allowed to increase by a factor between 1
and this value following a successful continuation step. Setting this field to a larger number
allows more aggressive increases; setting this closer to 1 prevents excessive step size growth
if multiple continuation steps are successful.

• n_solve_max==20: A maximum of 20 damped Newton solves are allowed by the continuation
algorithm. This field should have a value of at least max_steps since at least one damped
Newton solve is required for each continuation step.

The return value s is the IVCurve instance generated with the specified parameters.
The function continuation! was implemented to perform the arc-length continuation algo-

rithm for tracing I-V curves. The function is defined as shown below:

� ⊵
function continuation!(

state::IVState{Tz,Tv,Ti},
curve::IVCurve{Tv},
d::Semiconductors.Device,
sys::VoronoiFVM.AbstractSystem{Tv},
tf::AbstractArray{Tv}

) where {Tz,Tv,Ti}

while curve.step<=curve.max_steps
check_cont_terminate(state,curve)
initialize!(state,d,sys,tf)
predict!(state)
newton!(state,d,sys,tf)
print_cont_1(state,curve)
ds_update!(state,curve,d,sys,tf)
print_cont_2(state,curve)
push!(curve.v,state.v)
push!(curve.i,state.i)

end
return (nothing)

end� �
The argument state::IVState{Tz,Tv,Ti} is the IVState instance to be used by the continuation
algorithm. The user-defined parameters in theIVState should be set before callingcontinuation!.

75

The argument curve::IVCurve{Tv} is the IVCurve instance to be used by the continuation algo-
rithm. The user-defined parameters in the IVCurve should be set before calling continuation!.
The argument d::Semiconductors.Device is the Device instance to be simulated.

The continuation algorithm relies on several other Semiconductors.jl functions that mutate
the arguments state and curve to implement curve tracing. During each continuation step, the
algorithm first calls check_cont_terminate, which terminates the continuation process with an
error if the maximum number of Newton solves specified by curve.n_solve_max has been reached
or if the minimum step size specified by curve.dsmin has been reached. Then, initialize! is
called to prepare state for the continuation step. Specifically, this function resets the Newton
solver convergence status and damping ratio, clears the Newton update set by the previous
continuation step, sets state.z0 = state.z and state.v0 = state.v, and updates the terminal
current and all the derivatives stored in state.

After this, predict! is called to populate the tangent vectors in state and predict the next
point on the I-V curve. Then, newton! is called to correct the tangent prediction with the damped
Newton solver. Debug information is then printed by print_cont_1 and print_cont_2. The
debug information is printed in two parts because some of the information depends on the step
length∆σ, which is updated by calling ds_update!. Finally, the resulting bias voltage and terminal
current are pushed to curve.v and curve.i if the continuation step was successful. This process
repeats until the maximum number of continuation steps specified by curve.max_steps is reached,
at which point the algorithm terminates without error and returns nothing.

3.2.5 Current boundary conditions

Current boundary condition functionality was implemented in Semiconductors.jl, which allows
the user to fix the current through any Ohmic contact in a device. This is typically used in the
simulation of current-controlled devices like bipolar transistors, where a constant base current
is necessary to trace many common I-V characteristics. This functionality is supported by the
data structures Semiconductors.NewtonState and Semiconductors.NewtonParams, which hold
the state and parameters of the damped Newton solver used to solve the augmented system
described in Section 2.2.5. These structures are similar to the IVState structure used in arc-length
continuation. The constructor for NewtonState is defined as shown below:

� ⊵
function NewtonState(

ic::AbstractVector{Tz},
bias::AbstractVector{Tv}

) where {Tz,Tv}

...
return (s)

end� �
The argument ic::AbstractVector{Tz} gives the initial condition to be used by the damped
Newton solver. This should be a 3N × 1 Vector giving the values of ψ, n and p at each node
in the discretization. The argument bias::AbstractVector{Tv} gives the initial bias voltages at
each Ohmic contact in the device to be simulated. These voltages should be equal to the bias
voltages used to generate the initial condition ic. If ic was generated by equilib, bias should
be a vector of zeros. The return value s is the NewtonState instance generated with the specified

76

initial condition and initial bias vector. The NewtonState structure contains no user-modifiable
fields.

The constructor for NewtonParams is defined as shown below:

� ⊵
function NewtonParams(

set_current::Tv,
c_active::Ti;
tol_abs=1e-10,
tol_rel=1e-10,
tol_mono=1e-3,
max_iters=25,
do_damp_search=false,
damp_initial=0.1,
damp_growth=1.5,
damp_search_iters=10,
damp_search_decrease=0.5,
dirichlet_scale=1.0,
verbose=verbose_noverbose

) where {Tv,Ti}

...
return (p)

end� �
The argument set_current::Tv gives the desired current through the active contact. The argu-
ment c_active::Ti gives the boundary region number corresponding to the active contact. The
keyword arguments tol_absolute and tol_relative give the absolute and relative tolerances
for the Newton solver; these tolerances are defined as ϵ2 and ϵ3 in (2.76) and (2.77), respectively.
The keyword argument tol_mono gives the monotonicity tolerance for the Newton solver. The
damped Newton solver will terminate with an error if the residual increases by a factor of more
than 1/tol_mono between two iterations. The keyword argument max_iters dictates the maxi-
mum number of iterations allowed by the damped Newton solver. The solver will terminate with
an error if max_iters is exceeded.

The keyword argument do_damp_search dictates whether a search should be performed to
determine the initial damping value used by the damped Newton solver. The keyword argument
damp_initial gives the initial damping ratio for the damped Newton solver. If do_damp_search=
=true, this value is the damping ratio at which the damping ratio search will begin. The keyword
argument damp_growth gives the amount by which the damping ratio should grow between
iterations. Higher values of this argument correspond to more aggressive damping growth.
The keyword argument damp_search_iters dictates the number of iterations to perform in the
damping ratio search. The keyword argument damp_search_decrease dictates the amount by
which the damping ratio should be decreased during the damping ratio search if the chosen
damping ratio did not give convergence. The damping search is typically used to determine
an initial damping value when using current boundary conditions, since the resulting nonlinear
systems often require very small damping ratios for convergence.

The keyword argument dirichlet_scale is used by the fully-differentiable simulator de-
scribed below as a penalty factor when imposing Dirichlet boundary conditions. The keyword
argument verbose dictates the verbosity level of the damped Newton solver. This may be set to

77

a value of verbose_noverbose, in which case no debug information is printed to the console, or
verbose_print_iters, in which case the Newton solver convergence log is printed to the console.
The return value p is the NewtonParams instance generated with the specified parameters.

The function newton_current! was implemented to perform a non-equilibrium simulation
of a device with a single current-controlled contact. Multiple current-controlled contacts are not
currently supported. The function is defined as shown below:

� ⊵
function newton_current!(

state::NewtonState{Tz,Tv,Ti},
params::NewtonParams{Tv,Ti},
d::Semiconductors.Device,
sys::VoronoiFVM.AbstractSystem{Tv},
tf::AbstractArray{Tv}

) where {Tz,Tv,Ti}

initialize!(state,params,d,sys)
while state.converged==status_not_converged

assemble_derivs!(state,params,d,sys,tf)
newton_step_current!(state,params,d,sys,tf)
check_convergence!(state,params)

end

current!(state,d,sys,tf)
return (nothing)

end� �
The arguments state::NewtonState{Tz,Tv,Ti} and params::NewtonParams{Tv,Ti} store the
state and parameters of the damped Newton solver. The argument d::Semiconductors.Device
is the Device instance to be simulated. The argument sys::VoronoiFVM.AbstractSystem{Tv}
is the VoronoiFVM system containing the device physics functions. This argument is used by
VoronoiFVM.eval_and_assemble when assembling the system residual and Jacobian. The argu-
ment tf::AbstractArray{Tv} is the test function to be used for boundary current integration.
It should be created as a Laplace test function by using a VoronoiFVM.TestFunctionFactory in-
stance. Concentration-weighted test functions are not appropriate when setting current boundary
conditions since the current must be computed each Newton iteration. The test function must be
created using the same active contact as specified by params.c_active.

The function newton_current! relies on several other Semiconductors.jl functions that mu-
tate the argument state to implement current boundary conditions. The function first calls
initialize!, which prepares state for the Newton solver. Specifically, this function resets the
Newton solver convergence status and damping ratio and clears the Newton update set by the
previous solve. Then, for each Newton iteration, the function performs the following steps:

1. Call assemble_derivs! to assemble the system residual and Jacobian using update_res_
jac!, assemble the derivative ∂F/∂V and the gradient ∂I/∂z , and update the current stored
in state.

2. Call newton_step_current! to perform a single damped Newton iteration using the current
residual and Jacobian.

78

3. Call check_convergence! to see if any convergence criteria have been met. Convergence
is met when either the absolute or relative tolerance criteria given in (2.76) and (2.77) is
met. Convergence terminates with an error when the residual increases by more than
1/params.tol_mono between iterations or when the maximum number of iterations specified
by params.max_iters is exceeded.

4. Repeat steps 1 through 3 until convergence.

Once the solver has converged, the function calls current! once to update the terminal current
using the solution from the last Newton step. The function returns nothing since all updates to
the solution and to the bias vector are performed on state inplace. The final solution and bias
vector are stored in state.z and state.bias.

3.2.6 Modifications for AD

A fully-differentiable simulator was implemented in Semiconductors.jl for use in surrogate
models. The differentiable simulator is compatible with the automatic differentiation package
Zygote.jl, which uses source-to-source transformation to implement reverse-mode AD [68]. The
differentiable simulator was designed to be used with the surrogate training methods implemented
in DiffEqFlux.jl [126]. At a high level, the differentiable simulator uses similar assembly and
solution routines to the solver used with current boundary conditions described in Section 3.2.5.
That solver, however, is not AD-compatible, and several modifications were made to that solver
to allow differentiation of the simulator. This section describes the implementation of the fully-
differentiable semiconductor simulator and the modifications required to existing code to allow
differentiation of the simulator.

The NewtonState and NewtonParams structures are used extensively by the differentiable sim-
ulator. The core function of the differentiable simulator is newton!, which solves the discretized
PDE system in an AD compatible manner. The function is defined as shown below:

� ⊵
function newton!(

state::NewtonState,
params::NewtonParams,
d::Semiconductors.Device,
sys::VoronoiFVM.AbstractSystem

)

initialize!(state,params,d,sys)

while state.converged==status_not_converged
F,J = assemble_res_jac(state,params,d,sys)
newton_step!(F,J,state,params,d)
check_convergence_flux!(state,params)

end

return (nothing)

end� �
The arguments state::NewtonState{Tz,Tv,Ti} and params::NewtonParams{Tv,Ti} store the
state and parameters of the damped Newton solver. The argument d::Semiconductors.Device

79

is the Device instance to be simulated. The argument sys::VoronoiFVM.AbstractSystem{Tv} is
the VoronoiFVM system containing the device physics functions.

The algorithm used by the differentiable Newton solver is similar to that used by the solver
described in Section 3.2.5. The key difference in this implementation is in the assembly of the
residual and Jacobian. Currently, Zygote.jl does not support operations that mutate arrays.
The VoronoiFVM assembly routines rely heavily on array mutations to construct the residual
and Jacobian stored in sys. Consequently, new assembly routines were written to allow AD
compatibility. The function assemble_res_jac was implemented to assemble the residual and
Jacobian without requiring array mutations. The function is defined as shown below:

� ⊵
function assemble_res_jac(

state::NewtonState,
params::NewtonParams,
d::Semiconductors.Device,
sys::VoronoiFVM.AbstractSystem

)

F = Zygote.Buffer(zero(state.z),false)
J = Zygote.Buffer(zeros(num_dof(sys),num_dof(sys)),false)

assemble_flux!(F,J,state,d,sys)
assemble_reaction!(F,J,state,d,sys)
assemble_bcs!(F,J,state,params,d,sys)

F_vec = copy(F)
J_mat = sparse(copy(J))
return (F_vec,J_mat)

end� �
The arguments state::NewtonState, params::NewtonParams, d::Semiconductors.Device and
sys::VoronoiFVM.AbstractSystem are the same arguments passed to newton!.

A first key difference between newton_current! and the differentiable newton! is the data
structure used for residual and Jacobian assembly. In newton!, the residual and Jacobian are
defined using Zygote.Buffer structures, which provide an AD-compatible, array-like object to
hold intermediate values during assembly. The Buffer can be mutated like an array but does not
support many array operations like broadcasting. A Buffer cannot be used in any computations,
but its contents must be frozen once assembly is complete. This is accomplished by the lines F_vec
= copy(F) and J_mat = sparse(copy(J)), which create a Vector with the same contents as F
and a SparseMatrixCSC with the same contents as J. These values can be used in subsequent
computations, and they are used to compute the Newton update each iteration. The Buffermust
be re-created each Newton iteration, since its contents cannot be modified after the Buffer has
been frozen.

A second key difference between newton_current! and newton! is the method used for Jaco-
bian evaluation. Typically, VoronoiFVM.eval_and_assemble is used to evaluate and assemble the
system Jacobian using ForwardDiff. However, nested AD is difficult to implement using Zygote
and can negatively impact performance even when used properly. Consequently, newton! uses
a manual Jacobian assembly routine that does not rely on ForwardDiff.jacobian. The Jacobian
implemented in this solver was computed for the simple case where field-dependent mobility

80

Grid origin Contact Device outline Dimension

Contact 1
Anode

p-type n-type

Contact 2
Cathode

Figure 3.2: TCAD model of 1D diode generated by diode1d. The anode and cathode contacts span
the entire height of the device.

and impact ionization are both disabled. Neither of these features are currently supported in
the differentiable simulator; the sparsity patterns arising from their vector discretizations and
the need to differentiate the mobility and generation terms would make the partial derivative
expressions prohibitively complex. The manual Jacobian assembly is implemented by the func-
tions assemble_flux!, assemble_reaction! and assemble_bcs!. The expressions used in manual
Jacobian assembly are derived in Appendix A.3.

3.3 The model zoo

Several common semiconductor devices were modeled using Semiconductors.jl. In particular,
planar diodes, bipolar transistors and MOSFETs were implemented to test the functionality of the
simulator. The device models were created using the Semiconductors.Device structure, which
holds the discretization grid and various physical parameters of the model. This section describes
some of the models implemented in Semiconductors.jl.

3.3.1 Diodes

One-dimensional and two-dimensional diode models were implemented in Semiconductors.jl.
The 1D diode model is shown in Figure 3.2. This model is equivalent to a 2D planar diode with
a height of 1µm, contacts that span the entire height of the device, and a doping profile that is
constant along the y axis. This device is parameterized by the widths of the p-type and n-type
regions, which we denote by Wp and Wn. The grid origin of this device is located at the junction
between the p and n regions. The 1D diode model is generated by the function diode1d. The
function definition is shown below:

� ⊵
function diode1d(

wp::Float64,wn::Float64;

81

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Position (µm)

Figure 3.3: Default discretization grid for 1D diode generated by diode1d(2.0,2.0), showing
refinement about x = 0. The grid has 163 nodes and 162 cells (segments).

ha=0.05,hb=0.01,hc=0.05,
na=1e3,nd=1e3,
doping="abrupt"

)

Generate grid and define model parameters
...

return (d)

end� �
The arguments wp::Float64 and wn::Float64 give the values of Wp and Wn, respectively. The
keyword arguments ha, hb and hc dictate the spacing between grid points at the anode contact, at
the junction and at the cathode contact, respectively. The grid will be described in detail below.
The keyword arguments na and nd dictate the acceptor and donor doping concentrations NA and
ND, respectively. When a non-abrupt doping profile is used, these values give the doping at the
anode and cathode, respectively. The keyword argument doping dictates which doping profile
will be used in the model. The doping profile will be described in detail below. The return value
d is the Device instance generated with the specified parameters.

The grid used by the 1D diode model is shown in Figure 3.3. This grid is generated using
ExtendableGrids.geomspace. This function creates an array of values such that the ratio between
each pair of adjacent points is a multiple q of the ratio between the previous pair of adjacent points,
where q ∈ (0, 1]. This property allows for local grid refinement about the semiconductor junction
at x = 0. This refinement is often critical to simulation accuracy, since the potential and carrier
concentrations change most abruptly near the junction. The function ExtendableGrids.geomspace
is called twice to generate two arrays: one containing the points from x = −Wp and x = 0, and once
containing the points from x = 0 to x = Wn. The two arrays are spliced together after removing
the duplicate value x = 0, which appears in both arrays.

The doping profile used by the 1D diode model is determined using the doping keyword
argument. This argument allows the user to select one of three profiles: abrupt, smooth or linear.
The abrupt doping profile is specified by the default value doping="abrupt". This option defines

82

−2 −1 0 1 2
Position (µm)

101

102

103
N

et
do

pi
ng

co
nc

en
tr

at
io

n
(µm

−3
)

Symmetric junction

Abrupt
Linear
Smooth

−2 −1 0 1 2
Position (µm)

103

104

105

N
et

do
pi

ng
co

nc
en

tr
at

io
n

(µm
−3

)

Asymmetric junction

Abrupt
Smooth

Figure 3.4: Doping profiles generated by diode1d(2.0,2.0), for a symmetric junction (left) and
an asymmetric junction (right).

a piecewise doping:

Γ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−NA, x ∈ [−Wp, 0)
0, x = 0
ND, x ∈ (0,Wn]

. (3.9)

The smooth doping profile is specified by the value doping="smooth". This profile uses a hyper-
bolic tangent approximation to the abrupt doping profile, which can help convergence when NA
and ND are separated by several orders of magnitude. This doping profile is given below:

Γ(x) =
ND +NA

2

(︂
tanh

(︂
kx − tanh−1(r)

)︂
+ r

)︂
, where r =

ND −NA

ND +NA
, (3.10)

and where k is a parameter that dictates the steepness of the doping profile. The default value
implemented in diode1d is k = 10, which works well for the typical doping concentrations NA =
ND = 1 × 103 µm−3. With this profile, the doping is defined such that Γ → −NA as x → −∞ and
Γ→ ND as x→∞. Typically, this means Γ(−Wp) ≈ −NA and Γ(Wn) ≈ ND if k is sufficiently large.

The linear doping profile is specified by the value doping="lin". This profile defines a linearly-
graded junction where Γ(−Wp) = −NA and Γ(Wn) = ND. This doping profile is given below:

Γ(x) =
ND(x +Wp) +NA(x −Wn)

Wp +Wn
. (3.11)

Due to the constraints on Γ(−Wp) and Γ(Wn), the PN junction does not necessarily lie at x = 0
when this profile is used, except in the symmetric case where NA = ND. The doping profiles given
by (3.9) through (3.11) are shown in Figure 3.4. All profiles shown in Figure 3.4 were generated
using diode1d(2.0,2.0), which sets Wp =Wn = 2µm and uses the default doping concentrations
NA = ND = 1 × 103 µm−3. The linear doping profile is not shown for the asymmetric junction since
it results in a PN junction at x ≠ 0.

83

Grid origin Contact Device outline Dimension

Contact 1
Anode

p-type n-type

Contact 2
Cathode

Figure 3.5: TCAD model of 2D diode implemented by diode2d. The contact heights are equal and
are determined by the parameter hc.

The 2D diode model is shown in Figure 3.5. This device is parameterized by the widths of the
p-type and n-type regions, which we denote by Wp and Wn, and the height of the device and of the
contacts, which we denote by h and hc, respectively. The grid origin of this device is located at the
junction between the p and n regions. The 2D diode model is generated by the function diode2d.
The function definition is shown below:

� ⊵
function diode2d(

wn:Float64,wp:Float64,
h:Float64,hc:Float64;
na=1e3,nd=1e3,
lin=false,
max_vol=0.8,
refine_param=1e-4,
yplane=nothing,
bgmesh=false,
x_bg=1.0,y_bg=1.0,
max_vol_bg=2.0,
dx1=0.1,dx2=0.05,dx3=0.1,
ny=5,rectgrid=false

)

Generate grid and define model parameters
...

return (d)

end� �
The arguments wp::Float64 and wn::Float64 give the values of Wp and Wn, respectively. The

84

arguments h::Float64 and hc::Float64 give the values of h and hc, respectively. The keyword ar-
guments na and nd dictate the acceptor and donor doping concentrations NA and ND, respectively.
When a linear doping profile is used, these values give the doping at the anode and cathode,
respectively. The keyword argument lin dictates whether to use a linear doping profile. The
linear doping profile for the 2D diode is the same as that used in the 1D diode, which is given
in (3.11). The keyword arguments max_vol and refine_param control the grid refinement if a
triangular grid is used. The keyword argument yplane adds an optional cut plane to the grid to
allow cross-sectional plotting in 1D when rectgrid==false.

The keyword argument bgmesh adds an optional background mesh to the grid to model
interactions between the device and its environment. The keyword arguments x_bg and y_bg
dictate the thickness of the background mesh in the x and y directions, respectively, if bgmesh=
=true. The keyword argument max_vol_bg controls the refinement of the background mesh. The
keyword arguments dx1, dx2 and dx3 set the spacing between grid points at the anode contact, at
the junction and at the cathode contact, respectively, if a rectangular grid is used. The keyword
argument ny dictates the number of grid points along the y direction if a rectangular grid is
used. The keyword argument rectgrid dictates whether a rectangular grid should be used. If
rectgrid==false, a triangular grid is used.

The grid used by the 2D diode model can be either triangular or rectangular, and it may have a
background mesh or no background mesh. The default triangular grid is shown without and with
a background mesh in Figures 3.6 and 3.7, respectively. Local refinement is visible in both cases
about x = 0. This is accomplished by using the unsuitable callback in a SimplexGridFactory
instance. This callback accepts the coordinates of each point in a triangle and the area of a triangle
as arguments and returns a Bool. The callback returns true if the given triangle requires further
refinement, or false if the triangle should be accepted by the mesh generator. The callback used
by diode2d sets a constraint on the square of the distance between x = 0 and the barycenter of each
triangle. The amount of local refinement is dictated by the keyword argument refine_param. The
default value is refine_param=1e-4; smaller values produce more refinement about the junction
and larger values produce less refinement.

3.3.2 Bipolar transistors

A planar NPN transistor model was implemented in Semiconductors.jl. The transistor model
is shown in Figure 3.8. This model is a 2D cross-section of the active portion of a vertical NPN
transistor. The device has emitter, base and collector contacts. The emitter and collector contacts
are centered vertically along the device, and the base contact is centered in the base region. This
device is parameterized by the widths of the emitter, base and collector regions, which we denote
by We, Wb and Wc; the height of the device h; the heights of the emitter and collector contacts,
which we denote by hce and hcc; and the width of the base contact Wcb. The grid origin of this device
is located at the bottom-left corner of the emitter region. The planar NPN model is generated by
the function npn1. The function definition is shown below:

� ⊵
function npn1(

we::Float64,wb::Float64,wc::Float64,
h::Float64,hce::Float64,hcc::Float64,wcb::Float64;
ne=1e6,nb=1e4,nc=1e3,
doping=nothing,k1=2.0,k2=3.0,
max_vol=2.0,plot_doping=false,
refine_param=0.3,

85

−2 −1 0 1 2
x (µm)

−0.5

0.0

0.5

1.0

1.5

y
(µ

m
)

Contact Device outline Grid segments

Figure 3.6: Default discretization grid for 2D diode generated by diode2d(2.0,2.0,1.0,0.5),
showing refinement about x = 0. The grid has 459 nodes and 825 cells (triangles).

−3 −2 −1 0 1 2 3
x (µm)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
(µ

m
)

Contact Device outline Grid segments

Figure 3.7: Discretization grid for 2D diode generated by diode2d(2.0,2.0,1.0,0.5,bgmesh=
true). The grid has 561 nodes and 1095 cells (triangles).

86

Grid origin Contact Device outline Dimension

Contact 1
Emitter

p-typen-type n-type

Contact 2
Base

Contact 3
Collector

Figure 3.8: TCAD model of planar NPN transistor implemented by npn1. The emitter and collector
contacts are centered vertically along the device, and the base contact is centered in the base region.

yplane=nothing,
dx1=1.0,dx2=0.1,dx3=0.1,dx4=2.0,
ny=6,rectgrid=false

)

Generate grid and define model parameters
...

return (d)

end� �
The arguments we::Float64, wb::Float64 and wc::Float64 give the values of We, Wb and Wc,
respectively. The arguments h::Float64, hce::Float64 and hcc::Float64 give the values of h, hce
and hcc, respectively. The argument wcb::Float64 gives the value of Wcb. The keyword arguments
ne, nb and nc dictate the doping concentrations in the emitter, base and collector regions, which
we denote as NE, NB and NC, respectively. If ne, nb and nc are positive, the doping profile is that
of an NPN transistor. If ne, nb and nc are negative, the doping profile is that of a PNP transistor.

The keyword argument doping dictates which doping profile will be used in the model. The
doping profile will be described in detail below. The keyword arguments k1 and k2 dictate
the steepness of the smooth doping approximation if doping=="smooth". The parameter max_
vol dictates the maximum area of a triangle in the grid when rectgrid==false. The keyword
argument plot_doping causes npn1 to plot the specified doping profile along the x axis if plot_
doping==true. The keyword argument refine_param controls the grid refinement if a triangular
grid is used. The keyword argument yplane adds an optional cut plane to the grid to allow
cross-sectional plotting in 1D when rectgrid==false.

The keyword arguments dx1, dx2, dx3 and dx4 set the spacing between grid points at the
emitter contact, at the base-emitter junction, at the base-collector junction and at the collector

87

contact, respectively, if a rectangular grid is used. The keyword argument ny dictates the number
of grid points along the y direction if a rectangular grid is used. The keyword argument rectgrid
dictates whether a rectangular grid should be used. If rectgrid==false, a triangular grid is used.

The grid used by the planar NPN model can be either triangular or rectangular. The default
triangular and rectangular grids are shown in Figures 3.9 and 3.10, respectively. Local refinement
is visible about the two junctions in both cases. When the triangular grid is used, this refinement
is accomplished using a similar unsuitable callback to SimplexGridFactory as is used with
the 2D diode model. When the rectangular grid is used, this refinement is accomplished using
ExtendableGrids.geomspace as is used with the 1D diode model. A high level of refinement
about the junctions is typically necessary for convergence, particularly when the emitter and base
doping values are separated by several orders of magnitude.

The doping profile used by the planar NPN model is determined using the doping key-
word argument. This argument allows the user to select one of four profiles: abrupt, smooth,
exponentially-graded base and linearly-graded base. The abrupt doping profile is selected by the
default value doping=nothing. This option defines a piecewise doping:

Γ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

NE, x ∈ [0,We)
−NB, x ∈ (We,We +Wb)
NC, x ∈ (We +Wb,We +Wb +Wc]
0, otherwise

. (3.12)

The smooth doping profile is specified by the value doping="smooth". This profile uses a hyper-
bolic tangent approximation to the abrupt doping profile, which can help convergence when NE
and NB are separated by several orders of magnitude. This doping profile is given below:

Γ(x) =
1
2

(︃
NE − (NE +NB) tanh

(︃
k1 (x −We) + tanh−1

(︃NE −NB

NE +NB

)︃)︃)︃
+

1
2

(︄
NC + (NC +NB) tanh

(︄
k2 (x − (We +Wb)) − tanh−1

(︄
NC −NB

NC +NB

)︄)︄)︄
, (3.13)

where k1 and k2 are parameters that dictate the steepness of the doping profile at the base-emitter
junction and at the base-collector junction, respectively. The default value implemented in npn1
is k1 = k2 = 10, which works well for the typical doping concentrations NE = 1 × 106 µm−3,
NB = 1 × 104 µm−3 and NC = 1 × 103 µm−3.

The exponentially-graded base doping profile is specified by the value doping="expbase".
This profile defines a constant doping in the emitter and collector regions and a doping that varies
exponentially from −NB to −NC in the base region. This doping profile is given below:

Γ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

NE, x ∈ [0,We)

−N
1− x−We

Wb
B N

x−We
Wb

C , x ∈ (We,We +Wb)
NC, x ∈ (We +Wb,We +Wb +Wc]
0, otherwise

. (3.14)

The linearly-graded base doping profile is specified by the value doping="linbase". This profile
defines a constant doping in the emitter and collector regions and a doping that varies linearly

88

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x (µm)

−2

0

2

4

6

y
(µ

m
)

Contact Device outline Grid segments

Figure 3.9: Default discretization grid for planar NPN transistor generated by npn1(5,1,10,5,
3,3,0.2), showing refinement about base-emitter and base-collector junctions. The grid has 257
nodes and 461 cells (triangles).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
x (µm)

−2

0

2

4

6

y
(µ

m
)

Contact Device outline Grid segments

Figure 3.10: Discretization grid for planar NPN transistor generated by npn1(5,1,10,5,3,3,0.
2,rectgrid=true). The grid has 240 nodes and 390 cells (triangles).

89

4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50
Position (µm)

103

104

105

106

N
et

do
pi

ng
co

nc
en

tr
at

io
n

(µm
−3

) Abrupt
Smooth
Exponential base
Linear base

Figure 3.11: Doping profiles generated by npn1(5,1,10,5,3,3,0.2), plotted along the x axis only.
The region where x ∈ (5µm, 6µm) is the base region.

from −NB to −NC in the base region. This doping profile is given below:

Γ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NE, x ∈ [0,We)

−NB

(︄
1 − x −We

Wb

)︄
−NC

(︄
x −We

Wb

)︄
, x ∈ (We,We +Wb)

NC, x ∈ (We +Wb,We +Wb +Wc]
0, otherwise

. (3.15)

The doping profiles given by (3.12) through (3.15) are shown in Figure 3.11. All profiles shown in
Figure 3.11 were generated using npn1(5,1,10,5,3,3,0.2), which sets We = 5µm, Wb = 1µm,
Wc = 10µm, h = 5µm, hce = hcc = 3µm and Wb = 200 nm. The default doping concentrations
NE = 1 × 106 µm−3, NB = 1 × 104 µm−3 and NC = 1 × 103 µm−3 were used for the profiles shown in
Figure 3.11.

3.3.3 MOSFETs

A planar MOSFET model was implemented in Semiconductors.jl. The transistor model is shown
in Figure 3.12. This model is a 2D cross-section of a typical bulk MOSFET, such as those described
in [87]. The device has gate, source, drain and bulk contacts, which are assigned to boundary
regions 1 through 4, respectively. The size and position of all contacts except the bulk contact are
configurable by the user. The bulk contact spans the entire bottom face of the device. This device
is parameterized by the quantities labeled in Figure 3.12. The grid origin of this device is located at
the bottom-left corner of the bulk region. The planar MOSFET model is generated by the function
mos1. The function definition is shown below:

� ⊵
function mos1(

l::Float64,ls::Float64,h::Float64,hs::Float64,
tox::Float64,c1::Float64,c2::Float64;

90

Grid origin Contact Device outline Dimension

Oxide

Channel

Bulk

Figure 3.12: TCAD model of planar MOSFET implemented by mos1. The contacts along the top of
the device are the source, gate and drain, respectively. The bottom contact is the bulk contact.

N_arc=10,max_vol=1e-4,
ld=nothing,hd=nothing,rs=nothing,rd=nothing,
xs=nothing,xd=nothing,tch=nothing,c3=nothing,lox=nothing,
er_si=nothing,er_ox=nothing,
ni_si=nothing,tn_si=nothing,tp_si=nothing,ew_ox=nothing,
n_s=nothing,n_d=nothing,n_ch=nothing,n_b=nothing,
max_vol_ox=nothing,max_vol_s=nothing,max_vol_d=nothing,
max_vol_b=nothing,max_vol_ch=nothing,refine_param=nothing

)

Generate grid and define model parameters
...

return (d)

end� �
The first seven arguments give the values of L, Ls, h, hs, tox, c1 and c2, respectively. The keyword
argument N_arc dictates the number of straight line segments in the arcs in the boundary of the
source and drain diffusion. The keyword argument max_vol dictates the maximum area of a
triangle in the grid. The next nine keyword arguments give the values of Ld, Hd, rs, rd, xs, xd,

91

tch, c3 and Lox, respectively. The keywords er_si and er_ox give the relative permittivities of the
silicon and oxide regions, respectively. The keyword argument ni_si gives the intrinsic carrier
concentration of the silicon regions. The keyword arguments tn_si and tp_si give the electron
and hole lifetimes in the silicon regions, respectively. The keyword argument ew_ox gives the
gate-oxide workfunction potential.

The keyword arguments n_s, n_d, n_ch and n_b give the source, drain, channel and bulk
doping concentrations, which we denote as Ns, Nd, Nch and Nb, respectively. The keyword
arguments max_vol_ox, max_vol_s, max_vol_d, max_vol_b and max_vol_ch, if set, override the
maximum volume constraint given by max_vol for the oxide, source, drain, bulk and channel
regions, respectively. The keyword argument refine_param controls the grid refinement near the
channel-oxide interface and around the source and drain diffusion. Smaller values produce more
refinement about the interfaces and larger values produce less refinement.

Default values for the keyword arguments are set inside the definition of mos1. We assume
typical values for the physical parameters. The default permittivities are er_si=11.7 and er_ox=
3.9. The carrier lifetimes are tn_si=1e-7 and tp_si=1e-7. The gate-oxide workfunction potential
is ew=5.5e-1, which is the value Ew/q = 550 mV given in [144]. The doping concentrations are
Ns = Nd = 2 × 108 µm−3, Nch = −1 × 106 µm−3 and Nb = −5 × 104 µm−3. These concentrations
define an n-channel MOSFET; their signs can be reversed to define a p-channel MOSFET instead.
Only an abrupt doping profile is currently implemented due to the complexity of the model
geometry.

The grid used by the planar MOSFET model is shown in Figure 3.13. A zoomed inset showing
the gate oxide region is shown in Figure 3.14. This grid was generated using a 100 nm channel, a
2 nm oxide thickness and a 200 nm substrate thickness. Local refinement is visible near the top of
the channel and around the source and drain diffusion. This refinement is accomplished using a
similar unsuitable callback to SimplexGridFactory as is used with the 2D diode model. A high
level of refinement is typically necessary for convergence since the default doping concentrations
vary from 5 × 104 µm−3 to 2 × 108 µm−3.

92

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x (µm)

0.00

0.05

0.10

0.15

0.20
y

(µ
m

)

Contact Device outline Grid segments

Figure 3.13: Default discretization grid for planar MOSFET generated by mos1(0.1,0.05,0.2,0.
05,0.002,0.1,0.025), showing refinement about source and drain diffusion. The grid has 478
nodes and 870 cells (triangles).

0.04 0.06 0.08 0.10 0.12 0.14 0.16
x (µm)

0.2000
0.2025

y
(µ

m
)

Figure 3.14: Zoomed plot of gate oxide region in default MOSFET grid.

93

94

Chapter 4

Results

4.1 Numerical analysis

This section presents experimental results on the implementation of the Bernoulli function B(x),
the interpolation function Q(x) and the derivative of the Bernoulli function B′(x). These functions
are defined in (2.49), (2.43) and (A.10), respectively.

4.1.1 Error comparison

The functions B(x), Q(x) and B′(x) are difficult to evaluate numerically, particularly when x is near
zero. There are two main sources of error in the implementation of these functions. The first is
rounding error, which typically results from the subtraction of two nearly equal values. The result
of such a computation must be rounded to the nearest floating point value, which may be quite
far from the exact result. The second is truncation error, which is introduced by an approximation
to a function that becomes inaccurate outside of a certain range. For example, if a Taylor series
expansion is used to approximate B(x) at x = x0, the series will only be close to the exact value of
B(x) in a small neighborhood of x0.

Figures 4.1, 4.2 and 4.3 compare these sources of error for B(x), Q(x) and B′(x), respectively. The
“Direct” error in these plots shows the relative error between a direct computation of the functions
using Float64 values and a direct computation using BigFloat values. Specifically, we use the
functions shown below:

� ⊵
q(x) = 1/x - 1/(exp(x)-1)
b(x) = x/(exp(x)-1)
db(x) = 1/(exp(x)-1) - x*exp(x)/(exp(x)-1)ˆ2� �

The direct error was computed by evaluating q(x), b(x) and db(x) at 1001 evenly spaced points
between x = 1 × 10−2 and x = 1 × 102. The direct error in all three functions shows an asymptote
for small x due to cancellation in the denominator. For B(x), this lower asymptote begins around
x = ±0.3; for Q(x), the lower asymptote begins around x = 1 and x = −2; for B′(x), the lower
asymptote begins around x = ±2. The direct error in B(x) and B′(x) also shows an asymptote for
large x due to floating-point overflow in the denominator. For B(x), this upper asymptote begins
around x = 3; for B′(x), the upper asymptote begins around x = 4.

The “Series” error in Figures 4.1, 4.2 and 4.3 shows the truncation error of a Taylor series

95

10−2 10−1 100 101 102

x

10−17

10−16

10−15

10−14

10−13
B(x), x > 0

Direct
Series
Limit

ε(1.0)

10−2 10−1 100 101 102

−x

10−17

10−16

10−15

10−14

10−13
B(x), x < 0

Direct
Series
Limit

ε(1.0)

Figure 4.1: Relative error in direct, series and limit approximations of B(x). The “Limit” error
gives B(x) for x > 0 and x + B(x) for x < 0. The line labeled ϵ(1.0) is the Float64 machine epsilon
ϵ(1.0) = 2−52 ≈ 2.220 × 10−16.

expansion at x = 0. Specifically, we use the expansions

B(x) = 1 − x
2
+

x2

12
− x4

720
+

x6

30 240
− x8

1 209 600
+

x10

47 900 160
+O

(︂
x12

)︂
, (4.1)

Q(x) =
1
2
− x

12
+

x3

720
− x5

30 240
+

x7

1 209 600
− x9

47 900 160
+

691x11

1 307 674 368 000
− x13

74 724 249 600
+O

(︂
x15

)︂
, (4.2)

and

B′(x) = −1
2
+

x
6
− x3

180
+

x5

5040
− x7

151 200
+

x9

4 790 016
− 691x11

108 972 864 000
+

x13

5 337 446 400
−

3617x15

666 913 927 680 000
+

43 867x17

283 838 567 620 608 000
− 174 611x19

40 142 883 134 914 560 000
+O

(︂
x21

)︂
. (4.3)

The order of the expansions given in (4.1) through (4.3) were chosen to give an overall implemen-
tation error on the order of 1 × 10−15.

The “Limit” error in Figures 4.1, 4.2 and 4.3 shows the absolute error between B(x), Q(x) and
B′(x) and their limiting values as x → ∞ and x → −∞. For B(x), the limiting values are B(x) → 0
as x → ∞ and B(x) → −x as x → −∞. For Q(x), the limiting values are Q(x) → 1/x as x → ∞ and
Q(x)→ 1 + 1/x as x→ −∞.

4.1.2 Optimal threshold search

Figures 4.1, 4.2 and 4.3 show that different approximations to B(x), Q(x) and B′(x) have different
regions of accuracy. When |x| is small, the Taylor expansions give the lowest error. When |x|

96

10−2 10−1 100 101 102

x

10−17

10−16

10−15

10−14

10−13
Q(x), x > 0

Direct
Series
Limit

ε(1.0)

10−2 10−1 100 101 102

−x

10−17

10−16

10−15

10−14

10−13
Q(x), x < 0

Direct
Series
Limit

ε(1.0)

Figure 4.2: Relative error in direct, series and limit approximations of Q(x). The “Limit” error gives
1/x − Q(x) for x > 0 and Q(x) − 1/x − 1 for x < 0. The line labeled ϵ(1.0) is the Float64 machine
epsilon ϵ(1.0) = 2−52 ≈ 2.220 × 10−16.

10−2 10−1 100 101 102

x

10−17

10−16

10−15

10−14

10−13
B′(x), x > 0

Direct
Series
Limit

ε(1.0)

10−2 10−1 100 101 102

−x

10−17

10−16

10−15

10−14

10−13
B′(x), x < 0

Direct
Series
Limit

ε(1.0)

Figure 4.3: Relative error in direct, series and limit approximations of B′(x). The “Limit” error
gives −B′(x) for x > 0 and 1+B′(x) for x < 0. The line labeled ϵ(1.0) is the Float64machine epsilon
ϵ(1.0) = 2−52 ≈ 2.220 × 10−16.

97

0.0 0.1 0.2 0.3 0.4
Threshold

10−16

10−15

10−14
M

ax
im

um
er

ro
r

B(x), x > 0

Horner
Taylor

0.0 0.1 0.2 0.3 0.4
Threshold

10−16

10−15

10−14

M
ax

im
um

er
ro

r

B(x), x < 0

Horner
Taylor

Figure 4.4: Optimal small-value threshold search for B(x). For positive x, a minimum error of
roughly 3.4 × 10−16 was achieved using a small-value threshold of 0.295; for negative x, a minimum
error of roughly 2.8 × 10−16 was achieved using a small-value threshold of 0.279.

is large, the limiting values give the lowest error. For intermediate values of x, the functions
may be evaluated directly. This property suggests that an adaptive algorithm could be used to
implement these functions, where the function implementation is determined by the absolute
value of x. To implement such an algorithm, two thresholds are required: A small-value threshold,
which determines the value of |x| below which Taylor expansions will be used, and a large-value
threshold, which determines the value of |x| above which the limiting values will be used.

We perform a simple search to determine the optimal small-value threshold for B(x), Q(x) and
B′(x). The optimal small-value threshold minimizes the maximum error of the approximation for
all values of x. For each function, a list of candidate threshold values was generated with a step
of 1 × 10−3 between each pair of values. At each threshold value, 105 + 1 logarithmically spaced
values between 1 × 10−16 and 2 were evaluated using an approximation to B(x), Q(x) and B′(x) that
switched between direct evaluation and a series expansion at the threshold value. The maximum
relative error among the 105 + 1 logarithmically spaced points was computed, and the threshold
giving the lowest maximum error was chosen as the optimal threshold. The results of this search
are shown in Figures 4.4, 4.5 and 4.6.

In Figures 4.4, 4.5 and 4.6, the curves labeled “Taylor” were computed using a direct evaluation
of the Taylor series approximations for B(x), Q(x) and B′(x) with the polynomial expressions
in (4.1), (4.2) and (4.3). The curves labeled “Horner” were computed using Horner’s method
for the Taylor series approximations [15]. This method minimizes the number of multiplications
required to evaluate the series approximations and can reduce numerical error when high-order
approximations are necessary.

From Figures 4.4, 4.5 and 4.6, we observe that optimal thresholds appear to exist for all three
functions. An increase in the maximum error is visible for smaller thresholds in all three functions.
For such thresholds, the cancellation error due to the singularity at x = 0 dominates, and the
Taylor expansions are not able to provide accuracy over a large range of values. An increase in
the maximum error is also visible for larger thresholds in all three functions. For such thresholds,

98

0.0 0.2 0.4 0.6 0.8
Threshold

10−16

10−15

10−14

10−13

M
ax

im
um

er
ro

r
Q(x), x > 0

Horner
Taylor

0.0 0.2 0.4 0.6 0.8
Threshold

10−16

10−15

10−14

10−13

M
ax

im
um

er
ro

r

Q(x), x < 0

Horner
Taylor

Figure 4.5: Optimal small-value threshold search for Q(x). For positive x, a minimum error of
roughly 7.1 × 10−16 was achieved using a small-value threshold of 0.578; for negative x, a minimum
error of roughly 8.7 × 10−16 was achieved using a small-value threshold of 0.584.

0.0 0.5 1.0
Threshold

10−16

10−15

10−14

10−13

M
ax

im
um

er
ro

r

B′(x), x > 0

Horner
Taylor

0.0 0.5 1.0
Threshold

10−16

10−15

10−14

10−13

M
ax

im
um

er
ro

r

B′(x), x < 0

Horner
Taylor

Figure 4.6: Optimal small-value threshold search for B′(x). For positive x, a minimum error of
roughly 6.7 × 10−16 was achieved using a small-value threshold of 0.982; for negative x, a minimum
error of roughly 4.2 × 10−16 was achieved using a small-value threshold of 0.992.

99

the Taylor series themselves begin to diverge rapidly from the exact values of B(x), Q(x) and B′(x).
Larger thresholds cause the Taylor series approximations to be used outside their range of accuracy,
leading to the increase in maximum error.

Figures 4.4, 4.5 and 4.6 show that different optimal thresholds exist for positive and negative
x in B(x), Q(x) and B′(x). The optimal thresholds for positive and negative x were 0.295 and 0.279
for B(x), 0.578 and 0.584 for Q(x), and 0.982 and 0.992 for B′(x). An implementation using this
algorithm could either choose different thresholds depending on the sign of x or conservatively
choose the smaller threshold.

4.2 Device characteristics

This section presents experimental results on the characteristics of the device models implemented
in Semiconductors.jl. The characteristics are organized by device type, and different methods
are presented for each type of device as applicable.

4.2.1 Diodes

One-dimensional silicon diodes were simulated using the model generated by diode1d(2.0,2.
0). The output of any non-equilibrium simulation performed by Semiconductors.jl is a 3 × N
Matrix{Float64} giving the values of ψ, n and p at each node in the discretization. These values
are shown in thermal equilibrium, with a forward bias of 0.6 V and with a reverse bias of 10 V
in Figure 4.7. The thermal equilibrium and reverse-biased cases exhibit depletion regions near
the center of the device, where the high electric field forces nearly all mobile carriers away from
the junction. The reverse-biased case additionally exhibits boundary layers near the contacts as
described in Section 2.1.5 and as illustrated in Figure 2.2.

The forward-biased case shows an excess of mobile charge carriers near the junction due to the
increased electron and hole currents. This case also shows the degradation of the charge-neutral
regions at high forward bias. Here, the increased terminal currents cause a potential drop on either
side of the junction, which implies a nonzero space charge. As the forward bias voltage is further
increased, the current through the diode increases exponentially, leading to higher voltage drops
on either side of the junction and further increased electron and hole concentrations.

Figure 4.8 shows the I-V characteristics of the 1D diode generated by diode1d(2.0,2.0) under
forward and reverse bias. These I-V curves were generated using the naïve predictor described
in Section 2.2.6. In particular, the bias voltage was increased in fixed steps, using the solution
from the previous step as the initial condition for each step. The forward bias voltage was varied
from 0 V to 1 V in 10 mV increments; the reverse bias voltage was varied from 0 V to 125 V in
50 mV increments. Both the forward and reverse bias simulations were performed with impact
ionization (II), with field-dependent mobility (FDM), and with both II and FDM. The simulations
were performed using non_equilib, with the keyword argument catch_conv=true set to catch
convergence errors without terminating in an error.

When the diode was reverse-biased, convergence failed before reaching the maximum bias
voltage of 125 V when impact ionization was enabled. The convergence error is likely due to the
positive feedback effect in the carrier residuals when impact ionization is enabled, as described
in [80]. The points at which convergence failed thus give an estimate of the breakdown voltages
of the devices. In particular, convergence failed at VR = 113.85 V for the II only case and at
VR = 108.40 V for the II and FDM case. The curves in Figure 4.8 indicate that the II and FDM case
would likely have a higher breakdown voltage if convergence was possible at higher bias voltages.

100

−2 −1 0 1 2
Position (µm)

−0.2

0.0

0.2

Po
te

nt
ia

l(
V

)
VF = 0.0 V

−2 −1 0 1 2
Position (µm)

10−6

10−4

10−2

100

102

C
ar

ri
er

de
ns

it
y

(µm
−3

)

VF = 0.0 V

n
p

−2 −1 0 1 2
Position (µm)

−0.33

−0.32

−0.31

−0.30

−0.29

Po
te

nt
ia

l(
V

)

VF = 0.6 V

−2 −1 0 1 2
Position (µm)

10−6

10−4

10−2

100

102
C

ar
ri

er
de

ns
it

y
(µm

−3
)

VF = 0.6 V

n
p

−2 −1 0 1 2
Position (µm)

0

2

4

6

8

10

Po
te

nt
ia

l(
V

)

VR = 10.0 V

−2 −1 0 1 2
Position (µm)

10−6

10−4

10−2

100

102

C
ar

ri
er

de
ns

it
y

(µm
−3

)

VR = 10.0 V

n
p

Figure 4.7: Potential and carrier density in 1D diode generated by diode1d(2.0,2.0). Simulations
were performed at equilibrium (top), with a forward bias of 0.6 V (middle) and with a reverse bias
of 10.0 V (bottom).

101

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−12

10−10

10−8

10−6

C
ur

re
nt

(A
µm
−2

)
Semiconductors.jl

Default
II only
FDM only
II and FDM

0 50 100
Reverse bias voltage (V)

10−10

10−9

10−8

C
ur

re
nt

(A
µm
−2

)

Semiconductors.jl

Default
II only
FDM only
II and FDM

Figure 4.8: Current-voltage characteristic of 1D diode generated by diode1d(2.0,2.0). Simula-
tions were performed with impact ionization (II), with field-dependent mobility (FDM), and with
both II and FDM. Convergence failed at VR = 113.85 V for the II only case and at VR = 108.40 V for
the II and FDM case.

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−12

10−10

10−8

10−6

C
ur

re
nt

(A
µm
−2

)

Padre

Default
II only
FDM only
II and FDM

0 50 100
Reverse bias voltage (V)

10−10

10−9

10−8

C
ur

re
nt

(A
µm
−2

)

Padre

Default
II only
FDM only
II and FDM

Figure 4.9: Current-voltage characteristic of 1D diode generated by Padre TCAD. Simulations
were performed with impact ionization (II), with field-dependent mobility (FDM), and with both
II and FDM. Convergence failed at VR = 104.35 V for the II only case and at VR = 105.35 V for the
II and FDM case.

102

To verify the results shown in Figure 4.8, a similar diode was simulated using the Padre TCAD
package [119]. The resulting I-V curves are shown in Figure 4.9. The curves are qualitatively
similar to the curves produced by Semiconductors.jl. The forward-biased characteristic shows a
similar knee voltage of roughly 0.6 V, where the exponential increase in forward current gives way
to a linear voltage drop across the semiconductor regions. The reverse-biased characteristic shows
similar breakdown voltages when impact ionization is enabled. A small multiplicative offset is
present between the Semiconductors.jl curves and the Padre curves for forward and reverse bias
voltages. This is likely due to Padre’s device physics models; values of physical constants like ε,
carrier statistics models and the values of scattering parameters like µn0, µp0 and the ionization
coefficients αn and αp could all affect the exact transition points on the I-V curves.

It is known that the Jacobian of the discretized Van Roosbroeck system can become ill-
conditioned, which can cause convergence problems near turning points in I-V curves [74, 153].
One measure of the degree to which the Jacobian can impact convergence is the condition number
of the Jacobian. The condition number of a matrix is the ratio of the largest singular value to the
smallest singular value of that matrix. Accordingly, the spectrum of the singular values of the
Jacobian can be helpful in determining numerical stability and debugging convergence errors.

Four such spectra are shown in Figure 4.10. These spectra show the relative singular values of
the Jacobian, defined as the ratio of each singular value to the maximum singular value. Figure 4.10
shows that the Jacobian of the PDE system for the 1D diode has a condition number on the order
of 1037 near equilibrium, which decreases to roughly 1029 near the device breakdown voltage
of 108.3 V. When the diode was heavily reverse-biased, the Jacobian appeared to have a larger
number of significant singular values compared to when the diode was biased near equilibrium.
This indicates that the linear solve itself was likely not the cause of the convergence error near
breakdown; the structure of the residual function or the basins of attraction introduced by Newton’s
method may have influenced convergence to a greater degree.

To further investigate the source of convergence errors, the condition number of the Jacobian
was computed at each bias voltage in an I-V curve simulation. These condition numbers are
shown in Figure 4.11. The simulations used to generate Figure 4.11 were performed with field-
dependent mobility and impact ionization enabled. Similar results were obtained when field-
dependent mobility and/or impact ionization was disabled. In these cases, there was less variation
in the condition number between adjacent bias points, but the overall trend remained similar.
Figure 4.11 confirms the observation that the condition number of the Jacobian decreases under
heavy reverse bias and additionally shows that the condition number increases further when the
diode is forward-biased into conduction. A slight increase in the condition number is apparent
near the reverse breakdown voltage, but this may be due more to a larger residual than to an
ill-conditioned Jacobian.

Two-dimensional silicon diodes were simulated using the model generated by diode2d(2.0,2.
0,1.0,0.5). This model is shown in Figure 3.5, with Wn =Wp = 2µm, h = 1µm and hc = 500 nm.
This model uses the triangular discretization grid shown in Figure 3.6. This model is similar to
the 1D diode, except the contacts no longer span the entire height of the device. The values of
ψ, n and p are shown for a forward bias voltage of 0.6 V in Figure 4.12. These values are nearly
identical to those plotted in Figure 4.7 for VF = 0.6 V, except the Dirichlet boundary conditions on
n and p now only constrain part of the left and right boundaries. Figure 4.12 was plotted using a
linear interpolation on a recursively-refined copy of the discretization grid; see the documentation
of PyPlot.tricontourf for details.

Figure 4.13 shows the potential for the 2D diode model generated by diode2d(2.0,2.0,1.0,
0.5,bgmesh=true) at a forward bias voltage of 0.6 V. This model uses the discretization grid with
background mesh shown in Figure 3.7. The background mesh allows the potential to be solved

103

https://matplotlib.org/stable/gallery/images_contours_and_fields/tricontour_smooth_user.html

1 101 201 301 401 501
Index

10−33

10−27

10−21

10−15

10−9

10−3

R
el

at
iv

e
si

ng
ul

ar
va

lu
e

Equilibrium
VF = 0.6 V
VR = 108.3 V
VR = 108.3 V, II and FDM

Figure 4.10: Spectra of Jacobian matrices generated by diode1d(2.0,2.0). The system Jacobian
has size 489×489. The condition numbers of the matrices are 1.090 × 1037, 7.556 × 1036, 4.970 × 1029

and 3.279 × 1028, from top to bottom in the legend.

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

1037

1038

1039

C
on

di
ti

on
nu

m
be

r

0 25 50 75 100
Reverse bias voltage (V)

1029

1031

1033

1035

1037

C
on

di
ti

on
nu

m
be

r

Figure 4.11: Condition number of Jacobian matrices generated by diode1d(2.0,2.0) for forward
and reverse bias voltages. The forward bias voltages are 0.0:0.01:1.0, and the reverse bias
voltages are 0.0:0.05:108.35.

104

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−0.344 −0.336 −0.328 −0.320 −0.312 −0.304 −0.296 −0.288
Potential (V)

−9.0 −7.5 −6.0 −4.5 −3.0 −1.5 0.0 1.5 3.0 4.5

log10 n
(
µm−3

)

−9.0 −7.5 −6.0 −4.5 −3.0 −1.5 0.0 1.5 3.0 4.5

log10 p
(
µm−3

)

Figure 4.12: Potential (top), electron density (middle) and hole density (bottom) in 2D diode
generated by diode2d(2.0,2.0,1.0,0.5). Simulation was performed with a forward bias of
0.6 V.

105

−3 −2 −1 0 1 2 3
x (µm)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y
(µ

m
)

−0.342 −0.336 −0.330 −0.324 −0.318 −0.312 −0.306 −0.300 −0.294 −0.288
Potential (V)

Figure 4.13: Potential in 2D diode with background mesh generated by diode2d(2.0,2.0,1.0,
0.5,bgmesh=true). Simulation was performed with a forward bias of 0.6 V.

outside the device border, which simulates the interaction between the diode and its environment.
The environment in this case is either air or a vacuum, which both have ε = ε0.

Figure 4.14 shows the I-V characteristics of the 2D diode generated by diode2d(2.0,2.0,1.0,
0.5) under forward and reverse bias. These I-V curves were generated using the naïve predictor
described in Section 2.2.6. The bias voltages were varied identically to the simulations performed
to generate Figure 4.8. Since the 2D diode model has limited variation along the y axis and is
similar to the 1D problem, its I-V curves are also similar to those of the 1D model. A slight error in
the currents is apparent for moderate forward and reverse bias voltages; these errors are plotted
in Figure 4.15.

When the 2D diode is forward biased, Figure 4.15 shows that a modest error near 6% exists
for small bias voltages. This error decreases as the bias voltage is increased, eventually becoming
negative near the knee voltage of 0.5 V. Beyond this point, a significant negative error exists. This
is likely caused by current crowding at the contacts; since the contacts now only span a fraction
of the height of the device, the current field lines must group together in a smaller area near the
contacts. This effect is not modeled in the 1D simulation. When the 2D diode is reverse biased,
a modest error also exists for small bias voltages. This error increases rapidly as VR approaches
100 V due to the difference in breakdown voltages between the two devices. This could be caused
either by the relatively coarser discretization grid along the x axis or by the shorter contacts which
provide fewer sites at which avalanche breakdown can occur.

The vector-valued quantities E and J can illustrate behaviors of the 2D diode not present in the
1D simulation. Figure 4.16 shows these quantities in the 2D diode generated by diode2d(2.0,2.
0,1.0,0.5) under a forward bias of 0.6 V. A large electric field exists near the center of the device;

106

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−12

10−10

10−8

10−6

C
ur

re
nt

(A
µm
−1

)

Default
II only
FDM only
II and FDM

0 50 100
Reverse bias voltage (V)

10−11

10−10

10−9

C
ur

re
nt

(A
µm
−1

)

Default
II only
FDM only
II and FDM

Figure 4.14: Current-voltage characteristic of 2D diode generated by diode2d(2.0,2.0,1.0,0.5).
Simulations were performed with impact ionization (II), with field-dependent mobility (FDM), and
with both II and FDM. Convergence failed at VR = 113.70 V for the II only case and at VR = 112.50 V
for the II and FDM case.

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

R
el

at
iv

e
er

ro
r

Default
II only
FDM only
II and FDM

0 50 100
Reverse bias voltage (V)

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
er

ro
r

Default
II only
FDM only
II and FDM

Figure 4.15: Relative error between I-V curves of 2D diode and 1D diode, for forward (left) and
reverse (right) bias voltages. An increase in error near VR = 100 V for the II cases is apparent due
to the difference in breakdown voltages.

107

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.0

0.5

1.0

y
(µ

m
)

Electric field

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.0

0.5

1.0

y
(µ

m
)

Current density

Figure 4.16: Electric field (top) and current density (bottom) in 2D diode model generated by
diode2d(2.0,2.0,1.0,0.5) with a forward bias of 0.6 V. Arrow length is proportional to field
magnitude; one arrow is plotted for each discretization node.

this is the depletion region formed by the doping gradient. A smaller electric field exists on either
side of the depletion region due to the applied bias. This electric field causes the drift current that
carries electrons to the junction before they are swept across the depletion region by diffusion. The
current density is roughly constant in magnitude along the device due to conservation of charge.
Slight increases in the magnitude of the current density field are visible near the contacts due to
current crowding.

4.2.2 Bipolar transistors

Two-dimensional silicon BJTs were simulated using the model generated by npn1(5,1,10,5,3,3,
0.2). This model is shown in Figure 3.8, with We = 5µm, Wb = 1µm, Wc = 10µm, hce = hcc = 3µm
and Wcb = 200 nm. This model uses the triangular discretization grid shown in Figure 3.9. The
default doping values are NE = 1 × 106 µm−3, NB = 1 × 104 µm−3 and NC = 1 × 103 µm−3, which
are used in the default abrupt doping profile given in (3.12). The values of ψ, n and p in this device
are shown in Figure 4.17.

Figure 4.18 shows the I-V characteristic of the NPN BJT generated by npn1(5,1,10,5,3,
3,0.2). This characteristic measures the collector current IC as a function of collector-emitter
voltage VCE. The resulting curve is parametric in the base current IB. To establish a fixed current
through the base contact, Semiconductors.newton_current! was used to create the augmented
nonlinear system described in Section 2.2.5. The solver parameters used were damp_initial=0.1,
damp_growth=1.5, max_iters=50 and damp_search=true. A high damping value is typically

108

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
Potential (V)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

log10 n
(
µm−3

)

−12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

log10 p
(
µm−3

)

Figure 4.17: Potential (top), electron density (middle) and hole density (bottom) in NPN BJT
generated by npn1(5,1,10,5,3,3,0.2). Simulation was performed with IB = 5 × 10−7 Aµm−1

and VCE = 2 V.

109

necessary to avoid large variations in bias voltages when using current boundary conditions.
This simulation was performed with base currents ranging from IB = 1 × 10−7 Aµm−1 to IB =
9 × 10−7 Aµm−1 in five equal steps.

The key features of BJT operation are clearly visible in Figure 4.18. The device exhibits well-
defined forward and reverse active regions. The current gain in the forward active region is much
greater than in the reverse active region since NE ≫ NC. A saturation voltage in the range of
100 mV to 1 V is visible, and limited quasi-saturation is exhibited at the highest base current. The
Early effect is also visible. This effect describes the slight increase in collector current as VCE is
increased due to widening of the depletion region of the base-collector junction.

Figure 4.19 shows the large signal current gain βF of the NPN BJT generated by npn1(5,1,
10,5,3,3,0.2) as a function of collector current. This characteristic is typically included in the
datasheets of commercial BJTs to describe the performance of the device over a wide range of
operating currents. In physical devices, βF is roughly constant for moderate operating currents. At
very low collector currents, reverse leakage current through the base-collector junction dominates
IB, which causes the gain to roll off as IC → 0. At very high collector currents, voltage drop across
the collector and emitter regions introduces a resistive effect, which causes the gain to roll off as
IC →∞.

As shown in Figure 4.19, the doping profile has a significant effect on the current gain of a
BJT. In this figure, the default abrupt doping profile given in (3.12) gives the lowest gain for most
operating points. The smooth doping profile given in (3.13) gives the second lowest gain, since
it is nearly identical to the abrupt profile except at the junctions. The exponentially-graded base
and linearly-graded base doping profiles given in (3.14) and in (3.15) give higher gains, with the
exponentially-graded base providing a gain near 100 at extremely low bias currents. Many other
factors such as the ratio NE/NC can affect the current gain; for a comprehensive analysis, see [53].

4.2.3 MOSFETs

Two-dimensional silicon MOSFETs were simulated using the model generated by mos1(0.1,0.
05,0.2,0.05,0.002,0.1,0.025). This model is shown in Figure 3.12, with L = 100 nm, Ls =
Ld = 50 nm, h = 200 nm, hs = hd = 50 nm, tox = 2 nm, c1 = 100 nm and c2 = c3 = 25 nm. This
model uses the triangular discretization grid shown in Figure 3.13. The default doping values
are Ns = Nd = 2 × 108 µm−3, Nch = −1 × 106 µm−3 and Nb = −5 × 104 µm−3, which specifies an
n-channel MOSFET with a heavily p-doped channel region and a lightly p-doped bulk region.
The default abrupt doping profile was used. The electrostatic potential in this device is shown in
Figure 4.20 for VDS = 1 V and VGS = 0.5 V.

Figures 4.21 and 4.22 show the ID-VDS and ID-VGS characteristics of the n-channel MOSFET
generated by mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025). The ID-VDS characteristic shows the
effect of channel length modulation as VDS is increased. This effect causes ID to increase when
VGS is held constant due to the widening of the depletion region around the drain diffusion.
This characteristic also shows the importance of the field-dependent mobility model in MOSFET
simulations. The currents simulated using a constant mobility are on the order of 10 times higher
than the currents simulated using a field-dependent mobility. This is mainly due to the magnitude
of the electric field in the channel region, which increases the rate of carrier scattering, decreasing
the effective mobility.

The ID-VGS characteristic shown in Figure 4.22 shows the threshold voltage and leakage cur-
rent of the MOSFET generated by mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025). The threshold
voltage is the point at which the exponential subthreshold current gives way to a sub-exponential
saturation current. For this MOSFET, the threshold voltage is roughly 2 V for the simulated values

110

−1 0 1 2 3 4 5
VCE (V)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

I C
(A

µm
−1

)
×10−5

Figure 4.18: Current-voltage characteristic of NPN BJT generated by npn1(5,1,10,5,3,3,0.2)
showing operation in forward and reverse active regions. Base current was varied from IB =
1 × 10−7 Aµm−1 to IB = 9 × 10−7 Aµm−1 in five equal steps.

10−10 10−9 10−8 10−7 10−6 10−5 10−4

IC
(
Aµm−1

)

100

101

102

β F

Abrupt
Smooth
Exponential base
Linear base

Figure 4.19: Large-signal forward current gain (βF) versus collector current for NPN BJT generated
by npn1(5,1,10,5,3,3,0.2). Results are shown for the four built-in doping profiles in npn1.

111

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x (µm)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

y
(µ

m
)

−0.6 −0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8
Potential (V)

Figure 4.20: Electrostatic potential in n-channel MOSFET generated by mos1(0.1,0.05,0.2,0.
05,0.002,0.1,0.025). Simulation was performed with VDS = 1 V and VGS = 0.5 V.

112

of VDS. When VDS is high, the exponential subthreshold current region can be small or nonexis-
tent. This is due to substrate leakage currents, which flow through the reverse-biased bulk-drain
junction and can cause power loss in digital circuits. This ID-VGS characteristic also shows the
magnitude of the difference in currents between the simulation using constant mobility and the
simulation using field-dependent mobility.

The vector-valued quantities E and J can provide insight into the behavior exhibited by the
I-V characteristics of a MOSFET. Figure 4.23 shows these quantities in the n-channel MOSFET
generated by mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025), with VDS = 1 V and VGS = 0.5 V. A
significant vertical electric field exists at the bulk-oxide interface and within the gate oxide. This
electric field draws mobile electrons to the interface, creating an inversion layer that carries the
drain current when the MOSFET is on. This is reflected in the vector plot of the current density,
which shows that current enters through the drain contact, is swept across the channel by the
lateral electric field at the drain and exits through the source contact. The behavior of these vector-
valued quantities in accumulation (VGS < 0) is also instructive; this behavior is discussed further in
Section B.3.

4.3 Continuation

Figure 4.24 shows I-V curves for a reverse-biased 1D diode generated by Padre TCAD. This diode
is similar to the model generated by diode1d(2.0,2.0); it has 162 nodes in its mesh (as opposed to
163), and it has identical dopings of NA = ND = 1 × 103 µm−3. These simulations were performed
using the contin command in Padre. Since Padre does not support continuation in the logarithm
of the terminal current, the continuation process had to be invoked multiple times along the curve
to allow proper scaling of the voltage and current. These curves show two distinct breakdown
voltages for the II and FDM case and for the II case. The first and second breakdown voltages were
105.4 V and 26.7 V for the II and FDM case, and 104.3 V and 84.2 V for the II only case.

4.4 Surrogatization

This section presents experimental results on the surrogatization of the device models implemented
in Semiconductors.jl.

4.4.1 Methods

Given a Semiconductors.Device instance and the associated discretization grid, the surrogatiza-
tion process seeks to create a similar device with a coarser grid that closely approximates the I-V
characteristic of the first device. This is accomplished by optimization of the device parameters,
which are trained to minimize the root-mean-square relative error (RMSRE) between the I-V curve of
the surrogate model and of the original model. Specifically, we optimize the doping profile of the
surrogate model by defining this quantity as a piecewise constant function along the device. The
doping profile is part of the reaction discretization of the Poisson equation, so one value should be
defined at each node in the grid.

Given two sets of currents I1[k] and I2[k], where k ∈ [1,M], the RMSRE of I2 with respect to I1
is defined as

RMSRE =

⌜⃓⎷
1
M

M∑︂

k=1

(︄
I2[k]
I1[k]

− 1
)︄2

.

113

0 1 2
VDS (V)

0.000

0.002

0.004

0.006

0.008

0.010

I D
(A

µm
−1

)
Default

0 1 2
VDS (V)

0.0000

0.0002

0.0004

0.0006

0.0008

I D
(A

µm
−1

)

FDM only

Figure 4.21: Drain-source voltage I-V characteristic of n-channel MOSFET generated by mos1(0.1,
0.05,0.2,0.05,0.002,0.1,0.025). Gate-source voltage was varied from VGS = 0.1 V to VGS =
0.9 V in five equal steps. Simulations were performed with constant mobility (left) and with
field-dependent mobility (right).

0.0 0.2 0.4 0.6 0.8 1.0
VGS (V)

10−7

10−6

10−5

10−4

10−3

10−2

I D
(A

µm
−1

)

Default
FDM only

Figure 4.22: Gate-source voltage I-V characteristic of n-channel MOSFET generated by mos1(0.
1,0.05,0.2,0.05,0.002,0.1,0.025). The drain-source voltage was varied from VDS = 0.5 V to
VDS = 1.5 V in five equal steps. Simulations were performed with constant mobility (“Default”)
and with field-dependent mobility (“FDM only”).

114

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x (µm)

0.14

0.16

0.18

0.20

y
(µ

m
)

Electric field

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x (µm)

0.14

0.16

0.18

0.20

y
(µ

m
)

Current density

Figure 4.23: Electric field (top) and current density (bottom) in n-channel MOSFET generated by
mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025) with VDS = 1 V and VGS = 0.5 V. Arrow length is
proportional to field magnitude; one arrow is plotted for each discretization node.

115

0 20 40 60 80 100
Reverse bias voltage (V)

10−10

10−8

10−6

10−4

10−2

100

102
C

ur
re

nt
(A

µm
−2

)

II and FDM
II only

Figure 4.24: I-V curves of reverse-biased 1D diode generated by Padre TCAD using arc-length
continuation. The first and second breakdown voltages were 105.4 V and 26.7 V for the II and FDM
case, and 104.3 V and 84.2 V for the II only case.

This metric was chosen since it measures relative error instead of absolute error, which is necessary
when comparing I-V curves since the underlying data vary over several orders of magnitude. The
normalization by M makes the loss length-independent so that I-V curves traced with different
values of M give a roughly equivalent RMSRE for identical data.

To minimize the RMSRE, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer im-
plemented by Optim.jl. This optimizer belongs to a class of algorithms known as secant optimizers,
which uses the gradient to approximate a step of Newton’s method [111]. This is generally more
efficient than using Newton’s method directly, since Newton’s method requires the full 3N × 3N
Hessian matrix, while secant optimizers only require the 3N × 1 gradient vector. Other gradient-
based optimizers like ADAM [79] were tested in the surrogatization approach but were found
to have inferior performance with respect to quickly reducing the loss function. The optimiza-
tion of the surrogate models was performed using DiffEqFlux.sciml_train, which implements
unconstrained optimization by using Zygote.jl for AD.

Preliminary experiments were conducted to analyze the unoptimized surrogate model and the
gradients of the RMSRE loss function. Figure 4.25 compares the I-V curves of the fine-grained 1D
diode model generated by diode1d(2.0,2.0) and the unoptimized surrogate model generated by
diode1d(2.0,2.0,ha=0.8,hb=0.16,hc=0.8). Both models were simulated using a forward bias
voltage of VF ∈ [0.01, 1]V, which was increased in 10 mV steps. The equilibrium case VF = 0 V
was excluded since it results in a current of zero; numerical error in the Newton solve may thus
give extremely small currents at that bias point which distort the RMSRE metric. The fine-grained
model has 163 discretization nodes, and the coarse-grained model has 11 discretization nodes. The
relative error of the coarse-grained model peaks at over 50% for low bias voltages and remains
relatively high along the entire I-V curve. The RMSRE of this unoptimized model is 0.294 17.

Optimization of the surrogate model requires the gradient of the RMSRE loss function with
respect to the doping profile. The loss function should be defined such that a surrogate model
with similar characteristics to the fine-grained model gives a low loss value. The interpretation of

116

https://julianlsolvers.github.io/Optim.jl/stable/

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−11

10−9

10−7

10−5

C
ur

re
nt

(A
µm
−2

)

Fine (163 nodes)
Coarse (11 nodes)

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
er

ro
r

Figure 4.25: Comparison of I-V curves for 1D diode using fine and coarse discretization grids.
The fine-grained model was generated by diode1d(2.0,2.0), and the coarse-grained model was
generated by diode1d(2.0,2.0,ha=0.8,hb=0.16,hc=0.8).

“similar” here is difficult; we interpret this as meaning that the I-V curves of the two devices are
close to within a small tolerance over some range of bias voltages. The particular range of bias
voltages over which the RMSRE is computed can affect the optimized doping profile. Figure 4.26
shows the gradient of the RMSRE loss function for three ranges of bias voltages.

The top plot in Figure 4.26 shows VF ∈ (0 V, 0.5 V]. For this range of bias voltages, the device
is only weakly forward-biased, and currents flow by diffusion across the depletion region. The
doping values adjacent to the junction thus have the most significant effect on the loss function; a
positive gradient in the p region means that less p-doping would decrease the loss, and a negative
gradient in the n region means that less n-doping would decrease the loss. The middle plot in
Figure 4.26 shows VF ∈ (0.5 V, 1 V]. For this range of bias voltages, the device is strongly forward-
biased, and currents flow due to the large electric field that exists in the semiconductor regions.
The doping values at the contacts have the most significant effect on the loss function for these
bias voltages.

The bottom plot in Figure 4.26 shows VF ∈ (0 V, 1 V]. This range includes both of the previous
ranges, but the gradient closely resembles the gradient shown in the top plot. This is because
there is a much higher relative error at lower voltages, as indicated by Figure 4.25. The overall
loss gradient acts mainly to minimize this error as opposed to the relatively smaller error present
at higher bias voltages.

The trends illustrated in Figure 4.26 are also explained by the results in Figure 4.27, which
shows the gradients of the current with respect to doping profile in the fine-grained 1D diode
model generated by diode1d(2.0,2.0). In the simulations where the device is only weakly
forward biased, the doping values on either side of the junction have the most significant effect
on the total current. This behavior changes between VF = 0.4 V and VF = 0.5 V, at which point
the doping values at the contacts begin to dominate the gradient. This effect continues for the
remaining bias voltages. The gradients are the opposite sign of those shown in the middle plot of
Figure 4.26 since the relative error at high bias voltages is negative in the unoptimized surrogate.

117

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Position (µm)

−7.5

−5.0

−2.5

0.0

2.5

×10−5

0.01:0.01:0.5

0.1:0.1:0.5

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Position (µm)

−1

0

1

2
×10−4

0.51:0.01:1.0

0.6:0.1:1.0

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Position (µm)

−6

−4

−2

0

2

×10−5

0.01:0.01:1.0

0.1:0.1:1.0

Figure 4.26: Loss gradients in surrogate model using three different bias voltage ranges. Plot
legends show the range of VF used to generate each gradient. Solid lines were computed using
10 mV bias steps, and dashed lines were computed using 100 mV bias steps.

118

−2 0 2
Position (µm)

−5.0

−2.5

0.0

2.5

5.0

×10−17 0.1 V

−2 0 2
Position (µm)

−4

−2

0

2

4

×10−14 0.4 V

−2 0 2
Position (µm)

−3

−2

−1

0

1

×10−11 0.7 V

−2 0 2
Position (µm)

−4

−2

0

2

4

6
×10−16 0.2 V

−2 0 2
Position (µm)

−7.5

−5.0

−2.5

0.0

2.5

×10−13 0.5 V

−2 0 2
Position (µm)

−7.5

−5.0

−2.5

0.0

2.5

×10−11 0.8 V

−2 0 2
Position (µm)

−4

−2

0

2

4

×10−15 0.3 V

−2 0 2
Position (µm)

−1.00

−0.75

−0.50

−0.25

0.00

0.25

×10−11 0.6 V

−2 0 2
Position (µm)

−1.5

−1.0

−0.5

0.0

0.5

×10−10 0.9 V

Figure 4.27: Gradients of current with respect to doping profile in 1D diode model generated by
diode1d(2.0,2.0). Forward bias voltages from VF = 0.1 V to VF = 0.9 V are shown.

119

4.4.2 One-dimensional diodes

Figures 4.28 through 4.31 show the results of the surrogatization process applied to 1D diodes.
Figures 4.28 and 4.29 were generated using 100 mV bias steps to compute loss, and Figures 4.30
and 4.31 were generated using 10 mV bias steps to compute loss. Both bias steps were effective in
training surrogates; using 100 mV bias steps resulted in a maximum relative error of roughly 1%,
while using 10 mV bias steps resulted in a much lower maximum error of roughly 0.1%. Both bias
steps produced qualitatively similar optimal doping profiles, which both specify a more strongly
n-doped cathode contact.

The difference in performance between the two bias steps is likely due to the optimizer over-
fitting to the sampled points on the I-V curve. In Figure 4.28, the minima of the relative error have
been shifted to align with the 100 mV bias increments: the minima occur at roughly 0.1 V, 0.2 V,
0.3 V and so on. This artificially decreases the loss without decreasing the relative error for much
of the I-V curve between 0 V and 1 V. This behavior was avoided by using the finer 10 mV bias
increments shown in Figure 4.30. The relative error using this finer bias increment is more smooth
since this loss function considers a larger number of points on the I-V curve. The disadvantage
of using this finer bias increment is the required simulation time—the simulation using 10 mV
bias increments had a runtime roughly ten times longer than the simulation using 100 mV bias
increments.

This overfitting hypothesis is validated by the results in Figures 4.32 and 4.33. Here, the
BFGS optimizer was run with a maximum of 1000 iterations. The optimizer terminated after
862 iterations with a loss of 3.5339 × 10−12, indicating that the doping profile was a zero of the
RMSRE loss function. The relative error plot in Figure 4.32 shows that the optimizer successfully
positioned the nulls in the relative error to lie exactly on the 100 mV bias increments used in the
loss function. The resulting doping profile performed relatively poorly away from these bias
increments, reaching a maximum error of nearly 1.4% at VF = 0.01 V. To prevent this overfitting,
the bias points could be sampled randomly instead of deterministically, or a larger number of bias
points could be used in the loss function.

4.4.3 Two-dimensional diodes

Figures 4.34 through 4.37 show the results of the surrogatization process applied to 2D diodes.
The fine-grained model d_fine and the coarse-grained model d_coarsewere generated as shown
below:

� ⊵
d_fine = diode2d(2.0,2.0,1.0,0.5,dx1=0.1,dx2=0.02,dx3=0.1,ny=9,rectgrid=true)
d_coarse = diode2d(2.0,2.0,1.0,0.5,dx1=0.8,dx2=0.16,dx3=0.8,rectgrid=true)� �

Rectangular grids were used so that d_coarse.grid would have a similar geometric structure to
d_fine.grid. The resulting fine-grained grid has 747 nodes and 1312 cells; the coarse-grained
grid has 55 nodes and 80 cells. The relative error of this unoptimized, coarse-grained model is
similar to that of the 1D coarse-grained model described in Section 4.4.2. The peak error of the
unoptimized 2D surrogate was 50.388% at VF = 0.09 V.

Figures 4.34 and 4.35 were generated using 100 mV bias steps to compute loss. The resulting
doping profile gives a peak error of 6.5107 × 10−3 at VF = 0.01 V. This behavior is similar to the
overfitting observed in the surrogatization of the 1D diode. Since no bias voltages below VF = 0.1 V
were considered in this loss function, the optimizer found a solution that gives low error at all

120

1 51 101 151 201
Iteration

10−3

10−2

10−1

Lo
ss

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−5

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

Optimized
Initial

Figure 4.28: Loss progression showing training process for surrogate model of 1D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was computed using
100 mV bias steps.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Position (µm)

−2

−1

0

1

2

N
et

do
pi

ng
co

nc
en

tr
at

io
n

(µm
−3

)

×103

Optimized
Initial

Figure 4.29: Optimal doping profile after 200 iterations of BFGS, using 100 mV bias steps to
compute loss. The dashed line gives the doping profile of the unoptimized surrogate for reference.

121

1 51 101 151 201
Iteration

10−3

10−2

10−1

Lo
ss

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−6

10−5

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

Optimized
Initial

Figure 4.30: Loss progression showing training process for surrogate model of 1D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was computed using
10 mV bias steps.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Position (µm)

−2

−1

0

1

2

N
et

do
pi

ng
co

nc
en

tr
at

io
n

(µm
−3

)

×103

Optimized
Initial

Figure 4.31: Optimal doping profile after 200 iterations of BFGS, using 10 mV bias steps to compute
loss. The dashed line gives the doping profile of the unoptimized surrogate for reference.

122

1 201 401 601 801
Iteration

10−10

10−8

10−6

10−4

10−2

Lo
ss

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−11

10−9

10−7

10−5

10−3

10−1

R
el

at
iv

e
er

ro
r

Optimized
Initial

Figure 4.32: Loss progression showing overfitting in surrogate model of 1D diode after 862 itera-
tions of BFGS (left); relative error between surrogate model and fine-grained model (right). Loss
was computed using 10 mV bias steps.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Position (µm)

−2

−1

0

1

2

3

N
et

do
pi

ng
co

nc
en

tr
at

io
n

(µm
−3

)

×103

Optimized
Initial

Figure 4.33: Optimal doping profile after 862 iterations of BFGS, using 10 mV bias steps to compute
loss. The dashed line gives the doping profile of the unoptimized surrogate for reference.

123

bias voltages except those near VF = 0. To resolve this, Figures 4.36 and 4.37 were generated using
the same 100 mV bias steps, but the additional bias step VF = 0.01 V was added to the bias vector
to eliminate peaking in the error at low bias voltages. The resulting doping profile gives a peak
error of 7.9327 × 10−4 at VF = 0.06 V, which is nearly a factor of ten better than the doping profile
generated without including VF = 0.01 V.

The doping profiles shown in Figures 4.35 and 4.37 are qualitatively similar to the optimized
1D doping profile shown in Figure 4.31. All three profiles show a slightly increased p-doping
near the anode contact, a highly increased n-doping to the right of the junction and an increased
n-doping near the cathode contact. The 2D surrogate provides additional degrees of freedom for
the optimizer, and the resulting 2D profiles vary slightly along the y axis. The doping profile
shown in Figure 4.35 shows a larger heavily doped p-type region near the anode contact and a
relatively more constant value in the y direction near the junction when compared to the profile
shown in Figure 4.37. These changes result in the decreased error at low bias voltages shown in
Figure 4.36.

In both bias step strategies discussed here, the BFGS optimizer was run with a maximum of
200 iterations. The optimizer terminated early in both cases due to insufficient decrease in the loss
function between iterations. If lower error is desired, this early termination could potentially be
avoided by choosing bias steps randomly to avoid convergence to a local minimum, or by using
an optimization algorithm that attempts to find the global minimum of the objective function.

124

1 51 101 151
Iteration

10−4

10−3

10−2

10−1

Lo
ss

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−5

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

Optimized
Initial

Figure 4.34: Loss progression showing training process for surrogate model of 2D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was computed using
100 mV bias steps.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−2000 −1500 −1000 −500 0 500 1000 1500 2000

Net doping concentration
(
µm−3

)

Figure 4.35: Optimal doping profile after 148 iterations of BFGS, using 100 mV bias steps to
compute loss. A local minimum loss of 3.7437 × 10−5 was reached at termination.

125

1 51 101 151
Iteration

10−4

10−3

10−2

10−1

Lo
ss

0.00 0.25 0.50 0.75 1.00
Forward bias voltage (V)

10−5

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

Optimized
Initial

Figure 4.36: Loss progression showing training process for surrogate model of 2D diode (left);
relative error between surrogate model and fine-grained model (right). Loss was computed using
100 mV bias steps, with the addition of VF = 0.01 V.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−2000 −1500 −1000 −500 0 500 1000 1500 2000

Net doping concentration
(
µm−3

)

Figure 4.37: Optimal doping profile after 170 iterations of BFGS, using 100 mV bias steps to
compute loss, with the addition of VF = 0.01 V. A local minimum loss of 4.0720 × 10−5 was
reached at termination.

126

Chapter 5

Conclusion

In this work, we described the design, implementation and performance of surrogate models of
silicon semiconductor devices. Chapter 2 discussed the Van Roosbroeck system, the PDE system
governing carrier transport in semiconductors, and its finite difference and finite volume discretiza-
tions. Numerical methods for solving the discretized PDE system were discussed, including the
damped Newton method. Automatic differentiation and scientific machine learning were dis-
cussed as key computational methods for training surrogates. A literature review was presented
to survey related work in inverse design, surrogate modeling and doping profile optimization.

Chapter 3 introduced Semiconductors.jl, a new semiconductor simulation tool capable of
performing 1D and 2D non-equilibrium simulations of semiconductor devices using the drift-
diffusion model. The features of Semiconductors.jl were discussed, and documentation was
provided for its public methods. A new vector discretization scheme was introduced to allow
estimation of field magnitudes in a finite volume discretization via the least-squares approximation.
A fully differentiable simulator was introduced that allows automatic differentiation of the entire
PDE solver via Zygote.jl. TCAD models of 1D and 2D diodes, 2D BJTs and 2D MOSFETs were
presented, and their implementation in Semiconductors.jlwas discussed.

Chapter 4 presented experimental results on the characteristics and the surrogatization of de-
vice models implemented in Semiconductors.jl. Current-voltage characteristics were presented
for various diode, BJT and MOSFET models. Scalar- and vector-valued quantities within the de-
vices were analyzed to verify device operation. The condition number of the Jacobian generated
by the 1D diode discretization was analyzed to determine the root cause of convergence errors
near junction breakdown. Surrogate models were created and trained for the 1D and 2D diode
models. The coarse-grained surrogate models for both devices achieved a maximum relative error
below 1 × 10−3 using less than 10% as many nodes as the fine-grained baseline.

Future work on Semiconductors.jl could improve the physics models, the numerical methods
and the computational performance of the simulator. This work assumed a simple drift-diffusion
model and used the Boltzmann approximation for carrier statistics. A more general approach
would allow arbitrary carrier distributions such as the Fermi-Dirac distribution, which more
accurately models electron and hole concentrations in degenerate semiconductors. This would
require the use of quasi-Fermi potentials in the discretization, since n and p could no longer be
expressed in closed form with respect to the potential. The drift-diffusion model could also be
extended to include lattice and carrier temperatures to allow modeling of effects like self heating
and hot carrier injection. Particle-based or Monte Carlo methods could be implemented to improve
simulation accuracy at deep sub-micron scales.

More device models could be implemented to test the performance of the surrogatization pro-

127

cess. In particular, the finite volume discretization discussed here can be generalized to a boundary
conforming Delaunay tetrahedralization of a 3D geometry. This generalization would allow simu-
lation of complex 3D devices like FinFETs, nanowire FETs and other emerging transistor structures.
Larger, circuit-level models could also be considered, allowing surrogatization of multiple active
devices at once. A 3D simulation would also allow the simultaneous solution of Maxwell’s equa-
tions for the magnetic and electric fields. This would allow accurate time-dependent simulation
and surrogatization of devices operating at high frequency. Time dependence can be included in
the finite volume discretization using the storage callback to VoronoiFVM.System.

This work relied heavily on Newton’s method as a nonlinear solver for the discretized PDE
systems. While Newton’s method can be quadratically convergent with suitable initial conditions,
it often fails to converge when the initial condition is far from the solution. Specifically, convergence
may fail if the bias step between two points on an I-V curve is too large, or if the desired bias point
is near a turning point. Some TCAD packages use Gummel’s method, an uncoupled nonlinear
solver, to generate a rough solution before applying Newton’s method. Since Gummel’s method is
less sensitive to initial conditions, this scheme can give convergence in situations where Newton’s
method is difficult or impossible to apply. Homotopy embedding could also be implemented to
aid convergence in numerically difficult situations [131].

Additional work is necessary to enable simulation of multivalued I-V curves using arc-length
continuation. The continuation algorithm implemented in Semiconductors.jl performs well for
single-valued I-V curves but fails to converge when a turning point is reached. This may be due to
the scaling of the current and voltage variables or to the nonlinear solver itself. A scaling scheme
similar to that used in Padre TCAD could be implemented, where minimum and maximum values
for the current and voltage are specified for each run, and the bias voltages and terminal currents
are normalized by those minimum and maximum values. An alternative nonlinear solver such
as Gummel’s method could be implemented to provide initial conditions for the damped Newton
solver near turning points. In the unlikely case that the linear solve computing the Newton step is
preventing convergence, a preconditioner method could be implemented to increase the accuracy
of the linear solve.

The differentiable simulator implemented in this work uses Zygote.Buffer to accumulate
gradients during assembly of the discretized PDE system. Performance profiling shows that this
accumulation comprises most of the runtime of the surrogate training process. This performance
could likely be improved using a custom pullback defined by, for example, ChainRulesCore.jl.
Performance could be further improved through parallelization. Currently, the I-V curve tracing
routines and all surrogate optimization loops are executed on a single thread. It may be possible to
accelerate the curve tracing by computing multiple bias points at once, provided a suitable initial
condition can be generated for each concurrent simulation.

128

https://github.com/JuliaDiff/ChainRulesCore.jl

Appendix A

Derivations

A.1 Scharfetter-Gummel midpoint scheme

This appendix contains details regarding the Scharfetter-Gummel midpoint scheme. In this work,
the midpoint scheme refers to the use of the values of n and p at the midpoint of grid segments,
as opposed to the traditional scheme that uses the value of x for which the finite difference
approximations of n′ and p′ hold.

A.1.1 Derivation

Substituting (2.38) and (2.39) into (2.36) gives

n(x) = n[k]

⎛
⎜⎜⎜⎜⎜⎜⎝1 − 1

1 − exp(δr)
−

exp
(︂
δr

x
x[k+1]−x[k]

)︂

exp
(︂
δr

x[k+1]
x[k+1]−x[k]

)︂
− exp

(︂
δr

x[k]
x[k+1]−x[k]

)︂
⎞
⎟⎟⎟⎟⎟⎟⎠+

n[k + 1]

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1 − exp(δr)

−
exp

(︂
δr

x
x[k+1]−x[k]

)︂

exp
(︂
δr

x[k+1]
x[k+1]−x[k]

)︂
− exp

(︂
δr

x[k]
x[k+1]−x[k]

)︂
⎞
⎟⎟⎟⎟⎟⎟⎠

= n[k]

⎛
⎜⎜⎜⎜⎜⎜⎝1 −

1 − exp
(︂
δr

x−x[k]
x[k+1]−x[k]

)︂

1 − exp(δr)

⎞
⎟⎟⎟⎟⎟⎟⎠ + n[k + 1]

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − exp
(︂
δr

x−x[k]
x[k+1]−x[k]

)︂

1 − exp(δr)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (A.1)

where δr is given in (2.42). We may now obtain n[k + 1/2] by substituting x = (x[k] + x[k + 1])/2
in (A.1), which gives

n
[︃
k +

1
2

]︃
= n[k]

(︄
1 − 1 − exp(δr/2)

1 − exp(δr)

)︄
+ n[k + 1]

(︄
1 − exp(δr/2)
1 − exp(δr)

)︄

= (1 − σ(δr)) n[k] + σ(δr)n[k + 1], (A.2)

where σ(x) is the sigmoid function

σ(x) =
1 − ex/2

1 − ex =
1

1 + ex/2 . (A.3)

Similar reasoning gives the value of n at the midpoint of x[k − 1] and x[k]:

n
[︃
k − 1

2

]︃
= (1 − σ(δl)) n[k − 1] + σ(δl)n[k], (A.4)

129

where δl is given in (2.42). Substituting (A.2) into (2.33),

Jn[k + 1/2]
q

=

µn[k + 1/2]VT

x[k + 1] − x[k]

(︄
((1 − σ(δr))n[k] + σ(δr)n[k + 1])

ψ[k] − ψ[k + 1]
VT

+ n[k + 1] − n[k]
)︄
. (A.5)

Using a similar approach to compute Jn[k − 1/2] from (A.4),

Jn[k − 1/2]
q

=

µn[k − 1/2]VT

x[k] − x[k − 1]

(︄
((1 − σ(δl))n[k − 1] + σ(δl)n[k])

ψ[k − 1] − ψ[k]
VT

+ n[k] − n[k − 1]
)︄
. (A.6)

Substituting (A.5) and (A.6) into (2.32),

J′n[k]
q
=

2
x[k + 1] − x[k − 1]

(c1n[k − 1] + c2n[k] + c3n[k + 1]) , (A.7)

where

c1 =
µn[k − 1/2]VT

x[k] − x[k − 1]
(δl(1 − σ(δl)) + 1) ,

c2 = −µn[k − 1/2]VT

x[k] − x[k − 1]
(δlσ(δl) − 1) − µn[k + 1/2]VT

x[k + 1] − x[k]
(δr(1 − σ(δr)) + 1) ,

c3 = −µn[k + 1/2]VT

x[k + 1] − x[k]
(δrσ(δr) − 1) .

Equation (A.7) can be used to compute the electron current residual Fn[k], and an analogous process
can be used for holes:

Fn[k] = G[k] −U[k] +
2

x[k + 1] − x[k − 1]

(︄

µn[k − 1/2]VT

x[k] − x[k − 1]

(︂
(1 + δl(1 − σ(δl)))n[k − 1] − (1 − δlσ(δl))n[k]

)︂
−

µn[k + 1/2]VT

x[k + 1] − x[k]

(︂
(1 + δr(1 − σ(δr)))n[k] − (1 − δrσ(δr))n[k + 1]

)︂)︄
= 0, (A.8)

Fp[k] = G[k] −U[k] +
2

x[k + 1] − x[k − 1]

(︄

µp[k − 1/2]VT

x[k] − x[k − 1]

(︂
(1 − δlσ(δl))p[k − 1] − (1 + δl(1 − σ(δl)))p[k]

)︂
−

µp[k + 1/2]VT

x[k + 1] − x[k]

(︂
(1 − δrσ(δr))p[k] − (1 + δr(1 − σ(δr)))p[k + 1]

)︂)︄
= 0. (A.9)

The Poisson residual in (2.52) can be used along with (A.8) and (A.9) to provide a complete
discretization.

130

−2 −1 0 1 2
Position (µm)

10−7

10−6

10−5

10−4

10−3

10−2
R

el
at

iv
e

er
ro

r

VF = 1.0 V

ψ

n
p

−2 −1 0 1 2
Position (µm)

10−7

10−6

10−5

10−4

10−3

10−2

R
el

at
iv

e
er

ro
r

VF = 0.3 V

Figure A.1: Relative error between midpoint scheme and Scharfetter-Gummel discretization in a
1D diode simulation under heavy forward bias (VF = 1.0 V, left) and light forward bias (VF = 0.3 V,
right).

A.1.2 Comparison

The residuals given in (A.8) and (A.9) are similar to those in (2.53) and (2.54). In the traditional
Scharfetter-Gummel discretization, the Bernoulli function B(x) is used to determine the weights of,
say, n[k−1] and n[k] in Fn. In the midpoint scheme, the function 1−xσ(x) is used instead, which has
identical behavior for small x but deviates from the Bernoulli function for large x. Similarly, the
traditional Scharfetter-Gummel discretization uses Q(x) to interpolate between n[k− 1] and n[k] in
the determination of n[k − 1/2], while the midpoint scheme uses σ(x). The behaviors of these four
functions are compared in Figure A.2. The difference between the interpolation functions is

σ(x) −Q(x) =
1

1 + ex/2 −
1
x
+

1
ex − 1

=
1
2

csch
(︃x
2

)︃
− 1

x
.

The difference between the weight functions is

1 − xσ(x) − B(x) = 1 − x
1 + ex/2 −

x
ex − 1

= 1 − x
2

csch
(︃x
2

)︃
.

These differences are shown in Figure A.3.
Since the two weight functions are nearly identical for small x, the impact of the midpoint

scheme on the overall simulation is typically negligible. Figure A.1 shows the relative error
between a simulation conducted using the midpoint scheme and a simulation conducted using
the traditional Scharfetter-Gummel discretization. The simulation was run using the default 1D
diode model, resulting in a grid with 163 nodes. The diode was simulated with a forward bias
of VF = 1.0 V and VF = 0.3 V, corresponding to drift-dominant and diffusion-dominant currents,
respectively. In the drift-dominant scenario, the error in ψ is considerably smaller than the error in
the carrier concentrations and is relatively constant along the device. The error in n and p is larger,
peaking at nearly 1% near the left contact. In the diffusion-dominant scenario, the error in n and
p is large along the device, with the error in the majority carrier concentration reaching nearly 2%
in each doped region.

131

−20 −10 0 10 20
x

0.0

0.2

0.4

0.6

0.8

1.0
σ(x)

Q(x)

−20 −10 0 10 20
x

0

5

10

15

20 1− xσ(x)

B(x)

Figure A.2: Comparison of interpolation functions Q(x) and σ(x) (left); comparison of weight
functions B(x) and 1 − xσ(x) (right), for x ∈ (−20, 20).

−20 −10 0 10 20
x

−0.10

−0.05

0.00

0.05

0.10

σ
(x

)
−Q

(x
)

−20 −10 0 10 20
x

0.0

0.2

0.4

0.6

0.8

1.0

1
−x
σ
(x

)
−B

(x
)

Figure A.3: Difference between interpolation functions (left) and weight functions (right) in clas-
sical Scharfetter-Gummel discretization versus midpoint scheme discretization.

132

A.2 Jacobian of 1D finite difference discretization

In this section, we derive the system Jacobian for the residuals given in (2.52) through (2.54). We
assume that G[k] = 0, that U[k] is only a function of n[k] and p[k], that µn and µp are piecewise
constant and that Dirichlet boundary conditions are enforced without the use of penalty methods.
We further assume that only the Shockley-Read-Hall recombination model is used and that τn
and τp are constant along the device, i.e. U[k] = USRH[k], where USRH is given in (2.15). Nonzero
generation rates and field-dependent mobilities create additional nonzero entries in the Jacobian
and are not considered here.

A.2.1 Derivation

The nonzero derivatives of Fψ[k] are

∂Fψ[k]
∂ψ[k − 1]

=
2ε[k − 1/2]

(x[k + 1] − x[k − 1]) (x[k] − x[k − 1])
,

∂Fψ[k]
∂ψ[k]

= − 2
x[k + 1] − x[k − 1]

(︄
ε[k − 1/2]

x[k] − x[k − 1]
+

ε[k + 1/2]
x[k + 1] − x[k]

)︄
,

∂Fψ[k]
∂ψ[k + 1]

=
2ε[k + 1/2]

(x[k + 1] − x[k − 1]) (x[k + 1] − x[k])
,

∂ fψ[k]
∂n[k]

= −q,

∂ fψ[k]
∂p[k]

= q.

The nonzero derivatives of Fn[k] are

∂Fn[k]
∂ψ[k − 1]

=
2µn[k − 1/2]

(x[k + 1] − x[k − 1]) (x[k] − x[k − 1])

(︂
B′(−δl)n[k − 1] + B′(δl)n[k]

)︂
,

∂Fn[k]
∂ψ[k]

= − 2µn[k − 1/2]
(x[k + 1] − x[k − 1]) (x[k] − x[k − 1])

(︂
B′(−δl)n[k − 1] + B′(δl)n[k]

)︂
−

2µn[k + 1/2]
(x[k + 1] − x[k − 1]) (x[k + 1] − x[k])

(︂
B′(−δr)n[k] + B′(δr)n[k + 1]

)︂
,

∂Fn[k]
∂ψ[k + 1]

=
2µn[k + 1/2]

(x[k + 1] − x[k − 1]) (x[k + 1] − x[k])

(︂
B′(−δr)n[k] + B′(δr)n[k + 1]

)︂
,

∂Fn[k]
∂n[k − 1]

=
2µn[k − 1/2]VTB(−δl)

(x[k + 1] − x[k − 1]) (x[k] − x[k − 1])
,

∂Fn[k]
∂n[k]

= − 2VT

x[k + 1] − x[k − 1]

(︄
µn[k − 1/2]

x[k] − x[k − 1]
B(δl) +

µn[k + 1/2]
x[k + 1] − x[k]

B(−δr)
)︄
− ∂U[k]
∂n[k]

,

∂Fn[k]
∂n[k + 1]

=
2µn[k + 1/2]VTB(δr)

(x[k + 1] − x[k − 1]) (x[k + 1] − x[k])
,

∂Fn[k]
∂p[k]

= −∂U[k]
∂p[k]

.

133

The nonzero derivatives of Fp[k] are

∂Fp[k]
∂ψ[k − 1]

= − 2µp[k − 1/2]
(x[k + 1] − x[k − 1]) (x[k] − x[k − 1])

(︂
B′(δl)p[k − 1] + B′(−δl)p[k]

)︂
,

∂Fp[k]
∂ψ[k]

=
2µp[k − 1/2]

(x[k + 1] − x[k − 1]) (x[k] − x[k − 1])

(︂
B′(δl)p[k − 1] + B′(−δl)p[k]

)︂
+

2µp[k + 1/2]
(x[k + 1] − x[k − 1]) (x[k + 1] − x[k])

(︂
B′(δr)p[k] + B′(−δr)p[k + 1]

)︂
,

∂Fp[k]
∂ψ[k + 1]

= − 2µp[k + 1/2]
(x[k + 1] − x[k − 1]) (x[k + 1] − x[k])

(︂
B′(δr)p[k] + B′(−δr)p[k + 1]

)︂
,

∂Fp[k]
∂n[k]

= −∂U[k]
∂n[k]

,

∂Fp[k]
∂p[k − 1]

=
2µp[k − 1/2]VTB(δl)

(x[k + 1] − x[k − 1]) (x[k] − x[k − 1])
,

∂Fp[k]
∂p[k]

= − 2VT

x[k + 1] − x[k − 1]

(︄
µp[k − 1/2]

x[k] − x[k − 1]
B(−δl) +

µp[k + 1/2]
x[k + 1] − x[k]

B(δr)
)︄
− ∂U[k]
∂p[k]

,

∂Fp[k]
∂p[k + 1]

=
2µp[k + 1/2]VTB(−δr)

(x[k + 1] − x[k − 1]) (x[k + 1] − x[k])
.

In the expressions above, the function B′(x) is the derivative of the Bernoulli function,

B′(x) =
ex − 1 − xex

(ex − 1)2 =
1

ex − 1
− xex

(ex − 1)2 . (A.10)

The Taylor expansion of B′(x) at x = 0 can be found by differentiation of (2.50):

B′(x) = −1
2
+

x
6
− x3

180
+

x5

5040
− x7

151 200
+

x9

4 790 016
− · · · .

The derivatives of the recombination function are

∂U[k]
∂n[k]

=

(︁
p[k] + ni

)︁ (︂
niτp + p[k]τn

)︂

(︂
(n[k] + ni) τp +

(︁
p[k] + ni

)︁
τn

)︂2 ,
∂U[k]
∂p[k]

=
(n[k] + ni)

(︂
n[k]τp + niτn

)︂

(︂
(n[k] + ni) τp +

(︁
p[k] + ni

)︁
τn

)︂2 . (A.11)

A.2.2 Sparsity

The system Jacobian is a block diagonal matrix comprised of entries J[k] ∈ R3×9, where

J[k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Fψ[k]
∂ψ[k−1] 0 0

∂Fψ[k]
∂ψ[k]

∂Fψ[k]
∂n[k]

∂Fψ[k]
∂p[k]

∂Fψ[k]
∂ψ[k+1] 0 0

∂Fn[k]
∂ψ[k−1]

∂Fn[k]
∂n[k−1] 0 ∂Fn[k]

∂ψ[k]
∂Fn[k]
∂n[k]

∂Fn[k]
∂p[k]

∂Fn[k]
∂ψ[k+1]

∂Fn[k]
∂n[k+1] 0

∂Fp[k]
∂ψ[k−1] 0

∂Fp[k]
∂p[k−1]

∂Fp[k]
∂ψ[k]

∂Fp[k]
∂n[k]

∂Fp[k]
∂p[k]

∂Fp[k]
∂ψ[k+1] 0

∂Fp[k]
∂p[k+1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and k ∈ [2,N − 1]. Dirichlet boundary conditions hold when k = 1 or k = N, and

J[1] = J[N] =
[︂
I3 03,6

]︂
.

The overall Jacobian has the form

J = diag
(︂

J[1], J[2], · · · , J[N − 1], J[N]
)︂
,

where each entry is offset from the previous entry by 3 columns.

134

A.3 Jacobian of finite volume discretization

In this section, we derive the system Jacobian for the finite volume residual given in (2.62) using the
discretizations given in (2.63) through (2.65). This Jacobian is manually assembled by assemble_
res_jac! in the differentiable simulator.

We assume that G[k] = 0, that U[k] is only a function of n[k] and p[k], that µn and µp are
piecewise constant and that Dirichlet boundary conditions are enforced without the use of penalty
methods. We further assume that only the Shockley-Read-Hall recombination model is used and
that τn and τp are constant along the device, i.e. U[k] = USRH[k], where USRH is given in (2.15).
Nonzero generation rates and field-dependent mobilities create additional nonzero entries in the
Jacobian and are not considered here.

A.3.1 Residuals

The finite volume residuals are

Fψ[k] =
∑︂

l∈N[k]

ε[k, l]
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄ (︂
ψ[k] − ψ[l]

)︂
+q|ωk|

(︂
n[k] − p[k] − Γ[k]

)︂
,

Fn[k] =
∑︂

l∈N[k]

µn[k, l]VT

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄ (︄
B
(︄
−ψ[l] − ψ[k]

VT

)︄
n[k] − B

(︄
ψ[l] − ψ[k]

VT

)︄
n[l]

)︄
+

|ωk|
(︂

U[k] − G[k]
)︂
,

Fp[k] =
∑︂

l∈N[k]

µp[k, l]VT

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄ (︄
B
(︄
ψ[l] − ψ[k]

VT

)︄
p[k] − B

(︄
−ψ[l] − ψ[k]

VT

)︄
p[l]

)︄
+

|ωk|
(︂

U[k] − G[k]
)︂
.

A.3.2 Derivation

The nonzero derivatives of Fψ[k] are

∂Fψ[k]
∂ψ[k]

=
∑︂

l∈N[k]

ε[k, l]
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
,

∂Fψ[k]
∂ψ[l]

= −ε[k, l]
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
, where l ∈ N[k],

∂Fψ[k]
∂n[k]

= q|ωk|,
∂Fψ[k]
∂p[k]

= −q|ωk|.

The nonzero derivatives of Fn[k] are

∂Fn[k]
∂ψ[k]

=
∑︂

l∈N[k]

µn[k, l]
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄ (︄
B′

(︄
−ψ[l] − ψ[k]

VT

)︄
n[k] + B′

(︄
ψ[l] − ψ[k]

VT

)︄
n[l]

)︄
,

∂Fn[k]
∂ψ[l]

= −µn[k, l]
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄ (︄
B′

(︄
−ψ[l] − ψ[k]

VT

)︄
n[k] + B′

(︄
ψ[l] − ψ[k]

VT

)︄
n[l]

)︄
, where l ∈ N[k],

135

∂Fn[k]
∂n[k]

=
∑︂

l∈N[k]

µn[k, l]VT

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
B
(︄
−ψ[l] − ψ[k]

VT

)︄
+ |ωk|

(︄
∂U[k]
∂n[k]

)︄
,

∂Fn[k]
∂n[l]

= −µn[k, l]VT

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
B
(︄
ψ[l] − ψ[k]

VT

)︄
, where l ∈ N[k],

∂Fn[k]
∂p[k]

= |ωk|
(︄
∂U[k]
∂p[k]

)︄
.

The nonzero derivatives of Fp[k] are

∂Fp[k]
∂ψ[k]

= −
∑︂

l∈N[k]

µp[k, l]
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄ (︄
B′

(︄
ψ[l] − ψ[k]

VT

)︄
p[k] + B′

(︄
−ψ[l] − ψ[k]

VT

)︄
p[l]

)︄
,

∂Fp[k]
∂ψ[l]

= µp[k, l]
(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄ (︄
B′

(︄
ψ[l] − ψ[k]

VT

)︄
p[k] + B′

(︄
−ψ[l] − ψ[k]

VT

)︄
p[l]

)︄
, where l ∈ N[k],

∂Fp[k]
∂n[k]

= |ωk|
(︄
∂U[k]
∂n[k]

)︄
,

∂Fp[k]
∂p[k]

=
∑︂

l∈N[k]

µp[k, l]VT

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
B
(︄
ψ[l] − ψ[k]

VT

)︄
+ |ωk|

(︄
∂U[k]
∂p[k]

)︄
,

∂Fp[k]
∂p[l]

= −µp[k, l]VT

(︄ |∂ωk ∩ ∂ωl|
∥x[l] − x[k]∥

)︄
B
(︄
−ψ[l] − ψ[k]

VT

)︄
, where l ∈ N[k].

The derivative of the Bernoulli function, B′(x), is given in (A.10), and the derivatives of the
recombination function are given in (A.11).

The above expressions hold at all nodes in the discretization except the nodes belonging to
boundary regions corresponding to ideal Ohmic contacts. For such boundary nodes, we have

∂Fψ[k]
∂ψ[k]

=
∂Fn[k]
∂n[k]

=
∂Fp[k]
∂p[k]

= 1

assuming Dirichlet boundary conditions are imposed without penalty. All other partial derivatives
in these rows of the Jacobian are 0.

136

Appendix B

Additional results

This appendix presents additional experimental results on the characteristics of the device models
implemented in Semiconductors.jl and of their solutions. The results in this appendix are mainly
illustrative and serve to reinforce the key results presented in Chapter 4.

B.1 Diodes

Figure B.1 shows the log-magnitude of Jacobian matrices of the one-dimensional diode generated
by diode1d. The diode used in this figure uses an 11-point discretization grid to allow visualization
of the sparsity pattern of the matrix. The matrices assembled using Dirichlet boundary conditions
with a penalty factor of unity. The sparsity pattern described in Section A.2.2 is clearly visible in
this figure. The resulting Jacobian has size 33 × 33 since each of the 11 nodes is associated with
unknown values of ψ, n and p.

In Figure B.1, the partial derivatives of Fψ are several orders of magnitude smaller than those
of Fn or Fp, in agreement with the results presented in Section A.2.2. The derivatives of Fψ are
proportional to the quantities q and ε0, which both have values on the order of 1 × 10−19 to 1 × 10−18

in the units used in Semiconductors.jl. The residuals of n[k] and p[k] are strongly coupled toψ[k]
when the device is forward biased due to the nonlinear upwinding introduced by the Scharfetter-
Gummel discretization.

Figure B.2 shows the potential, electron density and hole density in the two-dimensional diode
generated by diode2d(2.0,2.0,1.0,0.5,rectgrid=true). This simulation is identical to the one
shown in Figure 4.12, except a rectangular discretization grid is used instead of a triangular grid.
This rectangular grid has 285 nodes and 448 cells (triangles), compared to 459 nodes and 825 cells
in the triangular grid shown in Figure 4.12. This rectangular grid can yield faster simulations
when limited variation along the y axis is expected; in this case, the diode model is nearly 1D, so
the rectangular grid using only 5 nodes in the y direction is sufficient to simulate ψ, n and p in both
dimensions.

B.2 Bipolar transistors

Figure B.3 shows the potential, electron density and hole density in the NPN BJT generated
by npn1(5,1,10,5,3,3,0.2,rectgrid=true). This simulation is identical to the one shown in
Figure 4.17, except a rectangular discretization grid is used instead of a triangular grid. This
rectangular grid has 240 nodes and 390 cells (triangles), compared to 257 nodes and 461 cells in

137

1 4 7 10 13 16 19 22 25 28 31

1

4

7

10

13

16

19

22

25

28

31

Equilibrium

1 4 7 10 13 16 19 22 25 28 31

1

4

7

10

13

16

19

22

25

28

31

VF = 0.6 V

1 4 7 10 13 16 19 22 25 28 31

1

4

7

10

13

16

19

22

25

28

31

VR = 112.1 V

1 4 7 10 13 16 19 22 25 28 31

1

4

7

10

13

16

19

22

25

28

31

VR = 112.1 V, II and FDM

−10 0 10
Log-magnitude

−10 0 10
Log-magnitude

−10 0 10
Log-magnitude

−10 0 10
Log-magnitude

Figure B.1: Jacobian matrices of 1D diode generated by diode1d(2.0,2.0,ha=0.04,hb=0.04,
hc=0.04). The resulting model has an 11-point discretization grid with uniform spacing. Bias
conditions are labeled in the plot titles.

138

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x (µm)

0.00

0.25

0.50

0.75

1.00

y
(µ

m
)

−0.342−0.336−0.330−0.324−0.318−0.312−0.306−0.300−0.294−0.288
Potential (V)

−7.5 −6.0 −4.5 −3.0 −1.5 0.0 1.5 3.0 4.5

log10 n
(
µm−3

)

−7.5 −6.0 −4.5 −3.0 −1.5 0.0 1.5 3.0 4.5

log10 p
(
µm−3

)

Figure B.2: Potential (top), electron density (middle) and hole density (bottom) in 2D diode
generated by diode2d(2.0,2.0,1.0,0.5,rectgrid=true). Simulation was performed with a
forward bias of 0.6 V.

139

the triangular grid shown in Figure 4.17. This grid has limited resolution in the y direction, but
it provides a more regular discretization along the x direction as opposed to the unstructured
triangular discretization. Consequently, local refinement is only possible in the x direction; any
refinement applied in the y direction creates additional cells along the entire device, which is not
generally desirable.

Figure B.4 shows the vector-valued electric field and current density in the NPN BJT generated
by npn1(5,1,10,5,3,3,0.2) with IB = 5 × 10−7 Aµm−1 and VCE = 2 V. Large electric fields
exist near the base-emitter junction and base-collector junction due to their depletion regions. The
current density is roughly constant along the device due to conservation of charge. A small current
is visible pointing inwards from the base contact due to the base current, which is relatively small
compared to the collector current. Slight increases in the magnitude of the current density field
are also visible near the collector and emitter contacts due to current crowding.

B.3 MOSFETs

Figure B.5 shows the vector-valued electric field and current density in the n-channel MOSFET
generated by mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025) with VDS = 1 V and VGS = −0.5 V.
This figure shows the path of undesirable leakage currents through the substrate when VGS < 0.
In this region, the device is driven into accumulation, a condition in which electrons are strongly
repelled from the bulk-oxide interface. Current can no longer flow through the channel region
in accumulation, and the current must flow through the reverse-biased bulk-drain junction and
into the substrate. This effect is similar to the off-state leakage in a BJT and is often modeled as
a separate parasitic transistor in the substrate. The parasitic substrate BJT can cause latch-up in
CMOS devices, which can be highly disruptive in digital logic circuits [23].

140

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4
Potential (V)

−8 −6 −4 −2 0 2 4 6 8

log10 n
(
µm−3

)

−10 −8 −6 −4 −2 0 2 4 6

log10 p
(
µm−3

)

Figure B.3: Potential (top), electron density (middle) and hole density (bottom) in NPN BJT
generated by npn1(5,1,10,5,3,3,0.2,rectgrid=true). Simulation was performed with IB =
5 × 10−7 Aµm−1 and VCE = 2 V.

141

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

Electric field

0 2 4 6 8 10 12 14 16
x (µm)

0

2

4

y
(µ

m
)

Current density

Figure B.4: Electric field (top) and current density (bottom) in NPN BJT generated by npn1(5,
1,10,5,3,3,0.2). Simulation was performed with IB = 5 × 10−7 Aµm−1 and VCE = 2 V. Arrow
length is proportional to field magnitude; one arrow is plotted for each discretization node.

142

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x (µm)

0.14

0.16

0.18

0.20

y
(µ

m
)

Electric field

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
x (µm)

0.14

0.16

0.18

0.20

y
(µ

m
)

Current density

Figure B.5: Electric field (top) and current density (bottom) in n-channel MOSFET generated by
mos1(0.1,0.05,0.2,0.05,0.002,0.1,0.025) with VDS = 1 V and VGS = −0.5 V. Arrow length
is proportional to field magnitude; one arrow is plotted for each discretization node.

143

144

Bibliography

[1] R. Anantharaman et al. Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks. 2021. arXiv: 2010.04004 [cs.LG].

[2] Y. Augenstein and C. Rockstuhl. “Inverse Design of Nanophotonic Devices With Struc-
tural Integrity”. In: ACS Photonics 7.8 (2020), pp. 2190–2196. doi: 10.1021/acsphotonics.
0c00699.

[3] R. E. Bank, D. J. Rose, and W. Fichtner. “Numerical Methods for Semiconductor Device
Simulation”. In: IEEE Transactions on Electron Devices 30.9 (1983), pp. 1031–1041. doi: 10.
1109/T-ED.1983.21257.

[4] R. E. Bank and T. F. Chan. “PLTMGC: A Multigrid Continuation Program for Parameterized
Nonlinear Elliptic Systems”. In: SIAM Journal on Scientific and Statistical Computing 7.2 (1986),
pp. 540–559. doi: 10.1137/0907036.

[5] R. E. Bank, W. M. Coughran Jr., and L. C. Cowsar. “The Finite Volume Scharfetter-Gummel
Method for Steady Convection Diffusion Equations”. In: Computing and Visualization in
Science 1.3 (1998), pp. 123–136. doi: 10.1007/s007910050012.

[6] R. E. Bank and D. J. Rose. “Global Approximate Newton Methods”. In: Numerische Mathe-
matik 37.2 (1981), pp. 279–295. doi: 10.1007/BF01398257.

[7] M. Bartels et al. “A Robust Curve Tracing Scheme for the Simulation of Bipolar Breakdown
Characteristics With Nonlocal Impact Ionization Models”. In: 29th European Solid-State De-
vice Research Conference. Vol. 1. 1999, pp. 492–495. url: https://ieeexplore.ieee.org/
abstract/document/1505547.

[8] M. K. Basak and M. A.-A. Joarder. “Simulation of a 2D P-N Junction in Silicon Thin Film In-
corporating Quantum Transport For Carriers”. B.S. thesis. Daffodil International University,
2017. url: http://dspace.daffodilvarsity.edu.bd:8080/handle/20.500.11948/1850.

[9] D. Bednarczyk and J. Bednarczyk. “The approximation of the Fermi-Dirac integral F1/2(η)”.
In: Physics Letters A 64.4 (1978), pp. 409–410. doi: 10.1016/0375-9601(78)90283-9.

[10] J. Bezanson et al. Julia: A Fast Dynamic Language for Technical Computing. 2012. arXiv: 1209.
5145 [cs.PL].

[11] P. Blakey. “Transistor Modeling and TCAD”. In: IEEE Microwave Magazine 13.7 (2012),
pp. 28–35. doi: 10.1109/MMM.2012.2216103.

[12] M. Burger et al. “On Inverse Problems for Semiconductor Equations”. In: Milan Journal of
Mathematics 72.1 (2004), pp. 273–313. doi: 10.1007/s00032-004-0025-6.

145

https://arxiv.org/abs/2010.04004
https://doi.org/10.1021/acsphotonics.0c00699
https://doi.org/10.1021/acsphotonics.0c00699
https://doi.org/10.1109/T-ED.1983.21257
https://doi.org/10.1109/T-ED.1983.21257
https://doi.org/10.1137/0907036
https://doi.org/10.1007/s007910050012
https://doi.org/10.1007/BF01398257
https://ieeexplore.ieee.org/abstract/document/1505547
https://ieeexplore.ieee.org/abstract/document/1505547
http://dspace.daffodilvarsity.edu.bd:8080/handle/20.500.11948/1850
https://doi.org/10.1016/0375-9601(78)90283-9
https://arxiv.org/abs/1209.5145
https://arxiv.org/abs/1209.5145
https://doi.org/10.1109/MMM.2012.2216103
https://doi.org/10.1007/s00032-004-0025-6

[13] M. Burger, H. W. Engl, and P. A. Markowich. “Inverse Doping Problems for Semiconductor
Devices”. In: Recent Progress in Computational and Applied PDEs. Ed. by T. F. Chan et al.
Boston, MA: Springer US, 2002, pp. 39–53. isbn: 9781461501138. doi: 10.1007/978- 1-
4615-0113-8_3.

[14] J. F. Burgler et al. “A New Discretization Scheme for the Semiconductor Current Continuity
Equations”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
8.5 (1989), pp. 479–489. doi: 10.1109/43.24876.

[15] C. S. Burrus et al. “Horner’s Method for Evaluating and Deflating Polynomials”. In: DSP
Software Notes 26 (2003).url: https://www.ece.rice.edu/dsp/software/FVHDP/horner2.
pdf.

[16] D. M. Caughey and R. E. Thomas. “Carrier Mobilities in Silicon Empirically Related to
Doping and Field”. In: Proceedings of the IEEE 55.12 (1967), pp. 2192–2193. doi: 10.1109/
PROC.1967.6123.

[17] R. T. Q. Chen et al. Neural Ordinary Differential Equations. 2019. arXiv: 1806.07366 [cs.LG].

[18] Y. Cheng, I. M. Gamba, and K. Ren. “Recovering Doping Profiles in Semiconductor De-
vices With the Boltzmann-Poisson Model”. In: Journal of Computational Physics 230.9 (2011),
pp. 3391–3412. doi: 10.1016/j.jcp.2011.01.034.

[19] A. G. Chynoweth. “Ionization Rates for Electrons and Holes in Silicon”. In: Physical Review
109.5 (1958), pp. 1537–1540. doi: 10.1103/PhysRev.109.1537.

[20] W. J. Cody and H. C. Thacher. “Rational Chebyshev Approximations for Fermi-Dirac Inte-
grals of Orders −1/2, 1/2 and 3/2”. In: Mathematics of Computation 21.97 (1967), pp. 30–40.
issn: 00255718, 10886842. url: http://www.jstor.org/stable/2003468.

[21] S. Colburn and A. Majumdar. “Inverse Design and Flexible Parameterization of Meta-
Optics Using Algorithmic Differentiation”. In: Communications Physics 4.1 (2021), pp. 1–11.
doi: 10.1038/s42005-021-00568-6.

[22] W. M. Coughran, E. Grosse, and D. J. Rose. “CAzM: A Circuit Analyzer With Macromod-
eling”. In: IEEE Transactions on Electron Devices 30.9 (1983), pp. 1207–1213. doi: 10.1109/T-
ED.1983.21276.

[23] W. M. Coughran, M. R. Pinto, and R. K. Smith. “Computation of Steady-State CMOS
Latchup Characteristics”. In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 7.2 (1988), pp. 307–323. doi: 10.1109/43.3162.

[24] W. M. Coughran, M. R. Pinto, and R. K. Smith. “Continuation Methods in Semiconduc-
tor Device Simulation”. In: Continuation Techniques and Bifurcation Problems. Ed. by H. D.
Mittelmann and D. Roose. Springer, 1990, pp. 47–65. isbn: 9783764323974.

[25] C. K. Dabhi et al. BSIM4 v4.8.2 MOSFET Model. 2020. url: http://bsim.berkeley.edu/
BSIM4/BSIM4_4.8.2_20200101.tar.gz.

[26] R. Dandekar, C. Rackauckas, and G. Barbastathis. “A Machine Learning-Aided Global
Diagnostic and Comparative Tool to Assess Effect of Quarantine Control in COVID-19
Spread”. In: Patterns 1.9 (2020), p. 100145. issn: 2666-3899. doi: 10.1016/j.patter.2020.
100145.

[27] R. Dandekar et al. Bayesian Neural Ordinary Differential Equations. 2022. arXiv: 2012.07244
[cs.LG].

146

https://doi.org/10.1007/978-1-4615-0113-8_3
https://doi.org/10.1007/978-1-4615-0113-8_3
https://doi.org/10.1109/43.24876
https://www.ece.rice.edu/dsp/software/FVHDP/horner2.pdf
https://www.ece.rice.edu/dsp/software/FVHDP/horner2.pdf
https://doi.org/10.1109/PROC.1967.6123
https://doi.org/10.1109/PROC.1967.6123
https://arxiv.org/abs/1806.07366
https://doi.org/10.1016/j.jcp.2011.01.034
https://doi.org/10.1103/PhysRev.109.1537
http://www.jstor.org/stable/2003468
https://doi.org/10.1038/s42005-021-00568-6
https://doi.org/10.1109/T-ED.1983.21276
https://doi.org/10.1109/T-ED.1983.21276
https://doi.org/10.1109/43.3162
http://bsim.berkeley.edu/BSIM4/BSIM4_4.8.2_20200101.tar.gz
http://bsim.berkeley.edu/BSIM4/BSIM4_4.8.2_20200101.tar.gz
https://doi.org/10.1016/j.patter.2020.100145
https://doi.org/10.1016/j.patter.2020.100145
https://arxiv.org/abs/2012.07244
https://arxiv.org/abs/2012.07244

[28] J. L. Dawson et al. “Optimal Allocation of Local Feedback in Multistage Amplifiers via
Geometric Programming”. In: IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications 48.1 (2001), pp. 1–11. doi: 10.1109/81.903183.

[29] S. B. Desai et al. “MoS2 Transistors With 1-Nanometer Gate Lengths”. In: Science 354.6308
(2016), pp. 99–102. doi: 10.1126/science.aah4698.

[30] H. Dhillon et al. “TCAD-Augmented Machine Learning With and Without Domain Exper-
tise”. In: IEEE Transactions on Electron Devices 68.11 (2021), pp. 5498–5503. doi: 10.1109/
TED.2021.3073378.

[31] J. Dickerson, R. J. Kaplar, and G. Pickrell. Modeling of Avalanche Breakdown in Silicon and
Gallium Nitride High-Voltage Diodes Using COMSOL. 2018. url: https://www.osti.gov/
servlets/purl/1594284.

[32] G. Ding. A Software Package for Numerical Simulation of Semiconductor Devices Under HPM
Environment. 2006. url: https://www.yumpu.com/en/document/read/6664225/a-
software-package-for-numerical-simulation-of-semiconductor-gss.

[33] D. H. Doan et al. “Drift-Diffusion Simulation of S-Shaped Current-Voltage Relations for Or-
ganic Semiconductor Devices”. In: Journal of Computational Electronics 19.3 (2020), pp. 1164–
1174. doi: 10.1007/s10825-020-01505-6.

[34] J. J. Ebers and J. L. Moll. “Large-Signal Behavior of Junction Transistors”. In: Proceedings of
the IRE 42.12 (1954), pp. 1761–1772. doi: 10.1109/JRPROC.1954.274797.

[35] H. Fardi. “Numerical Analysis of Semiconductor PN Junctions Using MATLAB”. In: Journal
of Scientific Research and Reports 6.2 (2015), pp. 84–98. url: https://www.journaljsrr.com/
index.php/JSRR/article/view/21668.

[36] P. Farrell, T. Koprucki, and J. Fuhrmann. “Computational and Analytical Comparison of
Flux Discretizations for the Semiconductor Device Equations Beyond Boltzmann Statistics”.
In: Journal of Computational Physics 346 (2017), pp. 497–513. doi: 10.1016/j.jcp.2017.06.
023.

[37] P. Farrell and D. Peschka. Challenges for Drift-Diffusion Simulations of Semiconductors: A
Comparative Study of Different Discretization Philosophies. Mar. 2018. doi: 10.20347/WIAS.
PREPRINT.2486.

[38] P. Farrell et al. Numerical Methods for Drift-Diffusion Models. 2016. doi: 10.20347/WIAS.
PREPRINT.2263.

[39] P. E. Farrell, C. H. L. Beentjes, and Á. Birkisson. The Computation of Disconnected Bifurcation
Diagrams. 2016. arXiv: 1603.00809 [math.NA].

[40] P. E. Farrell, Á. Birkisson, and S. W. Funke. Deflation Techniques for Finding Distinct Solutions
of Nonlinear Partial Differential Equations. 2015. arXiv: 1410.5620 [math.NA].

[41] H. Feng and S. Zhao. “FFT-Based High Order Central Difference Schemes for Three-
Dimensional Poisson’s Equation with Various Types of Boundary Conditions”. In: Journal of
Computational Physics 410.109391 (2020). issn: 0021-9991. doi: 10.1016/j.jcp.2020.109391.

[42] W. Fichtner, D. J. Rose, and R. E. Bank. “Semiconductor Device Simulation”. In: SIAM
Journal on Scientific and Statistical Computing 4.3 (1983), pp. 391–415. doi: 10.1137/0904031.

[43] C. G. Fonstad. Microelectronic Devices and Circuits. McGraw-Hill Series in Electrical and
Computer Engineering: Electronics and VLSI Circuits. New York, NY: McGraw-Hill, 1994.
isbn: 0070214964.

147

https://doi.org/10.1109/81.903183
https://doi.org/10.1126/science.aah4698
https://doi.org/10.1109/TED.2021.3073378
https://doi.org/10.1109/TED.2021.3073378
https://www.osti.gov/servlets/purl/1594284
https://www.osti.gov/servlets/purl/1594284
https://www.yumpu.com/en/document/read/6664225/a-software-package-for-numerical-simulation-of-semiconductor-gss
https://www.yumpu.com/en/document/read/6664225/a-software-package-for-numerical-simulation-of-semiconductor-gss
https://doi.org/10.1007/s10825-020-01505-6
https://doi.org/10.1109/JRPROC.1954.274797
https://www.journaljsrr.com/index.php/JSRR/article/view/21668
https://www.journaljsrr.com/index.php/JSRR/article/view/21668
https://doi.org/10.1016/j.jcp.2017.06.023
https://doi.org/10.1016/j.jcp.2017.06.023
https://doi.org/10.20347/WIAS.PREPRINT.2486
https://doi.org/10.20347/WIAS.PREPRINT.2486
https://doi.org/10.20347/WIAS.PREPRINT.2263
https://doi.org/10.20347/WIAS.PREPRINT.2263
https://arxiv.org/abs/1603.00809
https://arxiv.org/abs/1410.5620
https://doi.org/10.1016/j.jcp.2020.109391
https://doi.org/10.1137/0904031

[44] W. R. Frensley. Scharfetter-Gummel Discretization Scheme for Drift-Diffusion Equations. 2004.
url: https://personal.utdallas.edu/~frensley/minitech/ScharfGum.pdf.

[45] J. Fuhrmann and contributors. VoronoiFVM.jl: Finite Volume Solver for Coupled Nonlinear
Partial Differential Equations. 2022. doi: 10.5281/zenodo.3529808. url: https://github.
com/j-fu/VoronoiFVM.jl.

[46] A. H. Gebremedhin, F. Manne, and A. Pothen. “What Color Is Your Jacobian? Graph
Coloring for Computing Derivatives”. In: SIAM Review 47.4 (2005), pp. 629–705. doi: 10.
1137/S0036144504444711.

[47] A. Ghazarians. “A Numerical Study of the van Roosbroeck System for Semiconductors”.
M.S. thesis. San Jose State University, 2018. doi: 10.31979/etd.k2yb-6c32.

[48] N. L. Gibson. Numerical Methods for Maxwell’s Equations. 2015. url: http://sites.science.
oregonstate.edu/~gibsonn/553Talk.pdf.

[49] M. B. Giles. An Extended Collection of Matrix Derivative Results for Forward and Reverse Mode
Algorithmic Differentiation. 2008. url: https://people.maths.ox.ac.uk/gilesm/files/
NA-08-01.pdf.

[50] J. Goldberger et al. “Silicon Vertically Integrated Nanowire Field Effect Transistors”. In:
Nano Letters 6.5 (2006), pp. 973–977. doi: 10.1021/nl060166j.

[51] R. J. G. Goossens et al. “An Automatic Biasing Scheme for Tracing Arbitrarily Shaped I-V
Curves”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
13.3 (1994), pp. 310–317. doi: 10.1109/43.265673.

[52] S. Gowda et al. High-Performance Symbolic-Numerics via Multiple Dispatch. 2022. arXiv: 2105.
03949 [cs.CL].

[53] P. R. Gray et al. Analysis and Design of Analog Integrated Circuits. 5th ed. New York, NY: John
Wiley & Sons, 2009. isbn: 9780470245996.

[54] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. SIAM, 2008. isbn: 9780898716597. doi: 10.1137/1.9780898717761.

[55] B. M. Grossman and M. J. Hargrove. “Numerical Solution of the Semiconductor Transport
Equations With Current Boundary Conditions”. In: IEEE Transactions on Electron Devices
30.9 (1983), pp. 1092–1096. doi: 10.1109/T-ED.1983.21263.

[56] H. K. Gummel and H. C. Poon. “An Integral Charge Control Model of Bipolar Transistors”.
In: The Bell System Technical Journal 49.5 (1970), pp. 827–852. doi: 10.1002/j.1538-7305.
1970.tb01803.x.

[57] R. Gusmeroli and A. S. Spinelli. “Accurate Boundary Integral Calculation in Semiconductor
Device Simulation”. In: IEEE Transactions on Electron Devices 53.7 (2006), pp. 1730–1733. doi:
10.1109/TED.2006.875806.

[58] R. Han et al. “A SiGe Terahertz Heterodyne Imaging Transmitter With 3.3 mW Radiated
Power and Fully-Integrated Phase-Locked Loop”. In: IEEE Journal of Solid-State Circuits
50.12 (2015), pp. 2935–2947. doi: 10.1109/JSSC.2015.2471847.

[59] S. Hang. “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator”. In: ACM Trans-
actions on Mathematical Software 41.2 (2015), pp. 11.2–11.36. doi: 10.1145/2629697.

[60] L. Hascoet and V. Pascual. “The Tapenade Automatic Differentiation Tool: Principles,
Model, and Specification”. In: ACM Transactions on Mathematical Software 39.3 (2013), pp. 1–
43. doi: 10.1145/2450153.2450158.

148

https://personal.utdallas.edu/~frensley/minitech/ScharfGum.pdf
https://doi.org/10.5281/zenodo.3529808
https://github.com/j-fu/VoronoiFVM.jl
https://github.com/j-fu/VoronoiFVM.jl
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.1137/S0036144504444711
https://doi.org/10.31979/etd.k2yb-6c32
http://sites.science.oregonstate.edu/~gibsonn/553Talk.pdf
http://sites.science.oregonstate.edu/~gibsonn/553Talk.pdf
https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://doi.org/10.1021/nl060166j
https://doi.org/10.1109/43.265673
https://arxiv.org/abs/2105.03949
https://arxiv.org/abs/2105.03949
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1109/T-ED.1983.21263
https://doi.org/10.1002/j.1538-7305.1970.tb01803.x
https://doi.org/10.1002/j.1538-7305.1970.tb01803.x
https://doi.org/10.1109/TED.2006.875806
https://doi.org/10.1109/JSSC.2015.2471847
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2450153.2450158

[61] Y. He and Z. Teng. “Nonoscillatory Streamline Upwind Formulations for Drift-Diffusion
Equation”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
12.10 (1993), pp. 1535–1541. doi: 10.1109/43.256928.

[62] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). 2020. arXiv: 1606.08415
[cs.LG].

[63] M. d. M. Hershenson, S. P. Boyd, and T. H. Lee. “Optimal Design of a CMOS Op-Amp
via Geometric Programming”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 20.1 (2001), pp. 1–21. doi: 10.1109/43.905671.

[64] M. d. M. Hershenson et al. “Design and Optimization of LC Oscillators”. In: 1999 IEEE/ACM
International Conference on Computer-Aided Design, Digest of Technical Papers. 1999, pp. 65–69.
doi: 10.1109/ICCAD.1999.810623.

[65] D. Hisamoto et al. “A Folded-Channel MOSFET for Deep-Sub-Tenth Micron Era”. In: In-
ternational Electron Devices Meeting 1998. 1998, pp. 1032–1034. doi: 10.1109/IEDM.1998.
746531.

[66] T. W. Hughes et al. “Forward-Mode Differentiation of Maxwell’s Equations”. In: ACS Pho-
tonics 6.11 (2019), pp. 3010–3016. doi: 10.1021/acsphotonics.9b01238.

[67] G. A. M. Hurkx et al. “A New Analytical Diode Model Including Tunneling and Avalanche
Breakdown”. In: IEEE Transactions on Electron Devices 39.9 (1992), pp. 2090–2098. doi: 10.
1109/16.155882.

[68] M. Innes. Don’t Unroll Adjoint: Differentiating SSA-Form Programs. 2018. arXiv: 1810.07951
[cs.PL].

[69] C. Jeong et al. “Bridging TCAD and AI: Its Application to Semiconductor Design”. In:
IEEE Transactions on Electron Devices 68.11 (2021), pp. 5364–5371. doi: 10.1109/TED.2021.
3093844.

[70] S. G. Johnson. Notes on Adjoint Methods for 18.335. 2012. url: https://math.mit.edu/
~stevenj/18.336/adjoint.pdf.

[71] S. Joshi, S. Boyd, and R. W. Dutton. “Optimal Doping Profiles via Geometric Programming”.
In: IEEE Transactions on Electron Devices 52.12 (2005), pp. 2660–2675.doi: 10.1109/TED.2005.
859649.

[72] C. Jungemann et al. “Is Physically Sound and Predictive Modeling of NMOS Substrate
Currents Possible?” In: Solid-State Electronics 42.4 (1998), pp. 647–655. doi: 10.1016/S0038-
1101(97)00298-0.

[73] W. Kausel et al. “A New Boundary Condition for Device Simulation Considering Outer
Components”. In: Simulation of Semiconductor Devices and Processes, Vol. 3. Ed. by G. Baccarani
and M. Rudan. Bologna, Italy: Tecnoprint, 1988.

[74] H. B. Keller. “Lectures on Numerical Methods in Bifurcation Problems”. In: (1988). url:
http://www.math.tifr.res.in/~publ/ln/tifr79.pdf.

[75] T. Kerkhoven. “On the Scharfetter-Gummel Box-Method”. In: Simulation of Semiconductor
Devices and Processes, Vol. 5. Ed. by S. Selberherr, H. Stippel, and E. Strasser. Vienna, Austria:
Springer, 1993, pp. 417–420. isbn: 9783709173725.

[76] I. Kim et al. “Simulator Acceleration and Inverse Design of Fin Field-Effect Transistors
Using Machine Learning”. In: Scientific Reports 12.1 (2022), pp. 1–9. doi: 10.1038/s41598-
022-05111-3.

149

https://doi.org/10.1109/43.256928
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1109/43.905671
https://doi.org/10.1109/ICCAD.1999.810623
https://doi.org/10.1109/IEDM.1998.746531
https://doi.org/10.1109/IEDM.1998.746531
https://doi.org/10.1021/acsphotonics.9b01238
https://doi.org/10.1109/16.155882
https://doi.org/10.1109/16.155882
https://arxiv.org/abs/1810.07951
https://arxiv.org/abs/1810.07951
https://doi.org/10.1109/TED.2021.3093844
https://doi.org/10.1109/TED.2021.3093844
https://math.mit.edu/~stevenj/18.336/adjoint.pdf
https://math.mit.edu/~stevenj/18.336/adjoint.pdf
https://doi.org/10.1109/TED.2005.859649
https://doi.org/10.1109/TED.2005.859649
https://doi.org/10.1016/S0038-1101(97)00298-0
https://doi.org/10.1016/S0038-1101(97)00298-0
http://www.math.tifr.res.in/~publ/ln/tifr79.pdf
https://doi.org/10.1038/s41598-022-05111-3
https://doi.org/10.1038/s41598-022-05111-3

[77] R. Kim, X. Wang, and M. Lundstrom. Notes on Fermi-Dirac Integrals. 2019. arXiv: 0811.0116
[cond-mat.mes-hall].

[78] S. Kim et al. “Stiff Neural Ordinary Differential Equations”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 31.9 (2021), p. 093122. doi: 10.1063/5.0060697.

[79] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2014. arXiv: 1412.6980
[cs.LG].

[80] S. Kumashiro. Method of Simulating Impact Ionization Phenomenon in Semiconductor Device.
US Patent 6,144,929. Nov. 2000.

[81] S. E. Laux and B. M. Grossman. “A General Control-Volume Formulation for Modeling
Impact Ionization in Semiconductor Transport”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 4.4 (1985), pp. 520–526. doi: 10.1109/TCAD.1985.
1270151.

[82] S. E. Laux and R. G. Byrnes. “Semiconductor Device Simulation Using Generalized Mobility
Models”. In: IBM Journal of Research and Development 29.3 (1985), pp. 289–301. doi: 10.1147/
rd.293.0289.

[83] Z. K. Lee, M. B. McIlrath, and D. A. Antoniadis. “Two-Dimensional Doping Profile Charac-
terization of MOSFETs by Inverse Modeling Using I-V Characteristics in the Subthreshold
Region”. In: IEEE Transactions on Electron Devices 46.8 (1999), pp. 1640–1649. doi: 10.1109/
16.777152.

[84] A. Leitão, P. A. Markowich, and J. P. Zubelli. “On Inverse Doping Profile Problems for the
Stationary Voltage-Current Map”. In: Inverse Problems 22.3 (2006), p. 1071. doi: 10.1088/
0266-5611/22/3/021.

[85] R. G. Leventhal. Semiconductor Modeling for Simulating Signal, Power, and Electromagnetic
Integrity. New York, NY: Springer, 2006. isbn: 9780387241593.

[86] Z. Li et al. Fourier Neural Operator for Parametric Partial Differential Equations. 2021. arXiv:
2010.08895 [cs.LG].

[87] M. Liu. “10-nm CMOS: A Design Study on Technology Requirement With Power and
Performance Assessment”. PhD thesis. UC San Diego, 2007. url: https://escholarship.
org/uc/item/64g181j0.

[88] W. Liu et al. BSIM3 v3.2 MOSFET Model. Tech. rep. UCB/ERL M98/51. EECS Department,
University of California, Berkeley, Aug. 1998. url: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/1998/3486.html.

[89] M. Lundstrom. A Primer on Semiconductor Device Simulation. Jan. 2006. url: https:/ /
nanohub.org/resources/980.

[90] M. Lundstrom. Nanoscale Transistors: Device Physics, Modeling and Simulation. 1st ed. New
York, NY: Springer US, 2006. isbn: 1280612215.

[91] P. Mandal and V. Visvanathan. “CMOS Op-Amp Sizing Using a Geometric Programming
Formulation”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 20.1 (2001), pp. 22–38. doi: 10.1109/43.905672.

[92] P. A. Markowich. “A Nonlinear Eigenvalue Problem Modelling the Avalanche Effect in
Semiconductor Diodes”. In: SIAM Journal on Mathematical Analysis 16.6 (1985), pp. 1268–
1283. doi: 10.1137/0516091.

150

https://arxiv.org/abs/0811.0116
https://arxiv.org/abs/0811.0116
https://doi.org/10.1063/5.0060697
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TCAD.1985.1270151
https://doi.org/10.1109/TCAD.1985.1270151
https://doi.org/10.1147/rd.293.0289
https://doi.org/10.1147/rd.293.0289
https://doi.org/10.1109/16.777152
https://doi.org/10.1109/16.777152
https://doi.org/10.1088/0266-5611/22/3/021
https://doi.org/10.1088/0266-5611/22/3/021
https://arxiv.org/abs/2010.08895
https://escholarship.org/uc/item/64g181j0
https://escholarship.org/uc/item/64g181j0
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/3486.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/3486.html
https://nanohub.org/resources/980
https://nanohub.org/resources/980
https://doi.org/10.1109/43.905672
https://doi.org/10.1137/0516091

[93] P. A. Markowich. “A Singular Perturbation Analysis of the Fundamental Semiconductor
Device Equations”. In: SIAM Journal on Applied Mathematics 44.5 (1984), pp. 896–928. doi:
10.1137/0144064.

[94] P. A. Markowich. The Stationary Semiconductor Device Equations. Springer Science & Business
Media, 1985. isbn: 9783211818923.

[95] P. A. Markowich, C. A. Ringhofer, and A. Steindl. “Computation of Current-Voltage Char-
acteristics in a Semiconductor Device Using Arc-Length Continuation”. In: IMA Journal
of Applied Mathematics 33.2 (1984), pp. 175–187. url: https : / / apps . dtic . mil / sti /
citations/ADA137919.

[96] A. Mauri et al. “3D Finite Element Modeling and Simulation of Industrial Semiconductor
Devices Including Impact Ionization”. In: Journal of Mathematics in Industry 5.1 (2015), pp. 1–
18. doi: 10.1186/s13362-015-0015-z.

[97] C. C. McAndrew et al. “VBIC95, the Vertical Bipolar Inter-Company Model”. In: IEEE
Journal of Solid-State Circuits 31.10 (1996), pp. 1476–1483. doi: 10.1109/4.540058.

[98] L. S. McCarthy et al. “AlGaN/GaN Heterojunction Bipolar Transistor”. In: IEEE Electron
Device Letters 20.6 (1999), pp. 277–279. doi: 10.1109/55.767097.

[99] K. Mehta and H.-Y. Wong. “Prediction of FinFET Current-Voltage and Capacitance-Voltage
Curves Using Machine Learning With Autoencoder”. In: IEEE Electron Device Letters 42.2
(2021), pp. 136–139. doi: 10.1109/LED.2020.3045064.

[100] K. Mehta et al. “Improvement of TCAD Augmented Machine Learning Using Autoencoder
for Semiconductor Variation Identification and Inverse Design”. In: IEEE Access 8 (2020),
pp. 143519–143529. doi: 10.1109/ACCESS.2020.3014470.

[101] L. Meitner. “Über die Entstehung der β-Strahl-Spektren Radioaktiver Substanzen”. In:
Zeitschrift für Physik 9.1 (1922), pp. 131–144. doi: 10.1007/BF01326962.

[102] S. S. Mohan et al. “Simple Accurate Expressions for Planar Spiral Inductances”. In: IEEE
Journal of Solid-State Circuits 34.10 (1999), pp. 1419–1424. doi: 10.1109/4.792620.

[103] S. Molesky et al. “Inverse Design in Nanophotonics”. In: Nature Photonics 12.11 (2018),
pp. 659–670. doi: 10.1038/s41566-018-0246-9.

[104] L. W. Nagel and D. O. Pederson. SPICE (Simulation Program with Integrated Circuit Emphasis).
Tech. rep. UCB/ERL M382. EECS Department, University of California, Berkeley, Apr. 1973.
url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html.

[105] G. Nanz. “A Critical Study of Boundary Conditions in Device Simulation”. In: Simulation
of Semiconductor Devices and Processes, Vol. 4. Ed. by W. Fichtner and D. Aemmer. Konstanz,
Germany: Hartung-Gorre Verlag, 1991. isbn: 3891914768.

[106] G. Nanz, P. Dickinger, and S. Selberherr. “Calculation of Contact Currents in Device Simu-
lation”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 11.1
(1992), pp. 128–136. doi: 10.1109/43.108625.

[107] S. G. Nash. “Preconditioning of Truncated-Newton Methods”. In: SIAM Journal on Scientific
and Statistical Computing 6.3 (1985), pp. 599–616. doi: 10.1137/0906042.

[108] G. Niu et al. The Mextram Bipolar Transistor Model, Version 505.1.0. 2017. url: https://www.
eng.auburn.edu/~niuguof/mextram/_downloads/MextramDefinition.pdf.

[109] V. Palankovski and R. Quay. Analysis and Simulation of Heterostructure Devices. Ed. by S. Sel-
berherr. Computational Microelectronics. Vienna, Austria: Springer, 2004. isbn: 3211405372.

151

https://doi.org/10.1137/0144064
https://apps.dtic.mil/sti/citations/ADA137919
https://apps.dtic.mil/sti/citations/ADA137919
https://doi.org/10.1186/s13362-015-0015-z
https://doi.org/10.1109/4.540058
https://doi.org/10.1109/55.767097
https://doi.org/10.1109/LED.2020.3045064
https://doi.org/10.1109/ACCESS.2020.3014470
https://doi.org/10.1007/BF01326962
https://doi.org/10.1109/4.792620
https://doi.org/10.1038/s41566-018-0246-9
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
https://doi.org/10.1109/43.108625
https://doi.org/10.1137/0906042
https://www.eng.auburn.edu/~niuguof/mextram/_downloads/MextramDefinition.pdf
https://www.eng.auburn.edu/~niuguof/mextram/_downloads/MextramDefinition.pdf

[110] E. Palm and F. Van de Wiele. “Current Lines and Accurate Contact Current Evaluation in
2-D Numerical Simulation of Semiconductor Devices”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 4.4 (1985), pp. 496–503. doi: 10.1109/TCAD.
1985.1270148.

[111] J. M. Papakonstantinou. “Historical Development of the BFGS Secant Method and its Char-
acterization Properties”. PhD thesis. Rice University, 2009. url: https://hdl.handle.net/
1911/61898.

[112] T. Patel. Comparison of Level 1, 2 and 3 MOSFET’s. 2014. doi: 10.13140/RG.2.1.1616.3442.

[113] Y.-J. Peng. “Boundary Layer Analysis and Quasi-Neutral Limits in the Drift-Diffusion Equa-
tions”. In: ESAIM: Mathematical Modelling and Numerical Analysis 35.2 (2001), pp. 295–312.
doi: 10.1051/m2an:2001116.

[114] R. Pestourie et al. “Inverse Design of Large-Area Metasurfaces”. In: Optics Express 26.26
(2018), pp. 33732–33747. doi: 10.1364/OE.26.033732.

[115] R. Pestourie et al. “Physics-Enhanced Deep Surrogates for PDEs”. In: (2021). arXiv: 2111.
05841 [cs.LG].

[116] G. Peters and J. H. Wilkinson. “On the Stability of Gauss-Jordan Elimination With Pivoting”.
In: Communications of the ACM 18.1 (Jan. 1975), pp. 20–24. issn: 0001-0782. doi: 10.1145/
360569.360653.

[117] R. F. Pierret. Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996. isbn:
0201543931.

[118] A. Y. Piggott et al. “Inverse Design and Demonstration of a Compact and Broadband
On-Chip Wavelength Demultiplexer”. In: Nature Photonics 9.6 (2015), pp. 374–377. doi:
10.1038/nphoton.2015.69.

[119] M. Pinto, K. R. Smith, and A. Alam. Padre 2.4E Users Manual. 1994. url: https://nanohub.
org/resources/3943/download/padre_manual.pdf.

[120] M. R. Pinto, C. S. Rafferty, and R. W. Dutton. PISCES II: Poisson and Continuity Equation
Solver. Stanford, CA, 1984. url: https://web.archive.org/web/20151210025620/http:
//www-tcad.stanford.edu/tcad/reports/piscesII.pdf.

[121] J. Piprek. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Elsevier,
2013. isbn: 9780125571906.

[122] E. Pop. “CMOS Inverse Doping Profile Extraction and Substrate Current Modeling”. M.Eng.
thesis. Massachusetts Institute of Technology, 1999. url: https://dspace.mit.edu/
handle/1721.1/80565.

[123] C. H. Price. “Two-Dimensional Numerical Simulation of Semiconductor Devices”. PhD
thesis. Stanford University, 1982.url:https://apps.dtic.mil/sti/pdfs/ADA119110.pdf.

[124] C. Rackauckas and Q. Nie. “DifferentialEquations.jl—A Performant and Feature Rich
Ecosystem for Solving Differential Equations in Julia”. In: Journal of Open Research Soft-
ware 5.1 (2017), p. 15. doi: 10.5334/jors.151.

[125] C. Rackauckas et al. “Generalized Physics-Informed Learning through Language-Wide
Differentiable Programming”. In: Proceedings of the AAAI 2020 Spring Symposium on Com-
bining Artificial Intelligence and Machine Learning with Physical Sciences. Ed. by J. Lee et al.
Vol. 2587. CEUR Workshop Proceedings. CEUR-WS.org, 2020. url: https://dspace.mit.
edu/bitstream/handle/1721.1/137320/%20generalized-physics.pdf?sequence=2&
isAllowed=y.

152

https://doi.org/10.1109/TCAD.1985.1270148
https://doi.org/10.1109/TCAD.1985.1270148
https://hdl.handle.net/1911/61898
https://hdl.handle.net/1911/61898
https://doi.org/10.13140/RG.2.1.1616.3442
https://doi.org/10.1051/m2an:2001116
https://doi.org/10.1364/OE.26.033732
https://arxiv.org/abs/2111.05841
https://arxiv.org/abs/2111.05841
https://doi.org/10.1145/360569.360653
https://doi.org/10.1145/360569.360653
https://doi.org/10.1038/nphoton.2015.69
https://nanohub.org/resources/3943/download/padre_manual.pdf
https://nanohub.org/resources/3943/download/padre_manual.pdf
https://web.archive.org/web/20151210025620/http://www-tcad.stanford.edu/tcad/reports/piscesII.pdf
https://web.archive.org/web/20151210025620/http://www-tcad.stanford.edu/tcad/reports/piscesII.pdf
https://dspace.mit.edu/handle/1721.1/80565
https://dspace.mit.edu/handle/1721.1/80565
https://apps.dtic.mil/sti/pdfs/ADA119110.pdf
https://doi.org/10.5334/jors.151
https://dspace.mit.edu/bitstream/handle/1721.1/137320/%20generalized-physics.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/137320/%20generalized-physics.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/137320/%20generalized-physics.pdf?sequence=2&isAllowed=y

[126] C. Rackauckas et al. Universal Differential Equations for Scientific Machine Learning. 2021.
arXiv: 2001.04385 [cs.LG].

[127] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-Informed Neural Networks: A
Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear
Partial Differential Equations”. In: Journal of Computational Physics 378 (2019), pp. 686–707.
issn: 0021-9991. doi: 10.1016/j.jcp.2018.10.045.

[128] A. Ramadhan et al. Capturing Missing Physics in Climate Model Parameterizations Using Neural
Differential Equations. 2020. arXiv: 2010.12559 [physics.ao-ph].

[129] J. Revels, M. Lubin, and T. Papamarkou. Forward-Mode Automatic Differentiation in Julia.
2016. arXiv: 1607.07892 [cs.MS].

[130] F. E. Reyes Aspé. “Simulation Tool Development for Semiconductor Devices Based on
Drift-Diffusion and Monte Carlo”. M.S. thesis. University of Chile, 2015. url: https://
repositorio.uchile.cl/handle/2250/137791.

[131] J. Roychowdhury and R. Melville. “Delivering Global DC Convergence for Large Mixed-
Signal Circuits via Homotopy/Continuation Methods”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 25.1 (2006), pp. 66–78. doi: 10.1109/TCAD.
2005.852461.

[132] A. Safdari-Vaighani, A. Heryudono, and E. Larsson. “A Radial Basis Function Partition of
Unity Collocation Method for Convection-Diffusion Equations Arising in Financial Appli-
cations”. In: Journal of Scientific Computing 64.2 (2015), pp. 341–367. doi: 10.1007/s10915-
014-9935-9.

[133] Z. H. Sahul, R. W. Dutton, and M. Noell. “Grid and Geometry Techniques for Multi-Layer
Process Simulation”. In: Simulation of Semiconductor Devices and Processes, Vol. 5. Ed. by S.
Selberherr, H. Stippel, and E. Strasser. Vienna, Austria: Springer, 1993, pp. 417–420. isbn:
9783709173725.

[134] N. V. Sapra et al. “Inverse Design and Demonstration of Broadband Grating Couplers”.
In: IEEE Journal of Selected Topics in Quantum Electronics 25.3 (2019), pp. 1–7. doi: 10.1109/
JSTQE.2019.2891402.

[135] D. L. Scharfetter and H. K. Gummel. “Large-Signal Analysis of a Silicon Read Diode Os-
cillator”. In: IEEE Transactions on Electron Devices 16.1 (1969), pp. 64–77. doi: 10.1109/T-
ED.1969.16566.

[136] S. Selberherr. “Process and Device Modeling”. In: Process and Device Modeling. Ed. by W. L.
Engl. Advances in CAD for VLSI. North-Holland, 1986. Chap. 8. isbn: 0444878912.

[137] J. R. Shewchuk. “Delaunay Refinement Algorithms for Triangular Mesh Generation”. In:
Computational Geometry 22.1-3 (2002), pp. 21–74. doi: 10.1016/S0925-7721(01)00047-5.

[138] H. Shichman and D. A. Hodges. “Modeling and simulation of insulated-gate field-effect
transistor switching circuits”. In: IEEE Journal of Solid-State Circuits 3.3 (1968), pp. 285–289.
doi: 10.1109/JSSC.1968.1049902.

[139] W. Shockley and W. T. Read Jr. “Statistics of the Recombinations of Holes and Electrons”.
In: Physical Review 87.5 (1952), pp. 835–842. doi: 10.1103/PhysRev.87.835.

[140] W. Shockley. “The Theory of P-N Junctions in Semiconductors and P-N Junction Transis-
tors”. In: The Bell System Technical Journal 28.3 (1949), pp. 435–489. doi: 10.1002/j.1538-
7305.1949.tb03645.x.

153

https://arxiv.org/abs/2001.04385
https://doi.org/10.1016/j.jcp.2018.10.045
https://arxiv.org/abs/2010.12559
https://arxiv.org/abs/1607.07892
https://repositorio.uchile.cl/handle/2250/137791
https://repositorio.uchile.cl/handle/2250/137791
https://doi.org/10.1109/TCAD.2005.852461
https://doi.org/10.1109/TCAD.2005.852461
https://doi.org/10.1007/s10915-014-9935-9
https://doi.org/10.1007/s10915-014-9935-9
https://doi.org/10.1109/JSTQE.2019.2891402
https://doi.org/10.1109/JSTQE.2019.2891402
https://doi.org/10.1109/T-ED.1969.16566
https://doi.org/10.1109/T-ED.1969.16566
https://doi.org/10.1016/S0925-7721(01)00047-5
https://doi.org/10.1109/JSSC.1968.1049902
https://doi.org/10.1103/PhysRev.87.835
https://doi.org/10.1002/j.1538-7305.1949.tb03645.x
https://doi.org/10.1002/j.1538-7305.1949.tb03645.x

[141] F. Sischka. Gummel-Poon Bipolar Model: Model Description and Parameter Extraction. 2017.
url: https://www.franz-sischka.de/Downloads;focus=CMTOI_de_dtag_hosting_
hpcreator_widget_Download_17426528&path=download.action&frame=CMTOI_de_
dtag_hosting_hpcreator_widget_Download_17426528?id=267927.

[142] J. W. Slotboom. “Computer-Aided Two-Dimensional Analysis of Bipolar Transistors”. In:
IEEE Transactions on Electron Devices 20.8 (1973), pp. 669–679. doi: 10.1109/T-ED.1973.
17727.

[143] T. N. Smith. “Data Driven Surrogate Models for Faster SPICE Simulation of Power Sup-
ply Circuits”. M.Eng. thesis. Massachusetts Institute of Technology, 2021. url: https :
//dspace.mit.edu/handle/1721.1/139114.

[144] C. Sodini. The MOS Capacitor in Thermal Equilibrium. 1998. url: http://web.mit.edu/
course/6/6.012/SPR98/www/lectures/S98_Lecture6.pdf.

[145] B. Speelpenning. “Compiling Fast Partial Derivatives of Functions Given by Algorithms”.
PhD thesis. University of Illinois at Urbana-Champaign, 1980. url: https://www.osti.
gov/servlets/purl/5254402.

[146] S. M. Sze, Y. Li, and K. K. Ng. Physics of Semiconductor Devices. 4th ed. John Wiley & Sons,
2021. isbn: 9781119429111.

[147] T. A. Takhtaganov et al. “Optimization Under Uncertainty for the Shockley and the Drift-
Diffusion Models of a Diode”. In: (2014). Ed. by D. P. Kouri and M. L. Parks, pp. 165–174.
url: https://www.sandia.gov/app/uploads/sites/136/2021/11/CCR2014.pdf.

[148] Z. Teng, Y. He, and Q. Tong. “Generalized Scharfetter-Gummel Scheme Reducing the Cross-
wind Effect for the Current Continuity Equation Including Energy Balance”. In: Computer
Physics Communications 79.2 (1994), pp. 190–200. doi: 10.1016/0010-4655(94)90067-1.

[149] K. K. Thornber. “Applications of Scaling to Problems in High-Field Electronic Transport”.
In: Journal of Applied Physics 52.1 (1981), pp. 279–290. doi: 10.1063/1.328490.

[150] E. Tiesinga et al. “CODATA Recommended Values of the Fundamental Physical Constants:
2018”. In: Reviews of Modern Physics 93 (2 June 2021), p. 025010. doi: 10.1103/RevModPhys.
93.025010.

[151] O. Triebl and T. Grasser. “Investigation of Vector Discretization Schemes for Box Volume
Methods”. In: Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade
Show. Vol. 3. 2007, pp. 61–64.

[152] O. Triebl and T. Grasser. “Vector Discretization Schemes Based on Unstructured Neighbor-
hood Information”. In: 2006 International Semiconductor Conference. Vol. 2. 2006, pp. 337–340.
doi: 10.1109/SMICND.2006.284013.

[153] T.-Y. Tso. “Pseudo Arc-Length Continuation Method for Multiple Solutions in One Dimen-
sional Steady State Semiconductor Device Simulation”. PhD thesis. Iowa State University,
1991. doi: 10.31274/rtd-180813-9519.

[154] H. Uecker, D. Wetzel, and J. D. M. Rademacher. pde2path—A Matlab Package for Continuation
and Bifurcation in 2D Elliptic Systems. 2012. arXiv: 1208.3112 [math.AP].

[155] M. Utku and G. F. Carey. “Boundary Penalty Techniques”. In: Computer Methods in Applied
Mechanics and Engineering 30.1 (1982), pp. 103–118. issn: 0045-7825. doi: 10.1016/0045-
7825(82)90057-3.

154

https://www.franz-sischka.de/Downloads;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_17426528&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_17426528?id=267927
https://www.franz-sischka.de/Downloads;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_17426528&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_17426528?id=267927
https://www.franz-sischka.de/Downloads;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_17426528&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_17426528?id=267927
https://doi.org/10.1109/T-ED.1973.17727
https://doi.org/10.1109/T-ED.1973.17727
https://dspace.mit.edu/handle/1721.1/139114
https://dspace.mit.edu/handle/1721.1/139114
http://web.mit.edu/course/6/6.012/SPR98/www/lectures/S98_Lecture6.pdf
http://web.mit.edu/course/6/6.012/SPR98/www/lectures/S98_Lecture6.pdf
https://www.osti.gov/servlets/purl/5254402
https://www.osti.gov/servlets/purl/5254402
https://www.sandia.gov/app/uploads/sites/136/2021/11/CCR2014.pdf
https://doi.org/10.1016/0010-4655(94)90067-1
https://doi.org/10.1063/1.328490
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/10.1103/RevModPhys.93.025010
https://doi.org/10.1109/SMICND.2006.284013
https://doi.org/10.31274/rtd-180813-9519
https://arxiv.org/abs/1208.3112
https://doi.org/10.1016/0045-7825(82)90057-3
https://doi.org/10.1016/0045-7825(82)90057-3

[156] W. Van Roosbroeck. “Theory of the Flow of Electrons and Holes in Germanium and Other
Semiconductors”. In: The Bell System Technical Journal 29.4 (1950), pp. 560–607. doi: 10.1002/
j.1538-7305.1950.tb03653.x.

[157] J. P. Vanderhaegen and R. W. Brodersen. “Automated Design of Operational Transcon-
ductance Amplifiers Using Reversed Geometric Programming”. In: Proceedings of the 41st
Design Automation Conference, 2004. 2004, pp. 133–138. doi: 10.1145/996566.996608.

[158] R. S. Varga. Matrix Iterative Analysis. Springer, 2000. isbn: 9783642051548.

[159] D. Vasileska. Drift-Diffusion Model: Time-Dependent Simulations, Sharfetter-Gummel Discretiza-
tion. 2006. url: https://nanohub.org/resources/1575/download/ddmodel_sg_tds_
word.pdf.

[160] D. Vasileska. Particle-Based Device Simulator Description. 2008. url: https://nanohub.org/
resources/4551/download/emc_device_simulator_part_2.pdf.

[161] D. Vasileska and S. M. Goodnick. “Computational Electronics”. In: Materials Science and
Engineering R: Reports 38.5 (July 2002), pp. 181–236. issn: 0927-796X. doi: 10.1016/S0927-
796X(02)00039-6.

[162] D. Vasileska and S. M. Goodnick, eds. Nano-Electronic Devices: Semiclassical and Quantum
Transport Modeling. 1st ed. New York, NY: Springer New York, 2011. isbn: 1441988408.

[163] R. Veltz. BifurcationKit.jl. July 2020. url: https://hal.archives- ouvertes.fr/hal-
02902346.

[164] G. Wang et al. “Optimization and Performance Prediction of Tunnel Field-Effect Transistors
Based on Deep Learning”. In: Advanced Materials Technologies (2021), p. 2100682. doi: 10.
1002/admt.202100682.

[165] R. E. Wengert. “A Simple Automatic Derivative Evaluation Program”. In: Communications
of the ACM 7.8 (1964), pp. 463–464. doi: 10.1145/355586.364791.

[166] M. B. Yelten, P. D. Franzon, and M. B. Steer. “Surrogate-Model-Based Analysis of Analog
Circuits—Part I: Variability Analysis”. In: IEEE Transactions on Device and Materials Reliability
11.3 (2011), pp. 458–465. doi: 10.1109/TDMR.2011.2160062.

[167] P. D. Yoder et al. “Optimized Terminal Current Calculation for Monte Carlo Device Simula-
tion”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16.10
(1997), pp. 1082–1087. doi: 10.1109/43.662672.

[168] H. You et al. “Kriging Model Combined With Latin Hypercube Sampling for Surrogate
Modeling of Analog Integrated Circuit Performance”. In: 2009 10th International Symposium
on Quality Electronic Design. 2009, pp. 554–558. doi: 10.1109/ISQED.2009.4810354.

[169] L. Yu et al. “Inverse Design of High Absorption Thin-Film Photovoltaic Materials”. In:
Advanced Energy Materials 3.1 (2013), pp. 43–48. doi: 10.1002/aenm.201200538.

[170] Z. Yu, B. Ricco, and R. W. Dutton. “A Comprehensive Analytical and Numerical Model of
Polysilicon Emitter Contacts in Bipolar Transistors”. In: IEEE Transactions on Electron Devices
31.6 (1984), pp. 773–784. doi: 10.1109/T-ED.1984.21606.

[171] Y.-L. Zhang et al. “Fully Boron-Sheet-Based Field Effect Transistors from First-Principles:
Inverse Design of Semiconducting Boron Sheets”. In: The Journal of Physical Chemistry Letters
12.1 (2020), pp. 576–584. doi: 10.1021/acs.jpclett.0c03333.

[172] R. Zhang et al. “Inverse Design of FinFET SRAM Cells”. In: 2020 IEEE International Reliability
Physics Symposium (IRPS). 2020, pp. 1–6. doi: 10.1109/IRPS45951.2020.9129530.

155

https://doi.org/10.1002/j.1538-7305.1950.tb03653.x
https://doi.org/10.1002/j.1538-7305.1950.tb03653.x
https://doi.org/10.1145/996566.996608
https://nanohub.org/resources/1575/download/ddmodel_sg_tds_word.pdf
https://nanohub.org/resources/1575/download/ddmodel_sg_tds_word.pdf
https://nanohub.org/resources/4551/download/emc_device_simulator_part_2.pdf
https://nanohub.org/resources/4551/download/emc_device_simulator_part_2.pdf
https://doi.org/10.1016/S0927-796X(02)00039-6
https://doi.org/10.1016/S0927-796X(02)00039-6
https://hal.archives-ouvertes.fr/hal-02902346
https://hal.archives-ouvertes.fr/hal-02902346
https://doi.org/10.1002/admt.202100682
https://doi.org/10.1002/admt.202100682
https://doi.org/10.1145/355586.364791
https://doi.org/10.1109/TDMR.2011.2160062
https://doi.org/10.1109/43.662672
https://doi.org/10.1109/ISQED.2009.4810354
https://doi.org/10.1002/aenm.201200538
https://doi.org/10.1109/T-ED.1984.21606
https://doi.org/10.1021/acs.jpclett.0c03333
https://doi.org/10.1109/IRPS45951.2020.9129530

	Introduction
	Theory
	Semiconductor physics
	Numerical methods
	Computational methods
	Related work

	Implementation
	Computing environment
	Semiconductor simulator
	The model zoo

	Results
	Numerical analysis
	Device characteristics
	Continuation
	Surrogatization

	Conclusion
	Derivations
	Scharfetter-Gummel midpoint scheme
	Jacobian of 1D finite difference discretization
	Jacobian of finite volume discretization

	Additional results
	Diodes
	Bipolar transistors
	MOSFETs

