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Abstract
In chapter 1, I quantify the economic value that firms of different productivity levels derive
from their labor market power by estimating the effect of unanticipated firm-level labor
demand shocks on wages and employment at publicly listed U.S. firms. Productive firms face
lower labor supply elasticities on average, and still lower elasticities for skilled workers, who
are disproportionately employed at more productive firms. Using a dynamic wage posting
model in which firms face upward-sloping labor supply and adjustment costs in hiring, I
estimate that firms in the top and bottom quartiles of labor productivity pay 62% and 94% of
marginal product, despite the fact that adjustment costs temper the exercise of labor market
power. Markdown differentials can explain three-fifths of the average spread in log labor
shares between high- and low-labor productivity firms, and the evolution of these differentials
can explain most of the change in the aggregate labor share in the 1991–2014 period. Holding
constant equilibrium labor demand, I estimate that about a third of capital income for the
typical firm stems from wage markdowns. Aggregate wage markdowns are worth two-fifths
of total capital income.

In chapter 2, joint work with Leonid Kogan, Dimitris Papanikolaou, and Larry Schmidt,
we construct new technology indicators using textual analysis of patent documents and
occupation task descriptions that span almost two centuries (1850–2010). At the industry
level, improvements in technology are associated with higher labor productivity but a decline
in the labor share. Exploiting variation in the extent certain technologies are related to
specific occupations, we show that technological innovation has been largely associated with
worse labor market outcomes—wages and employment—for incumbent workers in related
occupations using a combination of public-use and confidential administrative data. Panel data
on individual worker earnings reveal that less educated, older, and more highly-paid workers
experience significantly greater declines in average earnings and earnings risk following related
technological advances. We reconcile these facts with the standard view of technology-skill
complementarity using a model that allows for skill displacement.

In chapter 3, I show that stocks with similar characteristics but different levels of ownership
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by financial institutions have returns and risk premia that comove very differently with
shocks to the risk-bearing capacity of financial intermediaries. After accounting for observable
stock characteristics, excess returns on more intermediated stocks have higher betas on
contemporaneous shocks to intermediary willingness to take risk and are more predictable
by state variables that proxy for intermediary health. The empirical evidence supports the
predictions of asset pricing models featuring financial intermediaries as marginal investors
who face frictions that induce changes in their risk-bearing capacity. This suggests that such
models are useful for explaining price movements not only in markets for complex financial
assets, but also within asset classes where households face comparatively low barriers to
direct participation.

Thesis Supervisor: Leonid Kogan
Title: Nippon Telegraph & Telephone Professor of Management
Professor of Finance
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Chapter 1

Valuing Labor Market Power: The

Role of Productivity Advantages

Market power affects the distribution of firm cash flows between the various claimants on

its output; in particular, increased market power is typically associated with a shift in the

distribution of productive output away from the firm’s workforce and towards owners of

the firm’s capital. A number of empirical patterns that have emerged over the past several

decades suggest that US firms have been earning higher rents due to increased market power.

This period of time has been characterized by a large rise in the value of the aggregate stock

market and high firm profitability;1 high firm valuations but with low rates of investment;2

and, a decline in the share of output accruing to labor.3 Much of the literature documenting

these trends has focused on market power in the product market. In this paper I argue that

a “superstar firms” view of labor market power—where firms with high labor productivity

also face less labor market competition—can explain a significant share of the cross-sectional

differences in firm labor shares and profitability, and can also speak to time series changes

in the aggregate labor share. I test this view of labor market competition using a sample

of firms containing wide variation in productivity and which features the largest and most

1See Greenwald, Lettau, and Ludvigson (2021) and Barkai (2020).
2Gutierrez and Philippon (2017)
3Karabarbounis and Neiman (2013)
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highly productive firms in the world: publicly traded US corporations.

In support of the superstar firms view, I show empirically that labor productivity ad-

vantages confer a substantial competitive advantage in the labor market. In contrast with

local labor market concentration, which has trended downward,4 I find empirical patterns

that parallel the recent shifts in the competitive structure of the US economy. An expanding

productivity gap between the most- and least-productive firms has led to both an absolute and

relative increase in productive firms’ labor market power, resulting in a larger cross-sectional

spread in labor shares as well as a lower aggregate labor share. Thus labor market power

emerges as another factor in explaining recent macroeconomic trends in the competitive land-

scape. Furthermore, because labor compensation is the single largest cost of production for

most firms, wage markdowns represent a substantial fraction of the capital income generated

by US corporations.

I show all this in three steps. First, I motivate my choice to focus on productivity

differentials by presenting evidence that firms with high labor productivity earn high economic

rents relative to less productive firms. Next, I show empirically that labor market power is

likely to play an important part in generating the rents earned by productive firms. Finally,

I use a model combined with my empirical findings to value the cashflows that firms derive

from their ability to set wages.

To show evidence suggesting that productive firms earn economic rents, I examine their

labor shares, operating performance, financial valuation ratios, and investment rates, finding

that productive firms have much lower labor shares; higher return on assets/equity, Tobin’s

Q, market-to-book, and market-to-sales ratios; but do not have significantly larger investment

rates. Taken together, these features are consistent with productive firms earning higher

economic rents than unproductive firms.

Because the supply elasticity governs wage markdowns, I next introduce a method for

estimating supply elasticities that is applicable to a wide range of firms spanning multiple

decades. The method provides enough statistical power to allow for heterogeneous cross-

4Berger, Herkenhoff, and Mongey (2021), Rinz (2018), and Lipsius (2018) all find declining local labor
market concentration over the past several decades using Census administrative data.
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sectional and time series estimates, and accounts for the key sources of endogeneity that

would cause me to make erroneously large inferences regarding the magnitude of labor market

power. Specifically, I use the ratio of the firm-level employment and wage responses to stock

returns as a measure of the supply elasticity, controlling for industry-by-year fixed effects

and other firm level covariates. This quantity directly estimates the supply elasticity under

certain assumptions, and provides an upper bound on the elasticity under a broader set

of conditions, which causes my estimates to be a lower bound on the magnitude of labor

market power. The most important potential source of confounding variation comes from

common market level productivity shocks, which could bias my supply elasticity estimates

downward. Accordingly, I show that my baseline estimates are insensitive to a wide variety

of additional controls for common shocks, implying that my estimates are driven by the

firm-specific component of stock returns. I find that my baseline average supply elasticity

estimate is well within the range found in the literature and is highly robust to different sets

of controls. I also find that alternate labor demand shock proxies—such as using the stock

returns of firms’ customers, patent grants, or only including stock returns near quarterly

earnings announcements—yield supply elasticity estimates that are nearly identical to my

baseline specification, though with less statistical precision.

Applying my method to firms sorted on labor productivity, I show that highly productive

firms face much lower labor supply elasticities than less productive firms. In models of

monopsony, wages move further below marginal product as the firm-specific supply elasticity

decreases, so this suggests that productive firms enjoy more monopsony power, a key source

of their economic rents. Decomposing wages into worker- and firm-specific heterogeneity

to back out worker skill, I find that productive firms also face lower supply elasticities for

workers of all skill levels; the most skilled workers have the lowest supply elasticities of all,

implying that labor market power is increasing in worker skill. In the time series I find that

labor supply elasticities have decreased overall and for each worker skill level, and especially

so for skilled workers. The spread in supply elasticities between productive and unproductive

firms has been widening over time, leading to an increased gap in firm-level labor shares
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between top and bottom firms.

The decline in my estimated supply elasticities matches the secular shift towards increased

rents and falling labor shares. The key role that skilled workers play in these phenomena can

possibly help explain why supply elasticity estimates trend downward, even as local labor

market concentration has decreased. For skilled workers, labor markets are much less local

(see Malamud and Wozniak, 2012; Amior, 2020, for example), diminishing the importance

of concentration defined over narrow geographic boundaries. Instead, I suggest that the

increased importance of human capital specificity may be a key contributor. Consistent with

this notion, the wage premium for incumbent workers has increased and worker separations

rates have decreased, suggesting that it has both become more costly to replace an incumbent

worker and more difficult for an incumbent worker to leave the firm.

The empirical incumbent wage premium suggests that it may be costly to replace workers

within the firm (Kline, Petkova, Williams, and Zidar, 2019). Prior research also uncovers

direct evidence that firms find it costly to adjust their labor force.5 I further find that firm

hiring decisions respond to a labor force analogue of Tobin’s Q, also suggesting labor is

costly to adjust by analogy to a long literature in finance on investment with costly capital

adjustment. In the presence of labor adjustment costs the supply elasticity may not be a

sufficient statistic for wage markdowns from marginal product, and so quantifying the extent

of labor market power also requires accounting for the impact of a labor force that is costly

to adjust. Accordingly, I quantify my empirical findings in the context of a dynamic wage

posting monopsony framework, which is based on the static models of Kline et al. (2019) and

Card, Cardoso, Heining, and Kline (2018) and features costly hiring of workers from outside

the firm. I use the model to estimate an adjustment cost factor that allows me to convert

empirically estimated supply elasticities into markdowns from marginal product.

In the model firms face upward sloping labor supply curves for both incumbent workers

and potential recruits. Firms may offer different wages to these two groups because of

5In the labor literatureJager and Heining (2019) show that incumbent workers are costly to replace; in
asset pricing, Belo, Lin, and Bazdresch (2014) argue that labor adjustment costs can explain the empirical
relationship between firm hiring and expected stock returns.
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adjustment costs in hiring workers from outside the firm. These adjustment costs could

stem from the need to train new hires to utilize the firm’s production technology and/or

the costliness of recruiting outside workers. I calibrate the model to match empirical labor

supply elasticity estimates for incumbents and recruits; average worker separations rates;

and, the average incumbent wage premium. The model is also able to generate the empirical

pattern of monotonically decreasing supply elasticities and labor shares as firm productivity

increases, without explicitly targeting these moments. My main calibration matches data

moments for the full sample period from 1991-2014; I also separately calibrate the model

for the 1991-2002 and 2003-2014 subperiods. I then use the model along with my empirical

estimates to quantify the value of cashflows that firms derive from paying workers less than

their marginal product.

Combining my empirical results and the model calibration, my main quantitative findings

are the following. The full-sample calibration of the dynamic model with adjustment costs

shows that wage markdowns are about 16% smaller relative to a static model without costly

adjustment. However, the dollar value of wage markdowns still represent a substantial portion

of firm cash flows. I find that the average firm pays workers about 83% of their marginal

product, with firms in the top productivity quartile paying about 62%, and the least productive

firms paying 94%. These wage markdowns in turn represent a meaningful portion of firm cash

flows. I perform a counterfactual exercise where I reverse wage markdowns to remunerate back

to workers their marginal products, holding constant firms’ production decisions. Overall,

wage markdowns are worth about a third of the average firm’s operating income. This figure

is 17% for firms in the bottom quartile of the labor productivity distribution and 43% for

firms in the top quartile. Aggregating the dollar value of wage markdowns across firms, wage

markdowns are worth on average about two-fifths of aggregate operating income.

I further show that wage markdowns can explain about three-fifths of the gap in average

labor shares between the firms in the top and bottom quartiles of the labor productivity

distribution; meanwhile, my supply elasticity estimates and model calibrations for the 1991-

2002 and 2003-2014 subperiods imply that changes in markdowns can explain the majority of
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the observed decline in the labor share over that time period.

The implication that productive firms exert more labor market power despite paying

high wages to their employees appears counterintuitive. But productive firms’ wages are low

relative to a very high marginal revenue product of labor, not low in the absolute sense, which

is entirely consistent with the empirical fact that productive firms also have low labor shares.

It also suggests the need for some nuance when considering the welfare implications of this

type of labor market power. For example, is labor is inelastic because of valuable firm-specific

human capital, then breaking up productive firms to reduce labor market power could have

negative consequences for both employees and employers if it devalues the workers’ human

capital in some way. On the other hand, the welfare implications are more clearly negative if

firms generate some of their labor market power by using their resources to artificially curb

worker mobility. In section 1.6 I show evidence that both forces are likely to be important.

I organize the main body of the paper as follows. In Section, 3.2 I discuss the data sources

and basic summary statistics; in Section 1.2 I examine stylized facts that are consistent

with productive firms earning economic rents; I explain my method for estimating supply

elasticities and apply it to firms sorted on labor productivity in Section 1.3; in Section 3.1 I

then introduce and calibrate a dynamic wage posting model with labor adjustment costs; in

Section 1.5 I combine my model and empirical estimates to quantify the contribution of labor

market power to firm capital income and its impact on aggregate and firm-level labor shares;

in Section 1.6, I discuss economic and policy implications and alternative explanations for

my findings. Finally, Section 3.5 concludes.

Related Literature

This paper contributes simultaneously to several different literatures. First of all, this paper

adds to a growing literature in macro-finance which examines recent macroeconomic trends in

competition, firm valuations/operating performance, and labor shares.6 Most related to my

paper is Hartman-Glaser, Lustig, and Xioalan (2019), who document that large firms have
6These include Barkai (2020), Grullon, Larkin, and Michaely (2019), Covarrubias, Gutiérrez, and Philippon

(2020), Greenwald et al. (2021), Corhay, Kung, and Schmid (2020), and Farhi and Gourio (2018).
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obtained an increasing share of their sales as capital income over the past several decades and

propose an explanation based on firms providing insurance to their workers against increased

risk. I similarly find that labor shares have decreased by more among highly productive firms.

I argue that this is in large part driven by productive firms marking down wages further from

marginal product. I also provide the novel finding that firms generate a substantial portion

of their operating income from wage markdowns, which is especially the case for firms with

high labor productivity. This competitive advantage generates rents which are reflected in

higher financial valuation ratios and relatively low investment rates among firms with high

labor productivity.

A parallel area of research in macroeconomics connects the secular decline in labor shares

with changes in market competition. I differ from most of this literature in primarily focusing

on the role of labor market power instead of product market power.7 While some papers in

this literature have focused on trends in productivity dispersion as a driving force behind

changes in product market competition, my findings imply that increases in the labor market

power of the most productive firms have also played a crucial role in my sample of publicly

traded companies.

This paper also builds on recent research in labor economics. A number of prior papers

estimate the elasticity of supply to the firm to infer the extent of monopsony power;8Another

related empirical literature has examined how labor market concentration affects wages.9 My

paper differs from others in this literature by quantifying the impact that labor adjustment

costs have on wage markdowns. I also estimate heterogeneity in labor supply elasticities

based on firm characteristics, focusing on labor productivity in particular. Another large

literature estimates the passthrough of firm-specific shocks to worker outcomes.10 These
7See Autor, Dorn, Katz, Patterson, and Van Reenen (2020), De Loecker, Eeckhout, and Unger (2020),

Covarrubias et al. (2020) and Kehrig and Vincent (2021) for examples. One exception is Stansbury and
Summers (2020), who argue that worker bargaining power has played an important role.

8See Lamadon, Mogstad, and Setzler (2019), Berger et al. (2021), Kroft, Luo, Mogstad, and Setzler
(2020), Bassier, Dube, and Naidu (2020), and Ransom and Sims (2010) for a few examples.

9See Rinz (2018), Benmelech, Bergman, and Kim (2018), Schubert, Stansbury, and Taska (2020), and
Jarosch, Nimczik, and Sorkin (2019), for example.

10See Abowd and Lemieux (1993), Van Reenen (1996), Guiso, Pistaferri, and Schivardi (2005), Kline et al.
(2019), Kogan, Papanikolaou, Schmidt, and Song (2020), Chan, Salgado, and Xu (2021), Garin and Silverio
(2020), Friedrich, Laun, Meghir, and Pistaferri (2019), Balke and Lamadon (2020).
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papers typically analyze the response of worker pay to firm-specific shocks, whereas my focus

is on estimating the ratio of the employment and wage responses to stock return shocks in

order to estimate the supply elasticity.

In a related prior paper, Gouin-Bonenfant (2020) argues theoretically for labor productivity

dispersion as a determinant of labor market power in a search and matching model, and

he shows empirically that productivity dispersion depresses labor shares at the aggregated

industry level in Canada. I find that productivity advantages also reduce labor shares at

the firm level in the United States, and this is at least partly direct result of differences in

monopsony power. Thus my findings complement those of Gouin-Bonenfant (2020). My paper

is also the first, to my knowledge, to explicitly estimate heterogeneous supply elasticities for

firms of different productivity levels both cross-sectionally and across time.

Finally, this paper adds to a growing body of work in financial economics that examines

the interplay between labor markets and firm financial outcomes and decision making.11

My findings suggest that accounting for imperfect competition in labor markets may be of

first-order importance for future research in this area.

1.1 Data and Summary Statistics

My analysis relies primarily on two data sources. The first is employer–employee matched

wage data from the US Census Bureau’s Longitudinal Employer Household Dynamics

Database (LEHD). I link the firm identifiers in the LEHD to financial information in

the CRSP/Compustat merged database obtained from Wharton Research Data Services. I

describe the LEHD and CRSP/Compustat–LEHD merged data and samples below. Besides

stock return and market cap data, which are from CRSP, all financial variables are from

Compustat. Henceforth I refer to the CRSP/Compustat merged sample as the Compustat

sample.

11References in asset pricing include Eisfeldt and Papanikoloau (2013), Belo et al. (2014), Donangelo,
Gourio, Kehrig, and Palacios (2019), Kuehn, Simutin, and Wang (2017), Liu (2019); see Matsa (2010), Jeffers
(2019), Mueller, Ouimet, and Simintzi (2017), Kim (2020), and Shen (2021) for examples in corporate finance.
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1.1.1 Employee-Employer Matched Wage Data from the LEHD

The Longitudinal Employer Household Dynamics Database (LEHD) contains restricted-use

microdata with wage and employer information for individuals in the United States. Wage

data in the LEHD are collected from firms’ unemployment insurance filings, and they contain

all forms of compensation that are immediately taxable, including stock options. Individuals

in the LEHD are linked to their employers through their State Employer Identification

Number (SEIN). The LEHD provides crosswalks between the SEIN and the federal Employer

Identification Number (EIN), which is also available for firm-level data sources such as

Compustat. The LEHD data begin in 1990, although most states join later as the LEHD

coverage becomes more comprehensive; the LEHD covers the majority of jobs in the United

States by the mid- to late-1990s, and coverage ends in 2015.12 The wage data are reported on

a quarterly basis, and cover nearly 100 percent of private employees in state-quarters where

the data are available. See Abowd, Stephens, Vilhuber, Andersson, McKinney, Roemer, and

Woodcock (2009) for a more detailed overview of the construction of the LEHD.

1.1.2 Matched Compustat-LEHD Sample

I link firm identifiers in each year of the the LEHD to Compustat records using a crosswalk

created by Larry Schmidt.13 I then assign individuals to their corresponding Compustat

gvkey and retain worker-years in which at least one of the worker’s employers was linked

to a Compustat firm. Following Sorkin (2018), I convert quarterly LEHD wages to their

full-year equivalents. Adjusting wages for a given year following the Sorkin (2018) procedure

requires information on wages in the year before and the year after the current year. See

appendix section 1.7.1 for more details. Given the availability of the LEHD wage data from

1990-2015, this means my effective sample period spans 1991-2014. In order to be in the

sample, I require a Compustat firm to have at least 15 workers for whom that firm is their

primary employer (defined to be the firm where the worker earned the most income that
12An overview of LEHD coverage is available at https://www2.vrdc.cornell.edu/news/data/qwi-public-use-

data/.
13Thanks to Larry for sharing his crosswalk code.
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year). I additionally exclude financial firms and regulated utilities from my analysis following

common practice. Because I use NAICS industry codes throughout, this excludes the 2-digit

NAICS codes 22, 52, and 53. In appendix Figure 1-8 I show the shares of employment,

market cap, and sales represented in my LEHD-Compustat matched sample. On average,

my matched sample covers about 62% of employment, 63% of market cap, and 50% of sales

represented in Compustat in a given year. I compare the distribution of firm characteristics

for my matched sample and the overall Compustat database in appendix Table 1.10. Not

surprisingly, firms in my matched sample skew a little bit larger relative to the mean or

median firm in Compustat based on various measures of firm size such as assets, employment,

or market cap. The distributions of annual excess stock returns are about the same across the

two samples. I obtain the risk-free rate from Ken French’s data library in order to calculate

excess returns.

1.1.3 Variable Construction

My proxy for labor productivity is given by log value-added per worker, following a large

literature in labor economics (see Card et al., 2018, for a review). Firms can have higher labor

productivity by enjoying higher total-factor productivity, being more capital intensive, or by

hiring more skilled workers. I define value-added for Compustat firms following Donangelo

et al. (2019), as the sum of operating income before depreciation, changes in inventories, and

labor expenses. Firm level labor shares are the ratio of labor expenses to value added. In

order to estimate the skill level of individual workers (or the average skill of a given firm), I

follow a long literature starting with Abowd, Kramarz, and Margolis (1999)—from now on

AKM—in decomposing observed wages into worker- and firm-specific heterogeneity. I start

with a modification of the AKM decomposition proposed by Lachowska, Mas, Saggio, and

Woodbury (2020) and Engbom and Moser (2020) that allows for the firm-specific component

of wages to vary by time. I use LEHD data to create measures of firm wage offers and total

labor expenses. Details on my construction of all these variables can be found in appendix

section 1.7.1.
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1.2 Firm Labor Productivity and Labor Shares, Valu-

ations, and Investment

In this section I document the following facts: productive firms 1) have lower labor shares;

2) have higher operating performance and valuation ratios; 3) but do not have high rates

of investment. These facts in tandem are consistent with productive firms earning higher

economic rents, and motivates my choice later on to examine supply elasticities for firms

sorted on labor productivity. I emphasize that the evidence in this section is suggestive and

correlational rather than causal, and do not by themselves constitute direct evidence for

labor market power. Direct evidence on the magnitude of rents earned from labor market

power instead come from when I estimate the labor supply elasticity to the firm in section

1.3. I focus on valuation ratios and labor shares because rents earned from market power

should be associated with both higher valuations and lower shares of output accruing to

labor, all else equal.14 As shown by Crouzet and Eberly (2021) and Abel and Eberly (2011),

the Tobin’s Q valuation ratio reflects both rents and marginal Q, the marginal increase in the

value of the firm with respect to an additional incremental unit of capital. In the presence of

economic rents Tobin’s Q overstates investment opportunities, and firms earning more rents

have higher Tobin’s Q without an attendant increase in investment.

In Table 1.1 I examine the relationship between labor productivity, labor shares, valuations,

and operating profitability. In panel A I study the relationship between log value-added per

worker and firm-level labor shares and log valuation ratios, respectively. Without controlling

for industry-by-year fixed effects in the first column, the elasticity of the labor share with

respect to labor productivity is a highly significant -.34. Size effects increase this slightly in

the second column. Adding industry-by-year (where industry is defined at the 3-digit NAICS

level) fixed effects increases the magnitude of this elasticity considerably, to about -.51 in

14For labor shares, with a Cobb-Douglass production function the labor share is (1 − 𝛼), where (1 − 𝛼) is
the labor returns to scale. When there is a price markup over marginal cost due to product market power,
the labor share is (price markup)−1 × (1 − 𝛼), where the price markup is the ratio of the price to marginal
cost. With labor market power the labor share is wage markdown × (1 − 𝛼), where the wage markdown is
the ratio of the wage to marginal revenue product of labor.
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column 3. Note that even without market power, labor shares can also vary negatively with

productivity as a result of production function variation.15 Production function variability is

likely to be larger between rather than within industries, but the negative productivity-labor

share relationship is stronger within industries. This is consistent with the market power of

more productive firms playing a role in driving down firm level labor shares.

In panel B I look at the relationship between log value-added per worker and the log of four

different valuation ratios, focusing on the specification with size controls and industry-by-year

fixed effects. Log value-added per worker is strongly associated with increased log total

Tobin’s Q (which is taken from Peters and Taylor (2017) and includes both intangible and

physical capital) and in my employment-based Tobin’s Q measure. Both have elasticities

above 0.5 and highly significant t-stats. Productive firms have high enterprise values relative

to their installed capital stock or skill-weighted labor force, as would be expected in the

presence. The last two columns show that labor productivity is also associated with high

market capitalization relative to book equity and sales.

Market power should also yield increases in profitability. I find that productive firms

exhibit better operating performance in panel C of Table 1.1. This is true both contempo-

raneously and in the future, so the relationship is not merely a mechanical result arising

from transitory increases in productivity that correlate with temporary contemporaneous

increases in profitability. Instead, productivity and profitability show a persistent correlation

intertemporally.

If the high valuations of productive firms are due to rents and not because of growth

opportunities, we should not see a consummate rise in investment (or hiring) in response

to valuation differences. In Panel A of Table 1.2 I sort firms into four quartiles of labor

productivity and show the average Tobin’s Q and average investment rates across these

quartiles. In the first two rows I show the Peters and Taylor (2017) total (physical plus

intangible) investment rates and average total Q. There is a strongly increasing average Q,

15If the production function is CES then labor shares are naturally decreasing in the productivity level
when capital and labor are complements (Donangelo, 2020). Returns to scale could also differ so as to be
correlated with log value-added per worker.
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with an average of about 1.70 for the top quartile of productivity and 0.73 for the bottom

quartile. The average investment rates are only slightly higher for the top quartile relative

to the bottom quartile, this difference is not statistically significant, and the middle two

quartiles of productivity have lower average investment rates than the bottom quartile. The

results are similar, when I examine the hiring rates relative to my measure of employment Q

in the bottom two rows of Table 1.2. The employment Q is several times larger for highly

productive firms, and yet their hiring rates are actually significantly lower.

These findings are consistent with the result in Crouzet and Eberly (2021) showing that

when firms earn rents their Tobin’s Q overstates marginal Q, and hence overpredicts their

investment decisions relative to actual investment. I examine this relationship further in panel

B of Table 1.2, by running a regression of investment rates on Q ratios with productivity

quartile-specific slopes and for investment types 𝑘 = 𝑇𝑜𝑡𝑎𝑙,𝐻𝑖𝑟𝑒. As in Peters and Taylor

(2017) I include firm and year effects. I also add labor productivity quartile fixed effects and

further control for firm cashflows.

Inv Rate𝑘
𝑡+1 = 𝛼𝑘 + 𝛼𝑘

𝑞(𝑗,𝑡) + 𝛼𝑘
𝑗 + 𝛼𝑘

𝑡 +
4∑︁

𝑞=1
1(𝑞(𝑗, 𝑡) = 𝑞) ×

(︁
𝛽𝑘

𝑞𝑄
𝑘
𝑗,𝑡 + 𝛿𝑘

𝑞𝐶𝐹𝑗,𝑡

)︁
+ 𝜖𝑘

𝑗,𝑡 (1.1)

The 𝑞(𝑗, 𝑡) denotes firm 𝑗’s time-t productivity quartile, and 𝛼𝑘
𝑞(𝑗,𝑡) are labor productivity

quartile specific intercepts. Finally, 𝑄𝑘
𝑗,𝑡 denotes the firm’s total or employment Tobin’s Q

ratio, and 𝐶𝐹𝑗,𝑡 are the firm’s cash flows, defined as in Peters and Taylor (2017). Panel B

of Table 1.2 shows that 𝛽𝑘
𝑞 coefficients are lowest for the most productive firms and larger

for the least productive firms, for both investment in capital and for hiring new workers.

The fifth column gives the p-value on a test that the top and bottom labor productivity

quartile slope coefficients are equal, which is rejected at high levels of statistical significance

in both regressions. These findings could also be explained by productive firms facing higher

adjustment costs, so in appendix Tables 1.12 and 1.13 I control for adjustment cost proxies,

still finding the same basic result. I describe this test in appendix section 1.7.2. In sum, Table

1.2 provides suggestive evidence that average Q ratios overstate marginal Q for productive

firms because they reflect in part the value of economic rents earned from current assets in
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place and not future investment opportunities.

Finally, I look at trends in the spread in productivity and Tobin’s Q ratios between the

most and least productive firms. I again sort firms into labor productivity quartiles and take

the average log value-added per worker and log total/employment Q ratios for each year. I

then take the difference between firms in the top- and bottom-quartiles of labor productivity

over a three-year moving average centered at the current year. I plot the resulting series

in Figure 1-1. The spread in value-added per worker has increased, echoing the findings of

De Loecker et al. (2020), Autor et al. (2020), and Gouin-Bonenfant (2020), among others.

Lastly, the spread in both of the average log Q ratios has also increased, suggesting a widening

gap in economic rents between the most- and least-productive firms, likely driven in part by

the increasing gap in productivity between the two groups.

Overall, the empirical patterns documented in this section are consistent with high and

potentially increasing economic rents being earned by firms with high labor productivity.

Productive firms have high market valuations without high investment rates, and also have

lower labor shares. These stylized facts are correlational rather than causal, and could be

consistent with the presence product market power, as in Barkai (2020), De Loecker et al.

(2020), and Autor et al. (2020), as well as labor market power. In the following sections

I examine to what extent, if any, labor market power could play a role in driving some of

these empirical patterns. Direct evidence on the extent of labor market power comes from

estimating the elasticity of labor supply to the individual firm, which I do in the next section.

1.3 Firm Productivity and Labor Market Power

In this section I first discuss my method for estimating supply elasticities. I then apply my

method to firms sorted on labor productivity.
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1.3.1 Relationship Between Wage Markdowns and the Supply Elas-

ticity

The firm-specific elasticity of supply is the key quantity that determines wage markdowns in

standard models of monopsony. To see this, consider the basic static monopsony framework

(Robinson, 1969). The firm has a revenue function 𝐹 (𝐿) and faces a labor supply function

𝐿(𝑤), where 𝑤 is the wage offer. The firm solves:

max
𝑤

𝐹 (𝐿(𝑤)) − 𝑤𝐿(𝑤) (1.2)

First order conditions give

𝑤 = 𝜖

1 + 𝜖
𝐹𝐿 (1.3)

where

𝜖 = 𝑑𝐿

𝑑𝑊

𝑤

𝐿
is the supply elasticity. (1.4)

Define
𝜖

1 + 𝜖
≡ wage markdown (1.5)

Thus the wage markdown represents the fraction of labor’s marginal revenue productivity

that workers obtain in wages. In perfect competition 𝜖 → ∞, and the wage equals 𝐹𝐿, the

marginal revenue product of labor.

1.3.2 Estimating Supply Elasticities

As emphasized by Manning (2003), supply elasticities can be identified by shocks to the

marginal revenue product of labor, holding the firm-specific labor supply curve constant.

In order to estimate supply elasticities, labor demand shocks to should be: 1) a persistent,

unanticipated shock to firm productivity; 2) firm-specific; 3) not correlated with shocks to

firm-specific labor supply. An objective of this paper is to estimate heterogeneous supply

elasticities for a panel of Compustat firms sorted on labor productivity, as well as to allow

for time-variation in these estimates, so my labor demand shock also needs to be available
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for a wide variety of firms and for a long period of time.

Stock Returns As a Labor Demand Shock

Firm-specific stock returns satisfy the above criteria for a labor demand shock quite well.

In particular, they reflect a revision in expected discounted future cashflows, and hence

inherently correlate with changes in current and expected future revenue productivity.16

Consider the standard asset pricing equation that determines the price of a stock:

𝑃𝑡 = 𝐸𝑡

[︃ ∞∑︁
𝑘=0

𝑀𝑡,𝑡+𝑘𝐷𝑡+𝑘

]︃

Here 𝐷𝑡+𝑘 is a cashflow occuring at time 𝑡+ 𝑘 and 𝑀𝑡,𝑡+𝑘 is the time 𝑡 discount factor for

time 𝑡+ 𝑘 cashflows. The time 𝑡 stock return is

𝑅𝑡 = 𝐷𝑡 + 𝑃𝑡

𝑃𝑡−1

Most of the variation in stock returns is firm-specific, and the common components can

be removed rather easily. Because stock returns react to new information, they are inherently

unexpected, and because they are forward looking they represent persistent changes in the

outlook of the firm going forward. All this suggests that stock returns are good candidates

for unexpected shocks to firm revenue productivity, which in turn moves firm labor demand.

However, firms may also gain value from the willingness of workers to be employed at

the firm for any given wage, which affects the level of the labor supply curve. Unexpected

changes in the level of labor supply could bias supply elasticity estimates when using stock

returns as an instrument for labor demand shocks. To build intuition about the form this
16Previous research provides evidence that while discount rate shocks drive much of the variation in the

aggregate stock market, news containing information about future cashflows drives the vast majority of the
variation in firm-level stock returns. For example, Vuolteenaho (2002) finds that the idiosyncratic component
of individual stock returns is almost entirely driven by firm-specific cash flow news, while movements in
discount rates are primarily common across firms. Recent research (Neuhierl, Scherbina, and Schiusene, 2013;
Boudoukh, Feldman, Kogan, and Richardson, 2018) also shows that fundamental information about firms,
such as unexpectedly high earnings, acquisitions, or new product announcements, are an important driving
force behind stock price movements. All these shocks can be expected to relate to firms’ marginal revenue
productivity.
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bias may take, I derive closed form expressions for the bias in Appendix 1.7.3 with a simple

model of the labor market that takes inspiration from Card et al. (2018) and Lamadon et al.

(2019). There are two key insights from this exercise. The first is that failing to account

for market-wide shocks is likely to bias stock-return based elasticity estimates towards zero,

causing me to make erroneously large inferences about the importance of labor market power.

Because of this I demonstrate the insensitivity of my baseline elasticity estimates to a host of

specifications using different proxies for market-level shocks.

The second insight is that once market shocks are accounted for, any remaining bias

is likely to cause my estimates to be conservative. This follows from the fairly innocuous

assumption that firms do not cut amenities (or workers don’t reduce their common perception

of firms’ amenities) by too much on average when idiosyncratic productivity improves. Hence

workers shouldn’t view the firm as a worse place to work at when firm-specific productivity

goes up. This assumption implies my elasticity estimates are an upper bound on the true

elasticity. My estimation strategy correctly identifies the supply elasticity when I further

invoke the identifying assumption that only market-specific shocks move the level of the labor

supply curve. It should be noted that this assumption is invoked in most papers that estimate

passthrough parameters of firm-specific shocks to workers.17 This is because unobservable

firm-specific amenities shocks bias passthrough coefficients. This is an issue even when using

plausibly exogenous variation in firm revenue productivity, because one still cannot rule out

in general that amenities could also move as a response to the shock.

Because of this potential bias, in robustness checks detailed in Appendix Section 1.7.5 I

examine elasticity estimates implied by different shocks to revenue productivity, and discuss

the different identifying assumptions each implicitly invokes in order to estimate the supply

elasticity. Finally, I identify sets of firms that were likely to have experienced observable

firm-specific labor supply shocks and check how sensitive elasticity estimates are to the

inclusion of these observable controls.

17For example: Lamadon et al. (2019), Kline et al. (2019), Garin and Silverio (2020). Papers in the asset
pricing literature which incorporate labor market frictions (such as Kuehn et al. (2017), Belo et al. (2014), or
Donangelo (2014)) also assume that labor supply shocks are determined at the market level.
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My specification to obtain a baseline average supply elasticity estimate is as follows:

log(𝑌𝑗,𝑡+1) − log(𝑌𝑗,𝑡) = 𝛼 + 𝛼𝐼(𝑗),𝑡 + 𝛽Stock Ret𝑗,𝑡→𝑡+1 + Γ𝑋𝑗,𝑡 + 𝜖𝑗,𝑡 (1.6)

Here 𝑌 = firm Compustat employment or firm average full-time full-year equivalent adjusted

wage. The ratio of the estimates ̂︀𝛽𝐸𝑚𝑝/ ̂︀𝛽𝑊 𝑎𝑔𝑒 gives the supply elasticity. The 𝛼𝐼(𝑖),𝑡 denote

3-digit NAICS industry × year fixed effects, which are intended to control for common market

shocks. The controls 𝑋𝑗,𝑡 include the contemporaneous change in log firm average AKM

worker effects 𝛼𝑗,𝑡 (defined in equation (1.41) in appendix section 1.7.1); and, lagged growth

rates in employment, wages, and firm assets. I include the contemporaneous changes in

worker effects in case stock returns lead to changes in the skill composition of the workforce.

If this is the case, then failing to account for skill changes may cause employment and wage

growth to be misstated in terms of constant efficiency units of labor. I include lagged growth

rates in firm wages, employment, and assets to control for any pre-trends in labor demand or

firm expansions that may be slightly correlated with future stock returns. The identifying

assumption of the estimation strategy is that labor supply shocks operate at the market level,

defined by industry-year. The annual stock returns in (1.8) are given by the sum of the firm’s

monthly returns in excess of the risk-free rate from July of year 𝑡 through June of year 𝑡+ 1.

Due to some extreme outliers in the tails of monthly returns, I cross-sectionally winsorize the

outer 0.25% from each tail before summing excess returns to the annual level, although my

findings are not meaningfully affected in any way by this decision.

Before estimating elasticities via (1.6), I first look at wages and employment responses

over different horizons to see if there are pre-trends. Similar to Kogan et al. (2020), I examine

the growth in average wages or employment over different forward- and backward-looking

horizons of ℎ years:

log
⎛⎝ 1

|ℎ|

|ℎ|∑︁
𝑘=1

𝑌𝑗,𝑡+𝑘×sign(ℎ)

⎞⎠− log(𝑌𝑗,𝑡) = 𝛼 + 𝛼𝐼(𝑗),𝑡 + 𝛽ℎStock Ret𝑗,𝑡→𝑡+1 + Γ𝑋𝑗,𝑡 + 𝜖𝑗,𝑡 (1.7)

Here 𝑌 = firm employment or average wage. This specification gives the growth of average
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employment or wages over the horizon and highlights persistent changes to wages and

employment induced by stock return shocks. I estimate (1.7) for horizons ℎ = −5 to ℎ = 5

years. For ℎ = 1 year the specification (1.7) is the same as (1.6). I plot the results in

Figure 1-2. Because of the unforeseen nature of a shock to firm-specific stock returns, the

pre-trends are non existent for both wages and employment. Meanwhile, both employment

and wages display large, statistically significant and persistently positive responses at the time

of and following the stock return shock. The joint positive employment and wage responses

to movements in stock prices are consistent with my argument above that stock returns

constitute a powerful and essentially unpredictable labor demand shock.

To examine pre-trends and shock responses at different horizons by worker skill, in Figure

1-3 I again estimate the employment and wage responses over forward- and backward-looking

horizons as in (1.7), except broken down by each worker skill level. I define workers in the

bottom two quintiles of estimated worker wage effects in (1.38) to be low skill, the third and

fourth quintiles to be middle skill, and the top quintile to be high skill. Similar to Figure

1-2, I find no pre-trends and a strong positive wage and employment responses to a stock

return shock. The skilled worker wage response is the largest in magnitude, generating a

lower supply elasticity for skilled workers as found in Table 1.4.

Baseline Elasticity Estimates

In Panel A of Table 1.3 I estimate supply elasticities for workers of different skill levels. My

baseline pooled average supply elasticity estimate is about 2.5, found in the first column of

Panel A in 1.3. This is well in line with the range of estimates found in previous research,

although on the slightly smaller end.18 This is likely because of my focus on publicly traded

firms, which are much larger than the typical firm in the US economy. The remaining

columns show that supply elasticities decline in worker skill. This may cause one to worry

that the larger wage passthroughs for skilled workers come because skilled workers who are
18Sokolova and Sorensen (2021) find the median supply elasticity estimate is around 1.7 in a meta-analysis.

Bassier et al. (2020) point out that recent quasi-experimental evidence—such as Kroft et al. (2020), Cho
(2018), and Dube, Manning, and Naidu (2018), and Caldwell and Oehlsen (2018)—has found supply elasticities
between 2 and 5.
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insiders are simply able to appropriate more rents generated from positive firm specific shocks.

In Panels B and C of Table 1.3 I split workers into incumbent and recruit status, where

incumbents have been employed at the firm at least since the previous year. I find lower

elasticities for incumbent workers. However, consistent with a monopsony explanation for

the low elasticities skilled workers, I also find that skilled workers face the lowest supply

elasticities among recruits. My wage posting model in section 3.1 matches the pattern of

high high wage passthroughs and low incumbent supply elasticities, which is caused by the

costliness of hiring workers from outside the firm and the presence of an incumbent wage

premium.

Robustness Checks

I run a host of robustness checks for my estimates of (1.6), which I cover in more detail in

in Section 1.7.5 of the appendix. Since a major source of confounding variation comes from

aggregate shocks, I carefully check to see how my estimates vary with different controls for

common market level shocks in 1.7.5. One may also worry about the quantitative impact

of other sources of endogeneity. In 1.7.5 I instead estimate supply elasticities with several

alternative labor demand shifter—including customers’ stock returns, R&D tax credits,

patenting, and earnings announcement returns—finding very similar estimates. In 1.7.5 I

also show that controlling for salient observable firm-specific labor supply shocks, such as

unionization events or changes in non-compete enforceability, have no effect on the average

supply elasticity estimate. The common finding from these exercises is that my baseline

average supply elasticity estimate is very close economically and statistically to the various

alternatives, suggesting that bias in my estimates is likely to be quantitatively small.

1.3.3 Supply Elasticities for Firms Sorted on Labor Productivity

and Over Time

The stylized facts in Section 1.2 imply that such a sorting on labor productivity should induce

wide variation in labor shares, firm valuations, and profitability, suggesting these firms earn
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rents but does not necessarily imply anything about their labor market. To provide direct

evidence on differential labor market power across firms of varying labor productivity levels,

I now estimate heterogeneous elasticities for firms sorted by labor productivity as proxied

by log value-added per worker. In Table 1.11 I find that productive firms hire more skilled

workers on average, and so I also break down my estimates by worker skill level. I sort firms

into quartiles on log value-added per worker and estimate heterogeneous coefficients for each

quartile of the productivity distribution. My main specification is the following:

log(𝑌𝑗,𝑡+1)− log(𝑌𝑗,𝑡) = 𝛼+𝛼𝑞(𝑗,𝑡) +𝛼𝐼(𝑗),𝑡 +
4∑︁

𝑞=1
1(𝑞(𝑖, 𝑡) = 𝑞)×𝛽𝑞Stock Ret𝑗,𝑡→𝑡+1 +Γ𝑋𝑗,𝑡 +𝜖𝑗,𝑡

(1.8)

where again 𝑌 = firm Compustat employment or firm average full-time full-year equivalent

adjusted wage. Here 𝑞(𝑗, 𝑡) denotes the productivity quartile of firm 𝑗 at time 𝑡. The controls

𝑋𝑗,𝑡 are the same as introduced in (1.6), including lagged employment, wage, and asset growth,

and the contemporaneous change in firm average worker skill. Finally, I add quartile-specific

fixed effects 𝛼𝑞(𝑗,𝑡) to allow each productivity quartile to have a different intercept and slope.

I also estimate (1.8) separately for workers of different skill levels. I define workers in the

bottom two quintiles of the distribution of worker effects in the AKM decomposition (1.38)

to be low-skilled; the third and fourth quintiles to be middle-skilled; and the top quintile to

be high skilled. I separately compute the average wages, average AKM worker effects, and

employment by worker skill level.19

In Table 1.4 I estimate (1.8) for the overall firm and for each skill type. Table 1.4 shows

that more productive firms face lower supply elasticities at the firm level and at for each skill

level. The overall supply elasticity for a highly productive firm is about 1.17, while it is 4.32

for a low productivity firm. These estimates mask heterogeneity by worker skill level; the
19Since I can’t observe the share of Compustat employment by worker skill, I assume the number of

workers of a given skill level are proportional to their observed shares in the LEHD. So if the firm has 𝑁𝑗,𝑡

workers in the sample of the AKM decomposition (1.38) in year 𝑡, 𝑁𝑠
𝑗,𝑡 of which are from skill group 𝑠, then

I assume Compustat employment in group 𝑠 is equal to 𝐸𝑀𝑃 𝑠
𝑗,𝑡 = 𝐸𝑀𝑃𝑗,𝑡 × 𝑁𝑠

𝑗,𝑡/𝑁𝑗,𝑡. I continue to use
Compustat employment because it is reported at year end, which allows more time for employment to respond
to a stock return shock than LEHD employment. Compustat employment also reflects workers at all the
firm’s establishments instead of just those at the establishments that are covered by the LEHD in that year.
I make the same assumption when breaking down workers into their status as either incumbents or recruits.
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highest skill workers have much lower supply elasticities, implying greater wage markdowns

for the most skilled workers. However, even for low- and middle-skill workers the elasticities

are decreasing in firm productivity. The test on coefficient differences between high- and

low-productivity firms in fifth column also shows that differences in estimates elasticities are

driven primarily by higher wage responses in the denominator—highly productive firms move

wages by more to induce a given change in employment relative to unproductive firms.

The lower supply elasticities that productive firms face provide a competitive advantage,

allowing them to markdown wages by more relative to marginal product, generating substantial

economic rents to the firm. This finding squares with the results in Section 1.2 where I

documented evidence that these same firms exhibit behaviors consistent with them earning

rents derived from market power, such as having low investment and hiring rates given

valuations and much lower labor shares.

Table 1.4 also shows that more skilled workers face lower supply elasticities at any given

productivity level relative to less skilled workers. This implies that highly skilled employees

have a greater difficulty of finding suitable substitutes among different potential employers.

Skilled workers also exhibit much larger attachment to their employers. I find that the

average separations rate for a firm’s low-skilled workers is about 35.5%, whereas it is 24.6%

for skilled workers. This suggests that firm-specific human capital could be a key driver of

monopsony power among this group. Highly skilled workers are more educated and have

generally made more specific human capital investments. This has the benefit of making

skilled workers productive to their employers, but also leads to more difficulty in substituting

their labor across firms. However, there is a flip side to this coin, which is that employees

with specific skills are also hard for employers to replace. This can mitigate some monopsony

power. In section 3.1 I present a dynamic wage posting model where hiring outside workers

is costly, causing incumbent workers to enjoy a wage premium relative to the standard static

marginal product markdown implied by the elasticity alone. I calibrate the model to quantify

the attenuating influence such adjustment costs may have on firms’ ability to fully exercise

their monopsony power.
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I now estimate time-varying heterogeneous supply elasticities. I estimate the baseline

specification (1.6) for overlapping moving 3-year windows, both for the whole firm and

each individual skill level. In Figure 1-4 I find that estimated supply elasticities have been

decreasing for each skill group, and especially for skilled workers. Movements in labor market

power may therefore have explanatory power for observed declines in the aggregate labor

share documented by Karabarbounis and Neiman (2013), Autor et al. (2020), and numerous

others. I examine how changes in elasticities impact the aggregate labor share in section 1.5.

My supply elasticity estimates can also explain cross-sectional dispersion in firm-level

labor shares over time. To demonstrate this, I estimate (1.8) for overlapping moving 3-year

windows and take the elasticity estimates for the top- and bottom-productivity quartiles. I use

the standard markdown formula to estimate the elasticity-implied spread in log markdowns

between the two productivity types and compare this to the spread in log labor shares. The

log markdown spread is

Log Markdown Spread𝑡 = log
(︃ ̂︂𝜖4,𝑡

1 + ̂︂𝜖4,𝑡

)︃
− log

(︃ ̂︂𝜖1,𝑡

1 + ̂︂𝜖1,𝑡

)︃
(1.9)

where ̂︂𝜖𝑞,𝑡 is the estimated supply elasticity for productivity quartile 𝑞 in the 3-year moving

window centered at time 𝑡. At the same time, I compute the average log labor share of the

high- and low-productivity firms over the same 3-year window:

Log Lshare Spread𝑡 = (1/3)
𝑡+1∑︁

𝜏=𝑡−1
(𝐸[log(𝑙𝑠ℎ𝑎𝑟𝑒4,𝜏 )] − 𝐸[log(𝑙𝑠ℎ𝑎𝑟𝑒1,𝜏 )]) (1.10)

Figure 1-5 plots the two standardized series. Due to the availability of LEHD wage data and

the requirements of my regression specification, I compute supply elasticity estimates for the

years 1992-2013. There is a clear tight link between the cross-sectional dispersion in labor

shares and the wage markdowns for firms sorted on labor productivity, with the two series

tracking each other closely over time. The correlation is about 0.73, with a Newey-West t-stat

of 4.10. Since there are only 22 observations I compute the small-sample adjusted t-stat,

and I choose a lag length of 5 years due to the persistence of the two series. The widening
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gap in labor shares and elasticity-implied markdowns in Figure 1-5 echoes the changing

relative valuations and productivity levels of high- and low-productivity firms in Figure

1-1, suggesting the phenomena may be jointly linked. In accordance with this, the model I

introduce and calibrate in Section 3.1 forges a direct link between productivity advantages,

labor market power, and firm labor shares.

My results in this section imply that labor market power is likely to be a quantitatively

important determinant of firm rents and cash flows, especially for the most productive firms.

While my estimates are informative about the magnitudes of labor market power, they may

not be sufficient by themselves to quantify the cashflows firms derive from wage markdowns.

As discussed before, in the presence of labor adjustment costs the supply elasticity is not

the only determinant of markdowns from marginal product. I formalize this concept in

section 3.1, where I propose a model to map my empirical supply elasticity estimates into

quantitative markdowns in the presence of labor market adjustment costs.

Robustness Checks for Labor Productivity Sorted Supply Elasticities

I now briefly discuss robustness checks for labor productivity-sorted supply elasticity estimates;

for further details on all these estimates see 1.7.5 in the appendix. In appendix Table 1.20

I sort firms into labor productivity quartiles within 2-digit NAICS industry, and find that

every key finding from my baseline sorts in Table 1.4 is unchanged. In appendix Table 1.21 I

perform several more robustness checks on elasticities sorted on productivity. I first estimate

elasticities at the 3-year instead of 1-year horizon to test whether short term frictions drive

the lower elasticity estimates for unproductive firms. Next I replace replacing average log

wage changes with time-varying AKM firm wage effects to verify that sorting patterns are not

likely to be driven by differences in incentive pay or match components of wages. Then I sort

firms on TFP estimates from İmrohoroğlu and Tüzel (2014) instead of value added per worker.

Finally, I replace Compustat employment changes with LBD employment changes, finding

that Compustat-based elasticity estimates are more conservative. In all cases I find the same

strongly monotonic decreasing pattern in supply elasticities as productivity increases.
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1.4 Dynamic Wage Posting Model

In this section I introduce a dynamic wage posting model where a single firm hires from a

fixed pool of potential employees. My primary focus is on quantifying how much adjustment

costs affect markdowns from marginal product relative to the standard static elasticity-based

markdown formula. The model is a dynamic extension on the static framework in Kline et al.

(2019), and is also closely related to the setup of Card et al. (2018).

1.4.1 Setup

Consider the dynamic wage posting problem of a labor market with a single firm. There are

a fixed total of 𝐿 workers in the market, with a fraction 𝜆𝑡 currently employed at the firm

at the start of period 𝑡. The firm can make different wage offers to outside hires (“𝑂") and

incumbents (“𝐼”). The firm faces labor supply functions for these two classes of worker. For

incumbents:

𝐿𝐼
𝑡 = 𝜆𝑡𝐿

(𝑤𝐼
𝑡 − 𝑏)𝛽

𝜅
(1.11)

For outside hires:

𝐿𝑂
𝑡 = (1 − 𝜆𝑡)𝐿

(𝑤𝑂
𝑡 − 𝑏)𝛽

𝜅
(1.12)

This labor supply functional form is borrowed from Card et al. (2018) and Kline et al. (2019).

The (𝑤𝑘
𝑡 −𝑏)𝛽

𝜅
represents the probability that a worker of type 𝑘 = 𝐼, 𝑂 accepts the offer to

work at the firm. Card et al. (2018) derive the above labor supply function in a model of

worker discrete choice with unobserved taste shocks between firms; like Kline et al. (2019) I

take the functional form in equations (1.11) and (1.12) as given. Unlike Kline et al. (2019),

I assume that firms choose the wage offer for both their incumbent workers and outside

hires. Card et al. (2018) show that this supply functional form has some nice properties. In

particular, it has a representation of the optimal wage that is isomorphic to a bargaining

model, where 𝛽/(1 + 𝛽) acts like the workers’ bargaining weight and 𝑏 functions like the

workers’ outside option. In Card et al. (2018) the parameter 𝛽 is inversely related with the

variance in workers’ unobservable preferences among firms; higher values of 𝛽 lead to more
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elastic demand. The parameter 𝜅 is simply a scaling factor to ensure that the probability of

a given worker choosing to be employed at that firm is bounded between 0 and 1. In order to

focus on the firm’s decision, I deliberately make the worker employment decision simple. An

incumbent or potential recruit takes the wage offer at time 𝑡 and decides whether or not to

be employed at the firm for that period according to the choice probabilities implied in (1.11)

and (1.12). Though 𝛽 and 𝑏 could in theory be worker-type specific, I restrict the them to

be the same for incumbent workers and outside hires in order to limit the number of free

parameters when I calibrate the model.

The supply elasticity facing the firm for workers of type 𝑘 = 𝐼, 𝑂 is

𝛽𝑤𝑘
𝑡

𝑤𝑘
𝑡 − 𝑏

(1.13)

This is decreasing in the wage and is increasing in 𝛽 and 𝑏.

Firms may pay outside hires differently because they are imperfect substitutes for incum-

bents. Specifically, hiring outside workers incurs quadratic adjustment costs:

𝑐𝑡(𝐿𝑂
𝑡 ) = exp(𝜎𝑐𝑧𝑡)𝐶𝜆𝑡𝐿

(︃
𝐿𝑂

𝑡

𝜆𝑡𝐿

)︃2

(1.14)

The adjustment costs may represent the cost of training workers in firm-specific production

technologies or recruitment/hiring costs. I include the term exp(𝜎𝑐𝑧𝑡) to allow adjustment

costs to be increasing in firm productivity. Given the Belo, Li, Lin, and Zhao (2017) and

Jager and Heining (2019) findings that adjustment costs are likely higher for skilled labor,

this feature is a reduced form way of getting adjustment costs to increase in firm “skill” in a

setting where there is only one type of labor. The 𝜆𝑡𝐿 term gives the number of incumbent

workers employed at the firm at the start of time 𝑡, so adjustment costs are quadratic in the

ratio of outside hires to start of period incumbents. This is similar to the formulation in

Kline et al. (2019).

The firm produces output according to a Cobb-Douglas production function in the sum

of inside and outside hires. Firm log productivity 𝑧𝑡 follows an AR(1) process. There is no
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aggregate risk and firm cash flows are priced at the constant risk-free discount rate 𝑟. The

firm solves

𝑉𝑡 = max
𝑤𝐼

𝑡 ,𝑤𝑂
𝑡

𝐹𝑡(𝐿𝐼
𝑡 , 𝐿

𝑂
𝑡 ) −

(︁
𝑤𝐼

𝑡𝐿
𝐼
𝑡 + 𝑤𝑂

𝑡 𝐿
𝑂
𝑡 + 𝑐𝑡(𝐿𝑂

𝑡 )
)︁

+ exp(−𝑟)𝐸𝑡[𝑉𝑡+1] (1.15)

Subject to 𝐿𝑂
𝑡 = (1 − 𝜆𝑡)𝐿 (𝑤𝑂

𝑡 −𝑏)𝛽

𝜅
and 𝐿𝐼

𝑡 = 𝜆𝑡𝐿
(𝑤𝐼

𝑡 −𝑏)𝛽

𝜅

𝜆𝑡+1 = (𝐿𝑂
𝑡 + 𝐿𝐼

𝑡 )/𝐿 (1.16)

Where

𝐹𝑡(𝐿𝐼
𝑡 , 𝐿

𝑂
𝑡 ) = exp(𝑧𝑡)

(︁
𝑧(𝐿𝐼

𝑡 + 𝐿𝑂
𝑡 )
)︁(1−𝛼)

(1.17)

𝑧𝑡+1 = 𝜌𝑧𝑧𝑡 + 𝜎𝑧𝜖𝑧,𝑡+1 (1.18)

and 𝑐𝑡(𝐿𝑂
𝑡 ) is the cost of hiring 𝐿𝑂

𝑡 workers. The law of motion for 𝜆𝑡 means that a time 𝑡

retained incumbent or outside hire becomes an incumbent at the start of 𝑡+ 1.

1.4.2 Wage Markdowns with Adjustment Costs

The presence of adjustment costs changes the markdown formula in the standard monopsony

framework. To see this, we take the first-order conditions of (1.15) for worker types 𝑘 = 𝐼, 𝑂:

𝑤𝑘
𝑡 = 𝜀𝑘(𝑤𝑘

𝑡 )
𝜀𝑘(𝑤𝑘

𝑡 ) + 1

(︃
𝑀𝑅𝑃 𝑘

𝑡 − 𝜕𝑐𝑡

𝜕𝐿𝑘
𝑡

+ exp(−𝑟)𝐸𝑡

[︃
𝜕𝑉𝑡+1

𝜕𝐿𝐼
𝑡+1

]︃)︃
(1.19)

Here 𝑀𝑅𝑃 𝑘
𝑡 is 𝜕𝐹𝑡

𝜕𝐿𝑘
𝑡
, which is the same for incumbents and recruits given the production

function 𝐹𝑡(𝐿𝐼
𝑡 , 𝐿

𝑂
𝑡 ) = exp(𝑧𝑡)

(︁
𝑧(𝐿𝐼

𝑡 + 𝐿𝑂
𝑡 )
)︁(1−𝛼)

. There are two additional terms in (1.19)

relative to the static markdown formula. The first is 𝜕𝑐𝑡

𝜕𝐿𝑘
𝑡
, the derivative of the adjustment

cost function with respect to an additional unit of labor of type 𝑘. This term is zero for

incumbents and positive for outside hires. The presence of adjustment costs leads the firm to

prefer retaining incumbent workers over replacing them with outside hires, generating a wage

premium for incumbent workers over recruits.

39



The second additional term relative to a standard static wage markdown in the dynamic

wage offer equation is exp(−𝑟)𝐸𝑡

[︂
𝜕𝑉𝑡+1
𝜕𝐿𝐼

𝑡+1

]︂
, which is the time 𝑡 expected marginal benefit of

having an additional incumbent worker at time 𝑡+ 1. Because both a retained incumbent

or recruit hired today becomes an additional worker in the available pool of incumbents

tomorrow, this term is the same for both types of workers. This term is also always positive

because entering the next period with more incumbents is strictly better than having fewer

incumbents. This implies that wage markdowns from marginal product will be strictly smaller

for incumbent workers than would be inferred by supply elasticities alone, and may be larger

or smaller for recruits depending on the relative size of 𝜕𝑐𝑡

𝜕𝐿𝑂
𝑡

and exp(−𝑟)𝐸𝑡

[︂
𝜕𝑉𝑡+1
𝜕𝐿𝐼

𝑡+1

]︂
. Note

also that since incumbents and outside hires face different wage offers, the supply elasticities

themselves also differ because the elasticity (1.13) is a decreasing function of the wage offer

for each worker type.

Define for worker types 𝑘 = 𝐼, 𝑂

dynamic markdown𝑘
𝑡 ≡ 𝑤𝑘

𝑡

𝑀𝑅𝑃 𝑘
𝑡 − 𝜕𝑐𝑡

𝜕𝐿𝑘
𝑡

+ exp(−𝑟)𝐸𝑡

[︂
𝜕𝑉𝑡+1
𝜕𝐿𝐼

𝑡+1

]︂ = 𝜀𝑘(𝑤𝑘
𝑡 )

𝜀𝑘(𝑤𝑘
𝑡 ) + 1 (1.20)

MRP markdown𝑘
𝑡 ≡ 𝑤𝑘

𝑡

𝑀𝑅𝑃 𝑘
𝑡

(1.21)

markdown wedge𝑘
𝑡 ≡ MRP markdown𝑘

𝑡

dynamic markdown𝑘
𝑡

(1.22)

The markdown expressions (1.20), (1.21), and (1.22), are worker type specific, so I

introduce their firm-level aggregates:

dynamic markdown𝑡 ≡
∑︀

𝑘 𝑤
𝑘
𝑡𝐿

𝑘
𝑡∑︀

𝑘

(︂
𝑀𝑅𝑃 𝑘

𝑡 − 𝜕𝑐𝑡

𝜕𝐿𝑘
𝑡

+ exp(−𝑟)𝐸𝑡

[︂
𝜕𝑉𝑡+1
𝜕𝐿𝐼

𝑡+1

]︂)︂
𝐿𝑘

𝑡

(1.23)

MRP markdown𝑡 ≡
∑︀

𝑘 𝑤
𝑘
𝑡𝐿

𝑘
𝑡∑︀

𝑘 𝑀𝑅𝑃 𝑘
𝑡 𝐿

𝑘
𝑡

(1.24)

markdown wedge𝑡 ≡ 𝜈𝑡 ≡ MRP markdown𝑡

dynamic markdown𝑡

(1.25)
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I examine the properties of these objects in the calibration. The markdown wedge is a

particularly important quantity, as it allows me to map my empirically estimated supply

elasticities to model implied markdowns.

1.4.3 Calibration and Model Fit

Closed form solutions for the firm’s objective function (1.15) are not readily available, so I

solve the model for a given calibration through value function iteration. I calibrate the model

to match the average separations rate; the incumbent wage premium; overall supply elasticity,

incumbent/recruit specific supply elasticities; the relative stock-return wage passthroughs of

incumbents and recruits; and the average log labor share.20 I estimate model-implied supply

elasticities by running a regression of model-generated employment and wage growth on stock

returns (growth in the value function). I use the Rouwenhourst (1995) method to create a

discretized grid of 9 points to approximate the AR(1) productivity process. For pre-calibrated

parameters, I normalize the labor force size 𝐿 to equal 1; set the annual discount rate to .02;

set the supply scale factor 𝜅 to .74121; I set 𝜌𝑧 = 0.9 to match the persistence of annual log

value-added per worker in the data; and finally, I set both the baseline labor productivity 𝑧

and convex adjustment cost volatility 𝜎𝑐 equal to 1.

Table 1.5 shows the model calibration of the externally and internally calibrated parameters,

and Panel A of Table 1.6 displays the model fit to targeted moments. There are 5 internally

calibrated parameters for 7 targeted moments. The fit quantitative fit is very good, with

almost exact matches on average incumbent wage premium, separations rates, relative wage

passthroughs, and average log labor shares; the model calibration does slightly underestimate

20The incumbent wage premium is skill-adjusted and represents the intercept from a regression of the
wage premium on the incumbent minus recruit difference in average AKM worker effects. I obtain incumbent
and recruit elasticities by estimating (1.6) just for incumbents and recruits, so the growth rates in the left
hand side are the growth in wages for incumbents/recruits or growth in the number of incumbents/recruits.
The independent firm-specific control variables 𝑋𝑗,𝑡 are also their analogues just for incumbents and recruits,
with the exception of lagged asset growth which is not worker type specific.

21The parameter 𝜅 is technically a function of a pre-calibrated parameter and an internally calibrated
parameter. I obtain 𝜅 by setting 𝜅 = (𝑤𝑚𝑎𝑥 − 𝑏)𝛽 , where 𝑤𝑚𝑎𝑥 is pre-set to 1. in equilibrium this ensures
that the probability of being employed at the firm is always bounded between 0 and 1 for both worker types
and all productivity levels.
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average labor supply elasticities, but is still pretty close quantitatively. I calibrate the

parameters 𝛽 = 0.38, 𝑏 = 0.545, and 𝜎𝑧 = 0.145 to help match the average supply elasticities

and the incumbent/recruit stock return wage passthrough ratio; the parameter 𝐶 = 0.55 is

identified primarily by the incumbent-recruit wage premium. The parameter 𝛼 = 0.22, which

is one minus labor returns to scale, and productivity volatility 𝜎𝑧 = jointly help me get close

to the the average empirical supply elasticity and log labor share. Finally, the average wage

levels implied by the combination of parameters help to jointly match the empirical average

firm level separations rate.

The calibrated parameters are also in a reasonable range relative to analogous parameters

in prior research. For comparison I look at the calibrations of the dynamic models in two

other papers, Kuehn et al. (2017) and Belo et al. (2017), which both have model features that

are related to mine. Kuehn et al. (2017) calibrate the benefit of unemployment to be 0.71;

my analogous parameter is the outside option of 𝑏, calibrated at 0.545. Kuehn et al. (2017)

also have a worker bargain weight of 0.11. The most comparable parameter in my calibration

is 𝛽/(1 + 𝛽) = 0.27, which is a little higher. However, the parameter 𝛽 also affects the supply

elasticity, and so 𝛽/(1+𝛽) doesn’t have the exact same structural interpretation as it would in

a pure bargaining model because it also directly affects the endogenous labor supply response

to wage changes. Belo et al. (2014) calibrate the high-skill convex adjustment cost parameter

to 1.8 and the low-skill convex adjustment cost parameter to 0.17; my calibration of 𝐶 = 0.55

lies in between the two. Finally, my calibration of returns to scale of 1 − 𝛼 = 0.78 lies in

between those of Kuehn et al. (2017) and Belo et al. (2017) (0.75 and 0.85, respectively).

Again note that these parameters don’t exactly map between one another in the papers,

although they are related in important ways; I merely present these parameter estimates to

compare to some reasonably close analogues in recent prior literature.

A supply elasticity that decreases in the wage is a key feature of the model that helps

match the data moments. Consistent with the data, recruits face higher average supply

elasticities. In the model this is because their wage offers are closer to the reservation wage

level 𝑏, and elasticities can be arbitrarily high as wage offers approach 𝑏. This feature of
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the labor supply function also implies that firms face lower elasticities in more productive

states. In Panel B Table 1.6 I show that the model is able to match the monotonic pattern in

supply elasticities and log labor shares when sorting by labor productivity without explicitly

targeting these moments. Interestingly, although the model matches the monotonic pattern

in firm labor shares it misses on the magnitude of the spread. The log labor share spread is

0.37 in the model but 0.72 in the data. In the next section I show that this is also the case

for my empirical supply elasticity estimates–although they imply a spread in labor shares,

the spread is wider in the data than implied by my empirical estimates. This motivates a

decomposition of the labor share spread in Section 1.5, where I examine how much of a role

there is left over for differences in markdowns or labor returns to scale after accounting for

the implied spread in markdowns.

I now analyze the behavior of markdowns in the model. In the top panel of Figure 1-6

I compare average markdowns implied by estimating supply elasticities in a regression of

employment and wage growth on stock returns versus the actual average markdown from the

true supply elasticities determined by (1.13). Because of adjustment costs, the regression

implied elasticities slightly underestimate the wages paid to incumbent and overestimate the

wages paid to recruits. However, when aggregating to the firm level the linear regression

elasticity-implied markdown closely reflect the average dynamic markdowns for the whole

firm. In the second panel of Figure 1-6 I compare the dynamic markdowns the marginal

revenue product markdowns. This comparison shows the difference between the markdowns

that would be implied by supply elasticities alone versus the actual markdown from marginal

product. At the firm level, the average dynamic markdown is 0.68, which implies that firm

pays about 68% of the denominator in (1.23) to its workers in wages on average. However,

this again masks heterogeneity by worker type. Because incumbents are costly to replace,

their wages are only marked down by 83% from marginal product; without accounting for

dynamics due to adjustment costs, supply elasticities alone would imply a wage of 64% of

marginal product. The reverse is true for recruits: supply elasticities would imply a wage that

is about 80% of marginal product, but recruits’ wages are actually about 71% of marginal
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product.

A key object for empirical quantification is the average firm-level markdown wedge implied

by the model. This is about 0.79/0.68 ≈ 1.16, so wage markdowns at the firm level are about

16% smaller in magnitude after accounting for adjustment costs than would be inferred by the

simple static markdown formula 𝜖/(1 + 𝜖). I label the markdown wedge 𝜈. In Table 1.7 I show

the markdowns from marginal revenue product that result from my supply elasticity estimates

in section 1.3 combined with the markdown wedge 𝜈.22 Even after adjusting for dynamics

due to adjustment costs, the markdowns still imply a considerable amount of monopsony

power. However, adjustment costs do negate labor market power quite a bit. The baseline

elasticity estimate of 2.52 yields a markdown that is 72% of marginal product; after adjusting

for dynamics this becomes 83% of marginal product. A supply elasticity of about 4.9 would

give this markdown in a static setting. Table 1.7 combines the model markdown wedge with

my empirical elasticity estimates. The table also shows that while low productivity firms

do mark wages down, they still pay 94% of marginal product. This is reasonably close to a

competitive benchmark. On the other hand, the most productive firms pay 62% of marginal

product even after adjusting using the markdown wedge 𝜈.

Calibration for 1991-2002 and 2003-2014 Subperiods

Given the downward trends in supply elasticities and estimated markdown spreads that I find

in Figures 1-4 and 1-5, I introduce calibrations to match moments for the first and second

halves of the sample (1991-2002 and 2003-2014, respectively). The calibrated parameters

by subperiod are in appendix Table 1.14. The average cross-sectional standard deviation of

log value added per worker increases by about 5% over the two subperiods, so I decrease 𝜎,

the productivity dispersion parameter, by about 2.5% relative to the main calibration for

the 1991-2002 period and increase it by 2.5% for the 2003-2014 calibration. I calibrate the

remaining parameters to match the same moments as in my main calibration.

In 1.15 I give the corresponding model and data moments for the subperiods. Supply
22For simplicity I report results assuming the markdown wedge is constant across productivity levels.

Results are very similar quantitatively if I allow the markdown wedge to vary by productivity.

44



elasticities and separations rates decline empiricially across the two periods; I decrease in the

parameter 𝛽, which governs the average supply elasticity, and 𝑏, which governs the worker

outside options to match these moments. My calibration of 𝛽 decreases from 0.5 to 0.34 from

the first half to the second half of the sample, and 𝑏 decreases from 0.549 to 0.515. This

agrees in principle with Stansbury and Summers (2020), who suggest that worker power in

the workplace has declined over recent decades.

The incumbent log wage premium increased by about 30% (from 0.13 to 0.17) across

the two periods. This suggests increased adjustment costs, and I increase 𝐶, the convex

adjustment cost parameter, from 0.38 to 0.745 to match these moments. The resulting

model-implied markdown wedge 𝜈 increases from 1.11 to 1.24 between the first and second

halves of the sample period, mitigating some, but not all, of the impact of decreasing supply

elasticities. I use these subperiod-specific elasticity estimates and markdown wedges when I

quantify the model in the next section.

1.5 Quantifying Empirical Estimates

In this section I use the model-implied markdown adjustment parameter 𝜈 in conjunction

with my empirical elasticity estimates from Section 1.3 to quantify the value that firms derive

from their wage markdowns. I also use the model and estimated elasticities to back out the

share of variation in labor shares across time and between firms of different productivity

types that can be ascribed to differences in markdowns.

1.5.1 Value of Cashflows Derived from Labor Market Power

With the markdown wedges 𝜈 from the model and the empirical elasticity estimates for firms

sorted on labor productivity, I now examine the counterfactual cash flows firms would bring

in if they were not able to mark down wages from marginal product, but still held their

production decisions constant. This is different from the competitive counterfactual, because

in the competitive equilibrium both quantities and prices of labor would adjust. Instead, this
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counterfactual transfers the capital income attributable to wage markdowns from the actual

owners of the firm’s capital to the firm’s workers after production has occurred. I use two

measures of cash flows. My primary measure is based off the firm’s operating income. I use

the Compustat variable OIBDP adjusted for changes inventories, which was also used as the

basis for my computation of firm value-added in (1.34). Hartman-Glaser et al. (2019) use

OIBDP as a proxy for capital income available to the owners of debt and equity issued by

the firm. The ratio of the value of wage markdowns to operating income can then be thought

of as representing the share of capital income coming from wage markdowns. Going forward

I use operating income and capital income interchangeably.

Denote ̂︂𝜖𝑞,𝑡 the elasticity estimate for productivity quartile 𝑞 at time 𝑡, where I use the

elasticities estimates for either the 1991-2002 or 2003-2014 subperiods depending on which

period year 𝑡 falls in. Let 𝑞(𝑗, 𝑡) give the productivity quartile of firm 𝑗 at time 𝑡. Finally, let 𝜈𝑡

denote the markdown wedge estimated over the subperiod where year 𝑡 falls. Counterfactual

labor expenses without markdowns are

˜𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 = 𝜈−1
𝑡

𝜖𝑞(𝑗,𝑡), 𝑡 + 1
𝜖𝑞(𝑗,𝑡), 𝑡

𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 (1.26)

And the resulting markdown share of operating income:

Markdown Share𝑂𝐼
𝑗,𝑡 =

˜𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 − 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡

𝑂𝐼𝑗,𝑡

(1.27)

I then compute the average markdown share of operating income:

Average Markdown Share of OI = 1
𝑁

∑︁
𝑡

∑︁
𝑗

Markdown Share𝑂𝐼
𝑗,𝑡 (1.28)

Here 𝑁 denotes the total number of firm-year observations in the sample. Some firms

report negative operating income, and occasional extreme values of Markdown Share𝑂𝐼
𝑗,𝑡

skew the firm-level averages, so in (1.28) I focus on the subset of firms for which 𝑂𝐼𝑗,𝑡 >

˜𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 − 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡, which are likely to have lower measurement error skewing the
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average. Instead of relying on a subsample of firms, I also compute the median fraction of

operating income derived from wage markdowns among a all firms.

Finally, I look at the aggregate share of operating income that comes from wage markdowns

by summing true and counterfactual income across the whole population of firms:

Aggregate Markdown Share of OI = 1
𝑇

∑︁
𝑡

⎡⎣∑︀𝑗
˜𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 − 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡∑︀

𝑗 𝑂𝐼𝑗,𝑡

⎤⎦ (1.29)

with 𝑇 the number of years in the sample. I compute (1.28) and (1.29) for all firms and

separately for firms in the top and bottom quartiles of labor productivity.

I report these averages in Table 1.8 overall and for firms in the top and bottom quartiles

of labor productivity. In Panel A I focus on results for the full sample period. The first two

rows of Panel A show the firm-level mean and median shares of operating income derived

from paying wages that are different from marginal product. The average firm in the sample

earns about 34% of its operating income by paying wages lower than marginal product; this

figure is 30% for the median firm. There is large heterogeneity between the most- and least

productive firms, with those in the bottom quartile of productivity earning only 17% of their

income from wage markdowns, while firms in the top quartile earn about 43%. Since the

operating income represents earnings available to the firm’s capital owners, these estimates

suggest that about a third of the capital income generated by the typical firm comes from

wage markdowns.

In the third row of Panel A in Table 1.8 I compute the aggregate operating income share

of wage markdowns, as in equation (1.29). Because markdowns are concentrated amongst

larger firms, the aggregate average is higher than the firm-level average, at about 40%. Hence

two-fifths of the capital income generated by publicly traded firms were attributable to wage

markdowns over the 1991-2014 period. Assuming these cash flows would be discounted at

the same rate as capital income overall, this has the interpretation that the dollar value of

wage markdowns at the monopsony equilibrium is worth roughly 40% of the total enterprise

value of publicly traded firms. However, note that this is a very different statement than

saying that the aggregate value of publicly traded firms would be 40% lower without wage
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markdowns, because the exercise here holds equilibrium labor demand constant. The decline

in total enterprise value in the counterfactual competitive equilibrium would be substantially

smaller than 40%. I discuss this point further later on in this section.

Panel B of Table 1.8 breaks down these figures by the 1991-2002 and 2003-2014 subperiods.

At the firm level, the average markdown share of operating income increases slightly from

0.34 to 0.35 between the 1991-2002 and 2003-2014. The median increases slightly more, from

0.29 to 0.32; finally, the aggregate operating income share also increases from 0.39 to 0.41.

These slight overall increases mask heterogeneity by productivity type: the mean, median,

and aggregate average share of operating income generated from wage markdowns actually

dropped for the least productive firms, while all three rose for the most productive firms. The

largest increase was for the median high productivity firm, which saw their wage markdowns

as a share of operating income increase from 0.45 to 0.52 between the two periods. This

divergence parallels the increase in productivity dispersion between top and bottom firms

over the sample period, as shown for example in Figure 1-5.

Interpreting the Magnitude of Cash Flows Generated from Wage Markdowns

Given the size of wage markdowns as a fraction of operating income in Table 1.8, it is helpful

to provide some context for interpretation and to compare the magnitude against other

results.

First of all, note that these markdown shares of capital income do not represent the change

in the value of the firm relative to the competitive equilibrium. Constructing a reasonable

competitive counterfactual would require imposing far more structure on my model, including

assumptions about labor supply across firms and product market competition. Rather, I

am asking the question “What is the total value of the gap between wages and marginal

products relative to total capital income, holding equilibrium quantities fixed?" In a competitive

equilibrium quantities as well as prices would adjust. Hence my counterfactual does not

imply, for example, that the aggregate enterprise value of publicly traded firms would be

40% lower if we imposed perfect competition. To illustrate, in appendix Section 1.7.4, I
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make a back of the envelope calculation in a simple static representative firm setting where

wage markdowns are calibrated to be exactly 40% of operating income, and the production

function is calibrated to roughly match the average aggregate labor share in my sample. In

this setup, firm value declines by 16% in the counterfactual competitive equilibrium relative

to the monopsony equilibrium.

How does the magnitude of my estimates compare with other estimates of market power?

In the next subsection I introduce two measures of aggregate labor shares; depending on the

measure the mean aggregate labor share is about 49-55% of value-added, which implies that

wage markdowns average about 18-20% of total output. In comparison, Crouzet and Eberly

(2021) point out that the De Loecker et al. (2020) price markup estimates imply rents from

product market power were worth almost 40% of value added by the end of their sample

period, so my estimates are about half as large as this figure. The De Loecker et al. (2020)

estimates are also closely related to the ratio of sales to cost of goods sold, and they assume

there is no monopsony power. Imperfect competition in labor markets can also affect the

ratio of sales to costs of goods sold, so their estimates likely reflect both labor and product

market power. Herschbein, Macaluso, and Yeh (2020) jointly estimate wage markdowns

and price markups for manufacturing firms using a production function approach that is

related to the De Loecker et al. (2020) method. They find that the average firm pays about

65% of marginal product. Since they estimate that markdowns increase in firm size, the

value-weighted gap would be even wider. In comparison, I find that total aggregate wages are

about 70% of aggregate marginal product, which is smaller but of a comparable magnitude.

1.5.2 Decomposition of Labor Share Differences in the Cross-Section

and Time Series

Next, I look at what fraction of the gap in labor shares between high- and low-productivity

firms can be explained by differences in wage markdowns; I also examine how changes in

the aggregate labor share in the time series were impacted by changing markdowns. In

this section I use two measures of labor shares. My baseline, defined previously in (1.37),
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comes from imputed labor expenses 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 derived from LEHD earnings and Compustat

employment data. I find that 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 is on average a little lower than Compustat reported

staff and labor expense (Compustat variable XLR), but the variable XLR is only available

for a very small fraction of firms. To get around this I create an imputed version of 𝑋𝐿𝑅,

which uses the fact that 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 and 𝑋𝐿𝑅𝑗,𝑡 are very highly correlated when 𝑋𝐿𝑅𝑗,𝑡 is

observable. Details on the imputation are in appendix section 1.7.1. I label this imputed

version 𝑋𝐿𝑅𝑗,𝑡, and create my alternative labor share measure by simply replacing 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡

with 𝑋𝐿𝑅𝑗,𝑡 in equations (1.34) and (1.37). I call this measure LShare (𝑋𝐿𝑅)𝑡. The logs

of the two firm-level labor share measures share a high correlation of 0.91, though the time

series behavior of the aggregate labor share from summing the two versions of labor expenses

is a bit different; I elaborate on this point when I do the decomposition of aggregate labor

share changes in the time series.

Table 1.6 shows that the model generates a monotonically decreasing pattern in labor

shares as productivity improves, as is also found in the data. Still, the labor share spread in

the model is not as wide as the empirical spread. This is also true when using the empirically

estimated markdowns in Table 1.7, and leaves room for other factors, such as differences in

product market power or production technologies, to explain the remainder of the labor share

spread. For example, assume a Cobb-Douglas production function in labor, 𝐹 (𝐿) = 𝐴𝐿1−𝛼,

but also suppose the firm chooses output according to inverse demand 𝑃 (𝑄) = 𝑃0𝑄
−1/𝛾,

where 𝛾 is the price elasticity of demand. Also assume that because of labor market power

wages are a markdown 𝜇 from the marginal revenue product of labor. Then the revenue

function is 𝑅(𝐿) = 𝑃0𝐴
1−1/𝛾𝐿(1−1/𝛾)(1−𝛼), where 1 − 1/𝛾 gives the inverse price markup. The

log labor share satisfies

log (Labor Share) = log
(︃
𝜇𝑅′(𝐿)𝐿
𝑅(𝐿)

)︃
= log (𝜇) + log (1 − 1/𝛾) + log (1 − 𝛼) (1.30)

= log(wage markdown) − log(price markup) + log(labor returns to scale)

The difference in average log labor shares can then be ascribed to differences in average log
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wage markdowns, price markups, and returns to scale. What percentage of the average labor

share differences between high- and low productivity firms can be attributed to differential

wage markdowns? In Panel A of 1.9 I answer this question using the wage markdown

estimates from Table 1.6 and my two measures of firm labor shares. I show estimated log

markdowns and average log labor shares. The difference in empirical log markdowns from

Table 1.7 is log(0.62) − log(0.94) ≈ −.41, which I report in the bottom row of the third

column of Panel A. The differences in the average log labor shares between high and low

productivity firms if -0.72 for my baseline and -0.65 for the 𝑋𝐿𝑅 based measure; markdown

differences can account for roughly three-fifths of the difference in average log labor shares

(57% for my baseline labor share measure and 63.5% for the alternate measure).

My findings still leave an important quantitative role for product market power to play

in fully explaining the cross-sectional gap in labor shares. If labor returns to scale are

approximately the same between the two groups of firms then the remaining two-fifths could

be explained by differences in price markups. The increasing product market power among

dominant firms found by Autor et al. (2020) and De Loecker et al. (2020) and the widening

markdowns that I find are likely to be jointly important phenomena quantitatively. Also note

that my model implicitly forges a link between product and labor market power, because

increases in product market power increase labor productivity, which in turn increases labor

market power, both in my model and in the data.

I next compute the aggregate labor share using either 𝑋𝐿𝑅 or 𝐿𝐴𝐵𝐸𝑋. The aggregate

labor share is given by

Agg LShare (𝐿𝐴𝐵𝐸𝑋)𝑡 =
∑︀

𝑗 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡∑︀
𝑗 𝑉 𝐴𝑗,𝑡

(1.31)

for 𝐿𝐴𝐵𝐸𝑋, and similarly for 𝑋𝐿𝑅:

Agg LShare (𝑋𝐿𝑅)𝑡 =
∑︀

𝑗 𝑋𝐿𝑅𝑗,𝑡∑︀
𝑗 𝑉 𝐴𝑗,𝑡

(1.32)

Here 𝑉 𝐴𝑗,𝑡 is the value-added for firm 𝑗 at time 𝑡, computed by adding either 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 or
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𝑋𝐿𝑅𝑗,𝑡 to operating income adjusted for changes in inventory as in (1.34). Although the firm-

level variation in log labor shares for the two measures is very highly correlated, Figure 1-7

shows that the downward trend in labor shares is more pronounced for Agg LShare (𝑋𝐿𝑅).

The average aggregate labor share drops from 0.579 to 0.524, when comparing the 1991-2002

and 2003-2014 subperiods; meanwhile Agg LShare (𝐿𝐴𝐵𝐸𝑋) shows a more modest decline

of 0.506 to 0.485.

Since the trend in Agg LShare (𝑋𝐿𝑅) is much closer to the Compustat labor share trends

found by Hartman-Glaser et al. (2019), in the next exercise I focus primarily on changes

in Agg LShare(𝑋𝐿𝑅), but show results for both versions. I compute the counterfactual

labor share if markdowns remained at their 1991-2002 levels in the years 2003-2014. In

particular, let 𝜂1991−2002
𝑞 denote the estimated wage markdown for productivity quartile 𝑞

for the 1991-2002 period, and 𝜂2003−2014
𝑞 the estimated wage markdown for 2003-2014. The

counterfactual labor share is given by

˜Agg LShare (𝑋𝐿𝑅) =
∑︀

𝑗 𝑋𝐿𝑅𝑗,𝑡 × 𝜂1991−2002
𝑞(𝑗,𝑡) ×

(︁
𝜂2003−2014

𝑞(𝑗,𝑡)

)︁−1

∑︀
𝑗 𝑉 𝐴𝑗,𝑡

(1.33)

It’s important to be clear about what this counterfactual represents and what it does not.

Similar to my prior exercise in section 1.5.1, this counterfactual asks the question: “Holding

the distribution of workers across firms constant, how would the observed aggregate labor

share change in the 2003-2014 period if enough final output was reallocated to workers to

keep the gap between wages and marginal products constant at 1991-2002 levels?"

I compute ˜Agg LShare (𝐿𝐴𝐵𝐸𝑋)𝑡 analogously. I then compute the counterfactual log

change in the average labor share across the two periods. Panel B of Table 1.9 shows the

results. In the first two columns I show the actual average labor shares for the two measures,

and in the third column (labeled ˜2003 − 2014) I give the counterfactual aggregate labor share.

The first row shows that if markdowns had held constant at their 1991-2002 levels in the

latter period, the average labor share ˜Agg LShare (𝑋𝐿𝑅)𝑡 would have only declined from

0.579 to 0.554 instead of the observed level of 0.524. The actual log change, in the column Δ

log(Lshare), was -0.10, whereas the counterfactual log change ( ˜Δ log(Lshare)) would have
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been -.044. This implies that about 56% percent of the decline (0.10−0.044
0.10 ≈ 0.558) can be

explained by the change in wage markdowns. In the second row of panel B I compute the

same counterfactual for ˜Agg LShare (𝐿𝐴𝐵𝐸𝑋)𝑡. Because the labor share decline from this

measure is less stark to begin with, the counterfactual actual predicts an increase in the labor

share of about 1.8% instead of the observed 4.2% decrease.

In either case, I estimate that the change in wage markdowns can explain the bulk of the

decline in average labor shares over the two periods. The results using my preferred measure
˜Agg LShare (𝑋𝐿𝑅)𝑡 suggest that there is still some room for other proposed factors, such as

increased price markups or labor-substituting technological change, to explain the remaining

44%.

1.6 Discussion

In this section I discuss potential causes of the rise in labor market power, economic and

policy implications of my findings, and how my results can be distinguished with alternative

explanations.

1.6.1 What Has Caused the Rise In Labor Market Power?

I uncover two key features of the rise in labor market power. I document the rising spread in

labor productivity in Figure 1-1, and similar patterns have been documented in numerous

other papers.23 The rise in productivity dispersion has led highly productive firms to mark

wages down by more relative to low productivity firms. At the same time, in appendix Table

1.15 I find decreases in the supply elasticities for firms of all productivity levels between the

1991-2002 and 2003-2014 periods. This also has the tendency to push wages down.

The rise in productivity dispersion could be driven by a number of phenomena, such as

changing economies of scale arising from the shift towards intangible capital and information

technology, increased global competition which causes firms to exit, larger barriers to entry,
23See Autor et al. (2020), Hartman-Glaser et al. (2019), De Loecker et al. (2020), Kehrig and Vincent

(2021), and Gouin-Bonenfant (2020) for example.
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or shifts in consumer taste towards specific brands or products. Whatever the causes, the

dispersion in productivity allows productive firms to operate on a more inelastic portion of

their labor supply curve, generating monopsony rents in equilibrium.

The overall decrease in supply elasticities may be caused by very different economic forces

than the cross-sectional spread in elasticities. On a fundamental level, the supply elasticity a

firm faces captures the willingness or ability of workers to substitute away from that firm and

towards other firms. This suggests that workers have found it more difficult to substitute away

from particular employers. Consistent with this Molloy, Smith, Trezzi, and Wozniak (2016)

find that the US labor market has become less dynamic over the past several decades, with

transitions between firms to and from employment being less frequent. Similarly, in appendix

Table 1.15 I show that the average firm-level separations rate has declined. My calibration for

the 1991-2002 and 2003-2014 periods suggests reduced outside options (model parameter 𝑏)

and bargaining power (parameter 𝛽). Song, Price, Guvenen, Bloom, and von Wachter (2018)

show that the 1990-2015 period has seen increased sorting of productive workers to high wage

firms; I find a similar result in appendix Figure 1-9, which shows that the spread in average

worker skill between productive and unproductive firms has widened, especially in the latter

half of my sample period. Skill-biased technological change has induced an increasing share

of individuals to delay entry into the workforce in favor of obtaining higher education college,

potentially resulting in more specialized human capital in the process. Appendix Table 1.15

shows that the wage premium for incumbent workers has increased, suggesting that firms

have also found it more difficult to substitute workers from outside the firm.

All these patterns are consistent with specific human capital rising in importance. There

are two potential opposing effects from increased human capital specificity: 1) employers find

it harder to replace skilled workers, which tends to raise the wages of incumbent workers; and

2) workers are less able (or less willing) to substitute their labor across particular employers,

which leads to a larger gap between wages and marginal products. My model calibration and

empirical estimates suggest that the second effect has dominated.

Berger et al. (2021), Rinz (2018) and Lipsius (2018) all find that local labor market
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concentration has been decreasing, which initially seems at odds with increasing aggregate

labor market power. The above discussion could also help explain why monopsony power has

increased even as local labor market concentration has decreased. Figure 1-4 and Table 1.4

show the importance of skilled workers in driving firm-level supply elasticities. The overall

downward trend in supply elasticities is driven in large part by skilled workers, and the

productive firms with the most labor market power also hire more skilled workers. This in

turn means that local labor market concentration may be less important for determining

monopsony power for skilled workers, because for them labor markets are far less local. For

example, although skilled workers have lower rates of separation, Malamud and Wozniak

(2012) and Amior (2020) document that conditional on moving, more educated workers make

job moves that are far more geographically distant on average, and Diamond (2016) shows

that educated workers tend to live in larger metropolitan areas which naturally have less local

concentration. Supporting a human capital specificity explanation, Nimczik (2020) finds that

more skilled workers tend to be employed in labor markets that are geographically dispersed

but more concentrated in a set of particular industries.

The overall rise of non-compete agreements, which now affect a large portion of the labor

force and are focused on skilled workers (Starr, Prescott, and Bishara, 2021), could also be

playing a role in reducing supply elasticities. These appear to be successful in reducing both

worker mobility and wages, especially among skilled workers.24

1.6.2 Economic and Policy Implications of Labor Market Power

My findings suggest an important subtlety to consider for policy interventions intended to

curtail labor market power: in the cross-section, firms who exercise more labor market power

tend to pay higher wages, not lower wages, and they are likely to be firms where many workers

would want to be employed. It is precisely these firms’ success in terms of productivity—an

amalgam of high product demand, innovative success, productive efficiency, etc.—which

grants them their monopsony rents. While I find that firms which have become productive
24See Garmaise (2011), Balasubramanian, Chang, Sakakibara, Sivadasan, and Starr (2020), Jeffers (2019),

Johnson, Lavetti, and Lipsitz (2020), for example.
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earn substantial rents from labor market power ex post, many of these firms have likely made

risky investments ex ante which allowed them to become productive. The prospect of earning

rents may compensate firms for undertaking risky R&D or other types of investments earlier

on in their life cycle. These investments are also beneficial for workers because they generate

growth and can improve wages in absolute terms, even if the gap between the marginal

product of labor and wages widens. Accordingly, it is important to consider whether policy

interventions geared towards reducing labor market power may deter firms from making these

types of investments, or more generally act as a deterrent to potential market entrants.

Although I do not explicitly model product market power in this paper, my results also

imply that labor and product market power are likely to comove. Because firms with high

product market power charge high prices, part of what I measure as labor productivity (value

added per worker) could in practice reflect firms’ product market power. This implies that

policy interventions, such as antitrust enforcement, that are meant to curb product market

power could also be effective in reducing labor market power at the same time. However, it’s

not necessarily the case that this is guaranteed to make workers better off. For example, it’s

possible that breaking up productive firms could reduce productivity or devalue firm-specific

human capital, leading to lower wages for workers.

Perhaps of most concern from the perspective of worker welfare is the aggregate decline

in the overall supply elasticity across productivity and skill levels, which reflects workers’

diminished ability to substitute employment across firms. As I argue regarding human capital

specificity in the previous subsection, some of the forces that have led to this change may

also have made it more costly for firms to replace existing workers. These labor adjustment

costs create a deadweight loss. Consequently, policies that are geared towards reducing

the costliness of hiring new workers while helping workers substitute their labor across

potential employers may be mutually beneficial for both workers and firms. This could

include the subsidization of new skill acquisition or easing regulatory burdens which make

hiring employees costly.

Working to reduce artificial barriers to worker mobility stands to be directly beneficial to
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workers, and targets the types of forces generating labor market power that are more clearly

negative from a welfare perspective. This could include reducing the scope of or banning

entirely the use of non-compete agreements. Pursuing antitrust action to prevent employers

from colluding to reduce worker mobility could also be helpful to workers. There is some

precedent for such legal action already, as the US Department of Justice Antitrust Division

filed a suit against a number of prominent Silicon Valley tech firms in 2010 for colluding from

2005 to 2009 to not poach employees from one another and a settlement forcing the firms to

end this practice was quickly reached.25

Another interesting economic implication of my findings relates to the rise in wage

inequality and the polarization of the US labor market driven by technological change

(Acemoglu and Autor, 2011; Autor and Dorn, 2013). Since I find the lowest and most

decreasing supply elasticities for skilled workers, who also have high earnings, this suggests

that skilled workers’ wages are marked down relative to a very high and increasing marginal

product of labor relative to low skill workers. Thus my estimates imply an even larger role

for technological change in generating wage inequality. However, it is also necessary to note

that in the model I estimate dynamic markdown wedges for a single labor input, and not

separately for different skill levels. If I added workers of different skill levels to the model the

dynamic markdown wedge would be larger for the most skilled workers, who are most costly

to replace, meaning that wage markdown differences between high- and low-skill workers

are not as large as the simple supply elasticity difference would imply. Still, the elasticity

difference is wide enough that it is highly unlikely this would reverse the of the skilled workers’

lower supply elasticities entirely.

1.6.3 Alternative Explanations for My Findings

Some previous papers find similar patterns in firm-level labor shares but argue for different

economic mechanisms. Here I discuss two specific examples. Hartman-Glaser et al. (2019)

also focus on Compustat firms, and they similarly show that the share of output accruing to
25See court documents for the case “U.S. V. Adobe Systems, Inc., Et Al." found at

https://www.justice.gov/atr/case/us-v-adobe-systems-inc-et-al.
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capital owners has increased by the most for highly productive firms. They also show that

firm level idiosyncratic risk rose substantially over the 1960-2014 period and propose a model

based on optimal contracting to explain the capital share dynamics. In their model skilled

workers demand wage contracts with embedded insurance for bearing firm-specific risk, and

productive firms are able to allocate more output to capital. Increasing idiosyncratic risk

amplifies this mechanism, leading to a drop in the aggregate labor share driven by productive

firms in the right tail of the productivity distribution.

They calibrate the model to match changes in the labor share between the 1960-1970

and 1990-2014 periods. In appendix Figure 1-10 I plot time trends in their idiosyncratic risk

measures before and during my sample period. Although firm-specific risk has indeed risen

over that time horizon, idiosyncratic risk has actually been flat or slightly declining over the

1991-2014 period that my data covers. Therefore while their mechanism does speak to broad

patterns in labor shares over a longer time horizon, it is incomplete as an explaination for

the change in the aggregate labor share within the 1991-2014 period that is the focus of this

paper.

Kehrig and Vincent (2021) document that large and productive manufacturing firms with

low labor shares have driven the aggregate decline in the manufacturing sector labor share.

They argue that this is more consistent with demand side forces than with wage markdowns

because in their framework monopsony should primarily depress labor shares by reducing

wages. However, I find that monopsony power is larger for productive firms precisely because

they can pay high wages, which allows them to operate on a relatively inelastic portion of

their labor supply curve. From the perspective of my findings, the demand side forces they

find exaggerate productivity advantages and increase the spread in labor market power. Thus

the results in this paper and those in Kehrig and Vincent (2021) are compatible explanations

for the aggregate labor share decline.

Finally, I stress that my findings still leave plenty of room for other forces, such as

increasing price markups or technological change, to explain cross-sectional differences and

time series changes in labor shares, and these could also speak to the evidence on firm
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profitability, valuations, investment, and economic rents that I presented in section 1.2. I

do argue, however, that labor market power has played a more important role in these

phenomena than prior literature may suggest.

Monopsony Through Upward Sloping Labor Supply Curves or Wage Bargaining?

Models of rent-sharing via wage bargaining can also explain passthrough of firm-specific

productivity shocks to wages, even without upward sloping firm-specific labor supply curves.

A few patterns suggest monopsony-based explanations over a bargaining. For example, in

most models of monopsony a shock to the wages of a competitor acts like a firm-specific

labor supply shock to the firm. The result is that the firm must raise wages in order to retain

workers, meaning competitor wage growth should be expected to raise wages without raising

employment at the firm. This is exactly what I find in appendix Table 1.16. In the fourth

column of this table I find that competitor wage growth is indeed strongly associated with own

firm wage growth, but has no relation to employment growth. In Table 1.3 I find that skilled

recruits also face lower supply elasticities compared to lower skilled recruits, suggesting that

the low supply elasticity caused by the wage response is related to monopsony power rather

than, say, rent sharing due to bargaining with skilled insiders who have a better bargaining

position. Finally, my simple dynamic wage posting monopsony model with labor adjustment

adjustment costs immediately can explain empirical patterns in recruit and incumbent wage

passthroughs and supply elasticities; sorting patterns in supply elasticities across firms of

different productivity types; and cross-sectional differences in firm level labor shares and

profitability. Purely bargain based explanations would have a difficult time matching all the

above patterns simultaneously.

1.7 Conclusion

In this paper I find evidence for a “superstar firms” view of labor market power: firms with

productivity advantages face much lower supply elasticities and hence earn higher monopsony

rents from wage markdowns. Differences in supply elasticities have widened over time, leading
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to an increased gap in labor shares between productive and unproductive firms in the cross

section and contributing to the decline in the aggregate labor share. The value of wage

markdowns is substantial. The average firm earns about a third of its capital income from

wage markdowns, and wage markdowns are worth about 40% of capital income in aggregate.

Consistent with economic rents earned from labor market power, productive firms have higher

valuation ratios but not significantly higher investment or hiring rates.

Although my findings suggest that labor market power generates substantial value to

productive firms in the form of economic rents, my results suggest some caution in interpreting

welfare or policy implications. In my model and in the data, productive firms actually pay

higher wages despite having larger markdowns, since they operate on a steeper portion of the

labor supply curve. Because of the opportunities they afford their employees–especially in

the form of higher wages—highly productive firms are likely to be coveted employers. Any

policy recommendations to curb labor market power ought to consider that it is exerted by

the most economically successful firms who actually tend to pay above average wages to their

employees.

Skilled workers play an important role in creating these patterns, as they face the lowest

supply elasticities of any skill group. There is some evidence in increased role for firm-specific

human capital could be driving these patterns, but artificial barriers to mobility—such as

the rising prevalence of non-compete agreements—may also play a role. Exploring these

possibilities in more depth could be a particularly useful avenue for further research.
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Figures

Figure 1-1: High- minus Low-Labor Productivity Firm Spreads in Average Log VA/Worker,
AKM Worker Skill, Log Q (Total), and Log Q (Emp) Trend Upward Over Time

Log VA/Worker

Log Q (Tot) Log Q (Emp)

Note: This figure shows the differences between firms in the top- and bottom-quartiles of productivity for
the average log value-added per worker; firm worker skill level from (1.41) in the text; log total Tobin’s Q
ratio from Peters and Taylor (2017); and log employment-based Q ratio from (1.42) . Sample period spans
1991-2014.
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Figure 1-2: Employment and Wage Responses to a Stock Return Shock

Employment Response

Wage Response

Note: This figures shows the employment and wage responses from estimating (1.7) in the main text for
ℎ = −5 to 5 years. Confidence intervals are based off standard errors double clustered by industry and year.
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Figure 1-3: Employment and Wage Responses to Stock Return Shock, by Worker Skill

Employment Response

Wage Response

Note: This figures shows the employment and wage responses from estimating (1.7) in the main text for
ℎ = −5 to 5 years for workers of different skill levels. Individuals in the bottom two quintiles of the cross-
sectional distribution of worker effects are considered low-skilled, the third and fourth quintiles middle-skilled,
and the top quintile high-skilled. Confidence intervals are based off standard errors double clustered by
industry and year.
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Figure 1-4: Estimated Supply Elasticities Trend Downward Over Time For All Skill Groups

Note: This figure shows estimates of supply elasticities implied by estimating employment and wage responses
from (1.6) for workers of different skill levels and for overlapping moving 3-year windows. The elasticity for a
given year is for the moving window centered at that year (except for the start and end years, which are
respectively the first or last year of 2-year window). The sample spans 1992-2013. High skill workers are in
the top quintile of individual fixed effects from a wage of individual earnings into worker- and firm-specific
components; low skill workers are in the bottom two quintiles and middle skill the third and fourth quintiles.
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Figure 1-5: The Spread in Labor Shares and Estimated Markdowns Between High- and
Low-Labor Productivity Firms Trends Downward Over Time

Note: This figure shows differences elasticity implied log markdowns between top- and bottom-quartile
labor productivity firms from (1.9) in the main text, and log labor share differences following (1.10). The
elasticity for a given year is for the moving window centered at that year (except for the start and end years,
which are respectively the first or last year of 2-year window). Both series are standardized to unit standard
deviation and zero mean. The sample period spans 1992-2013. The two series have a correlation of 0.73.

73



Figure 1-6: Model Implied Markdowns

Note: This figure shows markdowns implied by the calibration of the model. The dynamic markdown is the
markdown adjusted for model dynamics due to adjustment costs, and is given by (1.20) in the main text.
The regression implied markdown is markdown implied by estimating the supply elasticity by running the
regression of model employment/wage growth on stock returns and taking the ratio of the two coefficients.
The MRP markdown is the markdown from marginal revenue product. See section 3.1 in text for details.
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Figure 1-7: Aggregate Labor Shares Over Time

Note: This figure shows the aggregate labor shares for firms in my Compustat-LEHD matched sample. The
dashed lines give the mean aggregate labor share for the given measure over the 1991-2002 and 2003-2014
subperiods. I report aggregate labor shares using two measures of firm labor expenses. Labor Share (LABEX)
uses my LEHD-based measure of firm labor expenses, while Labor Share (Predicted XLR) is constructed
by imputing Compustat staff and labor expenses. I describe my imputation of XLR in section 1.7.1 of the
appendix. Labor shares are computed as the ratio of total labor expenses to total value-added, where I define
valued-added following Donangelo et al. (2019). See section 1.5.2 in main text for further details.
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Tables

Table 1.1: Productive Firms Have Lower Labor Shares, Higher Valuations, and Better
Operating Performance

Panel A: Log Labor Share

log VA/Worker -0.343 -0.389 -0.514 -0.555

(0.050) (0.050) (0.025) (0.036)

Size Controls X X

Industry X Year FE X X

N 57500 57500 57500 57500

R2 (within) 0.297 0.335 0.458 0.476

Panel B: Log Valuation Ratios

log Q (Tot) log Q (Emp) log Mkcap/Book log Mkcap/Sales

log VA/Worker 0.524 0.540 0.254 0.412

(0.048) (0.060) (0.029) (0.033)

Size Controls X X X X

Industry X Year FE X X X X

N 48500 47500 55000 57000

R2 (within) 0.125 0.276 0.069 0.315

Panel C: Operating Performance

ROA𝑡 ROA𝑡+1 ROE𝑡 ROE𝑡+1

log VA/Worker 0.107 0.098 0.277 0.2456

(0.006) (0.006) (0.016) 0.0221

Size Controls X X X X

Industry X Year FE X X X X

N 57500 53500 55500 51500

R2 (within) 0.168 0.128 0.085 .0665

Note: This table displays coefficients on log value added per worker for predicting firm log labor shares in
panel A; firm log valuation ratios in panel B; and current and future firm operating performance in panel C.
Controls for size include log employment, assets, and sales. Log Q (Tot) is the log of intangible-adjusted
total Q from Peters and Taylor (2017). Log Q (Emp) is an employment-based analogue of Tobin’s Q,
where the denominator is the skill-weighted workforce of the firm. ROA is the return on assets (income
before extraordinary items plus deprecation over total assets) and ROE is return on equity (income before
extraordinary items plus deprecation over book equity). Operating performance and valuation ratios are
winsorized at the 1% level by year. See section 1.2 in main text for more details. Standard errors double
clustered by year and industry in parentheses.
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Table 1.2: Average Investment Rates/Tobin’s Q and Investment-Q Relation for Firms Sorted
on Labor Productivity

Panel A: Investment Rates and Tobin’s Q

Productivity: Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-val 4-1

Inv Rate (Total) 0.18 0.16 0.16 0.20 0.33

Q (Total) 0.73 0.79 1.04 1.70 0.00

Hiring Rate 0.40 0.33 0.29 0.29 0.00

Q (Emp) 0.78 0.97 1.67 4.83 0.00

Panel B: Investment-Q Relation

Productivity: Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-val 4-1 R-sq (Within) N

Dep Variable: Investment Rate (Total)

Q (Tot) 0.039 0.030 0.026 0.022

(0.004) (0.003) (0.002) (0.001) 0.000 0.287 48000

Cash Flow 0.177 0.182 0.204 0.251

(0.028) (0.020) (0.021) (0.027) 0.000

Dep Variable: Hiring Rate

Q (Emp) 0.067 0.077 0.048 0.032

(0.009) (0.011) (0.007) (0.004) 0.000 0.073 43500

Cash Flow 0.260 0.225 0.120 -0.026

(0.053) (0.048) (0.024) (0.035) 0.000

Note: Panel A of this table shows average investment rates in capital and in new hires for firms of
different productivity quartiles. Panel B includes results from estimating (1.1) in the main text. Q (Total) is
the intangible-adjusted total Q from Peters and Taylor (2017) and the total investment rate is the dollar
investment in total (physical plus intangible) capital divided by lagged replacement value of total capital. Q
(Emp) is an employment-based analogue of Tobin’s Q, where the denominator is the skill-weighted workforce
of the firm. “P-val 4-1" gives the p-value from a test that the coefficients for firms in the top and bottom
quartiles have equal values. All specifications include firm, year, and productivity quartile fixed effects. The
sample period spans 1991-2014. Standard errors double clustered by industry and year in parentheses.
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Table 1.3: Baseline Elasticity Estimates, By Worker Skill and Incumbent or Recruit Status

All Low Skill Middle Skill High Skill

Panel A: Whole Firm

Employment 0.116 0.128 0.110 0.102

(0.01) (0.011) (0.011) (0.01)

Wages 0.046 0.016 0.019 0.084

(0.004) (0.002) (0.001) (0.005)

Implied Elasticity 2.53 7.97 5.92 1.22

Panel B: Incumbents

Employment 0.091 0.082 0.083 0.099

(0.009) (0.009) (0.01) (0.01)

Wages 0.053 0.018 0.020 0.082

(0.004) (0.002) (0.001) (0.004)

Implied Elasticity 1.73 4.55 4.10 1.20

Panel C: Recruits

Employment 0.203 0.220 0.200 0.152

(0.016) (0.017) (0.016) (0.015)

Wages 0.028 0.022 0.018 0.038

(0.002) (0.002) (0.002) (0.003)

Implied Elasticity 7.19 9.98 11.32 3.99

Note: This table shows estimates of the supply elasticities implied by the employment and wage responses
to stock returns from estimating (1.6) in the text. Controls include 3-digit NAICS industry by year and
productivity quartile fixed effects; lagged growth rates in wages, employment, and total assets; and the
contemporaneous change in average worker skill level at the firm (see (1.41) for definition). Workers are
grouped into skill groups based on their estimated worker effects from a modified Abowd et al. (1999)
style wage decomposition with time-varying firm fixed effects. Individuals in the bottom two quintiles of
the cross-sectional distribution of worker effects are considered low-skilled, the third and fourth quintiles
middle-skilled, and the top quintile high-skilled. Changes in average worker skill are computed within the
population of workers considered in the specification. Panel A estimates (1.6) for the whole firm and for
workers of different skill levels. Panels B and C restrict (1.6) to incumbents (workers who were employed at
the firm the previous year) and recruits (workers who joined the firm in the given year). Standard errors
clustered by industry and year are in parentheses.
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Table 1.4: Productive Firms Face Lower Supply Elasticities For Workers of All Skill Levels

Productivity: Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-val 4-1 R-sq N

Whole Firm

Employment 0.119 0.089 0.120 0.106

(0.013) (0.010) (0.011) (0.011) 0.249 0.127 43500

Wages 0.028 0.033 0.051 0.091

(0.003) (0.003) (0.004) (0.010) 0.000 0.423 43500

Elasticity 4.324 2.708 2.336 1.166

Low Skill Workers

Employment 0.128 0.102 0.143 0.139

(0.015) (0.010) (0.013) (0.015) 0.522 0.110 43500

Wages 0.012 0.016 0.021 0.030

(0.002) (0.003) (0.003) (0.003) 0.000 0.289 43500

Elasticity 10.510 6.369 6.768 4.663

Middle Skill Workers

Employment 0.116 0.084 0.118 0.103

(0.016) (0.010) (0.010) (0.013) 0.307 0.085 43500

Wages 0.014 0.016 0.022 0.029

(0.002) (0.002) (0.002) (0.003) 0.000 0.182 43500

Elasticity 8.199 5.298 5.305 3.546

High Skill Workers

Employment 0.102 0.078 0.106 0.087

(0.014) (0.010) (0.009) (0.010) 0.148 0.076 43500

Wages 0.050 0.056 0.076 0.119

(0.006) (0.004) (0.006) (0.010) 0.000 0.454 43500

Elasticity 2.042 1.388 1.389 0.735

Note: This table contains supply elasticity estimates for firms sorted on log value-added/worker quartiles as
in (1.8) in the text. Controls include 3-digit NAICS industry by year and productivity quartile fixed effects;
lagged growth rates in wages, employment, and total assets; and the contemporaneous change in average
worker skill level at the firm (see (1.41) for definition). Workers are grouped into skill groups based on their
estimated worker effects from a modified Abowd et al. (1999) style wage decomposition with time-varying
firm fixed effects. Individuals in the bottom two quintiles of the cross-sectional distribution of worker effects
are considered low-skilled, the third and fourth quintiles middle-skilled, and the top quintile high-skilled.
Changes in average worker skill are computed within the population of workers considered in the specification.
“P-val 4-1" gives the p-value from a test that the coefficients for firms in the top and bottom quartiles have
equal values. Wage data are from the LEHD, and the sample period spans 1991-2014. Standard errors double
clustered by industry and year in parentheses. See section 1.3 in main text for more details.
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Table 1.5: Model Calibration

Parameter Explanation Value

Externally Calibrated

𝐿 Labor Force Size 1.0

r Discount rate 0.02

𝜅 Supply scale factor 0.741

𝜌𝑧 Productivity persistence 0.9

𝑧 Fixed Labor Productivity 1.0

𝜎𝑐 Convex adjustment cost volatility 1.0

Internally Calibrated

𝛼 (One minus) Labor returns to scale 0.22

𝛽 Supply Elasticity Shifter 0.38

b Reservation Wage 0.545

𝜎𝑧 Labor productivity volatility 0.145

𝐶 Convex adjustment cost level 0.57

Note: This table shows the parameter calibration for the model in section 3.1 of the text. Externally
calibrated parameters are calibrated beforehand without trying to match target model moments, while
internally calibrated parameters are explicitly set in order to match target moments.
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Table 1.6: Model vs Data Moments

Panel A: Targeted Moments Panel B: Sorting on Productivity

Moment Name Model Data

Separations Rate 0.31 0.30

Incumbent Premium 0.15 0.15

Supply Elasticity 2.09 2.52

Elasticity (Inc.) 1.44 1.73

Elasticity (Rec.) 6.66 7.19

Inc/Rec Wage Pass. Ratio 1.93 1.86

Log Labor Share -0.50 -0.51

Moment Name Model Data

Elasticity (Q1) 4.85 4.32

Elasticity (Q2) 2.53 2.71

Elasticity (Q3) 1.80 2.34

Elasticity (Q4) 1.36 1.17

Log Labor Share (Q1) -0.31 -0.22

Log Labor Share (Q2) -0.46 -0.40

Log Labor Share (Q3) -0.56 -0.54

Log Labor Share (Q4) -0.68 -0.94

Note: This table compares model implied moments with their empirical counterparts. “Inc" and “Rec"
denote incumbents and recruits, respectively. In order to mimic the empirical estimates, the model supply
elasticities are computed by running a regression of model-generated stock returns on employment and wage
growth and taking the ratio of the responses. See section 3.1 in text for details.
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Table 1.7: Adjusted Markdowns for Firms Sorted on Labor Productivity Implied By
Empirical Elasticity Estimates and Markdown Wedge 𝜈 From Model

Elasticity Unadjusted Markdown Adjusted Markdown

Overall 2.52 0.72 0.83

Quartile 1 4.32 0.81 0.94

Quartile 2 2.71 0.73 0.85

Quartile 3 2.34 0.70 0.81

Quartile 4 1.17 0.54 0.62

Note: This table compares markdowns implied by my empirical supply elasticity estimates before adjusting
for the model markdown wedge 𝜈 estimated from the model and after. For supply elasticity 𝜖, the unadjusted
markdown is 𝜖/(1 + 𝜖); the adjusted markdown is 𝜈 × 𝜖/(1 + 𝜖).
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Table 1.8: Valuing Labor Market Power—Wage Markdowns as a Fraction of Operating
Income

Panel A: Full Sample (1991-2014)

Overall Low Productivity High Productivity

Mean Firm-Level Operating Income Share 0.34 0.17 0.43

Median Firm-Level Operating Income Share 0.30 0.08 0.49

Mean Aggregate Operating Income Share 0.40 0.10 0.45

Panel B: By Subperiod (1991-2002 and 2003-2014)

Overall Low Productivity High Productivity

1991-2002

Mean Firm-Level Operating Income Share 0.34 0.19 0.42

Median Firm-Level Operating Income Share 0.29 0.10 0.45

Mean Aggregate Operating Income Share 0.39 0.12 0.43

2003-2014

Mean Firm-Level Operating Income Share 0.35 0.14 0.44

Median Firm-Level Operating Income Share 0.32 0.07 0.52

Mean Aggregate Operating Income Share 0.41 0.07 0.46

Note: This table shows the dollar value of wage markdowns as a fraction of operating income; these are
broken down by the full sample period in panel A and by subperiod in panel B. See section 1.5.1 of the main
text for more details.
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Table 1.9: Differences in Labor Shares Explained by Markdowns, Cross-Section
and Time Series

Panel A: High Minus Low Productivity Cross-Sectional Average Labor Share

Spread

Low Productivity High Productivity High - Low % Due to ΔMarkdown

Log Markdown -0.05 -0.46 -0.41

Avg Log LShare (𝑋𝐿𝑅) -0.18 -0.83 -0.65 63.5

Avg Log LShare (𝐿𝐴𝐵𝐸𝑋) -0.22 -0.94 -0.72 57.1

Panel B: Time Series Change in Aggregate Labor Share
1991 − 2002 2003 − 2014 ˜2003 − 2014 Δ log(Lshare) ˜Δ log(Lshare) % Due to ΔMarkdown

Agg LShare (𝑋𝐿𝑅) 0.579 0.524 0.554 -0.10 -0.044 55.8

Agg LShare (𝐿𝐴𝐵𝐸𝑋) 0.506 0.485 0.515 -0.042 0.018 143.2

Note: Panel A of this table decomposes the fraction cross-sectional average labor share differences between
high- and low-productivity firms that can be attributed to wage markdowns. In panel A I use markdown
estimates for the full 1991-2014 period reported in Table 1.8. Panel B of this table decomposes the time series
change in the aggregate labor share between the 1991-2002 and 2003-2014 period using markdowns estimated
separately for the two subperiods. The column ˜2003 − 2014 denotes the counterfactual average labor share
for the 2003-2014 period if markdowns were held constant at their 1991-2002 estimates, as defined in (1.33)
in the main text. The column Δ log(Lshare) gives the actual log change in the average labor share between
the two periods, while ˜Δ log(Lshare) gives the counterfactual log labor share change holding markdowns
constant. The last column of panel B gives the fraction of the observed change in the labor share that is
attributable to wage markdown changes. See section 1.5.2 in main text for further details.
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1.7.1 Data Appendix

Constructing Labor Productivity, Wages, Labor Shares, and Other Firm-Level

Variables

Firm Value-Added and Labor Shares

I follow Donangelo et al. (2019) in defining value-added for Compustat firms following as the

sum of operating income before depreciation, changes in inventories, and labor expenses.

VA𝑗,𝑡 = OIBDP𝑗,𝑡 + ΔINVFG𝑗,𝑡 + LABEX𝑗,𝑡 (1.34)

Changes in inventories are set to zero when missing. Here

LABEX𝑗,𝑡 = ̃︁𝑊𝑗,𝑡 × (EMP𝑗,𝑡 + EMP𝑖,𝑡−1)/2 (1.35)

Instead of imputing wages as industry-size cell averages of Compustat item 𝑋𝐿𝑅 as in

Donangelo et al. (2019), I create a measure of the average wage (̃︁𝑊𝑗,𝑡) paid to workers using

my LEHD-Compustat match. I detail my computation of the average wage later on in this

section. Because coverage of the LEHD varies by year and may not contain all establishments

from a given Compustat gvkey in a given year, I multiply the inferred LEHD wage by the

average of the firm’s employment in years 𝑡 and 𝑡 − 1, rather than directly summing up

LEHD wage compensation. Because Compustat employment is reported at year-end, I also

follow Donangelo et al. (2019) in taking the average employment in adjoining years. Labor

productivity is given by

log(VA/Worker)𝑗,𝑡 = log(VA𝑗,𝑡/EMP𝑗,𝑡) (1.36)

Unless otherwise specified, I refer hereafter to labor productivity, productivity, and log

value-added per worker interchangeably. Finally, I define the labor share of firm 𝑖 at time 𝑡 by

LSHARE𝑗,𝑡 = LABEX𝑗,𝑡

VA𝑗,𝑡

(1.37)
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AKM Wage Decomposition

I now detail how I decompose wages into worker- and firm-specific heterogeneity in the

tradition of Abowd et al. (1999) (AKM). I start with a modification of the AKM decomposition

proposed by Lachowska et al. (2020) and Engbom and Moser (2020) that allows for the

firm-specific component of wages to vary by time. Let 𝑖 index individual workers; 𝑗(𝑖, 𝑡) a

function indicating the firm 𝑗 that employs individual 𝑖 at time 𝑡; and 𝑋𝑖,𝑡 a third-degree

polynomial in worker age that is flat at age 40, as in Sorkin (2018) and Card, Heining, and

Kline (2013). I then estimate the wage decomposition

log(𝑤)𝑖𝑗𝑡 = 𝛼𝑖 + 𝜑𝑗(𝑖,𝑡),𝑡 + 𝛽𝑋𝑖,𝑡 + 𝜖𝑖,𝑡 (1.38)

I estimate (1.38) for matched Compustat firms for overlapping 5-year moving windows.

Because my analysis is at the annual frequency and LEHD earnings are quarterly, each wage

𝑤𝑖𝑗𝑡 represents a full-year equivalent real wage for individual 𝑖 in year 𝑡, as in Sorkin (2018).

In order to be included in the sample for estimating (1.38), firm 𝑗 must be worker 𝑖’s primary

employer for that year (the firm with highest earnings), worker 𝑖 must have been employed

at that firm for at least two consecutive quarters within the year, and the worker must have

earned more than $3250 in 2011 US dollars. Papers performing AKM wage decompositions

on LEHD earnings data set a lower threshold on annual earnings because earnings because

hours worked are not observed in the LEHD. Due to the large size of the LEHD data, I

estimate (1.38) for four disjoint 25% subsamples of my original sample of individuals found

in the LEHD. All firm level aggregates taken from these estimates represent averages across

these four 25% subsamples. Estimating (1.38) also requires that firm-years and individual

worker pairs must belong to a set satisfying connectedness conditions in order for the fixed

effects 𝛼𝑖 and 𝜑𝑗(𝑖,𝑡),𝑡 to be separately identified. I provide more details on this connectedness

requirement and the sampling procedure in appendix 1.7.1.

I use the sample of workers in (1.38) to create my inferred firm average wage ̃︁𝑊𝑗,𝑡. Let

𝑁 𝑖𝑛𝑠
𝑗,𝑡 denote the total number of workers mapped to firm 𝑗 that are in the sample of (1.38)

in year 𝑡. Let 𝑁𝑛𝑜𝑡−𝑖𝑛𝑠
𝑗,𝑡 denote the number of unique individuals that show up on the payrolss
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of firm 𝑗 in year 𝑡 that are not included in the sample (either due to earnings below the

required threshold or firm 𝑗 not being the primary employer for that year). Let ̃︀𝑤𝑖𝑗𝑡 denote

the actual (not full-year adjusted) year 𝑡 earnings of worker 𝑖 at firm 𝑗. Then I compute the

firm-specific wage as ̃︁𝑊𝑗,𝑡 =
∑︀

𝑖 ̃︀𝑤𝑖𝑗𝑡

𝑁 𝑖𝑛𝑠
𝑗,𝑡 +𝑁𝑛𝑜𝑡−𝑖𝑛𝑠

𝑗,𝑡

(1.39)

I contrast this unadjusted wage ̃︁𝑊𝑗,𝑡 with a full-time full year equivalent adjusted wage 𝑊𝑗,𝑡.

Let Γ𝑗,𝑡 denote the set of workers that are in the sample of (1.38) for firm 𝑗 in year 𝑡:

𝑊𝑗,𝑡 =
∑︀

𝑖∈Γ𝑗,𝑡
𝑤𝑖𝑗𝑡

𝑁 𝑖𝑛𝑠
𝑗,𝑡

(1.40)

I use the actual average earnings ̃︁𝑊𝑗,𝑡 multiplied by Compustat employment for computing

firm level value-added, labor expenses, and labor shares, as in (1.34), (1.35), and (1.37).

Meanwhile, I focus on the employment response to log changes in the firm’s full-time, full-year

equivalent adjusted wage 𝑊𝑗,𝑡 when I estimate supply elasticities in Section 1.3. I make

these choices in order to ensure that my computation of labor expenses represents actual

spending on labor per Compustat employee, while estimated supply elasticities correspond to

the employment response induced by a change in the wage offer for a consistently defined

period of employment.

Firm-Level Measures Derived From AKM Estimates

I introduce three measures that I derive from the wage decomposition in (1.38). The first is

a measure of the firm’s skill:

𝛼𝑗,𝑡 = log
(︃∑︀

𝑖∈Γ𝑗,𝑡
exp(̂︀𝛼𝑖,𝑡)

𝑁 𝑖𝑛𝑠
𝑗,𝑡

)︃
(1.41)

Thus 𝛼𝑗,𝑡 is the log of the average component of wages that is due to the worker-specific

heterogeneity of the firm’s labor force. Firms with more skilled workers will have a higher

𝛼𝑗,𝑡. Next, I introduce an employment based analogue of the Tobin’s Q valuation ratio. Let
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𝑉𝑗,𝑡 denote the total enterprise value of firm 𝑗 in year 𝑡. Then define 𝑄𝐸𝑚𝑝
𝑗,𝑡 as

𝑄𝐸𝑚𝑝
𝑗,𝑡 = 𝑉𝑗,𝑡∑︀

𝑖∈Γ𝑗,𝑡
exp(̂︀𝛼𝑖,𝑡)

(1.42)

I compute firm value 𝑉𝑗,𝑡 following Peters and Taylor (2017). Finally, I introduce a skill-

adjusted measure of the firm hiring rate. Denote by Γ𝑅𝑒𝑐𝑟𝑢𝑖𝑡
𝑗,𝑡 the set of workers 𝑖 that are

recruited to firm 𝑗 in year 𝑡, where a recruit is any worker whose primary employer is 𝑗 in

year 𝑡, but not in year 𝑡− 1. Then define

Inv Rate𝐻𝑖𝑟𝑒
𝑗,𝑡 =

∑︀
𝑖∈Γ𝑅𝑒𝑐𝑟𝑢𝑖𝑡

𝑗,𝑡
exp(̂︀𝛼𝑖,𝑡)∑︀

𝑖∈Γ𝑗,𝑡−1 exp(̂︀𝛼𝑖,𝑡−1)
(1.43)

Hence Inv Rate𝐻𝑖𝑟𝑒
𝑗,𝑡 represents the ratio of the skill-weighted number of workers hired in year

𝑡 relative to the skill-weighted number of workers employed by the firm in the previous year.

Sampling/Cleaning LEHD Wage Data and Estimation of Wage Decomposition

The basic person-level identifier variable in the LEHD data is the PIK, which has a one-to-one

correspondence with and individual’s Social Security number. My baseline LEHD sample

comes from the list of unique PIK identifiers obtained from the union of all individuals

found in the 2000 Decennial Census; the SIPP and Current Population Survey; and a 10%

subsample of the Numident sample. I further generate four disjoint 25% subsamples of this

list of PIKs intersected with the list of PIKs in the LEHD.

I repeat the following steps for each of the four disjoint 25% subsamples. All estimates

are taken separately across these disjoint subsamples; all firm level aggregates represent

averages across these four subsamples. For each year in the LEHD 1990-2015 I retain all

individuals who were found to be employed at a Compustat-linked firm in that year. This

forms my LEHD-Compustat match. I then clean LEHD earnings data using a procedure that

follows very closely with Sorkin (2018). Because days and hours worked in the LEHD are not

observed, these steps are meant to convert quarterly LEHD earnings to their full-year wage

equivalents. I categorize quarterly earnings observations into three groups: full, continuous,
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and discontinuous. Quarter 𝑞 is a full earnings occur when individual 𝑖 is linked to firm 𝑗 at

quarters 𝑞, 𝑞 − 1 and 𝑞 + 1; quarter 𝑞 is a continuous is when individual 𝑖 is linked to firm 𝑗

at quarters 𝑞 and on of 𝑞 − 1 and 𝑞 + 1, but not both; finally, discontinuous quarters occur

when individual 𝑖 is linked to firm 𝑗 at during quarter 𝑞 but not at 𝑞 − 1 or 𝑞 + 1.

Because full quarters are most likely to represent full-time employment, they are prioritized

as follows. If individual 𝑖 has any full quarters of employment at firm 𝑖 in the given year,

then annual wages are taken to be

4 × Total Earnings in Full Quarters/Number of Full Quarters.

If there are no full quarters of employment, then annual earnings are

8 × Total Earnings in Continuous Quarters/Number of Continuous Quarters.

Finally, if there are no continuous quarters, annual earnings are given by

12 × Total Earnings in Discontinuous Quarters/Number of Discontinuous Quarters.

Assuming separations occur uniformly within a quarter, a continuous quarter represents a

half quarter of employment at the firm and a discontinuous quarter represents a third of a

quarter of employments, so this adjusts wages to full-year terms. Full quarters require no

such adjustment, which is the reason for prioritizing full quarters of employment over others.

Earnings are further adjusted to real equivalents. I follow Sorkin (2018) in using the CPI

from the 4th quarter of 2011 as the baseline for this real wage adjustment.

I link each individual to their primary in each year. The primary employer is the one

where their unadjusted earnings are highest. I define the employer at the gvkey level for

worker-firm-years linked to a Compustat firm, and at the EIN level for worker-firm-years

with no such link. Since I restrict to persons linked to Compustat in the current year, every

individual in my sample will have at least one job in year 𝑡 linked to a Compustat gvkey,

although this will not always be their primary employer. Using the adjusted earnings I
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estimate the modified AKM decomposition for individuals’ primary employers:

log(𝑤)𝑖𝑗𝑡 = 𝛼𝑖 + 𝜑𝑗(𝑖,𝑡),𝑡 + 𝛽𝑋𝑖,𝑡 + 𝜖𝑖,𝑡 (1.44)

As in Sorkin (2018), I require individuals to have earned more than $3250 in real earnings

at their employer in the year in order to be considered part of the sample for estimating

(1.44). Since hours or days worked are not observed, this drops individuals likely to have

had a minimal attachment to the firm in the year due to part-time employment. I estimate

(1.44) for overlapping 5-year periods starting in 1991 and ending in 2010. Because I have

estimates for overlapping 5-year intervals, I take estimates for the final year from the sample

(i.e. firm and person effects in 2013 come from the 2009-2013 subsample, 2014 comes from

2010-2014). The exception is for 1991-1994, which do not have a full 5-year period ending in

the given year, so estimates for these years come from the 1991-1995 subsample. This gives

me estimates of model parameters for the 1991-2014 period (though the LEHD covers 1990

and 2015, I use these years to determine full/continuous/discontinuous quarters in 1991 and

2014, respectively, leading my sample period to span 1991 to 2014).

Fixed effects in (1.44) are only defined for the collection of firm-years connected by

worker flows across firms and time. Because I have time-varying firm effects, the connectivity

requirements are slightly different than in the classic AKM decomposition with time-invariant

firm effects (see Lachowska et al. (2020) and Engbom and Moser (2020) for a detailed discussion

on the connectivity requirements in order for parameters to be identified). Accordingly, when

estimating (1.44) I restrict the sample to the largest connected set of worker-firm-year

observations following these two papers. Because Compustat firms are large, this connectivity

restriction drops a tiny fraction of the data.

Imputing Compustat Staff and Labor Expense (XLR)

Here I describe my imputation of Compustat variable 𝑋𝐿𝑅. I use 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 from (1.35)

in the main text. I use 𝐿𝐴𝐵𝐸𝑋𝑗,𝑡 to predict XLR out-of-sample (I also use predicted XLR

even when actual XLR is available for consistency). To ensure the predicted XLR is positive
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I run the following regression in logs:

log(𝑋𝐿𝑅𝑗,𝑡) = 𝛼 + 𝛼𝐼(𝑗),𝑡 + 𝛽𝑡 log(𝐿𝐴𝐵𝐸𝑋𝑗,𝑡) + 𝜖𝑗,𝑡 (1.45)

Here 𝛼𝐼(𝑗),𝑡 are two-digit NAICS by year fixed effects and 𝛽𝑡 are time-varying coefficients on

log(𝐿𝐴𝐵𝐸𝑋𝑗,𝑡).

My predicted level of 𝑋𝐿𝑅 is then just 𝑋𝐿𝑅𝑗,𝑡 = exp
(︁̂︀𝛼 + ̂︀𝛼𝐼(𝑗),𝑡 +̂︁𝛽𝑡 log(𝐿𝐴𝐵𝐸𝑋𝑗,𝑡)

)︁
.

When estimation error is taken into consideration, simply taking the exponential of the

predicted log of the variable in question often leads to better forecasts (Brardsen and

Lütkepohl, 2011). A Jensen’s inequality adjustment term for a scaling factor, using the

variance of the residuals and assuming lognormality leads to a non-trivial overestimate of the

actual 𝑋𝐿𝑅, while the average level of 𝑋𝐿𝑅𝑗,𝑡 is a much closer to actual 𝑋𝐿𝑅𝑗,𝑡. Because of

this I use the exponential of the log to create a strictly positive predicted 𝑋𝐿𝑅𝑗,𝑡. In-sample

𝑋𝐿𝑅𝑗,𝑡 has a correlation of 0.95 with actual 𝑋𝐿𝑅𝑗,𝑡.

K-Means Clustering to Estimate Empirical Labor Market Boundaries

In this section I describe my method for grouping firms into empirical labor market boundaries

based on k-means clustering of flows of workers across firms. Let 𝑅𝑖,𝑗,𝑡 be the numer of

workers firm 𝑖 has hired from firm 𝑗 in year 𝑡, and 𝐿𝑖,𝑗,𝑡 the number of workers firm 𝑖 loses to

firm 𝑗 in year 𝑡. I then construct a matrix 𝐴𝑡 of flows across firms by assigning the the 𝑖, 𝑗th

entry as follows:

𝐴𝑖,𝑗,𝑡 = log
⎛⎝1 +

𝑡∑︁
𝜏=𝑡−2

𝑅𝑖,𝑗,𝜏 + 𝐿𝑖,𝑗,𝜏

⎞⎠ (1.46)

I then perform k-means clustering on the columns of 𝐴 to group firms into clusters that hire

from one another, using 1 minus the cosine similarity of column vectors of 𝐴𝑡 as the distance

metric between vectors. The cosine distance between column 𝐴𝑗,𝑡 and 𝐴𝑗′,𝑡 is defined as

1 −
∑︀

𝑖 𝐴𝑖,𝑗,𝑡 × 𝐴𝑖,𝑗′,𝑡√︁∑︀
𝑖 𝐴

2
𝑖,𝑗,𝑡

√︁∑︀
𝑖 𝐴

2
𝑖,𝑗′,𝑡

, (1.47)
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which is one minus the uncentered correlation between the vectors 𝐴𝑗,𝑡 and 𝐴𝑗′,𝑡. Thus the

distance metric accounts for the differences in the size of the two comparison firms. I take

the log of the sum of inflows and outflows in order to downweight extremely large firms but

still allow entries to be increasing in the number of workers that flow between the two firms.

Because k-means clustering has a random component, I perform the routine 5 times each

year using different starting points for the clusters, selecting the cluster assignment which

explains the largest share of workers flows across firms for that year. Because the number

of clusters must be pre-specified, I perform the routine for 𝑘 = 10 and 𝑘 = 20 labor market

clusters per year.

I find that the method explains labor empirical labor markets quite well. In appendix

table 1.17 I examine how much variation labor market-by-year fixed effects explain in the

levels of and changes in log wage and employment as well as the fraction of firm-to-firm

worker transitions occurring within the given labor market boundary. I compare the 𝑘 = 10

and 𝑘 = 20 clusters with 2-digit and 3-digit NAICS industrys. The table shows that about

half of worker flows occur within the 𝑘 = 10 version of the empirical labor markets, while also

explaining three-fifths of log wages and having very comparable explanatory power for wage

and employment growth, and stock returns as the other empirical labor market boundaries.

In the final column of the table I show that, while the empirical labor market boundaries do a

good job of capturing empirical labor markets, they capture similar variation in stock returns,

and employment/wage growth as my baseline 3-digit NAICs fixed effects. In particular, there

is a very small change in explanatory power when both labor market-by-year and 3-digit

NAICs-by-year fixed effects are included at the same time.

1.7.2 Controlling for Proxies of Labor and Capital Adjustment

Costs in Investment-Q Regressions

The smaller investment response to Tobin’s Q for productive firms are suggestive that Tobin’s

Q proxies relatively more for economic rents and not investment opportunities for these firms;

however, the lower investment rates could also be due to higher adjustment costs for a given
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level of investment.26. Adjustment costs are likely different skilled and unskilled workers.

For example, Belo et al. (2017) argue that adjustment costs are likely to be considerably

higher for firms with a more skilled workforce, and Jager and Heining (2019) shows direct

empirical evidence that firms have difficulty substituting for skilled workers. In appendix

Table 1.12 I regress hiring on employment Q, and interact employment Q separately with labor

productivity and estimated log firm average worker effects (𝛼𝑗,𝑡 from (1.41)). The interaction

term still has a strongly negative coefficient even after accounting for firm skill, suggesting

that at least for hiring rates, the patterns are not likely to be driven purely by differences

in adjustment costs. The coefficient on the interaction between average worker effects and

employment Q is also negative, suggesting that these firms do face higher adjustment costs.

In appendix Table 1.13 I devise a similar exercise for capital investment based on the

intangible share of capital, where I interact total Q with the log intangible share of total

capital as proxy for variation in capital adjustment costs. To the extent that intangible

and physical capital have differential convex adjustment costs, these findings are also not

driven by productive firms facing disparate costs of adjusting their capital stock on account

of having differing amounts of intangible capital.

1.7.3 Elasticity Estimate Bias in a Simple Model of the Labor

Market

Similar to Card et al. (2018) or Lamadon et al. (2019), suppose that 𝐿 workers choose

employers among a market of 𝑁 firms, and normalize 𝐿 = 1 for simplicity. Worker 𝑖’s utility

from working at firm 𝑗 is increasing in firm-specific amenities 𝑎𝑗,𝑡, the log of the wage offer

𝑤𝑗,𝑡, and an unobservable taste shock 𝜖𝑖,𝑗,𝑡.

𝑢𝑖,𝑗,𝑡 = 𝜃 log(𝑤𝑗,𝑡) + 𝑎𝑗,𝑡 + 𝜖𝑖,𝑗,𝑡 (1.48)

26In the case where convex adjustment costs are quadratic and returns to scale are constant so that Tobin’s
Q = marginal Q, the coefficient on Tobin’s Q is precisely one divided by the multiplicative convex adjustment
cost parameter.
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Assuming the taste shocks follow a type I extreme value distribution, then standard results

from McFadden (1973) imply the firm-specific labor supply curve:

𝐿(𝑤𝑗,𝑡, 𝑎𝑗,𝑡) = 𝜆−1
𝑡 exp(𝑎𝑗,𝑡)𝑤𝜃

𝑗,𝑡 (1.49)

Here I assume each firm views itself as atomistic in the market, and so they take the constant

𝜆𝑡 =
(︁∑︀𝑁

𝑗′=1 exp(𝑎𝑗′,𝑡)𝑤𝜃
𝑗′,𝑡

)︁
as given. The parameter 𝜃 gives the firm-specific supply elasticity.

Let 𝐴𝑗,𝑡 = 𝜆−1
𝑡 exp(𝑎𝑗,𝑡) denote the level of the supply curve.

Firms choose the wage offer 𝑤𝑗,𝑡 to maximize the following:

𝑉𝑗,𝑡 = max
𝑤𝑗,𝑡

𝑍𝑗,𝑡(𝐿𝑗,𝑡)1−𝛼 − 𝑤𝑗,𝑡𝐿𝑗,𝑡 (1.50)

subject to the functional form of the labor supply curve (1.49). Denote the wage markdown

by 𝜇 ≡ 𝜃
𝜃+1 and define constant 𝑐 ≡ 1

1+𝜃𝛼
log (𝜇(1 − 𝛼)). Solving (1.50) yields the expressions

for the log optimal employment, wage, and firm value:

log(𝐿𝑗,𝑡) = 𝜃𝑐+ 𝜃

1 + 𝜃𝛼
log(𝑍𝑗,𝑡) + 1

1 + 𝜃𝛼
log(𝐴𝑗,𝑡) (1.51)

log(𝑤𝑗,𝑡) = 𝑐+ 1
1 + 𝜃𝛼

log(𝑍𝑗,𝑡) − 𝛼

1 + 𝜃𝛼
log(𝐴𝑗,𝑡) (1.52)

log(𝑉𝑗,𝑡) = log(1 − (1 − 𝛼)𝜇) + (1 − 𝛼)𝜃𝑐+ 1 + 𝜃

(1 + 𝜃𝛼) log(𝑍𝑗,𝑡) + 1 − 𝛼

1 + 𝜃𝛼
log(𝐴𝑗,𝑡) (1.53)

For simplicity I look at the bias from running a regression of the levels of log employ-

ment/wages on log firm value. My empirical strategy of running the regression of stock returns

on the growth rates in wages and employment is essentially the same except in differences

instead of levels. The parameter estimate obtained from regressing log employment and

wages on firm value and taking the ratio of the two coefficients is given by

𝜃(1 + 𝜃)𝜎2
𝑧 + 𝜃(1 − 𝛼)𝜎𝑎𝑧 + (1 + 𝜃)𝜎𝑎𝑧 + (1 − 𝛼)𝜎2

𝑎

(1 + 𝜃)𝜎2
𝑧 + (1 − 𝛼)𝜎𝑎𝑧 − 𝛼(1 + 𝜃)𝜎𝑎𝑧 − 𝛼(1 − 𝛼)𝜎2

𝑎

(1.54)

Here 𝜎2
𝑧 is the variance of log(𝑍𝑗,𝑡); 𝜎𝑎𝑧 is the covariance of log(𝑍𝑗,𝑡) and log(𝐴𝑗,𝑡); and, 𝜎2

𝑎
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is the variance of log(𝐴𝑗,𝑡). When there are no labor supply shocks, so that 𝜎2
𝑎 = 𝜎𝑎𝑧 = 0,

equation (1.54) collapses to the true supply elasticity 𝜃.

For (1.54) to represent an upper bound on the supply elasticity—which implies a conser-

vative estimate of the magnitude of wage markdowns—we must have

𝜌𝑎𝑧𝜎𝑧 > −(1 − 𝛼)
1 + 𝜃

𝜎𝑎 (1.55)

where 𝜌𝑎𝑧 is the correlation of log(𝐴𝑗,𝑡) and log(𝑍𝑗,𝑡). The intuition behind (1.55) is simple.

Increases in the level of the supply curve log(𝐴𝑗,𝑡), (increases in “amenities”) allow firms to

hire more workers at a given wage, which reduces wages, increases employment, and increases

firm value, all else held constant. This tends to bias the wage response downward and the

employment response upward, leading to an upward biased elasticity estimate. However, if

log(𝐴𝑗,𝑡) is sufficiently negatively correlated with firm productivity, then increases in log(𝐴𝑗,𝑡)

reduce firm value, and the elasticity estimate becomes downward biased.

The most obvious candidate for reversing the inequality (1.55) is market-specific pro-

ductivity shocks. This is because 𝐴𝑗,𝑡 is decreasing in the market-wide wage index 𝜆𝑡 =(︁∑︀𝑁
𝑗′=1 exp(𝑎𝑗′,𝑡)𝑤𝜃

𝑗′,𝑡

)︁
:

𝐴𝑗,𝑡 = 𝜆−1
𝑡 exp(𝑎𝑗,𝑡) =

⎛⎝ 𝑁∑︁
𝑗′=1

exp(𝑎𝑗′,𝑡)𝑤𝜃
𝑗′,𝑡

⎞⎠−1

exp(𝑎𝑗,𝑡) (1.56)

Suppose that firm-specific productivity 𝑍𝑗,𝑡 is given by an aggregate market component and

an idiosyncratic component: 𝑍𝑗,𝑡 = ̃︁𝑋𝑡𝑋𝑗,𝑡. Equation (1.52) then implies that the wage offer

can be expressed as

𝑤𝑗,𝑡 = 𝐶𝑗,𝑡
̃︁𝑋 1

1+𝛼𝜃
𝑡 𝜆

𝛼
1+𝛼𝜃
𝑡 (1.57)

where the firm-specific term 𝐶𝑗,𝑡 depends on exp(𝑎𝑗,𝑡), 𝑋𝑗,𝑡, and model parameters. Definẽ︀𝐶𝑗,𝑡 = exp(𝑎𝑗,𝑡)𝐶𝜃
𝑗,𝑡. Then

𝜆
1

1+𝛼𝜃
𝑡 =

⎛⎝∑︁
𝑗′

̃︀𝐶𝑗′,𝑡

⎞⎠ ̃︁𝑋 𝜃
1+𝛼𝜃
𝑡 ≡ ̃︀𝐶𝑡

̃︁𝑋 𝜃
1+𝛼𝜃
𝑡 (1.58)
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or

𝜆𝑡 = ̃︀𝐶1+𝛼𝜃
𝑡

̃︁𝑋𝜃
𝑡 (1.59)

Hence log(𝐴𝑗,𝑡) = 𝑎𝑗,𝑡 − (1 + 𝛼𝜃) log
(︁ ̃︀𝐶𝑡

)︁
− 𝜃 log

(︁̃︁𝑋𝑡

)︁
is decreasing in log(̃︁𝑋𝑡). If enough of

the variance in log(𝐴𝑗,𝑡) is driven by log(̃︁𝑋𝑡) this can reverse the inequality in (1.55), causing

downward biased supply elasticities. Aggregate productivity shocks do have meaningful

variance and firm-specific amenities may be much more slow moving, so this case is feasible

empirically. Since I assume firms are “small” in the market, the correlation of log( ̃︀𝐶𝑡) and

log(𝐶𝑗,𝑡) is approximately zero and so I don’t consider the impact of this term. The log( ̃︀𝐶𝑡)

term nets out with market-wide fixed effects along with log(̃︁𝑋𝑡). In summary, this means

that without market-specific controls I am likely to overestimate the importance of labor

market power.

After netting out market-specific productivity shocks (via market-by-year fixed effects or

other controls) the condition (1.55) becomes highly plausible. When market shocks are netted

out, (1.55) says that workers’ perceptions of firm amenities should not decrease by too much

when idiosyncratic productivity improves, or that firms should not cut their amenities by a

lot on average when they experience a positive productivity shock. The more likely scenario

is that firm amenities also improve when their productivity goes up, which guarantees that

(1.55) holds, implying my estimates would be conservative if biased at all.

1.7.4 Simple Example: Comparing Firm Value in Monopsony and

Counterfactual Competitive Equilibria

To see how firm value might change in a competitive equilibrium relative to the monopsony

equilibrium, consider the following simple setting. There is a representative firm which solves

the following:

𝑉 = max
𝑤

𝐴𝐿(𝑤)1−𝛼 − 𝑤𝐿(𝑤) (1.60)
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where 𝐿(𝑤) = 𝑤𝜀 and 𝜀 is the supply elasticity. The firm’s optimal wage and employment are

𝑤 =
(︂

𝜀

𝜀+ 1(1 − 𝛼)𝐴
)︂1/(1+𝛼𝜀)

, 𝐿 =
(︂

𝜀

𝜀+ 1(1 − 𝛼)𝐴
)︂𝜀/(1+𝛼𝜀)

(1.61)

And the value of wage markdowns as a share of operating income is

markdown share =

(︁
𝜖+1

𝜖
− 1

)︁
𝑤𝜀+1

𝑉
(1.62)

Consider the calibration 𝐴 = 1, 𝜀 = 2.5, and 𝛼 = 0.3. This yields an aggregate labor share of

about 0.5 and a markdown share of operating income of 40%, both of which are very close to

their empirical counterparts. The firm value in this calibration is 𝑉 = 0.25.

Now suppose that the firm takes wages as given and equilibrium wages are determined by

the same labor supply function:

𝑉 𝑐 = max
𝐿

𝐴𝐿1−𝛼 − 𝑤𝐿 (1.63)

where 𝐿 = 𝑤𝜀 gives the market clearing condition for wages. The resulting competitive wages

and employment are

𝑤𝑐 = ((1 − 𝛼)𝐴)1/(1+𝛼𝜀) , 𝐿𝑐 = ((1 − 𝛼)𝐴)𝜀/(1+𝛼𝜀) (1.64)

Both the wage and employment increase in the competitive equilibrium. In the same

calibration as before with 𝐴 = 1, 𝜃 = 2.5, and 𝛼 = 0.3, the competitive firm value is

𝑉 𝑐 = 0.21. So there is a 16% reduction in firm value in the counterfactual competitive

equilibrium, even though wage markdowns are worth 40% of firm income in the equilibrium

where the firm takes advantage of its labor market power.
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1.7.5 Supply Elasticity Robustness Checks: Empirical Specifica-

tions and Data

Different Controls for Market Level Shocks

Failing to account for common market shocks could bias my supply elasticity estimates

downward, leading to an upward bias in the extent of labor market power. In Table 1.16 I

present the elasticity estimate from my baseline specification (1.6) , as well as for a set of

alternative specifications with different controls for common market shocks. The top panel of

the table shows the employment responses to a stock return shock, while the bottom panel

shows the wage responses. My estimate of the average elasticity—obtained by taking the

ratio of the employment and wage responses—in the baseline specification (column 1) is

about 2.5. In columns 2-6 of Table 1.16 I include different variations of controls for common

market shocks. At the bottom of these columns I include a p-value for the test that the

coefficient in the given column is different from my baseline estimate in column 1.

I find that each set of controls for common shocks yields estimates that are economically

and statisically close. From this exercise I conclude that the main specification in column

1 of Table 1.16 does a reasonably good job of capturing the relevant variation in common

market shocks that could bias my estimates downward. Consequently I focus on this baseline

specification, noting that any quantitative changes from using a different specification would

be minor.

In column 2 of Table 1.16 I drop the industry-by-year fixed effects. Consistent with the

discussion above and the simple model in appendix 1.7.3, this reduces my supply elasticity

estimate. The difference has a p-value of .052, but economically the difference is not that

large (2.525 in column 1 versus 2.397 in column 2). In the third column I add empirical labor

market-by-year fixed effects instead of the industry-by-year fixed effects from column 1. I

obtain these empirical labor market boundaries by performing k-means clustering on the

flows of workers between firms; I explain the method in more detail in section 1.7.1 of the

appendix and show that it does a good job of capturing variation in worker flows between

firms, as well as in wages and employment levels and growth rates. I choose 𝑘 = 10 labor
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market clusters per year as my baseline.27 See appendix table 1.17 for more details on the

comparative performance of different definitions of labor market boundaries. In column 3 the

elasticity is about 2.54 when controlling for these empirical labor markets.

I drop the labor market fixed effects in column 4 of Table 1.16, instead controlling for

the weighted average employment and wage growth of a firms’ labor market competitors.

To create this measure I weight the employment or wage growth by the number of workers

a competitor has hired from the given firm, divided by the total number of workers that

have been hired away by other firms in the sample. I similarly do this for the number of

workers a given firm hires from a candidate firm. I then take the average of the inflow-

and outflow-weighted measures. This column demonstrates that wages and employment do

respond to competitor labor demand shocks, but controlling for these variables do little to

change employment or wage marginal effects, and hence do not move the estimated elasticity.

In column 5 I control for both industry-by-year and labor market-by-year fixed effects,

and in column 6 I use 𝑘 = 20 labor market clusters per year instead of 𝑘 = 10. This does

not substantially change the supply elasticity estimate in quantitative terms and again the

difference is not statistically significant.

Alternative Labor Demand Shocks

I now perform a number of robustness checks in order to gauge how much unobserved firm-

specific labor supply shocks may be biasing my estimates. I first estimate supply elasticities

using several different proxies for firm labor demand shifters. Results are found in appendix

Table 1.18. I report the estimated supply elasticity using the alternative measure, the supply

elasticity from my baseline specification , and the p-value on the test that my baseline supply

elasticity estimates are different from the given estimate. Because a couple of the measures

are available only for selected subsamples of the data, I re-estimate my baseline specification

for these same subsamples of the data before comparing elasticity estimates.

In the first column of 1.18 I use stock returns of firms’ customers rather than the firms
27Using a different clustering method, Nimczik (2020) finds that 𝑘 = 9 empirical labor markets does a

good job of capturing empirical market boundaries in Austria.
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themselves as shock to labor demand. In the next column I use the firm-specific R&D tax

credits from Bloom, Schankerman, and Van Reenen (2013) (with data updated by Lucking,

Bloom, and Van Reenen (2019)) as a labor supply shifter; since this is a level variable rather

than a flow, I estimate (1.6) in levels rather than first differences in this column. To test if

firm-specific exposure to common stock market risk factors matters, in the third column I use

return residuals backed out from a regression on the 5 Fama and French (2015) factors, plus

the momentum risk factor. In the fourth column I use patent-induced shocks from Kogan,

Papanikolaou, Seru, and Stoffman (2017) as a shifter of firm labor demand; and finally, in

the last column I follow Daniel, Hirshleifer, and Sun (2019) in using stock returns in excess

of the market return in a four day window around earnings announcements, which isolates

periods of time when information about fundamental firm cash flows is revealed.

Each different labor supply shifter in Table 1.18 yields elasticity estimates that are very

close quantitatively and statistically indistinguishable from my baseline estimates. Because

each of these measures can be expected to covary differently with possible unobserved firm-

specific labor supply shocks, this suggests that any bias from such shocks is not likely to have

large a quantitative effect on my stock-return based supply elasticity estimates.

In the first column of Table 1.18 I show the response to stock returns of firms’ customers

using cleaned Compustat customer-supplier data provided by Wharton Research Data Services.

Cohen and Frazzini (2008) show that stock return shocks to customers eventually propagate

to upstream to their suppliers as a demand shock, and consistent with this notion I find that

the wages and employment at supplier firm both respond significantly positively to the stock

returns to their customers. The identifying assumption is that these shocks to customers

constitute a pure demand shock to the firm, and are orthogonal to firm-specific labor demand

shocks after accounting for industry-by-year fixed effects. Customers’ returns are likely much

less affected by any idiosyncratic labor supply shocks of their suppliers than the suppliers’ own

returns. Still, a potential concern is that customers may also be labor market competitors,

and so in unreported results I consider a version where I exclude customer-supplier links

between firms who have hired from one another within a 5 year window centered at the

101



current year, or who are in the same 3-digit NAICS industry. In both cases the estimated

supply elasticity is nearly the exact same as the estimate based on own-firm stock return

and is statistically indistinguishable, with both elasticity estimates for the customer return

sample being close to 2.

Column 2 of Table 1.18 uses variation in labor demand induced by the federal tax

treatment of R&D expenses from Bloom et al. (2013), who show that differential exposure

causes firms to undertake more R&D. Firms with differing tax-induced incentives to engage

in more or less R&D may also be induced to adjust their labor forces to meet this incentive,

which constitutes a labor demand shock. Because this measure is a level rather than a flow, I

estimate a version of (1.6) in levels rather than changes when using the tax credit measure,

now controlling for lagged log employment, wages, and assets and contemporaneous firm skill

composition. I continue to include industry by year fixed effects to soak up market level

variation. Again we find an elasticity estimate that is similar to the baseline and statistically

indistinguishable, with the tax-credit induced elasticity being a little lower than my baseline

for this sample of firms (1.73 to 1.96).

In the third column of Table 1.18 I use the firms’ cumulative abnormal log excess returns

with respect to the Fama and French (2015) five factor model augmented with the momentum

factor.28 I construct stock return residuals as follows. In each year and for each firm 𝑖 I

regress daily log excess returns on the 6 risk factors:

log(𝑅𝑖,𝑡) − log(𝑅𝑓,𝑡) = 𝛼𝜏
𝑖 + 𝛽𝜏

𝑖 𝐹𝑡 + 𝜖𝑖,𝑡 (1.65)

Here 𝜏 denotes the year corresponding to day 𝑡 and 𝐹𝑡 is a vector of risk factors. I take the

estimated 𝛽𝑖 for year 𝜏 and take these as the risk exposures for year 𝜏 + 1 to get cumulative

abnormal log returns. A literature starting with Vasicek (1973) suggests that out-of-sample

risk exposures are more accurately estimated when applying Bayesian shrinkage to deflate the

estimates towards a common average. I shrink the 𝛽𝑖 estimates towards the cross-sectional

average 𝐸𝜏 [𝛽𝑖], using the cross-sectional variance of the 𝛽𝑖 estimates, Var𝜏 (𝛽𝜏
𝑖 ), and the

28All risk factor and risk-free rate data are obtained from Ken French’s website.
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standard error of the own firm’s estimate, 𝑆𝐸2
𝛽𝑖

, to get the shrinkage weights:

̃︁𝛽𝜏
𝑖 = (1 − 𝜔)𝛽𝑖 + 𝜔𝐸𝜏 [𝛽𝜏

𝑖 ] (1.66)

where

𝜔 =
𝑆𝐸2

𝛽𝑖

𝑆𝐸2
𝛽𝜏

𝑖
+ Var𝜏 (𝛽𝜏

𝑖 )
(1.67)

I similarly deflate the intercepts 𝛼𝑖. Finally, the cumulative abnormal returns for year 𝜏 + 1

are given by

Abnormal Return𝑖,𝜏 =
∑︁
𝑡∈𝜏

log(𝑅𝑖,𝑡) − log(𝑅𝑓,𝑡) − ̃︂𝛽𝜏−1
𝑖 𝐹𝑡 − 𝛼𝜏−1

𝑖 (1.68)

I use Abnormal Return𝑖,𝜏 in place of the excess return and re-estimate (1.6). I follow the

same timimg convention as in mys baseline spec so that abnormal returns are aggregated

from July until June of the following year. My inclusion of this measure relates primarily to

the need to control for market shocks discussed previously and demonstrated in Table 1.16.

In particular, a long literature in asset pricing argues that these factors represent systematic

shocks, exposure to which demands compensation with higher returns. My inclusion of

industry-by-year fixed effects implicitly imposes constant betas within industry on these

systematic shocks, but it’s possible the heterogeneity in exposure to systematic factors could

matter. This procedure accordingly allows firms to have differential exposures to common

factors. Using this measure again yields a very similar elasticity estimate to my baseline (2.34

relative to a baseline of 2.52, difference statistically insignificant).

In the fourth column I show the supply elasticity implied by employment and wage

responses to patent induced shocks to firm value from Kogan et al. (2017), who show that the

measure predicts changes in firm productivity, employment, and sales, all consistent with a

marginal revenue productivity shock. Patent values are estimated from stock price movements

in a small window around patent grants, and capture information in price movements related

to firm innovation. I follow Kogan et al. (2020) in looking at the response of valuable of

patents from the year they are filed rather than granted and use patenting in year 𝑡 as a shock
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to labor demand from year 𝑡 to 𝑡 + 1. This specification is related in spirit to Kline et al.

(2019), who estimate passthroughs of patent-induced shocks to worker and firm outcomes

based on predicted Kogan et al. (2017) patent values. Again I find an elasticity estimate that

is close to my baseline.

Finally, I use the response to own-firm stock return shocks, except I only use stock price

responses in a small time window around earnings announcements. Following Daniel et al.

(2019) I use cumulative daily returns in excess of the market starting over the four day period

starting the day before the announcement, summing up all 4-day announcement returns over

the July to June period. The idea here is to isolate stock price movements that are highly

likely to be related to information about firm productivity unrelated to information about

labor supply. Stock price movements around earnings announcement are driven primarily by

firms announcing unexpectedly high or low income; thus restricting to these small windows

is more likely isolates price movements related to information about firm demand that is

unrelated to firm-specific labor supply shocks. Though the measures are different, this follows

a similar intuition to my use of Kogan et al. (2017) patent induced shocks to the firm—both

measures isolate movements in prices due to information revealed to the market that is highly

related to firm revenue productivity, and hence instruments for shifts in labor demand.

Controlling for Observable Labor Supply Shocks (Union Elections and Changes

in Non-Compete Enforceability)

While these findings are useful in establishing the plausibility of my baseline supply elasticity

estimates, it would still be helpful to control for potential firm-specific labor supply shocks, if

they can be made observable. Although one can never definitively say that every firm-specific

labor supply shock has been accounted for, I now include specifications where I control

separately for two labor market shocks that have featured prominently in prior literature:

union elections and changes in non-compete contract enforceability. Results are in appendix

Table 1.19, which shows that bias from excluding these more salient observable firm-specific

labor supply shocks is not important quantitatively. This lends credence to my argument that
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this sort of confounding variation is not likely to substantially bias my estimates in general.

I control for unionizations using data on union elections from the National Labor Relations

Board and matched to Compustat records by Knepper (2020).29 Changes in non-compete

enforceability come from the lists of changes compiled by Ewens and Marx (2017) and

Jeffers (2019). Following Ewens and Marx (2017) I assign non-compete changes by firms’

headquarters.

Union elections may be one of the single best candidates for the type of firm-specific labor

supply shock that could bias my estimates. For example, Lee and Mas (2012) find that union

elections wins induce significant negative stock return responses; I verify the same result in

the last row of Panel A of Table 1.19. However, even among the firms who have experienced

large union elections, the unionization event accounts for a small amount of variation in

firm-specific stock returns, so that controlling for unionizations leads to negligible changes in

my estimates. Meanwhile, Jeffers (2019) argues that firms use non-competes successfully to

diminish the mobility of their skilled workers, and so changes in non-compete enforceability

could also in theory constitute a labor supply shock that bias my estimates. .

In Panel A of appendix Table 1.19 I re-estimate supply elasticities based off (1.6) for firms

who ever experienced a union election during my sample; the first column is from the baseline

specification without controlling for unionizations, and the others include different sets of

unionization controls. Consistent with Lee and Mas (2012), I find a significantly negative

stock return response in the year a union wins an election. Despite this fact, allowing for this

supply shock to be observable has no effect on my estimated elasticities, despite the fact that

I restrict the sample to only firms who have experienced a sufficiently large union election.

Following Knepper (2020), I focus on firms experiencing union elections where at least

20 employees voted in the election. In order to give maximal explanatory power to the

union elections, I restrict the sample to just the set of firms identified at some point to have

experienced a sufficiently large union election.

In the second column of Table 1.19 I include dummies for whether a union election win

occurs in year 𝑡, 𝑡+ 1, or 𝑡− 1 (as well as dummies for whether any election is occurs); in the
29Thanks to Matthew Knepper for generously sharing his data.
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third column I ascribe all variation in stock returns in a union election year to the election

by adding interactions of stock returns with the full set of union election dummies in the

second columnn. In all cases the elasticity is quantitatively close to the baseline elasticity

and statistically indistinguishable, even when assuming all variation in stock returns during

in the 3 years surrounding surrounding a union election are due to the election.

Non-compete agreements make it more difficult to move to a competing employer; Jeffers

(2019) shows that they are quite common and especially prevalent among skilled workers.

Changes in non-compete enforceability are therefore another good candidate for firm-specific

labor supply shocks that could bias my estimates. Following Ewens and Marx (2017) I assign

non-compete changes by firms’ headquarters. Panel B of Table 1.19 shows the resulting supply

elasticities when controlling for non-compete changes. In the first column I include indicators

for whether a non-compete increases or decreases in enforceability in years 𝑡, 𝑡+ 1, or 𝑡− 1.

In the next columns I add interactions of all non-compete dummies with the stock return

in that year. As was the case with union elections, after controlling non-compete changes,

supply elasticity estimates are quantitatively very close and statistically indistinguishable.

Robustness Checks for Labor Productivity Sorted Supply Elasticity Estimates

Since production methods and labor markets vary from industry to industry, one concern with

my Table 1.4 could be reliance on unconditional labor productivity sorts that use between

rather than within industry variation. In Table 1.20 I instead sort firms into productivity

quartiles within their 2-digit NAICS industry and re-estimate (1.8) for employment and

wages to back out supply elasticities for workers of all skill levels. All my basic findings from

Table 1.4 are unchanged for the within industry sorts in 1.20, and all the elasticity point

estimates are very similar.

In appendix Table 1.21 I address a few more potential concerns with elasticity estimates

for firms sorted on productivity. One possibility is that wage responses are larger in the

short-run for productive firms because they have more immediate flexibility in adjusting their

wages, and so the monotonically decreasing pattern in elasticities sorted on productivity
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could be driven by the horizon. For example, unproductive firms may be more constrained in

their ability to adjust wages in the short horizon. To address this, I re-estimate elasticities

from (1.8) for the 3-year horizon. Specifically, I replace stock returns and employment/wage

growth (as well as the control for contemporaneous changes in firm skill composition) with

their 3-year equivalents:

log(𝑌𝑗,𝑡+3)− log(𝑌𝑗,𝑡) = 𝛼+𝛼𝑞(𝑗,𝑡) +𝛼𝐼(𝑗),𝑡 +
4∑︁

𝑞=1
1(𝑞(𝑖, 𝑡) = 𝑞)×𝛽𝑞Stock Ret𝑗,𝑡→𝑡+3 +Γ𝑋𝑗,𝑡 +𝜖𝑗,𝑡

(1.69)

Panel A of Table 1.21 shows that productive firms similarly have much lower supply elasticities

at this horizon. Thus the cross-sectional sorting in elasticities is not merely driven by the

time horizon. Elasticities in general are also a little higher for this horizon, implying more

elastic labor supply over the long run.

Another concern may be that results are driven by the equity-based compensation of the

most skilled workers. For example, Eisfeldt, Falato, and Xiaolan (2021) document a large

rise in equity compensation over my sample period, which may be due to contracting issues

unrelated to a wage posting, monopsonistic model of the labor market. The LEHD includes

all compensation that is immediately taxable, which includes equity based pay upon exercise.

However, note also that such equity-based incentive pay is not incompatible with a monopsony

framework, as it intrinsically ties the compensation of employees with their marginal revenue

productivity, as would be implied by a monopsony model. Another issue is that a non-trivial

fraction of equity-based compensation may not show up in LEHD earnings because they

are taxed as capital gains, in which case the wage responses for supply elasticities may be

mismeasured for skilled workers. That being said, Table 1.4 already alleviates these concerns

in part, because productive firms face significantly lower supply elasticities even for the least

skilled workers, whose compensation is far less tied to equity-based incentive pay.30 Another

factor that helps alleviate this concern is the fact that elasticity estimates are by far the

lowest for skilled workers, and this is due to the larger wage passthrough of firm-specific

30Eisfeldt et al. (2021) find that 97% of equity-based incentive pay is accrues to the top 10% of workers in
the manufacturing sector.
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stocks to skilled workers’ compensation. Deferred compensation that does not immediately

show up as taxable earnings would tend to bias down the wage passthrough of skilled workers,

but I find that skilled workers have by far the highest wage passthroughs of all. To address

whether differences in deferred compensation are likely to drive the sorting patterns in supply

elasticities, in Panel B of Table 1.21 I re-estimate (1.8) with changes in the time-varying firm

wage fixed effects from (1.38), instead of the log average firm wage. This is the component of

the log wage that is entirely firm-specific and is paid to all workers, regardless of their skill,

incumbent status, or worker-firm match quality, and hence is less likely to be attached to

firm- or worker skill-specific tendencies towards higher equity-based compensation. Again

the most productive firms face by far the lowest supply elasticites. These elasticity estimates

are not surprisingly a little higher than in Table 1.4, because they aren’t able to take into

account that the most highly paid workers make up a large share of the overall firm average

wage and also have the least elastic labor supply.

Value-added per worker may be a noisy productivity proxy. In panel C I instead sort

on estimates of firm total factor productivity from İmrohoroğlu and Tüzel (2014). Findings

similarly go through in this case, as sorting on TFP also generates a decreasing pattern

in supply elasticities. In unreported results I find a strong negative relationship between

estimated TFP and firm labor shares. Hence my findings aren’t driven by my choice of the

log value-added per worker measure, but are instead driven by productivity advantages in

general.

Finally, due to concerns some have raised regarding employment reported in Compustat

(Davis, Haltiwanger, Jarmin, Miranda, Foote, and Nagypál, 2006), in panel D I replace the

Compustat-based employment with Longitudinal Business Database employment. I obtain

LBD employment by aggregating reported employment across all LBD establishments linked

to a given Compustat gvkey in that year.31 I still find strongly monotonically decreasing

supply elasticities across productivity types, but the LBD employment is not as responsive

31LBD employment is collected in March while Compustat employment is almost always reported in
December, and so I use LBD figures from the March nearest to the Compustat December employment report
date to compute employment growth. I find that this yields larger employment responses than taking the
previous March observation or an average of the two.
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to stock return shocks and so I get slightly lower elasticity point estimates. This suggests

that LBD-based supply elasticities would if anything increase the quantitative magnitude of

my findings.

1.7.6 Appendix Figures and Tables

Figure 1-8: Compustat-LEHD Matched Sample: Shares of Employment, Market Cap and
Sales by Year

Note: This figure gives the shares of total Compustat sales, employment, and stock market cap that are
represented in my Compustat-LEHD matched sample. The sample period spans 1991-2014.
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Figure 1-9: Spread in Average Worker Skill Between Productive and Unproductive Firms
Trends Upward

Note: This figure shows the differences for the average firm worker skill level (from (1.41) in the text)
between firms in the top- and bottom-quartiles of labor productivity. The sample period spans 1991-2014.

110



Figure 1-10: Idiosyncratic Risk Has Increased Over the Long Term, But is Declining or Flat
Within the 1991-2014 Period

Idiosyncratic Return Volatility Idiosyncratic Sales Growth Volatility

Note: This figure plots the log average idiosyncratic stock return and sales growth volatility from Hartman-
Glaser et al. (2019). The data span 1950-2014 for returns and 1965-2014 for sales. The 1991-2014 period
covered in my paper is shown in red and the period before is shown in blue. Dashed lines give a separate
linear time trend for the 1991-2014 and pre-1991 periods.
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Table 1.10: Compustat Matched Sample and Overall Compustat Summary Stats

Panel A: LEHD-Compustat Matched Sample

N Mean SD P5 P50 P95

Log Assets 64000 5.862 1.946 2.887 5.752 9.327

Log Market Cap 63000 12.690 2.070 9.457 12.610 16.280

Log Sales 63500 0.646 1.861 -2.254 0.588 3.845

Log Employment 64000 5.872 2.009 2.769 5.843 9.260

Log Phys Capital 64000 4.914 2.205 1.542 4.808 8.734

Log Int Capital 63500 5.058 1.981 2.099 4.924 8.501

Excess Return 61500 0.119 0.542 -0.717 0.108 0.982

Panel B: Full Compustat Sample

N Mean SD P5 P50 P95

Log Assets 110000 5.396 2.202 1.991 5.246 9.334

Log Market Cap 164000 12.170 2.076 8.930 12.060 15.790

Log Sales 133000 -0.136 2.231 -3.689 -0.211 3.648

Log Employment 142000 5.180 2.408 1.380 5.133 9.200

Log Phys Capital 122000 4.428 2.643 0.366 4.284 8.992

Log Int Capital 137000 4.318 2.287 0.858 4.172 8.312

Excess Return 159000 0.104 0.518 -0.700 0.092 0.924

Note: This table provides basic summary stats for the full Compustat sample and my LEHD-Compustat
merged sample. The sample period spans 1991-2014.
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Table 1.11: Productive Firms Hire More Skilled Workers on Average

Dep Var: Log Firm Average AKM Worker Effects

log VA/Worker 0.189 0.147 0.163 0.110

(0.011) (0.018) (0.011) (0.014)

Size Controls X X

Industry X Year FE X X

N 57500 57500 57500 57500

R2 (within) 0.344 0.386 0.217 0.263

Note: This table shows regressions of log firm average AKM worker fixed effects (defined in (1.41)) on firm
labor productivity as proxied by log value-added per worker. Controls for size include log employment, assets,
and sales. Standard errors double clustered by year and industry in parentheses.
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Table 1.12: Highly Productive Firms Have Lower Hiring Response to Employment Q After
Accounting for Worker Skill

Dep Var: Hiring Rate (1) (2) (3) (4)

Q (Emp) 0.119 0.116 0.112 0.109

(0.017) (0.018) (0.016) (0.017)

Q (Emp) × log VA/Worker -0.016 -0.014 -0.014 -0.013

(0.003) (0.004) (0.003) (0.004)

log VA/Worker -0.033 -0.034 -0.039 -0.041

(0.011) (0.011) (0.012) (0.012)

Q (Emp) × Avg Skill -0.01 -0.012

(0.009) (0.009)

Avg Skill -0.017 -0.006

(0.08) (0.085)

Cash Flow 0.783 0.819

(0.123) (0.149)

Cash Flow × log VA/Worker -0.155 -0.172

(0.027) (0.04)

Cash Flow × Avg Skill 0.124

(0.117)

R-sq (within) 0.074 0.075 0.078 0.078

N 44000 44000 44000 44000

Note: This table shows regressions of investment in new hires on employment Q. The employment Q
measure is interacted with a proxy for the costliness of labor/capital adjustment, the skill level of the firm’s
workforce (average worker AKM fixed effect). The last two columns add controls for cash flows as defined
in Peters and Taylor (2017). All specifications include firm and year fixed effects. Standard errors double
clustered by industry and year are in parentheses.
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Table 1.13: Highly Productive Firms Have Lower Investment Response to Tobin’s Q After
Accounting for Intangible Capital Share

Dep Var: Total Invest Rate (1) (2) (3) (4)

Q (Tot) 0.066 0.059 0.054 0.048

(0.009) (0.008) (0.008) (0.009)

Q (Tot) × log VA/Worker -0.007 -0.006 -0.006 -0.006

(0.002) (0.002) (0.002) (0.002)

log VA/Worker 0.011 0.01 -0.009 -0.01

(0.003) (0.003) (0.002) (0.002)

Q (Tot) × Log Intangible Share -0.006 -0.005

(0.003) (0.002)

Log Intangible Share 0.008 0.008

(0.004) (0.004)

Cash Flow 0.223 0.203

(0.045) (0.044)

Cash Flow × log VA/Worker -0.003 -0.002

(0.01) (0.01)

Cash Flow × Log Intangible Share -0.021

(0.01)

R-sq (within) 0.23 0.235 0.286 0.293

N 48500 48500 48500 48500

Note: This table shows regressions of investment in total capital on total Q from Peters and Taylor (2017)
(panel B). The total Q is interacted with the firm’s log intangible capital share of total capital as a potential
proxy for the costliness of capital adjustment. The last two columns add controls for cash flows as defined
in Peters and Taylor (2017). All specifications include firm and year fixed effects. Standard errors double
clustered by industry and year are in parentheses.
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Table 1.14: Calibration by Subperiod

Parameter Explanation 1991-2002 2003-2014

𝛼 (One minus) Labor returns to scale 0.22 0.22

𝛽 Supply Elasticity Shifter 0.5 0.34

b Reservation Wage 0.549 0.515

𝜎𝑧 Labor productivity volatility 0.141 0.149

𝐶 Convex adjustment cost level 0.38 0.745

Note: This table gives two alternative calibrations of the dynamic wage-posting monopsony model from
section 3.1 in the main text. The calibrations are made to fit data moments for the 1991-2002 and 2003-2014
subperiods instead of the full sample moments from 1991-2014.
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Table 1.15: Model Versus Data Moments by Subperiod

1991-2002 2003-2014
Moment Model Data Model Data
Separations Rate 0.36 0.32 0.29 0.27
Incumbent Premium 0.13 0.13 0.17 0.17
Inc/Rec Wage Pass. Ratio 1.67 2.10 2.11 1.59
Elasticity (Overall) 2.48 2.92 1.66 1.88
Elasticity (Inc.) 1.82 2.04 1.21 1.20
Elasticity (Rec.) 5.68 8.17 5.13 5.99
Elasticity (Q1) 5.04 4.86 3.16 3.25
Elasticity (Q2) 2.84 3.00 1.93 2.18
Elasticity (Q3) 2.20 2.95 1.51 1.55
Elasticity (Q4) 1.65 1.34 1.14 0.85
Log Labor Share -0.49 -0.49 -0.52 -0.53
Log Labor Share (Q1) -0.35 -0.21 -0.31 -0.23
Log Labor Share (Q2) -0.46 -0.40 -0.48 -0.38
Log Labor Share (Q3) -0.53 -0.50 -0.57 -0.53
Log Labor Share (Q4) -0.64 -0.90 -0.72 -0.98

Note: This table compares model and data moments for my subsample calibrations of the dynamic wage-
posting monopsony model from section 3.1 in the main text. "Inc" and "Rec" denote incumbents and recruits,
respectively. The calibrations are made to fit data moments for the 1991-2002 and 2003-2014 subperiods
instead of the full sample moments from 1991-2014. The label Q1 denotes the bottom quartile of labor
productivity, Q4 denotes the top quartile, etc. The calibration of 5 model parameters explicitly targets the
7 moments that are not labor productivity quartile-specific, while the remaining 8 productivity quartile
moments are not targeted.
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Table 1.16: Baseline Elasticity Estimates Are Insensitive to Additional Controls for Common
Market Shocks

Specification: (1) (2) (3) (4) (5) (6)

Employment

Excess Return 0.116 0.115 0.116 0.115 0.116 0.116

(0.009) (0.010) (0.009) (0.010) (0.009) (0.009)

Competitor Emp Growth 0.043

(0.015)

Competitor Wage Growth 0.002

(0.038)

N 45000 45000 45000 45000 45000 45000

R2 0.115 0.069 0.077 0.069 0.120 0.127

Wages

Excess Return 0.046 0.048 0.046 0.046 0.045 0.045

(0.004) (0.004) (0.003) (0.003) (0.004) (0.004)

Competitor Emp Growth 0.022

(0.004)

Competitor Wage Growth 0.155

(0.030)

N 45000 45500 45500 45000 45000 45000

R2 0.413 0.383 0.398 0.389 0.421 0.425

Base Controls X X X X X X

Year FE X X

Industry × Year FE X X X

Labor Market × Year FE X X X*

Implied Elasticity 2.525 2.397 2.536 2.492 2.568 2.585

(0.305) (0.291) (0.289) (0.300) (0.307) (0.303)

P-value (Difference) 0.052 0.850 0.527 0.202 0.114

Note: This table shows estimates of (1.6) in the main text when different sets of controls are considered.
Baseline control variables include the contemporaneous change in AKM worker effects (worker skill), and
lagged wage, employment, and asset growth at the firm level. Industry fixed effects are defined at the 3-digit
NAICS level. Labor market fixed effects are from empirically defined labor market clusters (estimation
described in section 1.7.1 of the appendix) with 𝐾 = 10 labor market clusters per year. The “X*" in the 6th
column indicates that I alternatively use 𝐾 = 20 labor market clusters per year. Competitor emp and wage
growth are an average of the growth rates of competitor firms that either hire from or whose employees are
hired by the given firm. Local market controls include average changes in local labor market concentration,
unemployment rates, and stock returns of firms operating in the same labor market. Wage data are from the
LEHD, and the sample period spans 1991-2014. See section 1.3 in text for more details. “P-value (Difference)”
denotes the p-value from the test that the given supply elasticity estimate is different from the baseline
estimate in column 1. Standard errors double clustered by industry and year are in parentheses.
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Table 1.17: Explanatory Power of Labor Market Proxies for Worker Flows, Wages, Stock
Returns, and Employment

K = 10 K = 20 NAICS2 NAICS3 K = 10 + NAICS3

Worker Flow Share 0.50 0.42 0.34 0.23

Log Wage 0.62 0.65 0.51 0.60 0.70

Wage Growth 0.03 0.04 0.03 0.03 0.04

Excess Return 0.14 0.15 0.11 0.16 0.18

Log Emp 0.19 0.26 0.10 0.18 0.26

Emp Growth 0.03 0.03 0.03 0.03 0.04

Note: This table shows the explanatory power of different candidate labor market boundaries for several
different variables. The first row reports the fraction of worker transitions between Compustat firms that
occur within the same candidate market definition. The remaining rows report the adjusted 𝑅2 from a
regression of the given variable on market × year fixed effects. The first two columns show results for labor
market clusters estimated with 10 or 20 clusters and the next two columns instead use either 2- or 3-digit
NAICS codes. The last column reports adjusted 𝑅2 values for labor market × year FEs and 3-digit NAICS
× year FEs included simultaneously. Sample spans 1992-2013.
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Table 1.18: Baseline Supply Elasticity Estimates are Robust to Alternative Shocks to Labor
Demand

Customer Ret R&D Tax Credit FF Resid Patents Earnings Ret

Elasticity 2.01 1.73 2.34 2.77 2.67

(0.53) (0.54) (0.29) (1.11) (0.42)

Baseline Elasticity 2.12 1.96 2.53 2.53 2.53

(0.33) (0.18) (0.30) (0.30) (0.30)

P-Value (Diff) 0.79 0.65 0.25 0.83 0.55

N 11500 21500 45000 45000 44500

Note: This table gives supply elasticity estimates using different labor demand shifters. All specifications
have the baseline controls from (1.6) in main text, including industry × year fixed effects. “Customer Ret"
uses the stock returns of the firm’s customers instead of the firm itself. “R&D Tax Credit” uses federal
treatment of R&D expenses from Bloom et al. (2013) and Lucking et al. (2019) as a labor demand shifter.
“FF Resid” uses cumulative log abnormal returns relative to the Fama-French 5-factor model augmented
with momentum. “Patents” uses patent induced shocks from Kogan et al. (2020). Finally, “Earnings Ret”
follows Daniel et al. (2019) in using stock returns in excess of the market return in a 4 day window around
earnings announcement instead of stock returns. Elasticities computed as the ratio of the employment and
wage responses to the given shock. The baseline elasticity is the elasticity estimate for the my main method
using annual excess returns as a labor demand shock. In the first two columns I report baseline elasticities
for the selected subsample for which the given shock is available. “P-Value (Diff)" gives the p-value on the
differences between the elasticity using the given shock and for my baseline estimate. See appendix section
1.7.5 for further details. Standard errors double clustered by industry and year are in parentheses, and are
computed by estimating the elasticity via two-stage least squares where wages are predicted in the first stage
and employment is then regressed on predicted wages.
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Table 1.19: Labor Supply Shocks from Union Elections and Changes in Non-Compete
Enforceability Do Not Affect Supply Elasticity Estimates

Panel A: Union Elections
(1) (2) (3)

Elasticity 1.65 1.64 1.72

(0.33) (0.32) (0.34)

P-Val (Diff) 0.57 0.35

N 4200 4200 4200

Baseline Controls X X X

Union Dummies X X

Union Dummies × Excess Return X

Industry × Year FE X X X

Union Win Excess Return -0.08***

Panel B: Non-Compete Changes

(1) (2) (3)

Elasticity 2.37 2.36 2.4

(0.50) (0.50) (0.52)

P-Val (Diff) 0.29 0.70

N 11000 11000 11000

Baseline Controls X X X

Non-Compete Dummies X X

Non-Compete Dummies × Excess Return X

Industry × Year FE X X X

Note: Panel A of this table shows how elasticity estimates change when including controls for a union
election occuring and for a union win in years 𝑡, 𝑡− 1, or 𝑡+ 1. Elections are taken from a list compiled by
Knepper (2020). The third column adds interactions of union dummies with the excess return in that year.
Panel B of this table uses non-compete changes from the lists compiled by Jeffers (2019) and Ewens and Marx
(2017). Following Ewens and Marx (2017) firms are considered treated if their headquarters state changes
non-compete laws in a given year; non-compete controls include separate dummies for non-compete increases
and decreases in the years 𝑡, 𝑡− 1, and 𝑡+ 1, and the third column interacts these dummies with stock returns.
“P-Value (Diff)" gives the p-value on the differences the elasticity using the given shock and for my baseline
estimate. The sample is restricted to only those firms who ever had a unionization/non-compete event, and
the baseline estimate is computed for the same sample. Standard errors double clustered by industry and
year are in parentheses, and are computed by estimating the elasticity via two-stage least squares where
wages are predicted in the first stage and employment is then regressed on predicted wages.
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Table 1.20: Productive Firms Face Lower Supply Elasticities For Workers of All Skill
Levels—Within Industry Productivity Sorts

Productivity: Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-val 4-1 R-sq N

Whole Firm

Employment 0.114 0.103 0.106 0.109

(0.012) (0.012) (0.010) (0.011) 0.641 0.127 43500

Wages 0.028 0.039 0.047 0.088

(0.004) (0.003) (0.004) (0.010) 0.000 0.421 43500

Elasticity 4.028 2.620 2.241 1.234

Low Skill Workers

Employment 0.123 0.118 0.131 0.138

(0.013) (0.013) (0.016) (0.014) 0.285 0.109 43500

Wages 0.014 0.017 0.020 0.028

(0.003) (0.003) (0.002) (0.004) 0.016 0.289 43500

Elasticity 8.786 6.837 6.660 4.950

Middle Skill Workers

Employment 0.111 0.098 0.107 0.103

(0.014) (0.012) (0.010) (0.013) 0.444 0.084 43500

Wages 0.015 0.018 0.019 0.029

(0.002) (0.002) (0.002) (0.003) 0.005 0.182 43500

Elasticity 7.283 5.281 5.743 3.580

High Skill Workers

Employment 0.099 0.092 0.094 0.086

(0.013) (0.012) (0.008) (0.011) 0.266 0.076 43500

Wages 0.049 0.063 0.075 0.116

(0.005) (0.004) (0.006) (0.011) 0.000 0.453 43500

Elasticity 2.047 1.458 1.250 0.738

Note: This table contains supply elasticity estimates for firms sorted on log value-added/worker quartiles
as in Table 1.4, except I now sort firms on labor productivity within 2-digit NAICS industry. Controls
include 3-digit NAICS industry by year and productivity quartile fixed effects; lagged growth rates in wages,
employment, and total assets; and the contemporaneous change in average worker skill level at the firm (see
(1.41) for definition). Workers are placed into skill groups based on their estimated worker effects from a
modified Abowd et al. (1999) style wage decomposition with time-varying firm fixed effects. Individuals in
the bottom two quintiles of the cross-sectional distribution of worker effects are considered low-skilled, the
third and fourth quintiles middle-skilled, and the top quintile high-skilled. Changes in average worker skill
are computed within the population of workers considered in the specification. “P-val 4-1" gives the p-value
from a test that the coefficients for firms in the top and bottom quartiles have equal values. Wage data are
from the LEHD, and the sample period spans 1991-2014. Standard errors double clustered by industry and
year in parentheses. See section 1.3 in main text for more details.
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Table 1.21: Elasticities for Firms Sorted on Productivity—Robustness

Productivity: Quartile 1 Quartile 2 Quartile 3 Quartile 4 P-val 4-1 R-sq N

Panel A: 3-Year Horizon

Employment 0.203 0.173 0.202 0.193

(0.016) (0.016) (0.017) (0.017) 0.563 0.202 34000

Wages 0.026 0.036 0.046 0.079

(0.002) (0.002) (0.004) (0.008) 0.000 0.506 34000

Elasticity 7.778 4.793 4.418 2.441

Panel B: Wage Growth Using Changes in AKM Firm Effects

Employment 0.119 0.089 0.120 0.106

(0.013) (0.010) (0.011) (0.011) 0.240 0.127 43500

Wages 0.017 0.021 0.029 0.043

(0.002) (0.002) (0.002) (0.005) 0.000 0.252 43500

Elasticity 6.953 4.238 4.068 2.474

Panel C: TFP Sort

Employment 0.109 0.087 0.102 0.120

(0.011) (0.008) (0.008) (0.015) 0.482 0.139 37500

Wages 0.034 0.040 0.053 0.085

(0.004) (0.004) (0.007) (0.011) 0.000 0.427 37500

Elasticity 3.212 2.194 1.906 1.424

Panel D: LBD Employment Growth

Employment (0.085) (0.084) (0.095) (0.092)

0.013 0.009 0.013 0.013 0.683 0.082 40000

Wages (0.028) (0.033) (0.051) (0.091)

0.003 0.003 0.004 0.010 0.000 0.422 43500

Elasticity 3.105 2.552 1.854 1.011

Note: This table shows robustness checks for the elasticity estimates obtained from estimating variants of
(1.8) in the main text. All equations use the baseline set of controls from (1.8), which includes industry ×
year fixed effects. Panel A estimates a variant of (1.8) where stock returns and employment/wage growth are
at the 3-year horizon. In Panel B changes in AKM firm effects 𝜑𝑗,𝑡 from estimating (1.38) replace growth in
the firm-level average wage in estimating the supply elasticity. Panel C sorts on firm total-factor productivity
from İmrohoroğlu and Tüzel (2014) instead of log value-added per worker. Panel D uses employment growth
from Longitudinal Business Database employment figures instead of Compustat. “P-val 4-1" gives the p-value
from a test that the coefficients for firms in the top and bottom quartiles have equal values. Wage data are
from the LEHD, and the sample period spans 1991-2014. Standard errors double clustered by industry and
year in parentheses. See section 1.3 in main text for more details.
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Chapter 2

Technology-Skill Complementarity

and Labor Displacement: Evidence

from Linking Two Centuries of

Patents with Occupations

Economists and workers alike have long worried about the employment prospects of occupa-

tions whose key tasks can be easily performed by a machine, robot, software, or some other

form of capital that substitutes for labor.1 These concerns have been exacerbated by recent

breakthroughs in automation technologies (e.g., software, artificial intelligence, robotics)

which have expanded the set of manual and cognitive tasks which can performed by machines

and have occurred contemporaneously with an increase in income inequality and a fall in

0This chapter is joint work with Leonid Kogan, Dimitris Papanikolaou, and Larry Schmidt.
1Fear of technological unemployment is not new. In 350 BCE, Aristotle wrote: “[If] the shuttle would

weave and the plectrum touch the lyre without a hand to guide them, chief workmen would not want servants,
nor masters slaves.” In 1811, skilled weavers and textile workers (known as Luddites) worried that mechanizing
manufacturing (and the unskilled laborers operating the new looms) would rob them of their means of income.
In 1930, Keynes described this type of potential labor market risk when he said, “We are being afflicted with
a new disease of technological unemployment...due to our discovery of means of economising the use of labor
outrunning the pace at which we can find new uses for labor." More recently, a McKinsey report estimated
that between 400 million and 800 million jobs could be lost worldwide due to robotic automation by the year
2030.
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the labor share of aggregate output.2 Yet, despite the importance of these issues, systematic

evidence for technological displacement remains elusive.3 Our goal is to fill this gap: we

leverage over a century and a half of data to propose and validate new metrics of workers’

exposure to technological innovation and relate them to workers’ labor market outcomes,

both at the aggregate as well as the individual level.

To quantify workers’ exposures to technical change we measure the similarity between the

textual description of the tasks performed by an occupation and that of major technological

breakthroughs. We identify the latter through the textual analysis of patent networks

using the methodology of Kelly, Papanikolaou, Seru, and Taddy (2020). To estimate the

distance between a breakthrough innovation and workers’ task descriptions, we leverage

recent advances in natural language processing that allow us to compute a measure of the

similarity between documents that accounts for synonyms. By exploiting the timing of patent

grants we can identify the extent to which certain worker groups (occupations) are exposed

to major technological breakthroughs at a given point in time.

In sum, our indices capture the extent to which specific occupations are exposed to

breakthrough innovations in a given year. We emphasize that, a priori, we are agnostic

on whether innovations that are similar to tasks certain occupations perform are likely to

be substitutes or complements. For that, we need to examine how our indicators correlate

with labor market outcomes. A key advantage of our methodology is that it relies only on

document text; as such, we are able to construct time-series indices of occupation exposures

that span the last two centuries. For example, our technology exposure for “molders, shapers,

and casters, except metal and plastic”—an occupation category which includes glass blowers

as a sub-occupation—takes a relatively high value in the early 1900s because of similarity

with patents such as US patent number 814,612, entitled “Method of Making glass sheets.”
2For instance, one of the leading explanations for the increase in the skill premium is skill-biased technical

change, whereas the decline in the labor share has been attributed to capital-embodied technical change.
See Goldin and Katz (2008); Krusell, Ohanian, Ríos-Rull, and Violante (2000); Karabarbounis and Neiman
(2013); Acemoglu and Restrepo (2020, 2018, 2021)

3Due to the difficulty of constructing broad measures of labor-displacive innovations, existing work has
focused on analyzing specific instances in which the impact of a specific technology on workers can be
identified (Atack, Margo, and Rhode, 2019; Feigenbaum and Gross, 2020; Akerman, Gaarder, and Mogstad,
2015; Humlum, 2019).
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This patent relates to a technology for making glass called the cylinder machine, which

allowed glass manufacturers to replace the labor of skilled hand glass blowers in favor of a

highly mechanized and capital-intensive production process.4

Examining our technology exposure measure, we find that, prior to 1980, innovation was

consistently associated with manual physical tasks; by contrast, the innovations of the late

20th/early 21st century have become relatively more related to cognitive tasks. This pattern

is partly driven by the increased prevalence of breakthrough patents related to computers and

electronics. Last, occupations that are associated with interpersonal tasks have consistently

low exposures to innovation throughout the entire sample period.

Our analysis of technical change and labor market outcomes delivers several new findings.

First, we find that workers most exposed to technological breakthroughs have experienced

consistently negative labor market outcomes. Indeed, a higher rate of innovation in a given

industry is associated with a decline in the labor share of output even as labor productivity rises.

Comparing workers across occupations differentially exposed to technology improvements,

we find that an acceleration of technical change is associated with declines in employment

and wage earnings for affected workers. The negative correlation between employment and

our technology exposure measure is largely consistent over time—starting from the Second

Industrial Revolution of the late 19th century to the present. We find some evidence that the

negative relation between our measure and employment is stronger in recessions—consistent

with the literature on job polarization (Jaimovich and Siu, 2018). These negative relations

are estimated using a combination of public-use Census micro-data, which are available

over longer horizons, and confidential administrative data from the Census which include

individual tax records starting in the early 1990s.5

4Jerome (1934) documents a dramatic transformation in the production process of the glass making
industry as a result of the cylinder machine: “By 1905 many hand plants had gone out of business, wages
of blowers and gatherers were reduced 40 per cent, and the new machine may be said to have achieved
commercial success . . . in the quarter century following the introduction of machine blowing, the window-glass
industry, one of the last strongholds of specialized handicraft skill, has undergone a technological revolution
resulting in the almost complete disappearance of the hand branch of the industry and the elimination of two
skilled trades and one semiskilled, and also the partial elimination of the skilled flatteners.”

5Such a negative relation is not obvious ex-ante, since our approach could in principle identify both
labor-saving as well as labor-enhancing technologies. If we are primarily interested in identifying labor-saving
technologies, it is possible that our measure is diluted by mixing labor-saving and productivity-enhancing
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Second, we exploit the richness of administrative data to examine how these relations vary

with observable characteristics, by studying a unique panel of administrative earnings records

from the US Social Security Administration which are linked with information on occupation

and education from the Current Population Survey. Thus, relative to the literature which

has mostly studied repeated cross-sections, we are able to measure a worker’s occupation

prior to the development of related technologies, then estimate how her earnings evolve in

future years even if she switches employers, industries, and/or occupations. This analysis

allows us to study the link between innovation and subsequent worker-level earnings growth

rates and to address a number of potential concerns about composition effects driving our

results. Our empirical analysis leverages the granularity of our patent-occupation measures

to exploit variation at the industry-occupation level, i.e., in relative differences in the rate

at which firms in different industries develop new technologies which are similar to a given

occupation at the same point in time.

Across specifications, we find that the labor earnings of older or less educated workers

are significantly more responsive to technological innovation than the average worker. More

importantly, however, we find that the highest paid workers are also relatively more exposed.

Specifically, workers at the top end of the earnings distribution—relative to their peers in the

same occupation and in the same industry—also experience significantly larger declines than

the average workers. Specifically, a one-standard deviation increase in our exposure measure

is associated with a 2.5% decline in subsequent earnings compared to a 1.3% decline for the

average worker. Our results are unchanged if we further control for common shocks to labor

demand at the industry and occupation levels via industry-time and occupation-time fixed

effects, respectively.

The fact that earnings of highly paid workers respond more to our technology exposure

innovations. To address this possibility, we exploit recent advances in topic modeling to construct a composite
predictor from patent text whose purpose is to maximize the in-sample predictability of employment declines–
i.e., to identify language consistent with labor saving innovations. After conducting this analysis, we find
that our baseline innovation measures have a correlation of approximately 75% with this statistical factor.
Comparing the performance of our measure to this benchmark, we found that both approaches lead to
quantitatively similar negative outcomes in terms of both earnings and employment. On this basis, we
conclude that our methodology primarily identifies labor-displacing innovations.
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measure appears at first to be at odds with the canonical model of capital-skill complementarity.

Indeed, a common proxy for worker skill is past income, so the fact that more highly paid

workers experience larger declines seems surprising. We argue that it is not: though (a subset

of) skilled workers as a group may benefit, if technological innovation is associated with

skill displacement individual workers whose prior skills become obsolete may be left behind.

Thus, higher paid (skilled) workers have more to lose. Consistent with this view, we find

that, for the highest-paid workers (top 5% in past earnings relative to their peers in the

same occupation and industry), a one-standard deviation increase in technology exposure is

associated with a 1.26 percentage point increase in the probability of falling to the bottom

decile of wage growth—compared to a 0.41% percentage point increase for the average worker.

To formalize this intuition, we introduce skill displacement in the canonical model of

capital-skill complementarity (see, e.g. Krusell et al., 2000). We allow individual workers to

supply both skilled and unskilled labor services; the quantity of skilled labor a given worker

can supply depends on her skill. Improvements in technology are associated with increased

likelihood of skill loss. Thus, even though skilled workers as a group (specifically, those that

retain their skill) experience higher wage earnings following improvements in technology,

unlucky individual workers can be left behind. On average, top workers may experience lower

earnings growth following periods of technological advances if the increase in the likelihood

of displacement is sufficiently high.

The calibrated model quantitatively replicates our new facts. In the model, increases in

technological innovation lead to an increase in labor productivity and the skill premium—yet

the labor share of output falls. On average, exposed workers in the model experience declines

in wage earnings relative to peers whose skills are not related to the new technologies, and

these differences are the largest for the highest paid workers. Importantly, these patterns

emerge even though technology is more complementary to skilled that unskilled labor services.

Following an innovation, high income workers whose skills are not displaced benefit from

two forces: 1) complementarities with the more productive technology and 2) the fact that

displacement of other high skilled workers’ skills makes their expertise even more scarce
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and thus more valuable. Our model replicates our empirical result that workers with lower

earnings also are hurt by the emergence of new technologies; specifically, this result obtains

not because specific skills are displaced, but rather because of an increase in the supply of

workers performing unskilled tasks which lowers wages.

With the model in hand, we also conduct some simple comparative statics exercises to

consider the potential implications of an acceleration of the rate of innovation in the economy,

consistent with the observed increase in the arrival rate of breakthrough patents which began

in 1980. We consider two potential experiments. In the first case, we increase the arrival

rate of new technologies but hold fixed the rate at which workers accumulate human capital.

In the latter case, we also increase the rate at which workers acquire new skills so that the

overall number of efficiency units of skilled human capital stays constant. In both model

scenarios, such a shift generates increases in output, declines in the labor share, and increases

in the skill premium in both the short and long run, all of which are consistent with trends

in recent data from the US. In the former case, income inequality increases over the medium

term but declines over the longer run because the higher rate of skill displacement eventually

compresses the skill distribution by enough to offset the impact of a higher skill premium. In

the latter case, this equalizing force is neutralized and thus income inequality increases in

both the short and long run.

In sum, we provide and validate a new measure of workers’ exposure to technological

change that is based on the similarity between patent documents and worker job descriptions.

Overall, we document a robustly negative relation between out technology exposure measure

and subsequent labor market outcomes, results which are consistent with a model with

capital-skill complementarity and skill displacement.

Our work contributes to the voluminous literature seeking to understand the determinants

of rising inequality and the fall in the labor share. Existing work emphasizes the complemen-

tarity between technology and certain types of worker skills (Goldin and Katz, 1998, 2008;

Autor, Levy, and Murnane, 2003; Autor, Katz, and Kearney, 2006; Goos and Manning, 2007;

Autor and Dorn, 2013); or the substitution between workers and capital (Krusell et al., 2000;
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Hornstein, Krusell, and Violante, 2005, 2007; Karabarbounis and Neiman, 2013; Acemoglu

and Restrepo, 2020; Hemous and Olsen, 2021). Many models in this literature treat a worker

skill as a fixed characteristic and study how demand for technologies affects differences in

wages between groups with different ex ante skill levels. Our contribution is to provide a direct

measure of technology exposure of specific workers and examine the extent to which advances

in technology are associated with differences in their labor market outcomes. Motivated by

our empirical evidence, our model allows for the possibility that gains from new technologies

can displace the demand for specific expertise of workers skilled at tasks associated with older

vintages, similar to a literature on vintage specificity of human capital (Chari and Hopenhayn,

1991; Violante, 2002; Deming and Noray, 2020) and models which seek to explain earnings

losses from job displacement via obsolescence/loss of specific human capital (Neal, 1995;

Kambourov and Manovskii, 2009; Huckfeldt, 2021; Braxton and Taska, 2020).

We are not the first to analyze the differential exposure of certain occupations to technical

change. Autor and Dorn (2013); Acemoglu and Autor (2011); Autor et al. (2003) document the

secular decline in occupations specializing in routine tasks, starting in the late 20th century.

The key idea is that routine tasks can be easily codified into a sequence of instructions.

Hence, such tasks are relatively more prone to labor-saving technological change than other

more complex tasks. Despite the success that this literature has had in explaining which

occupations have been exposed to technologies, and what have been the effects, it is still an

open question how this exposure changes over time, which technologies relate to which types

of tasks and which occupations, and whether or not technological unemployment is a robust

phenomenon in other time periods. More recently, Webb (2019) also analyzes the similarity

between patents and occupation task descriptions. Our work differs in both scope and aim.

Webb (2019) focuses on automation and the future of work, and thus restricts attention to

patents identified as being related to robots, AI, or software. As a result, the analysis in Webb

(2019) is largely cross-sectional in nature as he focuses on a single technological episode—the

rise of AI and robots. In contrast, we construct time-series indicators to understand the

relation between innovation and employment over different technological episodes and its
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impact on workers with different characteristics. Further, focusing on the more recent period

for which wage earnings data is available (after 1980), we show that the predictability of

our measure for worker earnings is complementary to the information contained in the

routine-task intensity measure of Autor and Dorn (2013), the AI and robotics occupation

exposure measure of Webb (2019) and is not driven by industry-specific trends.6

A significant contribution of our work lies in its scope: we provide a measure of occupational

exposure to technical change that spans the period from 1850 to 2010. An important advantage

of our analysis is that it allows us to draw broad conclusions regarding the relation between

technical change and worker outcomes over a long time period. Further, by constructing

measures at the patent-occupation level, our approach allows us to study technological change

at a highly granular level. Patents also have the advantage of being associated with specific

timing (filing and approval dates) and are linkable to specific firms. To this end, our empirical

analysis uses this granular information to compute measures of technological change at

the industry-occupation level. Our results thus complement some earlier studies which, by

narrowing their scope, are able to analyze the impact of worker earnings associated with

specific technologies. For example, Atack et al. (2019) analyze how workers’ task transitioned

from hand to machine production in the late 19th century. Recently, Feigenbaum and Gross

(2020) show that incumbent telephone operators were more likely to be in lower-paying

occupations following the adoption of mechanical switching technology by AT&T. Akerman

et al. (2015) and Humlum (2019) provides an in depth analyses of impacts of adoption of

broadband internet and industrial robots, respectively, leveraging microdata on affected

workers and firms.

Though labor income risk is not the primary focus of our study, we reach a similar

conclusion as Kogan, Papanikolaou, Schmidt, and Song (2020): higher-paid workers face

considerably greater risk in their labor income as a result of technological innovation. Though

some of the conclusions are similar, these two papers ask different questions. Kogan et al.

6In related work, Mann and Püttmann (2018) and Dechezleprêtre, Hémous, Olsen, and Zanella (2021)
use patent text with different classification algorithms to identify automation patents in more recent periods,
though they do not relate these patents with specific occupations performing related tasks.
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(2020) examine the dynamics of wage earnings in response to innovation by the workers’ own

firm or its competitors in the product market. Kogan et al. (2020) are interested in the

extent to which profit-sharing motives transfer the risk of creative destruction from the firm

owners to its workers. By contrast, we examine outcomes for all workers in the same industry,

differentiated by their occupation (and its exposure to major innovations). Since our goal is

to capture not only innovation by a firm but also the overall adoption of a technology in a

given sector, the exact origin of these innovations are not particularly relevant.

2.1 Motivation: Technology, Productivity, and the La-

bor Share

We begin with a set of facts regarding the joint dynamics of aggregate measures of innovation,

measured productivity, and the labor share that serve to motivate the remainder of our

analysis. To do so, we obtain data on industry-level measures of output (value added),

employment and the labor share from the NBER manufacturing database—which cover the

1958 to 2018 period.

Measuring the degree of technological innovation that takes place in a particular industry

at a particular point in time is considerably more challenging. We do so by relying on patent

data and closely follow the methodology of Kelly et al. (2020). In particular, Kelly et al.

(2020) identify breakthrough innovations as those that are both novel (whose descriptions are

distinct from their predecessors) and impactful (they are similar to subsequent innovations).

They measure a patent’s novelty as its dissimilarity with the existing patent stock at the

time it was filed. In particular, they construct a measure of ‘backward similarity’

𝐵𝑆𝜏𝑏
𝑗 =

∑︁
𝑖∈ℬ𝑗,𝜏𝑏

𝜌𝑗,𝑖, (2.1)

where 𝜌𝑖,𝑗 is the pairwise cosine similarity (using TF-IDF weights) of patents 𝑖 and 𝑗 and ℬ𝑗,𝜏𝑏

denotes the set of “prior” patents filed in the 𝜏𝑏 calendar years prior to 𝑗’s filing. Patents with
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low backward similarity deviate from the state of the art and are therefore novel. Similarly,

they measure a patent’s impact by its ‘forward similarity’ as

𝐹𝑆
𝜏𝑓

𝑗 =
∑︁

𝑖∈ℱ𝑗,𝜏𝑓

𝜌𝑗,𝑖, (2.2)

where ℱ𝑗,𝜏𝑓
denotes the set of patents filed over the next 𝜏𝑓 calendar years following patent

𝑗’s filing. The forward similarity measure in (2.2) estimates of the strength of association

between the patent and future technological innovation over the next 𝜏 years.

The Kelly et al. (2020) patent-level measure combines forward and backward similarity to

identify patents that are both novel and impactful,

𝑞𝜏
𝑗 = log𝐹𝑆𝜏𝑓

𝑗 − log𝐵𝑆𝜏𝑏
𝑗 . (2.3)

To create a time-series index, Kelly et al. (2020) remove calendar year fixed effects from (2.3)

in order to adjust for shifts in language over time. After defining a ‘breakthrough’ patent

as one that falls in the top 10% of the unconditional distribution of importance, they then

construct a time series index as the number of breakthrough inventions granted in each year.

In brief, their measure of innovation in industry 𝑗 in year 𝑡 is defined as

𝜓𝑗,𝑡 = 1
𝜅𝑡

∑︁
𝑝∈Γ𝑡

𝛼𝑗,𝑝. (2.4)

To construct (2.4), we need to determine the set of breakthrough patents that are relevant to

a given industry. We first identify the set Γ𝑡 of ‘breakthrough’ patents as those that fall in

the top 10% of the unconditional distribution of patent importance (based on their ratio of

10-year forward to 5-year backward similarity). We map patents to industries based on their

CPC technology class using the probabilistic mapping constructed by Goldschlag, Lybbert,

and Zolas (2020). Here, 𝛼𝑗,𝑝 denotes the probability of breakthrough patent 𝑝 being assigned

to industry 𝑗. Last, we scale (2.4) by US population 𝜅𝑡 and normalize to unit standard

deviation.
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We then estimate the following specification

log𝑋𝑗,𝑡+𝑘 − log𝑋𝑗,𝑡 = 𝛼(𝑘) + 𝛽(𝑘)𝜓𝑗,𝑡 + 𝛿(𝑘)𝑍𝑗,𝑡 + 𝜀𝑗,𝑡, 𝑘 = 1 . . . 𝑇 years. (2.5)

We focus on four outcome variables: output (value-added); employment; labor productivity

(value-added per worker); and the labor share. We examine horizons of up to 𝑇 = 6 years.

Controls include the lagged 5-year growth rate of the outcome variable and year fixed effects.

Figure 2-6 plots the estimated impulse response coefficients 𝛽(𝑘). Panel A illustrates

that an one-standard-deviation increase in the degree of innovation 𝜓𝑗,𝑡 in a given industry is

associated with an approximately 2% increase in output over the next six years. However,

this increase in output primarily reflects an increase in productivity: as we see from Panels

B, the overall level of employment in the industry weakly falls. As a result, we see in Panel

C that, in response to a one-standard-deviation increase in 𝜓𝑗,𝑡, labor productivity in the

industry rises sharply—by approximately 3% over the next six years. Panel D illustrates that

the labor share of output in the industry falls.

In brief, an increase in our technology measure is associated with higher measured labor

productivity and a decline in the labor share. This pattern strongly suggests that, on average,

our technology measure 𝜓𝑗,𝑡 captures innovations that likely act as substitutes, rather than

complements to labor. That is, even though improvements in technology are associated with

an increase in the measured productivity of labor, they are associated with declines in the

labor share. The remainder of the paper builds on this idea and aims to provide further

refinement to our technology measure by identifying which set of innovations are more likely

to substitute for labor inputs. In the process of doing so, we also broaden the coverage from

just manufacturing to all sectors in the economy.

2.2 Measuring Workers’ Technology Exposure

Here, we construct a measure of technological innovation occurring at a particular point in

time that is relevant for a particular set of worker tasks (occupation). Our interpretation is
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that this measure can be used to proxy for a worker’s exposure to technological innovation. To

do so, we add an additional source of cross-sectional variation to the Kelly et al. (2020) time-

series measure of innovation discussed above. Specifically, we recognize that breakthrough

innovations at a given point in time may be differentially related to particular occupations.

To construct our measure, we rely on measuring the ‘distance’ between the description of the

technology (from the patent document) to the description of the tasks that a given occupation

performs (from the Dictionary of Occupational Titles, DOT). The remainder of this section

describes our methodology.

2.2.1 Data and Methodology

We identify technologies that are relevant to specific worker groups as those that are similar

to the descriptions of the tasks performed by a given occupation. We do so by analyzing the

textual similarity between the description of the innovation in the patent document and the

worker’s job description.

We obtain text data for measuring patent/job task similarity from two sources. Job

task descriptions come from the revised 4th edition of the Dictionary of Occupation Titles

(DOT) database. We use the patent text data parsed from the USPTO patent search website

in Kelly et al. (2020), which includes all US patents beginning in 1976, comprising patent

numbers 3,930,271 through 9,113,586, as well as patent text data obtained from Google

patents for pre-1976 patents. Our analysis of the patent text combines the claims, abstract,

and description section into one patent-level corpus for each patent. Since the DOT has a

very wide range of occupations (with over 13,000 specific occupation descriptions) we first

crosswalk the DOT occupations to the considerably coarser and yet still detailed set of 6-digit

occupations in the 2010 edition of O*NET. We then combine all tasks for a given occupation

at the 2010 O*NET 6-digit level into one occupation-level corpus. See Appendix 2.6 for

further details on cleaning and preparing the text files for numerical representation.

To identify the similarity between a breakthrough innovation and an occupation, we need

to identify meaningful connections between two sets of documents that account for differences
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in the language used. The most common approach for computing document similarity is to

create a matrix representation of each document, with columns representing document counts

for each term (or some weighting of term counts) in the dictionary of all terms contained in

the set of documents, and with rows representing each document. Similarity scores could then

be computed simply as the cosine similarity between each vector of weighted or unweighted

term counts:

𝜌𝑖,𝑗 = 𝑉𝑖

||𝑉𝑖||
· 𝑉𝑗

||𝑉𝑗||
(2.6)

Here 𝑉𝑖 and 𝑉𝑗 denote the vector of potentially weighted terms counts for documents 𝑖 and 𝑗.

This approach is often referred to as the ‘the bag-of-words’ approach, and has been used

successfully in many settings. For example, Kelly et al. (2020) use a variant of this approach to

construct measures of patent novelty and impact based on pairwise distance measures between

patent documents. Since patent documents have a structure and a legalistic vocabulary

that is reasonably uniform, this approach works quite well for patent-by-patent comparisons.

However, this approach is less suited for comparing patent documents to occupation task

descriptions. These two sets of documents come from different sources and often use different

vocabulary. If we were to use the bag-of-words approach, the resulting vectors 𝑉𝑖 and 𝑉𝑗

would be highly sparse with most elements equal to zero, which would bias the distance

measure (2.6) to zero.

The root cause of the problem is that the distance measure in (2.6) has no way of

accounting for words with similar meanings. For example, consider a set of two documents,

with the first document containing the words ‘dog’ and ‘cat’ and the other containing the

words ‘puppy’ and ‘kitten’. Even though the two documents carry essentially the same

meaning, the bag of words approach will conclude that they are distinct: the representation

of the two documents is 𝑉1 = [1, 1, 0, 0] and 𝑉2 = [0, 0, 1, 1], which implies that the two

documents are orthogonal, 𝜌1,2 = 0.

To overcome this challenge, we leverage recent advances in natural language processing that

allow for synonyms. The main idea behind this approach is to represent each word as a dense

vector. The distance between two word vectors is then related to the likelihood these words
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capture a similar meaning. In our approach, we use the word vectors provided by Pennington,

Socher, and Manning (2014), which contains a vocabulary of 1.9 million word meanings

(embeddings) represented as (300-dimensional) vectors.7 Appendix Section 2.6.2 contains a

brief discussion of how the Pennington et al. (2014) word embeddings are constructed.

The next step consists of using these word vectors to construct measures of document

similarity. To begin, we first construct a weighted average of the word embeddings with a

document (a patent or occupation description). Specifically, we represent each document as

a (dense) vector 𝑋𝑖, constructed as a weighted average of the set of word vectors 𝑥𝑘 ∈ 𝐴𝑖

contained in the document,

𝑋𝑖 =
∑︁

𝑥𝑘∈𝐴𝑖

𝑤𝑖,𝑘𝑥𝑘. (2.7)

A key part of the procedure consists of choosing appropriate weights 𝑤𝑖,𝑘 in order to emphasize

important words in the document.

In natural language processing, a common approach to emphasize terms that are most

diagnostic of a document’s topical content is the ‘term-frequency-inverse-document-frequency’

(TF-IDF). We follow the same approach: in constructing (2.7), we weigh each word vector by

𝑤𝑖,𝑘 ≡ 𝑇𝐹𝑖,𝑘 × 𝐼𝐷𝐹𝑘. (2.8)

The first component of the weight, term frequency (TF), is defined as

𝑇𝐹𝑖,𝑘 = 𝑐𝑖,𝑘∑︀
𝑗 𝑐𝑖,𝑗

, (2.9)

7The basis for this word vector space is arbitrary; distances between word embeddings are only well-defined
in relation to one another and a different training instance of the same data would yield different word vectors
but very similar pairwise distances between word vectors. The two most popular approaches are the “word2vec”
method of Mikolov, Sutskever, Chen, Corrado, and Dean (2013) and the global vectors for word representation
introduced by Pennington et al. (2014). These papers construct mappings from extremely sparse and high-
dimensional word co-occurence counts to dense and comparatively low-dimensional vector representations of
word meanings called word embeddings. Their word vectors are highly successful at capturing synonyms
and word analogies (vec(king) − vec(queen) ≈ vec(man) − vec(woman) or vec(Lisbon) − vec(Portugal) ≈
vec(Madrid) − vec(Spain), for example). Thus they are well-suited for numerical representations of the
“distance” between words. The word vectors provided by Pennington et al. (2014) are trained on 42 billion word
tokens of web data from Common Crawl and are available at https://nlp.stanford.edu/projects/glove/.
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where 𝑐𝑖,𝑘 denotes the count of the 𝑘-th word in document 𝑖—a measure of its relative

importance within the document.

The inverse-document frequency is

𝐼𝐷𝐹𝑘 = log
(︃

# of documents in sample
# of documents that include term 𝑘

)︃
. (2.10)

Thus, 𝐼𝐷𝐹𝑘 measures the informativeness of term 𝑘 by under-weighting common words that

appear in many documents, as these are less diagnostic of the content of any individual

document.

In brief, 𝑇𝐹𝐼𝐷𝐹𝑖,𝑘 overweighs word vectors for terms that occur relatively frequently

within a given document and underweighs terms that occur commonly across all documents.

We compute the inverse-document-frequency for the set of patents and occupation tasks

separately, so that patent document vectors underweight word embeddings for terms appearing

in many patents and occupation vectors underweight word embeddings for job task terms

that appear in the task descriptions of many other occupations.

Armed with a vector representation of the document that accounts for synonyms, we next

use the cosine similarity to measure the similarity between patent 𝑖 and occupation 𝑗,

Sim𝑖,𝑗 = 𝑋𝑖

||𝑋𝑖||
· 𝑋𝑗

||𝑋𝑗||
(2.11)

This is the same distance metric as the bag of words approach, except now 𝑋𝑖 and 𝑋𝑗 are

dense vectors carrying a geometric interpretation akin to a weighted average of the semantic

meaning of all nouns and verbs in the respective documents.

In sum, we use a combination of word embeddings and TF-IDF weights in constructing

a distance metric between a patent document (which includes the abstract, claims, and

the detailed description of the patented invention) and the detailed description of the tasks

performed by occupations. Our methodology is conceptually related, though distinct, to the

method proposed by Webb (2019), who also analyzes the similarity between a patent and
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O*NET job tasks.8

2.2.2 Examples

To illustrate the effectiveness of our methodology in identifying links between technology and

occupation task descriptions, we consider a few representative examples, some of which are

summarized in Figure 2-1.

A key advantage of our measure is that it is available over long periods of time, and thus

allows us to study very different technologies from three distinct periods of technological

change–the Second Industrial Revolution of the late 1800’s, the period spanning the from

1920s to around 1940, and the information technology revolution spanning the end of the

20th and beginning of the 21st centuries. For example, consider three patents in the list

of breakthrough patents identified by Kelly et al. (2020). Patent 276,146, titled “Knitting

Machine”, was issued in the height of the Second Industrial Revolution in 1883. The

occupation that is most closely related to this patent is “Textile Knitting and Weaving

Machine Setters, Operators, and Tenders”; the next most similar occupation is “Sewing

Machine Hand Operators”, followed by “Sewers, hand”. Next consider the patent for “Metal

wheel for vehicles (1,405,358), which is issued in 1922. The occupation most closely related

to this patent is “Automotive Service Technicians and Mechanics”, with other production

and metal machine workers following. Finally, we examine a patent from a very different

era and representing a very different technology. The patent, entitled “System for managing

financial accounts by a priority allocation of funds among accounts,” is U.S. patent number

5,911,135 and was issued in 1999. The top occupations related to this patent are Financial

8Webb (2019) focuses on similarity in verb-object pairs in the title and the abstract of patents with
verb-object pairs in the job task descriptions and restricts his attention to patents identified as being related
to robots, AI, or software. He uses word hierarchies obtained from WordNet to determine similarity in
verb-object pairings. By contrast, we infer document similarity by using geometric representations of word
meanings (GloVe) that have been estimated directly from word co-occurence counts. Furthermore, we use
not only the abstract but the entirety of the patent document—which includes the abstract, claims, and the
detailed description of the patented invention. In addition to employing a different methodology, we also
have a broader focus: we are interested in constructing time-series indices of technology exposures. As such,
we compute occupation-patent distance measures for all occupations and the entire set of USPTO patents
since 1836.
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managers, credit analysts, loan interviewers and clerks.

We next perform the reverse exercise, where we fix a particular occupation, and list the

most relevant innovations. The occupations we choose are cashiers, loan interviewers and

clerks, and railroad conductors. Table 2.11 lists the top five patents that are linked to each

of these occupations. Examining the patent tiles, we see that each one of these patents is

directly related to the work performed by the given occupation. For example, one of the

top patents for cashiers is “Vending type machine dispensing a redeemable credit voucher

upon payment interrupt” (patent 5,055,657); the top patent for loan interviewers and clerks

is titled “Automatic business and financial transaction processing system” (patent number

6,289,319). And finally, for rail road conductors, titled “Automatic train control system and

method” (patent 5,828,979) is the top patent. In general the patents showing up on this

list represent technologies that (1) relate to the work performed by individuals in that the

occupation; and (2) if adopted, appear likely to be able to change the way that an occupation

performs its core work functions and/or substitute for work done by that occupation.

In sum, these examples illustrate the ability of our method in identifying technologies that

are related to a particular occupation. However, it is not immediately obvious whether these

technologies benefitted workers in these occupations or whether they led to the displacement

of workers. As a concrete example, consider US patent number 6,289,319, titled “Automatic

business and financial transaction processing system”, and which as shown in Table 2.10 is

the most similar patent to the “Loan Interviewers and Clerks” occupation. The DOT task

description indicates that a person with this occupation “calls or writes to credit bureaus,

employers, and personal references to check credit and personal references.” The description of

this patent states that “Loan processing has traditionally been a labor-intensive business...the

principal object of this invention is to provide an economical means for screening loan

applications.” We interpret this innovation as an example of a technology which has high

potential to be labor saving because it is intended to perform the same tasks performed

manually by a worker in a more efficient manner.

However, there are also many counter-examples of new technologies that improve the
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productivity of tasks that workers are currently performing. Our exposure measure potentially

also picks up these instances. For instance consider the occupation “Database Administrators”

(SOC code 151141). According to the DOT, a database administrator “coordinates physical

changes to computer databases.” According to our distance measure, one of the most similar

patents to this occupation is US patent number 5,093,782, entitled “Real time event driven

database management system.” This patent indicates that it provides “a database management

system which is capable of supporting processes requiring the updating and retrieval of data

elements at a high rate.” This is likely to make the work of database administrators more

efficient and hence looks more likely to be labor productivity-enhancing for this occupation.

Most likely, some of these technologies benefitted some workers at the expense of others.

To illustrate the potential for such differential effects across workers of different skill levels, we

consider two examples of labor saving technologies from Jerome (1934). First, consider two key

innovations in the textile weaving industry during the early 20th century, the Barber-Colman

warp-tying machine (patent 1,115,399) and the drawing-in machine (patent 1,364,091). Both

of these technologies benefitted skilled workers at the expense of unskilled labor. Jerome

(1934) notes that, the Barber-Colman warp-tying machine “will do the work of about 15 hand

operators” while “it can be run by one tender.” Similarly, he notes that “It is estimated that

each (drawing-in machine) machine, requiring ordinarily the attention of one operator and

half the time of an assistant, replaces from 5 to 6 hand drawers-in.” Both of these patents

are identified as breakthrough patents by Kelly et al. (2020). In terms of related occupations,

our methodology identifies various types of textile workers as being the some of the most

relevant.

However, not all labor-saving technologies benefit skilled labor. For instance, consider two

major innovations in the window glass industry during the late 19th century—the Colburn

sheet machine (patent 840,833) and the cylinder machine (patent 814,612). Following their

introduction, the manufacturing process for window glass switched from being hand-made to

being entirely mechanized by 1925. The displacement of skilled workers was rapid: by 1905

many hand plants had gone out of business, wages of blowers and gatherers were reduced 40
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per cent. Jerome (1934) summarizes their impact thus: “In the quarter century following the

introduction of machine blowing, the window-glass industry, one of the last strongholds of

specialized handicraft skill, has undergone a technological revolution resulting in the almost

complete disappearance of the hand branch of the industry and the elimination of two skilled

trades and one semiskilled, and also the partial elimination of the skilled flatteners. The

contest for supremacy now lies between the cylinder and the sheet machine processes.” Both

of these patents are in the top 10% of the Kelly et al. (2020) measure. In terms of our

methodology, we identify “glaziers” and “molders, shapers, and casters, except metal and

plastic” as being among the most related occupations to these two patents. Specifically, the

latter occupation, which corresponds SOC code 519195, has a sub-occupation called “glass

blowers, molders, benders, and finishers”.

These two examples illustrate that the impact of a new technology on a given worker is not

ex-ante obvious. Some technologies may replace un-skilled workers, while others may displace

highly specialized and skilled workers. Indeed as Jerome (1934) notes, glass workers displaced

by the sheet and cylinder machines in their time were considered to be members of skilled

trade. Goldin and Katz (2008, Chapter 3) provide a number of historical examples where

technological advances standardized tasks formerly performed by skilled artisans so that they

could be performed by unskilled workers (see also Acemoglu, Gancia, and Zilibotti, 2012,

for a related theoretical treatment of such a process). Further, new technologies may also

generate demand for new skills—for example, the operators of the Barber-Colman warp-tying

machine—hence their long-run effects may be different than their short-run impact. Hence, a

significant part of the paper focuses on examining the correlation between our technology

exposures and subsequent labor market outcomes.

2.2.3 Identifying Variation in Technology Exposures over Time

Our analysis so far delivers a measure of similarity between a given patent and a given

occupation. The next step is to construct time-series indices of technological exposure at the

occupation level. The key challenge in constructing a time-varying index lies in choosing how
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to appropriately quantify the ‘degree’ of innovation that occurs at a given point in time. One

possibility would be to count the number of patents; however, this approach is unlikely to be

fruitful, since not all patents are equally important. Various approaches have been proposed,

which essentially weight patents by their forward citations (Hall, Jaffe, and Trajtenberg,

2005); estimates of their market value (Kogan, Papanikolaou, Seru, and Stoffman, 2017); or

their textual similarity to prior and subsequent patents (Kelly et al., 2020).

For our purposes, we choose the Kelly et al. (2020) approach for two reasons: first, unlike

forward citations, their measure is available for the entirety of our sample; second, it is

available for all patents, and not just patents issued to publicly traded firms; and third, we

are primarily interested in the contribution of a patent on the technology frontier rather than

their private value to their firm.

We define our time series index of exposure of occupation 𝑖 to technology at time 𝑡 as

𝜂𝑖,𝑡 = 1
𝜅𝑡

∑︁
𝑗∈Γ𝑡

𝜌𝑖,𝑗 × 1(𝑞𝑗,𝑡 ≥ 𝑞𝑝90). (2.12)

Our time-series index (2.12) aggregates our patent-occupation similarity scores across all

breakthrough patents issued in year 𝑡. Specifically, we sum over the occupation-patent

similarity score 𝜌𝑖,𝑗 across the set of patents 𝑗 ∈ Γ𝑡 that are issued in year 𝑡. We restrict

attention to breakthrough patents, that is, patents whose Kelly et al. (2020) ratio of importance

𝑞𝑗,𝑡 exceeds the (unconditional) 90th percentile 𝑞𝑝90.

When computing (2.12), we use an adjusted occupation-patent exposure metric 𝜌𝑖,𝑗.

Specifically, we perform the following adjustments to our raw occupation-patent exposure 𝜌𝑖,𝑗

from (2.6). First, we remove yearly fixed effects. We do so in order to account for language

and structural differences in patent documents over time and technology areas.9 Second,

we impose sparsity: after removing the fixed effects we set all patent × occupation pairs to

zero that are below the 80th percentile in fixed-effect adjusted similarity. Last, we scale the

9Patents have become much longer and use much more technical language over the sample period, and
the OCR text recognition of very early patents is far from perfect. We also slightly modify the Kelly et al.
(2020) procedure by adjusting for the interaction between year and technology fixed effects, since some tech
classes tend to have a naturally higher ratio of forward to backward patent similarity.

144



remaining non-zero pairs such that a patent/occupation pair at the 80th percentile of yearly

adjusted similarities has a score equal to zero and the maximum adjusted score equals one.

2.2.4 Which occupations are more exposed?

Overall, we find that over the span of our sample, service-type occupations that specialize in

person-to-person interaction scoring especially low on average exposure. In particular, Table

2.12 lists the top and bottom five occupations by average exposure over the time period

spanning since 1850. The most exposed occupation is titled “Inspectors, Testers, Sorters,

Samplers, and Weighers”. The top occupations tend to be those working in production and

manufacturing type jobs, which are commonly posited to be among the type of occupations

most affected by new technologies. The least exposed occupations are mental health counselors,

dancers, funeral attendants, judges, and clergy, all representing service job types that are

unlikely to have the nature of their work substantially changed by new technologies.

Related to this point, Autor and Dorn (2013) argue that middle skill occupations have

been significantly more exposed to technological innovation that low-skill workers. Using our

direct measure of technology exposure, we can verify this is indeed the case. Specifically, we

can examine how the technology exposure of occupations varies by ‘skill levels’ as proxied by

wages. We obtain information on average wages by occupation from the Current Population

Survey Merged Outgoing Rotation Groups (MORG, see Appendix 2.6.4 for more details).

Given the short time dimension of the data (MORG starts in 1980), we focus on cross-sectional

comparisons.

Figure 2-2 we plot exposures against average wage percentile ranks for the post-1980

period. Consistent with Autor and Dorn (2013), we see that the most exposed occupations

tend to be found in the middle of the income distribution.

2.2.5 Long-run trends

We begin by documenting the types of occupation that are exposed to technological innovation,

and how these exposures have shifted over time. To this end, we group each occupation into
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eight broad categories: service; sales and office; production, transportation, and material

moving; natural resources, construction, and maintenance; management, business, and

financial; healthcare practitioners; education, legal, community service, arts and media; and,

computer, engineering, and science. Within each of these groups we take the average of 𝜂𝑖,𝑡

and then scale across the eight groups each year so that the total sums to one. Figure 2-3

plots these shares over the entire sample (1850 to the present).

Examining Figure 2-3, there are two points worth noting. First, ‘blue-collar’ occupations,

that is, those related to production and construction, have been consistently more exposed

to technological progress than the others. Second, this trend has materially shifted over

the recent decades, possibly due to the Information Technology (IT) revolution. Starting

around the 1950s, there has been a secular increase in the relative technology exposure of

‘white-collar’ occupations. This rise is most visible in the increased exposure of computer,

engineering, and science occupations. Sales and office occupations have also seen an increased

relationship with innovation, as well as management/business occupations, though these two

groups remain small in their overall exposure.

A useful way of summarizing these trends is examining the characteristics of occupations

most exposed to technology at a given point in time. We first examine what kinds of tasks

are performed by these occupations. Basing our analysis on Acemoglu and Autor (2011),

we focus on four task categories: manual tasks (routine and physical); non-routine manual

(interpersonal); routine cognitive; and non-routine cognitive.10 Let 𝑇𝑤(𝑖) be an indicator

function that equals 1 if occupation 𝑖 has a score in the top quintile across occupations for

task 𝑤; also denote by 𝜔𝑖 the Acemoglu and Autor (2011) employment shares for occupation 𝑖.

We then construct an index 𝜆𝑤,𝑡 of the technological exposure of task category 𝑤 as follows:

𝜆𝑤,𝑡 =
∑︁

𝑖

𝜂𝑖,𝑡 × 𝑇𝑤(𝑖) × 𝜔𝑖 (2.13)

10Because the routine manual and non-routine manual (physical) task scores are highly correlated and
also move similarly with technological exposure, we group these two task types into one category by taking
the average of the two scores. For similar reasons we take the average of non-routine cognitive (analytical)
and non-routine cognitive (interpersonal) to get a non-routine cognitive score.
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Figure 2-4 plots our measure of technology exposure 𝜆𝑤,𝑡, now separated for each of these

task categories. The top panel (Panel A) plots these series in levels; the bottom panel (Panel

B) plots their composition. The overall time-series behavior of our measures largely mimics

the series of Kelly et al. (2020)—which is not surprising, given that we use their definition

of breakthrough patents. We note three major innovation waves, lasting from 1870 to 1890;

1910 to 1930; and from 1970 to the present. The first peak corresponds to the beginning of

the second industrial revolution, which saw technological advances such as the telephone and

electric lighting and improvements in railroads. The second peak corresponds to advances

in manufacturing, particularly in plastics and chemicals, consistent with the evidence of

Field (2003). The latest wave of technological progress includes revolutions in information

technology.

Importantly, we see that the first two major innovation waves were primarily related to

occupations performing non-interpersonal manual tasks. By contrast, cognitive tasks are

significantly less exposed. However, starting from the 1970s, there is a shift in the relative

exposure of occupations emphasizing cognitive tasks, especially routine cognitive tasks. As

a result, in the last few decades, these occupations are almost as exposed to innovation as

occupations emphasizing manual tasks. This pattern is driven by information technology

revolution that has led to the modern digitalization of the workplace. Occupations that relate

to these type of innovations have a distinctly different task profile than the most prevalent

technologies of past innovation waves. That said, even in the recent period, occupations

emphasizing interpersonal tasks remain the least exposed to technological change. This

pattern is consistent with the findings of Autor and Dorn (2013), who show that service

occupations have increased in importance at the expense of occupations heavily exposed to

automation, and also Deming (2017), who documents an increased importance of social skills

in the labor market.

We next separate occupations by their education requirements. Specifically, we compute

the share of workers in that occupation who have either completed a 4-year college degree

or have attained a high-school diploma or lower in in a given year. For this analysis we

147



crosswalk occupations to David Dorn’s revised Census occ1990 level. We impute college

grad and above/high school or below occupation shares for years between Census decades by

linearly interpolating between the nearest available Census years and similarly interpolate

occupational employment shares 𝜔𝑖,𝑡 between Census years. We then let 𝑆𝑠,𝑡(𝑖) be an indicator

for whether occupation 𝑖 is in the top quintile of the share of workers in education category 𝑠

in year 𝑡. Due to data availability, we begin our analysis in 1950. We define the education

exposure index 𝜁𝑠,𝑡 similarly to 𝜆𝑤,𝑡:

𝜁𝑠,𝑡 =
∑︁

𝑖

𝜂𝑖,𝑡 × 𝑆𝑠,𝑡(𝑖) × 𝜔𝑖,𝑡 (2.14)

Figure 2-5 presents our results. For most of the sample, we see that occupations requiring

a college degree are significantly less exposed to innovation than occupations requiring a

lower level of education. However, and consistent with the discussion above, we see that

this pattern is shifting in the recent decades: towards the end of the sample, the difference

in technology exposure between occupations requiring a college degree with those that do

not has shrunk dramatically. This is especially evident in panel B of Figure 2-5 where we

plot the composition rather than the levels of technological exposure. It’s also important to

note that this pattern is not driven by the increase in the share of workers with a college

degree, since we assign occupations to the high education group based on their ranking in the

cross-sectional distribution of occupational college grad shares. Rather, this pattern is driven

by compositional shifts in the types of technologies being introduced, with an increasing

share of technologies being targeted towards the tasks performed by relatively more educated

occupations.

2.3 Technology Shocks and Labor Market Outcomes

In Section 2.1 we documented that breakthrough innovations are on average associated

with increases in measured productivity and declines in labor share. Now, armed with an

additional source of cross-sectional variation—differences in occupation exposure to specific
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technologies—we can examine a more direct link between technological progress and outcomes

for specific workers.

We begin by focusing on group (i.e. occupation-level) outcomes in Section 2.3.1. The

advantage of doing so is that we can examine the relation between our measure and labor

market outcomes over a long period of time. The disadvantage of doing so is that patterns

in some occupation-level outcomes, specifically wages, can mask important worker-level

heterogeneity within the occupation. Thus, in Section 2.3.2 we focus on outcomes of individual

workers using administrative data on worker earnings. Focusing on individual workers allows

us to more closely trace the correlation between innovation and individual outcomes, while

also enabling us to condition on certain observable characteristics. The disadvantage of the

Census administrative data is that it is available only since the mid-1990s.

2.3.1 Occupation-level Evidence from repeated cross-sections

We begin by examining the relation between innovation and subsequent growth in the

employment shares and average wage earnings of exposed occupations.

Data

The availability of public Census data allows us to examine employment outcomes over a

long period of time (1850 to today). The Census surveys consist of repeated cross-sectional

observations. Important for our purposes they contain information on occupations, which

we can link to our innovation measure 𝜂𝑖,𝑡 constructed in equation (2.12). Specifically, we

use the 1950 Census occupation definition for pre-1950 Census years since the more updated

1990 Census classification scheme is only available in post-1950 Census years. We make

use of the 1990 Census occupation classifications for the years they are available. We then

crosswalk Census occupations to the David Dorn occ1990dd classification scheme using the

crosswalk files provided on his website and aggregate our measure 𝜂𝑖,𝑡 to the occ1990dd-level

by averaging across 6-digit SOC codes within an occ1990dd code. This results in a Census-year

by occ1990dd panel of occupation employment shares. Census records for the year 1890 were
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destroyed in a fire, and so the employment growth observations for the 20-year horizon in

1870 or for the 10-year horizon in 1880 are not available. The final dataset consists of an

unbalanced panel of occupation–Census year employment shares and spans the Census years

from 1850 to 2010. Appendix 2.6.4 provides additional details.

In addition, we use more recent data from the Current Population Survey Merged Outgoing

Rotation Groups (MORG) which provides data on both wages and employment outcomes

for the post-1980 period. We use the data to create a balanced panel of wage earnings and

employment growth at the level of occupation and calendar year. We obtain the cleaned

MORG extracts provided by the Center for Economic Policy Research (CEPR). In particular,

we use the “wage3” variable that combines the hourly earnings for hourly workers and

non-hourly workers, adjusts for top-coding using a lognormal imputation, and is constructed

to match the NBER’s recommendation for the most consistent hourly wage series from 1979

to the present.

Technology exposure and employment (1850–present)

We examine employment outcomes using the following specification,

1
𝑘

(︂
log 𝑌𝑖,𝑡+𝑘 − log 𝑌𝑖,𝑡

)︂
= 𝛼0 + 𝛼𝑡 + 𝛽(𝑘) 𝜂𝑖,𝑡 + 𝜆𝑌𝑖,𝑡 + 𝜀𝑖,𝑡, 𝑘 = 10, 20 years. (2.15)

The main dependent variable 𝑌𝑖,𝑡 is the employment share in total non-farm employment.

Observations are weighted by the employment share of the given occupation and standard

errors are clustered by occupation. As before, 𝜂𝑖,𝑡 is normalized to unit standard deviation.

All specifications include time fixed effects; depending on the specification, we include controls

for the lagged 10-year employment growth rate.

Panel A of Table 2.1 presents our findings. We note that there is a strong and statistically

significant negative correlation between our innovation measure 𝜂 and subsequent changes

in employment at the occupation level. The magnitudes are significant: a one-standard

deviation increase in 𝜂𝑖,𝑡 is associated with a 0.41% annualized decline in employment over

the next 10 years and a 0.70% percent decrease in employment over the next 20 years.
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We next allow the slope coefficients 𝛽 to vary across Census years, focusing on horizons of

𝑘 = 20 years. Figure 2-7 plots the point estimates of 𝛽 for each Census year along with the

90% confidence intervals based on standard errors clustered by occupation. Examining the

figure, we see that the point estimates are negative for all but the 1860 and 1940 Censuses,

and are significant in 1880, 1910, 1920, 1950, 1970, 1980, and 1990. The magnitude of this

correlation is also fairly stable over time, implying that occupations that are exposed to

innovation have had consistently experienced employment declines over the entire 150 year

period.11

One potential concern with these findings is that they reflect industry trends. To separate

our findings from industry-level sources of variation, we next aggregate the Census data at

the occupation by industry level over time. We use the 1950 Census industry designations,

which are available the furthest back in time. Because Census industry codes are unreliable

before 1910 we start our analysis using the data from the 1910 Census. We therefore estimate

a slightly modified version of equation (2.15),

1
𝑘

(︂
log 𝑌𝑖,𝑗,𝑡+𝑘) − log 𝑌𝑖,𝑗,𝑡

)︂
= 𝛼0 + 𝛽(𝑘)𝜂𝑖,𝑡 + 𝛿𝑍𝑡,𝑗 + 𝜀𝑖,𝑗,𝑡, 𝑘 = 10, 20 years. (2.16)

The dependent variable 𝑌𝑖,𝑗,𝑡 now represent the share of total non-farm employment for

occupation 𝑖 in industry 𝑗. The vector of controls 𝑍𝑡,𝑗 now contains time, or industry–time

dummies depending on the specification, as well as lagged values of the dependent variable at

the industry–occupation cell. The inclusion of industry–time allows us to isolate our findings

from industry-specific trends in the sample.

Examining Panel B of Table 2.1, we see that the estimated slope coefficient on our

innovation measure is consistently negative and economically and statistically significant.

Overall, a one-standard deviation increase in 𝜂𝑖,𝑡 is associated with a 0.60% to 0.89% decline

in employment over the next 20-year horizon. The fact that this negative relation is essentially
11In 1930, John Maynard Keynes wrote: “We are being afflicted with a new disease of technological

unemployment...due to our discovery of means of economising the use of labor outrunning the pace at which
we can find new uses for labor." (Keynes, 1930). Indeed, the 1920–40 period corresponded with a large
innovation wave that was associated significant declines in employment for occupations whose tasks were
related to those innovations.
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unaffected by the inclusion of industry-time fixed effects illustrates that our findings are not

merely driven by the decline of certain industries which happen to employ workers with high

technology exposure. Rather, much of the negative employment effects exist within, rather

than between, industries. That said, the fact that the coefficients do attenuate slightly when

including industry fixed effects indicates that high 𝜂𝑖,𝑡 occupations tend to be employed in

industries that have experienced overall employment declines.

Technology exposure, employment, and wages (1980–present)

We next turn our attention to the post-1980 period. We estimate the following specification

1
𝑘

(︂
log 𝑌𝑖,𝑡+𝑘) − log 𝑌𝑖,𝑡

)︂
= 𝛼 + 𝛽(𝑘)𝜂𝑖,𝑡 + 𝛿𝑍𝑖,𝑡 + 𝜀𝑖,𝑡, 𝑘 = 5 . . . 20 years. (2.17)

Here, 𝑌𝑖,𝑡 represents wage earnings or employment for a given occupation𝑖 in calendar year

𝑡. The vector of controls 𝑍𝑖,𝑡 includes three lagged one-year growth rates of the dependent

variable and time fixed effects. As before, 𝜂𝑖,𝑡 is normalized to a unit standard deviation.

Figure 2-8 plots the estimated coefficients 𝛽 along with 90% confidence intervals. We

note that the responses for both wages and employment are strongly negative for all horizons.

The point estimates are both economically and statistically significant and are comparable

across horizons, suggesting these are permanent effects. Focusing on employment changes, a

one-standard deviation increase in our technology exposure is associated with approximately

a 1.1% annualized decline in occupation employment over the next five to twenty years.

Similarly, our innovation measure also predicts a significant decline in wage earnings: a

one-standard deviation increase in 𝜂𝑖,𝑡 is followed by a decline in average wage earnings of

approximately 0.2% to 0.3% per year over the same period.

Comparing the magnitude of employment declines in the MORG sample to the long-run

(Census) results in Table 2.1 above, we note that the coefficient magnitudes are largely

comparable. This is noteworthy in lieu of the fact the nature of breakthrough innovations

in the post-1980 period is somewhat distinct than in the pre-1980 sample. As we saw in

Figure 2-4, recent innovations are significantly more related to occupations performing routine
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cognitive tasks.

Recent work has argued that recessions are periods of technological transformation and

thus accelerated automation of routine jobs (Jaimovich and Siu, 2018; Kopytov, Roussanov,

and Taschereau-Dumouchel, 2018; Zhang, 2019). Consistent with this view, we next provide

some direct evidence using our measure of technology exposure. In Figure 2-9 we see that

occupations which were in the top quintile of 𝜂𝑖,𝑡 in 1985 experienced stark declines in

employment around the 1991, 2001, and 2007-2008 recessions, with a flatter but slightly

declining profile in between recessions. Meanwhile, assigning occupations into the top quintile

of routine-task intensity in 1985, we do see a persistent decline over the time period, but

a much less pronounced pattern around recessions. This pattern is consistent with models

of innovation-related job displacement where the opportunity to replace labor with an

automation technology is a real option for firms. For example, Zhang (2019) shows that in a

production based asset pricing model where firms choose to invest in labor-saving technologies,

they choose to exercise this option when expected cash flows are temporarily low. Therefore

the pattern exhibited in Figure 2-9 is consistent with employers replacing high 𝜂𝑖,𝑡 workers

with capital when the exercise value for doing so is high.

2.3.2 Individual-level evidence from panel administrative earnings

data

Next, we turn our attention to individual worker outcomes. Doing so allows us to not only

more directly link innovation to specific worker outcomes, but it also allows us to examine

how this relation varies with observable worker characteristics. In particular, the detailed

nature of administrative data allows us to examine how the relation between innovation and

worker outcomes varies with proxies for worker skill, such as education or past earnings.

Data

We use a random sample of individual workers tracked by the Current Population Survey

(CPS) and their associated Detailed Earnings Records from the Census—which contains
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their W2 tax income. The CPS includes information on occupation as well as demographic

information such as age and gender. We limit the sample to individuals who are older than

25 and younger than 55 years old and to periods where the CPS interview date is less than 5

years old so that the occupation information is relatively recent.

We construct a measure of forward looking wage earnings growth following Autor, Dorn,

Hanson, and Song (2014); Guvenen, Ozkan, and Song (2014); Kogan et al. (2020)

𝑔𝑖,𝑡:𝑡+ℎ ≡ 𝑤𝑖
𝑡+1,𝑡+ℎ − 𝑤𝑖

𝑡−2,𝑡. (2.18)

where 𝑤𝑖
𝑡+1,𝑡+ℎ refers to average age-adjusted earnings over the period, defined as

𝑤𝑖
𝑡,𝑡+ℎ ≡ log

(︃∑︀ℎ
𝑗=0 W-2 earnings𝑖,𝑡+𝑗∑︀𝑘

𝑗=0 𝐷(age𝑖,𝑡+𝑗)

)︃
. (2.19)

refers to worker earnings net of life cycle effects. We focus on horizons of ℎ = 3, 5, and 10

years. Appendix 2.6.5 provides more details on the construction of the data and the patch to

patent information.

Given that the administrative data sample has a shorter time dimension and a larger

cross-section than our other data, we make some modifications to our construction of our

worker technology exposure measure 𝜂. First, we identify important patents based on their

5-year, as opposed to 10-year forward similarity. This allows us to extend the sample by

five additional years, which helps with the short length of the sample. Further, to fully take

advantage of the larger cross-section, we allow our baseline innovation exposure measure

𝜂 to also vary by industry, by restricting attention to patents issued to firms in the same

4-digit NAICS industry as the worker. Letting 𝑗 index patents as before; Γ𝑘,𝑡 denote the set

of patents issued in industry 𝑘 in year 𝑡; 𝑜(𝑖) the occupation of individual 𝑖; and 𝑘(𝑖, 𝑡) the

industry of individual 𝑖 in year 𝑡, we redefine our time series index of exposure of worker 𝑖 to

technology at time 𝑡 as

𝜂𝑖,𝑡 = 1
𝜅𝑡

∑︁
𝑗∈Γ𝑘(𝑖,𝑡),𝑡

𝜌𝑜(𝑖),𝑗 × 1(𝑞𝑗,𝑡 ≥ 𝑞𝑝90). (2.20)
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In brief, our technology exposure metric (2.20) is largely the same as before, except that

we now focus only on breakthrough patents in the industry in which worker 𝑖 is currently

employed—that is, 𝜂𝑖,𝑡 defined in (2.20) now varies by occupation, industry, and year instead

of just occupation and year as (2.12).

Given these restrictions imposed by the Census-CPS merged file and the nature of our

innovation data, we are left with approximately 1.2 million person-year observations spanning

the period from 1988 to 2016. In terms of demographics, approximately 58% of the sample is

male and 46% of the observations correspond to workers with a college degree. Table 2.2

provides more details on the distribution of age and worker earnings: the median worker in the

sample is 41 years old and earns approximately $58k per year. The distribution of earnings

is rather skewed however: the average is equal to $75k while the 5th and 95th percentiles

are equal to $14k and $172k, respectively. The last set of rows of Table 2.2 summarize the

distribution of our (age-adjusted) cumulative earnings growth (2.18). At a horizon of ℎ = 5

years, the median is equal to 0.011 while the mean is -0.063; given that (2.18) corresponds to

a log difference, the large dispersion in earnings induces the mean growth rate to be negative

due to Jensen’s inequality. That said, the distribution is also highly negatively skewed: the

5th percentile is equal to -0.968 log points while the 95th percentile is equal to 0.574.

An illustrative example

Before examining the correlation between our technology measure and subsequent wage growth,

it is informative to look at particular examples. We choose the rise of e-commerce—and

more specifically the automatic fulfillment of retail purchase orders. Advances in information

technology and telecommunications have obviated the need for manual processing of customer

orders. Using our patent-based indicators we can identify the 1996 to 2002 period as a period

of significant innovation related to the tasks performed by order-fulfillment clerks. Examples of

such breakthrough innovations early on include U.S. Patent 5,696,906 for “Telecommunication

user account management system and method”; Patent 5,592,560 for “Method and system for

building a database and performing marketing based upon prior shopping history”; or Patent
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5,628,004 for “System for managing database of communication of recipients”. Appendix

Table 2.18 contains a longer list—the top 10 most related breakthrough patents to order

fulfillment clerks issued in the 1997 to 2000 period.

To study the impact of these breakthroughs on worker earnings, Figure 2-10 contrasts

labor market outcomes for order fulfillment clerks versus a set of workers in two related

occupations unlikely to be affected by these innovations: personnel and library clerks.12

The top panel of Figure 2-10 plots the average real wage (in 2015 US dollars) differential

across the two sets of workers—normalized to be zero in 1997. The bottom panel plots the

difference in average technology exposure from (2.20) for workers employed as order clerks

across industries relative to workers employed as personnel or library clerks.

Examining the top panel, we note that relative wage trends for the two occupations were

fairly flat prior to 1997. However, since then they begin to systematically diverge. The

bottom panel shows that this divergence coincided with significant breakthrough innovations

that were related more to order than library clerks. Beginning in 1996, there is a sustained

increase in (relative) innovation that persists for several years. By 2007, order clerks’ average

annual wages had declined by nearly $30,000 relative to personnel/library clerks.

Our preferred interpretation of the patterns in Figure 2-10 is that improvements in the

automatic processing of orders displaced workers whose primary task was to fulfill orders.

Naturally, we cannot exclude the possibility that these patterns reflect industry- or occupation-

specific trends. Fortunately, our empirical design outlined below allows us to control for both

industry- as well as occupation-specific year fixed effects.

Innovation and worker earnings growth

We estimate the following specification,

𝑔𝑖,𝑡:𝑡+ℎ = 𝛼 + 𝛽(ℎ) 𝜂𝑖,𝑡 + 𝛿𝑍𝑖,𝑡 + 𝜀𝑖,𝑡. (2.21)
12The DOT indicates that an order clerk ‘Processes orders for material or merchandise received by mail,

telephone, or personally from customer or company employee, manually or using computer or calculating
machine...informs customer of any information needed...using mail or telephone. Writes or types order form,
or enters data into computer, to determine total cost for customer. Records or files copy of orders."
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Here, 𝑖 now refers to a particular worker; as such, the left hand side represents the growth in

her average earnings over the next ℎ years compares to the last three. The main variable

of interest 𝜂𝑖,𝑡 now refers to the workers’ technology exposure, specifically, the level of

breakthrough innovations that are closely related to her occupation that are filed by firms

in the same industry (based on NAICS 4-digit codes) as the worker. We examine earnings

responses over the next ℎ = 3, 5 and 10 years. The vector 𝑍 includes a rich set of controls that

aim to soak up ex-ante worker heterogeneity. Specifically, we include various combinations of

year, occupation and industry fixed effects—our most conservative specification interacts the

latter two with calendar year to account for occupation- or industry-specific time trends. In

addition, we include flexible non-parametric controls for worker age and past worker earnings

as well as recent earnings growth rates.13 Standard errors are clustered at the industry

(NAICS 4-digit) level.

Table 2.3 summarizes our findings for the average worker in our sample. Overall, we

find that workers’ technology exposure is negatively related to their subsequent earnings

growth. Panel A reports the estimated slope coefficients 𝛽(ℎ) for horizons of ℎ = 3, 5, 10

years; different columns correspond to different fixed effect combinations. The magnitudes are

both economically and statistically significant. Focusing on the 5-year horizon and the most

conservative specification that includes both industry-year and occupation-year fixed effects,

we see that a one standard deviation increase in innovation is associated with a 0.013 log

point decline in average worker earnings over the next five years. These magnitudes increase

with the horizon ℎ, ranging from 0.011 to a 0.014 log point decline in average earnings at

horizons of three and ten years, respectively.14

In brief, Panel A shows that the average effect of technology exposure on worker earnings

13We construct controls for worker age and lagged earnings 𝑤𝑖
𝑡−4,𝑡 by linearly interpolating between 3rd

degree Chebyshev polynomials in workers’ lagged income quantiles within an industry-age bin at 10-year age
intervals. In addition, to soak up some potential variation related to potential mean-reversion in earnings
(which could be the case following large transitory shocks), we also include 3rd degree Chebyshev polynomials
in workers’ lagged income growth rate percentiles, and we allow these coefficients to differ by gender as well
as past income levels based on five gender-specific bins formed based upon a worker’s rank relative to her
peers in the same industry and occupation.

14We find no meaningful differences across genders: over the next five years, on average men experience a
0.013 log point decline and women experience a 0.011 log point decline.
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is negative. This negative average effect, however, likely masks considerable heterogeneity

in ex-post worker outcomes. To that end, in Panel B we next examine whether technology

exposure is associated with increases in the second-moment of earnings growth: we estimate

a modified version of (2.21), in which now the dependent variable is the absolute value of

earnings growth. We see that technology exposure is associated with an increase in the

second moment: the absolute value of earnings growth (2.21) increases by approximately 0.5

percentage points in response to a one-standard deviation increase in 𝜂𝑖,𝑡, which corresponds

to approximately a 3% increase relative to the sample median value of the dependent variable

(0.157).

Similarly, Panel C examines the increase in the skewness of the earnings distribution,

or equivalently the extent to which the negative average effects documented in Panel A are

concentrated in a subset of workers. Specifically, we construct indicators for whether a given

worker’s income growth over a given horizon falls in the bottom 10th percentile of all our

observations within a given year. Focusing on the same specification, we see that an increase

in a worker’s technology exposure is associated an economically significant increase in the

likelihood of large earnings losses for affected workers: a one-standard deviation increase

in 𝜂𝑖,𝑡 is associated with a 0.4 percentage point increase in the likelihood that a worker’s

subsequent earnings growth is in the bottom 10th percentile.

Our findings in this section reinforce our findings in Section (2.3.1) that technology is

associated with occupation-level declines in employment and wages. By tracking the earnings

growth of individual workers, we can ensure that our findings on worker earnings are not

driven by selection across occupations. In addition, individual-level data allows us to paint

a more complete picture of how earnings losses are distributed across workers, even at a

particular industry–occupation cell at a point in time. Building on this idea, the next section

examines how these findings vary with worker characteristics.
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Innovation, worker earnings and ex-ante heterogeneity

We next allow the effects to vary by observable worker characteristics. In terms of the

heterogeneous effects of technological progress across workers, existing work has emphasized

that (a) much of technological change is skill biased (see, e.g. Goldin and Katz, 2008, for

a textbook reference); (b) an important component of human capital is likely specific to a

technological vintage (Chari and Hopenhayn, 1991; Jovanovic and Nyarko, 1996; Violante,

2002). Accordingly, we focus on education and prior income as common proxies for worker

skill; allowing the impact of technology to vary by worker age helps tease out the effect of

vintage-specific human capital. In what follows, we re-estimate equation (2.21) and now allow

the slope coefficient 𝛽(ℎ) to vary across worker sub-groups. For brevity we focus on the most

conservative specification that includes both industry-year and occupation-year fixed effects.

Appendix Tables 2.20 to 2.21 illustrate that results are similar across alternate specifications.

Table 2.4 examines how the effect of technology on worker earnings vary with education,

specifically on whether the worker has a college degree. Focusing on mean growth rates across

horizons—columns (1) to (3)—we see that an increase in technology exposure 𝜂𝑖,𝑡 is associated

with an economically and statistically significant decline in average earnings growth for both

college and non-college educated workers. If we interpret education as a proxy for skill, the

fact that earnings decline for both groups is somewhat at odds with the canonical model of

skill-based technical change. That said, we do find that non-college workers experience a

somewhat larger decline in average earnings growth than workers with a college degree, with

the difference being marginally statistically significant (p-values range from 0.043 to 0.11

across horizons). Columns (4) and (5) show that both groups experience a similar increase in

their second moment of earnings growth, while non-college educated workers experience a

somewhat larger increase in the probability of large earnings declines than college educated

workers (0.48 vs 0.35 percentage points).

Table 2.5 examines how the response of worker earnings growth to 𝜂𝑖,𝑡 varies by prior

income. In terms of point estimates, we find a U-shaped pattern: a given increase in a

worker’s technology exposure 𝜂𝑖,𝑡 has the largest impact on the earnings growth of not only
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the least- but also the highest-paid workers (relative to their peers in the same occupation and

industry). These estimates are noisy: we cannot reject the null that the response of earnings

growth of workers at the bottom quartile is equal to the responses of workers in the 25th to

95th percentile. However, the response of the most-highly paid workers is both statistically as

well as economically distinct from the workers in the middle group: a one-standard deviation

increase in technology exposure is associated with a 0.025 log point decline in their average

earnings growth—approximately twice as large as the effect on the average worker.

At face value, these facts seem at odds with the canonical model of skill-biased technical

change: if technology is complementary to the labor input of skilled workers, to the extent

that prior income is related to worker skill, one would expect to see that top workers should

experience an increase in their average earnings (or at the very least a smaller decline). By

contrast, the opposite pattern obtains. Comparing across columns (1) to (3) we see that

these patterns are quantitatively similar across horizons, suggesting that these effects are

highly persistent.

One potential reconciliation of the patterns in Table 2.5 with the standard view of

technology-skill complementarity is allowing for vintage-specific human capital. That is, skill

is not an immutable characteristic of the worker; it is the result of experience and learning

by operating a particular technology. When new technologies are introduced, some of that

accumulated knowledge becomes obsolete: skilled workers in the old technology need not

remain skilled in the new. If that is the case, we would expect skilled workers to face greater

earnings risk in response to increased rate of technological innovation due to the possibility

of skill displacement. Consistent with this view columns (4) and (5) of Table 2.5 show that

top earners face significantly greater labor income risk than the average worker in response

to an increase in their technology exposure. Focusing on the last column, a one-standard

deviation increase in 𝜂𝑖,𝑡 is associated with a 1.26 percentage point increase that these workers

experience a large earnings decline (earnings growth in the bottom 10-the percentile) which

is approximately three times higher than the average worker.

Table 2.6 provides additional support to the idea of vintage-specific human capital by
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examining how these effects vary with worker age. Older workers are both more likely to have

accumulated skills in existing technology and also less likely to be able to become familiar

with new production methods. Accordingly, we see that older workers (those in the 45 to 55

range) experience significantly greater declines in earnings growth (0.02 to 0.025 log points

across horizons) relative to workers aged 35–45 (0.9 to 1.4 log point decline) or 25–35 (0.4 to

0.9 log point decline). Columns (4) and (5) similarly show that earnings risk in response to an

increase in technology exposure is increasing in age: a one-standard deviation increase in 𝜂𝑖,𝑡

is associated with a 0.9 percentage point increase in the likelihood of a large earnings decline

for workers aged 45–55, compared to a 0.2 percentage point increase for younger workers.

Discussion

In brief, we find that a given improvement in technology leads to lower earnings growth across

all workers. These patterns, together with the positive correlation to industry productivity

and the decline in the labor share documented in Section 2.1 is consistent with the view that

most of the breakthrough innovations in the sample are labor-saving, that is, they partly

replace tasks performed by workers. The standard view is that increases in automation

are more likely to affect low-skill workers, since low-productivity workers are likely to be

replaced first. Some of our findings are consistent with this view: we find some evidence that

workers without a college degree and the lowest-paid workers experience larger than average

earnings declines in response to technological innovation (though the latter difference is not

statistically significant).

However, some of our findings are harder to reconcile with a view that skill is an immutable

characteristic of the worker. Workers that are more highly paid relative to their peers in the

same occupation and industry experience on average significantly larger earnings declines

than the average worker; further, our findings suggest that much of these average decrease

reflects an increase in the probability of large earnings losses as opposed to a small consistent

decline in earnings. Put differently, the distribution of earnings losses is heterogenous: a

subset of skilled workers experience large earnings declines rather than the entire group
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experiencing small declines.

This pattern, together with the increased earnings response of older workers suggests a

role of vintage-specific human capital, or equivalently for technology making certain worker

skills obsolete. The model in the next Section 3.1 formalizes and quantifies this idea more

fully. That said, one caveat in interpreting these patterns is that the period covered by the

Census-CPS administrative data coincides with the rise of very specific technologies, namely

ICT. Thus, we should be careful when extrapolate these findings to other periods of rapid

technological progress.

2.3.3 Additional Results and Robustness Checks

Here we discuss a number of additional results that frame our work to the existing literature

and explore the extent to which our measure underestimates the degree of labor-displacive

innovations.

Comparison to Existing Measures of Exposure to Technical Change

Our work is not the first to construct occupation-level measures of exposure to technological

change (Autor and Dorn, 2013; Webb, 2019). A key advantage of our measure relative to

existing work is that it also incorporates time-series variation. That said, it is instructive

to explore the extent to which it contains additional information regarding cross-sectional

differences in technology exposures. Here, we explore this question, and compare the

performance of our technology measure in predicting wage and employment declines relative

to the routine-task intensity and the measure of occupation-level offshorability from Autor

and Dorn (2013), and the Webb (2019) measures of exposure to robotics or software.

To compare our different approaches, we estimate a long-difference cross-sectional specifi-

cation similar to Webb (2019) as follows

1
𝑘

(︂
log 𝑌𝑖,𝑡+𝑇 ) − log 𝑌𝑖,𝑡

)︂
= 𝛼 + 𝛼𝑗 + 𝛽𝜂𝑖,1980 + 𝛿𝑋𝑖 + 𝜖𝑖,𝑗 (2.22)
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Here 𝑖 indexes occupations and 𝑗 indexes industries. In estimating (2.22), we combine

information on wages and employment in the 1980 Census and the 2012 ACS. In particular,

we use the 1980 Census and 2012 ACS data from Deming (2017), which are reported at the

occupation by industry by education level, and aggregate the data to industry by occupation.

Thus, the dependent variable denotes either the log change in employment or the change in

log wages over the 1980-2012 time period. We include industry fixed effects 𝛼𝑗 to account for

industry specific shocks that may be correlated with occupational outcomes. Controls 𝑋𝑖

include occupation employment share in 1980, occupation log wage in 1980, three indicators

for the occupations education level in 1980, the routine-task intensity and the measure of

occupation-level offshorability from Autor and Dorn (2013), and the Webb (2019) measures

of exposure to robotics or software patents, depending on the specification. We weight

observations by the employment share in 1980 and cluster standard errors by industry.

Tables 2.9 reports our findings for employment (Panel A) and wages (Panel B). Examining

the first row of each panel, we see that the point estimates (and statistical significance) of 𝛽

are essentially unaffected by including the Autor and Dorn (2013) or Webb (2019) measures.

We conclude that cross-sectional differences in 𝜂𝑖,𝑡 contain independent information relative

to these alternate cross-sectional metrics.

Alternative approaches to measuring labor displacement

Our technology exposure measure is constructed based on the similarity between patents

and tasks performed by a specific occupation. Ex-ante, it is not entirely obvious whether

a high level of similarity is likely to capture complementarity or substitution between the

technology and the tasks performed by labor. Even though we are finding a consistently

negative relation between our technology exposure measure and subsequent labor market

outcomes, it is possible these effects are muted because our measure mixing labor-saving and

labor-enhancing innovations.

To explore this possibility, we next compare the performance of our measure to a purely

statistical predictor that is calibrated to predict employment declines in-sample. To do so,
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we leverage recent advances in topic modeling to construct a composite predictor from patent

text whose purpose is to maximize the in-sample predictability of employment declines. This

measure is akin to a principal component; it has no straightforward economic interpretation,

but it rather provides a statistical upper bound on how large the labor-displacive effects

could be on a factor that is constructed from the text of breakthrough patents.15 The

correlation between our baseline measure 𝜂𝑖,𝑡 and the statistical predictor constructed to

represent exposure to labor-saving technologies is approximately 73 percent.

We then compare the performance of our baseline measure based on patent-task similarity

to the in-sample performance of this statistical factor in the wage and employment regressions

in Figure 2-8—which can be viewed as an upper bound in the ability of patent text to predict

employment and wages. We find that the performance of our baseline measure is close to

this upper bound: the annualized employment and wage declines predicted by this statistical

displacement factor are 1.25% and 0.25%, respectively—compared to 1.12% and 0.20% for

our technology measure based on patent-task similarity. Appendix ?? provides more details.

We conclude that our technology measure based on patent-task similarity primarily captures

labor-saving innovations.

Robustness

We perform several checks to explore the extent to which our findings are specific to a

particular period. Appendix Table ?? shows that our findings on the long-run negative

relation between technology exposure and employment at the occupation level are robust

across sub-samples. That said, Appendix Table 2.15 shows that this negative relation is

primarily driven by innovation waves: we separate the sample into two sub-samples, where we
15We build on the approach proposed by Cong, Liang, and Zhang (2019), which is well-suited to prediction

exercises using large-scale textual data. In brief, this approach can be summarized as follows. We first extract
the 500 most important common factors (topics) from the text of breakthrough patents using the approach
of Cong et al. (2019) and the vector representations of word embedings discussed in Section 2.2. We then
use these 500 textual factors to form a single predictor that is optimized to predict occupation declines
in-sample. To do so, we examine the univariate performance of each factor in predicting employment declines,
and then form a linear combination (the first principal component) of the predictors that are statistically
significant negative predictors at the 5%. We also construct a labor-enhancing factor using the converse
exercise. Appendix ?? describes the procedure in detail.
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define as innovation waves the 20 year periods beginning in years 1880, 1910, 1920, and 1980,

1990—with the remaining years representing non-innovation wave periods (for a discussion of

the 1920s, see e.g. Field, 2003).

Further, we verify the robustness of our findings to alternative specifications. Appendix

Tables 2.20 through 2.22 show that our results on heterogenous responses by education, age,

and prior income are largely robust to different combinations of fixed effects and horizons

over which we measure worker earnings.

That said, one particular caveat in interpreting the heterogenous patterns we uncover

using the Census-CPS administrative data is that they are estimated during a very specific

time period which coincides with the rise of very specific technologies (i.e. ICT). The extent

to which similar patterns obtain more broadly during earlier periods is an open question.

As a step towards this direction, we re-estimate our long-run employment results and allow

the coefficient to vary by worker age (the only variable consistently reported since the 1850s

in the population sensus). In particular, we re-estimate 2.15 but now add a second panel

dimension, worker age. That is, the unit of analysis is not worker occupation-age groups and

when we compute employment growth rates we track a particular cohort. For instance, to

compute the 20-year growth rate in employment in 1900 for workers aged 20–29 in occupation

𝑖, we compare it to the employment of 40–49 year old workers in occupation 𝑖 in 1920.

Table 2.23 reports our findings. Panel A focuses on the full sample. We see that the

employment growth of older workers in a specific occupation is significantly more exposed

than the employment growth of younger workers (difference has a p-value of 0.015). In terms

of magnitudes, a one-standard deviation increase in technology exposure is followed by a 1.1%

annual decline in employment for older workers over the next twenty years, compared to a

0.7% annual decline for younger workers. However, Panel B shows that this pattern is largely

driven by the latter part of the sample. Specifically, there are no differences in employment

outcomes across age groups during the 1850–1920 period. In the 1930 to 1960 period, there

is some evidence that older workers are significantly more exposed, but the results are too

noisy to infer meaningful differences (p-value of 0.13). By contrast, focusing on the post-1970
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period, the difference is between younger and older workers becomes larger and statistically

significant. We conclude that we cannot rule out the possibility that our worker heterogeneity

results are somewhat specific to the ICT revolution: it is entirely possible that older workers

were significantly more displaced than younger workers by ICT.

2.4 Model

Here we provide a model that features skill-biased technological change and allows for skill

displacement. The model contains a continuum of workers who supply high- and low-skill

labor inputs. Consistent with the literature, the output of the high-skill labor input is

more complementary to technology than the output of the low-skill input. As a result,

improvements in technology lead to an increase in the wages of high-skill workers relative to

the wages of low-skill workers. This is a feature of the standard model.

We extend the model to allow for skill displacement. In particular, improvements in

technology may render some of workers’ skills obsolete—a specific worker may lose a part of

her skill when the technology frontier improves. As a result, even though wages of skilled

workers rise in response to technology, an incumbent skilled worker may experience a decline

in wages.

2.4.1 Setup

We model the output of a given industry. Output is produced by three factors of production:

low-skilled labor 𝐿, high-skilled labor 𝐻, and intangible capital (technology) 𝜉. For simplicity,

we will abstract from labor growth and model output per capita 𝑌 as

𝑌𝑡 =
⎡⎣𝜇(︂𝐻𝑡

)︂𝜎

+ (1 − 𝜇)
⎛⎝𝜆(︂𝜉𝑡

)︂𝜌

+ (1 − 𝜆)
(︂
𝐿𝑡

)︂𝜌
⎞⎠𝜎/𝜌⎤⎦1/𝜎

(2.23)

Here, 𝜌 denotes the elasticity of substitution between technology and unskilled labor and

𝜎 denotes the elasticity of substitution between skilled labor and the composite output of
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technology and unskilled labor.16 Since the total mass of workers is normalized to one,

equation (2.23) also refers to labor productivity (output per worker).

The factor 𝜉 is the stock of intangible capital/knowledge embodying the technology used

for producing output 𝑌 , similar in spirit to Acemoglu and Restrepo (2018). When we map

our empirical analysis to the model, we will interpret our technology exposure metric 𝜂𝑖,𝑡 as

a shock to 𝜉, which however affects only a subset of workers involved in the production of

𝑌—the model equivalent to ‘occupations’, described below. Keeping with the literature, we

expect technology to be more complementary to skilled labor relative to unskilled labor, so we

will impose the condition that, in relative terms, shifts in technology are more complementary

to skilled than unskilled labor, or equivalently that

𝜎 < 𝜌 < 1. (2.24)

Put differently, technology 𝜉 is a better substitute for unskilled rather than skilled labor.

Technology 𝜉 evolves exogenously according to

𝑑𝜉𝑡 = −𝑔 𝜉𝑡 𝑑𝑡+ 𝜅 𝑑𝑁𝑡. (2.25)

Technology improves according to the process 𝑁𝑡 whose increments are Poisson with arrival

rate 𝜔 𝑑𝑡. Recall that we have set up output in per capita terms. As such, the negative drift

term in equation (2.25) reflects the fact that 𝜉 also a per-capita quantity and population

grows at rate 𝑔. Given (2.25), the level of 𝜉 is stationary with a long-run mean equal to

𝜅𝜔/𝑔.

Workers are heterogenous along two dimensions. In particular, there is a unit mass of

workers differentiated by their type 𝜃 ∈ [0, 1], which determines their endowment of high-

and low-skill labor inputs; workers also vary in their ability to acquire new skills 𝑠 = {𝑙, ℎ}.

Specifically, each worker can provide 𝜃 units of skilled labor 𝐻 and 1 − 𝜃 units of unskilled
16In setting up (2.23), we have included technology and unskilled labor in the inner nest, and skilled labor

in the outer nest. This is in contrast to the formulation in Krusell et al. (2000); Eisfeldt, Falato, and Xiaolan
(2021), but note that the comparison with these two papers is imperfect, since 𝜉 denotes intangible capital
(technology) rather than physical equipment (machines).
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labor 𝐿. As a result, the total supply of skilled labor as a share of population is equal to

𝐻𝑡 =
∫︁ 1

0
𝜃 𝑝𝑡(𝜃) 𝑑𝜃, (2.26)

where 𝑝𝑡(𝜃) is the measure of workers of skill level 𝜃 at time 𝑡. Since we normalize the total

supply of labor to one,

𝐿𝑡 = 1 −𝐻𝑡. (2.27)

In addition, workers vary in their ability to acquire new skills—that is, increase their skill level

𝜃. The share of workers who cannot acquire new skills 𝑠𝑙 can produce only in the low-skill

task so 𝜃 = 0. The remaining share of workers 𝑠ℎ = 1 − 𝑠𝑙, have skill 𝜃 ∈ (𝜃, 1) that evolves

over time due to learning by doing and technological displacement according to

𝑑𝜃𝑖,𝑡 = 𝑚𝜃𝑖,𝑡 𝑑𝑀𝑖,𝑡 − ℎ 𝜃𝑖,𝑡 𝑑𝑖,𝑡 𝑑𝑁𝑡, (2.28)

Here, 𝑑𝑀𝑖,𝑡 is a Poisson jump with arrival rate 𝜑 𝑑𝑡 that reflects the stochastic acquisition of

new expertise. Since we limit 𝜃 ∈ (𝜃, 1) for these workers, we impose reflecting boundaries at

𝜃 and 1.

Importantly, the last term in equation (2.28) captures the displacive effect of the arrival of

new technologies (𝑑𝑁𝑡 = 1). There is a stochastic element in how technology improvements

affect workers: this uncertainty is captured by 𝑑𝑖,𝑡, which is a random variable with support

on the unit interval and is independent of 𝜃𝑖𝑡. For now, we assume that 𝑑𝑖,𝑡 i.i.d. distributed

across agents and follows a binomial distribution 𝑑 ∈ {0, 1} with 𝑃𝑟𝑜𝑏(𝑑 = 1) = 𝛼. More

generally, we could allow the distribution of 𝑑𝑖 to vary with certain worker characteristics

such as age or education. Affected workers experience a proportional loss in their human

capital (skill) by a factor ℎ. Last, workers of each type die at Poisson rate 𝛿 𝑑𝑡 and are

replaced by newborn skilled workers with either zero skill (𝜃 = 0) or the minimum level of

skill (𝜃 = 𝜃) for skilled workers with probabilities 𝑠𝑙 and 1 − 𝑠𝑙 respectively.17

17Our formulation for 𝜃 is related to Jones and Kim (2018) in that the skill of an individual worker grows
on average over time but occasionally resets to a lower level.
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Given our assumptions (2.26)–(2.28), the aggregate supply of skilled labor 𝐻𝑡 increases

with learning, decreases as skilled older workers are replaced with unskilled young workers,

and decreases temporarily following periods of rapid technological progress. The latter effect

captures the idea that technological improvements may be associated with lower output in

the short run as agents in their economy need to upgrade their skills to fully take advantage

of new innovations—similar in spirit to Brynjolfsson, Rock, and Syverson (2018).

The current wage of an individual worker with skill level 𝜃𝑖,𝑡 is equal to

𝑤𝑖,𝑡 = 𝑊𝐿,𝑡 + 𝜃𝑖,𝑡 (𝑊𝐻,𝑡 −𝑊𝐿,𝑡) . (2.29)

In equilibrium 𝑊𝐻,𝑡 and 𝑊𝐿,𝑡 are equal to the marginal product of skilled and unskilled labor,

respectively

𝑊𝐻,𝑡 = 𝜕𝑌𝑡

𝜕𝐻𝑡

, and 𝑊𝐿,𝑡 = 𝜕𝑌𝑡

𝜕𝐿𝑡

. (2.30)

In sum, we provide a model in which the skill premium increases with the level of

technology, yet the wage earnings of individual skilled workers can fall as they potentially are

displaced. We discuss the model calibration next.

2.4.2 Model Calibration

Here we discuss how we fit the model to the data.

Methodology

The model has a total of 14 parameters. We choose these parameters via a mixture of

calibration and indirect inference. Specifically, we choose 𝑠𝑙 = 0.375 so that workers with only

low-skill labor inputs constitute the lowest income bin (25% of the sample), and half of the

second-lowest. Since 𝑚 and 𝜑 are not separately identified, we set the learning rate 𝑚 = 0.03;

when choosing the grid for 𝜃, we assume that skilled workers human capital 𝜃 ∈ (0.03, 1).

Last, we set the worker exit rate, at 𝛿 = 2.5% which corresponds to a 40 year average working

life.
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To estimate the remaining 10 parameters Θ = {𝜇, 𝜆, 𝜌, 𝜎, 𝜑, 𝛼, 𝜅, 𝜔, ℎ, 𝑔}, we target the

mean level of the skill premium, the response of labor productivity and the labor share to

changes in technology estimated in Section 2.1, and the response of worker earnings growth

and likelihood of large wage declines conditional on levels of prior income, estimated in

Section 2.3.2. Since the model has no mechanism for delayed responses, whereas in the data

the diffusion of technology likely takes some time, we match the model responses on impact

to the empirical responses over five years. Table 2.8 summarizes the 14 statistics that we

target.

To obtain some intuition for how the model parameters are identified, we next discuss

how these quantities help identify model parameters. In the model, the skill premium defined

as the ratio of wages for the high-skill versus the low-skill labor input equals

𝑊𝐻,𝑡

𝑊𝐿,𝑡

= 𝜇

(1 − 𝜇) (1 − 𝜆)

(︂
𝐻𝑡

𝐿𝑡

)︂𝜎−1
⎛⎝𝜆(︃ 𝜉𝑡

𝐿𝑡

)︃𝜌

+ (1 − 𝜆)
⎞⎠

𝜌−𝜎
𝜌

. (2.31)

Examining (2.31), we see that as long as technology is more complementary to high-skill

than low-skill labor inputs (𝜌 > 𝜎) and we hold fixed the supply of skilled and unskilled

labor 𝐻 and 𝐿 then the skill premium is increasing with the level of technology 𝜉. Thus, just

like the standard model, our model generates an increase in the skill premium over the long

run during periods when the rate of technology rises faster than average. However, in our

model the supply of high- and low-skill inputs 𝐻 and 𝐿 varies in the short run, due to skill

displacement (2.28). This process leads to drop in 𝐻/𝐿 and thus a further increase in the

skill premium in the short-run.

When mapping the model to the data, we define the skill premium as the mean ratio of

earnings of workers in the 75th vs the 25th percentile. This ratio combines information on

the ratio 𝑊𝐻/𝑊𝐿 and the ergodic distribution of 𝜃. In terms of identifying model parameters,

the mean level of the skill premium thus helps identify the factor share parameters 𝜇 and 𝜆

and the elasticities 𝜌 and 𝜎. Further, it affects the parameters driving the ergodic distribution

of 𝜃, namely 𝜔, 𝜑, ℎ and 𝛼.

170



The labor share of output in the model can be written as

𝑊𝐻,𝑡 𝐿𝑡 +𝑊𝐿,𝑡 𝐻𝑡

𝑌𝑡

=
(1 − 𝜆) (1 − 𝜇)

(︁
𝜆
(︁

𝜉𝑡

𝐿𝑡

)︁𝜌
+ 1 − 𝜆

)︁𝜎
𝜌

−1
+ 𝜇

(︁
𝐻𝑡

𝐿𝑡

)︁𝜎

(1 − 𝜇)
(︁
𝜆
(︁

𝜉𝑡

𝐿𝑡

)︁𝜌
+ 1 − 𝜆

)︁𝜎
𝜌 + 𝜇

(︁
𝐻𝑡

𝐿𝑡

)︁𝜎
(2.32)

The response of the labor share (2.32)— and output (2.23)—to increases in technology 𝜉 is

ambiguous in the model. These both depend on the extent to which different tasks contribute

to output (𝜇 and 𝜆); technology-labor complementarity (𝜌 and 𝜎) and the response of 𝐻

and 𝐿 to a technology shock (which depends on ℎ and 𝛼). What helps with identification

in our case is our finding that technology improvements are associated with declines in the

labor share of output and an increase in output per worker (see Section 2.1). The fact that

output/productivity and the labor share respond with opposite signs helps narrow down the

set of admissible parameters quite significantly.

To identify the parameters involved in the dynamics of worker skill acquisition and

displacement in (2.28), we also target the heterogeneity in earnings responses to changes in

technology (see Section 2.3.2). Specifically, we target the mean earnings growth responses

(column (2) in Table 2.5), and changes in the probability of large declines in wage earnings

(column (5) in Table 2.5). To construct the analogue. Recall that, in the data, there is a

U-shape relation in mean responses, with the highest-paid workers and lowest-paid workers

experiencing the largest earnings declines in response to technology shocks. In terms of higher

moments though, we find that the highest-paid workers are far more likely than other groups

to experience large earnings declines. In the model, whether higher-paid workers are more

exposed to technology is largely ambiguous.

To see this, we can derive the following decomposition for wage earnings growth in the

model over any horizon ℎ:

𝑤𝑖,𝑡+ℎ − 𝑤𝑖,𝑡

𝑤𝑖,𝑡

= 𝑤𝑙,𝑡

𝑤𝑙,𝑡 + 𝜃𝑖,𝑡𝑠𝑝,𝑡⏟  ⏞  
low skill

income share

Δℎ𝑤𝑙,𝑡+ℎ

𝑤𝑙,𝑡⏟  ⏞  
low skill
wage chg

+ 𝜃𝑖,𝑡𝑠𝑝,𝑡

𝑤𝑙,𝑡 + 𝜃𝑖,𝑡𝑠𝑝,𝑡⏟  ⏞  
high skill

income share

⎡⎣𝑠𝑝,𝑡+ℎ

𝑠𝑝,𝑡

· Δℎ𝜃𝑖,𝑡+ℎ

𝜃𝑖,𝑡⏟  ⏞  
skill

displacement

+ Δℎ𝑠𝑝,𝑡+ℎ

𝑠𝑝,𝑡⏟  ⏞  
high skill
wage chg

⎤⎦ (2.33)
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where 𝑠𝑝,𝑡 = 𝑊ℎ,𝑡 −𝑊𝑙,𝑡.

As we see from the last term in brackets in (2.33), whether the highest-earning workers

experience larger declines depends on whether the increase in the skill premium in is sufficient

to offset the loss of worker skill 𝜃𝑖,𝑡 due to skill displacement—see equation (2.28). For the

high-income (i.e. 𝜃) workers, the primary income risk in the model comes from having human

capital displaced, while the lowest-income workers (those in the 𝑠𝑙 group with 𝜃 = 0) face

income losses from changes in wages. Improvements in technology lead to an increase in the

skill price of 𝐻 and a drop in the skill price of 𝐿 because of both differences in complementarity

and skill displacement—since workers fall down the ladder following a shock, 𝐻 is scarcer and

𝐿 is more abundant. These effects depend on the size of human capital losses and increases,

as well as the associated skill prices following displacement, including ℎ, 𝜑, 𝜔, 𝜆, 𝜇, 𝜎, and 𝜌.

Mapping the empirical regressions in Table 2.5 to the model entails two challenges: first,

our technology measure varies at the industry and occupation level whereas the model refers

to a single industry; second, our empirical specifications include occupation, industry, and

time fixed effects so the main coefficients are also identified by comparing to workers in other

occupations or industries. To narrow the gap between the model and the data, we construct

the closest equivalent to a regression coefficient in the model as follows. We first calculate

a set of wage responses that vary by income bins that match the empirical equivalents.

Within each income bin, we compute wage growth for exposed (𝑑𝑖,𝑡 = 1) and unexposed

(𝑑𝑖,𝑡 = 0) workers in the case of a technology shock occurring (𝑑𝑁𝑡 = 1) or not (𝑑𝑁𝑡 = 0).

The equivalent of the regression coefficient in the model is the coefficient of wage growth on

the interaction between a shock occurring and the worker being exposed, while separately

controlling for exposure and shock dummies and everything interacted with income bins.18

We calibrate the remaining 10 model parameters by minimizing the distance between the

18When constructing these regression coefficients in the model, we use the ergodic distribution of wage
growth, so we take into account the share of exposed workers 𝛼, the frequency of technology shocks 𝜔 and
the likelihood each worker falls in a given income bin.
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output of the model �̂�(Θ) and the data 𝑋,

Θ̂ = arg min
Θ

(︁
𝑋 − �̂�(Θ)

)︁′
𝑊
(︁
𝑋 − �̂�(Θ)

)︁
. (2.34)

Our choice of weighting matrix 𝑊 emphasizes percent deviations of the model vs the empirical

values and places relatively more weight in the aggregate moments.

Table 2.7 summarizes our parameter choices. Similar to Krusell et al. (2000); Eisfeldt et al.

(2021), we find that technology is a good substitute for the low-skill labor input (𝜌 = 0.74)

whereas the high-skill labor input is complementary to technology (𝜎 = −0.12). Technology

shocks are relatively frequent (𝜔 = 1.56) and sizeable (𝜅 = 0.32). Importantly, however, the

model features a modest degree of skill displacement: workers who fall down the ladder only

lose ℎ = 6% of their existing level of 𝜃. That said, these losses are pervasive: the probability

of skill loss conditional on a shock is 𝛼 = 32%. Further, these skill losses are transient:

workers are able to acquire skills (increase 𝜃) at an average rate of 𝑚𝜑 = 7.2% per year.

Model Fit and Discussion of the Mechanism

Examining Table 2.8, we see that the model does a good job matching the target statis-

tics, including the labor share and responses of aggregate quantities to technology shocks.

Specifically, the model is able to capture the fact that output and labor productivity rise

following a technology shock whereas the labor share falls. In addition, the model is able

to largely replicate both the marginal effect of a shock on exposed workers as well as the

U-shape pattern of coefficients by income rank.

Figure 2-11 plots the impulse responses generated by the model in response to a one-

standard deviation shock to the level of technology 𝜉 (panel A). Panel B shows that this

improvement in technology leads to a 2.5% rise in output/productivity on impact. By contrast,

Panel C shows that the labor share declines by approximately 1.5%. This decline in the labor

share is driven by a combination of two factors. First, as we see in Panel D, the quantity

of the high-skill labor input declines by approximately 2.5% as workers’ skills are displaced.

This fall is temporary, as 𝐻 gradually increases to skill acquisition. Since the wages for the
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high-skill task exceed the wages of the low-skill task, the total wage bill in the economy falls.

Second, Panel E shows that improvements in technology are associated with decline in the

price of the low-skill labor input (𝑊𝐿) which further depresses the labor share; by contrast,

even though the price of the high-skill labor input rises in Panel F, the rise is not sufficient

to cause the labor share to rise because 𝐻 falls. These movements in skill prices are driven

by a combination of two forces: first, the high-skill input is complementary to 𝜉 whereas the

low-skill input is a substitute; second, skill prices change in response to the reduction in the

effective supply of 𝐻 due to skill displacement.

Figure 2-12 summarizes the distributional impact of technology shocks in the cross-section

of workers. Panel A focuses on differences in growth rates in response to a technology shock

relative to the no-shock counterfactual. The blue bars correspond to unexposed workers

(𝑖.𝑒.𝑑𝑖 = 0). For these workers, the only effect in play is changes in skill prices. Low-income

workers supply only the low-skill labor input 𝐿. Since the price 𝑊𝐿 of the low-skill input falls,

these workers experience a decline in wages. By contrast, the high-income workers supply

mostly the high-skill input 𝐻; since the price of the high-skill input 𝑊𝐻 rises, these workers

experience an increase in wages. Absent skill displacement would be the only impact on

wage growth in the model—and would be similar to the models in Krusell et al. (2000) and

Eisfeldt et al. (2021). Yet, such a model would be unable to produce the empirical patterns

in Table 2.5.

The orange bars in Panel A of Figure 2-12 correspond to the wage growth of exposed

(i.e. 𝑑𝑖 = 1) workers following a shock relative to the no-shock counterfactual. These workers

experience the same change in skill prices as the unexposed workers, but they are also

subject to skill displacement (loss of human capital 𝜃). As a result, the wage growth of the

high-income exposed workers is markedly different than the wage growth of the unexposed

high-income workers: despite the fact that skill prices 𝑊𝐻 rise, these workers experience a

fall in wages due to loss of human capital 𝜃. Further, just like the data, their wages fall

significantly more than the low-income workers, implying that this loss in skill is significant.

Panel B Figure 2-12 plots the equivalent of the regression coefficient in the model, that is,
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the OLS coefficient of a regression of wage growth on a shock and exposure dummy, controlling

for income. Since these slope coefficients are estimated using the ergodic distribution of

wages at the model steady state, which factor in the relative size of the different worker

groups and the frequency of technology shocks they cannot be expressed as simple functions

of the coefficients in Panel A. However, they display a similar pattern as the orange bars:

improvements in technology have an asymmetric effect on the wages of exposed workers. The

workers most affected are the high-income workers—with some mild evidence of a U-shaped

response.

In brief, Figure 2-12 summarizes the impact of technology of wages, which is a combination

of shifts in skill prices and changes in the quantity of human capital. The combination of these

effects generate the U-shape in earnings losses we see in column (2) of Table 2.5. The lowest-

income workers have 𝜃 = 0, and as a consequence have wages which fall dramatically relative

to a non-shock period. Workers in the middle part of the income distribution experience

some loss of human capital and suffer from the decline in the price of low-skill labor input

𝑊𝐿, but these losses are partly offset from the increases in the high-skill price 𝑊𝐿. Workers

at highest income group has the farthest to fall: these workers who are exposed to technology

experience the largest wage declines of anyone in the model due to skill displacement. By

contrast, unexposed workers who stay at the top of the ladder following a technological

innovation see large wage increases due to higher 𝑊𝐻—which results from scarcer 𝐻 and the

complementarity of 𝐻 and 𝜉.

2.5 Conclusion

We develop a new method for identifying the arrival of labor-displacive innovations. Our time

series indicators of worker technology exposure date are available since the mid 19th century

and are available at a high level of granularity—industry and worker occupation. Examining

the type of worker tasks most exposed to innovation, we find that while non-routine manual

(physical) and routine-manual tasks have been highly exposed throughout the last 150+ years,

the innovations of the information technology revolution in the post-1980 period saw an
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increased relationship with cognitive tasks.

More importantly, we find that our technology exposure measures are consistently nega-

tively related to workers’ future labor market outcomes, both at the group (occupation) but

also at the individual level. Using a panel of administrative data on worker earnings, we show

that the earnings of older and less educated workers are more responsive to our technology

exposure measure, which is in line with the existing view of technology-skill complementarity.

By contrast, our finding that the earnings of more highly paid workers (relative to their

peers in the same industry and same occupation) respond more to our technology measure is

somewhat at odds.

We reconcile these patterns with the standard view by allowing for skill displacement

in the standard model of technology-skill complementarity. Our calibrated model is able

to quantitatively replicate our main findings: improvements in technology are associated

with increases in productivity but a decline in the labor share; lower earnings across workers

of all income groups. In the model, the earnings of high-income workers respond more to

technology improvements because these workers have further to fall: the loss of skills following

technological progress is sufficient to offset any wage gains associated with higher skill prices.

Overall, we provide long-run evidence that the technological displacement of labor has

been a persistent phenomenon over the past century and a half. Our findings illustrate the

utility of our technology exposure indicators that can be used to study an array of questions

in economics. That said, we should emphasize that our indicators are constructed largely from

the perspective of incumbent workers and are primarily intended to capture technological

substitution of existing tasks. A likely feature of technological progress that we are missing

is that it facilitates the creation of new tasks and occupations. Building on our work, Autor,

Salomons, and Seegmiller (2021) represents a promising step along that direction.
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Figures and Tables

Figure 2-1: Examples of Technology Exposure: By Innovations
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Drawing Out Machine Set-

ters, Operators, and Tenders

“Knitting-machine”

(Patent No. 276,146,

Issued in 1883)

Automotive Service Tech-
nicians and Mechanics

Cutting, Punching, and Press
Machine Setters, Operators,

and Tenders, Metal and Plastic

Maintenance Workers, Machinery

Grinding, Lapping, Polishing, and
Buffing Machine Tool Setters, Opera-
tors, and Tenders, Metal and Plastic

Rolling Machine Setters, Operators,
and Tenders, Metal and Plastic

“Metal wheel for

vehicles” (Patent

No. 1,405,358,

Issued in 1922)

Financial Managers
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Accountants and Auditors

Bookkeeping, Account-
ing, and Auditing Clerks

“System for managing

financial accounts by

a priority allocation of

funds among accounts”

(Patent No. 5,911,135,

Issued in 1999)
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Figure 2-2: Technological Exposure, by occupation income level
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Note: This figure plots average 𝜂𝑖,𝑡 for occupations over the 1980 to 2002 period by wage percentile rank.
The wage data come from the Current Population Survey Merged Outgoing Rotation Groups.
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Figure 2-3: Technological Exposure, composition by major occupation group
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Note: This figure plots the average of our occupation-level innovation exposure index, 𝜂𝑖,𝑡, where 𝜂𝑖,𝑡 has
been averaged separately within eight broad occupation groups. The occupation group averages are re-scaled
each year so that the total across all groups sums to one in the given year.
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Figure 2-4: Technology Exposure, by task type

A. Levels
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Note: This figure plots the level and composition of our index of technological exposure by task category:

𝜆𝑤,𝑡 =
∑︁

𝑖

𝜂𝑖,𝑡 × 𝑇𝑤,𝑡(𝑖) × 𝜔𝑖 (2.35)

Panel A plots the raw index 𝜆𝑤,𝑡 and panel B plots the relative shares 𝜆𝑤,𝑡/
∑︀

𝑤′ 𝜆𝑤′,𝑡 Here 𝑤 represents one
of the four given task categories. 𝑇𝑤,𝑡 is an indicator that takes a value of 1 if occupation 𝑖 is in the top
quintile of the cross-sectional distribution of task scores for task category 𝑤. 𝜂𝑖,𝑡 is our index of technological
exposure and 𝜔𝑖 gives the Acemoglu and Autor (2011) occupational employment shares. See main text for
more details. 185



Figure 2-5: Technology Exposure, by education requirements
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Note: This figure plots the level and composition of our index of technological exposure by education
category:

𝜁𝑠,𝑡 =
∑︁

𝑖

𝜂𝑖,𝑡 × 𝑆𝑠,𝑡(𝑖) × 𝜔𝑖,𝑡 (2.36)

Panel A plots the raw index 𝜁𝑠,𝑡 and panel B plots the relative shares 𝜁𝑠,𝑡/
∑︀

𝑠′ 𝜁𝑠′,𝑡 Here 𝑠 represents either
the educational category "high school or less" or "college grad or more". 𝑆𝑠,𝑡 is and indicator that takes a
value of 1 if occupation 𝑖 is in the top quintile of the time 𝑡 cross-sectional distribution of shares of workers
falling in category 𝑠. 𝜂𝑖,𝑡 is our index of technological exposure and 𝜔𝑖,𝑡 gives occupational employment shares.
See main text for more details. 186



Figure 2-6: Innovation: Productivity vs Labor Share
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Note: The figure plots the estimated coefficients 𝛽(𝑘) from regressions of the form

log𝑋𝑗,𝑡+𝑘 − log𝑋𝑗,𝑡 = 𝛼(𝑘) + 𝛽(𝑘)𝜓𝑗,𝑡 + 𝛿(𝑘)𝑍𝑗,𝑡 + 𝜖𝑗,𝑡 for 𝑘 = 1 . . . 𝑇 years

The main independent variable 𝜓𝑗,𝑡 is an index of innovation in industry 𝑗 in year 𝑡, constructed as follows.
First, we assign breakthrough patents to industries using the patent CPC tech class to industry crosswalk
from Goldschlag et al. (2020). Second, we only include breakthrough patents whose average similarity to the
industry’s occupations (using occupation-by-industry employment weights) are above the (unconditional)
median. We scale 𝜓𝑗,𝑡 by US population and normalize to unit standard deviation. Controls 𝑍𝑗,𝑡 include
industry employment shares, year fixed effects and lagged 5-year growth rate of the dependent variable.
Standard errors are clustered by industry, and corresponding t-stats are shown in parentheses.
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Figure 2-7: Employment and Technology Exposure (long-run: 1850–present)

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
−5

−4

−3

−2

−1

0

1

2

Census Year (t)

Em
pl

oy
m

en
t

C
ha

ng
e

(%
)

Note: Figure shows the slope coefficients on annual regressions of 20-Year employment share growth on our
technology exposure 𝜂𝑖,𝑡, using Census Years from 1850 to 1990. Specifically, we plot the 𝛽 coefficients from

1
𝑘

(︁
log 𝑌𝑗,𝑡+𝑘 − log 𝑌𝑗,𝑡

)︁
= 𝛼𝑡 + 𝛽𝑡𝜂𝑖,𝑡 + 𝜆𝑡 + 𝜖𝑖,𝑡

Here 𝑌𝑖,𝑡 is the occupation’s share in total non-farm employment. Standard errors are clustered by occupation
and shaded area represents the corresponding 90% confidence intervals for 𝛽𝜏 . Growth rates are expressed in
annualized percentage terms and 𝜂𝑖,𝑡 is standardized.
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Figure 2-8: Employment, wage earnings and technology exposure (recent period: 1980–
present)

A. Employment Growth
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B. Wage Growth
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Note: The Figures above plot coefficients from panel regressions of annualized wage and income growth
rates over different time horizons on occupation innovation exposures:

𝑦𝑖,𝑡+𝑘 − 𝑦𝑖,𝑡 = 𝛼+ 𝛽𝜂𝑖,𝑡 + 𝛿𝑋𝑖,𝑡 + 𝜀𝑖,𝑡

Controls 𝑋𝑖,𝑡–includes three one-year lags of dependent variable, and time fixed effects. Dependent variable
is expressed in annualized percentage terms and 𝜂𝑖,𝑡 is standardized. Figures plot 90% confidence interval for
each time horizon. Data come from the CPS Merged Outgoing Rotation Groups (MORG) and cover the
1985–2018 period.
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Figure 2-9: Employment share over the business cycle (Technology Exposure vs RTI)

A. Technology Exposure (𝜂𝑖,𝑡)
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B. Routine Task Intensity (RTI)
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Note: The above figure plots aggregate employment shares over time for occupations that were in the
top quintiles of innovation exposure (𝜂𝑖,𝑡) and routine-task intensity in the year 1985. Vertical shaded bars
represent NBER recession dates. Data source: CPS Merged Outgoing Rotation Groups extracts obtained
from the Center For Economic Policy Research website.
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Figure 2-10: Example: Order Clerks versus Personnel and Library Clerks
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Figure 2-11: Model: Impulse Responses
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C. Labor Share D. High-skill labor input 𝐻
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E. Wage for low-skill input (𝑊𝑙) F. Wage for high-skill input (𝑊ℎ)
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Note: This figure shows the impulse responses of key model quantities following a one-standard deviation
technology shock evaluated at the steady state of the model.
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Figure 2-12: Model: Innovation and Worker Earnings

A. Differences in Post-Shock Wage Growth
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B. Regression Coefficients for Post-Shock Wage Growth

� Model � Data

[0,25] [25,50] [50,75] [75,95] [95,100]
−3

−2

−1

0

1

Income Bin

D
iff

er
en

ce
in

W
ag

e
G

ro
w

th
(%

)

Note: Panel A shows raw differences between wage growth during a shock period and wage growth if there
had not been a shock for workers who are exposed to the shock, workers who are not exposed to the shock.
Panel B shows the associated regression coefficients, which represent the marginal effects of a shock on wage
growth given exposure. The left part of the figure shows the results in our baseline calibration. The right
part of the figure compares to the case where there is no displacement of human capital.
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Figure 2-13: The race between education and technology

A. Technology (𝜉) B. High-skill labor input (𝐻)
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C. Labor Share D. Output
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E. Top 5% Income Share F. Skill Premium (𝑤ℎ − 𝑤𝑙)
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Note: Figure computes the transition paths from the old to the new steady state for two permanent parameter
shifts: 1) the blue line plots a permanent increase in the frequency of technological innovation 𝜔, calibrated
so that the level of technology 𝜉 is permanently higher by one standard deviation relative to the old steady
state (panel A); and 2) the orange line plots the transition paths associated with the same shift in 𝜔 but also
with an increase in the rate of new skill acquisition 𝜑 such that the total supply of the high-skill labor input
remains the same as the old steady state (panel B). Panel C plots the labor share of output; panel D plots
total output/productivity; panel E plots income inequality, defined as the top 5% income share in the model;
and panel F plots the skill premium.
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Table 2.1: Technology And Employment Over the Long Run (1850–present)

A. Occupation-level Employment B. Industry X Occupation level employment

10 Years 20 Years 10 Years 20 Years 10 Years 20 Years 10 Years 20 Years

Technology Exposure, 𝜂𝑖,𝑡 -0.48*** -0.77*** -0.37*** -0.67*** -0.56*** -0.97*** -0.60*** -1.10***

(past decade average) (-5.19) (-6.84) (-4.39) (-6.93) (-3.02) (-3.92) (-3.18) (-4.33)

Observations 2,865 2,574 2,492 2,208 102,400 81,009 72,451 54,662

Controls

Time FE Y Y Y Y

Industry X Time FE Y Y Y Y

Lagged Dependent Variable Y Y Y Y

Note: The table above reports results from regressions of the form

1
𝑘

(︁
log 𝑌𝑖,𝑡+𝑘 − log 𝑌𝑖,𝑡

)︁
= 𝛼0 + 𝛼𝑡 + 𝛽(𝑘)𝜂𝑖,𝑡 + 𝜌 (log 𝑌𝑖,𝑡 − log 𝑌𝑖,𝑡−𝑘) + 𝜖𝑖,𝑡

for 𝑘 = 10, 20 years for Census years spanning from 1850-2010. Here 𝑌𝑖,𝑡 is the occupation’s share in total
non-farm employment. 𝜂𝑖,𝑡 is standardized and growth rates are in annualized percentage terms. Standard
errors are clustered by occupation and corresponding t-stats are shown in parentheses. Observations are
weighted by occupation employment share at time 𝑡. Census year 1870 does not show up in the first column
of the 20-year subsample regressions because the 1890 Census records no longer exist.
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Table 2.2: Summary Statistics: Worker-Level Data

Variable Mean SD 5% 25% Median 75% 95%

W2-Earnings 100,100 282,400 18,060 47,100 76,010 119,600 233,900

Age 41 7 29 34 41 47 53

Age: Lowest 25% Earners 39 7 29 33 38 44 51

Age: Top 5% Earners 44 7 31 39 46 50 54

Earnings growth, 3-years -0.053 0.573 -0.890 -0.124 0.015 0.143 0.540

Earnings growth, 5-years -0.063 0.592 -0.968 -0.158 0.011 0.156 0.574

Earnings growth, 10 -years -0.073 0.639 -1.098 -0.215 0.005 0.190 0.666

Note: The table reports summary statistics for our wage earnings data from the Census-CPS sample, which
covers the 1988 to 2016 period. W2-Earnings are reported in terms of 2015 dollars.
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Table 2.3: Worker Earnings and Technology Exposure

(1) (2)

A. Cond. Mean: 𝐸[𝑔], by Horizon

3 years -1.21 -1.12

(-6.32) (-5.65)

5 years -1.55 -1.30

(-6.84) (-4.77)

10 years -1.43 -1.24

(-4.96) (-3.14)

B. Risk: Absolute Income Growth 𝐸[|𝑔|]

3 years 0.73 0.25

(3.03) (1.59)

5 years 0.76 0.37

(2.40) (1.78)

10 years 0.38 0.47

(0.95) (1.68)

C. Skewness: Prob. Large Income Decline 𝑝(𝑔 < 𝑝10)

3 years 0.56 0.38

(6.31) (4.18)

5 years 0.58 0.41

(4.76) (3.31)

10 years 0.37 0.27

(2.09) (1.48)

Controls:

Industry FE Y

Occupation FE Y

Year FE Y

Industry × Year FE Y

Occupation × Year FE Y

Note: Panel A shows the estimated slope coefficients 𝛽(ℎ) (times 100) from equation (2.21) in the main
text for horizons ℎ of 3,5, and 10 years. Panels B and C focus on the 5-year horizon. Panel B shows the
slope coefficients of a variant of the above specification where we replace the dependent variable 𝑔𝑖,𝑡:𝑡+ℎ with
its absolute value |𝑔𝑖,𝑡:𝑡+ℎ| to capture the response of second moments to changes in technology exposure
𝜂𝑖,𝑡. Similarly, Panel C replaces the dependent variable with a dummy that takes the value of one if 𝑔𝑖,𝑡:𝑡+ℎ

lies in the bottom 10-th percentile; this specification allows us to capture increases in negative skewness in
response to an increase in 𝜂𝑖,𝑡. We report 𝑡-statistics (in parentheses) using standard errors clustered at the
industry (NAICS 4-digit) level. All specifications include industry times year and occupation times year fixed
effects. We normalize 𝜂𝑖,𝑡 to unit standard deviation. The bottom panel shows the p-values associated with
the hypotheses that the coefficients are equal across the reported subgroups.
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Table 2.4: Worker Earnings and Technology Exposure, by Education

Education

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew

𝐸[𝑔] 𝐸[|𝑔|] 𝑝(𝑔 < 𝑝10)

3-year 5-year 10-year 5-year 5-year

College -0.91 -1.14 -1.21 0.49 0.35

(-3.33) (-3.34) (-2.49) (2.65) (2.57)

No College -1.30 -1.50 -1.76 0.39 0.48

(-5.58) (-5.18) (-4.47) (1.51) (4.33)

Coeff. Differences p-values

College = No College 0.043 0.110 0.052 0.537 0.071

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (2.21) in the
main text: the dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main
independent variable of interest is a worker’s technology exposure 𝜂𝑖,𝑡. The slope coefficient 𝛽(ℎ) is allowed to
vary with the worker’s education. Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns
(4) and (5) focus on the 5-year horizon. Column (4) shows the slope coefficients of a variant of the above
specification where we replace the dependent variable 𝑔𝑖,𝑡:𝑡+ℎ with its absolute value |𝑔𝑖,𝑡:𝑡+ℎ| to capture
the response of second moments to changes in technology exposure 𝜂𝑖,𝑡. Similarly, Column (5) replaces the
dependent variable with a dummy that takes the value of one if 𝑔𝑖,𝑡:𝑡+ℎ lies in the bottom 10-th percentile;
this specification allows us to capture increases in negative skewness in response to an increase in 𝜂𝑖,𝑡. We
report 𝑡-statistics (in parentheses) using standard errors clustered at the industry (NAICS 4-digit) level. All
specifications include industry times year and occupation times year fixed effects.We normalize 𝜂𝑖,𝑡 to unit
standard deviation. The bottom panel shows the p-values associated with the hypotheses that the coefficients
are equal across the reported subgroups.
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Table 2.5: Worker Earnings and Technology Exposure, by Prior Income

Income Percentile

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew

𝐸[𝑔] 𝐸[|𝑔|] 𝑝(𝑔 < 𝑝10)

3-year 5-year 10-year 5-year 5-year

0 to 25-th -1.24 -1.49 -1.85 -0.26 0.29

(-5.76) (-5.28) (-4.70) (-1.07) (2.23)

25 to 50-th -0.85 -1.01 -0.96 0.10 0.26

(-4.14) (-3.57) (-2.04) (0.40) (1.45)

50 to 75-th -1.01 -1.18 -1.01 0.48 0.39

(-3.51) (-3.07) (-1.87) (1.65) (2.84)

75 to 95-th -1.05 -1.17 -0.81 0.76 0.39

(-4.12) (-3.45) (-1.64) (3.25) (2.76)

95 to 100-th -2.24 -2.47 -2.28 2.01 1.26

(-6.11) (-4.75) (-3.83) (5.78) (5.50)

Coeff. Differences p-values

[95-100] = [25-95] 0.000 0.000 0.002 0.000 0.000

[0-25] = [25-95] 0.610 0.630 0.331 0.175 0.853

[95-100] = [0-25] 0.019 0.092 0.498 0.000 0.000

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (2.21) in the
main text: the dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main
independent variable of interest is a worker’s technology exposure 𝜂𝑖,𝑡. The slope coefficient 𝛽(ℎ) is allowed
to vary with the worker’s prior income rank. Columns (1) to (3) correspond to horizons of 3,5, and 10 years.
Columns (4) and (5) focus on the 5-year horizon. Column (4) shows the slope coefficients of a variant of
the above specification where we replace the dependent variable 𝑔𝑖,𝑡:𝑡+ℎ with its absolute value |𝑔𝑖,𝑡:𝑡+ℎ|
to capture the response of second moments to changes in technology exposure 𝜂𝑖,𝑡. Similarly, Column (5)
replaces the dependent variable with a dummy that takes the value of one if 𝑔𝑖,𝑡:𝑡+ℎ lies in the bottom 10-th
percentile; this specification allows us to capture increases in negative skewness in response to an increase in
𝜂𝑖,𝑡. We report 𝑡-statistics (in parentheses) using standard errors clustered at the industry (NAICS 4-digit)
level. All specifications include industry times year and occupation times year fixed effects. We normalize 𝜂𝑖,𝑡

to unit standard deviation. The bottom panel shows the p-values associated with the hypotheses that the
coefficients are equal across the reported subgroups.
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Table 2.6: Worker Earnings and Technology Exposure, by Age

Worker Age

(1) (2) (3) (4) (5)

Cond. Mean St. Dev Skew

𝐸[𝑔] 𝐸[|𝑔|] 𝑝(𝑔 < 𝑝10)

3-year 5-year 10-year 5-year 5-year

25–35 years -0.39 -0.64 -0.92 0.38 0.18

(-1.86) (-2.55) (-2.42) (1.84) (1.50)

35–45 years -0.86 -1.04 -1.37 0.05 0.23

(-5.24) (-5.08) (-3.63) (0.37) (2.55)

45–55 years -1.95 -2.25 -2.51 1.13 0.88

(-3.72) (-3.55) (-3.02) (2.5) (3.36)

Coeff. Differences p-values

45–55 = 25–35 0.001 0.002 0.006 0.051 0.001

45–55 = 35–45 0.015 0.020 0.044 0.010 0.011

Note: Columns (1) to (3) show the estimated slope coefficients (times 100) from equation (2.21) in the
main text: the dependent variable is worker earnings growth over horizons of 3,5, and 10 years; the main
independent variable of interest is a worker’s technology exposure 𝜂𝑖,𝑡. The slope coefficient 𝛽(ℎ) is allowed
to vary with the worker’s age. Columns (1) to (3) correspond to horizons of 3,5, and 10 years. Columns
(4) and (5) focus on the 5-year horizon. Column (4) shows the slope coefficients of a variant of the above
specification where we replace the dependent variable 𝑔𝑖,𝑡:𝑡+ℎ with its absolute value |𝑔𝑖,𝑡:𝑡+ℎ| to capture
the response of second moments to changes in technology exposure 𝜂𝑖,𝑡. Similarly, Column (5) replaces the
dependent variable with a dummy that takes the value of one if 𝑔𝑖,𝑡:𝑡+ℎ lies in the bottom 10-th percentile;
this specification allows us to capture increases in negative skewness in response to an increase in 𝜂𝑖,𝑡. We
report 𝑡-statistics (in parentheses) using standard errors clustered at the industry (NAICS 4-digit) level. All
specifications include industry times year and occupation times year fixed effects.We normalize 𝜂𝑖,𝑡 to unit
standard deviation. The bottom panel shows the p-values associated with the hypotheses that the coefficients
are equal across the reported subgroups.
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Table 2.7: Model Parameters

Description Parameter Value

Share of workers who do not move up the ladder 𝑠𝑙 0.375

Minimum level of skill 𝜃 0.03

Probability of worker exit 𝛿 0.025

Amount of skills acquired 𝑚 0.03

CES parameter in inner nest (technology 𝜉 and low-skill labor 𝐿) 𝜌 0.74

Share of technology in inner nest 𝜆 0.27

CES parameter in outer nest (high-skill labor 𝐻 and 𝜉/𝐿 composite) 𝜎 -0.12

Share of high-skill labor in outer nest 𝜇 0.17

Size of technology improvement 𝜅 0.31

Arrival rate of technology shocks 𝜔 1.56

Share of exposed workers 𝛼 0.32

Human capital loss percentage conditional on fall ℎ 0.06

Rate of depreciation of technology 𝑔 0.12

Likelihood of worker skill acquisition 𝜑 2.40

Note: Table reports the parameter used to calibrate the model. The first four parameters are calibrated a
priori; the latter 10 parameters are chosen to fit the statistics reported in Table 2.8.
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Table 2.8: Model Fit

Statistic Data Model

Labor share, average 0.66 0.59

Labor share, response to 𝜉 -1.29 -1.48

Skill premium (p75 / p25 ratio), average 2.45 1.68

Labor productivity, response to 𝜉 2.81 2.31

Worker earnings growth response to 𝜉

0 to 25-th percentile -1.49 -1.13

25 to 50-th percentile -1.01 -1.06

50 to 75-th percentile -1.18 -1.72

75 to 95-th percentile -1.17 -2.00

95 to 100-th percentile -2.47 -2.45

Likelihood of large wage declines in response to 𝜉

0 to 25-th percentile 0.29 0.51

25 to 50-th percentile 0.26 0.51

50 to 75-th percentile 0.39 0.51

75 to 95-th percentile 0.39 0.51

95 to 100-th percentile 1.26 1.40

Note: Table reports the fit of the model to the statistics that we target. The parameters used in our
calibration are listed in Table 2.8.
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Table 2.9: Technology and Labor Market Outcomes: Comparison to Other Measures

A. Employment

(1) (2) (3) (4) (5)

Technology Exposure 𝜂𝑖,1980 -0.79*** -0.87*** -0.74*** -0.74*** -0.82***

(-5.68) (-6.25) (-5.26) (-5.12) (-5.99)

Routine Task Intensity (RTI) -0.058 0.011

(-0.50) (0.08)

Offshorability -0.15** -0.20**

(-2.04) (-2.50)

Robot Exposure -0.66** -0.93**

(-2.21) (-2.21)

Software Exposure -0.36 0.069

(-1.34) (0.21)

B. Wages

(1) (2) (3) (4) (5)

Technology Exposure 𝜂𝑖,𝑗,1980 -0.082*** -0.064*** -0.071*** -0.100*** -0.078***

(-4.11) (-3.11) (-3.87) (-5.37) (-4.21)

Routine Task Intensity (RTI) -0.066* -0.059*

(-1.97) (-1.70)

Offshorability 0.0042 -0.0026

(0.17) (-0.09)

Robot Exposure -0.13* -0.27***

(-1.86) (-2.76)

Software Exposure 0.13** 0.24***

(2.10) (4.73)

Observations 17536 16959 17448 17448 16959

Note: This table shows results from estimating

1
𝑘

(︁
log 𝑌𝑖,𝑗,𝑡+𝑘 − log 𝑌𝑖,𝑗,𝑡

)︁
= 𝛼+ 𝛼𝑗 + 𝛽𝜂𝑖,1980 + 𝛿𝑋𝑖 + 𝜖𝑖,𝑗

Here 𝑖 indexes occupations and 𝑗 indexes industries; we report results for 𝑘 = 32 years using Deming (2017)
data from the 1980 Census and the 2012 ACS. The dependent variables are employment (Panel A) or average
wages (Panel B). All specifications include industry fixed effects and controls for occupation employment share
in 1980, occupation log wage in 1980, three categorical indicators for the occupation’s average education level
in 1980. We additionally include the routine-task intensity and the measure of occupation-level offshorability
from Autor and Dorn (2013) and the measure of exposure to robots or software from Webb (2019) depending
on the specification. Observations are weighted by employment share in 1980.
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2.6 Appendix

2.6.1 Converting Patent Text for Numerical Analysis

Here, we briefly overview our conversion of unstructured patent text data into a numerical

format suitable for statistical analysis. We obtain text data for measuring patent/job task

similarity from two sources. Job task descriptions come from the revised 4th edition of

the Dictionary of Occupation Titles (DOT) database. We use the patent text data parsed

from the USPTO patent search website in Kelly et al. (2020), which includes all US patents

beginning in 1976, comprising patent numbers 3,930,271 through 9,113,586, as well as patent

text data obtained from Google patents for pre-1976 patents. Our analysis of the patent

text combines the claims, abstract, and description section into one patent-level corpus

for each patent. Since the DOT has a very wide range of occupations (with over 13,000

specific occupation descriptions) we first crosswalk the DOT occupations to the considerably

coarser and yet still detailed set of 6-digit occupations in the 2010 edition of O*NET. We

then combine all tasks for a given occupation at the 2010 O*NET 6-digit level into one

occupation-level corpus. The process for cleaning and preparing the text files for numerical

representation follows the steps outlined below.

We first clean out all non-alphabetic characters from the patent and task text, including

removing all punctuation and numerical characters. We then convert all text to lowercase.

At this stage each patent and occupation-level task text are represented by a single string

of words separated by spaces. To convert each patent/occupation into a list of associated

words we apply a word tokenizer that separates the text into lists of word tokens which

are identified by whitespace in between alphabetic characters. Since most words carry little

semantic information, we filter the set of tokens by first removing all “stop words”– which

include prepositions, pronouns, and other common words carrying little content–from the

union of several frequently used stop words lists.

Stop words come from the following sources:

∙ https://pypi.python.org/pypi/stop-words
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∙ https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html

∙ http://www.lextek.com/manuals/onix/stopwords1.html

∙ http://www.lextek.com/manuals/onix/stopwords2.html

∙ https://msdn.microsoft.com/zh-cn/library/bb164590

∙ http://www.ranks.nl/stopwords

∙ http://www.webconfs.com/stop-words.php

∙ http://www.nltk.org/book/ch02.html (NLTK stop words list)

We also add to the list of stop words the following terms that are ubiquitous in the patent

text but don’t provide information regarding the content and purpose of the patent: abstract,

claim, claims, claimed, claiming, present, invention, united, states, patent, description, and

background. The final stop word list contains 1337 unique terms that are filtered out.

Even after removing stop words, we expect much of the remaining text to offer little

information regarding the purpose and use of a given patent or the core job functions expected

to be performed by workers in a given occupation. In order to focus on the parts of the

document most likely to contain relevant information, we retain descriptive and action words–

i.e. nouns and verbs–and remove all other tokens. We do this using the part-of-speech tagger

from the NLTK Python library. Finally, we lemmatize all remaining nouns and verbs, which

is to convert them to a common root form. This converts all nouns to their singular form

and verbs to their present tense. We use the NLTK WordNet Lemmatizer to accomplish this

task. After these steps are completed, we have a set of cleaned lists of tokens for each patent

and each occupation’s tasks that we can then use to compute pairwise similarity scores.

2.6.2 Description of Word Embedding Vectors

To appreciate how our metric differs from the standard bag-of words approach it is useful to

briefly examine how word embeddings are computed in Pennington et al. (2014). Denote
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the matrix 𝑋 as a 𝑉 × 𝑉 matrix of word co-occurence counts obtained over a set of training

documents, where 𝑉 is the number of words in the vocabulary. Then 𝑋𝑖,𝑗 tabulates the

number of times word 𝑗 appears in the context of the word 𝑖.19 Denote 𝑋𝑖 = ∑︀
𝑘 𝑋𝑖,𝑘 as the

number of times any word appears in the context of word 𝑖, and the probability of word 𝑗

occuring in the context of word 𝑖 is 𝑃𝑖,𝑗 ≡ 𝑋𝑖,𝑗/𝑋𝑖. The goal of the word embedding approach

is to construct a mapping 𝐹 (·) from some 𝑑-dimensional vectors 𝑥𝑖, 𝑥𝑗, and �̃�𝑘 such that

𝐹 (𝑥𝑖, 𝑥𝑗, �̃�𝑘) = 𝑃𝑖,𝑘

𝑃𝑗,𝑘

(2.37)

Imposing some conditions on the mapping 𝐹 (·), they show that a natural choice for modeling

𝑃𝑖,𝑘 in (2.37) is

𝑥𝑇
𝑖 �̃�𝑘 = log(𝑋𝑖,𝑘) − log(𝑋𝑖) (2.38)

Since the mapping should be symmetric for 𝑖 and 𝑘 they add “bias terms” (essentially 𝑖 and

𝑘 fixed effects) which gives

𝑥𝑇
𝑖 �̃�𝑘 + 𝑏𝑖 + 𝑏𝑘 = log(𝑋𝑖,𝑘) (2.39)

Summing over squared errors for all pairwise combinations of terms yields the weighted least

squares objective

Min𝑥𝑖,�̃�𝑘,𝑏𝑖,𝑏𝑘

𝑉∑︁
𝑖=1

𝑉∑︁
𝑗=1

𝑓(𝑋𝑖,𝑗)
(︁
𝑥𝑇

𝑖 �̃�𝑘 + 𝑏𝑖 + 𝑏𝑘 − log(𝑋𝑖,𝑗)
)︁2

(2.40)

Here the observation-specific weighting function 𝑓(𝑋𝑖,𝑗) equals zero for 𝑋𝑖,𝑗 = 0 so that the

log is well defined, and is constructed to avoid overweighting rare occurences or extremely

frequent occurences. The objective (2.40) is a highly-overidentified least squares minimization

problem. Since the solution is not unique, the model is trained by randomly instantiating 𝑥𝑖

and �̃�𝑘 and performing gradient descent for a pre-specified number of iterations, yielding 𝑑-

dimensional vector representations of a given word. Here 𝑑 is a hyper-parameter; Pennington

19Pennington et al. (2014) use a symmetric 10 word window to determine “context” and weight down
occurences that occur further away from the word (one word away receives weight 1, two words away receives
weight 1/2, etc.).
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et al. (2014) find that 𝑑 = 300 works well on word analogy tasks.

Since (2.40) is symmetric it yields two vectors for word 𝑖, 𝑥𝑖 and �̃�𝑖, so the final word

vector is taken as the average of the two. The ultimate output is a dense 300-dimensional

vector for each word 𝑖 that has been estimated from co-occurence probabilities and occupies

a position in a word vector space such that the pairwise distances between words (i.e. using a

metric like the cosine similarity) are related to the probability that the words occur within the

context of one another and within the context of other similar words. Note that the basis for

this word vector space is arbitrary and has no meaning; distances between word embeddings

are only well-defined in relation to one another and a different training instance of the same

data would yield different word vectors but very similar pairwise distances between word

vectors.

Our method for backing out a geometric representation of the “meaning” of a document

in (2.7) is to construct a weighted average of the meaning of all words in the document. Thus

our vector representation of documents retains the 300-dimensional structure of the individual

word constituents; these vectors are much denser and smaller than the very large and sparse

document vectors in the standard bag of words methodology. In brief, there are two key

characteristics that differentiate our approach relative to bag of words techniques. First, 𝑋𝑖

is no longer a sparse vector like 𝑉𝑖. Moreover, because of the way word vectors are estimated,

our method allows vectors containing similar words to be “close” to one another. Thus,

relative to the bag of words approach our method: (1) constitutes a large dimensionality

reduction; and, (2) can incorporate a notion of synonyms/distances between word meanings.

Armed with a vector representation of the document that accounts for synonyms, we next

use the cosine similarity to measure the similarity between patent 𝑖 and occupation 𝑗:

Sim𝑖,𝑗 = 𝑋𝑖

||𝑋𝑖||
· 𝑋𝑗

||𝑋𝑗||
(2.41)

This is the same distance metric as the bag of words approach, except now 𝑋𝑖 and 𝑋𝑗 are

dense vectors carrying a geometric interpretation akin to a weighted average of the semantic

meaning of all nouns and verbs in the respective documents.
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To illustrate the difference between our approach and the standard bag of words, consider

the following example of two documents, with the first document containing the words ‘dog’

and ‘cat’ and the other containing the words ‘puppy’ and ‘kitten’. Even though the two

documents carry essentially the same meaning, the bag of words approach will conclude that

they are distinct: the representation of the two documents is

𝑉1 = [1, 1, 0, 0], and 𝑉2 = [0, 0, 1, 1] (2.42)

which implies that the two documents are orthogonal, 𝜌1,2 = 0. Here, the TF-IDF weights in

our simple example satisfy 𝑇𝐹1,𝑑𝑜𝑔 = 1/2 and 𝐼𝐷𝐹𝑑𝑜𝑔 = log(2), with similar logic applying to

“cat”; this proceeds analogously for document 2 containing “puppy” and “kitten”.

By contrast, in the word embeddings approach, these two documents are now represented

as

𝑋1 = (1/2) × log(2)𝑥𝑑𝑜𝑔 + (1/2) × log(2)𝑥𝑐𝑎𝑡 (2.43)

and similarly for 𝑋2. Here 𝑥𝑑𝑜𝑔, 𝑥𝑐𝑎𝑡 would have been trained using the Pennington et al.

(2014) method described above on a very large outside set of documents. Hence, in this case

since word vectors are estimated such that 𝑥𝑑𝑜𝑔 ≈ 𝑥𝑝𝑢𝑝𝑝𝑦 and 𝑥𝑐𝑎𝑡 ≈ 𝑥𝑘𝑖𝑡𝑡𝑒𝑛, we now have

Sim1,2 ≈ 0.81 using the word vectors estimated by Pennington et al. (2014). A weighted

average word embedding approach has been shown in the natural language processing

literature to achieve good performance on standard benchmark tests for evaluating document

similarity metrics relative to alternative methods that are much more costly to compute

(see, e.g. Arora, Liang, and Ma, 2017). A relative disadvantage is that it ignores word

ordering—which also applies to the more standard ‘bag of words’ approach for representing

documents as vectors. However, since we have dropped all stop words and words that are not

either a noun or a verb, retaining word ordering in our setting is far less relevant.

Last, our methodology bears some similarities to recent work by Webb (2019), who

also analyzes the similarity between a patent and O*NET job tasks. Webb (2019) focuses

on similarity in verb-object pairs in the title and the abstract of patents with verb-object
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pairs in the job task descriptions and restricts his attention to patents identified as being

related to robots, AI, or software. He uses word hierarchies obtained from WordNet to

determine similarity in verb-object pairings. By contrast, we infer document similarity by

using geometric representations of word meanings (GloVe) that have been estimated directly

from word co-occurence counts. In addition to employing a different methodology, we also

have a broader focus: we compute occupation-patent distance measures for all occupations

and the entire set of USPTO patents since 1836. Furthermore, we use not only the abstract

but the entirety of the patent document—which includes the abstract, claims, and the detailed

description of the patented invention.

2.6.3 Constructing the Industry Innovation Measure

For each breakthrough patent 𝑝 we assign it to an industry using probabilistic patent CPC

tech class to NAICS crosswalks constructed by Goldschlag et al. (2020). The Goldschlag

et al. (2020) crosswalk assigns probabilities that patents from a given technology class

originated from a particular NAICS industry for different levels of NAICS aggregation. The

NBER manufacturing database reports data the 6-digit NAICS code level, and so we use

the Goldschlag et al. (2020) 6-digit NAICS to 3-digit CPC probabilistic crosswalk. We then

aggregate the data to the 4-digit NAICS level to parallel the level of industry classification

we use in our analysis in 2.3.2 of the main text.

Label the set of breakthrough patents issued in year 𝑡 by Γ𝑡; 𝛼𝑗,𝑝 the probability of

breakthrough patent 𝑝 being issued to industry 𝑗, and 𝜅𝑡 the US population in year 𝑡. We

then define the industry-level breakthrough patent index (including only patents with high

average textual similarity to the industry workforce) by

𝜓𝑗,𝑡 = 1
𝜅𝑡

∑︁
𝑝∈Γ𝑡

𝛼𝑗,𝑝) (2.44)
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2.6.4 Census public-use data

We gather Census data from IPUMS and compute aggregate employment shares for occupa-

tions in Census years spanning 1850-2010. We use the 1950 Census occupation definition

for pre-1950 Census years since the more updated 1990 Census classification scheme is only

available in post-1950 Census years. We make use of the 1990 Census occupation classifica-

tions for the years they are available. We then crosswalk Census occupations to the David

Dorn occ1990dd classification scheme using the crosswalk files provided on his website and

aggregate our measure 𝜂𝑖,𝑡 to the occ1990dd-level by averaging across 6-digit SOC codes

within an occ1990dd code. This results in a Census-year by occ1990dd panel of occupation

employment shares. Census records for the year 1890 were destroyed in a fire, and so the

employment growth observations for the 20-year horizon in 1870 or for the 10-year horizon in

1880 are not available.

For the post-1980 results, we use the Current Population Survey Merged Outgoing Rotation

Groups (MORG). We obtain the cleaned versions of MORG extracts provided by the Center

for Economic Policy Research (CEPR). We use the “wage3” variable that combines the usual

hourly earnings for hourly workers and non-hourly workers, which adjusts for top-coding

using a lognormal imputation and is constructed to match the NBER’s recommendation

for the most consistent hourly wage series from 1979 to the present. Using these data we

construct a time series of wage and employment growth for occupations at the occ1990dd

level. Because occ1990dd cannot be crosswalked to a balanced panel of occupations using the

Census 1970 occupation codes, we start our analysis in the post-1982 time period when these

extracts began using the 1980 Census occupation classification scheme.

2.6.5 Census-CPS administrative data

We use a random sample of individual workers tracked by the Current Population Survey

(CPS) and their associated Detailed Earnings Records from the Census—which contains their

W2 tax income. We limit the sample to individuals who are older than 25 and younger than

55 years old.
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The CPS includes information on demographic information such as age and gender, but

more importantly occupation at the time of the interview. We assign workers to occupations

based on their response to the CPS survey (CPS “occ” variable). We construct a crosswalk

between the yearly CPS occupations codes and the occ1990dd classification scheme and

assign all CPS occupations their corresponding occ1990dd code. We assign this occupation

to the worker for the next 5 years, thus effectively dropping observations where the CPS

interview date is older than 5 years—so that the occupation information is relatively recent.

We merge the individual worker records from the Census-CPS matched sample to patent

data at the industry (NAICS 4) level. Specifically, we identify the industry of where the

patent origination by relying on the Census SSEL patent–assignee database, which provides

a corresponding SSEL firm identifier (“firmid"), which we then use to obtain the firms’

4-digit NAICS code. In particular, we use two SSEL patent–assignee crosswalks: the newer

Business Dynamics Statistics of Patenting Firms database (BDS-PF) and an older patent-SSL

crosswalk created by Kerr and Fu (2008). The BDS-PF links are available starting with the

2000 SSL. We use the BDS-PF firmid-patent links for any patents for which it is available.

Otherwise we rely on the links from Kerr and Fu (2008) created from the 1999 SSL. In cases

where a firmid matches to multiple NAICS codes we apply the 4-digit NAICS code of highest

employment. We drop any industry-year observations with no patents filed in a given year.

To allow the effects to vary with prior income, we assign workers into five groups based

on their average income over the last three years (the last term in (2.18)) compared to

workers in the same occupation and NAICS4 industry. These groups are defined based on the

following percentiles of prior income [0%, 25%), [25%, 50%), [50%, 75%), [75%, 95%), [95%,

100%] calculated within industry–occupation cells. In the (uncommon) case when NAICS4

industries have cells which are too small to rank, we broaden the industry definition from 4

digit NAICS to 2 digit NAICS. Subsequently, any Industry–Occupation cells with fewer than

10 individuals are dropped.
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2.6.6 Constructing a Statistical Displacement Factor

To construct our predictor we use a method proposed by Cong et al. (2019), which is well-

suited to prediction exercises using large-scale textual data. Our adaptation of their method

for the task of predicting occupation outcomes can be summarized in the following steps. Let

the number of patent documents be 𝑁𝑝 (where we restrict just to the set of breakthrough

patents from Kelly et al. (2020) as described in section 2.2), the number of occupation task

descriptions be 𝑁𝑜, and the number of words in the vocabulary formed from the union of all

patent and occupation documents be 𝑁𝑤:

1. Perform approximate nearest neighbor search using a locality-sensitive hashing routine

(LSH) on vector representations of word meanings to form 𝐾 clusters (“topics”) of

related words. Label the 𝑘th cluster of words 𝐶𝑘.

2. Create a 𝑁𝑝 ×𝑁𝑤 matrix of breakthrough patent documents by word counts weighted

by term-frequency inverse document frequency (TF-IDF), computed over all patents

(i.e. TF-IDF is computed also including non-breakthrough patents). Call this matrix 𝐴.

Loop over each word cluster 𝐶𝑘 from step 1 for 𝑘 = 1, . . . , 𝐾, and extract the submatrix

of 𝐴 formed by taking the columns in 𝐴 corresponding to the words contained in cluster

𝐶𝑘. Call this submatrix 𝐴𝑘. Perform a singular-value decomposition of 𝐴𝑘 and take its

top singular value 𝑣𝑘 (in absolute value) and corresponding top right singular vector 𝑉𝑘.

Then take the 𝑁𝑝 × 1 vector 𝑃𝑘 = |𝐴𝑘𝑣𝑘|
𝑣′

𝑘
𝑣𝑘

to be the loadings of each patent document on

topic/word cluster 𝑘. Retain only the clusters 𝐶𝑘 which rank in the top 500 based on

their top absolute singular values.

3. Perform step 2 for all occupations, except only for the top 500 clusters that were

retained. Call the resulting 𝑁𝑜 × 1 vector of occupation loadings 𝑂𝑘. Denote the set

breakthrough of patents issued in year 𝑡 by ̂︀Γ𝑡. Let 𝑂𝑘,𝑖 represent the 𝑖th element of

𝑂𝑘 and 𝑃𝑘,𝑗 the 𝑗th element of 𝑃𝑘, the vector of patent loadings on cluster 𝑘. Then
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occupation 𝑖’s exposure to the 𝑘th topic in year 𝑡 is given by

𝜓𝑖,𝑘,𝑡 = 𝑂𝑘,𝑖

𝜅𝑡

∑︁
𝑗∈̂︀Γ𝑡

𝑃𝑘,𝑗 (2.45)

As before we only sum over breakthrough patents and normalize by U.S. population in year 𝑡

(denoted by 𝜅𝑡). This yields an occupation’s exposure in each year to the 500 topics which

are found to be the most important among the breakthrough patents. Though equation 2.45

looks a bit like our construction of 𝜂𝑖,𝑡 in equation 2.12, it differs in that we no longer directly

use word vectors to compute similarities. Instead, the Cong et al. (2019) technique only uses

the word vectors to give an educated guess on the topics contained in the set of documents.

Thus occcupations are similar to a given topic when they contain words that are also found

in that topic.

We focus on the period of time covered by our CPS merged outgoing rotation group

sample (1985-2018) used in the employment regressions in Figure 2-8. This is for two reasons:

first, this is the period where our employment and wage data coverage is most comprehensive,

with a yearly time series and relatively stable occupation classifications. Second, the task

composition of innovations has begun to change in this period of time relative to all previous

innovation waves. In particular, cognitive skills have started to become more related to

innovations, and this has been driven by the rising importance of information technology

and electronics patents, which was not the case prior to the late 20th century. If skill-biased

technological change has complemented the skillset of cognitive occupations, then innovations

related to these occupations may be complementary to rather than a substitute for their

skills. Thus if our measure mixes these two channels it is particularly likely to occur during

this period of time.

Steps 1 and 2 above simply group documents into topics of related terms, compute

how related a given topic is to each individual document, and provide an estimate of how

important each topic is to the overall set of documents. Justification for the use of LSH

clustering of word vectors to obtain topics and the singular value decomposition to infer topic
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importance/document topic loadings are discussed at length in Cong et al. (2019), to which we

refer the interested reader for further details. For our purposes it suffices that by performing

steps 1 through 3 we are able to obtain a panel of 500 predictors at the occupation-by-year

level and which represent exposures to topics of words which are particularly relevant to

patents.

In brief, this approach can be summarized as follows. We first extract the 500 most

important common factors (topics) from the text of breakthrough patents using the approach

of Cong et al. (2019) and the vector representations of word embedings discussed in Section

2.2. We then use these 500 textual factors to form a single predictor that is optimized to

predict occupation declines in-sample. To do so, we examine the univariate performance of

each factor in predicting employment declines, and then form a linear combination (the first

principal component) of the predictors that are statistically significant negative predictors at

the 5%. We also construct a labor-enhancing factor using the converse exercise.

Appendix Table 2.16 summarizes our findings. By design, both factors predict employment

with the correct sign in-sample. More importantly, both of these factors predict wage growth

with the same sign, despite the fact that they were not designed to do so and wage growth

is not highly correlated with employment growth. That said, the displacement factor (the

factor calibrated for employment declines) is a much stronger predictor of both employment

and wage growth than its counterpart designed to predict positive employment growth.

In terms of magnitudes, the employment and wage declines predicted by this statisti-

cal displacement factor are comparable to our baseline measure—that is, 1.25% vs 1.12%

employment declines at the 10-year horizon and 0.25% vs 0.20% decline in wage earnings).

The correlation between our baseline measure 𝜂𝑖,𝑡 and the statistical predictor constructed to

represent exposure to labor-saving technologies is approximately 73 percent. By contrast,

the correlation with the factor calibrated to predict employment increases is negative at -11

percent.
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2.6.7 Model Appendix

The model we use consider a continuum of workers, with a state parameter 𝜃 on the [0, 1]

interval, corresponding to their ability to produce 𝐻. Share 𝑠ℎ of workers have the ability to

accumulate 𝐻 over time, and have 𝐻 reset by a certain amount when new technology enters

the playing field. Technology is given by 𝜉 and has shocks of size 𝜅, which (in expectation)

displaces the human capital of 𝛼 share of workers, reducing their 𝜃 by 𝑚.

Production is given by a nested CES production function, where composite good 𝑋 is

produced via a combination of 𝐿 and 𝜉

𝑋 = (𝜉𝜌𝜆+ 𝐿𝜌(1 − 𝜆))(1/𝜌) .

Output, 𝑌 , is produced as a combination of 𝑋 and 𝐻:

𝑌 = (𝜇𝐻𝜎 + (1 − 𝜇)𝑋𝜎)(1/𝜎) .

Technology evolves with process

𝜉𝑡 = (1 − 𝑔)𝜉𝑡−1 + 𝜅 𝑑𝑁𝑡

where 𝑑𝑁 is a random variable with expectation 𝜔.

Worker 𝑖 ∈ 𝑠ℎ has evolving human capital such that

𝜃𝑖,𝑡 = 𝑚𝜃𝑖,𝑡−1 𝑑𝑀𝑖,𝑡 − 𝑑𝑖,𝑡 ℎ 𝜃𝑖,𝑡−1.

In this case, 𝑑𝑀 is a random variable representing human capital acquisition, 𝑚 is the size of

the jump relative to initial human capital, 𝑑𝑁 is the same shock variable as in the equation

for technology, and ℎ− is the scale of the loss of human capital (𝐻) if a shock occurs. 𝑑𝑖,𝑡 is

an i.i.d. binomial random variable with expectation 𝐸(𝑑) = 𝛼, indicating whether someone is

"exposed" to a technology shock or not. If you are exposed to a technology shock when one
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occurs, you experience the human capital loss, otherwise you do not.

We solve the model in discrete time, with a monthly time-step 𝛿𝑡, and we approximate

the continuum of workers with an exponentially increasing, finite grid of points on the [0, 1]

interval. Since we are approximating a continuum of workers, each gridpoint has an infinite

number of observations, and we can work directly with expectations when solving the model.

This means for a given starting grid point on the 𝜃 interval, we have

𝐸(𝜃𝑖,𝑡) = 𝜃𝑖,𝑡−1 +𝑚𝜑𝜃𝑖,𝑡−1 − 𝛼ℎ 𝜃𝑖,𝑡−1

Note that in discrete time, the technology and human capital processes admit a two-state

Markov-Switching VAR representation with a shock state (𝑠 = 0) and a no-shock state

𝑠 = 1. Let 𝑖 index the starting gridpoint of a worker, with 𝑖+ 1 and 𝑖− 1 being the adjacent

gridpoints.

With some abuse of notation, instead of thinking of 𝜃𝑖,𝑡 as a single worker on the grid, we

can think of it as the probability mass (share of workers) on a gridpoint 𝑖.

𝐸(𝜃𝑖,𝑡|𝑠 = 0) = 𝜃𝑖,𝑡−1 − 𝜑𝜃𝑖+1,𝑡−1 + 𝜑𝜃𝑖−1,𝑡−1

This works because we set the distance between gridpoints is 𝑚. If we have a shock, we have

𝐸(𝜃𝑖,𝑡|𝑠 = 1) = 𝜃𝑖,𝑡−1 − 𝜑𝜃𝑖+1,𝑡−1 + 𝜑𝜃𝑖−1,𝑡−1 − 𝛼𝜃𝑖,𝑡−1) + 𝛼ℎ 𝜃𝑖+𝑚,𝑡−1).

In other words, if we experience a shock, we get some mass from the gridpoint which is 𝑚ℎ

above us, lose share 𝛼 of our previous density as exposed workers, lose share 𝜑 to a higher

gridpoint as workers acquire new skills, and gain share 𝜑 from the gridpoint below.

We can represent this as a VAR process, with transition probability 𝛼 to a gridpoint

which is 𝑚ℎ− points below the current, 𝜑 to a gridpoint above us, and so on. In practice, in

order to make ℎ− a continuous parameter, we split the fall probability across the two relevant

gridpoints, with density allocated between them to make the fall have expectation ℎ−. For

example, if 𝑚 was 3%, and we needed a 5% fall, conditional on the fall a worker would have
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(roughly) a 2/3 chance of falling two gridpoints and a 1/3 chance of falling 1 gridpoint.

The transition process for the workers in 𝑠𝑙 is very simple, as it is an absorbing state with

no entry or exit. So

𝜃𝑠𝑙,𝑡 = 𝜃𝑠𝑙,𝑡−1

in both shock periods and no-shock periods.

The transition process for 𝜉 is given by

𝜉𝑡|𝑠𝑡 = 0 = (1 − 𝑔)𝜉𝑡−1

and

𝜉𝑡|𝑠𝑡 = 1 = (1 − 𝑔)𝜉𝑡−1 + 𝜅.

Suppose we set up the VAR coefficient matrices, 𝐴, accordingly. Each period has probability

𝜔 of experiencing a shock, and probability 1 − 𝜔 of not experiencing a shock. This gives us

transition process

𝐸(𝐴𝑡) = (1 − 𝜔)𝐴𝑡−1,0 + 𝜔𝐴𝑡−1,1.

Bianchi (2016) demonstrates how to find the steady state of the Markov-Sitching VAR

model. For this exposition, we rely on his notation. He considers the MS-VAR process

𝑍𝑡 = 𝑐𝜉𝑡 + 𝐴𝜉𝑡𝑍𝑡−1 + 𝑉𝜉𝑡𝜖𝑡,

and

𝑉𝜉𝑡 = 𝑅𝜉𝑡Σ𝜉𝑡 ,

where 𝑧𝑡 is a vector of variables, 𝑐𝑡 is a vector of constants,

In practice, our process for the mass of 𝜃 has a reflecting barrier at 1, and in order to

enforce the sum-to-1 constraint for the total mass on the 𝜃 grid we represent the VAR through

a VECM process.

We then solve for the steady state by finding the largest real eigenvalue of the Bianchi
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representation of the MS-VAR system. Because we have an absorbing state at the bottom of

the 𝜃 grid whose density is a known value (fixed before calibration), we exclude that point

from the solution, scaling down the intercept term by 1 − 𝑠𝑙. Finally, to compute the value

at the top of the 𝜃 grid (call it gridpoint 𝑗), we simply compute 1 −∑︀
𝑖 𝑗 𝜃𝑠𝑠,𝑖 − 𝑠𝑙.

Once we’ve solved for the ergodic steady state, we can begin calculating the model

moments which correspond to our empirical calibration targets. Our process sets time step 𝛿𝑡

to one month. Our theoretical moments are calculated as one-month impact responses, scaled

by an annualization factor
√︁

12𝜔(1 − 𝜔) for aggregate moments (labor share and output),

and
√︁

12𝜔𝛼(1 − 𝜔𝛼).

Impact responses for labor share and output are calculated relative to the ergodic steady

state for all state variables. The steady state values are iterated forward one period using the

transition matrices constructed above, but where a shock happens with certainty (effectively

setting 𝜔 = 1 for a single period). To compare output, labor share, wages, and other desired

targets, between the values at the ergodic steady state relative to the shock period, we follow

this procedure in each period. First, we calculate the level of 𝐻 at the steady state as

𝐻 =
𝑁∑︁

𝑖=1
𝜃𝑖𝑚(𝜃𝑖)

where 𝑚(𝑡ℎ𝑒𝑡𝑎𝑖) is the mass of theta at gridpoint 𝑖. The workers in 𝑠𝑙 produce no H, so this

is sum of the value for 𝜃 at each gridpoints times the mass of workers at that rung of the

ladder. 𝐿 is calculated as 1 −𝐻. Output 𝑌 and the composite good 𝑋 are calculated with

the equations provided above. 𝜎, 𝜌, 𝜇, and 𝜆 are free parameters. If we call 𝜉* the value of

the technology state variable at the ergodic steady state, 𝜉 post-shock is 𝜉* + 𝜅, where 𝜅 is

a free variable. Wages associated with 𝐻 (𝑤ℎ) and 𝐿 (𝑤𝑙) are calculated as the marginal

product of each task. Given output, these are calculated as

𝑤ℎ =(1 − 𝜇)𝜇𝐻𝜎−1(𝜆𝜉𝜌 − 𝐿𝜌(𝜆− 1))(𝜎/𝜌) + 𝜇𝐻𝜎)(1/𝜎)

(1 − 𝜇)(𝜆𝜉𝜌 − 𝐿𝜌(𝜆− 1))(𝜎/𝜌) + 𝜇𝐻𝜎
,
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and

𝑤𝑙 = (1 − 𝜇)(𝜆𝜉𝜌 − 𝐿𝜌(𝜆− 1))(𝜎/𝜌) + 𝜇𝐻𝜎)(1/𝜎)(𝜆− 1)(𝜆𝜉𝜌 − 𝐿𝜌(𝜆− 1))(𝜎/𝜌)(𝜇− 1)𝐿𝜌−1

(𝜆𝜉𝜌 + (1 − 𝜆)𝐿𝜌)((1 − 𝜇)(𝜆𝜉𝜌 − 𝐿𝜌(𝜆− 1))(𝜎/𝜌) + 𝜇𝐻𝜎)

For each period in question for the impact responses, wages are calculated by plugging in

the relevant state variables. Impact responses are calculated in log differences to align with

our calibration targets (e.g. log 𝑌𝑠ℎ𝑜𝑐𝑘 − log 𝑌𝑠𝑠), and subsequently scaled by the annualization

factor.
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2.7 Appendix Figures and Tables

Table 2.10: Most Similar Patents For Select Occupations

Cashiers (SOC Code 412011)

5055657 Vending type machine dispensing a redeemable credit voucher

upon payment interrupt

5987439 Automated banking system for making change on a card or

user account

5897625 Automated document cashing system

6012048 Automated banking system for dispensing money orders, wire

transfer and bill payment

5598332 Cash register capable of temporary-closing operation

Loan Interviewers and Clerks (SOC Code 434131)

6289319 Automatic business and financial transaction processing sys-

tem

5611052 Lender direct credit evaluation and loan processing system

6233566 System, method and computer program product for online

financial products trading

5940811 Closed loop financial transaction method and apparatus

5966700 Management system for risk sharing of mortgage pools

Railroad Conductors (SOC Code 534031)

5828979 Automatic train control system and method

6250590 Mobile train steering
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3944986 Vehicle movement control system for railroad terminals

6135396 System and method for automatic train operation

5797330 Mass transit system

Table 2.11: Most Similar Occupations For Select Patents

“Knitting-machine” (Patent No. 276146, Issued in 1883)

Textile Knitting and Weaving Machine Setters, Operators, and

Tenders

Sewing Machine Operators

Sewers, Hand

Fabric Menders, Except Garment

Textile Winding, Twisting, and Drawing Out Machine Setters,

Operators, and Tenders

“Metal wheel for vehicles” (Patent No. 1405358, Issued in 1922)

Automotive Service Technicians and Mechanics

Cutting, Punching, and Press Machine Setters, Operators, and

Tenders, Metal and Plastic

Maintenance Workers, Machinery

Grinding, Lapping, Polishing, and Buffing Machine Tool Set-

ters, Operators, and Tenders, Metal and Plastic

Rolling Machine Setters, Operators, and Tenders, Metal and

Plastic

“System for managing financial accounts by a priority allocation of funds among accounts”
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(Patent No. 5911135, Issued in 1999)

Financial Managers

Credit Analysts

Loan Interviewers and Clerks

Accountants and Auditors

Bookkeeping, Accounting, and Auditing Clerks

Table 2.12: Occupations Most and Least Exposed to Innovation

Top 5 Occupations by Average 𝜂𝑖,𝑡 Bottom 5 Occupations by Average 𝜂𝑖,𝑡

Inspectors, Testers, Sorters, Samplers, and

Weighers

Mental Health Counselors

Metal Workers and Plastic Workers, All Other Dancers

Cutting, Punching, and Press Machine Setters,

Operators, and Tenders, Metal and Plastic

Funeral Attendants

Production Workers, All Other Judges, Magistrate Judges, and Magistrates

Electromechanical Equipment Assemblers Clergy
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Table 2.13: Unconditional Correlations of 𝜂𝑖,𝑡 With Task Categories

NR Cog (Analytical) -0.12**

(-2.53)

NR Cog (Interpersonal) -0.16***

(-4.65)

NR Man (Physical) 0.24***

(5.65)

NR Man (Interpersonal) -0.33***

(-8.43)

Routine Cognitive 0.033

(0.95)

Routine Manual 0.24***

(5.74)

This figure plots the correlations of 𝜂𝑖,𝑡 with the occupation task types computed from O*NET

in Acemoglu and Autor (2011). Correlations are weighted by the Acemoglu and Autor (2011)

occupation employment weights used to normalize the distribution of tasks to mean zero and

standard deviation one.
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Table 2.15: Technology And Employment During and Outside of Innovation Waves

Innovation Wave Other Years

Technology Exposure, 𝜂𝑖,𝑡 -0.82*** -0.53

(-5.92) (-1.54)

Time FE X X

N 1106 1468

R2 (Within) 0.091 0.018

The table above plots results from regressions of the form

log(𝑌𝑖,𝑡+𝑘) − log(𝑌𝑖,𝑡) = 𝛼0 + 𝛼𝑡 + 𝛽𝜂𝑖,𝑡 + 𝜖𝑖,𝑡

for 𝑘 = 20 years for Census years spanning from 1850-2000. Here 𝑌𝑖,𝑡 is occupation’s share in

total non-farm employment. 𝜂𝑖,𝑡 is standardized and growth rates are in annualized percentage

terms. The sample is split into periods of innovation waves as identified by the breakthrough

patent index of Kelly et al. (2020). The 20 year periods beginning in years 1880, 1910,

1920, and 1980, 1990 are labelled innovation waves with the remaining years representing

non-innovation wave periods. Standard errors are clustered by occupation and corresponding

t-stats are shown in parentheses. Observations are weighted by occupation employment share

at time 𝑡.
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Figure 2-14: Sample Patent Topic Word Clusters

The above are four of the topics resulting from the LSH approximate nearest neighbors

routine used to separate words into clusters as described in section 2.3.3. The relative size of

the word corresponds to the importance of that word within the topic.
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Table 2.16: Predictive Performance of 10-Year Employment and Wage Growth on Predictors
Constructed From Patent Topics

Panel A: Negative Constructed Predictor

Employment Growth Wage Growth

𝜉𝑀𝑒𝑎𝑛 -1.25*** -0.21***

(-6.79) (-6.10)

𝜉𝑃 𝐶1 -1.09*** -0.20***

(-6.32) (-6.11)

Year FEs X X X X

Controls X X X X

Panel B: Positive Constructed Predictor

Employment Growth Wage Growth

𝛾𝑀𝑒𝑎𝑛 0.59*** 0.019

(3.84) (0.70)

𝛾𝑃 𝐶1 0.50*** 0.0062

(3.67) (0.24)

Year FEs X X X X

Controls X X X X

Note: The tables above show coefficients from panel regressions of annualized wage and income growth rates
over the 10-year horizon on textual factors constructed to predict employment as described in section 2.3.3.
Regressions are of the form

𝑦𝑖,𝑡+𝑘 − 𝑦𝑖,𝑡 = 𝛼+ 𝛽𝑍𝑖,𝑡 + 𝛿𝑋𝑖,𝑡 + 𝜀𝑖,𝑡

For 𝑍𝑖,𝑡 = 𝜉𝑖,𝑡 (“labor-saving”) or 𝛾𝑖,𝑡 (“productivity enhancing”). Controls 𝑋𝑖,𝑡 include three one-year lags
of dependent variable, time fixed effects, wage, and occupation employment share. Subscripts 𝑃𝐶1 and
𝑀𝑒𝑎𝑛 denote versions computed using either the first principal component or cross-sectional mean across
individual textual predictors derived from the patent topics identified by the Cong et al. (2019) method.
Dependent variable is expressed in annualized percentage terms and 𝜂𝑖,𝑡 is standardized. Standard errors
are clustered by occupation and independent variables are standardized. Observations are weighted by
occupation’s employment share at time 𝑡. The sample uses CPS merged outgoing rotation group data starting
in 1982.
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Table 2.17: Correlations Between Predictors Constructed From Patent Topics and Different
Versions of Occupation Technology Exposure 𝜂𝑖,𝑡

All Patents Drop ICT Patents Just ICT Patents

𝜉𝑀𝑒𝑎𝑛 0.73*** 0.88*** 0.41***

(20.53) (31.71) (10.21)

𝛾𝑀𝑒𝑎𝑛 -0.11*** -0.17*** -0.030

(-5.26) (-6.39) (-1.13)

Note: This table reports correlations between versions of technology exposure 𝜂𝑖,𝑡 formed using different
sets of patents and the composite predictors constructed from textual factors using the Cong et al. (2019)
method to predict employment outcomes either negatively (𝜉𝑀𝑒𝑎𝑛) or positively (𝛾𝑀𝑒𝑎𝑛). The “𝑀𝑒𝑎𝑛” label
denotes versions of composite predictors constructed by taking the cross-sectional means across individual
textual factors which predict employment either negatively or positively. The first two columns represent the
baseline measure of 𝜂𝑖,𝑡 constructed using all patents; the next two columns drop ICT patents, defined to be
those falling under the instruments/information or electronics categories; finally, the last two columns form
𝜂𝑖,𝑡 only using ICT patents.
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Table 2.18: Breakthrough patents most related to tasks performed by order-fulfillment
clerks

US. Pat. # Distance (𝜌) Issue Year Title

5,696,906 0.933 1997 Telecommunication user account management system and method

5,627,973 0.915 1997 Method and apparatus for facilitating evaluation of business opportunities for sup-

plying goods and/or services to potential customers

5,689,705 0.896 1997 System for facilitating home construction and sales

5,592,560 0.885 1997 Method and system for building a database and performing marketing based upon

prior shopping history

5,687,212 0.885 1997 System for reactively maintaining telephone network facilities in a public switched

telephone network

5,628,004 0.881 1997 System for managing database of communication of recipients

5,621,812 0.880 1997 Method and system for building a database for use with selective incentive marketing

in response to customer shopping histories

5,638,457 0.880 1997 Method and system for building a database for use with selective incentive marketing

in response to customer shopping histories

5,659,469 0.879 1997 Check transaction processing, database building and marketing method and system

utilizing automatic check reading

5,592,378 0.874 1997 Computerized order entry system and method

5,787,405 0.896 1998 Method and system for creating financial instruments at a plurality of remote

locations which are controlled by a central office

5,802,513 0.884 1998 Method and system for distance determination and use of the distance determination

5,717,596 0.878 1998 Method and system for franking, accounting, and billing of mail services

5,797,002 0.873 1998 Two-way wireless system for financial industry transactions

5,812,985 0.866 1998 Space management system

5,774,877 0.866 1998 Two-way wireless system for financial industry transactions

5,848,396 0.865 1998 Method and apparatus for determining behavioral profile of a computer user

5,790,634 0.865 1998 Combination system for proactively and reactively maintaining telephone network

facilities in a public switched telephone system

5,734,823 0.864 1998 Systems and apparatus for electronic communication and storage of information

5,712,987 0.864 1998 Interface and associated bank customer database
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Table 2.19: Worker Earnings and Technology Exposure, by Prior Income and Education /
Age

Income Percentile

(1) (2) (3) (4) (5)

Age Education

25–35 35–45 45–55 College No Coll

A. Cond. Mean, 𝐸[𝑔], by Horizon

0 to 25-th -1.05 -1.72 -2.03 -2.14 -1.11

(-2.57) (-6.36) (-5.06) (-6.32) (-3.58)

25 to 50-th -0.28 -0.87 -2.24 -0.92 -1.11

(-0.97) (-2.89) (-3.18) (-2.72) (-4.40)

50 to 75-th -0.57 -0.68 -2.43 -0.82 -1.60

(-1.46) (-2.09) (-3.32) (-2.02) (-4.36)

75 to 95-th -0.39 -0.49 -2.22 -0.60 -2.13

(-0.53) (-1.56) (-4.73) (-1.37) (-7.52)

95 to 100-th -3.07 -1.85 -2.86 -1.98 -3.50

(-4.22) (-3.07) (-3.51) (-4.10) (-4.47)

B. Risk, Absolute Income Growth 𝐸[|𝑔|]

0 to 25-th 0.01 -0.55 0.06 -0.51 -0.18

(0.04) (-2.13) (0.18) (-1.74) (-0.77)

25 to 50-th 0.20 -0.17 0.55 0.12 0.03

(0.68) (-0.81) (0.83) (0.48) (0.11)

50 to 75-th 0.42 0.06 1.17 0.50 0.49

(1.66) (0.31) (1.86) (1.85) (1.44)

75 to 95-th 0.61 0.12 1.51 0.66 1.01

(1.56) (0.45) (3.84) (2.87) (2.94)

95 to 100-th 2.38 1.44 2.38 2.01 2.09

(3.05) (3.03) (3.92) (6.02) (2.76)

C. Skewness, Prob. Large Income Decline 𝑝(𝑔 < 𝑝10)

0 to 25-th 0.18 0.25 0.68 0.40 0.20

(0.99) (1.93) (4.37) (2.5) (1.39)

25 to 50-th 0.07 0.16 0.73 0.24 0.28

(0.3) (0.86) (2.42) (1.37) (1.34)

50 to 75-th 0.18 0.16 0.91 0.26 0.56

(1.26) (1.08) (3.05) (1.82) (4.03)

75 to 95-th 0.07 0.05 0.90 0.15 0.83

(0.28) (0.27) (3.99) (0.87) (6.28)

95 to 100-th 2.42 0.68 1.46 1.14 1.53

(4.52) (2.24) (4.43) (4.56) (4.89)

Note: Panel A shows the estimated slope coefficients (times 100) from equation (2.21) in the main text:
the dependent variable is worker earnings growth over a 5-year horizon; the main independent variable of
interest is a worker’s technology exposure 𝜂𝑖,𝑡. The slope estimate 𝛽(ℎ) is allowed to vary with the worker’s
prior income rank and age (columns (1) to (3)) or education (columns (4) to (5)). Panel B shows the slope
coefficients of a variant of the above specification where we replace the dependent variable 𝑔𝑖,𝑡:𝑡+ℎ with its
absolute value |𝑔𝑖,𝑡:𝑡+ℎ|. Panel C replaces the dependent variable with a dummy that takes the value of one if
𝑔𝑖,𝑡:𝑡+ℎ lies in the bottom 10-th percentile. See notes to Tables 2.3 to 2.5 for additional details.
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Table 2.20: Worker Earnings and Technology Exposure, by Education

Horizon Education (1) (2) (3) (4)

3 Years College -0.975 -0.880 -0.924 -0.911

(0.26) (0.246) (0.292) (0.274)

No College -1.32 -1.27 -1.30 -1.30

(0.153) (0.168) (0.253) (0.233)

No College - College -0.347 -0.391 -0.378 -0.388

(0.209) (0.197) ( 0.199) ( 0.192)

5 Years College -1.35 -1.17 -1.20 -1.14

(0.291) (0.282) (0.362) (0.343)

No College -1.68 -1.55 -1.54 -1.50

(0.216) (0.225) (0.31) (0.291)

No College - College -0.336 -0.387 -0.332 -0.3603

(0.2315) (0.225) (0.230) (0.225)

10 Years College -1.24 -1.08 -1.31 -1.21

(0.352) (0.343) (0.504) (0.486)

No College -1.82 -1.67 -1.85 -1.76

(0.281) (0.262) (0.404) (0.393)

No College - College -0.581 -0.581 -0.544 -0.550

(0.283) (0.274) (0.290) (0.283)

Fixed Effects:

Industry X X

Occupation X X

Year X

Industry x Year X X

Occupation x Year X X
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Table 2.21: Worker Earnings and Technology Exposure, by Age

Worker Age Horizon (1) (2) (3) (4)

3 Years 25-35 -0.479 -0.396 -0.389 -0.388

(0.268) (0.244) (0.224) (0.209)

35-45 -0.903 -0.83 -0.866 -0.857

(0.18) (0.159) (0.181) (0.164)

45-55 -1.98 -1.91 -1.96 -1.95

(0.392) (0.42) (0.542) (0.524)

(45-55) - (25-35) -1.50 -1.51 -1.57 -1.56

(0.428) (0.441) (0.463) (0.462)

5 Years 25-35 -0.874 -0.706 -0.683 -0.64

(0.243) (0.227) (0.271) (0.251)

35-45 -1.23 -1.08 -1.09 -1.04

(0.148) (0.148) (0.221) (0.204)

45-55 -2.44 -2.29 -2.3 -2.25

(0.535) (0.542) (0.656) (0.634)

(45-55) - (25-35) -1.56 -1.59 -1.62 -1.61

(0.489) (0.494) (0.516) (0.512)

10 Years 25-35 -0.986 -0.823 -1.01 -0.918

(0.291) (0.266) (0.397) (0.38)

35-45 -1.43 -1.26 -1.47 -1.37

(0.238) (0.228) (0.39) (0.377)

45-55 -2.54 -2.40 -2.60 -2.51

(0.682) (0.676) (0.861) (0.832)

(45-55) - (25-35) -1.56 -1.58 -1.59 -1.59

(0.565) (0.564) (0.579) (0.574)

Fixed Effects:

Industry X X

Occupation X X

Year X

Industry x Year X X

Occupation x Year X X
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Table 2.22: Worker Earnings and Technology Exposure, by Prior Income

Horizon Income Rank (1) (2) (3) (4)

3 Years [0, 25) -1.34 -1.21 -1.28 -1.24

(0.236) (0.239) (0.207) (0.216)

[25, 50) -0.934 -0.811 -0.883 -0.849

(0.145) (0.167) (0.212) (0.205)

[50, 75) -1.10 -0.974 -1.05 -1.01

(0.241) (0.244) (0.304) (0.289)

[75, 95) -1.14 -1.00 -1.09 -1.05

(0.28) (0.266) (0.26) (0.256)

[95, 100] -2.31 -2.20 -2.25 -2.24

(0.421) (0.422) (0.374) (0.366)

5 Years [0, 25) -1.76 -1.51 -1.56 -1.49

(0.234) (0.258) (0.267) (0.281)

[25, 50) -1.26 -1.02 -1.08 -1.01

(0.186) (0.21) (0.281) (0.282)

[50, 75) -1.43 -1.19 -1.24 -1.18

(0.33) (0.323) (0.395) (0.383)

[75, 95) -1.42 -1.17 -1.24 -1.17

(0.328) (0.315) (0.345) (0.339)

[95, 100] -2.71 -2.48 -2.52 -2.47

(0.578) (0.574) (0.516) (0.52)

10 Years [0, 25) -2.05 -1.74 -2.00 -1.85

(0.36) (0.337) (0.395) (0.393)

[25, 50) -1.14 -0.858 -1.1 -0.964

(0.338) (0.349) (0.474) (0.472)

[50, 75) -1.19 -0.90 -1.16 -1.01

(0.414) (0.40) (0.578) (0.541)

[75, 95) -0.986 -0.686 -0.967 -0.807

(0.445) (0.436) (0.527) (0.492)

[95, 100] -2.46 -2.20 -2.42 -2.28

(0.589) (0.594) (0.611) (0.596)

Fixed Effects:

Industry X X

Occupation X X

Year X

Industry x Year X X

Occupation x Year X X
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Table 2.23: Technology And Employment Over the Long Run (1850-2010)–Heterogenous
effects by age

A. Full Sample
B. Sub-samples

1850–1920 1930–1960 1970–1990

Age (20–29) × Technology Exposure, 𝜂𝑖,𝑡 -0.71*** -2.24*** -0.073 -0.58**

(-3.46) (-4.08) (-0.19) (-2.33)

Age (30–39) × Technology Exposure, 𝜂𝑖,𝑡 -0.57*** -1.70*** -0.098 -0.50**

(-3.41) (-3.28) (-0.31) (-2.44)

Age (40–49) × Technology Exposure, 𝜂𝑖,𝑡 -1.10*** -2.13*** -0.62* -1.03***

(-6.20) (-4.40) (-1.88) (-4.85)

Observations 6,512 2,232 1,989 2,291

R2 (Within) 0.066 0.074 0.055 0.090

Controls

Age Group X Year FE Y Y Y Y

Lagged Dependent Variable Y Y Y Y

P-val (40–49) - (20–29) 0.015 0.776 0.129 0.002

Note: The table above reports results from regressions of the form

1
𝑘

(︁
log 𝑌𝑖,𝑎′,𝑡+𝑘 − log 𝑌𝑖,𝑎,𝑡

)︁
= 𝛼0 + 𝛼𝑡 + 𝛽(𝑘, 𝑎)𝜂𝑖,𝑡 + 𝜌 (log 𝑌𝑖,𝑡 − log 𝑌𝑖,𝑡−𝑘) + 𝜖𝑖,𝑡

for 𝑘 = 20 years for Census years spanning from 1850-2010, where we allow the coefficients to vary by
age. The dependent variable 𝑌𝑖,𝑎,𝑡 tracks employment by workers in age group 𝑎; for example, to compute
the 20-year growth rate in employment in 1900 for workers aged 20–29 in occupation 𝑖, we compare it to
the employment of 40–49 year old workers in occupation 𝑖 in 1920. The main variable of interest is 𝜂𝑖,𝑡,
our technology exposure measure (normalized to unit standard deviation). Employment growth rates is in
annualized percentage terms. Standard errors are clustered by occupation and corresponding t-stats are
shown in parentheses. Observations are weighted by occupation employment share at time 𝑡. Census year
1870 does not show up in the first column of the 20-year subsample regressions because the 1890 Census
records no longer exist.
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Chapter 3

Intermediation Frictions in Equity

Markets

Empirical evidence has recently accumulated in favor of asset pricing models with frictions

and that feature sophisticated financial intermediaries as the marginal investors. This has

been particularly so in complex asset classes. At the same time, the relative importance of

these sorts of theories for explaining stock price movements has been questioned, even among

proponents of intermediary asset pricing models. There is cause for such skepticism, due to

the comparative ease of household stock market participation relative to other more complex

asset markets (for example credit default swaps, mortgage-backed securities, or even options

and foreign exchange), which require far more expertise in order to participate. Despite the

success of intermediary-based empirical asset pricing models–such as Adrian, Etula, and Muir

(2014) and He, Kelly, and Manela (2017)–in explaining cross-sections of returns on stocks and

other asset classes, such tests cannot rule out that a household-based pricing kernel holds

for stocks because households also participate heavily in equity markets, both directly and

indirectly, alongside financial institutions.

However, if households and institutional investors have differential preferences for direct

holding of certain stocks for any reason unrelated to the true distributions of future cashflows,

whether for heterogeneous beliefs or differential trading costs, dispersion in intermediation
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independent of fundamentals can arise naturally in the cross-section, even when households

are not prevented from trading directly. This dispersion leads to similar patterns in asset

covariances with shocks to intermediaries as in models where intermediaries face constraints

and households are impeded from trading directly. The basic prediction is that for two

otherwise similar assets, the more intermediated asset exhibits larger price response and risk

premia variation due to shifts in intermediary risk-bearing capacity.

I find evidence strongly in support of this implication within the equity asset class. After

accounting for firm characteristics, excess returns on stocks that are held more by some of

the largest and most active institutional investors in equity markets (mutual funds, hedge

funds, and other investment advisors) covary more with theoretically-motivated empirical

proxies for shocks to intermediary risk tolerance. My main empirical proxy combines the

two primary empirical measures of shocks to an intermediary pricing kernel proposed in the

literature. Adrian, Etula, and Muir (2014) propose shocks to broker-dealer book leverage,

while He, Kelly, and Manela (2017) use shocks to the market equity capital ratio of Federal

Reserve primary dealer bank holding companies. I simply standardize both of these measures

and take the average of the two, similarly to the approach in Haddad and Muir (2018), who

argue that doing so provides a good proxy for average financial sector willingness to take risk.

I also include tests with these measures separately, which provide evidence consistent with

my main proxy that combines the two. I further show that another credible proxy for shocks

to financial sector risk-bearing capacity–the excess return on the financial sector–displays the

same empirical pattern of increased exposure to shocks to intermediary risk-bearing capacity

along the dimension of increased intermediation.

Figure 3-1 illustrates some of my findings for betas on contemporaneous shocks to inter-

mediary capital. Stocks sorted on a measure of intermediation that holds stock fundamentals

constant have monotonically increasing betas on intermediary capital shocks; a portfolio

formed on stocks from the top quintile of my intermediation measure has a beta of about 5.1

on intermediary capital shocks, while the beta on the lowest quintile is about 0.9. Moreover,

intermediary shocks significantly explain the spread in returns between the top and bottom
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portfolios, with a t-stat of 4.21.

Figure 3-1: Coefficients on Intermediary Shocks Over Portfolios Formed on Inter-
mediation Quintile

This figure shows the coefficient estimates on the average of the standardized Federal Reserve
primary dealer equity capital ratio shocks from He, Kelly, and Manela (2017) and the broker-dealer
book leverage growth shocks from Adrian, Etula, and Muir (2014) for five portfolios formed on
the intermediation measure 𝜖𝑖,𝑡 (which is constructed so as to be uncorrelated with fundamental
stock characteristics; section 3.3.1 discusses this in more detail), as well as the coefficient on
the intermediary shocks for the top minus bottom quintile spread. The sample is quarterly and
comprises 1980q2 to 2017q3. The confidence bands represent 95% confidence intervals computed
from Newey-West standard errors.

Predictive tests using state variables proposed in the literature to capture intermediary

willingness to take risk also exhibit a pattern in line with the mechanisms illustrated in

intermediary asset pricing models. Namely, state variables that proxy for higher (lower)

willingness to take risk predict returns more negatively (positively) for similar stocks that

are more intermediated. Following He, Kelly, and Manela (2017), I use the squared market

leverage ratio of Federal Reserve primary dealer bank holding companies and the book

leverage ratio of broker dealers obtained from the Flow of Funds accounts in predictability

tests, taking the average of the standardized versions of these two state variables as my main

proxy for intermediary risk appetite at the current date.1 I also show that these measures
1As He, Kelly, and Manela (2017) point out, these two state variables predict stock market returns with

237



perform well when included separately, and another proxy motivated by theory, financial

sector stock market wealth share, predicts returns more negatively for the more intermediated

stocks as implied by the theory.

The predictability tests suggest that discount rates on more intermediated stocks respond

more to shocks to intermediary risk-bearing capacity, a fundamental feature in models of

intermediary asset pricing. Such implications are discussed in more detail in section 3.1,

where I present a simple model in which intermediary risk tolerance can shift as a result of

shocks to some underlying state variables. Shocks to these state variables implicitly represent

shocks to the capitalization of intermediaries, which in turn cause financial constraints on

intermediaries to be more binding. This basic mechanism is inspired by numerous papers

from the intermediary asset pricing literature.

I include an additional test confirming a feature in the cross-section of return predictability

which is consistent with theory, though it is not explicitly laid out in my simple static model. I

find that the predictive coefficients for the return spread between high- and low-intermediation

portfolios are positive but declining with the time horizon of the monthly returns being

predicted, and the 𝑅2 is also decreasing with the time horizon. This suggests shocks to

intermediaries induce temporary distortions in relative discount rates between more and

less intermediated stocks, with such distortions reverting over time as intermediary capital

recovers.2

The proxies for intermediary risk tolerance shocks proposed by He, Kelly, and Manela

(2017) and Adrian, Etula, and Muir (2014) focus on a set of levered institutions–namely dealer

banks and other broker-dealers–that have been argued in the literature to occupy a place of

central importance in financial markets and as marginal investors in pricing numerous asset

classes; however, they are not the same set of institutions whose stock holdings I measure

(though there is some overlap). The empirical evidence I present in section 3.3 implies that

these shocks also affect the risk-bearing capacity of the mutual funds, hedge funds, and other

opposite sign. Hence, when I take the average I take the negative of the broker-dealer leverage ratio so that
the composite measure predicts returns with a positive sign.

2This mechanism is outlined theoretically in Gromb and Vayanos (2018), for example.
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investment advisors whose holdings are included in my analysis. Therefore in section 3.4 I

suggest reasons that the risk-bearing capacity of these classes of financial institutions are

interlinked.

In my primary tests I construct a measure of stock-level intermediation that holds firm size,

pre-ranking CAPM beta, book-to-market, firm profitability, and investment constant, while

retaining wide variation in intermediation.3 I do this by running cross-sectional regressions of

stock percentage intermediated on stock characteristics and sorting on the residuals. In the

appendix I demonstrate that this cross-sectional regression specification isolates a component

of intermediary holdings that is unrelated to fundamentals and along which the stock price

response is monotonically increasing with shocks to intermediary risk-bearing capacity. In

particular, this specification arises in a setting related to the characteristics-demand setup

of Koijen and Yogo (2019) when households and financial institutions believe that expected

asset cashflows and covariances are linear in characteristics, but they may disagree about first

moments. I also show that my findings don’t depend crucially on the set of characteristics

considered, so long as stock size is accounted for. In robustness checks I show that constructing

a measure of intermediation that is uncorrelated with dozens of additional stock characteristics

leaves results unchanged. These findings similarly hold after just controlling for stock size in

the cross-sectional regressions.

Analysis at the individual stock-level via panel regressions corroborate portfolio-level

evidence–more intermediated individual stocks have increasing betas on contemporaneous

capital shocks and their returns are more predictable by the current capitalization of financial

intermediaries. Consider two stocks with the exact same characteristics, with one being fully

intermediated and the other owned entirely by households. My estimates indicate that a

one-standard deviation negative shock to intermediary risk-bearing capacity decreases the

return on the fully intermediated stock by about 8-10% on an annualized basis relative to

the non-intermediated stock. Meanwhile, predictive regressions imply that a one-standard

deviation decrease in the time 𝑡 intermediary risk tolerance increases the expected return

3I construct the accounting-based characteristics following Koijen and Yogo (2019), who in turn follow
the steps outlined in Fama and French (2015).
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on the intermediated stock by about 11 to 12% on an annualized basis relative to the stock

owned entirely by households.

Theoretical support for my empirical strategy is demonstrated in a simple economic

setting introduced in section 3.1. The model shows that if households are relatively more

willing to hold one asset for any reason unrelated to the true distribution of cash flows,

assets that are less preferred by households become more intermediated and have risk

premia that respond more to shocks to the intermediaries’ risk tolerance. In my setting

this increased intermediary willingness to hold certain assets comes because households have

either heterogeneous expectations errors or view direct investing in certain assets as relatively

more or less costly. The empirical implication is that relatively more intermediated assets

that are similar on fundamentals should have prices that move more with contemporaneous

intermediary shocks and risk premia that are more predictable by state variables representing

intermediary risk tolerance.

3.0.1 Contribution to the Literature

The literature connecting the marginal value of wealth of financial intermediaries to asset

price movements has grown rapidly in the aftermath of the financial crisis of 2008-2009, which

brought such theories to the forefront. Since then, theories of frictional intermediation have

found empirical support in many asset classes.4 Adrian, Etula, and Muir (2014) and He, Kelly,

and Manela (2017) show using classical asset pricing tests that proxies for the marginal utility

of a representative intermediary successfully price large cross-sections of portfolios spanning

multiple asset classes. Such tests imply that intermediaries are marginal investors in many

markets.5 These asset pricing tests do not necessarily mean that intermediation frictions

4For example, markets for credit-default swaps (Siriwardane, 2018 and Mitchell and Pulvino, 2012);
convertible bonds (Mitchell, Pedersen, and Pulvino, 2007); foreign exchange (Du, Tepper, and Verdelhan,
2018); life insurance (Koijen and Yogo, 2015); treasuries (Haddad and Sraer, 2018, and Anderson and Liu,
2018); and, mortgage-backed securities (Krishnamurthy, 2010 and Gabaix, Krishnamurthy, and Veron, 2007),
to name just a few examples.

5See also Muir (2017), Chen, Joslin and Ni (2016), Adrian, Moench, and Shin (2014), Kargar (2019), and
Ma (2019) for further empirical evidence on the connection between the health of financial intermediaries and
asset prices.
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matter for price movements in all markets, because they do not preclude the possibility that

households are jointly marginal with sophisticated intermediaries in certain asset classes.

They also do not rule out that intermediaries’ investment decisions merely directly reflect the

preferences of households on whose behalf they make their investment decisions.

Haddad and Muir (2018) address this issue by constructing empirical tests designed to

detect whether intermediaries matter for asset price movements or if they merely act as a

veil to pass on household preferences. Their estimates imply that intermediation frictions do

matter, especially in credit default swap, foreign exchange, commodities, and sovereign bond

markets. On the other hand, they argue that equities are the least likely asset class to find

price movements due to intermediation frictions (though they cannot rule out their presence).

Moreover, their focus is on making comparisons across broad asset class representative

portfolios; my focus is on heterogeneity in responses to shocks to intermediaries within the

equity asset class.

Other papers in this literature have expressed skepticism towards the relevance of these

theories in explaining price movements in equity markets. While He, Kelly, and Manela (2017)

find that their proxy for a representative intermediary stochastic discount factor performs

reasonably well in describing cross-sections of equity returns, they also argue that equity may

be the asset class least fitting to their setting and suggest that intermediaries may act as a

veil that merely passes through the preferences of households in equity markets. Similarly in

the theoretical literature He and Krishnamurthy (2013) think of their model in the context

of complex asset markets such as mortgage backed securities as opposed to equities. A

recent intermediary asset pricing paper that does focus on equity markets is Koijen and

Yogo (2019), who estimate a characteristics-based demand system for heterogeneous financial

intermediaries in equity markets; however, they don’t attempt to test how their findings

relate to friction-based intermediary asset pricing.6

I contribute to this literature by demonstrating that theories of frictional intermediation

do appear to matter for asset price movements in equity markets. In particular, my within-

6I draw from the set of stock characteristics that they use to create my primary measure of stock-level
intermediation (as detailed in section 3.3).
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asset class findings complement the between-asset class comparisons of Haddad and Muir

(2018). This paper also helps address the question posed by Cochrane (2011), which is to

explain why certain assets covary more with particular risk factors, rather than just examining

the cross-sectional asset pricing performance of factor models without any accounting for

determinants of the risk exposures. This paper demonstrates that risk factor loadings are in

part determined endogenously merely by the agents who own a given asset.

In a related paper, Cho (2019) finds that stocks with higher arbitrage position (determined

by abnormally high/low short interest in a stock) explains betas on shocks to the Adrian,

Etula, and Muir (2014) leverage factor in the post-1993 period when hedge funds became

more active in equity markets. I also focus on equity markets, but consider the holdings of a

much larger class of financial institutions and for multiple definitions of intermediary shocks;

analyze effects both at the portfolio and individual stock level; and, include contemporaneous

and predictive tests using shocks to and levels of the state-variables implied by intermediary

asset pricing models.

Cho (2019) contextualizes his findings within the Kondor and Vayanos (2019) setting of

minimal frictions. By contrast, I prefer the friction-based interpretation, since the empirical

measures proposed by Adrian, Etula, and Muir (2014) and He, Kelly, and Manela (2017)

are constructed to proxy for mechanisms described in friction-based models–Brunnermeier

and Pedersen (2009) and Adrian and Boyarchenko (2012) in the case of Adrian, Etula, and

Muir (2014), and He and Krishnamurthy (2013) and Brunnermeier Sannikov (2014) in the

case of He, Kelly, and Manela (2017). In Adrian, Etula, and Muir (2014) the underlying

friction comes from time-varying margin constraints, while in He, Kelly, and Manela (2017)

the friction entails an equity capital constraint imposed by investors in the equity of the

intermediary because of moral hazard problems in delegation to professional asset managers.

These frictions naturally lead to time-varying intermediary risk-bearing capacity, which is

the key mechanism I focus on in my model to derive the predictions that I test in the data.

Besides the primary connection with the theoretical and empirical literature in intermediary

asset pricing, this paper also has connections with research areas such as limits to arbitrage7

7See for example Shleifer and Vishny (1995) and Duffie (2010)
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and the effects of institutional ownership on asset prices.8

In section 3.2 I describe the data used and sampling criteria. Section 3.3 describes in detail

my empirical strategy and presents my empirical findings. In section 3.3.1 I explain in more

detail the construction of my stock-level intermediation measure and why the intermediary

shocks suggested by He, Kelly, and Manela (2017) and Adrian, Etula, and Muir (2014) can be

considered proxies for changes in financial risk-bearing capacity. Sections 3.3.2-3.3.4 show my

main findings, including portfolio- and stock-level analysis and robustness checks. Section 3.4

features a discussion on my empirical findings, including an examination of why the shocks to

levered intermediaries proposed in the literature may be directly connected to the marginal

utility/risk-bearing capacity of the financial institutions (mutual funds, hedge funds, and

other large investment advisors) whose asset holdings I include; finally, section 3.5 provides

some brief concluding remarks.

3.1 An Economic Setting For Empirical Tests

Theories linking asset price movements to intermediary health broadly divide into equity

constraint models where financial constraints bind when intermediaries’ net worth is low;9

and, another a class of models where constraints explicitly limit the amount of leverage or risk

that intermediaries can take on.10 To set the stage for my empirical tests I present a simple

model that takes the middle ground between these two broad classes of intermediary asset

pricing models by allowing risk-bearing capacity to vary due to underlying state variables,

which could be proxies for net worth shocks or changes in leverage/margin constraints. The

intended interpretation is that these shifts in willingness to take on risk come from constraints

that exist due to underlying agency frictions in delegation to intermediaries, which is a

unifying theme in these models. Though I present my theoretical predictions using a slightly

8See for example Gompers and Metrick (2001), Nagel (2005) and Basak and Pavlova (2013)
9See Bernanke and Gertler (1989) and Holmstrom and Tirole (1997) for early examples, and more recently

Brunnermeier and Sannikov (2014) and He and Krishnamurthy (2013).
10Examples from this literature include Brunnermeier and Pedersen (2009), Adrian and Shin (2014), and

Garleanu and Pedersen (2011).
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different setting, the intuition and consequent empirical implications in this section draw

from the models of He and Krishnamurthy (2018) and Haddad and Muir (2018).

There are two agents, a representative institutional investor/intermediary (labelled “𝐼”)

and a sophisticated household that can access stock markets directly (labelled “𝐻”). The

intermediary invests on behalf of an unmodeled household sector that cannot (or chooses not

to) invest directly in the stock market. There are 𝑁 risky assets each in net supply 1 with

payoffs that are jointly normally distributed

𝐷 ∼ 𝑁(𝜇,Σ) (3.1)

For simplicity I assume here that Σ is diagonal.11 Agents have constant absolute risk-aversion

utility. Intermediaries have coefficient of constant absolute risk aversion 𝛾𝐼(𝜔), which is a

function of a state variable (or variables) 𝜔. In the same manner households have coefficient

of absolute risk aversion 𝛾𝐻(𝜁), which I allow to be a function of a state variable (or variables)

𝜁. There is a risk-free asset with exogenously fixed gross rate of return 𝑅𝑓 .

I make the following assumption that generates heterogeneity in intermediation indepen-

dent of asset payoffs:

Key Assumption: Households invest as if 𝐷 ∼ 𝑁(𝜇+ 𝜆,Σ) for some vector 𝜆.

The interpretation of 𝜆 is to reflect potentially heterogeneous expectations errors across

stocks by households, or more broadly that households could have preferences for holding

certain stocks for reasons unrelated to cashflow distributions (i.e. differences in perceived

costliness of holding certain stocks). In more general terms, the presence of 𝜆 captures a

feature that is present in many intermediary asset pricing models, which is that households’

expertise in direct investing is limited in some way relative to intermediaries’.

Both agents maximize the expected utility of period 1 wealth. Given CARA utility, the

total wealth invested in risky assets is independent of initial wealth, and the normality of

11I relax this assumption in a characteristics-based extension on the model in Appendix 3.6.
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returns yields the familiar mean-variance criterion for portfolio choice for agent 𝑗:

𝜃𝑗 = 1
𝛾𝑗

Σ−1(𝜇𝑗 −𝑅𝑓𝑃 ) (3.2)

where 𝛾𝑗 is agent 𝑗’s absolute risk aversion and 𝜇𝑗 is agent 𝑗’s beliefs about expected cashflows.

The market clearing condition is

1 = 𝜃𝐼 + 𝜃𝐻 (3.3)

Now denote by 𝜌𝑗 ≡ 1
𝛾𝑗

, the risk-tolerance of agent 𝑗. Plugging in (3.2) for 𝑗 = 𝐼,𝐻 and

solving for 𝑃 gives

𝑃 = 𝜌𝐼(𝜔)𝜇+ 𝜌𝐻(𝜁)(𝜇+ 𝜆) − Σ1
(𝜌𝐼(𝜔) + 𝜌𝐻(𝜁))𝑅𝑓

(3.4)

The percent held by intermediaries can be expressed as

𝜃𝐼 = 𝜌𝐼(𝜔)Σ−1
[︃

−𝜆𝜌𝐻(𝜁) + Σ1
𝜌𝐼(𝜔) + 𝜌𝐻(𝜁)

]︃
(3.5)

Therefore the percent intermediated 𝜃𝐼 is strictly decreasing in 𝜆 (and vice versa). Consider

a local shock to 𝑃 by taking the total derivative:

d𝑃 = 𝜌
′
𝐼(𝜔)(Σ1 − 𝜆𝜌𝐻(𝜁))
𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁))2 d𝜔 + 𝜌

′
𝐻(𝜁)(Σ1 + 𝜆𝜌𝐼(𝜔))
𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁))2 d𝜁 (3.6)

≡ 𝛽𝜔𝑑𝜔 + 𝛽𝜁𝑑𝜁 (3.7)

This equation leads to one of the key implications of the model:

Proposition 1 Suppose 𝜌′
𝐼(𝜔) > 0. The component of the total derivative d𝑃 due to changes

in 𝜔, 𝛽𝜔, is strictly increasing in 𝜃𝐼 (percent intermediated).

Proof: Follows immediately from the positivity of 𝜌′
𝐼(𝜔), the fact that 𝜆 is strictly decreasing

in 𝜃𝐼 , and that the first term on the right-hand side of (3.6) is strictly decreasing in 𝜆.

Note that (3.6) resembles a regression of the local change in stock price (“stock return” for

a CARA investor) on shocks to 𝜔 and 𝜁. In other words, proposition 1 implies that the beta on
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a shock that increases (decreases) the intermediaries’ risk tolerance is increasing (decreasing)

in the percent intermediated. This is emphasized by He and Krishnamurthy (2018), and is

the first theoretical implication that I test in the data. Equation (3.6) also underscores an

issue highlighted by Haddad and Muir (2018), which is the potentially confounding effect of

shocks that change the risk tolerance of households (if 𝜌′(𝜁) ̸= 0 and shocks to 𝜔 and 𝜁 are

correlated). As such, in my empirical implementation I include shocks that could potentially

proxy for changes in household-level risk aversion.

Observe also the loading on the shock to household risk tolerance:

𝜌
′
𝐻(𝜁)(Σ1 + 𝜆𝜌𝐼(𝜔))
𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁))2 d𝜁 (3.8)

If 𝜌′
𝐻 > 0, then this is increasing in 𝜆 and hence is decreasing in percent intermediated.

The rate of decrease depends upon the slope 𝜌′
𝐻 . In my empirical tests I find that betas on

non-intermediary risk factors are relatively flat in the dimension of increased intermediation,

implying that the slope 𝜌′
𝐻 is also relatively flat.

Prices in (3.4) are increasing in 𝜆. Returning to the example of two similar stocks with

𝜆1 < 𝜆2; the price 𝑃2 is higher than 𝑃1, and this difference is decreasing in 𝜌(𝜔). The

implications of this fact are summarized in the following proposition:

Proposition 2 Consider two assets such that 𝜇1 = 𝜇2 and 𝜎2
1 = 𝜎2

2 and 𝜆1 < 𝜆2. Let

𝐸[𝑅𝑝,𝑖] = 𝜇𝑖 − 𝑅𝑓𝑃𝑖 denote the risk premium on asset 𝑖. Then the difference in the risk

premium on asset 1 and asset 2 decreases with 𝜔, i.e. 𝜕 (𝐸[𝑅𝑝,1 −𝑅𝑝,2]) /𝜕𝜔 < 0.

Proposition (2) states that for two similar stocks, state variables proxying for higher (lower)

intermediary risk tolerance predict returns more negatively (positively) for the stock that is

more intermediated. In order to test Proposition (2) empirically, I regress the excess returns

of high minus low intermediation stock portfolios on predetermined proxies for intermediary

risk-bearing capacity. Similarly for Proposition (1), I regress stock returns on portfolios sorted

on quintiles of my intermediation measure, as well as the high minus low intermediation

portfolio excess returns, on contemporaneous shocks to risk-bearing capacity. In section 3.3.1
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I describe in detail the construction of my intermediation measure, which is constructed so as

to hold stock fundamentals constant while isolating the effects of increasing intermediation

(lower 𝜆). As is discussed briefly in section 3.3.1 and in more detail in Appendix 3.6, this exact

empirical specification arises in a setting closely related to Koijen and Yogo (2019), where

I assume that the representative household and intermediary’s assessments of fundamental

asset means and covariances are linear in characteristics.

Appendix 3.7 provides a minor extension on the model that examines the empirical

implications for the case when household risk tolerance also responds in the same direction

to shocks to the intermediary state variable(s) 𝜔 as intermediary risk tolerance. I show that

in this case the presence of an increasing price response to intermediary shocks must come

through the intermediary risk aversion channel and not through the shocks to household risk

aversion, which actually works against finding an effect. I present this as a third proposition:

Proposition 3 Suppose that household risk tolerance is also a function of the same state

variable(s) 𝜔 as intermediary risk tolerance and the partial derivative of 𝜌𝐻(𝜔, 𝜁) with respect

to 𝜔 is positive. Then, holding all else constant, the presence of increasing price responses to

𝜔 shocks for more intermediated assets must be driven by shocks to intermediary risk tolerance

and not by shocks to household risk tolerance.

Proof: See Appendix 3.7.

This logic also extends to the setting where 𝜌𝐻(𝜁) does not depend directly on 𝜔 as in

equation (3.6). If shocks to 𝜁 and 𝜔 are positively correlated and 𝜌
′
𝐻 > 0, the exclusion of

shocks to 𝜁 actually work against finding an effect, because the coefficient on d𝜁 is decreasing

in percent intermediated while the coefficient on d𝜔 is increasing. As Haddad and Muir

(2018) point out, it is likely that financial institutions’ risk tolerance shocks are positively

correlated with those of households, so this seems to be the relevant case empirically.

Observe that the model implies the spread in betas are due to discount rate effects: price

appreciation in a more intermediated stock occurs due to positive shocks to intermediaries’

willingness to take risk, absent any fundamental information about stock cashflows. Though

discount rate and cashflow components of returns cannot be observed perfectly, the combined

247



presence of return predictability using pre-determined state variables and price movements

induced by contemporaneous shocks to the same state variables would constitute strong

evidence that the effects are driven through the discount rate component of returns. Because

of this I include both contemporaneous and predictive tests of the model’s implications.

The choice to have absolute risk aversion vary as a function of underlying state variables

is obviously critical to the model’s predictions and deserves further attention. Since the

coefficient of relative risk aversion is related to the coefficient of absolute risk aversion by

𝑤𝐼𝛾𝐼 = 𝛼𝐼 (where 𝑤𝐼 is the agent’s wealth, 𝛾𝐼 is the absolute risk aversion, and 𝛼𝐼 the relative

risk aversion) allowing 𝛾𝐼 to vary as a function of wealth or wealth share captures effects

resembling the wealth effects present in intermediary asset pricing models with constant

relative risk aversion of specialists. He and Krishnamurthy (2013) is one such example. In

this model wealth shocks lead to changes in risk premia, as the distribution of wealth shifts

between agents with different willingness or ability to bear risk. These effects have outsize

influence in the constrained region of the model, when equity capital constraints bind and

intermediaries require price concessions in order to bear aggregate risk.

The presence of risk aversion is not required for intermediaries to exhibit time-varying

risk-bearing capacity so long as there are binding constraints. Brunnermeier and Sannikov

(2014) work with risk-neutral agents and find that specialists’ wealth share is a critical state

variable, generating large spikes in risk premia in the constrained region just as in He and

Krishnamurthy (2013). Adrian, Etula, and Muir (2014) point out that in a setting resembling

Brunnermeier and Pedersen (2009) with margin constraints, time variation in the margin

constraint can lead to non-trivial state pricing where risk-neutral intermediaries value a

dollar of wealth relatively more when the Lagrange multiplier on the margin constraint is

higher and the value of relaxing the constraint is larger. When margin constraints are tighter,

intermediaries invest as if they were more risk averse. Adrian, Etula, and Muir (2014) argue

that their leverage measure (which is the reciprocal of margin) proxies for the tightness of

leverage constraints and hence risk-bearing capacity. In this sense, having risk-tolerance shift

due to intermediary shocks is a sort of reduced-form way of capturing the price effects of such
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mechanisms. Furthermore, allowing households’ absolute risk aversion to vary as a function

of state variables can capture features related to time-variation in household risk aversion, as

would be found in a habit model, for example.

In summary, the crux of the model’s predictions are this: if (1) intermediary risk tolerance

is time-varying and we have suitable proxies for this time variance; (2) households make

expectations errors (or have direct investment costs) that are different across stocks; and, (3)

there is variation in households’ expectations errors (or direct investment costs) across other-

wise similar assets; then we should be able to detect the effects detailed in propositions 1 and

2. The justification behind point (1) comes from the literature on friction-based intermediary

asset pricing models. Point (2) can be seen as resulting from limited rationality/information

processing capacity of households relative to more sophisticated institutional investors; similar

features are present in numerous asset pricing models. I argue point (3) by demonstrating

in section 3.3.1 that I can construct a measure that holds fundamental stock information

constant yet still generates a large spread in average intermediation.

3.2 Data Sources And Sample Construction

Before proceeding to the empirical implementation I first describe the datasets used and

sampling procedure followed. Individual monthly firm stock returns are from CRSP. The

sample is restricted to ordinary common shares (share codes 10 or 11) and that trade on

the NYSE, Amex, or Nasdaq (exchange codes 1, 2, or 3). Institutional holdings data for

individual stocks come from the Thomson-Reuters Institutional Holdings Database (S34 file).

Due to well-documented errors in the S34 database institutional type classifications, I use the

corrected type codes that are provided by Koijen and Yogo (2019) to classify institutions into

mutual funds and other investment advisors (which category prominently includes the largest

hedge funds).12 I download the quarterly holdings data from 1980q1 to 2017q2. My primary

set of stock characteristics are originally derived from Compustat, but are taken directly

12For a more detailed description of this data see Gompers and Metrick (2001), or more recently Koijen
and Yogo (2019)
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from Koijen and Yogo (2019), whose paper on characteristics-based demand of financial

institutions also utilizes the Thomson-Reuters database. The characteristics are derived from

the Fama-French 5-factor model, and include past 5-year stock CAPM beta, log book equity

as a proxy for size, gross profitability, and asset growth. I further include the book-to-market

ratio as the ratio of book equity to market cap from a year previous. As in Koijen and Yogo

(2019), accounting characteristics are obtained as of at least 6 months and no more than 24

months prior to the given date in order to ensure the data are publically available at the time

of portfolio formation.

Besides the Koijen and Yogo (2019) characteristics, in a robustness check I add to the

set of stock characteristics dozens of financial ratios obtained from the Wharton Research

Data Services financial ratios suite. I also obtain the quarterly and monthly series of shocks

to Federal Reserve primary dealer capital introduced in He, Kelly, and Manela (2017) and

available on Asaf Manela’s website. As an additional intermediary variable I obtain the

leverage of broker dealers introduced in Adrian, Etula, and Muir (2014).13 The monthly

Fama-French risk factors plus momentum factor are also downloaded from Ken French’s

website.

The sample construction proceeds as follows. Each quarter I take the intersection of the

entire CRSP universe of stocks meeting share code and exchange code criteria described

above with the Koijen and Yogo (2019) stock characteristics data, excluding any missing

matches within a quarter. As done by many previous studies, I further exclude microcap

stocks from the sample each quarter (defined to be stocks beneath the NYSE 20th percentile

in market cap) and stocks with price less than $5 in order to focus on the set of stocks where

large financial institutions are able to trade most freely. As is common practice, I additionally

exclude financial stocks (stocks with SIC code between 6000 and 6999). This restriction is

even more practical in my setting because the relationship between stock price movements

and intermediary risk-bearing capacity is highly endogenous for financial stocks. In terms

of market cap, these restrictions drop a small portion of the CRSP equity universe–my

13Thanks to Koijen and Yogo (2019), He, Kelly, and Manela (2017), and Adrian, Etula, and Muir (2014)
for making their data readily available.
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sampling retains on average about 97% of total market capitalization of non-financial stocks

on the CRSP tape. These stocks constitute the primary quarterly sample. I also convert

the monthly Fama-French five factors and momentum to their respective quarterly versions.

Unless otherwise noted, the sample period for regressions spans 1980q2 to 2017q3.

3.3 Empirical Strategy and Results

3.3.1 Constructing Measure of Intermediation

The characteristics-based extension on the model discussed in Appendix 3.6 suggests that

stocks with similar characteristics but higher intermediary holdings should have higher betas

on intermediary capital shocks. As such, I construct a measure of intermediation intended

to be unrelated to key stock characteristics that proxy for information regarding cashflow

distributions. Let 𝑋𝑖,𝑡 be a vector of stock characteristics that are informative about the

distribution of time 𝑡+1 cashflows of asset 𝑖. At each time 𝑡 I run the following cross-sectional

regression:

Percent Intermediated𝑖,𝑡 = 𝛼𝑡 + 𝛽𝑡𝑋𝑖,𝑡 + 𝜖𝑖,𝑡 (3.9)

In Appendix 3.6 I illustrate that the exact specification in (3.9) arises under a framework

that expands upon my setting in section 3.1 and includes features very similar to the

characteristics-based demand setting of Koijen and Yogo (2019). In particular, I show that

if investors believe that the payoff covariance matrix can be decomposed into fundamental

risk factor loadings that are linear in characteristics and the average asset payoffs are also

linear in the characteristics, then (3.9) arises when households and institutional investors

agree on the covariance matrix but households have some residual demand unrelated to

the characteristics due to their different assessment of the first moment of asset payoffs.

Under these assumptions, 𝜖𝑖,𝑡 identifies a component of intermediary holdings that are due to

variation in 𝜆 in the model and are uncorrelated with characteristics that provide information

on the moments of asset cashflows. More broadly this approach is done to ensure that the

cross-sectional spread in asset price response to intermediary risk-bearing capacity shocks is
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not driven primarily by differential fundamental exposures to other risk factors.

If the risk tolerance of the financial institutions who are active in equity markets is

time-varying and moves due to changes in empirical proxies of financial intermediary capital,

sorting on 𝜖𝑖,𝑡 should induce variation in betas on shocks to intermediary capital, and current

intermediary capital should contain information about the expected returns of high 𝜖𝑖,𝑡 assets

relative to low 𝜖𝑖,𝑡 assets. Specifically, high 𝜖𝑖,𝑡 assets should have larger contemporaneous

price response due to shocks to proxies for intermediary capitalization/intermediary risk

tolerance and greater return predictability by the level of intermediary capital, as outlined in

propositions 1 and 2.

Here Percent Intermediated𝑖,𝑡 denotes the percentage of shares held by mutual funds,

hedge funds, and other investment advisors. I focus on these institution types because

they include the set of financial intermediaries that are the largest and most active in

equity markets, though results are unaffected by additionally including any or all other 13F

institutional investor types. One may also consider taking net positions by subtracting out

aggregate short interest from Percent Intermediated𝑖,𝑡. Average short interest on most stocks

is small enough that this does not change my findings in any meaningful way, so I focus on

just the long positions as presented on the 13F reports.

Regression equation (3.9) decomposes intermediary holdings into three components:

𝛽𝑋𝑖,𝑡, holdings due to firm fundamentals; 𝛼𝑡, holdings due to rise in average intermediation

over time;14 and, 𝜖𝑖,𝑡, holdings unrelated to fundamentals (possibly reflecting households’

unobserved expectations errors or perceived direct holding costs). In the empirical tests to

follow I show in a variety of settings that 𝜖𝑖,𝑡 is strongly related to intermediary capital betas

on both predictive and contemporaneous variables.

Implementing (3.9) requires that 𝑋𝑖,𝑡 be strongly related to asset fundamentals that are

informative about the distribution of future cashflows. Following Koijen and Yogo (2019), I

focus on a set of stock characteristics derived from the Fama and French (2015) empirical asset

pricing model that is known to have significant explanatory power for the cross-section of

stock returns, and hence presumably provides considerable fundamental information regarding
14This has been well-documented. See Stambaugh (2014), for example.
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asset cash flows.15 The empirical implementation of (3.9) includes the following set of stock

characteristics in 𝑋𝑖,𝑡: a second degree polynomial in log book equity; gross profitability

to book equity; annual growth in firm assets (as a proxy for investment); book-to-market

ratio using one-year lagged market cap; and, 5-year rolling monthly pre-ranking CAPM

beta (requiring at least 24 observations to be included). These are derived from the sorting

characteristics used to construct the risk factors in the Fama and French (2015) model. I use

these characteristics as constructed by Koijen and Yogo (2019), who in turn construct them

from Compustat so as to align with the procedure in Fama and French (2015).

In robustness checks I demonstrate that the set of characteristics included in (3.9) is

not particularly important, so long as you control for stock size. My proxy for stock size

is log book equity rather than market equity because market equity is a more endogenous

equilibrium outcome that is affected by intermediary and household demand for the asset

(in unreported regressions I find that findings maintain when using market equity instead of

book equity for my size proxy). My model presented in section 3.1 demonstrates why it is

important to control for stock size. The empirical tests described in propositions 1 and 2

require holding means and variances of underlying cashflows constant. Since I normalize net

supply to one, the price of a given asset has the interpretation of the stock market cap and

the means and variances are the means and variances of cashflows for owning the entire set

of shares for a given stock. Hence 𝜇 and Σ are highly dependent on the stock size.

In Table 3.1 I estimate the Fama-Macbeth time series average coefficients from each

cross-sectional regression (3.9). By far the strongest predictor of intermediary holdings is

stock size, as proxied by log book equity and log book equity squared, although each of the

other characteristics is statistically significant in explaining institutional holdings. These

institutions tend to overweight large stocks, profitable stocks, and stocks with high asset

growth and CAPM betas, and tend to underweight value stocks. Note also that the average

15Hou, Xue, and Zhang (2015) argue that their empirical asset pricing model, which is closely related to
the model Fama and French (2015), performs particularly well in describing the cross-section of returns when
micro-cap stocks are not over-weighted in portfolio formation. Thus (3.9) is likely to be more relevant among
the set of the larger, more liquid stocks (non-micro cap stocks and stocks with share price above $5) that I
consider in my analysis.
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cross-sectional 𝑅2 is only around .11, which still leaves a substantial portion of intermediary

holdings unexplained each period. I use this unexplained portion to proxy for variation in

the parameter 𝜆 (and hence 𝜃𝐼 , percent intermediated) from the model that is unrelated to

stock fundamentals.

3.3.2 Empirical Results For Portfolios Sorted on Intermediation

Though theoretical propositions in section 3.1 required holding stock fundamentals

constant, as a practical matter the empirical predictions in propositions 1 and 2 still hold as

long as two assets look similar enough but have a wide spread in 𝜆 (and hence in percent

intermediated). In terms of model parameters, if 𝜆1 << 𝜆2, 𝜇1 ≈ 𝜇2 and 𝜎2
1 ≈ 𝜎2

2, then the

empirical implications of propositions 1 and 2 should still hold; namely, that asset 1 is much

more intermediated than asset 2 and should have a higher beta on shocks to intermediary

risk-bearing capacity and should be more predictable by state variables capturing intermediary

risk tolerance.

I organize around this idea in two ways: first, by forming equal-weighted portfolios on the

quintiles of the residual institutional holding measure 𝜖𝑖,𝑡 and then by running stock-level panel

regressions interacting intermediary shocks with 𝜖𝑖,𝑡. The portfolios are rebalanced quarterly.

Figure 3-3 shows that the portfolio formation does quite well in holding characteristics

constant while inducing variation in intermediation–the average institutional holdings quintile

is just below five at each point in time for the top 𝜖𝑖,𝑡 quintile portfolio, while it is just above

one for the bottom 𝜖𝑖,𝑡 quintile portfolio. Meanwhile the average quintile of the rest of the

characteristics all hover around three for both portfolios. Thus these portfolios look almost

exactly the same on key stock characteristics that form the basis of the Fama-French (2015)

asset pricing model, which is known to describe well the cross-section of stock returns.

Table 3.2 shows the means and medians of stock characteristics for each of the five

portfolios formed on quintiles of 𝜖𝑖,𝑡, including percent holdings by mutual funds, hedge funds,

and investment advisors; log of market and book equity; book-to-market ratio; asset growth;

profitability/book equity; and pre-ranking CAPM beta estimated over the past 60 months
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(and a minimum of 24 months). In line with the graphical evidence in Figure 3-3, the means

and medians of each characteristic besides percent intermediated are extremely close for the

top- and bottom-quintile portfolios formed on 𝜖𝑖,𝑡, and are also fairly close for the middle

three portfolios (though they tend to have slightly higher profitability and book/market).

Meanwhile there is a large spread in average percent intermediated between the top and

bottom quintile portfolios, with 62% intermediated at the top and only 19% intermediated

at the bottom. Thus Table 3.2 provides further confirmation that sorting on 𝜖𝑖,𝑡 isolates

variation in holdings by financial institutions while holding other stock fundamentals more or

less constant, particularly when comparing the top and bottom quintile portfolios.

The top and bottom 𝜖𝑖,𝑡 portfolios also have a high degree of comovement, as can be seen

graphically in Figure 3-2. The correlation in excess returns on the two portfolios is 0.96. Table

3.3 shows the means, standard deviations, and Sharpe Ratios of the five portfolios formed

on 𝜖𝑖,𝑡. Focusing on the top and bottom quintiles, the annualized excess return standard

deviations of 42.33% and 38.97% of the top and bottom quintile portfolios are also close to

one another, as well as their Sharpe ratios, which are respectively 0.25 for the top quintile and

0.22 for the bottom quintile. As implied by the model (though not a highlighted feature), the

top quintile portfolio has higher returns, though the spread is not very large at 1.868 percent

per year and carries a t-stat of 1.880 that is marginally significant at the 10% threshold.

The model implies that the portfolios should have monotonically increasing exposures

to shocks to intermediary risk-bearing capacity. I use four proxies for this (from here I

abbreviate the references to He, Kelly, and Manela (2017) and Adrian, Etula, and Muir

(2014) as HKM and AEM, respectively): shocks to primary dealer market equity capital ratio

from HKM; broker dealer book leverage shocks from AEM; value-weighted excess returns on

the financial sector (stocks with SIC codes between 6000 and 6999); and, my primary proxy,

which standardizes the HKM and AEM measures individually, takes the average of the two,

and then standardizes this average to zero mean and unit variance.

The justification for combining the AEM and HKM shocks is to take a weighted average

of financial sector risk-bearing capacity using the most prominent proxies proposed in the
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literature, analogous to Haddad and Muir (2018). Moreover, both Kargar (2019) and Ma

(2019) demonstrate that a heterogeneous intermediary SDF can be constructed as a function

of shocks to two state variables that are closely related to the AEM and HKM measures. Such

an SDF arises when different classes of intermediaries face heterogeneous financial constraints

or have different risk aversion, and yields leverage patterns that are simultaneously consistent

with the findings of both HKM and AEM.16 I further include returns on the financial

sector, as this measure is directly related to the wealth share shocks that are important in

equity-constraint based intermediary asset pricing models.

I test proposition 1 by running regressions of the form

𝑅𝑒
𝑖,𝑡+1 = 𝛼𝑖 + 𝛽1,𝑖𝐹𝑡+1 + 𝛽2,𝑖(Mkt𝑁𝑜𝑛𝐹 𝑖𝑛

𝑡+1 −𝑅𝑓,𝑡) + 𝜈𝑖,𝑡 (3.10)

individually for 𝐹𝑡+1 = Intermediary Shock𝑡+1, Capital Shock𝑡+1, Leverage Shock𝑡+1, and

Ex Ret. (Fin)𝑡+1 and also for 𝑖 equal to the excess returns over the risk free rate for the five

intermediation (𝜖𝑖,𝑡) quintile portfolios and the high minus low 𝜖𝑖,𝑡 spread portfolio. Here

Intermediary Shock𝑡+1 refers to the combined AEM and HKM measure; Capital Shock𝑡+1

represents the HKM shock; Leverage Shock𝑡+1, the AEM shock; and finally, Ex Ret. (Fin)𝑡+1,

the excess return on the financial sector. I control for a version of the value-weighted market

risk factor that includes just the returns to nonfinancial stocks. I include this control for

several reasons. First, the AEM and HKM models present asset pricing tests controlling for

market risk. Second; as illustrated in equation (3.6), it’s important to control for shocks

that could proxy for changes in the risk aversion of households, and market returns relate to

time-variation in risk-aversion for certain classes of models, such as in a habit model. The

joint inclusion of shocks to intermediary risk-bearing capacity and non-financial stocks also

directly relates asset price movements to financial and non-financial wealth share shocks. The

non-financial market risk factor has a correlation of 0.99 with the value-weighted market risk

factor from Ken French’s website.

16HKM find that bank holding companies have countercyclical leverage, while AEM finds that broker-dealers
have procyclical leverage.
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Table 3.4 shows the results of the contemporaneous portfolio tests using the combined

Intermediary Shock𝑡+1 measure. The same findings are illustrated graphically in Figure

3-4. Strikingly, there is a strong monotonically increasing relationship in the betas on the

intermediary shock and no pattern whatsoever in the non-financial market return betas. The

t-stat of 4.45 on the quintile 5 minus quintile 1 intermediation spread portfolio is highly

significant. This monotonic pattern is directly in line with the theoretical implications

presented in section 3.1 and also with He and Krishnamurthy (2018), who show that shocks

to intermediary risk tolerance for similar but more intermediated assets should have relatively

higher betas on intermediary risk tolerance shocks than on household wealth shocks. Since

the intermediary shock is scaled to unit standard deviation and returns are in annualized

percent form, the coefficient of 4.13 in column (6) of Table 3.4 means that the return on the

high intermediation portfolio increases by 4.13% relative to the low intermediation portfolio

on an annualized basis in response to a one-standard deviation intermediary shock.

The empirical patterns illustrated in Figure 3-4 continue to hold when examining each

individual proposed intermediary shock. Figure 3-5 demonstrates this. Loadings are increasing

from bottom to top quintile and the top minus bottom quintile spread has a significant

loading for each of the four intermediation risk-bearing capacity shocks. The exposures

increase monotonically for all measures. Note also that combining the information in AEM

leverage shocks and HKM capital shocks leads to a more significant coefficient on the top

minus bottom quintile spread.

As a final piece of evidence for the contemporaneous portfolio regressions, in Figure 6

I run regressions separating the HKM capital shocks and AEM leverage shocks within the

same specification:

𝑅𝑒
𝑖,𝑡+1 = 𝛼𝑖 + 𝛽1,𝑖𝐹𝑡+1 + 𝛽2,𝑖(Mkt𝑁𝑜𝑛𝐹 𝑖𝑛

𝑡+1 −𝑅𝑓,𝑡) + 𝜈𝑖,𝑡 (3.11)

The high minus low intermediation excess return is significantly positive for both risk factors,

with monotonicity in betas for both the capital shocks and the leverage shocks. Thus the

HKM capital and AEM leverage factors continue to display patterns in line with proposition
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1 when included together in the same regression.

I next turn to my predictability tests that relate to proposition 2, which is that otherwise

similar but more intermediated stocks should have excess returns that are more negatively

(positively) predictable by state variables that represent higher (lower) risk-bearing capacity

of financial institutions. To do this, I run regressions of overlapping quarterly high minus

low 𝜖𝑖,𝑡 excess returns at the monthly frequency on a set of intermediary state variables.

Regressions take the following form:

𝑅𝑄5
𝑡→𝑡+3 −𝑅𝑄1

𝑡→𝑡+3 = 𝛼 + 𝛽1𝑋𝑡 + 𝛽2𝑍𝑡 + 𝜈𝑡 (3.12)

Here 𝑋𝑡 represents any of my proxies for state variables related to time 𝑡 risk tolerance of

intermediaries and 𝑍𝑡 is a set of control predictors. Following HKM, I use the squared market

leverage of Federal Reserve primary dealers as a predictor. HKM show that the conditional

risk premium is a nonlinear function of the underlying capital ratio state variable, which is

proportional to (1/capital ratio)2 in a simplified version of the He and Krishnamurthy (2013)

model. Since this variable relates to lower risk tolerance of intermediaries, it should predict

returns with positive sign. In predictability tests HKM also point out that the theory of

AEM implies that the broker-dealer leverage ratio should predict returns negatively, so I use

this as a second state variable. In line with the contemporaneous regressions, my primary

predictor is a combined state variable that takes the average of the standardized squared

primary dealer leverage and the negative of the standardized broker dealer leverage. I label

this combined state variable 𝜂. I also use the squared primary dealer leverage and broker

dealer leverage individually, as well as the share of stock market wealth held by financial

stocks as my final proxy for 𝑋𝑡 in equation (3.12) above. To be in agreement with theory,

the financial sector wealth variable should predict high minus low intermediation portfolio

excess returns with negative sign, as a high wealth share state corresponds with higher risk

tolerance.

I also control for several return predictors from the literature. I obtain the cyclically-

adjusted price to earnings ratio from Robert Shiller’s website and the consumption-wealth
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ratio (“cay”) from Lettau and Ludvigson (2001) from Sydney Ludvigson’s website. I also add

the 10-year minus 3-month t-bill rate term spread as a control in the predictive regressions

and the investor sentiment measure from Baker and Wurgler (2006) obtained from Jeffery

Wurgler’s website. I include cay and sentiment as potential proxies for household willingness

to take risk. The cyclically-adjusted price/earnings ratio are included because of their common

use as leading indicators of aggregate macroeconomic conditions and as return predictors.

Because the broker-dealer leverage ratio and the consumption/wealth ratio are available

quarterly I hold them constant within a quarter for each month in the sample, but I use

the monthly versions for the the rest of the predictors. Due to autocorrelation induced by

overlapping observations I compute standard errors using the method of Newey-West with 4

lags.17 Table 3.5 shows the regressions for the combined state variable (labeled “𝜂”), while

Tables 3.6 and 3.7 present the same results using the HKM/AEM predictors separately and

the financial sector wealth share, respectively.

The predictability tests support proposition 2–in each case the proxy for intermediary risk

tolerance has the appropriate sign and is statistically significant in predicting the quarterly

returns on the high minus low intermediary ownership (high minus low 𝜖𝑖,𝑡) portfolio excess

returns, with t-stats hovering just above or below 3 depending on the specification. The 𝑅2

of 𝜂 in predicting the quarterly high-minus low intermediation portfolio return is 4%. The

inclusion of the other predictors actually enhances the power of 𝜂 to predict the spreads, as

the highest t-stat on 𝜂 attains in the last column where all predictors are included.

Note also that the other predictors all enter with statistically insignificant sign, except for

the cyclically adjusted price to earnings ratio (“P/E”) in the last column, which is significant

at the 10% level with positive sign. As will be demonstrated in the next section, this positive

sign disagrees with the negative coefficient on this variable in the stock-level analysis. The

only predictors that demonstrate consistently strong predictive performance for the high

minus low intermediation spread return across all specifications are those related to the health

17The standard errors on the coefficients of interest tend to decrease when including more lags than this, so
I choose 4 as the lag length to be conservative, while still correcting for the autocorrelation from overlapping
observations.
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of financial intermediaries.

Since excess returns are expressed in annualized percentage terms in these regressions and

predictors are standardized, the coefficients in row 1 of Table 3.5 imply that a one-standard

deviation increase in 𝜂 (i.e. a decrease in intermediary risk tolerance) translates into a roughly

3-6% increase in expected returns going forward for the top intermediated quintile portfolio

over the bottom quintile portfolio. Similar magnitudes are estimated in Tables 3.6 and 3.7.

Table 3.6 demonstrates that the predictability of the high minus low intermediation portfolio

maintains when separating the HKM/AEM predictors, with the two having the appropriate

positive and negative signs, respectively. Meanwhile Table 3.7 shows that the financial stock

market wealth share significantly predicts the spread with negative sign in all specifications,

consistent with theoretical models where intermediaries are less constrained when their wealth

share is high.

As discussed in section 3.1, the combined presence of greater return return predictability

and outsize price movements to contemporaneous shocks is important for empirically testing

the theory. The loadings on shocks should come because of movements in discount rates;

since the price response to both the pre-determined level of and the growth rate in the state

variables is larger in the more intermediated portfolio, this supports the discount rate channel

as the driving force behind these patterns.

I include a final test to examine the presence of a theoretical mechanism in the cross-section

of return predictability outlined in Gromb and Vayanos (2018). In their model when the

capital of constrained arbitrageurs depletes, the expected returns increase relatively more

on the assets where arbitrageurs take larger positions. This causes the increased spread to

self-correct over time as intermediary capital recovers due to the increased expected returns

on their positions. To test for such effects, I run regressions of the form

𝑅𝑄5
𝑡+𝑘 −𝑅𝑄1

𝑡+𝑘 = 𝛼 + 𝛽𝑘𝜂𝑡 + 𝜈𝑡 (3.13)

where 𝑡 is at the monthly horizon and 𝑘 varies from 1-month ahead to 18-months ahead.

Figure 3-7 plots ̂︁𝛽𝑘 and its 90% confidence interval as well as the 𝑅2 for 𝑘 = 1, ..., 18. As
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implied by the theory, the coefficients ̂︁𝛽𝑘 decrease with 𝑘, as does the 𝑅2. Thus the quarterly

horizon used in the previous predictability tests from this section features much of the overall

high minus low intermediation portfolio spread return predictability of 𝜂𝑡. This is consistent

with temporary relative asset price distortions that are corrected over time as constraints on

intermediaries relax when capitalization improves, in line with Gromb and Vayanos (2018),

and more broadly with models where intermediary capital moves slowly because of constraints

that become more binding when intermediaries are poorly capitalized.18

3.3.3 Stock-Level Panel Regressions

This section demonstrates that the portfolio-level evidence from the previous section

extends to the individual stock level. My stock level empirical tests take the following form

for the contemporaneous regressions:

𝑅𝑖,𝑡+1 −𝑅𝑓,𝑡 = 𝛼0 + 𝛽1𝐹𝑡+1 × 𝜖𝑖,𝑡 + 𝛽2𝑊𝑡+1 × 𝜖𝑖,𝑡 + 𝛼𝑡 + 𝛼𝑖 + 𝜈𝑖,𝑡+1 (3.14)

Here 𝐹𝑡+1 is any of the contemporaneous shocks to intermediary risk tolerance. Finding

𝛽1 > 0 implies that betas on shocks to financial institutions increase with the component of

intermediary holdings that is uncorrelated with characteristics of the stock. Thus for the

contemporaneous shocks used in the previous section 𝛽1 > 0 is in line with the theory. I

control for value-weighted non-financial market excess returns and also add specifications

that include the Fama-French (2015) factors plus the momentum factor for 𝑊𝑡+1 in (3.14).

I also add time fixed-effects to control for common shocks to the cross-section as well as

including stock fixed effects. Replacing the time fixed effects with uninteracted risk factors

yields estimates that are essentially identical.

Once again agreeing with the theory, Table 3.8 shows that 𝛽1 > 0 for all intermediary

shocks considered and is strongly significant for all specifications except in the case of the AEM

18See for example Duffie (2010) for a theoretical summary and Mitchell, Pedersen, and Pulvino (2007) for
early empirical evidence in convertible bond markets, or more recently Siriwardane (2019) in credit default
swap markets.
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leverage shocks, which show consistent positive sign but have p-values that are significant

at just the 10% level for each of the specifications. However, note in the first row of Table

3.8 that the intermediary shocks which combines the information embedded in the AEM

and HKM factors yields a much stronger estimate than just including the HKM or AEM

factors alone. The financial sector excess return provides more evidence in agreement with

the theory, as it also has positive and significant coefficient on the residual intermediation

interaction term across specifications.

The economic magnitude of these estimates are fairly large. Consider two stocks

with the exact same characteristics, except one is entirely owned by mutual funds/hedge

funds/investment advisors, and the other is owned entirely by households. Looking at the

coefficients in the first row of Table 3.8, the returns to the fully intermediated stock increase

by 8-10% per year relative to the unintermediated stock on an annualized basis in response

to a one-standard deviation shock to the HKM/AEM averaged intermediary factor. Point

estimates on these coefficients are also quite precise, with t-stats ranging from 4.6 to 5.3.19

The only included non-intermediary risk factor whose betas significantly increase with 𝜖𝑖,𝑡

is the Fama-French robust minus weak profitability factor. This feature is also present in

portfolio regressions where I control for the Fama-French (2015) factors plus momentum in the

section 3.3.4, though I don’t explicitly report the coefficient estimates in those specifications.

The reason for this increased exposure to the profitability factor is not immediately clear,

though I find in unreported regressions that the addition of the profitability factor increases

the magnitude and significance of the coefficients on the intermediary risk factors. It’s also

important to note that my model does not preclude the possibility that other risk factors have

increasing exposure across level of intermediation Still, this case is interesting because I have

already averaged out stock-level profitability. It is possible that intermediary marginal utility

loads more on the profitability factor relative to households, though such an investigation is

out of the scope of this paper.20

19Standard errors are clustered by date to account for cross-sectional correlation in the residuals and are
also adjusted for one lag of autocorrelation.

20In a previous working version of the paper, Cho (2019) argues that the capital of arbitrageurs such as
hedge funds loads positively on the RMW profitability factor.
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Next I perform stock-level predictive regressions, which are specified as

𝑅𝑖,𝑡+1 −𝑅𝑓,𝑡 = 𝛼0 + 𝛿1𝑋𝑡 × 𝜖𝑖,𝑡 + 𝛿2𝑍𝑡 × 𝜖𝑖,𝑡 + 𝛼𝑡 + 𝛼𝑖 + 𝜈𝑖,𝑡+1 (3.15)

For the predictive panel regressions 𝛿1 should be less than zero for broker dealer squared

leverage and the financial sector wealth share and should be positive for primary dealer

squared leverage and the combined predictor 𝜂. I include the same controls for 𝑍𝑡 in the

predictive regressions as in the portfolio regressions from the previous section. As in the

contemporaneous regressions I include time and stock fixed effects.

Table 3.9 paints a similar picture for the predictive regressions for individual stocks as in

the portfolio level analysis from the preceding section. Interaction terms on the combined

state variable 𝜂 are strongly positive across specifications, as is primary dealer squared

leverage. Significantly negative coefficients obtain on the broker dealer leverage and financial

sector wealth share interactions with 𝜖𝑖,𝑡, in accordance with the theory and the empirics

in the previous section. Meanwhile, alternative predictors don’t seem to have predictability

that relates strongly with intermediation, except in the case of the cyclically-adjusted price

to earnings ratio, which has negative sign and is significant in the specification in column

6. However, recall that the “P/E” coefficient in the portfolio regressions had an opposite

positive sign, so that the estimates for the cyclically-adjusted price to earnings ratio are

inconsistent across portfolio and stock-level settings. Meanwhile the intermediary state

variables have statistically significant coefficients with consistent signs across specifications,

and have comparable magnitudes as well.

To put the predictability regressions in economic terms, once again consider the hypo-

thetical stock that is entirely owned by mutual funds/hedge funds/other investment advisors

relative to a stock owned entirely by households but with the same characteristics. The first

row of Table 3.9 implies that the intermediated stock has a risk premium that is 11 to 12%

on an annualized basis higher relative to the unintermediated stock when 𝜂 increases by one

standard deviation.

For a final stock-level test, I examine the relationship between residual intermedation 𝜖𝑖,𝑡
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and rolling stock betas on intermediary shocks. I first compute rolling betas for each stock 𝑖

and each intermediary shock:

𝑅𝑖,𝑡 −𝑅𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖F𝑡 + 𝛽𝑀
𝑖

(︁
Mkt𝑁𝑜𝑛𝐹 𝑖𝑛

𝑡 − Rf𝑡
)︁

+ 𝛿𝑖,𝑡 (3.16)

individually for 𝐹 = Capital Shock, Leverage Shock, Intermediary Shock, and Ex Ret (Fin).

The parameter 𝛽𝑖, 𝑡 is estimated at each time 𝑡 using a rolling window of plus or minus 15

quarters, including the given quater. I then run the panel regression

̂︀𝛽𝑖,𝑡−15→𝑡+15 = 𝛼0 + 𝛽1𝜖𝑖,𝑡 + 𝛽2𝑍𝑖,𝑡 + 𝛼𝑡 + 𝛼𝑖 + 𝜈𝑖,𝑡 (3.17)

The controls 𝑍𝑖,𝑡 include profitability, investment, CAPM beta, book/market, second-

degree polynomial in log market cap and log book equity, in addition to stock and time fixed

effects. I require the estimated betas to have at least 20 observations in order to include

the observation in (3.17). Because of the overlapping windows I double cluster the standard

errors by stock and time. Table 3.10 shows that the individual stock betas centered around

time 𝑡 on each of the intermediary shocks are each strongly increasing intermediation measure

𝜖𝑖,𝑡, with t-stats ranging from 2.67 to 3.85. Thus the component of intermediary holdings

unrelated to characteristics has strong explanatory power for time-variation in betas even

at the individual stock level. The coefficient of 6.7 on 𝜖𝑖,𝑡 in column 1 for the combined

AEM/HKM intermediary shock is comparable (albeit slightly lower) to the magnitudes found

in Table 3.8, and has the interpretation that holding stock characteristics constant, the

return response of a completely intermediated stock to a one-standard deviation intermediary

shock is 6.67 percentage points higher on an annualized basis relative to a comparable but

completely household-owned stock.

3.3.4 Additional Tests and Robustness

A natural question arises concerning whether or not results depend crucially on the

characteristics included in, or excluded from, the regression (3.9) to back out the residual
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intermediation component 𝜖𝑖,𝑡. Though this can’t be ruled out perfectly, I examine the empir-

ical robustness of my findings to the inclusion of many more characteristics or alternatively

to just controlling for size. To do this, I download the set of stock financial ratios provided by

the Wharton Research Data Services Financial Ratios Suite. This set of stock characteristics

was used previously by Kozak, Nagel, and Santosh (2019) to construct a stochastic discount

factor from a large number of potential cross-sectional return predictors.

Though I obtain the full set of 73 financial ratios from WRDS, I restrict the set of

characteristics to 40 out of the 73 due to data availability restrictions that I impose.21 Using

the categories provided by WRDS, the 40 ratios that remain comprise 6 valuation ratios, 13

profitability ratios, 4 capitalization ratios, 7 financial soundness ratios, 3 solvency ratios, 3

efficiency ratios, and 4 other ratios. I supplement the original set of characteristics included

in (3.9), which consisted of a second degree polynomial in log book equity; gross profitability

to book equity; annual growth in firm assets; book-to-market ratio using one-year lagged

market cap; and, 5-year rolling monthly pre-ranking CAPM beta (requiring at least 24

observations to be included) with these 40 financial ratios and examine if including the

additional characteristics substantially changes anything. On the other end, I also check

the robustness of my results to the inclusion of just the second degree polynomial in log

book equity. Using these alternative sets of characteristics I re-estimate 𝜖𝑖,𝑡 and re-form the

quarterly quintile portfolios.

Further robustness checks include value-weighting the portfolios using one-year lagged

market cap (and which uses value-weighted cross-sectional regressions to back out 𝜖𝑖,𝑡);

dropping the financial crisis from the sample (defined using the dates calculated by the

NBER as beginning after the business cycle peak in the end of the fourth quarter of 2007

and ending after the business cycle trough in the second quarter of 2009); and, controlling

for the Fama-French factors plus momentum as in the stock-level panel regressions from the

last section. The contemporaneous regressions are found in Table 3.11 and the predictive

regressions are in Table 3.12. Table 3.11 uses my primary proxy for contemporaneous shocks

to risk-bearing capacity, the “Intermediary Shock” (which is the average of the standardized
21I outline the process I use for selecting these characteristics in detail in Appendix 3.8.
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AEM/HKM shocks). Meanwhile in the Table 3.12 predictive regressions, I focus on the state

variable 𝜂, which is my main proxy for the time 𝑡 risk-bearing capacity and is constructed as

the average of the standardized primary dealer squared leverage ratio and the negative of

standardized broker-dealer leverage. The tables report regression coefficients for the high

minus low intermediation quintile spread portfolio.

Table 3.11 demonstrates that the intermediary shock significantly explains the spread in

returns between high and low residual intermediation portfolios no matter the specification

or the set of characteristics included. Interestingly, without controlling for the other charac-

teristics the non-financial market risk factor also strongly loads on the returns to the spread

portfolio, but this is not the case in any of the other specifications. Value-weighting changes

little, nor does controlling for the Fama-French (2015) risk factors plus the momentum

factor. In the last column we do see that both dropping the financial crisis and including the

additional risk factors increases estimation noise substantially and reduces the t-stat on the

intermediary shock to 1.75. Still, testing the theoretical prediction that the loading is positive

entails a one-tailed rather than a two-tailed test, which would still imply significance at the

5% level for this coefficient. The point-estimates for both specifications excluding the crisis

are also lower, suggesting that the financial crises was an important event in determining

the endogenous covariance with shocks to intermediaries, and points to the magnified effects

of shocks to risk-bearing capacity during times when intermediaries were likely financially

constrained, consistent with features in the constrained regions of the models of He and

Krishnamurthy (2013) and Brunnermeier and Sannikov (2014).

The predictive regressions in Table 3.12 have the same features. Increasing 𝜂 (or decreasing

intermediary risk tolerance) predicts higher returns going forward on the top intermediation

portfolio relative to the low intermediation portfolio. As in Table 3.11, the specification

which only includes log book equity features more significant coefficients on the control

predictors, but this almost entirely goes away in the other specifications. The coefficient

on 𝜂 remains quite stable, strongly significant, and positive for all specifications, with

value-weighting portfolios, including more stock characteristics, or dropping the crisis hardly
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affecting the estimates nor the significance. Interestingly, the coefficient on 𝜂 goes up a bit in

the specification that drops the financial crisis, though the estimation error does increase and

the predictability as measured by the R-squared decreases, from 8.7% to 7.5%.

While one can never account for all information regarding a stock, Tables 3.11 and

3.12 illustrate that the empirical patterns are robust to conditioning on a wide range of

characteristics so long as stock size is taken into account. It should also be noted that

unobserved characteristics would tend to bias against finding an effect. This is because stocks

whose cashflows have naturally higher covariance with shocks to intermediaries provide very

poor hedges against bad times for financial institutions, and so observed holdings are unlikely

to be driven by some underlying institutional preference for high-intermediary shock beta

stocks. Thus unobserved stock information would tend to result in understating rather than

overstating these effects.

3.4 Discussion of Empirical Results

What are the reasons that the risk-bearing capacity of mutual funds, hedge funds, and

other investment advisors depends on shocks to bank holding companies of Federal Reserve

Primary dealers (and the broker-dealer sector in general)? The connection for hedge funds is

most readily apparent, as hedge funds are levered institutional investors who depend heavily

on capital provision by dealer banks for their ability to trade actively in equity markets. For

example, Aragon and Strahan (2012) list the top prime brokers to hedge funds in the years

2002-2008 leading up to the financial crisis; the vast majority of the top ten institutions and

all of the top five each year were also Federal Reserve primary dealers at the time. Cho

(2019) also argues that hedge fund capital depends on the AEM broker-dealer leverage. When

these institutions become distressed, capital availability declines and hedge funds in turn also

become distressed. In line with this, Ben-David, Franzoni, and Moussawi (2011) demonstrate

that hedge funds were forced to delever when their institutional capital providers withdrew

capital via margin calls and redemptions.

Ben-David, Franzoni, and Moussawi (2011) show that mutual funds also suffered redemp-
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tions in the crisis period, although they were not as severe as those of hedge funds. Since

most mutual funds do not use leverage, they are not as dependent on levered institutions

such as dealer banks for obtaining capital. However, there are a few reasons to believe that

mutual funds’ ability to trade may be impeded when levered dealer banks/broker dealers and

hedge funds become distressed. When dealer banks reduce their exposure to equity markets,

whether directly through their trading desks or indirectly by seeking redemptions from hedge

funds, mutual funds lose natural counterparties to their trades when market liquidity dries

up. Thus as argued in He and Krishnamurthy (2013), in a liquidation crisis the distress of

levered institutions may be the most relevant for determining price movements.

In line with this argument, Nagel (2012) documents that returns to liquidity provision in

equity markets dramatically spiked during the financial crisis as levered financial institutions

in distress required high price concessions in return for offering liquidity. As mutual funds

represent the largest class of institutional investors in equity markets, entering and exiting

positions requires shifting large amounts of capital. Consequently mutual funds’ ability to

trade in equity markets is likely to be highly dependent on the health of levered institutions

who supply market liquidity for their trades, even if they directly obtain most of their

investment capital from households rather than dealer banks/broker-dealers. Moreover, as

noted by Gompers and Metrick (2001), the distribution of asset managers in the 13F data

is highly skewed so that the holdings are dominated by a relatively small set of very large

institutional investors. These investors with large concentrated positions are likely to value

the market liquidity provision of levered broker dealers much more relative to small and

dispersed individual retail investors whose trades are comparably miniscule in size.

Another more direct connection for at least some mutual funds and investment advisors

comes from the fact that dealer banks/broker-dealers often directly operate equity-focused

funds through asset management subsidiaries whose holdings would be classified under mutual

funds or investment advisors in the 13F data. In fact, nearly every historical Federal Reserve

primary dealer in the post-1980 period has a subsidiary fund manager in the 13F data

that is identified as a mutual fund or investment advisor using the Koijen and Yogo (2019)
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corrected type codes. Hence shocks to their bank holding companies would likely have directly

diminished the willingness of such funds to take risk via internal capital markets.

The empirical facts that are documented in this paper are all broadly in accord with the

mechanisms detailed above. As explained in proposition 3 of section 3.1, unless household risk

tolerance shocks are negatively correlated with risk tolerance shocks of mutual funds/hedge

funds/investment advisors, increasing price responses to intermediary shocks along the

dimension of increased intermediation must come because these institutions’ ability to take

on risk is inordinately affected by these shocks. Thus in any case my findings imply that the

largest institutional investors in equity markets are directly affected by shocks to dealer banks

and other broker-dealers; the discussion above simply offers some potential explanations as

to why this is the case.

3.5 Conclusion

Building off of theoretical and empirical work that features constrained intermediaries as

marginal investors, I show that the asset holdings of financial institutions generate higher

covariances of more intermediated stocks with shocks to intermediary risk-bearing capacity, via

temporary differential movements in discount rates. After accounting for stock fundamentals,

stocks that are held more by intermediaries covary more with shocks to intermediaries’ ability

to take on risk, and state variables capturing the health of financial intermediaries predict

better the returns of the more intermediated stocks than the less intermediated stocks, again

conditional on stocks having similar characteristics. These effects are large in economic

magnitude. Two alike stocks would have annualized conditional risk premia that are 11-12%

higher at the quarterly horizon if owned entirely by financial institutions instead of households

following a one standard deviation drop in intermediary risk tolerance. Furthermore, the

beta on shocks to intermediary risk-bearing capacity on a portfolio formed on the most

intermediated stocks is more than 5 times higher than the beta on the least intermediated

portfolio, despite the two portfolios being comprised of stocks that are on average of the same

size, book/market, investment (asset growth), profitability, and CAPM betas.
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Previous empirical papers testing frictional intermediary asset pricing theories have tended

to focus on asset markets that are comparatively difficult for households to access. By contrast,

I demonstrate that effects predicted by intermediary asset pricing models persist even among

equities, which is perhaps the easiest asset class for households to directly access. In this

sense the findings in this paper may provide a lower bound for the relative importance of

intermediary asset pricing in other asset classes.

The empirical evidence presented in this paper suggests that even the risk-bearing capacity

of large institutional investors who tend to avoid taking on leverage, such as mutual funds, still

depends on the health of levered dealer banks. Accordingly, future research may examine this

connection in more depth, including quantifying how much the ability of large institutional

investors to trade or bear risk in equity markets directly depends upon the liquidity provision

of levered institutions such as dealer banks, broker-dealers, and hedge funds.
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Figures

Figure 3-2: Annualized Excess Return For Top and Bottom Intermediation (𝜖𝑖,𝑡)
Quintile Portfolios

This figure shows the time series of annualized quarterly excess returns on the top and bottom
quintile equal-weighted portfolios formed on the intermediation measure 𝜖𝑖,𝑡. Details on the
construction of 𝜖𝑖,𝑡 are presented in section 3.3.1. Sample spans 1980q2 to 2017q3.
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Figure 3-4: Coefficients on Intermediary Shocks and Market Risk Over Portfolios
Formed on Intermediation Quintile

Intermediary Shock Beta Market Risk Factor Beta

This figure plots regression coefficients as in (3.10) of the main text. The figure on the left shows
the coefficient estimates on the average of the standardized Federal Reserve primary dealer equity
capital ratio shocks from He, Kelly, and Manela (2017) and the broker-dealer book leverage growth
shocks from Adrian, Etula, and Muir (2014) for five portfolios formed on the intermediation measure
𝜖𝑖,𝑡 (which is constructed so as to be uncorrelated with fundamental stock characteristics; section
3.3.1 discusses this in more detail), as well as the coefficient on the intermediary shocks for the
top minus bottom quintile spread. The figure on the right shows the corresponding betas on a
version of the value-weighted market risk factor that excludes returns on financial stocks (SIC code
between 6000 and 6999). The confidence bands represent 95% confidence intervals computed from
Newey-West standard errors. The Intermediary Shock measure is standardized and returns are in
annualized percent form. Sample spans 1980q2 to 2017q3.
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Figure 3-5: Betas On Portfolios Sorted By Intermediation on Different Shocks To
Intermediary risk-bearing Capacity

Intermediary Shock Beta Capital Shock Beta

Leverage Shock Beta Financial Sector Return Beta

This figure presents regressions estimates as in (3.10) of the main text for each of the proposed
intermediary shocks for each of the five portfolios formed on quintiles of the intermediation measure
𝜖𝑖,𝑡 constructed in section 3.3.1 of the main text, as well as the top minus bottom quintile portfolio
spread. The capital and shocks refer to the Federal Reserve primary dealer equity capital ratio
shocks proposed in He, Kelly, and Manela (2017), while the leverage shocks refer to the broker-dealer
leverage shocks from Adrian, Etula and Muir (2014). Intermediary shock refers to the average of
the standardized leverage and capital shocks. Financial sector return is the value-weighted return
on the financial sector (stocks with SIC code between 6000 and 6999). Regressions control for a
version of the value-weighted market risk factor that excludes financial stocks. The Intermediary
Shock measure is standardized and returns are in annualized percent form. Error bands represent
95% Newey-West confidence intervals. Sample spans 1980q2 to 2017q3.
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Figure 3-6: Betas On Portfolios Sorted By Intermediation On Capital and Lever-
age Shocks Included in Same Specification

Capital Shock Beta Leverage Shock Beta

This figure presents regressions estimates as in (3.11) of the main text:

𝑅𝑒
𝑡 = 𝛽0,𝑖 + 𝛽1,𝑖Capital Shock𝑡 + 𝛽2,𝑖Leverage Shock𝑡 + 𝛽3,𝑖

(︁
Mkt𝑁𝑜𝑛𝐹 𝑖𝑛 − Rf

)︁
𝑡
+ 𝜖𝑖,𝑡 (3.18)

This plots show betas on capital and leverage shocks included together in the same specification
and for each of the five portfolios formed on quintiles of the intermediation measure 𝜖𝑖,𝑡 constructed
in section 3.3.1 of the main text, as well as the top minus bottom quintile portfolio spread. The
capital shocks refer to the Federal Reserve primary dealer equity capital ratio shocks proposed in
He, Kelly, and Manela (2017), while the leverage shocks refer to the broker-dealer leverage shocks
from Adrian, Etula and Muir (2014). Error bands represent 95% Newey-West confidence intervals.
Sample spans 1980q2 to 2017q3.
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Figure 3-7: Predictability of One Month High Minus Low Intermediation Spread
Portfolio Returns On Intermediary risk-bearing Capacity At Different Monthly
Horizons

Coefficient 𝑅2

This figure shows coefficients obtained from predictive regressions of the one month high minus
low return spread for portfolios formed on top and bottom quintiles of intermedation measure 𝜖𝑖,𝑡
(which is constructed in section 3.3.1 of the text) on predictor 𝜂𝑡 at different monthly horizons.
Regressions are of the form

𝑅𝑄5
𝑡+𝑘 −𝑅𝑄1

𝑡+𝑘 = 𝛼+ 𝛽𝑘𝜂𝑡 + 𝜈𝑡 (3.19)

as in equation (3.13) in the main text. The horizon 𝑘 varies from 1 month to 18 months. The
predictor 𝜂𝑡 is the average of the standardized primary dealer squared leverage from He, Kelly, and
Manela (2017) and the negative of standardized broker dealer leverage from Adrian, Etula, and
Muir (2014). The gray shaded area corresponds to 90% Newey-West confidence intervals with one
lag.
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Table 3.1: Fama-Macbeth Regressions of Percent Stock Ownership By Interme-
diaries on Baseline Stock Characteristics

Percent Intermediated𝑖,𝑡

Log Book Equity 0.058***

(15.13)

Log Book Equity Sq. -0.0045***

(-10.52)

Profitability 0.024*

(1.92)

CAPM Beta 0.047***

(5.39)

Asset Growth 0.028***

(4.13)

Book/Market -0.015***

(-6.53)

Observations 214448
Average R2 0.11

This table shows the Fama-Macbeth time series average coefficients from the cross-sectional regression
in (3.9):

Percent Intermediated𝑖,𝑡 = 𝛼0 + 𝛼𝑡 + 𝛽𝑋𝑖,𝑡 + 𝜖𝑖,𝑡

for stocks included in the sample. At each time 𝑡 the top 1% of observations of
Percent Intermediated𝑖,𝑡 are winsorized to deal with outliers in the cross-section of institutional
holdings. T-stats in parentheses are computed using Fama-Macbeth standard errors, robust to 8
lags of autocorrelation. Average 𝑅2 refers to the time series average of the R-squared from each
cross-sectional regression. The sample ranges from 1980q2 to 2017q3.
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Table 3.2: Summary Statistics of Stock Characteristics For Portfolios Sorted on
Quintiles of Intermediation Measure 𝜖𝑖,𝑡

Panel A: Portfolio Characteristic Means

% Inst Log(ME) Log(BE) BE/ME Asset Growth Prof/BE CAPM 𝛽

Q1 .2 6.84 6.16 .88 .14 .22 1.17
Q2 .34 7.22 6.52 .92 .12 .23 1.11
Q3 .43 7.25 6.54 .92 .12 .23 1.16
Q4 .51 7.14 6.43 .87 .13 .23 1.18
Q5 .62 6.92 6.16 .88 .14 .21 1.18

Panel B: Portfolio Characteristic Medians

% Inst Log(ME) Log(BE) BE/ME Asset Growth Prof/BE CAPM 𝛽

Q1 .17 6.7 5.82 .79 .14 .22 1.17
Q2 .32 7.19 6.24 .83 .12 .23 1.09
Q3 .42 7.26 6.28 .82 .12 .23 1.13
Q4 .52 7.14 6.2 .8 .13 .23 1.17
Q5 .65 6.93 5.86 .82 .14 .22 1.19

This table shows the means and medians of percent holdings by institutional investors
(mutual funds, hedge funds, and investment advisors), log market equity, log book equity,
book/market, asset growth (investment), profitability to book equity, and pre-ranking CAPM
beta for the 5 portfolios formed on quintiles of the intermediation measure 𝜖𝑖,𝑡. Details on
the construction of 𝜖𝑖,𝑡 are presented in section 3.3.1. Sample spans 1980q2 to 2017q3.
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Table 3.3: Return Summary Stats For Portfolios Formed on Quintiles of Inter-
mediation Measure 𝜖𝑖,𝑡

Q1 Q2 Q3 Q4 Q5 Q5-Q1

𝜇(Ex Ret) 8.76 10.14 10.46 11.2 10.63 1.79
t-stat 2.84 3.38 3.3 3.51 3.16 1.85
𝜎(Ex Ret) 38.97 37.05 39.33 40.02 42.33 12.22
Sharpe Ratio .22 .27 .27 .28 .25 .15

This table reports the means, standard deviations, and Sharpe Ratios for the percent
annualized excess returns for portfolios formed on quintiles of intermediation measure 𝜖𝑖,𝑡.
Details on the construction of 𝜖𝑖,𝑡 are presented in section 3.3.1. Sample spans 1980q2 to
2017q3.
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Table 3.4: Regressions of Quintile-Sorted Portfolios Formed by Intermediation
Measure 𝜖𝑖,𝑡 on Contemporaneous Intermediary Shocks

Q1 Q2 Q3 Q4 Q5 Q5-Q1

Intermediary Shock 0.948 2.727** 3.570** 4.104** 5.082*** 4.134***

(0.75) (2.24) (2.58) (2.31) (3.45) (4.21)

Mkt𝑁𝑜𝑛𝐹 𝑖𝑛 − Rf 1.101*** 1.028*** 1.073*** 1.068*** 1.118*** 0.017
(21.59) (20.96) (18.28) (14.55) (19.56) (0.41)

Observations 150 150 150 150 150 150
𝑅2 0.88 0.90 0.89 0.86 0.87 0.13

This table shows regressions of the intermediation measure 𝜖𝑖,𝑡 portfolio quintile excess returns (and
top minus bottom quintile spread) on risk factors as in (3.10) of the main text:

𝑅𝑒
𝑖,𝑡+1 = 𝛼𝑖 + 𝛽1,𝑖Intermediary Shock𝑡+1 + 𝛽2,𝑖(Mkt𝑁𝑜𝑛𝐹 𝑖𝑛

𝑡+1 −𝑅𝑓,𝑡) + 𝜈𝑖,𝑡 (3.20)

The first row of this table shows the coefficient estimates on the average of the standardized Federal
Reserve primary dealer equity capital ratio shocks from He, Kelly, and Manela (2017) and the
broker-dealer book leverage growth shocks from Adrian, Etula, and Muir (2014) for five portfolios
formed on the intermediation measure 𝜖𝑖,𝑡 (which is constructed so as to be uncorrelated with
fundamental stock characteristics; section 3.3.1 discusses this in more detail), as well as the coefficient
on the intermediary shocks for the top minus bottom quintile spread. The second row shows the
betas on a version of the value-weighted market risk factor that excludes returns on financial stocks
(SIC code between 6000 and 6999). The sample is quarterly and comprises 1980q2 to 2017q3.
Newey-West t-stats are in parentheses. Quarterly excess returns are in annualized percent form and
the intermediary shock is standardized. Sample spans 1980q2 to 2017q3.
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Table 3.5: Predictability Regressions of High minus Low Intermediation Spread
Portfolio Returns On Intermediary risk-bearing Capacity

(1) (2) (3) (4) (5) (6)

𝜂 2.828*** 5.506*** 2.806*** 2.826*** 2.818*** 6.236***

(2.87) (3.57) (2.83) (2.84) (2.87) (3.93)

P/E 3.479 4.460*

(1.53) (1.90)

cay 0.401 0.658
(0.49) (0.77)

10Y-3Mo -0.075 0.735
(-0.07) (0.80)

sentiment 1.418 1.726
(1.37) (1.56)

Observations 450 450 450 450 450 450
𝑅2 0.041 0.066 0.042 0.041 0.051 0.087

This table shows coefficients obtained from regressing overlapping quarterly returns at the monthly
frequency of the high minus low intermediation portfolio excess returns on 𝜂, the average of the
standardized primary dealer squared leverage from He, Kelly, and Manela (2017) and the negative
of standardized broker dealer leverage from Adrian, Etula, and Muir (2014):

𝑅𝑄5
𝑡→𝑡+3 −𝑅𝑄1

𝑡→𝑡+3 = 𝛼+ 𝛽1𝜂𝑡 + 𝛽2𝑍𝑡 + 𝜈𝑡 (3.21)

Controls include P/E, the cyclically-adjusted price to earnings ratio; cay, the consumption-wealth
ratio from Lettau and Ludvigson (2001); the 10 year minus 3 month treasury term spread; and,
the Baker and Wurgler (2006) sentiment index. Newey-West t-stats with four lags are presented
in parentheses. All independent variables are standardized and excess returns are expressed in
annualized percentage form. The high and low portfolios are formed on the intermediation measure
𝜖𝑖,𝑡 (which is constructed so as to be uncorrelated with fundamental stock characteristics; section
3.3.1 discusses this in more detail). Sample spans 1980m4 to 2017m9.
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Table 3.6: Predictability Regressions of High minus Low Intermediation Spread
Portfolio Returns On HKM and AEM State Variables

(1) (2) (3) (4) (5) (6)

PD Lev. Sq. 2.023** 4.563*** 2.035** 2.025** 2.133** 5.589***

(2.22) (3.52) (2.22) (2.23) (2.41) (3.98)

BD Lev. -1.628* -2.999*** -1.586* -1.623* -1.505 -3.273***

(-1.79) (-2.83) (-1.72) (-1.77) (-1.63) (-3.10)

P/E 3.938* 5.295**

(1.67) (2.13)

cay 0.425 0.878
(0.52) (1.04)

10Y-3Mo -0.089 0.784
(-0.08) (0.86)

sentiment 1.458 1.895*

(1.40) (1.65)

Observations 450 450 450 450 450 450
𝑅2 0.041 0.070 0.042 0.041 0.052 0.096

This table shows coefficients obtained from regressing overlapping quarterly returns at the monthly
frequency of the high minus low intermediation portfolio excess returns on the primary dealer
squared leverage from He, Kelly, and Manela (2017) and the broker dealer leverage from Adrian,
Etula, and Muir (2014):

𝑅𝑄5
𝑡→𝑡+3 −𝑅𝑄1

𝑡→𝑡+3 = 𝛼+ 𝛽1PD Lev Sq𝑡 + 𝛽2BD Lev𝑡 + 𝛽3𝑍𝑡 + 𝜈𝑡 (3.22)

Controls include P/E, the cyclically-adjusted price to earnings ratio; cay, the consumption-wealth
ratio from Lettau and Ludvigson (2001); the 10 year minus 3 month treasury term spread; and, the
Baker and Wurgler (2006) sentiment index. All independent variables are standardized and excess
returns are expressed in annualized percentage form. The high and low portfolios are formed on the
intermediation measure 𝜖𝑖,𝑡 (which is constructed so as to be uncorrelated with fundamental stock
characteristics; section 3.3.1 discusses this in more detail). Sample spans 1980m4 to 2017m9.
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Table 3.7: Predictability Regressions of High minus Low Intermediation Spread
Portfolio Returns On Financial Sector Stock Market Wealth Share

(1) (2) (3) (4) (5) (6)

Fin. Share -2.577*** -4.038** -2.571*** -2.575*** -2.379*** -3.876**

(-3.06) (-2.22) (-2.88) (-3.05) (-2.75) (-2.14)

P/E 2.087 2.092
(0.88) (0.89)

cay 0.032 -0.034
(0.04) (-0.04)

10Y-3Mo -0.086 0.322
(-0.08) (0.34)

sentiment 0.928 0.854
(0.88) (0.78)

Observations 450 450 450 450 450 450
𝑅2 0.034 0.045 0.034 0.034 0.038 0.049

This table shows coefficients obtained from regressing overlapping quarterly returns at the monthly
frequency of the high minus low intermediation portfolio excess returns on the share of stock market
wealth held in the financial sector (SIC codes between 6000 and 6999):

𝑅𝑄5
𝑡→𝑡+3 −𝑅𝑄1

𝑡→𝑡+3 = 𝛼+ 𝛽1Fin. Share𝑡 + 𝛽3𝑍𝑡 + 𝜈𝑡 (3.23)

Controls include P/E, the cyclically-adjusted price to earnings ratio; cay, the consumption-wealth
ratio from Lettau and Ludvigson (2001); the 10 year minus 3 month treasury term spread; and,
the Baker and Wurgler (2006) sentiment index. Newey-West t-stats with four lags are presented
in parentheses. All independent variables are standardized and excess returns are expressed in
annualized percentage form. The high and low portfolios are formed on the intermediation measure
𝜖𝑖,𝑡 (which is constructed so as to be uncorrelated with fundamental stock characteristics; section
3.3.1 discusses this in more detail). Sample spans 1980q2 to 2017q3.
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Table 3.8: Panel Regressions of Stock Excess Returns on Contemporaneous In-
termediary Shocks Interacted With Intermediation Measure 𝜖𝑖,𝑡

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intermediary Shock × 𝜖𝑖,𝑡 9.01*** 8.11*** 10.0***

(5.32) (4.96) (4.63)

Capital Shock × 𝜖𝑖,𝑡 0.17*** 0.18*** 0.23***

(3.51) (2.65) (3.96)

Leverage Shock × 𝜖𝑖,𝑡 0.048* 0.048* 0.062*

(1.70) (1.66) (1.86)

Ex Ret (Fin.) × 𝜖𝑖,𝑡 0.19*** 0.22** 0.31***

(3.17) (2.48) (2.94)

Mkt𝑁𝑜𝑛𝐹 𝑖𝑛 − Rf × 𝜖𝑖,𝑡 0.058 -0.010 -0.049 0.085 -0.014 -0.10
(0.66) (-0.09) (-0.39) (0.97) (-0.15) (-0.76)

SMB × 𝜖𝑖,𝑡 0.064 0.056 0.075
(0.38) (0.33) (0.47)

HML × 𝜖𝑖,𝑡 -0.17 -0.21 -0.14
(-1.16) (-1.45) (-0.78)

CMA × 𝜖𝑖,𝑡 -0.099 -0.082 -0.21
(-0.60) (-0.51) (-1.26)

RMW × 𝜖𝑖,𝑡 0.39*** 0.40*** 0.36***

(2.87) (2.92) (2.64)

UMD × 𝜖𝑖,𝑡 -0.056 -0.032 -0.033
(-0.60) (-0.34) (-0.37)

Stock Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 211255 211255 211255 211255 211255 211255 211255 211255 211255
R2 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

This table shows estimates from panel regressions as in (3.14) of the main text:

𝑅𝑖,𝑡+1 −𝑅𝑓,𝑡 = 𝛼0 + 𝛽1𝐹𝑡+1 × 𝜖𝑖,𝑡 + 𝛽2𝑊𝑡+1 × 𝜖𝑖,𝑡 + 𝛼𝑡 + 𝛼𝑖 + 𝜈𝑖,𝑡+1 (3.24)

Here 𝐹𝑡+1 denotes shocks to intermediaries and 𝑊𝑡+1 controls for other common shocks. The capital
shocks refer to the Federal Reserve primary dealer equity capital ratio shocks proposed in He, Kelly,
and Manela (2017), while the leverage shocks refer to the broker-dealer leverage shocks from Adrian,
Etula and Muir (2014). Intermediary shock refers to the average of the standardized leverage and
capital shocks. Financial sector return is the value-weighted return on the financial sector (stocks
with SIC code between 6000 and 6999). Regressions control for a version of the value-weighted
market risk factor that excludes financial stocks. Controls SMB, HML, CMA, RMW, UMD refer to
the Fama-French (2015) risk factors and the up minus down momentum factor. In parentheses are
t-stats that are clustered by time to adjust for cross-sectional correlation in the residuals and are
also adjusted for one lag of autocorrelation. The Intermediary Shock measure is standardized and
returns are in annualized percent form. Sample spans 1980q2 to 2017q3.289



Table 3.9: Predictive Panel Regressions of Stock Excess Returns on Intermediary
State Variables Interacted With Intermediation Measure 𝜖𝑖,𝑡

(1) (2) (3) (4) (5) (6)

𝜂 × 𝜖𝑖,𝑡 12.3*** 11.0***

(3.98) (2.96)

PD Lev. Squared × 𝜖𝑖,𝑡 7.01*** 4.82**

(3.04) (2.30)

BD Lev. × 𝜖𝑖,𝑡 -8.38*** -8.00***

(-2.96) (-2.70)

Fin. Share × 𝜖𝑖,𝑡 -8.17*** -5.32*

(-2.75) (-1.86)

P/E × 𝜖𝑖,𝑡 -3.22 -4.29 -7.15**

(-0.83) (-1.15) (-2.17)

cay × 𝜖𝑖,𝑡 1.24 1.33 0.54
(0.53) (0.56) (0.22)

10Y-3Mo × 𝜖𝑖,𝑡 -0.0083 -0.0074 -0.0077
(-0.37) (-0.34) (-0.34)

sentiment × 𝜖𝑖,𝑡 2.73 2.56 0.44
(0.63) (0.60) (0.11)

Stock Fixed Effects Yes Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 211255 211255 211255 211255 211255 211255
R2 0.24 0.24 0.24 0.24 0.24 0.24

This table shows estimates from running predictive regressions of quarterly 𝑡+ 1 stock excess returns
on date 𝑡 state variables interacted with the intermediation measure 𝜖𝑖,𝑡 (which is constructed so as
to be uncorrelated with fundamental stock characteristics; section 3.3.1 discusses this in more detail).
The state variable 𝜂 is the average of the standardized primary dealer squared leverage ratio from
He, Kelly, and Manela (2017) and the negative of the standardized broker-dealer leverage ratio from
Adrian, Etula, and Muir (2014). Fin. Share is the share of stock market wealth held in financial
stocks. The Controls include P/E, the cyclically adjusted P/E ratio; cay, the consumption-wealth
ratio from Lettau, and Ludvigson (2001); the 10 year minus 3 month treasury term spread; and, the
Baker and Wurgler (2006) sentiment index. All independent variables are standardized and returns
are in annualized percent form. Sample spans 1980q2 to 2017q3.
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Table 3.10: Panel Regressions of Rolling Stock-Level Intermediary risk-bearing
Capacity Betas on Intermediation Measure 𝜖𝑖,𝑡

Intermediary Shock Capital Shock Leverage Shock Ex Ret (Fin.)

𝜖𝑖,𝑡 6.70*** 0.14*** 0.070*** 0.17***

(3.75) (3.85) (2.67) (3.22)

Stock Fixed Effects Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 188453 188453 188453 188453
R2 0.53 0.54 0.50 0.55

This table shows regressions of rolling individual stock betas on the intermediation measure 𝜖𝑖,𝑡
(which is constructed so as to be uncorrelated with fundamental stock characteristics; section 3.3.1
discusses this in more detail). Stock betas are obtained from regressions of the form

𝑅𝑖,𝑡 −𝑅𝑓,𝑡 = 𝛼𝑖 + 𝛽𝑖F𝑡 + 𝛽𝑀
𝑖

(︁
Mkt𝑁𝑜𝑛𝐹 𝑖𝑛

𝑡 − Rf𝑡
)︁

+ 𝛿𝑖,𝑡 (3.25)

using a window of plus or minus 15 quarters. Stocks betas must have been estimated using at least
20 observations to be included in the sample. Reported coefficients are then estimated from panel
regressions taking the form

̂︀𝛽𝑖,𝑡−15→𝑡+15 = 𝛼0 + 𝛽1𝜖𝑖,𝑡 + 𝛽2𝑍𝑖,𝑡 + 𝛼𝑡 + 𝛼𝑖 + 𝜈𝑖,𝑡 (3.26)

Controls 𝑍𝑖,𝑡 include gross profitability, investment (asset growth), CAPM beta, book/market,
second-degree polynomial in log market cap and log book equity, plus stock and time fixed effects.
In parentheses are t-statistics double clustered by stock and quarter. Returns and risk factors are
expressed in annualized percentage terms, with the exception of the intermediary shock, which is
standardized to zero mean and unit variance. Sample spans 1980q2 to 2017q3.
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Table 3.11: Robustness: Contemporaneous Portfolio Regressions

Original Add WRDS Ratios Just log(BE) Value-Weighted Drop Crisis
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Intermediary Shock 4.13*** 4.43*** 3.42*** 3.34*** 2.76** 4.38*** 6.13*** 7.23*** 4.07** 3.27*

(4.21) (3.05) (3.46) (2.83) (2.60) (3.17) (5.20) (5.33) (2.53) (1.75)

Mkt𝑁𝑜𝑛𝐹 𝑖𝑛 − Rf 0.017 0.046 -0.025 0.036 0.19*** 0.14** -0.11 -0.14* 0.016 0.070
(0.41) (0.86) (-0.58) (0.73) (4.09) (2.50) (-1.47) (-1.84) (0.32) (1.09)

Additional Controls No Yes No Yes No Yes No Yes No Yes
Observations 150 150 150 150 150 150 150 150 144 144
R2 0.13 0.20 0.072 0.15 0.27 0.40 0.092 0.19 0.077 0.16

This table contains predictability regressions of high minus low excess returns for portfolios formed
on the top and bottom quintiles of intermediation measure 𝜖𝑖,𝑡 on risk factors

𝑅𝑄5
𝑖,𝑡+1 −𝑅𝑄1

𝑖,𝑡+1 = 𝛼+ 𝛽1Intermediary Shock𝑡+1 + 𝛽2(Mkt𝑁𝑜𝑛𝐹 𝑖𝑛
𝑡+1 −𝑅𝑓,𝑡) + 𝜈𝑡 (3.27)

The first two columns estimate the residual intermediation 𝜖𝑖,𝑡 as done throughout the main text
(and decribed in section 3.3.1); the next two add 40 financial ratios obtained from WRDS to the
cross-sectional regression (3.9) from the main text; columns (5) and (6) include just a second degree
polynomial in log book equity to estimate 𝜖𝑖,𝑡. Columns (7)/(8) and (9)/(10) are, respectively, for
value-weighted instead of equal-weighted portfolios and for a subsample that excludes the financial
crisis (2008q1 through 2009q2). Odd columns control just for a version of the value-weighted market
factor that excludes returns on financial stocks and even columns add the Fama-French (2015)
non-market risk factors plus the momentum factor. The Intermediary Shock measure is formed as
an average of the standardized shocks to primary dealer equity capital from He, Kelly, and Manela
(2017) and broker-dealer leverage from Adrian, Etula, and Muir (2014). The Intermediary Shock
measure is standardized and returns are expressed in annualized percent form. Newey-West t-stats
are in parentheses. Sample spans 1980q2 to 2017q3.
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Table 3.12: Robustness: Predictive Portfolio Regressions

Original Add WRDS Ratios Just log(BE) Value-Weighted Drop Crisis

𝜂 6.236*** 5.535*** 7.865*** 5.604** 6.961***

(3.93) (3.57) (4.62) (2.56) (3.10)

P/E 4.460* 3.753 5.810*** 3.110 5.079*

(1.90) (1.58) (2.91) (1.04) (1.79)

cay 0.658 0.862 1.700 -0.036 0.647
(0.77) (1.07) (1.45) (-0.03) (0.74)

10Y-3Mo 0.735 0.304 1.513 1.415 0.737
(0.80) (0.47) (1.36) (0.98) (0.78)

sentiment 1.726 1.479 0.394 3.655** 1.919*

(1.56) (1.40) (0.33) (2.50) (1.67)

Observations 450 450 450 450 432
𝑅2 0.087 0.096 0.083 0.069 0.075

This table shows predictability regressions of high minus low excess returns for portfolios formed on
the top and bottom quintiles of intermediation measure 𝜖𝑖,𝑡 on on 𝜂, the average of the standardized
primary dealer squared leverage from He, Kelly, and Manela (2017) and the negative of standardized
broker dealer leverage from Adrian, Etula, and Muir (2014):

𝑅𝑄5
𝑡→𝑡+3 −𝑅𝑄1

𝑡→𝑡+3 = 𝛼+ 𝛽1𝜂𝑡 + 𝛽2𝑍𝑡 + 𝜈𝑡 (3.28)

Regressions are for overlapping quarterly returns at the monthly frequency. The first column
contains the original version for backing out residual intermediation 𝜖𝑖,𝑡 (as used throughout the
main text and described in 3.3.1), while the second column estimates the residual intermediation 𝜖𝑖,𝑡
by adding 40 financial ratios obtained from WRDS to the cross-sectional regression (3.9) using to
obtain 𝜖𝑖,𝑡; the third column includes just a second degree polynomial in log book equity to estimate
𝜖𝑖,𝑡. The last two columns are, respectively, for value-weighted instead of equal-weighted portfolios
and for a subsample that excludes the financial crisis (2008m1 through 2009m6). Newey-West
t-stats with four lags are in parentheses. All independent variables are standardized and returns are
in annualized percent form. Sample spans 1980m4 to 2017m9.
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3.6 Characteristics-Based Framework For Empirical Tests

I present here a simple setting (which borrows heavily but is slightly different from the
characteristics-based demand setup of Koijen and Yogo, 2019) that leads to the empirical
specification for backing out the residual intermediation measure 𝜖𝑖,𝑡 that I use to form
portfolios. As in the model from section 3.1, assume there are two investors, a representative
institutional investor and a representative household with constant-absolute risk aversion
utility and respective risk tolerance 𝜌𝐼 and 𝜌𝐻 (where for now I have suppressed any depen-
dence of risk tolerances on underlying state variables). Assume that there are 𝑁 assets in
net supply 1 whose cashflows are distributed multivariate normal, 𝐷 ∼ 𝑁(𝜇,Σ). Similarly
to Koijen and Yogo (2019), I assume that Σ can be decomposed as Σ = 𝛽𝛽′ + 𝜎2𝐼, where
𝛽 contains asset factor loadings, 𝜎2 is idiosyncratic variance, and 𝛽 is of dimension 𝑁 × 1.
There is also a risk-free asset whose gross return 𝑅𝑓 is fixed exogenously. Let 𝑋 be a 𝑁 × 𝑘

matrix of stock characteristics. I assume that the representative household and institutional
investor agree that

𝛽 = 𝑋Π + 𝜋 (3.29)

where Π is a 𝑘 × 1 vector and 𝜋 is a constant 𝑁 × 1 vector. Hence fundamental loadings 𝛽
are affine in characteristics.22

Now, assume that 𝜇 is linear in characteristics, but households and institutional investors
may disagree on the mapping from characteristics to 𝜇 in the following manner. Households
mistakenly believe that the mean 𝜇 follows

𝜇𝐻 = 𝑋Φ𝐻 + 𝜑𝐻 + 𝜖𝐻 (3.30)

while institutional investors’ (correct) estimate of the mean 𝜇 is given by

𝜇𝐼 = 𝑋Φ𝐼 + 𝜑𝐼 (3.31)

Here 𝜑𝐻 and 𝜑𝐼 are constant across assets and 𝜖𝐻 may differ across assets. The residual 𝜖𝐻

is the component of household’s beliefs about the mean of the asset payoff distribution that
are uncorrelated with the asset characteristics.

22Since any multifactor model of payoffs/returns implies a single factor model where the stochastic-discount
factor is the lone factor, this essentially assumes that loadings on the SDF are affine in characteristics.
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Given constant absolute risk aversion utility, the optimal demand for agent 𝑗 is

𝜃𝑗 = 𝜌𝑗Σ−1(𝜇𝑗 −𝑅𝑓𝑃 ) (3.32)

Imposing market clearing (𝜃𝐼 + 𝜃𝐻 = 1) gives the following expression for prices:

𝑃 = 𝜌𝐼𝜇𝐼 + 𝜌𝐻𝜇𝐻 − Σ1
𝑅𝑓 (𝜌𝐼 + 𝜌𝐻) (3.33)

Substituting out price using market clearing gives the following for intermediary demand (or
percent intermediated):

𝜃𝐼 = 𝜌𝐼Σ−1
[︃
𝜌𝐻(𝜇𝐼 − 𝜇𝐻) + Σ1

𝜌𝐼 + 𝜌𝐻

]︃
(3.34)

= 𝛼
(︁
𝛽𝛽′ + 𝜎2𝐼

)︁−1
(𝑋ΔΦ + Δ𝜑− 𝜖𝐻) + 𝛿1 (3.35)

= 𝛼

𝜎2

(︂
𝐼 + 1

𝜅
𝛽𝛽′

)︂
(𝑋ΔΦ + Δ𝜑− 𝜖𝐻) + 𝛿1 (3.36)

= 𝛼

𝜎2 (𝑋ΔΦ + Δ𝜑− 𝜖𝐻 + (𝑋Π + 𝜋)𝜂) + 𝛿1 (3.37)

= 𝛼

𝜎2 (Δ𝜑+ 𝜋𝜂) + 𝛿1 +𝑋
𝛼

𝜎2 (ΔΦ + Π𝜂) − 𝛼

𝜎2 𝜖𝐻 (3.38)

≡ 𝑎+𝑋𝐵 + 𝜖 (3.39)

Where the terms in the above are defined as follows:

𝛼 = 𝜌𝐼𝜌𝐻

𝜌𝐼 + 𝜌𝐻

, 𝛿 = 𝜌𝐼

𝜌𝐼 + 𝜌𝐻

, 𝜅 = −(𝜎2 + 𝛽′𝛽), (3.40)

ΔΦ = Φ𝐼 − Φ𝐻 , Δ𝜑 = 𝜑𝐼 − 𝜑𝐻 , 𝜂 = 1
𝜅
𝛽′(𝑋ΔΦ + Δ𝜑− 𝜖𝐻), (3.41)

𝐵 = 𝛼

𝜎2 (Π𝜂 + ΔΦ), 𝑎 = 𝛼

𝜎2 (Δ𝜑+ 𝜋𝜂) + 𝛿1, and 𝜖 = − 𝛼

𝜎2 𝜖𝐻 (3.42)

The relation between the second and third lines follows from the Woodbury matrix identity
and then simplifying. Note that the constant 𝜂 is obtained by multiplying 𝛽 by 𝑋 and
𝜖𝐻 , the current characteristics of all assets and the residual component of the household’s
estimate of the mean for all assets. The constants 𝛼 and 𝛿 also depend on the current risk
tolerance of the agents in the model. Hence the parameters in (3.39) can only be identifed
with time-specific coefficients, which implies a cross-sectional regression as in (3.9) in the
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main text:
Percent Intermediated𝑖,𝑡 = 𝛼𝑡 + 𝛽𝑡𝑋𝑖,𝑡 + 𝜖𝑖,𝑡 (3.43)

I now show that under the assumptions above the residual 𝜖𝑖,𝑡 recovers a component of
intermediary demand along which the price response to intermediary risk tolerance shocks is
strictly increasing. Returning to the equation for prices:

𝑃 = 𝜌𝐼𝜇𝐼 + 𝜌𝐻𝜇𝐻 − Σ1
𝑅𝑓 (𝜌𝐼 + 𝜌𝐻) (3.44)

= 𝜌𝐼(𝜔)(𝑋Φ𝐼 + 𝜑𝐼) + 𝜌𝐻(𝜁)(𝑋Φ𝐻 + 𝜑𝐻 + 𝜖𝐻) − Σ1
𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁)) (3.45)

Now, letting 𝜌𝐼 depend on the state variable 𝜔 and 𝜌𝐻 on the state variable 𝜁 as before, we
can take the total derivative of price with respect to a local shock to these variables:

𝑑𝑃 = 𝜌
′
𝐼(𝜔) (𝜌𝐻(𝜁)(ΔΦ𝑋 + Δ𝜑− 𝜖𝐻) + Σ1)

𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁))2 𝑑𝜔 (3.46)

− 𝜌
′
𝐻(𝜁) (𝜌𝐼(𝜔)(ΔΦ𝑋 + Δ𝜑− 𝜖𝐻) + Σ1)

𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁))2 𝑑𝜁 (3.47)

≡ 𝛽𝜔𝑑𝜔 + 𝛽𝜁𝑑𝜁 (3.48)

Note that since we assume 𝜌′
𝐼(𝜔) > 0, 𝛽𝜔 is strictly decreasing in 𝜖𝐻 , or equivalently is strictly

increasing in 𝜖 = − 𝛼
𝜎2 𝜖𝐻 . Since the residuals 𝜖𝑖,𝑡 in the regression equation (3.9) are analogous

to 𝜖 in this setup, this implies that sorting on 𝜖𝑖,𝑡 should induce variation in betas on proxies
for shocks to intermediary risk tolerance. Note also that in the case where Φ𝐼 = Φ𝐻 and
𝜑𝐼 = 𝜑𝐻 , so that ΔΦ = 0 and Δ𝜑 = 0, we recover the expressions in section 3.1 by defining
𝜖𝐻 = 𝜆.

This setting also recovers the differential return predictability for high 𝜖𝐻 assets as in
proposition 2. Define the risk premium on asset 𝑗 by 𝐸[𝑅𝑝,𝑗] = 𝜇𝑗 − 𝑅𝑓𝑃𝑗, and suppose
𝑋2 = 𝑋1, so that asset characteristics are the same, but 𝜖𝐻,1 < 𝜖𝐻,2 (or equivalently, 𝜖1 > 𝜖2,
so that asset 1 is more intermediated) . Then

𝐸[𝑅𝑝,1 −𝑅𝑝,2] = 𝜌𝐻(𝜁)(𝜖𝐻,2 − 𝜖𝐻,1))
𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁)) (3.49)

which is positive and strictly decreasing in 𝜔. Hence 𝜕𝐸[𝑅𝑝,1 − 𝑅𝑝,2]/𝜕𝜔 < 0 and the
difference in expected returns for high minus low intermediated assets decreases (increases)
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when intermediaries are more (less) risk tolerant, as in proposition 2, implying that empirical
proxies for current intermediary risk tolerance should negatively predict the return spread for
high minus low 𝜖𝑖,𝑡 assets.

3.7 Model Extension

Consider the following extension on the model from section 3.1–suppose that household risk
tolerance 𝜌𝐻 is a function of both the state variable 𝜁, which does not move intermediary
risk tolerance, and 𝜔, which does induce changes in intermediary risk tolerance. Then for
local changes in 𝜔 and 𝜁

d𝑃 = 𝜌
′

𝐼(𝜔)(Σ1 − 𝜆𝜌𝐻(𝜁)) + 𝜌𝐻 𝜔(𝜁, 𝜔)(Σ1 + 𝜆𝜌𝐼(𝜔))
𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁, 𝜔))2 d𝜔 +

𝜌𝐻 𝜁(𝜁, 𝜔)(Σ1 + 𝜆𝜌𝐼(𝜔))
𝑅𝑓 (𝜌𝐼(𝜔) + 𝜌𝐻(𝜁, 𝜔))2 d𝜁 (3.50)

Proposition 3 follows easily from here. As proposition 3 assumes the partial derivative
𝜌𝐻𝜔(𝜁, 𝜔) > 0, then since 𝜌

′
𝐼(𝜔) is multiplied by 𝜆 with negative sign and 𝜌𝐻𝜔(𝜁, 𝜔) is

multiplied by 𝜆 with positive sign, the two effects work in opposite direction for the coefficient
on 𝑑𝜔. Moreover, as percent intermediated is strictly decreasing in 𝜆, the negative sign on
𝜌

′
𝐼(𝜔) causes betas on shocks to 𝜔 to increase with intermediation, while 𝜌𝐻𝜔(𝜁, 𝜔) does the

opposite. Therefore if betas increase with intermediation (holding all else constant), it must
be because of price responses to changes in intermediary risk tolerance.

It should be noted that this doesn’t have to be the case if 𝜌𝐻𝜔(𝜁, 𝜔) < 0; however, it
seems highly unlikely in practice that shocks to household and intermediary risk tolerance are
negatively correlated. Indeed Haddad and Muir (2018) argue that if anything 𝜌𝐻𝜔(𝜁, 𝜔) ≥ 0,
as episodes where intermediaries become more risk averse are also likely to be periods of time
where household risk aversion increases (the financial crisis of 2008-2009 being a particularly
salient example).

3.8 Data Appendix

3.8.1 Construction of AEM Leverage Factor

As noted by Cho (2019), changes to the Federal Reserve Flow of Funds data have significantly
altered the implied broker-dealer leverage ratio. Starting with the first quarter of 2014, repo
assets (reverse repo) are included in assets and just repo liabilities, rather than net repo, are
included in the liabilities section. In order to make my leverage factor consistent with the
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construction in the original Adrian, Etula, and Muir (2014) paper, I obtain the broker-dealer
leverage from Table L128 of the 2013q4 Flow of Funds release. I then compute the leverage as

Leverage𝑡 = Total Financial Assets𝑡

Total Financial Assets𝑡 − Total Financial Liabilities𝑡

(3.51)

I then seasonally adjust as described in Adrian, Etula, and Muir (2014). Cho (2019) suggests
that the following change allows one to extend the original AEM factor

Leverage𝑡 = Total Financial Assets𝑡 − Repo Assets𝑡

Total Financial Assets𝑡 − Total Financial Liabilities𝑡 − FDI in US𝑡

(3.52)

This accounts for changes to foreign direct investment reflected in liabilities in later releases
of the Flow of Funds. However, I find that when I use the above for the most recent releases,
the two methods (3.51) and (3.52) agree until the end of 2010 at which point broker dealer
leverage begins an upward spike for (3.52) relative to (3.51), which spike becomes extreme to
the point that leverage becomes negative towards the end of the sample. Due to this issue, I
simply use (3.51) through the 2013q4 release and then extend the series using (3.51) with
updated Flow of Funds data, which is also consistent with the extended leverage factor data
posted on Tyler Muir’s website. I further seasonally adjust the leverage growth series using
expanding window regressions of leverage growth on quarterly dummies as in AEM to arrive
at my final leverage factor.

3.8.2 Selection of WRDS Ratios For Final Sample

For my robustness checks in section 3.3.4 I obtain the 73 financial ratios from the Wharton
Research Data Services Financial Ratios suite. I find that data availability are sparse, so I
do the following:

1. When firm dividend yield and dividend/price ratios are missing, I assume they are
equal to zero

2. I replace missing values for any variables with their lags as of up to 8 quarters previous

3. I then check the fraction of missing observations for stocks that overlap with my main
sample. If this fraction is greater than 1% I exclude the ratio from the analysis.

This leaves the following ratios:
Enterprise Value Multiple, Price/Sales, Price/Cash flow, Dividend Payout Ratio, Net Profit
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Margin, Operating Profit Margin Before Depreciation, Operating Profit Margin After Depre-
ciation, Gross Profit Margin, Pre-tax Profit Margin, Cash Flow Margin, Return on Assets,
Return on Equity, Return on Capital Employed, After-tax Return on Average Common
Equity, After-tax Return on Invested Capital, After-tax Return on Total Stockholders Equity,
Gross Profit/Total Assets, Common Equity/Invested Capital, Long-term Debt/Invested
Capital, Total Debt/Invested Capital, Capitalization Ratio, Cash Balance/Total Liabil-
ities, Total Debt/Total Assets, Total Debt/EBITDA, Long-term Debt/Total Liabilities,
Cash Flow/Total Debt, Total Liabilities/Total Tangible Assets, Long-term Debt/Book Eq-
uity, Total Debt/Total Assets, Total Debt/Capital, Total Debt/Equity, Asset Turnover,
Sales/Invested Capital, Sales/Stockholders Equity, Research and Development/Sales, Ad-
vertising Expenses/Sales, Labor Expenses/Sales, Accruals/Average Assets, Price/Book, and
Dividend Yield.

Though the WRDS book/market ratio satisfies sampling criteria, I also exclude this
variable because I already include a version of book/market in the regression. Finally, these
variables are winsorized cross-sectionally at the 1% level to deal with outliers.
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