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Abstract

Coreless resonant power transformers, operating at high frequency, have several ad-
vantages over the traditional iron core transformer. They have a simple structure,
are lighter, cheaper, and more efficient due to the elimination of core losses. For a
given cooling capacity, pushing the efficiency of these devices by as little as a fraction
of a percent can lead to a substantial increase in power throughput capability. In
order to achieve ultra-high efficiency designs, several advanced conductor topologies
are explored with the development of corresponding experimentally validated mod-
eling techniques to capture extra losses due to non-ideal conductor construction and
elliptically rotational magnetic fields. In consideration of industrial economics, care is
taken throughout this work to minimize conductor complexity. The variety of model-
ing techniques developed in this work allow for fast design space exploration as well as
accurate loss predictions for down-selected conductors. An optimization is performed
to choose a final design for an ultra-high efficiency (>99%) 40 kW transformer with
a x4 voltage ratio. The transformer was constructed and thermal comparisons at
partial load were made with a lower efficiency transformer of the same magnetic de-
sign built using solid conductors. Results demonstrate a >2x reduction in loss and a
subsequent coil efficiency >99%.

Thesis Supervisor: Chathan M. Cooke
Title: Principal Research Engineer, Research Laboratory of Electronics
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Chapter 1

Introduction

Work is underway at MIT’s High Voltage Research Laboratory to develop an ad-
vanced power transformer topology for and supported by ProlecGE. The four-coil,
air-core structure consists of two resonant coils, a drive (primary) coil, and a load
(secondary) coil. A 40 kW version of this transformer (see Fig. 1-1) with a 4x volt-
age ratio has been built and tested [1, 2]. Magnetically efficient energy transfer is
established with high-frequency resonant coupling and eliminates the need for flux-
carrying magnetic materials. The absence of an iron core leads to several advantages
over traditional transformers including load independent efficiency, lower cost, lower
weight, and higher efficiency due to the removal of core losses. The design of the
previously built 40 kW transformer, utilizing large diameter solid copper conductors,
has a theoretical efficiency of 98.6% at the operating frequency. As thermal limits set
by the cooling scheme determine a device’s power rating, increasing this transformer’s
efficiency by 1% allows the power throughput to be nearly tripled while maintaining
the same losses. Another way to look at the efficiency improvement is by a 3x reduc-
tion in heat load and associated simplification of the auxiliary cooling infrastructure.

Figure 1-1: (left) The general structure of a 4 coil, coreless transformer and (right)
MIT’s 40 kW solid conductor transformer with a 4x voltage ratio.
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1.1 Motivation
A key limitation to high frequency operation of conductors is the inherent limitation
of magnetic diffusion which restricts currents to near surface regions of the conduc-
tors. This, in turn, causes an increase in resistance and increased losses, known as
AC losses. As will be explained in greater depth throughout this thesis, increasing
the transformer efficiency requires special care to reduce AC losses in the conduc-
tors, which become substantial at small skin depths relative to the dimensions of
the conductor. In order to choose appropriate conductors and conductor arrange-
ments, high-fidelity models and techniques must be implemented to accurately assess
the performance of each configuration. Litz wire, a common solution to the AC loss
problem, is structured to achieve near DC resistance by twisting together several levels
of sub-bundles consisting of smaller individually insulated strands. This arrangement,
in theory, achieves full transposition such that each strand has the same net resis-
tance between terminals and therefore current is uniformly distributed throughout
the cross-section of the conductor. As detailed below, analytical models for simple
arrangements of Litz wire have been developed in the literature over the past century
[3–10] and higher accuracy, more general numerical simulation approaches have been
the focus of recent work. The large number of strands and complex 3D twisted geom-
etry poses a challenge for numerical simulation approaches due to the large number
of mesh elements required for solution convergence. Both 3D finite element analysis
(FEA) [11–14] and a more novel partial element equivalent circuit (PEEC) approach
[15–19] have been adopted for analysis, but both are generally too time and resource
demanding to enable full design space optimizations.

1.2 Approach
A new 2D Litz wire modeling method is developed in this work, which employs a
unique geometry to simulate the real, non-ideal structure of commercially available
Litz wire. A DC simulation is used to relieve the mesh element burden of the compu-
tation. While the simulation setup is more complex due to non-general geometries,
the goal is to match theory with measurements with high accuracy and down-select
a set of conductors for a given application.

An additional consideration is that the analytical methods in the literature do not
apply to the multi-phase, multi-coil geometry of the four-coil resonant transformer
due to the introduction of elliptically rotational magnetic fields. Modifications are
made to analytical models to account for loss associated with elliptically rotational
magnetic fields for the first time and the resulting method is fast enough to enable
optimization of the transformer’s conductors. Finally, this optimization is used to
maximize the transformer efficiency and minimize the total number of strands used
in the transformer’s coils. The number of strands in a conductor is indicative of
manufacturing complexity and generally correlates to the cost of the conductor: a
major factor in consideration of industrial economics [20, 21]. With conductor com-
plexity reduction in mind, several non-Litz constructions are explored in this work to

13



quantify potential performance improvements in simple geometries.
The loss analysis techniques developed in this work are generally applicable to

high frequency power applications such as induction heaters [22, 23], wireless power
transfer systems [24–27], and high-speed electric machines [28–33].

Quantifying the performance of a conductor in a given application can be accom-
plished through several forms of analysis. These approaches are generally categorized
as numerical or analytical in nature. The following two subsections give an overview
of tools developed in the literature and modifications to these tools that have demon-
strated good results in practice.

1.3 Numerical Methods
The three most common numerical approaches to simulate AC current distributions
in conductors (and therefore compute AC losses) are 2D FEA, 3D FEA, and the more
novel PEEC method [34,35].

1.3.1 2D FEA

Two-dimensional FEA is a good approach for modeling solid conductors in AC en-
vironments. Most softwares allow for variable meshing in selected domains of the
simulation. This becomes especially useful at high-frequencies when the current is
mostly located within a relatively small distance from the conductor’s outer surface,
known as the skin depth. Most softwares also include an axisymmetric modeling op-
tion, which is particularly useful in modeling cylindrical coils. Using the axisymmetric
option, however, ignores the finite pitch of cylindrically wound coils and therefore each
turn is approximated as a hoop. In the FEA formulation, Maxwell’s equations, in
their differential form, are solved for everywhere in the simulation domain.

The open source FEA program FEMM [36] is commonly used in industry to solve
2D magnetoquasistatic problems. Companies such as Tesla have used the software
to analyze their motor designs. Simulating twisted bundles in 2D makes the assump-
tions that 1) all current is traveling normal to the domain, ignoring any magnetic
field component not in the plane of the simulation, and that 2) all cross-sections are
circular. These two assumptions are approximations which closely resemble the cir-
cumstances when the bundle twist pitch is sufficiently long compared to the bundle
outer diameter. Simulating axisymmetric problems is relatively straight forward in
2D; this includes stranded conductors if each strand is placed in series to force equal
current sharing and approximate perfect transposition.

First Level

The simplest twisted bundle structure, the single-level bundle, has strands placed in
a rotationally symmetric manner about the bundle’s axis (see Fig. 1-2). For isolated
conductor skin effect analysis in planar 2D simulations there is no difference between
modeling this type of bundle as a twisted bundle or parallel wire bundle. The current
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density distributions are rotationally symmetric, and every strand sees every position
in the bundle. If the strands are all put in parallel, as they would be if soldered
together at the end terminals, each strand sees the same current.

Figure 1-2: 24 strand single-level bundle cross-section with 𝐹𝑖𝑛𝑠 = 0.05.

With the total peak current through the bundle, 𝐼𝑡𝑜𝑡, and by setting a place-holder
depth of domain, 𝐿, the finite element problem is solved and the average resistive
losses over the entire domain is calculated by FEMM using the local electric field, 𝐸,
and the period, 𝑇 = 1

𝑓
,

𝑃𝑡𝑜𝑡 =
1

𝑇

∫︁ 𝑇

0

ℜe
{︂∫︁∫︁∫︁

𝑉

J · E
}︂
𝑑𝑡 (1.1)

the AC resistance of the equivalent parallel-strand bundle per-unit-length is,

𝑅𝐴𝐶 =
2𝑃𝑡𝑜𝑡

𝐼2𝑡𝑜𝑡𝐿
(1.2)

where the factor of two comes from the time-averaged power loss. The DC resistance
per-unit-length of a bundle with 𝑁𝑠 strands each with diameter 𝑑𝑠 is,

𝑅𝐷𝐶 =
4𝜌

𝑁𝑠𝜋𝑑2𝑠
(1.3)

While the multi-level simulation method is more complicated and will be discussed
in the next section, it should be noted that the highest bundle level in a Litz wire
is also rotationally symmetric about the center of the bundle, providing us with one
simplification during analysis. After calculating the per-unit-length resistances the
added resistance from increased conductor length introduced with twisting can be
simply multiplied by a factor using helical path lengths. Twisting typically adds less
than 2.5% to the strand length [37,38].
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Successive Level (Rotating Series)

If we were to simulate a two-level bundle like the one shown in Fig. 1-3(a) using the
same method as described above. All the current would redistribute to the strands
closest to the outside of the bundle as shown in Fig. 1-3(b). This would reflect reality
if the bundle were not twisted, as all strands are placed in parallel and the current can
simply flow out of the end terminals and into the outer strands. However, since this is
a Litz wire and all bundles are assumed to be perfectly twisted such that every strand
carries the same current, we know the effect of transposition is not being captured in
the 2D simulation. To get around this, we can use our knowledge that every strand
carries the same current and meet that boundary condition by placing all strands in a
series circuit which carries 𝐼𝑡𝑜𝑡

𝑁𝑠
total current. This results in a much different current

density distribution as shown in Fig. 1-3(c).

Figure 1-3: (a) A representative two-level, 11 x 6 bundle cross-section (b) sub-bundle
current density distribution when all strands are placed in parallel (c) current density
distribution when all strands are placed in series.

The cross-sectional current densities will clearly change throughout the twist pitch
of the bundle and a more dramatic change is seen in sub-bundles with fewer strands.
To simulate this, the FEA problem for a given bundle must be solved multiple times,
where each time the sub-bundle(s) are rotated to intermediate positions seen along
the length of the wire. Because of the axisymmetric condition of the highest-level as
stated previously, we need only calculate the total power loss of all the strands in one
of the highest-level sub-bundles and multiply by the number of bundles in that level
to get the total power loss per-unit-length at that position, saving computation time.
This total power loss per-unit-length is averaged over all intermediate positions and
the AC resistance per-unit-length is then calculated by,

𝑅𝐴𝐶,𝑏𝑢𝑛𝑑𝑙𝑒 =
2𝑁𝑡𝑜𝑡⟨𝑃𝑡𝑜𝑡⟩

𝐿𝐼2𝑡𝑜𝑡
(1.4)

where 𝑁𝑡𝑜𝑡 is the total number of strands in the bundle.
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1.3.2 3D FEA

3D FEA has the capability of modeling reality within computational limits. With
three-dimensional models of the geometry, parametric trajectories of the strands in
the twisted bundle can be fully modeled. The drawback with this approach is a sub-
stantial increase in computational resource requirements to achieve similar accuracy
to a two-dimensional model. Meshing also becomes more cumbersome when gen-
eral tetrahedral elements are used. Nevertheless, several researchers have succssfully
implemented 3D FEA for their applications [12,13].

The software COMSOL [39] is a very powerful multiphysics FEA program with the
AC/DC module [40] capable of modeling 3D electromagnetic problems. A 3D model
of the Litz wire can be created using very simple parametric equations as will be
discussed later. These simulations should capture all effects of Litz wire with almost
no assumptions. Non-normal currents are simulated, creating non-planar magnetic
field components. In addition, all currents will redistribute for equal current sharing
automatically by nature of transposition without forcing any boundary conditions.

By using the differential form of Maxwell’s equations, the entire domain must be
meshed fine enough to give accurate results. This includes meshing the surround-
ing air in addition to the conductors. For this reason, meshing is the most tedious
part of modeling in 3D FEA. There is a trade-off between simulation time and mesh
density as well as between mesh density and simulation accuracy. Further complicat-
ing matters, a high mesh density demands large amounts of random access memory
(RAM) on the simulating computer. The 3x3 bundle shown in Fig. 1-4(a) was meshed
using the automatic physics-controlled meshing algorithm in COMSOL with a set-
ting of “extremely fine,” demanding 150 GB of RAM. The resulting current density
distribution at multiple points along the length of the wire is shown in Fig. 1-4(b).

Figure 1-4: (a) “Extremely fine” physics-controlled mesh of a 3x3 bundle (b) the
resulting current density cross sections along the length of the wire

1.3.3 PEEC

The partial element equivalent circuit (PEEC) numerical method was introduced sev-
eral decades ago but has garnered renewed interest in recent years specifically for the
analysis of complex 3D structures such as Litz wires. Like 3D FEA, this method
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in an air-core application makes no assumptions and will simulate reality provided
proper discretization. PEEC theory uses the integral formulation of Maxwell’s equa-
tions, which simplifies the problem by only requiring discretization of the conductors
and not the surrounding air. For frequencies below 1 MHz, the idea is to break the
conductor into small filaments and calculate the partial inductances between these
filaments (including self-inductance) as well as the partial resistance of each filament.
This forms an impedance matrix, 𝑍, and the filament terminal connections are de-
scribed in the meshing matrix, 𝑀 . Each filament is assumed to carry uniform current
density. The problem can then be treated as an electrical circuit, where the generalize
minimal residual method (GMRES) is used to solve the equation for branch currents,
𝐼𝑚, given terminal voltages, 𝑉𝑠,

𝑀𝑍𝑀𝑇 𝐼𝑚 = 𝑉𝑠 (1.5)

The AC resistance is then extracted using the total power loss from all filament
calculated with the partial resistances and branch currents. An open-source program,
FastLitz, was developed by Zhang et al. at MIT [15,16] that applies the PEEC method
specifically to Litz wire. It’s predecesor, FastHenry [41], was also developed at MIT for
general inductive applications such as PCB layouts. FastLitz and the general PEEC
method have been further developed in [17–19, 42–44] to improve accuracy, speed of
impedance extractions, and to expand the application space. Partial capacitances
must be considered for frequencies greater than 1 MHz.

A comparison between 3D models for the same 3 x 3 Litz wire in FastLitz and
COMSOL is shown in Fig. 1-5.

Figure 1-5: The same 3 x 3 Litz wire modeled in FastLitz and COMSOL.

Each strand must be discretized radially and lengthwise. Since most of the calcu-
lation effort in the PEEC method is from impedance extraction for non-parallel fila-
ments, more meshed elements results in longer simulation times. The PEEC method
implemented in FastLitz uses rectangular filaments as shown in Fig. 1-5 to make
impedance extraction faster as there exists exact calculations for the mutual induc-
tance between rectangular conductors in space [45].

A discretization study was performed to find the required level of radial and length-
wise discretization by comparing simulation results for a 5-strand parallel bundle in
FastLitz to results from FEMM. Radial discretization is measured as the number of
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Figure 1-6: Strand cross-sections with varying radial discretization in FastLitz. Fine
meshing must be used for accurate results.

filaments along one axis from the center to the radius of the strand. Lengthwise dis-
cretization is the number of elements throughout the length of the strand. Results
of the study showed that to converge close enough to the FEMM solution for designs
up to 𝑑𝑠

2𝛿
= 6 with strand diameter, 𝑑𝑠, significant radial and lengthwise discretiza-

tion must be used: 30 m-1 and 76 m-1 respectively. With this meshing scheme, each
operating point in FastLitz took roughly 5 minutes to compute while the simulation
time in FEMM was comparatively negligible. Results from the fine meshing scheme
are shown side-by-side with FEMM results in Fig. 1-7.

Figure 1-7: Comparison between FastLitz with a fine meshing scheme and FEMM for
the 5-strand parallel bundle.

1.3.4 Comparison of Methods to Experimental Measurements

In problems for which there exists no-exact solution, numerical methods must be
validated against experimental data. To demonstrate that 2D axisymmetric FEA
simulations can accurately compute both the skin effect and proximity effect, we
compared our simulation results for an air-core solenoid to measured data in the
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literature carried out by Ibuchi et al [46]. The air-core solenoid was chosen because it
experiences both eddy current effects. The axisymmetric solenoid geometry is laid out
in Fig. 1-8. With the parameter values shown in Fig. 1-9 for two different solenoids,
FEMM simulations were run and the results are overlaid onto plots taken from [46]
as shown in Fig. 1-10. The AC resistances from the FEMM simulations very closely
followed experimental data for both solenoids. This gives confidence that FEMM can
successfully model complex eddy current phenomenon from both skin and proximity
effect.

Figure 1-8: Air-core solenoid geometric parameter space.

Figure 1-9: List of defining parameters for the two air-core solenoids compared in
Ibuchi et al, with 𝑑𝑠 = 1.6 mm and 𝑝 = 3.2 mm.

Figure 1-10: Air-core solenoid FEMM simulation results overlaid onto measured data
from Ibuchi et al, with 𝑑𝑠 = 1.6 mm and 𝑝 = 3.2 mm.

In the same paper that describes FastLitz [15], experimental validation of the
method was performed using measured data from a 3 x 3 Litz wire. The geometry of
the Litz wire was fully defined in the paper such that the wire could be reproduced
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in the proposed 2D FEA simulation analysis. The Litz wire is twisted in different
directions at each bundle level and the strand used was a 32 AWG magnet wire with
30 𝜇m thick insulation. The wire has a total length of 19 cm and twist pitch on each
level of 1 cm. Fig. 1-11 shows the FastLitz experimental validation taken from [15]
overlaid with results from the 2D FEMM rotating series method. Results from the
2D simulation line up well with measured data, outperforming analytical models. For
frequencies below 1 MHz the 2D results closely follow FastLitz, suggesting that the
difference between the measured data and simulation results is non-idealities in the
construction of the Litz wire. It should be noted that there is a significant advantage
in simulation time when using the 2D method instead of either 3D method.

Figure 1-11: FastLitz experimental validation with our 2D FEMM rotating series
method results overlaid at the measured operating frequencies, base figure taken from
Zhang et al.

1.4 Analytical Methods
The basis of nearly all analytical models in the literature [3, 5, 6, 8–10, 47, 48] is the
exact analytical solution to skin and proximity loss in a solid conductor.

1.4.1 Skin-effect

The exact solution to the AC resistance per-unit-length of an isolated cylindrical
conductor with diameter 𝑑𝑠 is well known and is written in terms of Bessel function
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as follows,

𝑅𝐴𝐶 = ℜe
{︂

𝑘𝜌

𝜋𝑑𝑠

𝐽0

(︁
𝑘𝑑𝑠
2

)︁
𝐽1

(︁
𝑘𝑑𝑠
2

)︁}︂ (1.6)

where the complex wave number, 𝑘, is defined as 1−𝑗
𝛿

, 𝜌 is the resistivity, and 𝐽0 and
𝐽1 are Bessel functions of the first kind, order 0 and order 1 respectively. The Bessel
functions are written as infinite series,

𝐽0

(︁𝑘𝑑𝑠
2

)︁
=

∞∑︁
𝑛=0

(−1)𝑛

𝑛!𝑛!

(︁𝑘𝑑𝑠
4

)︁2𝑛
(1.7)

𝐽1

(︁𝑘𝑑𝑠
2

)︁
=

∞∑︁
𝑛=0

(−1)𝑛

𝑛!(𝑛+ 1)!

(︁𝑘𝑑𝑠
4

)︁2𝑛+1

(1.8)

A detailed derivation of the above solution is provided in [49] and experimentally
validated in [50]. A useful parameter for comparing how close a conductor design is to
DC conditions and full copper utilization is the AC to DC resistance ratio, 𝐹𝑅. This
is computed by dividing the AC resistance of a conductor by the DC resistance, which
in per-unit-length metrics is simply calculated using the total copper area, 𝐴𝐶𝑢,𝑡𝑜𝑡, in
the formula

𝑅𝐷𝐶 =
𝜌

𝐴𝐶𝑢,𝑡𝑜𝑡

(1.9)

Fig. 1-12 shows 𝐹𝑅 plotted against 𝑑𝑠
2𝛿

which encapsulates both strand diameter, ma-
terial, and frequency information.

Figure 1-12: Exact solution to the resistance ratio for a solid cylindrical conductor
plotted against 𝑑𝑠

2𝛿

Although efficient computation of the Bessel functions is available in most math-
ematical scripting softwares and libraries [51–53], it may be advantageous to have
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a simpler formulation to reduce run times in large simulations. Through parameter
optimization, the following function was found to have less than 0.02% error when
𝑑𝑠
2𝛿

< 2,

𝐹𝑅 =
(︁
1 + 0.0652

(︁𝑑𝑠
2𝛿

)︁4.0685)︁ 1
𝜋 (1.10)

For instances where the skin-depth is very small compared to the radius of the
conductor (𝑑𝑠 > 8𝛿), the AC resistance per-unit-length can be approximated by
computing the DC resistance of a tubular conductor with wall thickness equal to 𝛿,

𝑅𝐴𝐶 =
𝜌

𝜋𝛿(𝑑𝑠 − 𝛿)
(1.11)

1.4.2 Proximity Effect

Similarly, their exists an exact solution to the current density distribution and power
loss in a solid cylindrical conductor due to a uniform external alternating and trans-
verse magnetic field. While the proximity effect between strands within a bundle is
complex due to a non-trivial field distribution, the uniform field assumption is more
applicable for turn-to-turn and coil-to-coil proximity effect analysis. Because there is
no current injection, the exact solution is expressed in terms of AC power loss instead
of AC resistance. The solution is again written in terms of Bessel functions as [17,54],

𝑃𝐴𝐶 = 2𝜋𝜌𝐿𝐻2
0ℜe

{︂
𝑘𝑑𝑠
2

𝐽1
(︀
𝑘𝑑𝑠
2

)︀
𝐽0
(︀
𝑘𝑑𝑠
2

)︀}︂ (1.12)

where 𝐻0 is the peak magnitude of the external magnetic field uniform along the
length, 𝐿, of the conductor. With no net transport current, currents travels in oppo-
site directions within the conductor cross-section to oppose the incident and perpen-
dicular changing magnetic field as can be seen in Fig. 1-13 where red and blue hues
denote opposite directions and intensity denotes current density magnitude.

Figure 1-13: Current density distribution in a solid cylindrical conductor due to the
proximity effect, blue denotes into the plane, red denotes out of the plane. Black lines
are the resultant lines of the magnetic field.

23



Normalizing the expression for power loss due to the proximity effect by 𝐿 and
𝐻2

0 gives the proximity loss factor for a solid cylindrical conductor, 𝐺𝑅 (plotted in
Fig. 1-14). This factor is similar to 𝐹𝑅 for the skin-effect in that it provides a value
for qualitative comparisons between various geometries.

Figure 1-14: Exact proximity loss factor, 𝐺𝑅, calculated from (1.12) for a solid cylin-
drical conductor plotted against 𝑑𝑠

2𝛿
.

1.4.3 Ferreira’s Method

A comparison of several of the most prominent analytical models for ideal Litz wire
is provided in [55]. This section gives a detailed description of Ferreira’s approach, on
of the most commonly cited methods to compute the loss in Litz wire. The Ferreira
model was developed to approximate Litz wire losses in a transformer “window”. The
following assumptions are at the foundation of the method:

1. 2D approximation and perfect twisting of the Litz wire

2. 1D homogeneous applied external field

3. Orthogonality between different loss mechanisms

4. Three different loss types: skin effect, internal proximity effect, and external
proximity effect

5. Approximate uniform current density distribution on the cross section of the
bundle

Fig. 1-15 shows the geometric definitions used in this description of Ferreira’s method.

Assumption 5 is accurate if the Litz wire has a high packing factor 𝛽 and 𝑑𝑠
2𝛿

< 1.
The internal magnetic field is then Hint(𝑟) =

𝐼
2𝜋𝑟2𝐿𝑖

𝑟𝜑, where 𝑟 ∈ [0, 𝑟𝐿𝑖] is the distance
from the center of the bundle and 𝐼 is the peak total current through the bundle.

24



Figure 1-15: Geometric description of a Litz bundle and transformer setup from Meng
et al.

The total power loss per-unit-length in the Litz wire is a summation of the indi-
vidual loss components due to orthogonality:

𝑃𝑡𝑜𝑡 = 𝑃𝑠𝑘𝑖𝑛 + 𝑃𝑝,𝑖𝑛𝑡 + 𝑃𝑝,𝑒𝑥𝑡 (1.13)

In general, internal proximity loss in a bundle is calculated by the area integration of
the loss density,

𝑃𝑝,𝑖𝑛𝑡 =
𝑛𝑠𝐺𝑅(𝑓)

𝜋𝑟2𝐿𝑖

∫︁ 2𝜋

0

∫︁ 𝑟𝐿𝑖

0

|Hint(𝑟)|2𝑟𝑑𝑟𝑑𝜑 (1.14)

where 𝐺𝑅 is a frequency dependent multiplicative factor such that the local loss
due to proximity effect is 𝑃𝑝 = 𝐺𝑅(𝑑𝑠, 𝑓)[𝐻(𝑟, 𝜑)]2 and 𝑛𝑠 is the number of strands
in the bundle. Individual loss components are defined as follows using the above
assumptions,

𝑃𝑠𝑘𝑖𝑛 = 𝑅𝐷𝐶𝐹𝑅(𝑓)
1

2
𝐼2 =

4𝜌𝑐𝑢
𝑛𝑠𝜋𝑑2𝑠

𝐹𝑅(𝑓)
1

2
𝐼2 (1.15)

𝑃𝑝,𝑖𝑛𝑡 = 𝑛𝑠𝐺𝑅(𝑓)
[︁ 𝐼2

8𝜋2𝑟2𝐿𝑖

]︁
(1.16)

𝑃𝑝,𝑒𝑥𝑡 = 𝑛𝑠𝐺𝑅(𝑓)𝐻
2
𝑒 (1.17)

where 𝜌𝑐𝑢, 𝑛𝑠, 𝑑𝑠, 𝐹𝑅, and 𝐻𝑒 are copper resistivity, total number of strands in the
bundle, strand diameter, skin effect resistance ratio, and peak external transverse
magnetic field respectively. The resistance ratio and proximity factor are written in
terms of Kelvin functions (definitions of which can be found in Appendix A),

𝐹𝑅(𝑓) =
𝛾𝑠
2

𝑏𝑒𝑟(𝛾𝑠)𝑏𝑒𝑖
′(𝛾𝑠)− 𝑏𝑒𝑖(𝛾𝑠)𝑏𝑒𝑟

′(𝛾𝑠)

𝑏𝑒𝑟′2(𝛾𝑠) + 𝑏𝑒𝑖′2(𝛾𝑠)
(1.18)
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𝐺𝑅(𝑓) = 2𝜋𝛾𝑠𝜌
𝑏𝑒𝑟2(𝛾𝑠)𝑏𝑒𝑟

′(𝛾𝑠) + 𝑏𝑒𝑖2(𝛾𝑠)𝑏𝑒𝑖
′(𝛾𝑠)

𝑏𝑒𝑟2(𝛾𝑠) + 𝑏𝑒𝑖2(𝛾𝑠)
(1.19)

where 𝛾𝑠 = 𝑑𝑠√
2𝛿

. To calculate the power loss due to external proximity effect, we must
know the magnitude of the homogeneous external magnetic field, which is generated
by adjacent bundles. For a single-layer coil, Ferreira approximates this external field
as the average along the coil length,

𝐻𝑒 =
𝑁𝑡𝐼

2𝑏
(1.20)

where 𝑁𝑡 is the number of turns in the single layer coil and 𝑏 is the length of the
coil. Most subsequent models follow Ferreira until the approximation of the external
magnetic field. Finally, the AC resistance per-unit-length of the coil is calculated
from the total power loss as,

𝑅𝐴𝐶 =
2𝑃𝑡𝑜𝑡

𝐼2
(1.21)

Proposed Modification for a Single Layer of Pre-formed Sub-bundles

Figure 1-16: (a) Ferreira basic uniformly packed Litz representation, (b) single-layer
of uniformly packed pre-formed Litz bundles, (c) an approximation that compresses
the pre-formed bundles into an annulus, with reassigned geometric definitions.

If the overall bundle cross section does not have a high packing factor (single-layer
of 𝑁𝑝 > 5 pre-formed bundles creates an annulus) but each closely packed sub-bundle
has a high packing factor and 𝑑𝑠

2𝛿
< 1, then the current can be approximated as uni-

formly distributed throughout the annulus, as shown in Fig. 1-16. Here, the term
𝑟𝐿𝑖 refers to the radius of the single-layer bundle of pre-formed Litz wire. This com-
pression from pre-formed bundles into equidistantly placed strands (same number) in
the annulus is made so that we can approximate the internal magnetic field as before
with a slight modification. The internal magnetic field in the annulus in Fig. 1-16(c)
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becomes,

Hint(𝑟) =
𝐼
[︀
𝑟2 − (𝑟𝐿𝑖 − 𝑑𝑝)

2
]︀

2𝜋𝑟(2𝑟𝐿𝑖𝑑𝑝 − 𝑑2𝑝)
𝜑 (1.22)

where 𝑑𝑝 is the diameter of the pre-formed bundle and 𝑟 ∈ [(𝑟𝐿𝑖−𝑑𝑝), 𝑟𝐿𝑖]. The power
loss due to internal proximity effect then becomes,

𝑃𝑝,𝑖𝑛𝑡 =
𝑛𝑠𝐺𝑅(𝑓)𝐼
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𝑟
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As long as 𝑟𝐿𝑖 > 𝑑𝑝 (which should always be true), the definite integral can be
written explicitly such that the entire expression for the power loss per-unit-length
due to internal proximity effect becomes,

𝑃𝑝,𝑖𝑛𝑡 =
𝑛𝑠𝐺𝑅(𝑓)𝐼

2

2𝜋2(2𝑟𝐿𝑖𝑑𝑝 − 𝑑2𝑝)
3

{︃
(𝑟𝐿𝑖 − 𝑑𝑝)

4

[︂
ln
(︁ 𝑟𝐿𝑖
𝑟𝐿𝑖 − 𝑑𝑝

)︁
+

3

4

]︂

+
𝑟2𝐿𝑖
[︀
𝑟2𝐿𝑖 − 4(𝑟𝐿𝑖 − 𝑑𝑝)

2
]︀

4

}︃ (1.24)

The skin and external proximity effect power loss calculations should remain un-
changed from the original Ferreira formulation.
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Chapter 2

Solid Conductor Coil Variations

When choosing between two conductor configurations for a given application, intu-
ition would lead one to believe the conductor with more copper volume will cost
more. This is generally true for “like” conductors, however, at some point the com-
plexity of, for example, a stranded conductor, may eclipse the material difference as
the dominate cost factor. For this reason, minimizing the complexity of a conductor’s
geometry can be seen as a cost reduction task and is especially important in industrial
applications such as transformers, whose large-scale economics demand low costs to
facilitate market proliferation.

This chapter focuses on simple, solid conductor coils and varying their cross-
sectional parameters in order to maximize performance. To properly compare be-
tween different geometries, these studies use the same centerline axis of each turn
in the previously built 40 kW MIT transformer’s coils to ensure generally equiva-
lent magnetic performance. Through this analysis, one may draw conclusions about
the extent to which varying the cross-sectional geometry of a solid conductor coil
may improve the high frequency transformer’s performance over a baseline circular
cross-section design. Because at high frequencies, the AC transport current is mainly
distributed within one skin-depth of the conductor’s outer surface, one may hypothe-
size that in order to minimize losses in a transformer using solid conductors, one only
needs to maximize the cross-sectional perimeter of the conductor. However, as will be
observed in this chapter, maximizing the perimeter of a coil’s cross-section actually
degrades performance due to the increasingly close proximity of adjacent turns.

2.1 Elliptical Cross-section
A generalization of the circular cross-section solid conductor coil is an elliptical cross-
section coil. All analysis in this study was performed in COMSOL Multiphysics, sim-
ulating the full transformer operation. Loss was computed through post-processing
on the simulation results and was swept over 150 kHz range with inclusion of the
transformers nominal operating frequency, 300 kHz. It should be noted that while
the efficiencies peak at a lower frequency, the 𝑆21 energy transfer parameter peaks
at 300 kHz. This provides the best instance of coupling between the drive and load
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coils.
For comparisons to the solid conductor transformer already built out of circular

cross-section conductors, there are several ways to modify the elliptic cross-section.
First, we must establish an eccentricity parameter defined by,

𝐸 =

√︂
1− 𝑏2

𝑎2
(2.1)

where 𝑎 and 𝑏 are the major and minor axis radii of the cross-section, respectively.
With the eccentricity allowed to vary between 0 and 1, the cross-section can be
oriented such that the major-axis points radially outward from the coil centerline.
If we apply the eccentricity metric uniformly to each coil and constrain the total
cross-sectional area to be equal to the 40 kW circular cross-section solid conductor
transformer coils for equivalent DC resistance, then the major radius of the resulting
conductor can be calculated as a function of the corresponding circular conductor
diameter, 𝑑𝑤, and the eccentricity,

𝑎 =
𝑑𝑤

2 4
√
1− 𝐸2

(2.2)

Similarly, the minor radius can be calculated as,

𝑏 =
1

2
𝑑𝑤

4
√
1− 𝐸2 (2.3)

This case was analyzed in 2D axisymmetric FEA for several eccentricity values
and the results are shown in Fig. 2-1. Note that the 𝐸 = 0 variant is the same as the
original 40 kW transformer.

Both eccentricity extremes perform slightly worse, however, a small improvement
is observed over the original geometry (𝐸 = 0) for some of the mid-eccentricity values.
The minimal performance benefit is most likely not worth the extra cost of the unique
cross-sectional geometry.

A similar approach can be made, but now constraining the major axis to point
axially, or in parallel with the coil centerline. Still keeping the cross-sectional areas
the same, the definitions for the major and minor radii are swapped,

𝑎 =
1

2
𝑑𝑤

4
√
1− 𝐸2 (2.4)

𝑏 =
𝑑𝑤

2 4
√
1− 𝐸2

(2.5)

The results of this analysis are shown in Fig. 2-2. Here there is a clear disadvantage
to increasing the eccentricity of the cross-section. The circular cross-section of the
original transformer performs the best.

The results of the above analysis suggests that inter-coil turn spacing can have
a large impact on the efficiency of the transformer. If we were to now let the cross-
sectional area grow but maintain the spacing between copper edges of adjacent turns
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Figure 2-1: (left) Axisymmetric cross-sectional geometry of the 40 kW transformer
with varying eccentricity values when the coil cross-sectional areas are constrained to
be equivalent to the original 40 kW transformer and the major axis points radially
outward from the coil centerline (right) 2D axisymmetric FEA results for efficiency
of each variation over a 150 kHz frequency range.

Figure 2-2: (left) Axisymmetric cross-sectional geometry of the 40 kW transformer
with varying eccentricity values when the coil cross-sectional areas are constrained to
be equivalent to the original 40 kW transformer and the major axis points axially, in
parallel with the coil centerline (right) 2D axisymmetric FEA results for efficiency of
each variation over a 150 kHz frequency range.

in each coil, perhaps we may achieve a substantially higher efficiency. This approach
inherently constrains the major axis of the cross-section to point radially and fixes
the minor radius to half the of the original circular conductor diameter,

𝑏 =
𝑑𝑤
2

(2.6)
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and the major radius is then calculated from the minor radius and the eccentricity,

𝑎 =

√︂
𝑏2

1− 𝐸2
(2.7)

The results of this study (shown in Fig. 2-3) are surprising. Even with increased
cross-sectional area of each conductor in the transformer, no significant improvement
is seen over the original circular cross-section design. This makes it clear that the effi-
ciency is dependent on turn spacing relative to every adjacent turn in the transformer
and not just inter-coil turn spacing

Figure 2-3: (left) Axisymmetric cross-sectional geometry of the 40 kW transformer
with varying eccentricity values when the inter coil turn spacings are constrained to
be equivalent to the original 40 kW transformer and the cross-sectional area is allowed
to grow with eccentricity (right) 2D axisymmetric FEA results for efficiency of each
variation over a 150 kHz frequency range.

2.2 Rectangular Cross-section
A similar study was performed with rectangular conductor cross-sections. Here, the
aspect ratio defines the severity of the rectangular shape,

𝐴𝑅 =
𝐿1

𝐿2

(2.8)

where 𝐿1 is the larger side length and 𝐿2 is the smaller side length. With the cross-
sectional area again held constant and equivalent to the respective coils in the 40 kW
circular cross-section transformer,

𝐿1 =
1

2
𝑑𝑤
√
𝐴𝑅𝜋 (2.9)
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𝐿2 =
1

2
𝑑𝑤

√︂
𝜋

𝐴𝑅
(2.10)

the aspect ratio was varied and analyzed over several frequencies. The first case
studied is with the longer side pointing radially outward from the coil centerline. The
results of this study are shown in Fig. 2-4.

Figure 2-4: (left) Axisymmetric cross-sectional geometry of the 40 kW transformer
with varying aspect ratios when the longer side points radially outward from the coil
centerline and the cross-sectional areas are constrained to be equivalent to those of
the original 40 kW transformer (right) 2D axisymmetric FEA results for efficiency of
each variation over a frequency range.

A slight benefit comes with an aspect ratio close to 3.5 over the square (𝐴𝑅 = 1)
case, however, it should be noted that all curves are at or below the original circular
cross-section design. In the next study, the longer side is oriented parallel to the
coil centerline and the aspect ratios are again varied with the cross-sectional area
remaining same. The results of this study are shown in Fig. 2-5.

A clear and significant performance drop is observed with increasing aspect ratios
in this orientation. This is therefore not a viable option likely because of the close
inter coil turn spacing that results from the geometric setup. The final option studied
is to keep the same inter coil turn spacing as in the circular conductor transformer
such that,

𝐿2 = 𝑑𝑤 (2.11)

𝐿1 = (𝐴𝑅)𝐿2 (2.12)

and allow the cross-sectional area to grow with the uniformly applied aspect ratio.
The results of this study are provided in Fig. 2-6. And show a significant reduction
in performance for nearly all aspect ratios. This, together with Fig. 2-5, suggests
that the most important factor in the rectangular cross-sectional conductor designs
performance is the inter coil turn-to-turn spacing. This is most likely because, due
to the skin-effect, the current is mostly carried within a skin-depth from the surface
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Figure 2-5: (left) Axisymmetric cross-sectional geometry of the 40 kW transformer
with varying aspect ratios when the longer side points axially, or parallel to the coil
centerline and the cross-sectional areas are constrained to be equivalent to those of
the original 40 kW transformer (right) 2D axisymmetric FEA results for efficiency of
each variation over a frequency range.

of the smaller side of the rectangle. Keeping the inter coil turn spacing the same and
increasing the aspect ratio does not change this current distribution.

Figure 2-6: (left) Axisymmetric cross-sectional geometry of the 40 kW transformer
with varying aspect ratios when the inter coil turn spacings are constrained to be
equivalent to the original 40 kW transformer and the cross-sectional area is allowed
to grow with aspect ratio (right) 2D axisymmetric FEA results for efficiency of each
variation over a frequency range.

From both the elliptical and rectangular cross-section variation studies, no signif-
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icant improvement over the circular cross-section was observed that would warrant
switching to a new geometry. The circular cross-section is nearly the best that a solid
conductor coil can provide in terms of performance. To get significantly higher effi-
ciencies a more complex geometry conductor must be used by introducing stranding
and transposition. This is the focus of the next chapter.
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Chapter 3

Stranded Conductor Theory

The concept of using Litz wire to reduce AC associated losses was introduced nearly
a century ago for radio applications [56]. The idea being that by breaking up a
conductor into smaller insulated filaments or strands and using proper transposition,
every strand in the conductor will see the same resistance over the lay. This means
that the current is evenly distributed over the cross-section and the effective resistance
is reduced.

Litz wire began attracting more interest in recent years as wide-band gap (WBG)
power semiconductors became an enabler for several high frequency, high power tech-
nologies, such as induction cooktops [10,22,23], EV wireless power transfer [24–27,57],
megawatt-class electric machines [28–33], and resonant power transformers [1, 2].
Many modeling approaches have been proposed for the optimization of Litz coil effi-
ciency. Several analytical methods were established in the literature over the decades
[3, 5, 6, 9, 48, 58] all aimed at quick performance approximations. For more detailed
predictions, three-dimensional numerical methods have been employed such as FEA
[11–14] and the more novel PEEC method [15–19] which does not require the dis-
cretization of air. These 3D approaches are accurate given knowledge of the exact
strand level construction, but suffer from computational limitations (memory, com-
plexity, and long simulation times) due to the large number of mesh elements required.
In this chapter, two new approaches to estimate losses with greater accuracy are pre-
sented.

3.1 General Assumptions
The most universal assumption made during Litz wire loss analysis in the literature
as well as in the following text is that the strand diameter is much smaller than the
spatial variation of the magnetic field. This means that the magnetic field local to any
strand is approximately uniform and transverse. Many other modeling approaches
make the assumption that the conductors are perfectly Litzed. Meaning every strand
is radially and azimuthally transposed such that each strand is in each position of
the bundle cross-section for equal time over the twist pitch. This leads to the ideal
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assumption that every strands carries the same amount of current, 𝐼𝑠,

𝐼𝑠 =
𝐼𝑡𝑜𝑡
𝑁𝑠

(3.1)

where 𝐼𝑡𝑜𝑡 is the total current in the bundle and 𝑁𝑠 is the number of strands in the
bundle. The work described in Section 3.4 removes this assumption and generates
a more realistic current distribution in the cross-section and therefore more accurate
approximations of the internal proximity fields. However, Section 3.5 does utilize the
"perfect Litz" assumption in order to simplify analysis.

3.2 Single-level Annular Bundle (SLAB)
The single-level annular bundle (SLAB) stranded conductor offers loss reduction with
a simple geometry and has potential to be a cost-effective solution. Current manu-
facturing techniques are not built around this geometry; however, the bundle struc-
ture is a good compromise between loss reduction in applications experiencing heavy
proximity-effect and material usage. In addition, the geometry is similar to armoured
cabling in some power transmission lines [59] which suggests that manufacturing this
type of conductor may be reasonable. To achieve clarity in this analysis, the following
section will provide definitions for the SLAB geometry and macro definitions used for
a solenoid application.

3.2.1 Problem Geometry

Three variables fully define the SLAB structure: strand diameter (𝑑𝑠), number of
strands (𝑁𝑠), and insulation factor (𝐹𝑖𝑛𝑠). A diagram of the geometry is given in
Fig. 3-1.

The insulation factor is defined fracionally such that the insulation thickness is
𝐹𝑖𝑛𝑠𝑑𝑠. If we constrain the design space by forcing the insulation surfaces of adjacent
strands to be tangent to one another and take the insulation media to be free space,
the insulation factor may be thought of as a spacing factor. Whether the space is
taken up by air or the enamel insulation of magnet wire, the magnetic field and current
distributions are only dependent upon the copper geometry. The diameter, 𝑑𝑏𝑜𝑠, of
the imaginary circle tangent to the outer copper surface of the strands is written as,

𝑑𝑏𝑜𝑠 =
𝑑𝑠

[︁
1 + 2𝐹𝑖𝑛𝑠 + sin

(︀
𝜋
𝑁𝑠

)︀]︁
sin
(︀

𝜋
𝑁𝑠

)︀ (3.2)

As a baseline application, a single solenoid provides a platform to analyze the var-
ious forms of proximity-effect loss (internal and external) and skin-effect loss. Fig. 3-2
shows the macro geometric definitions of a solenoid utilizing the SLAB structure.

Again, here three parameters fully define the solenoid structure: coil diameter
measured from the center of each conductor bundle (𝐷𝑐), number of turns in the coil

36



Figure 3-1: Geometric definitions for the SLAB structure. Two-strands are shown in
an expanded view for simplicity.

Figure 3-2: Geometric definitions of a solenoid utilizing the SLAB conductor.

(𝑁𝑡), and turn-to-turn spacing factor (𝑐/𝑎). The spacing factor scales the pitch of the
coil, 𝜆, by the bundle OD,

𝜆 =
(︁ 𝑐
𝑎

)︁
𝑑𝑏𝑜𝑠 (3.3)

3.2.2 Resistance and Inductance Analysis

A combination of analytical and FEA tools are used here to extract resistance values
for coils with varying SLAB and solenoid geometries. The goal of this analysis is
to observe the effect each of the many defining parameters has on the overall coil

37



resistance. The open-source software FEMM [36] was used for this analysis due to
its tight scripting integration with MATLAB/Octave and the complex geometry of
the problem. Care was taken to minimize simulation time as many combinations
of the defining parameters require analysis. Additionally, the number of mesh ele-
ments scales with the product of 𝑁𝑠 and 𝑁𝑡. Some simplifications were made to the
simulation setup to accommodate these practical considerations:

S1) A 2D axisymmetric magnetoquasistatic simulation

S2) Each turn is approximated as a hoop (there is no out-of-page component to the
magnetic field)

S3) Each strand is placed in series so as to carry the same amount of peak current:
𝐼𝑡𝑜𝑡/𝑁𝑠

Simplification S3) is made to simulate the effect of azimuthal transposition, or twist-
ing, in the bundle. The flux linkage generated from external fields cancels out by
twisting an integer number of times per-turn [15], therefore each strand sees the same
average field between the conductor’s terminals.

For performance comparisons with solid cylindrical conductor coils, 𝑑𝑏𝑜𝑠 is set to
the OD of an equivalent solid conductor. The strand diameter was then varied from
22-42 AWG and as many strands plus insulation as possible were fit into the bundle
for each strand size. The number of stands is calculated by,

𝑁𝑠 =

⌊︂
𝜋

[︂
sin−1

(︂
𝑑𝑠(1 + 2𝐹𝑖𝑛𝑠)

𝑑𝑏𝑜𝑠 − 𝑑𝑠

)︂]︂−1⌋︂
(3.4)

Note: the floor in (3.4) means that our insulation surfaces are no longer constrained
to touch, since now the insulation factor has physical meaning.

After running an FEA simulation, the total power loss in the coil is calculated by
computing the time-averaged resistive losses over the entire domain,

𝑃𝑡𝑜𝑡 =
1

𝑇

∫︁ 𝑇

0

ℜe
{︂∫︁∫︁∫︁

𝑉

J · E
}︂
𝑑𝑡 (3.5)

From this, the total AC resistance per-unit-length can be extracted,

𝑅𝐴𝐶,𝑡𝑜𝑡 =
2𝑃𝑡𝑜𝑡

𝜋𝐼2𝑡𝑜𝑡𝑁𝑡𝐷𝑐

(3.6)

By simulating a straight, isolated SLAB conductor, we can compute the resis-
tance only due to strand-level skin-effect and internal proximity effect. Subtracting
this resistance from the total resistance found in the coil simulations singles out the
resistance due to turn-to-turn proximity effect. This value is of interest to us, as it is
what the SLAB structure seeks to minimize.

A method widely used in the literature, developed by Nagaoka [60] as a modifi-
cation of Lorenz’ formulation, predicts the inductance of short solenoids by approxi-
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mating the coil as a cylindrical sheet of current, Nagaoka’s equation for inductance,
𝐿, is written as,

𝐿 =
𝜇0𝜋𝐷

2
𝑐𝑁

2
𝑡

4𝐿𝑐

𝐾𝑛 (3.7)

where 𝐿𝑐 is the coil length, measured from the outer conductor edges of the first and
last turns (as shown in Fig. 3-2). The Nagaoka factor, 𝐾𝑛, is defined in terms of coil
dimensions and elliptical integrals of the first and second kind, 𝐾 and 𝐸 respectively,
definitions of which can be found in the Appendix.

𝐾𝑛 =
4

3𝜋𝑘′

[︂
𝑘′2

𝑘2

(︀
𝐾(𝑘)− 𝐸(𝑘)

)︀
+ 𝐸(𝑘)− 𝑘

]︂
(3.8)

where the geometric factor, 𝑘, is written as,

𝑘 =
1√︁

1 +
(︀
𝐿𝑐

𝐷𝑐

)︀2 (3.9)

and its dual,
𝑘′ =

√
1− 𝑘2 (3.10)

From FEA, inductance is calculated in the software as,

𝐿 =
1

𝐼2𝑡𝑜𝑡
ℜe
{︂∫︁∫︁∫︁

𝑉

A · J𝑑𝑉
}︂

(3.11)

where 𝐼𝑡𝑜𝑡 is the peak total current through the bundle, 𝑉 is the 3D simulation domain,
A is the local magnetic vector potential at peak current, and J is the local current
density at peak current.

3.2.3 Resistance and Inductance Analysis Results

The coil macro parameters given in Table 3.1 were used to demonstrate the various
resistive contributions for a SLAB conductor compared to a solid cylindrical conductor
with the same OD.

Table 3.1: Baseline Coil Parameters
Parameter Value

𝑑𝑏𝑜𝑠 0.25"
𝐷𝑐 11.25"
𝑁𝑡 6
𝑐/𝑎 2
𝑓 300 kHz

Performing the analysis as previously described gives the total AC resistance of
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the SLAB coil. By subtracting the total AC resistance from the AC resistance of
the same conductor but straight and isolated, we can extract out the resistance due
to proximity effect. The resistive components are broken down and plotted together
with those of an equivalent solid cylindrical conductor in Fig. 3-3.

Figure 3-3: Coil absolute resistances with breakdown of contributing loss mechanisms.

As can be seen, the isolated SLAB resistance never goes below an equivalent
isolated solid conductor resistance. This is because there is no radial transposition in
the SLAB conductor. The benefit of a SLAB is solely in the reduction of turn-to-turn
proximity resistance. The proximity resistance decreases as the strand diameter is
decreased (at a fixed frequency) and eventually the total resistance is asymptotic to
the SLAB’s DC copper resistance. This happens as the total copper area decreases
and the strand diameters are significantly smaller than the skin-depth.

The benefit of SLAB conductors is exaggerated at closer turn-to-turn spacing.
Fig. 3-4 shows the minimum total AC resistances of the coil analyzed in Fig. 3-3 but
with different 𝑐/𝑎 spacing factors. Each resistance is normalized to an equivalent
solid conductor coil. At the lower limit (𝑐/𝑎 = 1), the best SLAB total resistance
approaches half that of an equivalent solid conductor coil, and at the upper limit
(𝑐/𝑎→∞) the SLAB and solid conductor will have the same AC resistance.

To explore the design space, a number of coil parameter combinations were an-
alyzed. The strand gauge in each coil is increased until the total resistance turns
up again. The minimum total resistance is recorded for that coil and operating con-
ditions. Table 3.2 gives the variables and their respective values. All combinations
were simulated for a total of 324 operating points. The insulation factor was fixed at
𝐹𝑖𝑛𝑠 = 0.05.

An approximate analytical expression for the minimum total AC resistance of a
coil given it’s parameters is developed by first taking DC conduction in the skin depth
of the bundle and multiplying by strand-level skin-effect and turn-to-turn proximity-
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Figure 3-4: Minimum resistance vs. 𝑐/𝑎 for the best performing SLAB conductors.
Resistance is normalized to that of an equivalent solid conductor coil.

Table 3.2: Coil Parameter Space
Parameter Values

𝐷𝑐 [0.2, 0.25, 0.3, 0.35] m
𝑐/𝑎 [1.5, 2, 2.5]
𝑁𝑡 [3, 6, 7]
𝑓 [200, 300, 400] kHz
𝑑𝑏𝑜𝑠 [0.162, 0.25, 0.375] in

effect correction factors. The resulting expression is,

𝑅𝜃 =

(︂
𝑒−( 𝑐

𝑎
) +

√︂
1 +

1

4

(︁𝑑𝑠
2𝛿

)︁2)︂ 𝜌𝑁𝑡𝐷𝑐

(𝑑𝑏𝑜𝑠 − 𝛿)𝛿
(3.12)

where the exponential factor is a correction for turn-to-turn proximity. This correction
factor fits well for the values of 𝑐/𝑎 analyzed in this study and meets the isolated
conductor boundary condition of lim

𝑐/𝑎→∞
𝑒−( 𝑐

𝑎
) = 0. The square root factor,

√︂
1 +

1

4

(︁𝑑𝑠
2𝛿

)︁2
(3.13)

is a rough approximation of 𝐹𝑅 in the region of small 𝑑𝑠
2𝛿

and therefore adjusts 𝑅𝜃 to
consider strand-level skin effect.

Alignment between the AC minimum resistances calculated from FEA simulation
results and (3.12) can be seen in Fig. 3-5. Resistances calculated from FEA for all

41



324 configurations are plotted against the value as approximated by 𝑅𝜃.

Figure 3-5: Good alignment between the minimum resistances of all parameter com-
binations calculated via FEA and the analytical expression (3.12).

The error of Nagaoka’s analytical expression for solenoid inductance can be large
for arrangements in which the current and magnetic field distribution differ greatly
from the cylindrical sheet approximation. This non-uniformity is exaggerated in AC
solid conductor coils with increasing frequency, increasing turn count, and decreasing
𝑐/𝑎 spacing.

As Nagaoka’s calculation only considers coil macro properties, it is necessary to
compare the accuracy of the analytical method for different types of conductors via
FEA simulations. Generally, Nagaoka over-estimates the actual coil inductance re-
gardless of the conductor used as can be seen in Fig. 3-6(a), where a coil with param-
eters shown in Table 3.3 was simulated over a variety of 𝑐/𝑎 spacing.

The finer stranded SLAB conductors in Fig. 3-4 have slightly larger inductance
than the solid conductor coils, especially at smaller 𝑐/𝑎, and perform closer to Na-
gaoka’s predictions as shown in Fig. 3-6(b).

Table 3.3: Inductance Study Coil Parameters
Parameter Values

𝐷𝑐 30 cm
𝑁𝑡 6
𝑓 300 kHz
𝑑𝑏𝑜𝑠 0.25 in
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Figure 3-6: (a) Coil inductance for a coil with varying 𝑐/𝑎 using different conductors.
FEA is compared to Nagaoka, (b) Nagaoka inductance calculation error with FEA
for a fixed coil at varying 𝑐/𝑎 spacings.

3.2.4 Proposed Design Method for SLAB Conductors

The presence of a local minimum in the total coil AC resistance for SLAB conductors
suggests there is an optimal conductor arrangement for a given application. The
designer must take care not to deviate significantly from this minimum or else the
full benefit of the SLAB structure is not realized and in some cases may perform
worse than an equivalent solid conductor.

Table 3.4 shows the average values of 𝑑𝑠
2𝛿

that correlates to the minimum resistance
in both the isolated case and in a solenoid for several frequencies. The "Total Mini-
mum Resistance" row suggests that the minimum occurs around 𝑑𝑠

2𝛿
= 0.81. Using this

information, the following SLAB conductor design method for low loss is proposed
by the authors:

1. Choose macro coil parameters and a bundle OD (𝑑𝑏𝑜𝑠) that fit the magnetic
performance specifications of the application

2. Set 𝑑𝑠
2𝛿

= 0.81 and back out 𝑑𝑠 at the operating frequency

3. Calculate 𝑁𝑠 based on 𝑑𝑏𝑜𝑠, the selected 𝑑𝑠, and strand insulation factor (𝐹𝑖𝑛𝑠)
using (3.4)

4. Predict 𝑅𝐴𝐶 of the coil with the analytical expression (3.12)

This analysis demonstrated that SLAB conductors are capable of achieving a
nearly 50% reduction in AC resistance over a solid conductor with an equivalent
outer diameter at 300 kHz and close spacing. The benefits of SLAB conductors are
enhanced at close turn-to-turn spacing and at higher frequencies. This benefit is sup-
plemented by lower copper usage, a flexible bundle, and much simpler construction
and manufacturing practice compared to commonly used Litz wire. The SLAB con-
ductor may be attractive to utility companies looking to replace their distribution
transformers with promising high frequency, coreless resonant transformers, as the
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Table 3.4: Minimum Resistance Point for Varying Frequencies

Specification 100 kHz 200 kHz 300 kHz 400 kHz 500 kHz

Isolated

Minimum

Resistance

Value 24.0 33.2 40.3 46.5 51.8

AWG 26 29 30.5 31.5 33

𝑑𝑠/2𝛿 0.97 0.97 1 1.02 0.96

Total

Minimum

Resistance

Value 27.8 38.7 47.4 54.5 60.8

AWG 27 30.5 32 33.5 34.5

𝑑𝑠/2𝛿 0.86 0.81 0.84 0.81 0.81

bundle structure offers electrical and potential cost benefits that scale well to indus-
trial applications. In addition, the self inductance of SLAB solenoids is always larger
than their solid conductor counterparts.

3.3 AC Loss Mechanisms
Nearly all analytical models established in the literature to compute AC loss in Litz
wire attempt to take advantage of the exact solution for AC loss in two ideal scenarios:
a straight cylindrical conductor carrying sinusoidal transport current and a straight
cylindrical conductor placed in a sinusoidally varying homogeneous and transverse
magnetic field. These two cases are referred to as skin effect and proximity effect
respectively, and the loss in each scenario is computed analytically in terms of Kelvin
functions. Both loss mechanisms have been proven to be orthogonal [5] and therefore
associated loss can be computed separately and summed up to calculate total AC
loss.

A core premise to the calculation is if the AC current carried by every strand in the
conductor and the resultant magnetic field amplitude local to every strand is known,
then the loss in the Litz wire can be accurately computed with the assumption that the
magnetic field applied to each strand is approximately uniform. These fundamental
calculations are as follows.

3.3.1 Strand-level Skin-Effect

The current distribution within a straight, cylindrical conductor isolated in free space
is known analytically and is used to compute the AC resistance for any strand diam-
eter and current injection frequency. Two ratio parameters are introduced here that
will be used to collectively reduce the problem by two dimensions. The first parame-
ter, 𝐹𝑅, is the ratio of the AC resistance due to skin effect to the DC resistance of the
conductor [3]. The second parameter, 𝑑𝑠

2𝛿
, is the ratio of the strand diameter to two

times the skin-depth. The exact skin effect resistance ratio of the single conductor
case is well known [49] and can be expressed in terms of Kelvin functions (definitions

44



of which can be found in Appendix A) using a slight variation of 𝑑𝑠
2𝛿

, 𝛾𝑠 = 𝑑𝑠√
2𝛿

, to
simplify the notation,

𝐹𝑅 =
𝛾𝑠
2

𝑏𝑒𝑟(𝛾𝑠)𝑏𝑒𝑖
′(𝛾𝑠)− 𝑏𝑒𝑖(𝛾𝑠)𝑏𝑒𝑟

′(𝛾𝑠)

𝑏𝑒𝑟′2(𝛾𝑠) + 𝑏𝑒𝑖′2(𝛾𝑠)
(3.14)

For a cylindrical strand carrying sinusoidal AC current with amplitude 𝐼𝑝𝑒𝑎𝑘, the
power loss per-unit-length due to the skin effect is,

𝑃𝑠𝑘𝑖𝑛 = 𝑅𝐷𝐶𝐹𝑅
1

2
𝐼2𝑝𝑒𝑎𝑘 =

4𝜌

𝜋𝑑2𝑠
𝐹𝑅

1

2
𝐼2𝑝𝑒𝑎𝑘 (3.15)

where 𝜌 is the resistivity of the conductor material.

3.3.2 Strand-level Proximity-Effect

Likewise, for a straight cylindrical conductor present in a homogeneous transverse AC
magnetic field, there exists an exact solution to the power loss per-unit-length due
to the proximity effect. Similar to 𝐹𝑅, the proximity factor, 𝐺𝑅, is dependent only
on the strand geometry, resistivity (𝜌), and operating frequency (via its effect on the
skin depth, 𝛿). It is defined as [5],[47],

𝐺𝑅 = 2𝜋𝛾𝑠𝜌
𝑏𝑒𝑟2(𝛾𝑠)𝑏𝑒𝑟

′(𝛾𝑠) + 𝑏𝑒𝑖2(𝛾𝑠)𝑏𝑒𝑖
′(𝛾𝑠)

𝑏𝑒𝑟2(𝛾𝑠) + 𝑏𝑒𝑖2(𝛾𝑠)
(3.16)

The calculation for proximity loss per-unit-length is written in terms of only the
proximity factor and the peak amplitude of the applied AC magnetic field, 𝐻𝑝𝑒𝑎𝑘,

𝑃𝑝𝑟𝑜𝑥 = 𝐺𝑅𝐻
2
𝑝𝑒𝑎𝑘 (3.17)

The total loss is the numerical sum of the skin- and proximity effect losses.

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑠𝑘𝑖𝑛 + 𝑃𝑝𝑟𝑜𝑥 (3.18)

3.4 Layered Mesh Approach
There is an element of unknown in the actual construction of Litz wires. A perfect
Litz wire is technically possible to make, but the number of cabling operations re-
quired to do so renders these conductors economically impractical. Moreover, a DC
resistance penalty is incurred with every twisting operation, resulting in a conductor
with worse performance than an imperfect Litz wire with fewer fabrication levels.
Actual fabrication techniques lead to randomized strand positions and inaccuracies
in all of the aforementioned models due to non-idealities in the current distribution.
Plumed attempted to address this by introducing some randomization in the strand
placement of his simulations [12], but exact packing information is required to model
reality. As such, most approaches in the literature use the ideal assumption that each
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strand in the bundle carries equal current. The key to improving Litz modeling ac-
curacy is determining the non-ideal current distribution over the cross-section. If the
current distribution is known, resultant fields can be computed and used to calculate
losses as employed in other methods.

The layered mesh simulation method of Litz conductor loss calculations provides
a fast alternative to more computationally intensive three-dimensional simulation
methods and accounts for non-idealities in the bundle construction. The method is
general enough that it may be applied to arbitrary conductor applications for a given
packed layer geometric representation of a Litz bundle. A unique corresponding
fabrication factor used in the loss calculation for a given Litz wire is defined, and is a
quantity that could be supplied by a manufacturer as obtained from simple isolated
conductor tests.

3.4.1 Addressing Non-Ideal Construction

If the conductor of interest is perfectly “Litzed” (every strand spends equal time
in every position within the cross-section) over the length of the wire, then each
strand carries equal current and the current density in the conductor’s cross section
is approximately uniform. This case results in several simplifications and is the basic
approximation for the majority of analytical methods in the literature [3, 5, 6, 9, 48].
However, manufacturing a perfect Litz wire requires many cabling operations that
not only add complexity/cost, but also increase the DC resistance of the conductor.
Therefore, a fabrication shortcut called bunching is used in which the base level
is composed of many essentially parallel strands that are then packed and twisted
together. This operation does not result in full radial transposition for every strand
and therefore renders the assumption of uniform current density throughout the cross-
section invalid.

Informed Geometry Generation

Litz wire is a multi-level structure consisting of two types of operations: cabling
(denoted by ‘x’ or ‘()’ for served cabling) and bunching (denoted by ‘/’). Cabling
typically happens at the higher levels and is the process of twisting two or more
concentric sub-bundles together. To ensure structural integrity and proper azimuthal
transposition, the number of sub-bundles cabled at any given level is often limited
to about 7 but is sometimes increased at the highest level. The bunched operation
is when a given number of strands are collectively twisted without enforcement of
full radial transposition. A perfectly “Litzed” wire is constructed using only cabling
operations.

As an example, the manufacturing process for a 5x5x42/44 AWG Litz wire in
chronological order (lowest to highest level) is: 42 strands of 44 AWG magnet wire
are gathered together and twisted, 5 of these bunched bundles of 42 strands are
cabled together, and finally 5 of those resulting sub-bundles are cabled together to
create a conductor with 1050 total strands. The levels of construction can be seen
in the side section view of this conductor in Fig. 3-7(a). As the conductor was ini-
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tially served with Nomex insulation, Fig. 3-7(b) shows a highly packed cross-section.
Manufacturers typically twist successive cabling operations in opposite directions.

Figure 3-7: Close-ups of both the 5x5x42/44 AWG Litz wire’s (a) side view, and
(b) cross-section and 5x40/36 AWG Litz wire’s (c) side view, and (d) cross-section.
Pictures captured after removing the Nomex serving.

The guiding principle of the proposed loss calculation method is to model the
non-idealities resulting from the bunching operation and thereby enable unequal cur-
rent sharing between strands from the ideal assumption of equal distribution, hence
affecting the field distribution within the cross-section. All cabling operations are as-
sumed to be perfect, such that each bunched sub-bundle carries equal total current.
Because the bunched level is twisted together, each strand at the perimeter should
carry the same current. Likewise, each strand in subsequent layers inside the bunched
sub-bundle should carry the same current as the others in their layer. This is modeled
by creating “concentric” layers of thickness equal to a strand diameter as shown in
Fig. 3-8(a). The current density within a layer is approximated as uniform and is to
be determined in the following sections.

The sub-bundles are fit into a circular cross-section to simulate a tightly packed
conductor. Each packed shape, shown as “triangular” and “rectangular” sectors in
Fig. 3-8(a) should have equal area, but the exact geometry is arbitrary. This is because
the actual shape after packing is not defined; this variation will be encapsulated in
the constant fabrication factor.

The 5x5x42/44 AWG Litz wire is a three level construction. The complexity of
the packed geometry is more severe with more levels. A two level 5x40/36 AWG Litz

47



Figure 3-8: Packed layer geometry used for the (a) 5x5x42/44 AWG and (b) 5x40/36
AWG Litz wire analysis; expanded sub-bundles are shown carrying 𝐼𝑡𝑜𝑡/5.

wire example is shown in Fig. 3-7(c-d) and is much simpler to model. The layered
mesh packed geometry for this conductor is shown in Fig. 3-8(b).

3.4.2 FEA Simulation Assistance

Surrogate Skin-effect Model

A surrogate cylindrical conductor skin effect model is used to inform and distribute
the current in each layer of the layered-model Litz wire cross-section. The surrogate
conductor is cylindrical and has a diameter equal to 2𝑚𝑑𝑠 where 𝑚 is the number of
layers in the bunched level cross-section of interest. Again, the layers have thickness
equal to the strand diameter, 𝑑𝑠, as shown in Fig. 3-9.

Figure 3-9: Surrogate skin effect model for layered current distribution, 𝑚 = 4.

The current density in each layer is spatially averaged at the excitation frequency
of interest as shown. An example of the quantized current density as a function of
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radius in the surrogate model is shown in Fig. 3-10. This can be computed from
FEA or calculated analytically using the exact solution for the current distribution
in an isolated cylindrical conductor carrying sinusoidal transport current. The total
current through the surrogate conductor is unimportant since the resulting average
current densities will be normalized and used relatively. Therefore, we will set the
total peak current through the surrogate model as 1 A to simplify the math. The
average current density in the i th layer is computed as,

𝐽𝑖 =
𝑘

𝜋𝑚𝑑3𝑠(2𝑖− 1)

∫︁ 𝑖𝑑𝑠

(𝑖−1)𝑑𝑠

𝒥0(𝑘𝑟)

𝒥1(𝑘𝑚𝑑𝑠)
𝑟𝑑𝑟 (3.19)

where 𝒥0 and 𝒥1 are the Bessel functions of the first kind, orders zero and one
respectively, and the wave number, 𝑘, is defined as 1−𝑗

𝛿
. From this average current

density, the current in each layer of the Litz wire is computed and scaled to attain
the total injection current peak amplitude, 𝐼𝑡𝑜𝑡,

𝐼𝑖 =
𝐼𝑡𝑜𝑡𝐽𝑖𝐴𝑖

𝛽
∑︀𝑚

𝑛=1 𝐽𝑛𝐴𝑛

(3.20)

where 𝛽 is the fraction of the total current carried at the bunched level. This number
would be 25 for the 5x5x42/44 AWG Litz wire and 5 for the 5x40/36 AWG Litz wire.
Additionally, 𝐴𝑖 is the area of the i th layer in the Litz wire cross-section. This area
changes depending on the geometry of the bunched-level cross-section and must be
computed individually for the triangular and rectangular sectors.

Figure 3-10: Example of the quantized current density in each layer, 𝑚 = 4.

Loss Calculation

The current distribution has already been determined using the surrogate skin effect
model. It is therefore possible to calculate skin effect loss in the conductor before
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simulation. Generally, this is computed from (3.15) as follows,

𝑃𝑠𝑘𝑖𝑛 =
4𝜌𝐹𝑅

𝜋𝑑2𝑠

Ω∑︁
𝑖

𝜋𝑑2𝑏𝑜𝑠
4𝑁𝑠𝐴𝑖

1

2
𝐼2𝑖 (3.21)

where Ω is the conductor cross-section domain, 𝑁𝑠 is the total number of strands in
the bundle, and 𝑑𝑏𝑜𝑠 is the conductor diameter to the outer surface of the bundle. This
is essentially computing the number of strands in each layer as the product of the
total number of strands in the conductor and the fraction of the cross-sectional area
covered by each layer. For each layer, the number of strands and the current carried,
𝐼𝑖 (assumed to be distributed equally amongst each strand), is enough information to
compute the power loss due to skin effect for that layer. The total skin effect loss is
the summation of this for each layer in the bundle.

The 5x5x42/44 AWG conductor is used here as an example to demonstrate the
full skin effect power loss computation. If we define 𝐴𝑡,𝑖 and 𝐴𝑟,𝑗 as the area of the
i th layer in the triangular sector and j th layer in the rectangular sector respectively,
the total area of the conductor’s cross section is,

𝐴Ω = 10
4∑︁

𝑖=1

𝐴𝑡,𝑖 + 15
4∑︁

𝑗=1

𝐴𝑟,𝑗 =
𝜋𝑑2𝑏𝑜𝑠
4

(3.22)

The total number of strands that belong to the i th layer of all of the triangular sectors
in the bundle is,

𝑛𝑡,𝑖 =
10𝐴𝑡,𝑖

𝐴𝑤

𝑁𝑠 =
40𝐴𝑡,𝑖

𝜋𝑑2𝑏𝑜𝑠
𝑁𝑠 (3.23)

where 𝑛𝑡,𝑖 is allowed to be a fraction and 𝐴𝑤 is the total cross-sectional area of the
conductor. The current per strand in that layer is,

𝑖𝑡,𝑖 =
10𝐼𝑡,𝑖
𝑛𝑡,𝑖

=
10𝐼𝑡𝑜𝑡𝐽𝑖𝐴𝑡,𝑖

25𝑛𝑡,𝑖

∑︀4
𝑛=1 𝐽𝑛𝐴𝑡,𝑛

⇒ 𝜋𝑑2𝑏𝑜𝑠𝐼𝑡𝑜𝑡𝐽𝑖

100𝑁𝑠

∑︀4
𝑛=1 𝐽𝑛𝐴𝑡,𝑛

(3.24)

Similarly, the total number of strands that belong to the j th layer of all of the rect-
angular sectors in the bundle is,

𝑛𝑟,𝑗 =
15𝐴𝑟,𝑗

𝐴𝑤

𝑁𝑠 =
60𝐴𝑟,𝑗

𝜋𝑑2𝑏𝑜𝑠
𝑁𝑠 (3.25)

and the current per strand in that layer is,

𝑖𝑟,𝑗 =
15𝐼𝑟,𝑗
𝑛𝑟,𝑗

=
15𝐼𝑡𝑜𝑡𝐽𝑗𝐴𝑟,𝑗

25𝑛𝑟,𝑗

∑︀4
𝑛=1 𝐽𝑛𝐴𝑟,𝑛

⇒ 𝜋𝑑2𝑏𝑜𝑠𝐼𝑡𝑜𝑡𝐽𝑗

100𝑁𝑠

∑︀4
𝑛=1 𝐽𝑛𝐴𝑟,𝑛

(3.26)
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Finally, the total power loss per-unit-length due to skin effect is computed as,

𝑃𝑠𝑘𝑖𝑛 =
2𝜌𝐹𝑅

𝜋𝑑2𝑠

(︃
4∑︁

𝑖=1

𝑛𝑡,𝑖𝑖
2
𝑡,𝑖 +

4∑︁
𝑗=1

𝑛𝑟,𝑗𝑖
2
𝑟,𝑗

)︃
(3.27)

The average peak magnetic field squared in the cross-section of the bundle is
needed to calculate proximity loss. The purpose of using a finite-element simulation
is to compute the magnetic field within the cross-section that results from the current
distribution assigned in the previous section. A two-dimensional, DC simulation is
setup to capture the current assignments for each layer since the frequency dependence
at the bundle level has already been taken care of using the surrogate model. It is
important to note that the current must be redistributed at every frequency according
to the results of the surrogate model.

The spatially averaged resultant magnetic field amplitude squared is computed
over the conductor cross-section from simulation results,

⟨𝐻2
𝑝𝑒𝑎𝑘⟩ =

1

𝐴Ω

∫︁
Ω

|𝐻𝑝𝑒𝑎𝑘|2𝑑𝐴 (3.28)

In the isolated conductor case, 𝐴Ω =
𝜋𝑑2𝑏𝑜𝑠

4
, but in a single coil it would be 𝐴Ω =

𝑁𝑡𝜋𝑑2𝑏𝑜𝑠
4

, where 𝑁𝑡 is the number of turns in the coil. This makes calculating proximity
loss per-unit-length (which is proportional to 𝐻2

𝑝𝑒𝑎𝑘) easier by taking the average field
amplitude squared as the local transverse magnetic field applied to each strand in the
conductor and plugging this into (3.17),

𝑃𝑝𝑟𝑜𝑥 = 𝑁𝑠𝐺𝑅⟨𝐻2
𝑝𝑒𝑎𝑘⟩ (3.29)

The per-unit-length AC resistance is then computed from the summation of the
skin effect loss and proximity effect loss in the conductor,

𝑅𝐴𝐶 =
2

𝐼2𝑡𝑜𝑡
(𝑃𝑠𝑘𝑖𝑛 + 𝑃𝑝𝑟𝑜𝑥) (3.30)

Fabrication Factor Extraction

There are two factors that make the surrogate skin effect model not immediately
applicable to the layered mesh geometry:

1. The triangular and rectangular sectors used in the cross-section geometry does
not exactly depict reality; the actual shapes are random and impossible to
predict with accuracy

2. The bunching operation results in some radial transposition and current sharing
between layers

To address these unknowns, an empirical fabrication factor is used. This fabrica-
tion factor is unique to each Litz conductor construction, but is independent of the
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application of that Litz wire; therefore, it is a single value which can be supplied by
the manufacturer as determined from a standardized isolated conductor test, for ex-
ample the “zig-zag” test as discussed below. The fabrication factor is extracted from
measurements obtained with an isolated conductor scenario. The measurement here
is made using a “zig-zag” flat board pattern [15] in which an even number of loops
are made to cancel out external fields as shown in Fig. 3-11.

Figure 3-11: Zig-zag board pattern used for the isolated conductor measurements.

The conductor is always sufficiently far apart from itself such that the magnetic
field generated by current across the board is not strong enough to induce additional
proximity loss. The difference between the isolated conductor measurements and
analytical theory [5] is due to non-idealities in the construction that results in unequal
current distribution throughout the cross-section, which are better represented in the
new calculation presented here.

The fabrication factor, 𝐹𝑓𝑎𝑏, is a constant multiplicative factor which effectively
scales the skin depth prior to running the surrogate skin effect model. Doing this scales
the severity of the bundle-level skin effect. The skin-depth, 𝛿, used in calculating the
wave number for the surrogate model in (3.19) is then replaced by 𝛿𝑒𝑓𝑓 ,

𝛿 =

√︂
𝜌

𝜋𝑓𝜇
⇒ 𝛿𝑒𝑓𝑓 =

√︂
𝜌

𝜋𝐹𝑓𝑎𝑏𝑓𝜇
(3.31)

where 𝜇 is the magnetic permeability of the conductor.
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In order to determine the fabrication factor, the layered mesh analysis is run under
the isolated conductor case with varying frequency multipliers. Once the frequency
dependent resistance of the isolated layered mesh analysis matches “zig-zag” isolated
measurements, the frequency multiplier is taken as the fabrication factor. This process
is shown in Fig. 3-12 for both the 5x5x42/44 AWG and 5x40/36 AWG Litz wires.
Note that a fabrication factor of zero is equivalent to the uniform cross-sectional
current density assumption used by analytical models in the literature.

Figure 3-12: Isolated conductor layered mesh analysis with varying fabrication factors
on the (a) 5x5x42/44 AWG Litz wire (𝑚 = 4) and (b) 5x40/36 AWG Litz wire (𝑚 = 5)
compared to their respective isolated conductor (zig-zag) measurements.

From two plots in Fig. 3-12, a fabrication factor of 6 for the 5x5x42/44 AWG Litz
wire matches the measured results very well, whereas for the 5x40/36 AWG Litz wire,
a fabrication factor of 1.5 matches the measured results. These two values are used
as the fabrication factor values for future analysis on each respective conductor when
applied to any coil or other configuration. The current density distribution between
layers in the 5x40/36 AWG Litz wire, as determined by the surrogate method, is
given in Fig. 3-13 as a function of frequency and using the fabrication factor of 1.5.

Currents in each layer of the conductor cross-section are set prior to simulation as
shown in Fig. 3-14 for both conductors at 4 different frequencies. The non-uniform
current distribution of the layered mesh method results in more accurate internal field
representation and hence improved associated loss calculations.

Arbitrary Coil Geometry

The twisting at all levels of the Litz wire construction has the effect of canceling out
flux linkages induced due to transverse external magnetic fields. This means that
while the external fields cannot be ignored when calculating strand-level proximity
loss, they do not change the current distribution in the cross section. This is why the
fabrication factor is independent of application and makes simulations of arbitrary
coil geometries straight forward. The flowchart in Fig. 3-15 depicts the general layered
mesh approach.
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Figure 3-13: Current density in each layer of the 5x40/36 AWG Litz conductor with
𝐹𝑓𝑎𝑏 = 1.5 and excitation of 1 A as a function of frequency; extracted from the
surrogate model.

Figure 3-14: Individually normalized current density distributions in each layer at
4 different frequencies for the (a) 5x5x42/44 AWG conductor (𝐹𝑓𝑎𝑏 = 6) and (b)
5x40/36 AWG conductor (𝐹𝑓𝑎𝑏 = 1.5). Fine meshing was shown to be unnecessary in
the DC simulations without magnetic diffusion.

In the axisymmetric solenoid simulation example, the circular cross-section of each
turn is replaced with the layered mesh geometry and currents are distributed by layer
according to the surrogate skin-effect model. From the DC simulation results, the
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Figure 3-15: Flowchart of the general layered mesh Litz analysis.

resultant magnetic field squared is averaged over all turns in the coil and then used to
compute the aggregate proximity loss per-unit length by applying this averaged field
squared to each strand in the conductor. This general approach makes two assump-
tions: linear magnetic material properties in the domain such that no frequencies
exist in the magnetic field outside of the fundamental, and single phase sources such
that the magnetic field is linearly varying and sinusoidal in amplitude at every point
in the domain. The layered mesh approach is applicable outside of these assumptions,
however, requires a different final resistance calculation: the focus of future work.

The two Litz conductors were each wound onto respective 6 inch OD PMMA
cylinders in 6 and 12 turn coil configurations using 3D printed clips to set desired
turn-to-turn spacing. Fig. 3-16 shows the 5x5x42/44 AWG served conductor wound
into 12 turns with c/a spacing factors of 1.5 and 2.5 respectively. Note that the
spacing factor is the coil pitch, 𝜆, normalized by the conductor OD, 𝑐/𝑎 = 𝜆/𝑑𝑏𝑜𝑠.

Figure 3-16: 12 turn 5x5x42/44 AWG Litz coils with (a) 𝑐/𝑎 = 1.5 (b) 𝑐/𝑎 = 2.5.

Measurements were taken via an Omicron Bode 100 VNA with the one-port
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method (see Appendix for more details). These measured results are compared to the
layered mesh simulation in Fig. 3-17. In order to accurately assess the performance
of the simulation method, the measurements were linearly scaled to match the sim-
ulated resistance value at 10 kHz. This absolute deviation from theory in measured
DC resistance (up to 15%) can be attributed to several different factors, including
lead connections, imperfect termination (soldered), and limited ability of the mea-
surement method at low impedances. The linear scaling correction was proven to be
the proper compensation approach by applying the same scaling to measurements of
solid conductor coils and comparing to FEA simulated results (see Appendix B). All
FEA simulations were carried out in COMSOL’s AC/DC module.

Figure 3-17: Simulation and measurement results for several coil configuration using
the (a) 5x5x42/44 AWG Litz wire and (b) 5 AWG Litz wire and (b) 5x40/36 AWG
Litz wire.

3.5 Multi-phase Loss Implications
This section presents a method to approximate the AC power loss in Litz wire systems
with arbitrary field sources, accounting for local elliptically rotational fields. The
general approach is demonstrated with a simplified FEA formulation and shows good
alignment with explicit strand-level simulations. Focus of the analysis is placed on
multi-coil, air-core applications such as resonant power transfer systems; a fast semi-
analytical approach using averaging points is provided for these problems to reduce
run times by several orders of magnitude.

Many analytic models prevalent in the literature [3,5,6,9], formulate the solenoid
or transformer problem using a general window method in which several simplifying
approximations are made to estimate the leakage field. Only single-phase currents
which produce stationary AC magnetic fields everywhere in the domain are considered
in these calculations and therefore the models are not applicable to general applica-
tions of Litz wire, such as those used in multi-coil resonant power transfer systems. In
these systems, multiple resonant tanks generate out-of-phase field sources. Not only
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is it common for these applications to be fully air-cored [61], with complicated leak-
age field distributions, but multi-phase currents create a resultant magnetic field at
any point in the domain whose vector rotates and is generally elliptical in magnitude
variation. In a generic two-hoop setup shown in Fig. 3-18 with each coil individually
excited, Fig. 3-19 shows this phenomenon for a random point, 𝑃 , in the cross-section
of the domain with varying current phases.

Figure 3-18: A generic two-hoop setup with each coil individually excited. Fields are
observed at a representative point, 𝑃 , in the 𝑥𝑦-plane cross-section.

Figure 3-19: Vector plot of the elliptically rotational magnetic fields experienced by
the point, 𝑃 , in the domain of a multi-phase system.

3.5.1 Elliptically Rotational Magnetic Fields

In a multi-phase system, the strand-level skin-effect remains the same as described
in Section 3.3.1. However, the proximity-effect effect, which was previously assumed
in Section 3.3.2 to be transverse, stationary, and varying only in magnitude, now
becomes non-trivial.
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Fig. 3-20 shows the eddy current distribution in the cross section of a cylindrical
conductor with a uniformly rotating external magnetic field applied at varying fre-
quencies. It has been postulated in [47] and proven in Section 3.5.4 that the major
and minor amplitudes of a rotational field may be taken as orthogonal in the calcu-
lation of proximity loss. That is, loss due to the major and minor components of the
resultant field may be individually computed using the calculation in (3.17) and then
summed up to compute the total proximity loss.

Figure 3-20: Real component of the steady-state eddy current density in a 1 mm
copper strand due to uniform transverse rotational fields (circularly oriented) of equal
magnitude at (a) 100 Hz, (b) 10 kHz, (c) 100 kHz, and (d) 1 MHz

.

When multiple field sources are present, the contribution at any point in the
domain from each source at a given frequency may be represented using phased vectors
as shown in Fig. 3-21 for an example with 𝑁 = 4 sources.

Figure 3-21: Magnetic field vector contributions from each coil at any point in the
domain with 𝑁 = 4 sources.
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Htot(𝑡) = 𝑥̂
𝑁∑︁
𝑖=1

𝐻𝑥,𝑖 cos(2𝜋𝑓𝑡+ 𝜑𝑖) + 𝑦

𝑁∑︁
𝑖=1

𝐻𝑦,𝑖 cos(2𝜋𝑓𝑡+ 𝜑𝑖) (3.32)

Htot = 𝑥̂|𝐻𝑥|𝑒𝑗𝜃𝑥 + 𝑦|𝐻𝑦|𝑒𝑗𝜃𝑦 (3.33)

The resultant magnetic field amplitude variation in time (3.32) can be written as
the summation of the individual contributions and is generally elliptically rotational.
Here four quantities are introduced to facilitate conversion from temporal form in
(3.32) to complex phasor representation (3.33),

𝐻𝑅𝑥 =
𝑁∑︁
𝑖=1

𝐻𝑥,𝑖 cos(𝜑𝑖) (3.34)

𝐻𝐼𝑥 =
𝑁∑︁
𝑖=1

𝐻𝑥,𝑖 sin(𝜑𝑖) (3.35)

𝐻𝑅𝑦 =
𝑁∑︁
𝑖=1

𝐻𝑦,𝑖 cos(𝜑𝑖) (3.36)

𝐻𝐼𝑦 =
𝑁∑︁
𝑖=1

𝐻𝑦,𝑖 sin(𝜑𝑖) (3.37)

With these quantities, the aggregate orthogonal phases, 𝜃𝑥 and 𝜃𝑦, have the rela-
tionships,

𝜃𝑥 = tan−1
(︁𝐻𝐼𝑥

𝐻𝑅𝑥

)︁
(3.38)

𝜃𝑦 = tan−1
(︁𝐻𝐼𝑦

𝐻𝑅𝑦

)︁
(3.39)

and aggregate orthogonal magnitudes, |𝐻𝑥| and |𝐻𝑦|, are,

|𝐻𝑥| =
√︁
𝐻2

𝑅𝑥 +𝐻2
𝐼𝑥 (3.40)

|𝐻𝑦| =
√︁

𝐻2
𝑅𝑦 +𝐻2

𝐼𝑦 (3.41)

Finally, after converting to phasor representation (3.33), the major and minor
amplitudes of the resultant field can be calculated from [62],

𝐻𝑚𝑎𝑗𝑜𝑟
𝑚𝑖𝑛𝑜𝑟

= |𝐻𝑥| cos(𝛼)± |𝐻𝑦| sin(𝛼) (3.42)

where the angle, 𝛼, from the global 𝑥-axis to either the major or minor axis is written
as,

𝛼 =
1

2
tan−1

(︂
2|𝐻𝑥||𝐻𝑦| cos(𝜃𝑦 − 𝜃𝑥)

|𝐻𝑥|2 + |𝐻𝑦|2

)︂
(3.43)
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3.5.2 Simplied FEA Approach and Post-processing Calcula-
tions

A general FEA approach is laid out in which each phased coil is excited separately
with DC current, and the resulting DC field distributions in the entire domain from
the individual excitations are recorded for post-processing.

𝐻2
𝑒𝑓𝑓 = 𝐻2

𝑚𝑎𝑗𝑜𝑟 +𝐻2
𝑚𝑖𝑛𝑜𝑟

= 2|𝐻𝑥|2 cos2(𝛼) + 2|𝐻𝑦|2 sin2(𝛼)
(3.44)

Because of quasi-static conditions, the DC field values are used with the calculations
provided above to determine the spatially averaged effective field amplitude (3.44),
𝐻𝑒𝑓𝑓 , over the 2D cross section of the Litz bundles and to compute the power loss for
each coil given the currents and number of strands.

The choice of DC excitation both simplifies and expedites the simulation and is a
good approximation under the ideal assumption that every strand in the Litz bundle
carries equal total current [48].

Figure 3-22: Simulation setup for an explicit strand-level simulation. Four single-turn
coils, each composed of 484 strands.

This simulation approach, referred to here as the “Elliptical FEA Method,” is im-
plemented using COMSOL’s AC/DC module where (3.32)-(3.44) are compiled into
a surface averaging post-process on the simulation results. The computed losses are
compared to a brute-force simulation in which four single-turn coils with currents of
varying phase are modeled at the strand-level as shown in Fig. 3-22. All 484 strands
in each coil are explicitly modeled and excited with equal current according to the
assumption made in Section 3.5.2. This simulation approach is generally impracti-
cal as the fine mesh required to accurately capture the current density distribution
in each strand, and thus accurately compute loss, renders the simulation time and
resources beyond the capabilities of many computers. Nevertheless, the strand-level
simulation is taken as the "true" solution to gauge fidelity of the proposed method.
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The “Elliptical FEA Method,” which took just 9 seconds to simulate, demonstrates
great alignment with the brute-force simulation for two different strand gauges, as
shown in Fig. 3-23. The large brute-force simulation in comparison took more than
a day to simulate just a four-turn problem with the same computational resources.
The large reduction in simulation time is not just due to a simpler geometry, but also
because the entire frequency dependence of the loss is captured in (3.14) and (3.16)
outside of the simulation such that the "Elliptical FEA Method" need only run one
DC simulation to capture the 𝐻𝑒𝑓𝑓 used in (3.17).

The use of FEA for field calculations makes this approach general enough to
consider problems with magnetic material in the domain if operated in the linear
region of its B-H curve. Non-linear materials require extra attention.

Figure 3-23: Comparison of the proposed loss calculation method implemented in
FEA and a strand-level simulation of a four single-turn coil system using bundles of
(a) 30 AWG strands and (b) 36 AWG strands.

Figure 3-24: Geometry setup for "Loop Center" analytical calculation of the magnetic
field external to a turn of interest.
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3.5.3 Semi-Analytical Approach for Multi-coil Air-core Sys-
tems

A semi-analytical approach can be applied to the subset of problems known as “air-
core”, in which no magnetic materials are present, much like in many resonant power
transfer topologies. Analytical expressions are known for the field distribution due to
a circular current loop as shown in Fig. 3-24 [63],

∆2 =
(︁𝐷𝑐

2

)︁2
+ 𝑑2 +𝐷𝑐𝑑 sin(𝜃) (3.45)

𝛽2 =
(︁𝐷𝑐

2

)︁2
+ 𝑑2 −𝐷𝑐𝑑 sin(𝜃) (3.46)

𝐻𝑟 =
𝐼𝐷2

𝑐𝐸(𝑘2)

4𝜋𝛽2∆
cos(𝜃) (3.47)

𝐻𝜃 =
𝐼
[︁(︁

𝑑2 +
(︀
𝐷𝑐

2

)︀2
cos(2𝜃)

)︁
𝐸(𝑘2)− 𝛽2𝐾(𝑘2)

]︁
2𝜋𝛽2∆sin(𝜃)

(3.48)

where 𝐻𝑟, 𝐻𝜃, 𝐾, and 𝐸 are the radial and azimuthal magnetic field components at
point 𝑃 in the 𝑥𝑦-plane, and elliptical integrals of the first kind and second kind,
respectively and,

𝑘 =

√︂
2𝐷𝑐𝑑 sin(𝜃)

∆2
(3.49)

The 𝑥 and 𝑦 magnetic field components can be then directly computed from the radial
and azimuthal components,

𝐻𝑥 = 𝐻𝑟 sin(𝜃) +𝐻𝜃 cos(𝜃) (3.50)

𝐻𝑦 = 𝐻𝑟 cos(𝜃)−𝐻𝜃 sin(𝜃) (3.51)

For circularly wound coils, each turn is taken as an independent current loop and
the field contributions are summed up as described in (3.32). To avoid computation-
ally expensive integration, equally spaced points are generated in the cross-section
of the bundles where the fields are calculated and averaged over all points to com-
pute loss in the coil. The proximity field in a turn to due to current in another turn
is calculated using the "Loop Center" method described above. However, for inter-
nal proximity fields generated by a turn’s own current, an infinitely long, straight
conductor approximation is used,

𝑅 =

√︂(︁
𝑥̂− 𝐷𝑐

2

)︁2
+ (𝑦 − 𝑦)2 (3.52)

𝜁 = tan−1
(︁ 𝑦 − 𝑦

𝑥̂− 𝐷𝑐

2

)︁
(3.53)

𝐻𝑥 = − sin(𝜁)
2𝐼𝑅

𝜋𝑑2𝑏𝑜𝑠
(3.54)
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𝐻𝑦 = cos(𝜁)
2𝐼𝑅

𝜋𝑑2𝑏𝑜𝑠
(3.55)

where (𝑥̂, 𝑦) is the location of an averaging point, 𝑅 and 𝜁 are its distance from
and angle about the bundle center, 𝑦 is the axial position of the turn center, 𝑑𝑏𝑜𝑠 is
the bundle outer surface diameter, and 𝐼 is the total peak current in the turn.

Algorithm 1 Semi-Analytical Multi-phase Loss Calculation
function GetLoss(𝑑𝑏𝑜𝑠, 𝐷𝑐, 𝑦, 𝑑𝑠, 𝑁𝑠, 𝐼, 𝜑, 𝑓)

- Each input vector ∈ R𝑛 where 𝑛 is the total # of turns
- Input vectors are denoted collectively as (·)
for turn 𝑖 in 𝑛 do ◁ turn to calculate field at

[𝑥̂, 𝑦]← GetAveragingPoints((·)[𝑖])
for turn 𝑗 in 𝑛 do ◁ iterate through source turns

if 𝑖 == 𝑗 then
[𝐻̂𝑥, 𝐻̂𝑦]← Straight(𝑥̂, 𝑦, (·)[𝑖])

else
[𝐻̂𝑥, 𝐻̂𝑦]← LoopCenter(𝑥̂, 𝑦, (·)[𝑗])

[𝐻𝑅𝑥, 𝐻𝐼𝑥, 𝐻𝑅𝑦, 𝐻𝐼𝑦] += {𝐻̂𝑥, 𝐻̂𝑦}𝜑[𝑗]
𝐻2

𝑒𝑓𝑓 [𝑖]← ⟨Transform([𝐻𝑅𝑥, 𝐻𝐼𝑥, 𝐻𝑅𝑦, 𝐻𝐼𝑦])⟩
[𝐹𝑅, 𝐺𝑅]← CalcFRGR(𝑑𝑠, 𝑓)
𝑃𝑠𝑘𝑖𝑛 ←

∑︀ 8𝜌𝐹𝑅𝐷𝑐𝑁3
𝑠

(𝑑𝑠𝐼)2

𝑃𝑝𝑟𝑜𝑥 ←
∑︀

𝜋𝐷𝑐𝑁𝑠𝐺𝑅𝐻
2
𝑒𝑓𝑓

return 𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑠𝑘𝑖𝑛 + 𝑃𝑝𝑟𝑜𝑥

Figure 3-25: Comparison of the analytical calculation implemented in MATLAB and
a strand-level FEA simulation in COMSOL for an example perfect Litz multi-coil
system using 36 AWG strands
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The semi-analytical approach is implemented in MATLAB through Algorithm 1
and shows good alignment with the full FEA simulations discussed in Section 3.5.2 as
shown in Fig. 3-25. To compute the same problem with the semi-analytical approach
using averaging points took just 23 ms to run; a 400x reduction over the "Elliptical
FEA Method."

3.5.4 Proof of Spatially Orthogonal Proximity Effect

To prove that spatially orthogonal components of an incident rotating field described
in general phasor notation by,

Bi = 𝑥̂𝐵𝑥 + 𝑦𝑗𝐵𝑦 (3.56)

can be used to compute loss corresponding to each component individually before
summing up to get the total loss, we follow a process similar to that described in
[54]. Nagel derives the field in the domain of an infinitely long conducting cylinder of
radius 𝑎 due to an incident transverse harmonic field. The geometry of this problem
lends itself to a cylindrical coordinate system, (𝜌, 𝜑, 𝑧), such that (3.56) becomes,

Bi =𝜌
(︀
𝐵𝑥 cos(𝜑)− 𝑗𝐵𝑦 sin(𝜑)

)︀
+ 𝜑
(︀
−𝐵𝑥 sin(𝜑) + 𝑗𝐵𝑦 cos(𝜑)

)︀ (3.57)

Absent a conducting cylinder, the magnetic vector potential which generates (3.57)
according to Bi = ∇×Ai can be simply written as,

Ai = 𝑧
(︀
𝐵𝑥𝜌 sin(𝜑)− 𝑗𝐵𝑦𝜌 cos(𝜑)

)︀
= 𝑧𝐴𝑖,𝑧 (3.58)

However, with a conducting cylinder in the domain, the vector field is non-trivial and
follows the scalar Helmholtz equation,

𝜌2
𝜕2𝐴𝑧

𝜕𝜌2
+ 𝜌

𝜕𝐴𝑧

𝜕𝜌
+ 𝑘2𝜌2𝐴𝑧 +

𝜕2𝐴𝑧

𝜕𝜑2
= 0 (3.59)

where 𝑘 = 1−𝑗
𝛿

is the wavenumber. It is well known [64] that, through separation of
variables, the solution to (3.59) is of the form,

𝐴𝑧 = 𝐷1𝒥𝜈(𝑘𝜌)
[︀
𝐶1 cos(𝜈𝜑) + 𝐶2 sin(𝜈𝜑)

]︀
(3.60)

when 𝜌 ≤ 𝑎 for finite vector potential at 𝜌 = 0, where 𝒥𝜈 is the 𝜈th order Bessel
function of the first kind. The vector potential outside the conducting cylinder (𝜌 > 𝑎)
is of the form,

𝐴𝑧 =
(︀
𝐷2𝜌

𝜈 +𝐷3𝜌
−𝜈
)︀[︀
𝐶1 cos(𝜈𝜑) + 𝐶2 sin(𝜈𝜑)

]︀
(3.61)

To solve for the unknowns, the following three boundary conditions are formulated
to assert the incident field and satisfy Maxwell’s equations:
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BC1) lim
𝜌→∞

A = Ai

BC2) 𝐴𝑧(𝑎
−, 𝜑) = 𝐴𝑧(𝑎

+, 𝜑)

BC3) 𝜌×∇×A|𝜌=𝑎− = 𝜌×∇×A|𝜌=𝑎+

The first boundary condition, BC1), enforces the source vector potential to be Ai

at 𝜌→∞ and leads to the following relationships,

𝜈 = 1 (3.62)
𝐷2𝐶1 = −𝑗𝐵𝑦 (3.63)
𝐷2𝐶2 = 𝐵𝑥 (3.64)

With this knowledge, BC2), which requires continuity of A at the boundary of the
conducting cylinder and air, leads to the relationship,

𝐷1𝑎𝒥1(𝑘𝑎) = 𝐷2𝑎
2 +𝐷3 (3.65)

The final boundary condition stems from Maxwell’s equations and the continuity
of the tangential magnetic field at the surface described by 𝜌 = 𝑎 for non-magnetic
materials. Writing BC3) out leads to,

𝑘𝑎2𝐷1
1

2

[︀
𝒥0(𝑘𝑎)− 𝒥2(𝑘𝑎)

]︀
+𝐷3 = 𝐷2𝑎

2 (3.66)

Noticing that for the region of interest (inside the conducting cylinder, 𝜌 ≤ 𝑎), if we
substitute 𝐶1 and 𝐶2 in terms of 𝐷2 into (3.60), the vector potential can be written
in terms of the ratio of only two unknowns, 𝐷1 and 𝐷2,

A(𝜌 ≤ 𝑎) = 𝑧
𝐷1

𝐷2

𝒥1(𝑘𝜌)
[︀
𝐵𝑥 sin(𝜑)− 𝑗𝐵𝑦 cos(𝜑)

]︀
(3.67)

Combining (3.65) and (3.66) to eliminate 𝐷3 results in the ratio,

𝐷1

𝐷2

=
4𝑎

𝑘𝑎
[︀
𝒥0(𝑘𝑎)− 𝒥2(𝑘𝑎)

]︀
+ 2𝒥1(𝑘𝑎)

(3.68)

which, when substituted into (3.67), gives the final vector potential inside the con-
ducting cylinder. However, the current density distribution in the conducting cylinder
is the desired result. Fortunately, the current density in a divergence-less magnetic
vector potential follows the simple relationship, J = −𝑗𝜔𝜎A, and allows us to write
the complex current density everywhere in the cylinder,

J = 𝑧
−𝑗4𝜔𝜎𝑎

𝑘𝑎
[︀
𝒥0(𝑘𝑎)− 𝒥2(𝑘𝑎)

]︀
+ 2𝒥1(𝑘𝑎)

𝒥1(𝑘𝜌)[︀
𝐵𝑥 sin(𝜑)− 𝑗𝐵𝑦 cos(𝜑)

]︀ (3.69)

Finally, to prove that spatially orthogonal field components are also orthogonal
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in the computation of proximity-effect power loss, the following condition must hold
true, ∫︁∫︁

|J|2 =
∫︁∫︁
|J|2𝐵𝑥=0 +

∫︁∫︁
|J|2𝐵𝑦=0 (3.70)

which in this case is trivial because,

|J|2 = |J|2𝐵𝑥=0 + |J|2𝐵𝑦=0 (3.71)
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Chapter 4

Coreless Transformer Design

This chapter covers the application of the tools described in the preceding text to
the design of an ultra-high efficiency four-coil resonant air-core transformer. The
approach is to take the high-level design of an existing solid conductor transformer
(MIT’s 40 kW transformer) and optimize the conductors for minimal complexity and
maximum efficiency, two objectives that generally work against each other. The
analytical multi-phase Litz wire approach described in Section 3.5 is used to optimize
the Litz conductors because of its fast computation enabling a large and thorough
design space exploration.

4.1 Cylindrical Transformer Parameter Extraction
In order to establish current magnitudes and phases during transformer operation,
the inductance matrix of the transformer must be know. The general geometric
definitions of a coaxial multi-coil system with cylindrical coils is shown in Fig. 4-1.

When calculating the diagonal entries of the inductance matrix, the self inductance
of each coil is [65],

𝐿 =
𝑁𝑡∑︁
𝑖=1

𝑁𝑡∑︁
𝑗=1

𝐿𝑖𝑗 (4.1)

where if 𝑖 = 𝑗, then [66],

𝐿𝑖 = 𝜇0𝑅𝑖

{︂(︂
1 +

𝑑2𝑏𝑜𝑠
32𝑅2

𝑖

)︂
log

(︂
16𝑅𝑖

𝑑𝑏𝑜𝑠

)︂
+

𝑑2𝑏𝑜𝑠
96𝑅2

𝑖

− 1.75

}︂
(4.2)

and if 𝑖 ̸= 𝑗, then [67],

𝐿𝑖𝑗 = 𝜇0

√︀
𝑅𝑖𝑅𝑗

{︁(︁2
𝑘
− 𝑘
)︁
𝐾(𝑘)− 2

𝑘
𝐸(𝑘)

}︁
(4.3)

where 𝐾 and 𝐸 are the complete elliptic integrals of the first and second kind respec-
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Figure 4-1: Geometry setup used when calculating the inductance matrix of a coaxial
multi-coil system with cylindrically-wound coils.

tively and,

𝑘 =
2
√︀

𝑅𝑖𝑅𝑗√︀
(𝑅𝑖 +𝑅𝑗)2 + (𝑑𝑖 − 𝑑𝑗)2

(4.4)

When computing the non-diagonal entries of the inductance matrix, the mutual
inductance between two coils is calculated by summing the contributions of individual
hoops in each coil,

𝑀𝑚𝑛 =

𝑁𝑡,𝑚∑︁
𝑖=1

𝑁𝑡,𝑛∑︁
𝑗=1

𝐿𝑖𝑗 (4.5)

where (4.3) is used to compute each 𝐿𝑖𝑗.
Fig. 4-2 shows the equivalent circuit of the four coil resonant transformer without

resistive elements. The losses will be computed through the analysis techniques de-
scribed in Chapter 3, so this circuit will only be used to extract current magnitudes
and phases in each coil.

Once the inductance matrix is known, the currents can be solved for in the fre-
quency domain with known resonant capacitors 𝐶1 and 𝐶2, source voltage magnitude
(𝑉𝑠), source resistance (𝑅𝑠), and load resistance (𝑅𝐿). With a four-port circuit matrix
formulation, V = ZI,⎡⎢⎢⎣

𝑉𝑠

0
0
0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑅𝑠 + 𝑗𝜔𝐿1 𝑗𝜔𝑀12 𝑗𝜔𝑀13 𝑗𝜔𝑀14

𝑗𝜔𝑀12 𝑗𝜔𝐿2 +
1

𝑗𝜔𝐶2
𝑗𝜔𝑀23 𝑗𝜔𝑀24

𝑗𝜔𝑀13 𝑗𝜔𝑀23 𝑗𝜔𝐿3 +
1

𝑗𝜔𝐶3
𝑗𝜔𝑀34

𝑗𝜔𝑀14 𝑗𝜔𝑀24 𝑗𝜔𝑀34 𝑅𝐿 + 𝑗𝜔𝐿4

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐼1
𝐼2
𝐼3
𝐼4

⎤⎥⎥⎦ (4.6)
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Figure 4-2: Equivalent circuit of the four coil resonant transformer.

The currents are then solved for by I = Z−1V. These are inputs to the analytical
multi-phase Litz loss calculation.

4.2 Genetic Algorithm Setup
A genetic algorithm based optimization package for MATLAB, GOSET [68], is used
here to optimize the transformer with two objective functions:

Objective 1 : min
{︀
𝑁𝑠,𝑡𝑜𝑡

}︀
(4.7)

Objective 2 : max
{︀
𝜂
}︀

(4.8)

where 𝑁𝑠,𝑡𝑜𝑡 is the total number of strands in all of the coils and 𝜂 is the transformer
efficiency at a specified frequency and output power.

With the center location of each turn in the transformer fixed, the current magni-
tudes and phases are fixed and the optimization only varies two parameters per coil,
a scaling factor and the strand gauge, for a total of 8 decision variables. The scaling
factor linearly scales the bundle OD from the baseline value of the equivalent solid
conductor transformer, 𝑑𝑏𝑜𝑠. Based on this new diameter, the strand gauge, and a
fixed fill factor (50%) the number of strands in each bundle can be calculated.

𝑁𝑠,𝑖 =

⌊︂ FF𝑖 SF𝑖 𝑑
2
𝑏𝑜𝑠,𝑖[︀

(0.127× 10−3)92
36−AWG𝑖

39

]︀2⌋︂ (4.9)

where FF𝑖, SF𝑖, and AWG𝑖 are the fill factor, scaling factor, and strand gauge used
in the 𝑖th coil, respectively. Table 4.1 gives the optimization variables, their ranges,
and types.

The algorithm randomly selects values for each parameter, called genes, with the
design combination of genes referred to as an individual. A population of individuals
is mutated to create the next generation based on the performance of each individual,
quantified by the fitness functions. This continues for several generations until even-
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Table 4.1: Transformer Optimization Variables
Tag Optimization Parameter Min. Values Max. Value Type
𝑔1 Coil 1: 𝑑𝑏𝑜𝑠 Scaling Factor 0.1 𝑐/𝑎1 Linear
𝑔2 Coil 2: 𝑑𝑏𝑜𝑠 Scaling Factor 0.1 𝑐/𝑎2 Linear
𝑔3 Coil 3: 𝑑𝑏𝑜𝑠 Scaling Factor 0.1 𝑐/𝑎3 Linear
𝑔4 Coil 4: 𝑑𝑏𝑜𝑠 Scaling Factor 0.1 𝑐/𝑎4 Linear
𝑔5 Coil 1: Strand Gauge 38 52 Integer
𝑔6 Coil 2: Strand Gauge 38 52 Integer
𝑔7 Coil 3: Strand Gauge 38 52 Integer
𝑔8 Coil 4: Strand Gauge 38 52 Integer

tually the designs converge. For a multi-objective optimization, the designs typically
converge to what is called a Pareto optimal front: the optimal front delineating the
trade-off between objectives (an example is shown in Fig. 4-3). Any design along this
front is optimal and it becomes a designer’s decision which point to choose based on
how they weight each objective in terms of importance.

Figure 4-3: All points evaluated in an example genetic algorithm optimization with
the Pareto front highlighted.
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4.3 Optimization Results
The 4x voltage ratio 40 kW transformer was optimized at several frequencies around
the designed frequency and each optimization consisted of 125 generations with a
population of 300 individuals in each generation except for the initial population of
1,000. All designs which failed geometry checks were "killed" by artificially modifying
the fitness evaluation of those designs, similar to the Augmented Lagrangian Method
for unconstrained optimization problems [69]. Fig. 4-4(a) shows the optimal fronts
for each frequency studied and Fig. 4-4(b) shows a different visualization of the same
data which can be used to easily identify the minimum total number of strands in the
optimal design for a target efficiency at a specified frequency. The minimum number
of strands is a good indication of the minimum level of complexity required for the
Litz wire to achieve the target efficiency.

Figure 4-4: (a) Optimal fronts extracted from the optimization of the 40 kW trans-
former with a 4x voltage ratio at several frequencies of interest (b) a different visual-
ization of the results according to target efficiencies.

While several frequencies were analyzed to observe trade-offs in frequency, the
transformer has peak magnetic performance at 290 kHz and therefore we can select
a design from the 290 kHz optimal curve. However, it should be noted that not all
designs produced by the optimization are feasible. This is for several reasons. First
of all, Litz wire composed of odd numbered strand gauges in the AWG standard are
typically not available. Additionally, the construction of the conductor is up to the
manufacturer and certain strand counts are structurally unstable [70]. And finally,
the fill factor is highly dependent on conductor construction and therefore the 50%
fill factor assumed, which correlates the number of strands to the bundle diameter
for a given strand gauge, will not hold true in reality.

For these reasons, the optimal designs are used as general guidance to select
commercially available Litz wire from New England Wire’s product selection guide
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[37]. Table 4.2 shows optimal designs selected for target efficiencies of 99% and 99.5%,
and their corresponding similar feasible design according to conductors listed in New
England Wire’s catalog. The feasible designs were run through the same analysis,
this time with set strand numbers and bundle diameters, to compute the transformer
efficiency. In some cases, these feasible conductors actually perform better due to the
aforementioned difference in fill factor.

Table 4.2: Optimal Designs Selected
Parameter Opt. Design Feas. Design Opt. Design Feas. Design
𝑑𝑏𝑜𝑠,1 [in] 0.1296 0.157 0.1905 0.226
𝑑𝑏𝑜𝑠,2 [in] 0.1392 0.157 0.1946 0.226
𝑑𝑏𝑜𝑠,3 [in] 0.1518 0.157 0.1949 0.226
𝑑𝑏𝑜𝑠,4 [in] 0.0853 0.093 0.1829 0.231

Gauge 1 [AWG] 40 40 44 44
Gauge 2 [AWG] 39 40 44 44
Gauge 3 [AWG] 40 40 44 44
Gauge 4 [AWG] 38 38 42 42

# of strands in Coil 1 849 1,100 4,641 4,200
# of strands in Coil 2 777 1,100 4,840 4,200
# of strands in Coil 3 1,164 1,100 4,858 4,200
# of strands in Coil 4 231 260 2,688 2,700

Total # of strands 3,021 3,560 17,027 15,300
Efficiency @ 290 kHz 99.00% 99.12% 99.50% 99.52%

4.4 Optimal Design Construction
A theoretical efficiency of 99.5% was chosen as desirable, accounting for expected
performance degradation due to construction non-idealities. The design in the last
column of Table 4.2 was selected with a small modification. Coils 1-3 could be con-
structed by twisting together 4 bundles of the 5x5x42/44 AWG Litz conductor readily
available from previous studies in Section 3.4. Coil 4 in the design was modified to
be three of these conductors twisted together for a total strand count of 3,150 and
approximate bundle diameter of 0.2 in.

Twisting together several pre-formed bundles with tight enough pitch to remain
structurally sound is non-trivial due to significant torque build up in both the ten-
sioned strands and the Nomex insulating fiber. To deal with this during construction,
a funnel fixture shown in Fig. 4-5 was constructed. The funnel creates enough friction
to prevent the conductors from slipping through and the shaped outlet sustains the
torque at one end. The 4 conductors are held together in the chuck of a manual
drill at the other end with enough leverage to also withstand the torque. The user
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simultaneously pulls the conductors through the funnel and twists by turning the drill
until the desired length of the conductor is achieved. A similar fixture was printed
off for the 3 bundle conductor used in Coil 4.

Figure 4-5: 3D printed funnel fixture for constructing pre-formed Litz bundles.

Once the desired length has been achieved, both ends are tied down in a manner
that can withstand the significant torque build up. At this point if either end is
let go, the entire conductor will unravel. To prevent this from a happening, TG-LH-
FBPE-80 flexible potting resin with the properties shown in Fig. 4-6 was coated along
the conductor and allowed to dry for several days. This resin has several beneficial
properties. Not only is it electrically insulating, but it also has a higher thermal
conductivity than air and therefore helps extract heat out from the center of the
bundle. The resin also wets the Nomex insulation, decreasing its effective thermal
impedance. Finally, the flexibility of the resulting conductors allows them to be
wound after drying instead of using a wet winding process.

After the 4 conductors with varying lengths were fabricated, they were wound into
respective coils. The two inner resonant coils were wound onto 3D printed spacers
clipped to a 10.25" PMMA cylinder. The drive and load coils were similarly wound
into spacing clips attached on the outside of a 12" PMMA cylinder. These two
cylinders are then inserted into one another to assemble the full transformer as shown
in Fig. 4-7.

After construction, the DC resistances of each coil were measured and are tabu-
lated in Table 4.3. Additionally, the self and mutual inductance were measured with
a VNA by selectively shorting coils while observing the inductance at the terminals of
another coil. The coupling coefficients are then extracted from the inductance matrix
according to,

𝐾𝑖𝑗 =
𝐿𝑖𝑗√︀
𝐿𝑖𝐿𝑗

(4.10)
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Figure 4-6: TG-LH-FBPE-80 flexible potting resin properties

Figure 4-7: Inner and outer cylinder sub-assemblies and the fully constructed ultra-
high efficiency 40 kW transformer.

with the results tabulated in Table 4.4 next to the theoretical design values.
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Table 4.3: DC Resistance of Each Coil in the Ultra-high Efficiency Transformer
Coil DC Resistance

Drive (1) 7.08 mΩ

1st Resonant (2) 13.03 mΩ

2nd Resonant (3) 15.06 mΩ

Load (4) 35.09 mΩ

Table 4.4: Theoretical and Measured Coupling Coefficients of the Ultra-high Effi-
ciency Transformer

Coupling Coefficient Theoretical Value Measured Value
𝐾12 0.75517 0.75143
𝐾13 0.34403 0.36219
𝐾14 0.38312 0.36093
𝐾23 0.37373 0.36785
𝐾24 0.39879 0.35502
𝐾34 0.80342 0.81751

4.5 Performance Comparisons
It becomes difficult, at efficiencies as great as 98%, to measure the power loss in
the resonant transformer accurately. This is in part due to the dependence of the
coil currents on the inter-coil coupling, high frequency operation, and low magnitude
loss as a fraction of the total through power. Many electrical measurement tools
such as differential voltage probes and current probes have higher percentage error
with increasing frequency. Fiber optic differential probes perform better at high
frequencies but tolerances are still not tight enough to measure losses with the 0.1%
fidelity really needed to demonstrate performance improvements between the solid
conductor transformer and the ultra-high efficiency version.

4.5.1 Thermal Measurement Techniques

Thermal measurements are a form of loss signal amplification as the only source
of temperatures above ambient is heat flux from conduction loss. While the most
accurate method of measuring temperatures is through temperature sensors, whether
they be thermistors or thermocouples, for purposes of our measurements a thermal
camera, which captures IR signals emanating from a heat source, provides the best
insight into the temperature of the system as a whole and is the most flexible in that
regard. Their are also benefits in terms of electrical isolation that become important
during full transformer operation.

The FLIR A700 was used to produce all thermal imaging in this study. The
measurement setup shown in Fig. 4-8 was constructed to capture the temperature
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transients of the two resonant coils of the ultra-high efficiency transformer carrying
a large DC current. This type of test is used for calibration of the coils’ thermal
capacitance to back out loss from the initial temperature transients due to the coils
carrying any arbitrary periodic current waveform, as will be discussed later in this
section.

Figure 4-8: Experimental setup for the thermal measurements of an ultra-high effi-
ciency resonant coil carrying a large DC current.

Fig. 4-9 shows a thermal image of the two resonant coils at near steady-state
temperature when running 50 A DC through the coils in series. A Circuit Specialist
15 V, 60 A switch-mode DC power supply was used to drive the current and a Fluke
meter measured the voltage across a 1 mΩ ±0.1% resistor placed in series with the
coils using the Kelvin measurement technique for accurate current sensing.

Fig. 4-10 shows the temperature profiles from ambient and rate of temperature
change for each turn in the second resonant coil (Coil 3). The temperature was
averaged over a small area within the visible turn to reduce the impact of local IR
sensor noise and the ambient temperature was recorded and subtracted from the turn
measurements to nullify global noise such as mid-run re-calibrations that the camera
periodically performs.

Steady-state temperatures are a good way to qualitatively compare losses between
different excitations of the same coil in a relatively constant ambient environment,
however to back out loss quantitatively, the thermal impedance from the coil to
ambient must be known. This is simple in theory if one assumes a lumped element
equivalent thermal circuit, but in practice real considerations such as buoyant natural
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Figure 4-9: Thermal capture of the two resonant coils of the ultra-high efficiency
transformer when carrying 50 A DC in series.

Figure 4-10: On a turn-by-turn basis for the second resonant coil carrying 50 A DC
(left) the temperature vs. time curve and (right) the rate of temperature change vs.
time curve

convection, heat rise, fluctuating ambients, and turn-to-turn heating make this a non-
trivial approach. Instead the initial transient can be used to compute loss with the
simple relationship,

𝑃𝑙𝑜𝑠𝑠 = 𝐶ℎ𝑒𝑎𝑡
𝑑𝑇

𝑑𝑡
(4.11)

The working assumption here is that because the coils are initially at ambient,
there is no heat leakage through the theoretical shunt thermal impedance to ambient
because of zero temperature differential. Therefore, all of the power loss in the coil
during the first few moments goes into charging the coil’s thermal capacitance, 𝐶ℎ𝑒𝑎𝑡,
which is a physical property calculated from the materials specific heat, 𝑐, and the
mass of the material, 𝑚,

𝐶ℎ𝑒𝑎𝑡 = 𝑐𝑚 (4.12)
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This behaviour can be seen in Fig. 4-10 as while the general temperature curve
for each coil follows a path similar to a parallel RC circuit (with different resistances
to ambient) driven by a current source, the initial rate of change of the temperature
for each turn is the same.

This method has been used to measure losses in magnetic cores as high frequency
[71] and can be performed on a turn-by-turn basis or on the transformer as a whole.
The difficulty in this measurement technique comes from amplified noise due to time
differentiation of the temperature signal. To mitigate this, a Savitzky-Golay filter
[72] is applied to the temperature data. The filter generates a polynomial fit between
adjacent points and effectively smooths the temperature signal without distorting
trends, making it more tenable for differentiation. Still, the power loss is discontinuous
in the transition from non-excited to excited and smoothing will inevitably distort
the initial slope. For this reason, it’s important to run several calibration tests and
get a nominal value for 𝐶ℎ𝑒𝑎𝑡 through averaging. Varying DC currents were injected
into Coil 3 and the rate of change of temperature change was measured and is shown
in Fig. 4-11. The excitation and outcome for each calibration run are provided in
Table 4.5.

Figure 4-11: Rate of change of temperatures for each turn in Coil 3 with corresponding
excitation conditions provided in Table 4.5.

Note: Artifacts of the Savitzky-Golay filter are present in the waveforms of Fig. 4-
11 and may impact the thermal capacitance measurements. This can be corrected
in the future by correlating percentage overshoot of the filter applied to an ideal RC
waveform to the measured waveform, using the same window size.

The data in Table 4.5 demonstrates the importance of high power loss to get
clean temperature data. For this reason, the thermal capacitance calculated from the
largest current excitation is taken as the final measured value. Additionally, the 50
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Table 4.5: Test Conditions of the Calibration Runs for Thermal Capacitance in the
Second Resonant Coil (𝑅𝐷𝐶, 𝑡𝑜𝑡 = 15.06 mΩ)
Label DC Current (A) ⟨𝑑𝑇

𝑑𝑡 𝑝𝑒𝑎𝑘
⟩ (K/s) 𝑃𝑙𝑜𝑠𝑠/turn (W/turn) 𝐶ℎ𝑒𝑎𝑡/turn (J/K-turn)

(a) 11 0.0065 0.260 40
(b) 18 0.0154 0.697 45.26
(c) 45 0.0957 4.357 45.53
(d) 47.5 0.1061 4.854 45.75
(e) 50 0.1092 5.379 49.26

A waveform had the least amount of artifacts from the smoothing filter. However,
calibrations may also be run at similar power levels to those expected during full op-
eration. This experimental process was repeated to measure the thermal capacitance
per turn in each coil of the ultra-high efficiency transformer and the data is given in
Table 4.6.

Table 4.6: Experimentally measured thermal capacitances per turn in each coil of the
ultra-high efficiency transformer

Coil 𝐶ℎ𝑒𝑎𝑡/turn (J/K-turn)
Drive (1) 52.29

1st Resonant (2) 47.90
2nd Resonant (3) 50.46

Load (4) 38.77

The measured thermal capacitances make intuitive sense in relation to one another
as the the drive coil, with 4 Litz sub-bundles and the largest turn diameter, should
have the largest thermal mass and therefore thermal capacitance. Likewise, the two
inner resonant coils have 4 Litz sub-bundles, but a smaller turn diameter than the
Drive coil. Therefore, their thermal capacitances should be slightly smaller than that
of the drive coil. Finally, the load coil has 3 Litz sub-bundles and roughly the same
diameter as the drive coil. Its thermal capacitance should be approximately 75% that
of the drive coil, which is evident.

4.5.2 Full Operation Thermal Comparisons

Due to the nested structure of the transformer, the thermal camera is unable to view
the inner resonant coils and therefore only a qualitative comparison can be made
between the solid conductor transformer and the ultra-high efficiency transformer. To
control the environment and ensure, as best as possible, no temperature fluctuations
due to moving air in the lab, the transformers were placed in an insulating styrofoam
box shown in Fig. 4-12 with a viewing window cut out. This results in a reheating
effect, but serves the purpose of comparing between the two transformers.
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Figure 4-12: Insulating styrofoam chamber with a viewing window cut out to minimize
the impact of flowing air in the environment on temperature measurements.

With the chamber setup, each transformer was operated to the maximum capa-
bilities of the lab. Both transformers were run at 1.5 kW for full power and 750 W
for half power. Fig. 4-13 shows the thermal profile of the solid conductor transformer
at 1.5 kW for an extended duration. The power was turned off at 140 minutes to
observe cool down.

Figure 4-13: Periodic thermal images of the solid conductor transformer operated at
1.5 kW in the thermal isolation chamber for >2 hours.

For the solid conductor transformer measurements, a layer of thin Kapton tape
was placed along all of the visible turns in order negate the high emissivity of the
shiny copper turns and its distortion of the temperature signals. The tape is both
electrically and thermally insulating such that it does not allow heat transfer between
turns. It is, however, in close thermal contact with each turn and heats up locally
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according to the temperature at the contact surface. This tape was not necessary for
the ultra-high efficiency transformer measurements due to the black resin having low
emissivity.

A comparison of the absolute temperatures of the 14 observable turns in each
transformer at full (1.5 kW) and half (750 W) power is provided in Fig. 4-14 for the
same operating time window. From these results, it is observed that the ultra-high
efficiency transformer has less than half the loss of the solid conductor transformer. In
fact the low loss (LL) transformer has lower temperatures operating at full power than
the solid conductor transformer has operating at half power. While the exact efficiency
of either transformer is not known exactly, the solid conductor transformer is much
easier to model and compute losses through a full FEA simulation. Therefore there is
high confidence in the designed efficiency (98.6%) of the solid conductor transformer.
This results in an efficiency of >99.3% in the ultra-high efficiency design.

Figure 4-14: Temperature vs. time profile for the two transformers (Low Loss =
LL) operated at full (1.5 kW) and half (750 W) power for 50 minutes. The maximum
temperature rise, amongst all observable turns, from the start to end of the 50 minute
window is shown.
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4.6 Conclusions and Future Work
In conclusion, this thesis covered the design methodology of an ultra-high efficiency
coreless resonant transformer and focused on the minimization of AC conduction
losses. Considerations unique to large-scale industrial applications guided the stud-
ies towards simultaneous complexity minimization to address the economics of the
transformer. For this reason, a methodical approach was taken to exhaustively study
all options of conductor geometries and to provide insight into the trade-offs of com-
plexity and performance. Increasingly complex conductor designs, starting with the
simplest geometry of solid conductor coils and ending with multi-level Litz structures,
were studied to determine the performance extent of each variation. A diverse set
of numerical, analytical, and experimental tools were utilized throughout this work.
Along the way, where a void in analysis existed, contributions were made to the lit-
erature regarding modeling techniques such as addressing non-ideal Litz conductor
construction [73] and multi-phase Litz wire loss implications [74].

After converging on a design for a 40 kW transformer that maximized efficiency
and minimized conductor complexity, the ultra-high efficiency design, with a theoret-
ical efficiency of 99.5% at full load and 300 kHz operating frequency, was constructed
and compared to a magnetically equivalent design consisting of solid conductor coils.
The comparison was done using thermal measurement techniques to amplify the loss
signal, and a makeshift thermal isolation chamber was used to minimize the impact of
moving air on the coil temperatures. Experimental results suggest that the ultra-high
efficiency transformer has less than half the losses of the solid conductor coil, which
has a designed efficiency of 98.6%. This leads to the conclusion that the ultra-high
efficiency transformer is >99.3% efficient and can therefore carry twice the power
of the solid conductor transformer (40 kW → 80 kW) under the same temperature
constraints.

Experimental results show good alignment with the modeling techniques devel-
oped in this work, however, future work should focus on further validating the multi-
phase Litz loss phenomenon with experiments and applying a similar analysis tech-
nique to circular cross-section solid conductor coils to determine the applicability to
the simplest of conductor geometries.
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Appendix A

Mathematical Definitions

Definitions for the Kelvin functions used in (3.14) and (3.16) are written below, where
𝒥𝜈(𝜃) is the 𝜈th order Bessel function of the first kind [75],

𝑏𝑒𝑟(𝑥) = 𝑏𝑒𝑟0(𝑥) (A.1)

𝑏𝑒𝑖(𝑥) = 𝑏𝑒𝑖0(𝑥) (A.2)

𝑏𝑒𝑟𝜈(𝑥) = ℜe
{︁
𝒥𝜈

(︀
𝑥𝑒

𝑗3𝜋
4

)︀}︁
(A.3)

𝑏𝑒𝑖𝜈(𝑥) = ℑm
{︁
𝒥𝜈

(︀
𝑥𝑒

𝑗3𝜋
4

)︀}︁
(A.4)

𝑏𝑒𝑟′(𝑥) =
𝑏𝑒𝑟1(𝑥) + 𝑏𝑒𝑖1(𝑥)√

2
(A.5)

𝑏𝑒𝑖′(𝑥) =
𝑏𝑒𝑖1(𝑥)− 𝑏𝑒𝑟1(𝑥)√

2
(A.6)
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Appendix B

Coil Measurement Calibration Gauge

Taking low resistance measurements at high frequencies is challenging for any impedance
analyzer or vector network analyzer (VNA), especially for coils with significant induc-
tance. The reactance of a coil at high frequencies can be several orders of magnitude
higher than the resistance component. This means the measurement equipment must
be sensitive enough to detect very small phase differences.

The Omicron Bode 100 VNA was used for all of the measurements taken in this
paper. Several measurement methods are possible with a VNA and Omicron’s manual
provides the suggested method range depending upon the frequency sweep of mea-
surement and impedance magnitude of the device under test (DUT). Fig. B-1 shows
a region plot provided in the Omicron Bode 100 documentation with their suggested
measurement technique according to the impedance magnitude of the DUT. Overlaid
onto this graph is the estimated impedance magnitude of the 6-turn, 5x5x42/44 AWG
Litz conductor coil studied in Section 3.4.

The “one-port” method is recommended for the coils measured in this paper and
was shown via a sensitivity study to be the best method. The short calibration was
performed with a gold short as the DUT, while a purely resistive tight tolerance 1.1 Ω
resistor was used as a DUT for the load calibration. After performing the open cali-
bration, the VNA has all the information it needs to discern the impedance. To verify
the calibration quality, several coil configurations using 14 AWG solid magnet wire
were then measured. These solid conductor coils had similar nominal impedances to
the Litz solenoids measured in Section 3.4, and therefore the phase differentiation re-
quired by the VNA was also similar. Turn-to-turn spacing was fixed at three different
set values using 3D printed coil forming clips. The solid conductor coil geometry is
well defined and therefore measurements should match simple 2D axisymmetric FEA
simulation results. The VNA calibration was reperformed until the solid conductor
coil measurements were found to closely follow FEA after linearly scaling to match
DC resistances. This is necessary because of poor performance of the "one-port" mea-
surement method at low-frequencies. As shown in Fig. B-2, the coil measurements do
in fact closely follow FEA after linearly scaling to match DC resistances. The authors
suggest gauging calibration quality with a fixed coil of known frequency dependent
resistance prior to the measurement of the more complex Litz wire coils.
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Figure B-1: Region plot provided in Omicron’s documentation recommending mea-
surement techniques according to impedance magnitude of the DUT. Estimated
impedance magnitude of the 6-turn, 5x5x42/44 AWG Litz conductor coil studied
in Section 3.4 is overlaid.

Figure B-2: Measurement and FEA simulation results for several coil constructions
using a solid 14 AWG magnet wire.
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Appendix C

Code

C.1 Layered Mesh Analysis for 5x5x42/44 AWG Litz
Solenoid

The code used to perform Layered Mesh analysis on a solenoid composed of 5x5x42/44
AWG Litz wire, as described in Section 3.4, can be found on MATLAB’s Central File
Exchange [76]. It requires COMSOL’s AC/DC module with LiveLink for MATLAB
scripting. The inputs and outputs to the code are described in Fig. C-1.

Figure C-1: Description of inputs and outputs to the Layered Mesh analysis code for
a solenoid composed of 5x5x42/44 AWG Litz wire.
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C.2 Layered Mesh Analysis for 5x40/36 AWG Litz
Solenoid

The code used to perform Layered Mesh analysis on a solenoid composed of 5x40/36
AWG Litz wire, as described in Section 3.4, can be found on MATLAB’s Central File
Exchange [77]. It requires COMSOL’s AC/DC module with LiveLink for MATLAB
scripting. The inputs and outputs to the code are described in Fig. C-2.

Figure C-2: Description of inputs and outputs to the Layered Mesh analysis code for
a solenoid composed of 5x40/36 AWG Litz wire.
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C.3 Multi-phase Litz Semi-analytical AC Loss Cal-
culation

The semi-analytical code used to perform AC loss analysis on cylindrical Litz coils
composed of ideal Litz wire, as described in Section 3.5, can be found on MATLAB’s
Central File Exchange [78]. The inputs and outputs to the code are described in
Fig. C-3.

Figure C-3: Description of inputs and outputs to the multi-phase Litz analytical AC
loss calculation code.
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