
Anomaly Detection in Database Operating System

by

Brian Xia

B.S. Computer Science and Engineering
Massachusetts Institute of Technology, 2021

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2022

Certified by. .
Michael Stonebraker

Adjunct Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Anomaly Detection in Database Operating System

by

Brian Xia

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Database Operating System (DBOS) is a new operating system (OS) framework that
replaces the traditional file-based system with a high-performance database manage-
ment system (DBMS). This design choice addresses the needs of a rapidly evolving
software and hardware landscape that cannot be met by a traditional, mainstream
OS. However, DBOS is a relatively new project under active development, with some
missing secondary capabilities. In particular, the provenance capture system has not
been fully explored with respect to real-time anomaly detection. To that end, Nectar
Network (NN) was developed on top of DBOS as a public web application to generate
real-world traffic and provenance data. In this thesis, I present a machine learning
(ML) model to label anomalous provenance data captured by the NN, in the form
of HTTP logs, in real-time. The model consists of two components: tokenization
and classification. In the tokenization step, Byte-level Byte Pair Encoding (BBPE)
breaks down the input bytes into token bytes that hold semantic meaning. In the
classification step, a Convolutional Neural Network (CNN) takes the token bytes as
input and outputs the predicted probability of anomaly. The model achieved strong
performance, with a F1 score of 0.99951. Importantly, this work serves as a proof-of-
concept for future endeavors to develop real-time security analysis features on top of
DBOS systems.

Thesis Supervisor: Michael Stonebraker
Title: Adjunct Professor

3

4

Acknowledgments

First and foremost, I would like to thank my thesis supervisor, Michael Stonebraker,

for providing me the unique opportunity to work on this research project. His insights

and feedback have been instrumental in the overall vision and direction of this work.

I would also like to thank Çağatay Demiralp and Deeptaanshu Kumar for our weekly

meetings and their technical support. Finally, I would like to thank Qian Li and Peter

Kraft for their continuous support and guidance throughout the year.

5

6

Contents

1 Introduction 13

1.1 Current operating systems . 13

1.2 Database Operating System . 15

1.2.1 Provenance capture . 16

1.2.2 Nectar Network . 17

1.3 Web application attacks . 18

1.3.1 SQL injection . 19

1.3.2 Cross-site scripting . 19

1.3.3 Distributed denial-of-service 20

1.4 Contributions . 20

2 Related Work 23

2.1 Web application security . 23

2.2 Rules-based models . 24

2.2.1 Snort . 24

2.3 Machine learning-based models . 26

2.3.1 Traditional approach case study 26

2.3.2 Deep learning approach case study 27

2.3.3 HTTP2vec . 28

2.4 Proprietary solutions . 29

3 Methods 31

3.1 Datasets . 32

7

3.1.1 Public HTTP logs . 32

3.1.2 Sigma Computing Cloudflare data 32

3.1.3 Nectar Network provenance capture 32

3.2 Model . 33

3.2.1 Byte-level Byte Pair Encoding 33

3.2.2 Convolutional Neural Network 34

3.3 Python daemon . 35

4 Results 37

4.1 Evaluation metrics . 37

4.2 Public HTTP logs . 38

4.3 Sigma Computing Cloudflare data . 39

4.4 Nectar Network provenance capture 40

5 Closing Remarks 41

5.1 Discussion . 41

5.1.1 Semi-supervised ML model . 42

5.1.2 Python daemon performance testing 42

5.2 Conclusion . 43

8

List of Figures

1-1 DBOS stack. Taken from [1]. 15

1-2 Nectar Network pages. 17

1-3 Example HTTP log request from NN. 18

2-1 Example Snort rule. 25

3-1 Example anomalous request from CSIC. 32

3-2 Model architecture . 34

9

10

List of Tables

4.1 Performance on CSIC public dataset 38

4.2 Comparison on CSIC Data . 38

4.3 Performance and train-test split . 39

4.4 Performance on Sigma dataset . 39

4.5 Performance on NN dataset . 40

11

12

Chapter 1

Introduction

The introduction begins with a brief discussion of the shortcomings faced by many

mainstream OS. I then introduce DBOS, a new OS framework that utilizes a DBMS to

address these shortcomings. Given that DBOS is a fairly new framework, its security

features are underdeveloped, despite a robust data provenance capture system. The

following section discusses NN, a web application designed on top of DBOS to generate

real-world provenance data. The final section highlights the main contributions of

this project, primarily the deployment of a machine learning model to actively and

accurately tag NN provenance data as anomalous or benign.

1.1 Current operating systems

Hardware platforms have changed drastically throughout the years, with innovations

made in both the design and integration of various components [2]. Noticeably, many

mainstream operating systems have remained relatively untouched since their incep-

tion. At the time, these OS were designed to handle hardware platforms that consisted

of a single processor and limited main memory, with a small set of executable func-

tions [3, 4]. Hardware platforms today may now consist of hundreds of thousands

of processors and multi-level memory, with a large and diverse set of services being

requested by a multitude of users [5, 6, 7]. This significant increase in resources that

need to be managed and scheduled poses several concerns for current, mainstream

13

OS architectures:

1. Heterogeneous hardware. Achieving optimal performance on a wide range of

applications is often not feasible with only a standard CPU. It usually becomes

necessary to bring in specialized hardware (GPUs, TPUs, SSDs, FPGAs, etc.)

with diverse processing capabilities to handle specific tasks [6, 8, 9].

2. Novel applications. Many of the specialized hardware mentioned above are

driven by the needs of novel applications. In particular, data-centric work-

loads, such as machine learning [9] and "big data" applications [10], are quickly

becoming a cornerstone of ongoing research and innovation. Concretely, the

tensor processing unit (TPU) was developed by Google with the specific aim to

optimize neural network machine learning on TensorFlow software [11].

3. Data privacy. The rise of digitization and the internet has led to a massive

influx of personally identifiable information (PII). There has been an ongoing

shift from written to digital records in many settings, including clinical trials,

hospital records, educational reports, etc. [12]. Social media has also been a

major source of PII that is particularly sensitive given that many users are un-

derage. Perhaps most famously, General Data Protection Regulation (GDPR),

an EU law on data protection and privacy, established guidelines on PII pro-

cessing [12, 13]. One important clause specified in GDPR is the "right to be

forgotten", meaning that a user can request for all of their data to be completely

removed from a given database. This is directly addressed by data provenance,

which tracks the inputs, entities, systems, and processes that contributed to the

data of interest. However, many OS lack integrated support for data provenance

given that PII was not a primary concern or consideration when they were first

being developed.

14

1.2 Database Operating System

DBOS is a joint effort by MIT, Stanford, CMU, Google, and VMware to leverage a

distributed, transactional database management system as the foundation of a novel

OS stack [1]. The underlying distributed, transactional DBMS helps to combat is-

sues that result from today’s massive scale systems. The DBOS environment stores

the OS and application states within the structured DBMS, thereby allowing for

fast updates and searches through simple SQL queries. Support for heterogeneous

hardware is continually being added directly into DBOS through processor-specific

stored procedures. Several data-centric workloads have been experimentally shown

to exhibit higher performance running on DBOS than on comparable serverless envi-

ronments such as Openwhisk [14] and Boki [15]. Data privacy has not been directly

implemented within DBOS, but integrated functionality for data provenance capture

should facilitate future endeavors to do so [16].

Figure 1-1: DBOS stack. Taken from [1].

The DBOS stack consists of four layers as shown in Figure 1-1. The top level con-

sists of user applications that run protected from each other and any other levels. No-

tably, the ease and transparency with which users can query for process IDs, memory

usage, or other related metrics greatly enhances the development of distributed ap-

plications. The next level consists of OS services such as distributed filesystems, task

schedulers, interprocess communication and others. These services benefit greatly

from the lower level distributed DBMS, which provides high availability, transaction

15

support, security, and dynamic reconfiguration. The following level consists of the

distributed DBMS. DBOS employs VoltDB [17], which is a commercially available

SQL database that offers low latency distributed transactions (concurrency control),

synchronous replication (high availability), and ACID compliance. The bottom level

consists of microkernel services such as raw device handlers, interrupt handlers, and

basic inter-node communication.

1.2.1 Provenance capture

The DBOS stack is well designed for supporting a robust data provenance system. A

high-performance DBMS can store structured, provenance information that is easily

accessible through SQL queries. In practice, VoltDB [17] serves as the main memory

DBMS that stores OS state. However, VoltDB is unsuited for handling large amounts

of provenance data, requiring data to be spooled to Vertica [18] for long-term storage

and downstream analysis. Kumar et al. have demonstrated that Vertica outperforms

VoltDB dramatically with regard to provenance queries on tables with greater than

105 rows [16]. This clearly highlights the importance of a dedicated OLAP system

like Vertica to serve as the storehouse for provenance data.

One important point of discussion is what can be answered through such a data

provenance system. The following list documents some potential queries of interest.

• Table history. Who was the last person to write to a particular table? Which

table had the most updates over an arbitrary time frame?

• Compromised users. What are all of the blocks that were read or written

by a compromised user over an arbitrary time frame? Who are all of the users

that read a compromised block over an arbitrary time frame?

• Chain of provenance. What are all of the blocks that may have resulted from

reading a particular block (downstream)? What are all of the blocks that may

have influenced a particular block (upstream)?

• Debugging. What is the exact state of a table at a particular point in time?

16

• PII. Can you determine whether a particular block is legal based on the legality

of the blocks used to generate it?

1.2.2 Nectar Network

(a) Home page. (b) Login page

(c) Registration page (d) Timeline page

Figure 1-2: Nectar Network pages.

Nectar Network is a simple web application developed on top of DBOS. It serves as

a rudimentary social networking site and is publicly accessible at nectarnetwork.org.

All of its available pages are shown in Figure 1-2. The home page consists of two

labeled buttons that redirect to the login and registration pages. The login page is

a simple form that prompts the user for a username and password in the text boxes.

There are also buttons that allow the user to submit a login request or clear the text

boxes. The registration request contains the same layout as the login page except

that the login button is replaced by a register button. When a user has successfully

17

logged in, they are brought to the timeline page which contains two parts. The top

part allows a user to send a post to another user, and the bottom part displays all

posts received by the user in a table format in which the first column is the sender

username and the second column is the post content.

Figure 1-3: Example HTTP log request from NN.

NN was made publicly available in order to capture real-world internet traffic,

thereby allowing us to test DBOS provenance capture and develop real-time anomaly

detection using a realistic web application deployment. All HTTP requests are logged

and captured in Vertica [18] using the fields shown in Figure 1-3. This schema loosely

follows the W3C extended logging format as described by Microsoft [19]. This format

contains enough information to form a complete history of an HTTP request.

1.3 Web application attacks

Web applications have quickly become one of the most popular platforms for in-

formation and service delivery [20, 21]. It boasts several features that have led to

its success, namely remote accessibility, cross-platform compatibility, and fast devel-

opment. Importantly, web applications have become increasingly used for sensitive

information related to health or financial institutions. An investigative report by

Verizon in 2010 discovered that web applications are the most common attack vector

(means by which an attacker can gain access to a network server) used for unautho-

18

rized intrusion, resulting in the most breaches and compromised data [22]. In the

following sections, I will detail the most common types of web application attacks,

including the methodology and end goal.

1.3.1 SQL injection

A SQL injection attack occurs when a malicious user tampers with the SQL queries

sent by the web application to its corresponding database [21, 23]. This occurs when

SQL keywords or operators are inserted into queries without input sanitization to ex-

plicitly remove or filter them out. This can be done through malevolent insertions into

user inputs (e.g. fillable fields), cookies, or HTTP headers. Importantly, the contents

of the insertion dictates whether the attack is of the first- or second-order. First-order

attacks are executed immediately with the intent to return results immediately. In

other words, the entire attack is localized within the insertion. A concrete example

is using the union keyword to attach malicious SQL queries to the end of standard

SQL queries. Second-order attacks rely on an initial insertion that lies dormant for

some period of time, usually until a follow-up insertion prompts the execution of the

first insertion. A concrete example is inserting an initial malicious query that can

be prompted at a later date. The follow up query would return metadata on users

who have accessed the web application since the initial insertion. The overall purpose

of these attacks may be to steal credentials, alter data, delete data, and/or access

connected resources.

1.3.2 Cross-site scripting

Cross-site scripting (XSS) occurs when a malicious user is able to execute custom

scripts in a victim’s browser [21]. This typically occurs when web responses are un-

sanitized, meaning they are unchecked for special characters/keywords that may lead

to unexpected or malicious behaviors. This becomes problematic when web appli-

cations utilize the same-origin policy, which allows scripts in one webpage to access

the data in another webpage if they both come from the same origin (combination of

19

URI scheme, host name, and port number). For instance, an attacker could insert a

malicious script into a less secure webpage in order to access confidential information

from a more secure webpage. Similar to SQL injection, there are first- and second-

order attacks that dictate the timing when the attack occurs. A first-order attack,

such as reflected XSS, prompts the user to click on a custom link which delivers an

XSS payload to the web application. This payload allows the attacker to perform

any action that the user would be able to perform. A second-order attack, such as

persistent XSS, may rely on sending the XSS payload to a back-end database (e.g.

through usernames, comments, forum posts, etc.) that gets triggered once a victim

loads a webpage containing the relevant information. These attacks are often used

to steal sensitive information about a victim such as credit card information, medical

records, or cookie details.

1.3.3 Distributed denial-of-service

Distributed denial-of-service (DDoS) occurs when a malicious user overwhelms a tar-

get resource with superfluous traffic, rendering the resource unable to respond to

legitimate traffic in a timely fashion [24]. It should be noted that the superfluous

traffic comes from a wide variety of sources (i.e. the "distributed" aspect), which

makes it much more difficult to differentiate and block the multiple sources of such

traffic. This attack is not specific to web applications, but it remains one of the

most common attack patterns due to its generality and effectiveness. The primary

purpose of a DDoS attack is to render a web application inoperable, thereby dis-

rupting its normal function and inconveniencing its users. Some secondary purposes

that directly result from a DDoS attack include extortion, reputational damage, and

financial drain.

1.4 Contributions

Many mainstream OS were not designed to handle heavy, data-centric workloads

present in many modern applications. DBOS was developed to support these appli-

20

cations by leveraging a high-performance DBMS in place of the traditional file-based

system. Notably, the DBMS supports provenance data capture given its highly struc-

tured and accessible design. This prompted the creation of NN, a social media web

application that was designed and developed on top of DBOS. It is publically available

to allow for real-world traffic and provenance data capture. My main contribution

has been the development of a two-part ML model to label the anomalous NN prove-

nance data. The model consists of a tokenizer and convolutional neural network that

achieves high performance across a variety of data sources, not just the NN prove-

nance data. A Python daemon was also developed to label NN provenance data in

real-time after the initial batch of training and testing. Importantly, this model is an

exciting step forward when it comes to developing real-time security analysis features

on top of DBOS systems and applications.

21

22

Chapter 2

Related Work

2.1 Web application security

The increased usage and importance of web applications in recent years has prompted

focused efforts to bolster web application security and prevent malicious attacks

[21, 25, 26, 27, 28, 29]. Intrusion detection systems (IDS) were first created as a

general-purpose means to monitor computer systems for suspicious behaviors. These

systems operate on the concept of anomaly detection, in which violations of a prede-

fined, normal model constitute deviations of interest. Notably, many of these systems

have been adapted in recent years to provide support for web applications [27]. This

is done through an extension of the underlying rules-based model employed by most

IDS. As the name suggests, a rules-based model relies on a large set of predefined rules

to determine anomalous behaviors. Another approach that has gained popularity in

recent years is the ML approach. Web applications have become extremely popular

in recent years, resulting in large amounts of traffic and logs. This sheer volume of

available data is conducive for developing ML models. Both traditional and deep

learning schemes have been employed, mostly within the research space to determine

malicious web application behaviors [28, 29]. It should be noted that there are two

distinct data sources: real-world and generated traffic. Real-world traffic is largely

unlabeled and suitable for unsupervised (fully unlabeled) or semi-supervised (par-

tially labeled) models. Generated traffic is always labeled and suitable for supervised

23

models.

2.2 Rules-based models

The traditional approach to detecting malicious web application activity involves a

rules-based model [27]. This model is dependent on a large, predefined rule set that

is representative of current threats and attacks. As such, the rule set is constantly

and continuously updated as new vulnerabilities are discovered. Rules may also be

pruned after a designated expiration time to prevent the rule set from becoming too

large and unwieldy. The system itself will find and log all rule violations, but the

severity dictates whether a violation simply prompts an alert or halts all activity for

further analyses.

2.2.1 Snort

Snort was originally designed as a packet sniffer and logger developed by Martin

Roesch in 1999 [27]. It was a novel system in that it provided cross-platform capa-

bilities and boasted a lightweight deployment, making it readily accessible to many

different systems and use cases. Today, it remains one of the most popular IDS given

its modular design and open-source code. The system itself consists of four primary

subsystems:

• The packet decoder. The packet decoder sets pointers within the packet data

to facilitate tagging in the detection engine.

• The preprocessor. The preprocessor operates between the packet decoder

and detection engine to support custom user code. This lets the user modify or

analyze the decoded packets before sending them into the detection engine for

rule violations. Snort offers various prebuilt preprocessors that are documented

in its user manual [30].

• The detection engine. The detection engine maintains its detection rules in

a two dimensional linked list that consist of Chain Headers and Chain Options.

24

– The Chain Headers contain common attributes amongst detection rules

such as source or destination IP addresses.

– The Chain Options contain modifier options that define the specific signa-

tures of detection rules.

During run-time, the detection engine scans each packet in the forward and

reverse directions for any hits, or rule violations. When a hit occurs, the action

specified in the rule definition fires, typically triggering the logging/alerting

subsystem.

• The logging/alerting subsystem. The logging/alerting subsystem consists

of separate logging and alerting protocols. The logging protocol can be specified

to dump packets in either a decoded, human readable format or tcpdump binary

format. The alerting protocol can be called with either the full (alert message

and packet header) or fast (alert message and condensed packet header) option.

Figure 2-1: Example Snort rule.

All Snort rules follow a common format as depicted in the sample rule from Figure

2-1. The first field specifies whether the packet should be logged, alerted, ignored,

blocked, or some combination of the previous options. The second field is the protocol,

which can be one of TCP, UDP, ICMP, or IP. The third and fourth fields are the source

IP address and port number respectively. The fifth field is the direction operator to

indicate whether traffic is flowing in one direction (->) or bidirectionally (<>). The

fifth and sixth fields are the destination IP address and port number respectively.

The seventh field contains the rule options, which are fully defined in the Snort user

manual [30]. Collectively, the sample rule from Figure 2-1 raises an alert when any

IP address sends traffic to 192.168.1.0/24:111 that contains "00 01 86 a5" bytecode in

the decoded packet. The generated alert will contain the message "mountd access".

25

2.3 Machine learning-based models

Increasing efforts have been focused on developing ML-based models to address web

application security [28, 29]. One key advantage of the ML-based approach as opposed

to the rules-based approach is the adaptability of ML models. The rules-based ap-

proach relies on strict, static rules to detect previously encountered attacks. However,

a novel attack can be extremely detrimental in terms of monetary and information

losses before it can be successfully documented and incorporated into a rules-based

model. An ML model attempts to capture higher-level representations and underly-

ing structure present in the raw data, potentially allowing it to detect novel attacks

preemptively. As previously mentioned, ML-based models have only recently become

a possibility due to the large volume of web application traffic and logs that have

been generated over the past few years. It should be noted that ML techniques

can be broadly split into traditional and deep learning approaches. In the following

two subsections, I will present a case study from each approach. I will then discuss

HTTP2vec [31], an anomaly detection pipeline that uses the same tokenization as

this work.

2.3.1 Traditional approach case study

Shar et al. explored two traditional ML techniques, logistic regression (LR) and

random forest (RF), in both supervised and semi-supervised models for the prediction

of web application attacks [28]. The authors noted 32 attributes characterizing input

validation and sanitization patterns that are strong indicators of web application

vulnerabilities. Broadly, the attributes could be grouped into input accesses, database

keywords/operators, delimiters, script tags, and meta-characters. Input accesses focus

on the HTTP request parameters, file requests, and database responses. The database

keywords/operators determine characters that may have some special meaning to a

database query parser. Common delimiters include separators for standard strings

(e.g. "), programming language comments (e.g. /*), and nontraditional constructs

(e.g. #). Script tags are simply any special characters (e.g. <script>) that have

26

meaning to a standard HTML interpreter. Meta-characters are characters that have

some special meaning within the context of the URL being accessed.

The experiments were performed on seven0 real-world PHP web applications, each

with known, exploitable vulnerabilities. The authors utilized the PhpMiner tool from

their previous work to derive 15 datasets from the seven web applications based on the

available vulnerabilities [32]. The datasets were then manually labeled by the authors

for training the proposed models. RF outperformed LR in a supervised model, with

a recall of 0.77 and false positive rate of 0.05 averaged over all the datasets. CoForest

[33], which extends the co-training paradigm to RF, achieved similar results in a semi-

supervised model, with a recall of 0.71 and false positive rate of 0.05 average over all

the datasets. These relatively low numbers on recall indicate poor performance from

both models.

2.3.2 Deep learning approach case study

Pan et al. employed a deep learning approach to web application attack detection by

utilizing the Robust Software Modeling Tool (RSMT), which monitors and charac-

terize web application behavior at run-time [29]. Importantly, the authors developed

an unsupervised model using a stacked, denoising autoencoder. The RSMT simu-

lated a large number of normal user requests to be fed into the autoencoder. The

autoencoder then compressed these requests, retaining key features necessary to re-

construct requests with minimal reconstruction error. A threshold was then set to a

value that is greater than or equal to the highest reconstruction error recorded during

training. New test requests were considered anomalous if the reconstruction error

exceeded that of the threshold. The authors note that the unsupervised model can

be extended to a semi-supervised model by manually constructing a small number of

anomalous requests. Both normal and anomalous requests can then be run through

the autoencoder to generate their respective average reconstruction errors. A thresh-

old is then chosen to maximize some metric, such as F1 score. The authors evaluated

their unsupervised approach using RSMT against two sample applications: video

management and compression. For the video management application, the autoen-

27

coder had a precision of 0.898 and recall of 0.942. For the compression application,

the autoencoder had a precision of 0.906 and recall of 0.928. Both precision and recall

are relatively high across both applications, indicating strong performance from the

autoencoder.

2.3.3 HTTP2vec

HTTP2vec is a NLP-based anomaly detection pipeline that utilizes RoBERTa [34]

to embed HTTP requests for downstream anomaly detection [31]. The HTTP2vec

pipeline consists of three main components:

• Tokenization. HTTP2vec uses Byte-level Byte Pair Encoding (BBPE) [35] as

its tokenizer. Byte Pair Encoding (BPE) is the process of replacing pairs of bytes

with bytes that do not exist within the original data, which are referred to as

tokens [36]. This allows BPE to serve as a general compression method. BPE

has been extended to NLP tasks such that groups of characters are replaced

with tokens, with replacements recorded in a dictionary-like object. BBPE

extends BPE for NLP tasks in that groups of bytes rather than characters are

replaced with tokens. The output from BBPE is fed directly into RoBERTa.

Tokenization is an important step in the process since it splits raw text into

tokens that can be used to derive semantic meaning.

• RoBERTa. RoBERTa is an extension of Bidirectional Encoder Representa-

tions from Transformers (BERT), a language representation model developed

by Google [37]. The main purpose of BERT is to pretrain non-directional rep-

resentations of unlabeled text. RoBERTa improves upon BERT through the

implementation of dynamic masking, large mini-batches, and larger BBPE. Af-

ter training, a vector representation of each original HTTP message is derived

from the concatenation of the last four RoBERTa layers. This vector represen-

tation is then fed into the classification step.

• Classification. The authors note that any traditional classification algorithm

28

is suitable for this step. In particular, logistic regression, random forest, and

support vector classification were chosen for downstream anomaly detection.

The authors tested the HTTP2vec pipeline against three datasets: CSIC2010 [38],

CSE-CIC-IDS2018 [39], and UMP. Both CSIC2010 and CSE-CIC-IDS2018 were auto-

matically generated using parameter values drawn from known normal and anomalous

databases. UMP was was automatically generated using Arachni, a web application

security scanner framework [40]. All three classification algorithms performed simi-

larly on each dataset, with overall worst performance on the UMP dataset. In this

context, worst performance is defined as AUROC of 0.96 and F1 score of 0.926.

2.4 Proprietary solutions

There are many proprietary solutions focused on general-purpose anomaly detection.

Some notable examples include Cloudflare, Crowdstrike, and Splunk. As these are

proprietary solutions, the exact methods employed by each company are unavailable.

However, it is reasonable to assume they use some hybrid of the rules- and ML-based

approaches.

29

30

Chapter 3

Methods

The overall goal of this project was to develop a ML model to detect malicious activ-

ity present in the provenance data captured from public accesses to NN. There were

three separate sources of labeled HTTP log data for this project, thereby allowing

for wide coverage of input vocabulary and attack patterns. The first dataset is publi-

cally available from Consejo Superior de Investigaciones Científicas (CSIC), otherwise

known as the Spanish National Research Council [38]. The second dataset came from

the Cloudflare logs of a software company, Sigma Computing. The third dataset was

extracted from the NN provenance capture and labeled using Snort, which is discussed

in further detail below [27]. The model consisted of two components: tokenization

and classification. During tokenization, BBPE was employed to tokenize all poten-

tial input data at the byte-level to be fed into the classification component. During

classification, a convolutional neural network (CNN) was trained and evaluated on a

particular data source using the outputs from tokenization. A Python daemon was

also developed to deploy the model in real-time. The daemon periodically polls the

Vertica database hosting the NN provenance data for new entries, runs the new en-

tries through the full model, and pushes the outputted (normal or anomalous) labels

into a separate Vertica database.

31

3.1 Datasets

3.1.1 Public HTTP logs

Figure 3-1: Example anomalous request from CSIC.

The public HTTP logs consisted of data procured from CSIC [38]. The general

schema for the data is shown in Figure 3-1 for an example anomalous request. No-

tably, this dataset provided a good balance of normal and anomalous traffic, with

36,000 normal and 25,000 anomalous requests. The anomalous requests also cover

a wide range of known attack archetypes including SQL injection, buffer overflow,

information gathering, and files disclosure.

3.1.2 Sigma Computing Cloudflare data

This dataset was procured from Cloudflare annotations of a real-world application

deployed by Sigma Computing. For confidentiality purposes, meta information re-

garding the dataset cannot be disclosed.

3.1.3 Nectar Network provenance capture

As previously mentioned, the overall goal of this project was to develop real-time

anomaly detection for NN as a proof-of-concept for future endeavors to build security

features for DBOS. An example of the NN provenance capture data schema can be

seen in Figure 1-3. The final dataset considered for training and testing purposes

32

consisted of 26,532 HTTP log records, which were generated over a three month

period.

These logs were labeled using the "Registered" ruleset for Snort v2.9.19 [27].

Snort rulesets often contain commented out rules, which may result from them being

outdated, domain-specific, or overcomplicated. During our deployment of Snort for

labeling, we utilized all available rules, totaling over 43,091. This conscious decision

was motivated by the small amount of HTTP log records (∼26,000) that needed to

be labeled and the ability to confirm the limited rule violations manually afterwards.

Each HTTP log record with any number of rule violations was considered to be

anomalous while those with no rule violations were considered to be normal. In total,

24,682 logs were found to be anomalous, and 1,850 logs were found to be normal. This

is consistent with the assumption that most web crawlers accessing unlisted websites

are malicious in nature.

3.2 Model

3.2.1 Byte-level Byte Pair Encoding

BPE was introduced as a method of compressing strings [36]. The technique uses

the characters of a string as tokens, and additionally adds tokens representing the

most common combinations of characters present in a string. By doing so, the author

reported that BPE was able to outperform Lempel–Ziv–Welch compression in terms

of compressed data size at the cost of increased time for compression. Note that after

tokenization, there is a dictionary mapping seen characters to assigned tokens known

commonly as a vocabulary.

Because BPE can tokenize a string without loss of information, it can serve as a

tokenizer for language machine learning techniques [41]. The authors report that this

tokenization method serves well for vocabularies in which there are very rare words

and words which are out of vocabulary.

BBPE is a tokenization method which follows the same techniques as BPE, but

33

operates on bytes instead of characters [35]. This is particularly powerful because

BBPE guarantees that there will be no unknown tokens. In the worst case, an input

can be tokenized as its individual bytes, meaning unique characters that have not

been seen before can still be tokenized. Because HTTP requests and other machine

code often includes unique characters, and in particular injection attacks use unique

characters to confuse web application, this characteristic makes BBPE a strong choice

for tokenizing our inputs.

Incoming HTTP requests were formatted into a single string which included all

of the fields separated by spaces. An example string is "GET http://url.com/path

HTTP/1.1 [User-Agent] [Content-Length] ...", in which ... represents addi-

tional HTTP fields. These were then collected and used to train the BBPE tokenizer.

BBPE is particularly useful for machine learning because it does not require la-

beled data to find a good tokenization of the entire dataset. This is relevant to

applications involving malicious HTTP requests since it is easier to obtain unlabeled

rather than labeled data.

3.2.2 Convolutional Neural Network

Once BBPE tokenizes the HTTP request, the request is classified by a CNN model.

The full architecture of the model is shown in Figure 3-2.

Figure 3-2: Model architecture

34

• Embedding tokens. Zhang et al. shows that learning embedded tokens as

part of the CNN works well for task-specific text applications, such as detecting

web attacks [42]. This helps the learned embedding relate more closely with

the desired classification, in this case whether an HTTP request is malicious.

This stands in contrast to embedding techniques such as Word2Vec, which aims

to learn the semantic meaning of tokens. While this makes sense for actual

languages, HTTP requests often lack this semantic meaning. While some tokens

are words, other might simply be characters such as "%20", the URL escape

sequence for the space character.

• Convolution layers. For the convolutional layers, 3 kernel sizes (2, 3, 4) were

used. For each of these kernel sizes, 100 filters were used reaching a total of

300 filters in this layer. Each of these layers uses the ReLU activation function,

a piecewise linear function that returns positive values directly and negative

values as zeroes. This generates the possible feature map of the HTTP request.

• Maxpooling layers. This layer takes the maximum of each feature map gen-

erated by the convolutional layers and concatenates them into a single vector.

This selects which features are important to the classifier and reduces the num-

ber of inputs into the neural network.

• Dense layer. The final layer densely connects the concatenated maxpool layers

to our 2 classes, malicious or benign. In addition, to avoid overfitting during

training, a dropout layer was included which zeroed out inputs with a probabil-

ity of 𝑝 = 0.2. A softmax layer is added to make the decision on the final label

of an input.

3.3 Python daemon

A Python daemon can theoretically be deployed by running a standard Python script

from the command line with an ampersand (&). This would send the process to the

background. However, this simplistic solution is not well-behaved for several reasons.

35

Most notably, it fails to handle process cleanup on interrupt and maintain a process ID

(PID) file while running. This is resolved through usage of the daemon library, which

implements the well-behaved daemon specification outlined by Python Enhancement

Proposals (PEP) 3143.

The Python daemon is relatively straightforward with respect to its operation.

Upon startup, the pretrained model is loaded into the Python environment, and the

connection to the Vertica database housing the NN provenance data is established.

While the daemon is running, a variable maintains the highest epoch encountered after

each Vertica table poll. These polls occur every 5 seconds, with the highest epoch

variable ensuring that only new, unlabeled data is being fed into the daemon workload.

Once new data is polled, which signifies a new highest epoch and updates the highest

epoch variable, the daemon tokenizes the input and feeds it into the pretrained model

for classification. The labeled data is then pushed onto a separate Vertica table with

the same format as the original Vertica table except for an additional float column

with the predicted probability of anomaly.

36

Chapter 4

Results

4.1 Evaluation metrics

In order to evaluate the model, the first natural metric is accuracy, the proportion of

events which are correctly labeled. However, this isn’t fully illustrative. For example,

in the Nectar Network dataset a high proportion of events captured are malicious in

nature. As such, a classifier could label all events as malicious and still achieve a high

accuracy due to the low total number of non-malicious events. As additional metrics,

we will also report the precision, recall, and F1 score for our datasets.

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1 score = 2× Precision × Recall
Precision + Recall

Precision serves to guarantee that the false positive rate is low, while recall guar-

antees that the false negative rate is low. The F1 score serves as a way to represent

both the precision and recall using their harmonic mean. For all of these metrics, the

score for a perfect classifier would be 1.

37

These metrics ensure that a classifier is performing well despite a very unbalanced

dataset. Regardless of which class is underrepresented in the dataset, either precision

or recall can capture the fact that a classifier is misrepresenting that class. If either

is low, the F1 score will likewise suffer.

4.2 Public HTTP logs

Table 4.1 shows the performance of the model when run with 80% of the data used

for training.

Table 4.1: Performance on CSIC public dataset

Metric Accuracy Precision Recall F1 Score
Value 0.99821 0.99774 0.99788 0.99781

Additionally, because this dataset is publically available, comparisons with other

published techniques are feasible. As shown in Table 4.2, BBPE CNN outperforms

all other published techniques, despite very close resemblance to HTTP2vec. While

HTTP2vec also uses BBPE to tokenize the inputs, it then learns the vector embedding

via RoBERTa and classifies the vector using traditional machine learning methods.

The results shown below are using Support Vector Classification, and are the best

reported on the CSIC dataset. It seems that the combination of BBPE and CNN is

what make this technique so powerful.

Table 4.2: Comparison on CSIC Data

Method F1 Score
BBPE CNN 0.998
HTTP2vec [31] 0.969
Code Level CNN [43] 0.963
SAE [44] 0.841

Table 4.3 list how the performance of the model changes with different amounts

of training data. While performance does decrease, it’s surprising just how well the

model can do with only 5% (∼3,000) examples to train on. This suggests that the

38

BBPE, which is trained on the entire dataset, is helping to clarify the important

features in our data and making it easier for the CNN to learn a proper classifier.

One possible instance of this lies in SQL injection attacks, which often obscure

their intent by using URL encoding. %25 decodes as %, which is the URL escape

character. This can be exploited against poorly secured web applications. Since

BBPE operates at the byte level, it is able to recognize %25 as unique token, which

gives the CNN a very easy way to identify this as a feature of attacks.

Table 4.3: Performance and train-test split

% Train Data Accuracy Precision Recall F1 Score
80% 0.99821 0.99774 0.99788 0.99781
50% 0.99575 0.99443 0.99515 0.99479
25% 0.98541 0.96998 0.99486 0.98226
10% 0.95726 0.90775 0.99622 0.94993
5% 0.95361 0.94670 0.93887 0.94276

4.3 Sigma Computing Cloudflare data

The CSIC public dataset is automatically generated, which is why it can manage to

be fairly balanced. In real world applications, this is rarely the case. The Sigma

dataset represents real world activity, in which a vast majority of the traffic logged is

benign in nature. Less than 4% of the events logged are malicious, so it is necessary

to consider the F1 score in order to accurately understand the model’s performance.

Notably, all performance metrics are scored from 0 to 1, indicating that the model is

a near-perfect classifier for this dataset.

Table 4.4: Performance on Sigma dataset

Metric Accuracy Precision Recall F1 Score
Value 0.99962 0.99886 0.99210 0.99660

39

4.4 Nectar Network provenance capture

The final dataset came from NN as previously described. Since the website was

available for access by anyone, the majority of the traffic it generated was webcrawlers

or malicious users. As a result, the data is heavily weighted towards events labeled as

malicious, with only about 7% of the traffic being benign. We again consult the F1

score to properly evaluate the model. The model is a near-perfect classifier for this

dataset since all performance metrics are almost exactly 1.

Table 4.5: Performance on NN dataset

Metric Accuracy Precision Recall F1 Score
Value 0.99909 0.99953 0.99949 0.99951

40

Chapter 5

Closing Remarks

5.1 Discussion

The results of the ML model across all three datasets are extremely promising, with F1

scores above 0.99. Additionally, the model requires minimal training data to achieve

such a high F1 score as demonstrated in Table 4.3. Despite the success of this ML

model, there are several opportunities for further exploration that would bolster the

overall purpose of the project. Recall that the main goal of this work is to demonstrate

a robust ML model running in real-time against provenance data captured by DBOS.

First, the datasets all came from different sources, but they were all ultimately labeled

using an existing rules-based model. Due to unforeseen circumstances, I was unable

to attain manually labeled data that would serve as more reasonable ground truth.

As such, the results of the ML model, while impressive, only represent its ability

to match the results achieved by a rules-based model. Second, the Python daemon

constitutes the real-time aspect of the overall project. Further investigation should

be dedicated to stress testing the Python daemon under large traffic loads. At the

height of NN activity, there were only 2,203 requests over the course of a minute. For

reference, one of the largest social media platforms in the world, Facebook, receives

over 780 million queries per minute [45]. This number was reported over a decade

ago in 2010, and has most certainly increased dramatically since then. While we

don’t expect to ever match the level of traffic that Facebook receives, it is necessary

41

to test the scalability and performance of the current approach and explore potential

optimizations if the need arises.

5.1.1 Semi-supervised ML model

The current model relies solely on labeling provided by existing rules-based models.

An interesting future direction would be to train a semi-supervised ML model based

on a small amount of manually labeled data. Recall from the "Related Work" chapter

that Pan et al. achieved high performance using such an approach with an autoen-

coder [29]. Most deep learning problems require a large amount of data to produce

significant results, but the success of the CNN developed on ∼25,000 entries suggests

that a semi-supervised approach may be feasible with a relatively small amount of

labeled data. This is further supported by the results in Table 4.3, in which the model

achieved an admirable F1 score of 0.94 on slightly more than 1,000 labeled entries.

Such a model would be more representative of the anomaly detection process that

would be adopted by a security expert or administrator.

5.1.2 Python daemon performance testing

The Python daemon currently processes the NN provenance data in real-time based

on incoming traffic. However, NN is a small-scale social media web application with

very basic functionality. It lacks the level of traffic that would be expected of an

application deployed by a large- or even medium-sized organization. It then becomes

necessary to test the scalability and performance of the Python daemon manually.

This would allow me to determine potential bottlenecks and identify optimizations in

the Python daemon code. At the same time, this would provide further reassurance

that reasonably-sized applications can be deployed on a DBOS system, with a robust

real-time anomaly detection system.

42

5.2 Conclusion

Overall, this work has been a promising starting point for real-time security features

developed on top of a DBOS application. The deployed model achieves extremely high

performance across all evaluation metrics, with relatively minimal required training

data. Concretely, I evaluated the ML model across three separate data sources that

were generated from both academic and industry settings. Across all three datasets,

the F1 score, a metric that is dependent on both precision and recall, never dipped

below 0.99. Taking a step back, more and more modern tasks have become dependent

on data-centric workloads. Importantly, the data contained within these workloads

are often sensitive or personal in nature, requiring a strong security system to prevent

unauthorized accesses and/or modifications. Historically, data breaches and leaks

have had huge socioeconomic impacts all around the world. As DBOS attempts to

address the needs of data-centric workloads, this project takes an active first step in

addressing the needs of an underlying, strong, real-time security analytics model for

DBOS.

43

44

Bibliography

[1] A. Skiadopoulos, Q. Li, P. Kraft, K. Kaffes, D. Hong, S. Mathew, D. Bestor,
M. J. Cafarella, V. Gadepally, G. Graefe, J. Kepner, C. Kozyrakis, T. Kraska,
M. Stonebraker, L. Suresh, and M. Zaharia, “DBOS: A dbms-oriented operating
system,” Proc. VLDB Endow., vol. 15, no. 1, pp. 21–30, 2021.

[2] D. A. Patterson, “Past and future of hardware and architecture,” in SOSP History
Day 2015, Monterey, California, USA, October 4, 2015, pp. 9:1–9:63, ACM,
2015.

[3] D. Ritchie and K. Thompson, “The UNIX time-sharing system (abstract),” in
Proceedings of the Fourth Symposium on Operating System Principles, SOSP
1973, Thomas J. Watson, Research Center, Yorktown Heights, New York, USA,
October 15-17, 1973 (H. Schorr, A. J. Perlis, P. Weiner, and W. D. Frazer, eds.),
p. 27, ACM, 1973.

[4] S. H. Bokhari, “The linux operating system,” Computer, vol. 28, no. 8, pp. 74–79,
1995.

[5] G. Shainer, R. L. Graham, C. J. Newburn, O. R. Hernandez, G. Bloch, T. Gibbs,
and J. C. Wells, “Nvidia’s cloud native supercomputing,” in Driving Scientific
and Engineering Discoveries Through the Integration of Experiment, Big Data,
and Modeling and Simulation - 21st Smoky Mountains Computational Sciences
and Engineering, SMC 2021, Virtual Event, October 18-20, 2021, Revised Se-
lected Papers (J. Nichols, A. B. Maccabe, J. J. Nutaro, S. Pophale, P. Devineni,
T. Ahearn, and B. Verastegui, eds.), vol. 1512 of Communications in Computer
and Information Science, pp. 340–357, Springer, 2021.

[6] O. Challabi, R. Zenki, and M. O. Agyeman, “A study of fpga-based supercom-
puting platforms,” in ISCSIC 2019: 3rd International Symposium on Computer
Science and Intelligent Control, Amsterdam, The Netherlands, September 25-27,
2019, pp. 52:1–52:5, ACM, 2019.

[7] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, M. Houle, M. Jones, P. Michaleas, L. Milechin, J. Mullen, A. Rosa,
S. Samsi, A. Reuther, and J. Kepner, “MIT supercloud portal workspace: En-
abling HPC web application deployment,” in 2017 IEEE High Performance Ex-
treme Computing Conference, HPEC 2017, Waltham, MA, USA, September 12-
14, 2017, pp. 1–6, IEEE, 2017.

45

[8] C. Byun, A. Klein, L. Milechin, P. Michaleas, J. Mullen, A. Prout, A. Rosa,
S. Samsi, C. Yee, A. Reuther, J. Kepner, W. Arcand, D. Bestor, W. Bergeron,
M. Hubbell, V. Gadepally, M. Houle, and M. Jones, “Optimizing xeon phi for
interactive data analysis,” in 2019 IEEE High Performance Extreme Computing
Conference, HPEC 2019, Waltham, MA, USA, September 24-26, 2019, pp. 1–6,
IEEE, 2019.

[9] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner,
“Survey of machine learning accelerators,” in 2020 IEEE High Performance Ex-
treme Computing Conference, HPEC 2020, Waltham, MA, USA, September 22-
24, 2020, pp. 1–12, IEEE, 2020.

[10] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, M. Jones,
P. Michaleas, A. Prout, A. Rosa, and J. Kepner, “Scalable system scheduling for
HPC and big data,” J. Parallel Distributed Comput., vol. 111, pp. 76–92, 2018.

[11] N. Jouppi, “Quantifying the performance of the tpu, our first machine learning
chip,” 2017.

[12] A. Orel and I. Bernik, “GDPR and health personal data; tricks and traps of
compliance,” in Decision Support Systems and Education - Help and Support
in Healthcare, Special Topic Conference of the European Federation for Medical
Informatics, EFMI-STC 2018, Zagreb, Croatia, 15-16 October 2018 (J. Man-
tas, Z. Sonicki, M. Crisan-Vida, K. Fister, M. Hägglund, A. Kolokathi, and
M. Hercigonja-Szekeres, eds.), vol. 255 of Studies in Health Technology and In-
formatics, pp. 155–159, IOS Press, 2018.

[13] J. Zerlang, “GDPR: a milestone in convergence for cyber-security and compli-
ance,” Netw. Secur., vol. 2017, no. 6, pp. 8–11, 2017.

[14] K. Djemame, M. Parker, and D. Datsev, “Open-source serverless architectures:
an evaluation of apache openwhisk,” in 13th IEEE/ACM International Confer-
ence on Utility and Cloud Computing, UCC 2020, Leicester, United Kingdom,
December 7-10, 2020, pp. 329–335, IEEE, 2020.

[15] Z. Jia and E. Witchel, “Boki: Stateful serverless computing with shared logs,”
in SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles,
Virtual Event / Koblenz, Germany, October 26-29, 2021 (R. van Renesse and
N. Zeldovich, eds.), pp. 691–707, ACM, 2021.

[16] D. Kumar, Q. Li, J. Li, P. Kraft, A. Skiadopoulos, L. Suresh, M. J. Cafarella,
and M. Stonebraker, “Data governance in a database operating system (DBOS),”
in Heterogeneous Data Management, Polystores, and Analytics for Healthcare -
VLDB Workshops, Poly 2021 and DMAH 2021, Virtual Event, August 20, 2021,
Revised Selected Papers (E. K. Rezig, V. Gadepally, T. G. Mattson, M. Stone-
braker, T. Kraska, F. Wang, G. Luo, J. Kong, and A. Dubovitskaya, eds.),
vol. 12921 of Lecture Notes in Computer Science, pp. 43–59, Springer, 2021.

46

[17] M. Stonebraker and A. Weisberg, “The voltdb main memory DBMS,” IEEE Data
Eng. Bull., vol. 36, no. 2, pp. 21–27, 2013.

[18] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, and
C. Bear, “The vertica analytic database: C-store 7 years later,” Proc. VLDB
Endow., vol. 5, no. 12, pp. 1790–1801, 2012.

[19] S. White, J. Martinez, D. Coulter, D. Batchelor, A. Laforge, M. Jacobs,
and M. Satran, “W3c logging,” jun 2021. https://docs.microsoft.com/en-
us/windows/win32/http/w3c-logging.

[20] J. Conallen, “Modeling web application architectures with UML,” Commun.
ACM, vol. 42, no. 10, pp. 63–70, 1999.

[21] X. Li and Y. Xue, “A survey on server-side approaches to securing web applica-
tions,” ACM Comput. Surv., vol. 46, no. 4, pp. 54:1–54:29, 2014.

[22] W. Baker, M. Goudie, A. Hutton, C. D. Hylender, J. Niemantsverdriet, C. Novak,
D. Ostertag, C. Porter, M. Rosen, B. Sartin, and P. Tippett.

[23] A. Dizdar, “Sql injection attack: Real life attacks and code examples,” 2022.

[24] A. Praseed and P. S. Thilagam, “Ddos attacks at the application layer: Chal-
lenges and research perspectives for safeguarding web applications,” IEEE Com-
mun. Surv. Tutorials, vol. 21, no. 1, pp. 661–685, 2019.

[25] S. Mishra, S. K. Sharma, and M. Alowaidi, “Analysis of security issues of cloud-
based web applications,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 7,
pp. 7051–7062, 2021.

[26] H. Huang, Z. Zhang, H. Cheng, and S. W. Shieh, “Web application security:
Threats, countermeasures, and pitfalls,” Computer, vol. 50, no. 6, pp. 81–85,
2017.

[27] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in Proceedings
of the 13th Conference on Systems Administration (LISA-99), Seattle, WA, USA,
November 7-12, 1999 (D. W. Parter, ed.), pp. 229–238, USENIX, 1999.

[28] L. K. Shar, L. C. Briand, and H. B. K. Tan, “Web application vulnerability
prediction using hybrid program analysis and machine learning,” IEEE Trans.
Dependable Secur. Comput., vol. 12, no. 6, pp. 688–707, 2015.

[29] Y. Pan, F. Sun, Z. Teng, J. White, D. C. Schmidt, J. Staples, and L. Krause,
“Detecting web attacks with end-to-end deep learning,” J. Internet Serv. Appl.,
vol. 10, no. 1, pp. 16:1–16:22, 2019.

[30] S. Team, “SNORT users manual,” 2016.

47

[31] M. Gniewkowski, H. Maciejewski, T. R. Surmacz, and W. Walentynowicz,
“Http2vec: Embedding of HTTP requests for detection of anomalous traffic,”
CoRR, vol. abs/2108.01763, 2021.

[32] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining SQL injection and cross
site scripting vulnerabilities using hybrid program analysis,” in 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May
18-26, 2013 (D. Notkin, B. H. C. Cheng, and K. Pohl, eds.), pp. 642–651, IEEE
Computer Society, 2013.

[33] M. Li and Z. Zhou, “Improve computer-aided diagnosis with machine learning
techniques using undiagnosed samples,” IEEE Trans. Syst. Man Cybern. Part A,
vol. 37, no. 6, pp. 1088–1098, 2007.

[34] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, “Roberta: A robustly optimized BERT pretraining
approach,” CoRR, vol. abs/1907.11692, 2019.

[35] C. Wang, K. Cho, and J. Gu, “Neural machine translation with byte-level sub-
words,” in The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pp. 9154–9160, AAAI Press, 2020.

[36] P. Gage, “A new algorithm for data compression,” The C User Journal, 1994.

[37] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)
(J. Burstein, C. Doran, and T. Solorio, eds.), pp. 4171–4186, Association for
Computational Linguistics, 2019.

[38] C. T. Giménez, A. P. Villegas, and G. Álvarez Marañón, “Http dataset csic 2010,”
2010.

[39] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new
intrusion detection dataset and intrusion traffic characterization,” in Proceedings
of the 4th International Conference on Information Systems Security and Pri-
vacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24, 2018 (P. Mori,
S. Furnell, and O. Camp, eds.), pp. 108–116, SciTePress, 2018.

[40] Tasos Laskos, “Arachni.”

48

[41] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words
with subword units,” in Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers, The Association for Computer Linguistics,
2016.

[42] M. Zhang, B. Xu, S. Bai, S. Lu, and Z. Lin, “A deep learning method to detect
web attacks using a specially designed CNN,” in Neural Information Processing
- 24th International Conference, ICONIP 2017, Guangzhou, China, November
14-18, 2017, Proceedings, Part V (D. Liu, S. Xie, Y. Li, D. Zhao, and E. M.
El-Alfy, eds.), vol. 10638 of Lecture Notes in Computer Science, pp. 828–836,
Springer, 2017.

[43] I. Jemal, M. A. Haddar, O. Cheikhrouhou, and A. Mahfoudhi, “Malicious http
request detection using code-level convolutional neural network,” in Risks and
Security of Internet and Systems - 15th International Conference, CRiSIS 2020,
Paris, France, November 4-6, 2020, Revised Selected Papers (J. García-Alfaro,
J. Leneutre, N. Cuppens, and R. Yaich, eds.), vol. 12528 of Lecture Notes in
Computer Science, pp. 317–324, Springer, 2020.

[44] A. M. Vartouni, S. S. Kashi, and M. Teshnehlab, “An anomaly detection method
to detect web attacks using stacked auto-encoder,” in 2018 6th Iranian Joint
Congress on Fuzzy and Intelligent Systems (CFIS), pp. 131–134, 2018.

[45] M. Callahan, “Running mysql at scale tech talk.”
https://www.facebook.com/watch/?v=695491248045, Nov 2010.

49

