
Simulating an Optical Neural Network for Deep
Learning in Edge Computing

by

Jared Cochrane
B.S. Physics,

United States Military Academy at West Point (2020)

Submitted to the Institute for Data, Systems, and Society
in partial fulfillment of the requirements for the degree of

Master of Science in Technology and Policy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Institute for Data, Systems, and Society

May 6, 2022
Certified by. .

Dirk Englund
Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor
Certified by. .

Kenneth Oye
Professor of Political Science and Data Systems

Thesis Supervisor

Accepted by .
Noelle E. Selin

Director, Technology and Policy Program
Professor, Institute for Data, Systems, and Society and Department of

Earth, Atmospheric and Planetary Sciences

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is

unlimited.

This material is based upon work supported by the Under Secretary of Defense for

Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any

opinions, findings, conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the Under

Secretary of Defense for Research and Engineering.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part

252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S.

Government rights in this work are defined by DFARS 252.227-7013 or DFARS

252.227-7014 as detailed above. Use of this work other than as specifically

authorized by the U.S. Government may violate any copyrights that exist in this

work.

2

Simulating an Optical Neural Network for Deep Learning in

Edge Computing

by

Jared Cochrane

Submitted to the Institute for Data, Systems, and Society
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science in Technology and Policy

Abstract

Deep learning has risen to prominence in fields from medicine to autonomous vehi-
cles. This rise has been driven by improvements in parallel computing from graphics
processing units (GPUs) as well as large data sets. Applying deep learning to edge
computing is challenging because deep neural network (DNN) hardware must not only
possess the needed computational power but must also satisfy size, weight, and power
(SWaP) constraints for practical deployment. Many DNNs require a GPU or data
center to run, both of which are too large to fit onto edge devices. Here, an optical neu-
ral network (ONN) accelerator called netcast is simulated on two real-world machine
vision applications: MNIST digit classification and scene recognition. The netcast
ONN enables large DNNs to run on SWaP-limited edge devices with significantly less
energy needed to run inference compared to digital models. Software simulations are
used to assess netcast’s performance on MNIST classification and scene recognition
relative to digital networks. Using an accuracy per energy consumption figure of merit
(FOM), the simulations indicate that netcast is able to outperform digital electronics
on average by over three orders of magnitude. Netcast’s strong performance relative
to its digital counterparts indicates that it will enable the novel deployment of large
DNNs to edge applications in a way that would be infeasible using current digital
electronics. Netcast’s novel applications give rise to a host of policy challenges, one of
which focuses on defining and applying acceptable performance metrics to optically
enabled deep learning.

Thesis Supervisor: Dirk Englund
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Kenneth Oye
Title: Professor of Political Science and Data Systems

3

4

Acknowledgments

I would like to acknowledge and thank MIT Lincoln Labs Group 67 for their support

and flexibility in allowing me to conduct research with the Quantum Photonics Group

(QPG) on campus. Special thanks to Scott Hamilton, Catherine Lee, and Ben Dixon

for their assistance and guidance throughout the research process.

I would also like to thank Alex Sludds, Ryan Hamerly, and Professor Dirk Englund

for giving me the opportunity to research with QPG and for helping revise the thesis

manuscript. Special thanks to Alex Sludds for his guidance and help regarding the

technical aspects of the thesis- everything from the simulation theory to the netcast

hardware architecture. Special thanks to Ryan Hamerly for his guidance and help

regarding the simulation methodology employed in this thesis.

Finally, I would like to thank Professor Kenneth Oye for his assistance with regard

to the policy chapter of this thesis as well as the broader considerations of netcast’s

social and policy implications.

5

6

Contents

1 Applying Deep Neural Networks (DNNs) to Machine Vision Appli-

cations 27

1.1 Deep Learning: Introduction and Background 28

1.2 Two Common Deep Neural Network Architectures: Fully Connected

and Convolutional . 31

1.2.1 Fully Connected Networks . 31

1.2.2 Two Common Nonlinear Functions: RELU and Softmax . . . 32

1.2.3 Convolutional Neural Networks 35

1.3 Applying Deep Learning to Machine Vision: Object Classification and

Scene Recognition . 40

1.3.1 MNIST Handwritten Digit Classification 40

1.3.2 A More Challenging Application: Scene Recognition for Robotic

Localization . 42

1.4 Chapter Conclusion and Summary 44

2 Applying DNNs to Edge Computing: Challenges and Techniques 47

2.1 Overview . 47

2.2 Edge Computing . 48

2.2.1 Benefits of Edge Computing 49

2.2.2 Energy Costs: The Challenge of DNN-Based Edge Computing 50

2.3 Minimizing the Energy Cost of Memory Access: Current Methods . . 51

2.3.1 Method 1: Data Flow Optimization 51

2.3.2 Method 2: Co-Location of Memory and Computation 56

7

2.3.3 Method 3: Model-Based Energy Optimization 58

2.4 Current Work: Hardware Architectures That Minimize Energy Access

Costs . 60

2.4.1 Eyeriss . 60

2.4.2 MobileNet . 60

2.4.3 SqueezeNet . 61

2.5 Chapter Conclusion and Summary 61

3 Simulating the Netcast Optical Neural Network (ONN) 63

3.1 Overview of the Netcast Optical Neural Network 64

3.2 Noise Sources in Netcast . 67

3.2.1 The Importance of Noise Sources 67

3.2.2 Thermal Noise . 68

3.2.3 Shot Noise . 69

3.2.4 Calibration Errors . 70

3.3 Advantages of Netcast Compared to Digital Electronics 70

3.3.1 Eliminating On-Chip Weight Data Movement 71

3.3.2 Exploiting Optical Parallelism 72

3.4 Figure of Merit to Compare Netcast vs. Digital Networks: Energy-

Normalized Accuracy (ENA) . 74

3.5 Simulating Netcast: Theory and Methods 75

3.5.1 Netcast Activation and Weight Mapping in Software 76

3.5.2 Simulating Netcast: A High-Level Overview 78

3.5.3 Netcast Error Distribution Sampling 81

3.5.4 Implementing Stacked Convolution 81

3.5.5 Calculating Energy Consumption 86

3.6 Simulating Netcast on MNIST Digit Classification 91

3.7 Simulating Netcast on Scene Recognition For Robotic Localization . . 93

3.7.1 Introduction and Overview . 93

3.7.2 Previous Work . 94

8

3.7.3 Methods: Simulating Netcast on Scene Recognition 97

3.7.4 Results and Discussion: Netcast Versus Digital Electronics . . 102

3.8 Conclusion and Summary . 104

4 Establishing Acceptable Performance Metrics: Policy Implications

of Netcast 107

4.1 Netcast Limitations . 108

4.2 Potential Netcast Applications . 109

4.2.1 Civilian Applications . 109

4.2.2 Military Applications . 116

4.3 Policy Implications of Netcast: Establishing Metrics of Acceptable Per-

formance . 119

4.3.1 Error Types in a Netcast-Based AI System 120

4.3.2 Defining Acceptable Performance Metrics for Netcast AI Systems123

4.3.3 Using Error Types and Magnitudes to Categorize Netcast Ap-

plications . 124

4.3.4 Applying Acceptable Performance Metrics to Netcast’s Appli-

cation Categories . 126

4.3.5 Netcast Policy Implications: Conclusion 129

A Proof that Uniform Samples From an Arbitrary Distribution’s In-

verse CDF Generate Random Draws From that Distribution 131

B Chapter 2 Supplemental Figures 133

9

10

List of Figures

1-1 Overview of where deep neural networks (DNNs) fit into the taxon-

omy of machine learning research. Deep learning is a branch of brain-

inspired machine learning with more than one hidden layer in its ar-

chitecture. 28

1-2 Structure of a neuron in the human brain. Incoming signals enter

through the dendrites and leave through the axon. The synapses weight

the relative importance of different input signals [9]. 29

1-3 Artificial neuron structure. Similar to its biological counterpart, in-

puts travel through the dendrites while the synapses store the weight

elements. The neuron applies a nonlinear function 𝑓 to the weighted

sum of the inputs, and the output exits through the axon. 29

1-4 Fully Connected DNN. 𝑦ℓ𝑗 is the jth activation from the ℓth layer of

the network. 𝑤ℓ
𝑖𝑗 is the weight element in layer ℓ that maps input 𝑥𝑖 to

activation 𝑦𝑗 through multiplication. 𝑏ℓ𝑗 is a scalar bias term added to

the jth output activation in layer ℓ. 𝑓 and 𝑔 denote nonlinear activation

functions. 30

1-5 The step function (left) and two common nonlinear functions that will

be used throughout this thesis: RELU (middle) and Softmax (right).

RELU nonlinearity is commonly used between sequential hidden layers

in a DNN and is better suited for deep learning than the step func-

tion because its derivative is well defined. Softmax is often used at

the output layer because it maps a vector to a normalized probability

distribution. 34

11

1-6 An example that shows the computation 𝑦 = 𝑥 * 𝑘 where 𝑥 is the

input, 𝑘 is the kernel that is convolved with the input, and the resulting

output is 𝑦. 36

1-7 Example of dilation from a kernel size of 2x2 to an upsampled kernel

size of 3x3 to increase the kernel’s receptive field. 37

1-8 Architectural description of a CNN from [59]. The initial layers use

convolutional kernels to extract important features from the image

(edge locations and orientations, shadows, contact boundaries, etc...),

while the final parts of the network are fully connected layers that map

the flattened feature representations to a vector of probabilities that

outputs the predicted class of the input image. 39

1-9 Illustration of the two CNN properties from [72]: (1) processing each

image patch independently and (2) processing each patch identically.

Under these two properties, a CNN takes a "divide and conquer" ap-

proach where the input image is partitioned into patches, each of which

is run through the same series of convolutional kernels and fully con-

nected layers to classify each patch as either a bird or sky [72]. 39

1-10 Applying a CNN to learn a mapping from an input image to the class

label of the object in the image. In this case, the input image is a

handwritten digit from the MNIST data set. 41

1-11 Visualizing the intermediate feature maps from a 2-layer CNN applied

to MNIST classification. Notice how different filters extract different

information from the image. Image credit: https://stackoverflow.

com/questions/45678473/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0.

. 41

12

https://stackoverflow.com/questions/45678473/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0
https://stackoverflow.com/questions/45678473/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0

1-12 Object classification can be formulated as a probability distribution

matching problem. An untrained CNN will output a randomly dis-

tributed probability mass function from the given input image, while

a trained CNN will output a probability distribution that more accu-

rately matches the ground truth distribution. From this, the goal of

MNIST classification is to tune the CNN parameters to concentrate

probability mass at the correct bin. 43

1-13 Operational environment that a robot will operate in. The type of

tasks that the robot will be required to perform depends on where the

robot is. 43

1-14 Given the environment depicted in figure 1-13, the robot will need

to learn the topological map depicted above in order to successfully

navigate and operate. Notice that the nodes of the map are the distinct

locations in the house, while the light blue lines connecting the nodes

represent paths between the distinct locations. 44

2-1 Comparison between edge computing and cloud computing [80]. . . . 48

2-2 Memory access challenges association with DNN inference. Each MAC

operation requires four different memory operations: three reads from

memory and one write to memory [30]. 51

2-3 Memory access hierarchy used to improve energy efficiency in DNN

hardware. This hierarchy enhances energy efficiency by distributing

memory from DRAM to the processing engines that perform the com-

putation. The bottom part of the figure shows the normalized energy

costs of accessing memory from different locations [30]. 52

2-4 Three commonly used methods for data reuse in neural networks. Con-

volutional reuse slides the same filter over multiple subregions of the

input. Fmap reuse applies the same input to multiple filters, while

filter reuse applies the same filter to multiple inputs [30]. 53

13

2-5 High-level architecture of the weight stationary data flow. The weight

elements 𝑊0 ... 𝑊7 are loaded from external DRAM into the local

register files of the PEs in the array. Then, the input elements (Act)

are broadcast to each PE, and the partial products are computed. The

partial sums (Psum) are spatially accumulated over the PE array to

compute the final output [30]. 54

2-6 High-Level architecture for the output stationary data flow. Instead of

locally storing weights, the partial sums are stored in each PE while

the weights and inputs are broadcast to each PE in the array. The

purpose of this data flow is to minimize the energy cost of reading and

writing partial sums [30]. 55

2-7 The 1D convolution primitive used in row stationary data flows. The

weights are stored in the PE register file, while the inputs are streamed

in and operated on. (a) time step 1, (b) time step 2, (c) time step 3 [30]. 56

2-8 High-Level architecture of No-Local Reuse data flow. Instead of local-

izing memory within PE register files, NLR assigns all on-chip memory

to the global buffer that broadcasts the weights and the inputs to each

PE in the array [30]. 57

3-1 The netcast ONN architecture that uses time multiplexing and wave-

length division multiplexing (WDM). The architecture performs a matrix-

vector product over N time steps using M different wavelength channels

[38]. 64

3-2 Calibration error from netcast [13]. 71

3-3 Netcast error distribution for partial products of the form 𝑤𝑚𝑛𝑥𝑛 [13]. 75

14

3-4 A side-by-side comparison between the float → voltage mapping that

occurs in the netcast hardware and the corresponding input and weight

mappings that occur in the simulated netcast software. The hardware

mapping consists of four steps: re-scaling the input float to the range

[0,1], mapping the scaled float value to an optical intensity defined

on the range [𝐼𝑚𝑖𝑛,𝐼𝑚𝑎𝑥], converting the optical intensity to a voltage,

and converting the voltage value to an output float value. In order

to accurately simulate netcast in software, the following mapping is

performed. First, the input activation is scaled to the range [0,1],

while the weight matrix is scaled to the range [-1,1]. Next, the weights

are factored into 𝑊+ and 𝑊− matrices that are both in the range

[0,1]. The MAC operation between the activation and weight values is

computed with the added error elements and scaled to the same range

as the input activations. 77

3-5 High-level illustration of how the netcast optical hardware can be sim-

ulated a fully connected network that performs matrix multiplication.

The activation 𝑋 and weights 𝑊 are preprocessed, and the activation

vector is broadcast into a matrix 𝑋*
𝑚𝑎𝑡. The weight matrix is factored

into two terms: 𝑊 (*,+) and 𝑊 (*,−) that lie on the range [0, 1]. The

Hadamard products 𝐻+ and 𝐻− are formed, the error distribution el-

ements are added, and the perturbed products are then post-processed

to obtain the desired matrix-vector product, 𝑥⃗𝑊 𝑇 . Note that the er-

ror elements must be added to the Hadamard products before post-

processing in order to implement the update rule given in equation

3.18. 79

3-6 High-level illustration of how the netcast optical hardware can be sim-

ulated in a convolutional network. Note that the process here is very

similar to the fully connected case illustrated in figure 3-5, with the one

major difference being that the activation values are already in matrix

form and don’t have to be broadcast from a vector into a matrix. . . 80

15

3-7 Comparison between the original netcast error distribution (N=100,000)

and a sampled distribution (N=1,000,000) obtained by uniformly sam-

pling the original distribution’s inverse CDF. Note the similarity be-

tween the two distributions. 82

3-8 Standard method used to implement convolution. Each 3D input im-

age is paired with each 3D filter in the weight bank. Then, within

each input-filter pair, each channel is extracted and the 3D convolu-

tion is composed of a series of nested 2D convolutions. In this case,

each 3D convolution would consist of 3 2D convolutions since there

are three channels. While this method is straightforward to implement

in software, it results in prohibitively long run times and is therefore

unsuitable for the netcast simulation. 83

3-9 The first step of constructing the stacked convolution function. In this

step, the 3D input images in the 4D input batch tensor are repeated

𝑀 times, where 𝑀 is the number of 3D weights in the 4D weight bank.

In the figure, 𝑀 = 3. The groups of repeated inputs are stacked in the

width dimension, and these stacked inputs are then concatenated in the

width dimension as illustrated by the 𝑈 function. The concatenated,

stacked inputs form a 3D tensor that replaces the original 4D batch

tensor. 87

3-10 The second step used to construct the stacked convolution function.

In this step, the 4D weight bank consists of 𝑀 3D weight kernels and

the input consists of 𝑁 3D images. First, the entire 4D weight bank is

repeated 𝑁 times- once for each input image. Next, zero-value tensors

are inserted between the 3D kernels in each repeated weight bank in

order to map the appropriate weight kernel to the appropriate 3D input

tensor. Finally, the 𝑁 padded and stacked filters are concatenated in

the width dimension so that the original 4D weight bank is replaced

by a padded 3D weight tensor. 88

16

3-11 The third step used to construct the stacked convolution function. In

this step, the stacked input 𝐼𝑠 and the stacked weight 𝐾𝑠 are convolved

to produce a 2D matrix where each row contains the flattened elements

of 𝐶𝐹,𝑋 , which represents the convolution between 3D filter 𝐹 and 3D

input 𝑋. Note here that 𝑊 [0] is the number of 3D filters in the filter

bank, 𝑋[0] is the number of 3D inputs in the batch tensor, and 𝐴 and 𝐵

are the output height and width respectively. Each row of the 2D ma-

trix can be reshaped into a square 2D tensor, which can be ordered and

stacked into the 4D tensor that corresponds to the 4D convolutional

output. Note that the netcast errors are added to the elementwise

product 𝐼*𝑠,(:,𝑖:𝑖+𝐾𝑠[0],𝑗:𝑗+𝐾𝑠[1])
𝐾*

𝑠 where 𝐾𝑠[0] and 𝐾𝑠[1] are the height

and width of the weight kernel. Also note that
∑︀

𝐶𝐻 ... denotes a sum

in the channel dimension and the matrix 𝐵 denotes a Bernoulli mask

that maps error elements to locations in the elementwise product where

input-weight partial products occur. Finally,
∑︀

𝐿 ... represents the sum

over the width and height dimensions of each input-kernel patch of the

stacked product:
∑︀

𝐶𝐻 𝑛𝑥𝑛𝑤(𝐼*𝑠,(:,𝑖:𝑖+𝐾𝑠[0],𝑗:𝑗+𝐾𝑠[1])
𝐾*

𝑠 + 𝐵∆)). The star

(*) operator in this case denotes preprocessing that scales 𝐼𝑠 and 𝐾𝑠

to the range [0, 1], and 𝑛𝑥 and 𝑛𝑤 are normalization factors. 89

17

3-12 Method used to simulate netcast on scene recognition. From a given

training set, train a selected group of CNNs using the Adam opti-

mizer. The CNN architectures chosen are depicted in the figure, and

these specific architectures were chosen because previous work uses

VGG and RESNET ([78], [62]). Each trained network’s parameter

matrix is denoted by 𝑊𝑖 where 𝑖 indexes the CNNs in the group. To

run the netcast simulation, the RESNET18 architecture was chosen

because it is small enough to be simulated relatively quickly (≈ 1.5

hour) but also deep enough to obtain a reasonable network accuracy.

Using the netcast error elements from figure 3-3 and the test data with-

held from training, the netcast procedure outlined in section 3.5 gives

the simulated netcast accuracy, which can be divided by the netcast

energy consumption on RESNET18 to obtain netcast’s energy normal-

ized accuracy, 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡. Each digital CNN is tested on the same

test data, and the output test accuracies/energy are averaged to yield

the digital accuracy per energy value, 𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙. Finally, 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡

and 𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙 are compared to see how well the netcast hardware

performs relative to digital electronics. 98

3-13 Eleven scene classes sampled from the MIT Indoor Scenes Dataset. . 99

3-14 The residual block implemented in RESNET. Standard convolutional

networks like VGG learn the mapping 𝐹 (𝑥), which is susceptible to van-

ishing or exploding gradients as the network depth increases. RESNET

architectures instead learn the mapping 𝐹 (𝑥) + 𝑥, which allows gra-

dient information to flow through the identity connection even if the

gradient from the previous layer vanishes to zero or explodes to infinity. 100

18

4-1 Applying the netcast ONN to SAR operations. The proposed system

integrates a space-based DNN weight server that contains the param-

eters that will be used by the image processing networks located on

the SAR drone. The weights are broadcast from the satellite to the

drone, which then uses a large CNN to autonomously generate a high-

dimensional priority map of the disaster area for the SAR team. Such

data could include information about the survivor locations, medical

status, as well as the optimal route to each person. The generated

map is then transmitted from the UAV to the ground team, which

then uses the data to inform how they choose to conduct their SAR

ground operations. 111

4-2 Applying netcast to mapping the ocean floor. In this system, a surface

vessel transmits the DNN weights to a fleet of AUVs, each of which is

assigned a subregion within the total area being explored. Each AUV

uses an onboard DNN to perform semantic segmentation within its

subregion. The individual subregion semantic maps are combined into

a single map that shows where different sites of interest are located.

This map allows scientists to then conduct more targeted and time-

efficient sampling of selected sites (ex. mineral deposits). 113

4-3 Application of the netcast ONN to plant safety inspection using au-

tonomous UAVs. Note that, because netcast uses optical signals, line-

of-sight limitations apply and this means that two drones will be needed

to reliably image the inside of storage units like the one shown in the

figure. DNN weights are broadcast from a mobile ground platform

and are routed to the client using an intermediate routing drone that

redirects the optical signal as needed. With the optical weight signal

routed to the client, the imaging and fault detection UAV is then able

to autonomously image the inside of a storage unit and identify any

faults relative to a pre-defined detection threshold. 115

19

4-4 Applying netcast to autonomous targeting for military operations. The

DNN weight server lives on a satellite that broadcasts DNN parameters

to a UAV. Using onboard deep convolutional networks, the UAV is then

able to identify and track targets autonomously in real-time. As the

UAV tracks enemy targets, relevant target information including target

description, activity, status, and location are sent to an artillery unit

that verifies and engages the enemy with the appropriate munitions. . 117

4-5 Applying netcast to autonomous targeting using AUVs. In this appli-

cation, the DNN weight server resides in the surface vessel, and the

DNN weights are broadcast to the fleet of AUVs. The AUV fleet is

then able to autonomously detect, target, and track enemy submarines. 118

4-6 Two error types associated with a simple binary classification problem:

false positives and false negatives. 121

4-7 Categorization matrix for netcast’s application space. The two dimen-

sions that sort this matrix are impact of failure and the distribution of

impacts. 125

4-8 Applying acceptable performance metrics over netcast’s four applica-

tion categories. 128

A-1 Plot of the Probability Density Function of 𝑋, 𝑓𝑋(𝑥). The CDF is

obtained by integrating over the region 𝑆. Note that 𝐹𝑌 (𝑦) is a de-

terministic number and thus is the upper limit of the integration in

𝑥. 132

B-1 Example illustrating the multiply-and-accumulate (MAC) operation in

a vector-vector product. 134

20

B-2 Example of weight stationary computation. A 1d input vector 𝑥 is

convolved with a 1d weight kernel 𝑤. the table shows the running

values in each PE as the computation is performed over time. During

each time step 𝑖, input 𝑥𝑖 is broadcast to each PE and the corresponding

partial products are computed. From 𝑡 = 1 onward, processing engine

𝑃𝐸𝑗 transfers its stored result from time step 𝑖 − 1 to 𝑃𝐸𝑗+1. This

results in a series of partial sums from which the desired output values

𝑦1 and 𝑦2 are computed as depicted. 135

B-3 Example computation using an output stationary dataflow. In this

example, 𝑥 is being convolved with 𝑤 to form 𝑦 (top left part of figure).

The top right part of the figure shows the output stationary dataflow

where weights and inputs move in opposite directions along the PE

array. Each time a weight and input arrive at the same PE in the

array, they are multiplied and accumulated to the current value being

stored in that PE. The bottom part of the figure shows how the 1d

convolution is performed over 6 time steps. 136

B-4 Use of 1d convolutional primitives to compute a 2d convolution [85]. . 136

B-5 Illustration of programmable resistive elements (memristors) for non-

volatile, high density memory. Note the weight stationary nature of the

memory where the resistors’ conductances 𝐺1, 𝐺2 encode the weights

that are multiplied by inputs encoded as voltages 𝑉1, 𝑉2. Applying

Kirchhoff’s current law, it can be seen that the output partial sum is

given by 𝐼𝑜𝑢𝑡 = 𝐼1 + 𝐼2 = 𝑉1𝐺1 + 𝑉2𝐺2 [30]. 137

B-6 Comparison between energy costs with and without pruning in GoogLeNet,

SqueezeNet, and AlexNet [71]. 137

B-7 Knowledge distillation is used to train a small DNN (student) to output

the same accuracy as a much larger DNN (teacher). The key point in

this method is that training the student network directly on the data

without the teacher network results in a lower output accuracy. . . . 138

21

B-8 Using a RELU nonlinearity maps non-sparse matrices to sparse ones,

which helps increase the energy efficiency of DNN hardware. For ex-

ample, the hardware can be configured such that any MACs that cor-

respond to a zero element activation are skipped, thus allowing the

network to run with fewer memory reads for weight access [81]. . . . 138

B-9 MobileNet uses a convolution factorization technique where the stan-

dard convolution operation (as depicted in a) is broken up into two

separate operations that decrease the computational burden of imple-

menting convolution in hardware. This convolution method is called

depth-wise separable convolution and consists of two parts: (1) depth-

wise convolution as depicted in b that is applied to each channel sepa-

rately followed by (2) a 1x1 point-wise convolution that forms a linear

combination over the channels to form the final output of the convolu-

tion operation. 139

B-10 A high-level architectural description of MobileNet. For each convolu-

tional layer, the filter sizes and the intermediate feature map sizes are

tracked. 139

B-11 Comparing the number of MAC operations in various MobileNet vari-

ants versus the number of MAC operations required for a standard

convolution operation in FaceNet. 140

B-12 The fire module that forms the computational basis for the SqueezeNet

neural network. Three hyper-parameters define each fire module: 𝑠1𝑥1

(the number of 1x1 convolutional kernels in the squeeze layer), 𝑒1𝑥1

(the number of 1x1 convolutional kernels in the expansion layer), and

𝑒3𝑥3 (the number of 3x3 convolutional kernels in the expansion layer). 140

B-13 Architectural description of SqueezeNet. The structure consists of a

single standard convolution followed by a series of fire modules that

ends with another standard convolutional layer and a Softmax activa-

tion layer. Max pooling and average pooling are used to downsample

intermediate feature maps to the appropriate resolution. 141

22

B-14 A side-by-side comparison between different methods of compressing

AlexNet and the SqueezeNet method. As can be seen from the table,

the SqueezeNet architecture offers a significant improvement in the

level of model compression relative to other comparable methods while

still maintaining model accuracy. 142

23

24

List of Tables

3.1 Energy/MAC values for Digital Networks and Netcast 90

3.2 Energy Normalized Accuracy for Digital Network and Netcast 93

3.3 Energy Normalized Accuracy (ENA) of Each Digital CNN Model. Note

that the star (*) here denotes a model with batch normalization. . . . 102

25

26

Chapter 1

Applying Deep Neural Networks

(DNNs) to Machine Vision

Applications

The application of deep neural networks (DNNs) to help solve different problems in-

cluding object classification, computational imaging, and depth sensing has evolved

into a “third wave” of interest [67]. This heightened interest is largely due to increased

training data size and computational capability from parallel computing. This chap-

ter introduces the basic theory behind deep neural networks and then discusses how

such networks can be applied to machine vision problems. Section 1.1 introduces deep

learning and identifies where it fits into current artificial intelligence (AI) research.

Section 1.2 discusses two common deep learning model architectures that this thesis

will focus on: fully connected and convolutional networks. Section 1.3 discusses the

two machine vision applications that netcast will be simulated on: MNIST digit clas-

sification and scene recognition for mobile robotics. Finally, section 1.4 summarizes

the conclusions and main points of the chapter.

27

Figure 1-1: Overview of where deep neural networks (DNNs) fit into the taxonomy
of machine learning research. Deep learning is a branch of brain-inspired machine
learning with more than one hidden layer in its architecture.

1.1 Deep Learning: Introduction and Background

Before looking at deep learning’s application to machine vision, it is first necessary to

clearly define deep learning. As noted by [33], there is a lack of consensus regarding

a universal definition of deep learning. This paper adopts the definition proposed by

Sze et al. in [30], which is illustrated in figure 1-1. As can be seen in the figure,

deep learning is a brain-inspired branch of machine learning. Machine learning is

"a field of study that gives computers the ability to learn without being explicitly

programmed", as articulated by Arthur Samuel who coined the term in 1959 [30].

While machine learning is a very broad field, a subset of machine learning technologies

derives inspiration from the most sophisticated and complex computational machine

ever created: the human brain. Figure 1-2 shows a neuron in the human brain, while

figure 1-3 depicts an artificial neuron used in deep learning. Deep neural networks

(DNNs) derive their inspiration from neurons in the human brain, which take inputs

[𝑥1, 𝑥2, ... 𝑥𝑀] and perform a computation that weights the inputs with [𝑤1, 𝑤2, ...

𝑤𝑁]. After performing this linear operation, each neuron (neuron 𝑗) will only fire if

the weighted sum 𝑦𝑗 =
∑︀𝑁

𝑖=1𝑤𝑖𝑥𝑗 +𝑏 exceeds some threshold value. This introduces a

28

Figure 1-2: Structure of a neuron in the human brain. Incoming signals enter through
the dendrites and leave through the axon. The synapses weight the relative impor-
tance of different input signals [9].

Figure 1-3: Artificial neuron structure. Similar to its biological counterpart, inputs
travel through the dendrites while the synapses store the weight elements. The neuron
applies a nonlinear function 𝑓 to the weighted sum of the inputs, and the output exits
through the axon.

29

Figure 1-4: Fully Connected DNN. 𝑦ℓ𝑗 is the jth activation from the ℓth layer of the
network. 𝑤ℓ

𝑖𝑗 is the weight element in layer ℓ that maps input 𝑥𝑖 to activation 𝑦𝑗
through multiplication. 𝑏ℓ𝑗 is a scalar bias term added to the jth output activation in
layer ℓ. 𝑓 and 𝑔 denote nonlinear activation functions.

nonlinearity denoted by the function 𝑓 . This nonlinearity plays a key role in allowing

DNNs to learn complex causal relationships from data [48]. With this principle in

mind, DNNs can be conceptualized as collections of artificial neurons that process

input data in a series of layers where computations are performed in parallel at each

layer and then sequentially passed through the network. An illustration of a simple

DNN (called a fully connected network) is given in figure 1-4. The number of hidden

layers (as seen in figure 1-4) distinguishes generic neural networks from deep neural

networks. More specifically, DNNs are the subset of neural networks with more than

one hidden layer [30]. Among the various possible DNN structures, this thesis will

focus on two: fully connected and convolutional networks. These two architectures,

along with the math that underlies them, are described in section 1.2.

30

1.2 Two Common Deep Neural Network Architec-

tures: Fully Connected and Convolutional

Having introduced the basic motivation behind DNNs, this section describes the two

DNN architectures that this thesis focuses on: fully connected and convolutional net-

works. These architectures will be used later in chapter 3 for the netcast simulations.

1.2.1 Fully Connected Networks

Figure 1-4 shows the structure of a fully connected DNN. In this architecture, each

neuron takes a weighted sum of all inputs, applies a nonlinearity, and then feeds the

output into each neuron of the next layer. In terms of notation, 𝑦ℓ𝑗 is the jth output

activation from the ℓth layer of the network. 𝑤ℓ
𝑖𝑗 is the weight element in layer ℓ that

maps input activation 𝑥𝑖 to output activation 𝑦𝑗 through scalar multiplication. 𝑏ℓ𝑗 is

a scalar bias term added to the sum
∑︀

𝑗 𝑤
ℓ
𝑗𝑖𝑥𝑗 before the nonlinear function (𝑓) is

applied. Note that 𝑔 is also a nonlinear activation function where in general 𝑓 ̸= 𝑔

since 𝑔 resides at the output layer and 𝑓 resides in the hidden layers. It is important

to note that the superscripts in 𝑤ℓ
𝑖𝑗 and 𝑦ℓ𝑗 do not denote exponents, but instead

index layers in the network. This notation is canonically used because weights and

activations in different layers of a DNN are almost always different from each other.

Computation in a fully connected DNN can be succinctly formulated as iterative

matrix multiplications. Equation 1.1 gives the general case where 𝑥⃗ 𝜖 𝑅𝑀𝑥1 is the

input activation to layer ℓ and 𝑦⃗ 𝜖 𝑅𝑁𝑥1 is the output activation from layer ℓ.

𝑦ℓ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦ℓ0

𝑦ℓ1

...

𝑦ℓ𝑁

⎤⎥⎥⎥⎥⎥⎥⎦ = 𝑓(

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑤ℓ
00 𝑤ℓ

10 ... 𝑤ℓ
𝑀0

𝑤ℓ
01 𝑤ℓ

11 ... 𝑤ℓ
𝑀1

𝑤ℓ
02 𝑤ℓ

12 ... 𝑤ℓ
𝑀2

...

𝑤ℓ
0𝑁 𝑤ℓ

1𝑁 ... 𝑤ℓ
𝑀𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥ℓ−1
0

𝑥ℓ−1
1

...

𝑥ℓ−1
𝑀

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
𝑏ℓ0

𝑏ℓ1

...

𝑏ℓ𝑁

⎤⎥⎥⎥⎥⎥⎥⎦) = 𝑓(W(ℓ)𝑇 ⃗𝑥(ℓ−1) + 𝑏ℓ)

(1.1)

31

Where, in the general case, 𝑊 𝜖 𝑅𝑀𝑥𝑁 so that 𝑊 𝑇 𝜖 𝑅𝑁𝑥𝑀 as given in equation

1.1. Also, the superscript ℓ indexes the layer that is doing the computation. Note

that 𝑊 , 𝑏, and 𝑓 are all specific to the layer that is performing the computation.

Since fully connected networks consist of hidden layers (at least 2), equation 1.1 can

be applied at each layer sequentially to calculate a forward pass through the DNN:

𝑦⃗ = 𝐷𝑁𝑁(𝑥⃗). An explicit equation to describe the forward pass is best understood

as a recursion where the output at layer ℓ depends on the output from the previous

layer ℓ − 1. Equations 1.2 and 1.3 completely define a forward pass through a fully

connected DNN. To be consistent with commonly used notation, the layer output 𝑦ℓ is

often separated into two parts: 𝑍ℓ that represents the weighted sum before applying

the nonlinearity, and 𝐴ℓ that represents the nonlinearity output. 𝑍ℓ is often referred

to as the pre-activation value, while 𝐴ℓ is the output activation.

𝑍(ℓ) = W(ℓ)𝑇𝐴(ℓ−1) + Wℓ
0 (1.2)

𝐴(ℓ) = 𝑓(𝑍(ℓ)) (1.3)

Wℓ
0 is the bias term 𝑏ℓ and ℓ indexes the layers as before. The input to the first

layer of the network is 𝑍(0) = 𝑥⃗ and the final network output is 𝐴(ℒ) = 𝑦⃗ for a fully

connected DNN with "ℒ" layers in it. One common application that fully connected

networks are well suited for is the object classification task that will be considered in

more detail in chapter 3. Before proceeding, however, it is first important to fill in

the function 𝑓 with a specific form, which is done in section 1.2.2 below.

1.2.2 Two Common Nonlinear Functions: RELU and Softmax

Equation 1.3 uses a nonlinearity 𝑓 at the output of each DNN layer. This section

presents and describes two common nonlinear functions that will be used throughout

the remainder of this thesis: RELU and Softmax. As mentioned in section 1.1, an

important aspect of DNNs is the nonlinearity that resides between consecutive hidden

32

layers. If DNNs were entirely composed of linear functions that perform matrix

multiplication, they would be unable to learn complex and nonlinear features in data.

This is because a forward pass through a DNN without any nonlinear functions can be

reduced to a single matrix multiplication [11]. To briefly demonstrate this, consider

a two layer DNN that doesn’t use nonlinear functions between layers. In this case,

let the two layers have weight matrices 𝑊1 and 𝑊2. Then, 𝑍𝐿 = 𝐴𝐿 in equation 1.3,

making 𝑓 and 𝑔 simple identity mappings. The forward pass in this case is simply...

𝐴(2) = 𝑓(W(2)T𝐴(1) + W2
0) (1.4)

𝐴(2) = 𝑓(W(2)T𝑓 [W(1)T𝐴(0) + W1
0] + W2

0) (1.5)

𝐴(2) = W(2)TW(1)T𝐴(0) + W(2)TW1
0 + W2

0 (1.6)

𝐴(2) = W*𝐴(0) + W*
0 (1.7)

W* is the product of the two layer weight matrices and W*
0 is a linear combination of

the bias terms. This means that, without nonlinear functions, DNNs will only be able

to learn very simple linear relationships in data that will severely limit their practical

usefulness. Having motivated the importance of nonlinear functions in DNNs, two

common nonlinearities are developed and described: RELU and Softmax.

In an attempt to mimic neurons firing in the human brain, early machine learning

research used a simple step function as the nonlinearity, which is plotted in the left-

most part of figure 1-5 and defined in equation 1.8.

𝑓(𝑥) =

⎧⎨⎩ 1 𝑥 ≥ 0

0 𝑥 < 0
(1.8)

While the step function does provide the desired nonlinearity in the forward pass,

it suffers from one major drawback: its derivative is undefined at 𝑥 = 0. This

discontinuity means that DNNs using a step function nonlinearity cannot be trained

using derivative-based optimization algorithms such as gradient descent. In order

to implement a nonlinearity similar to the step function that is differentiable, the

33

Figure 1-5: The step function (left) and two common nonlinear functions that will be
used throughout this thesis: RELU (middle) and Softmax (right). RELU nonlinearity
is commonly used between sequential hidden layers in a DNN and is better suited for
deep learning than the step function because its derivative is well defined. Softmax is
often used at the output layer because it maps a vector to a normalized probability
distribution.

rectified linear unit (RELU) was developed. The RELU nonlinearity is plotted in the

center part of figure 1-5 and given in equation 1.9.

𝑅𝐸𝐿𝑈(𝑥) = 𝑚𝑎𝑥(𝑥, 0) (1.9)

The derivative of RELU is well defined and is in fact just the step function.

𝜕

𝜕𝑥
𝑅𝐸𝐿𝑈(𝑥) =

⎧⎨⎩ 1 𝑥 > 0

0 𝑥 ≤ 0

RELU is commonly implemented between DNN layers and is usually not used at the

output layer. Usually, the nonlinearity at the DNN output is the Softmax function.

As will be discussed in section 1.3, one very useful application that DNNs are used

for is classifying an image as belonging to a certain category within a fixed number

of possible categories (classes). In this case, the DNN output is typically a vector of

probabilities that are assigned to each possible category. This motivates the Softmax

nonlinearity, which is plotted in the right panel of figure 1-5 and given by equation

34

1.10.

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) =
1∑︀𝑘

𝑖=0 𝑒𝑥𝑝(𝑥𝑘)

⎡⎢⎢⎢⎢⎢⎢⎣
𝑒𝑥𝑝(𝑥1)

𝑒𝑥𝑝(𝑥2)

...

𝑒𝑥𝑝(𝑥𝑘)

⎤⎥⎥⎥⎥⎥⎥⎦ (1.10)

Softmax outputs a normalized probability distribution over a k-element vector that

corresponds to a k-class classification problem. Thus, Softmax is usually the nonlin-

earity of choice at the output layer of image classification DNNs. These two nonlinear

functions are commonly used in both fully connected as well as convolutional models,

including those studied in chapter 3. Having covered the structure of fully connected

DNNs, section 1.2.3 motivates and describes convolutional neural networks.

1.2.3 Convolutional Neural Networks

Convolution as a Linear Translation Invariant System

Before discussing the general structure of convolutional networks, it is first necessary

to characterize the convolution operation as a system and discuss the properties that

make it unique. A generic 2D linear system is defined by equation 1.11 below.

𝑦[𝑛,𝑚] = 𝑓(𝑥[𝑘, 𝑙]) =
𝑀−1∑︁
𝑘=0

𝑁−1∑︁
𝑙=0

ℎ[𝑛,𝑚, 𝑘, 𝑙]𝑥[𝑘, 𝑙] (1.11)

Where 𝑥[𝑘, 𝑙] is the input ℎ[𝑛,𝑚, 𝑘, 𝑙] is the weight matrix, and 𝑦[𝑛,𝑚] is the output

[72]. Linear systems are defined by two properties: 𝑦(𝑥1 + 𝑥2) = 𝑦(𝑥1) + 𝑦(𝑥2) and

𝑦(𝑎𝑥1) = 𝑎𝑦(𝑥1) [72]. Of course, linear systems cover a broad range of application

domains, while this thesis is primarily interested in image processing. One important

characteristic of image processing systems is that they tend to be translation invariant

so that the identity and properties of an object do not change upon translation in the

image frame. For example, a bird should always be classified as such regardless of

where it appears in any particular image. This means that, within the broad realm

35

of linear systems, image processing systems should be designed to apply the same

transformation to each location in an image. One important linear system that is

translation invariant is the convolution operation as defined in equation 1.12 below.

𝑦[𝑛,𝑚] = 𝑓(𝑥[𝑘, 𝑙]) =
𝑀−1∑︁
𝑘=0

𝑁−1∑︁
𝑙=0

ℎ[𝑚− 𝑘, 𝑛− 𝑙]𝑥[𝑘, 𝑙] = 𝑥 * ℎ (1.12)

Where the symbol * denotes the 2D convolution that extends naturally to higher

dimensions. Notice how equation 1.12 is a translation invariant instance of equation

1.11 since the same filter elements from h are applied to multiple locations across

the input 𝑥. To get a more intuitive picture of how convolutions are computed,

consider the example illustrated in figure 1-6. In practice, convolutions are often

Figure 1-6: An example that shows the computation 𝑦 = 𝑥 * 𝑘 where 𝑥 is the input,
𝑘 is the kernel that is convolved with the input, and the resulting output is 𝑦.

performed with 3D and 4D inputs, but these are simple extensions of the 2D case.

Notice how each 2x2 region of the image in figure 1-6 is multiplied and accumulated

with the same weight kernel- this is how a translation invariant system operates.

Another important note is that, in the example of figure 1-6, the filter is shifted

only a single unit horizontally or vertically as it sweeps along the input image, but

this need not be the case. The horizontal or vertical displacement of the filter at

36

different iterations (called the stride) controls the regions of the input image that

are processed. If the stride equals or exceeds the filter size, then there will be some

portions of the image that go unprocessed by the kernel. Because of this, the stride

used in most convolutional networks tends to be fairly small. Also notice that the

output in figure 1-6 is a 2x2 matrix whereas the input matrix is a 3x3 - meaning

that the convolution has reduced the image resolution. Because this reduction in

resolution is often undesirable, it is common to pad the input matrix with zeros on

the edge so that the output resolution matches the input resolution. If the input in

figure 1-6 is padded on the left with a 3x1 column of zeros and on the top with a 1x3

row of zeros, then the output resolution would be 3x3. The final important hyper-

parameter in convolution is called the dilation, where the weight kernel is upsampled

prior to being convolved with the input matrix [28]. Figure 1-7 illustrates dilation

that maps a 2x2 weight kernel to an upsampled 3x3 weight kernel that is convolved

with the 4x4 input matrix. Many modern convolutional neural networks (CNNs) use

dilation to expand the patch size of the image that the kernel is able to process (called

the receptive field). Being able to process a larger fraction of the image has led to

a steady increase in image processing quality across a variety of applications, which

has made dilation an important property in image networks ([25],[83],[22]).

Figure 1-7: Example of dilation from a kernel size of 2x2 to an upsampled kernel size
of 3x3 to increase the kernel’s receptive field.

Convolutional Neural Network (CNN) Multi-Layer Architecture

The convolution operation forms the basis of convolutional neural networks (CNNs)

just as neuron layers form the basis of fully connected networks. As illustrated in

37

figure 1-8, a convolutional neural network consists of multiple convolutional layers

with elementwise nonlinearity and downsampling operations between each layer [59].

These convolutional layers are then followed by the fully connected architecture de-

tailed in section 1.2.1 that yields the final network output: the class of the object

shown in the input image ("car" in figure 1-8). The intuition behind CNNs comes

from a "divide and conquer" approach where an arbitrarily large image is broken

down into smaller patches, each of which can be processed identically and in parallel

to yield an aggregated result over the entire input image. Convolutional networks

are thus defined by two important properties: (1) each image patch is processed in-

dependently from all other patches and (2) each patch is processed identically [72].

Regarding property (1), processing image patches independently is an effective way

to achieve image-level tasks because each patch by itself is much easier to operate on

than the entire input image all at once. In addition, each patch can be processed in

parallel, which means that a "divide and conquer" approach is much more efficient in

terms of time and computational efficiency [72]. Regarding property (2), processing

each patch in the same manner is an important aspect of CNN computation because

of translation invariance [72]. Properties (1) and (2) are illustrated in figure 1-9,

where the CNN’s goal is to detect the presence of birds in the input image. By using

translation invariant kernel filters, the CNN effectively divides the input image into

the series of smaller square regions depicted in the figure. After partitioning the im-

age, the CNN then processes each patch using both kernels and fully connected layers

to classify each patch as either a bird or sky.

The Importance of Multiple Convolutional Layers

Since the computational burden of a CNN scales with the number of convolutional

layers, it is important to understand why a series of multiple layers is typically needed

to accurately process image patches. As described by [72], kernels act like feature

detectors that extract both low-level information (edges, textures, basic patterns) as

well as high-level features (semantic objects and scenes) from the image. Within a

trained multi-layer architecture, different convolutional layers extract different types

38

of image information: early layers detect low-level features (ex. edges), middle layers

use those low-level features to detect more complex patterns, and the final layers

use those patterns to detect semantic objects, scenes, and other useful high-level

features [86]. Therefore, in order to make sense of even a small patch in an image,

it is important to use multiple layers to extract all the information needed to form

accurate high-level features. Using only a single layer will cause the network to lose

a lot of key information about the object that it is trying to classify.

Figure 1-8: Architectural description of a CNN from [59]. The initial layers use
convolutional kernels to extract important features from the image (edge locations
and orientations, shadows, contact boundaries, etc...), while the final parts of the
network are fully connected layers that map the flattened feature representations to
a vector of probabilities that outputs the predicted class of the input image.

Figure 1-9: Illustration of the two CNN properties from [72]: (1) processing each
image patch independently and (2) processing each patch identically. Under these two
properties, a CNN takes a "divide and conquer" approach where the input image is
partitioned into patches, each of which is run through the same series of convolutional
kernels and fully connected layers to classify each patch as either a bird or sky [72].

39

1.3 Applying Deep Learning to Machine Vision: Ob-

ject Classification and Scene Recognition

Deep learning has had a tremendous impact in advancing the accuracy of machine

vision systems over the past few years [72]. Among the numerous machine vision areas

that are currently being researched, this thesis focuses on two: object classification

and scene recognition. Since the creation of AlexNet in 2012, the task of object

classification has become a canonical application in deep learning vision problems [1].

In this thesis, the object classification data set used is MNIST handwritten digits

(0-9).

The second machine vision application considered in this thesis is scene recogni-

tion. This application area remains very challenging because effective scene recogni-

tion systems must incorporate both localized image features (ex. specific objects in

the scene) as well as global features (ex. color) [62]. MNIST digit classification and

scene recognition are motivated and described in sections 1.3.1 and 1.3.2 below.

1.3.1 MNIST Handwritten Digit Classification

One common use for convolutional networks is to classify input images as belonging

to a certain object category [64]. In the case of MNIST digit classification, a visual

image of a handwritten number is mapped to a semantic label (class), where the

possible classes in this case are the integers 0-9. Figure 1-10 shows how a CNN uses

a combination of convolutional layers and fully connected layers to map an input

MNIST image to a class label. Each convolutional kernel acts as a feature detector,

and stacking several convolutional layers in sequence allows the network to generate

feature maps that are then used by the fully connected layers to generate the image’s

semantic label. To get an idea of how convolutional layers act as feature detectors,

figure 1-11 shows the intermediate convolutional outputs from the hidden layers in

a simple 2-layer CNN. Each image represents a different channel of the intermediate

feature maps, and it is interesting to notice how each filter extracts different image

40

features. Once these features have been extracted and processed by the convolutional

layers, the fully connected layers can then be used to generate the class prediction.

Typically, most of the nonlinearities used between convolutional and fully connected

layers are RELU, while the final nonlinearity used is Softmax.

Figure 1-10: Applying a CNN to learn a mapping from an input image to the class
label of the object in the image. In this case, the input image is a handwritten digit
from the MNIST data set.

Figure 1-11: Visualizing the intermediate feature maps from a 2-layer CNN applied
to MNIST classification. Notice how different filters extract different information
from the image. Image credit: https://stackoverflow.com/questions/45678473/
convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0.

Object classification networks typically use cross entropy loss (equation 1.13) in

order to train the network and evaluate it during inference.

𝐿𝐶𝐸(𝑦, 𝑦) = −
𝐾∑︁
𝑘=1

𝑦𝑘 ln 𝑦𝑘 (1.13)

41

https://stackoverflow.com/questions/45678473/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0
https://stackoverflow.com/questions/45678473/convolution-neural-networks-all-feature-maps-are-blackpixel-value-is-0

Where 𝑦 is the network output and 𝑦 is the corresponding ground truth. An intuitive

way to conceptualize MNIST classification is as a probability distribution matching

problem. Under this framework, each ground truth label corresponds to a "one-hot"

encoded vector, which is a sparse Kx1 vector where K=10 is the number of classes.

The label of class k has a 1 at the kth position and zeros everywhere else. For example,

the label "three" would correspond to the vector
[︁
0 0 0 1 0 0 0 0 0 0

]︁
for

possible output classes of 0-9. This is essentially a probability distribution with all of

the probability mass concentrated at the kth bin. The final CNN layer is a Softmax

that generates a normalized probability distribution over the possible image classes.

To have an accurate network, the bulk of the probability mass at the output should

reside in the kth bin if the ground truth class is k. Figure 1-12 shows how object

classification with a Softmax activation layer can be thought of as a distribution

matching problem. In chapter 3, netcast will be simulated on the task of MNIST digit

classification to see how well it performs relative to digital networks. The simulation

will use the theory presented in this chapter to train and test MNIST classifiers -

both fully connected and convolutional.

1.3.2 A More Challenging Application: Scene Recognition for

Robotic Localization

The second application that this thesis focuses on is scene recognition for robotic

localization. Over the past few years, advances in deep learning have given robots

an increased prevalence in a variety of tasks - everything from home applications to

automated assembly to driving ([24], [32]). One important high-level vision task that

robots must perform in order to effectively operate in any environment is simultaneous

localization and mapping (SLAM). That is, the robot must have an accurate map of

its environment as well as an accurate estimate of its position within that map. This

motivates the use of CNNs to map pictures of different scenes to the proper semantic

labels that will allow the robot to both identify what scene it is at as well as learn

a topological map for its operating environment. For example, figure 1-13 depicts a

42

Figure 1-12: Object classification can be formulated as a probability distribution
matching problem. An untrained CNN will output a randomly distributed proba-
bility mass function from the given input image, while a trained CNN will output
a probability distribution that more accurately matches the ground truth distribu-
tion. From this, the goal of MNIST classification is to tune the CNN parameters to
concentrate probability mass at the correct bin.

house floor plan where a robot is to operate, while figure 1-14 shows the topological

map that the robot needs to learn in order to navigate and operate in the house

environment. Since this thesis focuses on the machine vision aspect of the localization

problem, it is assumed that the robot is able to plan and execute trajectories between

the different node locations. This means that the major high-level task that the robot

must perform is identifying what room it is in.

Figure 1-13: Operational environment that a robot will operate in. The type of tasks
that the robot will be required to perform depends on where the robot is.

43

Figure 1-14: Given the environment depicted in figure 1-13, the robot will need to
learn the topological map depicted above in order to successfully navigate and operate.
Notice that the nodes of the map are the distinct locations in the house, while the
light blue lines connecting the nodes represent paths between the distinct locations.

While scene recognition may seem like a simple re-brand of object recognition,

this is not the case. As noted by [78], scene recognition is a challenging open question

in machine vision because successfully recognizing a scene requires effective inference

about both the local features (ex. individual objects or edges in the scene) as well as

global features that span the entire scene (ex. color). The challenges associated with

scene recognition and the methods currently being used are described in more detail

in chapter 3.

1.4 Chapter Conclusion and Summary

This chapter introduced the basic theory behind deep learning- how biological neu-

rons can be approximated by artificial neurons in DNNs, which implement pointwise

nonlinearity to emulate the way in which biological neurons fire. After introducing

deep learning, two common DNN architectures that will be used throughout this

thesis (fully connected and convolutional networks) were introduced. In order to un-

derstand the intuition behind convolutional networks, the convolution operation was

formulated as a translation invariant linear system that processes individual image

patches in parallel using a "divide and conquer" approach. After establishing an in-

tuitive picture of convolution, the application of DNNs to the problems of MNIST

classification and scene recognition were discussed. While MNIST digit classification

is a canonical machine vision task, scene recognition remains challenging because it

44

requires a learned understanding of both local and global scene features. Up until

this point, only the software aspects of deep learning have been considered. In chap-

ter 2, the application of DNNs to edge computing will be discussed along with the

challenges and current methods of implementing DNNs in hardware.

45

46

Chapter 2

Applying DNNs to Edge Computing:

Challenges and Techniques

2.1 Overview

One important application of DNNs is edge computing, where data is processed close

to the source of collection (sensors) to facilitate high bandwidth computation in real-

time. As DNNs have been used to solve increasingly complicated tasks, their size

(number of parameters) has dramatically increased. Because edge device hardware is

limited by size, weight, and power (SWaP), many modern DNNs are too large to be

used in edge applications due to prohibitively high energy cost. This has given rise to

an increased interest in developing hardware accelerators that allow arbitrarily large

networks to be deployed and used on SWaP-limited edge devices.

Currently used Von Neumann computing architectures separate the locations of

memory and computation. Not only are these architectures slow, but they also impose

a very high energy cost that makes them unsuitable for DNN-based edge applications

[29] . In order to transition away from Von Neumann computing in DNNs, current

work uses three general methodologies: (1) data flow optimization, (2) co-locating

the computation and memory, and (3) model-based energy optimization. In terms of

organization, section 2.2 gives an overview of edge computing along with its benefits

and challenges. Section 2.3 describes the three methods listed above, while section 2.4

47

Figure 2-1: Comparison between edge computing and cloud computing [80].

lists current hardware architectures that use these methods. Section 2.5 summarizes

the chapter’s main points and conclusions.

2.2 Edge Computing

Edge computing is a paradigm in which data processing occurs in physical proximity

to the location where data is collected - usually a sensor. Unlike cloud computing

where data must be transferred between local devices and the centralized cloud, edge

computing is done locally on the device itself. Figure 2-1 depicts the difference be-

tween cloud computing and edge computing [80]. Notice that cloud computing keeps

processing power centralized so that devices must transmit their data and then wait

for it to be processed and sent back [70]. While this is the predominant computing

paradigm currently in use, it is not suitable for applications that require real-time

data processing. Transmitting data between devices and the cloud incurs a time lag

since the devices have to wait for data to be processed in the cloud and then sent back.

This time lag makes cloud computing infeasible for applications like autonomous ve-

hicles or mobile robotics, whose ability to operate critically depends on low latency,

real-time data processing (ex. real-time collision avoidance).

The time lag that plagues cloud computing has motivated the development of

48

edge computing, which distributes computing power from the centralized cloud onto

local devices as shown in figure 2-1. For example, instead of having a mobile robot

transmit visual inputs to a data center, edge computing equips the robot with the

computational resources needed to process images by itself with minimal latency.

Edge computing introduces both new opportunities as well as new challenges, both

of which are described below.

2.2.1 Benefits of Edge Computing

Distributing data processing capabilities onto edge devices has several benefits. First,

it reduces processing response times by eliminating the need to transfer data between

the edge device and the cloud [61]. Second, it is much more energy-efficient because

device ↔ cloud wireless communication tends to be an energy-hungry process [31].

Third, edge computing helps preserve consumer privacy by keeping personal data

geographically confined and not exposing it to the risk of being compromised or

stolen on its way to and from the cloud. For example, a smart house that relies on

cloud computing is vulnerable to hacking during data transmission, but this would

not be an issue with edge computing since the data would never physically leave the

house [17]. Fourth, edge computing enables the deployment of DNNs that facilitate

smart applications and the Internet of Things (IoT). Cloud computing does not lend

itself to deep inference at the edge because transferring large volumes of data to

and from the cloud is too slow to be practically useful. For example, autonomous

vehicles generate one gigabyte of data every second, which is too much data volume

to be processed by the cloud without latency effects [31]. By placing DNNs in close

proximity to the data that they process, edge computing alleviates the issue of data

transmission bottlenecks [61].

Because of the above benefits, edge computing has been applied to a variety of

fields. Current work looks at applications including consumer services [63], search

and rescue [63], social virtual reality [26], and IoT [19]. Along with these benefits,

however, edge computing also introduces significant and novel challenges, which are

described in section 2.2.2 below.

49

2.2.2 Energy Costs: The Challenge of DNN-Based Edge Com-

puting

While deploying DNNs to edge computing opens the door for new and advanced

technological applications, applying DNNs to edge computing introduces several chal-

lenges. In order to be practically useful, edge computing DNNs must not only be

accurate but must also operate on small edge devices that can only source a limited

amount of power. Edge computing DNNs must therefore optimize multiple different

objectives including energy costs, bandwidth, accuracy, and size.

The main obstacle hindering high bandwidth and low energy costs in current

DNN accelerators is memory access [30]. In order to see how memory access limits

DNN hardware performance, consider the multiply and accumulate (MAC) operation,

which forms the basis of DNN matrix-vector operations. Figure B-1 in the appendix

shows an example of a simple vector-vector multiplication decomposed into MAC

operations. As shown in figure 2-2, each MAC operation in a network requires three

memory reads - two reads to access the elements being multiplied and one read

to access the partial sum to which the product will be added. In addition, each

MAC requires a memory write to update the running partial sum. Von Neumann

architectures are infeasible candidates for running edge computing DNNs because

these architectures maximize the energy cost per memory read by separating the

processing units from the memory. For example, AlexNet (724 million parameters)

requires nearly 3 million reads from external memory, which consumes significantly

more energy than what small edge devices can source [41].

Although edge computing helps to minimize undesired latency effects and enables

real-time data processing, practically deploying DNNs to the edge requires minimizing

the amount of energy consumed while retrieving parameters and activations from

memory [30]. This is a challenging problem, and the following section describes the

methods that are currently used to minimize DNN memory access costs.

50

Figure 2-2: Memory access challenges association with DNN inference. Each MAC
operation requires four different memory operations: three reads from memory and
one write to memory [30].

2.3 Minimizing the Energy Cost of Memory Access:

Current Methods

Three common methods used to solve the memory access problem are (1) data flow

optimization, (2) co-location of memory and computation, and (3) model-based en-

ergy optimization. Data flow optimization distributes memory from off-chip dynamic

random access memory (DRAM) to on-chip processing units that reuse weights and

activations as many times as possible. In contrast, co-location of memory and com-

putation tries to physically place the memory on-chip, while model-based energy op-

timization modifies a DNN’s computational structure in order to minimize its energy

consumption cost. Each method is described in greater detail below.

2.3.1 Method 1: Data Flow Optimization

The data flow optimization approach uses a memory hierarchy that decentralizes off-

chip DRAM and distributes it locally to the on-chip units that perform computation,

which are called processing engines (PEs). As shown in figure 2-3, a memory hierarchy

helps optimize hardware’s energy efficiency by allowing local data access within each

PE register file (RF). This means that processors don’t have to go to off-chip DRAM to

perform MAC computations. As seen in figure 2-3, utilizing local memory significantly

decreases the energy costs of accessing weights and activations. For example, accessing

51

Figure 2-3: Memory access hierarchy used to improve energy efficiency in DNN hard-
ware. This hierarchy enhances energy efficiency by distributing memory from DRAM
to the processing engines that perform the computation. The bottom part of the fig-
ure shows the normalized energy costs of accessing memory from different locations
[30].

memory locally from a PE’s register file consumes 200 times less energy than using

off-chip DRAM.

In order to take full advantage of locally distributed memory, it is necessary to

maximize reuse in both network parameters and activations while they reside in local

memory close to the processing units. This way, low-cost memory is accessed many

times while high-cost DRAM is accessed as few times as possible. Since local memories

have limited capacity, it is important to organize the order of computations (the data

flow) to maximize local memory reuse. Three memory reuse techniques commonly

used in neural networks are convolutional reuse, feature map (Fmap) reuse, and filter

reuse. These techniques are illustrated in figure 2-4

As shown in the figure, convolutional reuse sweeps the same filter over the same

input, so that both the filter and the input are reused over multiple different MACs.

Fmap reuse applies multiple different filters to the same input and thus only reuses

the input feature map. Finally, filter reuse is similar to convolutional reuse except

the filter does not move in the lateral dimension of each input but rather is applied

52

Figure 2-4: Three commonly used methods for data reuse in neural networks. Convo-
lutional reuse slides the same filter over multiple subregions of the input. Fmap reuse
applies the same input to multiple filters, while filter reuse applies the same filter to
multiple inputs [30].

to one lateral location. This reuses the filter weights since the same filter is applied

to all inputs in the batch tensor. The next four sections describe four common data

flow optimization techniques in current work that leverage data reuse: (1) weight

stationary, (2) output stationary, (3) row stationary, and (4) no-local reuse.

Weight Stationary

The weight stationary data flow maximizes filter reuse by (1) storing weight elements

locally within PE register files and then (2) mapping all MACs that use the same

weight element to the correct PE where that weight lives [84]. A high-level overview of

a weight stationary data flow is given in figure 2-5 where the weight elements 𝑊0...𝑊7

are stored locally in the PE register files while the input activations are broadcast to

each PE. The partial products are computed within each PE locally and the partial

sums are spatially accumulated over the PE array.

Figure B-2 in the appendix gives an example where a weight stationary data flow

is used to perform a simple 1D convolution. Notice that each PE stores its assigned

weight throughout the duration of the computation, which illustrates how the weight

53

Figure 2-5: High-level architecture of the weight stationary data flow. The weight
elements 𝑊0 ... 𝑊7 are loaded from external DRAM into the local register files of the
PEs in the array. Then, the input elements (Act) are broadcast to each PE, and the
partial products are computed. The partial sums (Psum) are spatially accumulated
over the PE array to compute the final output [30].

stationary data flow leverages filter reuse in order to minimize expensive memory

reads from DRAM.

Output Stationary

While weight stationary data flows minimize the energy cost of reading weights, out-

put stationary data flows focus on minimizing the cost of reading and writing partial

sums [43]. The high-level structure of the output stationary data flow is given in fig-

ure 2-6. Instead of storing weights locally in each PE register file, output stationary

data flows store accumulated partial sums in the PE arrays and broadcast both the

inputs and the weights. This means that each MAC operation will be able to read

from and write to partial sums with minimal energy cost since the partial sums live

in local memory.

Similar to the weight stationary case, figure B-3 illustrates an example where a 1D

convolution is computed using an output stationary data flow. In this case, the three

PEs store the intermediate partial sums while the weights and inputs move along

the PE array in opposite directions. By keeping the partial sums in local memory,

the output stationary data flow minimizes the energy needed to access partial sums

during MAC operations.

54

Figure 2-6: High-Level architecture for the output stationary data flow. Instead of
locally storing weights, the partial sums are stored in each PE while the weights and
inputs are broadcast to each PE in the array. The purpose of this data flow is to
minimize the energy cost of reading and writing partial sums [30].

Row Stationary

While weight stationary and output stationary data flows are designed to minimize the

energy costs of accessing weights and partial sums respectively, the row stationary

data flow uses both filter reuse and convolutional reuse to optimize overall energy

consumption for all data types (weights, input Fmaps, and partial sums) [85]. Row

stationary data flows use 1D convolutions called row primitives to perform DNN

computations. Figure 2-7 illustrates how a 1D convolutional primitive is computed.

Note how the PE register file stores the weights (filter reuse) but also stores the

inputs so that overlapping input elements are reused (convolutional reuse). The 1D

convolutional primitives shown in figure 2-7 can be used with a 2D array of PEs to

perform a 2D convolution that scales to higher dimensions as depicted in figure B-4

in the appendix.

No-Local Reuse

Weight stationary, output stationary, and row stationary data flows minimize memory-

based energy costs by localizing memory within each PE register file. In contrast,

the no-local reuse (NLR) data flow removes all local memory from PEs and instead

puts all the on-chip memory into the global buffer [4]. While this data flow increases

55

Figure 2-7: The 1D convolution primitive used in row stationary data flows. The
weights are stored in the PE register file, while the inputs are streamed in and operated
on. (a) time step 1, (b) time step 2, (c) time step 3 [30].

inter-PE data traffic, it enhances energy efficiency by drawing all memory access from

the global buffer instead of DRAM. Looking back at figure 2-3 reveals that accessing

the global buffer is about 33 times less energy expensive than accessing DRAM. Fig-

ure 2-8 shows how the no-local reuse data flow functions. Unlike figures 2-5 and 2-6,

which depict the weight stationary and output stationary data flows, the NLR data

flow stores no data whatsoever in the PE register files. This means that the global

buffer must broadcast all the weights and inputs while accumulating the partial prod-

ucts over the PE array [30]. The motivation behind the NLR data flow is the fact

that PE register files are inefficient when it comes to the required amount of on-chip

area needed to store a given amount of data. It is much more efficient in terms of

storage per chip area to access memory from the global buffer instead of using local

PE memory [30].

2.3.2 Method 2: Co-Location of Memory and Computation

Since data movement from memory to chip is the primary obstacle facing energy-

efficient DNN hardware, an alternative strategy to maximize energy efficiency is to

integrate DRAM into the chip itself [30]. The two sections below describe two ways in

which memory and computation can be co-located by bringing off-chip DRAM onto

56

Figure 2-8: High-Level architecture of No-Local Reuse data flow. Instead of localizing
memory within PE register files, NLR assigns all on-chip memory to the global buffer
that broadcasts the weights and the inputs to each PE in the array [30].

the chip.

Embedded DRAM

Embedded DRAM (eDRAM) eliminates the need for any off-chip memory access by

placing tens of megabytes of memory on-chip using electronic capacitors [30]. Since

capacitors are often leaky, periodic refreshes are needed in order to prevent data decay

[65]. Using eDRAM enhances DNN hardware energy efficiency because accessing

on-chip eDRAM is 221 times less expensive than accessing off-chip memory [34].

However, the drawback of this approach is that eDRAM has a lower memory density

(Megabytes/𝑚𝑚2) as compared to off-chip memory. This lower memory density can

result in higher chip financial costs since the chip area needed for a given amount

of memory will be greater for eDRAM than for off-chip DRAM [30]. In addition,

eDRAM requires standby power to facilitate the periodic refreshes to ensure that

data doesn’t leak from the on-chip capacitors [77].

Resistive Memory

Another way to co-locate memory with computation is to use resistive memory as

illustrated in figure B-5 in the appendix. Resistive elements encode the weights

as conductance values (G), while the activations are encoded by the voltage drops

57

over the resistors (V). MAC operations are performed using 𝐼=𝑉 𝐺 and applying

Kirchhoff’s current law as seen in figure B-5. Here, 𝐼 is the current leaving a resistor

that encodes a partial product. Unlike eDRAM, resistive memory is much higher

density and is comparable to DRAM in terms of the amount of memory per chip area

[12]. Despite this advantage, resistive memories suffer from several drawbacks. In

addition to suffering from low precision in floating point operations, resistive memories

also require integrated digital-analog converters (DACs) and analog-digital converters

(ADCs), which can consume a lot of energy [57]. In addition, the voltage drop across

the resistive elements can degrade the accuracy of memory reads, while the amount

of energy needed to write data to the resistive elements can be costly [57].

2.3.3 Method 3: Model-Based Energy Optimization

The previous section described common methods that are used to minimize energy

costs by placing the compute and memory in proximity to each other. While this

strategy has proven effective in various DNN hardware architectures, another common

way of minimizing the energy cost of memory access is to alter the way in which DNN

computations are performed. These strategies are discussed in the following sections.

Network Pruning

Originally proposed in 1989, network pruning utilizes the fact that most DNN mod-

els tend to be overparameterized in order to make the training process easier [82].

Increasing the number of DNN parameters makes the loss function more convex so

that optimal accuracy values are easier to reach during training. This means that

a trained DNN will likely have a large number of weights that have a negligible im-

pact (salience) on the network accuracy. In order to reduce the number of model

parameters while preserving accuracy, network pruning removes low-salience weights

and then fine-tunes the remaining weights. Although this approach is often infeasi-

ble in large DNNs, a variation of this pruning method simply removes low-magnitude

weights [58]. As an example, using network pruning can reduce the number of weights

58

in AlexNet by a factor of 9, which reduces the number of MACs by a factor of 3 [30].

Another commonly used pruning method is called structured pruning where entire

groups of low-salience weights are removed [73]. Reducing the number of weights in

a network means that fewer MACs need to be performed to run inference. Lowering

the number of MACs needed, in turn, decreases the energy cost of running a DNN.

As described in [71], figure B-6 shows the decrease in energy costs of inference for

three common neural networks (GoogLeNet, SqueezeNet, and AlexNet) as a result of

pruning.

Knowledge Distillation

Instead of pruning parameters directly from a large DNN model, a smaller DNN can

be trained to mimic the output of its larger counterpart through knowledge distillation

[20]. The idea here is to pre-train an over-parameterized DNN to output some level

of accuracy for a given task. Then, a smaller DNN called the student network can

be trained to match the output of the larger teacher network. This method allows

the student network to achieve an accuracy level that would have been unattainable

had the student been directly trained on the same data set as the teacher. This

process is illustrated in figure B-7 in the appendix. Note that the student network

is trained to match the raw, unnormalized output scores instead of the normalized

class probabilities. This is because Softmax removes information in low-probability

and high-probability class scores by driving them to zero and one respectively [35].

Exploiting Sparsity

Another way to increase energy efficiency in DNN hardware is to exploit the sparsity

that arises from nonlinearity in the intermediate output activations. For example,

the RELU nonlinearity zeros out all negative elements of an input, which results in

a sparse matrix as depicted in figure B-8. As noted by Chen et al., DNN hardware

can be configured to skip any MACs that map to zero-valued activations, which can

nearly halve the amount of energy needed for a DNN to run inference [81].

59

2.4 Current Work: Hardware Architectures That Min-

imize Energy Access Costs

The architectures listed in this section describe how the techniques from 2.3.1, 2.3.2,

and 2.3.3 are implemented in hardware in order to reduce the energy costs of running

DNNs.

2.4.1 Eyeriss

The authors of [81] developed an architecture called Eyeriss that is based on a row-

stationary data flow. Eyeriss uses a 1D convolutional primitive where each convolution

is mapped to a single processing unit in a PE array. This means that each PE

operates on a single filter row and a single input feature map row. 2D convolutions

are composed from repeated 1D convolutions using the procedure previously outlined

in figure B-4 [81] . Eyeriss employs convolutional reuse since both the filter elements

and the input feature map elements are reused. Eyeriss also uses filter reuse since

each filter element is repeated over the entire N>1 batch size [81].

2.4.2 MobileNet

The authors in [14] used convolutional factorization to minimize DRAM energy costs

by minimizing the number of MACs needed to perform the convolution operation.

Figure B-9 depicts how the standard convolution operation is factored into two parts:

depthwise convolution that operates on the individual channels followed by a point-

wise convolution that produces the final output through a linear combination of the

convolved channels. Figure B-10 gives an architectural description of the MobileNet

structure, while figure B-11 shows the number of MAC operations used in MobileNet

compared to another DNN used for the same application called FaceNet. As can

be seen in figure B-11, the use of depthwise separable convolutions significantly re-

duces the number of MACs required to implement convolution. By decreasing the

required number of MACs, MobileNet decreases the energy costs of implementing

60

convolutional DNNs in hardware.

2.4.3 SqueezeNet

In [18], the authors developed an architecture called SqueezeNet to run inference

through AlexNet with 50 times less parameters while maintaining stable output ac-

curacy. The SqueezeNet architecture is based on a series of 1x1 and 3x3 convolutions

called the fire module, which is depicted in figure B-12. As shown in the figure,

three hyper-parameters define the structure of each fire module: 𝑠1𝑥1 (the number of

1x1 convolution kernels in the squeeze layer), 𝑒1𝑥1 (the number of 1x1 convolution

kernels in the expansion layer), and 𝑒3𝑥3 (the number of 3x3 convolution kernels in

the expansion layer). As noted by the authors, SqueezeNet decreases the number of

parameters needed to run inference by replacing standard convolutional layers with

fire modules and decreasing the number of channels going into the 3x3 filters [18].

Using the fire module as a computational primitive, SqueezeNet employs the high-

level architecture depicted in figure B-13. As shown in the figure, a forward pass

through SqueezeNet consists of a standard convolution followed by a series of fire

modules and max pooling for downsampling. The forward pass ends with a standard

convolution and a Softmax activation layer. Figure B-14 compares the magnitude of

model compression achieved by SqueezeNet versus the amount of model compression

achieved by other comparable methods. Note how SqueezeNet is able to compress

the AlexNet architecture much more than comparable works while suffering minimal

losses in accuracy.

2.5 Chapter Conclusion and Summary

This chapter began by offering a high-level introduction to the concept of edge

computing- including its basic structure, motivation, and benefits. Section 2.2 de-

scribed the benefits and challenges of applying DNNs to edge computing applications,

and it was noted that the primary obstacle facing energy-efficient DNNs is the energy

cost of memory access. In section 2.3, three common approaches for optimizing en-

61

ergy efficiency were analyzed: (1) data flow optimization, (2) co-location of memory

and computation, and (3) model-based energy optimization. Finally, in section 2.4,

current hardware architectures that use the above techniques were listed and ana-

lyzed. While the architectures thus far show improvement in energy efficiency, they

are not optimized for the task of edge computing because they require local storage

of the DNN weight matrices on or near edge devices. Chapter 3 introduces the net-

cast architecture, which leverages optical parallelism to minimize energy costs and

eliminates the need to store weight matrices on edge devices.

62

Chapter 3

Simulating the Netcast Optical

Neural Network (ONN)

Having introduced DNNs in chapter 1 as well as currently used DNN hardware in

chapter 2, this chapter focuses on an optically based edge computing architecture

called netcast. The netcast optical neural network (ONN) leverages parallelism in

both the time domain as well as the frequency domain to minimize energy costs.

Netcast also avoids the need for edge processors to store large DNN weight matrices

on SWaP-limited hardware. Section 3.1 below gives a broad overview of the netcast

server-client protocol where weight elements are encoded at the server and trans-

mitted to the client. Section 3.2 discusses the three predominant sources of error

in the netcast hardware: thermal noise, shot noise, and calibration error. Section

3.3 describes the advantages of using netcast for edge computing compared to digi-

tal electronics. Before detailing the techniques used to simulate netcast in software,

section 3.4 defines the figure of merit that will be used to compare netcast to digital

networks: output accuracy normalized by energy consumption. Section 3.5 describes

how the netcast optical hardware is simulated using a computational technique called

stacked convolution. Section 3.6 gives the simulation results for MNIST classification,

while section 3.7 gives the simulation results for scene recognition. Finally, section 3.8

concludes with a short summary of the main points discussed throughout the chapter.

63

Figure 3-1: The netcast ONN architecture that uses time multiplexing and wavelength
division multiplexing (WDM). The architecture performs a matrix-vector product
over N time steps using M different wavelength channels [38].

3.1 Overview of the Netcast Optical Neural Network

Figure 3-1 shows an overview of the netcast architecture that leverages both time

multiplexing as well as wavelength division multiplexing (WDM). During each time

step (indexed by 𝑛), a column vector 𝑤:,𝑛 is extracted from the weight matrix, and each

extracted weight element 𝑤𝑚𝑛 is mapped to a transmission coefficient and a reflection

coefficient through a bank of 𝑀 micro-ring modulators. The weight value 𝑤𝑚𝑛 is

encoded by the detuning of the mth cavity at time step 𝑛: ∆𝑚𝑛. At each micro-ring,

the transmission and reflection coefficients are given by the following equations.

𝑡𝑚𝑛 =
𝑖∆𝑚𝑛

𝑖∆𝑚𝑛 + 𝜅𝑎𝑏𝑠/2
(3.1)

𝑟𝑚𝑛 =
−√

𝜅1𝜅2

𝑖∆𝑚𝑛 + 𝜅𝑎𝑏𝑠/2
(3.2)

Where ∆𝑚𝑛 is the detuning of cavity 𝑚 at time step 𝑛, while 𝜅1 and 𝜅2 are the ring

coupling coefficients for the through (𝑇) and drop (𝐷) ports respectively. 𝜅𝑎𝑏𝑠 is the

64

rate of absorption and scattering in the ring modulator. The notational convention

used in this chapter is that 𝑁 represents the number of time steps and 𝑀 is the

number of wavelengths, which equals the number of micro-ring modulators. Given

the encoded transmission and reflection coefficients, the through-port and drop-port

optical powers are the final outputs from the micro-ring modulators as given by the

equations below.

𝑎(𝑇)
𝑚𝑛 = 𝑡𝑚𝑛𝑎0 (3.3)

𝑎(𝐷)
𝑚𝑛 = 𝑟𝑚𝑛𝑎0 (3.4)

In these equations, the known incident optical power is 𝑎0, 𝑇 refers to the through-

port, and 𝐷 refers to the drop-port. The through and drop-port output signals from

the modulator are then fed through a polarizing beamsplitter (PBS) that maps to

orthogonal polarizations on a polarization maintaining fiber (PMF). Then, the 𝑀

wavelength channels are wavelength division multiplexed and transmitted from the

server to the client over the optical fiber. Once at the client, another polarizing

beamsplitter separates out the through-port and drop-port signals, while a phase

shifter is used to correct for the relative phase differences induced by the server

→ client transmission. The signals 𝑎
(𝑇)
𝑚𝑛 and 𝑎

(𝐷)
𝑚𝑛 enter a Mach Zehnder Modulator

(MZM) that encodes the activation at time 𝑛 (𝑥𝑛) as a voltage 𝜃𝑛. The equation

below gives the MZM output.⎡⎣𝑎(+)
𝑚𝑛

𝑎
(−)
𝑚𝑛

⎤⎦ =

⎡⎣cos 𝜃𝑛 − sin 𝜃𝑛

sin 𝜃𝑛 − cos 𝜃𝑛

⎤⎦⎡⎣𝑎(𝑇)
𝑚𝑛

𝑎
(𝐷)
𝑚𝑛

⎤⎦ (3.5)

Finally, the 𝑀 different wavelength channels are demultiplexed and fed into a bank of

𝑀 photo-detectors, each of which maps input optical powers 𝑎(+)
𝑚𝑛 and 𝑎

(−)
𝑚𝑛 to current

values 𝐼𝑚𝑛(+) and 𝐼𝑚𝑛(−). The photocurrent difference at each wavelength channel

65

encodes the partial product 𝑤𝑚𝑛𝑥𝑛 as shown in the equations below [38].

∆𝐼𝑚𝑛 = 𝐼𝑚𝑛(+) − 𝐼𝑚𝑛(−) (3.6)

∆𝐼𝑚𝑛 = |𝑎(+)
𝑚𝑛 |2 − |𝑎(−)

𝑚𝑛 |2 (3.7)

∆𝐼𝑚𝑛 = [|𝑡𝑚𝑛 cos 𝜃𝑛 − 𝑟𝑚𝑛 sin 𝜃𝑛|2 − |𝑡𝑚𝑛 sin 𝜃𝑛 + 𝑟𝑚𝑛 cos 𝜃𝑛|2]|𝑎0|2 (3.8)

∆𝐼𝑚𝑛 = [(|𝑡𝑚𝑛|2 − |𝑟𝑚𝑛|2) cos 2𝜃𝑛 −𝑅𝑒[𝑡*𝑚𝑛𝑟𝑚𝑛] sin 2𝜃𝑛]|𝑎0|2 (3.9)

∆𝐼𝑚𝑛 = [(|𝑡𝑚𝑛|2 − |𝑟𝑚𝑛|2) cos 2𝜃𝑛]|𝑎0|2 (3.10)

Where the last line follows from the assumption that the two MZM output optical

fields, 𝑎(+)
𝑚𝑛 and 𝑎

(−)
𝑚𝑛 , have an absolute phase difference of 𝜋/2 [38]. Then, the weight

element 𝑤𝑚𝑛 can encoded by the term (|𝑡𝑚𝑛|2 − |𝑟𝑚𝑛|2), while the input activation

value can be encoded by cos 2𝜃𝑛. This means that equation 3.10 can be rewritten as

the desired scalar product.

∆𝐼𝑚𝑛

|𝑎0|2
= 𝑤𝑚𝑛𝑥𝑛 (3.11)

The above partial product is the result of computation at time step 𝑛. In order to

form the desired matrix-vector product, a time integrator is used to obtain the final

output at the client, which is given by the equation below.

∑︁
𝑛

∆𝐼𝑚𝑛

|𝑎0|2
=

∑︁
𝑛

𝑤𝑚𝑛𝑥𝑛 (3.12)

Using a smart transceiver to encode weight matrix column vectors over 𝑀 different

wavelengths in conjunction with a time integrator that adds over 𝑁 time steps, the

netcast hardware has demonstrated a significant reduction in the energy cost of infer-

ence [13]. The hardware is able to perform computation at a total (client) energy cost

of about 10 fJ/MAC, which is three orders of magnitude lower than what is possible

with digital electronics, including those mentioned in section 2.4 [13].

While netcast’s ability to minimize energy costs has been experimentally shown,

this alone does not demonstrate its practical usefulness in edge computing tasks. In

66

order to assess netcast’s usefulness in edge computing, the ONN hardware must be

accurately simulated in software and compared to digital DNNs using some figure of

merit (FOM) that takes into account both network accuracy as well as energy costs.

Before describing the FOM and simulation details, however, it is first necessary to

understand netcast’s sources of error as well as how netcast is able to outperform dig-

ital electronics by over three orders of magnitude. Both of these topics are discussed

in the sections below.

3.2 Noise Sources in Netcast

At a high-level, netcast is able to perform computations more efficiently than digital

electronics by effectively mapping float point MAC operations onto optical hardware.

Because netcast uses optical and electronic hardware, several noise sources must be

considered and accounted for. These noise sources include both fundamental noise

(shot noise and thermal noise) as well as hardware-based error (calibration error).

The importance of these error sources as well as their mathematical formulations are

given in the sections below.

3.2.1 The Importance of Noise Sources

Before getting into the details of noise sources in netcast, it is first important to clearly

establish why such sources are important. In order for any computing hardware (in-

cluding netcast) to output reasonably accurate results, the signals traveling through

the hardware must have an adequately high signal-to-noise ratio (SNR). Given some

signal, 𝑠, to be measured that is corrupted by noise, 𝑛, the SNR is simply the ratio
𝑃𝑜𝑤𝑒𝑟(𝑠)
𝑃𝑜𝑤𝑒𝑟(𝑛)

. A low SNR means that the signal being used for computation is effectively

lost in the background noise, which results in highly inaccurate computing architec-

tures. In contrast, large SNRs yield more accurate and useful computing systems

because the signal can be more easily distinguished from the interfering noise. As

noted by [13], DNN hardware SNR values typically lie in the range 10-100, which

means that the netcast SNR must lie in this range in order for the ONN to oper-

67

ate accurately. The challenge is that various noise sources (both fundamental and

hardware-based) work to decrease the SNR and thus negatively impact netcast’s out-

put accuracy. Having motivated the importance of accounting for noise sources, the

following sections discuss each noise source in greater detail.

3.2.2 Thermal Noise

Thermal noise originates from the fact that random thermal excitations in charge car-

riers give rise to a small but measurable current, which manifests itself as broadband

white noise [46]. In order to see how the netcast hardware can be used to minimize the

effects of thermal noise, it is first necessary to write down an equation that describes

thermal noise. While many different expressions are used to define thermal noise in

different units, one of the more intuitive expressions measures thermal noise in units

of electrons using the equation below.

𝜎𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =

√
𝑘𝑇𝐶

𝑞
(3.13)

Intuitively, equation 3.13 describes the fluctuation in the number of electrons that are

read out from the time integrator and subsequently digitized. In the equation, k is

the Boltzmann constant, T is the temperature, C is the capacitance of the electronic

device, and q is the fundamental electron charge.

Using the equation for thermal noise, the netcast SNR can be computed assuming

that thermal noise dominates. This computation will give a picture of how the thermal

noise negatively affects netcast’s ability to compute accurately. Assume that the

energy consumed by a single MAC operation is 𝐸𝑚𝑎𝑐, and suppose further that the

number of time steps needed to digitize and read out MAC results is 𝑁 . Then, let 𝜂

represent the quantum efficiency of the photodiodes used at the time integrator. Here,

quantum efficiency describes the number of electrons emitted from an incident group

of photons at a photodiode. For ideal systems, 𝜂 = 1, meaning that each incident

photon on the photodetector results in the emission of a single electron. Finally, let

𝑞 be the fundamental electron charge as stated earlier, and let the quantum energy

68

of a single photon be given by the Plank law: 𝐸 = ℎ𝑣. Calculating the signal from

the above variables is then a simple matter of unit conversion from energy (𝐸𝑚𝑎𝑐𝑁)

to number of photons (𝐸𝑚𝑎𝑐𝑁/ℎ𝑣) to number of electrons (𝐸𝑚𝑎𝑐𝑁
ℎ𝑣

𝜂). From this, the

SNR (assuming that thermal noise dominates the system) is given by equation 3.14

below.

𝑆𝑁𝑅 = 𝜂
𝐸𝑚𝑎𝑐𝑁𝑞

ℎ𝑣
√
𝑘𝑇𝐶

(3.14)

As shown in the equation, increasing the amount of thermal noise in the system

decreases the SNR by scaling the magnitude of the denominator term.

3.2.3 Shot Noise

Shot noise is fundamental in all optical systems, meaning that shot noise errors are

inevitable and cannot be eliminated even in the most well calibrated hardware. As

stated by [46], shot noise originates from the fact that quantized photons in a light

beam do not arrive at evenly-distributed points in time. Rather, the distribution of

photon arrival times at a fixed point is described by the Poisson distribution with a

probability mass function given by the equation below.

𝑃 (𝑞) =
𝑒𝑥𝑝(−𝑛𝑝)𝑛

𝑞
𝑝

𝑞!
(3.15)

Where 𝑛𝑝 is the mean. Because the mean of the Poisson distribution equals its

variance, the SNR can be expressed simply as √𝑛𝑝, as noted by [46]. In terms of the

number of photons per MAC, the shot noise limit for netcast exists at approximately

1 photon/MAC [13]. As noted by [13], the hardware optimization that can be used

to amortize thermal noise (increasing N) cannot be applied to mitigate shot noise,

because shot noise is physics-limited.

69

3.2.4 Calibration Errors

While the above fundamental noise sources (thermal and shot) decrease netcast’s

accuracy by diminishing the SNR, calibration errors also impact the final output

accuracy of the network. Calibration errors occur because the hardware mapping

between floating point values and optical intensities has a certain amount of error as-

sociated with it. As detailed in [13], netcast uses an encoding function to map floating

point values to optical intensities that are then mapped to voltage values and finally

back to floating point outputs. The float to intensity mapping and intensity to volt-

age mapping are performed using linear interpolation and a third-order polynomial

fit respectively, both of which introduce an amount of calibration error. To measure

the amount of calibration error that exists in the system experimentally, figure 3-2

was generated by performing 100,000 scalar-scalar multiplications and plotting the

floating point versus optical results [13]. A perfect calibration would be represented

in the figure as an identity function where the optical products exactly equal the

floating point results. As seen in the figure, netcast’s experimental scalar products

don’t exactly follow an identity function (although they are close), which gives rise

to the scalar product error distribution depicted in the bottom panel of figure 3-2.

This scalar product error distribution means that, for any MAC operation performed

by netcast, there will be some error value that arises from mapping floating point

computation onto optical hardware. This per-product calibration error motivates the

simulation of netcast in software as described in section 3.5.

3.3 Advantages of Netcast Compared to Digital Elec-

tronics

As noted by [13], netcast is designed to minimize the energy consumption at the client

in two ways: (1) eliminating weight data movement on chip and (2) exploiting optical

parallelism in both the time domain as well as the frequency domain. Each of these

benefits is discussed in greater detail in the two sections below.

70

Figure 3-2: Calibration error from netcast [13].

3.3.1 Eliminating On-Chip Weight Data Movement

As demonstrated in chapter 2, accessing weight elements on a chip imposes a pro-

hibitively large energy cost that many edge devices are unable to facilitate. One

of netcast’s key innovations is that, instead of storing large-memory DNN weights

at the client, the weights are optically broadcast to the edge device from a server.

In order to see how eliminating on-chip weight storage significantly lowers energy

consumption, it is helpful to use figure 3-1 and determine the energy consumption

requirements needed to operate the client. The client contains four hardware com-

ponents that consume energy. First, a digital-to-analog converter (DAC) is used to

encode the input activations as shown by the "encode" arrow in figure 3-1. Second,

a Lithium Niobate modulator (labeled MZM in figure 3-1) is used to modulate the

received weight elements with the encoded input activations. Third, a bank of time

integrators is used to accumulate the partial products at the "integrate and read

out" arrow of figure 3-1. Finally, an analog-to-digital converter (ADC) is used to

71

digitize the output of the time integrators. The key point to note here is that all of

the client components that consume energy are being used for computation in the

optical domain (the MZM), computation in the electronic domain (time integrator),

or data encoding and reading (DAC and ADC). In terms of memory, no resources are

needed for weight storage - only activation storage. This is a significant improvement

because activations require significantly less memory to store than weight parameters

[38]. Eliminating the need to store DNN weights on-chip helps netcast operate at

1000 times less energy than its digital electronic counterparts. The calculations that

support this are given in section 3.3.2 below.

3.3.2 Exploiting Optical Parallelism

Offloading weight storage from the client to the server helps netcast operate in an

energy regime that is three orders of magnitude below current digital electronics,

which currently operate at 1 pJ/MAC [13]. The goal of this section is to calculate

netcast’s energy consumption from the four client devices listed in section 3.3.1. First,

consider the DAC that encodes the input activations to be modulated with the weight

values. Encoding a single activation element 𝑥𝑗 at time 𝑗 requires 1 pJ of energy, which

is expensive. However, the energy cost per MAC can be scaled down dramatically by

exploiting the parallel nature of optical signals. Specifically, the DAC output is fanned

out to 𝑀 different optical channels where 𝑀 is the number of optical wavelengths

that the system uses. This means that, for an energy cost of 1 pJ, the DAC is able to

facilitate 𝑀 MAC operations in parallel, which scales down the per-MAC energy cost

to (1/𝑀) pJ [13]. Similar to the DAC, the client MZM also requires 1 pJ of energy

to perform 𝑀 MACs in parallel for an energy/MAC cost of only (1/𝑀) pJ [13]. Just

as the DAC and MZM exploit 𝑀 -way optical fan-out in the frequency domain, so

also the time integrators and ADC are able to exploit fan-out in the time domain.

One key note is that using time integration means that the integrators and ADC

only need to read out and digitize the computation results after 𝑁 time steps [13].

Considering the time integrator energy consumption, this means that each of the 𝑀

integrators performs 𝑁 MACs over 𝑁 time steps, where each integrator requires 1 fJ

72

of energy to perform integration. Thus, the 𝑀 time integrators, after 𝑁 time steps

have performed 𝑁𝑀 MACs and consumed 𝑀 fJs of energy, for a per-MAC energy

cost of (1/𝑁) fJ. Finally, the ADC requires 1 pJ of energy per read but only needs

to read once for every 𝑁 time steps and therefore 𝑁 MACs of computation. Similar

to the time integrators, the ADC energy cost per MAC is (1/𝑁) pJ [13]. Using the

per-component energy costs allows us to write down the total energy consumption

for netcast using equation 3.16.

𝐸(𝑡𝑜𝑡𝑎𝑙)
𝑚𝑎𝑐 = 𝐸(𝑀𝑍𝑀)

𝑚𝑎𝑐 + 𝐸(𝐷𝐴𝐶)
𝑚𝑎𝑐 + 𝐸(𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑜𝑟)

𝑚𝑎𝑐 + 𝐸(𝐴𝐷𝐶)
𝑚𝑎𝑐 = (

1

𝑀
)𝑝𝐽 + (

1

𝑀
)𝑝𝐽 + (

1

𝑁
)𝑓𝐽 + (

1

𝑁
)𝑝𝐽

(3.16)

Following the example of [13], realistic near-term values for N and M are 𝑁 = 𝑀 =

100, which yields a total energy consumption per MAC of 𝐸
(𝑡𝑜𝑡𝑎𝑙)
𝑚𝑎𝑐 ≈ 10𝑓𝐽/𝑀𝐴𝐶,

which is three orders of magnitude lower than digital electronics. The energy con-

sumption calculations for netcast illustrate how optical parallelism in both the fre-

quency domain (𝑀) as well as the time domain (𝑁) allows netcast to downscale

its energy cost to levels that would be otherwise unachievable. Before moving on,

it is important to note that optical parallelism not only minimizes netcast’s energy

consumption, but also minimizes the level of thermal noise that affects the output

accuracy. This can be clearly seen in equation 3.14 where the SNR is given as a func-

tion of the number of time steps used for time integration, 𝑁 . Recall that modern

computing architectures require a SNR value of somewhere between 10-100 in order

to operate with a useful level of accuracy. Here, the netcast hardware performs at

98 percent accuracy with a SNR of 20 [13]. Using time integration allows netcast

to leverage parallelism in the time domain where the value of 𝑁 can be scaled to

boost the SNR to the desired level. Thus, as seen in equations 3.14 and 3.16, netcast

exploits parallelism in the frequency and time domains to both amortize the energy

cost of inference as well as achieve a high SNR.

73

3.4 Figure of Merit to Compare Netcast vs. Digital

Networks: Energy-Normalized Accuracy (ENA)

Before going into further detail regarding the netcast simulations, it is important to

clearly define the FOM that will be used to compare the results of netcast with those of

digital DNNs. While many machine learning papers only look at network accuracy,

this valuation of a network’s quality completely ignores the energy cost needed to

actually implement that network in hardware. Even the most accurate network may

not be practically useful if it is prohibitively expensive to run. The importance of

energy cost as a FOM is especially important in edge computing because the ability

to deploy neural networks to the edge assumes that the network in question is energy-

efficient enough to satisfy size, weight, and power (SWaP) constraints. Because both

energy efficiency and network accuracy should be jointly optimized for edge computing

applications, the FOM used in this thesis is the network accuracy normalized by the

energy cost of inference. This FOM, called energy normalized accuracy (ENA), is

given by the equation below.

𝐸𝑁𝐴(𝐴,𝐸) =
𝐴

𝐸
(3.17)

Where the accuracy 𝐴 is a scalar value in the range [0, 1], and 𝐸 is the energy

cost of running a single forward pass through the DNN. With this FOM in mind,

the netcast optical hardware can now be simulated in software to compare netcast’s

energy normalized accuracy to that of digital networks. Netcast simulations are

performed for both MNIST digit classification and scene recognition. Section 3.6

details the MNIST classification task, while section 3.7 describes the scene recognition

task. Before describing the task-specific results and comparisons, however, it is first

necessary to understand how the netcast hardware can be simulated. Both MNIST

classification and scene recognition use the same method, which propagates the per-

product calibration errors onto an arbitrary network’s final classification output using

stacked convolution. This method is described in section 3.5 below.

74

Figure 3-3: Netcast error distribution for partial products of the form 𝑤𝑚𝑛𝑥𝑛 [13].

3.5 Simulating Netcast: Theory and Methods

As described in section 3.2, calibration error introduces a per-product error distribu-

tion into the netcast computations. Figure 3-3 takes the error elements from figure

3-2 and depicts them as a probability density function (PDF) and cumulative dis-

tribution function (CDF) of the (optical-target) error. This partial product error is

helpful because it gives a sense of how accurate netcast can be on machine learning

tasks, which all consist of MAC operations. However, knowing the distribution of

partial product errors by itself does not give clear evidence that the netcast hard-

ware outperforms digital networks in terms of energy normalized accuracy (equation

3.17). While running netcast directly on large DNNs may seem like a straightforward

solution to this issue, the bandwidth limitations inherent in lab equipment makes

this method infeasible in terms of runtime. In order to directly compare netcast’s

accuracy and energy consumption to that of currently used DNNs, two quantities

must be determined. First, the partial product errors from figure 3-3 must be propa-

gated through a DNN architecture in order to simulate how accurately netcast would

perform computations within that architecture. Second, the energy consumption of

netcast must be computed for the chosen DNN architecture. These two quantities

can then be used to compute netcast’s ENA, which can then be compared to the

75

average ENA of DNNs run using digital electronics.

3.5.1 Netcast Activation and Weight Mapping in Software

Netcast maps floating point operations to optical intensities through a series of en-

coders and decoders illustrated in the left panel of figure 3-4. Floating point values are

normalized to the range [0, 1] and mapped to optical intensities through the transmis-

sion and reflection coefficients as given in equations 3.1, 3.2, 3.3, and 3.4. The optical

intensities are then mapped to voltage values at the output of the photodetector

(PD), which can then be converted back into floating point values through re-scaling

by the appropriate multiplication factor. The float → intensity → voltage → float

mapping that occurs in the netcast hardware can be simulated in software using the

fact that netcast downscales its computations to the [0, 1] range, performs the MAC

operations, and then re-scales back to the appropriate range. The float mapping for

both the activation value (𝑥) as well as the weight value (𝑤) is illustrated in the right

side of figure 3-4. Given some 𝑥 in the range [0, 𝑏] and some 𝑤 in the range [𝑐, 𝑑], the

activation is scaled to the range [0, 1], while the weight is scaled to the range [−1, 1]

and factored into the 𝑤+ and 𝑤− terms that are both in the desired range of [0, 1]. It

is safe to assume that the activation values are greater than or equal to zero because

the input to hidden layers in the architectures considered in this thesis use RELU,

which zeros out all negative activation values. In addition, the two data sets used to

simulate netcast both lie in the range [0, 𝑏], so the first DNN layer will see activation

values in that range. Multiplying 𝑥 𝜖 [0, 1] and 𝑤 𝜖 [0, 1] yields the product 𝑥𝑤 𝜖

[0, 1], which can then be upscaled to the original range [0, 𝑏]. Having established the

parallel between netcast’s mapping in hardware and the corresponding mapping in

software, section 3.5.2 below gives a high-level description of the methodology used

to simulate netcast.

76

Figure 3-4: A side-by-side comparison between the float → voltage mapping that
occurs in the netcast hardware and the corresponding input and weight mappings
that occur in the simulated netcast software. The hardware mapping consists of four
steps: re-scaling the input float to the range [0,1], mapping the scaled float value to
an optical intensity defined on the range [𝐼𝑚𝑖𝑛,𝐼𝑚𝑎𝑥], converting the optical intensity
to a voltage, and converting the voltage value to an output float value. In order to
accurately simulate netcast in software, the following mapping is performed. First,
the input activation is scaled to the range [0,1], while the weight matrix is scaled to
the range [-1,1]. Next, the weights are factored into 𝑊+ and 𝑊− matrices that are
both in the range [0,1]. The MAC operation between the activation and weight values
is computed with the added error elements and scaled to the same range as the input
activations.

77

3.5.2 Simulating Netcast: A High-Level Overview

With the product error distribution in hand along with a method that simulates opti-

cal computations in netcast, the partial product errors can now be directly integrated

into each MAC operation that netcast performs. The way to accomplish this is given

by the simple expression below.

𝑥𝑤 → 𝑥𝑤 + ∆ (3.18)

This expression means that simulating netcast on a DNN workload requires sampling

from the netcast error distribution (figure 3-3) to obtain ∆ and then perturbing the

partial product 𝑥𝑤. Sampled error values must be added to each partial product in

each MAC that occurs within the DNN. This strategy can be applied to both fully

connected and convolutional networks. Figure 3-5 illustrates a high-level overview

of how the netcast error data from figure 3-3 can be used to simulate netcast on a

fully connected DNN architecture, while figure 3-6 illustrates the netcast simulation

process for a convolutional network. Note that the basic process for simulating netcast

is essentially the same for both network architectures. First, the activations 𝑋 and

weights 𝑊 are preprocessed to convert 𝑋 to the range [0, 1] and 𝑊 to the range [−1, 1].

Then, 𝑊 is factored into 𝑊 (*,+) and 𝑊 (*,−), which are both in the range [0, 1]. The

preprocessed activations and factored weight matrices are multiplied elementwise to

give the Hadamard products 𝐻+ and 𝐻−, to which the error elements from figure 3-3

are added. Finally, the Hadamard products are post-processed and scaled to give the

desired output: a matrix multiplication for fully connected networks or a convolution

for CNNs.

On its face, this may seem like an easy process to implement, but there are three

main challenges that this approach introduces. First, modern CNNs contain millions

of MACs, while the error distribution only has 100,000 elements in it. Therefore, the

netcast simulation cannot simply draw directly from the error distribution because the

error probability mass is not evenly distributed. Direct error draws result in skewed

errors being simulated, which artificially drops the network accuracy. Second, neural

78

Figure 3-5: High-level illustration of how the netcast optical hardware can be simu-
lated a fully connected network that performs matrix multiplication. The activation
𝑋 and weights 𝑊 are preprocessed, and the activation vector is broadcast into a
matrix 𝑋*

𝑚𝑎𝑡. The weight matrix is factored into two terms: 𝑊 (*,+) and 𝑊 (*,−) that
lie on the range [0, 1]. The Hadamard products 𝐻+ and 𝐻− are formed, the error
distribution elements are added, and the perturbed products are then post-processed
to obtain the desired matrix-vector product, 𝑥⃗𝑊 𝑇 . Note that the error elements must
be added to the Hadamard products before post-processing in order to implement the
update rule given in equation 3.18.

79

Figure 3-6: High-level illustration of how the netcast optical hardware can be simu-
lated in a convolutional network. Note that the process here is very similar to the
fully connected case illustrated in figure 3-5, with the one major difference being that
the activation values are already in matrix form and don’t have to be broadcast from
a vector into a matrix.

80

network libraries like Pytorch can perform convolutions and matrix multiplications

very quickly, but Pytorch convolutional and fully connected layers do not allow inter-

nal modifications of the partial products before the accumulation part of the MAC

computation. While this is not a significant issue for matrix multiplication, it is a

challenge for convolutional networks because, in order to implement the update rule

given in equation 3.18, custom convolution functions must be constructed and imple-

mented. The third and final challenge is computation time. While Pytorch is great

at quickly running its own convolutional layers, implementing custom convolutions

takes significantly longer and ends up making it infeasible to run large convolutional

networks that implement equation 3.18. In order to address this challenge, a custom

convolution function called stacked convolution is developed, which derives inspira-

tion from the principle of convolutional reuse mentioned in chapter 2. Section 3.5.3

addresses the first challenge (sampling), while section 3.5.4 addresses the other two

challenges (custom convolution functions and computation time).

3.5.3 Netcast Error Distribution Sampling

The first challenge of simulating netcast - drawing error elements with the correct

distribution - is a relatively straightforward problem to solve. In order to generate

random draws from the difference distribution in figure 3-3, the netcast simulation

samples uniformly from the distribution’s inverse cumulative distribution function

(CDF). A proof that uniformly sampling from a distribution’s inverse CDF generates

random draws is given in appendix A and is based off of [2]. As shown in figure

3-7, the sampled distribution with 1,000,000 elements is very similar to the original

distribution of 100,000 elements and has the same mean and range.

3.5.4 Implementing Stacked Convolution

The convolutional networks used for scene recognition, as detailed in section 3.7,

require hundreds of millions to billions of MACs to run a single forward pass. This

introduces a significant challenge in creating a netcast simulation that can implement

81

Figure 3-7: Comparison between the original netcast error distribution (N=100,000)
and a sampled distribution (N=1,000,000) obtained by uniformly sampling the origi-
nal distribution’s inverse CDF. Note the similarity between the two distributions.

equation 3.18 in a reasonable amount of time, since custom convolutional layers take

significantly longer to run than Pytorch’s nn.Conv2d layer. One potential solution

would be to simply reduce the resolution of the input images. However, this detracts

from the purpose of the simulation- to see how netcast performs on networks that are

actually used in practice. Since modern CNNs take high resolution images as their

input, the netcast simulation should do likewise. Without modifying the image size

or the depth of the network, the principle of convolutional reuse can be leveraged to

implement a custom convolution function that simulates netcast’s per-product errors

accurately in a reasonable amount of time. Since the coding environment used for this

thesis is google colab, a "reasonable amount of time" is defined as <12 hours, which is

google colab’s runtime limit. In order to leverage convolutional reuse to implement an

efficient custom convolution function, it is important to understand how convolution

is typically implemented in software. As described by [68], 4D convolution on a batch

tensor consists of a series of nested for loops that iterate over each (2D input)-(2D

kernel) pair, as illustrated in figure 3-8. As seen in the figure, the standard method for

82

Figure 3-8: Standard method used to implement convolution. Each 3D input image
is paired with each 3D filter in the weight bank. Then, within each input-filter pair,
each channel is extracted and the 3D convolution is composed of a series of nested 2D
convolutions. In this case, each 3D convolution would consist of 3 2D convolutions
since there are three channels. While this method is straightforward to implement in
software, it results in prohibitively long run times and is therefore unsuitable for the
netcast simulation.

83

convolution looks at each 3D input image in the 4D image batch tensor. Each input

image is then paired with each 3D kernel in the 4D kernel bank. Because each image-

kernel pair has the same number of channels, the 3D convolution is composed from

a series of 2D convolutions, one for each channel. It is important to note that there

are advantages to using this convolutional method: it is conceptually simple, easy to

implement in software, and is able to finish computations in a reasonable amount of

time for smaller networks (2 convolutional layers or less). However, simulating netcast

on modern DNNs requires a more efficient convolution method because the CNNs that

netcast will be simulated on have much more than just 2 convolutional layers. For

example, the RESNET-50 network has 50 layers and requires over 2 billion MAC

operations for a single forward pass. This motivates the application of convolutional

reuse to construct a custom function that stacks the input activations and weights

in a way that implements 4D convolution as a stacked 3D convolution. The process

of mapping 4D convolution onto 3D convolution is accomplished in three steps: (1)

stack the input feature map (activations), (2) stack weight filters, and (3) use the

stacked input feature map and stacked weights to compute the 4D convolution as a

3D stacked convolution. These three steps are illustrated in figures 3-9, 3-10, and

3-11 respectively.

The first step (illustrated in figure 3-9) maps the input 4D batch tensor to a

stacked 3D tensor that can be convolved with a stacked filter. In order to stack the

4D input, each 3D tensor in the input batch is repeated 𝑀 times, where 𝑀 is the

number of 3D weights in the 4D filter bank. If there are 𝑁 3D images in the input

batch, this means that we will get 𝑁 groups of 𝑀 3D input tensors. Next, each

group of 𝑀 input tensors is stacked in the width dimension to form a single stacked

3D tensor to replace each tensor group. These 𝑁 stacked tensors are themselves

stacked in the width dimension to yield a single 3D tensor called 𝐼𝑠 that replaces the

4D input.

The second step stacks the weight bank and is illustrated in figure 3-10. First, the

weight bank is repeated 𝑁 times where 𝑁 is the number of 3D tensors in the 4D input

batch. Next, each repeated weight bank is padded with zeros to ensure that each of

84

the 𝑀 filters maps correctly to each of the 𝑁 3D inputs. After padding, each repeated

weight bank is then stacked in the width dimension, which results in 𝑁 padded and

stacked 3D weight tensors. Finally, the 𝑁 stacked weights are concatenated in the

width dimension so that the original 4D weight bank is replaced by a stacked 3𝐷

weight tensor called 𝐾𝑠.

With the stacked input and stacked weight tensors in hand, the 4D convolution

between the input and weights can be implemented as a 3D convolution between the

stacked input and stacked weights, as illustrated in figure 3-11. The first part of this

step consists of taking a standard 3D convolution between the stacked input 𝐼𝑠 and

stacked weight 𝐾𝑠. Since netcast error elements need to be added to each partial

product, 3D convolution can be implemented using equation 3.19 below.

(𝐶𝐹,𝑋)𝑖,𝑗 =
∑︁
𝐻

∑︁
𝑊

∑︁
𝐶𝐻

𝑛𝑥𝑛𝑤(𝐼*𝑠,(:,𝑖:𝑖+𝐾𝑠[0],𝑗:𝑗+𝐾𝑠[1])𝐾
*
𝑠 + 𝐵Δ) (3.19)

In the term (𝐶𝐹,𝑋)𝑖,𝑗, 𝐹 indexes the 3D filters in the filter bank, 𝑋 indexes the 3D

inputs in the input batch, and (𝑖, 𝑗) index the height and width dimensions respec-

tively. The summation indices 𝐻, 𝑊 , and 𝐶𝐻 represent the height dimension, the

width dimension, and the channel dimension respectively. 𝑛𝑥 and 𝑛𝑤 are normaliza-

tion factors derived from the stacked input and stacked weights. The star operator

(*) denotes the series of preprocessing steps illustrated in figure 3-6, which map 𝐼𝑠

and 𝐾𝑠 to the range [0, 1]. The indexing convention used in the stacked input term

is the standard (channel, height, width) convention, so that 𝐼*𝑠,(:,𝑖:𝑖+𝐾𝑠[0],𝑗:𝑗+𝐾𝑠[1])
is

a 3D tensor that includes all channels over the receptive field of the kernel at the

location (𝑖, 𝑗). 𝐾𝑠[0] and 𝐾𝑠[1] are the height and width of the weight kernel. Δ is

the error matrix drawn from the netcast difference distribution in figure 3-3, and 𝐵

is a 3D Bernoulli mask whose shape matches that of the error matrix. The purpose

of multiplying the error matrix by the Bernoulli mask is to map the error elements to

the correct spots in the preprocessed Hadamard product. Because the weight bank

was padded before being convolved with the input, the stacked weight tensor is sparse

and thus adding a raw error matrix ∆ to the Hadamard product will introduce excess

85

error at the padded locations. Multiplying by the Bernoulli mask ensures that par-

tial product error elements are only added to points in the Hadamard product where

input and weight products are actually calculated. Using equation 3.19 to convolve

the stacked input and the stacked weight results in a 2D matrix whose rows contain

the flattened convolutional outputs between the filters (indexed by 𝐹) and inputs

(indexed by 𝑋). Each row of this matrix can be reshaped from a 1D vector to a 2D

square tensor through row-wise stacking. Finally, each 2D row tensor can be stacked

and ordered in the channel dimension to produce the final 4D convolutional output

tensor. In order to validate that this method works properly, random 4D inputs were

convolved with random 4D weight banks using the three steps described above with

an error matrix of all zeros so that Δ = 0. The stacked convolutional results were

then compared to the ground truth output from Pytorch’s nn.Conv2D layer, and the

results were found to be the same.

By leveraging the principle of convolutional reuse, this custom convolution func-

tion allows the netcast hardware to be efficiently and accurately simulated for large

CNNs with high resolution images, which is a critical step in validating netcast’s

usefulness in real-world machine vision tasks.

3.5.5 Calculating Energy Consumption

Having addressed the three main challenges associated with simulating netcast (accu-

rately drawing from the error distribution, constructing a custom convolution func-

tion, and optimizing the runtime efficiency) the numerator term of the energy nor-

malized accuracy FOM (equation 3.17) can now be computed. Calculating the de-

nominator term of equation 3.17 is much more straightforward because the amount

of MACs needed to run a forward pass through modern CNNs is well known. In the

case of custom CNNs and fully connected networks, the MAC count needed for a

forward pass is not well known but can be easily calculated. A convolutional layer ℓ

that convolves an input with 𝐶ℓ
𝑖𝑛 channels uses a weight bank containing 3D kernels

of size (𝐶ℓ
𝑖𝑛, 𝜅

ℓ, 𝜅ℓ) since the number of channels in the kernel must match the number

of channels in the input. This means that a single 3D kernel in the weight bank will

86

Figure 3-9: The first step of constructing the stacked convolution function. In this
step, the 3D input images in the 4D input batch tensor are repeated 𝑀 times, where
𝑀 is the number of 3D weights in the 4D weight bank. In the figure, 𝑀 = 3. The
groups of repeated inputs are stacked in the width dimension, and these stacked inputs
are then concatenated in the width dimension as illustrated by the 𝑈 function. The
concatenated, stacked inputs form a 3D tensor that replaces the original 4D batch
tensor.

87

Figure 3-10: The second step used to construct the stacked convolution function. In
this step, the 4D weight bank consists of 𝑀 3D weight kernels and the input consists
of 𝑁 3D images. First, the entire 4D weight bank is repeated 𝑁 times- once for each
input image. Next, zero-value tensors are inserted between the 3D kernels in each
repeated weight bank in order to map the appropriate weight kernel to the appropriate
3D input tensor. Finally, the 𝑁 padded and stacked filters are concatenated in the
width dimension so that the original 4D weight bank is replaced by a padded 3D
weight tensor.

88

Figure 3-11: The third step used to construct the stacked convolution function. In
this step, the stacked input 𝐼𝑠 and the stacked weight 𝐾𝑠 are convolved to produce a
2D matrix where each row contains the flattened elements of 𝐶𝐹,𝑋 , which represents
the convolution between 3D filter 𝐹 and 3D input 𝑋. Note here that 𝑊 [0] is the
number of 3D filters in the filter bank, 𝑋[0] is the number of 3D inputs in the batch
tensor, and 𝐴 and 𝐵 are the output height and width respectively. Each row of
the 2D matrix can be reshaped into a square 2D tensor, which can be ordered and
stacked into the 4D tensor that corresponds to the 4D convolutional output. Note
that the netcast errors are added to the elementwise product 𝐼*𝑠,(:,𝑖:𝑖+𝐾𝑠[0],𝑗:𝑗+𝐾𝑠[1])

𝐾*
𝑠

where 𝐾𝑠[0] and 𝐾𝑠[1] are the height and width of the weight kernel. Also note
that

∑︀
𝐶𝐻 ... denotes a sum in the channel dimension and the matrix 𝐵 denotes a

Bernoulli mask that maps error elements to locations in the elementwise product
where input-weight partial products occur. Finally,

∑︀
𝐿 ... represents the sum over

the width and height dimensions of each input-kernel patch of the stacked product:∑︀
𝐶𝐻 𝑛𝑥𝑛𝑤(𝐼*𝑠,(:,𝑖:𝑖+𝐾𝑠[0],𝑗:𝑗+𝐾𝑠[1])

𝐾*
𝑠 + 𝐵∆)). The star (*) operator in this case denotes

preprocessing that scales 𝐼𝑠 and 𝐾𝑠 to the range [0, 1], and 𝑛𝑥 and 𝑛𝑤 are normalization
factors.

89

Table 3.1: Energy/MAC values for Digital Networks and Netcast

Network Energy/MAC
Digital 1 pJ/MAC
Netcast ≈ 10 fJ/MAC

perform (𝜅ℓ)2𝐶ℓ
𝑖𝑛 MACs at each location where the kernel is swept over the input. If

the output tensor has height 𝐻ℓ
𝑜𝑢𝑡 and width 𝑊 ℓ

𝑜𝑢𝑡, then there are (𝐻ℓ
𝑜𝑢𝑡𝑊

ℓ
𝑜𝑢𝑡)(𝜅

ℓ)2𝐶ℓ
𝑖𝑛

total MACs performed for a single 3D input - 3D kernel convolution. The number of

kernels in the weight bank controls the number of output channels, so the weight bank

must have 𝐶ℓ
𝑜𝑢𝑡 kernels, where 𝐶ℓ

𝑜𝑢𝑡 is the number of channels in the output tensor.

Since the weight bank has 𝐶ℓ
𝑜𝑢𝑡 kernels, and each kernel performs (𝐻ℓ

𝑜𝑢𝑡𝑊
ℓ
𝑜𝑢𝑡)(𝜅

ℓ)2𝐶ℓ
𝑖𝑛

MACs, the total MAC count for the convolutional layer is (𝐻ℓ
𝑜𝑢𝑡𝑊

ℓ
𝑜𝑢𝑡)(𝜅

ℓ)2𝐶ℓ
𝑖𝑛𝐶

ℓ
𝑜𝑢𝑡.

Since a convolutional network is a series of convolutional layers, the total MAC count

for a CNN can be computed as the sum given in equation 3.20 below.

𝑀𝐴𝐶𝑡𝑜𝑡𝑎𝑙 =
∑︁
ℓ

(𝐻ℓ
𝑜𝑢𝑡𝑊

ℓ
𝑜𝑢𝑡)(𝜅

ℓ)2𝐶ℓ
𝑖𝑛𝐶

ℓ
𝑜𝑢𝑡 (3.20)

For a fully connected network, the number of MACs per layer is simply the product of

the weight matrix height and width. The per-layer MACs can be summed to obtain

the following equation for a fully connected network.

𝑀𝐴𝐶𝑡𝑜𝑡𝑎𝑙 =
∑︁
ℓ

𝑊ℓ[0]𝑊ℓ[1] (3.21)

Where 𝑊ℓ[0] and 𝑊ℓ[1] are the height and width of the weight matrix for layer ℓ. Con-

verting from MAC count to energy consumption requires knowing the energy/MAC

cost for both digital networks and netcast. These two values, given by [27] and [13],

are shown in table 3.1. Using the information in the table along with equations 3.20

and 3.21 allows us to calculate the energy consumption for a given DNN architec-

ture. In section 3.6, netcast is simulated on the task of MNIST handwritten digit

classification, and its energy normalized accuracy is compared to that of its digital

90

counterparts. In section 3.7, netcast is simulated on an open problem in machine

vision: scene recognition for robotic localization.

3.6 Simulating Netcast on MNIST Digit Classifica-

tion

As a baseline test, the netcast hardware is simulated on a relatively simple machine

vision task: classifying handwritten digits from the MNIST data set. Simulating

netcast on this task consists of three steps. First, train and test a digital network to

obtain the weight matrix W. Second, using W, simulate a forward pass computed by

netcast using the stacked convolution function and the per-product error distribution.

Finally, compare the energy normalized accuracy of the netcast output to that of the

digital model. These steps are described in more detail below.

As shown in figure 1-10, an MNIST classifier maps input images of handwritten

digits to the correct category (0 through 9). The training set consists of 60,000 images,

while the testing set consists of 10,000 images. As a first step, the training and testing

data were grouped into batches of 50 images and resized to a resolution of 56x56.

After processing the data, two DNN architectures were constructed: a fully connected

network (FC3) and a convolutional network (Conv3). The FC3 architecture consists

of three fully connected layers of sizes 1000, 100, and 10, with RELU nonlinearities

between the first two layers and a Softmax layer at the end. The Conv3 architecture

consists of two convolutional layers, each with a RELU nonlinearity, followed by a

dropout layer. Dropout layers zero out random input elements with some probability

(in this case 𝑝 = 0.5) in order to prevent model overfitting. After the dropout layer,

the convolutional feature maps are flattened into a vector and fed through a fully

connected layer with 20 neurons and then finally through a Softmax layer.

The FC3 network was trained for 30 epochs using stochastic gradient descent

(SGD) with a learning rate of 0.01 and momentum of 0.9. Momentum can be thought

of as a moving gradient average that helps the model train more quickly [54]. Cross

91

entropy, as given in equation 1.13, was used as the loss function to be optimized. The

Conv3 network also used the cross entropy loss function, but was trained for only 10

epochs through the data. The Conv3 network was trained using the Adam optimizer,

which is a gradient-based optimizer that uses momentum and exponential moving

gradient averages to slightly outperform SGD [87]. After training, FC3 and Conv3

were tested and found to have accuracy values of 0.979 and 0.980 respectively.

After training and testing both FC3 and Conv3, the parameters from both trained

networks along with the stacked convolution function and netcast error distribution

were used to simulate netcast in both architectures. For both FC3 and Conv3, the net-

cast error distribution elements were added to each partial product for each forward

pass through the test set. Note that, since FC3 only implements matrix multipli-

cation, the stacked convolution method was not used for this architecture. Instead,

matrix multiplication at each layer was implemented using a series of preprocessing

steps to map the inputs and weights to the range [0, 1]. This preprocessing was fol-

lowed by elementwise multiplication between the inputs and weights, to which the

error distribution elements were added, as depicted in figure 3-5. The elementwise

products were then summed and post-processed to yield the correct matrix multipli-

cation. Since the Conv3 network contained a combination of convolutional and fully

connected layers, the above procedure was used to simulate the fully connected layers,

while the stacked convolution method from section 3.5.4 was used in the convolutional

layers.

After simulating the netcast hardware in both FC3 and Conv3, the energy con-

sumption of both networks was calculated using equations 3.21 and 3.20. The MAC

counts were then converted to energy consumption using the energy/MAC values in

table 3.1. With these energy consumption values in hand, the energy normalized

accuracy (ENA) of the digital networks (FC3 and Conv3) and the netcast simula-

tions (NetcastFC3 and NetcastConv3) were calculated and compared. The results

are given in table 3.2. These results indicate that the netcast hardware is able to

outperform its digital counterparts by three orders of magnitude in terms of accu-

racy per energy consumed. This provides strong evidence that netcast is much better

92

Table 3.2: Energy Normalized Accuracy for Digital Network and Netcast

Network Accuracy Energy Consumption ENA
FC3 0.979 3.24 𝜇J 0.300
Conv3 0.980 64.5 𝜇J 0.150e-1
NetcastFC3 0.975 32.4e-4 𝜇J 300.930
NetcastConv3 0.972 64.5e-3 𝜇J 15.070

suited to run DNN workloads in edge computing applications compared to digital

electronics. The code used to simulate netcast on MNIST digit classification can

be found here: https://github.com/jmcochrane1998/ONN-Simulation-Code.git.

While these results look promising, it could be argued that MNIST digit classification

is a relatively simple task that does not accurately represent the state of the art when

it comes to machine vision. This is true, and section 3.7 simulates netcast on a much

more advanced application that lies at the cutting edge of current machine vision

research: scene recognition for localization in mobile robotics.

3.7 Simulating Netcast on Scene Recognition For Robotic

Localization

3.7.1 Introduction and Overview

Recall from section 1.3.2 the second machine vision task that netcast is to be sim-

ulated on: training a mobile robotic system to recognize the scene at which it is

currently located. When integrated into a full stack system, this vision task allows

the robot to perform simultaneous localization and mapping (SLAM) to generate an

accurate topological map of its operating environment (similar to figure 1-14) and

know its current position in that environment. As described by [60], localization and

mapping for mobile robotics has both a quantitative and a qualitative component.

While the quantitative component focuses on accurate pose estimation for low-level

trajectory planning, the qualitative component focuses on understanding what topo-

93

https://github.com/jmcochrane1998/ONN-Simulation-Code.git

logical node (location) the robot is in. Similar to [60], this thesis focuses on the

qualitative aspect of localization, which is formulated as a k-way classification prob-

lem between different types of scenes. Unlike MNIST digit classification discussed

in section 3.6, scene recognition is challenging for several reasons. First, accurately

identifying scenes requires a weighted balance of both local image information (spe-

cific objects or shapes) as well as global image information (color or texture) [78]. For

example, identifying a kitchen might be done by detecting the presence of a specific

object class (dishes), whereas trying to identify a parking spot might call for reliance

on color and texture features instead of objects. In addition, [69] notes that mobile

robotics tasks including place recognition, SLAM, and pose estimation are subject to

high degrees of uncertainty, which can accumulate as the robot continues to operate.

As will be shown in section 3.7.2, recent advances in deep learning have significantly

increased the accuracy of mobile robot vision networks. However, many modern deep

learning approaches have optimized accuracy at the expense of energy consumption,

which leads to feasibility issues [78]. Edge devices (including small robotic platforms)

can typically source milliwatts of power, whereas large CNNs require watts of power

to run [13]. For example, using a VGG19 CNN to run a live video image recognition

system at 100 Hz speed requires 9.84 millijoules of energy per forward pass, which

corresponds to (9.84 * 10−3𝐽)(100𝑠−1) ≈ 1 watt of power. While the VGG19 might

be very accurate, its energy cost lies beyond what the robot hardware can source.

The high energy cost of running large-scale CNNs on mobile robots motivates the

application of netcast to compute the CNN workload instead of digital electronics.

3.7.2 Previous Work

The previous work related to scene recognition can be roughly divided into three

categories: (1) laser range data classifiers, (2) hand-crafted image descriptors, and

(3) deep learning methods. Major works in each category are given below.

94

Laser Range Data Classifiers

Early work in the field of scene recognition focused on the use of laser range data to

estimate the geometry of a scene and then semantically classify it. In [53], Mozoz et

al. input laser range data into a simple classifier model to determine the identity of

the corresponding scene. Zender et al. combine both visual and range data as well

as a linguistic framework to help the robot perform SLAM with multiple integrated

data sources [21]. The authors use a consensus-like algorithm called a voting matrix

formed from a receptive field occurrence histogram, which measures how often certain

filter responses and colors occur in an input image [21]. While laser-based methods

can achieve high accuracy in certain environments, their ability to generalize to a

variety of different scene types is limited. As noted by [60], classifying a scene from

laser scanning fails when two different environments have similar geometric structures

but different visual appearances. This limitation has motivated the use of visual data

captured from RGB cameras to perform scene recognition tasks. The next section

describes the major works that develop hand-crafted features from visual data to

perform scene recognition more robustly.

Hand-Crafted Image Descriptors

In [45], Lowe et al. developed the Scale Invariant Feature Transformation (SIFT),

which describes an image using gradients at and around a group of key points that are

calculated using a Difference of Gaussians (DOG) function [66]. Building off of SIFT,

the authors of [23] developed the Speeded-Up Robust Features (SURF) descriptor,

which uses integral images to make the key point detection step more efficient. Instead

of using a DOG function, SURF finds key points using the determinants of the Hessian

matrix at each location of the integral image. The locations that have maximal

Hessian determinants are selected as key points [66]. In [7], Dallal and Triggs develop

the Histogram of Oriented Gradients (HOG) descriptor, which partitions an input

image into small patches called cells. Within each cell, the gradient directions are

quantized and binned, and a histogram of gradient magnitudes is calculated using

95

the cell’s orientation bins. The histograms for the cells are stacked into a vector

that forms the HOG descriptor for that image [66]. Another major work in the

field is [52], in which Torralba and Olivia leverage the representational power of the

frequency domain to encode image spectral information using the discrete Fourier

transform (DFT) of an image. The authors use the DFT to encode and compress the

input image, and their work demonstrates a reasonable level of accuracy.

The above works helped move the field of scene recognition from a heavy reliance

on laser range data to methods that leveraged a scene’s rich optical information.

However, the rise of AlexNet in the 2012 ImageNet challenge demonstrated that the

path towards more reliable and adaptable scene recognition methods could be found in

the field of deep learning. Deep learning methods for scene recognition are discussed

next.

Deep Learning Methods for Scene Recognition

Instead of hand-crafting image features to classify a scene, convolutional neural net-

works use the deep learning methods discussed in chapter 1 to learn the optimal

filters that allow accurate and generalizable scene recognition. In [78], Wozniak et al.

posit the use of a VGG CNN architecture to perform scene recognition as an 11 class

classification problem. The authors use transfer learning to fine tune a VGG network

on custom data using stochastic gradient descent and a slight structural modifica-

tion of the fully connected layers. In [62], the authors consider the task of 3D scene

recognition using a custom DNN called ScanNet as well as a RESNET architecture.

While deep learning methods applied to scene recognition have demonstrated <10

percent error rates, [78] notes one major challenge associated with applying deep

learning to mobile robotics: energy costs. Like other SWaP-limited applications,

mobile robotics is constrained by limited battery life, and running large DNNs on

a mobile robot can incur significant energy costs [78]. Here, mobile robotics can be

conceptualized as a specific instance of edge computing. As discussed in section 2.2.2,

edge device SWaP constraints mean that feasibly deploying DNNs to mobile robotics

requires a joint optimization of accuracy and energy efficiency. This motivates the

96

application of netcast to mobile robotic scene recognition. Using the procedure de-

tailed in section 3.5, netcast is simulated on a scene recognition CNN and its energy

normalized accuracy (ENA) is compared to the average digital electronic ENA over

a group of selected CNNs. The details of the methodology are given in section 3.7.3

below.

3.7.3 Methods: Simulating Netcast on Scene Recognition

Because section 3.5 already gives a complete description of how netcast can be simu-

lated using stacked convolution and the netcast error distribution, those details will

not be repeated here. Instead, figure 3-12 gives a high-level description of the method-

ology used for the netcast scene recognition simulation. This methodology consists

of six steps:

(1) Acquire scene recognition training and testing data

(2) Select a group of CNN architectures to use (called 𝒮)

(3) Train each CNN 𝜖 𝒮 on the training data to get trained parameter matrices 𝑊𝑖

where 𝑖 indexes the individual CNNs in 𝒮

(4) Instantiate the netcast simulation on one of the CNN architectures in 𝒮 and com-

pute netcast’s energy normalized accuracy (called 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡)

(5) Run testing on each digital CNN in 𝒮, record each network’s ENA, and then

average the individual digital ENAs to find 𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙

(6) Compare 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡 to 𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙

Each step is described in more detail below.

Acquire Scene Recognition Training and Testing data

The data set used is the MIT Indoor Scenes data set, which can be found at https://

www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-2019/discussion. The

raw data set consists of 67 indoor scene classes with at least 100 images per class, for

a total image count of 15620. Following the example of [78], scene recognition is for-

mulated as an 11 class classification problem, where the 11 scene categories sampled

97

https://www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-2019/discussion
https://www.kaggle.com/datasets/itsahmad/indoor-scenes-cvpr-2019/discussion

Figure 3-12: Method used to simulate netcast on scene recognition. From a given
training set, train a selected group of CNNs using the Adam optimizer. The CNN
architectures chosen are depicted in the figure, and these specific architectures were
chosen because previous work uses VGG and RESNET ([78], [62]). Each trained
network’s parameter matrix is denoted by 𝑊𝑖 where 𝑖 indexes the CNNs in the group.
To run the netcast simulation, the RESNET18 architecture was chosen because it is
small enough to be simulated relatively quickly (≈ 1.5 hour) but also deep enough
to obtain a reasonable network accuracy. Using the netcast error elements from
figure 3-3 and the test data withheld from training, the netcast procedure outlined
in section 3.5 gives the simulated netcast accuracy, which can be divided by the
netcast energy consumption on RESNET18 to obtain netcast’s energy normalized
accuracy, 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡. Each digital CNN is tested on the same test data, and the
output test accuracies/energy are averaged to yield the digital accuracy per energy
value, 𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙. Finally, 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡 and 𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙 are compared to see how well
the netcast hardware performs relative to digital electronics.

98

Figure 3-13: Eleven scene classes sampled from the MIT Indoor Scenes Dataset.

from the raw data are shown in figure 3-13. To process the data, the images were

all converted to grayscale tensors and divided into training, validation, and testing

sets prior to mixing. This ensures that each data set contains images from each scene

class. The training set contained 2237 images, the validation set contained 161 im-

ages, and the testing set contained 160 images. Each ground truth label was mapped

to a one-hot encoded vector as is typically done in classification problems. After the

(image, label) pairs were processed and divided into train, validation, and test sets,

the data within each set was mixed and batched at 32. All images were resized to a

resolution of 168x168.

Select a Group of CNN Architectures

With the training and testing data in hand, the next step is to select a group of

convolutional networks that will be trained and tested on the data. Because prior

work uses the VGG and RESNET architectures, the selected group of CNNs used

(𝒮) is shown in figure 3-12. The VGG architecture consists of multiple convolutional

layers with RELU nonlinearities and max pool layers that iteratively downsample the

image resolution as the image goes deeper into the network [78]. After the series of

99

Figure 3-14: The residual block implemented in RESNET. Standard convolutional
networks like VGG learn the mapping 𝐹 (𝑥), which is susceptible to vanishing or
exploding gradients as the network depth increases. RESNET architectures instead
learn the mapping 𝐹 (𝑥) + 𝑥, which allows gradient information to flow through the
identity connection even if the gradient from the previous layer vanishes to zero or
explodes to infinity.

convolutional layers extracts the image features, these features are then run through

a series of fully connected layers that output a probability distribution over the 11

scene classes [78]. Like the VGG architecture, RESNETs have a series of convolutional

layers followed by a series of fully connected classification layers. The main difference

between the RESNET and VGG architectures is that a RESNET employs what are

often called skip connections to help solve the vanishing/exploding gradient problem

[39]. The vanishing/exploding gradient problem states that, as data passes deeper

into CNNs, the numerical values of the gradients used for training tend to either drop

to zero or explode to infinity. As the gradients either vanish or explode, the model

training fails to reach a reasonable level of accuracy. In order to address this problem,

RESNETs provide a skip connection that allows gradient information to flow through

the network during training in a way that is robust to vanishing or exploding gradients

[39]. The RESNET skip connection structure is illustrated in figure 3-14.

Train Each Digital CNN

The next step is to take the selected CNNs and train them. All of the chosen models

were trained using the Adam optimizer with a learning rate of 0.001. The loss function

optimized during training is cross entropy as defined in equation 1.13. Training each

100

CNN model for 30 epochs resulted in the parameter matrices represented in figure

3-12.

Run the Netcast Simulation

In order to use the procedure described in section 3.5, it is first necessary to select a

model architecture to use. From 𝒮, the RESNET18 was selected because it is both

small enough to simulate in a relatively quick amount of time (≈ 1.5 hours) and large

enough to provide good image features of the scenes. Using the RESNET18 trained

weight matrix, 𝑊𝑟𝑒𝑠𝑛𝑒𝑡18, in conjunction with the netcast error distribution and the

stacked convolution function, the netcast hardware was simulated on the test data,

and the output accuracy was found to be 60 percent. Next, the energy consumption

must be calculated. From [49], RESNET18 requires 0.91 GMACs (giga-MACs) to

compute a single forward pass. From table 3.1, this MAC count corresponds to an

energy consumption cost of about 0.91𝜇J. Thus, netcast’s energy normalized accuracy

is 0.6
0.91

= 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡 = 0.6593 𝜇𝐽−1. The code used to simulate netcast on the

scene recognition task can be found here: https://github.com/jmcochrane1998/

ONN-Simulation-Code.git.

Test Each Digital CNN and Find the Average Digital ENA

Each digital CNN (including RESNET18) was run on the test data as shown in figure

3-12. Table 3.3 shows the results. Averaging the per-network ENAs from the table

gives a digital energy normalized accuracy of 𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙 = 0.2007mJ−1.

Compare the Netcast Energy Normalized Accuracy to the Digital Energy

Normalized Accuracy

Comparing the accuracy per energy of netcast to that of the digital networks indicates

that netcast outperforms its digital counterparts on average by a factor of 3000 as

101

https://github.com/jmcochrane1998/ONN-Simulation-Code.git
https://github.com/jmcochrane1998/ONN-Simulation-Code.git

Table 3.3: Energy Normalized Accuracy (ENA) of Each Digital CNN Model. Note
that the star (*) here denotes a model with batch normalization.

Digital Model Accuracy Energy Consumption[mJ] ENA[mJ−1]
RESNET50 0.731 2.06 0.3549
RESNET34 0.675 1.84 0.3669
RESNET18 0.725 0.91 0.7967
VGG19 0.238 9.84 0.0242
VGG16 0.238 7.75 0.0307
VGG16* 0.500 7.77 0.0644
VGG13 0.238 5.67 0.0420
VGG13* 0.406 5.68 0.0715
VGG11 0.588 3.82 0.1539
VGG11* 0.388 3.82 0.1016

seen by the calculation below.

𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡

𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙

=
0.6593(𝜇𝐽)−1

0.2007(𝑚𝐽)−1
=

0.6593𝑒6𝐽−1

0.2007𝑒3𝐽−1
≈ 3000 (3.22)

This calculation, 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡

𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙
, represents an improvement of over three orders of

magnitude, the importance of which is discussed in the next section.

3.7.4 Results and Discussion: Netcast Versus Digital Elec-

tronics

How can the numerical result from equation 3.22 be interpreted? Here, it is impor-

tant to note that netcast already outperforms any digital network by three orders of

magnitude when it comes to energy consumption, as indicated by the energy/MAC

values in table 3.1. Because of netcast’s head start in energy consumption, the stan-

dard used to compare netcast to digital electronics is the following: netcast’s ENA

must exceed the digital ENA by at least three orders of magnitude. For example, if

the results from subsection 3.7.3 had been 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡

𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙
= 10 (one order of magnitude

improvement), these results would indicate very poor performance from netcast. This

is because an ENA improvement of 10 with an energy improvement of 1000 means

102

that netcast’s raw network accuracy was only 1 percent of its digital counterpart. Re-

gardless of the energy efficiency, such a small accuracy value (≈ 0.005) is well below

the threshold of practical usefulness. On the other hand, having an ENA improve-

ment, 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡

𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙
= 1000 (three orders of magnitude) lies at the threshold of good

performance since it indicates that netcast’s accuracy matched that of its average

digital counterpart with significantly less energy consumed. Therefore, with an ENA

improvement factor of 3000, netcast takes a significant lead over its digital electronic

counterparts in the task of scene recognition.

Before concluding, it is important to address the raw accuracy of the models in

table 3.3 - namely the fact that even RESNET isn’t as accurate as current work

in the field. While this is true, the point of this thesis was not to develop a novel

scene recognition network but rather to simulate a novel ONN accelerator on rele-

vant CNN workloads that are commonly used in scene recognition. The comparison

that this thesis focuses on is netcast performance vs. digital performance for any

given parameter matrix. Another important note is that the data size used in this

application is significantly smaller than that used by current work to include [78]

and [62]. Since the FOM used in this thesis is not just network accuracy (but rather

ENA), all of the models in table 3.3 were trained from scratch, whereas current work

commonly uses transfer learning with much larger data sets. Therefore, data aug-

mentation and transfer learning are two short-term techniques that can be used to

increase the raw network accuracies used to simulate netcast. The key point here is

that the simulated netcast ENA depends on the per-product error distribution from

figure 3-3 for any given DNN weight matrix. Therefore, even if transfer learning and

data augmentation were applied to increase the raw DNN accuracies, this would not

significantly affect the 3000 factor ENA improvement demonstrated by netcast be-

cause the numerator and denominator terms of 𝐸𝑁𝐴𝑛𝑒𝑡𝑐𝑎𝑠𝑡

𝐸𝑁𝐴𝑑𝑖𝑔𝑖𝑡𝑎𝑙
would increase by similar

amounts. Therefore, regardless of the raw accuracies in table 3.3, the netcast hard-

ware is able to significantly outperform modern digital electronics and thus enables

the energy-efficient deployment of large DNNs to SWaP-constrained edge applications

like mobile robotics.

103

3.8 Conclusion and Summary

As discussed in section 3.3, netcast leverages frequency-domain and time-domain

parallelism to run DNNs at 1000 times lower energy costs as well as minimize thermal

noise (section 3.2). While this improvement in energy efficiency is important, energy

costs alone do not demonstrate netcast’s effectiveness on real-life machine vision tasks.

In order to determine whether or not netcast can outperform digital CNNs, two tasks

were chosen: MNIST classification and scene recognition. In section 3.5, a custom

convolution function was constructed that leveraged the principle of convolutional

reuse. This stacked convolution function allows the netcast error distribution to be

propagated through any DNN architecture, thus allowing netcast to be simulated in

software. Using the stacked convolution method, both machine vision use cases were

considered separately. The first task of MNIST classification is a canonical vision

problem, and it is not very surprising that netcast was able to perform well. After

validating netcast’s baseline performance, a more challenging application area was

considered: scene recognition. This use case is challenging because accurate scene

recognition requires a balanced understanding of both local image features as well as

global image properties. Previous work in this field has tried to use laser range data,

hand constructed features, and image Fourier representations. The recent advances

in deep learning and the application of CNNs to vision problems have dramatically

increased the localization accuracy of robotic systems. However, as noted by [78],

one major obstacle that hinders the scalability of large DNNs in mobile robotics is

that large networks require billions of MACs to run inference, which in turn requires

a significant amount of energy. This motivates the simulation of netcast on the task

of scene recognition. Comparing netcast’s energy normalized accuracy to that of its

digital counterparts indicates that the ONN is able to outperform digital networks by

well over three orders of magnitude. The simulation results provide strong evidence

that netcast is able to jointly optimize both accuracy and energy consumption in

large DNNs applied to mobile robotics. Netcast opens the door to novel applications

that allow powerful AI networks to be employed by small edge devices, and the range

104

of possibilities for such technology is virtually limitless.

105

106

Chapter 4

Establishing Acceptable Performance

Metrics: Policy Implications of

Netcast

Having demonstrated netcast’s ability to integrate DNNs into edge computing hard-

ware, this chapter considers specific applications that netcast could enable. These

applications are then used to motivate a policy analysis that considers how accept-

able performance standards should be distributed over netcast’s application space.

While the policy analysis in section 4.3 applies to all potential netcast applications,

this chapter starts with five specific applications to establish a clear starting point.

Before discussing applications, section 4.1 looks at the functional limitations of apply-

ing netcast to edge computing. Section 4.2 then focuses on five specific applications,

which are divided into two general categories: civilian (section 4.2.1) and military

(section 4.2.2). Section 4.3 then taxonomizes the netcast application space, proposes

two metrics to quantify acceptable performance standards, and considers how these

acceptable performance metrics should be applied to netcast’s application space.

107

4.1 Netcast Limitations

As discussed in chapter 3, netcast is able to perform computation with about 1000

times less energy than currently used digital electronics. In addition, netcast’s energy

normalized accuracy (ENA) for scene recognition is 3000 times greater than the digital

ENA. While these results are promising, it is important to acknowledge that netcast

has two major limitations: (1) susceptibility to electrostatic discharge (ESD) and (2)

the inability of C-band optical signals to travel through arbitrary media.

Netcast’s first limitation comes from the fact that it is fabricated using Com-

plementary Metal–Oxide–Semiconductor (CMOS) technology. CMOS is a popular

fabrication technique used to make integrated circuits (ICs), including those used

in netcast. Although CMOS is the technique of choice used in modern CPUs, mi-

croprocessors, and cell phones, devices fabricated using CMOS can be damaged or

destroyed with as little as three volts of electrostatic discharge [55]. While this is not

a significant issue in the lab, many industrial and military applications are prone to

ESD. This means that organizations desiring to use the netcast technology should

pay close attention to how their proposed system shields netcast’s ICs from ESD.

This will likely require additional costs in terms of time and money spent designing

ESD shields, but such costs may be worth it depending on the application.

Netcast’s second limitation comes from the fact that a C-band optical beam con-

nects the server and client. In all the applications discussed in section 4.2 below, a

linear (or piecewise-linear) path connects the DNN weight server to the edge device

client. This necessity for a linear server-client path comes from the fact that optical

light can’t go through solid matter such as walls. While [13] proposes a radio fre-

quency (RF) version of netcast that would be able to penetrate solid barriers, the

technology’s current version uses exclusively optical signals. This means that poten-

tial applications must have a relatively clear visual path between the weight server

and the client. This is a significant operational limitation because it limits the pos-

sible server-client configurations that can be practically employed in the short-term.

As a result, future work should focus on developing an RF version of netcast where

108

the server-client signal is capable of traveling through solid obstacles.

4.2 Potential Netcast Applications

Although the netcast hardware was designed with no specific use case in mind, the

technology opens the door to a virtually endless list of possible novel applications.

This diverse application space is centered around the idea of deploying computa-

tionally powerful DNNs to small hardware devices that can process data in real-

time. Section 4.2.1 lists three potential civilian applications of netcast: (1) deploying

microdrones to augment search and rescue operations, (2) autonomously exploring

the ocean floor, and (3) automating commercial facility safety inspections. Section

4.2.2 discusses two possible military applications: (1) autonomous targeting using

unmanned aerial vehicles (UAVs) for ground operations and (2) naval autonomous

targeting using autonomous underwater vehicles (AUVs). Each specific application is

discussed in more detail below.

4.2.1 Civilian Applications

This section describes how the netcast hardware can be applied to search and rescue

operations as well as autonomous ocean exploration and autonomous safety inspec-

tions.

Smart Microdrones for Search and Rescue (SAR)

Search and rescue (SAR) operations are challenging, complex, and often dishearten-

ing. SAR missions are generally characterized by two major challenges: (1) time is

critical because human lives depend on fast action and (2) the operating environment

is often hazardous [74]. When a disaster occurs, SAR teams are suddenly inundated

with a massive amount of problems and decisions with an unforgiving timeline. With

only a limited amount of information, rescuers need to quickly determine survivors’

locations, conditions, and the safest way to provide help [3]. The past decade has seen

an increased interest from researchers and SAR teams regarding the use of robotics

109

and AI to aid search and rescue operations. For example, two unmanned aerial vehi-

cles (UAVs) were used by SAR teams in 2006 to search for survivors after Hurricane

Katrina [74]. Also, [3] considers the application of small robotic systems to SAR op-

erations in places that human teams cannot access such as collapsed buildings. The

authors of [10] develop an image classification network that uses a series of hand-

crafted image features to map a disaster area in order to better inform SAR ground

teams. The application of robotic and AI systems to SAR operations comes with

several technical challenges, however [74]. First, the environments of many disaster

areas make the process of high quality sensing and data acquisition difficult [74]. In

addition, SAR robotic systems and UAVs have limited size and payload capacities,

which make it very difficult for such systems to source enough energy and onboard

memory to run large DNNs [74]. As a result of these technical limitations, current

work uses small convolutional networks that are only able to output low-dimensional

information (ex. a simple binary classification between a person being injured or not)

[15]. Such simple binary classifications provide very limited data to SAR teams and

give no indication of how to prioritize different survivors that are injured or how to

optimally navigate to them. Using larger DNNs to provide high-dimensional infor-

mation to SAR teams would provide a much more complete and clear picture of a

disaster area.

The limitations of current methods motivate the application of netcast to the

SAR problem. The netcast ONN is well suited for applications like SAR because

the hardware (1) significantly reduces the amount of energy needed to operate large

image processing DNNs and (2) eliminates the need for small UAVs to store weights

locally. While netcast could be used in a variety of SAR devices, this section focuses

on the integration of netcast into a small UAV. Figure 4-1 shows one potential way

in which a netcast-based system could be used to autonomously generate a high-

dimensional map of a disaster area. As shown in the figure, the DNN weight server

lives on a satellite that broadcasts the DNN parameters through free space to the

UAV. Using the weights from the server, the UAV then autonomously generates

a high-dimensional map of the disaster area that is transmitted to a nearby SAR

110

Figure 4-1: Applying the netcast ONN to SAR operations. The proposed system
integrates a space-based DNN weight server that contains the parameters that will
be used by the image processing networks located on the SAR drone. The weights
are broadcast from the satellite to the drone, which then uses a large CNN to au-
tonomously generate a high-dimensional priority map of the disaster area for the
SAR team. Such data could include information about the survivor locations, med-
ical status, as well as the optimal route to each person. The generated map is then
transmitted from the UAV to the ground team, which then uses the data to inform
how they choose to conduct their SAR ground operations.

team. This map would contain information including the location of survivors, their

status, and the optimal route to each survivor. This would give the SAR team

enough information to formulate an optimal rescue plan and help as many survivors

as possible.

AI-Enabled Autonomous Underwater Vehicles (AUVs) for Exploring the

Ocean Floor

Another possible netcast application would be using AI in small autonomous under-

water vehicles (AUVs) to help scientists generate a detailed map of the ocean floor.

Exploring the seafloor has many benefits, one of which is the extraction of minerals

and metals - including copper, zinc, nickel, gold, silver, and phosphorus - which are

111

used in many everyday applications such as modern cell phones and electric vehicles

[5]. Despite the importance of seafloor mapping, only 20 percent of the ocean floor

has been mapped in detail after nearly a century of effort [50]. In large part, the slow

progress is due to the fact that data taken over massive regions of the ocean floor

takes months to process by hand [42]. In the past few years, autonomous underwater

vehicles (AUVs) have been applied to this large-scale data collection task and have

generated very promising results. For example, AUVs were applied in [42] to collect

1.3 million high resolution images of the Hydrate Ridge seafloor. While the scientists

in [42] were able process the image data in a few days, the team still had to gener-

ate the seafloor map manually by clustering the AUV data. The processing time for

similar expeditions could be reduced further still if AUVs were equipped with DNN

technology that would enable quick and accurate image processing with minimal hu-

man supervision. This is where a netcast-based system can be developed and applied,

as illustrated in figure 4-2. In the proposed system, an expedition team would come

up with an initial set of object classes of interest (ex. mineral deposit, biological site,

etc...) that would be classified using a pod of AUVs. Each AUV would be assigned

a sub-area within the region being explored and would map that area using image

semantic segmentation with a DNN. Semantic segmentation produces a map where

pixels corresponding to the object of interest are distinguished from background pixels

that do not contain the object of interest. The subregion semantic maps would then

be combined into a map of the entire region, which could then be used to conduct

more targeted sampling at certain sites (ex. mineral deposits). Netcast is well suited

for this application because it allows small AUVs to operate with minimal energy cost

and no need to store onboard DNN weights.

Automated Facility Safety Inspections

Another potential netcast application is in the field of safety inspections for large

commercial and industrial companies. In this case, autonomous drones (UAVs) can

be paired with a mobile DNN weight server to conduct autonomous safety inspections

of potentially hazardous facilities (ex. pressurized chemical storage units). Facility

112

Figure 4-2: Applying netcast to mapping the ocean floor. In this system, a surface
vessel transmits the DNN weights to a fleet of AUVs, each of which is assigned a
subregion within the total area being explored. Each AUV uses an onboard DNN
to perform semantic segmentation within its subregion. The individual subregion
semantic maps are combined into a single map that shows where different sites of
interest are located. This map allows scientists to then conduct more targeted and
time-efficient sampling of selected sites (ex. mineral deposits).

113

safety regulations have been developed by both the Environmental Protection Agency

(EPA) as well as the Occupational Safety and Health Administration (OSHA). While

the EPA is primarily concerned with protecting local communities, OSHA focuses

on employee health and safety [47]. The main body of legislation governing safety

standards for hazardous chemicals in the U.S. is the Toxic Substances Control Act

(TSCA). This legislation defines the safety standards required of U.S. companies

storing hazardous chemicals as well as the methodology used by the EPA to conduct

on-site inspections to monitor compliance [51]. In the past few years, companies have

begun to research how drones can be applied to make the inspection process less

expensive and risky for employees. Using drones saves companies the costs associated

with scaffold construction and maintenance, and it eliminates any safety liabilities

faced by company workers [56]. The application of netcast to automated inspection

is depicted in figure 4-3. Here, it is important to note that reliably imaging the interior

regions of storage tanks will require the DNN weight signal to take a piecewise-linear

path from the server to the client. This path can be facilitated through the use of a

secondary UAV to reroute the weight signal from the server to the client UAV that

actually performs the fault detection. This automates the safety inspection process in

a way that both saves costs for businesses and minimizes the risk faced by company

workers.

Using autonomous UAVs for safety inspections provides a significant financial and

safety benefit to companies, but it could also paint an inaccurate picture of how safe a

company’s facilities actually are. Regardless of who controls the inspection technology

(the company or the EPA), the autonomous system is subject to some degree of error

that could have significant impacts on the lives and welfare of both employees and

the public. In this case, the autonomous fault detection system could either miss a

fault (false negative) or incorrectly report a fault that does not actually exist (false

positive). A false negative means that an inspection incorrectly determines that an

unsafe chemical facility is safe. This error rate is not just a number - it could impose

significant health and safety hazards on the public and workers. The negative impacts

associated with different error types are discussed later on in section 4.3.

114

Figure 4-3: Application of the netcast ONN to plant safety inspection using au-
tonomous UAVs. Note that, because netcast uses optical signals, line-of-sight limi-
tations apply and this means that two drones will be needed to reliably image the
inside of storage units like the one shown in the figure. DNN weights are broadcast
from a mobile ground platform and are routed to the client using an intermediate
routing drone that redirects the optical signal as needed. With the optical weight
signal routed to the client, the imaging and fault detection UAV is then able to au-
tonomously image the inside of a storage unit and identify any faults relative to a
pre-defined detection threshold.

115

4.2.2 Military Applications

While the above applications use netcast in the civilian sphere, this section discusses

possible ways in which netcast can be applied to support military operations. While

the application of machine learning to military technology may seem like a far-off

concept, autonomous weapons are projected to enter the modern battlefield in the

2026-2032 time frame [79]. As the U.S. military changes its focus from counter insur-

gency operations to great power competition, AI will play an increasingly important

role in transforming the battlefield in every aspect from the front lines to the com-

mand centers [36]. AI’s increased relevance to the modern battlefield is reflected in

the recent budget demands from the military. Recently, the Pentagon has requested

a tenfold increase in the Navy’s autonomous systems spending along with a doubling

of the Army’s budget for developing autonomous ground systems [44]. Among the

numerous possible military uses that netcast could be applied to, specific focus is

given to autonomous targeting as presented in the two sections below.

UAV-Based Autonomous Targeting

As described in training circular 2-19.01, military intelligence units are responsible for

providing accurate, relevant, and timely information to the battlefield commander,

who is the final authority to authorize lethal force against targets [40]. Currently,

military intelligence companies (MICOs) employ RQ-7B Shadow UAVs to monitor

the battlefield and locate relevant enemy targets. While the Shadow UAV has proven

effective, it is limited to a range of 125 km (line of sight) and does not possess any

onboard AI capabilities. Because the RQ-7B uses signals in the same frequency range

as netcast (the C-band), the netcast hardware can be integrated into the Shadow UAV

to significantly increase its operating range and enable autonomous targeting within a

defined area. This autonomous targeting system is illustrated and described in figure

4-4. As shown in the figure, the weight elements are broadcast from the space-based

weight server to the UAV, which then uses onboard DNNs to generate a map of the

battlefield that identifies enemy locations, capabilities, and current activities. This

116

Figure 4-4: Applying netcast to autonomous targeting for military operations. The
DNN weight server lives on a satellite that broadcasts DNN parameters to a UAV.
Using onboard deep convolutional networks, the UAV is then able to identify and track
targets autonomously in real-time. As the UAV tracks enemy targets, relevant target
information including target description, activity, status, and location are sent to an
artillery unit that verifies and engages the enemy with the appropriate munitions.

information is then sent to an artillery unit that confirms and engages the targeted

enemy. Placing a DNN on a UAV will enable real-time targeting over a significantly

longer range since the DNN weights are broadcast from a space-based weight server.

This will help give U.S. forces the intelligence edge needed to match or outperform

near peer military rivals in ground combat operations.

AI-Enabled Autonomous Underwater Vehicles (AUVs) for Naval Targeting

Operations

The underwater analog of the previous military application is illustrated in figure 4-5.

In this application, DNNs are integrated into a fleet of AUVs that can be used to au-

tonomously target enemy submarines that would otherwise be undetectable to surface

warships. Submarines are difficult to detect because they can hide under layers of cold

water that act as shields against surface ship hull-mounted sonar (HMS) sensors [76].

117

Figure 4-5: Applying netcast to autonomous targeting using AUVs. In this applica-
tion, the DNN weight server resides in the surface vessel, and the DNN weights are
broadcast to the fleet of AUVs. The AUV fleet is then able to autonomously detect,
target, and track enemy submarines.

Even more advanced detection mechanisms like magnetic anomaly detection (MAD)

are also unreliable since great power competitors like Russia have built submarines

using non-magnetic titanium [76]. Recent methods have leveraged the use of optical

signals in the blue-green region of the visible spectrum [75]. While this method pro-

vides a way to more reliably detect submarines, surface-based systems are limited in

range to relatively shallow regions. Here, netcast can be applied to transmit DNN

weights to AUVs that use optical signals to autonomously detect and target enemy

submarines. Deploying a fleet of AUVs combines the computational power of DNNs

with an autonomous targeting platform that is relatively small, fast, and difficult to

detect or hit. Note that the AUVs operate in a similar manner as a swarm in that

they share targeting information with both each other as well as the surface vessel

that houses the command center.

118

4.3 Policy Implications of Netcast: Establishing Met-

rics of Acceptable Performance

The above applications are only a few examples of how netcast can be applied to

next-generation AI for edge computing. While the netcast hardware demonstrates

significant promise in helping AI solve increasingly complex problems, these techno-

logical promises come with concerns that should be carefully considered. One major

concern associated with AI-enabled systems is that such systems make errors, even

if they are able to outperform humans. Even the most accurate machine vision net-

work for a simple task like MNIST classification will have some error rate greater

than zero, and this error rate can have negative impacts depending on the applica-

tion. For example, the search and rescue network proposed above might incorrectly

classify an injured person as being uninjured, which might result in the person being

denied life-saving treatment. On the military side, the autonomous targeting network

might mislabel a friendly unit as an enemy one, which could result in friendly fire

and fratricide. Given the concerns raised by DNN error rates in the applications

proposed above, it is important to address the question: how can acceptable per-

formance metrics for netcast-based AI systems be defined, characterized,

and applied?. This question can be addressed by (1) looking at different types of

error associated with netcast-based systems, (2) defining clear and tangible metrics

that operationally define what "acceptable performance" means, (3) categorizing the

different applications based on their error types and magnitudes, and (4) figuring

out how the different performance metrics should be distributed over the different

application types. Each of these questions is detailed in the sections that follow. Sec-

tion 4.3.1 describes the types of error that a netcast-based AI system might make.

Section 4.3.2 introduces and defines numerical detection threshold (P) and level of

human control as two concrete metrics that describe acceptable performance in AI

systems. Using the different error types, section 4.3.3 categorizes the netcast ap-

plication space using two dimensions: (1) the magnitude of error impacts and (2)

the distribution of negative impacts between different error types. Finally, section

119

4.3.4 proposes a distribution of the acceptable performance metrics over the different

application categories.

4.3.1 Error Types in a Netcast-Based AI System

This section looks at how error rates in netcast can result in detrimental real-world

impacts for each of the application areas discussed in section 4.2. Before delving

deeper into the specific types of error, however, it is first necessary to map the com-

plexity of modern machine vision classification to a simpler problem: binary (0-1)

classification. One common thread among each of the applications presented in sec-

tion 4.2 is that each maps input visual data (a picture of a disaster, ocean floor,

chemical plant, or battlefield) to some semantic label that detects the presence or

absence of some key property of the scene in question. For the search and rescue

application, this label might be a high-dimensional vector that encodes the location,

status, and optimal paths to various survivors. For autonomous targeting, the label

might contain the target identity (enemy or friendly), weapon class (tank, artillery,

etc...), and location. Regardless of the specifics, each application considered in this

thesis is some sort of image classification problem, where the exact dimension and

type of output is determined by user needs. In order to analyze the decisions made by

an AI system in a simple way without sacrificing generality, the rest of this chapter

considers the simplest and most fundamental vision task: binary classification. In

this task, there are only two possible states: the positive class (ex. the weapon in

question is an enemy) or the negative class (ex. the weapon in question is not an

enemy). General image classification can be mapped to binary classification with no

loss in generality because any k-way classification problem can be decomposed into

a series of k binary classification problems. With this task in mind, figure 4-6 shows

the two types of error that a binary classification network can make: false positive

error and false negative error. A false positive occurs when a network incorrectly

predicts the positive class, while a false negative happens when the network predicts

a negative class incorrectly.

In some cases, a false positive and false negative may have similar or equal detri-

120

Figure 4-6: Two error types associated with a simple binary classification problem:
false positives and false negatives.

mental impacts. For the autonomous search and rescue system, the positive class

means that the person in question is injured and requires critical aid, while the neg-

ative class implies that the person does not require aid. Thus, a false positive means

that the network classifies an uninjured person as needing critical aid. Assuming that

the aid time and resources are limited, this likely will mean that other people who

are actually in need of aid are less likely to receive the help they need. In contrast,

in a false negative, the network determines that an injured person doesn’t need aid.

As a result, the person in need of help will likely not receive it. Assuming limited aid

resources and time, false positive and false negative errors in this case both result in

similar outcomes: those in need of aid do not receive it.

Another example where false positive and false negative errors have similar im-

pacts is the application of autonomously mapping the ocean floor. Here, the positive

class means that the region imaged contains material of interest (rare earth metals,

biological hotspots, etc...), while the negative class indicates that the region contains

no materials of interest. A false positive means that the netcast system scans an

area without materials of interest but inaccurately reports the area as containing the

material of interest. In a false negative, the netcast system sees an area that contains

materials of interest, but incorrectly labels that area as not being of interest. While

121

the false positive and false negative error types in this case are again different, they

both produce the same final result: the research team fails to acquire the material

that they were searching for. While there may be edge cases where a false positive

happens to be of some benefit to the researchers (ex. they find a useful material dif-

ferent than what they were searching for), these edge cases are by far the exception

rather than the rule. Thus, similar to the search and rescue application, the final

results produced by both error types in this case are very similar.

In contrast to the above examples, false positive and false negative errors can

have very different impacts. The civilian application that illustrates this point is

automated safety inspections. In this case, both false positive and false negative

errors yield suboptimal outcomes for either the company or the local community,

but the potential severity of the impacts varies greatly depending on the type of

error that is made. In this case, the positive class is defined as the plant being

unsafe, while the negative class corresponds to the plant being safe. Thus, a false

negative corresponds to an error in which the netcast system images an unsafe facility

and incorrectly classifies it as being safe. A false positive occurs when the system

incorrectly concludes that a safe facility is not safe. In this case, a false positive will

not be optimal for the company because it forces company executives to needlessly

facilitate a human inspection and possibly conduct unnecessary repairs. While false

positives are not ideal, false negatives in this case can be deadly. If the AI system

incorrectly concludes that an unsafe plant is safe, then the undetected safety hazard

could endanger the lives and welfare of the plant workers and the local community.

Thus, in this case, a false negative carries significantly more weight than a false

positive even if both error types are be equally likely to occur.

The errors discussed so far have analyzed the relative distribution of negative

impacts between false positive and false negative errors. Another important con-

sideration is that the sheer magnitude of impacts from error rates (regardless of the

type) can also vary drastically between different applications. For example, error rates

in the military application of autonomous targeting carry significant consequences:

friendly fire. In contrast, error rates in the ocean floor mapping application do not

122

carry the same magnitude of impact because human lives and safety do not directly

rely on the AI system.

4.3.2 Defining Acceptable Performance Metrics for Netcast

AI Systems

The goal of this section is to define the metrics that determine acceptable levels of

performance in netcast-based AI systems. While it is common in the deep learning

community to define system performance solely as output accuracy, this metric often

fails to give a holistic picture of how well systems actually perform [72]. Instead of

using accuracy, this chapter uses a more nuanced metric that captures a network’s

confidence in its prediction as well as human operators’ level of trust in the network’s

prediction. Recall from section 4.3.1 that this chapter has mapped generic image

classification to binary classification. This means that a network’s confidence level for

its prediction is defined by a threshold probability (P), where any output probability

greater than P yields a positive class prediction [11]. For example, if 𝑃 = 0.6, then

the network will need to output a probability greater than or equal to this value in

order to predict the positive class. This means that the network must be at least

60 percent confident in its prediction. Having concretely defined the confidence of

an AI system as its detection threshold (P), the degree to which human operators

trust an AI system can be expressed through the level of human control. There are

three regimes of human control over AI systems in the literature: human-in-the-loop,

human-on-the-loop, and human-out-of-the-loop [16]. A human-in-the-loop system

requires a human to have maximal control so that any decision that the AI makes can

be manually overwritten. Human-on-the-loop allows AI to make low-level decisions

autonomously, but any major decisions that have moral ramifications (ex. firing a

weapon) require approval from the human operator. Human-out-of-the-loop leaves

the human operator with no control of the AI system and allows the autonomous

decision capabilities to progress unchecked [16].

These two metrics - detection threshold and human control - quantify the level

123

of acceptable performance that a netcast AI system must achieve in an application.

For example, specifying a detection threshold of 𝑃 = 0.99 with a human-in-the-loop

means that the AI system in question needs to be at least 99 percent sure of the

decisions that it makes, with all of these decisions being approved by the human

operator. At the other extreme, a detection threshold of 𝑃 = 0.1 with a human-out-

of-the-loop means that the AI system only needs to be 10 percent sure of its decisions

with no human involvement needed.

Although the detection threshold and level of human control aren’t the only met-

rics that can be used, they can help policymakers get a general idea of how to regulate

the architecture and human-machine interfaces associated with future tech applica-

tions that use netcast or similar ONN technology. As seen in section 4.3.1, different

applications present different health and safety risks, each of which calls for a differ-

ent level of human control and detection confidence. For example, human-in-the-loop

control over AI is less important in a system designed for underwater exploration

than in an autonomous military targeting system that could result in the taking of

human life. While this thesis has focused on only five applications, the general space

of potential netcast use cases is almost limitless. This motives a general taxonomy

that categorizes netcast’s diverse application space, which is done in section 4.3.3

below.

4.3.3 Using Error Types and Magnitudes to Categorize Net-

cast Applications

Having discussed the two error types in netcast applications (false positive and false

negative) as well as the two metrics that will be used to define acceptable performance

standards (threshold and level of human control), this section categorizes the netcast

applications along two dimensions: impact of failure and distribution of impacts. The

impact of failure describes the degree to which either a false positive or a false negative

harms the lives and welfare of people. For example, the impact of failure associated

with autonomous targeting is high because lives could be harmed by either false

124

Figure 4-7: Categorization matrix for netcast’s application space. The two dimensions
that sort this matrix are impact of failure and the distribution of impacts.

positive or false negative targeting errors. In contrast, the impact of failure associated

with mapping the ocean floor is low because errors (whether they be false positives

or false negatives) are unlikely to directly threaten the health and welfare of the

researchers involved. The second dimension used to categorize netcast applications is

the distribution of impacts, which measures the amount of harm potentially caused

by a false positive versus a false negative error. For example, as discussed in section

4.3.1, autonomous search and rescue operations have a relatively equal distribution

of impacts. This is because both false positive and false negative errors end in similar

consequences: a person who needs aid doesn’t get it. In contrast, autonomous safety

inspections are an example with a highly unequal distribution of impacts. A false

positive is an inconvenience for a company, while a false negative constitutes a public

and employee safety hazard.

Using the two dimensions listed above allows the general space of netcast applica-

tions to be partitioned into the matrix shown in figure 4-7. While the matrix contains

the netcast applications discussed in this chapter, it can be applied to any potential

future application of either netcast or a similar ONN deep learning technology. As

shown in the figure, the application space is partitioned according to the magnitude

of impact that occurs from error rates as well as the impact distribution between false

positive and false negative errors. Using this matrix to categorize netcast applica-

125

tions allows the performance metrics from section 4.3.2 to be applied to each different

application category, which is done in section 4.3.4 below.

4.3.4 Applying Acceptable Performance Metrics to Netcast’s

Application Categories

Having defined the metrics of acceptable performance and partitioned netcast’s ap-

plication space using figure 4-7, the acceptable performance standards for each appli-

cation type can now be determined. The goal of this chapter is not to establish

fixed, exact numerical standards for netcast-based systems but rather to

give policymakers a general distribution of the performance metrics based

on the application type.

It is helpful to consider the two dimensions that sort the matrix that categorizes

netcast’s applications. Intuitively, netcast applications that are high-impact have

significant effects on the people associated with those applications, which means that

humans should exercise a high degree of control over the technology. Maintaining

human-in-the-loop control over high-impact AI systems is important, not only for the

moral reason that human lives are on the line, but also because of two pragmatic

considerations: public support for AI and liability law.

An important element that influences how technology is brought from the lab

into a functioning society is the way in which the technology is perceived by the

public and its future users. An example that illustrates this point is autonomous

weapons. Although the technology needed to develop and field autonomous weapons

has been around for years, the technology has yet to make a major appearance on the

battlefield largely due to the lack of trust from military commanders and the general

public, some of whom view AI-enabled weapons as "killer robots" [8]. The attempt by

30 countries to preemptively ban autonomous weapons is largely rooted in distrust,

which stems from the perceived lack of human control over the technology [37]. Those

who are in favor of developing autonomous weapons have emphasized the critical

importance of integrating meaningful human control that places lethal autonomous

126

decision making under careful human supervision [6]. This example illustrates a more

general principle: people do not trust technologies that can affect human lives without

appropriate human control. In order for the applications discussed in this chapter

to progress from paper to practice, both the operators of the technology as well as

the general public will need to possess a baseline level of trust in the technology.

Establishing this trust will be much easier if the high-impact technology is monitored

and controlled by human operators.

Another important reason why high-impact technology should be subject to strict

human control is the way in which legal liability is assigned following a system er-

ror. Because it is impossible to assign legal liability to a machine, deploying a fully

autonomous system that could impact human life gives rise to a very difficult legal

problem: who to blame when the system makes an error. If a fully autonomous sys-

tem makes a mistake, the operator usually can’t be held liable because the system

was functioning on its own. The designer usually can’t be blamed assuming that the

autonomous system was not developed with intentionally malign purposes. While

tort law could be applied to recompense victims in a civilian context, this sidesteps

the question of assigning legitimate moral blame to the relevant party. In addition,

tort law does not apply to military applications, virtually all of which are likely to be

high-impact. Having a human closely involved with high-impact AI systems makes

the assignment of liability in the case of an error much more straightforward.

Having seen why high-impact AI systems should be subject to a high degree of

human control, the second dimension of the matrix in figure 4-7 should be consid-

ered: the distribution of impacts. This dimension has a relatively straightforward

relationship to the detection threshold metric. Namely, applications that have un-

equally distributed impacts between false negative errors and false positive errors

should have a detection threshold that favors the class with the smaller negative im-

pact. For example, in the autonomous safety inspection example, if the positive class

means that the facility has a safety fault, then the AI detection system should have a

threshold value that is small and therefore biased in favor of predicting the positive

class. Biasing the detection threshold, in effect, avoids the highly negative impact

127

Figure 4-8: Applying acceptable performance metrics over netcast’s four application
categories.

associated with incorrectly labeling an unsafe facility as safe. Of course, the detection

threshold should try to jointly optimize the network output accuracy (the number of

true positives and true negatives) but should also place more probability mass on the

side of a positive detection.

The acceptable performance levels for different netcast application types are il-

lustrated in figure 4-8. Note that the detection threshold bias given on the vertical

axis maps to an actual detection threshold value (P) depending on how the posi-

tive and negative classes are defined. Therefore, moving in the positive direction of

the detection threshold bias axis can be thought of as stepping through a series of

threshold values (P) that bias the predictions to favor either false positives or false

negatives as desired. The point of the figure is two-fold. First, netcast applications

with an unequal distribution of impacts should have their detection thresholds biased

towards either a false positive or a false negative error, whereas such biasing is not

as relevant to applications with an even distribution of impacts. Second, applications

with high magnitude impacts of error (ex. military applications) should prioritize a

high degree of human control regardless of how the impacts of different error types

are distributed.

128

4.3.5 Netcast Policy Implications: Conclusion

While the netcast technology opens the door to a potentially infinite number of fu-

ture applications, two general characteristics can be used to categorize netcast’s ap-

plication space: the impact of system error and the distribution of negative impacts

associated with different error types. The metrics of detection threshold and human

control can be used to get a more concrete picture of the performance standards that

a netcast-based AI system can be held to. While the detection threshold describes

how confident the system is with its own predictions, the level of human control de-

fines how confident the system operator is regarding the AI’s decision. Using the

application categories from figure 4-7 as well as the two performance metrics, the

standards that a netcast-based AI system should achieve can be described with two

principles. First, AI systems that significantly impact human life and welfare should

be subject to a high degree of human control. Second, systems with a skewed impact

distribution between different error types should have detection threshold values that

are biased to favor the less damaging outcome. ONN technology like netcast has the

potential to transform the way in which AI is applied across numerous fields, and this

technological promise should be accompanied by a careful consideration regarding the

moral, ethical, and policy implications that accompany this cutting edge technology.

129

130

Appendix A

Proof that Uniform Samples From an

Arbitrary Distribution’s Inverse CDF

Generate Random Draws From that

Distribution

Let 𝑋 ∼ Uniform[0,1] be a uniform random variable. We want to sample an arbi-

trary PDF, call it 𝑓𝑌 (𝑦) where the random variable 𝑌 is related to 𝑋 through the

deterministic function 𝑔. That is, 𝑌 = 𝑔(𝑋) ∼ 𝑓𝑌 (𝑦). We consider the function

𝑔(𝑥) = 𝐹𝑌 (𝑥)−1 where 𝑥 is an instantiated value of the random variable 𝑋 and 𝐹 is

the inverse CDF of the random variable 𝑌 . If the function 𝑔 satisfies the definition

of the CDF - that 𝑃 (𝑌 ≤ 𝑦) = 𝐹𝑌 (𝑦), then we know that 𝑔 generates samples from

the distribution of 𝑌 as desired. To see that 𝑔 does indeed sample from 𝑓𝑌 (𝑦) as

desired, the function can be substituted into the definition of the CDF to obtain the

following.

𝑦 = 𝑔(𝑥) = 𝐹𝑌 (𝑥)−1 → 𝑌 = 𝑔(𝑋) = 𝐹𝑌 (𝑋)−1 (A.1)

𝑃 (𝑌 ≤ 𝑦) = 𝑃 (𝐹𝑌 (𝑋)−1 ≤ 𝑦) = 𝑃 (𝑋 ≤ 𝐹𝑌 (𝑦)) (A.2)

131

Figure A-1: Plot of the Probability Density Function of 𝑋, 𝑓𝑋(𝑥). The CDF is
obtained by integrating over the region 𝑆. Note that 𝐹𝑌 (𝑦) is a deterministic number
and thus is the upper limit of the integration in 𝑥.

Since 𝑌 and 𝑋 are continuous random variables, the CDF can be expressed as an

integral over the region 𝑆 that is bounded as shown in figure A-1. From the figure

and using equation A.2, we get...

𝑃 (𝑋 ≤ 𝐹𝑌 (𝑦)) =

∫︁
𝑆

𝑓𝑋(𝑥)𝑑𝑥 =

∫︁ 𝐹𝑌 (𝑦)

0

𝑓𝑋(𝑥)𝑑𝑥 (A.3)

𝑃 (𝑋 ≤ 𝐹𝑌 (𝑦)) =

∫︁ 𝐹𝑌 (𝑦)

0

1𝑑𝑥 = 𝐹𝑌 (𝑦)𝑃 (𝑌 ≤ 𝑦) = 𝐹𝑌 (𝑦) (A.4)

which is exactly the definition of the CDF. This means that the function 𝑔, which is

the inverse CDF 𝐹𝑌 (𝑥)−1 samples correctly from the distribution 𝐹𝑌 (𝑦).

132

Appendix B

Chapter 2 Supplemental Figures

The figures below are supplemental material from chapter 2.

133

Figure B-1: Example illustrating the multiply-and-accumulate (MAC) operation in a
vector-vector product.

134

Figure B-2: Example of weight stationary computation. A 1d input vector 𝑥 is
convolved with a 1d weight kernel 𝑤. the table shows the running values in each
PE as the computation is performed over time. During each time step 𝑖, input 𝑥𝑖 is
broadcast to each PE and the corresponding partial products are computed. From
𝑡 = 1 onward, processing engine 𝑃𝐸𝑗 transfers its stored result from time step 𝑖−1 to
𝑃𝐸𝑗+1. This results in a series of partial sums from which the desired output values
𝑦1 and 𝑦2 are computed as depicted.

135

Figure B-3: Example computation using an output stationary dataflow. In this ex-
ample, 𝑥 is being convolved with 𝑤 to form 𝑦 (top left part of figure). The top right
part of the figure shows the output stationary dataflow where weights and inputs
move in opposite directions along the PE array. Each time a weight and input arrive
at the same PE in the array, they are multiplied and accumulated to the current value
being stored in that PE. The bottom part of the figure shows how the 1d convolution
is performed over 6 time steps.

Figure B-4: Use of 1d convolutional primitives to compute a 2d convolution [85].

136

Figure B-5: Illustration of programmable resistive elements (memristors) for non-
volatile, high density memory. Note the weight stationary nature of the memory
where the resistors’ conductances 𝐺1, 𝐺2 encode the weights that are multiplied by
inputs encoded as voltages 𝑉1, 𝑉2. Applying Kirchhoff’s current law, it can be seen
that the output partial sum is given by 𝐼𝑜𝑢𝑡 = 𝐼1 + 𝐼2 = 𝑉1𝐺1 + 𝑉2𝐺2 [30].

Figure B-6: Comparison between energy costs with and without pruning in
GoogLeNet, SqueezeNet, and AlexNet [71].

137

Figure B-7: Knowledge distillation is used to train a small DNN (student) to output
the same accuracy as a much larger DNN (teacher). The key point in this method is
that training the student network directly on the data without the teacher network
results in a lower output accuracy.

Figure B-8: Using a RELU nonlinearity maps non-sparse matrices to sparse ones,
which helps increase the energy efficiency of DNN hardware. For example, the hard-
ware can be configured such that any MACs that correspond to a zero element ac-
tivation are skipped, thus allowing the network to run with fewer memory reads for
weight access [81].

138

Figure B-9: MobileNet uses a convolution factorization technique where the standard
convolution operation (as depicted in a) is broken up into two separate operations
that decrease the computational burden of implementing convolution in hardware.
This convolution method is called depth-wise separable convolution and consists of
two parts: (1) depth-wise convolution as depicted in b that is applied to each channel
separately followed by (2) a 1x1 point-wise convolution that forms a linear combina-
tion over the channels to form the final output of the convolution operation.

Figure B-10: A high-level architectural description of MobileNet. For each convolu-
tional layer, the filter sizes and the intermediate feature map sizes are tracked.

139

Figure B-11: Comparing the number of MAC operations in various MobileNet variants
versus the number of MAC operations required for a standard convolution operation
in FaceNet.

Figure B-12: The fire module that forms the computational basis for the SqueezeNet
neural network. Three hyper-parameters define each fire module: 𝑠1𝑥1 (the number of
1x1 convolutional kernels in the squeeze layer), 𝑒1𝑥1 (the number of 1x1 convolutional
kernels in the expansion layer), and 𝑒3𝑥3 (the number of 3x3 convolutional kernels in
the expansion layer).

140

Figure B-13: Architectural description of SqueezeNet. The structure consists of a
single standard convolution followed by a series of fire modules that ends with an-
other standard convolutional layer and a Softmax activation layer. Max pooling and
average pooling are used to downsample intermediate feature maps to the appropriate
resolution.

141

Figure B-14: A side-by-side comparison between different methods of compressing
AlexNet and the SqueezeNet method. As can be seen from the table, the SqueezeNet
architecture offers a significant improvement in the level of model compression relative
to other comparable methods while still maintaining model accuracy.

142

Bibliography

[1] Ilya Sutskever Alex Krizhevsky and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems 25 (NIPS), 2012.

[2] Dimitri P. Bertsekas and John N. Tsitsiklis. Introduction to Probability, 2nd
Edition. Athena Scientific, 2008.

[3] John C. Blitch. Artificial intelligence technologies for robot assisted urban search
and rescue. Expert Systems with Applications, 11(2):109, 1996.

[4] Kun Wang Bowen Zhang, Huaxi Gu and Yintang Yang. A novel conv acceleration
strategy based on logical pe set segmentation for row stationary dataflow. IEEE
Transactions on Computers, 2021.

[5] Coastal, Marine Hazards, and Resources Program. Seafloor minerals. Technical
report, United States Geological Survey, 2019.

[6] Adam Cook. Taming killer robots- giving meaning to the ’meaningful human
control’ standard for lethal autonomous weapon systems.

[7] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2005.

[8] Neil Davison. A legal perspective: Autonomous weapon systems under interna-
tional humanitarian law.

[9] Biology Online Dictionary. Axon terminal
url:https://www.biologyonline.com/dictionary/axon-terminal.

[10] Patrick Doherty and Piotr Rudol. A uav search and rescue scenario with human
body detection and geolocalization. In Proceedings of the 20th Australian Joint
Conference on Artificial Intelligence, 2007.

[11] MIT EECS. 6.862 applied machine learning course notes ch8
notes available on mit open course ware: https://openlearning.mit.edu/
courses-programs/mit-opencourseware.

143

https://www.biologyonline.com/dictionary/axon-terminal
https://openlearning.mit.edu/courses-programs/mit-opencourseware
https://openlearning.mit.edu/courses-programs/mit-opencourseware

[12] Adam Teman et al. International technology roadmap for semiconductors (itrs).
In Proceedings of Semiconductor Industry Association, 2013.

[13] Alexander Sludds et al. Wavelength multiplexed ultralow-power photonic edge
computing. arXiv preprint, March 2022.

[14] Andrew G. Howard et al. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arxiv pre-print, April 2017.

[15] Balmukund Mishra et al. A hybrid approach for search and rescue using 3dcnn
and pso. Neural Computing and Applications, 33, 2021.

[16] Doris Xin et al. Accelerating human-in-the-loop machine learning: Challenges
and opportunities. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning, 2018.

[17] Fang Liu et al. A survey on edge computing systems and tools. In Proceedings
of the IEEE Vol. 107, No. 8, 2019.

[18] Forrest N. Iandola et al. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5mb model size. arxiv pre-print, November 2016.

[19] Gopika Premsankar et al. Edge computing for the internet of things: A case
study. IEEE Internet of Things Journal, 5(2):1275, 2018.

[20] Guobin Chen et al. Learning efficient object detection models with knowledge
distillation. In Proceedings of Conference on Neural Information Processing Sys-
tems, 2017.

[21] H. Zender et al. Conceptual spatial representations for indoor mobile robots.
Robotics and Automation Systems, 56(6):493, 2008.

[22] Hengshuang Zhao et al. Pyramid scene parsing network.

[23] Herbert Bay et al. Speeded-up robust features (surf). Computer Vision and
Image Understanding, 110(3):346, 2008.

[24] Krishna Shankar et al. A learned stereo depth system for robotic manipulation
in homes. arxiv pre-print, 2021.

[25] Liang-Chieh Chen et al. Semantic image segmentation with deep convolutional
nets and fully connected crfs. In Proceedings of International Conference on
Learning Representations, 2015.

[26] Lin Wang et al. Service entity placement for social virtual reality applications
in edge computing. IEEE INFOCOM 2018 - IEEE Conference on Computer
Communications, 2018.

[27] Ryan Hamerly et al. Large-scale optical neural networks based on photoelectric
multiplication. Physical Review X, 9(021032), 2019.

144

[28] Ryuhei Hamaguchi et al. Effective use of dilated convolutions for segmenting
small object instances in remote sensing imagery.

[29] Tommso Zanotti et al. Smart logic-in-memory architecture for low-power non-
von neumann computing. IEEE Journal of the Electron Devices Society, 8, 2020.

[30] Vivienne Sze et al. Efficient processing of deep neural networks: A tutorial and
survey. In Proceedings of the IEEE (Volume: 105, Issue: 12), 2017.

[31] Weisong Shi et al. Edge computing: Vision and challenges. IEEE Internet of
Things Journal, 3(5), 2016.

[32] William (Red) L. Whittaker et al. Robotics for assembly, inspection, and main-
tenance of space macrofacilities. In Proceedings of AIAA Space Conference and
Exposition, 2000.

[33] W.J. Zhang et al. On definition of deep learning. In World Automation Congress
(WAC), 2018.

[34] Yunji Chen et al. Dadiannao: A machine-learning supercomputer. In Proceedings
of IEEE/ACM International Symposium on Microarchitecture, 2014.

[35] O. Vinyals G. Hinton and J. Dean. Distilling the knowledge in a neural network.
In Proceedings of Conference on Neural Information Processing Systems, 2014.

[36] Jim Garamone. Esper says artificial intelligence will change the battlefield.

[37] Stephen Goose and Mary Wareham. The growing international movement
against killer robots. Harvard International Review, 37(4):28, 2016.

[38] Ryan Hamerly. Netcast: Low-power edge computing with optical neural networks
via wdm weight broadcasting. MIT Quantum Photonics Group (QPG) Notes,
August 2020.

[39] Kaiming et al He. Deep residual learning for image recognition. In Proceed-
ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[40] Department of the Army Headquarters. Military intelligence (mi) company and
platoon reference guide.

[41] M. Horowitz. Computing’s energy problem (and what we can do about it),.
IEEE ISSCC Dig. Tech. Papers, 2014.

[42] Schmidt Ocean Institute. Artificial intelligence guides rapid data-driven explo-
ration of changing underwater habitats mapped onto one of the world’s largest
multiresolution 3d photogrammetric reconstruction of the seafloor.

145

[43] Somin Lee. Jaehyeong Sim and Lee-Sup Kim. An energy-efficient deep con-
volutional neural network inference processor with enhanced output stationary
dataflow in 65-nm cmos. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 28(1):87, 2020.

[44] Michael Klare. Pentagon asks more for autonomous weapons.

[45] David Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 2004.

[46] Kent H. Lundberg. Noise sources in bulk cmos.

[47] Thomas O. McGarity. Substantive and procedural discretion in administrative
resolution of science policy questions: Regulating carcinogens in epa and osha.
Georgetown Law Journal, 67(3):729, 1979.

[48] Eugene M.Izhikevich. Resonate-and-fire neurons. Neural Networks, 14(6), 2001.

[49] online documentation
https://mmclassification.readthedocs.io/en/latest/index.html.

[50] National Oceanic and Atmospheric Administration. How much of the ocean have
we explored? Technical report.

[51] U.S. Environmental Protection Agency Office of Enforcement and Compliance
Assurance. Compliance Monitoring Strategy for the Toxic Substances Control
Act (TSCA).

[52] A. Olivia and A. Torralba. Modelling the shape of the scene: A holistic rep-
resentation of the spatial envelope. International Journal of Computer Vision,
42(3):145, 2001.

[53] Cyrill Stachniss Oscar Martinez-Mozos and Wolfram Burgard. Supervised learn-
ing of places from range data using adaboost. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, 2005.

[54] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1):145, 1999.

[55] D.C. Pande Rajashree Narendra, M.L. Sudheer. Susceptibility of integrated
circuits to electrostatic discharge. International Journal of Advancements in
Research Technology, 1(4), 2012.

[56] Tarek Rakha and Alice Gorodetsky. Review of unmanned aerial system (uas)
applications in the built environment: Towards automated building inspection
procedures using drones. Automation in Construction, 93, 2018.

[57] E. Neftci W. Wan G. Cauwenberghs S. B. Eryilmaz, S. Joshi and H.-S. P. Wong.
Neuromorphic architectures with electronic synapses. In 2016 17th International
Symposium on Quality Electronic Design (ISQED), 2016.

146

https://mmclassification.readthedocs.io/en/latest/index.html

[58] J. Tran S. Han, J. Pool and W. J. Dally. Learning both weights and connections
for efficient neural networks. In Proceedings of Conference on Neural Information
Processing Systems, 2015.

[59] Sumit Saha. A comprehensive guide to convolutional neural networks — the eli5
way. December 2018.

[60] Raghavemder Sahdev. Place recognition system for localization of mobile robots.
Master’s thesis, Birla Institute of Technology and Science, 2015.

[61] Mahadev Satyanarayanan. The emergence of edge computing. IEEE Computer
Journal, 50(1):30, 2017.

[62] Mikhail Usvyatsov Shengyu Huang and Konrad Schindler. Indoor scene recog-
nition in 3d. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020.

[63] Weisong Shi and Schahram Dustdar. The promise of edge computing. IEEE
Computer Journal, 49(5):78, 2016.

[64] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Repre-
sentations (ICLR), 2015.

[65] Jeffrey S. Vetter Sparsh Mittal and Dong Li. A survey of architectural ap-
proaches for managing embedded dram and non-volatile on-chip caches. IEEE
Transactions on Parallel and Distributed Systems, 26(6):1524, 2015.

[66] D. Srinivas and K. Hanumaji. Analysis of various image feature extraction meth-
ods against noisy image: Sift, surf and hog. Journal of Engineering Sciences,
10(2):32, 2019.

[67] University of Alabama Strategic Communications Directory. Developing ‘third
wave ai’ to improve human performance. University of Alabama Article web
article, November 2019.

[68] Vivienne Sze and Joel Emer. Course notes for 6.s082/6.888 hardware architecture
for deep learning.

[69] Lei Tai and Ming Liu. Deep-learning in mobile robotics - from perception to
control systems: A survey on why and why not. arXiv preprint, August 2016.

[70] Chen Wu Tharam Dillon and Elizabeth Chang. Cloud computing: Issues and
challenges. In 24th IEEE International Conference on Advanced Information
Networking and Applications, 2010.

[71] Yu-Hsin Chen Tien-Ju Yang and Vivienne Sze. Designing energy-efficient convo-
lutional neural networks using energy-aware pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

147

[72] Antonio Torralba, Phillip Isola, and William F. Freeman. The Tiny Book of
Computer Vision. 2020.

[73] Y. Wang Y. Chen W. Wen, C. Wu and H. Li. Learning structured sparsity
in deep neural networks. In Proceedings of Conference on Neural Information
Processing Systems, 2016.

[74] Sonia Waharte and Niki Trigoni. Supporting search and rescue operations with
uavs. In Proceedings of the 2010 International Conference on Emerging Security
Technologies, 2010.

[75] Ashraf F. El-Sherifb Walid Gomaaa and Yasser H. El-Sharkawy. Underwater
laser detection system. In Proceedings of SPIE - The International Society for
Optical Engineering, 2015.

[76] Ryan White. Why are submarines so hard to find?

[77] L. Wilson. Energy versus data integrity trade-offs in embedded high-density logic
compatible dynamic memories. In Proceedings of 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), 2015.

[78] Piotr Wozniak. Scene recognition for indoor localization of mobile robots using
deep cnn. In Proceedings of International Conference on Computer Vision and
Graphics, 2018.

[79] Austin Wyatt. Charting great power progress toward a lethal autonomous
weapon system demonstration point. Defence Studies, 20(1):1, 2020.

[80] XenonStack. Difference between edge computing vs cloud computing? Xenon-
Stack web article, November 2021.

[81] J. Emer Y.-H. Chen, T. Krishna and V. Sze. Eyeriss: An energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE Journal of
Solid-State Circuits, 52(1):127, 2017.

[82] J. S. Denker Y. LeCun and S. A. Solla. Optimal brain damage. In Proceedings
of Conference on Neural Information Processing Systems, 1989.

[83] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convo-
lutions. In Proceedings of International Conference on Learning Representations,
2016.

[84] Joel Emer Yu-Hsin Chen and Vivienne Sze. Using dataflow to optimize energy
efficiency of deep neural network accelerators),. IEEE Micro, 37(3):12, 2017.

[85] Vivienne Sze Yu-Hsin Chen, Joel Emer. Using dataflow to optimize energy
efficiency of deep neural network accelerators. IEEE Micro, 37(3):12, 2017.

[86] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In Proceedings of the European Conference on Computer Vision, 2014.

148

[87] Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018
IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 2018.

149

	Applying Deep Neural Networks (DNNs) to Machine Vision Applications
	Deep Learning: Introduction and Background
	Two Common Deep Neural Network Architectures: Fully Connected and Convolutional
	Fully Connected Networks
	Two Common Nonlinear Functions: RELU and Softmax
	Convolutional Neural Networks

	Applying Deep Learning to Machine Vision: Object Classification and Scene Recognition
	MNIST Handwritten Digit Classification
	A More Challenging Application: Scene Recognition for Robotic Localization

	Chapter Conclusion and Summary

	Applying DNNs to Edge Computing: Challenges and Techniques
	Overview
	Edge Computing
	Benefits of Edge Computing
	Energy Costs: The Challenge of DNN-Based Edge Computing

	Minimizing the Energy Cost of Memory Access: Current Methods
	Method 1: Data Flow Optimization
	Method 2: Co-Location of Memory and Computation
	Method 3: Model-Based Energy Optimization

	Current Work: Hardware Architectures That Minimize Energy Access Costs
	Eyeriss
	MobileNet
	SqueezeNet

	Chapter Conclusion and Summary

	Simulating the Netcast Optical Neural Network (ONN)
	Overview of the Netcast Optical Neural Network
	Noise Sources in Netcast
	The Importance of Noise Sources
	Thermal Noise
	Shot Noise
	Calibration Errors

	Advantages of Netcast Compared to Digital Electronics
	Eliminating On-Chip Weight Data Movement
	Exploiting Optical Parallelism

	Figure of Merit to Compare Netcast vs. Digital Networks: Energy-Normalized Accuracy (ENA)
	Simulating Netcast: Theory and Methods
	Netcast Activation and Weight Mapping in Software
	Simulating Netcast: A High-Level Overview
	Netcast Error Distribution Sampling
	Implementing Stacked Convolution
	Calculating Energy Consumption

	Simulating Netcast on MNIST Digit Classification
	Simulating Netcast on Scene Recognition For Robotic Localization
	Introduction and Overview
	Previous Work
	Methods: Simulating Netcast on Scene Recognition
	Results and Discussion: Netcast Versus Digital Electronics

	Conclusion and Summary

	Establishing Acceptable Performance Metrics: Policy Implications of Netcast
	Netcast Limitations
	Potential Netcast Applications
	Civilian Applications
	Military Applications

	Policy Implications of Netcast: Establishing Metrics of Acceptable Performance
	Error Types in a Netcast-Based AI System
	Defining Acceptable Performance Metrics for Netcast AI Systems
	Using Error Types and Magnitudes to Categorize Netcast Applications
	Applying Acceptable Performance Metrics to Netcast's Application Categories
	Netcast Policy Implications: Conclusion

	Proof that Uniform Samples From an Arbitrary Distribution's Inverse CDF Generate Random Draws From that Distribution
	Chapter 2 Supplemental Figures

