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Abstract
Infrastructure inspection and maintenance is a necessary, and often costly, process required
for civil engineering structures throughout a project’s life-cycle to ensure continued safety
and serviceability. While many of these procedures have seen the introduction of technolo-
gies to assist, augment, or automate traditional methods of inspection, current practices for
assessing airfield pavement serviceability remain predominately manual. Though roadway
inspection has benefited from automation with the introduction of various types of sensor
arrays attached to automobiles, the characteristics of airfields and their pavements have
prompted research into the use of drones as a flexible, and low cost solution for automating
aspects of the inspection process. As one of the largest owners and operators of airfield
pavement across the globe, the United States Air Force has a unique interest in implement-
ing such a process in a way that is both compliant and compatible with current institutional
guidelines. Funded by the US Air Force Civil Engineering Center, this research proposes a
novel method for conducting an automated airfield pavement condition index (PCI) survey
on Air Force owned airfields using drone mounted imaging technology. Intermediate re-
sults from different stages of field testing over an auxiliary airfield located at the Air Force
Academy in Colorado Springs, CO are presented and discussed in detail. Ultimately, the
automated data collection and analysis developed by this study produced a PCI value of
56.5, which strongly agrees with manual inspection results that calculated a PCI value of
54 for the same runway. Also presented is a fiscal analysis of the autonomous method being
proposed. Using uncertainty analysis and Monte Carlo simulation, cost estimates are given
for replacing manual PCI inspections with an autonomous solution across a large number
of airfield pavement assets. These estimates provide economic insights into factors that
affect technological development and implementation and suggest that replacing manual
methods with an autonomous system could reduce inspection costs roughly 25%.

Thesis Supervisor: Herbert H. Einstein
Title: Professor of Civil and Environmental Engineering

3



4



Acknowledgments

I would first like to thank Professor Herbert H. Einstein, whom I spoke to for the first time
on January 31st of 2020 when he called to inform me that I had been admitted into MIT.
Professor Einstein has been my biggest advocate over the last two years and is a mentor in
my life whom I hold in the highest regard. I cannot adequately express my gratitude. He
has championed my research and given me the freedom to pursue my interests, while also
providing me with the resources, funding, and wisdom to transform those ideas into tangi-
ble results. As a student in his classes and a researcher in his lab, he has taught me to think
critically, organize, write, and communicate at a level far beyond my previous abilities. He
has read hundreds of pages of my work and given thoughtful, detailed, feedback in every
paragraph. And while all these professional contributions are deeply appreciated, what I
will remember most is the kindness and care he has shown me, not just as a researcher
or student, but as a person. Professor Einstein has always been intentional about making
the lab group feel like family and from my first meeting I felt like I was welcomed and
belonged. Thank you.

I am also forever grateful to Professor Melissa Beauregard at the United States Air
Force Academy. As a sophomore in college I was first introduced to geotechnical engi-
neering in her class and was also introduced to the exciting world of academic research
through an independent study course with her later that year. Somehow we parlayed that
one semester of independent study into a 2.5 year research project. During this time she
gave me the guidance, skills, and opportunities to develop as an academic, to write and
speak at conferences, to apply for funding/grants, and to apply to grad schools. She had
an open door policy on helping students and I appreciate her for letting me abuse that
generosity by constantly bombarding her with geotechnical questions and personal conver-
sations in her office. Without her I would not have been inspired to pursue a master’s, and
I most certainly would not have been able to do that at MIT. After graduating the Air Force
Academy she has remained a great mentor in my life, and an even better friend. Thank you
for the phone calls, life updates, dinners, drinks, puzzles, Billy Joel jam sessions, and rock
climbing adventures. And thank you to Chaz, Teddy, and V for letting me be a part of your
wonderful family.

My gratitude also extends to all the institutions that have supported my lifelong aca-
demic journey. I want to acknowledge all my teachers at Elitha Donner Elementary School,
Joseph Kerr Middle School, and Elk Grove High School and all of my professors at the
United States Air Force Academy and MIT. I thank the USAFA Civil Engineering depart-
ment for providing me with a passion for Civil Engineering and the facilities to conduct
my research. I thank the USAF Civil Engineering Center for financially supporting the
equipment needs of this research.

A very special thanks extends to my friends who brought me countless moments of joy
and laughter and helped me through the personal challenges of the last two years. Miggy,
you are and forever will be my best friend. Thanks for the phone calls and for listening
to my long rants about life. Thanks for getting me through breakups, long weeks at work,
and the moments I questioned all of my life choices. Thanks for always being ready for a
new adventure. You bring more excitement and joy into my life than I could ever imagine.

5



I know I can always count on you for anything and I can’t thank you enough for always
being there for me. Spencer, thank you for being my brother, through thick and thin. I
always look forward to our weekly phone calls and Bible study and although grad school
has been a uniquely difficult experience I am glad to have gotten the chance to experience
it with you. You are one of the toughest and most joyful people I know and your passion
to excel in all aspects of your life continues to inspire me and push me to be better. You
continue to hold me accountable to the person I want to become with a grace, acceptance,
and love that is truly unique to you. Christy, you are an astute and caring friend who is
able to empathize and understand me, even better than I am able to understand myself at
times. Thank you for your constant reassurance and support over the years and a lifetime of
unforgettable adventures. You have always had faith in my abilities, even when I doubted
them in myself. Andrew S., you are closer than a brother to me and will understand me
in a way few people ever will. Thank you for your unconditional friendship. Thank you
for deep conversations. Thank you for making me a part of your family and for several
incredible thanksgiving celebrations during my time here. Phil, thank you for being my
friend and roommate the last two years. You are one of the few people who understand
the unique struggles of being a grad student at MIT and while some moments of COVID
quarantine may have tested the depths of our friendship I am immensely grateful for the
memories and deep conversations we’ve gotten to share (not to mention all the exceptional
glasses of whiskey). Hoff, thanks for being one of the most solid friends a guy could ask
for. I am immensely impressed by your work ethic and your desire to improve in all areas
of your life. I look up to you more than you may realize and you inspire me to constantly be
pushing myself and growing. Thank you for holding me to the highest standard. Scott Alsid
and Ben Paulk, thank you for your fellowship, guidance, and deep theological discussions.

Lastly I thank my family. To my big brother, Andrew, thank you for always setting
a good example for me. You are a renaissance man who has pushed me to grow my in-
tellectual weaknesses and learn more about everything, not just science and engineering.
Thank you for the rich theological discussion and the book recommendations. You make
me proud to be your brother. To my Mom and my Dad, I cherish your unconditional love
and support. Thank you for giving me every opportunity in life to pursue my dreams and
encouraging me every step of the way. Thank you for the phone calls and for your contin-
ued wisdom and advice. I love you both dearly. And thank you to my fiancé, Hannah, and
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Chapter 1

Introduction

1.1 Context: Airfield Pavements and Infrastructure Main-

tenance

Aviation is a $3.5 trillion dollar/year industry (ATAG, 2020) that is a cornerstone of the

modern way of life. Supporting this industry are the billions of square feet of airfield pave-

ment that enable aircraft to take-off, land, taxi, and park. The U.S. alone spends nearly

$4 billion dollars on building or maintaining airfield pavement runways, taxiways, and

aprons each year (NAPA, 2014). Broken into two broad categories of material: (1) flexible

pavement (typically asphalt concrete), and (2) rigid pavement (typically Portland cement

concrete), the runway pavement has to accommodate planes with different requirements for

loading and wheel configuration to operate safely and repeatedly (Mallick and El-Korchi,

2018). Throughout the pavement’s lifespan, damages and distresses requiring maintenance

develop within the pavement’s structure and on its surface and are identified, categorized,
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and addressed using on information obtained from inspection. While natural surface run-

ways exist (dirt, gravel, ice, grass, etc.), they are not included in the discussion presented

in this paper.

1.1.1 Infrastructure Inspection and Maintenance

Infrastructure inspection involves evaluating a structure to asses its safety and serviceabil-

ity, thereby providing a system’s operator with valuable information required for mainte-

nance and upkeep (Fenves, 1984). Inspection and maintenance constitute a sizable, but

necessary, portion of life-cycle costs for infrastructure projects (Das et al.). To conduct

on-site inspections requires trained professionals, increasing the costs associated with this

process, while introducing human error, and posing a safety risk for the inspector (Lattanzi

and Miller, 2017; Ellenberg et al., 2016; Henrickson et al., 2016). This added cost and de-

gree of possible error is pushing many different industries toward integrating technologies

that can assist or completely automate the inspection process (Agnisarman et al., 2019).

Common structures like pavements, tunnels, dams, and bridges all require inspection at

regular intervals to find distress indicative of possible or impending failure (Lattanzi and

Miller, 2017). Performing both reactive and preventative maintenance in response to these

inspections oftentimes reduces the overall cost of major rehabilitative expenditures, while

also ensuring continued safety and serviceability (Symons, 2010).

As an organization, the US Air Force has a critical interest in maintaining nearly 2.2

billion square feet of airfield pavement assets (Ford, 2020) valued at roughly $20 billion

(Kemeny, 2018). The current regulations for ensuring the serviceability and mission ready

18



status of airfield pavements are mostly conducted by the Air Force Airfield Pavement Eval-

uation (APE) Team. This team is responsible for evaluating the Air Force’s airfield pave-

ments for over 200 installations, enabling 1.2 million hours of aircraft flight missions annu-

ally (Ford, 2020). Under their current operating model, the organization conducts roughly

20 comprehensive evaluations of airfields a year (Ford, 2020). Consequently, the APE

evaluation cycle for any given airfield is approximately once every 10 to 12 years (Ford,

2020).The tests conducted by the APE team include Airfield Pavement Structural Evalua-

tion, Runway Friction Characteristics Evaluation, Pavement Condition Index (PCI) Survey,

Power Check Pad Anchor Test, and Foreign Object Debris (FOD) index (USAFCE and

Cooper, 2017). These tests are then analyzed and summarized in reports and engineering

assessments that outline the current condition of the runway and provide recommendations

for operation and maintenance projects (USAFCE and Cooper, 2017). While this model

for pavement inspection has proven functional, there is benefit to having more current in-

formation on a pavement’s condition readily available. While engineers stationed locally at

bases can help supplement APE team efforts with additional inspection, as well as preven-

tative and reactive maintenance, there are limitations regarding manning, cost, operational

disruption, and subjectivity. Ideally, a new technologically augmented inspection system

could address these shortcomings to improve work efficiency, extend the overall lifespan of

the pavement, and provide increased confidence in continued mission serviceability. To ad-

dress this problem, the Air Force has begun investigating the use of drone mounted imaging

to more frequently inspect runways.
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1.1.2 Recent Technological Advances

The development of semi-autonomous pavement evaluation systems has grown signifi-

cantly in recent decades, employing a wide variety of data acquisition devices mounted

on a diverse range of platforms. The published research on pavement evaluation using pas-

sive remote sensors involves image analysis of pavements obtained in highly controlled or

strictly experimental settings (Manzo et al., 2014; Herold et al., 2008), from satellites (Oz-

den et al., 2016; Mohammed, 2017), from surface vehicle mounted systems (Rowe et al.,

2002; Chan et al., 2016; Wang et al., 2015), and from unmanned aerial vehicles (Henrick-

son et al., 2016; Inzerillo et al., 2018). Many of these early efforts, while showing positive

results, were not focused on detecting specific damages, but rather broad categorical clas-

sifications of entire images and road segments. While this may be sufficient for highways

and roads, airfield pavement management could benefit significantly from greater speci-

ficity. More recent efforts, both in general infrastructure maintenance, and pavements in

particular, have focused on manually overseen and partially autonomous crack segmenta-

tion from high resolution images in an attempt to identify which specific pixels within an

image represent a crack. These investigations still struggle to overcome challenges inherent

to pavement distress features like crack heterogeneity, feature sharing with non-crack ob-

jects (like joints and chipped paint), and highly variable surficial texture (Gopalakrishnan

et al., 2017).

Unlike highways, which have less stringent failure criteria, airport pavements are held

to a comparatively higher standard due to their loading patterns and failure tolerance. As

a result, the nature of airport maintenance is more preventative than that of highways,
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making detailed and frequent monitoring and intervention far more critical. Identifying and

quantifying specific pavement distresses and their locations is therefore needed to facilitate

pothole or spalling repair (Figure 1-1), foreign object debris removal, slab replacements,

crack sealing, joint resealing, surface treatments, localized skin patching, or any other form

of maintenance (Symons, 2010).

Figure 1-1: Air Force personnel work on repairing a section of runway. Image
courtesy of: https://www.defense.gov/News/News-Stories/Article/
Article/982954/air-force-engineers-repair-runway-in-iraq/

1.2 Research Objectives

The purpose of this research is to develop and assess a novel, partially autonomous, drone

mounted imaging system and detection algorithm that can conduct segmentation based

distress detection on an Air Force operated asphalt concrete runway at the United States Air

Force Academy in Colorado Springs, CO. The output of this system should be a Pavement

Condition Index (PCI) approximately equivalent to manually conducted PCI results.
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Achieving this objective involves the use of supervised machine learning algorithms

that are able to learn how to perform detection tasks from training data. Because the data

required to perform this pavement distress detection task do not yet exist for airfield pave-

ments, a major contribution of this study is providing an initial machine learning data set

and the methodological framework required to expand algorithm performance to other run-

ways in different conditions.

This research focuses detection objectives around cracking and patching distresses only

and excludes all other damages normally included in a PCI evaluation for asphalt concrete

pavements. The method proposed was not intended to meet the inspection criteria for rigid

pavements, which slightly differ from flexible pavements; however, small modifications

to the system’s operations and code could theoretically accommodate these differences.

This study presents initial validation of the proposed method and insight into future devel-

opments, which is a path toward expanding this approach to include additional distresses,

more airfield locations, and full automation. Finally a fiscal analysis of Air Force pavement

inspection that models replacing existing practices with an automated system is included

to provide insight into the economic desirability of a fully functioning autonomous system.

This research primarily focuses on adapting existing technologies to a novel application.

Including a fiscally focused system analysis provides a complete discussion of automated

airfield pavement evaluation, from technological development to real world implementa-

tion.
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1.3 Thesis Outline

To begin approaching the research objectives detailed in section 1.2, Chapter 2 starts with

an understanding of the physical problem by reviewing the basic structure of pavements and

how they deteriorate and eventually fail. Then a summary of current inspection and mainte-

nance practices will contextualize the problem and a detailed review of the PCI process will

provide the guiding framework for technological design and performance requirements. A

literature review of technologies used for similar structural inspection applications will

provide inspiration for potential approaches, while a review of drone systems and com-

puter vision algorithms will provide a strong understanding of the tools available for best

accomplishing this task.

Chapter 3 introduces Machine Learning (ML) algorithms and how they are taught to

perform a task. It also reviews the state of the art models available for image detection

tasks and provides a discussion on which options best suit the needs of this project.

Chapter 4 uses this background to develop the methodology used to complete the in-

spection objective of this research. An overview of system hardware, flight path optimiza-

tion, and data acquisition methodology is presented, followed by a detailed analysis of the

Convolutional Neural Network (CNN) used and how the algorithm was trained. The perfor-

mance of the trained Neural Network is presented and the process for extracting PCI values

from the Neural Network’s outputs is summarized. This chapter concludes by compar-

ing the results of manually conducted PCI calculations with those derived by the partially

autonomous method being proposed.

Chapter 5 takes a step back from the technological details and analyzes the autonomous
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method being proposed through a fiscal lens. Using uncertainty analysis and Monte Carlo

simulation, this chapter constructs a model that estimates the cost of replacing manual

PCI inspections with a competent autonomous solution across a large number of airfield

pavement assets. The technological system may still be in early stages of development;

however, this hypothetical implementation analysis gives insight into some key parame-

ters that influence future design, while roughly estimating potential economic benefits of

continuing this research to a robust implementation.

Chapter 6 concludes this discussion by providing a commentary on the results and

limitations of this body of work. The future work required to improve the initial design

concept validated by this research is also proposed.
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Chapter 2

Background

2.1 Airfield Pavement

2.1.1 Structure

Though designed to different standards based on use, pavements are structures that meet a

specific transportation need. Pavements are generally classified as either flexible or rigid

(Figure 2-1) depending on their material composition. Their purpose is to withstand loads

without excessive deformation to provide vehicles (or people) with a smooth functional

surface to travel over under different environmental conditions.

Flexible and rigid pavements are comprised of a series of asphalt, aggregate, and soil

layers that vary in thickness and material to provide a cost efficient manner of meeting

loading demands for the duration of a pavement’s design life. These layers, sometimes

referred to as “courses”, are designated as either subgrade, subbase, base, binder, or surface

and are typically arranged in the configurations similar to those shown in Figures 2-2 and
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(a) Image courtesy of: https://www.airport-technology.com/
contractors/apron_clean/asi-solutions/

(b) Image courtesy of: https://qph.fs.quoracdn.net/
main-qimg-e6334f118c1d34c3bf54bf1ebe362377

Figure 2-1: (a) Flexible pavement runway constructed from Asphalt Concrete (AC) (b)
Rigid pavement runway constructed from Portland Cement Concrete (PCC).
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2-3. In these configurations, the cost of a material generally increases the closer it is to

the surface and the best designs specify the thickness and material properties of each layer

to satisfying loading, drainage, workability, and serviceability requirements in the most

cost-efficient manner possible.
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(a) Typical flexible pavement structure

(b) Structural load distribution in a flexible pavement

Figure 2-2: (a) Flexible pavement pavements typically have multiple thick layers over sub-
grade with special coatings in between the layers to help with layer bonding or water infil-
tration. The surface coat is usually hot mix asphalt. (b) In flexible pavement, the surface
layer of asphalt concrete does not distribute a significant portion of the load and therefore
relies heavily on the thickness and composition of the subsequent layers to adequately dis-
tribute loading to the subgrade.
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(a) Typical rigid pavement structure

(b) Structural load distribution in a rigid pavement

Figure 2-3: (a) Rigid pavements normally have a thicker layer of Portland cement concrete
(PCC) at the surface, but generally require thinner subbase and base course layers than
flexible pavements. (b) Load distribution in a rigid pavement is primarily accomplished by
the PCC surface layer before being transferred into the base course, subbase, and ultimately
the subgrade.
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Ultimately, when discussing pavement design and management, regardless of the use,

Mallick and El-Korchi (Mallick and El-Korchi, 2018) summarize the most important issues

for an engineer to be aware of:

1. Drainage is needed to drain water quickly and effectively away from the pavement.

2. The materials must be evaluated and selected properly so that they can withstand the
effects of the traffic and the environment.

3. The mix must be designed properly such that it can withstand traffic and environ-
mental factors.

4. The structure should be designed properly such that it has adequate thickness to resist
excessive deformation under traffic and under different environmental conditions.

5. The pavement must be constructed properly such that it has desirable qualities.

6. The pavement must be maintained/managed properly through periodic work, regular
testing, and timely rehabilitation.

7. Sustainable technologies must be continuously incorporated in road construction pro-
cess.

8. Generation of knowledge through research is critical for ensuring good pavements in
the future.

2.1.2 Airfield Pavement Design

Airfield pavements are designed for three different use areas: (1) runways, (2) taxiways,

and (3) ramps/aprons (Figure 2-4). A runway is used for aircraft landing and takeoff,

taxiways are used for connecting runways to aprons, hangers, terminals, and other facilities,

and aprons are used for aircraft loading, unloading, and parking. Design differs based

on use because the structural loading requirements, airplane paths, and frequency of use

changes based on area type. For example, on an apron, planes will be moving at low speeds

along many different paths to a choice of terminals or parking spots; however, on a runways

airplanes are traveling fast or braking along a single designated path repeatedly. Over
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a 20-year design period, the runway pavement will undergo more loading cycles and be

much more heavily worn along a singular path, therefore has different design requirements.

The Federal Aviation Administration (FAA) imposes strict standards unique to airfields to

Figure 2-4: Airfield pavements have three main classification based on use: (1) runways,
(2) taxiways, and (3) aprons. Runways are used for landing and takeoff, taxiways for con-
necting runways with other facilities, and aprons for aircraft parking and loading/unloading.
Image courtesy of: https://www.aboutcivil.org/airport-components.

guide concrete mix and pavement layer design to avoid damage to aircraft and passengers.

The climate, the characteristics of applied loads, the subgrade (natural soil on site), and

the paving materials (subbase, base, and surface layers), are the four major components

considered in the design process to achieve the following results:

Airport pavements are designed and constructed to provide adequate support
for the loads imposed by airplanes and to produce a firm, stable, smooth, skid
resistant, year-round, all-weather surface free of debris or other particles that
can be blown or picked up by propeller wash or jet blast. To fulfill these re-
quirements, the quality and thickness of the pavement must not fail under the
imposed loads. The pavement [mix design] must also possess sufficient in-
herent stability to withstand, without damage, the abrasive action of traffic,
adverse weather conditions, and other deteriorating influences. This requires
coordination of many design factors, construction, and inspection to assure the
best combination of available materials and workmanship (FAA, 2016)
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For flexible and rigid pavements, the FAA method for design is a layered elastic and

finite element (FE) based process specified in AC 150/5320-6F (FAA, 2016), which in 2009

replaced AC 150/5320-6E (FAA, 2009), an empirically-based spreadsheet design method

previously governed by California Bearing Ratio (CBR) values.

The current method for flexible pavements uses the software FAARFIELD 1.41 to de-

sign pavement layers that fulfill the failure criteria of rutting (caused by compressive strain

responses at the top of the subgrade - Figure 2-7) and bottom-up fatigue cracking (caused

by tensile strain at the bottom of the asphalt surface layer - Figure 2-6). This software re-

quires aircraft traffic and an initial pavement structure as inputs. The aircraft traffic inputs

specify how many loading cycles each type of aircraft is predicted to have on the pave-

ment during its lifespan. Each type of aircraft is uniquely considered so the model is able

to consider the gear configuration and load distributions specific to each aircraft. The re-

quirements of the initial pavement structure input are shown in Figure 2-5. Then the model

adjusts pavement layer thickness until the pavement structure is able to withstand loading

requirements for the entirety of the structure’s design life.

Rigid pavements are poured in slabs, rather than being continuous like flexible pave-

ments. Therefore horizontal stresses at the edge of each slab are considered in addition

to internal stresses in the middle of the slabs. Like flexible pavements, these stresses are

determined using the aircraft traffic information as input. The model determines pavement

layer thickness by using a finite element approach and selecting the working stress for de-

sign as the highest value of the following three computations: (1) the interior stresses, (2)

75% of the free edge stress obtained with gear configurations oriented parallel to the slab

edge, and (3) 75% of the free edge stress obtained with gear configurations oriented parallel
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Figure 2-5: The FAARFIELD pavement design software is based on an iterative approach,
requiring this information as an initial input for the pavement structure. Then, using the
aircraft traffic and pavement structure information provided, layer thicknesses is adjusted
so the pavement satisfies a specified design life (FAA, 2021a).

to the slab edge. More detailed explanations, as well as examples of the rigid and flexible

pavement design process, can be found in AC 150/5320-6G (FAA, 2021a).
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Figure 2-6: Flexible pavements are designed to resist fatigue cracking, which occurs
when cyclic loading causes excess tensile strain on the bottom of the asphalt layer.
Image courtesy of: https://www.ukessays.com/essays/engineering/
fatigue-cracking-pavement-2611.php#citethis.

Figure 2-7: When the load on a pavement is insufficiently distributed by the
preceding layers, after enough cycles of loading the subgrade experiences no-
ticeable compressive strain, which is identified on the surface as rutting. Im-
age courtesy of: https://theconstructor.org/transportation/
types-failures-in-flexible-pavements-repair/16124/.
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2.2 Maintenance Practices

While dependent on size, the initial cost of an airfield pavement structure typically ranges

on the order of millions to tens of millions of dollars (Gibson et al., 2011). Due to repeated

loading and environmental factors like freeze-thaw cycles and water infiltration, pavements

all degrade with time and begin to exhibit signs of distress. After construction, pavement

tends to perform well for much of its service life, until “critical condition” is reached, and

deterioration occurs rapidly as shown in Figure 2-8.

The FAA reports that preventative maintenance (summarized in Table 2.1) and rehabili-

tation costs for good pavement prior to critical condition greatly extend pavement life (Fig.

2-9) and are four to five times less expensive than efforts for pavements that have already

reached “fair” and “poor” conditions (FAA, 2014b). While the details of different models

for optimal preventative maintenance vary, the literature supports the conclusion that the

long-term life cycle cost of regular maintenance and preventative upkeep is significantly

less than that of full rehabilitation after deterioration (Irfan et al., 2015); however even the

most sophisticated models fail to predict the optimal rehabilitation point exactly. Conse-

quently, continued inspection and current pavement condition data is vital to developing

and updating the most economic and informed pavement maintenance plan. Specialized

data management systems, like ”PAVER”, are sometimes used to assist in organizing and

analyzing PCI data across a large network of pavement assets to provide information and

insight guiding maintenance practices.
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Table 2.1: Different maintenance techniques can be employed to extend the life and ser-
viceability of an airfield pavement before full rehabilitation in required (Hajek, 2011).

Maintenance Techniques for Airport Pavement

Flexible Pavements Rigid Pavements Flexible and Rigid Pave-
ments

1) Sealing and filling of cracks 1) Joint and crack sealing 1) Shot Blast Texturization

2) Small area patching 2) Partial-depth repairs 2) Diamond grinding

3) Spray patching 3) Full-depth repairs 3) Microsurfacing

4) Machine patching with AC
material

4) Machine patching using hot mix

5) Rejuvenators and seals 5) Slab stabilization and slabjacking

6) Texturization using fine
milling

6) Load transfer

7) Surface treatment 7) Crack and joint stitching

8) Slurry seal 8) Hot-mix overlays

9) Hot-mix overlay 9) Bonded PCC overlay

10) Hot in-place recycling

11) Cold in-place recycling

12) Ultra-thin whitetopping
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Figure 2-8: Standard life cycle of airfield pavements with relative rehabilitation costs. If
regular maintenance is conducted early, under good pavement conditions, studies show that
the same rehabilitative outcomes can cost more than five times less than if they are delayed
(FAA, 2014b).

2.2.1 PAVER

Developed in the late 1970s for the Department of Defense by Colorado State University,

PAVERTM is a software for organizing, managing, and analyzing pavement inspection and

Pavement Condition Index (PCI) data across a network of pavement related assets. It is

capable of managing airfield, road, and parking lot pavement information and performs

multiple levels of analysis to guide the fiscal allocation process for maintenance and re-

pair resources across local and remote databases. The software can assist and augment

traditional inspection through the use of integrated global information systems (GIS) and

global positioning system (GPS) integration that provide tools like geo-referenced pave-

ment network maps. The US Air Force, US Army, US Navy, Federal Aviation Adminis-

tration (FAA), and Federal Highway Administration (FHA) are all major supporters of this
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Figure 2-9: Lifecycle effect of pavement preservation maintenance and upkeep. If small,
routine maintenance efforts are consistently implemented the pavement structure lasts
longer and total costs are reduced (FAA, 2014b).

platform (CSU).
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2.3 Inspection Practices and Airfield Pavement Condition

Index

The Airfield Pavement Condition Index (APCI), originally developed by the Army Corps

of Engineers for use by the US Air Force (Shahin et al., 1976; Kohn and Shahin, 1984), has

been adopted and verified by the FAA (FAA, 2014a) and the U.S. Naval Facilities Engi-

neering Command (USN, 1988), and is one of the most important metrics for quantifying

rigid and flexible airfield pavement condition. This visual evaluation method is indirectly

related to, but not intended to replace, direct roughness, structural capacity, texture, or fric-

tion measurements. In addition years of empirical data collected made it possible to relate

the PCI score to maintenance and repair requirements (ASTM, 2020).

On asphalt pavements this process works by dividing a runway into branches based on

function and sections based on construction, maintenance, usage history, traffic volume,

load intensity, and condition. Then using probability distribution requirements of a 95%

confidence interval, the number of sample units to survey from each section is determined.

Figure 2-10 displays the relationship between airfield branches, sections, and sample units

in the PCI process. Each sample unit is inspected visually, including measurements of as-

phalt pavement distresses categorized by type (Table 2.2) and severity: either low, medium,

or high. All pavements start with an initial score of 100. Then a tabulated metric known as

a ”deduct value” is determined for each distress type and severity based on a measurement

of the distress. Deduct values are taken through a series of calculations before ultimately

subtracting from the initial score of 100, thereby yielding the PCI value. This is done for

each inspected sample unit, and then averaged for the entire section. A PCI of 100 in-
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Table 2.2: All distresses included in an asphalt pavement PCI are listed in the table below,
along with the corresponding distress code and unit of measurement. (An airfield PCI for
concrete pavement has different distresses, the details of which can be found in ASTM-
D5340 (ASTM, 2020))

Distress Code Distress Name Unit of Measurement

41 Alligator or Fatigue Cracking Square Feet

42 Bleeding Square Feet

43 Block Cracking Square Feet

44 Corrugation Square Feet

45 Depression Square Feet

46 Jet Blast Erosion Square Feet

47 Joint Reflection Cracking Linear Feet

48 Long./Trans. Cracking Linear Feet

49 Oil Spillage Square Feet

50 Patching & Utility Cut Patch Square Feet

51 Polished Aggregate Square Feet

52 Raveling Square Feet

53 Rutting Square Feet

54 Shoving Square Feet

55 Slippage Cracking Square Feet

56 Swell Square Feet

57 Weathering Square Feet
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dicates an airfield pavement in perfect condition, while a score of 0 indicates the worst

possible condition. This process is similar, though slightly different for concrete pavement

airfields. While the thresholds for rating scales can vary by user, two of the most common

are summarized in Figure 2-11 (ASTM, 2020).

Inspector training and certification protocols exist within some organizations to reduce

human error; however, it is important to understand the degree of variability in manually

conducted PCI test results. ASTM guidelines for distress type and severity help determine

classifications; however studies of expert rater variation have concluded that even with ex-

perience and formal training, the standard deviation of PCI scores for a section of pavement,

surveyed by multiple inspectors, can be as high as 17. (Prakash et al., 1994; Bogus et al.,

2010; Andrei and Arabestani). While PCI is reported as a quantitative numerical value,

understanding the degree of precision associated with traditional inspection is important

when evaluating alternative methods.
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Figure 2-10: PCIs require an airfield pavement be divided into branches based on use.
Branches are divided into sections based on construction, maintenance, usage history, traf-
fic volume, load intensity, and condition. Sections are divided into sample units, and these
units are statistically sampled to obtain a PCI for the section. The pictures on the right of
the figure display a sample unit from a runway section of the Aardvark airfield with longi-
tudinal/transverse cracks highlighted in red and patching in blue.
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Figure 2-11: The Standard PCI Rating Scale (left) and a custom Simplified PCI Rating
Scale (right) are shown above, providing examples of how numerical PCI scores are often
interpreted qualitatively (ASTM, 2020).
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2.4 Previous Work in Image-Based Pavement Evaluation

The majority of published research on technologically assisted pavement evaluation has re-

volved around analyzing images obtained from satellite, vehicle mounted, and aerial plat-

forms to assess roadways or parking lots. Some of the earliest efforts focused on determin-

ing general classifications of pavement deterioration using reflectance measurements over

a wide field of view and were not focused on detecting individual pavement distresses.

In these studies the reflectance measurement represented the light intensity reflected by

the pavement under natural lighting conditions, measured continuously across a range of

electromagnetic wavelengths (350nm to 2450nm). These studies found that the pavement’s

spectral signature (or the shape of the reflectance curve) remained relatively consistent with

respect to age and number of distresses. The overall magnitude of the reflectance across

the entire range of measured wavelengths; however, increases with pavement aging due

to the gradual loss bitumen (Figure 2-12), but decreases when cracks and other distresses

are present (Figures 2-13 & 2-14). This is because as the black bitumen is lost from the

pavement over time, the pavement is less dark and reflects more light. Distresses; however,

are generally darker sections of pavement, resulting in lower overall reflectance across all

wavelengths. These competing mechanisms influencing reflectance made it challenging

to determine even general classifications consistently (Herold and Roberts, 2005; Mettas

et al., 2015; Mei et al., 2014).

In an attempt to obtain more information and detail than reflectance data could provide,

pattern recognition techniques correlated with spectral data were used to quantify bitumen

removal and overall aggregate exposure in the form of an Exposed Aggregate Index; how-

44



Figure 2-12: Reflectance of different aged roads with no structural damages. The oldest
roads are in green and show the highest reflectance due to loss of bitumen. The youngest
roads are shown in blue (Mettas et al., 2015).

Figure 2-13: Reflectance of 10 year old road with structural damages (red) and without
structural damages (orange). The structural damages cause a lower overall reflectance for
a road of the same age (Mettas et al., 2015).
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Figure 2-14: Reflectance of 20 year old road with structural damages (red) and without
structural damages (orange). The structural damages cause a lower overall reflectance for
a road of the same age (Mettas et al., 2015).

ever, fluctuating environmental considerations continue to present challenges in accuracy

and precision (Mei et al., 2014). The influence of water particles in the air had notice-

able effects on wavelengths ranging from 930-1190nm, 1350-1440nm and 2400-2500nm,

and carbon dioxide within water particles further affects wavelengths from 1800-1950nm

(Mettas et al., 2015). A proposed solution to this problem was to develop a massive spec-

tral library of images and data that can be referenced under various conditions to determine

pavement aging and the relative severity of pavement distresses (Mettas et al., 2016). This

approach has potential to augment the speed of generalized evaluation over vast expanses of

infrastructure, and has been proposed as a means of conducting preliminary roadway eval-

uations or identifying generalized zones of interest; however, where more detail is required

for things like specific maintenance, this approach is inadequate.
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While a bulk image reflectance approach has value in its simplicity and speed, it has

inherent limitations regarding the specificity of information that it can provide, especially

when applied to an airfield runway pavement evaluation. For this reason researchers have

begun to use image segmentation and object identification techniques to begin distress

identification and quantification in flexible and rigid pavements.

Research began to investigate morphological tools, neural networks, and image filter-

ing functions to identify and quantify various pavement distresses, starting with cracks.

The fundamental difficulty associated with this endeavor for pavements is that the signal

to detect is very weakly represented in the context of the overall image (roughly 1.5% of

the image on average). Also this signal is weakly contrasted against the background of

normal, non-distressed pavement in the image (Chambon and Moliard, 2011). This has

resulted in countless methods and approaches, however all still have too much false de-

tection, lack precision in detection, lack accurate geometric analysis of the cracks, and/or

simply lack the ability to be generalized over a wide array of images and conditions (Cham-

bon and Moliard, 2011). In 2010, Tsai et al. conducted a comparative study analyzing

six of the most prevalent image segmentation methods: statistical/relaxation threshold-

ing, canny edge detection, multiscale wavelets, crack seed verification, iterative clipping,

and dynamic optimization-based methods (Tsai et al., 2010). This study concluded that

dynamic optimization-based methods are the most promising approach for maintaining ac-

curacy and robust detection across different images conditions (Tsai et al., 2010); however,

this conclusion was drawn in 2010, before convolutional neural networks began to improve

and quickly become the leading tool in image detection applications.

In Chambon and Muliard’s 2011 study, they attempt to address some of the inherent
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challenges associated with wavelet morphological and wavelet filtering methodologies to

enhance detection performance. When adopting a morphological approach to edge de-

tection and object segmentation, one of the primary limitations has been finding univer-

sal threshold values that can be generally applied to a wide array of data sets (Tsai et al.,

2010). Edge detection and filtering techniques based on decimated fast biorthogonal dyadic

wavelet transforms, Fourier transforms, Gabor’s filters, finite impulse filters, and other

models are still highly sensitive to crack width variation and lighting effects, thereby lack-

ing robust generalized applicability (Tsai et al., 2010; Chambon and Moliard, 2011). To

address these difficulties Chambon and Muliard developed a more sophisticated morpho-

logical approach (named Morph) using adaptive filtering to perform wavelet decomposition

coupled with a Markovian modeling segmentation (named GaMM) to account for highly

variable crack geometry (Chambon and Moliard, 2011). By processing hundreds of real

and synthetic images, the study concluded that for crack detection, their Morph approach

obtained more true positives, while the GaMM approach was preferred for reducing the

number of false positives. Although neither of these approaches reaches sufficient preci-

sion, accuracy, and capability for robust generalization, they showed early signs of detec-

tion feasibility.

While morphology, edge detection, and filtering techniques were the focus of initial

attempts at damage detection, progressions in artificial intelligence and machine learning

approaches for object classification and detection have begun to outperform these old meth-

ods. Although there are many types of machine learning algorithms, the primary focus of

pavement detection efforts have been with support vector machines (SVM), neural net-

works (ANN), and random forest (RF) algorithms (Pan et al., 2018) with neural networks
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being the best performing class of algorithm (Zhang et al., 2018).

2.5 Drone Systems and Related Applications

Although there are a multitude of proposed systems to classify unmanned aircraft systems

by weight, wingspan, flight time, intended use, and/or construction (Brooke-Holland, 2012;

Arjomandi et al., 2006; Weibel and Hansman, 2004; Zakora and Molodchick, 2014), the

convention in this paper will align with the methodology summarized by Hassanalian and

Abdelkefi (2017) as it is simple yet sufficiently detailed. This system distinguishes drones

into a primary category first by weight and wingspan and then subdivides the classes by

configuration as summarized by Figures 2-15 and 2-16.

Figure 2-15: Wingspan and weight ranges for drone categories. From left to right: Un-
manned Air Vehicle (UAV), Micro Unmanned Air Vehicle (µUAV), Micro Air Vehicle
(MAV), Nano Air Vehicle (NAV), Pico Air Vehicle (PAV), and Smart Dust (SD) (Hassana-
lian and Abdelkefi, 2017).

Unmanned aircraft systems (UASs), especially MAVs, have become an increasingly

popular choice among the civil engineering practitioners for their low cost, wide range of

sensor compatibility, aerial perspective, and flexibility of movement (Kim et al., 2020).

Multiple studies have proven their viability for visual inspection tasks, though some chal-

lenges exist with regard to the nature of airfield specific use (Kim et al., 2020; Temme and
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Figure 2-16: Air drone classifications by configuration (Hassanalian and Abdelkefi, 2017).
Acronyms: Unmanned Air Vehicle (UAV), Micro Unmanned Air Vehicle (µUAV), Micro
Air Vehicle (MAV), Nano Air Vehicle (NAV), Pico Air Vehicle (PAV), and Smart Dust
(SD), Horizontal Take-Off Landing (HTOL), Vertical Take-Off Landing (VTOL)
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Trempler, 2017).

While entities like the Air Force have already begun to streamline procedures and sys-

tematically implement UAS operations over airfields, the process for obtaining clearance

and coordinating flight operations is a significant hurdle when operating UAS in the context

of airfield assessment. Regulations regarding drone hardware, flight paths, and operator

qualifications, instituted by both the Federal Aviation Agency (FAA) and the local flight

operations authority must be understood and followed (FAA, 2021b). These restrictions

remain a large barrier to data collection and proposed methods of operation; however, as

these operations become more common, the process by which approval is gained to per-

form them will likely be made more efficient. The drones used in this study are classified

as MAV Hexacopters and were custom built with autopilot capabilities to carry multiple

kinds of imaging systems while remaining compliant with current National Defense Au-

thorization Act (NDAA) restrictions for use over Air Force Runways.
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Chapter 3

Machine Learning and Convolutional

Neural Networks

3.1 Machine Learning

Machine learning methods are a class of computer algorithms that utilize data to make

predictions or decisions. They have recently emerged as one of the most powerful com-

putational tools available for leveraging data from the real world to accomplish a task ef-

ficiently; however, it is crucial to understand that no matter the algorithm employed, the

human engineer always plays a vital role in the problem solving process. Without a human

to frame the problem, acquire and organize the data, design a space of possible solutions,

select a learning algorithm and its parameters, apply the algorithm to the data, validate the

resulting solutions, and apply it in a usable framework, the algorithm will not successfully

perform its intended task (Drori, 2020).

Machine learning relies on the assumption that inductive reasoning is reliable, meaning
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that data from the past is an accurate means of determining future behaviors. From this

common assumption algorithms can be divided into several distinct categories based on the

type of data provided.

The first is supervised learning, in which data inputs are fed into the model with corre-

sponding outputs. In general, the goal of these models is to learn information about how

these inputs relate to their outputs for the purpose of either classification or regression.

Classification is a task in which input data has a discrete number of possible output cate-

gories, or “classes”. Then for each input the algorithm tries to determine what the correct

output classification should be. For example, if a classification algorithm were to be trained

on images of dogs and cats, the input data would be a collection of pictures containing ei-

ther dogs or cats, and the algorithm would need to determine if the picture contained a

dog or cat. Regression tasks are similar to classification, in that each input has an output,

however, in regression the number of possible outputs is continuous rather than discrete.

For example, if the inputs for an algorithm were a person’s age, level of education, and

state of residence and the desired output was the person’s yearly income, this would be a

regression style task, since the possible outputs are a continuous and not discrete. The task

would become a classification problem if the desired output were to classify the person as

either “wealthy” or “poor” based on this same information.

Unsupervised learning provides inputs, but does not provide any outputs. In general, the

goal of these models is to learn patterns or structures inherent in the input data and this can

be broken into three general tasks: (1) density estimation, (2) clustering, (3) dimensionality

reduction. Density estimation involves taking a set of inputs as a sample and determining

the probability that a new input is drawn from that same distribution. Clustering tries to
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create groups of data that are similar to each other. Dimensionality reduction seeks to take

inputs of dimensionality D and retain the information and relationships of the original data

while re-representing them in a new dimensional space d such that d > D.

Reinformcement learning is similar to supervised learning, in that output values are

being mapped to input data, except in reinforcement learning the input and output relation-

ships are not given in advance to conduct model training. Rather there is an interacting

environment in which the algorithm receives an input, produces an output or action, and

then receives a reward, penalty, and/or correction to update the model’s behavior. In this

style of task the goal is to find a policy that maximizes rewards and improves the model’s

ability to interact in a given environment. A common application of this style of algorithm

is teaching computers to win complex games of strategy like “Chess” or “Go”. Additional

information about other machine learning algorithms can be found in (Russell and Norvig,

2010).

3.2 Neural Networks

Neural networks (NN) are a broad class of supervised machine learning algorithms for

which there are many variations and applications. To gain insight into how these algorithms

perform their tasks this section will briefly survey some of the fundamental concepts re-

quired to understanding their behavior. This summary is not exhaustive and for a deeper

and more complete understanding for the material, it is suggested that a full course be taken

and/or a textbook be used (Russell and Norvig, 2010) to supplement this introduction.
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Figure 3-1: A neuron is made of an input vector, x, a weight vector, w, and a bias term, w0.
The dot product of the input vector and weight vector is then added to the the bias term to
obtain the pre-activation term. The pre-activation is passed through the activation function
to obtain an output, a, for the node (Drori, 2020)

.

3.2.1 The Basic Element: Neurons

The basic element of a neural network is the “neuron”, also referred to as a “node” or

“unit” (Figure 3.3). A neuron is comprised of a vector of inputs (x), a vector of “weights”

(w), and a “bias term” (w0) that are related through Equation 3.1 to calculate the “pre-

activation” (z). Then the pre-activation term is passed through an activation function, like

the Rectified Linear Unit shown in Eq. 3.2, to obtain output (a). There are many activation

functions used in neural networks like ReLU, the Step Function, the Sigmoid Function, or

the Hyperbolic Tangent. Each has different applications and uses and if more information

is sought there are many online articles that provide a good starting place. By adjusting the

weight matrix and the bias terms of each neuron, the output of each neuron is able to be

adjusted. A complete mathematical description of a single neuron is found in Eq 3.3

z = wT · x+ w0 (3.1)
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ReLU(z) = max(0, z) (3.2)

a = f(z) = f(wT · x+ w0) (3.3)

3.2.2 Layers

Neural network layers are comprised of a set of neurons; usually these neurons are fully

connected, meaning every input (x) in the input vector is connected to every neuron in

the layer (Figure 3-2). This creates a vector of outputs for a single layer. A single layer

of neural network can only represent a linear relationship between input and output data;

however, by using the outputs of the first layer as the inputs to subsequent layers of a

neurons, non-linear features and relationships in the data can be understood by the model

by changing the weights and bias term of each neuron. If a neural network has many layers

it is said to be a deep neural network.

While it may be tempting to try to understand or make sense of what kinds of relation-

ships or patterns a neural network is learning at each neuron or through each layer, it is

my opinion that attempting to understand this kind of behavior and assign a sort of ratio-

nal to the network’s structure is misguided for the average user. Other machine learning

algorithms seek to apply domain specific knowledge to encode meaningful features into a

model; however, in a neural network manual feature selection is abandoned and instead the

model tries to make connections and understand the data in a way that is best described

through the mathematical processes. Employing thousands or millions of neurons in many
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Figure 3-2: The figure displays a fully connected layer in a Neural Network. Every input
(x) in the input vector is connected to each neuron in the layer and each neuron has its own
vector of weights (w) and a bias term (w0) to generate an output (a). A vector of outputs is
generated for each layer and passed to the next layer as the new set of inputs (Drori, 2020)

.

different layers gives neural networks complexity to analyze or process data in a way that

is not necessarily transferable to human logic and reasoning strategies.

As a supervised learning model a neural network is given input data with corresponding

output data and asked to perform a task like classification or regression. For the sake

of discussion let’s pretend we have a neural network used to classify a patient as either

healthy or pre-diabetic by using the patient’s height, weight, blood pressure, and hours of

exercise per week. The input data for a single patient will be fed into the first layer and the

network will process these values through the neurons, understanding different features or

relationships within the data set in each of the neurons, until the last layer. In this last layer

there may be a single numeric output representing the probability the patient is pre-diabetic

with a threshold value for this output determining the final classification. The performance

of this neural network will depend on the value of the weights and bias terms in each of
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the neurons, and to optimize these values to obtain the best performing model, a process

known as error back propagation is used.

3.2.3 Error Back Propagation

During the “training” process the goal is for the network to adjust the weights and biases of

the model such that the model’s predictions match the correct outputs as best as possible.

Weights and biases start at initialized values and these values drive convergence and per-

formance. If a model is trained without ever seeing prior data, these weight terms can be

initialized through a variety of methods that encourage convergence, like Xavier or Kaim-

ing initialization (Narkhede et al., 2021). An alternative method for initializing weights

for a new data set is using “transfer learning”, which uses the weights and bias terms of a

similar neural network trained on a different data set to initialize the weight values of a new

model that will be trained on a new data set. This allows for some of the features learned in

the original data to be used to understand the information in the new data, making training

faster and convergence more likely. This method of “transfer learning” has been shown to

be highly successful and is used in this study (Balada et al., 2021).

The means by which these weights and bias terms are adjusted is through error back

propagation. In this process the neural network is initialized with starting values for each of

the weights and bias terms. Then data are passed through the network to obtain the initial

predictions of the model with the initialized weights and biases. The network’s output is

represented by NN(x(i);w,w0) while the true output associated with the input is repre-

sented by y(i). Then, using the network’s prediction and the true output, a loss function (L)

59



calculates a quantitative metric for the difference between these two values. This process

is summarized by Eq. 3.4. While different loss functions exist to service different net-

works and applications, with some function expressing a quantifiable difference between

the predicted and true output value , adjusting the weights and bias terms in each layer of

the model becomes an optimization problem that seeks to minimize the loss function using

gradient decent methods.

J(w,w0) =
∑
i

L(NN(x(i);w,w0), y
(i)) (3.4)

3.2.4 Convolutional Neural Networks

While many classes of deep neural networks exist to perform tasks on different data types,

since AlexNet in 2012 (Krizhevsky et al., 2012), the most successful method for perform-

ing classification tasks on image data has been the CNN. By definition, “convolutional

networks are simply neural networks that use convolution in place of general matrix mul-

tiplication in at least one of their layers” (Bengio et al., 2017). By using a series of these

convolutions, as well as pooling and fully connected layers, CNNs construct a hierarchy

of nonlinear transformations and take advantage of the spatial locality and translational

invariance of pixels to classify images with fewer parameters and connections than a stan-

dard deep neural network (Krizhevsky et al., 2012). This essentially means that CNNs are

able to look at a picture and identify simple features and shapes, like lines and edges, and

then from these simple shapes identify increasingly more complex shapes and features until

eventually real world objects and structures can be identified consistently, regardless of ori-
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entation or permutation. Traditional classification CNNs could simply tell whether or not a

type of object was present in an image. For example, in the sample unit pictured in Figure

2-10, traditional CNNs could determine that there are cracks and patches present in that

image, however, they could not identify where in each image these objects were located.

More recently developed CNNs; however, can accomplish semantic segmentation, which

means they are capable of determining which specific pixels in the image represent cracks,

patches, or background objects, resulting in full image outputs like the picture shown in the

bottom of Figure 2-10.

Convolutions are mathematical operations on two functions of a real-valued argument

(Bengio et al., 2017). Though the operation can easily be expanded to higher dimensional

tensors, for the case of two-dimensions, input I interacts with the two-dimensional kernel

filter K to produce an output S. In Figure 3-3 this operation is represented by taking the

dot product of all the 3x3 grids in the X matrix with the W matrix to produce each of the

elements of the Z matrix.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (3.5)

The numerical values that make up the individual elements of the kernel filter (the

W matrix in Figure 3-3) are called the weights and are adjusted just like the weights in

a standard neural network through error-back propagation. A stride value defines how

this kernel filter and convolutional operation moves over the image, thereby producing a

new feature map tensor, where each element corresponds to the convolution’s output at

that point. Then similar to a neuron, a bias term is added to each kernel filter, and these
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Figure 3-3: Visual representation of how convolutional and max pooling layers construct
and condense feature maps.

outputs are passed through an activation function, which introduces non-linearity, allowing

more complicated features to be understood by the network (Nwankpa et al., 2018; Gu

et al., 2015). Inserted between layers of convolution are pooling layers that serve as the

network’s means of summarizing features and generalizing the model to accommodate

input data variability. Max Pooling is a common pooling operation that functions similarly

to a convolutional layer, but rather than applying a kernel filter of weights over the image to

produce an output, the output of each operation is simply reported as the maximum value

found in the window of size MxN . This process (summarized by Figure 3-3) enables for

complex feature information to be stored and aggregated within the network.

After a series of convolutional and max pooling layers are the fully connected layers

that map the features to object class predictions using a series of unique weights, bias terms,

and activations. The weights and bias terms that exist in the the network’s convolutional

layers and fully connected layers constitute the total number of parameters for a model.
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Unique to semantic segmentation tasks, however, is the addition of a decoder structure that

uses stored feature information to reconstruct the image with labels assigned to each pixel.
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Chapter 4

Methodology and Results

The desired output of this research is creating an autonomous drone mounted pavement

evaluation tool that can independently collect images and output an Airfield PCI. To divide

this large objective into discrete sub-objectives, the project team decided to split the system

into the tasks of (1) Drone flight and image capture, (2) distress detection within images,

and (3) distress dimension calculation and PCI calculation (Fig. 4-1). This chapter outlines

the preliminary methods evaluated to complete each of these tasks in a real world test case

scenario.
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Figure 4-1: Conceptual flow chart summarizing the three general tasks to be performed by
an autonomous drone mounted PCI inspection system.

4.1 Site Description

The site selected to develop, implement, and evaluate the proposed methodology was the

Aardvark Airfield located at the United States Air Force Academy (USAFA) in Colorado

Springs, CO (39°02’06.0”N, 104°50’42.0”W). A Google Earth image of the site is provided

in Figure 4-2. Constructed in the mid-1980’s, the Aardvark Airfield consists of a single

2300ftx75ft asphalt pavement runway with no other sections or facilities (Freeman, 2017).

It currently has three primary functions: (1) perform practice landing patterns, (2) serve as

an emergency landing area for the cadet glider pilot programs run out of USAFA’s main

airfield, and (3) launch and land larger drones built by USAFA’s UAS research teams. Clear
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Figure 4-2: Google Earth image of Aardvark Airfield (boxed) along northeast boundary of
US Air Force Academy (Google, 2021).

signs of small-scale maintenance and full-scale repair are present, though the exact work

history is unknown. The most prevalent pavement distresses throughout the runway are

longitudinal/transverse cracks and patching, though a few instances of rutting and raveling

were also observed.

As a result of the special use case (and a USAFA academic research affiliation), it was

fairly easy to receive federal clearance to fly the drone equipment over the airfield both

consistently and with flexible flight parameters, like speed and altitude. It is important to

note, however, that the United States Air Force Academy does not regularly use Aardvark

airfield for powered flights, therefore the loading history of the pavement may vary from

a standard airfield pavement. Consequently the distress profile of the entire structure is

likely to be more heavily representative of distresses caused by weathering and Colorado’s

environmental factors than from service loads. We do not suspect that this discrepancy
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will significantly affect the overall conclusions drawn by this research, however, it will

necessitate further data collection from more commonly used airfields to improve distress

detection performance.

4.2 Hardware Specifications

The type of remote sensing application summarized in this report requires UAVs capable of

carrying sensors for data collection as well as flying at various speeds and elevations above

ground level (AGL). Additionally, to be implemented on a large-scale throughout the Air

Force, this project requires a user-friendly UAV flight interface capable of being flown by

Air Force Civil Engineers in both auto and manual flying modes. NDAA legal guidelines

prohibit the use of certain technological components on drones flown over government

property (Congress, 2020). Commercially available drone packages may possess the hard-

ware and software capability to complete this type of work, but this project was limited to

those drones permissible under stringent department of defense regulations. Due to these

restrictions, a custom built, NDAA compliant MAV Hexcopter (Figure 4-3) was utilized

for this study. A summary of relevant USAFA MAV Hexcoper properties is presented in

Table 4.1.

Another critical hardware component was the imager chosen for data collection. For a

remote sensing application, one of the most important considerations for sensors is sensor

weight. Also considered were spectral range and resolution. While data within the visible

spectrum are important and allow a user to manually cross-check automated results, data

outside of the visible spectrum may expand the range of variations when using a machine
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Figure 4-3: The drone used to image the airfield in this study is shown above, having a
propeller-to-propeller length (also called ”wheelbase”) of 1.8ft.

Table 4.1: The custom drone system used for all flight and image capture tasks had the
following technical specifications.

Technical Specifications - USAFA MAV Hexcopter

Description Specification

Frame DJI Flame Wheel F550

Rotors DJI 2212/920KV (x6)

Weight 3.5lbs

Wheelbase 1.8ft

Maximum Payload 4.2lbs

Battery HRB 4S 14.8V 6000mAh Li-Po

Endurance 25 minutes

Transmitter mRo SiK Telemetry Radio V2 915Mhz

Flight Controller Pixhawk

Ground Control System Mission Planner v1.3.74
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learning approach to data analysis on other distress types in future studies. The imager

selected for this study was the FLIR Duo Pro R. Relevant properties of this sensor are

presented as Table 4.2.

While many commercial systems are equipped with connectors for mounting an imager

to a UAV, the custom nature of the USAFA MAV Hexcopter required special harnesses to

be built for the imager and accompanying batteries. This was accomplished using 3D

printing and the SolidWorks CAD software. Due to this system’s construction; however,

an unexpected resonance from the drone’s operational components initially distorted the

images. This problem was resolved by inserting layers of polystyrene foam into the camera

mount to dampen vibrations.

The highly visible nature of the two distresses considered in this study (patches and

cracks), meant that an image sensor alone was likely sufficient for detection purposes.

Other distresses, like rutting, shoving, and swell, may be less visible and harder to distin-

guish with an image sensor alone. Future research developments may involve integrating

additional sensing types, such as Lidar for 3D mapping or hyperspectral imaging.

Table 4.2: Specifications of the camera used for data acquisition.

Technical Specification - Remote Sensing Imager

Description Specification

Model FLIR Duo Pro R

Weight 13.2 oz

Thermal Resolution 640 x 512

Thermal Frame Rate 30Hz

Visible Resolution 4000 x 3000
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4.3 Data Collection

The data collection portion of this study was largely focused on optimizing the flight plan

to minimize flight time while maintaining a spatial resolution capable of detecting cracks

0.25 inches in width. Spatial resolution was a function of imager properties, so initial flight

plans were created with field of view and imager resolution in mind. However, initial flights

showed that flight speed had a substantial effect on image quality due to both frame rate

and imager stability, so several test flights were taken to optimize for overall image quality

as well as resolution. For the hardware used in this study, this led to a requirement that

the UAV fly no higher than 98.4 feet AGL at a horizontal speed of approximately 4.5 miles

per hour. Inputting these flight parameters into Mission Planner software, the entirety of

Aardvark Airfield was successfully imaged via a single pass over the center of the runway.

Table 4.3: Flight conditions used to calculate PCI values.

Flight Parameters for Data Collection

Flight Parameter Value

Altitude (AGL) 98.4ft

Speed 4.5mph

Resolvable Ground Object Size 0.25in

The values in Table 4.3 represent tuning for the Aardvark Airfield location and for a

specific collection of custom hardware components lacking commercial grade robustness

and mounting components. Additional optimization would likely be required for varying

location and hardware, for example, better image resolution would enable higher flight

altitudes, while better image stabilization mounts could enable faster flight speeds. Fur-

thermore, it should be noted that there were some consistent issues with windy conditions
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grounding flight operations, so daily and seasonal weather patterns should also be a con-

sideration when creating a flight plan tailored to a specific drone’s limitations.

4.4 CNN Model Architecture

Created in 2018, DeepLabV3+ is currently one of the best performing CNN architectures

available for ”semantic segmentation”, a process by which a classification label is assigned

to every pixel in an image. Utilizing Atrous Spatial Pyramid Pooling (ASPP), this archi-

tecture is able to use several different expansion rates and effective fields of view to extract

image features and encode multiple scales of contextual information when first analyzing

the input image. Then during the decoding phase, the encoder features are upsampled and

linked with corresponding low-level features from the network backbone in the encoder.

Gradual reinsertion of spatial information then achieves pixel-level predictions with more

distinct object boundaries (Chen et al., 2018; Liu et al., 2021b). This structure is summa-

rized in Fig 4-4.

A technical and mathematical explanation is required to accurately communicate these

complex processes (Chen et al., 2018); however, a highly simplified conceptual under-

standing may think of the classification process as one that also results in a loss of spatial

information. So if the network wanted to identify a human face, it must do so by first

grouping together individual pixels to extracting lines and curves, which then need to be

grouped together to see shapes like ovals and rectangles, which then need to be grouped

together to understand structures like eyes and lips, which then need to be grouped together

to identify a face. As these features are grouped together for the purpose of classification,
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Figure 4-4: DeeplabV3+ encoder-decoder structure. Atrous convolution helps capture in-
formation at multiple scales during the encoding process, while the simple decoder module
builds more accurate object boundaries for segmentation results (Chen et al., 2018).

spatial resolution is diminished and the matrix of numbers that began as the original image

is reduced down. Therefore, it is only at a very low resolution that the computer recognizes

a face is present. So by taking different snapshots of the original image and connecting low

level classifications within the model to earlier features of a higher resolution, these models

reconstruct the high resolution image from the low resolution classification.

While the overarching model architecture was already established and selected based

on performance in the literature (Liu et al., 2021b; Chen et al., 2018; Liu et al., 2021a),

various choices for the feature extractor, or “backbone”, used by the neural network were

investigated for this application. DeeplabV3+ is built to accept a variety of feature extract-

ing algorithms from which it builds its encoder-decoder structure. Each feature extractor

has a different number of parameters, and therefore a different computational demand. To

systematically asses the application specific trade-off between performance and computa-
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tional demand, four different network backbones spanning a range of sizes were selected,

trained, and tested. Identical training data, test data, hyperparameters, and GPU hardware

were used to asses each feature extractor model, the details of which are discussed in Sec-

tion 4.5. The models evaluated were ResNet-18 (He et al., 2016), ResNet-50 (He et al.,

2016), Xception (Chollet, 2017), and Inception-ResNet-V2 (Szegedy et al., 2017).

4.5 Model Data and Training

The CNN trained in this application was created to identify cracks and asphalt patches,

as these were the two dominant and adequately represented distresses present on the test

runway. To use on other asphalt pavement airfields, other distresses would need to be

added in future developments as the data for both training and testing the algorithm be-

come available. Matlab 2021bTM with the Deep Learning ToolkitTM was selected as the

means of implementation for this code, though similar model architectures are available

for implementation in other coding languages, like Python with the Keras and TensorFlow

libraries.

Model training was conducted on a single 48GB NVIDIATM RTX A6000 GPU with a

batch size of 5. Data augmentation was used to introduce variability into the relatively small

training data set, with specific values and transformations summarized in Table 4.4. Twenty

epochs of model training were conducted to obtain adequate model accuracy convergence,

while most other hyperparameters, summarized in Table 4.4, were initially chosen by using

recommendations from the MatlabTM documentation (Mathworks, 2021a).

As is the case for all supervised machine learning algorithms, the performance and
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Table 4.4: The CNNs trained and tested on the airfield pavement image data were run with
the same values.

CNN Hyperparameter and Data Augmentation Values

Hyperparameter Value

Batch Size 5

Number of Epochs 20

Input Image Resolution 1920 x 1080

Solver “Adam”

Initial Learning Rate 0.00001

Gradient Decay Factor 0.9

Squared Gradient Decay Factor 0.999

Data Shuffle “Every-Epoch”

Data Augmentation Transform Range

Random X Translation -100 to 100 pixels

Random Y Trnaslation -100 to 100 pixels

Random Rotation -25 to 25 degrees
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utility of the network in real world application is heavily dependent on the quality and

properties of the training data and labels used. If the training data used to teach the net-

work do not represent features of the real world data, even a model that achieves perfect

accuracy in training will not generalize and perform well on the task when tested. To the

best of my knowledge, no open source airfield pavement distress data sets exist for training

semantic segmentation CNNs; therefore a novel flexible airfield distress data-set was cre-

ated for the purpose of this study. The training data set consisted of 500 total RGB images

cropped or split to be 1080x1920 in size. Each image was individually labeled by hand.

Early iterations of this label making process indicated that model detection performance

increased the more time was spent during the image labeling process, because the labels

themselves could be generated carefully and accurately (this is a conclusion also found in

the literature (Zlateski et al., 2018)).

Of these 500 total images, 60 were taken from online or open sources to introduce

variation, and 440 were taken from drone flights over the Aardvark Airfield at a variety

of altitudes under varying atmospheric conditions. 80% of these data were used for model

training and 20% for validation. In an effort to specifically assess model performance in the

context of a full PCI inspection, the test set of images used to evaluate model performance

was generated by performing a single test flight over the entirety of the Aardvark Airfield,

the result of which was 128 test images that represent the entirety of the runway. Although

none of the images used in training were used in testing, because a large percentage of

the training data images are taken from the Aardvark Airfield, this imposes limitations on

model robustness and attempting to apply this system to other airfields. This is a limitation

created by the availability of current airfield image data. We suspect that as more runways
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are surveyed and the training set is able to incorporate images from more locations, the

model will generalize better and address these limitation.

To evaluate the models, we report the predictions for global accuracy and mean Inter-

section over Union (IoU). Global accuracy is used as a simple measurement that is easy to

communicate, as it just takes the total number of correctly labeled pixels in the image and

divides it by the total number of pixels in the image.

GlobalAccuracy = TruePositive/(TotalP ixels) (4.1)

IoU (or the Jaccard Similarity Coefficient) is one of the most commonly used metrics, pro-

viding a measurement of statistical accuracy that also penalizes the model’s false positive

predictions. Mean IoU is calculated by averaging the IoU scores found for each of the

object classes in an image.

IoU = TruePos./(TruePos.+ FalsePos.+ FalseNeg.) (4.2)

By conducting model training with identical computer hardware, training/test data, and

system parameters (Table 4.4), the training time, mean IoU, and global accuracy values

were determined for each of the different models. These results are summarized in Table

4.6, showing the Inception-ResNet-v2 model to be the best performing option on this par-

ticular data set. While ResNet-50 showed performance results close to that of Inception-

ResNet-v2, while requiring only half as much time to train, the availability of powerful

computational resources (Table 4.5) meant that Inception-ResNet-v2 was ultimately the
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model chosen to complete the distress detection task. Should larger data sets or changes in

computational resources arise, however, it is worth noting that the ResNet-50 model exists

as a computationally less demanding alternative.

Table 4.5: The computer used to train and test the CNNs in this study was purchased
through Lambda Labs (https://lambdalabs.com/) and was equipped with powerful compu-
tational resources intended for running large deep learning models.

Hardware Specifications

Operating System Ubuntu 20.04 (Includes Lambda Stack for managing TensorFlow, Pytorch,
CUDA, cuDNN)

Processor AMD Threadripper 3960X: 24 cores, 3.80 GHz, 128MB cache, PCIe 4.0

CPU Cooler Air Cooling

GPU 2x EDU, RTX A6000, 48 GB+ NVLink

Memory (RAM) 256GB

Operating System Drive 1TB SSD (NVMe)

Extra Storage 2TB SSD (SATA)

Case Vector Case

Table 4.6: Performance summary of all tested models

Base Network Parameters
(Millions)

Training
Time

Global Ac-
curacy

Mean IoU

ResNet-18 11.7 47min 97.94% 62.24%
ResNet-50 25.6 75min 98.63% 69.77%
Xception 22.9 95min 97.86% 61.92%
Inception-ResNet-v2 55.9 155min 98.99% 71.9%

4.6 PCI Calculation

In this study the Aardvark Airfield was treated as a single runway section divided into

32 individual sample units (Figure 4-5) in accordance with ASTM-D5340. Each of these

sample units was inspected first manually, using the existing standard, and then also using

the drone images and computer based processing.
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Figure 4-5: The Aardvark runway is divided into 32 sample units for the purpose of PCI
inspection.

A former Air Force certified PCI inspector and APE Team member assisted in conduct-

ing a PCI inspection for each of the 32 sample units, recording distress measurements and

severity for the entire runway. These values were input into a spreadsheet that calculated

the final PCI scores for each sample unit, as well as the overall runway. These results are

summarized in Table 4.7.

To conduct the automated PCI inspection, a flight plan was created and uploaded into

the drone’s autopilot. The drone then launched, flew the mission, collected video footage of

the entire runway, and landed without human input. Still images of each sample unit were

cropped from this video footage and processed with the trained CNN to extract crack and

patch distresses from the image. An example of the CNN’s visual output result is displayed

in Figure 4-6 and includes original images with distress marking overlays, individual ex-

tractions of each of the distress categories, and single-pixel traces of the cracks.

To calculate the total square feet of patching and the total linear feet of longitudinal/-

transverse cracking, the physical dimensions of each pixel were determined using the im-

ager’s field of view (FoV), resolution, and flight altitude. Using a consistent flight altitude

of 98.4ft, a field of view of 56◦x 45◦, and a resolution of 4000 x 3000 pixels, each pixel
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was calculated to be spatially representative of approximately .0262ft x .0271ft (Equation

(4.3)).

PixelLength = ((FoVx/2) · Altitude · 2)/P ixelsx

PixelWidth = ((FoVy/2) · Altitude · 2)/P ixelsy

(4.3)

To calculate the total area of patches in a sample unit the total number of patch labeled

pixels was multiplied by the area of each pixel. To calculate the total length of longitudinal

and transverse cracks, a single-pixel trace of the crack’s path is created using the medial

axis transform of the original crack detected (Mathworks, 2021b). This trace is represented

by the white pixels in Figure 4-6. The total number of pixels from this trace was then

summed and multiplied by the average of the length and width dimensions to get total

length. Using an average of the length and width dimensions roughly accounts for the

cracks path, moving either longitudinally, transversely, or diagonally across the image.

Distress severity for utility patches was assumed always to be of “medium” severity,

as there is not yet a method for distinguishing severity of this nature. Distress severity

for longitudinal and transverse cracking was determined by taking the the ratio of total

crack labeled pixels (red plus white pixels in Figure 4-6) to total crack labeled pixels in

the trace images (just the white pixels). In this way the width or thickness of each crack

is represented by the red pixels, while its length is estimated by the white pixels. This

ratio serves as a rough indication of crack width, which is a key trait determining severity.

“Low” severity cracks had a ratio of 2:1, “medium” severity cracks had a ratio between

2:1 and 7:1, and “high” severity cracks had a ratio above 7:1. Though the manual method

of inspection differentiates between severity levels for measurements taken of the same

distress type within the same sample unit, the computer based analysis had to assume that
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Figure 4-6: At the pixel level, red represents a crack, white is the single-pixel trace through
the crack used to determine length, blue represents a patch, and black is the background.

for both cracks and patches a single severity level defines the measurement value obtained

for the entirety of the sample unit.

The patch areas and crack lengths, along with their corresponding severity, were then

input into the PCI spreadsheet to calculate final PCI scores for each sample unit, as well

as the entire runway. The results are displayed alongside the manual inspection results in

Table 4.7. Both inspection methods were in close agreement for their determination of

the overall PCI, with the manual method yielding a final score of 54 and the autonomous

method yielding a score of 56.5.

While these final values are promising, comparing distress measurements and PCI

scores for each individual sample unit gives further insight into the algorithm’s perfor-

mance and ways to improve the automated system. The error in area measurements for
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utility patching in each sample unit is presented as a histogram in Figure 4-7. Because there

was a large range for measurements values, that included zero, the typical percent error or

percent difference error metrics did not reliably describe system performance. Therefore,

the error metric used in the X-axis was simply a difference, obtained by subtracting the

automated system measurement from the manually determined measurement. The same

reasoning and difference metric was applied to length measurements of longitudinal/trans-

verse cracking presented in Figure 4-8. Because the range of PCI scores was much more

narrow and did not include zero, percent error was used as the metric to compare the PCIs

and is displayed in Figure 4-9.

The histograms in Figures 4-7, 4-8, and 4-9 reveal that for most sample units, there is

relatively low discrepancy in measurements; however, some outliers and inaccuracies seem

to cause both overestimation and underestimation, resulting in a roughly normal distribu-

tion of error. Looking more closely at the sample units with the greatest error, it became

apparent that the likely cause of this error was from the CNN distress detection stage. On

occasion the CNN would find a non-crack or non-patch structure and yield a false positive

detection, or the CNN would miss a crack or patch structure and yield false negative de-

tections. From this reasoning we conclude that improving detection results should greatly

improve performance and reduce error. (Supplementary material regarding the algorithm’s

performance on the test images is located in Appendix-A)
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Table 4.7: This table includes the utility patching, longitudinal/transverse cracking, and
PCI values for each sample unit as determined by the conventional (manual) and drone-
based (automated) inspection system.

Patch Area (sqft) Crack Length (ft) PCI

Section Manual Automated Manual Automated Manual Automated

1 0 8.5 320 224.9 54 59

2 278 174.2 310 355.1 52 49

3 200 223.8 375 314.1 45 68

4 200 193.8 357 390.6 47 46

5 80 88.6 200 275.9 59 52

6 160 139.1 370 353.5 44 49

7 100 151.1 315 294.8 52 52

8 150 157.1 280 274.8 52 55

9 160 133.5 250 209.8 54 59

10 150 199.8 210 229.8 59 55

11 50 53.8 252 251.4 55 55

12 100 27.0 265 223.3 55 59

13 150 185.2 300 300.1 52 52

14 50 49.7 260 236.6 51 55

15 150 184.4 380 341.8 44 49

16 50 54.5 241 185.7 57 59

17 150 172.8 310 332.1 49 49

18 0 0.0 215 227.6 59 60

19 150 163.3 260 297.4 50 52

20 100 96.7 285 315.1 50 52

21 50 52.4 275 318.8 52 52

22 0 0.0 180 182.8 64 64

23 85 70.0 180 260.2 57 55

24 0 96.6 115 114.8 68 68

25 225 229.5 300 270.6 52 55

26 150 189.4 260 250.9 50 70

27 0 0.0 195 200.0 59 78

28 300 274.1 300 305.0 52 52

29 0 5.2 150 136.4 62 62

30 150 152.4 310 316.0 47 52

31 0 15.6 215 284.0 59 52

32 0 0.1 100 173.1 76 67

Final PCI: 54 56.5
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Figure 4-7: Histogram of the error for utility patch area measurements found by the manual
vs. automated inspection method for all surveyed sample units. Error is reported as the
difference between the manual minus automated measurement.

Figure 4-8: Histogram of the error for crack length measurements found by the manual
vs. automated inspection method for all surveyed sample units. Error is reported as the
difference between the manual minus automated measurement.
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Figure 4-9: Histogram of percent error for the PCI Score found by the manual vs automated
inspection method for all surveyed sample units.
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Chapter 5

Flexible Strategy for Integrating

Autonomous Assessment Technology

into US Air Force Airfield Pavement

Evaluation Procedures

5.1 Executive Summary

The work presented in this chapter was written as part of Professor Richard de Neufville’s

Engineering Systems Analysis for Design course, which focused on learning to consider

uncertainty when conducting system analysis and design. As opposed to traditional meth-

ods that rely on deterministic forecasts of the unknown, by incorporating a system’s un-

certainties into the design process students were taught how to create and evaluate flexible
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systems and strategies that could potentially improve project performance measures. As

a Civil Engineering student and a Civil Engineering officer in the United States Air Force

(USAF), I wanted to apply this flexible design methodology to the rollout procedure of

a new drone-based, autonomous airfield pavement evaluation system that I am currently

developing to replace (or augment) the existing manual process. Replacing this manual

method with an autonomous inspection method (requiring little to no human input) has the

potential to significantly reduce inspection costs across the Air Force, however, as a new

technology still in development, there is uncertainty regarding its use in the field. While

simplifying assumptions had to be made about some aspects of the new inspection system’s

performance, the primary variables and uncertainties affecting overall cost of inspection

were built into a model that reports the net present value (NPV) of all airfield pavement

inspection costs across 220 Air Force installations for 30 years assuming one inspection

conducted per year. Using this cost model, the goal was to determine a flexible strategy for

replacing inspection procedures with variants of a new drone-based system at each of the

220 bases under consideration.

A deterministic “base case” is first generated that assumes perfect knowledge of the

future with no uncertainty, and several integration plans were developed to service this

scenario. Then uncertainty is introduced, which increases projected costs of each of these

plans. A sensitivity analysis of different system variables determined that parameters re-

lated to the cost of drone equipment each year had the most significant impact on the

total NPV. With this knowledge several flexible strategies for system integration are then

analyzed and presented to best respond to this uncertainty. While the search of possible

strategies was not exhaustive, these results generally indicate that transitioning to a new
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automated system will not only reduce costs, but will do so while adding new inspection

capabilities that do not currently exist with the manual system. A small initial roll-out,

with gradual expansion across all the bases was found to be a preferred strategy, and per-

formance benchmarks on reliability and drone failure should be monitored to guide that

expansion process for better results.

5.2 Introduction and Motivation

Funded by the US Air Force Civil Engineering Center, there is ongoing research to de-

velop a novel method for conducting an automated airfield pavement condition index (PCI)

survey on Air Force owned airfield pavement assets using drone mounted imaging technol-

ogy. Results from field testing over an auxiliary airfield located at the Air Force Academy

in Colorado Springs, CO have shown promising results and have warranted further de-

velopment of this system. While developing the technological components of this system

is currently underway, another significant aspect of this project is how a real-world im-

plementation may occur. The institutional transition from the existing manual method of

inspection to an automated, machine-based approach, not only carries with it significant

capital investment to meet new equipment requirements, but also introduces a host of lo-

gistic and technological uncertainties that could influence the overall cost of the transition.

By providing a simplified model of this integration period and using a simulation-based

uncertainty analysis, this chapter provides some general insights into factors that might aid

the implementation process and the direction of technological developments. A flexible

implementation strategy is suggested for integrating this novel and untested system into

89



real-world Air Force operations across an immensely diverse range of installations. In-

vestigating and developing alternative implementation options that consider uncontrollable

uncertainties has the potential to reduce average cost and risk. While the quality of data

used to conduct this analysis limits the accuracy of any quantitative results relating to cost,

the qualitative conclusions presented still present valuable and useful contributions to the

ongoing development of this project.

5.3 System Model

5.3.1 Structure, Organization, and Assumptions

The model used to conduct the analysis in this chapter was constructed and run in MAT-

LAB Version 9.10.1684407 (R2021a). Its final output value is the total cost attributed to the

inspection of a specified number of airfields for a given number of years with a set number

of inspections conducted each year. The model calculates the total cost of all airfield in-

spections by looking at each airfield under consideration as a unique entity, calculating the

cost of inspection at an individual location, then summing these costs over all locations, for

each inspection cycle. All inspection cycles are calculated over a specified time window

and a discount rate is used to speak of all costs in terms of net present value (NPV).

As a default position, each airfield is assumed to have been operating a manual pave-

ment inspection system prior to the time interval evaluated in the model. This means all

equipment costs for the manual method are assumed to be zero, as each base location

should already have the needed equipment at their disposal. Additionally, the replacement
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cost of any equipment associated with this method are considered negligible over the time

interval being evaluated. Therefore, the only cost that contributes to the completely man-

ual method is the inspection time. Provided to the model is a “rate of inspection” term

that represents the average number of square feet that can be inspected and analyzed by

a reasonably experienced inspector in one hour (units: ft2/hr). The total square feet of

pavement being inspected at a location is then divided by this “rate of inspection” term

to obtain the total number of hours required to inspect the entire runway. Multiplying the

total number of hours required, by the cost of labor per hour, yields a reasonable estimate

for the total cost of surveying the airfield using the manual method. Because the PCI stan-

dard does not necessitate, nor do current manual methods usually practice, the inspection

of the entire runway, the model utilizes a sample-based method for determining the area

required for manual inspection at each base location. This area is calculated using the min-

imum “sample unit” requirement specified by the ASTM. This amounts to roughly .8% of

each runway needing to be surveyed under the manual method. Additional inspection areas

are randomly added to this minimum value, however, to account for additional inspections

required for maintenance or repair purposes beyond the scope of a PCI. In contrast, the

automated system is treated as always inspecting the entire runway, providing the new ca-

pability of classifying and locating all distresses present on the runway.

When a base is selected to switch to a drone-based system the model assumes, for ad-

ministrative purposes, that an individual base must implement the semi-autonomous system

for three inspection cycles to prove safety and functionality, before switching to the fully

autonomous version. A one-time initial cost to purchase the drone system is incurred by

any base switching from the manual system to a drone system; however, this cost is not
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incurred again when switching from the semi-autonomous to the fully autonomous imple-

mentations, as all equipment used is assumed to be the same. If multiple systems are bought

in the same inspection cycle, an economies of scale factor is applied to capture the savings

from purchasing multiple systems at once. Like the manual system, the semi-autonomous

system also has its own “rate of inspection” that governs the cost of human labor associ-

ated with each inspection. This encapsulates the cost of sending a qualified drone pilot

on location to conduct image collection over an entire runway. Unlike the manual and

semi-autonomous methods, the human labor cost is assumed to be zero for the autonomous

system, as human involvement with the inspection process should be negligible. Drone-

based systems have a factor associated with any maintenance costs required to service the

system. Considering this maintenance, a single drone is assumed to service a single base

for the entire 30-year evaluation period. To account for the likelihood of a drone crash or

catastrophic failure event, probability terms are assigned and updated for each base dur-

ing each inspection cycle that ultimately indicate whether a replacement drone system will

need to be purchased for the base. To provide a more conservative estimation of equipment

requirements, this model assumes bases are not permitted to share drone systems and must

purchase their own system individually.

Because this drone technology is still in its infancy, the model also considers a rough

estimation for institutional and technological “learning” or improvement, which is incorpo-

rated into the model as a scaling factor that reduces certain costs. Learning factors increase

the rate of inspection (decreasing labor costs) and decrease the probability of catastrophic

failure (decreasing equipment costs). Learning factors grow logarithmically with each in-

spection cycle to symbolize diminishing marginal improvement over time. For example,
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one may imagine that in the first year of implementing the drone system at a specific base,

the flight path is very long and inefficient. But after adjustments and learning, the flight

path is updated and made 50% more efficient in year two, greatly reducing the cost. But

then maybe in year three, the flight path can only be made 10% more efficient than the year

prior.

Because both airfield specific and Air Force wide learning will take place the longer

the system is used, learning factors are divided into “local learning” and “global learning”

factors. Local learning factors are unique to a specific base. Examples of this may be more

efficient flight paths or a special operating procedure given local weather conditions. Once

a base implements a type of drone system, its local learning rate factors begin to reduce

costs with each inspection cycle, however, this learning remains local, and the benefits do

not extend to any other bases. Simultaneously, though to a lesser degree, global learning

also takes place with every inspection cycle at every airfield a drone-based system is in

use. An example of this may be new software or hardware developments that improve

drone stability and reduce the risk of crashing. Any cost reductions attributed to global

learning apply to every airfield operating a drone-based platform, regardless of prior use

history. Because the manual method of inspection has been implemented in the field for

many years, it is assumed to have reached steady state cost and is not diminished by any

“learning” factors. This process is visually summarized by Figure 5-1.
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Figure 5-1: A qualitative visual summary of how the model is structured to calculate the
cost incurred by conducting a single inspection cycle at a single runway.
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5.3.2 Data and Parameter Values

Applying this method of uncertainty analysis (Section 5.4.1) to the nature of this problem

is aimed at helping develop a preliminary qualitative strategy for implementing a drone-

based inspection system across a network of Air Force installations. With this goal in

mind, using highly accurate data to generate simulations of this model is not essential to

the analysis. The following section summarizes the values and probability distributions

used by the model to conduct simulation.

The Air Force reports supporting 2.2 billion square feet of pavement evaluations across

roughly 220 military bases worldwide (Ford, 2020). Using these numbers as reference,

220 total installations are used in the model. In the interest of simplicity, the pavement

area per airfield is uniformly assigned to be 10,000,000ft2, which is just the average area

calculated by taking the total ft2 of pavement inspected and dividing that by the total

number of installations. The discount rate used was 2.4% and was selected was based

on the 30-year federal guidelines for government projects (Vought, 2019). An economies

of scale factor of .90 was selected to reflect a nominal impact, as the number of drones

being purchased at any one time will never be exceptionally large given that each base is

only assumed to operate a single system. One inspection per year is assumed, with a time

interval of 30 years evaluated in each simulation. The hourly wage used to calculate human

labor costs for both drone piloting and manual inspection is taken randomly from a right

skewed distribution with an average value of $22/hr. $22/hr is used as the average because

it is roughly the hourly rate of an E-4 (Senior Airman), in the Air Force, though individuals

of another rank or pay scale also conduct PCI inspections or drone piloting duties. To
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Figure 5-2: The cost of labor used in each simulation is obtained by taking a random value
from this right skewed distribution.

conservatively estimate the institutional cost of labor used in the model we then double

the wage to account for overhead, resulting in a right skewed distribution with an average

rate of $44/hr (Figure 5-2). The maintenance cost of $5 per flight hour was estimated from

average life expectancy values for drone parts like motors, propellers, batteries, and other

electronic components. The cost of a drone system is averaged to $10,000, based on rough

quotes of an existing Air Force platform being tested.

Due to the scarcity of data, values and distributions for “semi-autonomous drone crash

probability”, “autonomous drone crash probability”, “semi-autonomous drone rate of in-

spection”, “autonomous drone rate of inspection” and “manual rate of inspection” were

estimated using experimental data from inspections conducted over a single airfield in Col-

orado. Rates of inspection are sampled from a normal distribution and drone crash prob-

abilities were selected to reflect conservative estimations based on field observations and
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anecdotal information provided by experienced drone pilots. Local and global learning

rates for both crash probability and rate of inspection were simply selected as conservative

estimations of improvement. Due to the speed of implementation and highly specified na-

ture of certain practices related to inspection and safe flight, local learning is considered to

occur at an order of magnitude higher than global learning. Because learning is assumed

to have diminishing returns with time, as the most obvious and effective improvements

will likely be found and implemented first, both learning rates demonstrate logarithmic

improvement with time. The numeric values and distributions for all parameters are sum-

marized in Table 5.1.
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Table 5.1: All parameters and their type of uncertainty distribution are summarized in this
table. For more details regarding how they are used in calculations please request the code
for this analysis from the author.
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5.4 Base Case

5.4.1 Deterministic vs Uncertainty Case

Before evaluating implementation strategies with uncertainty considerations, we first con-

duct a preliminary analysis on a deterministic base case model, which reflects no uncer-

tainty or distributions of possible values. Consequently, all parameters are set to their

initial value summarized in Table 5.1.

Using this deterministic case, three basic strategies for drone system integration were

evaluated after a baseline case was run to represent continuing current practices without

automation. The first plan proposes the most rapid and expedited shift, calling for the

purchase and implementation of a semi-autonomous drone system at every airfield imme-

diately at t=0. Then at year three all systems switch to a fully autonomous implementation.

The second plan takes a moderately phased approach, switching 55 airfields to a semi-

autonomous system initially at t = 0. Every five years thereafter, another 55 airfields adopt

a semi-autonomous system. After three years of semi-autonomous implementation, bases

will switch to a fully autonomous system. The third plan takes the most delayed and phased

approach, adding 11 airfield drone systems a year. After three years of semi-autonomous

implementation, bases switches to a fully autonomous system. Running the model for each

of these scenarios results in a single value output that is the total cost in terms of NPV.

Then, to simulate uncertainty and data variability each parameter, instead of being a

single value, is replaced by a distribution of values from which the model randomly selects

for each iteration of Monte Carlo simulation. A thousand simulations are run in this study

to create a distribution of possible outcomes, rather than a single value. Target curves
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Table 5.2: This table summarizes the strategies implemented in the base case evaluation, as
well as average total cost for the three implementation strategies as compared to the manual
only method.

are produced to summarize the results of these simulations. These curves represent the

cumulative distribution function of all simulation outputs, with the x-axis representing total

system cost in terms of NPV and the y-axis representing the likelihood a value from the

output distribution falls below the corresponding cost related by the curve.

For each plan, the deterministic value and the uncertainty distribution’s average value is

recorded in Table 5.4, and the target curves produced by the uncertainty analysis are shown

in Figure 5-3.
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Figure 5-3: These cumulative distribution functions correspond to the distributions of total
costs produced by a thousand interactions of Monte Carlo simulation. Each of the curves
correspond to a different implementation strategy. Because cost in term of NPV is repre-
sented on the horizontal axis, lower values and distributions shifted left are desirable.

One key observation from the target curves shown in Figure 5-3 is that the rate of im-

plementation seems to be a factor improving general performance, as the most delayed and

steadily phased implementation protocol yield a dominant left shifted curve when com-

pared to the other drone-based strategies.

5.4.2 Sensitivity Analysis

To attempt to improve upon this initial analysis of costs, new flexible strategies that respond

to uncertainty are developed and considered. The first step taken toward constructing a

flexible strategy is gaining a better understanding of how the system variables individu-

ally influence the behavior of the overall model. Because implementation plan number

three had a lower average cost, as well as a dominant target curve, plan three’s was used to

generate the results of the sensitivity analysis. Holding all other variables constant, individ-
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Table 5.3: Input ranges used in the deterministic model of Plan 3 to generate the tornado
diagram found in Figure 5-4

ual parameters were changed to a reasonable upper, and then lower, bound. This process

helped determine the quantitative behavior of the model in response to each change. A

summary of the variables examined, as well as the corresponding ranges along which they

were evaluated, is presented in Table 5.3.

The findings of the sensitivity analysis are summarized by the tornado diagram dis-

played in Figure 5-4. From these results we conclude that factors directly or indirectly

related to the cost of drone acquisition are the most influential variables on overall project

cost. This is something that can be practically accomplished by trying to leverage economies

of scale, the time value of money, or restrictions on acquisition price (assuming price vari-

ability). Equally, if not more impactful to this model, are costs incurred by crashing drones

that break and must be replaced. Because this model assumes every drone crash requires

replacement, this result indicates that there is substantial value to be gained by rugged tech-
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Figure 5-4: By evaluating the upper and lower bounds of parameter values, a range of pos-
sible outputs is generated corresponding to each variable. This range suggests the relative
influence of different variables on the total cost. Variables with the greatest influence are
located at the top of the diagram, with least influential variables at the bottom.

nological drone designs that either reduce crashing or do not require drone replacement in

the event of a crash. Paying a slight premium for this technological feature, given the

uncertainty and variability of real-world operating conditions, is worth considering.

5.5 Incorporating Flexibility

5.5.1 Flexible Strategies Investigated

The data used in this analysis are highly uncertain due to the novelty of the systems in-

vestigated, but general trends and qualitative information remain relevant. The sensitivity

analysis provides more detailed insight into the relationship between total cost and param-

eter values, showing that variables influencing the cost of drone equipment, either from
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crashing or new acquisitions, heavily impacted total costs as well.

With these system characteristics in mind, three alternative flexible strategies are pro-

posed and compared to the previous plans. All plans acquire drones in 55 unit increments

to try to benefit from economies of scale. The first flexible option then also capitalizes on

the reduced crash probability supported by the learning rate, starting with just 55 drone sys-

tems at t = 0, with no set time schedule placed on future additions. Rather, 55 new systems

are implemented only when the total crash number of crashes in the previous inspection pe-

riod drops below 15% percent. The second option places an emphasis on rapid acquisition,

while still considering price fluctuations, ordering 55 drone systems each year the price of

drones falls below $9,000, until all airfields acquire a drone-system. While this random

price fluctuation model may not mimic the contract-based procurement strategy often used

by the military, this case is meant to represent strategies that are willing to make a marginal

sacrifice in expediency in exchange for favorable pricing. The third option is a combination

of both flexible options 1 and 2, and acquires an additional 55 drones any year the number

of drone crashes is below 15% and the current drone price is less than $9,000. To evaluate

these strategies, the average NPV, standard deviation, range, and shape of the cumulative

distribution functions are used to qualitatively compare the resulting output distributions

for total cost, as well as total cost of drone equipment only.

5.5.2 Model Results

With uncertainty considered, a thousand simulations of each plan are conducted by the

model, generating distributions for the total cost of all inspections, as well as the total
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Table 5.4: These are the flexible option strategies evaluated in this analysis compared to
the existing method. Also reported are the averages, standard deviations, and ranges of the
distributions for total cost and drone equipment cost.

cost of drone equipment, over the 30-year evaluation period. The averages and standard

deviations of these distributions are summarized in Table 5.4, while the target curves of the

total cost and cost of drone equipment are presented in Figures 5-5 and 5-6, respectively.

Looking at both the total cost as well as the cost of drones we observe all three flexible

strategies having lower average costs than the previously evaluated plans, as well as the

existing manual method. Additionally, although each flexible strategy has a larger range

of outcomes and more variability, their target curves are still shifted left compared to the

other options, making them a preferred method of implementation.

Looking more at each of the flexible strategies reveals Flexible Plan 2, which leveraged
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Figure 5-5: These cumulative distribution functions correspond to the distributions of total
costs spent on inspection over the 30-year evaluation window. Each of the lines correspond
to a different implementation strategy. Because cost is represented on the horizontal axis,
lower values and distributions shifted left are desirable.

Figure 5-6: The cumulative distribution functions correspond to the distributions of total
costs spent on drone equipment over the 30-year evaluation window. Each of the lines
correspond to a different implementation strategy. Because cost is represented on the hori-
zontal axis, lower values and distributions shifted left are desirable.
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lower acquisition costs of drones, performed the best with respect to all evaluation criteria.

However, Flexible Plan 1, which used crash rate as its decision rule also performed well,

displaying similar target curve shape at an average cost of only 13% higher. Flexible Plan

3, which combined the decision rules for both Flexible Plan 1 2, looked to be the least de-

sirable of the three flexible options. Flexible Plan 3 had a higher average value and a similar

range and standard deviation to the other options when looking at total costs. Looking at

the drone cost data; however, we see the characteristics of Flexible Plan 3 looking much

closer to the best option (Flexible Plan 1) in terms of total cost. The likely explanation is

that too many acquisition criteria delay the implementation of the drone system past some

optimal point. While the initial uncertainty analysis in Figure 5-3 appears to favor delayed

drone implementation, the diminished performance of Flexible Plan 3 seems to penalize

more stringent decision rules that delay drone implementation. With this observation it is

reasonable to hypothesize that the mechanisms within the system that reward delayed im-

plementation compete with those that reward expedient implementation, and at some point,

they theoretically reach an optimum. However, given uncertainty is the driving factor be-

hind this analytical approach, it is inherently futile to try to search for this optimum balance

mathematically, as with each different possible simulation, the data, and therefore optimum

implementation scheme, would change. Rather it is most important to know these factors

and relationships exist within the system and that one does not completely dominate the

other. As certain parameters, like drone cost, are more accurately and precisely determined

with time, adjustments can be made to the implementation plans.
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5.5.3 Strategy Development

Due to the high uncertainty present in this model and the data used, a specific plan is not

proposed by this analysis, rather a list of strategic options and considerations is presented,

with generalized recommendations based on empirical findings. The first strategic consid-

eration is that neither rapid implementation nor delayed phasing is heavily favored under

the model assumptions. However, should any factors favoring delayed implementation like

high drone costs, elevated crash probabilities, faster manual inspection times, or high drone

inspection times exist, it may be best to put stringent performance criteria on rollout or wait

for lower drone costs before widespread implantation is attempted. Conversely, should any

factors favoring early implementation like a low discount rate, economies of scale, lower

drone costs, consistent drone performance, fast inspection times, elevated manual labor

costs, or rapid system improvement occur, it may be best to operate under lest stringent

decision rules and favor rapid implementation. The combination of quantitative parameters

used in this model may be thought of as a single point of reference with respect to these

considerations. Incorporating this sort of flexibility into the rollout procedure may also

reveal benefits not considered by the model at all. Because this is a new system technolog-

ical complications or unforeseen conditions may arise that completely inhibit the system’s

ability to perform the inspection task. A monitored flexible option could allow for a return

to manual method at early stages, reducing risks unaccounted for in the model. For this

reason, though not tested in simulation, we recommend an extensive real world test study,

to eliminate as many of these crash associated complication possibilities as well.

The next recommendation is that implementation begin, at least in small scale testing, as
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soon as the system is technologically viable and capable of accomplishing the inspection

task. While the data used in this study are estimates, results still give confidence that

an automated drone-based inspection system could be implemented in a variety of ways,

under a variety of circumstance, that all reduce the costs of current manual methods, while

providing a full runway inspection capability previously unsupported. The addition of

this capability, as well as the quantitative results of this model further support the existing

sentiment that the development and eventual implementation of such an automated system

has economic value potential.
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Chapter 6

Conclusions

6.1 Autonomous System Performance

This study presents a viable approach and positive initial results toward automating air-

field pavement condition assessments, specifically catered to the United States Air Force

(USAF). The proposed automation utilizes state-of-the-art hardware and machine learning

algorithms while remaining firmly within the existing framework of USAF pavement as-

sessment and mission goals. There are several major conclusions from this current body of

work, summarized as follows:

• It is possible to implement automated data collection and analysis procedures within

the existing base maintenance mission and framework for the United States Air

Force:

– National Defense Authorization Act (NDAA) compliance creates strong stan-

dards to which all technology must adhere, but does not prohibit the implemen-
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tation of automation for base maintenance and property condition assessment.

• Hardware selection is critical to mission success:

– While required specifications are unique to each application, careful consider-

ation must be given to Unmanned Aerial Vehicle (UAV)/pilot interaction and

imager properties such as frame rate, field of view, and resolution.

– When new imager and mounting components are applied to a drone, the system

should be field tested at different speeds and wind conditions to ensure minimal

vibrational interference and image distortion.

• Machine learning algorithms can be applied to pavement conditions:

– The quality of the images and their corresponding labels significantly affect

model performance.

– Both cracking and utility patching distresses can be detected on a pixel-by-pixel

basis.

– Far more data will be required to train better models and evaluate if this ap-

proach is generalizable to other runways, with different backgrounds, and more

distress types.

Building on this body of work, there is more work to be done to ensure successful

implementation of automated data collection and analysis procedures. The author suggests

the following items as most critical to project success:

• New UAV and imaging technologies must continue to be developed and allowed to

operate:
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– The number of NDAA compliant hardware and software components, like au-

topilots, cameras, GPS sensors, and ground control stations are limited. New

products or commercialized packages could help optimize cost and perfor-

mance.

– Drone technology must become reliable and resilient enough to operate safely

in a variety of environmental conditions.

– Airfield administration must begin to allow more drone operations over run-

ways to identify problems and continue hardware and software development.

• Data Acquisition and Management

– Significantly more data of different airfields and different distresses must be

obtained and made available to expand the CNN approach to more airfields.

– A PCI for a concrete pavement airfield requires a slightly different analysis

methods. While a flexible pavement inspection measures the linear feet or

square feet of a distress in a sample unit, concrete pavements do not require

physical measurements and instead count the number of concrete slabs (within

a 20 slab sample unit) that contain a specific distress. This would require dis-

tress detection and identification for each slab, but not necessarily measure-

ment. Therefore, the image segmentation performed on flexible pavements in

this research, which is a more difficult CNN task, may not be necessary. Be-

cause concrete pavements only require slab counts for each distress, a simpler

CNN may be used to identify or place bounding boxes around different distress

types in concrete pavements instead.
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– Greater investments in computational power and data storage will be needed to

accommodate and use the data generated by autonomous systems.

– While cracks and patches are distinguishable with visible image data, expand-

ing detection to other distress types may prove difficult. Other types of sensors

(ex. Lidar/3D scanning) may be better suited for detecting other distress types

(ex. shoving, rutting, swell)

• Capitalizing on Advances in Machine Learning

– Distress detection accuracy is a major bottleneck to improving system general-

izability, accuracy, and precision.

– Significant advances in machine learning approaches and algorithms occur of-

ten and should be monitored for replacing the existing algorithm.

6.2 Implementation and Flexibility Analysis

Implementing this sort of flexible strategy in the military’s organizational structure also

presents logistic and organizational challenges. The first is that there are constantly chang-

ing administrative regulations on drone flight over an installation that may be locationally

dependent. While the current policy within the Air Force structure is already gaining mo-

mentum toward alleviating restrictions, or streamlining approval processes, this would still

require significant planning prior to drone system implementation to secure the necessary

approval for operations, assuming such approval even exits at the desired time of imple-

mentation. Additionally, continued monitoring of drone systems used across the globe
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may prove difficult if all systems function independently from one another and must rely

on human reports of system performance. Consequently, it may prove beneficial to incor-

porate a linked data monitoring system across all systems that can automatically update the

status and performance of each drone. This capability would make centralized monitoring

easily possible and provide accurate data for triggering expansion decision rules. If this

sort of centralized monitoring system is in place it would also make sense to have a sin-

gle person or team responsible for the complete implementation from start to finish. This

continuity would not only prevent any loss information regarding flexible implementation

but would also enable continued learning and improvement of the system until adequate

performance is reached and monitoring can be reduced solely to maintenance purposes.

Additionally, this analysis gives us insights into what technical design parameters ought

to be considered and prioritized when developing or selecting a drone platform for imple-

mentation. Clearly intuition, as well as the sensitivity analysis indicate total cost of the

drone system is a highly influential variable and should be minimized. What this model

also reveals, however, is that drone crash probability just as significant, if not more signifi-

cant of a parameter than upfront cost. The model assumes that with every crash event, a full

replacement system will need to be purchased, however, if drones are developed that either

reduce the probability of crashing or do not require total replacement in the event of crash,

this will make the automated system even more cost efficient. For this reason, rugged-

ness of design, reliability, and ease of repair should be a heavily valued characteristic of

whatever drone system is developed or selected to carry out this task.
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Disclaimer

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government
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Appendix A

PCI Image Analysis

While the main body of the text presents the calculation results this appendix provides

a detailed summary and analysis on the performance of the CNN detection and physical

measurement calculation.
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Figure A-1: Sample Unit 1

120



Figure A-2: Sample Unit 2
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Figure A-3: Sample Unit 3
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Figure A-4: Sample Unit 4
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Figure A-5: Sample Unit 5
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Figure A-6: Sample Unit 6
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Figure A-7: Sample Unit 7

126



Figure A-8: Sample Unit 8
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Figure A-9: Sample Unit 9
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Figure A-10: Sample Unit 10

129



Figure A-11: Sample Unit 11
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Figure A-12: Sample Unit 12
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Figure A-13: Sample Unit 13
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Figure A-14: Sample Unit 14
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Figure A-15: Sample Unit 15
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Figure A-16: Sample Unit 16

135



Figure A-17: Sample Unit 17
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Figure A-18: Sample Unit 18
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Figure A-19: Sample Unit 19
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Figure A-20: Sample Unit 20
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Figure A-21: Sample Unit 21
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Figure A-22: Sample Unit 22
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Figure A-23: Sample Unit 23
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Figure A-24: Sample Unit 24
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Figure A-25: Sample Unit 25
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Figure A-26: Sample Unit 26
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Figure A-27: Sample Unit 27
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Figure A-28: Sample Unit 28
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Figure A-29: Sample Unit 29
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Figure A-30: Sample Unit 30
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Figure A-31: Sample Unit 31
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Figure A-32: Sample Unit 32
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Appendix B

Image Labeling with Matlab

Training and evaluating a CNN for segmentation requires image data and ground truth

labels of these images. During training and testing every image fed into the network has

a corresponding “mask” (or labeled image) the network receives as an input. Instead of

containing RGB light intensity information like the original image, the image label contains

the categorical label associated with each pixel in a particular image. MatlabTM has an app

available in the Computer Vision ToolboxTM to help generate these labels (Figure B-1).

This manual will walk through the basics of using the image labeler app. More information

can be found in the official Matlab documentation under “Image Labeler”.
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Figure B-1: The image labeler application receives the image data as inputs and provides a
graphical user interface that assists in generating ground truth images that can be used for
training a CNN.
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Step 1

Figure B-2: Start by opening up an instance of Matlab. Click on the “Apps” tab, and then
click on the drop-down menu of apps and open “Image Labeler” as shown below. In this
picture “Image Labeler” is in the favorites bar, so it shows up in the window. If you cannot
find the application, type “ver” in the command line to check what Matlab toolboxes are
installed. Although every Matlab package (or “toolbox”) listed above may not be essential,
the list in the image above has been tested to run this project without error.
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Step 2

Figure B-3: Once you have the “Image Labeler” app opened you will need to load the
images you are looking to label or load an existing session. If you have an existing session
simply click on “Load”, then click “Session” and select the session file you have and you
can begin working. If you are starting a new labeling session with a new data set click on
“Load” and then click “Add images from folder”. A pop up file selector will appear, select
all files you wish to include in this session. The easiest way to do this is to click once on
the first image to highlight it, then scroll to the last image and SHIFT+RIGHT CLICK the
last image, highlighting all images in the folder. Now all the images should be loaded into
your session.
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Step 3

Figure B-4: If you have an existing label.mat file with your classification labels, go to the
“Load” drop-down menu again, click on “Label Definitions” and select a label file to use,
then proceed to the next step. If you don’t have a label file yet and need to create new
labels, hit the “Label” button in the “ROI Labels” tab on the left side of the screen. A pop
up menu will populate. In it select “Pixel Label” from the drop-down menu circled bellow.

157



Step 4

Figure B-5: Click on the box Colored box below the label “Color” and select the right
color pallet button on the new popup menu and make sure the drop-down menu is “RGB
[0-255]”. Once you have labels created or loaded in the colors you want for each of your
categories, save your “session” by going to the “Save” tab. Now, whenever you open up
the app again, you can just load this “session” and pick up exactly where you left off. If
you have an existing session it is important you do not alter the input and output image file
names and locations on your computer, otherwise you will receive an error when trying to
re-open your session and you may have to start over.
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Step 5

Figure B-6: If you have labels loaded or created, your screen will now have a new tab at
the very top called “Label Pixels” so you can begin labeling your images. You can use
Polygons, Smart Polygons, Brushes, and Different algorithms to try to quickly label each
pixel in your image of the class you want. Play around with it and see what is fast and
accurate for what you are trying to do. For cracks I have found the only reliable way is
to use the paintbrush and do each pixel by hand. Do not forget to save your session often.
Be as accurate as you can if your access to data is limited. I find each image usually takes
anywhere from a few minutes to a half hour to do well depending on how much is there
in the image to label. Try adjusting the size of your brush if you need to change your
precision.
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Step 6

Figure B-7: When you are done labeling your entire set, make a new folder in your com-
puter to store these labeled images, also called masks or ground truth data. Click on “Ex-
port Labels” and then “To file”. Hit “Browse” and select the folder you just made to deposit
these labeled images into. Change the name of the .MAT file that will be created to go along
with these data if you need to. Hit “OK” and the app will save all ground truth images into
the file you specified and will save the “gTruth.mat” file into your current directory opened
in MATLAB.
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Appendix C

Matlab Code

This appendix contains four code files. The first three blocks of code are required to train

and test the neural networks used in this research. The last block of code is used to extract

physical measurement estimations from the neural networks outputs. The commenting

explains how the code works and what most of the functions do. When a comment begins

with “specify” this generally indicates the subsequent line is an input that can be changed

to fit the individual needs of the project. Some of the code is robust and can easily be

applied elsewhere, other parts are hyper-specialized to this project’s data and application.

The comments provided, as well as the official Matlab documentation for the functions

used, should provide most of the answers; however, if anything is unclear please email me

personally at rpieters@mit.edu for assistance. The Matlab version and toolboxes used to

successfully run this code are listed in Figure C-1. Other combinations of packages and

versions may be compatible but are not tested.
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Figure C-1: The code in this section has been tested and verified using this Matlab version
and these toolboxes.

C.1 Matlab Code: CNN Main Code

This block of code takes image and label data inputs and trains a CNN to perform semantic

segmentation. To run it requires that all input images already share (or be either cropped or

resized to share) the same matrix dimensions (MxN pixels). It also requires that for each

image, its corresponding ground truth image label shares the same file name. This code

also requires the function defined in Section C.2.

%% Import input data and initialize
%Specify the file folder path containing your image data.
imgdirectory = fullfile(...

'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Images');

%Specify the file folder path containing your label data. Be sure the
%labels share the same file name as the image the correspond to.
labeldirectory = fullfile(...

'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Labels');

%Specify the minibatch size you wish to run your code with. This will be
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%limited by the computer hardware you have available, but bigger is better
batchsize=4;

%Specify the maximum number of epochs you wish to conduct during training
numepochs=5;

%Specify the file path you wish to save checkpoint files during training
checkpointpath = ...

'D:\AFCEC Project Data\Dataset_Journal_Paper_1\CNN Code\Checkpoints';

%Specify the network image size. This is typically the same as the traing
%image sizes.
imageSize = [1080 1920 3];

%This function creates an image datastore object in your matlab workspace
imgdatastore = imageDatastore(imgdirectory);

%Specify the classes or categories you are detecting
classes = [

"Background"
"Cracks"
"Patches"

];

%Specify what numeric values are in the pixels of your ground truth image
%labels for each of the corresponding categories. Notice that the location
%of the number must correspond to the "classes" matrix above. So the first
%entry means that any pixels in the ground truth image label that match the
%value [000,000,000] will be associated with the category known as
%"background". If this is unknown you can use the "Image Viewer" app in
%matlab to look at what the pixel values are in an image. This can be
%changed to add new categories for detection if desired.
labelIDs = { ...

[000, 000, 000] % "Background"
[001, 001, 001] % "Cracks"
[002, 002, 002] % "Patches"
};

%This function creates a pixel label datastore object in your matlab
%workspace
pixeldatastore = pixelLabelDatastore(labeldirectory,classes,labelIDs);

%This section of code will display an example of the picture and its ground
%truth
I = readimage(imgdatastore,2);
I = histeq(I);
C = readimage(pixeldatastore,2);

%The cmap defines what color each category will be displayed as. The Red
%channel is the first entry, the Green channel is the second, and the blue
%channel is the third. Similar to the "labelIDs" variable, the position of
%each category corresponds to the order defined in the "classes" matrix.
%The first entry here designates what color the "background" pixels will be
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%colored as completely black, [000, 000, 000].
cmap = [

000 000 000 % Background [R,G,B]
001 000 000 % Crack
000 000 001 % Patch
];

B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
pixelLabelColorbar(cmap,classes);

tbl = countEachLabel(pixeldatastore);

%This produces a graph summarizing the representation of each
%classification category in the data provided.
frequency = tbl.PixelCount/sum(tbl.PixelCount);
bar(1:numel(classes),frequency)
xticks(1:numel(classes))
xticklabels(tbl.Name)
xtickangle(45)
ylabel('Frequency')

%This code divides the total input data randomly into independent training,
%validation, and test data sets. The "partitionData" function is a special
%function for this application. To avoid error please ensure
%"partitionData.m" is a file in your Matlab path and current folder so the
%code is able to locate and call this function. Please specify how you want
%your data partitioned between training, validation, and testing by
%changing this function.
[imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] =...

partitionData(imgdatastore,pixeldatastore,labelIDs);
numTrainingImages = numel(imdsTrain.Files);
numValImages = numel(imdsVal.Files);
numTestingImages = numel(imdsTest.Files);

%% Create the CNN
% This determines the number of classes or detection categories from the
% matrix "classes"
numClasses = numel(classes);

%This creates DeepLabv3+. DeepLabv3+ requires a network backbone as the
%last input argument. In this case that is 'inceptionresnetv2'. Other
%options include 'resnet18', 'resnet50', 'mobilnetv2', and 'xception'. If
%the Deep Learning Toolbox Model for Inception-ResNet-v2 Network support
%package is not installed, then the function provides a link to the
%required support package in the Add-On Explorer. To install the support
%package, click the link, and then click 'Install'. Check that the
%installation is successful by typing 'inceptionresnetv2' at the command
%line. If the required support package is installed, then the function
%returns a 'DAGNetwork' object.
lgraph = deeplabv3plusLayers(imageSize, numClasses, 'inceptionresnetv2');

%This balances classes using class weighting, so classes without as much
%representation are still important for detection performance.
imageFreq = tbl.PixelCount ./ tbl.ImagePixelCount;
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classWeights = median(imageFreq) ./ imageFreq
pxLayer = pixelClassificationLayer(...

'Name','labels','Classes',tbl.Name,'ClassWeights',classWeights);
lgraph = replaceLayer(lgraph,"classification",pxLayer);

%This defines validation data.
pximdsVal = pixelLabelImageDatastore(imdsVal,pxdsVal);

%Specify the training options and hyperparameter values you wish to use for
%your network training. Please consult the documentation for
%'trainingOptions' to learn more.
options = trainingOptions('adam', ...

'InitialLearnRate',1e-5, ...
'ValidationData',pximdsVal,...
'MaxEpochs',numepochs, ...
'MiniBatchSize',batchsize, ...
'Shuffle','every-epoch', ...
'CheckpointPath', checkpointpath, ...
'ExecutionEnvironment', 'gpu', ...
'VerboseFrequency',20,...
'Plots','training-progress');

%Specify the Data Augmentation you wish to perform on your training data.
%Please read more about what options are available in the documentation for
%'imageDataAugmenter'
augmenter = imageDataAugmenter(...

'RandXTranslation',[-100 100],...
'RandYTranslation',[-100 100],...
'RandRotation',[-20 20]);

%% Start training
%This creates a new pixel image label datastore that has the data
%augmentation applied to it.
pximds = pixelLabelImageDatastore(imdsTrain,pxdsTrain, ...

'DataAugmentation',augmenter);

%Specify 'true' if you wish to train a new weight file for the neural
%network. Specify 'false' if you wish to import an existing weight file. If
%importing an existing weight file, either make sure that file is in
%Matlab's current folder and working directory, or specify the full file
%name and location. The new weight file generated from training the network
%will be saved in the current directory under the string name specified
%next to the 'save' function. In this example that is
%'Weights_Journa_Paper_1'
doTraining = true;
if doTraining

[Weights_Journal_Paper_1, info] = trainNetwork(pximds,lgraph,options);
save Weights_Journal_Paper_1
net = Weights_Journal_Paper_1;
%If you decide to change the name of the output weight file, be sure to
%change it in each place it says 'Weights_Journal_Paper_1'

else
data = load('trainedresnet50_1.mat');
net = data.trainedresnet50_1;
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%If you decide to import an existing weight file, be sure its name is
%specified correctly in both places where it currently says
%'trainedresnet50_1.mat

end

%This tests the resutling trained network on one image and displays the
%result
I = readimage(imdsTest,1);
C = semanticseg(I, net);
B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4);
figure('Name','Prediction Over Image')
imshow(B)
pixelLabelColorbar(cmap, classes);

%This displays the expected (groundTruth) vs actual display for one example
%image
expectedResult = readimage(pxdsTest,1);
actual = uint8(C);
expected = uint8(expectedResult);
figure('Name','Prediction Over Ground Truth')
imshowpair(actual, expected)

%This calculates the IoU metric for the example
iou = jaccard(C,expectedResult);

%This evaluates the trained network using the test data
pxdsResults = semanticseg(imdsTest,net, ...

'MiniBatchSize',4, ...
'WriteLocation',tempdir, ...
'Verbose',false);

table(classes,iou)
metrics = evaluateSemanticSegmentation(...

pxdsResults,pxdsTest,'Verbose',false);
metrics.DataSetMetrics
metrics.ClassMetrics

C.2 Matlab Code: “partitionData.m” Function
This block of code randomly divides the input data for the code in Section C.1 into training,
validation, and testing data.

function [imdsTrain, imdsVal, imdsTest, pxdsTrain, pxdsVal, pxdsTest] =...
partitionData(imds,pxds,labelIDs)

% Partition data by randomly selecting 80% of the data for training.
% The rest is used for testing.

% Specify initial random state for example reproducibility.
rng(0);
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numFiles = numel(imds.Files);
shuffledIndices = randperm(numFiles);

%Specify the percentage of the data used for training. In this case it is
% 0.8 of the images for training.
numTrain = round(0.8 * numFiles);
trainingIdx = shuffledIndices(1:numTrain);

%Specify the percentage of the data used for validation. In this case it is
% 0.1 of the images for training.
numVal = round(0.1 * numFiles);
valIdx = shuffledIndices(numTrain+1:numTrain+numVal);

%This uses the rest of the available data for testing.
testIdx = shuffledIndices(numTrain+numVal+1:end);

% Create image datastores for training and test.
trainingImages = imds.Files(trainingIdx);
valImages = imds.Files(valIdx);
testImages = imds.Files(testIdx);

imdsTrain = imageDatastore(trainingImages);
imdsVal = imageDatastore(valImages);
imdsTest = imageDatastore(testImages);

% Extract class and label IDs info.
classes = pxds.ClassNames;

% Create pixel label datastores for training and test.
trainingLabels = pxds.Files(trainingIdx);
valLabels = pxds.Files(valIdx);
testLabels = pxds.Files(testIdx);

pxdsTrain = pixelLabelDatastore(trainingLabels, classes, labelIDs);
pxdsVal = pixelLabelDatastore(valLabels, classes, labelIDs);
pxdsTest = pixelLabelDatastore(testLabels, classes, labelIDs);
end

C.3 Matlab Code: Evaluate on Test Data
This block of code takes new test data (images and their labels) as inputs and uses an
already trained neural network weight file to evaluate the performance of the CNN.

%Specify the location of the images you wish to test
TestImageLocation = fullfile(...

'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Test\Images');

%Specify the location of the labels that correspond to the images you wish
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%to test. Be sure the labels share the same file name as the image the
%correspond to.
TestLabelLocation = fullfile(...

'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Test\Labels');

%Specify the location you wish the new detection results to be exported to.
ExportLocation = fullfile(...

'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Results');

%This part of the code will prompt use input. Please select from your
%computer a the .mat file containing the CNN "weights" you wish to use to
%perform the detection. This file is generated and exported by running the
%"CNN_Main_Code.m" or can be downloaded from another source as long as it
%is compatible with this network.
[filename, path] = uigetfile;
CNN_File = fullfile(path, filename);
CNN_Weights = load(CNN_File);
[path,net_name,ext] = fileparts(CNN_File);
net = CNN_Weights.(net_name);

%Specify the classes or categories you are detecting. Please ensure the
%"classes", "labelIDs", and "cmap" matrices match the same ones used to
%generate the "weight" file selected that was produced by CNN_Main_Code.m
classes = [

"Background"
"Cracks"
"Patches"

];

%Specify what numeric values are in the pixels of your ground truth image
%labels for each of the corresponding categories. Notice that the location
%of the number must correspond to the "classes" matrix above. So the first
%entry means that any pixels in the ground truth image label that match the
%value [000,000,000] will be associated with the category known as
%"background". If this is unknown you can use the "Image Viewer" app in
%matlab to look at what the pixel values are in an image. This can be
%changed to add new categories for detection if desired.
labelIDs = { ...

[000, 000, 000] % "Background"
[1, 1, 1] % "Cracks"
[2, 2, 2] % "Patch"
};

%The cmap defines what color each category will be displayed as. The Red
%channel is the first entry, the Green channel is the second, and the blue
%channel is the third. Similar to the "labelIDs" variable, the position of
%each category corresponds to the order defined in the "classes" matrix.
%The first entry here designates what color the "background" pixels will be
%colored as completely black, [000, 000, 000].
cmap = [

000 000 000 % Background [R,G,B]
1 000 000 % Crack
000 000 1 % Patch
];
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imdsTest_Images = imageDatastore(TestImageLocation);
imdsTest_Labels = pixelLabelDatastore(TestLabelLocation,classes,labelIDs);

%This evaluates the trained network using the weights file you selected
%from your computer
pxdsResults = semanticseg(imdsTest_Images,net, ...

'MiniBatchSize',1, ...
'WriteLocation',tempdir, ...
'Verbose',false);

metrics = evaluateSemanticSegmentation(...
pxdsResults,imdsTest_Labels,'Verbose',false);

metrics.DataSetMetrics
metrics.ClassMetrics
%This exports all labeled images
[NumImages,nothing] = size(imdsTest_Images.Files);
for i =1:NumImages
I = readimage(imdsTest_Images,i);
C = readimage(pxdsResults,i);
B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4);
imwrite(B,fullfile(ExportLocation,sprintf('Final_%d.tif',i)))
end

C.4 Matlab Code: Physical Measurement Estimations
This block of code takes the detection outputs of the CNN and uses an estimation for
drone altitude and the camera’s field of view of to calculate the physical dimensions of the
pavement damages in each sample unit.

%% Initialize
%This initializes matrices to write data into during the loops
crack_matrix = zeros(1,32);
patch_matrix = zeros(1,32);
crack_matrix_severity = {};
patch_matrix_severity = {};

%This loop runs through the 32 test image for each of the 32 sample units.
%If there are a different number of images, set "i" equal to a different
%range.
for i = 1:32

%% Patch Import
%Specify the file location path where your detection outputs are
%located. This code is sensative to these images and requires the
%patches are pure blue, [000,000,255], cracks are pure red,
%[255,000,000], and the background is black, [000,000,000]
folder = 'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Results';

%Specify the file name of each of your inputs. This code requires you
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%name your files in a consistent manner changing only with number.
img_name_patch = sprintf('%d_patch.tif',i);
img_patch = imread(fullfile(folder,img_name_patch));
img_bw_patch = img_patch(:,:,3);

%% Patch Measurement
img_num_patch = double(img_bw_patch);
img_num_patch(img_num_patch>0) = 1;
patch_count = sum(sum(img_num_patch));

%Specify pixel dimension values using the imager FoV and
%estimated flight altitude.
pixel_area = .0262*.0271; %(inputs in ft, output in sqft)
patch_area = patch_count*pixel_area; %(sqft)
patch_matrix(1,i) = patch_area;

%All patches are assumed 'medium' severity
patch_matrix_severity{i} = 'medium';

%% Crack Full Import
%Specify the file location path where your detection outputs are
%located. This code is sensative to these images and requires the
%patches are pure blue, [000,000,255], cracks are pure red,
%[255,000,000], and the background is black, [000,000,000]
folder = 'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Results';

%Specify the file name of each of your inputs. This code requires you
%name your files in a consistent manner changing only with number.
img_name_crack = sprintf('%d_crack.tif',i);
img_crackfull = imread(fullfile(folder,img_name_crack));
img_crackfull = double(img_crackfull);
img_crackfull = img_crackfull(:,:,1);
img_crackfull(img_crackfull>0) = 1;
crackfull_count = sum(sum(img_crackfull));
%% Crack Skel Import
%Batch process images with the 'bwskel' function to create traces of
%the crack distresses.
%Specify the file location path of the crack trace images
folder = ...

'D:\AFCEC Project Data\Dataset_Journal_Paper_1\Results\CrackSkel';

%Specify the file name of each of your inputs. This code requires you
%name your files in a consistent manner changing only with number.
img_name_crack = sprintf('%d_crackskel.tif',i);
img_crack = imread(fullfile(folder,img_name_crack));
img_crack = double(img_crack);
img_crack(img_crack>0) = 1;
%% Crack Skel Measurement
crack_count = sum(sum(img_crack(:,:,1)));

%Specify pixel dimension values using the imager FoV and
%estimated flight altitude.
pixel_length = (.0262+.0271)/2; %(in ft)
crack_length = crack_count*pixel_length; %(ft)
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crack_matrix(1,i) = crack_length;
%% Crack Severity Determination
crackratio = crackfull_count/crack_count;
if crackratio < 2

crack_matrix_severity{i} = 'low';
elseif (crackratio ≥ 2) && (crackratio < 7)

crack_matrix_severity{i} = 'medium';
elseif crackratio ≥ 7

crack_matrix_severity{i} = 'high';
end

end
%Displays the final measurement result for each sample unit
crack_matrix
crack_matrix_severity
patch_matrix
patch_matrix_severity
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