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Abstract

Time-of-day (or dynamic time-of-use, dToU) pricing is a mechanism by which system
operators try to lower stress on the grid in times of high demand. The price for high
demand periods is pre-set but the times of day they are applied is dynamic. Data on
how residential consumers respond to the pricing scheme can inform more accurate
models of consumption to maintain the integrity of the grid while lowering consumers’
utility bills and optimizing renewable use. In this thesis, I analyze the data from
a time-of-day pricing trial in London to see whether the treatment was effective in
lowering consumption. I do this analysis using four different models and compare
the accuracy of each and the results; an aggregated linear regression model, a multi
linear regression model, an aggregated multi linear regression model, and a random
forest regression time series model. I found that the time-of-day pricing during the
trial was effective in lowering consumption and costs. A dependence on households’
socio-economic status was observed.
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Chapter 1

Introduction

Electricity is unique in that its storage is prohibitively costly; this makes it essential

for supply to, at least, meet demand at every second of every day1. Electricity

generation, therefore, depends on a projected demand for every hour. In times of

crisis where demand exceeds its projected amount, system operators — who are

tasked with ensuring the reliable delivery of electricity to consumers, businesses, and

industry — need to fall back on different methods to either lower demand or suddenly

increase supply to meet that unexpected peak in demand. Increasing supply is quite

costly as it would require buying power from other utilities in an open market. During

periods of high demand — during a snow storm, a heat wave, or when renewable

energy supply is low — system operators curb demand by incentivizing customers

to lower their consumption. This tool is called demand response (DR). Utilities

often think of DR as a virtual power plant since it operates by reducing load [28].

If at any point, demand exceeds supply, there will be a power outage. Power grid

1Supply can exceed demand, but at minimum it needs to be equal to it. In reality, there are
always margins of error in place (usually 20%) as demand exceeding supply will lead to a power
outage which is incredibly costly.
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failures can be catastrophic and costly as events in February of 2021 in Texas showed.

Department of Energy estimates that outages cost the U.S. economy about $150

billion annually [34]. Evaluating various interventions and incentive structures is

critical in mitigating losses incurred in such scenarios.

1.1 Background and Motivation

A high-level motivation for implementing DR is that it can be shown that maximum

social welfare is achieved when the retail price equals the marginal cost of generat-

ing and delivering energy [19, 20]. The barrier to demand response is technical and

regulatory in nature. MIT’s own Paul Joskow and Jean Tirole have shown that con-

sumers’ inability to access market transaction information in real time hinders retail

competition2 [17]. The prevalence of static pricing is two-fold. First, static pricing

creates cross-subsidies. Consumers that consume most in high price hours are being

subsidized by consumers that consume most in low price hours. For this reason, static

pricing encourages excessive consumption during peak hours when cost of generation

is higher than the retail static price [12]. Second, demand response increases retail

competition which is to the consumers benefit. Hence, there’s sufficient economic ra-

tionale for implementing DR. Quantifying the benefits of DR through studying data

from trials can help justify the cost of installing smart meters and sway regulation

towards dynamic pricing.

The challenge with evaluating the effectiveness of incentive structures that can

be called upon to lower the strain on the grid in times of high demand is that it

is impossible to know what customers would have consumed in the absence of said

incentives, otherwise known as their counterfactual consumption or the customer
2Demand response are introduced in wholesale markets, not at the retail level.
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baseline load (CBL). The difference between actual load and the CBL is considered

the amount of load reduction, or the DR performance achieved by the customer

[25]. Data collected from trials and pilots are used to help system operators find

robust and accurate methods of estimating CBL. An accurate estimation of the

counterfactual consumption is vital in deeming a DR incentive structure effective.

High incentives put a heavy financial burden on the system operators; low incentives

leave the customers dissatisfied and disengaged. Evaluating such incentive structures

hence always includes counterfactual analysis.

In this thesis, I look at time-of-day pricing (also known as dynamic time-of-use),

on of such incentive structures. Time-of-day pricing is a pricing mechanism under

which the price per kilowatt-hour (kWh) depends on the time-of-day. The price

bands are pre-set but the hour of the day they are applied to is dynamic. This

is different from time-of-use (ToU) pricing, which targets predictable high demand

periods in the week but is otherwise static, and critical peak pricing (CPP), which

is not static but infrequent and targets only the highest demand periods of the year.

This pricing scheme reduces system stress during peak hours by increasing the

price during those hours and lowering other times. This encourages consumers to

reduce consumption during peak hours and shift some consumption to lower price

hours. The research question raised here is hence, whether this intervention

can successfully help lower consumption during peak hours. To answer this

question, I analyzed data from a trial in London in 2013 to determine whether the

implemented dynamic pricing scheme provided sufficient incentive for consumers to

change their consumption habits. More details on the trial and the data set can be

found below, in chapter 3. As expected, the time-of-day pricing was successful in

lowering consumption during the high price hours. One of the features present in the

data set is the socio-economic status of the households. I also examine significant
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differences in the response among three socio-economic groups: affluent, comfortable,

adversity, and conclude that the adversity group is least price sensitive and the

comfortable group is most price sensitive.

In summary, the two questions this thesis works to answer are the following: 1.

Did dToU lower consumption during the high hours? 2. How does socio-economic

status affect response to dToU?

1.2 Overview of Related Work

Demand response literature approaches baseline estimation in one of four general

ways: an economics approach in which consumers are maximizing a utility function

or consuming based on a demand model [30], a machine learning approach that

learns the exact patterns of usage for the particular consumer for which there is pre-

intervention data [16, 25, 29, 35], a day matching approach which takes a historical

look into the past and average consumption for non-event days with similar profiles;

same day of week, temperature profile, etc. for an estimate of the baseline, or a

regression approach which is often used for load prediction [31]. The latter two are

the models that are most used in the industry [14]. Much of the current literature

explores methods at the intersections of the above four general categories.

Additionally, the models are often either created for the purpose of baseline esti-

mation or load forecasting. The baseline estimation methods help find the baseline

from which treatment effects can be calculated. Load forecasting models are more

often used by system operators to predict the amount of load on the grid. The two

types of study, however, are very similar from a technical standpoint in that they at-

tempt to find the underlying pattern of consumption and how that depends on other

inputs to find consumption at a time for which ground truth data does not exist.
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The sole difference is that baseline estimation is backwards looking and often in the

context of historical data and load projection is forward looking. My thesis brings

together the regression, matching, and machine learning approaches. It additionally

draws from the work of Abadie et al. and the synthetic control model [5, 6], as well

as Agarwal et al. for matrix imputation and completion [7]. Below, I dive deeper

into some of the work that has informed my thesis.

Starting out with the economics perspective, Schneider et al. use an online learn-

ing model to find customer baselines [30]. For this purpose, they consider two cus-

tomer demand models and investigate two natural objective functions for demand

response programs for system operators. They conclude that the optimal demand re-

sponse baseline is not necessarily the customer’s counterfactual consumption. Some-

times, system operators benefit from a baseline that is not optimized per customer;

the objectives for the are in conflict. A subset of similar economics papers derive

energy demand models and how they are modulated by incentives, from first princi-

ples. Subbiah et al. found that daily consumption has an active portion and a passive

portion [32]. They then use different data sets to validate the results obtained by

this model against real-world data. The results show that the modeling framework

is robust.

Demand response aims to influence the behavior of a subset of houses in aggre-

gate. Synthetic control is a method that creates a ‘synthetic’ control group in cases

where there is no explicit control group. Synthetic control is a particularly useful

method in cases where we need to look at the aggregate affect on the outcome of a

trial, especially where traditional regression methods are not appropriate — where

the effects of a policy change is of interest, for example [5]. Abadie et al., in their

2003 synthetic control paper, constructed a ‘synthetic’ basque country without ter-

rorism using data from a combination of neighboring areas to then be able to study
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the effects of terrorism on the economy and the following cease fire [6]. Similarly, in

a 2010 paper they estimate the effect of Proposition 99, a large-scale tobacco control

program, on California’s tobacco consumption [5]. The above qualities make syn-

thetic control a very effective tool for finding the treatment effect of different pricing

schemes.

Machine learning models work best if the data used to build the model — base-

line estimation or load predition models — have other features that can help with

the accuracy e.g. temperature, size of household, square footage, etc. These mod-

els can be fine-tuned for other data sets but lack explainability and transparency.

A masters thesis from Montclair State University [16] explores the same data set

along with weather data from the Dark Sky API. They use a Long Short-Term

Memory model to predict consumption. Their main goal is to find the hyperpa-

rameters that lead to the most accurate consumption prediction using weather data

as features; They don’t include socio-economic status or electricity price as features

in their model. Another machine learning model that is used for generating long-

term forecasts based on pre-intervention data, for example, is the Temporal Fusion

Transformer (TFT) model. The TFT model is an attention-based Deep Neural

Network (DNN), optimized for great performance and interpretability. It has been

benchmarked against traditional statistical models (ARIMA3) as well as DNN-based

models such as DeepAR, MQRNN4 and Deep Space-State Models (DSSM) and out-

performs them all [22]. The original paper discusses the model in the context of a few

experiments, predicting electricity consumption being one of the examples they use.

They use the model on the UCI Electricity Load Diagrams data set, containing the

electricity consumption of 370 customers – aggregated on an hourly level as in [35].

3Autoregressive Integrated Moving Average
4Multi-Quantile Recurrent Neural Network
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In accordance with [29], they use the past week (i.e. 168 hours) to forecast over the

next 24 hours. Regression models can take many forms, and are similar to machine

learning models in that they can be used for load prediction but are relatively more

transparent and less accurate.

Park et al. draw from the matching framework and also use machine learning for

a data-driven approach to baseline estimation. They run the time series data through

a self-organizing map (SOM) and then use k-means clustering to turn the data into

K disjoint clusters. A SOM is an unsupervised machine learning algorithm that

transforms a high dimensional space into a topology-preserving output space [21].

The output of the SOM is of much lower dimension compared to the original data

set. They then split that data into K clusters. This creates clusters of houses that

consume with similar patterns which allows for houses in the future to be mapped to

the cluster they belong to. Lastly, they validate their model using data from Korea

from 2012 to 2014 [25].

Several pieces of related work provide context for this research study. The most

important is a dissertation from Imperial College London which is responsible for

creating the data set for the Low Carbon London Project and initial analysis [31].

The author, James Schofield, explains experimental design principles (such as timing

of “high” price events, potential flaws in the data set (such as drop outs), general

motivation for the project (to allow for greater penetration of wind energy for the

London Power grid), and the statistical methods and analysis used to examine the

data after collection. Schofield sought to investigate the efficacy of dynamic pricing

as a method for reducing the burden of high consumption hours on the power grid

and in general, found that dynamic pricing is an effective tool to reduce electricity

consumption. With his methods, he estimated that demand reduction during peak

hours is within the range of 6.8-10.2%. The dissertation also considers socio-economic
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groupings’ potential to respond differently to dynamic pricing but did not mention

specific p-values regarding consumption differences for each socio-economic group.

This thesis fits into a context of many other DR studies. Specific load shifting

studies, such as one conducted over the summers in Texas, aims to understand how

consumption patterns change as a result of DR pricing methods by examining ap-

pliance usage statistics [10]. In this experiment researchers estimated the Average

Treatment Effect by comparing the control and treatment groups energy usage per

appliance. In addition, this paper looks at responses to both pricing incentives and

information incentives — for example, a text that asks households to consume less.

They conclude that while pricing may improve economic efficiency, there’s little ev-

idence of response to the information treatments [10]. In another study, Ito finds

that consumers do not necessarily respond to changing tariff schemes, which justifies

further scholarship in this field to better understand what energy customers will best

respond to [15]. Additionally, it is important to consider the ethics and equity of

these tariff schemes, as examined in another study focused on the benefits of two-part

tariffs [9].

The province of Ontario in Canada is the only region, apart from the country

of Italy, to have rolled out smart meters to all its residential consumers and to be

deploying time-of-use (ToU) rates to all customers that remain with the option5. The

data from Ontario is very valuable in the context of studying ToU pricing and its

effects on consumption trends. The Brattle Group prepared an analysis of Ontario’s

time-of-use rates for the Independent Electric System Operator. The goal of the

study was to quantify the change in consumption, estimate the peak period impacts,

and to estimate the elasticity of substitution between the pricing periods and the

overall price elasticity of demand [8]. In their analysis, they estimated a model of
5Customers have the option to opt-out.
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consumer behavior using the Addilog Demand System model to find inter-period

elasticities of substitution. They also estimated a monthly consumption model to

find an overall price elasticity of demand. The difference between this work and my

thesis is that 1. they estimate an advanced economic model and 2. they estimated

a general monthly consumption model. They use principle component analysis to

reduce the dimensionality of the data which is also something I do.

1.3 Overview of Thesis

The rest of this thesis is organized as follows: chapter 2 goes through a historic

overview of policies surrounding DR in the US, as well as defining different demand-

side incentive schemes and estimation models. Chapter 3 outlines the specific trial

and data set I use to quantify the effect of time-of-day pricing treatment, as well as

limitations with the data set. Chapter 4 mathematically frames this question and

outlines multiple regression models for finding the treatment effect, presents results

for each, and quantifies their accuracy. Chapter 5 outlines a review of time series

models and the details of a random forest regression model that learns the temporal

trends as well as dependence on temperature. Chapter 6 outlines the conclusion,

policy implications, limitations, and future work. Specifically, I will be comparing

the results and accuracy of all the models; all show that the treatment was effective

in lowering consumption during the high hours. This is impactful as it demonstrates

data driven models of baseline estimation which is useful for system operators.
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Chapter 2

Demand Response in the US: The

Evolution of Forecasting Methods

and Pricing Models

In this chapter, I outline ways demand response has evolved in the last twenty years.

The first part of the chapter is focused on different forecasting methods and pricing

models. The second half, is focused on policies around demand response and its

increasing importance in the energy space. Lastly, I look at recent events in California

and Texas to see whether the methods or policies have been effective.

2.1 Demand Response

Demand response is a method by which system operators are able to lower peaks

in demand by offering time-based rates or other forms of financial incentives1. Con-

1Based on a definition from the Office of Electricity.
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sumers are offered a financial incentive if they lower their consumption below what

it otherwise would have been. In other words, whether or not they are awarded and

by how much depends on a counterfactual consumption amount: it’s impossible to

know how much they would have consumed if the demand response incentive had

not been offered. The very foundation of demand response, as a result, depends on

an accurate forecast of what the consumption would have been in the absence of the

incentive.

The main methods used in demand responses are real-time pricing, critical peak

pricing, hedging consumption, or drawing from microgrids. I will expand on the

way each operates below, as well as the ways in which each falls short. Which

method is most optimal is a topic of debate among economists and policymakers.

What introduces further complication is the degree to which the power market is

regulated. Deregulated power markets operate much like commodity markets. Texas,

for example, has an unregulated electricity market. For ease of analysis, I’ll be

eliminating the degree to which power markets are regulated.

2.1.1 Forecasting Models

A big challenge of demand response is forecasting the baseline from which reduc-

tions are measured. Almost always, historical data is used to find an estimate of

the baseline. Forecasting algorithms typically look at consumption in the past to

predict consumption in the future. There is the underlying assumption that com-

mercial or industrial consumption is a function of the consumers and their behavioral

patterns, hence future behavior is best predicted using consumption data in similar

circumstances in the past.

There are many ways to manipulate historical data to generate a prediction of
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consumption in the future. Generally, they follow the following three basic models:

• A prediction that is the average of the consumption over the past N days.

• A prediction that is based on the same days in the previous year.

• A prediction that is based on days with a similar profile (temperature, what

day of the week, etc.) in the past.

These predictions are usually done in aggregate and not on a per-house basis.

In addition, whether a consumer responds to demand response incentives, by how

much they lower their consumption, and how quickly they respond to said incentive

is studied and factored into how operators mediate peak hours. Again, given the

aggregate and probabilistic nature of the analysis, it can’t be depended on for certain.

“The grid operator wants to have resources that it knows with near certainty it can

call on to increase supply or reduce demand, ” (Borenstein, 346)2.

The above methods are not perfect. For instance, the first hot day of the season

will inevitably have a higher consumption compared to the previous N days or even

potentially compared to the consumption during the same time frame in a previous

year. This makes it so that consumers that have helped keep the grid stable by

lowering their consumption won’t be rewarded because their forecasted amount was

too low — they have lowered demand but not lower than the projected baseline.

Regardless of the exact method, an estimated baseline can fail in a few ways:

1. If firms or customers know that their baseline is set based on previous peak

days, they could strategically increase their baseline by consuming more during

previous high-demand days as evidenced by a pilot program in Anaheim, CA
2Griffin, James M., and Steven L. Puller. Electricity Deregulation: Choices and Challenges.

University of Chicago Press, 2009.
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(Wolak, 2006). This would undermine the very reason behind the incentive.

An inflated baseline would ensure that they are compensated more later.

2. Similarly, it might incentivize customers to consume more during baseline set-

ting times to then be paid to lower their consumption. There was an instance

where Camden Yards stadium turned on their lights on a day when there was no

game. PJM (Pennsylvania, New Jersey, Maryland Interconnection) declared

an emergency event immediately after. They were later paid to lower their

consumption i.e. turn off lights that they did not need to have on in the first

place.

3. Folks are disincentivized from investing in energy-efficient technology. This is

because their overall consumption would be lower, but so would their baseline.

In other words, the incentives reward the biggest delta between their ‘baseline’

and consumption during peak hours which does not necessarily lead to the

most efficient results.

Forecasting is a difficult task because demand response is offered in times of cri-

sis; winter storms, heatwaves, etc. for which there isn’t realistic, dependable historic

data. In addition, lack of certainty around the amount of reductions as a result

of demand response measures and the timeline with which they will happen makes

forecasting an even more important part of demand response. “[The grid operators]

are less attracted to the idea of balancing supply and demand through price adjust-

ment that yield small-quantity changes from thousands of customers, because none

of those customers precommits to make a specific change under specific conditions.

Rather, the responses to price changes are probabilistic, and the reliability of the

aggregate response is due only to the law of large numbers applied to many inde-

pendent buyers. To be concrete, if demand is exceeding supply and adjustment is
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supposed to occur through a price mechanism, a grid operator has no one to call to

assure that demand response occurs,” (Borenstein, 346)3.

Forecasting models are also heavily depended on to adjust electricity generation.

Recall that the integrity of the grid is reliant on supply always exceeding demand4.

Whatever is demanded but not generated would need to be bought from peaker

power plants5 at the spot price. The spot price of electricity is the price at which

electricity can be bought or sold for immediate delivery. The senior author of Spot

Pricing of Electricity and late MIT professor, Fred C. Schweppe, created the concept

of spot pricing and proved, again, that “the forecast is always wrong!” (Schweppe,

v).

2.1.2 Real-Time Pricing (RTP)

Real-time pricing, also known as dynamic pricing, is the situation in which the hourly

price of electricity depends on the utilities’ production cost in that time frame. This

price is surely higher in times of high demand as peaking power plants are more

expensive to run than base load plants6. A dynamic pricing scheme is used both as

a result of an unregulated market or as a demand response method.

As mentioned above, dynamic pricing is a way to lower the effects of issues raised

from an inaccurate baseline estimate. This solution has its problems: dynamic pric-
3Griffin, James M., and Steven L. Puller. Electricity Deregulation: Choices and Challenges.

University of Chicago Press, 2009.
4Within a safe margin, often 20%.
5Peaking power plants or peaker plants are power plants that are spun up during peak hours.

They typically use natural gas, are less efficient, and often have higher emissions per kilowatt-hour
power generated. This is due to the fact that they are only used occasionally. Hydropower is also a
common peaking power source. Water is pumped to higher altitudes in times of low demand using
extra generated power for a peaker event in the future.

6Base load plants operate continuously at near full capacity. They are cheaper as they use low-
cost fuels. These plants supply the majority of the expected demand in the network; their outputs
are quite inelastic.
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ing makes it so that electricity is treated like all other commodities with its price

increasing in times of high demand. The potential for extremely high prices makes

this solution impractical as it exposes the consumers to too much risk. This is what

left folks that were ‘lucky’ enough to have electricity in Texas in winter 2021 with

extremely high electric bills.

2.1.3 Critical Peak Pricing (CPP)

Critical Peak Pricing (CPP) programs give customers low prices throughout most of

the year but have quite high prices in critical times — when demand is unexpectedly

high or supply is low; usually, these cases happen at the same time. The higher price

in the peak hours incentivizes consumers to lower their consumption: either shift

to off-peak hours, fully reduce consumption, or rely on a backup generator to meet

needs. Studies show that CPP programs yield substantial demand reduction and

satisfaction among customers both in residential and commercial settings. Similar

to RTP, CPP may leave consumers with extremely high electric bills. Additionally,

CPP programs are more dependent on an accurate baseline estimate which for the

reasons outlined above is difficult to capture.

2.1.4 Hedging

CPP and RTP or variations of the two are pricing schemes that are most often used

in demand response. I outlined the shortfalls of each above: they both can lead

to extremely high electric bills in peak hours. A solution to manage the amount

of risk customers are exposed to is hedging, where consumers themselves estimate

their future consumption and purchase a certain number of kilowatt-hours of power

in advance — before other metrics, such as the weather, are known. The energy that
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would be purchased in advance is lower cost, making hedging a solution that can

control the volatility of a customer’s electric bill.

Hedging still incentivizes customers to lower their consumption in peak hours

because any kilowatt-hour above their previously purchased amount would have to be

purchased at the high spot price. Additionally, any kilowatt-hour that they consume

less than the hedge quantity, they can sell back at the spot price. Customers hedging

their own consumption is a good start but still inadequate. It’s unrealistic to expect

individuals to accurately predict their consumption, especially in times of crisis, when

system operators’ forecasting models, with all the data that they have available to

them, fail. Hedging could still leave consumers with the need to buy megawatts at

the spot price which would leave them with a high electric bill.

The issue is that hedging is positively correlated with prices; when prices are high,

it means that it’s a peak event, therefore, demand is high and the hedging quantity

should have also been high because the grid is likely stressed. A solution to that is

to over-hedge. A better solution is a hedge quantity that fluctuates proportionally

with the overall system demand; e.g. on days that the system demand is higher, the

hedge quantity is also proportionally higher. This lowers the amount of electricity

that might be needed at the spot price.

Most of these solutions, hedging included, allow consumer choice. Larger in-

dustrial consumers can use more sophisticated consumption or hedging strategies

to lower their electric bills. Smaller consumers can pick a default plan from their

retailer.

It’s important to note that dynamic pricing with hedging is superior to programs

that pay consumers to lower their demand relative to an estimated baseline. As out-

lined in the forecasting model section, this estimated baseline is a function of that

customer’s consumption in the past and, therefore, at the risk of baseline manipu-
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lation, adverse baseline selection (participants can choose a program and a baseline

algorithm that works best for them), and participation selection (consumers for whom

none of the programs are personally beneficial can opt-out of all demand response

programs and continue purchasing electricity at the constant flat rate). What this

means is that dynamic pricing combined with hedging prevents overcompensating

as a result of baseline manipulation, as well as lowers risks for both consumers and

retail providers.

2.1.5 Microgrids

Some residential and commercial buildings now have their own mini-grids; some have

solar panels that, unlike power plants, can save electricity, some even have their own

backup generators. Microgrids are another solution that can come to the rescue in

times of peak demand. A microgrid, as the name suggests, is a small, local grid

that can disconnect from the main grid and operate autonomously in times of crisis.

Microgrids have power generation and storage capabilities and can power a building,

campus7, or even a small town8. Recent research attempts to bring in the power

stored in electric cars as a source in times of high demand.

2.2 Background on the US Power Grid

Getting electricity from the power plants to our homes is done in three main steps:

generation, transmission, and distribution. A combination of the transmission and

7New York University has generated power on site since the 1960s. NYU’s power plant was
successful in powering the campus during Hurricane Sandy which kept the campus lit, unlike most
of the New York downtown area.

8The microgrid in Fort Collins, Colorado is part of a project (Fort Collins Zero Energy District,
FortZED) where the district plans to create as much power as it consumes.
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distribution steps is referred to in North America as the power grid or the grid.

The US Grid dates back to 1882 — when Thomas Edison launched the first power

plant on Pearl Street in New York City. The grid has expanded quite a bit in size

since then but the underlying structure has remained unchanged.

With 7700 power plants, 3300 utilities, and over 2.7 million miles of power lines,

the grid has been called the largest machine in the world. The US grid, however, has

three main operational components: the Eastern, Western, and Texas interconnec-

tions. The grid is considered a ‘natural monopoly’ given its complexity and costly

infrastructure; therefore, historically, the utilities controlled every step of the pro-

cess. Regulated markets still function the same way, with power utilities owning the

entire electricity supply chain from generation to distribution.

In 1978, Congress passed the Public Utility Regulatory Policy Act (PURPA)

which required utilities to buy power from independent third parties that could

generate power for cheaper. 1992 further deregulated the power market; the 1992

Energy Policy Act separated power generation (wholesale market) from transmission

and distribution — utilities kept their monopoly over local electricity distribution.

This made it so that generators would now sell power to utilities and retail electricity

suppliers on the wholesale market (business-to-business) at rates set in a competitive

bidding process who then sold the power to consumers on the retail market (business-

to-consumer) with the cost of distribution and transmission from distribution utilities

added.

2.3 The 2005 Energy Policy Act and Order 745

The 2005 Energy Policy Act (EPAct 2005) transformed the power sector. Following

the 2000-2001 power outages in California, rising energy prices, and dependence on
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foreign oil, the 2005 Energy Policy Act attempted to address increasing concerns

about energy security, environmental quality, and economic growth (Congressional

Research Services). Passed by Congress in July 2005 and signed into law by Pres-

ident George W. Bush in August 2005, EPAct designated the Department of En-

ergy’s Federal Energy Regulatory Commission (FERC) as the primary authority over

power generation and transmission across the US.

Based on the Energy Policy Act of 2005, the Secretary of Energy shall be re-

sponsible for “(1) educating consumers on the availability, advantages, and bene-

fits of advanced metering and communications technologies, including the funding

of demonstration or pilot projects; (2) working with States, utilities, other energy

providers and advanced metering and communications experts to identify and ad-

dress barriers to the adoption of demand response programs; and (3) not later than

180 days after the date of enactment of the Energy Policy Act of 2005, providing

Congress with a report that identifies and quantifies the national benefits of demand

response and makes a recommendation on achieving specific levels of such benefits

by January 1, 2007.”

Section D of EPAct 2005 includes detailed responsibilities for FERC to reform

transmission rates. In summary, the commission is responsible for the following:

• Establishing incentive and performance-based rate treatments in the year fol-

lowing the enactment of this section.

• The above is to assure reliable and low-cost transmission of power by reducing

congestion. It shall also promote the economically efficient generation of power

“by promoting capital investment in the enlargement, improvement, mainte-

nance, and operation of all facilities for the transmission of electric energy in

interstate commerce, regardless of the ownership of the facilities.”
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• “In the rule issued under this section, the Commission shall, to the extent

within its jurisdiction, provide for incentives to each transmitting utility or

electric utility that joins a Transmission Organization. The Commission shall

ensure that any costs recoverable pursuant to this subsection may be recovered

by such utility through the transmission rates charged by such utility or through

the transmission rates charged by the Transmission Organization that provides

transmission service to such utility.”

• All rates must be just, reasonable, and not unduly discriminatory or preferen-

tial.

EPAct 2005 reaffirmed a commitment to competition in wholesale power markets

as national policy and put a lot of emphasis on demand response and clean energy.

A number of orders followed; on July 20, 2006, Order 679 attempted to address the

responsibilities outlined in Section D — to bolster investment in the nation’s trans-

mission infrastructure which would benefit consumers “by ensuring reliability and

reducing the cost of delivered power by reducing transmission congestion,” (Order

679).

In August 2006 FERC issued the Assessment of Demand Response and Ad-

vanced Metering as required by EPAct 2005. In the report to congress, FERC out-

lines the regulatory barriers to “improved customer participation in demand response,

peak reduction, and critical peak pricing programs.” Some of the most significant reg-

ulatory barriers are:

1. The disconnect between retail and wholesale rates

2. Demand response disincentives for utilities

3. Lack of incentives for utilities to use “enabling technologies”
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4. The need for additional research on the cost-effectiveness of pricing models

5. State-level constraints to offering greater demand response

6. Barriers for third-parties to offer demand response and inaccessible demand

response data for third-parties

7. The need for better federal-state coordination on demand response offerings

The report concludes that “demand response needs serious attention.” Their sug-

gested remedies for the state of demand response are 1) to explore ways to increase

presence in the wholesale market; 2) better coordinate state commissions with util-

ities; and 3) to remove regulatory barriers that hinder participation in demand re-

sponse, peak reduction, and critical peak pricing programs.

On June 22, 2007, FERC issued an Advance Notice of Proposed Rulemaking.

Among many other things, it sought public comments on “the role of demand response

in organized markets, including greater reliance on market prices to elicit demand

reductions during power shortages.”

Order 719 issued on Oct 17, 2008, finalized regulation that leveraged demand

response to improve the competitiveness of organized wholesale markets. EPAct

2005 had tasked FERC with benefiting consumers by boosting competition in orga-

nized wholesale markets and ensuring just and reasonable prices. On February 22,

2008, FERC issued another Notice of Proposed Rulemaking; this time they were ad-

dressing “demand response and market pricing during a period of operating reserve

shortage” among other things. July 16, 2009, saw Order 719-A which affirmed in

part and granted in part rehearing of Order 719. Order 719-B, issued on December

17, 2009, denied rehearing Order 719-A and finalized its determinations of pric-

ing mechanism during reserve shortage in organized markets. The reforms in Order
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719 attempted to treat demand response as other resources. It instructed Regional

Transmission Operators (RTOs)9 to allow demand response into wholesale markets.

This allowed entry of a negawatt10 of energy — a saved megawatt — into wholesale

market auctions.

On March 15, 2011, FERC issued Order 745 that took Order 719 a step further.

Order 745 instructed RTOs to compensate a negawatt of energy at the same rate

as a megawatt of energy. This was foundational as it was the first time FERC had

determined a price mechanism for demand response and not only that now demand

response was part of the wholesale market (established in Order 719) but that it was

worth the same as a megawatt of power.

Order 745 proved controversial. Energy Economists such as William Hogan11,

Raymond Plank Research Professor of Global Energy Policy and research director of

the Harvard Electricity Policy Group (HEPG), openly criticized the choice to price

negawatts and megawatts of electricity at the same rate — at the locational marginal

price (LMP)12. The criticism stems from the fact that negawatts of power should

9Wholesale markets are managed by nonprofit regional transmission organizations (RTOs),
which ensure that the grid remains reliable and that wholesale power prices remain “just and
reasonable” through the use of competitive auctions. Nine exist in North America, covering about
60 percent of the US power supply.

10Amory Lovins, an American physicist and a big promotor of energy efficiency and the use of
renewable energy sources, noticed a misprint in a report of the Colorado Public Utilities Commis-
sion in 1989: negawatt for megawatt (MW). He borrowed the term to describe a unit of power
saved — a negative megawatt — through conservation or increased efficiency. (from “Negawatt
Hour.” The Economist, The Economist Newspaper, www.economist.com/business/2014/03/01/
negawatt-hour.)

11Hogan has written extensively about Order 745 and more generally about how demand response
should be priced. Some of those papers are as follows: Providing Incentives for Efficient Demand
Response (October 2009), Demand Response Pricing in Organized Wholesale Markets (May 2010),
Implications for Consumers of the NOPR’s Proposal to Pay the LMP for All Demand Response (May
2010), Demand Response Compensation, Net Benefits, and Cost Allocation: Comments (November
2010), Demand Response: Getting the Prices Right (February 2016).

12Locational marginal price recognizes that the cost of making a unit of electricity available for
purchase can vary greatly by location (William Hogan, Electric Transmission: A New Model for
Old Principles, The Electricity Journal, vol. 6, no. 2, p.18, 1993).

41

www.economist.com/business/2014/03/01/negawatt-hour
www.economist.com/business/2014/03/01/negawatt-hour


not be valued at the same rate as megawatts of power. Demand response is often

cheaper than even the cheapest of power generations. Order 745 makes it so that

someone curbing their demand not only saves how much they would have spent on

that megawatt of power but earns the same amount for generating negawatts priced

at the same rate. Richard J. Pierce Jr., a professor at George Washington University

Law School [18] puts the failure in Order 745 very simply and eloquently: “[there

is] an explicit ‘reward’ for conservation in addition to the market-based ‘reward’ the

consumer gets as a result of a decision to decline to purchase a unit of electricity,”

(Pierce Jr., 2011).

This inconsistency alarmed power generators. The Electric Power Supply Associ-

ation (EPSA), the coalition of major power generation owners, sued FERC claiming

that the commission had overstepped its jurisdiction by meddling with retail markets,

the states’ domain. The American Public Power Association (APPA), the National

Rural Electric Cooperative Association (NRECA), and the Edison Electric Institute

(EEI) joined EPSA in the lawsuit.

In May 2014, the U.S. Court of Appeals for the D.C. Circuit sided with EPSA

and ruled that demand response was a retail-side transaction, hence under states’

utility commissions’ jurisdiction. The court further stated that even if FERC had

jurisdiction to issue Order 745 under the Federal Power Act, it would have been

vacated as the choice to use LMP is “arbitrary and capricious” and FERC has failed

to address the concerns of the order leading to unjust and unreasonable rates that

overcompensate demand response resources.

The disagreements between either side continued. EPSA believed the Order

was overcompensating demand-side resources and would hence result in premature

closure of power plants. Supporters of Order 745 argued that demand response has

always been valuable; it’s always been more valuable to curb demand than to build
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a peaking power plant that is used a few hours out of the year13 [13].

The lawsuit was appealed to the Supreme Court. On January 25, 2016, the

Supreme Court ruled to uphold Order 745. In a 6-2 decision, justices concluded that

FERC was within its jurisdiction to be setting prices for demand response resources

in the wholesale market. The Federal Power Act not only gives FERC jurisdiction

over the wholesale market rates but also rules and practices ‘affecting’ the wholesale

market. Justice Elena Kagan, who delivered the opinion, wrote “FERC has the

authority — and, indeed, the duty — to ensure that rules or practices ‘affecting’

wholesale rates are just and reasonable.”

Additionally, an important distinction is that Regional Transmission Operators

(RTOs) [2] coordinate the transfer of power between states. They operate on a

multi-state grid and are as a result outside of the state’s jurisdiction and regulated

by the FERC. On whether FERC was regulating retail markets, Kagan said the

answer is unambiguously no: “When FERC sets a wholesale rate, when it changes

wholesale market rules, when it allocates electricity as between wholesale purchasers

— in short, when it takes virtually any action respecting wholesale transactions —

it has some effect, in either the short or the long term, on retail rates. That is of no

legal consequence.”

With the supreme court ruling, demand response had a chance to grow as FERC

intended even at the expense of the utilities overcompensating demand response

resources and even if economically inefficient. It was forecasted14 that ruling against

Order 745 would cut the demand response industry growth in half and cost the US

demand response market 4.4 billion dollars in revenue the following 10 years after the

13Said Audrey Zibelman, chair of the New York Public Service Commission.
14In a report by Greentech Media. I was unable to find the report as the company has since

been sold and the link to the report redirects to Wood Mackenzie’s home page but this article
summarizes the report.
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ruling. It’s beyond argument that the Supreme Court ruling played a foundational

role in the growing importance of demand response and efficient energy.

2.4 California August 2020, Texas February 2021

The blackouts in 2000-2001 in California were one of the reasons EPAct 2005 was

signed into law. Looking at different demand response forecasting methods, their

shortfalls, and the trajectory of demand response policies that led to their increased

importance, one question remains: how effective are demand forecasting and demand

response today?

The blackouts in California in August 2020 and in Texas in February 2021 have

been humanitarian and economic disasters. Both events were a result of unexpected

extreme weather, which is more common due to climate change.

The California Independent System Operator (CAISO) did a preliminary root

cause analysis [11] on the rotating outages in August 2020. The report pointed to

three reasons: 1) the extreme heat created circumstances that fell outside of what

can be handled with existing resource planning 2) the transition to an efficient, green

resource portfolio makes it difficult to bring in additional supply in the early evening

hours15, and 3) practices16 in the day-ahead market exacerbated the supply chal-

lenges. On August 14, California experienced 1.4 to 2 gigawatts of natural gas fleet

outages. This sudden outage wasn’t able to be replaced; out of the 1.5 gigawatts of

capacity available in demand response in California only 200 megawatts are avail-

able in less than 15 minutes. CAISO is itself looking to increase demand response
15California is relying more and more on solar power and closing natural gas and nuclear power

plants.
16under-scheduling of demand in the day-ahead market by scheduling coordinators, convergence

bidding masking the tight supply conditions, and the configuration of the residual unit commitment
market process.
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flexibility and reliability in preparation for summer 2021. This points to a need to

develop demand response methods and technologies that are dependable, flexible,

and responsive irrespective of the time or time frame of the crisis.

On August 14 and 15 2020, in addition to extreme heat, California experienced

two natural gas fleet outages of 400 megawatts and 470 megawatts. This sudden

outage wasn’t able to be replaced; out of the 1.5 gigawatts of capacity available

in demand response in California, only 200 megawatts are available in less than 15

minutes (a design choice17) and the load needed to be dropped in a 12-minute win-

dow. To better understand the rolling blackouts let’s take a survey of the resources

available. 2.2 gigawatts of behind the meter resources are available: 1.5 gigawatts of

demand response load-shedding18, 450 megawatts of behind the meter storage both

residential and commercial and industrial (C&I), 100 megawatts of EV charging flex-

ibility, and 160 megawatts of natural gas and diesel microgrids. On the one hand,

flex alerts, the most traditional and least predictable form of demand response, were

utilized and shed 4 gigawatts19! On the other hand, much newer demand response

technology such as Sunrun and Tesla were also utilized. Other resources were brought

in during the two days; 180 megawatts from data centers and microgrids from the

navy. During the rolling blackouts, diesel backup generators were given emergency

authorization. Diesel and natural gas generators added 950 megawatts of capacity.

The emergency authorization points to cycles of climate change.

In short, the different demand response resources were utilized over the two days,

but not all at once. They helped in aggregate and functioned as designed. A main

takeaway is that the resources need to be further integrated. CAISO is itself looking

17They are designed around a 30-minute response time.
18Which isn’t really automated, hence the 30-minute time frame.
19Flex alerts are a great example of a commons problem because folks should accept that mo-

mentary lowering of the AC in aggregate can help keep the grid secure.
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to increase demand response flexibility and reliability in preparation for summer

2021. This points to a need to develop demand response methods and technologies

that are dependable, flexible, and responsive irrespective of the time or time frame

of the crisis.

Many factors are to blame for the events in February 2021 in Texas: Texas’s semi-

isolated grid, unregulated market, wholesale market design, and record colds that led

to frozen wind turbines, but most importantly the failure of its natural gas system.

Frozen natural gas combined with a peak in demand caused gas prices to skyrocket.

This is an indication that managing peak demand in electricity is not independent

of other industries. It’s important to think of increasing reliability in the natural gas

industry as a part of the future of demand response in Texas’s isolated grid.

The debate surrounding solutions involving supply or demand continues. Severin

Borenstein, the Faculty Director at the Energy Institute at Haas, writes about an

increasing consensus among economists, grid operators, and utility managers that

paying people to lower their consumption is not working. An alternative approach,

such as dynamic pricing with hedging, is more impactful, cost-effective, and less

risky. This demonstrates the need for refining the policies around demand response

and adjusting the grid infrastructure in a way that aligns all stakeholder incentives

rather than methods that overcompensate consumers based on inaccurate baselines

and aren’t dependable for system operators.

2.5 EVs’ Impact on Demand Response

With the improvement of EV batteries, an increasing number of charging stations,

and lower overall cost, it’s expected that the number of EVs will increase. According

to data from the Edison Electric Institute, there will be 18.7 million EVs on the road
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by 2030 in the US. They are projected to make up 20% of new car sales in the US

annually until then. This will change the demand response landscape. EV charging

needs to be planned for as it can create a peak during post-work hours, for example.

EV demand response pilot programs are currently in place. Some offer free chargers

in exchange for reduced, delayed, or shifted charging during DR events. EV charging

is ideal for time-of-use as customers may be willing to give up control of their chargers

if they can have their cars charged overnight or during renewable peaks for a lower

rate. A guarantee to have EVs charged by a certain time and allowing customers to

opt-out if and when they want is important according to VP and Chief Innovation

Officer of Green Mountain Power.

Most importantly, however, EV batteries can act as microgrids. EVs not only

reduce emissions from burning fossil fuels but can also be thought of as storage and

a backup option. Research from the University of Bergamo shows that using EVs

as microgrids in peak times can help lower the market-clearing price and increase

demand response performance.

Lastly, as EVs help decarbonize the transport sector, it’s important to continue

the push to decarbonize the electric sector. Plots comparing emissions from the

two sectors show different trajectories in richer vs poorer regions. One possible

explanation is that rich nations are exporting the emissions from their electric sectors

to seem more locally sustainable but aren’t able to do that for the transport sector for

obvious reasons. It’s important to develop technology that allows EVs to be charged

by renewables and without the need for electricity generation through means that

increases emissions (peaker plants during DR events, for example).
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2.6 Conclusion

The importance of demand response was realized in the wake of the 2000-2001 Cali-

fornia blackouts. The regulatory landscape around demand responses in power mar-

kets has gone through a major shift since then; it’s clear that both policymakers and

energy economists alike understand the importance of being able to navigate times

of stress on the grid. Current demand forecasting and response methods have come

a long way but still fall short to accurately and dependably lower demand in peak

hours. Recent events in California and Texas show that current demand response

measures, though helpful, fall short of providing a perfect solution. It’s essential

to learn from the ways in which current forecasting and demand response methods

could have performed better and iterate on the policies around such topics to prevent

disastrous blackouts in the future.
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Chapter 3

Low Carbon London Smart Meter

Trial

This chapter describes the specific details of the trial and data set used in this

thesis, as well as the research question the trial helps us answer. I go through the

trial design, data exploration and cleaning, and close with the limitations of the data

set and ways to analyze the data given the existing limitations.

3.1 Trial Description and Design

Programs such as Low Carbon London (LCL) were created following the Climate

Change Act of 2008 [26] and a commitment to lower carbon emissions to 20% of

1990 levels by 2050. The LCL program was funded in 2010 under the Low Carbon

Networks Fund (LCNF) tier 2 scheme by the amount of £21.7 million with an addi-

tional £6.6 million of funding contributed by program partners [1]. Part of their goal

was to understand demand side response; specifically, the mission was to gather data

49



on the performance of smart grid technologies. To this end, a dynamic time-of-use

(dToU) trial in collaboration between Imperial College, UK Power Networks1, EDF

Energy2, and some other stakeholders was designed, implemented, and analysed. I

used the data set from this trial for my analysis.

Here, I will discuss the data set’s contents, which were divided based on control

and treatment, with categorizations by socio-economic status. The data set with

which I conducted my analysis is accessible here. It was collected from the UK

Power Networks between November 2011 and February 2014 for 5,567 households.

A subset of 1,100 of the households, recruited as a “balanced sample representative

of the Greater London population,” were subject to dynamic time-of-day pricing

— their electricity tariff would be one of three previously announced rates (high,

normal, or low) depending on the time-of-day. The tariff prices were given a day

ahead via the Smart Meter IHD (In-Home Display) or text message to their mobile

phone. Customers were issued high (67.20 pence/kWh), low (3.99 pence/kWh) or

normal (11.76 pence/kWh) price signals, and the times of day they applied. The

prices were chosen such that a consumer’s bill remain unchanged in the case they

did not respond to DR events. The rest of the households which made up the control

group, were priced on a flat rate tariff of 14.228 pence/kWh. The data set includes

consumption readings that were taken every half-hour (kWh/hh), date and time, two

socio-economic consumer classifications, whether the households are in the control

or treatment group, and a unique household identifier.

The two socio-economic classifications are from CACI’s Acorn classification; one is

more granular and segments the households into 17 groups, the other is less granular

and segments the households into three groups, adversity, comfortable, and affluent.

1The London distribution network operator (DNO) and the lead program partner
2Retail energy supplier
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CACI is a UK based consulting firm that offers data and technology solutions to

public and private clients. Per their website, Acorn is a consumer classification

that splits the population into 62 different types and provides details on consumer

characteristics. To better understand the socio-economic Acron groupings, I referred

to the publicly available User-Guide [3]. However, the guide was not very technically

detailed and did not explain the groupings present in the data set or the reason and

meaning behind any such groupings. I reached out to the CACI, who created and

continues to update Acorn groupings, and they kindly provided me with the most

recent technical guide [4].

There are several key takeaways from these documents. First, the Acorn Groups

were initially relied upon as a data collection measure to ensure that trial and testing

groups were created to be representative of London as a whole as well as to stratify

responses during the analysis explained in the Schofield thesis [31]. Additionally,

the Acorn groupings used in the 2013 trial were generated specifically for this data

set and therefore, are slightly different than the groupings in the User Guide and

Technical Guide. The Acorn classifications used in the data set are not the same,

freely available geo-demographic/zip code-based classifications described in the user

guide. Schofield uses 87 Acorn types, which can be categorized in 17 Acorn groups,

and distilled down to 5 Acorn categories. In the User-Guide there are 62 types, 18

groups, and 6 categories. The Low Carbon London (LCL) project appears to have

commissioned a study specific Acorn classification system, which accounts for the

difference.

The trial was double opt-in; all houses present in the trial opted into sharing their

data. This was true both for the treatment dToU group and the non-time-of-use (non-

ToU) group [31]. Additionally, the treatment group opted into the treatment group

and being subject to time-of-day pricing for the calendar year of 2013. The houses
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under study had to have smart meters installed, it is therefore assumed that the

sample is skewed towards technology enthusiasts, those that were reachable through

recruitment methods, and those who had the time to have the installation take place

(required an engineer to visit home) [23, P.11]. The sample recruited is, to some de-

gree, biased towards ‘early adopters’ of smart meters [23, P.11]. The treatment group

was offered further incentives. Some of the incentives are outlined below [27, P.26]

• A guarantee that they will be reimbursed at the end of trial if they are worse

off on the dToU tariff than they would have been on their previous tariff.

• £20 for returning the appliance survey.

• Assurances regarding how many hours would be charged at the high price band.

• £100 for signing up to the dToU tariff .

• Another £50 for staying on the dToU tariff until the end of trial.

• £20 for returning the consumer dToU tariff survey at the end of the trial.

• Entry into a prize draw after completion of the post trial survey.

Trial recruitment began in 2011 and continued through 2012. For this reason,

the number of houses for which I have data is increasing in 2012 as the recruitment

progressed. Figure 3-1 shows how the number of houses grew over the time period

for which data exists. Over 2011 and 2012, the recruitment was actively taking place

hence the growing number of houses for which we have data. The slight decline in

2013 is due to houses that withdrew from the trial. Although we have data from

November 2011 to February 2014, the treatment group only went through the time-

of-day pricing over the calendar year 2013.
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Figure 3-1: Number of unique houses for which data exists during the trial period.

The relative population of the two groups was decided to guarantee statistical

significance. Additionally, recruitment was continued until both groups had a rep-

resentative sample of London in terms of both location and Acorn groupings which

signify socio-economic status. If a class of consumer was found to be underrep-

resented, recruitment was intensified within this group until the correct ratio was

achieved [31].

3.1.1 Data Ingest, Pre-Processing, and Exploration

The data includes the following: a unique house_id per household, two Acorn group-

ings: one that is more granular and another that segments the population into three

subgroups, whether the household was in the treatment or control group, half-hour

level consumption data in kilowatt-hour (kWh), and the date and time of the con-

sumption measurement. The data for November 2011 until February 2014 is stored in
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Figure 3-2: Trial household sample locations overlaid on the borough boundary map
of Greater London. Map data from the Greater London Authority. This shows that
the treatment and control group were representative samples of Greater London.

168 CSVs. Additionally, for the year the treatment is in effect (2013), there is a CSV

mapper that demonstrates which hours in 2013 had low, normal, or high price points

for the treatment group. In the pre-processing step, I combined all the 168 CSVs

into two gzip files: one with all the consumption data (house_id, whether or not the

house is in the treatment or control group, consumption in kWh/hh, and the date and

time) and another with all the Acorn data (house_id and the two Acorn groupings

per household). The house_id was shared among the two files which helped map

54



Figure 3-3: Proportions of Acorn groups for the dToU group the nonToU group and
EDF Energy customers in the London Power Networks (LPN) area. The increas-
ing alphabetical ordinals of group labels’ loosely correspond to increasing household
wealth e.g. {A, ... , Q}. This shows that the treatment and control group had
similar distributions of customers in different socio-economic groups.

the data between the two tables. I then segmented the consumption data into the

years for which I had data. This allowed me to only import the fraction of the data

with which I was running an analysis on at the time.

Clustering Houses

An interesting line of inquiry is clustering houses based on their patterns of con-

sumption. This is helpful in matching algorithms as in can help more closely find
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a baseline from historic data for houses within that cluster. It can also be used by

system operators for targeted DR. Clustering houses that respond similarly to a DR

event and knowing whether and to what extent a cluster of houses respond to a DR

event is useful information for system operators as they can reliably call upon that

cluster of houses in the case of an event.

I used different clustering methods to cluster houses in this data set based on the

control group’s consumption pre-intervention: k-means clustering, PCA3, TSNE4.

I also tried clustering on the frequency responses which I found fast Fourier trans-

form. PCA, TSNE, and Agglomerative clustering on the resulting data set was also

inconclusive. This is reason for sticking to the pre-existing socio-economic clusters.

3.2 Hypotheses

Revising from chapter 1, the two questions in this thesis are whether dToU was ef-

fective in lowering consumption during the high price hours in this trial and whether

socio-economic status affects level of response to the intervention. With these ques-

tions in mind, the following two hypotheses will be tested.

The first hypothesis is that the treatment was effective in lowering consumption

in the high hours. Here, the ATE is the effect of the treatment on consumption

values.

𝐻0 : ATE(high price hours) = 0

𝐻1 : ATE(high price hours) < 0
(3.1)

This hypothesis is grounded in the fact that demand response mechanisms, dToU

3principal component analysis
4t-distributed stochastic neighbor embedding
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included, are created for the soul purposes of lowering consumption during peak

hours.

The second hypothesis is that the higher the socio-economic status, the lower

the price sensitivity. Here, the ATE is the effect of the treatment on the cost of

electricity.

𝐻0 : ATE(affluent) = ATE(comfortable) = ATE(adversity)

𝐻1 : ATE(affluent) > ATE(comfortable) > ATE(adversity)
(3.2)

This hypothesis is grounded in the fact that the adversity subgroup, given their

socio-economic status, is most likely to shift their consumption around the price

signals. However, the ability to shift demand also depends on the possibility of

doing so. It’s possible that the adversity group contains households that due to

work hours are simply unable to shift their consumption around the price signals.

Another possibility is that affluent subgroups have smart appliances and are more

sophisticated consumers. As a result, it’s possible that lower socio-economic groups

will not be able to take advantage of dToU or ToU pricing.

3.3 Treatment Effect

The goal in this thesis is to be able to use the in sample and out of sample data from

the control and treatment groups to quantify how effective the time of use pricing

was in lowering consumption in high price hours. In order to be able to quantify this

effect, we need to estimate a counterfactual consumption for the treatment group for

the treatment period. I will expand on the specific details of the different methods

I used for finding the counterfactual consumption in chapter 4.
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Generally speaking, treatment effect or causal effect of the treatment on the

outcome for unit 𝑖 is the difference between its two potential outcomes:

𝑌1𝑖 − 𝑌0𝑖

Where 𝑌1𝑖 is the potential outcome for unit 𝑖 with treatment and 𝑌0𝑖 is the potential

outcome for unit 𝑖 without treatment. The fundamental problem of causal inference

is that both potential outcomes (𝑌1𝑖, 𝑌0𝑖) cannot be observed. A large amount of ho-

mogeneity would solve this problem. For example, if one could assume that (𝑌1𝑖, 𝑌0𝑖)

is constant across individuals or time. Randomly assigning people to the two groups

would make that assumption possible and would force the bias term to zero.

As expanded in section 1.2, synthetic control is a method that creates a ‘synthetic’

control group in cases where there is no explicit control group or a biased one (not

a random sample of the population) [6]. Given the natural difference between the

treatment and control groups, and also the natural difference between consumption

in 2012 and 2013, I use synthetic control to create a control group whose 2012 baseline

is similar to that of the treatment group.

The treatment and control groups are said to both be representative samples of

London as a whole as figures 3-3 and 3-2 show. It is, therefore, expected that the

consumption for the treatment and control groups are similar in 2012. Having a

similar baseline in 2012 is essential in being able to understand the treatment effect

in 2013. However, given the double opt-in nature of this trial, the samples aren’t

random and there’s selection bias in the treatment group. For this reason, finding

the counterfactual and the treatment effect will require further analysis. Next, I’ll

be looking at just how different the behavior of the two groups were in the pre-

intervention period.
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3.3.1 Limitations and Normalizing the Data

If the treatment and control groups were random samples of households in Lon-

don, given that they both went through the same static pricing scheme and general

weather patterns during 2012, one would expect that once normalized for the dif-

fering size, that the two groups would have a similar consumption profile in 2012.

Given that the trial is double opt-in, such expectation won’t necessarily be true.

Figures 3-4 and 3-5 show average consumption per day and average cost per day in

2012 and 2013. The difference between the average behavior of the two groups in the

pre-intervention period demonstrates a natural difference between the populations

of the dToU and nonToU groups. Therefore, further normalization and processing

is needed, which will be described in chapter 4. The opt-in nature of the treatment

group also limited the size of the treatment group to be smaller than that of the

control group (roughly a ratio of 4:1) which can be resolved by looking at mean

metrics when comparing across the two groups.

Though 3-4 and 3-5 demonstrate the necessity for normalizing to correct for

the natural difference between the control and treatment groups, another way to

estimate the treatment effect is to look at the percent difference between the two

years within the same group. That analysis ignores the natural differences between

the two years. In other words, even though we’re comparing within the same group,

the temperature and general circumstances change year-over-year. Figure 3-6 shows

the mean consumption and mean cost over all houses present in the treatment and

control groups over high, normal, and low hours, as well as all hours of the day. I

should emphasize that this is without any normalization and to get a sense of how

the treatment changed the behavior of the groups as compared to themselves the

previous year, before the treatment.
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Figure 3-4: Average consumption per day per group. This shows that the houses have
a fundamentally different consumption pattern even in 2012, the year the two groups
had identical circumstances. This is a result of the fact that the treatment group
opted-into being subject to dToU, which created a self-selecting treatment group,
whose habits may have already differed (e.g. they were more energy conscious at the
outset).

Comparing the percent difference in mean consumption, we can see that there’s

an increase in the consumption in the low hours for the treatment group (3.14%) and

a decrease in the normal (-5.47%) and high hours (-9.05%). Similarly, comparing the

percent difference in mean cost, we can see that there’s a significant decrease in the

cost for low hours for the treatment group (-71.03%) and a significant increase in

the high hours (328.77%). This preliminary analysis is in line with the expected

treatment effect; we expect consumption to be lower in high hours and higher in the

low hours (shifted from the low hours) and for the cost to be higher during the high

hours and lower during the low hours (even though consumption is expected to be

high in the low hours) given the price bands for the treatment year.
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Figure 3-5: Average cost per day per group. Looking at 2012, as expected from 3-
4, the treatment spent less on electricity (because they consumed less and 2012 had
static electricity price). The fluctuations in 2013 are an indication that the treatment
had a significantly higher cost during high price hours and lower in low price hours
relative to the control group that was still experiencing static price.

3.4 Conclusion

In summary, equation 3.3 captures the problem at hand. Consumption in each year

and for each group depends on temperature (𝑇 ), time (𝑡), and some group specific

parameters (𝜃). There is a mapping between the two years (ℎ) and another mapping

between the two groups (𝑔). The question is how best to use the control data from

2012/2013 and the treatment data from 2012 to find the counterfactual consumption

for the treatment group in 2013.

𝑓2012(𝜃𝑡𝑟, 𝑇, 𝑡) 𝑓 *
2013(𝜃𝑡𝑟, 𝑇, 𝑡)

𝑓2012(𝜃𝑐, 𝑇, 𝑡) 𝑓2013(𝜃𝑐, 𝑇, 𝑡)

ℎ(𝑡)

ℎ(𝑡)

𝑔(𝜃𝑐) 𝑔(𝜃𝑐) (3.3)
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Figure 3-6: This table shows the mean consumption per group in (kWh/hh) and
mean cost of electricity per group in (pence/hh) as well as the percentage difference
between the two years within the same group. Without normalizing the control and
treatment groups we can see that the treatment was effective.

Chapters 4 and 5 will outline in detail some models that find the counterfactual

consumption using a mapping between the treatment and control groups in 2012.

Chapters 4 will go through regression models that find a mapping between the 2012

treatment and control data. Chapter 5 includes a review of different time series

models that can be used for a data set such as this and one implementation of a time

series model with explicit dependence on time and temperature.
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Chapter 4

Models & Results: Regression

Models

This chapter includes different regression models for estimating the counterfactual

and the resulting treatment effect, as well as the error on each model, the benefits,

and shortfalls. I conclude the chapter with a comparison of the different models.

The chapter begins with a mathematical framing of the problem, it continues with

an aggregated linear regression model and the resulting estimated treatment effect.

The aggregated linear regression model aggregates values over all houses. Adding

accuracy to that model, the multi linear regression model does the prediction without

any aggregation on the household data and predicts on a per half-hour, per house

level. Next is the aggregated multi linear regression model which falls in between

the first two models in terms of aggregation — it aggregates over clusters of houses.

The chapter concludes with a future line of inquiry, a constrained optimization

model which adds a constraint to the multi linear regression — that counterfac-

tual consumption values should be positive, as well as a comparison of the different
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models.

4.1 Research Question: Mathematical Framing of

the Problem

Summarizing from 3.3, the question I will be answering here is whether the time-

of-use pricing scheme carried out in the trial in 2013 was effective, on average, in

lowering consumption during the high price hours. That will be the main question

in focus. However, there will be other analysis around how the treatment affected

consumption overall. All analyses is done in aggregate for a cluster of houses and

not on a per house basis — more information on the reason behind this choice in

section 4.3.2.

As mentioned in section 3.3, the goal is to find the treatment effect. The challenge

with that goal is that I don’t have a baseline consumption for the treatment group —

I don’t know what they would have consumed in 2013 in the absence of the treatment.

Below I mathematically define some variables to quantify finding the counterfactual

consumption.

Consider the following segmentation of the data. 𝛼 and 𝛽 are both matrices of

Year Control Group Treatment Group
2011 𝛼2011 𝛽2011

2012 𝛼2012 𝛽2012

2013 𝛼2013 𝛽2013*
2014 𝛼2014 𝛽2014

dimension 𝑡 × 𝑛 where 𝑡 is the number of time indices for that particular year (=

365 × 48 = 17520 for year 2012 and 2013) and 𝑛 is the number of houses present

in each group during that year. The 𝛼 and 𝛽 matrices can be divided into different
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socio-economic groups based on the house_id of the households. In that case, the

consumption matrix only includes consumption values for households in a particular

socio-economic group for a particular year. For example, the dimensionality gets

reduced down to 𝑡 × 𝑛affluent as a result. This will become handy in the future

sections as a mapping between specific socio-economic groups is explored.

The treatment group only went through the treatment in 2013. However, I have

consumption data for this group when they were subject to static pricing in 2011,

2012, and 2014. Though I have consumption data for some houses starting in late

2011 and ending in February 2014, I have data for full calendar years of 2012 and

2013. As a result, the data from 2012 and 2013 is used in this analysis as it contains

information regarding the effects of seasonal changes on energy consumption. 2012

is a leap year but Feb 29, 2012 was removed to allow for a 1-1 mapping between 2012

and 2013.

Additionally, note that these matrices will have missing values. In particular,

𝛼2012 and 𝛽2012 are going to be very sparse as a large number of the houses weren’t

recruited until later in the year as shown in figure 3-1. Consider 𝐶𝑚,ℎ the consumption

of house ℎ at time index 𝑚. Each element in the matrix is a half-hour consumption

value for house h; i.e. 𝛼𝑚,ℎ
2012 occupies the 𝑚th row and ℎth column of the 𝛼2012 matrix

and holds the consumption value of house ℎ at time index 𝑚, 𝐶𝑚,ℎ. Consider 𝛽2013

to be the counterfactual consumption for the treatment group in 2013 — what they

would have consumed in the absence of the dynamic pricing scheme. To find whether

the treatment was effective, I want to look at 𝛽2013 − 𝛽2013. Below are the different

methods of finding 𝛽2013: aggregated linear regression model, multi linear regression,

and aggregated multi linear regression.
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4.2 Aggregate Linear Regression Model

As explained in more detail in section 3.1, due to the double opt-in nature of the trial,

I need to find a relationship between the two groups using the data in 2012. I then

apply that relationship to the data from 2013 to find the counterfactual consumption.

In this section, I find a linear relationship between mean consumption values over all

houses per time index. In this model, by taking the mean over all households, the 𝛼

and 𝛽 matrices go from consumption matrices with dimension 𝑡× 𝑛 to vectors with

dimension 𝑡, 𝛼𝑚 and 𝛽𝑚. 𝑚 here shows the time index and goes from 1 to 𝑡, the size

of the vector.

I take the mean consumption value per time index for two reasons: 1. to normalize

for the differing number of houses in each group1 and 2. to normalize for missing

data at the beginning of 2012: some houses were not present in the first months of

2012 as shown in figure 3-1.

As shown in equation 4.1 I’m regressing the treatment group’s consumption on

the control group’s consumption, averaged over households to find the estimated

counterfactual consumption, 𝛽𝑚
2013.

𝛽𝑚
2012 = 𝑎× 𝛼𝑚

2012 + 𝑏

𝛽𝑚
2013 = 𝑎× 𝛼𝑚

2013 + 𝑏

∆treatment = 𝛽𝑚
2013 − 𝛽𝑚

2013

(4.1)

𝛼𝑚 and 𝛽𝑚 are both vectors of size 𝑡 = 365 × 48 = 17520 for both 2012 and

2013. 𝑎 and 𝑏 are scalars that can be found from the regression on the aggregated

2012 data. I then apply the same regression to the 2013 control data to find the

1the treatment group is 1,100 households but the control group is of 4,467 households.
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counterfactual consumption for the treatment group in 2013. The following figures

show the 2012 control and treatment data, aggregated over all houses in figure 4-1

and aggregated per socio-economic group in figure 4-2.

Figure 4-1: The linear mapping between the aggregate control group consumption
per half-hour and the control group.

4.2.1 Error Analysis

The mean percent error on this method, as calculated by finding a linear mapping for

70% of all of the 2012 and 2013 control data and finding the error on the remainder

is -2.58%. The mean error is -0.0001 and the standard deviation of error is 0.035.

Table 4.1 shows the error on the mapping per socio-economic group.
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Figure 4-2: Aggregate linear regression between control group and treatment group
in 2012, segmented by socio-economic status.

Aggregated Linear Regression Error Analysis
Model MPE ME SD
Aggregated linear regression (overall) -2.58% -0.0001 0.035
Aggregated linear (affluent) -2.68% 00.0002 0.0421
Aggregated linear (comfortable) -3.92% -0.0003 0.0422
Aggregated linear (adversity) -3.38% -0.0002 0.0323

Table 4.1: Error analysis for the aggregated linear regression model used on the
control group reported in mean percent error (MPE), mean error (ME), and standard
deviation of error (SD). The training size is 0.7 in all cases.

4.2.2 Counterfactual Analysis

Referring back to 4.1, I need to find 𝑎 and 𝑏 to be able to find the mean counterfactual

consumption 𝛽𝑚
2013. 𝑎 and 𝑏 are scalars whose values can be found in figures 4-1 and

4-2. It’s important to note that the specific values are not important. What matters
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most the estimated counterfactual consumption, 𝛽𝑚
2013, and more importantly, the

resulting treatment effect, 𝛽𝑚
2013 − 𝛽𝑚

2013 which can be found by applying those values

to the 2013 control data as shown in equation 4.1.

Table 4-3 shows the mean and mean percentage difference between the actual

data and counterfactual consumption as found through the linear mappings shown

above. All the values on right hand side are found through mapping per socio-

economic group. The values on the left hand side are found through a single mapping

over all houses. The first and second rows compare the effect of the treatment on

consumption. The first row of the table shows the mean treatment effect in kWh/hh.

The second row of the table shows the percent treatment effect, so the change relative

to what the actual consumption was. The third and fourth rows compare the effect

of the treatment on electricity cost. The third row shows the effect on the treatment

in pence/hh. The fourth row shows the percent treatment effect i.e. the percent

change in cost compared to what the actual cost was in 2013.

Table 4-3 shows that all socio-economic groups shed demand during the high

hours. The mapping that averages over all the houses in 2012 (the tables on the

left hand side) shows that the affluent group shed demand during all hours of the

day whereas the comfortable and adversity groups consumed more during the low

hours. The mapping that averages over houses within a single socio-economic group

(the tables on the right hand side) shows the opposite, that the adversity group shed

consumption during all hours, most in high hours, next in normal hours, least in

low hours. The treatment affected the comfortable group similarly per this linear

mapping. The affluent group shed consumption during the high hours (less than

other socio-economic groups) and increased demand in low and normal hours. Even

though there is a discrepancy here on which socio-economic group shed most, both
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Figure 4-3: This table shows the mean and mean percentage difference between the
counterfactual and real consumption of the treatment group in 2013. The counter-
factual is calculated both using the linear mapping from regression on all of 2012
and regression per socio-economic status. In this heat map, the smaller values are
red and the larger values are green.

estimates show that all socio-economic groups responded to the treatment effect.

The results from the linear mapping per socio-economic (the table on the right) are

more accurate as this regression is tighter on the consumption of per socio-economic

group. For this reason, the results from the right hand side are intuitively more

trust-worthy.
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Both regressions show similar results in terms of the effect of the treatment on

average cost of electricity during low, normal, and high hours. The treatment shed

∼250% from low hours expenditure, ∼23% from normal hours expenditure, and in-

creased expenditure in high hours by ∼77%. This is a percentage difference compared

to the expenditure in those hours in the absence of the treatment. Even though con-

sumption was higher in the low hours, the -10.238 p/kWh difference in tariff in low

hours makes the ∼250% decrease possible. Similarly, though consumption was lower

in the high hours, the 52.972 p/kWh difference in cost during those hours is reason

for the ∼77% increase on expenditure during these hours.

Table 4-4 shows the standard deviation of the distribution of treatment effects.

Figure 4-4: This table shows the standard deviation of the difference between the
real consumption and cost of the treatment group and the estimated counterfactual.
The table on the left shows that value as estimated by the linear mapping between
an aggregation of all the houses and the table on the right.

4.2.3 Hypothesis Testing

Going back to the hypotheses in section 3.2, we want to test two things.
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First, we want to run a one-sided t-test to see if the mean treatment effect in the

high price hours is less than zero. If the p-values are statistically significant, it would

mean that the treatment successfully lowered consumption during the high price

hours, which was the goal of the dToU mechanism. Table 4.2 shows p-values resulting

from this t-test. In order to find the p-values shown, I run a ttest_rel using

the scipy.stats package on the vectors of actual consumption and the estimated

counterfactual consumption. The t-test is run to detect whether the mean of the

distribution underlying the actual consumption sample is less than the mean of the

distribution underlying the counterfactual consumption sample.

Socio-economic Group Affluent Comfortable Adversity Overall
p-value (overall mapping) 7.3e-193 5.9e-154 1.8e-40 1.9e-152
p-value (per socio-economic
mapping)

8.3e-76 2.2e-226 4.0e-178 N/A

Table 4.2: The p-values to test the null hypothesis that the ATE in the high hours
is less than zero, for both the overall and per socio-economic mapping.

These p-values show strong evidence against the null hypothesis and prove that

the treatment was effective in lowering consumption during the high price hours in

every socio-economic group.

Second, we want to show that the adversity socio-economic group is more price

sensitive than the comfortable socio-economic group and the comfortable socio-

economic group is more price sensitive than the affluent socio-economic group. For

this purpose, I will run two one-sided paired t-tests, one to show that ATE(affluent)−

ATE(comfortable) > 0 and ATE(comfortable)−ATE(adversity) > 0. It is important

to note that the treatment effect here is the effect of the treatment on the cost of

electricity. We are no longer conditioning on any price hour as we want to see

overall, how the different socio-economic groups responded to the treatment.

72



I similarly run a ttest_rel using the scipy.stats package on the vectors of

counterfactual cost per socio-economic group. The one-sided t-test is such that the

mean of the counterfactual cost distribution in the affluent group is more than the

mean of the counterfactual cost distribution in the comfortable group and the mean

of the counterfactual cost distribution in the comfortable group is more than the

mean of the counterfactual cost distribution in the adversity group groups. The t-

test was run on on the counterfactual cost found by both the overall mapping and the

per socio-economic mapping. All four p-values are zero and show that we can reject

the null. Socio-economic status affects the response to the treatment. Additionally,

the one-sided t-test proves that the the mean of the counterfactual cost distribution

in the affluent group is more than the mean of the counterfactual cost distribution

in the comfortable group and the mean of the counterfactual cost distribution in the

comfortable group is more than the mean of the counterfactual cost distribution in

the adversity group groups.

4.2.4 Limitations and Conclusion

This model aggregates over all data points and finds a linear mapping between the

control group and the treatment group which arguably loses a large amount of in-

formation present in the data set. Additionally, given that the model involves both

the control and treatment groups, the method with which I found the error is not

fundamentally what the model is built to capture. In other words, by finding a linear

mapping between 70% of the 2012/2013 control data and finding the error on the

remaining data, we’re implicitly assuming a linear mapping between the same group

over the two years, which is not what the model assumes. The model assumes a

linear relationship between the consumption behavior of the two groups.
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4.3 Multiple Linear Regression Model

In the aggregate linear regression model outlined in section 4.2, I took the mean

over all household consumption values, effectively going from consumption matrices

with dimension 𝑡 × 𝑛 to vectors with dimension 𝑡. Arguably, there is important

information within those data points that is lost through applying an aggregate

function. Another approach is to commit to using every data point present in the

data set to find the counterfactual. It might be the case that there are patterns in

household behaviors outside of the pre-defined clusters (socio-economic status). This

multi linear regression model finds a mapping per house per half-hour using all data

points.

In order to find 𝛽2013, let us assume a relationship between the two groups that

can be captured by 𝛼2012𝑋 = 𝛽2012. Since 𝛼2012 is not an invertible matrix, I find its

inverse using the Moore-Penrose inverse. 𝑋 = 𝛼−1
2012𝛽2012 captures the way the two

groups map to one another. Assuming that the nature of the control and treatment

groups stay the same throughout the trial, I can find the counterfactual consumption

for the treatment group with the same mapping, i.e. 𝛽2013 = 𝛼2013𝑋. To summarize,

the model is as follows:

𝛼2012𝑋 = 𝛽2012

𝛼2013𝑋 = 𝛽2013

∆treatment = 𝛽2013 − 𝛽2013

(4.2)
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4.3.1 Matrix Imputation

Given equation 4.2, the dimensionality of the consumption matrices must match

across 2012 and 2013 i.e. the 𝛼2012 and 𝛼2013 are of the same dimension and 𝛽2012

and 𝛽2013 are of the same dimension. This, however, poses a constraint as much of

the 2012 matrices will be empty (recall that the recruitment was ongoing so much

of the 2012 data is missing for the first half and for houses that were recruited later

in 2012). Additionally, given that my goal for this model was to keep all and use all

the available data, I decided to fill out the data points that don’t exist in the data

set.

The imputation function takes the median consumption value for a particular

time index across all houses present in the 𝛼 or 𝛽 matrix and fills in the missing

consumption values for that time index with that value. This means that if the

analysis is being done on a subset of the data — for example, on a particular socio-

economic status — the median is taken across all houses in that subset.

The imputed values are simply an approximation of how much households with

missing data might have consumed in 2012. For this reason, I decided to find how

much error imputing the same median value for all houses would introduce. In order

to quantify the error introduced, I used a subset of the 2013 control data (that had

data present for the entire year), masked a fraction of the data, and found the error on

the imputed values. Figure 4-5 shows the amount of error introduced vs percentage

of data imputed.

Figure 4-6 shows the percentage of the data missing across the time index axis in

2012 and 2013. Since 𝛼2012 and 𝛽2012 have a large fraction of the time index missing

for the first six months, I limited my analysis to the latter six months. Recall that

the trial runs until February 2014 which means that there exists two months of out
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Figure 4-5: To understand the amount of introduced error by imputing consumption
values, I masked some fraction of the data and then found the error introduced. This
plot shows the error vs the percentage of the masked data.

of sample data for the control and treatment groups. 2014 has far fewer missing data

— figure 4-7 shows the percentage of time index data missing in the first two months

of 2013 and 2014. This data can be used to get another estimate for the treatment

effect for the January and February of 2013 as shown in equation 4.3 where the 𝛼

and 𝛽 matrices are sliced to only include data from January and February.

𝛼2014𝑋 = 𝛽2014

𝛼2013𝑋 = 𝛽2013

∆treatment = 𝛽2013 − 𝛽2013

(4.3)
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Figure 4-6: The percentage of time index data missing in 𝛼2012, 𝛽2012, 𝛼2013, and
𝛽2013.

4.3.2 Error Analysis

This multi linear regression model finds the counterfactual consumption per house

per half-hour. In order to quantify the error on this method, I trained the model on

a percentage of the control group’s data and calculated the error on the remaining

data for the control group. Given that the control group has never gone through any

treatment, all the data is real and hence, the error can accurately be calculated.
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Figure 4-7: The percentage of time index data missing in January and February of
2013 and 2014.

train2013𝑋 = train2014

test2013𝑋 = ˆtest2014
(4.4)

The train matrices, train2013 and train2014 are both of dimension 𝑁𝑡𝑟𝑎𝑖𝑛 × 𝑡 where

𝑁𝑡𝑟𝑎𝑖𝑛 are the houses in the the training set. They number of houses in both the

2013 and 2014 training set must be the same to make the dimensionality of equation

4.4 work. To make sure I have a mapping for the same subset of houses, I find

the intersection of the houses in both the 2013 and 2014 control group to make the

78



number of houses in the training groups the same. For reasons I will expand on

below, it’s not necessary to find the intersection: simply making sure the number

of houses is the same is sufficient. The data has been cleaned such that there is no

missing data whatsoever — all houses with missing time index values were removed.

This is due to the fact that I wanted to remove any change to the data that might

introduce an error to isolate the error present in the model itself as much as possible.

A similar equation as equation 4.4 can be written for the 2012/2013 control data.

Attempting to quantify the error here brings up a question: do I trust the values

in the outcome matrix ˆtrain2014 such that I want to calculate the deviations of every

predicted value per half-hour per house? Or, does it make more sense to look at the

predictions in some aggregate format?

Figures 4-8 and 4-9 show ˆtrain2014 and train2014, the predicted and real consump-

tion values respectively, per house (4-8) and aggregated over a number of houses

(4-9). As can be seen, the prediction is far from accurate when looked at on per

house granularity. The prediction, and hence the error analysis, start to make sense

when looked at in aggregate.

Figure 4-8: This shows the estimated and real consumption for a single house over
10 days. The prediction is far from the real consumption.
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Figure 4-9: This shows the estimated and real consumption aggregated over all
houses over 10 days. The prediction follows the real value closely when looked at in
aggregation.

Even when comparing the real consumption of a single house to the mean con-

sumption averaged over all houses, as figure 4-10 shows, a single household’s con-

sumption doesn’t have a well-defined wave form whereas the aggregate has explicit

trends.

Figure 4-10: A single house’s consumption over 10 days in 2014 vs. the aggregated
consumption over all houses. The aggregated consumption demonstrates well-defined
temporal trends.

In conclusion, when looking at the estimated counterfactual consumption and the
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treatment effect, it is more meaningful to either predict in aggregate format (similar

to the aggregate linear regression method) or to predict per half-hour per household,

as this method does, and analyze values in aggregate. The per household prediction

effectively has no meaning. This matches expectation as this method is not explicitly

made to pull out patterns of consumption per household. It is for this reason that it’s

not necessary to take the intersection of the 2013 and 2014 train matrices, making

the matrices have the same number of houses is sufficient. One could either take

the intersection or drop some houses randomly to prevent any biases from being

introduced.

One point to note here is that this method results in the counterfactual matrix

ˆtest2014 whereas the aggregated linear regression method outlined in section 4.2 found

the counterfactual consumption aggregated over houses and as a time series vector.

One way to find the mean treatment effect or mean percent treatment effect in this

method is to take the difference between the ˆtest2014 matrix and the test2014 matrix

and then take the mean over households and then over the time index. Another way

is to take the mean over households of both matrices first and find the error as I

did in 4.2, by taking the difference of the two vectors and taking the mean of the

resulting time series.

As figure 4-8 shows, the real consumption values are often very small compared

to the estimated value for that household and time index. For this reason a mean

percent error before taking the mean over all the households leads to incredibly large

values. The two methods leads to the same mean treatment effect. Figure 4-11 shows

how the mean percent error changes with training size. As expected, the error gets

smaller as the size of the training sample gets larger. Given the conclusion drawn

from figure 4-10, if the training size is too large, then the test sample will be too small

and will not have enough data such that the average can smooth out the wobbles.
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There is no imputed data in this entire analysis.

One question that may arise here is why are errors larger when the data is seg-

mented by socio-economic group? The expectation would be that if the group is seg-

mented with houses that are alike, the mapping would be tighter and more accurate.

One possible explanation is there might be useful information across socio-economic

groups that the model isn’t able to learn or draw from when segmented. Along the

same lines, the model benefits from a larger number of houses and when segmented

per socio-economic group, there are fewer houses present. A less likely explanation

is that the 2013/2014 data is too short (Jan 1 to Feb 27) for the model to capture

the trends. It’s possible to eliminate the latter explanation by rerunning the same

analysis on the 2012/2013 control data which span over a longer period of time. Fig-

ure 4-12 shows the error in the same analysis run on the 2012/2013 data with time

values ranging from July 1 to Dec 31. Of note is that given the missing values in the

2012 data, there are fewer houses that could be included in the 2012/2013 analysis

and that was the reason behind picking 2013/2014 in the first place.

4.3.3 Counterfactual Analysis

Going back to figure 4-1 I found a mapping from mean consumption over all the

houses in the control group to the mean consumption over all the houses in the

treatment group. In figure 4-2 I found this mapping with aggregations done over

all houses within a socio-economic status. I will do the same here i.e. the 𝛼 and

𝛽 matrices in equation 4.2 will include all houses when finding the treatment effect

over all the houses and it will include the subset of houses in a particular socio-

economic status when finding the mapping per socio-economic group. In addition,

in this section, I will be running each of the above analyses both with imputed data
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Figure 4-11: The mean percent error between the real consumption values and esti-
mated counterfactual consumption on the 2014 test set. The mapping is found per
socio-economic group and for the entirety of the data.

and without. That creates four different counterfactual analyses: mapping over all

the houses (with and without imputation), mapping per socio-economic group (with
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Figure 4-12: The mean percent error between the real consumption values and esti-
mated counterfactual consumption on the 2013 test set. The mapping is found per
socio-economic group and for the entirety of the data.

and without imputation).

First, I will be looking at treatment effect resulting from mapping all control
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houses to treatment houses in 2012. In tables 4-13, 4-14, 4-15, and 4-16, the treat-

ment effects are outlined both as mean error values (kWh/hh) and also in percent

error (on average, how much of their consumption did households shed). Data from

the second half of 2012/2013 is used for this analysis. This is due to the fact that

there are fewer data points missing in the second half of 2012 as some houses were

not recruited until later in 2012. This results in being forced to use data from the

second half of 2013 as well, to make the dimensionality of equation 4.2 work.

Figure 4-13: The mean treatment effect broken down per socio-economic status and
hour of the day. The mapping is from all houses in the control group to all houses
in the treatment group in the second half of 2012 and 2013. All houses with missing
values have been dropped.

Table 4-14 shows the percent treatment effect with no imputed values; all houses

with missing data were removed. It shows all socio-economic groups responded to the

treatment and shed consumption during the high hours; the comfortable group most

with 10.25% shed and the affluent group least with 3.44% shed. All groups similarly

shed during the normal hours; the comfortable group most with 6.63% shed and the

affluent group least with 0.09% shed. During the low hours, the comfortable group

is found to have shed 1.6% on average whereas the other two socio-economic groups
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Figure 4-14: The mean percent treatment effect broken down per socio-economic
status and hour of the day. The mapping is from all houses in the control group to
all houses in the treatment group in the second half of 2012 and 2013. All houses
with missing values have been dropped.

Figure 4-15: The mean treatment effect broken down per socio-economic status and
hour of the day. The mapping is from all houses in the control group to all houses
in the treatment group in the second half of 2012 and 2013 and for missing values
imputed.

have increased consumption.

Table 4-16 shows the percent treatment effect with imputed values. It shows all

socio-economic groups responded to the treatment and shed consumption during the
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Figure 4-16: The mean percent treatment effect broken down per socio-economic
status and hour of the day. The mapping is from all houses in the control group to
all houses in the treatment group in the second half of 2012 and 2013 and for missing
values imputed.

high hours; the affluent group most with 8.89% shed and the adversity group least

with 5.5% shed. All groups similarly shed during the normal hours; the affluent group

most with 8.09% shed and the comfortable group least with 2.42% shed. During the

low hours, the affluent group is found to have shed 2.41% on average whereas the

other two socio-economic groups have increased consumption.

The percent treatment effect found with missing values imputed or dropped lead

to different results; they both show highest percent shed during the high hours overall,

next during the normal hours, and least during the normal hours. This is in line with

expectations and the goal for the time-of-day pricing. However, the results show

different level of responsiveness to the treatment among the socio-economic groups.

Table 4-14 shows the comfortable group shed most whereas table 4-16 shows the

affluent group shed most. This will lead to different conclusions in terms of which

group is most price sensitive as shown by their behavior in response to the time-of-

day pricing. Before I make any conclusions on price sensitivity, I will be doing the
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same analysis as above but with the mapping per socio-economic group.

The following tables includes the same analysis but with the mapping found on

per socio-economic group.

Figure 4-17: The mean treatment effect broken down per socio-economic status and
hour of the day. The mapping is per socio-economic group in the second half of 2012
and 2013. All houses with missing values have been dropped.

Figure 4-18: The mean percent treatment effect broken down per socio-economic
status and hour of the day. The mapping is per socio-economic group in the second
half of 2012 and 2013. All houses with missing values have been dropped.
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Figure 4-19: The mean treatment effect broken down per socio-economic status and
hour of the day. The mapping is per socio-economic group in the second half of 2012
and 2013 and for missing values imputed.

Figure 4-20: The mean percent treatment effect broken down per socio-economic
status and hour of the day. The mapping is per socio-economic group in the second
half of 2012 and 2013 and for missing values imputed.

Table 4-18 shows the percent treatment effect with no imputed values; all houses

with missing data were removed. It shows all socio-economic groups responded to

the treatment and shed consumption during the high hours; the comfortable group

most with 10.25% shed and the affluent group least with 5.37% shed. All groups
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similarly shed during the normal hours; the adversity group most with 6.62% shed

and the affluent group least with 1.3% shed. During the low hours, the comfortable

group is found to have shed 0.07% on average whereas the other two socio-economic

groups have increased consumption.

Table 4-20 shows the percent treatment effect with imputed values. It shows

all socio-economic groups responded to the treatment and shed consumption during

the high hours; the comfortable group most with 9.04% shed and the adversity

group least with 7.31% shed. All groups similarly shed during the normal hours;

the adversity group most with 5.27% shed and the comfortable group least with

3.76% shed. During the low hours, the affluent group is found to have shed 0.68% on

average whereas the other two socio-economic groups have increased consumption.

A similar analysis using data from January and February of 2014 can be done

as shown in 4.3. The results from the analysis are in tables 4-21 and 4-22. It’s

important to refer back to figure 4-11; the per socio-economic group mapping holds

a higher error, particularly the adversity group. Additionally, figure 4-11 is with no

imputed data.

Figure 4-21: Mean percent treatment effect calculated using first two months of 2013
and 2013. Mapping is done over all houses.
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Figure 4-22: Mean percent treatment effect calculated using first two months of 2013
and 2013. Mapping is done per socio-economic group.

With the sole exception of the mean percent treatment effect for the affluent

subgroup as estimated by January and February of 2014 with imputed values (table

4-22), all mean treatment effect and mean percent treatment effects show that con-

sumption was lowered in the high price hours. This proves the original hypothesis

put forth in section 3.2.

4.3.4 Limitations and Conclusion

Given the limitations of the data set as outlined in section 3.3.1 and that there is

missing data for some fraction of 2012, it is difficult to strike a balance between some

of the following: having a full year’s worth of data to capture the temporal trend

shifts within a year, removing households with missing data or imputing said missing

data, and having sufficient households present in the analysis. Imputing the missing

data introduces some error, and the method itself has some error which is dependent

on the type of mapping (overall or per socio-economic group) as well as the size of

the consumption matrices. As a result, it is difficult to confidently isolate the value
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of the treatment effect. It is, however, possible to compare values to understand

the relative response to the treatment in different hours and socio-economic groups.

That said, every model in this chapter has a non-zero error. In the worst case,

the treatment effects reported should be assumed to be ± the errors I mentioned

above. At best, it’s possible that those errors cancel out. Different mappings (a

single mapping for all households or a different mapping per socio-economic group),

whether there was any imputation, lead to different results. However, all results have

consistently shown the treatment was effective; either consumption was shed in the

high hours or it was increased by the least amount relative to other hours.

4.4 Aggregated Multi Linear Regression Model

Comparing the last two models described in sections 4.2 and 4.3, one aggregates over

all the houses and finds a linear mapping and the other includes all the household data

points before finding a mapping. There is a middle ground between the two where

the house indices in the 𝛼 and 𝛽 matrices are divided into groups and aggregated

within groups. In other words, the 𝛼 and 𝛽 matrices are of size 𝑡 × 𝑛cluster where

𝑛cluster is the number of household clusters. The values in each cluster are the

average consumption over the houses present in that cluster. This still results in a

multi linear regression but this time, the 𝛼 and 𝛽 matrices are filled with time series

that are interpretable, unlike in the multi linear regression model.

The 𝛼 and 𝛽 matrices have the following dimensions in each of the models: In

the aggregated linear regression model, the original matrices are reduced down to

vectors of size 𝑡. Each value is the aggregated consumption value over all households.

In the multi linear regression model, the matrices are of size 𝑡 × 𝑛 where 𝑛 is the

number of houses present in the consumption matrix. In the aggregated multi linear
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regression model, the matrices are of size 𝑡× 𝑛cluster.

4.4.1 Error Analysis

Similar to section 4.3.2, to find the error on this model, I find 𝑋 (as shown in equation

4.4) on the training set and find the mean percent error on the test set. To transform

the consumption matrices, I take the mean over every 𝑛 index. To assure that the

matrix dimensions work out when doing the mapping per socio-economic status, I

separated the matrices into different socio-economic groups and then took the mean

over every 𝑛 index.

With the exception of the comfortable group, the error for all groups has de-

creased. The difference between the error on the comfortable group at 0.7 training

size is less than 1%. These numbers show that the aggregated multi linear regression

model is more accurate than the multi linear regression model which was itself more

accurate than the aggregated linear regression model. One question that may come

up is how the granularity of aggregation effects the test error. Figure 4-24 shows

the mean absolute percent error on every 10, 50, and 100 houses in the consumption

matrices being aggregated as well as the error from the multi linear regression model

added. The reason I use mean absolute percent error (instead of mean percent error

as I have thus far) is to make it easier to compare percent error across the different

runs of the model as a negative or positive percent error here is not of interest and

only the absolute value matters. On average, the 𝑛 = 50 performs best, second

to that is 𝑛 = 100. Every run of the aggregated multi linear regression performs

better than the multi linear regression. It is important to note that at 𝑛 = 100 the

size of the matrices are quite small: (5, 2784), (6, 2784), and (7, 2784) for different

socio-economic groups and since the train and test sets are divided over index, this
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Figure 4-23: The mean percent error between the real consumption values and es-
timated counterfactual consumption on the 2014 test set. This analysis is done for
every 50 indices in the 𝛼 and 𝛽 matrix aggregated to create one row. The mapping
is found per socio-economic group and for the entirety of the data. Overlaid is the
error for the same data without any aggregation as shown in figure 4-11.
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is approaching the maximum number of indices over which we can aggregate.

Figure 4-24: The absolute mean percent error between the real consumption values
and estimated counterfactual consumption on the 2014 test set. This analysis is
done for every 10, 50, and 100 indices in the 𝛼 and 𝛽 matrix aggregated to create
one row. The mapping is found per socio-economic group and for the entirety of the
data. Overlaid is the absolute mean percent error for the same data without any
aggregation as shown in figure 4-11.
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4.4.2 Counterfactual Analysis

Tables 4-25 and 4-26 shows the mean error and mean percent error for the 2013

treatment group. These values were found by taking the mean per socio-economic

group of the dropped 𝛼 and 𝛽 matrices and finding a single mapping. The aggregation

is done in such a way that the 𝛼 and 𝛽 matrices have only a single row per socio-

economic group. Tables 4-27 and 4-28 show the mean error and mean percent error

for the matrices with imputed values before taking the mean per socio-economic

group and finding a single mapping. The results here prove the hypothesis that the

treatment was effective in lowering consumption in the high price hours regardless

of the mapping or the socio-economic status.

Comparing these values with similar ones in section 4.3 (tables 4-15 vs 4-25, 4-16

vs 4-26, 4-15 vs 4-27, 4-16 vs 4-28), the patterns are similar. To be more specific,

the percent treatment effect resulting from the matrices with dropped values both

show most shed by the comfortable group and least by the affluent group in the

high hours. Similarly, both show highest percentage increased by the affluent group

in the low hours and most shed in the comfortable group. Comparing the percent

treatment effect resulting from the matrices with imputed values, both show most

shed by the affluent group in the high hours and least shed by the adversity group,

though the spread is wider in the aggregated multi linear regression method. In

the low hours, the analysis on the imputed matrices both show most increase by

the comfortable group and most shed by the affluent group in the low hours. In

summary, the patterns of relative behavior of the different socio-economic groups

throughout the different hours is the same using the multi linear regression and the

aggregated multi linear regression.
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Figure 4-25: Mean treatment effect on the second half of 2013, a single mapping
applied to aggregated consumption matrices per socio-economic group. The matrix
upon which the aggregations were done has no imputed values.

Figure 4-26: Mean percent treatment effect on the second half of 2013, a single
mapping applied to aggregated consumption matrices per socio-economic group. The
matrix upon which the aggregations were done has no imputed values.

4.4.3 Limitations and Conclusion

As described in chapter 1 and section 3.3, synthetic control is a method used to find

the treatment effect when there are biases in the treatment and control samples or if

there is no explicit control group. Additionally, synthetic control is usually applied
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Figure 4-27: Mean treatment effect on the second half of 2013, a single mapping
applied to aggregated consumption matrices per socio-economic group. The miss-
ing values in the consumption matrix were imputed before aggregation per socio-
economic group.

Figure 4-28: Mean percent treatment effect on the second half of 2013, a single
mapping applied to aggregated consumption matrices per socio-economic group. The
missing values in the consumption matrix were imputed before aggregation per socio-
economic group.

in aggregate and to study an aggregate effect. In that way, the aggregated multi

linear regression method is applying synthetic control as designed.

In the past three models (aggregated linear regression, multi linear regression,
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and aggregated multi linear regression), we have been playing with two main hyper

parameters or levers: one is whether the mapping is applied to all houses and later

separated into different socio economic groups or a different mapping per socio-

economic group. The other is the granularity level i.e. how many data points to

aggregate over. On one end of the spectrum, the aggregated linear regression model

aggregates over all households, on the other end, the multi linear regression model

keeps all values. As errors show (see figures 4-23 and 4-24), somewhere in the middle

is optimal and has least model error.

4.5 Next Steps: Implementing a Constrained Opti-

mization Model

Though the multi linear regression model resulted in counterfactual values per half-

hour per house, I concluded in section 4.3.2 that the results make sense when looked

at aggregated over a subset of houses. However, it’s a logical extension that the more

accurate each counterfactual value is, the more accurate the aggregate would be. In

an exploration of the 𝛽2013 from the previous model, I learned that there exist some

negative values. Figure 4-29 shows the distribution of the predicted values.

This result suggests that the counterfactual consumption of some houses in some

time indices would have been negative. This interpretation isn’t correct as the model

was never intended to be predicting the counterfactual consumption on a house level;

it is meant to estimate the counterfactual consumption in aggregate. However, in

order to prevent these negative values, I can solve a constrained optimization.

99



Figure 4-29: The distribution of the estimated counterfactual consumption values for
the treatment group in 2013, per half-hour and per house. There exist some negative
estimated values.

min
𝑋

‖𝛼2012𝑋 − 𝛽2012‖

s.t. 0 ≤ 𝛼2013𝑋 ≤ 𝑚𝑎𝑥

(4.5)

We can find the counterfactual consumption in 2013 𝛽2013 using the 𝑋 found from

above. Figure 4-30 shows 𝛽2013 aggregated over a subset of the houses found through

constrained optimization as well as without the constraint. As discussed in section

4.3.2, the results only make sense when aggregated.

Given the size of the consumption matrices (𝑛× ∼ 10, 000), this optimization
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Figure 4-30: Results of the constrained optimization vs the multi linear regression
method vs the actual values. This is for a slice of size 10 × 500 of the 2014 control
data.

takes a lot of computational power. An interesting future line of inquiry is running the

above optimization for the entire consumption matrices with and without imputed

data and comparing the resulting treatment effects.

4.6 Conclusion

The regression models in this chapter explore the effects of granularity of data on

the accuracy of treatment effects. At the one end, the aggregated linear regression

aggregates over all the data. On the other end, the multi linear regression model

keeps and uses all data points. Table 4.3 compares the error between the models.

All the models were applied both to find a single mapping for all houses and a

mapping per socio-economic status: the error for both mapping is included in table

4.3. The aggregated multi linear regression performed best, second was the multi

linear regression model, and last was the aggregated linear regression model.

The models predict a counterfactual consumption for the treatment group in 2013.

Comparing this value to their actual consumption in 2013, I find a mean percent
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Error Analysis on the Control Group in Mean Percent Error (MPE)
Model MPE Train size
Aggregated linear regression (overall) -2.58% 0.7
Aggregated linear (affluent) -2.68% 0.7
Aggregated linear (comfortable) -3.92% 0.7
Aggregated linear (adversity) -3.38% 0.7
Multi linear regression (overall) -0.81% 0.7
Multi linear (affluent) -1.07% 0.7
Multi linear (comfortable) -1.64% 0.7
Multi linear (adversity) -7.21% 0.7
Aggregated multi linear regression (overall) -0.30% 0.7
Aggregated multi linear (affluent) -0.73% 0.7
Aggregated multi linear (comfortable) 2.15% 0.7
Aggregated multi linear (adversity) 2.06% 0.7

Table 4.3: Error analysis for different regression models used on the control group
reported in mean percent error (MPE).

treatment effect. The reason I chose that metric is because it factors the group’s

actual consumption in — what percentage of their consumption did they change as a

response to this treatment is a much more meaningful metric vs a metric in kWh/hh.

In this section, given that there was missing data, an imputation function was used

to fill the missing values. All models conclude that the treatment was effective:

all socio-economic groups either shed consumption in the high hours or increased

consumption by the least amount, relative to other hours. The models are not all in

agreement in terms of which socio-economic group is the most price sensitive (shed

consumption most in the high hours). However, eliminating other manipulations

that could introduce error (missing value imputation) a consistent outcome is that

the comfortable group shed demand most (refer to figures 4-14 and 4-18).

Chapter 5 outlines a review of time series models and the details of a random

forest regression (RFR) model that learns the temporal trends as well as dependence
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on temperature. Lastly, I will be comparing the results from all the models in this

chapter as well as the RFR model in chapter 6.
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Chapter 5

Models & Results: Time Series

Prediction Models

Going back to chapter 1, demand response models and literature either estimates

baseline consumption or predicts future load. Chapter 4 outlined four regression

models that found mappings to find the counterfactual consumption of the treat-

ment group in 2013. Those models do not have an explicit time dependence. Time

series models that incorporate an explicit temporal dependence and can take other

regressors (such as temperature) theoretically may have better predicting powers

since consumption is both time dependent and temperature dependent.

The ability to predict consumption is critical. It allows system operators to know

the severity of upcoming peak hours and offer well-timed, well-priced, and targeted

DR incentives. Additionally, predicting consumption can be used to estimate the

counterfactual — what would have been consumed without the treatment — to

judge if a treatment was effective.

In this chapter, I outline a review of different time series models that I tried
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for this data set, as well as the most promising results. I close the chapter with a

comparison between regression models and time series models.

5.1 Model Review

In this section, I will review and outline a number of time series prediction models

that I attempted. I chose a random forest regression model for the analysis that I

will go into in detail in section 5.2.

5.1.1 Identifying Features: A First Principles Approach

An energy model derived from first principles depends on the following active and

passive consumption [32]. In other words it depends on the following features:

• time of day

• day of the week

• day of the month

• month of the year, which is synonymous with seasons (and correlated with

temperature)

• temperature

• price per kWh of consumption

• consumer specific features such as socio-economic status, number of people in

a household, etc.

Given all these dependencies, one approach is to run a machine learning model to

find the hourly consumption per house. Another option is to fit a multi-dimensional
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higher order polynomial to the consumption data. I will explore a very simple ap-

proach to a consumption model below.

In order to see if the consumption takes affect by the above features, I used the

data from the trial. All the above affected level of consumption except for day of the

month. Going back to the first principles approach, there’s no reason why the day

of the month would have an effect on the consumption. Temperature has an inverse

relationship with consumption, as shown in figure 5-10, in this data set because heat

in London is electric.

Temperature wasn’t part of the original data set but I was able to get hourly

temperature data from the Power Data Access Viewer by NASA [24]. To do half-hour

analysis, I’ve extrapolated the same hourly temperature to be present throughout

that hour. I assumed the same temperature for all houses and the temperature in

London as found on the Power data base.

The following model is a simplification and separates the dependence of time and

temperature.

𝑓(𝑇, 𝑡) = 𝑔(𝑡) + ℎ(𝑇 ) + 𝜖

where 𝑔(𝑡) is the time dependence and a fitted sum of sine functions and ℎ(𝑇 ) is

the temperature dependence on the remainder another fitted function and an inverse

relationship as previously stated. Figures 5-1 and 5-2 show a sum of sine fitted

to the temporal component — 𝑔(𝑡). Figures 5-3 and 5-4 show a 1
𝑇

and linear fit

to the temperature component — ℎ(𝑇 ). Figure 5-5 tries to predict the residuals.

The above method assumes independence between the temporal and temperature

components which is a significant simplification. Additionally, in order to perform

well, this functional fit would need to be applied to different segments of the data

(socio-economic groups, seasons, etc.). I explore some other time series prediction
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models below.

Figure 5-1: Sum of sines fit to the half-hour level consumption data, 2014 control
group.

Figure 5-2: Sum of sines fit to the half-hour level consumption data overlaid by
control data from Jan, Feb 2012, 2013, 2014.
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Figure 5-3: 1/T fit to the residuals.

Figure 5-4: Linear fit to the residuals.
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Figure 5-5: ARIMA fit on the residuals.

5.1.2 Autoregressive Integrated Moving Average (ARIMA)

Model

A popular and widely used statistical method for time series forecasting is the

ARIMA model. The ARIMA models combines correlation between lagged observa-

tions (AR), constant difference between raw observations (I), and univartiate linear

dependence on past observations (MA). Given the seasonal behavior of electricity

consumption, an ARIMA model is a good choice to construct the time dependent

components of the consumption model. There are multiple levels of time dependence

present in our data set:

• time of day (as shown in figure 5-11)

• day of week (as shown in figure 5-11)

• month of the year (as shown in figure 5-10)

I trained an ARIMA model on the 2012 control group’s average hourly consump-

tion and tested on the same metric in 2013. Additionally, hourly temperature from
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the power API was included as an exogenous variable. Temperature was deemed to

be a significant variable because the London heating system is electric, causing high

demand for energy in winter months and relatively low demand in the summer. The

goal is to be able to train a model on the 2012 control data that has low error on the

2013 control data. If this is doable, then I can similarly train a model on the 2012

treatment data and assume that with high accuracy, the output will be the 2013

counterfactual consumption.

A non-seasonal ARIMA model is classified as an ARIMA(𝑝,𝑑,𝑞) model, where:

𝑝 is the number of autoregressive terms, 𝑑 is the number of nonseasonal differences

needed for stationarity, and 𝑞 is the number of lagged forecast errors in the prediction

equation. For finding 𝑝, if the ACF goes into negative, then we can conclude that the

time series has been over-differenced. In ARIMA models, we’re basically regressing

on lags, hence it works best if said lags are independent.

An ARIMA model with order (2,1,1) was chosen using the auto-ARIMA Python

package, accounting for the fact that the data is highly seasonal. The model predicted

2013 data poorly without the exogenous variable of temperature; the Mean Absolute

Percentage Error (MAPE) was 23%. By adding the exogenous variable of average

daily temperature, the model performed better but was still very inaccurate with a

MAPE of 19%. Given the previous sections on the missing data in 2012, perhaps the

model can perform better if trained on more populated data and tested on a smaller

time period.

5.1.3 Prophet: Automatic Forecasting Procedure

The Prophet forecasting model is a time series forecasting model that is open source

and released by Facebook’s Core Data Science team [33]. The model is a modular
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Figure 5-6: The model has been trained on the control data from the first 9 months
of 2012 and tested on the remainder. The model cannot be extended to the 2013
control data and performs very poorly.

additive regression model with interpretable parameters where non-linear trends are

fit with yearly, weekly, and daily seasonality. It works best with time series that

have strong seasonal effects and several seasons of historical data. It has the ability

to handle shifts in the trend, outliers, and is robust to missing data. This seems like

a perfect model for our data. It can take care of different levels of seasonality, take

on regressors such as temperature, and incorporate holidays. The GitHub for the

model (linked) was helpful in setting up the model for this use case.

Figure 5-7 shows the model training on part of the 2012 control data and its

performance on the remainder. The error on the test set was -3.77%. Figures 5-8

and 5-9 shows the components of the model found in figure 5-7. The daily component

that has been found is very similar to patterns observed in this data set as seen in

figure 5-11.

The upwards trend in the 2012 data (as seen in figure 5-7) results in the 2013

data continuing on that upward trend. As a result, it performs very poorly on the

2013 control data. This is perhaps due to the fact that Prophet requires historic

data, specifically to pull out annual and temperature trends, and given the missing

data, we can only train the model on the latter half of 2012.
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Figure 5-7: Prophet prediction on the affluent 2012 control data, trained on 70% and
tested on the remainder (56 days).

5.2 Random Forest Regression (RFR) Model

Models outlined in chapter 4 have no explicit temporal trend and make no explicit

use of temperature data. Another way to estimate the counterfactual consumption

is to learn a time series model based on the data in 2012 that also incorporates

temperature data. Temperature wasn’t part of the original data set but I was able

to find hourly temperature data for London for the entire duration of the trial from

the Power Data Access Viewer by NASA [24]. It is assumed that the temperature is

known to help more robustly estimate average consumption in 2013. Temperature

is a significant variable because the London heating system is electric, causing high

demand for energy in winter months and relatively low demand in the summer as
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Figure 5-8: The trend, holidays, and weekly components of the prophet model seen
in 5-7.

seen in figure 5-10.

As figure 5-11 shows, consumption looks differently on weekends and weekdays.

However, the daily consumption wave form looks similar throughout different seasons.
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Figure 5-9: The daily, monthly, and temperature components of the prophet model
seen in 5-7.

This is verified by finding the singular values of the matrix that holds 24 hour level

data for all days in the second half of 2012 as can be seen in figure 5-12. Most of the

data is explained by the first principle component. I will refer to this matrix as the
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Figure 5-10: Average consumption per day with temperature. This shows an inverse
relationship between consumption and temperature since London uses a lot of electric
heating; consumption is higher in colder seasons and lower in hotter seasons.

consumption matrix going forward. It is of dimension number of days in the subset

of the data × 24.

So far, a dependence on month of the year, temperature, day of the week, and

socio-economic status can be observed. I am using a random forest regressor to learn

the temporal trends and include the named features in the training data. A random

forest is a meta estimator that fits a number of classifying decision trees on various

sub-samples of the data set and uses averaging to improve the predictive accuracy

and control over-fitting.

I train a random forest model per socio-economic group and with month of the

year, temperature, day of the week as input samples. In order to get a daily granular-

ity for my input data I use a minimum, maximum, and mean temperature value per

day. The values in the lower dimensional representation of the consumption matrix
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Figure 5-11: Average consumption throughout the day over weekdays vs weekends
broken down by socio-economic status. As can be seen the consumption pattern
looks different on weekdays and weekends and is most in the affluent group and least
in the adversity group.

Figure 5-12: Singular values for control group’s consumption matrix of days of 2012
by hour level data (the comfortable socio-economic group). The SVs of the affluent
and adversity groups are similar.

are the target values.

Given that the daily trends in the consumption matrix can be captured by the

first principle component, as shown in figure 5-12, I project the 2012 control group
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consumption data down to that principle component. I then split both the input

data and this lower dimensional representation of consumption into a training set

and a test set. The trained model, therefore, now goes from the input data to a lower

dimensional representation of the consumption matrix.

5.2.1 Error Analysis

All the data used for this model is for the control group as the goal is to learn

a robust time series model of consumption for 2012/2013. The model trained on

the comfortable group predicts on the 2012 test data with 0.29% error and on the

2013 data with 4.77% error. This result shows that this time series model can

similarly predict 2013 treatment consumption within ∼5%. I will be training a similar

model on the 2012 treatment data in order to find an estimate for the counterfactual

consumption of the treatment group in 2013. Table 5-13 shows the test error and

error on the 2013 data per socio-economic group. I trained the model on up to the

first four principle components with the data for each socio-economic group to find

what number of principle components minimized the error on the 2013 data. That

information is also included in table 5-13 as well as the test size.

Figure 5-13: Test error and error on the 2013 data per socio-economic group as well
as the number of principle components that minimized error on the 2013 data and
the test set.
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5.2.2 Counterfactual Analysis

Following the results on the control group, I ran a similar model per socio-economic

group on the 2012 treatment data and found the ‘error’ on the 2013 treatment data

— this is the treatment effect plus the error on the model; similar to other models.

The models had similarly low test error as was the case when it was run on the

control group (shown in figure 5-13). I used only one principle component for these

models as that lead to lowest error on 2013 data on the control group and had a

test size of 0 i.e. the model was trained on the 2012 treatment data, entirely. Tables

5-14 and 5-15 show the mean treatment effect and mean percent treatment effect per

socio-economic group.

Figure 5-14: Mean treatment effect for the second half of 2013. The random forest
model was trained on the second half of 2012 treatment data.

So far we’ve been using temperature (minimum, maximum, and mean values per

day), day of week, and month of year as input data. Given figure 5-11, it might make

more sense to a binary column that differentiates between weekdays and weekends.

Additionally, it might be a good idea to use a reduced version of the daily control data

as input values as well (the first two principle components). Going back to equation
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Figure 5-15: Mean percent treatment effect for the second half of 2013. The random
forest model was trained on the second half of 2012 treatment data.

3.3, our goal is to learn a model on the 2012 treatment data such that once it has

the 2013 input data, it can approximate the 2013 treatment group counterfactual.

The idea behind using the 2012 control group data as an input to the model is that

though the control and treatment groups have differences in behavior, this difference

is consistent over the two years. As a result, having the 2012 control group data as

input might the model better learn the 2012 treatment data. Tables 5-16 and 5-17

show results from this analysis.

The relative outcome of the two runs of the RFR model are similar. Comparing

tables 5-15 and 5-17, both show shed in the comfortable group throughout the dif-

ferent price points. They both show that the comfortable group shed most in the

high hours and the adversity group shed least. They similarly both show a decrease

by the comfortable group in the low hours and the largest increase by the adversity

group in the low hours.

A few questions may come up: why consider a different model per socio-economic

group? Why run the model on the aggregated data per socio-economic group and
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Figure 5-16: Mean treatment effect for the second half of 2013. The random forest
model was trained on the second half of 2012 treatment data with the control group
as input.

Figure 5-17: Mean percent treatment effect for the second half of 2013. The random
forest model was trained on the second half of 2012 treatment data with the control
group as input.

not include the house level data? Why run PCA on the consumption matrix? Below,

I expand on the reasons behind my choices for this model.

The reason for training a different model per socio-economic group is three-fold.

First, as shown in figure 5-18 and 5-11, consumption in different socio-economic
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Figure 5-18: Average consumption per half-hour per socio-economic group. This fig-
ure shows the socio-economic dependence of consumption amount and consumption
pattern.

groups differs significantly. Second, in the current RFR model, there is a 1-1 mapping

between the input values and the output values. However, if socio-economic group

is added to the input matrix, so the model could learn the dependency, the output

matrix would be different per socio-economic group without a clear way to map the

input matrix to the output matrix. In other words, this decision was due to technical

limitations of the model. Third, intuitively, it makes sense that if the model is trained

per socio-economic group, then there would be higher accuracy as it will only focus

on finding a single trend. Exploring a single model that incorporates both socio-

economic group and price as inputs is a potential next step for this project and

could be used as a load forecasting model as well.

The reason I ran the model on the aggregated data is that the goal of this model

is to capture the temporal trend present in the data and these trends only become

present when the consumption data has been aggregated over some subset of house-

holds as shown in figure 4-8. Additionally, the reason behind running PCA on the

consumption matrix is that as shown in figure 5-12 most of the daily consumption
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trend is captured by the first four principle components. This shows that most of

the data present in that matrix does not hold any information. To avoid over-fitting

and add to the efficiency of the model, the data can be reduced down without any

information being lost.

5.2.3 Limitations and Conclusion

This model has an explicit dependence on time and also includes temperature whereas

regression models outlined in chapter 4 do not incorporate those dependency. The

first iteration of the model, without the control data, can be used as a basic load

forecasting model. It can predict a consumption value given temperature, day of

week, and month of year. The second iteration of the model can similarly forecast

load but given its dependence on the control data, it needs some historic data for

the households in question. For this reason, it may be more suitable for a baseline

estimation analysis and not load forecasting. Given the inclusion of the control data

as an input for the second model, it’s impossible to quantify the error in the model.

As a reminder, this model is run on aggregate data so it can estimate the baseline

or forecast the load of a group of houses, and not independently.

5.3 Next Steps: Implementing a Shift Model

The dToU treatment has resulted in both lowering consumption and shifting con-

sumption from high price hours to normal and low price hours. A future analysis

can look the dependence of this shift on socio-economic status, what time of day the

high price hours were set, and seasons.

Consumption has a component that is absolutely required, another that can be
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shifted around (to other times of the day or other times of the week, perhaps), and

a last component that is extraneous and can be shed. Let’s assume that the shift

happens only throughout the day i.e. choosing what hour to wash the dishes or when

to charge your electric vehicle and that there is no shift between the days. There

may also be shifting going on throughout the week i.e. choosing when to wash your

clothes but that is harder to capture.

The following model can be used. Let’s assume that our daily consumption follows

the following trend:

𝐷𝑖 = 𝑃𝑖 + 𝑆𝑖 + 𝑅𝑖 + 𝜖𝑖

where

• 𝐷𝑖 is the daily consumption

• 𝑃𝑖 is periodic in 𝑖 with period 24, accounting for hourly periodicity; this is the

absolute necessary portion of consumption per day

• 𝑆𝑖 is consumption that is needed but shift-able around the day

• 𝑅𝑖 is consumption that is extraneous and can be reduced

• 𝜖𝑖 is the remaining residual that accounts for other influences

5.4 Conclusion

In this chapter, I reviewed a number of different time series prediction models: a

first principle approach to building a time series model, an ARIMA model, and the

Prophet forecasting model. I outlined the implementation details and results from

a random forest regression model. The results are consistent with results found in

chapter 4 in terms of relative response to the treatment, however, the RFR model
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shows a more significant response to the treatment by the comfortable socio-economic

group. The RFR model includes explicit dependency on the day of week, month of

year, temperature, and in one iteration of the model even the control group. These

dependencies are present in this data set and in electricity consumption patterns in

general. Though the RFR model has a lower test error, it has lower transparency

into how the branches of the tree are segmenting the data and predicting the coun-

terfactual. In chapter 6, I will compare the accuracy of all the models outlined in

chapters 4 and 5.
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Chapter 6

Conclusion, Policy Implications,

Limitations, and Future Work

6.1 Conclusion

In chapters 4 and 5, I outlined the four models used in this work: aggregated linear

regression, multi linear regression, aggregated multi linear regression, and a random

forest regression. Section 6.1.1 includes a comparison of the error and results from

each.

6.1.1 Comparing Different Models: Accuracy and Results

Table 6.1 shows the different models in this thesis and the test error on each reported

in mean percent error (MPE). All the error analyses are done on the control group

for which we have ground truth consumption values and the model is applied to a

subset of the 2012/2013 data and tested on the remainder. For the three models there

are two mappings: one overall mapping which includes all houses, and another per
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socio-economic group which only includes houses in that particular socio-economic

group. The MPE is calculated by taking the difference between the predicted values

and the actual ground truth values and dividing by the actual values to get a percent

difference. This is how the treatment effects have been reported as it’s a more tangible

metric to show percent of electricity consumption shed vs a metric in kWh/hh space.

As can be observed, the aggregated multi linear regression model performs bet-

ter than both the aggregated linear regression model and the multi linear regression

model. The model includes some granularity while also predicting already aggre-

gated values that hold meaning. The best performing model is the random forest

regression which is in line with expectation as it includes both time and temperature

dependence. However, the RFR model lacks transparency relative to the regression

models.

Error Analysis on the Control Group in Mean Percent Error (MPE)
Model MPE Train size
Aggregated linear regression (overall) -2.58% 0.7
Aggregated linear (affluent) -2.68% 0.7
Aggregated linear (comfortable) -3.92% 0.7
Aggregated linear (adversity) -3.38% 0.7
Multi linear regression (overall) -0.81% 0.7
Multi linear (affluent) -1.07% 0.7
Multi linear (comfortable) -1.64% 0.7
Multi linear (adversity) -7.21% 0.7
Aggregated multi linear regression (overall) -0.30% 0.7
Aggregated multi linear (affluent) -0.73% 0.7
Aggregated multi linear (comfortable) 2.15% 0.7
Aggregated multi linear (adversity) 2.06% 0.7
Random forest regression (affluent) 0.39% 0.8
Random forest (comfortable) 0.29% 0.8
Random forest (adversity) 0.46% 0.8

Table 6.1: Error analysis for different models used on the control group reported in
mean percent error (MPE).
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All of the models have confirmed that the treatment was effective: the percent

change by the treatment is lowest in the high hours and highest in the low hours. All

the comparisons are done with the same socio-economic group and for the same price

point and reported as a percent difference, we can therefore eliminate any potential

bias from high price hours being high consumption hours as well.

6.1.2 Broad Takeaways

In data science and statistical analysis, there are always compromises to be made.

For example, in this problem, it’s impossible to make use of house level data points

(no aggregations) and want to include the entire year’s data due to missing values.

There are solutions around the limitations of the data set but each choice includes

assumptions that would then propagate error into the models and analyses.

Methods of analysis will often have an error associated with them. It’s important

to have a way to estimate the error on the model so we can find a confidence band

on the estimated treatment effect.

The review and analysis of different models in this work demonstrate the impor-

tance of using different baseline estimation techniques to evaluate the performance of

a DR mechanism. In policy making, specifically, it is vital for the treatment effects

to be looked at through different methods as well as using different data sets and

trials run on different populations to eliminate biases within the population of study

or data set present.

Lastly, in this work specifically and in general in demand response, the goal is

to affect consumption patterns in aggregate. The response to a DR pricing mecha-

nism affects both system operators and the grid in aggregate form. The challenge

with designing pricing mechanisms is aligning the incentives of all stakeholders: the
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consumers and the system operators while aiming for maximum sustainability and

stability of the grid.

6.2 Policy Implications

The results from this analysis prove true that a dToU pricing mechanism is effec-

tive in lowering consumption during times of high demand. It, additionally, lowers

consumers’ bills on average while being more cost effective for system operators as

the cost of electricity is closer to the marginal cost of generation. Most importantly,

tariffs such as dToU help set habits that push towards sustainable goals. Sustainable

mechanisms that align incentives and set habits are ever more important as EVs take

up a larger fraction of the market. Policy makers can push towards these pricing

mechanism becoming more available within the retail landscape to customers in the

US. As mentioned, Italy and Ontario, Canada already have ToU pricing present for

their residential consumers. Data from these regions can help make a better case for

non-static pricing mechanisms.

One important question is whether the socio-economic response as discovered

by this work should be utilized by policy makers. When looking at the effects of

dToU from a policy standpoint, it’s important to look beyond the cost of electricity.

What are mental tolls associated with the cost of electricity being significantly higher

in certain hours some households simply being unable to shift their consumption

outside of those hours? Households with jobs with odd hours — nurses, caregivers,

(truck, taxi, rideshare) drivers, security guards, restaurant and bar staff, etc — are

negatively impacted by a dToU policy. They may be price-sensitive and may want

to take advantage of the incentives but are simply unable to given factors outside of

their control.
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Another important question is, when looking at treatment effects in aggregate,

what disadvantaged subgroups are being overlooked? How might a dToU pricing

scheme be regressive or reinforce cycles of harm? For example, it’s possible that more

rich households are more sophisticated consumers and have the smart appliances to

take advantage of a ToU pricing scheme. Additionally, they may have newer and

more efficient cooling or heating systems and better insulated walls and windows.

Given the above, rich households are more likely to opt-into being priced on a dToU

tariff, might change their behavior more, and therefore benefit more.

It is also important to think about ways such pricing schemes need to be regulated

in the case of failure modes; for example a price cap may need to be introduced in

pricing schemes where the rates are not pre-set or caps on the number of consecutive

hours electricity can be priced at a high tariff even if the rates are pre-set. What

stakeholder would have to step in in the case a household is unable to pay their utility

bill and what happens to that household moving forward? It is important to protect

consumers against very high utility bills or being incentivized to shed demand to the

point of harm.

Lastly, how does the carbon footprint of the electric sector change as a result of

introducing a non-static electricity rate? In a cost-benefit analysis, it is important

to consider the long-term environmental impacts of alternative residential electric-

ity rates. For example, the incentives could lead to positive habit setting through

positive reinforcement.

6.3 Limitations

This data set included selection bias in both the overall sample and most noticeably

in sample under treatment. In this thesis, I used different synthetic control models to
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find a mapping between the two groups and remove the bias in the treatment sample

but the overall sample was already skewed. For this reason, it’s good to use a data

set that’s blanket applied to everyone (such as Ontario or Italy for ToU pricing) or

other trials that assess dToU pricing.

While substantial incentives for recruitment to dTOU helped recruit participants

and also made a broader sample possible, minimizing incentives would be prefer-

able due to the buffering effect of incentive payments on price signals and therefore

behavior. Recruitment in future trials should consider the possibility of dispensing

with, or at least minimizing, incentives and guarantees. Dropping out of the trial

would need to be possible, and uninfluenced by payments, in order to study churn

rates, which was not possible on the LCL trial. As dTOU becomes less of a novelty,

the need for incentives and guarantees should diminish [27, P. 86].

6.4 Future Work

In addition to what was outlined in sections ?? and ??, there are some more angles

this work can take, both using the data set at hand and otherwise. Using the same

data set, it would be interesting to use a more complex imputation function to see

if it would be possible to complete the data matrix with less error introduced while

keeping the temporal trends present. As a reminder the current data is being sliced

as the majority of the data was missing in 2012 as shown in figure 4-6.

The data set has two Acorn groups: one that is more granular and includes 17

classifications and one that is less granular and has 3 classifications and is the one

I used. It would be interesting to redo some of the analyses using the less granular

Acorn classification to see if there is a more gradual response to the treatment.

It would be interesting and would add to the confidence on these models to work
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with a data set that has fewer limitations, includes a longer period of time, and has

more features. The added features could help truly see the power of some of the

machine learning models such as TFT, Prophet, and random forest regression.

6.4.1 Statistical Implications of Modeling Using Noisy Data

There is a debate in statistics that we model behavior using uncertain data only to

find what the uncertainty in the data is — how effective the treatment has been.

This is observed in this work as well. Sensitivity analysis — which quantifies how

much model output values are affected by changes in model input values — can

help ground the analysis. Similarly, an uncertainty analysis aims to shed light on

the effect of the noise in the data on model outputs by taking a set of randomly

chosen input values (which can include parameter values), passing them through a

model (or transfer function) to obtain the distributions (or statistical measures of

the distributions) of the resulting outputs. Such metrics can better inform of the

sensitivity of our models to the input data.
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