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Abstract 
Air pollution is a key sustainability challenge with similar emissions sources to anthropogenic 
climate change – making it critical to assess the effect of climate and air quality actions on 
pollutant emissions, the resulting health impacts, and broader sustainability metrics. This 
thesis responds to these needs by developing a new Tool for Air Pollution Scenarios (TAPS) 
and applying it to example policy effects on emissions, health impacts, and alternative metrics 
that are consistent with a stock-based sustainability framework of inclusive wealth. In 
Chapter 2, we develop and implement TAPS with three components: recent global 
anthropogenic emissions inventories, emitting activity scenarios from the MIT Economic 
Projection and Policy Analysis model, and emissions intensity trends based on recent scenario 
data from the Greenhouse Gas – Air Pollution Interactions and Synergies model. Initial 
results show the limits of existing policy and the importance of different policy levers for 
different pollutants – including climate action to reduce fossil fuel related air pollutants (such 
as sulfur and nitrogen oxides), and other air quality controls to reduce pollutants such as 
ammonia and organic carbon. Chapter 3 connects the tool’s emissions results to health 
impacts, focusing on the difference between two pollution control scenarios under the common 
assumption that the Paris Agreement’s climate targets are met. We find major differences in 
ambient fine particulate matter concentrations as well as impacts on premature mortality and 
morbidity – showing that climate action alone does not guarantee a clean-air future. We also 
find distributional differences between different measures of national impacts, especially when 
comparing standard or monetized health endpoints with our alternative that focuses on 
healthy life years. Finally, Chapter 4 concludes with future considerations for scenario 
development, analytical choices, and stakeholder considerations for integrating the health 
impacts of air pollution into sustainability decisions.  
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1. Thesis introduction 
 
Air pollution is an urgent issue for global health and sustainability. According to the latest 
State of Global Air report, ambient and household air pollution was the fourth leading cause 
of death in 2019 (Health Effects Institute, 2020) – with attribution to more global deaths in 
one year than COVID-19 has to this date (World Health Organization, 2022). Air pollution is 
associated with at least 20% of global deaths from stroke, diabetes, neonatal deaths and other 
causes (Health Effects Institute, 2020) – as well as dozens of cognitive, affective, behavioral, 
and economic impacts that have been documented in the literature (Lu, 2020). Such impacts 
may worsen spatial, racial, and socioeconomic disparities, as with the dual risks of chronic air 
pollution and COVID-19 in the United States and elsewhere (Chakraborty, 2021). Various 
pollutants can also exacerbate crop loss, acid rain, global temperature change, and more – as 
anthropogenic pollution adds considerably to natural sources (Hoesly et al., 2018). As a result, 
improving air quality is a key part of global sustainability efforts, such as the health-related 
Sustainable Development Goal (SDG) of the United Nations (UN). 
 
Clean-air efforts often connect with actions to mitigate climate change, given the overlap 
between anthropogenic air pollution and greenhouse gas (GHG) emissions. Fossil fuels alone 
have been linked to more than one million (McDuffie et al., 2021) or even ten million deaths 
from fine particulate matter (PM2.5) in a single year (Vohra et al., 2021), depending on the 
methods used. Ground-level ozone pollution is also related to the net impacts of climate 
change, showing increased concentrations in urban areas despite decreases in precursor 
emissions (Sicard, 2021). Reducing the emissions that drive climate change could lead to 
health benefits that are of greater magnitude than the costs of meeting the Paris Agreement’s 
climate targets (Markandya et al., 2018). However, studies have found that climate action 
alone can only realize a fraction of the health benefits from optimal air pollution policy – 
especially when actions can occur at the level of a local source like a power plant (Reis et al., 
2022; Tong et al., 2021). Thus, it is crucial to assess potential climate and air quality actions 
simultaneously (Selin, 2021; Vandyck et al., 2021) – and to involve stakeholders who might 
play a role in those actions. But given the diverse interests of potential stakeholders (Clark et 
al., 2016), more flexible and accessible tools are needed to capture the effects of wide-ranging 
scenarios on pollutant emissions and their health impacts.  
 
Another challenge is to integrate those health impact estimates with broader sustainability 
metrics. Many sustainability goals reference the 1987 Brundtland Report, which defined 
sustainable development as “development that meets the needs of the present without 
compromising the ability of future generations to meet their own needs” (UN & WCED, 
1987). However, most sustainability indices (such as the SDGs) focus on present-day 
conditions or near-term targets, evaluating future needs in a more indirect manner. The 
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inclusive Wealth (IW) framework has emerged as a future-oriented alternative, earning praise 
as “one of the strongest contributions of science to sustainable development over the past two 
decades” (Clark and Harley, 2020). By shifting the focus from resource flows (such as GDP) 
to the need for non-declining “stocks" of produced, human, and natural capital, IW gives an 
increased focus on sustainable stocks for future generations (Polasky et al., 2015). But while 
health is seen as a central part of IW in theory (Arrow et al., 2012; Jumbri et al., 2018), 
applications have struggled to find consistency with the latest epidemiological literature, the 
stock-based framework, or each other.  
 
This thesis responds to several needs by developing a new tool for flexible study of climate 
and air pollution policies, analyzing the pollutant emissions and health impacts from an 
example policy change, and presenting those impacts with an alternative choice of metrics 
that is compatible with the inclusive wealth framework. Chapter 2 describes the new 
capability as the Tool for Air Pollution Scenarios (TAPS), which scales standard 
anthropogenic air pollutant emissions inventories by the trends of polluting activities and 
their emission intensities. We also provide an evaluation of future emissions under several 
climate and pollution policy scenarios, as compared with other global estimates. Further 
description and documentation of the tool is available online (Atkinson et al., 2022a, 2022b). 
Chapter 3 uses the tool’s pollutant emissions outputs to calculate global health impacts from 
particulate matter pollution, focusing on the difference in pollution policy ambition even if the 
Paris Agreement’s climate targets are met. We quantify that difference using several metrics, 
including an inclusive wealth-based alternative that focuses on the cumulative effect on a 
population’s healthy life years. Finally, Chapter 4 concludes and offers some closing reflections 
on scenario development, analytical choices, and stakeholder considerations for integrating the 
health impacts of air pollution into sustainability decisions.  
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2. A Tool for Air Pollution Scenarios (TAPS v1.0) to enable 
global, long-term, and flexible study of climate and air quality 
policies 

 
As of May 2022, the current form of this chapter is under review as a preprint at 
https://gmd.copernicus.org/preprints/gmd-2022-103/ (Atkinson et al., 2022b). It is available 
for distribution under the Creative Commons Attribution 4.0 License.  
 
2.1 Introduction 
 
Air pollution is an urgent global health threat, with similar sources to the greenhouse gas 
(GHG) emissions that drive anthropogenic climate change. Fine particulate matter (PM2.5) 
from fossil fuels and other human sources may have caused millions of premature deaths in 
recent years (Lelieveld et al., 2019; McDuffie et al., 2021) – while ground-level ozone can 
exacerbate crop loss and worsen socioeconomic disparities (Saari et al., 2017). Projecting these 
impacts requires future scenarios for those air pollutants’ precursor emissions – but more 
flexible and accessible tools are needed to elucidate the interdependent but distinct effects of 
economic, climate, and pollution policy on air quality and human health.  
 
Many research efforts focus on the health “co-benefits” of reduced air pollutant emissions from 
mitigating GHG emissions (Gallagher and Holloway, 2020; Karlsson et al., 2020). Studies have 
found that the near-term health benefits from GHG reductions can be on par with or even 
greater than their near-term climate benefits (Markandya et al., 2018; Shindell et al., 2021). 
Health benefits vary strongly by region and sector (Vandyck et al., 2020), highlighting the 
importance of granular analyses and actions that prioritize reductions in high-emitting areas 
(Polonik et al., 2021). As such, climate action must be complemented by pollution-specific 
policies to maximize air quality benefits (Reis et al., 2022; Tong et al., 2021) – prompting 
calls for combined policy assessments to address both issues together (Selin, 2021; Vandyck et 
al., 2021). 
 
For studies that do vary both climate and air quality policies, most use one of a few existing 
scenario sets. Current options include the shared socioeconomic pathways (SSPs), a set of 
global scenarios to 2100 that treat climate and air pollution separately but tie the latter to 
specific societal narratives (O’Neill et al., 2017; Riahi et al., 2017). Each SSP is associated 
with a specific pollution control ambition, with regional emissions intensity trends that 
depend on affluence levels (Rao et al., 2017). These trends were derived from two scenarios 
developed with the widely used Greenhouse Gas – Air Pollution Interactions and Synergies 
(GAINS) model: current legislation (CLE), which assumes compliance with existing source- 
and region-specific emission limits, and the maximum feasible reduction (MFR) case, which 

https://gmd.copernicus.org/preprints/gmd-2022-103/
https://creativecommons.org/licenses/by/4.0/
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assumes gradually increasing application of the lowest-emitting, currently available 
technologies (Amann et al., 2011; Klimont et al., 2017). The resulting air pollutant emission 
trajectories are included in the sixth Coupled Model Intercomparison Project (CMIP6) and 
presented online (IIASA, 2018; Rogelj et al., 2018).  
 
Other approaches have a different scope of economic assumptions, timescales, or pollutant 
species. While several studies vary climate and air quality scenarios across pollutants, they 
often project emissions intensities based on income rather than policy (Radu et al., 2016; 
Scovronick et al., 2019). Others have begun to internalize climate-health-economic linkages 
into optimal policy pathways (Reis et al., 2022), while still using SSP pollution assumptions 
as baselines. Studies in the Energy Modeling Forum (EMF)-30 use the GAINS scenarios more 
directly, focusing on black and organic carbon (Smith et al., 2020) or non-agricultural 
pollutants through 2050 (Vandyck et al., 2018). Since then, GAINS has been updated with 
more nuanced regions, sectors, and emissions trends (GAINS Developer Team, 2021) – such as 
recent SO2 (Zheng et al., 2018) and black carbon (Kanaya et al., 2020) reductions in China, as 
well as revised data and SSP-consistent modeling for the waste management sector (Gomez 
Sanabria et al., 2021).  
 
Some recent studies have used this updated GAINS model to explore more near-term results 
or policy extremes. Rafaj et al. (2021) use several integrated assessment models (IAMs) to 
assess health impacts around current climate policies, proposed policies, or likely attainment 
of the Paris Agreement’s temperature targets (through 2050) – applying GAINS CLE and 
MFR to the 1.5°C case while maintaining CLE otherwise. Amann et al. (2020) develop a 
“Clean Air” scenario that includes additional climate, energy, agriculture, and food policies – 
finding that those additional policies (beyond GAINS’ traditional air pollution controls) would 
lead to nearly double the benefits of reduced PM2.5 exposure. I. Hamilton et al. (2021) use a 
related scenario of “health in all climate policies”, including air pollution reductions, diet 
change, and active travel benchmarks in nine selected countries. Both these latter papers 
focus on aggregate effects (comparing base cases to scenarios of those policy levers combined 
together), and are limited geographically (I. Hamilton et al., 2021) or temporally to 2040. 
 
We aim to present a more flexible model-based capacity for long-term global scenarios of air 
pollutant precursor emissions. The resulting Tool for Air Pollution Scenarios (TAPS) can 
efficiently assess a wide range of climate and air quality policy pathways – from broad to 
specific at the regional, sectoral, and fuel-based level. In addition, its emissions outputs can 
readily drive global atmospheric chemical transport models (CTMs) to assess health outcomes 
– avoiding dependence on previous CTM runs and base years. We demonstrate the tool with 
illustrative scenarios after coupling with the Economic Projection and Policy Analysis model 
(EPPA). EPPA is a global multi-region multi-sector recursive–dynamic computable global 
equilibrium (CGE) model that has been used to study a variety of climate and economic 
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policy impacts (Y.-H. H. Chen et al., 2015, 2017; Paltsev et al., 2005). While prior efforts 
have sought to endogenize EPPA’s air pollutant emissions trends based on the cost of 
pollution control options (Sarofim, 2007; Valpergue De Masin, 2003; Waugh, 2012), their use 
has been limited to select studies (Nam et al., 2013). In contrast, the TAPS framework can be 
exercised autonomously for flexible scenario development (Figure 1).  
 

 
Figure 1. Summary of the Tool for Air Pollution Scenarios (TAPS) framework and implementation. 
Based on climate policy scenarios in EPPA7 and pollution control scenarios from the Greenhouse Gas – Air 
Pollution Interactions and Synergies (GAINS) model. Emissions trends are specific to each fuel f, sector i, 
pollutant species j, region r and time point t in the inventories and EPPA7 scenarios used. 

First, we utilize emissions inventories that are well suited for atmospheric modeling work on 
health impacts – following the SSPs’ sources but with updated estimates. Next, we scale those 
emissions by fuel-specific activities in EPPA, using climate policy scenarios from the global 
CGE model with full-century time horizons that are longer than most comparable works. 
Finally, we use updated emissions intensity scenarios from GAINS to assess policies specific to 
air pollution – while designing pathways that allow for future innovation beyond today’s 
technology options. The following section will describe these steps in turn, before comparing 
results to SSP benchmarks and discussing next steps for tool refinement and health 
applications.  
 
2.2 Methodology 
 
Our estimates of air pollutant emissions involve three main inputs: a base-year emissions 
inventory (Sect. 2.2.1), a projected trend in energy use and other polluting activities (Sect. 
2.2.2), and a projected trend in emissions intensity (Sect. 2.2.3). The following equation 
(based on Figure 1) summarizes these components: 
 
 Ef,i,j,r,t = Ef,i,j,r,0 * Af,i,j,r,t * f(γf,i,j,rt)           (1)  
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In this way, the emissions Ef,i,j,r,t of inventory fuel f, inventory sector i, pollutant species j, 
EPPA region r, and time t are calculated as the product of base-year emissions Ef,i,j,r,0, fuel-
specific activity Af,i,j,r,t, and the function f(γf,i,j,rt) for scenario-specific emissions intensity over 
time. The below sections discuss each of these components in more detail, as well as the 
specific scenarios shown in this analysis (Sect. 2.2.4).  
 
Public versions of the tool, outputs and underlying data are described in Atkinson (2022a). 
To facilitate coupling with global atmospheric CTMs for health impacts analysis, we also 
include the capability to produce gridded outputs for emissions scaling – following the 
inventory’s spatial distribution as done for the SSPs (Feng et al., 2020). Inputs and Python 
code can be downloaded and modified to explore the effects of different climate or air quality 
policies at the region, sector or fuel-based level. While it is simplest to construct scenarios 
that maintain the structure of current data sources (adjusting from Sect. 2.2.4), future TAPS 
applications could theoretically be extended to other inventories or policy model outputs if the 
database integration steps were completed (adjusting from Sect. 2.2.1-2.2.3).  
 
2.2.1 Base-year emissions inventory 
 
This paper uses base-year emissions from the Community Emissions Data System’s Global 
Burden of Disease Major Air Pollution Sources project (CEDSGBD-MAPS), an updated version of 
the anthropogenic air pollutant emissions inventory used in the SSPs as well as atmospheric 
modeling of health impacts (GEOS-Chem, 2021). CEDS is a global inventory that includes 
sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), black carbon (BC), organic 
carbon (OC), carbon monoxide (CO), and 23 separate non-methane volatile organic 
compounds (NMVOC). It offers monthly data globally on a 0.5°×0.5° grid for 1750-2014 
(Hoesly et al., 2018), with updates for 1970-2017 (McDuffie et al., 2020) that divide each of 11 
sectors into 4 fuel categories (Table 11). Compared to subsequent versions with fewer sectors 
and no fuel separation, we use the version in McDuffie et al. (2020) because it combines fuel-
specific granularity with emissions totals that largely match the latest updates in 
https://github.com/JGCRI/CEDS (such as lower BC and OC totals). We use 2014 emissions 
to match the economic base-year of the GTAP10 database (Aguiar et al., 2019) used in 
EPPA7 (as described in Sect. 2.2.2).  
 
We also include emissions of agricultural waste burning, the only type of open burning 
represented in EPPA’s economic activities (Chepeliev, 2020). We follow the SSPs (van Marle 
et al., 2017) and GEOS-Chem (2021) by using emissions from the Global Fire Emissions 
Database (GFED) version 4.1s at a 0.25°×0.25° grid (van der Werf et al., 2017). Although 
GFED gives emissions estimates in terms of dry matter rather than specific pollutants, we use 
emission factors based on Akagi et al. (2011) to convert these estimates to pollutant-specific 

https://github.com/JGCRI/CEDS
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emissions, as recommended by GFED and done for the SSPs (see van Marle et al. (2017), 
Table C1). We use 2014 values to match the base-year inventory of EPPA7, having checked 
for general consistency with emissions quantities from neighboring years. We do not include 
emissions from wildfires, non-anthropogenic sources, or other burning sources in GFED (given 
their lack of representation in EPPA and GAINS). In addition, we do not currently include 
aviation emissions, given their exclusion from both CEDSGBD-MAPS and GAINS.  
 
2.2.2 Projecting emitting activities   
 
This paper uses full-century activity outputs from several of EPPA’s global climate policy 
scenarios. The latest version of the EPPA model (EPPA7) has 18 regions of the world and 14 
economic sectors, as summarized in Appendix B (Paltsev et al., 2021). To scale the base-year 
emissions inventories by future trends in EPPA, we perform sectoral mapping from each of 
the 12 inventory sectors (11 from CEDSGBD-MAPS plus agricultural waste burning from GFED) 
to one or more of the EPPA7 sectors (Table 1). The process is based on comparisons of 
CEDS sectors with GTAP10 (Chepeliev, 2020) and its transferal to EPPA sectors, using 
standard Intergovernmental Panel on Climate Change (IPCC) definitions as a common 
reference point (Table 17). Since EPPA lacks direct matches for “Waste”, “Solvents”, or the 
“Residential” emissions that are often from solid biofuels in CEDS, we use population to scale 
these sectors. Despite its approximations, this sectoral mapping is useful to keep emissions 
projections in terms of CEDS and GFED sectors, facilitating SSP comparisons and future 
atmospheric modeling applications.  
 
Next, we select fuel-specific parameters to scale each emitting activity based on the approach 
used in the similar U.S. Regional Energy Policy (USREP) model (Yuan et al., 2019). In 
USREP, emissions from fuel consumption are mostly scaled by future sectoral energy 
consumption, while non-combustion sources are scaled by that sector’s economic output 
(Dimanchev et al., 2019; Thompson et al., 2014). Here, we apply a similar method to EPPA 
as described in Table 1, using the four fuel categories (three for combustion, one for 
“process”) in CEDSGBD-MAPS. Each source’s scaling is based on the proportion of its base-year 
emissions (Table 11) as follows: 
 
 Af,i,j,r,t = 𝐸𝐸𝑓𝑓,𝑖𝑖,𝑗𝑗,𝑟𝑟,0

𝐸𝐸𝑖𝑖,𝑗𝑗,𝑟𝑟,0
  *   ∑ 𝐴𝐴𝐸𝐸𝐸𝐸 f,Ei,r,t  ,       (2)  

where the EPPA activities Af,Ei,r,t are aggregated via summation across the EPPA sectors Ei 
that are mapped to each inventory sector (see Table 1). For fuel combustion, coal fuels are 
scaled by EPPA coal energy use trends (in joules), “liquid-fuel-plus-natural-gas” activities are 
scaled by aggregate oil and gas use trends, and solid biofuel sources are scaled by total 
sectoral energy use trends. For process-related emissions, some sources like manure 
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management are clearly outside of the energy realm, while others (such as natural gas flaring) 
may reflect energy activities as well (McDuffie et al., 2020). Accordingly, we scale agricultural 
waste burning by crop land use trends, and energy or industry “process” sources by their 
sectors’ total energy trends. For agriculture, we use a “per tonne” basis for consistency with 
GAINS’ emissions intensity units – multiplying EPPA’s sectoral land use trends (in hectares) 
by linearly extended production-per-area total crop trends (in tonnes per hectare) from the 
Food and Agriculture Organization (FAO, 2018). The overall scaling procedure is done for 
each scenario, pollutant, CEDS or GFED sector, and EPPA region, having linked each CEDS 
or GFED sector to EPPA sectoral drivers (Table 1) and mapped the CEDS and GFED grids 
to EPPA regions.  
 
2.2.3 Projecting emissions intensities  
 
Finally, we scale each activity’s emissions intensity with region- and sector-specific trends 
from the GAINS 4.01 scenarios (GAINS Developer Team, 2021; Klimont et al., 2017). Global 
data and projections from 2000-2050 are available for non-agricultural sectors and air 
pollutant species through the Energy Modeling Forum (EMF) study scenario data sets (Smith 
et al., 2020) that have been updated to GAINS 4.01. However, the EMF study does not 
include NH3, agriculture, or agricultural waste burning. GAINS estimates for these sectors 
have been provided separately and only for G20 regions. We map both data sets to the CEDS 
sector-fuel combinations and EPPA regions analyzed here, as described in Table 1, Table 
13-Table 16, and our online repository (Atkinson et al., 2022a).  
 
Table 1. Sectoral mapping and choice of scaling method for each inventory sector. 

CEDS/GFED 
sector  

EPPA sector(s) CEDS 
fuel 

EPPA 
activity 

GAINS EMF sector classes 

Agriculture CROP, FORS, 
LIVE 

Process Land 
production 

See Table 14 

Agricultural 
waste  

CROP Process Land use See Table 14 

Energy COAL, ELEC, 
GAS, ROIL 

Biofuel Total energy  Power_Gen_Bio 

  Coal Coal energy Power_Gen_Coal 
  Oil & gas Oil & gas 

energy 
Power_Gen_(HLF, LLF, NatGas) 

  Process Total energy Losses, Transformations 
Industry EINT, FOOD, 

OTHR 
Biofuel Total energy  End_Use_Industry_Bio 

  Coal Coal energy End_Use_Industry_Coal 
  Oil & gas Oil & gas 

energy 
End_use_Industry_(HLF, LLF, 
NatGas) 
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  Process Total energy AACID, CEMENT, CHEMBULK, 
CHEM, CUSM, NACID, PAPER, 
STEEL 

Commercial SERV Biofuel Total energy  End_Use_Services_Bio 
  Coal Coal energy End_Use_Services_Coal 
Residential Population Biofuel Population End_Use_Residential_Bio 
  Coal Population “_Coal 
  Oil & gas Population “_(HLF, LLF, NatGas) 
Other 
(combustion) 

CROP, FORS, 
LIVE 

Oil & gas Oil & gas 
energy 

End_Use_Transport_(AGR, 
OFF)_(LLF, HLF) 

Shipping TRAN Oil & gas Oil & gas 
energy 

“_OFF_(LLF, HLF) 

Solvents Population Process Population CHEM, CHEMBULK 
Transport TRAN Oil & gas Oil & gas 

energy 
End_Use_Transport_(NatGas, 
HDT_HLF, HDT_LLF, 
LDT_HLF, LDT_LLF, 
MC_LLF) 

Non-road 
transport 

TRAN Coal Coal energy End_Use_Transport_Coal 

  
Oil & gas Oil & gas 

energy 
“_(NatGas, OFF_LLF, 
OFF_HLF) 

Waste Population Process Population Waste 

 

See online repository for full GAINS sector and fuel linkages. CEDS fuel definitions are given in Table S1 of 
McDuffie et al. (2020) – with bioenergy separated between solid (“Biofuel”) and liquid fuels (“Oil & gas”). 
CEDS-GAINS fuel type discrepancies were recalibrated based on the percent of CEDS fuel emissions covered 
by GAINS. Residential, Solvents, and Waste sectors were scaled by EPPA population projections, given the 
lack of sufficient corollary sectors in EPPA. Land production combines land use from EPPA (in area units) 
with production per area trends from corollary FAO (2018) scenarios. GAINS EMF sectors are given in Table 
S3 of Rafaj et al. (2021) and https://gains.iiasa.ac.at/models/index.html.  

 
First, we calculate emissions intensity trends for each GAINS sector by dividing the emissions 
time series by activity time series. Historical data are available for 2000, 2005, 2010, and 2015 
– with projections for the CLE (2020, 2030, 2050) and MFR scenarios (2030, 2050). For 
missing activity data points, we conduct annual linear interpolation (and/or extension) for 
sectors with at least two values, or leave emissions intensities constant for sectors with one or 
no values. For trend extensions that reach zero before 2050, we assume values of zero 
thereafter. For the GAINS waste sectors – where only emissions (not activities) were given – 
we assume constant emissions intensities for CLE, versus region-specific trends to zero by 
2050 for MFR (based on MFR/CLE emissions ratios) in accordance with a recent GAINS 
paper (Gomez Sanabria et al., 2021). NH3 waste trends are matched to NOx due to large data 
gaps.  

https://gains.iiasa.ac.at/models/index.html
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For other NH3 sectors, we employ a conservative approach towards estimating intensity 
reductions outside of the GAINS G20 regions. For MFR, we assume that the non-G20 regions 
follow the MFR intensity trend of their corollary G20 regions (Table 16) – but with constant 
intensities in CLE (only following the corollary if its intensity is constant or increasing). For 
agriculture sectors (where intensity could rise or fall due to shifting land use or dietary 
patterns), we also incorporate more granular sector trends from the Food and Agriculture 
Organization’s 2050 scenarios of “Business as Usual” (CLE-like) and “Toward Sustainability” 
(MFR-like), which directly inform the GAINS database as well (FAO, 2018). The resulting 
intensity trend I combines the GAINS trend (GI) with FAO’s trend for sector i relative to 
total production (Fr,t): 
 
 If,i,j,r,t = GIf,i,j,r,t * 

𝐹𝐹𝑖𝑖,𝑟𝑟,𝑡𝑡
𝐹𝐹𝑟𝑟,𝑡𝑡

                (3)  

This adjustment allows for the potential of a region’s overall agricultural intensity to change 
based on shifts in the relative share of the emitting sectors within agriculture (such as 
livestock categories, milk production, or fertilizer tonnage). Associated FAO sectoral and 
regional mappings are provided in Table 15 and Table 16.  
 
Next, we prepare the GAINS sectors’ emissions intensity trends for integration with EPPA 
activity trends. First, we scale the trends to a relative value of 1 in EPPA’s base-year of 2014, 
using linear interpolation for the five-year GAINS values. To determine emissions intensity 
trends by CEDS sector-fuel combination (e.g., Industrial emissions from the “total-coal” fuel), 
we aggregate the more granular GAINS trends based on the proportion of the sector-fuel’s 
emissions from that GAINS sector – adjusting to the proportion of emissions covered by 
GAINS in cases where not all the CEDS sector-fuel combinations had a GAINS equivalent. 
We repeat the process to aggregate from GAINS to EPPA regions.  
 
2.2.4 Implemented scenarios   
 
To illustrate an application of TAPS, we first select three scenarios from EPPA7 to represent 
variations in climate policy ambition (Table 2), based on Paltsev et al. (2021). The “Paris 
Forever” scenario assumes the completion of nationally determined contributions (NDCs) 
from the Paris Agreement (as of March 2021 with more recent adjustments for COVID-19), 
but no future climate policies beyond those near-term targets. The other two scenarios extend 
this NDC baseline to the Paris Agreement’s long-term temperature goals, using a global 
emissions cap and price starting in 2030 to provide a 50% chance of limiting warming to 2°C 
or 1.5°C above pre-industrial levels. (Temperature estimates come from ensemble linkages of 
the MIT Earth System Model (Sokolov et al., 2018), or MESM, to EPPA’s economic results). 
The 1.5°C scenario features an almost 50% reduction in global greenhouse gas emissions from 
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2025 to 2030, a highly ambitious projection. As such, these scenarios span a range from 
current pledges to a much more stringent set of future climate policies.  
 
Table 2. EPPA7 scenarios analyzed, with selected SSP comparisons. 

EPPA7 
Scenario Description 
Paris Forever Paris Nationally Determined Contribution (NDC) targets (as of March 2021) are met by 

all countries by 2030 and retained thereafter (Paltsev et al., 2021). 
Paris 2°C Same to 2030, with a post-2030 emissions cap, implemented with a global emissions price, 

to ensure that the 2100 global surface mean temperature does not exceed 2°C above pre-
industrial levels with a 50% probability (Paltsev et al., 2021). 

Paris 1.5°C Same to 2030, with a post-2030 emissions cap, implemented with a global emissions price, 
to ensure that the 2100 global surface mean temperature does not exceed 1.5°C above pre-
industrial levels with a 50% probability (Morris, Libardoni, et al., 2021). 

 
EPPA7 Scenario RF (W m-2) SSP IAMs compared RF (W m-2)  ΔTemp (°C) CMIP6 analog 
Paris Forever 5.95 RF6.0, Baseline a (19) 5.48-6.43 3.23-3.76 SSP4_60 
Paris 2°C 3.82 RF3.4 (25) 3.33-3.57 2.13-2.28 SSP4_34 
Paris 1.5°C 2.87 RF2.6 (19) 2.53-2.72 1.72-1.82 SSP1_26 

Radiative forcing (RF) and IAM-based temperature change are global mean values for 2100, relative to pre-
industrial levels of 1861-1880 in EPPA (Morris, Sokolov, et al., 2021) and 1850-1900 for the SSPs (IIASA, 
2018). CMIP6 analog shows the SSP and RF combination that is most similar to each EPPA scenario. a IAM 
scenarios were not included if the radiative forcing (RF) difference from EPPA was greater than 0.5 W m-2. 

 
This range is reflected in the corresponding FAO (2018) scenarios used for agricultural 
production scaling: “Business As Usual” for “Paris Forever” and “Towards Sustainability” for 
the 2°C and 1.5°C scenarios. In Table 2, we also compare results from each EPPA scenario 
to CMIP6 scenarios and additional IAM runs from SSPs that have similar radiative forcing 
and other assumptions (Feng et al., 2020). While the “SSP5-3.4-Overshoot” scenario does fall 
in the EPPA forcing ranges, it assumes business-as-usual emissions in the near-term and 
plentiful negative emissions technologies in the long-term, in contrast to the EPPA scenarios’ 
near-term NDCs and lack of negative emissions.  
 
Turning to pollution control, we use this initial implementation to show the range of 
outcomes between GAINS CLE and MFR scenarios, based on version 6b of project ECLIPSE 
(Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) as presented by 
Stohl (2015) and online (IIASA, 2019). After aggregating the GAINS emissions intensity 
trends to inventory sectors and EPPA regions (Sect. 2.2.3), we perform exponential fits for all 
non-constant intensity pathways to enable simpler scenario tuning and harmonization with 
EPPA’s trends out to 2100. This approach also allows for the potential of future innovation 
beyond today’s MFR levels, in contrast to the SSPs’ treatment of the current MFR as a 
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“floor” for intensities. (Pathways could differ based on the research question; we describe 
examples in the discussion and Table 3). Exponentials are designed to pass through base-
year values of 1 and MFR waste values of zero for 2050 onward (using uncertainty weightings 
of 0.01 via the Python scipy curve fitting’s sigma parameter). Given the MFR scenario’s 
definition as the maximum feasible pollution reduction, anomalous cases with higher 
intensities than the corresponding CLE pathway are fixed to CLE levels.  
 
The resulting trends in emissions intensity are reported in our online repository (before and 
after exponential fits), with ~5500 trajectories from the 2 GAINS scenarios, 7 pollutants, 18 
EPPA regions, and ~20 CEDS sector-fuel combinations. The fit data includes reported r2 
values that range from strong (particularly for areas with full data sets such as Western 
Europe) to weaker in cases with incomplete data or abrupt changes in emissions intensities. 
The trends are highly sector- and region-specific, ranging from sharp decreases (such as 10-
100x drops in some transportation cases) to occasional increases (sometimes due to projected 
fuel switching within the GAINS activities that had been aggregated to the 56 EMF sectors). 
Increased intensities include CO emissions from steel in Brazil, Africa, and Eastern Europe, as 
well as SO2 coal emissions from residential (Eastern Europe) and end use industry (Western 
Europe). Finally, we combine the intensity trends with the linked base-year inventories and 
revised activity scaling (Eq. 1). Results are presented below and in the online repository, 
including outputs of all individual emissions trends as well as summary sheets of inventory 
value, activity scaling, and intensity scaling at notable timepoints (2030, 2050, 2100) for 
quicker comparisons.   
 
Table 3. Example emissions intensity trends based on GAINS CLE and MFR scenarios.  

Scenario Description 
No Improvements Assume constant emission factors from base year.  
CLE Forever Follow CLE emission factors until 2050, and hold them constant 

afterwards. 
CLE Trend Continues Fit an exponential function to CLE 2000-2050, and extend that trend 

to 2100. 
Granular Policy Choices Adjust CLE trends with regional, sectoral, or fuel-specific policy 

scenarios. 
SSP-like Improvements  SSP-specific improvements between CLE and MFR, depending on 

regional income level and reduction stringency of SSP. 
MFR Trend Continues Fit an exponential function to the historical GAINS data (2000-2015) 

+ MFR scenario (2030-2050), and extend that trend to 2100. 
CLE = Current Legislation; MFR = Maximum Feasible Reduction. For more detailed information on SSP 
scenarios, see Table 1-2 of the Supporting Information in Rao et al. (2017). 
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2.3 Results  
 
2.3.1 Example scenario and SSP comparison 
 
We illustrate an application of TAPS by providing the results for total air pollutant emission 
trends (Figure 2), sectoral breakdowns (Figure 3) and regional breakdowns (Figure 4). We 
also compare this implementation to corollary SSP IAM and CMIP6 scenarios (summarized in 
Table 4). For Figure 2, we show the full range of SSP-IAM combinations that have a 
similar radiative forcing to each of the three EPPA-MESM climate scenarios in Table 2. 
Though the SSPs and EPPA-MESM have slightly different temperature change estimates for 
a given forcing level, this process represents the closest comparison available between the two 
data sets. We facilitate this comparison by removing the SSP sectors that are not part of our 
scaling (aviation and open burning beyond agricultural waste), based on their emissions 
proportion in the best-fitting CMIP6 scenario (since sectoral non-CMIP6 IAM emissions are 
not available). This estimate may lead to slight visual differences in SSP data between 
Figure 2 (IAM) and Figure 3 (CMIP6), but acts as a reasonable first-order comparison with 
the TAPS scaling.  
 

 
Figure 2. Global air pollutant emissions trends in TAPS example scenarios and SSP IAM corollaries.  
The TAPS range spans the GAINS-based scenarios of current legislation (CLE) and maximum feasible 
reduction (MFR) in Table 3 (purple), as compared to the range of SSP IAM corollaries in Table 2 (blue). 
IAM estimates are subtracted by sectors not scaled by TAPS (aviation and open burning beyond agricultural 
waste), based on their emissions proportion in the best-fitting CMIP6 scenario (since sectoral IAM emissions 
are not available). Quantities of NOx are in Tg NO2; quantities of BC, OC, and NMVOC are in Tg C.  
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Figure 3. Sectoral emissions of air pollutants in 2050 in TAPS scenarios and SSP CMIP6 corollaries.  
GAINS-based TAPS scenarios include current legislation (CLE) and maximum feasible reduction (MFR) – as 
compared to the 2014 emissions inventories and corresponding CMIP6 scenarios of SSP1-2.6, SSP4-3.4, and 
SSP4-6.0 (respectively) for EPPA’s 1.5°C, 2°C and Paris Forever scenarios (see Table 2). The 11 CEDSGBD-

MAPS sectors (McDuffie et al., 2020) are condensed to the eight used by the SSPs (Hoesly et al., 2018), including 
the aggregation of residential, commercial, and other combustion (“Res|Com|Other”), plus agricultural waste 
burning (“Ag Waste”) from GFED. Quantities of NOx are in Tg NO2; BC, OC, and NMVOC are in Tg C.  

 
Figure 4. Regional emissions of air pollutants in 2050 in TAPS scenarios and SSP CMIP6 corollaries.  
See Table 12 for EPPA region names. SSP global totals are shown due to different region boundaries.  
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Table 4. Summary of pathways presented. 

Pathway Base-Year Emissions Emitting Activity 
Scaling 

Emissions Intensity 
Scaling 

TAPS 
CLE 

2014; GEOS-Chem 13.0.0 defaults 
(CEDS, GFED) for anthropogenic 
emissions  

EPPA7 Paris Forever, 
Paris 2°C, Paris 1.5°C 
scenarios 

Fitted exponential 
trends from GAINS 4.01 
2000-2050 CLE  

TAPS 
MFR 

2014; GEOS-Chem 13.0.0 defaults 
(CEDS, GFED) for anthropogenic 
emissions  

EPPA7 Paris Forever, 
Paris 2°C, Paris 1.5°C 
scenarios 

Fitted exponential 
trends from GAINS 4.01 
2000-2050 MFR 

SSP 
IAMs 

2005; IAM-specific (Rao et al., 
2017)  

IAM-specific (Rao et al., 
2017) 

SSP-based trends via 
GAINS 3 (Rao et al., 
2017) 

SSP 
CMIP6  

2015; past CEDS (Hoesly et al., 
2018) and GFED (van Marle et al., 
2017) 

IAM-specific (Rao et al., 
2017) 

SSP-based trends via 
GAINS 3 (Rao et al., 
2017) 

 
SSP corollaries from the full range of IAMs are shown in Figure 2, while sectoral data (Figure 3) are only 
available from the CMIP6 subset. For more detailed information on IAM model inputs, see Section 2.2 of the 
Supporting Information in Rao et al. (2017).  

When comparing initial emissions, IAM inventories differ both in base year (2005 vs. 
EPPA7’s 2014) and emissions values (Figure 2) – given their variety of sources from the 
Emissions Database for Global Atmospheric Research (EDGAR) to GAINS to the RCP or 
even older IPCC inventories (Rao et al., 2017). Even after the inventories have been 
harmonized in the CMIP6 scenarios (Gidden et al., 2019), their use of an earlier CEDS 
version (Hoesly et al., 2018) leads to differences such as a base-year OC value that is 30% 
higher than the updated CEDS value (McDuffie et al., 2020). NMVOC inventories of 
emissions inside the scope of CEDS are also much lower in the IAMs, especially from the 
IMAGE and REMIND-MAgPIE models (IIASA, 2018).  
 
In the TAPS example policy scenarios, trajectories do not decrease as often as in the SSPs – 
showing that emissions could be much higher if emissions intensity improvements are limited 
to current legislation. While recent studies support these cases of increased emissions (Rafaj et 
al., 2021), they focus on trends to mid-century. Here, many of the increases are strongest in 
the late century – implying that any continued improvements in the GAINS-based intensity 
trends are offset by further increases in activity. This contrast is strongest in industrial 
“process” emissions sources, where EPPA’s sharp increases in activity overpower the slight 
decreases in emissions intensity. While the full century’s trends are shown for context 
(Figure 2), the sectoral and regional plots focus on 2050 as the last year with official GAINS 
scenario data. We next summarize projections for each pollutant category in turn. 
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2.3.2 Example scenario results by pollutant  
 
In the case of increasing SO2 under EPPA’s “Paris Forever” and GAINS’ CLE scenarios, 
continued coal use without desulfurization and/or carbon capture is the primary factor – 
especially in regions with fewer current pollution controls such as Africa, South Asia, and 
Eastern Europe. By 2100, the doubling of industrial and residential sector emissions outpaces 
the decreases in energy and transport sectors. Industrial increases are driven by increased 
activities (4- to 10-fold by 2100 in those regions) with few intensity improvements, while 
residential increases are driven by a sharp increase in GAINS-based emissions intensity from 
Eastern Europe coal use. The GAINS MFR intensities are much lower given the additional 
pollution controls, halving the industrial emissions compared to CLE and leading to a 3-fold 
drop in energy sector emissions by 2100. Still, the increased coal activities of “Paris Forever” 
(especially in developing areas’ non-energy sectors) prevent emissions from decreasing 
globally, as in Rafaj et al. (2021) but unlike the SSPs. More ambitious climate policy 
scenarios include rapid declines in coal energy use – leading to declining SO2 emissions even if 
the intensities of remaining emissions sources (mostly industrial and residential) are nonzero.  
 
CO and NMVOC emissions show similar trends. In the case of CO under CLE and “Paris 
Forever”, industrial processes increase in activity (up to 10-fold in India by 2100) as well as 
intensity for certain regions (4-fold in Africa and 5-fold in Eastern Europe). Pollution controls 
in MFR reduce these increases, while causing major declines in most other sectors (including 
residential, unlike with SO2). NMVOC emissions follow these general patterns, with greater 
influence from energy process sources that have fewer control options in GAINS and more 
temporal variation from EPPA trends. CLE emissions intensities are relatively flat for energy, 
industrial, and solvent process sources (with some increases in Brazil and much of Asia), 
leading to greater emissions under the “Paris Forever” scenario. Further climate policy leads 
to further declines in energy, transport, and industrial coal, while further pollution policy (in 
MFR) is more impactful for solvents, residential, and industrial process sources.  
 
Long-term NOx emissions also increase under less ambitious policies, given the limits of 
projected intensity improvements in GAINS CLE. In this pathway, increased activities in 
EPPA lead to increased agriculture and a doubling of industry emissions by 2100 (including a 
10-fold increase in India’s oil and gas fuel), offsetting initial declines from GAINS intensities 
and overall reductions in other sectors like energy and transport. The GAINS MFR case gives 
further intensity reductions, flattening industrial emissions and transitioning energy and 
transport to near-zero. With further climate policy in the 2°C and 1.5°C scenarios, oil and gas 
use in EPPA is projected to reach near-zero by late-century as well, leading to lower 
emissions than most of the IAMs (which may assume less steep energy declines due to their 
greater reliance on negative emissions).  
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BC and OC are driven more by residential emissions, which have limited intensity 
improvements in CLE but much stronger pollution controls in MFR. BC emissions are 
generally higher than their SSP counterparts, as increased activities overpower intensity 
improvements for residential, commercial, industrial, and waste sectors. Moving to MFR leads 
to decreases in all sectors except for commercial, while moving to a 2°C climate scenario 
reduces energy and industry but not the others. Pollution control actions have an even greater 
effect for OC. In MFR under “Paris Forever”, OC residential and industrial emissions drop 8-
fold and 7-fold (respectively) from 2014 to 2100, compared to increases in both sectors under 
CLE. Across the OC scenarios, adding pollution control ambition leads to more emissions 
reductions than increasing the climate policy ambition.   
 
NH3 also shows the pronounced effect of pollution control outside of climate policy. In CLE 
cases, increased agricultural production globally combines with a near-doubled intensity in 
Africa (by 2100) to offset slight efficiencies elsewhere. When the FAO scenario is changed 
from “Business as Usual” (CLE-like) to “Toward Sustainability” (MFR-like), the spread of 
activities is much less emissions-intensive (near-constant in Africa, Eastern Europe, and the 
Middle East; substantially decreasing elsewhere), and relatively flat land use trends allow for 
declines in overall emissions. Non-agricultural NH3 emissions play a smaller role but follow 
similar patterns, with increased emissions under the limited existing policies and further 
reductions (such as in waste) under more ambitious policies.  
 
2.4 Discussion  
 
Several factors can help explain the different projection scenarios of TAPS and the SSPs. 
First, sectoral scaling choices differ between IAMs, as described in Section 2.2 of the 
Supporting Information in Rao et al. (2017). One example is the much higher value for OC 
waste emissions in SSP1-2.6 versus this study (Figure 3), which comes from a constant-
emissions extension of the higher inventory value from the associated IMAGE model (IIASA, 
2018). Another difference is the climate policy landscape that has changed between the SSP 
modeling process (mid-2010s) and the 2021 EPPA scenarios. While the latter may incorporate 
newer NDC pledges, the SSP IAMs sometimes assumed greater clean energy access and 
therefore lower biofuel-related BC emissions, for example (IIASA, 2018).  
 
There are also differences between emissions intensity projections in GAINS 3 / ECLIPSE v5a 
(used by SSPs) and GAINS 4 / ECLIPSE v6b (used here), as the latter includes newer 
regulatory or technological levers. This is certainly the case for the waste sector, with 
intensity trends changing from near-constant in GAINS 3 to a net-zero MFR endpoint 
(elimination of open burning of municipal waste) in GAINS 4 (Gomez Sanabria et al., 2021). 
More granular regions and sectors, such as the refinement of residential cooking and heating 
(GAINS Developer Team, 2021), could also affect the pathways where those sectors play 
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major roles (like for black and organic carbon). In addition, the updates reflect the effects of 
some recent policies, such as the sharp declines of SO2 in China (Zheng et al., 2018).  
 
It is also worth noting the differing structures of each integrated data set in TAPS, 
particularly with respect to the sectors and regions of CEDS, GFED, EPPA, GAINS, and 
FAO. The lack of direct EPPA matches for the CEDS sectors of “Residential”, “Solvents”, 
and “Waste” necessitates a scaling by population that limits the sectors’ range of outcomes. 
We also make approximations for CEDS’ solid biofuel categories, scaling by EPPA’s total 
sectoral energy given the lack of a closer fit. Finally, the regional estimates of NH3 trends 
beyond the available G20 data (chosen as constant or G20-like intensity paths for each 
GAINS sector) could be low or high depending on the realities in those areas. Future work 
could refine these assumptions as improvements become available. 
 
Further application of TAPS could explore other emissions intensity scenarios to inform 
different research questions (Table 3). This example application demonstrates the range of 
outcomes between the bounds of a “continued CLE trend” and “continued MFR trend,” 
embodied by the fitted exponentials described above. For other applications, a scenario of 
constant emission factors could follow other “co-benefits” studies to illuminate air quality 
benefits from greenhouse gas reductions alone. In addition, a “CLE Forever” case (with 
emission factors held at the final projected data point) could resemble the “Paris Forever” 
focus on short-term greenhouse gas policy, while the SSP-like scenarios could be used for more 
direct comparisons with their income-based pathways. Finally, additional scenario elements 
such as land use, diet, and active mobility could be incorporated as in recent works – given 
that improving such elements may lead to comparable or even greater health benefits than 
the pollution-specific levers explored here (Amann et al., 2020; I. Hamilton et al., 2021).  
 
Such scenarios need not be limited to emissions intensity. With the regional, sectoral, and 
fuel-based EPPA outputs given in the online repository, users can readily explore the effects 
of more granular climate policies applied at those levels. Activity trends could be adjusted to 
study the effects of sector-specific policies on agricultural land use, fuel-specific policies on 
coal combustion levels, or region-specific policies that capture individual NDC updates (for 
example). Given the tool’s relatively quick runtime, uncertainty analyses could explore larger 
ensembles of policy or other inputs to efficiently explore first-order outcome ranges, following 
the approach of recent EPPA studies on socioeconomic (Morris, Reilly, et al., 2021) and 
climate forcing trends (Morris, Libardoni, et al., 2021). 
 
2.5  Conclusions  
 
TAPS provides a flexible and comprehensive model for assessing climate and pollution 
pathways, integrating recent standard emissions inventories, long-term activity scaling, and 
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scenario-specific emissions intensities. Results from its application to selected scenarios show 
lower near-term emissions than the SSPs in many cases, both from NDCs’ greater climate 
policy ambition as well as recent pollution reduction actions now captured in GAINS. Less 
ambitious pathways show increased emissions in the long-term – particularly for the industrial 
and agricultural processes that have fewer existing controls. These increases are especially 
pronounced in developing regions where sharply growing activities are combined with fewer 
planned pollution policies. However, more ambitious climate and pollution policies can curb 
those increases substantially – from the SO2 and NOx reductions driven by fuel switching to 
the NH3 reductions from land use decisions and OC reductions from pollution controls.  
 
Future applications could explore other scenarios by adjusting a range of climate or pollution 
policy inputs. Assessing other climate or activity scenarios could compare the health impacts 
of near-term fuel switching versus long-term negative emissions. Additional emissions intensity 
trends could add the aforementioned elements of land use, diet, or specific innovations beyond 
today’s technological control options. All these scenarios can be applied to specific regions, 
sectors, or fuels in the framework to explore more granular policies or target short-term 
actions with high-impact benefits.  
 
Future tool development and linkages could consider other emissions sources – such as 
aviation, open burning, or wildfires – to explore the futures of additional activities that may 
be underestimated (Pan et al., 2020) or not fully covered by the default inventories used here. 
Integration with other modeling tools could examine key inter-pollutant or pollutant-climate 
feedbacks, such as the increased NH3 emissions rates in a warming world (Yang et al., 2021). 
External coupling to other ensemble results could address important but out-of-scope elements 
such as meteorological uncertainty, given its importance in past studies that compared 
natural variability with other sources of uncertainty in health impacts analysis of air pollution 
(Pienkosz et al., 2019; Saari et al., 2019). 
 
Finally, additional research with air quality and impact models could assess the health effects 
of TAPS emissions scenarios as well as their implications for decision-making. Quantified 
impacts should include a range of mortality and morbidity endpoints to capture recent 
epidemiological research (Danesh Yazdi et al., 2019), as well as aspects of equity, uncertainty, 
and sensitivity for key parameters (Hess et al., 2020). Using a combined assessment of climate 
and pollution policies could help reduce the siloes that have traditionally hindered the 
consideration of climate-health linkages in decision-making (Workman et al., 2018). Integrated 
impact metrics (whether through the weighting of multi-criteria decision analysis or the 
monetization of benefit-cost analysis) could also inform policy conversations. Ultimately, the 
TAPS framework could enable more flexible, efficient, and extensive scenario study of policies 
that affect climate change and health futures.  
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3. The impacts of air pollution on inclusive wealth-based 
sustainability: evaluating alternative metrics under an example 
change in future global pollution control  

 
3.1 Introduction  
 
The health effects of air pollution play a critical role in sustainability. Total air pollution has 
likely caused more annual deaths in recent years than COVID-19 (Vos et al., 2020) – with 
millions of premature mortalities from ambient fossil fuel particulate matter alone (McDuffie 
et al., 2021; Lelieveld et al., 2019). As a result, air quality is frequently emphasized in global 
sustainability indices, such as the health-related Sustainable Development Goal (SDG) of the 
United Nations (UN). However, it remains challenging to integrate these indices’ many 
metrics (such as the dozens of health measures within the SDGs’ 231 socioeconomic 
indicators) into a harmonized framework for sustainability decisions. Approaches include the 
equal weighting of the SDG Index (Sachs, 2020) as well as stakeholder-based weights in 
OECD’s Better Life Index (2020), principal component analysis in the Social Progress Index 
(Nagel, 2020), or the Multidimensional Synthesis of Indicators Approach (Biggeri et al., 2019). 
 
The Inclusive Wealth (IW) framework has gained traction as a way of evaluating progress to 
sustainability – particularly in its emphasis on long-term sustainability for future generations. 
According to Clark and Harley (2020), IW is “one of the strongest contributions of science to 
sustainable development over the past two decades.” The framework uses a proof-based 
economic framework to construct a rigorous definition of sustainability as non-declining stocks 
of human wellbeing over time (Arrow et al., 2012) – as opposed to traditional growth metrics 
that simply focus on resource flows without consideration of long-term sustainability 
(Dasgupta, 2014). The IW framework has been applied to more than 100 countries in several 
retrospective UN reports (Managi et al., 2018; UNEP & UNU-IHDP, 2012; UNEP, 2014). As 
summarized in Table 5, researchers have also used IW to evaluate the sustainability of 
specific actions related to energy infrastructure in China (Mulvaney, 2017), Belgium (Aly and 
Managi, 2018), and the Middle East (Collins et al., 2017) – as well as urban planning in 
Japan (Ikeda and Managi, 2019) and Indonesia (Shimamura and Mizunoya, 2020). In this 
way, the stock-based IW approach could offer a future-oriented perspective for two purposes, 
helping track an entity's overall sustainability objectives as well as specific policy decisions. 
 
However, IW studies’ inclusion of health has generally been less consistent and comprehensive 
than other metrics. According to Arrow et al. (2012) and subsequent UN reports, health 
influences sustainability in at least three ways: direct effects on wellbeing; productivity; and 
longevity as measured by life years. Arrow et al. (2012) focus on the third component due to 
quantification challenges – finding that health capital exceeds all other IW components by an 
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order of magnitude when monetized by the value of a statistical life year (VSLY). While other 
commenting authors questioned this use of the VSLY (K. Hamilton, 2012; Solow, 2012), 
Arrow et al. (2013) defended the VSLY valuation of health in a follow-up piece (Arrow et al., 
2013). Nevertheless, the latest UN report excludes health capital in its “standard” approach 
(Managi et al., 2018) – despite a conclusion by related authors that “health stock is a vital 
component of global sustainable development that should be consistently included as a stock-
based sustainability index” (Jumbri et al., 2018).  
 
The inclusion of health impacts from air pollution could take several forms. Key choices 
include the exposure-response function(s), scope of impacts, and question of monetization. For 
response functions, one issue is the scarcity of cohort studies at high, globally-representative 
pollutant concentrations; common approaches may incorporate studies of high-concentration 
indoor air pollution in an Integrated Exposure Response (IER), and/or use a more flexible 
functional form (like the Global Exposure Mortality Model, or GEMM) to capture the studies 
that do exist (R. Burnett and Cohen, 2020). These functions can cover a range of impacts, 
including premature mortality as well as morbidities that are either acute (such as hospital 
admissions) or chronic (such as asthma rates). Monetized methods can include the VSL or 
VSLY (based on willingness to pay for the reduced risk of death), as well as direct medical 
costs or the wage-related cost of lost labor quantity (e.g., work days lost), quality (i.e., 
restricted activity days), or leisure (Matus et al., 2012). Since VSL-based methods are often 
much higher than wage-based costs, some authors have compared the two as upper and lower 
bounds (Meisner et al., 2015). For international studies where willingness to pay or other 
costs are not available for all countries, a common approach of “benefits transfer” uses a 
research-based reference value in one country to estimate the value in other countries, 
depending on national income and a chosen elasticity (Robinson et al., 2019). 
 
Of the individual IW studies that do include health (Table 5), most use a VSLY approach 
(Ikeda et al., 2017; Jumbri et al., 2019). Other IW studies focus on air pollution impacts as 
lost labor or productivity, either as an ex-post adjustment in an inventory for India (Agarwal 
and Sawhney, 2021) or through interactive effects in computable general equilibrium (CGE) 
modelling (Collins et al., 2014). Other applications use a combination of approaches. In 
analyzing the relocation of Indonesia’s capital city, Shimamura and Mizunoya (2020) use both 
VSLY and lost labor approaches to incorporate mortality, productivity, and medical cost 
estimates from Resosudarmo and Napitupulu (2004). For an assessment of energy 
infrastructure options in Egypt and Belgium, Aly and Managi (2018) evaluate VSLY-based 
mortalities and labor-based restricted activity days via the ExternE model (Bickel and 
Europäische Kommission, 2005). However, both studies use linear dose-response functions 
with PM10 – differing from the recent response function literature that emphasizes PM2.5 and 
non-linearity (Ru et al., 2020; Vodonos et al., 2018).  
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Table 5. Review of health capital methods in Inclusive Wealth-related studies. 

Year Author Area Type Time Health 
Capital  

Method Scope 

(2012) Arrow et al. 5 nations Inventory 1995-2000 Life exp. VSL General 
(2012) UNEP & 

UNU-IHDP 
20 nations Inventory 1990-2008 Life exp. VSL General 

(2014) UNEP 140 nations Inventory 1990-2010    
(2018) Managi et al.  140 nations Inventory 1990-2014 Life exp. VSL General 
(2012) Mumford USA: 48 states Inventory 1990-2000     
(2013) Pearson et al. Australia basin Inventory 1991-2001    
(2015) Ghadimi et al. WV USA 

counties 
Inventory 2005-2012     

(2017) Ikeda et al. Japan 
prefectures 

Inventory 1991-2010 Life exp. VSL General 

(2018) Yoshida et al. Sado Island, 
Japan 

Inventory 1990-2014     

(2018) Lange et al. 141 nations Inventory 1995-2014 Mortality Labor PM2.5 
(2020) Jingyu et al. China Inventory 2000-2015    
(2021) Zhang et al. China, Japan Inventory 2000-2015    
(2021) Agarwal & 

Sawhney 
India Inventory 1975-2013 Mortality & 

morbidity 
Labor PM2.5 

(2018) Kurniawan & 
Managi 

140 nations Scenarios 2014-2100       

(2018) Jumbri et al. 140 nations Scenarios 1990-2100 Life exp. VSL General 
(2019) Sugiawan et 

al. 
104 nations Scenarios 1993-2050    

(2019) Ikeda & 
Managi 

Japan Scenarios 2014-2100 Life exp. VSL General 

(2014) Collins et al. China coal use Policy 1975-2005 Mortality & 
morbidity 

Labor PM2.5 

(2017) Collins et al. Middle East 
nations 

Policy 2015-2050    

(2017) Mulvaney China coal use Policy 2007-2030 Mortality VSL PM2.5 
(2017) Ikeda et al. Japan seawalls Policy 2010-2030 Life exp. VSL General 
(2018) Aly & Managi Egypt & 

Belgium power 
plants 

Policy 2015-2050 Mortality & 
reduced 
activity days 

VSL & 
labor 

PM10 

(2020) Shimamura & 
Mizunoya 

Indonesia cities Policy 2020-2029 Mortality, 
morbidity, 
medical cost 

VSL, 
labor, 
cost 

PM10 

 
Life exp. = Life expectancy; VSL = Value of a Statistical Life; UNEP = United Nations Environment 
Programme; UNU-IDHP = International Human Dimensions Programme hosted by the United Nations 
University; WV USA = West Virginia, United States of America; PM = particulate matter.  
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Compared to cost-based estimates of individual air pollution health impacts, an alternative 
approach to IW analysis could center the overall impacts on healthy life years, using 
combined mortality-morbidity metrics like the Disability-Adjusted or Quality-Adjusted Life 
Year (DALY or QALY). QALYs are often used to evaluate place-specific healthcare 
interventions,   combining the estimated quality-of-life improvement of an intervention with 
its average expected duration. In contrast, DALYs focus on health threats as studied by the 
Global Burden of Disease (GBD) reports (Vos et al., 2020), integrating Years of Life Lost 
(YLL) from mortalities and Years Lived with Disability (YLD) from pre-death morbidities. 
Converting deaths to YLL via age-specific life expectancy has been questioned statistically 
(Hammitt et al., 2020) but affirmed via the age- and cause-specific baseline data of GBD 
(Lelieveld et al., 2020). YLD are estimated from a disease’s prevalence and its disability 
weight from comprehensive multi-national surveys – replacing age-weighted estimates that 
had drawn ethics-based critiques for placing a different value on different stages of life 
(Arnesen and Kapiriri, 2004). This international scope marks a key difference from QALYs, 
which use survey-based utility weights and are more nation-specific (WHO, 2013). As a result, 
a recent panel of health impacts experts (Hess et al., 2020) has supported the use of QALYs 
for a single country (to make use of nation-specific utility weights) and DALYs internationally 
(given the global disability weights provided in GBD reports).  
 
However, challenges arise when QALYs and DALYs are combined with air pollution response 
functions typically used in related literature (Hubbell, 2006). Beyond their additional data 
requirements, QALYs and DALYs do not incorporate acute effects (Bala and Zarkin, 2000) 
unless the year-based metric (e.g., loss of 0.3 healthy life years from a disease’s poorer quality 
of life) is assumed to scale linearly to a symptom-day (e.g., loss of 0.3/365 = 0.0008 healthy 
life years), for instance (Bell et al., 2011). Another concern for QALYs and DALYs is the 
issue of “double-jeopardy” (Singer et al., 1995), in which the overlap of mortalities and 
morbidities could skew results if they are treated separately. Schmitt et al. (2016) seek to 
resolve the “double-jeopardy” issue by designing a Markov model to simulate individuals’ 
annual health state transitions between health, sickness, and death from key diseases. Others 
have studied the effect of national air pollution policy on both mortalities and non-acute 
morbidities with the metric of QALYs (Kriit et al., 2021; Lomas et al., 2016) or DALYs 
(Bachmann and van der Kamp, 2017; Maizlish et al., 2022). 
 
This chapter conducts a similar investigation for global policy – focusing on the range of air 
quality outcomes under a climate policy scenario that meets the Paris Agreement’s goals of 
limiting global temperature rise to 2°C above pre-industrial levels. Recent studies have 
increasingly pointed to a large range of air quality futures, even under this ambitious climate 
policy scenario. While the Representative Concentration Pathways showed a small multi-
model range due to a constant assumption of pollution control (Silva et al., 2016), the Shared 
Socioeconomic Pathways found an exposure difference of up to 30% (within the same climate 
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forcing) after varying the pollution control level between select economic scenarios (Rao et al., 
2017). More disparate pollution control scenarios have shown larger health impact ranges, 
including a factor of two between a case of “fixed legislation” versus “best available 
technology” under a 2°C climate scenario (Vandyck et al., 2018) or a similar comparison for 
1.5°C (Rafaj et al., 2021). Others have shown even greater differences if air pollution benefits 
are optimized, either through integrated assessment modeling (Reis et al., 2022) or from the 
analysis of early power plant retirements (Tong et al., 2021).  
 
Here, we develop a theoretically-consistent approach to conduct similar health impacts 
assessments in the context of Inclusive Wealth theory – evaluating the difference in ambient 
particulate matter pollution impacts between two bounding scenarios of global pollution 
control. We compare these scenarios by the metric of cumulative difference in healthy life 
years (measured as pollution’s effect on DALYs), avoiding issues of international monetization 
that would skew the global distribution of benefits toward high-income areas (OECD, 2016; 
Reis et al., 2022). We focus on premature mortalities as well as dementia case morbidities, 
which are uniquely projected from a combined mortality-morbidity modeling framework 
(Nichols et al., 2022) and have existing global response functions for PM2.5 (Ru et al., 2021) 
that have been used for similar health impacts analysis (Shindell et al., 2021). After 
quantifying both health endpoints, we compare traditional metrics with ours and interpret 
their differences.  
 
3.2 Methodology  
 
The following sections discuss each step of the analysis, from the policy scenarios’ precursor 
emissions to PM2.5 concentrations to the studied health impacts and calculation of chosen 
metrics (including the cumulative difference in healthy life years for inclusive wealth).  
 
3.2.1 Scenarios to emissions (TAPS) 
 
We estimate global emissions of anthropogenic air pollutant precursors via the Tool for Air 
Pollution Scenarios (TAPS). As described in Chapter 2, TAPS combines base-year emissions 
inventories, projected trends in emitting activities (based on climate policy scenarios), and 
projected trends in their emissions intensity (based on pollution policy scenarios). We use its 
default data sources for each component. Inventories include the Community Emissions Data 
System’s Global Burden of Disease Major Air Pollution Sources project (CEDSGBD-MAPS) from 
McDuffie et al. (2020), as well the Global Fire Emissions Database (GFED4.1s) from Van 
Marle et al. (2017). Scenarios of emitting activities are drawn from a recent version of MIT’s 
Economic Projection and Policy Analysis (EPPA7) model (Y.-H. H. Chen et al., 2015, 2017; 
Paltsev et al., 2005). Scenarios of emissions intensities come from version 4.01 of the 
Greenhouse Gas – Air Pollution Interactions and Synergies (GAINS) model (Amann et al., 
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2011; GAINS Developer Team, 2021; Klimont et al., 2017), using version 6b of project 
ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants).  
 
The specific study scenarios are summarized in Table 6, using base-year emissions from 2014 
to match with the EPPA7 base year. We then scale the spatial and seasonal distribution of 
base-year emissions by the regional year-based projections from the climate and air pollution 
policy pathways, as done in Feng et al. (2020) for the sixth Coupled Model Intercomparison 
Project (CMIP6). With climate policy, we focus on EPPA7’s “Paris 2°C” scenario, which 
assumes completion of the Paris Agreement’s 2030 Nationally Determined Contributions (as 
of March 2021, with more recent adjustments for COVID-19), as well as a global emissions 
cap and price starting in 2030 to provide a 50% chance of limiting warming to 2°C above pre-
industrial levels. (Temperature estimates come from ensemble linkages of the MIT Earth 
System Model (Sokolov et al., 2018), or MESM, to EPPA’s economic results). For pollution 
policy, we study two scenarios from GAINS: current legislation (CLE), which assumes 
compliance with existing source- and region-specific emission limits, and the maximum 
feasible reduction (MFR) case, which assumes gradually increasing application of the lowest-
emitting currently available technologies (Amann et al., 2011; Klimont et al., 2017).  
 
Table 6. Summary of emissions scenarios analyzed.  

Pathway Base-Year Emissions Activity Scaling Intensity Scaling 
2050CLE CEDSGBD-MAPS, GFED4.1s (2014) EPPA7 Paris 2°C scenario GAINS 4.01 CLE to 2050 
2050MFR CEDSGBD-MAPS, GFED4.1s (2014) EPPA7 Paris 2°C scenario GAINS 4.01 MFR to 2050 

 
3.2.2 Emissions to concentrations (GCHP)  
 
We translate precursor emissions to particulate matter concentrations via the GEOS-Chem 
High Performance (GCHP v13.0) model. GEOS-Chem is a global 3D model of atmospheric 
chemistry and transport driven by assimilated meteorological observations from the Goddard 
Earth Observing System (GEOS) of the NASA Global Modelling Assimilation Office 
(https://geos-chem.seas.harvard.edu/). GCHP is a multi-node variation that uses the native 
GEOS cubed-sphere grid for greater accuracy and computational efficiency (Eastham et al., 
2018). GEOS-Chem simulations use a 10 minute time step for transport calculations, and a 20 
minute time step for chemistry and emissions. Emissions are kept at GEOS-Chem defaults 
except for the scaled CEDSGBD-MAPS emissions, as well as GFED agricultural waste burning 
emissions, from TAPS. The annual scaling is applied to the monthly inventory values of 
emissions fluxes per second, which are used for the emissions time step of GEOS-Chem. PM2.5 
concentrations are calculated for standard conditions of 35% relative humidity (RH). The 
calculation is performed using the dry (0% RH) concentrations of all aerosol species, in μg m-3, 
as follows:  

https://geos-chem.seas.harvard.edu/
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PM2.5  = (NH4

+ + NIT + SO4
2-) * 1.10 

    + BCPI + BCPO + {OCPO + (OCPI * 1.05)} * (OM/OC ratio) 
  + DST1 + (DST2 * 0.38) + (SALA * 1.86) + (SOA * 1.05)   (4) 
 
where SO4

2-, NIT, and NH4
+ represent sulfate, nitrate, and ammonium mass in aerosols, 

respectively; BCPI and BCPO represent hydrophilic and hydrophobic BC; OCPI and OCPO 
represent hydrophilic and hydrophobic OC; SALA represents accumulation mode sea salt; and 
SOA refers to secondary organic aerosol. DST1 and DST2 represent dust with size bins of 
0.2–2.0 and 2.0–3.6 μm in diameter, respectively, and 38% of the mass in the DST2 bin is 
assigned to PM2.5 (as of version 13.0). The default OM/OC ratio of 2.1 is used, and the other 
factors represent hydroscopic growth factors for 35% RH (as described at 
http://wiki.seas.harvard.edu/geos-chem/index.php/Particulate_matter_in_GEOS-Chem). 
 
For this case study, we perform two GCHP runs representing the CLE and MFR scenarios in 
2050. Each case uses projected climate and meteorological outputs from the linkage of MIT’s 
Integrated Global System Model with the National Center for Atmospheric Research 
Community Atmospheric Model (IGSM-CAM), as described in Monier et al. (2015). We focus 
on the POL3.7 scenario, which reflects the Paris 2°C policy scenario given its total radiative 
forcing of 3.7 W m-2. These outputs are integrated with the scaled air pollutant emissions 
from TAPS for the 2050 scenarios, which are run for the full year (plus six months of spin-up 
starting in July 2049) at C48 (~2°x2.5°) resolution. We focus on the surface-level, daily 
average concentration of PM2.5 for estimation of health impacts.  
 
3.2.3 Concentrations to health impacts   
 
This case study focuses on two major health impacts from particulate matter: premature 
mortality and dementia morbidity. Both allow for the inclusion of recent non-linear response 
functions, as well as globally projected baselines that are less widely available with other 
health impacts. After converting GCHP’s daily average PM2.5 concentration to an annual 
average, we regrid to 0.5°x0.5° for integration with demographic and health baselines.  
 
For gridded population by five-year age group, we use the Gridded Population of the World’s 
UN World Population Prospects (WPP)-Adjusted Population Count, version 4.11 at 30 arc-
minute resolution, for 2010 as the most recent year with age groups (CIESIN, 2018). For 
baseline population in 2050, we scale the 2010 grid by the national 2050-to-2010 ratios from 
the UN WPP source used by EPPA (UN, 2019). Projections of baseline mortality rates use 
country-specific all-cause reference cases from Vollset et al. (2020), multiplied by the GBD 
2019 country-specific fraction of mortalities from the causes covered by our chosen response 

http://wiki.seas.harvard.edu/geos-chem/index.php/Particulate_matter_in_GEOS-Chem
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function (since no age- and cause-specific projections were available from GBD). Baseline 
dementia rates use country-specific 2050 projections in Nichols et al. (2022), multiplied by the 
GBD 2019 country-specific fraction of dementia cases (GBD cause ID 543: “Alzheimer’s and 
other dementias”) from the 65-and-older age groups covered by our chosen response function. 
For countries without available baseline rates, the global baseline rates are applied. The age 
group of 65-and-older accounts for roughly 89% of global dementia cases in 2019 GBD data. 
 
We estimate premature deaths attributable to ambient PM2.5 by using the Global Exposure 
Mortality Model, or GEMM (R. Burnett et al., 2018). GEMM extends a log-linear approach 
by allowing for the option of other non-linear functional forms, as defined by transformations 
of concentration. It is based on cohort studies of ambient PM2.5 that aim to cover the full 
global exposure range (including high-exposure areas). We use the response function that 
includes noncommunicable diseases (NCDs) and lower respiratory infections (LRIs), 
represented as GEMM NCD + LRI. Premature deaths in each grid cell are estimated as: 
 

Mort = Pi * yi * (1 –  
1
𝑅𝑅𝑖𝑖

 )         (5) 

where i represents each age group, Pi and yi are the population and baseline mortality rate of 
the specified age group, (1 – 1/Ri) is the fraction of deaths attributed to ambient PM2.5 
exposure, and Ri is the hazard ratio between incidence rates in exposed and unexposed 
populations. Hazard ratios in each grid cell are estimated as: 
 
R(z) = exp{𝜃𝜃 log(1 +  𝑧𝑧

𝛼𝛼
 ) ∗ {1/(1 + exp[ - 

(𝑧𝑧−µ)

𝑣𝑣
]) } }     (6) 

where z = max (0, Ccf), based on the grid cell’s annual average PM2.5 concentration as well as 
Ccf, the counterfactual concentration (2.4 μg m−3) below which there is no additional risk. θ 
and its standard error are estimated by fitting the data to the Cox proportional hazard model 
(Cox, 1972) using standard computer software. α and μ control the function’s curvature and 
shape (respectively), and v = τ*r (in which r reflects the range of pollutant concentrations in 
the GEMM cohort and τ controls the curvature). We use the age-specific set of parameters 
(θ, α, μ, v) estimated for NCD + LRI, including the Chinese Male Cohort, from Burnett et 
al. (2018) for each five-year group (ages 25-29 to ages 80-and-older). We sum the results for 
each age group to give the national and global impacts presented. Uncertainties for health 
impacts analysis are reported as a 95% confidence interval (CI) using the θ standard error.  
 
The effect of PM2.5 on dementia cases is explored in Ru et al. (2021), who develop GEMM-like 
response functions based on the “newer, convincing evidence” noted in a recent Lancet 
Commission report (Livingston et al., 2020). Given a lack of studies in high-concentration 
areas, Ru et al. (2021) estimate those conditions by combining ambient air pollution (AAP) 
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and second-hand smoking studies (SHS) in an integrated response function. While assuming 
equitoxicity, the authors recommend this approach for global studies with a wide range of 
PM2.5 concentrations, and it has been used in subsequent health impacts analyses of climate 
policies (Shindell et al., 2021). We select the GEMM-like non-linear functional form due to its 
better performance on goodness-of-fit tests when compared to a log-linear function (Ru et al., 
2021). We also focus on dementia cases (rather than deaths) to avoid double-counting with 
the GEMM mortality function. The parameters are available in Ru et al. (2021) Table S4 
(AAP+SHS) for their age group of focus (65-and-older), using their concentration range of 2.7 
µg m-3 to 146 µg m-3 to calculate v and the θ standard error to estimate the 95% CI.  
 
3.2.4 Health impacts to inclusive wealth framework 
 
We apply health impacts to the inclusive wealth framework by measuring the cumulative 
difference in healthy life years (via DALYs) between policy scenarios. Our DALY calculation 
combines Years of Life Lost (YLL) from premature mortalities and years of life with disability 
(YLD) from dementia cases. For YLL, we follow GBD methods (Vos et al., 2020) by 
multiplying the estimated premature deaths for each country and age group by the standard 
life expectancy at age of death. Standard life expectancies are calculated from 2050 global 
population and mortality rates by age group in Vollset et al. (2020), interpolating annually 
from the five-year estimates. For the “95-and-older” age group in Vollset et al. (2020), we 
estimate annual mortality rates by fitting the pre-95 annual mortality rates to a quadratic 
curve (r2 = 0.92) and extending the curve to age 115. With a mortality rate for each year, we 
take the cumulative products of the probabilities of avoiding death for each year above a 
certain age, and find the median age of death as the first year in which that age group’s 
cumulative probability drops below 0.5. Finally, we find the standard life expectancy for the 
midpoint of each five-year age group (e.g., 27.5, 32.5…), following Ru et al. (2021) by using a 
weighted average to represent the midpoint of the 95-and-older group (0.4 * 97.5 + 0.3 * 
102.5 + 0.2 * 107.5 + 0.1 * 112.5). We then apply these life expectancies to the GEMM age 
groups. These are identical except for GEMM’s 80-and-older group, which we calculate as a 
weighted average based on the global proportion of population in each GBD age group. 
 
For YLD, we take the product of attributable dementia cases, standard life expectancy for 65-
and-older (using the same weighted average approach), and GBD disability weights –using 
the dementia severity splits in Appendix 1 (p. 967) of the GBD study (Vos et al., 2020). 
These values by severity (s) are given globally for each gender (g) and five-year age group (a); 
we calculate a weighted average by country (c):  
 
𝐷𝐷𝐷𝐷𝑐𝑐 =  ∑ (𝐷𝐷𝐷𝐷𝑠𝑠 ∗𝑠𝑠 ∑ (𝑓𝑓_𝑠𝑠𝑎𝑎,𝑔𝑔,𝑐𝑐 ∗ 𝑓𝑓_𝑝𝑝𝑎𝑎,𝑔𝑔,𝑐𝑐𝑎𝑎,𝑔𝑔 )) ,      (7) 
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where f_s represents the fraction of cases from a certain severity and f_p represents the 
fraction of a country’s population that comes from a certain gender and age group. We 
present the YLL, YLD, and sum (as DALYs) to compare between scenarios – treating this 
difference as the effect of a policy change in each nation’s stock of healthy life years. 
 
To compare this metric with others, we also convert deaths and dementia cases to monetary 
terms using typical valuation methods. For dementia, we use a cost-of-illness approach (Wimo 
et al., 2017) that estimates cost per case in year 2015 USD for GBD regions, as well as a 
global trend increase from 2010 to 2015 that we use to project costs to 2050 as a first-order 
estimate. For mortality, we use the value of a statistical life (VSL) from a recent set of 
benefit-cost analysis guidelines (Robinson et al., 2019) that has been cited in recent air 
pollution literature (Reis et al., 2022). The VSL method of benefits transfer works as follows:  
 
VSLtarget = VSLreference * (Incometarget / Incomereference) elasticity    (8) 

We follow all central estimate guidelines (Robinson et al., 2019), including a reference United 
States VSL of $9.4 million (in 2015 USD), an elasticity of 1.5, and a VSL lower bound of 20 
times the country’s income based on the assumption that VSL will likely remain higher than 
annual income, and that adult life expectancy should exceed 20 years on average (Robinson et 
al., 2019). For national income, we incorporate World Bank data for Gross National Income 
per capita using purchasing power parity in 2015 (World Bank, 2022) – having mapped World 
Bank to GBD countries and used a global average for countries with no available data. We 
project these VSL estimates based on regional per capita 2015-to-2050 GDP growth from the 
EPPA “Paris 2°C” scenario used in the TAPS emissions scenarios – having mapped countries 
to EPPA regions in Atkinson et al. (2022a). All costs are reported in 2015USD. While the 
monetized amounts are not the focus of this case study, further work could conduct sensitivity 
analyses with different VSL or dementia valuation assumptions.  
 
3.3 Results 
 
The following sections describe and interpret the scenario results for precursor emissions, 
pollutant concentrations, cumulative difference in healthy life years, and other health metrics. 
 
3.3.1 Emissions  
 
Emissions of precursor species show large, species-specific differences between scenarios 
(Figure 5). In this analysis, climate policy levels reflect EPPA7’s “Paris 2°C” scenario – 
leading to reduced fossil fuel emissions across the two pollution control scenarios. In 
accordance with guidance from a recent panel of health impacts researchers (Hess et al., 
2020), we also compare our scenarios with SSP4-3.4, the Shared Socioeconomic Pathway 
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(SSP) scenario with sectoral emissions data that has the most similar climate forcing to our 
scenarios (Calvin et al., 2017; Gidden et al., 2019).  
 
In our results, energy-related emissions of sulfur dioxide (SO2) and nitrogen oxide (NOx) drop 
by more than half under the Current Legislation (CLE) pollution control scenario, and nearly 
disappear under Maximum Feasible Reductions (MFR). While some sectors show slight 
increases over time in CLE (such as industrial emissions, where increased activities overpower 
decreased intensities), most drop to near-zero in MFR. SSP4-3.4 is closer to MFR for SO2, 
and closer to CLE for NOx emissions.  
 

 
 

 
Figure 5. 2050 emissions by inventory sector and EPPA region, compared to 2014 inventory values. 
Quantities of NOx are in Tg NO2; quantities of BC, OC, and NMVOC are in Tg C. The 11 CEDSGBD-MAPS 
sectors (McDuffie et al., 2020) are condensed to the eight in the earlier version used by the SSPs (Hoesly et 
al., 2018), including the aggregation of residential, commercial, and other combustion (“Res|Com|Other”), 
plus agricultural waste burning (“Ag Waste”) from GFED. 

 
Compared to SO2 and NOx, primary particulate emissions show an even greater difference 
between scenarios – highlighting a large potential range of outcomes even under the same 
ambitious climate policy scenario. For example, organic carbon (OC) shows a slight increase 
in CLE (due to increased residential emissions with limited intensity improvements) versus a 
drop to near-zero in MFR. The trend is similar for black carbon (BC) and carbon monoxide 
(CO), with near-constant emissions trends in CLE versus less than half of the base year 
values by 2050 in MFR. Most remaining BC emissions are residential, while CO also includes 
industrial and transport sources. SSP4-3.4 results are generally close to CLE, assuming little 
uptake of additional policy. 
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Emissions of ammonia (NH3) and non-methane volatile organic compounds (NMVOC) both 
increase if the extent of pollution control is left at Current Legislation – even under the 2°C 
climate policy scenario. For NH3, this increase comes from agriculture and industry in regions 
such as India and Africa. For NMVOC, the primary driver is the energy sector in Africa and 
Latin America. In contrast, emissions decline under MFR for both NH3 and NMVOC. SSP4-
3.4 results are between our scenarios for NMVOC but higher than CLE for ammonia, based 
on an assumption of less agricultural pollution control in developing countries. 
 
3.3.2 Concentrations 
 
For annual average PM2.5 concentrations, we focus on the difference between 2050 CLE and 
2050 MFR scenarios to highlight the effect of the anthropogenic emissions changes. PM2.5 
concentrations in GEOS-Chem have been validated by several studies around the world 
(Vohra et al., 2021) and have shown high consistency with recent trends in observations (C. 
Li et al., 2017), though we do note the potential for underestimates in urban areas due to 
coarse model resolutions (Y. Li et al., 2016). Compared with PM2.5 concentrations under 
Current Legislation, the concentrations under Maximum Feasible Reduction are substantially 
lower – including by more than 50 µg m-3 in parts of South Asia. MFR’s lower concentrations 
are also notable in East and Southeast Asia as well as West Africa, the Middle East, and 
South American population centers in Peru and Brazil. Differences of >1 µg m-3 are evident in 
most land areas, as well as some ocean areas due decreased emissions from international 
shipping in addition to the prevailing meteorology.  
 

 
Figure 6. Difference map for mean surface-level PM2.5 concentration in 2050 between policy scenarios. 
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3.3.3 Cumulative difference in healthy life years  
 
We use the healthy life years metric (via DALYs) to estimate the inclusive wealth-based 
health effects of a policy change from current legislation to maximum feasible reduction. 
While other metrics (such as percent change from base year) have been used for other IW 
studies (Collins et al., 2014), we focus on the cumulative difference to emphasize the total 
stock-based change between the two future policy scenarios. So far, we have presented results 
for 2050 as the year modeled in GEOS-Chem. However, the difference between current 
legislation and maximum feasible reduction does not begin in 2050, but grows over time 
according to the GAINS scenario inputs. As an initial thought experiment, we consider a 
linear change in time from identical emissions in the base year of 2014 to the calculated 
difference between policy scenarios in 2050. Without discounting, the cumulative effects of the 
policy change would translate to ½ * (2050-2014) * the difference between scenarios in 2050. 
Under this thought experiment, the cumulative global benefits of changing pollution control 
levels from CLE to MFR would be a total of 1.48 (1.30-1.63) billion healthy life years (i.e., 
reduced DALYs) between 2014 and 2050.  
 
Figure 7 shows the heterogenous distribution of those benefits in the modeled year of 2050. 
Parts of northern India and eastern China show a difference of more than 10 DALYs per 
square kilometer, due to substantial pollution reductions in areas of high population density. 
China and India combine for 56% of the benefits in 2050 from CLE-to-MFR policy change, 
despite accounting for less than a third of the global projected population in 2050. Other high-
benefit areas include urban parts of South and Southeast Asia as well as Indonesia, Brazil, 
Japan, Egypt, Mexico, Northwest Europe, Central Africa, and the Northeast United States.  

 
Figure 7. Difference in 2050 PM2.5 impacts on Disability-Adjusted Life Years (DALYs) between policies.  
(Current Legislation vs. Maximum Feasible Reduction).  
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Table 7 quantifies the countries that have the highest estimated cumulative benefits for 
healthy life years. The top five countries are all in Asia, followed by high-population countries 
elsewhere such as the United States and Brazil. Different countries have different distributions 
of benefits between Years of Life Lost (YLL) from mortalities versus Years Lived with 
Disability (YLD) from morbidities (which are focused on dementia incidence for this case 
study). Countries with younger populations (such as India and Pakistan) have much larger 
proportions of benefits from mortalities, which are analyzed for ages 25-and-older via the 
GEMM response function. On the other hand, countries with older populations (such as the 
United States and Japan) have a greater fraction of benefits from avoided YLD, due to major 
increases in baseline dementia rates (Nichols et al., 2022) and population totals under the 65-
and-older group of the Ru et al. (2021) response fraction. These results highlight the 
substantial influence of both mortality and morbidity impacts, depending on pollution levels 
as well as country-specific age structure.  
 
Table 7. Ten countries with the greatest cumulative difference in healthy life years from CLE to MFR. 
We represent the difference in healthy life years as DALYs for the years 2014-2050.  

Country DALYs (millions) YLL (millions) YLD (millions) 

Global Total 1477 (1305 - 1633) 1001 (925 – 1074) 476 (380 – 560) 

China 461 (404 - 510) 265 (245 - 284) 196 (159 - 226) 

India 370 (337 - 400) 313 (291 - 335) 56 (46 - 65) 

Pakistan 66 (61 - 71) 60 (56 - 64) 6 (5 - 6) 

Indonesia 64 (57 - 70) 50 (46 - 54) 14 (11 - 16) 

Bangladesh 47 (42 - 51) 35 (33 - 38) 11 (9 - 13) 

United States  44 (37 - 51) 21 (19 - 23) 23 (17 - 28) 

Brazil 34 (28 - 39) 18 (16 - 19) 16 (12 - 19) 

Vietnam 22 (19 - 25) 15 (13 - 16) 8 (6 - 9) 

Russia 19 (17 - 22) 11 (10 - 12) 8 (6 - 10) 

Japan 19 (16 - 22) 7 (6 - 7) 13 (10 - 15) 
 

DALY = Disability-Adjusted Life Year; YLL = Years of Life Lost; YLD = Years Lived with Disability. 95% 
confidence intervals reflect the standard error of the health response functions. Cross-column comparisons 
may differ slightly due to rounding.  

3.3.4 Comparison of health impact metrics 
 
Next, we compare the healthy life years metric with other impact metrics. Health impacts 
have different regional distributions depending on the impact metric. Figure 8 compares 
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these distributions for mortality (a-c) and dementia (d-f) when looking at the original 
endpoint, its valuation in monetary terms, or its effect on inclusive wealth in the form of 
healthy life years. From Current Legislation to Maximum Feasible Reduction, the difference 
in deaths and dementia cases are also greatest in China and India (Table 8 and Table 9), 
which would each avoid more than 1 million deaths and dementia cases due to the reduced air 
pollution in 2050. Mortality-related benefits are next-highest in parts of Asia with high 
pollution reductions (Indonesia, Pakistan, Bangladesh), while dementia-related benefits are 
more weighted towards countries with older populations (United States, Brazil, Japan).  
 
In both cases, monetizing the benefits skews them towards high-income countries – and away 
from regions such as Africa and the global south (Figure 8b,e). Under a VSL-based approach 
for mortality (Robinson et al., 2019), countries such as the United States, South Korea, and 
Germany rank much higher when comparing benefits (Table 8). Similarly, valuing dementia 
costs under a cost-of-illness approach (Wimo et al., 2017) shows the greatest benefits in the 
United States, while India has been replaced in Table 9 by countries such as Canada, Italy, 
and France. Total benefits range in the trillions (for deaths) and high billions (for dementia) 
of USD (using standard 2015 dollars), reflecting the high value of reduced pollution as well as 
its increased valuation over time due to projected increases in income and medical costs.  
 
Compared to monetized measures, the healthy life years approach is distributed more like the 
original health endpoints, particularly with dementia (Figure 8c,f). However, when 
measuring mortality-related benefits as the reduction in Years of Life Lost (YLL), countries 
with younger age structures are emphasized – due to the greater number of healthy life years 
lost with each mortality. These countries with younger age distributions average around 15 or 
even 20 YLL per mortality, compared to 10 or fewer YLL per mortality for countries with 
older age distributions. As a result, Table 8 shows greater YLL benefits in India than in 
China, and also for the Philippines and Egypt versus Japan and Russia.  
 
The influence of national age structure is also visible for dementia YLD (Table 9), though 
less dramatic since the dementia response function in Ru et al. (2021) is focused on the over-
65 population. While the years of life expectancy for 65-and-older populations can vary 
somewhat between countries (10.1-14.7 min-max; 11.7-13.2 IQR), the average dementia 
severities (based on the age- and sex-specific but globally defined GBD disability weights) 
vary only slightly (0.227-0.249 min-max; 0.237-0.243 IQR). When these values are multiplied 
with case counts to find YLD, countries with younger populations (such as Indonesia and 
Vietnam) occasionally show more YLD than countries that ranked higher in case counts (such 
as Japan and South Korea, respectively).  
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Figure 8. Difference in 2050 PM2.5 health effects (Current Legislation vs. Maximum Feasible Reduction). 
Plots (a-c) map the mortalities from non-communicable diseases (NCD) and lower respiratory infections (LRI), 
their valuation, and their effect on inclusive wealth as healthy life years (via Years of Life Lost, or YLL).   
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Figure 8(d-f). Difference in 2050 PM2.5 dementia impacts (from Current Legislation to Maximum Feasible 
Reduction) for cases, valuation, and inclusive wealth effect (as healthy life years via Years Lived with 
Disability, or YLD).  



43 
 

 
Table 8. Ten countries with the greatest difference in 2050 mortality impact from CLE to MFR. 

Country Deaths Country Valuation  Country YLL 

China 1,425,380 China 5.2 trillion USD India 17,410,712 

India 1,129,179 India 2.2 trillion USD China 14,716,217 

Indonesia 189,967 United States 1.6 trillion USD Pakistan 3,353,382 

Pakistan 175,738 South Korea 0.6 trillion USD Indonesia 2,772,159 

Bangladesh 134,452 Japan 0.5 trillion USD Bangladesh 1,963,789 

United States 110,032 Indonesia 0.4 trillion USD United States 1,176,719 

Brazil 81,870 Germany 0.4 trillion USD Brazil 991,890 

Vietnam 64,760 China 0.2 trillion USD Vietnam 815,313 

Japan 48,261 Brazil 0.2 trillion USD Philippines 706,726 

Russia 45,839 Russia 0.2 trillion USD Egypt 634,939 
  
Table 9. Ten countries with the greatest difference in 2050 dementia impact from CLE to MFR. 

Country Cases Country Valuation (USD) Country YLD 

China 3,853,035 United States 75,772,195,919 China  10,872,754  

India 1,000,372 China 49,318,819,401 India  3,135,260  

United States 463,000 Japan 23,660,186,223 United States  1,272,359  

Brazil 300,144 South Korea 13,284,974,078 Brazil  871,144  

Japan 269,074 Germany 12,393,464,850 Indonesia  784,820  

Indonesia 252,571 Canada 11,299,018,526 Japan  695,338  

Bangladesh 211,749 Brazil 8,235,898,526 Bangladesh  638,880  

Thailand 163,939 Italy 7,037,343,959 Russia  457,542  

Russia 157,842 France 6,114,203,691 Thailand  434,213  

South Korea 151,083 Russia 5,561,661,613 Vietnam  417,824  
  
YLL = Years of Life Lost, YLD = Years Lived with Disability, CLE = Current Legislation, MFR = 
Maximum Feasible Reduction. YLL and YLD sum to DALYs for the healthy life years approach.  
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3.4 Discussion  
 
3.4.1 Comparison of health impact totals 
 
Table 10 shows the global estimates by scenario for each health endpoint and metric, as well 
as their uncertainties based on the standard errors in the response functions. All metrics show 
a reduction of ~30-40% from Current Legislation (CLE) to Maximum Feasible Reduction 
(MFR). Such a difference is roughly similar to results in Rafaj et al. (2021) using the GAINS 
CLE and MFR scenarios under a 1.5°C climate policy scenario, though their focus on Asia for 
health impacts prevents a full comparison. While the anthropogenic emissions reductions may 
be greater than 30-40% (see Figure 5), several out-of-scope pollution sources (such as dust 
and open burning) were left unchanged between scenarios, leading to unchanged health 
impacts from those sources.  
 
In the case of premature mortalities attributable to PM2.5, our estimates for 2050 are higher 
than most present-day estimates – due to several factors such as population growth, 
population ageing, and choice of response function. Rafaj et al. (2021) also point to 
demographic factors to explain the increased health impacts even under decreased emissions – 
particularly with scenarios similar to the “Paris 2°C-CLE” combination used here. Compared 
to estimates of 8.9 million deaths in 2015 from Burnett et al. (2018), the central estimate of 
11.7 million for 2050 CLE is consistent with this rationale – as substantial population growth 
and aging outweigh the effects of lower air pollutant emissions from climate policy. Pollution 
control from the MFR scenario yields a reduction from those 2015 estimates, in a similar 
manner to the “2°C—Best Available Technology” scenario in Vandyck et al. (2018).  
 
In general, we note that the GEMM response function’s mortality estimates are sometimes 
higher than other methods by a factor of two of more (Lelieveld et al., 2019; McDuffie et al., 
2021). While GEMM does have a more flexible functional form (compared to log-linear 
functions elsewhere), the main difference is the inclusion of studies (such as the Chinese Male 
Cohort) that show high health impacts under high background pollution levels. Further 
discussion is available in R. T. Burnett et al. (2022), including an alternate “Fusion” response 
function that may be fruitful for comparison in future studies. Total deaths from the “Fusion” 
function are within 4% of the GEMM function under a consistent cohort (R. T. Burnett et al., 
2022), highlighting the influence of cohort choice on the magnitude of results. 
 
Our estimates of dementia cases attributable to PM2.5 are also much larger than the 2015 
estimates from the same response function in Ru et al. (2021), due to projected population 
aging in high-pollution areas (such as a tripling of the over-65 population in East and South 
Asia by 2050). Other sources of difference could include the population data source (UN WPP 
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here versus SSP-specific elsewhere, for instance), baseline health projections (GBD here versus 
International Futures (Hughes et al., 2011) in some other studies), monetization across 
countries (varying by national income as shown here, versus a constant global value in 
Vandyck et al. (2018) or other options), chemical transport model (GEOS-Chem here versus 
reduced form approaches), and parameterization of the CLE and MFR scenarios within TAPS 
(compared to other models).   
 
Table 10. Global health impact estimates in 2050 by metric and scenario.  

Impact 
Metric 

Current Legislation 
(CLE) 

Maximum Feasible 
Reduction (MFR) 

Difference from CLE 
to MFR 

Mortalities 11.7 (10.7-12.7) million  7.5 (6.8-8.1) million 4.2 (3.9-4.6) million 

Valuation 39 (36-42) trillion USD 25 (22-27) trillion USD 14 (13-16) trillion USD 

YLL 156 (143-168) million 100 (91-109) million 56 (51-60) million 

Dementia cases 28.8 (22.4-34.6) million 19.6 (15.1-23.4) million 9.2 (7.3-10.8) million 

Valuation 713 (551-873) billion USD 444 (340-545) billion USD 272 (212-328) billion USD 

YLD 83 (65-100) million 57 (44-69) million 27 (21-31) million 

DALYs 239 (208-268 million) 157 (135-178) million 82 (72-91) million 
  
YLL = Years of Life Lost; YLD = Years Lived with Disability; DALYs = Disability-Adjusted Life Years. All 
USD values are standardized to 2015 USD. 95% confidence intervals reflect the standard error of the health 
response functions. Cross-cell comparisons may differ slightly due to rounding. 

 
3.4.2 Considerations for inclusive wealth  
 
We now discuss broader implications for incorporating health effects in the inclusive wealth 
(IW) framework. As shown in Table 5, prior health analyses in IW studies have generally 
monetized the health impacts to compare them with other forms of inclusive wealth capital. 
However, when comparing between countries (or between localities in the case of subnational 
IW accounts), such monetized metrics are highly sensitive to the income levels of each area 
(as seen in Table 8). Though health impacts researchers have supported the inclusion of 
monetization methods in certain settings – particularly for economic modeling or policy 
decision-making (Hess et al., 2020; Vandyck et al., 2018) – studies that use the income-based 
benefit transfer method have suggested the exploration of a more egalitarian approach (Reis 
et al., 2022). Otherwise, monetized metrics may be best suited for single-jurisdiction analyses 
that do not compare areas with different incomes.  
 
Our alternative approach avoids this sensitivity to income by focusing on the cumulative 
change in healthy life years (as measured by DALYs). While this method differentiates health 
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from the other types of monetized capital in inclusive wealth, it is theoretically consistent 
with the IW framework. If sustainability in IW is achieved by having non-declining stocks of 
wellbeing, the stock of healthy life years would seem to be a logical component. Moreover, the 
healthy life years metric emphasizes younger populations (when compared to the original 
health endpoints in Table 8 and Table 9) – reflecting IW’s emphasis on long-term stocks 
(versus the short-term “flow” of a single death or disease case). Life years also translate more 
simply to future estimates than is true for monetary measures, which must consider the 
uncertainty of income projections in the “benefits transfer” approach.  
 
However, the question of discounting may require further consideration. Prior IW studies that 
use VSLY assume a discount rate of 5% for the value of a life year (with sensitivities of 3% 
and 7%) – meaning that a life year 10 years into the future is worth 0.60 (0.48-0.74) times the 
value of a life year in the present (Agarwal and Sawhney, 2021; Arrow et al., 2012; Jumbri et 
al., 2018). While such discounting might seem at odds with the IW focus on inter-generational 
stocks, Dasgupta et al. (2021) argue that a discount rate of zero could overly skew priorities 
away from the current time. A recent panel of health impacts researchers has recommended a 
compromise approach in the form of “sensitivity analyses, including at least rates of 0% (with 
a 100-y time horizon) and 3%” (Hess et al., 2020). While we focus on undiscounted values 
given our short time horizons (with average life expectancies at death generally below 20 
years), additional sensitivities could be considered in future work.  
 
Future work could also apply the healthy life years metric to other policy cases or 
geographies, whether using the global GBD data (for DALY components of overall disease 
burdens, as incorporated by Sampedro et al. (2022) for the rfasst tool) or local QALY metrics 
(for analyzing healthcare interventions). DALY and QALYs do have certain limitations. As 
discussed in the introduction, there is the issue of “double-jeopardy” when mortality and 
morbidity are treated as separate endpoints (Hubbell, 2006). One solution is to model 
mortalities and morbidities together, as GBD does for the dementia cause that we focused on, 
and Schmitt (2016) does for a case study of cardiovascular and respiratory diseases in London. 
However, future studies are necessary to build out such models to more applications.  
 
Another limitation is the issue of acute effects (such as hospital admissions), which are a 
major part of many morbidity impact studies (Ru, 2020) but do not translate well to year-
based DALY/QALY methods except under extreme assumptions of linearity (Bell et al., 
2011). In addition, these short-term flows are less commonly incorporated into the long-term 
stocks of inclusive wealth, unless they are assumed to follow the same depreciation rate over 
time as produced capital (Shimamura and Mizunoya, 2020). Because of these theoretical 
limitations, we currently follow Hubbell (2006) in leaving the inclusion of acute impacts to 
complementary analyses, such as a cost-of-illness approach. For integration of other morbidity 
endpoints in a “healthy life years” framework, future studies could explore response functions 
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for other non-acute effects, such as the development of asthma (Achakulwisut et al., 2019; 
Tiotiu et al., 2020). And while the response functions used here were limited to the 25-and-
older population, incorporating long-term effects of neonatal issues (such as low birth weight 
and pre-term birth) could reflect the substantial fraction of total pollution-related deaths that 
come from this age group (Health Effects Institute, 2020). 
 
Analyses could also consider labor impacts as a complementary metric, as prior IW studies 
have done (Aly and Managi, 2018; Shimamura and Mizunoya, 2020), while being careful to 
avoid double-counting with the metric of healthy life years. We did not include labor (either 
in the form of work loss days or restricted activity days) because prior studies have found it 
challenging to develop response functions that hold globally in the face of diverse work 
customs (Ru, 2020). Moreover, labor impacts are typically focused on the working population 
(Lange et al., 2018), despite the concentration of air pollution mortality impacts on the oldest 
and youngest age groups (Health Effects Institute, 2020). However, more localized studies 
could incorporate these effects if there was enough place-specific epidemiological evidence and 
stakeholder interest.  
 
Finally, we note the many additional impacts of air pollution that could be considered in 
future work. According to Wei et al. (2019), PM2.5 has been associated with an increased risk 
of hospital admissions for many diseases beyond the traditional focus on cardiovascular and 
respiratory issues – such as renal failure, several types of infections, and fluid-based or 
gastrointestinal issues. Other authors have explored connections to depression (X. Zhang et 
al., 2017), crime (Burkhardt et al., 2020), and dozens of other issues in broader reviews (Lu, 
2020). In addition, local studies have identified air pollution’s intergenerational effects from 
impacts during one’s education – whether measured by IQ score (Wang et al., 2017) or effect 
on future earnings (Lavy et al., 2014). Even parental exposure can affect child IQ and 
subsequent wage loss, as studied by Wolfe et al. (2016) for the case of lead. While such 
impacts are less established within global response functions, these intergenerational impacts 
would merit consideration in a stock-based approach like IW.  
 
Overall, several aspects of this case study could be broadened for greater comprehensiveness. 
Additional sensitivities in projected population, urbanization, or baseline health data could 
supplement the existing confidence intervals of each response function. Analyses could be 
extended to ground-level ozone or other pollutants that have been linked to hundreds of 
thousands of annual deaths (Health Effects Institute, 2020) as well as other impacts such as 
asthma prevalence (Takenoue et al., 2012). Future efforts could also consider varying the 
response functions by demographic group if sufficient data is available (C. Chen et al., 2021). 
In addition, new functional forms could be tested as they become available (R. T. Burnett et 
al., 2022), given the reliance of GEMM on limited cohort studies in high-pollution areas 
(Hystad et al., 2020). High-pollution areas may exhibit different toxicities between fossil fuel 
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and crop burning sources of PM2.5 (Rahman, 2020) – highlighting the importance of future 
research into equitoxicity assumptions when possible. This topic would be especially crucial 
for studies involving wildfires, which have shown toxicities up to several times greater than 
that of non-wildfire PM2.5 (Aguilera et al., 2021). Finally, future studies could consider 
including household air pollution, given its linkage to millions of annual deaths (Health 
Effects Institute, 2020). Since many of these choices are context-dependent, decisions should 
be transparent and be tailored to the target audience (Hess et al., 2020). 
 
3.5 Conclusions 
 
Overall, this chapter offers takeaways in two forms – showing the major influence of pollution 
control policy as well as the choice of metric to measure the policy’s impact. Even under a 
2°C climate scenario, we find a wide range of outcomes between current and maximum 
feasible pollution controls through 2050. While some precursor species (such as SO2 and NOx) 
decrease over time due to fossil fuel reductions from climate policy, others show constant or 
increasing trends under current pollution control, compared to dramatic decreases in the 
maximum feasible case. The result is a substantial difference in ambient PM2.5 concentrations 
by 2050 – particularly in Asian countries, which show the five highest differences (among all 
nations) between the policies’ impact on healthy life years (via DALYs). This result highlights 
the major health benefits of pollution control ambition in Asia, compared to other parts of the 
world where air pollution is either lower or predominantly from non-anthropogenic sources.  
 
The results also highlight the distributional discrepancies of different health impacts metrics. 
Depending on whether one measures the original health endpoint, its monetization, or its 
effect on healthy life years, national benefit comparisons may differ substantially – often due 
to non-environmental factors such as a country’s income or age structure. We apply these 
metric choices to discussions of the inclusive wealth framework, demonstrating an alternative 
option as the cumulative difference in healthy life years from a policy change. The metric of 
healthy life years avoids international monetization challenges, while integrating mortality 
and morbidity under the common measure of DALYs. Our case study shows that mortalities 
and morbidities are both important to different degrees in different countries, depending on 
the central role of population demographics (and extent of ageing).  
 
Future studies could analyze other scenarios, years, and quantified health impacts – especially 
once cause-specific projections become more widely available through the GBD Future Health 
Scenarios project. Incorporating other morbidities or emissions sources (such as wildfires) 
would advance a more complete picture of air pollution impacts under the ethos of inclusive 
wealth. While specific methods may vary by geography and research question, we hope to 
advance the inclusion of air pollution’s health impacts as a critical sustainability challenge 
within the framework of inclusive wealth.  
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4. Thesis conclusion  
 
4.1 Policy implications 
 
By demonstrating new tools and methods to analyze the effects of climate and air quality 
policy, this thesis shows that both climate and air quality policy are crucial for reducing the 
adverse health and sustainability impacts of air pollution. Under the Chapter 2 scenario of 
current air quality legislation and only near-term climate pledges to 2030, emissions of most 
pollutants increase over time – especially for sectors that are projected to grow rapidly with 
fewer current pollution controls. More ambitious climate policies can lead to substantial 
benefits (such as reduced SO2 and NOx emissions from fossil fuels), but more ambitious air 
quality policies are needed to reduce other pollutants, such as ammonia from agriculture and 
organic carbon from residential sources.  
 
Beyond these overall findings, our Tool for Air Pollution Scenarios highlights the sector- and 
region-specific nature of emissions trends – implying an opportunity to target emissions 
hotspots for high-impact policy. For example, some sectors are projected to have increased 
emissions-intensity for certain pollutants under current legislation – such as the carbon 
monoxide from steel in Asia, SO2 from coal in Eastern Europe, and NMVOC from some 
solvent and industrial processes in parts of Asia and Brazil. Focusing pollution controls on 
these activities would substantially reduce their health impacts – especially for the activities 
(like industrial processes in developing regions) that are projected to increase in magnitude. 
Actions could also target high-emitting locations within these sectors, which have been shown 
to have outsized health effects in a recent study at the power-plant scale (Tong et al., 2021). 
 
Other sectors show relatively flat emissions intensities under current legislation, but 
opportunities for dramatic emissions reductions (or even eliminations) under the maximum 
feasible current policies. This difference holds even under an ambitious climate policy scenario 
that would meet the Paris Agreement’s temperature targets (Figure 5) – underscoring the 
influence of pollution controls beyond climate policy. For instance, municipal waste burning is 
projected to largely maintain its emissions intensity under current legislation, but could be 
emissions-free by 2050 with feasible control actions (Gomez Sanabria et al., 2021). That 
difference is similar for agricultural waste burning, and large opportunities are available for 
cost-effective reduction of agricultural ammonia emissions from fertilizer and crop production 
(Gu, Zhang, Dingenen, et al., 2021; Gu, Zhang, Lam, et al., 2021). Finally, residential biomass 
burning is a critical hotspot for health impacts – given the millions of annual premature 
deaths from household air pollution (Health Effects Institute, 2020) on top of the outdoor air 
quality impacts considered here. Available technologies could reduce the vast majority of 
primary particulate emissions from these activities (Figure 5).  
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However, some emissions remain even under the maximum feasible application of current 
control technologies – implying the need for technological innovation to reduce emissions 
further. Examples include SO2 emissions from industrial processes, as well as NMVOC 
emissions from the energy sector. Aviation may be another case (though it was not included 
in our data sources) – with promise for improvement since proposed technologies could reduce 
aviation pollution’s health impacts by >90% (Prashanth et al., 2021). Even if solutions are 
not available right away, near-term research and development has been shown to carry 
important benefits for technological learning (Chantret et al., 2020). Improved technologies 
could also be translated across regions where feasible – in contrast to region-specific policy 
levers that may face different challenges in different areas. Further research could incorporate 
technical learning into new scenarios of emissions intensity, using the deep socio-technical 
transition literature (Geels, 2019; Köhler et al., 2019) to build on the scenarios in Chapter 2.  
 
In other cases, behavioral or systemic changes beyond technology may be necessary. 
According to other recent studies, changes in land use, diet, and active mobility could lead to 
comparable or even greater health benefits than the pollution control options included in our 
input sources (Amann et al., 2020; I. Hamilton et al., 2021). These actions are especially 
important for agriculture, which remains with substantial emissions even under our maximum 
feasible pollution control scenario. Land conservation could also affect the emissions sources of 
open burning and wildfires, which were outside the scope of our data sources but are key to 
consider in future work. These actions may have especially strong benefits for other aspects of 
sustainability; according to a recent IPCC report, “pathways with emphasis on demand 
reductions and policies that incentivize behavioural change, sustainable consumption patterns, 
healthy diets and relatively low use of [carbon dioxide removal] (or only afforestation) show 
relatively more synergies with individual SDGs than other pathways” (Rogelj et al., 2018). 
  
These sustainability synergies include the human health benefits of reduced air pollution – as 
shown by Chapter 3 through the lens of inclusive wealth. By focusing on the cumulative 
health effects of a policy change, we highlight the importance of near-term actions for 
maximum benefits. Moreover, our metric of healthy life years increases the focus on future life 
years for future generations, as emphasized by the definition of sustainable development in the 
1987 Brundtland Report. Health effects are far from equally distributed – with the vast 
majority in Asia where population and pollution are both high. Demographic changes can 
increase these areas’ vulnerability, leading to the potential for increased health impacts over 
time even if air pollutant emissions are reduced (K. Chen et al., 2020). These national health 
impact comparisons could help global efforts prioritize actions in the most vulnerable areas – 
in concert with other studies that identify more localized disparities by race and other factors 
(Tessum et al., 2021). Pollution-specific policies could greatly benefit these groups, helping to 
achieve pollution-related sustainability goals more readily than climate actions would alone. 
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4.2 Future directions for research and engagement  

 
Beyond the case study results, this thesis lays the groundwork for a wide range of analyses to 
evaluate the effects of climate and air quality actions like the examples described above. Using 
the new Tool for Air Pollution Scenarios (TAPS), researchers could explore numerous 
scenarios that cover the region-, sector-, or fuel-specific interests of stakeholders – from new 
national climate pledges to the current questions of changing oil and gas use in Europe. 
Studies could also analyze an ensemble of many scenarios to identify key short-term actions 
with high-impact benefits – or avoid policies that might mitigate climate change but worsen 
air quality, such as certain forms of biomass use or bioenergy with carbon capture and storage 
(BECCS) for negative emissions (Vandyck et al., 2021).  
 
Then, actions’ effects on emissions could be integrated with other aspects of sustainability for 
more holistic decision-making – using global chemical transport models to estimate pollutant 
concentrations and cumulative health impacts that follow the framework of inclusive wealth. 
Calculations of such metrics are globally feasible using standard demographic and health 
projections, and avoid the income-based uncertainties of monetized approaches by focusing on 
the stock change of healthy life years. The focus on cumulative life years also centers the 
benefits of avoiding health harms in younger age groups – in line with inclusive wealth’s focus 
on sustainability for future generations. Future work could incorporate other health effects as 
well as advances in the underlying methodology – particularly for the ongoing work to develop 
new health response functions and improve our understanding of differential toxicity for 
emissions sources such as wildfires. 
 
The methodological choices may also depend on stakeholder interests – as emphasized by a 
recent panel of health impacts researchers (Hess et al., 2020) as well as a broad review of 
sustainability science (Clark and Harley, 2020). According to Cash et al. (2003), such choices 
should ideally combine credibility of methods, salience with values, and legitimacy of the 
process in the eyes of specific stakeholders. Given the variance of such elements between 
different stakeholders – from (inter)national policymakers to business leaders to local 
sustainability authorities – the development of flexible, open-source scenario tools like TAPS 
should be an important endeavor. Moreover, applying the credibility of recent global 
epidemiology to the inclusive wealth framework could help to integrate the health impacts of 
air pollution into broader sustainability assessments.  
 
While the inclusive wealth (IW) framework has been developed in the academic community 
rather than among other sustainability decision-makers, its reach has been extending both 
globally and locally. Globally, the UN Environment Programme’s nation-by-nation inventories 
have been spotlighted in blog posts and media outlets such as ARY News in Pakistan (UNEP, 
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2021), though the effect on decision-makers is less clear. At the same time, municipalities such 
as Hisayama, Japan have already begun using IW to inform their fiscal budgets, according to 
local researchers who also lead the UN inventories (Matsunaga and Managi, 2019). In 
addition, an earlier IW study in Australia organized stakeholder workshops and consulted 
with policy experts to inform the scope of analysis (Pearson et al., 2013). Such applications 
could serve as early test beds for IW policy analyses.  
 
Others have raised questions about some of the IW framework details – including 
“questionable theoretical assumptions, gaps in data availability, unrealistic assumptions about 
the future and inability to account for distributional issues” (Roman and Thiry, 2016). A key 
example is the treatment of environmental tipping points. Using a framing of “weak 
sustainability”, IW implies that certain types of capital can be substituted for others without 
adverse consequences (Randall, 2020). To better account for tipping points such as a loss of 
biodiversity or atmospheric stability, elements of “strong sustainability” could be added to 
emphasize the importance of protecting these stocks (Thiry and Roman, 2014). Our metric of 
healthy life years could be emphasized in this manner as well, given the importance of 
protecting human health for long-term sustainability.  
 
Even if the formal IW framework does not fit stakeholder needs, many decision-makers are 
becoming increasingly interested in the intersection between climate, health, and other goals 
of societal sustainability. For example, decision-makers in the United States have pledged to 
review regulations from the lens of “public health and safety, economic growth, social welfare, 
racial justice, environmental stewardship, human dignity, equity, and the interests of future 
generations” (Biden, 2021). Other efforts are developing more formalized methods of multi-
criteria decision analysis, integrating different sustainability goals through economic or 
stakeholder weighting (Kandakoglu et al., 2019). Examples include a benefits maximization 
approach to integrate equity into energy planning decisions (Nock et al., 2020), or the 
preference-based WELFARES framework for life cycle assessment (Grubert, 2017). 
 
Regardless of approach, it will be crucial to continue integrating the major health impacts of 
air pollution into climate change and sustainability decisions. As health impacts researchers 
have noted, air pollution’s effects are closer than climate change in both time and space 
(Shindell, 2020). Emphasizing near-term, localized health benefits (especially for vulnerable 
populations) could spur action that reduces both climate and air quality issues – as China has 
recently shown with its dramatic drop in SO2 and black carbon emissions (Kanaya et al., 
2020; Zheng et al., 2018). Cumulative impacts assessments can also help emphasize the 
benefits of rapid action – a crucial mindset to mitigate climate change as well as the health 
effects of air pollution. The thesis seeks to enable such work by providing more flexible 
capacities to analyze the effects of climate and air pollution policies on pollutant emissions, 
health impacts, and metrics of sustainability.   
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Appendix A: CEDS reference data  
 
Table 11. Percentage of base-year (2014) CEDS emissions in each fuel consumption or process category. 
Values are broken down by sector and aggregated globally.  

     Sector Fuel SO2 CO NH3 BC OC NOa C2H4
b  

Agriculture total-coal 0 0 0 0 0 0 0   
solid-biofuel 0 0 0 0 0 0 0   
liquid-fuel-plus-natural-gas 0 0 0 0 0 0 0   
process 0 100 100 0 0 0 0  

Commercial total-coal 72 0 25 44 49 52 24   
solid-biofuel 1 0 27 49 25 11 27   
liquid-fuel-plus-natural-gas 27 100 48 7 26 38 50   
process 0 0 0 0 0 0 0  

Energy total-coal 64 51 5 7 3 10 0   
solid-biofuel 0 3 2 37 9 1 0   
liquid-fuel-plus-natural-gas 19 32 7 1 2 8 0   
process 17 14 87 55 86 81 100  

Industry total-coal 45 55 5 21 54 43 28   
solid-biofuel 0 9 38 74 20 8 26   
liquid-fuel-plus-natural-gas 20 32 10 6 26 5 8   
process 35 5 47 0 0 44 38  

Non-road transport total-coal 0 0 0 0 0 0 0   
solid-biofuel 0 0 0 0 0 0 0   
liquid-fuel-plus-natural-gas 100 100 100 100 100 100 100   
process 0 0 0 0 0 0 0  

Other total-coal 38 1 12 23 13 10 6   
solid-biofuel 0 2 9 43 8 20 16   
liquid-fuel-plus-natural-gas 62 97 79 34 79 70 78   
process 0 0 0 0 0 0 0  

Residential total-coal 70 8 0 8 13 13 3   
solid-biofuel 20 58 97 92 70 87 96   
liquid-fuel-plus-natural-gas 10 33 3 0 17 1 1   
process 0 0 0 0 0 0 0  

Shipping total-coal 0 0 0 0 0 0 0   
solid-biofuel 0 0 0 0 0 0 0   
liquid-fuel-plus-natural-gas 100 100 100 100 100 100 100   
process 0 0 0 0 0 0 0  

Solvents total-coal 0 0 0 0 0 0 0   
solid-biofuel 0 0 0 0 0 0 0  
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liquid-fuel-plus-natural-gas 0 0 0 0 0 0 0   
process 0 0 100 0 0 0 0  

Transport total-coal 0 0 0 0 0 0 0   
solid-biofuel 0 0 0 0 0 0 0   
liquid-fuel-plus-natural-gas 100 100 100 100 100 100 100   
process 0 0 0 0 0 0 0  

Waste total-coal 0 0 0 0 0 0 0   
solid-biofuel 0 0 0 0 0 0 0   
liquid-fuel-plus-natural-gas 0 0 0 0 0 0 0   
process 100 100 100 100 100 100 100  

a CEDS reports NOx as NO and NMVOC as speciated compounds; b C2H4 is shown as an example NMVOC 
species. Other NMVOC species may show differences, such as more “process” emissions from solvents. 
Global aggregate proportions are shown here for context; full regional and speciated values are available at 
our online repository. CEDS fuel definitions are given in Table S1 of McDuffie et al. (2020), with bioenergy 
separated between solid and liquid fuels. 
 

Appendix B: EPPA7 reference definitions 
 
Table 12. EPPA7 regions and sectors, as described in Paltsev (2021). 

Region code Region name Sector code Sector name 
AFR Africa COAL Coal 
ANZ Australia, New Zealand & Oceania CROP Agriculture - Crops 
ASI East Asia DWE Ownership of Dwellings 

BRA Brazil EINT 
Energy-Intensive 
Industries 

CAN Canada ELEC Electricity 
CHN China FOOD Food 
EUR European Union+ FORS Agriculture - Forestry 
IDZ Indonesia GAS Gas 
IND India LIVE Agriculture - Livestock 
JPN Japan OIL Crude Oil 
KOR South Korea OTHR Other 
LAM Latin America ROIL Refined Oil 
MES Middle East SERV Services 
MEX Mexico TRAN Transport 
REA Rest of Asia   
ROE Eastern Europe and Central Asia 
RUS Russia 
USA USA 
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Figure 9. Map of EPPA7 regions of the world, from Paltsev (2021) with reproduction rights granted. 

 
Appendix C: Mapping from GAINS model 
 
Table 13. Mapping from GAINS EMF (based on IMAGE) to EPPA7 regions. 

EPPA7 GAINS EMF EPPA7 GAINS EMF EPPA7 GAINS EMF 

CAN 1 Canada AFR 10 South Africa IND 18 India 

USA 2 USA EUR 11 Western Europe KOR 19 Korea 

MEX 3 Mexico EUR 12 Central Europe CHN 20 China+ 

LAM 4 Rest Central America ROE 13 Turkey ASI 21 Southeastern Asia 

BRA 5 Brazil ROE 14 Ukraine+ IDZ 22 Indonesia+ 

LAM 6 Rest South America ROE 15 Asia-Stan JPN 23 Japan 

AFR 7 Northern Africa RUS 16 Russia+ ANZ 24 Oceania 

AFR 8 Western Africa MES 17 Middle East REA 25 Rest South Asia 

IMAGE regions are given in Figure S7.1 of Klimont et al. (2017) and compared to Figure 2. Regions in 
blue differ slightly from EPPA definitions.
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Table 14. Mapping from GAINS NH3 to CEDS/GFED inventory sectors and fuels. 

Inventory 
sector 

CEDS 
fuel  

GAINS NH3 sector classes GAINS NH3 sector class names 

Ag. waste 
burning 

Process WASTE_AGR Agricultural waste burning 

Agriculture Process AGR, COWS, FCON, FERTPRO Livestock and fertilizer (Table 15) 
Energy Coal PP - BC1, BC2, DC, HC1, HC2, HC3 Power plants (brown, derived, and 

hard coal)   
Biofuel PP - OS1, OS2 “ (biomass and waste fuels)  
Oil & gas PP - GAS, GSL, HF, LPG, MD “ (natural gas, gasoline, heavy fuel 

oil, liquified petrol gas, diesel)  
Process CON, PROD_AGAS, WASTE_FLR Conversion, flaring and venting 

Industry Coal IN_OC - BC1, BC2, DC, HC1, HC2, 
HC3 

Industrial (brown, derived, hard 
coal)  

Biofuel IN_OC - OS1, OS2 “ (biomass and waste fuels)  
Oil & gas IN_OC - GAS, GSL, HF, LPG, MD “ (natural gas, gasoline, heavy fuel 

oil, liquified petrol gas, diesel)  
Process IN_BO, IO_NH3_EMISS Boiler and other emissions 

Residential, 
Commercial 

Coal (DOM) - BC1, BC2, DC, HC1, HC2, 
HC3 

Residential-commercial 
(brown/derived/hard coal)  

Biofuel (DOM) - OS1 “ (biomass) 
 Oil & gas (DOM) - GAS, GSL, HF, LPG, MD “ (natural gas, gasoline, heavy fuel 

oil, liquified petrol gas, diesel) 
Other 
(combustion) 

Oil & gas TRA_OT_(AGR, CNS, LB, LD2) Off-road engines, mopeds, 
construction & agriculture vehicles 

Shipping Oil & gas TRA_OTS Maritime 
Solvents Process IO_NH3_EMISS Other industrial NH3 emissions 
Transport Oil & gas TRA_RD All road transportation 
Non-road 
transport 

Oil & gas TRA_OT_INW, TRA_OT_RAI Inland waterways, railways 

Waste Process WT_NH3_EMISSa Trash burning 
See full table (with a row for each of the 198 GAINS NH3 sectors) in Supplementary Data. CEDS fuel 
definitions are given in Table S1 of McDuffie et al. (2020) – with bioenergy separated between solid 
(“Biofuel”) and liquid fuels (“Oil & gas”). Comparisons are based on Table S3 in Rafaj et al. (2021), with 
sectoral abbreviations described further in GAINS Online. aSince NH3 “Waste” data were only available for 
two countries, emissions intensity trends follow NOx “Waste” trends based on Gomez Sanabria et al. (2021). 
 
Table 15. Mapping from GAINS agricultural sectors to FAO activities. 

GAINS FAO 
AGR_BEEF Beef and veal 
AGR_COWS Raising of cattle 
AGR_OTANI-BS Raising of buffaloes 
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AGR_OTANI-CM, -
FU, -HO 

Raising of livestock 
(total) 

AGR_OTANI-SH Raising of sheep 
AGR_PIG Raising of pigs 
AGR_POULT Raising of poultry 
COWS_3000_MILK Raw milk 
FCON, FERTPRO NPK_consumption 

 
Based on GAINS sector abbreviations at https://gains.iiasa.ac.at/models/index.html and FAO sectors in 
regional aggregate data. 
 
Table 16. Mapping from NH3 data sources to EPPA7 regions. 

EPPA7 G20 Corollary FAO Corollary 
CAN USA High-income 
USA USA High-income 
MEX Mexico Latin America/Caribbean 
LAMb Argentina Latin America/Caribbean 
BRA Brazil Latin America/Caribbean 
AFRb South Africa Sub-Saharan Africa 
EUR United Kingdom; France; Germany High-income 
ROEb Turkey Europe/Central Asia 
RUS Russiaa Europe/Central Asia 

MESb Turkey Near East/North Africa 
IND Indiaa South Asia 
KOR South Koreaa EAP excluding China 
CHN Chinaa China 
ASIb Chinaa EAP excluding China 
IDZb Chinaa EAP excluding China 
JPN Japana EAP excluding China 
ANZ Australia High-income 
REAb Indiaa South Asia 

 
Full GAINS data were only provided for G20 regions. Countries that approximate other regions are shown 
in blue, while corollaries that represent a part of their EPPA regions (or vice versa) are in purple. FAO 
regions are shown in Figure 1.2 of FAO (2018). a Countries with subnational regions in GAINS were 
aggregated based on their proportional emissions. b Scaling for EPPA regions not well-captured by the 
GAINS G20 coverage is described in Sect. 2.2.3.

https://gains.iiasa.ac.at/models/index.html
https://www.fao.org/global-perspectives-studies/food-agriculture-projections-to-2050/en/
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Appendix D: IPCC sectoral references  
 
Table 17. IPCC sectoral definitions for EPPA scaling of sectors from the chosen emissions inventories. 

IPCC code Activity CEDS sector EPPA sectoral scaling 
3 Agriculture process emissions Agriculture CROP, FORS, LIVE 
4F Agricultural waste burning N/A; from GFED CROP 
1A1 Electricity/fuel production Energy COAL, ELEC, GAS, ROIL 
1B Fugitive fuel emissions Energy COAL, ELEC, GAS, ROIL 
7A Fossil fuel fires Energy COAL, ELEC, GAS, ROIL 
1A2 Industrial combustion Industry EINT, FOOD, OTHR 
1A5 Other industrial (combustion) Industry EINT, FOOD, OTHR 
2A-2C, H, L Industrial process emissions Industry EINT, FOOD, OTHR 
6A Other industrial (process) Industry EINT, FOOD, OTHR 
1A4a Commercial/institutional Commercial SERV 
1A4b Residential Residential Population 
1A4c Other combustion Other (combustion) CROP, FORS, LIVE 
1A3d(i) International shipping, oil tankers Shipping TRAN 
2D Solvents Solvents Population 
1A3,1C Aviation N/A   
1A3b Road transportation Transport TRAN 
1A3c Rail transportation Non-road transport TRAN 
1A3d(ii)-
e(ii) 

Domestic navigation, other 
transport 

Non-road transport TRAN 

5 Waste/wastewater emissions Waste Population 

 
Inventory versions include CEDSGBD-MAPS (McDuffie et al., 2020) for most anthropogenic emissions, as well 
as GFED4.1s (van der Werf et al., 2017) for biomass burning. Since only agricultural waste burning is 
included in EPPA through GTAP/EDGAR, other sources of burning emissions are not scaled by EPPA 
outputs. Aviation was not scaled in this work due to its exclusion from both CEDSGBD-MAPS and GAINS. 
“Other combustion” includes sources from agriculture, forestry, and fishing. Sectoral scaling from EPPA 
largely reflects the distribution of activities in GTAP10 / EDGAR5.0 sectors (Chepeliev, 2020), which are 
then mapped to representative EPPA7 sectors.  
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