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Abstract

Action recognition has improved dramatically with massive-scale video datasets. Yet,
these datasets are accompanied with issues related to curation cost, privacy, ethics,
bias, and copyright. Compared to that, only minor efforts have been devoted to-
ward exploring the potential of synthetic video data. In this work, as a stepping
stone towards addressing these shortcomings, we study the transferability of video
representations learned solely from synthetically-generated video clips, instead of real
data. We propose a novel benchmark for action recognition, in which a model is
pre-trained on synthetic videos rendered by various graphics simulators, and then
transferred to a set of downstream action recognition datasets, containing different
categories than the synthetic data. Our extensive analysis on this benchmark reveals
that the simulation to real gap is closed for datasets with low object and scene bias,
where models pre-trained with synthetic data even outperform their real data coun-
terparts. We posit that the gap between real and synthetic action representations
can be attributed to contextual bias and static objects related to the action, instead
of the temporal dynamics of the action itself.
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Chapter 1

Introduction

Large-scale pre-training using massive datasets, containing hundreds of thousands or

even millions of video clips, have brought significant progress in action recognition [24,

33, 1, 14]. High capacity models trained on such large datasets have shown remarkable

generalization performance to downstream tasks where training data is limited [58,

14].

While this progress is exciting, these large-scale video datasets also have shortcom-

ings. Collecting and annotating videos is expensive, tedious, and time-consuming. As

a result, methods that learn feature representations from unlabeled videos, including

self-supervised [54], weakly-supervised [14], and semi-supervised approaches [46], have

received significant attention in recent years. However, these works do not address

other important ethical, legal, and technical issues related to processing real-world

data, as described below:

• Privacy concerns. Video samples may include human interactions and ac-

tivities, but often, the individuals’ sensitive information, such as faces, license

plates, or location indicators, may be captured along.

• Proprietary issues. Massive-scale datasets containing millions or billions of

images and videos, such as IG65M [14] and JFT3B [59], are not publicly avail-

able, preventing the large community to reproduce results, which hinders re-

search progress.
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• Ethical issues and bias. Ethical issues related to skin tone and gender [5], as

well as unwanted contextual bias are difficult to control in existing large-scale

datasets. Consequently, state-of-the-art models may fail to predict actions such

as a person dancing in a mall [8], or a woman snowboarding [17].

• Data protection and copyright issues. Data collected without consent,

which is common for existing massive-scale datasets, may violate copyright as

well as data protection laws such as the General Data Protection Regulation

(GDPR).

A promising way to address these issues is using computer-generated synthetic

videos for pre-training. By leveraging 3D models of humans and scenes, an arbi-

trary number of videos can be generated by varying simulation parameters such as

lighting, texture, and background, while enabling the control of sensitive attributes

of humans, such as gender and race. This approach of training with synthetic data

has a long history in computer vision [12, 29, 34]. Recent efforts on action recog-

nition [19, 10, 51] have used completely synthetic datasets or synthetic/real hybrid

datasets to train deep neural network models. However, these works rely on domain

adaptation techniques that assume the same label set for both synthetic data and real

data. This might not always be feasible as each action class requires motion capture

or simulation capacities. To the best of our knowledge, no previous work has stud-

ied the transferability of action representations based on synthetic data to diverse

downstream tasks, where the synthetic and real domains have disjoint label sets.

In this work, we introduce a benchmark that addresses this important problem.

As shown in Figure 1-1, our pre-training dataset consists solely of synthetic video

clips. We used various graphics simulators and synthetic videos [19, 10, 51] to create

a dataset with 150 action categories, where each category has 1,000 samples. We

have six downstream datasets: UCF101 [47], HMDB51 [26], Something-Something

V2 [15], Diving48 [28], Ikea Furniture Assembly (IkeaFA) [48], and UAV-Human [27].

Both UCF101 and HMDB51 datasets are based on YouTube videos depicting a broad

variety of actions. As a result, they exhibit a high object and scene bias [28], i.e.,

14



Figure 1-1: Schematic representation of benchmark pipeline. We introduce a novel
action recognition benchmark to pre-train a model on synthetic videos and transfer
learned knowledge to downstream tasks with disjoint label sets. We observe that the
models pre-trained on synthetic videos even beat those pre-trained on real videos
when the downstream datasets have low object and scene bias.
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several actions can be recognized by just looking at static objects or the background,

as opposed to the action itself. For example, the action “playing violin” could likely

be recognized by detecting the object violin instead of understanding the temporal

dynamics of the action. On the other hand, the remaining four datasets have low

object and scene bias, as understanding temporal dynamics is needed to correctly

recognize actions in these datasets.

Based on this setting, we conducted an extensive analysis on the transferability of

pre-trained video models based on synthetic data, including the effect of linear probing

and fine-tuning, number of classes, number of samples per class, and their relative

performance with respect to pre-trained ImageNet models, which are used to measure

the object and scene representation bias of each dataset. We solidify our findings by

replicating the experiments with models of various capacities and complexity, and

further perform rigorous hyperparameter sweeping on the downstream tasks.

We show that the transferability gap between synthetic and real action recogni-

tion models is directly related to the object and scene bias of the datasets. Models

pre-trained on Kinetics clearly outperform Synthetic pre-trained models on datasets

with high bias (UCF101, HMDB51). The gap is closed for datasets with low bias

(Something-Something, Diving48, IkeaFA, UAV-Human), where Synthetic pre-trained

models achieve similar or better accuracy than their real counterparts.

In summary, the main contributions of this work are as follows:

1. We propose a novel benchmark for studying the transferability of synthetic

video representations for action recognition. To the best of our knowledge, no previous

work has investigated this problem before. This is a promising direction to mitigate

ethical and legal issues with existing large-scale datasets of real images.

2. We show that the simulation to real gap is simply closed for datasets with

low object and scene bias, but still exists for datasets with high bias. This result

suggests that the gap between real and synthetic action representations exists largely

due to contextual bias and static objects related to the action, instead of the temporal

dynamics of the action itself.
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Chapter 2

Related Work

2.1 Action Recognition Benchmarks

Video datasets have rapidly evolved from small-scale benchmarks such as KTH [43]

and Weizmann [4], with a few thousand video clips, to medium-scale datasets such as

UCF101 [47] and HMDB51 [26], and recently to large-scale datasets containing hun-

dreds of thousands or millions of annotated videos, such as Kinetics [24], YouTube

8M [1], and the Moments in Time dataset [33]. It is well-established that pre-training

on such large datasets followed by fine-tuning on downstream tasks boosts perfor-

mance, especially when the target datasets are small [47, 26, 21, 57, 16, 15, 45]. With

the challenges of curating and defining label taxonomies for massive-scale datasets,

the focus has shifted to pretraining on unlabeled videos [54, 46], or video datasets

accompanied by weak supervision such as social media hashtags [14] or narrated

instructions [30], which can be obtained without expensive data curation. Compared

to existing action recognition benchmarks that use real-world datasets, we propose

a novel benchmark that aims at studying pre-training and transfer from synthetic

videos, as a stepping stone to mitigate issues related to privacy, bias, ethics, and

copyright.
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2.2 Learning from Synthetic Data

Synthetic data has been widely used to solve various computer vision problems by

replacing real-world training data [12, 31, 35, 36, 39, 53, 11, 51, 22, 25, 42, 55]. While

many of these works have tried to generate synthetic data as similar as real data,

Baradad et al. [2] has shown that synthetic images with structured noise can be

used for representation learning as the diversity of training images is as important

as naturalism. Further, approaches to optimizing simulator parameters have been

explored to learn better synthetic data for specific tasks [3, 41, 23], or even tasks not

seen during training [32].

Only a few works attempted to learn action recognition from synthetic data. Elder-

Sim [19] generates realistic videos of elders’ daily activities in households to augment

limited publicly available elder activity data. SURREACT [51] introduces a novel

data generation methodology that reconstructs 3D human body models from videos to

render synthetic videos for unseen viewpoints at various angles. ThreeDWorld [12] is

a synthetic video simulation platform for interactive multi-modal physical simulation,

and also supports human-agent interactions. In our work, we compile a large-scale

synthetic video dataset to explore a mixture of these simulators, as well as pre-made

synthetic video datasets, such as Procedural Human Action Videos (PHAV) [10].

Existing approaches to use simulators for action recognition [12, 19, 51] have shown

performance improvement by adding the simulated videos to the original training

datasets. However, in contrast to our proposed benchmark, no prior work has studied

the transferability of synthetic video representations to other domains that may have

different action categories than the synthetic datasets.

2.3 Domain Knowledge Transfer from Synthetic Data

Many approaches have been proposed to transfer knowledge from synthetic to real

domains, generally relying on standard domain adaptation methods [9] to bridge the

gap between the two domains. Examples include generative models to improve the

18



realism of synthetic images and videos [38, 18], as well as methods that operate in

the feature space, such as adversarial methods which encourage domain confusion to

learn domain-invariant features [37, 13, 50], and discrepancy-based approaches that

align feature distributions of the two domains [40, 60]. More recently, Syn2Real [56], a

large-scale synthetic-to-real benchmark has been introduced for unsupervised domain

adaptation.

These domain adaptation methods assume the same label set between the syn-

thetic and real domains. By contrast, in our work, we remove this assumption and

instead consider multiple downstream tasks with a disjoint label set. In addition, while

prior work has been focused on adapting video representations from the synthetic to

real domains, we show that the gap in action recognition performance between these

domains is directly related to the object and scene bias of the downstream datasets.
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Chapter 3

Proposed Benchmark

To mitigate the issues that come with pre-training models on real videos, synthetic

data can be leveraged. To this end, we systematically explore the impact of syn-

thetic data pre-training. We propose a novel benchmark for action recognition to use

synthetic data only for pre-training models. We construct a benchmark consisting of

three synthetic video datasets generated by multiple simulators (Section 3.1) and pre-

train models on the Synthetic dataset. We then transfer the models to downstream

tasks depicting various properties (Section 3.3).

3.1 Synthetic Dataset Sources

We create our Synthetic dataset by merging three publicly available assets: 1) Elder-

Sim [19], 2) SURREACT [51], and 3) PHAV [10]. Figure 3-1 shows some synthetic

videos and action categories used in our work.

3.1.1 ElderSim

ElderSim [19] generates realistic videos of elders’ daily activities in households, along

with 2D and 3D skeleton trajectories, with a goal of augmenting limited publicly

available elder activity data. Authors of ElderSim also claim that by combining the

generated videos with real videos, they were able to achieve state-of-the-art elder

21



action recognition performance.

ElderSim has four realistic 3D rendered furnished residential house models for

background with flexible lighting and camera viewpoint options. There are 15 differ-

ent human agents with varying skin color, outfits, gender, etc.

3.1.2 SURREACT

SURREACT [51] introduces a novel data generation methodology that reconstructs

3D human body models from videos to render synthetic videos for unseen viewpoints

at various angles. By augmenting a real dataset with such rendered synthetic videos,

the authors were able to improve the state-of-the-art performance on human action

multi-view benchmarks. For this work, we use SURREACT generated videos on two

datasets: UESTC [20] and NTU [44].

SURREACT only supports static images as background. We generate 8 different

videos with varying viewpoints, human agent body shape, clothes, and gender per

source video.

3.1.3 PHAV

Procedural Human Action Videos (PHAV) [10] is a large scale synthetic pre-made

dataset generated using modern game engines, thus providing physically plausible

motions and actions. PHAV contains actions performed by 20 artist-designed human

models at seven different large-scale environment backgrounds. Four lighting settings

based on period of day, as well as four weather options are available in the pre-made

dataset. Around 40,000 videos are provided, with at least 1,000 examples per class.

3.2 Synthetic Dataset Curation

Using the generators/dataset described in section 3.2, we create our Synthetic dataset

with 150 classes in total. 55 actions from ElderSim, 100 actions from SURREACT,

and 35 actions from PHAV are collected. Overlapping classes are manually screened

22



Figure 3-1: Examples of synthetic videos rendered by various simulators. We
emphasize that synthetic datasets also cover action categories, such as “falling to the
floor”, which are not easy to obtain from the real datasets.
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Table 3.1: Dataset statistics for downstream tasks.

Datasets # of Videos # of Actions Video Source Domain

UCF101 [47] 13,320 101 YouTube General

HMDB51 [26] 6,849 51 Movies/YouTube General

Mini-SSV2 [7] 93,000 87 User-Provided General

Diving48 [28] 18,404 48 Web Diving

IkeaFA [48] 111 12 Self-collected Assembly

UAV-Human [27] 22,476 155 Flying UAV General

and combined, and 1000 samples are randomly selected for each class. For classes

consisting of samples from multiple assets, an equal number of videos is sampled from

each asset to maintain an adequate ratio. While samples may have varying resolution

and aspect ratio, we extract frames from all samples with a constant frames per

second (fps).

3.3 Downstream Tasks

To assess the transferablity of video representations based on synthetic data, we fine-

tune and linear probe the pre-trained models on six different downstream tasks. In

this subsection, we describe the details of datasets used for the downstream tasks.

We also show the statistics in Table 3.1.

3.3.1 UCF101

UCF101 [47] is a human-action dataset collected from YouTube, consisted of 101

action classes with 13,320 videos in total. Thanks to its variety in realistic action

classes, as well as subdivided organization methodology (i.e. action categories are

further divided into five types and 25 groups, in which videos in a same group have

common qualities such as background or viewpoint), it has been appreciated by the

computer vision community since its publication in 2012.
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3.3.2 HMDB51

HMDB51 [26] presents 51 human activities with refined quality, light conditions, and

accurate surrounding features, and is thus smaller than UCF101 with only 6,849 clips.

HMDB51 is further divided into five types, including rather detailed action classes

such as “smiling” or “laughing”.

3.3.3 Mini Something-Something V2

Something-Something V2 [15] was introduced to test the ability of a model to un-

derstand temporal dynamics rather than relying on objects or background in scenes.

The dataset consists of 174 classes with around 220,000 videos of humans performing

basic actions with common objects, in which action labels are independent of the ob-

jects themselves (e.g. “putting something behind something”). For our experiments,

we use a reduced version of this dataset named Mini-SSV2 [7], which consists of only

half of the action labels. 87 labels are chosen at random, resulting in around 93,000

videos.

3.3.4 Diving48

Diving48 [28] is a collection of diving competition videos, made up of around 18,000

videos which are divided into 48 dive sequences. Since all videos share a similar

background and object features, Diving48 is considered a fine-grained dataset and is

often used to test the robustness of video models.

3.3.5 Ikea Furniture Assembly

Ikea Furniture Assembly [48], or IkeaFA, provides 111 videos, each two to four min-

utes long. Summing up to around 480,000 frames worth of data, IkeaFA is a collection

of GoPro furniture assembly videos, all of which are collected under a constant back-

ground by 14 individuals, either on a table or on the floor. There are 12 action classes

in IkeaFA, including “pick leg”, “attach leg”, and “flip table”.
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3.3.6 UAV-Human

As suggested by the name, UAV-Human [27] dataset is collected using an Unmanned

Aerial Vehicle, thus providing a collection of videos from unique viewpoints. While

the full UAV-Human dataset comes with multi-modality options (i.e. fisheye videos

and night-vision videos), we only utilize 22,476 RGB videos for this work. This large-

scale dataset contains 115 action classes, collected from 119 subjects. Note that for

all reported numbers in the following sections, we use cross-subject-v1 evaluation

method as described in [27].
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Chapter 4

Representation Bias Analysis

The following sections describe the experimental setup and analyze the transferability

of the Kinetics and Synthetic pre-trained models with respect to representation bias

of the six downstream tasks listed in Section 3.3.

4.1 TSN ResNet-18 Experimental Setup

All experiments reported in this chapter are performed with the Temporal Segment

Network (TSN) with ResNet-18 backbone [52]. TSN is an efficient 2-Dimensional Con-

volution Neural Network architecture designed for action recognition tasks especially

with limited training samples. TSN aims to model long-range temporal structure

by dividing a video input into 𝐾 segments, and randomly sampling short snippets

from each segment; these sparsely sampled snippets are then passed through two-

stream (spatial and temporal) Convolutional Neural Networks, and fused to derive a

video-level prediction.

We chose TSN as our baseline model since it is lightweight yet models both spatial

and temporal information efficiently, and is suitable for downstream tasks involving

less training data. Note that we train our models from scratch without ImageNet

pre-trained weights.
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Table 4.1: Transfer experiment top-1 accuracy results via fine-tuning (FT) and
linear probing (LP) on downstream tasks. Pre-trained datasets each consist of 150
classes, up to 1,000 samples per class.

Pre-trained

Dataset

Transferred Dataset

UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

FT LP FT LP FT LP FT LP FT LP FT LP

Kinetics 79.99 50.83 45.36 24.64 38.22 6.01 31.78 8.21 38.41 28.66 12.87 1.53

Synthetic 76.32 19.35 37.65 12.35 40.37 7.28 33.40 8.63 40.24 31.71 27.60 3.41

4.1.1 Hyperparameter Settings

Both the Kinetics and Synthetic baseline models, as well as downstream tasks transfer

experiments are trained until convergence using SGD optimizer with momentum of

0.9 and weight decay of 5𝑒−4. The dropout ratio for the final layer is set to 0.5. Initial

learning rate of 0.01 and 1𝑒−4 are used for baseline models training and transferring

experiments, respectively, with cosine decay learning rate scheduler. In terms of data

loading settings, 8 frames are sampled per clip, with a batch size of 256 clips.

In order to study the transferability of synthetic video models, we perform both

fine-tuning and linear probing on our downstream tasks. For fine-tuning experiments,

either Kinetics or Synthetic pre-trained weights are loaded and the entire network is

trained, while for linear probing, we freeze the pre-trained weights after loading and

only train the final output layer.

4.2 Main Results

We first present the transfer learning experiments top-1 accuracies in Table 4.1. Note

that the Synthetic dataset used for pre-training consists of 150 classes with 1000

samples per class, and the Kinetics dataset used for pre-training had been down-

scaled to match the Synthetic dataset’s statistics. All classes and samples for the

downsized Kinetics dataset were randomly selected from full Kinetics.

We would like to emphasize that our goal is not to obtain state-of-the-art results on

the downstream datasets, given the reduced pre-training dataset sizes and lightweight
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backbone as described above. Instead, we aim at providing a fair comparison between

real and synthetic models, using the same pre-training dataset sizes. We show both

fine-tuning and linear probing transfer results.

While the Kinetics pre-trained model is preferable for UCF101 and HMDB51

transfers, our Synthetic pre-trained model outperforms the Kinetics model when

transferring on Mini-SSV2, Diving48, IkeaFA, and UAV-Human. Qualitatively, we

theorize that UCF101 and HMDB51 are more prone to object and scene representa-

tion bias than the other four datasets. We further believe that the Synthetic dataset

is more robust to bias than Kinetics since clips are generated on either shared back-

ground image/rendering or without surrounding objects in relation to the action class,

which forces the model to focus on the actions over possible biases. For example, if

we refer back to Figure 3-1, PHAV’s “golf” example generates an agent performing

golf swing in a stadium with other agents strolling behind. Every generated video

will have different background scene and features. However, models trained on real

videos may learn to classify the category “golf” from scene (e.g. golf course) or objects

(e.g. golf carts) that have high correlation to golf rather than from the swing action

itself. This property of generated synthetic videos helps Synthetic pre-trained models

to outperform real video pre-trained models on datasets with low representation bias.

Borrowing the representation bias definition from [28], we quantify representation

bias for each downstream dataset using the following equation:

ℬ(𝒟, 𝜑) = log
ℳ(𝒟, 𝜑)

ℳ𝑟𝑛𝑑

, (4.1)

where bias ℬ for dataset 𝒟 using representation 𝜑 is directly related to the ratio of

the performance of subject representation ℳ(𝒟, 𝜑) to random chance performance,

ℳ𝑟𝑛𝑑. We calculate ℳ(𝒟, 𝜑) by measuring the performance of a linear action recog-

nition classifier trained on top of a frozen ImageNet model. The intuition is that

ImageNet features encode static cues, such as objects, and therefore ℳ(𝒟, 𝜑) is re-

lated to the amount of action categories that can be recognized solely by static cues

in the videos, without any temporal dynamics.
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Table 4.2: Representation bias for each downstream task dataset calculated using
ImageNet representation. LP stands for linear probing.

Transferred Dataset

UCF101 HMDB51 Mini-
SSV2 Diving48 IkeaFA UAV-

Human

ImageNet LP Accuracy, ℳ(𝒟, 𝜑) 48.53 27.78 9.03 8.68 33.54 2.52

Representation Bias, ℬ(𝒟, 𝜑) 5.62 3.83 2.97 2.06 2.01 1.96

Table 4.3: Performance gap between Synthetic and Kinetics pre-trained model is
calculated by taking the accuracy ratio. A gap value greater than 1.0 represents
Synthetic pre-trained model outperforms.

Synthetic to Kinetics

Performance Gap

Transferred Dataset

UCF101 HMDB51 Mini-
SSV2 Diving48 IkeaFA UAV-

Human

Linear Probing 0.95 0.50 1.21 1.05 1.11 2.23

Fine-tuning 0.38 0.83 1.06 1.05 1.05 2.14

Table 4.2 summarizes the representation bias measured using an ImageNet pre-

trained model for downstream tasks. As theorized, UCF101 and HMDB51 have high

representation bias scores of 5.62 and 3.83, respectively, while Mini-SSV2, Diving48,

IkeaFA, and UAV-Human have much lower representation bias scores of 2.97, 2.06,

2.01, and 1.96, respectively. It is expected that UCF101 and HMDB51 have high

biases as they are composed of daily human actions with related objects and scene

features in them. In addition, while Mini-SSV2 shows lower bias score than UCF101

and HMDB51 as its action categories focus on temporal movement/change of objects

rather than objects themselves, it still has higher bias than Diving48 as models can

learn unintentional object bias since some objects are more prone to specific action

categories than others (e.g. round objects are more inclined to roll). Every IkeaFA

video is taken under the same setting, with identical objects present in the frame

throughout the entire video, and this consistency is reflected by its low representation

bias. Finally, UAV-Human also exhibits low representation bias as UAV’s far-distance

viewpoint encompasses vast scene and object information, degrading the model’s
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ability to predict an action based on such information.

Table 4.3 shows the performance gap between Synthetic and Kinetics pre-trained

models. Specifically, we standardize the accuracy gaps by measuring the ratio of

Synthetic to Kinetics pre-trained transfer accuracy. In other words, we retrieve the

performance gap value by dividing accuracy of Synthetic pre-trained model over that

of Kinetics pre-trained, meaning gap value greater than 1.0 representing Synthetic

pre-trained model outperforming and vice versa. We can verify that UCF101 and

HMDB51 have performance gap value less than 1.0 for both linear probing and fine-

tuning top-1 accuracies, while Mini-SSV2, Diving48, IkeaFA, and UAV-Human have

gap value greater than 1.0 for both. As a result, we observe an inverse relationship

between representation bias and transfer performance gap, hence, reaching to a con-

clusion that the transfer gap between Kinetics pre-trained and Synthetic pre-trained

models is highly influenced by the innate representation bias of the target dataset.

4.2.1 Effect of Number of Classes

We study how the number of classes in pre-training datasets influences the trans-

ferability on our downstream tasks, and analyze its relationship with representation

bias. For both Kinetics and Synthetic datasets, we create four subset datasets with

30, 60, 90, and 120 classes, all with 1000 samples per class. Note that subset classes

are chosen randomly, and each dataset is a superset of every other smaller dataset.

Figure 4-1 plots the fine-tuning and linear probing transfer top-1 accuracies of all

pre-trained models on downstream tasks. First, we look at accuracies on UCF101,

which has the highest representation bias among the downstream tasks, and note

that the transferability of the Kinetics model increases as we increase the number

of classes; this is specifically highlighted by the increase in linear probing accuracies.

The transferability of the Synthetic pre-trained model, however, shows a less dramatic

change when we increase the number of classes as merely supplying more synthetic

classes does not increase the representation bias of the pre-train dataset. Again, this is

further highlighted by the change in linear probing accuracies. We suspect that small

increase in accuracy can be rather explained by the additional temporal information.
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ℬ(𝒟, 𝜑) = 5.62 ℬ(𝒟, 𝜑) = 3.83

ℬ(𝒟, 𝜑) = 2.97 ℬ(𝒟, 𝜑) = 2.06

ℬ(𝒟, 𝜑) = 2.01 ℬ(𝒟, 𝜑) = 1.96

Figure 4-1: Fine-tuning (FT) and Linear Probing (LP) transfer results on six
downstream tasks with various number of classes in pre-training datasets.

Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP.
Please refer to Appendix B for full results.
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Similar observation can be made for HMDB51 accuracies, which has a relatively high

representation bias, albeit being less significant.

We can also see that the transferability for both Kinetics and Synthetic pre-trained

models does not increase dramatically with more classes added to the pre-training

datasets when transferring onto Mini-SSV2, Diving48, and UAV-Human. Additional

object or scene features do not have as much of an effect when transferring onto

these bias robust downstream tasks. It is also interesting to note that the Synthetic

pre-trained model outperforms the Kinetic pre-trained model by a significant margin

for UAV-Human, which is the downstream task with the lowest representation bias

score.

For IkeaFA, we recognize improvements in linear probing accuracies for both Ki-

netics and Synthetic pre-trained models as we increase the number of classes from

30 to 120. We can suspect that more classes (and total video samples) are required

for this downstream task for the models to learn the significant features for domain

transfer.

4.2.2 Effect of Videos per Class

Next, we vary the number of samples per class for Kinetics and Synthetic pre-train

datasets to examine its effects on transferability. We fix the number of classes to 150,

and create three subset datasets with 250, 500, and 750 samples per class, similarly

with samples being chosen at random and each dataset being a superset of every other

smaller dataset.

Generally, we detect a slight increase in accuracies for all downstream tasks as

we increase the number of samples per class due to more availability of pre-training

samples. However, from Figure 4-2, we can observe a similar phenomenon as before;

increasing Kinetics samples per class does not significantly boost the transferability

compared to increasing the number of classes, as we are less likely to introduce novel

representation bias with extra samples within the same class. Similarly, increasing

Synthetic samples per class does not provide remarkable improvement on transfer-

ability. Although increasing the number of Synthetic samples per class implies further
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ℬ(𝒟, 𝜑) = 5.62 ℬ(𝒟, 𝜑) = 3.83

ℬ(𝒟, 𝜑) = 2.97 ℬ(𝒟, 𝜑) = 2.06

ℬ(𝒟, 𝜑) = 2.01 ℬ(𝒟, 𝜑) = 1.96

Figure 4-2: Fine-tuning (FT) and Linear Probing (LP) transfer results as number of
samples per class in pre-training datasets are limited to 250, 500, 750, and 1000.

Kinetics FT; Kinetics LP; Synthetic FT; Synthetic LP.
Please refer to Appendix C for full results.
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variation in lighting, camera angles/position, humanoid types, and other video gen-

eration parameters, it does not deliver striking performance enhancement as it is not

addressing the representation bias issue. We can further conclude that significant

features required for domain transfer had saturated well before 250 samples per class

for 150-class pre-trained models.
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Chapter 5

Experiments with Higher Capacity

Models

In this chapter, we repeat the fine-tuning experiments on downstream tasks listed in

Section 3.3 using more complex video action recognition models to verify and validate

our findings from the previous chapter.

5.1 Experimental Setup

In this section, we describe the two models we use to reanalyze the transferability of

Kinetics and Synthetic pre-trained models.

5.1.1 TSN ResNet-50

We revisit TSN with a bigger backbone network, ResNet-50 [52]. While ResNet-18

consists of 8 residual blocks, each with two layers, ResNet-50 consists of 15 residual

blocks, each with three layers. We train our models from scratch without ImageNet

pre-trained weights.

37



5.1.2 I3D ResNet-50

We delve into a 3-Dimensional action recognition model, I3D, with ResNet-50 back-

bone [6]. I3D borrows designs from 2-Dimensional networks, and inflate all filters

and pooling kernals with an extra dimension. Although I3Ds also benefit from 2-

Dimensional counterpart’s learned parameters, we train our I3D models from scratch

for consistency with other architecture experiments.

5.2 Hyperparameter Sweeping

The Kinetics and Synthetic baseline models for TSN ResNet-50 and I3D are trained

using SGD optimizer with momentum of 0.9, final layer dropout rate of 0.5, and

number of samples of 8-frame per clip. We examine initial learning rate of [0.01, 0.02]

with cosine decay, batch size of [64, 128], and weight decay rate of [0.0001, 0.0005,

0.001], resulting in total 12 combinations of hyperparameters per baseline model. We

select the best-performing model for each baseline to transfer onto our downstream

tasks.

For each downstream task, we use the identical optimizer, momentum, dropout

rate, and number of samples. We explore initial learning rate of [0.0001, 0.0005, 0.001],

batch size of [32, 64], and weight decay rate of [0.0001, 0.0005, 0.001], resulting in

total 18 combinations of hyperparameters per downstream task per baseline model.

5.3 Main Results

5.3.1 Results: TSN ResNet-50

Table 5.1 shows the best performing top-1 transfer results of TSN ResNet-50 models

fine-tuned on downstream tasks. Note that all downstream tasks’ accuracies experi-

ence a significant improvement when using TSN with ResNet-50 backbone instead of

ResNet-18.

Here, we also observe a consistent outcome as before, in which the Kinetics
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Table 5.1: TSN ResNet-50 downstream tasks transfer top-1 accuracy results.

Pre-trained

Dataset

Transferred Dataset

UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-
Human

Kinetics 86.17 57.45 48.50 62.84 42.07 32.45

Synthetic 83.40 54.38 49.69 63.50 42.68 35.57

Table 5.2: I3D ResNet-50 downstream tasks transfer top-1 accuracy results.

Pre-trained

Dataset

Transferred Dataset

UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-
Human

Kinetics 86.87 59.21 50.08 54.82 40.85 31.13

Synthetic 82.05 55.69 50.72 55.28 42.68 35.13

pre-trained models outperform on downstream tasks with high representation bias

(UCF101 and HMDB51), while the Synthetic pre-trained models outperform on those

with low representation bias. However, note that the accuracy gaps between the Ki-

netic and Synthetic pre-trained models are more closed for all six downstream tasks

when using this deeper model. For instance, the TSN ResNet-18 model pre-trained

on the Kinetics outperformed the Synthetic pre-trained model on UCF101 by about

3.67%, but with ResNet-50 backbone, the gap is 2.77%. Similar observation can be

made for HMDB51 results, in which the gap is closed from 7.71% to 3.07%.

Refer to Appendix D for the full hyperparameter tuning results.

5.3.2 Results: I3D ResNet-50

Best performing top-1 transfer accuracies of I3D ResNet-50 models are shown on

Table 5.2. We observe a general increase in accuracies for UCF101, HMDB51, and

Mini-SSV2 relative to TSN ResNet-50’s performance, while there are slight drops

in accuracies for Diving48, IkeaFA, and UAV-Human. However, it is still the case

that the Kinetics pre-trained model performs superior on high representation bias

downstream tasks, and worse on low representation bias tasks relative to the Synthetic
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pre-trained model.

Appendix E shows the full hyperparameter sweeping results for I3D ResNet-50.

5.3.3 Discussion

By utilizing higher capacity models and via thorough hyperparameter sweeping, we re-

inforce our conclusion that the Synthetic pre-trained models outperform the Kinetics

pre-trained counterparts when transferred to downstream tasks with low represen-

tation bias. As expected, we notice an overall increase in transfer accuracies with

TSN ResNet-50 and I3D ResNet-50 compared to TSN ResNet-18, and the accuracy

gaps between the Kinetics and Synthetic pre-trained models are smaller for all six

downstream tasks.
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Chapter 6

Future Work

First, we would like to expand our Synthetic dataset with more classes and samples

from additional video generators. It would be interesting to make our initial synthetic

video dataset public to have the community add on to the dataset with their set

of synthetic videos to expedite the augmentation process as well. We also seek to

include more downstream tasks of various domains, such as first-person viewpoints,

social media, sports, embodied perception, safety and security, and more. This work

can also be extended to cross-modal learning by synthesizing videos and captions to

cover a various range of domains.

Possible future directions also include pre-training models by mixing real and

synthetic videos. We plan to vary the ratio of real to synthetic videos to examine

whether augmenting real videos with synthetic positively or negatively impact the

transferability.

We have an extensive list of experiments we have arranged to further investigate

the transferability of Synthetic pre-trained models. First, we would like to replicate

the transfer experiments using a 2.5-Dimensional model, such as R(2+1)D [49], and

with various loss functions, such as self-supervised or contrastive loss.

Another question we pose is what makes for a good Synthetic pre-trained model.

We plan to control the parameters of video generators, such as lighting, agent pose,

background, lighting, camera distance, camera angle, and more to study which pa-

rameter has the greatest impact on transferability.
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It is plausible that each synthetic video generator has an innate bias, and since our

Synthetic dataset is composed of videos from multiple generators, we can analyze sim-

ulator bias by creating subsets of the Synthetic dataset and analyzing transferability

as we increase the number of simulators included in the pre-training dataset.

Finally, another interesting application would be to incorporate the Synthetic

pre-trained model in projects for real-life clients that suffer from lack of data, such

as construction-related companies that are willing to monitor sites using AI action

recognition deep learning models.
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Chapter 7

Conclusions

In this work, we have introduced a new action recognition benchmark to mitigate the

issues inherent to training models with real videos, such as privacy, bias, ethics, and

copyright. Specifically, we constructed a Synthetic dataset from three publicly avail-

able assets (ElderSim, SURREACT, PHAV), trained models on the Synthetic dataset,

and finally transferred the pre-trained models to various downstream tasks. Our ex-

periments show that the models pre-trained on the Synthetic dataset outperform

those pre-trained on real videos on the downstream datasets with low representa-

tion bias (Mini-SSV2, Diving48, IkeaFA, UAV-Human). This suggests that although

models trained on synthetic data expose weaker object and background scene fea-

tures, they do provide features with strong correlation to actions, making them more

useful for downstream tasks with lower representation bias. In fact, stronger object

features (inherent to models trained with real videos) may even be a nuisance factor

for transfer tasks onto lower representation bias datasets.

We believe the new benchmark and the in-depth analysis on the transferability of

models pre-trained on synthetic data will guide a new direction of fair and transparent

study for the AI research community.
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Appendix A

Statistics of Class Overlap

Table A.1: Summary of overlapping classes between pre-train Kinetics/Synthetic
datasets and downstream tasks.

Pre-trained

Dataset

Transferred Dataset

UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

# of
classes Ratio # of

classes Ratio # of
classes Ratio # of

classes Ratio # of
classes Ratio # of

classes Ratio

Kinetics 23 0.23 11 0.22 0 0.00 0 0.00 0 0.00 27 0.17

Synthetic 13 0.13 25 0.49 0 0.00 0 0.00 0 0.00 36 0.23

Table A.1 summarizes the number of overlapping classes between Kinetics or Syn-

thetic pre-train dataset and each of the six downstream tasks, based on their class

names. Notice that Mini-SSV2, Diving48, and IkeaFA have completely disjoint ac-

tion labels, and models pre-trained on Synthetic dataset outperform their respective

Kinetics pre-trained models in these three datasets.

Interestingly, for HMDB51, the Synthetic pre-train dataset has more overlapping

classes, yet the Kinetics pre-trained model still outperforms on this downstream task.

Here, we conclude that the intersection of action labels plays a less significant role

than representation bias.
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Appendix B

TSN ResNet-18 Class Variation

Experiment Results

Table B.1: Full fine-tuning (FT) and linear probing (LP) transfer experiment results
on downstream tasks using Kinetics and Synthetic pre-trained models with varying
number of classes in pre-training datasets.

Pre-trained

Dataset

Transferred Dataset

UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

FT LP FT LP FT LP FT LP FT LP FT LP

K
in

et
ic

s

N
um

.
C

la
ss

es

30 76.16 36.67 32.03 16.73 36.05 5.26 28.17 5.79 37.20 26.83 10.73 1.39

60 76.90 38.38 36.99 18.30 36.58 5.26 30.05 6.10 37.10 26.22 12.99 1.15

90 78.93 42.61 40.46 19.14 36.92 5.50 30.71 6.70 36.59 27.44 11.52 1.21

120 79.94 47.50 40.85 21.31 37.34 5.58 32.08 7.92 37.80 28.66 12.87 1.13

150 79.99 50.83 45.36 24.64 38.22 6.01 31.78 8.21 38.41 28.03 12.05 1.53

Sy
nt

he
ti

c

N
um

.
C

la
ss

es

30 73.41 17.72 29.74 6.86 36.29 5.15 27.11 6.24 36.59 27.44 24.27 2.29

60 73.99 17.75 32.22 7.58 38.77 5.32 29.14 6.03 38.41 28.66 23.45 2.33

90 75.47 17.23 35.03 8.50 39.61 5.59 31.17 6.40 39.02 31.10 25.63 2.68

120 74.12 18.05 34.64 7.84 40.01 5.66 32.18 8.43 39.20 31.71 26.43 3.15

150 76.32 19.35 37.65 12.35 40.37 7.28 33.40 8.63 40.24 31.71 27.60 3.41

In Table B.1, we show the full experiment results with varying the number of

classes for pre-training datasets. We note that for datasets with high representa-

tion bias (UCF101, HMDB51), transferability increases with more number of classes

for Kinetics pre-trained models, but the effect is less pronounced for Synthetic pre-

trained models. We also observe that transferability does not increase dramatically
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for both Kinetics and Synthetic pre-trained models on downstream tasks with low

representation bias (Mini-SSV2, Diving48, IkeaFA, UAV-Human).
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Appendix C

TSN ResNet-18 Sample Number

Variation Experiment Results

Table C.1: Full transfer experiment results on downstream tasks when the number
of samples per class in pre-training datasets is limited. Both fine-tuning (FT) and
linear probing (LP) results are shown.

Pre-trained

Dataset

Transferred Dataset

UCF101 HMDB51 Mini-SSV2 Diving48 IkeaFA UAV-Human

FT LP FT LP FT LP FT LP FT LP FT LP

K
in

et
ic

s

N
um

.
sa

m
pl

es 250 77.48 45.60 42.81 21.96 35.55 5.92 30.00 5.127 37.20 28.05 8.22 1.21

500 79.06 48.45 42.03 22.61 36.55 6.26 30.30 6.09 37.80 27.44 11.84 1.31

750 80.52 49.35 44.25 25.82 36.90 6.23 30.71 6.09 38.41 26.83 12.71 1.60

1000 79.99 50.83 45.36 24.64 38.22 6.01 31.78 8.21 38.41 28.03 12.05 1.53

Sy
nt

he
ti

c

N
um

.
sa

m
pl

es 250 74.86 20.78 32.22 8.69 37.39 6.57 30.02 7.04 39.63 28.05 22.69 2.57

500 73.38 20.96 32.68 8.82 39.87 6.87 31.42 7.11 39.02 29.88 24.15 3.23

750 74.17 20.21 34.18 9.67 39.9 7.02 32.81 7.41 40.85 31.71 25.62 3.04

1000 74.12 18.05 34.64 7.84 40.01 5.66 32.18 8.43 39.20 31.71 26.43 3.15

In Table C.1, we show the full experiment results with varying the number of

samples per class for pre-training datasets. Increasing the number of samples per class

for both Kinetics and Synthetic datasets has less significant effects on transferability

on all downstream tasks compared to adding classes, as we are not likely to introduce

as much representation bias by having more samples within the same number of action

classes.
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Appendix D

TSN ResNet-50 Parameter Sweeping

Results

Tables below show the full parameter sweeping results of TSN ResNet-50 on down-

stream tasks. 2 batch sizes, 3 learning rates (𝑙𝑟), and 3 weight decay rates (𝑤𝑑) are

explored, resulting in total 18 combinations per baseline model.

D.1 UCF101

Table D.1: UCF101 TSN ResNet-50 Parameter Sweeping Results.

UCF101

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 84.67 86.17 85.06 84.22 84.83 84.27

𝑤𝑑 = 0.0005 84.35 85.14 85.75 84.30 85.62 84.54

𝑤𝑑 = 0.001 85.09 85.88 85.41 83.16 84.99 84.64

Synthetic
𝑤𝑑 = 0.0001 79.22 80.74 81.72 72.52 79.01 80.17

𝑤𝑑 = 0.0005 77.93 81.79 82.58 72.85 79.46 81.71

𝑤𝑑 = 0.001 78.91 82.23 83.40 80.39 80.02 82.02
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D.2 HMDB51

Table D.2: HMDB51 TSN ResNet-50 Parameter Sweeping Results.

HMDB51

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 57.12 56.08 56.08 53.20 56.41 55.95

𝑤𝑑 = 0.0005 57.45 56.67 55.42 52.81 56.01 56.80

𝑤𝑑 = 0.001 55.88 55.82 55.42 54.12 56.27 55.42

Synthetic
𝑤𝑑 = 0.0001 46.93 53.60 54.38 43.66 50.64 53.59

𝑤𝑑 = 0.0005 47.84 53.40 53.60 43.34 50.13 50.72

𝑤𝑑 = 0.001 47.26 52.55 52.81 42.18 48.69 51.02

D.3 Mini-SSV2

Table D.3: Mini-SSV2 TSN ResNet-50 Parameter Sweeping Results.

Mini-SSV2

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 46.39 48.17 48.50 43.61 45.82 47.28

𝑤𝑑 = 0.0005 46.29 46.64 47.90 44.74 45.48 47.35

𝑤𝑑 = 0.001 45.39 47.45 48.34 43.66 46.46 46.97

Synthetic
𝑤𝑑 = 0.0001 47.72 48.83 48.61 43.38 46.29 47.61

𝑤𝑑 = 0.0005 47.47 49.05 49.37 45.89 47.89 48.37

𝑤𝑑 = 0.001 47.98 48.96 49.69 44.14 46.61 47.56

52



D.4 Diving48

Table D.4: Diving48 TSN ResNet-50 Parameter Sweeping Results.

Diving48

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 48.48 57.66 60.56 44.37 52.54 56.45

𝑤𝑑 = 0.0005 43.50 52.08 58.22 43.65 53.30 57.41

𝑤𝑑 = 0.001 50.66 59.14 62.84 44.06 51.37 56.14

Synthetic
𝑤𝑑 = 0.0001 51.42 57.96 59.19 42.44 53.3 57.61

𝑤𝑑 = 0.0005 50.66 57.61 57.56 44.11 55.33 57.56

𝑤𝑑 = 0.001 51.93 57.36 63.50 43.81 53.15 56.75

D.5 IkeaFA

Table D.5: IkeaFA TSN ResNet-50 Parameter Sweeping Results.

IkeaFA

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 37.80 40.24 40.85 39.63 40.24 41.46

𝑤𝑑 = 0.0005 39.02 42.07 41.46 37.80 40.85 40.85

𝑤𝑑 = 0.001 37.80 40.85 42.07 38.41 41.46 40.24

Synthetic
𝑤𝑑 = 0.0001 38.41 39.02 40.85 35.98 42.68 40.85

𝑤𝑑 = 0.0005 37.20 40.85 37.80 36.59 38.41 39.02

𝑤𝑑 = 0.001 39.02 40.85 40.85 37.80 39.02 39.02
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D.6 UAV-Human

Table D.6: UAV-Human TSN ResNet-50 Parameter Sweeping Results.

UAV-Human

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 20.41 29.80 31.61 14.73 27.78 29.57

𝑤𝑑 = 0.0005 15.72 30.25 31.59 14.88 27.72 29.77

𝑤𝑑 = 0.001 20.16 30.50 32.45 14.54 27.96 29.56

Synthetic
𝑤𝑑 = 0.0001 20.06 33.77 35.57 14.15 31.74 34.65

𝑤𝑑 = 0.0005 18.80 34.26 35.13 14.04 31.47 34.31

𝑤𝑑 = 0.001 18.30 33.69 35.13 14.23 31.27 35.57
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Appendix E

I3D ResNet-50 Parameter Sweeping

Results

Tables below show the full parameter sweeping results of I3D ResNet-50 on down-

stream tasks. 2 batch sizes, 3 learning rates (𝑙𝑟), and 3 weight decay rates (𝑤𝑑) are

explored, resulting in total 18 combinations per baseline model.

E.1 UCF101

Table E.1: UCF101 I3D ResNet-50 Parameter Sweeping Results.

UCF101

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 70.95 86.61 86.71 53.95 85.23 86.62

𝑤𝑑 = 0.0005 70.31 86.55 86.52 54.03 85.31 86.49

𝑤𝑑 = 0.001 70.39 86.61 86.87 53.95 85.21 86.68

Synthetic
𝑤𝑑 = 0.0001 40.31 80.21 81.69 24.12 76.02 80.57

𝑤𝑑 = 0.0005 39.17 80.78 82.02 24.37 76.21 80.35

𝑤𝑑 = 0.001 39.55 81.07 82.05 24.03 76.31 80.89
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E.2 HMDB51

Table E.2: HMDB51 I3D ResNet-50 Parameter Sweeping Results.

HMDB51

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 42.22 59.21 59.08 31.96 57.22 59.17

𝑤𝑑 = 0.0005 42.16 58.11 58.75 32.09 56.83 58.78

𝑤𝑑 = 0.001 42.48 58.95 58.49 32.22 57.35 58.01

Synthetic
𝑤𝑑 = 0.0001 27.71 52.22 53.40 16.60 47.65 51.11

𝑤𝑑 = 0.0005 27.22 52.61 54.90 17.25 47.58 52.15

𝑤𝑑 = 0.001 27.91 52.03 55.69 16.93 46.73 54.18

E.3 Mini-SSV2

Table E.3: Mini-SSV2 I3D ResNet-50 Parameter Sweeping Results.

Mini-SSV2

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 46.86 49.44 49.64 39.26 48.51 49.11

𝑤𝑑 = 0.0005 46.83 48.95 49.69 39.24 49.07 49.33

𝑤𝑑 = 0.001 46.91 49.65 50.08 39.32 48.70 49.54

Synthetic
𝑤𝑑 = 0.0001 44.35 49.72 50.32 35.06 48.41 49.22

𝑤𝑑 = 0.0005 44.15 49.71 50.47 34.78 48.12 49.41

𝑤𝑑 = 0.001 44.22 49.73 50.72 34.51 48.67 49.68
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E.4 Diving48

Table E.4: Diving48 I3D ResNet-50 Parameter Sweeping Results.

Diving48

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 37.97 51.62 51.88 28.12 46.24 51.88

𝑤𝑑 = 0.0005 36.95 51.98 52.39 27.12 46.24 51.37

𝑤𝑑 = 0.001 37.56 52.28 54.82 28.07 46.04 50.15

Synthetic
𝑤𝑑 = 0.0001 37.36 52.84 54.16 26.60 46.40 51.98

𝑤𝑑 = 0.0005 37.46 52.08 55.28 26.65 46.95 52.39

𝑤𝑑 = 0.001 37.06 51.52 54.02 27.26 46.24 51.73

E.5 IkeaFA

Table E.5: IkeaFA I3D ResNet-50 Parameter Sweeping Results.

IkeaFA

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 38.05 38.41 39.63 37.80 39.02 38.41

𝑤𝑑 = 0.0005 38.41 39.02 40.85 38.41 38.41 38.41

𝑤𝑑 = 0.001 37.80 39.63 40.24 37.80 40.85 39.02

Synthetic
𝑤𝑑 = 0.0001 40.24 37.80 42.68 31.10 37.80 41.46

𝑤𝑑 = 0.0005 35.98 40.85 38.41 30.49 36.59 40.24

𝑤𝑑 = 0.001 35.37 39.63 39.02 29.88 36.59 39.02
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E.6 UAV-Human

Table E.6: UAV-Human I3D ResNet-50 Parameter Sweeping Results.

UAV-Human

Pre-trained

Dataset

Batch Size 32 Batch Size 64

𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001 𝑙𝑟 = 0.0001 𝑙𝑟 = 0.0005 𝑙𝑟 = 0.001

Kinetics
𝑤𝑑 = 0.0001 9.03 25.99 29.04 15.07 29.59 31.13

𝑤𝑑 = 0.0005 7.35 25.00 29.56 3.84 20.09 26.80

𝑤𝑑 = 0.001 7.20 24.97 29.40 4.43 19.25 26.41

Synthetic
𝑤𝑑 = 0.0001 7.40 23.82 32.66 18.40 30.66 33.82

𝑤𝑑 = 0.0005 18.46 30.17 34.74 7.59 23.57 30.88

𝑤𝑑 = 0.001 7.53 23.94 31.12 18.14 29.82 35.13
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