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Abstract

Operations research has a storied history of tackling complex problems in public pol-
icy, ranging from vaccine distribution to the efficient design of public utility markets.
The advent of “big data” analytics, machine learning, and scalable optimization has
only expanded the field’s impact, unlocking new research directions and application
areas. What makes public policy a challenging domain is a combination of three
factors: (i) policymakers must balance multiple objectives that often exist in tension,
e.g., tradeoffs in efficiency and fairness; (ii) there are many stakeholders, with often
disparate value judgments on how to best balance said objectives; and (iii) those
stakeholders may not be technically fluent in analytics.

This thesis develops multi-objective optimization methodologies to support poli-
cymakers in designing more efficient, fair, and inclusive policies. We apply our tech-
niques to a range of problems in transplantation policy and public education. A core
theme of our work is the need for interpretable decision-support tools, e.g., interac-
tive applications and tradeoff curves, which are crucial in translating abstract policy
tradeoffs into actionable insights. Our goal is to provide stakeholders, even those
without technical expertise, with an understanding of the range of achievable policy
outcomes, so that they can more effectively engage in the policymaking process. We
emphasize applications of our work to real-world problems, including an extensive
collaboration with the United Network for Organ Sharing (UNOS) to help develop a
new national lung allocation policy, which is slated for implementation in 2023.

Chapter 2 addresses a long-standing debate about geographic equity in organ al-
location, by using multi-objective optimization to compare efficiency/fairness trade-
offs under different geographic distribution schemes. Chapter 3 introduces a novel
optimization-based framework for “ethics-by-design” in scarce resource allocation,
aiming to combine data modeling, shareholder input, and ethical theory into a unified
approach for policy development in this area. Chapter 4 details our collaboration with
UNOS policymakers to apply this framework towards the design of a new national
lung allocation policy. Finally, Chapter 5 presents an empirical analysis of school
assignment mechanisms for public school districts, investigating tradeoffs between
satisfying student preferences and minimizing bus transportation costs.
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Chapter 1

Introduction

1.1 Motivation

Operations research (OR) has a storied history of tackling complex problems in public

policy. The so-called diet problem, of historical significance in defining poverty levels

in the United States back in the 1960s [29], is still taught in every introductory linear

optimization course. So is the school busing problem, which played an integral role

in efforts to desegregate public schools in the 1970s [52].

In a thought-provoking plenary delivered to the 2002 International Conference on

OR, Jonathan Caulkins suggested that OR’s biggest impact in public policy has come

in areas where the “physics” of the system are complex and central (e.g., energy and

aviation), or the issues pertain to tactical management or are at the implementation

level (e.g., supply chain management and routing). Relatively speaking, he argued,

OR’s role has been smaller “in the analysis of strategic issues [...] in general domains”

– domains like welfare policy, education policy, or equal employment law [23].

This trend has arguably changed in recent decades, as the appetite for “big data”

analytics, machine learning, and scalable optimization has exploded in a wide range

of public policy domains. OR techniques have been applied to crowdsource volunteers

for NGOs [58], improve inmate assignment mechanisms in penitentiaries [88], design

auction markets for farmers in developing countries [50], and evaluate immigration

enforcement policy [10]. During the recent COVID-19 pandemic, OR practitioners
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helped develop border testing protocols [6], evaluate government intervention policies

[51], and propose vaccine allocation systems [8].

What makes the application of OR to such domains challenging, and any impact

all the more impressive, is a combination of three key factors. First, policymakers need

to balance multiple objectives that often exist in tension, e.g., tradeoffs in efficiency

vs. fairness. Second, there are typically many stakeholders, with often disparate value

judgments on how to best balance said objectives. And third, these stakeholders are

not always technically fluent in analytics.

This thesis develops multi-objective optimization methodologies to support poli-

cymakers in designing more efficient, fair, and inclusive policies. We apply our tech-

niques to problems in transplantation policy and public education. A core theme of

our work is the need for interpretable decision-support tools, e.g., interactive applica-

tions and visualized tradeoff curves, which are crucial in translating abstract policy

tradeoffs into actionable insights. The goal is to provide policymakers and stakehold-

ers, even those without technical expertise, with an understanding of the range of

achievable policy outcomes, and encourage evidence-driven debate on tradeoffs. We

emphasize applications of our work to real-world problems, including an extensive col-

laboration with the United Network for Organ Sharing (UNOS) to help them develop

a new national lung allocation policy, slated for implementation in 2023.

Chapter 2 addresses a long-standing debate about geographic equity in organ al-

location, by using multi-objective optimization to compare efficiency/fairness trade-

offs under different geographic distribution schemes. Chapter 3 introduces a novel

optimization-based framework for “ethics-by-design” in scarce resource allocation,

aiming to combine data modeling, shareholder input, and ethical theory into a unified

approach for policy development in this area. Chapter 4 details our collaboration with

UNOS policymakers to apply this framework towards the design of a new national

lung allocation policy. Finally, Chapter 5 presents an empirical analysis of school

assignment mechanisms for public school districts, investigating tradeoffs between

satisfying student preferences and minimizing bus transportation costs.
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1.2 Outline and main contributions

The summary and main contributions of this thesis follow, listed by chapter.

Chapter 2: Balancing efficiency and fairness in liver transplant

distribution

Geographic disparity in access to organs and, by extension, the role of geography

in allocation priority, have long been points of contention within the transplantation

community [35, 60, 103]. At the core of the debate lies a fundamental tension between

efficiency and fairness: on the one hand, allocation policies that prioritize local can-

didates reduce system-wide transportation burden and can improve post-transplant

outcomes by reducing the time organs spend on ice. On the other hand, such “local”

policies may result in higher waitlist mortality rates, as organs are not allocated to

the highest-risk or most disadvantaged patients if they are far from the donor.

In this chapter, we use optimization-based tradeoff analysis to assess different or-

gan distribution policy concepts. We consider three different distribution schemes that

were proposed by the the Organ Procurement & Transplantation Network (OPTN)

Ad Hoc Committee on Geography: (1) district-based priority with mathematically

optimized boundaries (2) circle-based regions using a fixed distance from the donor

hospital, and (3) a novel, boundaryless continuous distribution model. We use coun-

terfactual simulation and surrogate optimization to generate efficiency-fairness trade-

off curves for each distribution concept in the context of liver transplantation. We

publish our results as an interactive online application (https://livervis.github.io/).

Our analysis shows that a Continuous Distribution (CD) concept allows both for

the greatest reduction in patient deaths, and the most equitable geographic distribu-

tion across comparable organ transportation burden among all others considered. In

addition, when applied with an Optimized Prediction of Mortality allocation scheme

to evaluate candidates’ medical urgency, continuous distribution allows for a signifi-

cant reduction in the number of deaths compared to current policy – on the order of

500 lives saved annually in simulation.
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In December of 2018, the OPTN Board of Directors issued a directive stating

that future policy development for all solid organs would focus on the continuous

distribution framework. As a result of this decision, we began a collaboration with

researchers at United Network for Organ Sharing (UNOS) that culminated in the

work of Chapters 3 and 4.

This chapter also includes an algorithmic contribution to the combinatorial prob-

lem of geographic districting. To analyze the district-based distribution concept, we

develop a novel multi-objective optimization algorithm for creating of organ-sharing

regions, using specialized machine learning models to approximate a simulation-based

objective function. The general approach may be of independent interest in other dis-

tricting applications that require optimization of multiple, black-box objectives, e.g.,

political districting or land management.

The work in this chapter appeared in Transplantation [12].

Chapter 3: Ethics-by-design: efficient, fair and inclusive re-

source allocation

As has been made clear by current controversies regarding criteria for allocating

COVID-19 vaccines in U.S. states and across countries, the distribution of crucial

medical goods and services in conditions of scarcity is among the most important,

albeit contested, areas for public policy development [42, 43, 66]. Scarce resource

allocation, particularly in healthcare settings, is a challenging problem with multiple,

often-conflicting objectives and far-reaching ethical and practical implications.

In this chapter, we introduce a novel optimization-based framework for “ethics-

by-design” in resource allocation. Our framework seeks to combine data modeling,

shareholder input, and ethical theory into a single process for generating sound alloca-

tion systems. We use the design of organ allocation policy as a motivating case study,

which illustrates the key challenges in the area, namely: (i) the need to accurately

predict policy outcomes across a range of utility, efficiency, and fairness dimensions;

(ii) the tensions inherent in achieving different policy objectives under scarcity; and
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(iii) the need to engage a diverse set of stakeholders, with often conflicting priorities,

in evidence-driven debate on tradeoffs.

At a high level, our framework prescribes the use of machine learning and sur-

rogate optimization to approximate the efficient frontier of policy outcomes across

all utility, efficiency, and fairness dimensions of interest. Its concrete manifestation

is an interactive optimization tool wherein one can specify a set of desired policy

outcomes, expressed in the objective and constraints of an optimization problem, and

our method will produce a conforming policy in near real-time. This enables poli-

cymakers and stakeholders, even those without technical expertise, to quickly iterate

on different policy scenarios and refine their value judgments on relevant tradeoffs as

they engage in the policy-making process.

We extensively discuss lessons from applying our framework in practice (described

in more detail in Chapter 4). First and foremost among them is the need to clearly

communicate the limitations of statistical modeling to stakeholders, and allow subject-

matter expertise to influence conclusions drawn from the analysis. Second, while the

right analytical tools can make tradeoffs more accessible, they do not obviate the

need for structured, consensus-seeking processes to engage stakeholders and encour-

age evidence-driven debate. Finally, given cultural and institutional hurdles, as well

as the relative unfamiliarity with machine learning and optimization among policy-

makers, the adoption of advanced analytical tools like the one we propose requires

thoughtful attempts at scientific communication that meets stakeholders “where they

live,” rather than a one-size-fits-all strategy.

The work in this chapter has been accepted for publication in the Journal of Law and

the Biosciences [78].
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Chapter 4: Reshaping US lung allocation through multi objec-

tive optimization

Following a landmark 2018 decision by the Organ Procurement & Transplantation

Network (OPTN) Board of Directors, the OPTN began the process of migrating all

of its allocation policies to a continuous distribution (CD) framework [69]. Within

this framework, transplant candidates on the national waitlist are ranked not by

classification into distinct priority groups, but rather according to a scoring rule. The

selection of key policy parameters, namely the score components and their associated

weights in the formula, poses a challenging, multi-objective optimization problem

with far-reaching ethical and practical implications.

In this chapter, we detail how we applied our ethics-by-design framework (Chap-

ter 3) to the design of a continuous distribution policy for lung allocation, working

closely with researchers at the United Network for Organ Sharing (UNOS) and the

OPTN Lung Transplantation Committee to help develop their proposal. Using our

interactive optimization tool, we explored many different policy options during the

design phase, and presented key tradeoff analyses on organ placement efficiency and

pediatric access to committee members to help guide their decision-making process.

The committee’s official proposal used values for policy parameters that were iden-

tified as inflection points in our analysis, highlighting the importance of a global

understanding of tradeoffs through optimization.

In December of 2021, the committee’s proposal was approved by the OPTN Board

of Directors, and will become national policy starting in 2023, guiding how lungs are

allocated in the US for years to come. Our simulation studies suggest that the new

policy could reduce waitlist mortality by 21% compared to the status quo, averting

62 waitlist deaths per year, while also improving fairness and equity. Independent

simulations performed by the Scientific Registry of Transplant Recipients (SRTR)

place the estimated reduction of mortality even higher, at around 40%.

The work in this chapter has been submitted for publication [79].
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Chapter 5: Tradeoffs between stability and transportation cost

in school choice

School assignment is one of the most challenging problems that public school districts

face, in that officials seek to balance student equity and preference considerations with

significant logistical and operational costs. As many districts have moved away from

neighbourhood districting and towards preference-based assignments, stable matching

mechanisms have become increasingly popular. First proposed in the seminal work of

Gale & Shapley [33], stability reflects a notion of procedural fairness in how matches

are formed, by ensuring that there is no student-school pair where both prefer each

other over their current assignments (known as a blocking pair).

Despite its natural intuition and elegance, stability alone does not suffice to ad-

dress all of a school district’s objectives. In realistic settings, districts often face hard

constraints, e.g., siblings that must be assigned to the same school or legally mandated

diversity quotas, that are not easy to incorporate in a stable matching mechanism.

The same is true of different policy objectives, e.g., minimizing racial disparities in

access to top schools or minimizing bus transportation costs, since common stable

matching algorithms do not explicitly model an objective function to select among

multiple possible solutions.

In this chapter, we apply global optimization techniques to empirically study

tradeoffs in stable matching mechanisms. We formulate stability as a mixed-integer

optimization problem, and develop a custom pre-solve algorithm to help scale it.

We apply our formulation to synthetic data based on the Boston Public Schools

district, optimizing over the space of stable solutions to minimize a proxy of the

district’s transportation cost. Our experiments suggest that stability is a particularly

constraining property in this setting, and does not allow for significant optimization of

the alternative objective. In fact, even in the largest matching instances we consider

(with ≈ 16, 000 students and ≈ 100 schools), we find that stable solutions most often

number in the single digits, and differ by no more than 0.13% in their objective values.
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Motivated by this observation, we propose a natural way to relax stability by

allowing a small number of blocking pairs. This enables us to perform tradeoff anal-

yses that balance the level of stability in the matching solution against alternative

objectives. In synthetic experiments, we observe a 12.7% average reduction in the

distance-based objective when allowing only 1% of student-school pairs to be block-

ing, and 28.2% reduction for 5% of pairs. These results suggest that districts can, in

a sense, get the best of both worlds, by balancing the procedural fairness of stability

with alternative objectives and constraints.
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Chapter 2

Balancing efficiency and fairness in

liver transplant distribution

2.1 Introduction

The US organ allocation system, administered by the United Network for Organ Shar-

ing (UNOS), has historically distributed organs based upon a “local-first” approach,

whereby deceased-donor organs are offered first to patients in proximity to the donor

location (i.e., within the Donor Service Area, DSA), followed by candidates beyond

the DSA but within the donor’s OPTN Region, and finally to candidates residing

outside of the donor’s Region. The result has been that a candidate’s access to organ

transplant has varied significantly based upon their residence within a specific DSA

and OPTN Region.

In an attempt to address this geographic disparity to organ access, on April 2nd,

1998 the “Final Rule” was issued by the Department of Health and Human Services

(DHHS) stating that organ allocation should be designed and implemented so as to

prioritize waitlisted candidates in order of decreasing medical urgency status, and

so that a candidate’s location should not remain a major determinant in access to

transplantation [27]. In the case of liver transplantation, the institution of allocation

based on the Model for End-Stage Liver Disease (MELD) in 2002 fulfilled the former

goal; however, the latter goal has been elusive as nearly two decades later it remains
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clear that the geographic disparity in access to liver transplantation has persisted

despite the “Final Rule” [3, 34].

On July 13th, 2018, a lawsuit was filed in the US District Court for the Southern

District of New York. The plaintiffs – six individuals awaiting liver transplantation –

set forth to sue the DHHS, Organ Procurement & Transplantation Network (OPTN),

and UNOS, for an “illegal and inequitable liver allocation policy” that had been based

on a history of “local-first” distribution [24]. Notably, this lawsuit came on the heels of

a court-ordered change in the nationwide lung transplant distribution policy in 2017,

which abandoned the use of DSAs as initial areas of distribution in favor of prioritiz-

ing transplant centers located within 250 nautical miles of the donor’s hospital [68].

Subsequently, the DHHS directed the UNOS Liver and Intestinal Transplantation

Committee in July 2018 to develop a novel liver distribution proposal that eliminated

both DSA and OPTN Region as a unit of organ distribution.

In this chapter, we seek to comprehensively analyze the implications of various

liver distribution proposals that the OPTN considered in response to the DHHS direc-

tive. In particular, we use simulation, machine learning, and optimization to generate

efficiency-fairness tradeoff curves for several distribution concepts falling under three

frameworks proposed by the OPTN Ad Hoc Geography Committee: (a) fixed geo-

graphic areas based on the distance between the organ donor hospital and the trans-

plant candidate’s hospital; (b) mathematical optimization of boundaries; and (c) a

continuous distribution model that combines important clinical factors along with

proximity to the donor location [70]. In so doing, we provide a visualized demonstra-

tion of fairness and efficiency which favors application of a continuous distribution

scoring model for candidates awaiting liver transplantation.
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2.2 Background

2.2.1 Liver allocation in the US

N.B. The following section serves as motivation and reflects the state of US liver

allocation policy at the time of this work (2018). We note that the OPTN has since

transitioned to prioritizing transplant centers within a fixed distance from the donor

hospital for liver distribution, eliminating the role of both DSAs and OPTN Regions

as geographic units in allocation [69].

Liver transplantation candidates are currently prioritized based on a numerical

score, ranging between 6 and 40, which reflects their predicted 90-day mortality as

determined by the Model for End-Stage Liver Disease (MELD). For distribution of

a donor liver, candidates have traditionally been classified as local, regional, or na-

tional, depending on their location relative to the donor hospital. Specifically, there

are 58 groupings of counties into Donor Service Areas (DSAs), and these DSAs are

grouped into 11 broader OPTN Regions. Candidates are classified as local (respec-

tively, regional) if their transplant program is in the same DSA (resp. Region) as the

donor hospital. Broadly speaking, for bands of decreasing MELD scores, organs are

sequentially offered first to local, then regional, and finally national candidates (with

certain exceptions for severely ill patients; see Section 2.5.1). A candidate may opt

to accept or decline an offered organ; offers are extended until the organ is accepted

or enough time has elapsed for transplantation to be deemed unviable, in which case

the organ is discarded.

The extent of geographic sharing of recovered organs – that is, between DSAs

and Regions – thus lies at the center of a long-standing debate on efficiency vs.

fairness in organ distribution. On the one hand, broader sharing increases access for

high urgency candidates who are farther away (urgency-based equity), and balances

supply and demand over larger geographic areas (geographic equity). On the other

hand, increased organ transport distances shorten the viability window and may have

detrimental effects due to increased organ ischemic time (placement efficiency).
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Historical disparities in organ supply and demand, both overall and within ge-

ographic regions, represent a byproduct of medical and technological advances that

have made organ transplantation the standard of care for the treatment of end-stage

organ failure. Notably, the geographic areas of distribution, and their boundaries,

were developed over three decades ago and were never intended nor designed to be

used as areas of distribution for transplanted organs. Despite concerted efforts to

address geographic disparity, there has been a persistent inability to achieve consen-

sus from all stakeholders regarding a novel liver distribution scheme. The delicate

balance between efficiency and fairness is paramount in the context of this discussion

and has previously been used to analyze challenges in resource allocation through the

use of tradeoffs with assigned objectives [9].

2.2.2 Organ distribution concepts

In this work, we analyze the efficiency and fairness characteristics of different organ

distribution schemes as they relate to the aforementioned sharing tradeoff. We con-

sider several different distribution concepts, broadly classified into three frameworks

according to [70]: (a) Fixed Distance from Donor Hospital; (b) Mathematically Opti-

mized Boundaries; and (c) Continuous Distribution. The majority of concepts follow

the paradigm of classifying candidates as local/regional, with livers offered first lo-

cally, then regionally, and finally nationally, within MELD-score bands (as in current

OPTN policy, certain exceptions are applied for severely ill patients). Where the con-

cepts differ is the process by which candidates are classified as local/regional, and/or

the MELD score bands used for distribution priority.

At a high level, each concept is associated with a a set of parameters that control

the level of geographic sharing, and can be be varied to yield policies with different ef-

ficiency/fairness characteristics. There follows a high-level description of the concepts

and their parameters; for more details see Section 2.5.1.

Fixed Distance from the Donor Hospital This framework prescribes using “con-

centric circles” around the donor hospital to classify candidates as local/regional [72].

In the Acuity Circles (AC) concept, three enlarging circles of fixed radii around the
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donor hospital are used to classify candidates using MELD score bands that begin

narrow for candidates with increased disease severity, but subsequently become wider

at lower MELD thresholds. Similarly, Broader 2-Circle Distribution (B2C) uses three

circles of fixed radii, but wider MELD bands throughout. Parameters considered for

the AC and B2C concepts were the circles’ radii and the MELD score bands’ ranges.

Mathematically Optimized Boundaries This framework maintains the usage of

distribution boundaries, similar to DSAs and/or OPTN Regions, but calls for their

redesign so as to optimize organ distribution. The Optimized Districts (OD) concept

is similar to existing policy, wherein existing DSAs are used; however, alternative

DSA groupings into a certain number of regions are generated through optimization

(see Section 2.4). Parameters considered were the number of regions and the possible

groupings of DSAs into regions.

Continuous Distribution This framework seeks to eliminate any type of geographic

boundaries, be it circles or regions, and instead accounts for distance between a can-

didate’s transplant program and the donor hospital by incorporating it directly into

a candidate’s allocation score. In the Continuous Distribution (CD), all candidates

nationally are prioritized according to a scoring formula that combines a medical ur-

gency score (MELD) and a proximity score. In particular, the following allocation

score is used to rank candidates:

(MELD)− 𝜆 · (Distance between candidate and donor hospitals)

where 𝜆 is the proportional factor at which the score decreases per extra unit of dis-

tance. Higher values of 𝜆 favor proximity over medical urgency. The only parameters

considered was the tradeoff weight 𝜆.

Reference Policies In addition to the above, certain baseline policies were selected

to serve as references. These were the current (at the time of this work) OPTN

11-Region policy; the AC-style policy with radii of 150/250/500nm (AC 250/500)

that was approved in December 2018 by the OPTN for future liver distribution [69];

and two other policies that the OPTN considered for adoption—an AC-style policy
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with radii of 150/300/600nm (AC 300/600) and a B2C-style policy with radii of

150/250/500nm (B2C 250/500).

Medical urgency scores While geographic distribution is the focus of this work,

it is not the only lever for improving efficiency and fairness in allocation. Previous

work has shown that there is significant potential for impact in lives saved through

more accurate and objective prioritization of candidate disease severity in liver allo-

cation. A machine-learning based Optimized Prediction of Mortality (OPOM) model

was recently developed, which predicts any adult candidate’s three-month waitlist

mortality based on 28 risk factors [11]. OPOM has been established to provide signif-

icantly more accurate mortality prediction than MELD, reducing mortality by ≈ 400

lives annually in allocation simulation. Given these promising results, we extend our

analysis of efficiency and fairness for different distribution concepts to the setting

where candidates’ medical urgency is determined by OPOM rather than MELD.

2.3 Placement efficiency and geographic equity

2.3.1 Data and methods

This study used data from the Scientific Registry of Transplant Recipients (SRTR).

The SRTR data system includes data on all donor, wait-listed candidates, and trans-

plant recipients in the U.S., submitted by the members of the Organ Procurement &

Transplantation Network (OPTN). The Health Resources and Services Administra-

tion (HRSA), U.S. Department of Health and Human Services provides oversight to

the activities of the OPTN and SRTR contractors.

Evaluation of policies under each distribution concept was based on the Liver Sim-

ulated Allocation Model (LSAM, version 2014). LSAM is a discrete-event simulator

developed by the SRTR to support studies into alternative allocation policies, and is

extensively used by UNOS and the OPTN to evaluate new policy proposals. It uses

historical waitlist and transplant data from 2007-2011 to simulate counterfactual al-

location under a given prioritization scheme. Of note, LSAM includes a geolocation
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model to estimate organ transport distances and times, as well as statistical models to

predict a candidate’s acceptance of a given organ and their post-transplant outcomes

if accepted (e.g., time to graft failure or relisting).

The benefit of simulation lies in its ability to track patient-level outcomes, and

thus provide a holistic view of efficiency and fairness not constrained by any stylized

model of allocation. Policies can be evaluated on a range of aggregate allocation

outcomes, including:

• mortality rate (on the waitlist, or post-transplant).

• transplant rate, and percent of organs transplanted locally (in the same DSA).

• disparities in the above among patient subpopulations, e.g., by age, sex, race,

disease diagnosis, blood type, etc.

• median MELD score at time of transplant (MMaT).

• standard deviation of MMaT across the 58 DSAs (𝜎MMaT).1

• transportation and efficiency metrics, e.g., median average organ transport dis-

tance, travel time, or % of organs flown.

Because LSAM was unable to simulate all distribution concepts of interest to this

study, we implemented an alternative simulator henceforth referred to as OrgSim.

OrgSim was built to replicate all of LSAM’s functionalities, utilizing the same his-

torical data and models, but is more computationally efficient and allows for more

granular control over the simulated allocation policy. Section 2.5.2 provides calibra-

tion results for OrgSim, which is shown to match LSAM within 3.2% on all outcomes

considered.

To create tradeoff curves, multiple policies under each distribution concept were

generated by varying the associated parameter values, either over a grid of feasible

settings or by using mathematical optimization. All generated policies were simulated
1𝜎MMaT is commonly used as a measure geographic equity in allocation. A higher value—that

is, higher variance in DSAs’ MMaTs—indicates that certain DSAs are able to provide organs to
candidates lower on the waitlist (after high MELD candidates have received offers) while other
DSAs are less able to meet high-urgency demand.
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over 20 iterations of OrgSim and those selected that lay on the efficient frontier of two

primary objectives, namely overall mortality and average organ transport distance.

The latter is a commonly used metric for quantifying the level of geographic sharing, as

higher values indicate that organs are allocated to more medically urgent candidates

who are farther away from the donor’s location. To ensure appropriate generalization,

the selection of policies on the efficient frontier was based on simulations of 2007-2010,

while 2011 simulation was withheld for out-of-sample validation and analysis. More

details on parameter settings and the selection process can be found in Section 2.5.3.

2.3.2 Tradeoff analyses

Given the set of policy instances lying on the mortality vs. distance frontier for each

distribution concept, tradeoff curves were generated for a range of different simulation

outcomes (including all outcomes listed in Section 2.3.1). The full set of tradeoff

curves can be found on our website (livervis.github.io), while this section summarises

key analyses to contrast the different distribution concepts.

Figure 2-1 illustrates the tradeoff between annual average deaths (y-axis) and

transport distance (x-axis) of selected policies in out-of-sample 2011 simulation. Con-

tinuous Distribution (CD) policies dominated all others considered and allowed for

the greatest reduction of deaths across all transport distances. Figure 2-2 illustrates

the tradeoff between the standard deviation of MMaT across DSAs (y-axis) and aver-

age transport distance (x-axis). Again, a continuous distribution model exhibits the

lowest level 𝜎MMaT at any given transport distance.
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Figure 2-1: Tradeoff between annual average deaths and transport distance for differ-
ent distribution concepts under MELD-based allocation in 2011 simulation. Individ-
ual points correspond to selected policies with different sharing parameters, colored
according to the distribution concept they belong to (AC, B2C, CD, OD).
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tion concepts under MELD-based allocation in 2011 simulation. Individual points
correspond to selected policies with different sharing parameters, colored according
to the distribution concept they belong to (AC, B2C, CD, OD).
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To illustrate the benefits more concretely, in Table 2.1 we compared each of the

four reference policies (Section 2.2.2) to CD-style policies with comparable transporta-

tion burden. In particular, for each reference we selected a CD-style policy—that is,

the value of 𝜆—that resulted in the closest average organ transport distance as the

reference policy in 2011 simulation. Of note, the current OPTN 11 Region policy

resulted in 2510 annual deaths, with an average organ travel distance of 244.7nm. In

comparison, utilizing a continuous distribution model while maintaining comparable

organ travel distance as current policy (243.4nm), an additional 104 lives were saved

every year. In comparison with the OPTN Board-approved AC 250/500 policy, which

resulted in organ travel of 269.1nm and 2420 deaths, continuous distribution at com-

parable travel distance (255.8nm) resulted in a mortality reduction of 31 lives. For

the proposed AC 300/600 and B2C 250/500 policies which resulted in 2394 and 2513

deaths respectively, continuous distribution at comparable travel distances resulted in

reductions of 24 and 81 deaths respectively. Moreover, all CD-style policies exhibited

significant reductions in 𝜎MMaT relative to the corresponding reference policy, on

the order of 10-30%.

Figure 2-3 plots the mortality vs. transport distance tradeoff curve of different

concepts (paralleling Figure 2-1), but now using OPOM-based instead of MELD-

based allocation. Under OPOM, the tradeoffs underlying all distribution concepts

persisted and demonstrated the same advantage in a continuous distribution model.

Projected mortality reduction due to OPOM was relatively uniform across all dis-

tribution concepts and transport distances. Per Table 2.1, a CD-style policy that

used OPOM- instead of MELD-based allocation resulted on the order 558 lives saved

annually compared to current policy.

Finally, we perform analysis to determine the impact of increased transport dis-

tances on utilization rates for marginal grafts from three categories: (a) donors

aged ≥ 70 years; (b) donated after cardiac death (DCD); and (c) organs exhibiting

macrosteatosis ≥ 30%. Table 2.2 does suggests that increased transport requirements

were associated with a trend in increased discard rates and decreased average graft

survival for marginal grafts.
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The data reported here have been supplied by the Minneapolis Medical Research

Foundation (MMRF) as the contractor for the Scientific Registry of Transplant Re-

cipients (SRTR). The interpretation and reporting of these data are the responsibility

of the authors and in no way should be seen as an official policy of or interpretation

by the SRTR or the U.S. Government.

2.3.3 Implications for allocation policy

In order to promote access and efficiency, the Final Rule mandated that organ alloca-

tion not be based on the transplant candidate’s place of residence or listing – except

as required by sound medical judgment and best use of donated organs to avoid wast-

ing organs and futile transplants [27]. Yet, a geographic disparity in access to organs

exists. For liver transplantation, this persistent discrepancy has manifested in differ-

ences in median MELD scores at transplant, rates of waitlist mortality, and ultimately

has resulted in differential patterns of clinical practice by transplant professionals and

candidates awaiting transplantation. The use of living-donor liver transplantation, a

high-risk surgical endeavor, has largely been relegated to those areas of the country

where the discrepancy between supply and demand is the greatest [98]. In addi-

tion, those socioeconomically privileged candidates who can travel, choose to do so

by “migrating” to areas with lower MELD scores at transplant in order achieve liver

transplant in an expedited fashion, and subsequently returning with their new liver

graft to their home [99].

The liver transplant community has remained divided over the discussions sur-

rounding broader distribution of deceased-donor liver grafts. Indeed, the geographic

disparity in access to organs remains a contentious topic that has progressed from a

debate among medical professionals to now resulting in a litigious intersection with

law, politics, and policy. Although in December of 2018 the UNOS Board of Directors

voted to support an acuity circles approach to liver distribution with the hopes of

achieving a more consistent and equitable approach, this by no means represents a

mathematically optimized approach. Indeed, in December of 2018 the UNOS Board

of Directors also approved the recommendation from the UNOS Ad Hoc Geography
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Committee to use continuous distribution as a model for developing future organ

distribution policies [69]. It is likely that the near future will see all solid organ al-

location move to a continuous distribution framework, a direction supported herein

by the first demonstration of the potential application of a boundaryless continuous

score in liver distribution.

Paramount to achieving consensus on an approach to address geographic dispar-

ity is the need for a balance between efficiency and fairness. The dilemma has been

previously extensively analyzed as it relates to resource allocation through the use of

tradeoffs with assigned objectives [9]; herein we applied this framework to compre-

hensively analyze outcomes of various liver distribution concepts. This analysis has

allowed for an in-depth, mathematically optimized, data-driven analysis of tradeoffs

underlying each distribution concept. Tradeoff analyses of this kind have allowed for

a methodical comparison of different distribution frameworks in terms of achievable

outcomes of interest. The data in Figure 2-1, for example, revealed how many extra

lives each framework can save per additional transport mile incurred, while Figure 2-

2 reveals how much “fairer” distribution can be by minimizing differences in disease

severity scores at transplantation per extra mile.

The generated tradeoff curves have demonstrated that a continuous scoring model

achieved the greatest benefits both in terms of efficiency and fairness. Indeed, for any

amount of transport distance incurred, there exists a CD-style policy that achieves

both the lowest number of deaths, and the lowest standard deviation of MMaT, among

all other suggested policies. Tradeoff curves have allowed for a complete assessment

of all policies simultaneously to provide the framework for an informed decision – a

decision that the transplant community will have to pursue in selecting the single

policy that achieves their desired outcome. Although the OPTN’s Liver Intestine

Committee accepted MMaT as a metric of geographic disparity in liver allocation

in March of 2013, it is important to note that tradeoff curves assessing additional

metrics of community interest can be generated in order to aid the decision making

process.

It should also be noted that, while the issues of liver distribution have remained in
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the forefront of discussions, there is significantly higher potential impact in lives saved

through a more accurate and objective prioritization of candidate disease severity in

liver allocation. An Optimized Prediction of Mortality (OPOM, www.opom.online)

was recently developed utilizing machine learning models trained to predict any adult

candidate’s three-month waitlist mortality based upon 28 variables [11]. Indeed,

OPOM allocation, when compared to MELD, reduced mortality on average by 418

deaths every year in LSAM analysis. An examination of liver distribution policies

as applied through a MELD- vs OPOM-based allocation score not only reaffirmed

that OPOM results in a significant number of additional lives saved every year, but

also that OPOM allocation combined with a continuous scoring distribution policy

maximized this potential (558 lives saved annually).

Limitations of this study include that estimating number of deaths averted using

LSAM may represent an overestimation, and that LSAM cannot account for changes

in practitioner listing or acceptance behavior; however, it is important to note the

ability of LSAM to predict the overall directionality of change in assisting organ

policy development [36]. In addition, the approach herein was only one possible im-

plementation of continuous distribution, utilizing a simple linear function of distance

with disease severity. Snyder et al. eloquently delineated other continuous distri-

bution models that entail non-linear functions of distance [92]. Whereas such more

advanced models might not be as simple to communicate to patients and transplant

professionals as the linear model considered here, they represent more general models

that can only potentially further improve outcomes.

In summary, the transplant community has now accepted the concept of contin-

uous scoring distribution policies to allow for a more equitable, and boundaryless

organ distribution. We now demonstrate application of this concept utilizing the

model of liver distribution. This first application of a continuous distribution score

for liver transplantation demonstrates superiority to all other policies currently em-

ployed or considered, and warrants similar consideration for other forms of solid organ

transplants.
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2.4 Redistricting organ allocation

2.4.1 Background

In this final section, we describe the optimization algorithm we developed to generate

Optimized Districts (OD) policies for the tradeoff analysis of Section 2.3.2. Recall

that the OD distribution concept seeks to redesign regional boundaries between the

58 existing DSAs so as to optimize organ distribution. The optimization problem at

its core is that of geographic districting, and is challenging for two reasons: first, the

solution space is highly combinatorial and, second, the objective function is given by

a computationally expensive, black-box simulator.

The optimal districting problem falls under the domain of spatial optimization

and is typically posed as that of identifying a contiguous 𝑘-coloring on a certain

planar adjacency graph. The lowest-granularity spatial units (in this case, DSAs),

are modeled as nodes in a network that are connected by an edge if they share a

geographic border. A valid districting solution is a partition of the nodes into a

fixed number of disjoint, node-covering sets (sharing regions), each of which is fully

connected and therefore geographically contiguous. The optimizer seeks the optimal

such partition with respect to some pre-specified objective, possibly under additional

constraints on the structure and features of the partition.

Optimal districting has been long studied in the literature, in applications ranging

from political and school districting to sales territory alignment and map generaliza-

tion [21, 39, 62, 105]. The need to incorporate complex objectives – often multiple at

the same time – and hard combinatorial constraints has given rise to a multitude of

heuristic approaches in these fields. More recently, exact mixed-integer optimization

(MIO) formulations have been proposed that scale to problem sizes comparable to

the DSA problem [22, 38, 90, 102]. Notably, such an approach has been previously

used to generate DSA sharing districts for organ distribution [34]. As the authors

of that study acknowledge, however, the use of MIO poses certain limitations in the

objective and constraints that can be modeled, and reduces the complex dynamics of

organ allocation to a static problem.
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Our goal in this study was to develop a districting algorithm that (i) optimizes

over simulated outcomes as directly as possible, and (ii) can efficiently identify a large

number of districting solutions that lie on the efficient frontier of mortality and trans-

port distance. Our approach, described below, combines concepts from simulation

optimization, graph-based machine learning models, and local optimization methods.

2.4.2 Overview of the algorithm

Given a planar adjacency graph 𝐺 = (𝑉,𝐸), representing a map of the OPTN’s 58

DSAs, our algorithm seeks a partition Π of the nodes (DSAs) into disjoint, graph-

covering sets (regions). We use |Π| to denote the number of sets in the partition,

and Π(𝑘) for 𝑘 = 1, . . . |Π| for the nodes belonging to set 𝑘. Note here the difference

between |Π|, the number of sets in the partition, and |Π(𝑘)|, the number of nodes in

set 𝑘.

The goal is to find a partition Π that, when used in conjunction with an OD-style

allocation policy (Section 2.2.2), minimizes the weighted sum of simulated candidate

deaths and average transport distance:

Π*
𝛾,𝐾 = argmin

Π:|Π|=𝐾

(Annual Deaths)⏟  ⏞  
𝑓1(Π)

+𝛾 · (Average Transport Distance)⏟  ⏞  
𝑓2(Π)

(2.1)

The parameter 𝛾 encodes a tradeoff between the two objectives, and can be varied to

yield solutions lying across the efficient frontier.

Our algorithm comprises three modules. The first two are “oracle” models that,

given any partition Π, predict the two outcomes of interest 𝑓1(Π) and 𝑓2(Π) under

counterfactual OD-style allocation. The third module uses the oracle predictions and

a local search procedure to systematically sort through valid partitions and select the

most promising candidates for given values of 𝛾 and 𝐾.

In principle, LSAM/OrgSim simulation could be used directly to provide oracle

predictions during the local search. Such an approach, however, is quickly seen to
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be computationally intractable, as the space of possible partitions is combinatorially

large and the simulator expensive to evaluate. Instead, our approach uses machine

learning to create high-fidelity, computationally efficient surrogates that replace the

simulator at optimization time. At a high level, we start by simulating 𝑁 randomly-

generated DSA partitions to form a data set 𝒟 = {Π𝑖, 𝑓1(Π
𝑖), 𝑓2(Π

𝑖)}𝑁𝑖=1, mapping

partitions to simulated outcomes. We then train parametric regression models 𝑓𝑗 to

minimize regression error over 𝒟 so that 𝑓𝑗(Π) ≈ 𝑓𝑗(Π) for 𝑗 = 1, 2. Once validated,

the models’ predictions obviate the need for repeatedly simulating similar partitions:

the search procedure makes incremental changes to an incumbent partition so as to

improve the surrogate, as opposed to fully simulated, objective. Of course, the final

proposals are full simulated to evaluate the true objective value.

The core contribution of this section lies in the specific formulation and training

procedure for the two oracle models, which need to capture the underlying combina-

torial structure in the models’ partition input. Simulated outcomes depend on both

node-level features – e.g., the number of candidates awaiting transplantation in a

given DSA – and the partition structure itself, which determines sharing dynamics

between DSAs. In the following two sections we describe our proposed oracle models

and describe how they each use the partition input to predict outcomes.

2.4.3 Mortality oracle model

The goal of the mortality oracle model is to predict the total number of patient

deaths in simulation for a given partition of the 58 DSAs into sharing regions. As an

intermediate step, our model first predicts the number of deaths in each of the under-

lying regions, and aggregates for a unified estimate. The prediction for each region

is akin to classical linear regression, with the exception that regression coefficients

are calculated at the node (DSA) level, and averaged to give region-wide coefficients

during prediction. In our implementation, independent variables includes the number

of donors, number of candidates, and ratio of donors/candidates in the region, as well

as number of candidate counts split by MELD status.

More concretely, each region 𝑘 in partition Π is accompanied by a set of 𝑝 features,
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denoted by 𝑥𝑘 ∈ R𝑝 (for a total of 𝑝 · |Π| features). These may include any number

of aggregate region attributes, e.g., the total number of candidates or donors in the

region, their average urgency score, etc. The dependent variable for region 𝑘 is

denoted by 𝑦𝑘 and represents the number of deaths of patients listed in the region

over the simulation. Thus the ultimate dependent variable, i.e., the total number of

deaths, is given by
∑︀|Π|

𝑘=1 𝑦𝑘.

Conceptually, our model estimates separate regression coefficients for each node

in the graph, globally and independent of any given partition. To capture sharing

dynamics within a region, at the prediction step we average the coefficients of all DSAs

within the region to get region-level parameters that thus depend on the partition

structure. Mathematically, each node 𝑣 ∈ 𝑉 is associated with a coefficient vector

𝛽𝑣 ∈ R𝑝 (for a total of 𝑝 · |𝑉 | parameters), and the number of deaths in region 𝑘 is

predicted as follows:

̂︀𝑦𝑘(Π) = 𝑝∑︁
𝑗=1

∑︁
𝑣∈Π(𝑘)

(𝛽𝑣)𝑗
|Π(𝑘)|

(𝑥𝑘)𝑗

The intuition here is that the 𝛽𝑣 are latent parameters belonging to the fixed DSAs,

and regions, which change simulation by simulation, “inherit” the average parameter of

all DSAs comprising them. For an illustrative example, suppose the 𝑗’th independent

variable corresponds to the total number of candidates in a region. Then, ceteris

paribus, (𝛽𝑑)𝑗 can be interpreted as a sort of overall mortality rate for DSA 𝑣, and

the region coefficient
∑︀

𝑣∈Π(𝑘)
(𝛽𝑣)𝑗
|Π(𝑘)| averages out the mortality rates of the DSAs

comprising the region.

For reasons having to do with model training (see below), we define “adjusted”

node-level features for each DSA 𝑣 as 𝑥̄𝑣 := 𝑥𝑘

|Π(𝑘)| ∈ R𝑝, where 𝑘 is the region 𝑣

belongs to. In a sense, these represent the contribution that 𝑣 is making to its

region’s aggregate features, smaller if there are more DSAs in the region. The overall

mortality prediction, summing over regions, can then be written as:

𝑓1(Π) =

|Π|∑︁
𝑘=1

̂︀𝑦𝑘(Π) = 𝑝∑︁
𝑗=1

|Π|∑︁
𝑘=1

∑︁
𝑣∈Π(𝑘)

(𝛽𝑣)𝑗
|Π(𝑘)|

(𝑥𝑘)𝑗 =
∑︁
𝑣∈𝑉

𝛽⊤
𝑣 𝑥̄𝑣
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Note that once the node-level features are computed for a given partition, what

remains is a linear function in 𝛽. The parameters are estimated by ordinary least

squares regression over 𝒟:

𝛽* = argmin
𝛽

1

𝑁

𝑁∑︁
𝑖=1

(︁
𝑓1(Π

𝑖)− 𝑓1(Π
𝑖)
)︁2

The final model used in our analysis, trained on randomly generated partitions for

the 2007-2009 simulation cohorts, yielded a mean absolute error (MAE) of 13 deaths

on a range of 2,340 to 2,440 deaths for out-of-sample 2010 simulations.

2.4.4 Distance oracle model

The goal of the distance oracle model is to predict the average organ transport dis-

tance in simulation for a given partition of the 58 DSAs into sharing regions. As an

intermediate step, our model first predicts flows of organs between each pair of DSAs

under a given partition – that is the number of organs recovered in one DSA that

were transplanted in another. The pairwise flows are aggregated, weighted by the

geographic distance between the DSAs, to yield the overall distance prediction.

Concretely, organ flows are estimated via a separate fractional response regression

for each pair of DSAs 𝑢 and 𝑣.2 Suppose that 𝑠𝑢 organs were recovered in DSA 𝑢

during simulation, and of those 𝑛𝑢,𝑣 where transplanted to a candidate residing in DSA

𝑣. Then the dependent variable of the logistic regression is defined as 𝑝𝑢,𝑣 := 𝑛𝑢,𝑣

𝑠𝑢
.

Independent variables capture relevant partition information such as whether 𝑢 and

𝑣 are assigned to the same region, the number of other “competing” DSAs in their

common region, and their relative candidate and donor ratios. Once validated, the

resulting models (|𝑉 |2 in total) are then used to predict the percentage of organs

recovered in each DSA going to every other DSA under a new partition Π, which we

denote by ̂︀𝑝𝑎,𝑏(Π).
2Fractional response regression is very similar to logistic regression, with the primary difference

being that the dependent variable can take fractional values in [0, 1] rather than being binary.
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Finally, the average organ transport distance is estimated by weighting the pair-

wise estimates by (i) the geographic distance between 𝑢 and 𝑣’s centers, 𝛿𝑢,𝑣, and (ii)

the number of recovered organ in each DSA, 𝑠𝑢:

𝑓2(Π) =

∑︀
𝑢,𝑣 𝛿𝑢,𝑣 · 𝑠𝑢 · ̂︀𝑝𝑢,𝑣(Π)∑︀

𝑢,𝑣 𝑠𝑢 · ̂︀𝑝𝑢,𝑣(Π)
Since 𝑠𝑢 · ̂︀𝑝𝑢,𝑣(Π) is the expected number of organ recovered in DSA 𝑢 that need to be

transported to 𝑣, the numerator denotes the expected total transport distance, while

the denominator is the expected total number of transplants. Their ratio is then the

average organ transport distance.

The final model used in our analysis, trained on randomly generated partitions

for the 2007-2009 simulation cohorts, yielded a mean absolute error (MAE) of 9.7

miles/transplant on a range of 270 to 435 miles/transplant for out-of-sample 2010

simulations.

2.4.5 Local district search

Armed with the two oracle models for forecasting outcomes, the search procedure

seeks to (approximately) solve problem 2.1 for fixed number of regions 𝐾 and tradeoff

parameter 𝛾. Each run starts with an initial, randomly generated partition Π0 and

makes incremental changes that improve the surrogate objective given by the weighted

some of the oracle predictions.

To define notation, let 𝒫 denote the set of “valid” partitions for the problem at

hand, namely those having exactly 𝐾 geographically contiguous regions. Further, let

𝑁(Π) denote the local neighbourhood of Π in the sense of a one-unit swap; that is, all

Π′ ∈ 𝑁(Π) differs from Π only in the region assignment of a single DSA, which now

belongs to the same region as one of its graph neighbours. Note that the set 𝑁(Π)

can be easily enumerated by looking at every edge in the graph that connects two

differently assigned nodes and changing the color of either one. In principle, swaps of

higher degree are also possible, though we do not use them here.

Initial partitions Π0 are generated by selecting 𝐾 graph nodes uniformly at ran-
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dom to act as regional centers. Subsequently, the remaining nodes are assigned by

randomly selecting a region and one of its edges that connects to an unassigned node

randomly. Then, at each optimization step 𝑡, all Π′ ∈ 𝑁(Π𝑡−1) are enumerated and

screened to confirm they are valid in 𝒫 (checking that there are 𝐾 contiguous re-

gions). All valid proposed partitions are evaluated by the two oracle models and the

one selected that achieves the greatest reduction in the hybrid objective:

Π𝑡 = argmin
Π′∈𝒫∩𝑁(Π𝑡−1)

𝑓1(Π𝑡−1) + 𝛾 · 𝑓2(Π𝑡−1)

The process repeats until no improving partition can be found. For the full opti-

mization process, we further implement random restarts, running the local search

algorithm with many random initial points and selecting the best ones. Details on

the parameter settings and selection process for the efficient frontier can be found in

Section 2.5.3.
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2.5 Appendix

2.5.1 Distribution concepts in detail

This section describes the detailed implementation of all distribution concepts con-

sidered. Applicable to all concepts are the following principles:

1. Top priority is always given to waitlist candidates who are status 1A or 1B3

and are local (as defined by the concept).

2. Offers are then extended to remaining candidates within pre-defined classifica-

tion groups, as defined by the distribution concept. These are generally based

on some combination of medical urgency (MELD or OPOM) and geography.

3. Unless otherwise state, ties within classification groups are broken as in current

policy [73], that is in an order dictated by:

• Blood type compatibility (identical before compatible)

• Decreasing medical urgency (rounded MELD or OPOM score)

• Decreasing time on the waitlist at current or higher MELD/OPOM score.

4. Offers are extended only to blood-type compatible patients unless the candidate:

• has indicated willingness to accept an incompatible donor and

• is designated Status 1A or 1B or has a MELD/OPOM score above 25.

The definition of classification groups for all four distribution concepts follows. In

the case of OPOM-based allocation, all references to MELD are replaced by OPOM,

which has been scaled to have the same exact distribution as MELD.

3These statuses are special designations granted by the OPTN to indicate utmost medical ur-
gency; e.g., patients with fulminant liver failure and a life expectancy of less than 7 days or similarly
dire circumstances.

44



Optimized Districts (OD): The 58 DSAs are grouped into some number of broader

regions, and candidates are classified as local (same DSA), regional (same Region)

or national (otherwise) relative to the donor’s location. Allocation is modeled after

the current OPTN 11-Region distribution policy: offers are extended first to regional

candidates designated as Status 1A or 1B, followed by regional candidates with MELD

[35,40], with local candidates preceding regional within each integral point of MELD

(known as the Share35 rule). There follow local candidates with MELD [29,35), local

candidates with MELD [15,29) and then regional candidates with MELD [15,35).

Allocation then proceeds to national 1A, then national 1B, and then national MELD

[15,40] candidates. Finally offers are made to candidates with MELD [6,15) locally,

regionally and nationally. Parameters considered are the number of regions K, the

possible groupings of DSAs into regions, and the weighting parameter 𝛾 which is

varied in the optimization to yield policies along the efficient frontier.

Acuity Circles (AC): Based on the 2018 proposal submitted by the OPTN Liver

and Intestine Transplantation Committee [72]. Three concentric circles are defined

around each donor hospital (small, medium, large) and candidates assigned to them

based on distance to their place of listing. Status 1A candidates within the large

circle are offered first, followed by Status 1B within the large circle. Allocation then

proceeds in expanding circles (small, medium, large) for each decreasing MELD group

[37, 40], [33-37), [29-33) and [X, 29) where X is a threshold parameter typically set

to 15 or 20. Candidates outside the large circle are offered next for Status 1A, then

1B and then MELD [X, 40]. Finally, candidates with MELD [6, X) are offered in

expanding circles and outside the large circle. Parameters in the model consist of the

radii of the three circles in nautical miles, as well as the lower MELD threshold X.

Broader 2-Circle Distribution (B2C): Based on the 2018 proposal submitted

by the OPTN Liver and Intestine Transplantation Committee [72]. Three concentric

circles are defined around each donor hospital (small, medium, large) and candidates

assigned to them based on distance to their place of listing. Status 1A candidates

within the large circle are offered first, followed by Status 1B also within the large

circle. Candidates within the medium circle with MELD in the [Y, 40] range are
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offered next, where Y is a threshold parameter typically set to 29, 32 or 35. Alloca-

tion proceeds to candidates in the [15, 40] MELD range in expanding circles (small

medium, large), excluding those high urgency patients already considered. Offers

are next extended to candidates outside the large circle for Status 1A, then 1B and

then MELD [15, 40]. Finally, candidates with MELD [6, 15) are offered in expanding

circles (small, medium, large) and outside the large circle. Parameters in the model

consist of the radii of the three circles in nautical miles, as well as the higher MELD

threshold Y.

Continuous Distribution (CD): Status 1A candidates within 600 miles of the

donor hospital are offered first, followed by Status 1B candidates within the same

distance. Within these groups, candidates are ranked by a unified score that weights

their blood type compatibility (10 points awarded for identical blood types, 5 for

compatible and 0 otherwise) and distance to the donor hospital according to a tradeoff

parameter 𝜆 – i.e., candidates are sorted in decreasing order of (compatibility points)

− 𝜆 · (Distance). Ties are broken by waiting time at Status 1A/1B. The third

classification group consists of all non-Status 1A/1B candidates nationally, prioritized

by a unified score that weights their MELD score and distance to the donor hospital

by the same parameter 𝜆, that is in decreasing order of (MELD) − 𝜆 · (Distance).

Ties are broken by waiting time at current or higher MELD score. Finally, candidates

designated as Status 1A/1B beyond 600nm are offered. The primary parameter in

the model is the distance tradeoff parameter 𝜆 – with larger values favoring proximity

over acuity. Notably, when 𝜆 is set to zero the result is a “national sharing” policy

whereby livers are offered based solely on medical urgency.

2.5.2 Simulation calibration

To model the distribution concepts not available in LSAM 2014, an alternative sim-

ulator we refer to as OrgSim was developed in the python programming language.

OrgSim was built to replicate LSAM’s exact simulation functionalities based on pub-

licly available information [94]. It uses all of the same input and model definition

files, and uses the same discrete-event simulation process. It also exactly replicates
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LSAM’s geolocation, offer acceptance and post-transplant statistical models.

Table 2.3 contains calibration results for OrgSim, comparing means and standard

deviations of several key metrics over 50 iterations of allocation using the OPTN’s

current 11-Region policy. Notably, the simulators match within 3.2% on all metrics,

and within 0.3% and 0.7% for total deaths and average transport distance – the

primary selection criteria for the optimization – respectively.

Table 2.3: Calibration results for OrgSim compared to LSAM on across all aggregate
allocation metrics. Both simulators allocate livers according to the current OPTN 11-
Region Policy. Values represent the mean of 50 iterations of simulation using either
simulator, with standard deviations in parentheses.

Outcome LSAM OrgSim Difference
Deaths (Total) 2513 (25) 2505 (26) 0.3%
Deaths (Waitlist) 1277 (10) 1285 (12) 0.6%
Deaths (Postgraft) 592 (24) 573 (20) 3.2%
Deaths (Removed) 644 (9) 648 (7) 0.5%
Avg. Transport Distance (nm) 244.7 (3.8) 243.1 (3.5) 0.7%
Median Transport Distance (nm) 99.9 (1.8) 100.2 (1.7) 0.3%
Avg. Transport Time (hrs) 1.46 (0.01) 1.43 (0.01) 2.2%
Median Transport Time (hrs) 1.60 (0.01) 1.60 (0.01) 0.1%
Transplant Count (Total) 6265 (18) 6183 (18) 1.3%
Percentage Local Transplants 62.5 (0.6) 62.8 (0.5) 0.4%
Percentage Organs Flown 49.8 (0.5) 49.9 (0.5) 0.1%
MMaT 25.0 (0.0) 25.1 (0.3) 0.3%
𝜎MMaT 3.4 (0.1) 3.5 (0.1) 1.9%
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2.5.3 Parameter selection

This section describes the full set of parameter values that were used to generate

candidate policies for the tradeoff analysis (see Sections 2.3.1). For each distribution

concept, the goal was to select a set of policies – that is instantiations of the param-

eters – that lay on the efficient frontier of the two primary metrics of mortality and

transport distance. As noted earlier, we assure generalization by selecting the effi-

cient frontier based on simulations over 2007-2010, and base our analysis (including

the figures and tables of Section 2.3.2) on out-of-sample simulations of 2011.

Given the small number of parameters for the CD-, AC- and B2C-type policies,

here we used a simple grid search. For each concept, a grid of parameters (see below)

was simulated using 2010 data. To select the efficient frontier of each concept, the

x-axis metric (average transport distance) was split into 𝑁 equal-sized bins across its

simulated range. Then, within each bin, the policy was selected that minimized the

y-axis metric (total number of deaths).

For the AC and B2C concepts we used a grid for the radii of the three concen-

tric circles, each ranging between 50 and 1000 nautical miles in increments of 50,

and excluding combinations where a larger circle had a radius more than five times

that of its immediate predecessor. For the AC concept, we simulated policies with

a MELD threshold of 𝑋 = 15 and 𝑋 = 20, while for B2C we considered all three

thresholds proposed by the OPTN Liver and Intestine Transplantation Committee,

namely 𝑌 = 29, 32 and 35. For CD policies we varied the tradeoff parameter 𝜆 be-

tween 0 and 0.1 in increments of 0.002, capturing national sharing on the one hand,

and a policy that equally weighs one point of MELD and 10 nautical miles of distance

to the donor hospital on the other.

In the OD concept we used the optimization algorithm described in Section 2.4,

seeking solutions with a number of regions that ranged from 𝐾 = 4, . . . , 11, and

varying the tradeoff parameter 𝛾 between 0 and 10 in increments of 0.25. For each

combination of 𝛾 and 𝐾 we conducted 1000 random restarts of the local search, using

the trained oracle models and 2010 input data. For each value of 𝛾, the top 10
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solutions (across all 𝐾) were selected for validation through full simulation. The top

3 of those – now with respected to the fully simulated hybrid objective – were selected

to constitute the efficient frontier of OD-style policies. The broad range of 𝛾 values

ensured exploration of the full frontier.

2.5.4 Additional tradeoffs

To supplement the analysis of Section 2.3.2, we present here a robustness check on

the measure of transport burden used as a proxy for the level of geographic shar-

ing. In particular, Figures 2-4 and 2-5 plot tradeoffs between mortality and 𝜎MMaT

vs. average organ transport time as calculated by LSAM’s geolocation model. The

plots are in direct correspondence with Figures 2-1 and 2-2, and confirm our findings

that continuous distribution policies offer the greatest potential for mortality and

geographic inequity reduction at any fixed level of transport burden.
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Figure 2-4: Tradeoff between annual average deaths and transport time for different
distribution concepts under MELD-based allocation in 2011 simulation. Individual
points correspond to selected policies with different sharing parameters, colored ac-
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Figure 2-5: Tradeoff between 𝜎MMaT and transport time for different distribution
concepts under MELD-based allocation in 2011 simulation. Individual points corre-
spond to selected policies with different sharing parameters, colored according to the
distribution concept they belong to (AC, B2C, CD, OD).
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Chapter 3

Ethics-by-design: efficient, fair and

inclusive resource allocation

3.1 Introduction

As has been made clear by current controversies regarding criteria for allocating

COVID-19 vaccines in US states and across countries, the distribution of crucial

medical goods and services in conditions of scarcity is among the most important,

albeit contested, areas for public policy development [42, 43, 66]. COVID-19 vaccine

allocation policy questions – for example, how much to prioritize age and measures

of vulnerability and whether to consider “indirect benefits” – although in some sense

specific to the pandemic, are also representative of a more general challenge in devising

allocation policies: how to combine ethical theory, data modeling, and stakeholder

input into a single process for generating a sound allocation system.

The importance of deriving and implementing good models for doing this can

be seen in what is widely considered as a major failure in this area: the Oregon

Medicaid prioritization process of the late 1980s and early 1990s. Oregon’s goal

was to expand Medicaid to all persons below the poverty level while keeping costs

manageable by restricting which services were reimbursable. What services to cover

was determined using a combination of methods including: (i) actuarial estimates of

the cost of providing Medicaid coverage; (ii) a state-wide telephone survey formulated
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to measure “Quality of Well Being” and calculate the effectiveness of approximately

1600 treatments for particular conditions; and (iii) input from physician specialist

panels regarding benefit duration and average age of onset of relevant conditions

[81]. The initial process’ focus on cost-benefit analysis generated a list of covered

and non-covered procedures that was discomfiting to some, for example by covering

tooth-capping but not emergent appendicitis. Ensuing controversy prompted a move

to “correct” the process by, among other things, creating larger overarching categories

and “moving by hand” into covered categories procedures or treatments that seemed

to the commissioner to be common-sense priorities [80].

The Oregon experiment mixed evidence, ethics, and stakeholder input in a witch’s

brew that was perceived as ad hoc and political. The process nevertheless had (at

least) some of the right ingredients. A purely top-down ethics approach, absent testing

of its ramifications through data modeling, is problematic, but so is prioritizing what

can be measured rather than measuring what should be prioritized; and both ethics-

and data-driven approaches will fail without stakeholder pressure testing and buy in.

Can all of this be combined into a better model?

We argue yes, and describe a general framework that we view as a major step

forward for ethically informed policymaking. The key idea is to incorporate ethics

into a data-driven policy design process from the outset. At the core of our approach

is a novel analytical tool, based on machine learning and optimization, that enables

stakeholders to assess tradeoffs between different policy objectives. To achieve that

aim, users specify their desired system-level outcomes, encompassing diverse ethi-

cal and utility considerations, and the tool identifies a conforming policy in near-real

time. By exploring the impact of changing user inputs, stakeholders, from ethicists to

community leaders, can develop evidence-based value judgments on relevant tradeoffs

regardless of their technical expertise, and more effectively engage in the policymaking

process. To present our framework, we use as a case study the Organ Procurement &

Transplantation Network’s (OPTN) policymaking process for migrating from the cur-

rent classification-based policy to a continuous distribution model for organ allocation

[71, 92].
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3.2 Redesigning organ allocation in the US

3.2.1 Policy development and the OPTN

Since 1986, the OPTN has been operated under a federal contract by the United

Network for Organ Sharing (UNOS). A core obligation of UNOS is to facilitate de-

velopment of policies that determine how organs from deceased donors in the United

States are allocated to medically suitable candidates on the national waiting list. The

unfortunate reality is that demand for transplants far outstrips available supply, and

transplant candidates generally wait a significant amount of time before receiving an

organ. But not everyone can afford to wait. Some end-stage organ failure patients

are so critically ill that without a transplant they will die in a matter of days.

The guiding principles for developing organ allocation policy are set by the OPTN

Final Rule [27]. Among other requirements, the Final Rule states that organ alloca-

tion policies must be based on “sound medical judgement,” seek to achieve the “best

use” of donated organs, and promote “efficient management” of organ placement. Al-

location policies should aim to equitably distribute organs to those most in need over

as broad a geographic area as is feasible.

In translating the abstract ethical principles established by the Final Rule into

concrete policy, the transplant community is confronted with many ethical dilemmas.

For example, to which of two equally sick candidates needing an organ should it be

offered first? What if one candidate would be transplanted at a hospital closer to

the donor’s location, reducing the potentially detrimental effects of organ ischemic

time and increasing organ placement efficiency, but the more distant candidate has

been waiting longer? Adjudicating such dilemmas in a systematic, objective, and

repeatable manner every time a donated organ becomes available (24× 7, 365 days a

year) is the role of the organ allocation policies operationalized by UNOS.

Crucially, UNOS does not unilaterally develop policy, but rather serves as a con-

vener of the transplant community to help develop new and refine existing policies.

This community consists of a host of stakeholders including transplant surgeons,

physicians, Organ Procurement Organization (OPO) professionals, transplant candi-
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dates and recipients, living donors and donor families, as well as the general public.

The OPTN policy development process is designed to foster careful, wide-ranging dis-

cussion and deliberation based on input from these various constituencies [74, 100].

Transplant professionals and patients provide input by serving on OPTN committees

that meet regularly to discuss clinical and practical details involved in developing

policy and monitoring policy impacts post implementation.

In these discussions, the OPTN employs an evidence-based approach to policy

development, guided by subject-matter expertise from transplant professionals and

patients and backstopped by public comment and Board approval steps incorporated

into the process. Evidence is typically derived from both retrospective analyses of

the rich OPTN transplant database (e.g., identifying inequities in access to organs

from historical data) and allocation simulation modeling performed by the Scientific

Registry of Transplant Recipients (SRTR) contractor to predict outcomes of proposed

policy changes [94]. In recent years, more sophisticated approaches incorporating

mathematical optimization and simulation modeling have at times played an integral

role in the policy development process [34, 63].

3.2.2 The continuous distribution framework

The tension inherent in translating the guidance of the Final Rule into concrete pol-

icy is nowhere more evident than in the longstanding policy debates surrounding

the role of geography in allocating organs [26, 35, 47, 48, 60, 65, 103]. To what

degree should proximity to the donor hospital be considered vis-à-vis a candidate’s

medical urgency, especially given the historic precedent of prioritizing “local” candi-

dates (those registered at a transplant hospital within the administrative boundary

assigned to OPOs)? With the central aim of increasing transparency and removing

hard geographic boundaries that sometimes preclude organs from going to candidates

most in need, the OPTN recently embarked on a large-scale initiative to migrate all

allocation policies, starting with lung, to the boundaryless Continuous Distribution

(CD) framework [69].

Whereas under current policy candidates are prioritized by way of an ordered list
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of groups of “similar” candidates, under the CD framework candidates are prioritized

by a mathematical formula. In its simplest form, all candidates on the lung waitlist,

for example, could be ranked by a weighted sum of their medical priority (quantified

by their Lung Allocation Score) and placement efficiency (using distance to the donor

hospital as a proxy). The relative weight of these two components would govern how

widely organs are offered to those in need, thereby codifying the tradeoff between

placement efficiency and need-based equity. Converging on the “right” balance be-

tween efficiency and fairness is exactly the sort of ethical dilemma the OPTN seeks

to reconcile through the deliberative policy development process.

Converting to the new CD framework also provides an opportunity to revisit

value judgements embedded in existing policies [96]. For example, what influence

should a candidate attribute like waiting time, which codifies the “first come, first

serve” ethic, play vis-à-vis other policy objectives like ensuring equitable access to

patients with biological disadvantages (e.g., a harder-to-match blood type)? Or what

role should reducing waitlist mortality play compared to maximizing survival time

among those who receive a transplant? Additional attributes can be incorporated into

the composite allocation score to adjust candidate priority accordingly, and relative

weights of each component chosen to strike a defensible balance between the OPTN’s

many efficiency, utility, and fairness objectives. Value judgements (weights), as well

as attributes used to build the score, will almost certainly differ depending on the

organ (kidney, liver, heart, lung, etc.), as each organ-specific policy is expected to

have its own formula.

Simulation allocation modeling provides crucial input to the OPTN’s evaluation

process by predicting system-wide outcomes of proposed policies. The SRTR’s sim-

ulation models use historical waitlist and transplant data to simulate counterfactual

allocation under a proposed prioritization scheme and predict aggregated outcomes

(e.g., overall mortality rates, transplant rates for different candidate subpopulations,

transport metrics, etc.) [94]. The ability to compare policies holistically across multi-

ple objective dimensions facilitates “outcome-driven” policy discussions and helps to

identify pain points to be accounted for (e.g., increased inefficiencies, such as more
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organ shipments expected to require a flight, or unintended inequities in access to

organs under a proposed policy).

Consequently, simulation modeling has typically been conducted via trial-and-

error, with simulated outcomes from initial policy ideas used to iteratively refine

those ideas until acceptable predicted outcomes are achieved. With continuous dis-

tribution, the process might work as follows. Given attributes to be included in the

priority formula, an initial set of policies (i.e., corresponding weights) would be pro-

posed, simulated, and their predicted utility/efficiency/fairness outcomes reviewed by

stakeholders. The results and committee discussions would inform the selection of

a subsequent round of policy options to be simulated, for example by increasing or

decreasing certain attribute weights to address a predicted inequity or inefficiency,

and the process would be repeated.

Unfortunately, the computationally expensive and time-consuming nature of it-

eratively running simulations, reviewing and discussing results, and determining the

next set of options to simulate means that this crucial evidence-generating phase of

policy development can consume many months or even years. Even when a desired

improvement is identified during an iteration, it is not a priori clear what, if any,

proposed remedy will achieve better outcomes until new simulations are run. Time

considerations may constrain the range of options tried, or many iterations may be

required until a suitable option is found. The decade-long development of the Kid-

ney Allocation System (KAS), in which well over 30 different policy options were

simulated, is a prime example [41, 82, 95].

3.3 Shifting to ethics-by-design

3.3.1 Optimization methodology

In this work, inspired by ethics-by-design principles, we introduce a general analyti-

cal framework for outcome-driven policy design when development is constrained by

a burdensome evaluation process such as simulation. Our approach leverages the
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Figure 3-1: One step in the iterative design process under a traditional trial-and-error
approach (top) vs. our framework (bottom). In the former, a burdensome evaluation
process (e.g., computationally expensive simulation) forms a bottleneck that limits
the number of candidate policies stakeholders can use to assess tradeoffs. Moreover,
it is not a priori clear whether a proposed remedy aimed at improving outcomes will
work until the modified policy is evaluated itself. In our framework, machine learning
models remove the evaluation bottleneck and allow optimization to efficiently search
for a policy that best achieves a set of pre-specified outcomes.

predictive power of machine learning to replace the bottleneck evaluation step with

near-instantaneous model-based evaluation. The ability to more efficiently predict

each outcome for a given policy in turn allows us to invert the problem: instead of

starting with policy options and iteratively evaluating predicted outcomes, the ap-

proach starts with the desired outcomes and returns a specific policy engineered to

achieve them (Figure 3-1). The result is an analytical tool that is ideally suited to

characterizing tradeoffs between multiple objectives, allowing stakeholders to iterate

on what the desired objective balance should be rather what design decisions achieve

those outcomes.

We illustrate our approach as it might be applied to the design of a Continu-

ous Distribution (CD) lung allocation policy. The CD case is a particularly potent
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example, as the space of possible policies – that is, the space of relative attribute

weights for the priority formula – is essentially infinite, and searching over it for the

policy that strikes the “right” balance over multiple objectives becomes prohibitively

expensive when using conventional simulation. Were it possible to evaluate policies

instantaneously, the full efficient frontier of outcomes could be characterized a priori,

and the policy instantiations that correspond to different points on it known precisely.

To this end, our methodology seeks first to characterize, using machine learning,

the full range of achievable outcomes, and subsequently, through optimization, the

efficient frontier. The role of policymakers would then be to select which point on

the frontier best achieves the stated policy objectives; that is, decide what relative

attribute weights strike their desired balance in the various efficiency, fairness and

utility outcomes of interest. To be clear, the end-product of this design process is still

a fully transparent CD policy that ranks candidates according to a static allocation

formula and can be easily explained to patients, physicians, and other community

members.

At a high level, our approach relies on specialized machine learning models to

accurately and near instantaneously predict the outcomes of any given policy instan-

tiation. Efficient predictions in turn allow optimization algorithms to sift through the

space of possible policies and find the one that best achieves a set of user specified

outcomes.

The first step involves using the simulation allocation model to predict the full

set of outcomes for a fixed number of randomly generated policies, resulting in a

dataset that maps policy instantiations (attribute weights) to each outcome of interest

(mortality rate, disparities in transplant rates, transport costs, etc.). We modify

the Thoracic Simulated Allocation Model (TSAM, version 2015), publicly available

through the SRTR [94], to prioritize patients according to a continuous distribution

formula and simulate each policy over the 2009–2011 period. These initial simulations,

though computationally expensive, need only be run once and can be parallelized

across multiple machines to reduce computational overhead.

The simulated runs are used to train nonlinear regression models that serve as
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computationally efficient “approximators” of the simulator. During this offline train-

ing process, the models use the initial runs to identify and extrapolate correlations

between attribute weights and each simulated outcome; then, given a new set of at-

tribute weights, they can predict outcomes such as mortality rate or transport cost

without invoking the computationally expensive simulator. We ensure that the mod-

els accurately capture the complexity of the simulator by using piecewise-linear func-

tions that account for nonlinearity in the relationship between attribute weights and

outcomes. In validation, we found that these regressions achieved out-of-sample R2

ranging from 0.90 to 0.99 depending on the outcome, able to predict the simulator’s

output with surprising accuracy.

With the ability to predict any simulated outcome accurately and efficiently, we

can then use optimization to find new policies that achieve any set of pre-specified

outcomes in near real-time. In an optimization problem, one seeks to find the values

of decision variables (here, composite score attribute weights) that minimize or max-

imize an overarching objective function (a simulated outcome, such as mortality or

post-transplant survival) subject to additional constraints (efficiency or fairness re-

quirements, such as an upper bound on average organ transport distance or transplant

rate disparities for patients with different blood types). Given such a specification, we

use an open-source mixed-integer optimization solver to sift through the vast space of

possible policies to find one that meets the specified criteria. If no such policy exists

(e.g., because the constraints were too stringent), the optimization problem can be

modified to instead find a policy that deviates minimally from the stated require-

ments. Once such a policy has been found, the original simulator is re-invoked to

verify the regression models’ predictions and evaluate the optimization-derived policy

in full.

3.3.2 Implications for policy development

Because any simulator output modeled in the regression can be designated in either

the objective or constraints of an optimization problem, policymakers can quickly

iterate through different optimization scenarios – that is, different sets of objectives
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Figure 3-2: Slider-based optimization interface. Any simulation outcome can be
selected either as the overarching objective outcome (here, minimizing # Waitlist
Deaths), or added as a constraint by providing an upper bound on its value vis-
à-vis some reference policy. The optimization methodology produces a conforming
allocation policy in seconds, whose predicted outcomes can be used to refine the
objective and constraints further.

and constraints involving different policy outcomes – and explore what policies are

predicted to achieve them. One might envision a “slider”-based interface, as depicted

in Figure 3-2, whereby policymakers iteratively explore scenarios by changing the

outcome to optimize and adding or adjusting constraint bounds.

One might begin, for example, by looking for a policy that minimizes waitlist mor-

tality (the overarching objective) without increasing average organ transport distance

vis-à-vis current policy (a constraint). The optimization computes a conforming al-

location policy within seconds, which is simulated and other outcomes shown. If the

resulting policy exhibits some undesirable characteristic, say an unacceptable increase

in transplant rate disparities by blood type, an additional constraint could be applied

and the optimization resolved to arrive at a new policy.
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discrepancy in transplant rates across patient blood types and height groups does not
increase vis-à-vis current policy.
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A natural extension of the above framework is the ability to construct tradeoff

curves for simulated outcomes, as depicted in Figure 3-3. Here, the optimization

algorithm is invoked a number of times to generate policies on the efficient frontier

of two outcomes. Each optimization run attempts to minimize waitlist mortality (y-

axis), but the upper bound for median organ transport distance constraint (x-axis)

is systematically varied across a range of values, resulting in policies with different

placement efficiency characteristics. As the upper bound on distance increases, the

optimization selects attribute weights that increasingly favor medical urgency over

proximity in the allocation score. Initially, the added flexibility allows policies to

realize a significant reduction in mortality as organs are transplanted to sicker patients

farther away. At a certain point, however, the reduction exhibits diminishing returns,

providing valuable insight into the projected benefits of broader distribution.

Although harder to visualize, the optimization methodology is able to search over

the efficient frontier of any number of additional outcomes. We include in the same

figure a set of optimized policies, generated as before, but with a “guardrail” con-

straint that dictates that policies should not increase disparities in transplant rates

by candidate blood type and height group vis-à-vis current policy. That the “No

Increase” policies fall on the same curve as the “Unconstrained” ones suggests that

lung continuous distribution policies are able to achieve essentially the same mor-

tality benefit per mile of additional organ transport distance without exacerbating

disparities in access to transplant by candidate blood group.

This study used data from the Scientific Registry of Transplant Recipients (SRTR).

The SRTR data system includes data on all donor, wait-listed candidates, and trans-

plant recipients in the US, submitted by the members of the Organ Procurement &

Transplantation Network (OPTN). The Health Resources and Services Administra-

tion (HRSA), U.S. Department of Health and Human Services provides oversight to

the activities of the OPTN and SRTR contractors.

The data reported here have been supplied by the Hennepin Healthcare Research

Institute (HHRI) as the contractor for the Scientific Registry of Transplant Recipients

(SRTR). The interpretation and reporting of these data are the responsibility of the
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author(s) and in no way should be seen as an official policy of or interpretation by

the SRTR or the U.S. Government.

3.4 Discussion

As the OPTN case study shows, leveraging the predictive power of machine learning

to replace the bottleneck policy evaluation step with near-instantaneous model-based

evaluations opens up exciting possibilities for refining ethicists’ and other stakehold-

ers’ input to data-driven policymaking. One of the chief advantages of the proposed

approach is that it enables ethicists and communities to offer input at precisely the

points at which their views have the most value.

To illustrate, consider the following example of lung allocation policymaking. Ask-

ing ethicists or community members whether a lung candidate attribute estimating

post-transplant survival and another attribute measuring waitlist survival should both

be weighted at 34% of the composite allocation score, or one reduced by 2%, would

likely elicit blank stares or weak intuitions at best. Asking instead “would you be

willing to tolerate a 10% decrease in average years of post-transplant survival if it

meant a 5% reduction in waitlist mortality,” and showing how the tradeoff changes as

a “slider” moves, poses a set of considerations for which ethical theory and/or com-

munity sentiment is likely to generate more useful feedback. We view this tool as an

important way to improve the ability of key stakeholders without medical expertise,

including donor and recipient populations, to influence policymaking. This approach

also enables ethicists and community groups to clearly pre-specify “guardrails,” for

example, that disparities between blood type or racial groups not increase at all, or

more than a specified amount, and show in near-real time how including, removing,

or modifying those guardrails will change results.

While we view this approach as a major step forward for ethically informed poli-

cymaking, it does not solve every problem. First among the difficulties that persist is

that modeling is only as good as the data on which it is based and the assumptions

upon which it relies. In general, our approach works best when policymakers have
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access to high-quality data and analytical tools to accurately predict outcomes, e.g.,

counterfactual simulation in the case of organ allocation. Even then, an ethicist or

a community stakeholder may raise a question about the effect of a policy change –

for example, effects on patients with intellectual disabilities – that is not captured

in the input data and cannot be accurately modeled in a tradeoff curve. Similarly,

predictions in applications areas where practitioners have little historical experience

(e.g., COVID-19 vaccine allocation), are likely to rely on assumptions that should be

closely examined. Recent work has shown how particular modeling choices in, say, cu-

ration of the training data or selection of objective metric, can result in biased model

recommendations. Fortunately, the machine learning and optimization communities

have made significant headway in developing methods to identify and mitigate such

model-based biases [5, 44, 97].

In practice, data and model limitations should also be clearly communicated to

stakeholders during the design process, to avoid over-reliance on imperfect predictions

and to allow clinical and subject-matter expertise to influence conclusions drawn

from the analysis. The ideal solution is to use representative, high-quality data sets,

when that is not possible to be transparent about the limitations of the data sets

being used, and when those limitations are serious enough to reconsider whether

the model can do the work we want out of it. That being said, we note that such

limitations also beset older, simpler approaches to policymaking, and one advantage of

our framework is that it streamlines determining where current modeling practices fall

short in addressing ethically important questions; this in turns sets up the possibility

of changing those practices to fill the gaps.

Second, when done right, the approach discussed here seeks input from a multiplic-

ity of stakeholders including ethicists, transplant professionals, donor communities,

potential recipients, and sub-stratifications such as racial and ethnic minorities. The

introduction of new analytical tools does not obviate the need for wide-ranging, cross-

cutting deliberation to reach consensus, particularly as engaging with these stakehold-

ers also means engaging with their biases. We believe our approach makes it easier

for stakeholders to more meaningfully assess and weigh relevant tradeoffs, but it does
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not guarantee more convergence between the groups. How should a policymaker re-

spond when various communities champion different tradeoffs? Should all views be

treated equally? Many ethicists will chafe at the idea of “ethics by headcount” in the

sense of aggregating, without exploring the reasons behind, preferences for tradeoffs

and potentially dismissing some as inconsistent or problematic. Though the federal

regulation governing US organ allocation policy provides a final safeguard to rule out

legally inconsistent policy options, this Final Rule does not precisely dictate which

tradeoffs are out of bounds. Again, this problem is not new; in making tradeoffs

more visible and accessible, our approach may make the problem more common –

though some may view this more a feature (by inviting greater engagement with the

tradeoffs) than a weakness.

Finally, there often exist significant cultural and institutional hurdles that must

be overcome for the adoption of advanced analytical tools like the one we propose.

In the case of organ allocation, US policymakers over the last two decades have most

often used trial-and-error simulation to explore policy options. The shift to include

advanced machine learning and optimization methods for helping develop a lung con-

tinuous distribution policy challenged the community’s flexibility to accommodate a

new approach. Despite the introduction of new methodology, many of the core com-

ponents of the age-old policymaking process remained in place including, committee

discussion, public comment feedback from the community, and SRTR simulation mod-

eling. The additional analyses, particularly optimized tradeoff curves (Figure 3-3),

provided extra scrutiny of the proposal and helped stakeholders home-in on a final set

of policy options worth consideration. Leveraging these tradeoff curves also provided

a gentle introduction to the use of advanced mathematical methods that could pave

the way for broader community acceptance of even greater reliance on goal-driven

optimization in future allocation policy development.

Although some in the transplantation community might struggle with more so-

phisticated analytical tools, others see their adoption as an opportunity to improve

the historically time-consuming policy development process. For years, committee

discussion and retrospective data analysis informed policy proposals that were then

65



modeled by the SRTR. However, with these new tools, the community and commit-

tee can feel more confident about their chosen allocation policy options before the

final, confirmatory simulation modeling is conducted. Over time, these more complex

models can gain public confidence as new-and-improved policies are implemented and

demonstrated to meaningfully improve outcomes for patients awaiting organ trans-

plantation.

More generally, one might worry that, given relative unfamiliarity with machine

learning among ethicists and stakeholder communities of interest, some may find it

difficult to understand precisely what the approach we describe here “does” or be

concerned about “not seeing the whole picture.” To remedy this gap will require

thoughtful attempts at scientific communication that meets stakeholders “where they

live,” rather than a one-size-fits all strategy. Policymakers need to be sensitive to al-

gorithmic aversion and key opportunities to manage it including the use of interactive

tools like “sliders” that enable stakeholders to see how AI/ML works even if they will

never get “under the hood” [28]. For healthcare policymakers focused on allocation

controversies, it might also be worth considering, depending on the setting, combining

the machine learning methods discussed here with deliberative democracy techniques,

such as deliberative polling, consensus conferences, and citizen juries [20, 31, 32].
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Chapter 4

Reshaping US lung allocation

through multi-objective optimization

4.1 Introduction

Following a landmark 2018 decision by the Organ Procurement & Transplantation

Network Board of Directors, the OPTN began the process of migrating all of its

allocation policies to a new framework termed “continuous distribution” [69]. Within

this framework, transplant candidates on the national waitlist are ranked not by

classification into distinct priority groups, but rather according to a scoring rule. The

selection of key policy parameters, namely the score components and their associated

weights in the formula, poses a challenging, multi-objective optimization problem with

far-reaching ethical and practical implications. Given the limited supply of available

organs, policies should seek to distribute organs to those most in need, over as broad

a geographic area as feasible, while also safeguarding equity in access for different

communities.

Crucially, policymakers in this setting must reconcile the views of a large and

diverse set of stakeholders who often champion different tradeoffs. For example,

some transplant professionals might favour local transplants, aiming to reduce the

potentially detrimental effects of longer organ transport times, while others might

favour broader distribution to reach more medically urgent candidates who are farther
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away. Federal regulation, in the form of a “Final Rule” governing transplant policy

[27], provides nonnegotiable, but often imprecise, guardrails, such as limitations on

the extent to which geography can be incorporated into the rank-ordering algorithm.

Similar debates arise in calibrating pediatric priority, or in striving to reduce access

disparities based on race, sex, age, blood group and other patient characteristics.

Adjudicating these debates in a rigorous manner necessitates the development of

flexible decision support tools that can shed light on relevant tradeoffs and promote

convergence towards more effective and inclusive allocation policies. To this end, we

introduce a novel framework for policy design based on multi-objective optimization.

At a high level, we use machine learning and mixed-integer representable surrogate

optimization models to approximate allocation outcomes, allowing us to characterize

the (approximate) efficient frontier of policy design decisions. By varying the objective

and constraints of the optimization, one can design policies with different efficiency

and fairness characteristics. The result is a decision-support tool that enables stake-

holders, even those without technical expertise, to quickly iterate on different policy

scenarios and refine their value judgments on relevant tradeoffs as they engage in the

policymaking process.

Herein we describe how we applied our methodology to the design of a continuous

distribution policy for lung allocation, working closely with researchers at the United

Network for Organ Sharing (UNOS) and the OPTN Lung Transplantation Commit-

tee to help develop their proposal. Using our optimization tool, we explored many

different policy options during the design phase, while the resultant tradeoff analysis

was presented to committee members and helped guide their decision-making process

[54, 55]. The committee’s official continuous distribution proposal used values for

policy parameters that were identified as inflection points in our analysis for organ

placement efficiency and pediatric priority. The proposal was distributed for public

comment in August of 2021 [57], ratified in October of the same year [56], and ap-

proved by the OPTN Board of Directors in December 2021 [75]. Thus, it will become

national policy starting in 2023, guiding how lungs are allocated in the US for years

to come. We perform simulation studies that suggest the new policy could reduce
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waitlist mortality by 21% compared to the status quo, averting 62 waitlist deaths per

year, while also improving fairness and equity. Independent simulations performed by

the Scientific Registry of Transplant Recipients (SRTR) place the estimated reduction

of mortality even higher, at around 40% or 87 waitlist deaths averted per year.

4.2 Allocation policy in the US

4.2.1 Background

In the United States, transplantation policy is overseen by the Organ Procurement &

Transplantation Network (OPTN), which since 1986 has been operated under federal

contract by the United Network for Organ Sharing (UNOS). Any patient seeking a

organ transplant is registered on a national waitlist maintained by the OPTN. When

an organ is recovered from a deceased donor, all candidates are ranked based on a

fixed set of rules (the allocation policy) and the organ is offered sequentially until a

candidate accepts.

The guiding principles for developing organ allocation policy are set forth by the

OPTN Final Rule [27]. Among other requirements, the Final Rule states that organ

allocation policies must be based on “sound medical judgment,” seek to achieve the

“best use” of donated organs, and promote “efficient management” of organ placement.

Allocation policies must aim to equitably distribute organs to those most in need, over

as broad a geographic area as feasible. Translating these abstract ethical principles

into concrete policy presents many ethical dilemmas for the transplant community.

For example, what if one candidate would be transplanted at a hospital closer to the

donor’s location, reducing potentially detrimental effects of increased organ ischemic

time and improving organ placement efficiency, but another, more distant candidate

is sicker and likely to die sooner? Which of these two patients should an organ be

offered to first?

Crucially, UNOS does not unilaterally determine allocation policy, but rather

serves as a convener of the transplant community to help develop new and refine ex-
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isting policy [74]. This community consists of transplant surgeons, physicians, Organ

Procurement Organization professionals, transplant candidates and recipients, living

donors and donor families, as well as the general public. Transplant professionals

and patients provide input by serving on OPTN Committees that meet regularly to

discuss the clinical and practical details involved in developing policy. Committees

work with UNOS to perform quantitative and qualitative analyses, solicit input from

key constituencies, and formulate proposals to change how allocation works. These

proposals are distributed to the broader community for public comment and possibly

refined as a result, before being presented to the OPTN Board of Directors for final

approval.

4.2.2 Continuous distribution

Current organ allocation policies operate within a classification-based framework,

whereby candidates are separated into “similar” groups and each group assigned a

distinct priority level (with additional ranking rules defined within each group [76]).

For example, an organ from a pediatric donor might be offered first to all pediatric

candidates within some fixed distance of the donor hospital, ordered by their time

on the waitlist. If none accepts, the organ is then offered to high-urgency adult

candidates within the same boundary, followed by pediatric candidates who are far-

ther away, and so forth. Such classification-based allocation systems have long been

criticized as being unfair, particularly as regards to geographic distribution, since

candidates’ access to organs can vary highly depending on their inclusion or not in a

particular group [26, 35, 60, 65, 103].

With the central aim of increasing transparency and removing hard geographic

(and other types of) boundaries that sometimes preclude organs from going to can-

didates most in need, the OPTN has recently embarked on a large-scale initiative to

migrate all allocation policies – starting with lungs – from the current classification-

based system to a boundaryless Continuous Distribution (CD) framework [53]. For

exposition purposes, we will introduce the CD framework in the context of lung al-

location, using the OPTN Lung Transplantation Committee’s recent development
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process as a reference, but the general principles apply to all organs.

Under the CD paradigm, all candidates on the waitlist are prioritized according

to a scoring rule. Relevant candidate and donor attributes are combined into a

single Composite Allocation Score (CAS) which precisely determines a candidate’s

waitlist rank for the given organ. The two primary design decisions involved in

developing such a policy are (1) what patient and donor attributes should be included

as score components in the CAS and with what functional form, and (2) their relative

weighting in the composite score. Typically there is broad consensus on the former,

while the latter is a central point of debate given its importance in balancing different

policy objectives (see Section 4.2.3).

As regards to the first design decision, the Lung Transplantation Committee’s

initial CD development process determined that the following patient and donor at-

tributes would be included in the lung CAS:

• Post-transplant outcomes (PTAUC, “Post-Transplant Area Under (the survival)

Curve”), a survival analysis-based measure of how long a patient is expected to

live if they receive a transplant of median quality.

• Medical urgency (WLAUC, “Waitlist Area Under (the survival) Curve”), a sur-

vival analysis-based measure of how long a patient is expected to live if they do

not receive a transplant and remain on the waitlist.

• Placement efficiency, a function of distance between the donor and recipient

hospitals, reflecting the resources needed to match, transport and transplant

the organ to a given patient.

• Biological disadvantage points for candidates who are medically harder to match

based on blood type, height and immune system sensitization level.1

• Patient access points awarded to pediatric patients (aged < 18 years) and prior

living donors.
1Potential recipients are “sensitized” if their immune system makes antibodies against potential

donors. Sensitization usually occurs as a consequence of pregnancy, blood transfusions, or previous
transplantation. Highly sensitized patients are more likely to reject an organ transplant than are
unsensitized patients.
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More details on the selected attributes and how they are measured can be found in

the committee’s proposal [57].

The second design decision, and focus of this work, is the selection of a set of

relative weights for each attribute. Whenever an organ 𝑜 becomes available, each

compatible candidate 𝑝 is assigned a vector 𝑎𝑜,𝑝 ∈ R𝑚 reflecting their priority across

of each of the 𝑚 aforementioned attributes. To create a scoring rule, we seek a vector

of score weights 𝜆 ∈ R𝑚 so that CAS𝑜,𝑝 =
∑︀

𝑚 𝜆𝑚𝑎𝑜,𝑝,𝑚. We next focus on why

selecting these weights is an exceedingly difficult problem.

4.2.3 Challenges in policy design

The selection of score weights presents two key challenges. First, it is fundamen-

tally a multi-objective problem, in which policymakers must strike a balance between

multiple efficiency, utility and fairness-related objectives. Moreover, different stake-

holders might champion different tradeoffs in these objectives that must be reconciled

during the development process. Second, given a vector of score weights, predicting

policy outcomes under counterfactual allocation is challenging in and of itself, and

requires, in this context, complex simulations to capture the many interacting effects

of a given prioritization scheme. Simulation is both computationally expensive and

non-transparent, making it hard to anticipate what outcomes would result for a given

policy, or how they would compare across different proposals.

In the case of continuous distribution, the score weights are the primary levers

through which policymakers can influence tradeoffs to meet the Final Rule’s many

utility (post-transplant outcomes), efficiency (transport burden and costs), and fair-

ness (mortality and equity in access to organs) mandates. For example, placing a low

relative weight on placement efficiency results in policies that favour broad geographic

distribution to highly urgent or otherwise disadvantaged patients, but might exhibit

increased logistical burdens and worse post-transplant outcomes as organs need to be

transported longer distances. Similarly, a higher weight on biological disadvantage

might result in more equitable distribution to patients who are medically harder to

match, but increase waitlist mortality as organs are not allocated to the most severely
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ill patients.

Given a set of scoring attributes then, their weights should ideally be chosen

to reflect the community’s consensus value judgments on the importance of differ-

ent utility, equity, and efficiency considerations. Since different stakeholders often

champion different tradeoffs, the OPTN’s policy development process is designed to

foster wide-ranging, evidence-based discussion on tradeoffs and solicit input from the

community’s many and diverse constituencies [74].

Simulation modeling plays an integral role in this process by allowing stakeholders

to assess policy proposals across a wide range of metrics. The Simulated Allocation

Model (SAMs), developed and maintained by the Scientific Registry of Transplant

Recipients (SRTR), use historical waitlist and transplant data to simulate counter-

factual allocation under a proposed policy, e.g., a continuous distribution policy with

given attribute weights [94]. Through discrete event simulation, SAMs can be used

to predict system-wide outcomes such as:

• Waitlist and post-transplant mortality rate.

• Transplant and discarded organ rate.

• Disparities in the above among patient subpopulations, e.g., by age, blood type,

geography, sex, race, etc.

• Transportation and efficiency metrics, e.g., median organ transport distance or

% of organs flown.

While this ability to compare policy options across multiple metrics facilitates

“outcome-driven” policy debates, the black-box nature of the simulator introduces

a significant challenge in selecting score weights. The mapping of weights to sim-

ulated outcomes is both computationally expensive and non-transparent, rendering

optimization over them particularly challenging. In other words, it is hard to antic-

ipate what the simulated outcomes would be for a given set of weights – which in

turn makes it hard to find what weights would achieve a desired balance in multiple

objectives.

73



The OPTN committees’ simulation modeling has typically been conducted via

trial-and-error, with simulated outcomes from initial policy ideas used to iteratively

refine those ideas until acceptable predicted outcomes are achieved. The time con-

suming process of iteratively running simulations, reviewing and discussing results,

and determining the next set of options to simulate means that this crucial evidence-

generating phase of policy development can consume many months or even years.

Worse, the limited number of options that can be simulated might not reflect the full

range of tradeoffs, while often it is difficult to identify what, if any, proposed rem-

edy would achieve some desired improvement during an iteration. The decade-long

development of the Kidney Allocation System (KAS), in which well over 30 different

policy options were simulated, is a prime example [82, 95].

4.3 Multi-objective optimization framework

In this work, we introduce a general optimization-based framework for policy design

that seeks to address the two challenges we discussed in the previous section, namely

(i) that predicting a policy’s outcomes is the result of some complex, non-transparent

process that complicates optimization, and (ii) that policymakers seek to balance

tradeoffs in multiple objectives, reconciling potentially disparate value judgments

from diverse stakeholders. To facilitate exposition, we introduce our methodology

in the context of continuous distribution for lung allocation; however, the model we

develop can be applied more generally for the design of any type of parameterized

policy, be it in organ allocation or beyond (see relevant discussion in Section 4.5).

The basic building block of our framework is an approach to solve what is essen-

tially an inverse control problem: given a set of desired outcomes, our model seeks

the policy parameters that best achieve them. Crucially, we use machine learning to

approximate the simulator when predicting allocation outcomes, allowing us to by-

pass explicit simulation during optimization. As a result, policymakers can directly

design policies with given efficiency/fairness characteristics, in near real-time, uncon-

strained by the expensive, non-transparent simulator. Moreover, this more efficient
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optimization enables outcome-driven tradeoff analysis by varying the optimization

objective and constraints. The result is a flexible decision support tool for policy-

makers, including those with non-technical backgrounds, to evaluate policy tradeoffs

and understand the impact of design decisions on their outcomes of interest.

4.3.1 Mathematical model

We consider a function 𝐵 : 𝒳 ↦→ 𝒴 , with 𝒳 a bounded domain and 𝒴 ⊆ R𝑑.

The domain 𝒳 represents the set of valid policy parameter settings, e.g., possible

score weights 𝜆 for a continuous distribution allocation policy. For the purposes

of optimization, we require that 𝒳 is Mixed Integer Linear Optimization (MILO)

representable; that is, it can be expressed in terms of continuous- and integer-valued

decision variables and linear inequality constraints on them. The multi-dimensional

output 𝒴 encodes a set of 𝑑 outcomes that may be of interest to decision-makers, e.g.,

mortality rate, transplant rate, transport burden, equity metrics, etc. We assume

without loss of generality that lower values are preferable for all outcomes (negating

the sign of the outcome if necessary).

The function 𝐵 is not assumed to have known functional form, and may only

be queried at particular inputs 𝑥 ∈ 𝒳 to observe 𝑦 = 𝐵(𝑥). Such functions are

typically referred to as “black-box” functions, in the sense that they do not provide

explicit gradients or structural properties that might aid in optimization over 𝒳 .

Moreover, they are typically computationally expensive to evaluate, which renders

finite-difference gradient methods impractical to run at large scale. In lung allocation

for example, 𝐵 would represent the counterfactual allocation simulator that predicts

transplant outcomes for a given parameterized policy.

We now define the concept of a problem instance on the function 𝐵; that is, an

optimization problem over 𝒳 with a fixed set of outcomes appearing in the objective

and constraints. For lung allocation, a problem instance might correspond to, say,

finding the score weights 𝜆 that minimize waitlist mortality (primary outcome), with

pre-specified upper bounds on organ transport distance and transplant rate disparities

(constrained outcomes). Mathematically, a problem instance 𝜋 = (𝑗, 𝑏) consists of (i)
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a primary objective index 𝑗 ∈ [𝑑] and (ii) a requirement vector 𝑏 ∈ R𝑑. These induce

the following optimization problem:

minimize
x∈𝒳

𝐵𝑗(x)

subject to 𝐵𝑖(x) ≤ 𝑏𝑖 ∀ 𝑖 ̸= 𝑗

𝑃 (𝜋)

The primary objective is the index of an outcome to be minimized directly. Other

outcomes appear in the constraints, with right-hand side given by the requirement

vector 𝑏. Individual outcome requirements 𝑏𝑖 are allowed to be +∞, to denote that

the outcome should be unconstrained.

Crucially, the set of problem instances of interest to the decision makers is not

known a priori, and may change as they explore the space of solutions and achievable

outcomes. If 𝐵 is computationally expensive, sequentially solving multiple instances

as users refine their requirements and explore tradeoffs quickly becomes impractical.

This serves as a primary motivation for our work; we seek an efficient tool to compute

solutions to arbitrary problem instances, or provide reasonable alternative solutions

should those prove infeasible.

4.3.2 Methodology

Our approach, which comprises three phases, relies on surrogate modeling techniques

[45] to formulate tractable approximations of 𝑃 (𝜋). First, in the Sample Design

phase, we generate a sample of representative inputs and evaluate each using the

black-box function 𝐵. The paired inputs and outputs serve as a supervised machine

learning dataset, which is used to train high-fidelity, mixed-integer representable sur-

rogate models of 𝐵 during the Surrogate Modeling phase. Third, in the Optimization

phase, we dynamically formulate and solve mixed-integer linear optimization prob-

lems (MILOs) to solve 𝑃 (𝜋) for various instances 𝜋, using the surrogate models in

lieu of 𝐵.
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Sample design

In the sample design phase, we query 𝐵 at a representative sample of 𝑁 design points

and track the vector of outcomes, to be used in training of downstream surrogate

models. We denote this dataset by {x𝑛,y𝑛 = 𝐵(x𝑛)}𝑁𝑛=1, with x𝑛 ∈ 𝒳 and y𝑛 ∈ 𝒴

for all 𝑛. Concretely, in the lung allocation setting each data point would correspond

to a randomly sampled set of scoring weights 𝜆, as well as the vector of simulated

outcomes using the corresponding scoring rule.

We sample each 𝑥𝑛 uniformly from 𝒳 to ensure broad generalization of the sur-

rogate models across the domain, while the sample size 𝑁 controls the quality of in-

terpolation and must be traded off against the computational complexity of repeated

queries of 𝐵. In practice, the queries of 𝐵 are independent and can be effectively

parallelized to create a larger dataset.

In general, the sampling procedure used to generate training samples is highly

dependent on application and the form of 𝒳 . The problem of sampling uniformly

from different domains is well studied in the experimental design literature, e.g.,

Latin hypercube sampling for hyper-rectangles [61], custom samplers for structured

polyhedral sets like the unit simplex [91], or hit-and-run methods for more general

polyhedral sets [104].

Surrogate modeling

Using the dataset {x𝑛,y𝑛}𝑁𝑛=1, we train machine learning models to predict each

individual outcome; that is, parametric approximations 𝑓𝑖(x ; 𝜃𝑖) ≈ 𝐵𝑖(x) for each

outcome 𝑖 ∈ [𝑑]. Parameters 𝜃𝑖 are estimated by minimizing an application-specific

loss function, e.g., least-squares error, over the training set, and using cross-validation

to select between different models for each outcome. We evaluate goodness-of-fit based

on 𝑅2 on a held-out test set, and retrain on the entire dataset to better interpolate

the sampled design points.

Crucially, since the surrogate models will be optimized over, we require that their

output is mixed-integer representable in the design variables x. The choice of para-
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metric class is once again dependent on the application, and should balance the need

for high predictive power (for accurate approximation) and low parametric complex-

ity (for efficient optimization over the trained models). MILO formulations have

been studied for a broad range of machine learning methods with varying power and

complexity, including regression trees, tree-based ensembles, and neural networks

[1, 14, 59, 64]. In our implementation, we found that relatively simple piece-wise

linear functions achieved very high accuracy while allowing for near real-time opti-

mization (see Section 4.4.1).

Optimization phase

In the optimization phase, given any problem instance 𝜋, we solve a surrogate opti-

mization problem to find an approximate solution to 𝑃 (𝜋). In particular, we replace

𝐵 with the trained approximations, and consider:

minimize
x∈𝒳

𝑓𝑗(x ; 𝜃𝑗)

subject to 𝑓𝑖(x ; 𝜃𝑖) ≤ 𝑏𝑖 ∀ 𝑖
𝑆(𝜋)

Given our assumptions on 𝒳 and 𝑓𝑖, 𝑆(𝜋) is a Mixed Integer Linear Optimization

problem. Its size scales with the number of policy parameters and outcomes, as

well as the parametric complexity of the surrogate models. In our implementation

(Section 4.4.1), the relatively small number of parameters and outcomes (in the tens)

resulted in problems that could be solved in seconds by open-source MILO solvers.

The solution of 𝑆(𝜋) is ultimately evaluated with a single query of 𝐵 and its true

outcomes computed. Due to errors in the approximation models, it is not guaranteed

that the solution is in fact feasible for 𝑃 (𝜋). However the magnitude of constraint

violations, if any, is not expected to be large if the surrogates are accurate. Should

the violations prove unacceptably large we propose adding a safety term to the ap-

proximation (see Appendix 4.7.1).

Finally, we note that, based on the choice of 𝑏, 𝑆(𝜋) could be infeasible – indicat-
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ing that the desired requirements 𝑏 were overly stringent. To address this possibility,

the model can be readily modified using slack variables, and appropriately reformu-

lated to produce a feasible solution that comes “as close as possible” to meeting the

requirements 𝑏. We formalize this in Appendix 4.7.2.

4.3.3 Implications for policy design

There are several important advantages to our optimization approach. First, it en-

ables policymakers to dynamically explore the space of policies and outcomes as they

iterate towards consensus. The formulation of problem instances might be imple-

mented as an interactive application (e.g., see Figure 4-1), allowing users to intu-

itively and flexibly define the objective and constraints for their outcomes of interest.

Once the instance of interest has been specified, the application will automatically

formulate and solve the corresponding MILO to display optimized policy parameters

and their simulated outcomes. As a result, stakeholders, even those without tech-

nical expertise, can efficiently explore different policy options and refine their value

judgments on relevant tradeoffs.

To exemplify, without our framework, policymakers for lung allocation would need

to contemplate and debate how much weight to award for each CAS attribute, thereby

“mixing apples & oranges” with limited intuition. Within our framework, and using

a tool like the one shown in Figure 4-1, policymakers can instead focus on debating

appropriate target outcomes; a setting where ethical theory and community sentiment

is more likely to generate useful feedback.

In particular, policymakers might iteratively solve multiple 𝑃 (𝜋) to produce poli-

cies with varying efficiency/fairness characteristics. If a generated policy exhibits

some undesirable characteristic, e.g., an unintended increase in transplant rate dis-

parities for patients of different blood types, a constraint on that outcome could be

added to the optimization to address it. Conversely, policymakers might perform sen-

sitivity analysis by removing or modifying a particular constraints to see how other

outcomes are affected; for example, does loosening an equity constraint decrease wait-

list mortality, and if so by how much?
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Upper Bound Value % relative current

120.0%

100.0%

100.0%

100.0%

Constrained Outcomes

Median Organ Transport 
Distance (nautical miles)

Disparity in Transplant Rates by 
Blood Type (TX / patient-year)

Disparity in Transplant Rates by 
Height Group (TX / patient-year)

Disparity in Transplant Rates by 
Age Group (TX / patient-year)

Minimize # Waitlist Deaths

Choose Outcome to Optimize

0.13 0.580.03

0.31 0.780.14

0.35 0.410.12

Figure 4-1: Illustrative interface for specifying problem instances. Any simulation
outcome can be selected either as the overarching objective outcome (here, minimizing
# Waitlist Deaths), or added as a constraint by providing an upper bound on its value
vis-à-vis some reference policy. The surrogate optimization produces a conforming
allocation policy in seconds, whose predicted outcomes can be used to refine the
objective and constraints further.

More generally, our framework allows for global tradeoff analysis. By systemati-

cally varying the constraint bound on one outcome (e.g., organ transport distance)

while optimizing a second (e.g., minimizing waitlist mortality), policymakers can

visualize the (approximate) efficient frontier of outcomes. Inflection points, where

marginal gains in one outcome diminish significantly relative to another, can pro-

vide guidance for how to balance different objectives. Crucially, the advantage of

an optimization-based approach here is that policies on the tradeoff curves might

be additionally constrained. For example, policymakers might examine the trade-

off in transport distance and waitlist mortality, while ensuring that transplant rate

disparities for different subpopulations do not exceed a certain level.
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4.4 Reshaping national lung allocation policy

We discuss how we collaborated with UNOS to apply our framework to the design

of a continuous distribution policy for lung allocation. Among others, we performed

tradeoff analyses to address two questions confronting the OPTN Lung Transplan-

tation Committee during the policy development process: (i) how to reconcile the

Final Rule’s competing mandates of placement efficiency and broader geographic dis-

tribution to the most urgent patients, and (ii) how to ensure that pediatric patients

maintained the same high level of access to organs as they do under the current

classification-based system.

Both of these questions have far-reaching implications for fairness, equity, and

the welfare of patients, as we discuss next. In particular, the first question has been

at the forefront of policy debate for decades (see Section 4.2.2), and in fact served

as a primary motivation for the OPTN’s decision to migrate all organ allocation

to continuous distribution. Under continuous distribution, the relative weight of

placement efficiency in the CAS formula controls the level of geographic distribution.

It thus directly encodes the tradeoff between increased transportation burden on the

one hand, and waitlist mortality and geographic equity on the other. To this end,

we generated tradeoff curves for waitlist mortality vs. various transportation burden

metrics, identifying inflection points that could guide the committee’s selection of a

weight for placement efficiency.

The second question reflects the committee’s desire to ensure high levels of access

for pediatric patients (aged less than 18 years). Beyond ethical motivations for pri-

oritizing this vulnerable population, pediatric patients are also generally considered

medically harder to match due to organ size compatibility constraints. Under the pre-

vious classification-based system, pediatric patients were given the highest priority for

organs recovered from pediatric donors, ensuring that they were offered compatible

organs at a high rate. Under continuous distribution, the committee sought to iden-

tify the minimum value for pediatric weight that would result in the highest possible

transplant rates for pediatric patients, and our framework was applied to this end.
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The results of our analyses, which we detail in the following sections, were pre-

sented to the OPTN Lung Transplantation Committee in March 2021 [54, 55]. We

identified 10% placement efficiency weight as an inflection point in the tradeoff of wait-

list mortality vs. transportation burden, and a range of 15%-20% pediatric weight

as the minimum necessary to maintain high levels of pediatric access. After inde-

pendently validating our results via additional simulation studies performed by the

SRTR [93], the Committee eventually adopted our recommendations for the place-

ment efficiency and pediatric access weights. In particular, the committee’s official

continuous distribution proposal, depicted in Figure 4-2, recommended values of 10%

and 20% respectively for the two attributes. The proposal was distributed for pub-

lic comment in August of 2021 [57], ratified in October of the same year [56], and

approved by the OPTN Board of Directors in December 2021 [75]. Thus, it will be

implemented as the OPTN’s first continuous distribution policy in 2023, dictating

how deceased-donor lungs are allocated in the US for years to come.

25%

25%
15%

5%

20%

10%

Attribute

Waitlist Survival
Post−Transplant Outcomes
Biological Disadvantages
Prior Living Donor
Pediatrics
Placement Efficiency

Figure 4-2: Continuous distribution attribute weights used in the OPTN Lung Trans-
plantation Committee’s official proposal, as ratified by the OPTN Board of Directors
in December 2021 [57, 75].
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4.4.1 Modeling implementation

We first describe the implementation of our framework (Section 4.3) to the design

of a lung continuous distribution policy in more detail. Here, the primary policy

parameters to be optimized are the CAS weights 𝜆 for the six attributes selected by

the committee (Section 4.2.2). In addition to the attributes themselves, the committee

previously worked with UNOS to develop a set of rating scales, consisting of linear

functions for some attributes and nonlinear functions for others, which translated

the inherent value associated with each attribute value to a comparable [0,1] scale

[57]. Thus, our optimization domain consists of weight vectors 𝜆 drawn from the unit

simplex, 𝒳 = {𝜆 ∈ [0, 1]6 :
∑︀

𝑖 𝜆𝑖 = 1}, so that candidates’ CAS scores also lie on a

unit scale [0, 1].

The black-box function 𝐵 represents the SRTR’s Thoracic Simulated Allocation

Model (TSAM, version 2015), which simulates counterfactual allocation of 3,326 re-

covered lungs to 6,546 waitlist candidates over a two-year period from 2009-2011

[94]. We modify the simulator to accept a CAS weight vector 𝜆 as input, and im-

plement a continuous distribution allocation scheme using the committee’s selected

attributes. The output domain 𝒴 consists of 47 simulated outcomes encompassing

a wide range of efficiency, utility and fairness metrics, including waitlist mortality,

transplant rates, transport burden and equity measures for different patient classifica-

tions (see Appendix 4.7.4 for the full list). We applied the optimization methodology

of Section 4.3.2 as follows:

Sample Design We sampled 10,000 weight vectors 𝜆 uniformly at random from

the unit simplex to generate a training dataset [91]. Each generated policy was

simulated 20 times, and the average value of each outcome was recorded.

Surrogate Modeling We fit piece-wise linear surrogate models separately for

each outcome. Our hypothesis class consisted of functions that were the minimum

or maximum of 𝐾 affine functions of 𝜆, with parameters 𝜃𝑖 corresponding to the

coefficients and intercept of each function. We used a random 80-10-10% train-

ing/validation/testing split and selected the best-performing hyper-parameters based
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on 𝑅2 on the held-out validation set. Out-of-sample 𝑅2 of the selected models ranged

from 0.85-0.99 for all outcomes, with an average of 0.96. Further implementation

details and results are given in Appendices 4.7.3 and 4.7.4.

Optimization We implemented problem instance formulation as an interactive

tool, as depicted in Figure 4-1, and used the open-source CBC solver [30] to solve

the corresponding MILOs. More information on formulations of our chosen surrogate

models can be found in Appendix 4.7.3.

This study used data from the Scientific Registry of Transplant Recipients (SRTR).

The SRTR data system includes data on all donor, wait-listed candidates, and trans-

plant recipients in the US, submitted by the members of the Organ Procurement &

Transplantation Network (OPTN). The Health Resources and Services Administra-

tion (HRSA), U.S. Department of Health and Human Services provides oversight to

the activities of the OPTN and SRTR contractors.

4.4.2 Tradeoffs for placement efficiency

To address the committee’s question regarding geographic distribution, we applied

our framework to generate tradeoff curves for waitlist mortality and different organ

transport metrics. Figure 4-3 plots the total number of waitlist deaths in simulation

vs. median organ transport distance for a series of optimized policies. Each point

corresponds to a policy obtained by our model where the objective was to minimize

the number of waitlist deaths (y-axis), and the upper bound on transport distance

(y-axis) was varied across a grid. All policies used a fixed value of 20% for pediatric

access weight (see Section 4.4.3), and were required to place equal weight on the

WLAUC and PTAUC factors (per committee guidance). Additional constraints en-

forced that transplant rate disparities for patients of different blood type and height

group did not increase vis-à-vis current policy. The secondary x-axis at the top of

the figure displays the non-linear (but monotonic) mapping between optimized poli-

cies’ placement efficiency weight and resulting median organ transport distance in

simulation. Current policy is also depicted through a distinctively labeled point.

On the left part of Figure 4-3, we observe policies with a relatively high weight
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Figure 4-3: Tradeoff of waitlist mortality and placement efficiency in continuous dis-
tribution for lungs. Each point represents a different policy with optimized weights.
The corresponding placement efficiency weight is shown on the top axis.

on placement efficiency. These result in higher waitlist mortality as nearby candi-

dates are prioritized more than medically-urgent ones. Moving to the right of the

graph, the placement efficiency weight decreases and organs are allocated to more

medically urgent patients who are farther away, decreasing waitlist mortality but in-

creasing transport burden. Of note, we identify a point of diminishing returns at

≈ 10% placement efficiency weight (median organ transport distance of ≈ 175 nauti-

cal miles). We observed qualitatively similar results in tradeoff curves for which the

x-axis represented two other simulated transport metrics, namely estimated trans-

port cost and percentage of organs expected to be flown, with diminishing returns at

around 10% placement efficiency weight (Appendix 4.7.5).

The robustness of the 10% finding across different transport metrics was inde-

pendently validated through additional simulations performed by the SRTR on an

updated 2018-2019 patient cohort [93].2 The final round of official simulation model-

ing varied placement efficiency weight between of 10%, 15%, and 20%, and confirmed

2The updated simulation model and cohort used by the SRTR was not publicly available at the
time of this work.
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our findings of diminishing returns to waitlist mortality as a function of transport

burden, culminating in the committee’s official proposal of a 10% weight on place-

ment efficiency (Figure 4-2). Of note, an optimized CD policy with a 10% placement

efficiency weight is seen to reduce waitlist mortality by ≈ 21% compared to current

policy in Figure 4-3, averting ≈ 118 deaths over the 2-year simulation horizon. The

SRTR’s independent simulation study estimated an even greater reduction of ≈ 40%

in waitlist mortality, or 175 deaths averted over a 2-year period.3 At the same time, it

is also more equitable as it no longer relies on hard geographic boundaries in allocation

priority.

4.4.3 Ensuring pediatric priority

We also applied our framework to examine the impact of increasing pediatric access

weight on pediatric transplant rates. In Figure 4-4, each point corresponds to an

optimized policy with the objective of minimizing pediatric transplant rates (y-axis),

while varying the lower bound on pediatric access weight (x-axis) across a grid. Op-

timizations were otherwise unconstrained. Thus, the plot illustrates the worst-case

guaranteed pediatric transplant rate under a continuous distribution policy with a

given pediatric access weight, regardless of any other requirements.

Figure 4-4 shows that a pediatric weight of ≈ 10% suffices to ensure that pediatric

access stays at the same level as current policy. Moreover, pediatric transplant rate

seems to stabilize at a weight of about 15-20%. Although some preliminary, informal

analysis by UNOS had suggested that a 30% weight would ensure that pediatric

patients were always prioritized above adult patients (maximizing their transplant

rate), our results indicate that a lower weight is sufficient to achieve the same goal.

The committee’s subsequent simulation requests to the SRTR, as well as their final

proposal, fixed pediatric access weight to 20%.

3We note that the absolute values from our study cannot be directly compared to the SRTR’s,
as they simulate allocation in different patient cohorts.
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Figure 4-4: Guaranteed pediatric transplant rate for patients aged 0-11 years vs.
pediatric access weight. Rates were similarly evaluated for patients aged 12-17 years
(Appendix 4.7.5).

The data reported here have been supplied by the Hennepin Healthcare Research

Institute (HHRI) as the contractor for the Scientific Registry of Transplant Recipients

(SRTR). The interpretation and reporting of these data are the responsibility of the

author(s) and in no way should be seen as an official policy of or interpretation by

the SRTR or the U.S. Government.

4.5 Discussion

In this work we present a novel analytical framework for multi-objective policy design

when prediction of policy outcomes is constrained by a burdensome, non-transparent

evaluation process. We leverage machine learning and mixed-integer optimization to

enable dynamic design of policies with given outcomes. The result is a flexible decision

support tool for policymakers, even those without technical expertise, to understand

the range of achievable outcomes and evaluate tradeoffs. One of the chief advantages

of this approach is that it enables stakeholders and community groups to offer input
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at precisely the points at which their views have the most value; in determining the

set of desired outcomes of a policy, rather than struggling to determine the exact

design parameters that achieve them.

We note that the multi-objective policy design setting we address is hardly unique

to the organ allocation problem we studied. Our machine-learning and surrogate op-

timization approach can be readily applied to the design of any type of parametric

allocation policy, not just a scoring rule. Beyond organ allocation, policymakers in a

broad range of application domains face similar challenges in policy design, seeking

to model complex system dynamics and balance multiple objectives. For example,

educational districts seek to assign students to schools so as to best balance family

preferences, transportation and operational logistics, and equity and diversity require-

ments. In public housing allocation, newly available units must be assigned to waitlist

applicants with diverse preferences, incorporating broader equity and diversity con-

siderations. Our framework might be applied to evaluate tradeoffs in either domain,

when policy outcomes depend on assignments made by a computationally-expensive,

black-box algorithm (e.g., mixed-integer matching formulation) with parameterized

objective and constraints. Using a meta-optimization tool such as the one we designed

for organ allocation, policymakers in school choice or public housing allocation can

dynamically explore the range of possible assignment outcomes and evaluate tradeoffs

in their objectives of choice.

While we view our approach as a major step forward in effective policy design,

we also note that it is subject to certain limitations. First and foremost, policies

designed through surrogate optimization are only as good as the underlying black-box

function’s predictions. In organ allocation for example, current simulation tools do not

account for behavioural changes to patient or clinician practice when allocation policy

changes, which might result in prediction errors [36, 37, 49]. Machine-learning models

trained to approximate the simulator, and any optimization over them, would likely

inherit any such predictive bias. In practice, these limitations should be pointed out to

stakeholders to avoid over-reliance on imperfect predictions, and to allow clinical and

subject-matter expertise to influence the conclusions drawn from the tool. Secondly,
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surrogate optimization works well only if the trained models are highly accurate

approximations of the black-box function. In our implementation, relatively simple

piece-wise linear models sufficed to produce extremely high-fidelity approximations;

however, other applications might require more complex surrogate models, which

may be harder to train and optimize over to achieve similar performance. Finally,

our approach is best suited to application domains where the problem dimension

(number of policy parameters and/or outcomes) is not exceedingly high, to ensure

both accuracy of the surrogate models with a relatively small number of training

samples, as well as reasonable computational overhead when solving repeated mixed-

integer programs.
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4.6 Glossary

We provide here a glossary of relevant terms and definitions for our lung allocation

work. This includes common metrics used to determine patients’ allocation priority,

as well as measure system-wide outcomes during simulation.

Active patient years: Total active waitlist time for a group of patients, measured

in years. For a single patient, active time is measured as time elapsed between

their listing (addition to the waitlist) and their removal (due to death, receiving a

transplant, becoming too ill to transplant, or other reason), excluding any periods

when they were listed as inactive. The total wait time, summed over groups of

patients, is used as a normalizing factor to compare transplant/mortality rates across

populations with different sizes.

Continuous Distribution (CD): An allocation policy whereby candidates for a

given organ are ranked according to Composite Allocation Score (CAS) that incor-

porates both patient and donor attributes (see Section 4.2.2).

Diagnosis Group: A categorization of disease diagnosis for lung waitlist candidates

into four broad groups: (A) obstructive lung disease, (B) pulmonary vascular disease,

(C) cystic fibrosis and immunodeficiency disorder (D) restrictive lung disease. The

classification is standard under OPTN policy [76].

Lung Allocation Score (LAS): a primary measure of lung allocation priority,

used by the OPTN to prioritize lung candidates under current (non-CD) policy [76].

Defined as PTAUC− 2 ·WLAUC, and normalized to lie on a 0-100 scale.

Median LAS at Transplant (MLaT): The median transplanted patient’s LAS

score at time-of-transplant for given population group. The population-Weighted

Mean Absolution Deviation (WMAD) of MLaT between different OPOs is used as a

measure of geographic equity, in the sense that larger variances in MLaT occur when

high-LAS (i.e., high urgency/benefit) patients are receiving most transplants in some

OPOs but not others.

Net Benefit: A measure of a lung patient’s expected benefit from receiving a

transplant of median quality, calculated as the difference between their PTAUC and
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WLAUC at any given point in time. Given the definition of those two metrics, net

benefit measures the expected additional days they are expected to live within the

next year if they receive a transplant rather than remain on the waitlist. Average

net-benefit at time-of-transplant is used as a measure of system-wide utility, in the

sense that higher values occur when organs are allocated to patients who would gain

the most life expectancy from receiving a transplant.

Organ Procurement Organization (OPO): not-for-profit organizations respon-

sible for recovering deceased-donor organs and collecting patient and donor clinical

information to the OPTN. There are 57 OPOs in the United States, each covering

different geographic donation service area.

Organ Transport Distance: The geographic distance between the donor hospital

where an organ is recovered and the transplant center where a candidate is listed (and

would be transplanted if allocated the organ), measured in nautical miles. Average

or median organ transport distance across all transplants is used as a system-wide

measure of efficiency, in the sense that higher values indicate higher transport burden.

Organ Transport Cost: The estimated cost of transporting an organ from the

donor hospital to the transplant center where a candidate is listed (and would be

transplanted if allocated the organ), measured in dollars. In reality, organ trans-

port cost can vary greatly based on circumstance. For the purposes of simulation,

an expected cost is calculated as a non-linear function of organ transport distance,

according to a model developed by the SRTR. Given the approximate nature of this

estimate, we express total transport costs over a simulated period only as a percent-

age relative the total transport cost estimated for current (non-CD) policy over the

same simulated period.

Organs Flown: The number of transplants (expressed as a count or percentage of

the total) requiring organ transport by plane. In reality, cases when a recovered organ

must be flown can vary greatly based on circumstance. According to UNOS guidance,

simulations assumed that an organ would be flown if the distance between the donor

hospital and transplant center was greater than 75 nautical miles.

Post-TX Mortality: Patient deaths (expressed as a count, or normalized by total
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wait time) that occurred due to graft failure after the patient received a transplant.

In our simulations, we only consider post-transplant deaths within the first year,

as predicted by a survival analysis model included with the version of TSAM we

obtained.

PTAUC: “Post-Transplant Area Under (the survival) Curve”, a survival analysis-

based measure of a lung patient’s post-transplant outcomes. PTAUC measures the

expected number of days the patient is expected to survive within the next year if

they receive a transplant of median quality. Its calculation is based on a patient’s

clinical and demographic data at a given point in time, and is standard according to

OPTN Policy [76].

Transplant Rate (TX Rate): The number of transplants received by a group

of patients divided by their total active waitlist time, measured in transplants per

patient-year. We report transplant rates broken down by six different patient clas-

sifications, according to blood type (A, B, O, AB), diagnosis group (A, B, C, D),

height sextile (<157cm, 157-163cm, 163-168cm, 168-173cm, 173-178cm, 178cm), age

(<12, 12-17, 18-34, 35-50, 51-65, >66 years old), biological sex (Male, Female) and

race (Asian, Black, Hispanic, White).

TX Rate Disparity: The Weighted Mean Absolution Deviation (WMAD) of trans-

plant rates of different patient groups, measured in transplants per patient-year (see

Section 4.7.3 for a mathematical definition of WMAD). For example, transplant rate

disparities by patient blood type would the population-weighted WMAD of transplant

rates for patients of type A, B, O and AB. These metrics are used as a system-wide

measure of equity by different patient classifications, in the sense that smaller discrep-

ancies between groups occur when different sub-populations are receiving transplants

at similar rates. Weights are included in the calculation, based on the number of

patients within each sub-population, so that the measure is not dominated by small

groups whose transplant rates tend to be more volatile.

Waitlist Mortality: Patient deaths (expressed as a count, or normalized by total

wait time) that occurred while a patient was on the waitlist or after they were removed

from the waitlist due to being too ill to receive a transplant.
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WLAUC: “Waitlist Area Under (the survival) Curve”, a survival analysis-based mea-

sure of a lung patient’s waitlist urgency. WLAUC measures the expected number of

days the patient is expected to survive within the next year if they remain on the

waitlist and do not receive a transplant. Its calculation is based on a patient’s clinical

and demographic data at a given point in time, and is standard according to OPTN

Policy [76].

93



4.7 Appendix

4.7.1 Robustness to surrogate model approximation error

As mentioned in Section 4.3.2, the optimal solution to the surrogate optimization

𝑆(𝜋) might not in fact be feasible for the instance 𝑃 (𝜋), due to errors in the sur-

rogate models’ approximations. In particular, if surrogate model’s prediction 𝑓𝑖 for

a constrained outcome was an overestimation of the true function’s value 𝐵𝑖 at the

computed solution, then the requirement 𝑏𝑖 may be violated. Of course, the magni-

tude of constraint violations, if any, is not expected to be large if the surrogate models

are accurate.

Should the violations prove unacceptably large, we propose adding a safety term

to the approximation inspired by robust optimization principles. Given a measure

of the approximation error 𝜖𝑖 in 𝑓𝑖, e.g., the out-of-sample root mean squared error

(rMSE), we make the requirement on outcome 𝑖 stricter by replacing the constraints

in 𝑆(𝜋) by:

𝑓𝑖(x ; 𝜃𝑖) + 𝛾𝜖𝑖 ≤ 𝑏𝑖

where 𝛾 is a hyper-parameter controlling the level of conservatism. Higher values of

𝛾 make the model more robust to approximation errors, but they also decrease the

feasible space and might result in sub-optimality in the objective.

4.7.2 Reformulation of infeasible surrogate optimization

As mentioned in Section 4.3.2, it may be the case that a set of desired outcomes,

given by the requirement vector 𝑏, might be too stringent, rendering the surrogate

optimization problem 𝑆(𝜋) infeasible. To address this possibility, we formulate a

modified problem 𝑆(𝜋), where slack variables allow the optimizer to selectively violate

constraints, and seek to minimize the total amount of violation.

We first perform a pre-processing step that serves to standardize the requirement

vector 𝑏, so that constraint violations for outcomes with different numerical scales are
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comparable. We use the sampled dataset {x𝑛,y𝑛}𝑁𝑛=1 from the Sample Design phase

(Section 4.3.2), to compute lower and upper bounds for each outcome 𝑖 ∈ [𝑑], namely

𝑙𝑖 := min𝑛 𝑦𝑛𝑖 and 𝑢𝑖 := max𝑛 𝑦𝑛𝑖 . The bounds are informal in the sense that they do

not constitute explicit constraints on an outcome, but are rather used to gain a sense

of its range across the “representative” samples generated during the Sample Design

phase. In particular, they allow us to rewrite requirements 𝑏𝑖 in terms of a unitless

quantity 𝜎𝑖:

𝜎𝑖 :=
𝑏𝑖 − 𝑙𝑖
𝑢𝑖 − 𝑙𝑖

Intuitively, 𝜎𝑖 expresses the user’s requirement on outcome 𝑖 as a relative distance to

its minimum/maximum. Typically, we expect 𝜎𝑖 to lie in the interval [0, 1] as require-

ments should be achievable by some point in the domain; however, our approach does

not depend on this is as an assumption.

Since 𝑙𝑖 and 𝑢𝑖 can be computed during the sample design phase, and are therefore

fixed at optimization time, 𝑆(𝜋) is exactly equivalent to:

min
x∈𝒳

𝑓𝑗(x ; 𝜃𝑗)

s.t. 𝑓𝑖(x ; 𝜃𝑖) ≤ 𝑙𝑖 + 𝜎𝑖(𝑢𝑖 − 𝑙𝑖) ∀ 𝑖 ̸= 𝑗

𝑆 ′(𝜋)

where all requirements 𝑏𝑖 have been replaced by their relative counterparts 𝜎𝑖. We

emphasize that the optimization problem has not changed. In particular, if 𝑆(𝜋) is

infeasible then so is 𝑆 ′(𝜋).

If this is the case, we can now introduce a modified formulation of 𝑆 ′(𝜋) whose

optimal solution deviates from the given requirements in some minimum sense, and

has a trivially non-empty feasible set:
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min
x∈𝒳 ,𝑠≥0

𝑑∑︁
𝑖=1

𝑠𝑖

s.t. 𝑓𝑖(x ; 𝜃𝑖) ≤ 𝑙𝑖 + (𝜎𝑖 + 𝑠𝑖)(𝑢𝑖 − 𝑙𝑖) ∀ 𝑖 ̸= 𝑗

𝑓𝑗(x ; 𝜃𝑗) ≤ 𝑙𝑗 + (0 + 𝑠𝑗)(𝑢𝑗 − 𝑙𝑗)

𝑆(𝜋)

Here we’ve introduced slack variables s ∈ R𝑑
+. Intuitively, 𝑠𝑖 is a decision variable

that is added to the relative requirement 𝜎𝑖, allowing the optimizer to loosen any

constraint at its discretion. The objective seeks to minimize the total amount of

slack, i.e., the sum total deviation from the desired constraints. Because the relative

requirements 𝜎𝑖 are on the comparable scale induced by the ranges (𝑙𝑖, 𝑢𝑖), minimizing

the sum of slacks does not unduly prioritize outcomes with a larger magnitude.

The second constraint provides necessary incentive to minimize the primary ob-

jective 𝑗, albeit indirectly. Intuitively, the objective’s relative requirement is set to

𝜎𝑗 = 0, and also adjusted by some positive slack, denoting that the outcome should

deviate minimally from the lower bound 𝑙𝑗 that was observed over the entire dataset.

4.7.3 Surrogate modeling

As described in Section 4.3.2, the Surrogate Modeling phase of our methodology

involves fitting Mixed Integer Linear Optimization (MILO) representable surrogate

models to approximate the black-box function 𝐵. We use machine learning to predict

each output of 𝐵 individually, fitting a parametric approximation 𝑓𝑖(𝑥 ; 𝜃𝑖) ≈ 𝐵𝑖(𝑥)

for each 𝑖 ∈ [𝑑] using the sampled dataset from the Sample Design phase.

Concretely, in our lung allocation case study, we fit a model to predict each simu-

lated outcome (e.g., number of waitlist deaths, average organ transport distance) as

a function of the CAS scoring weights 𝜆. In what follows we mathematically describe

the hypothesis class we used in our implementation, explain the fitting procedure,

and formulate the MILO representation of these functions.
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Hypothesis Class

In our lung allocation implementation, we use a hypothesis class of functions we term

affine extremum functions. These functions are the point-wise minimum or maximum

of 𝐾 affine transformations of the input. Mathematically, given an input 𝑥 ∈ 𝒳 ⊆ R𝑝,

we fit models of the form:

𝑓𝑖(𝑥;𝛽) = max
𝑘=1,...,𝐾

{𝛽0,𝑘 + 𝛽⊤
𝑘 𝑥} or 𝑓𝑖(𝑥;𝛽) = min

𝑘=1,...,𝐾
{𝛽0,𝑘 + 𝛽⊤

𝑘 𝑥} (4.1)

We refer to whether the left (max) or right (min) version is used as the func-

tion’s sense. This class of functions is piece-wise linear over 𝑥 (and therefore MILO-

representable, as we show below), and its members are convex/concave in 𝑥 depend-

ing on their sense. For simplicity in exposition, we refer to each affine transformation

𝛽0,𝑘 + 𝛽⊤
𝑘 𝑥 as a “piece” of the overall function.

The sense and number of pieces 𝐾 are hyper-parameters, to be selected through

cross-validation. For fixed sense and 𝐾, there are a total of 𝐾 ·(𝑝+1) parameters that

need to be estimated, consisting of a linear coefficient vector 𝛽𝑘 ∈ R𝑝 and intercept

𝛽0,𝑘 for each of the 𝐾 pieces. We use shorthand 𝛽 to refer to a concatenation of all

these parameters.

Fitting procedure

During model fitting, we estimate 𝛽 using standard supervised machine learning

techniques. We use the dataset generated during the Sample Design phase (Sec-

tion 4.3.2) to create a dataset for each individual outcome, denoted by 𝒟𝑖 = {𝑥𝑛, 𝑦𝑛𝑖 =

𝐵𝑖(𝑥
𝑛)}𝑁𝑛=1. We randomly split 𝒟𝑖 into training 𝒟train

𝑖 , validation 𝒟val
𝑖 and testing

𝒟test
𝑖 sets, using an 80%-10%-10% split.

For a function of the form (4.1) with fixed 𝐾 and sense, we estimate best-fit

parameters on 𝒟train
𝑖 by minimizing standard ℓ2 loss:
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min
𝛽

|𝒟train
𝑖 |∑︁
𝑛=1

(𝑦𝑛𝑖 − 𝑓𝑖(𝑥
𝑛;𝛽))2

Both inputs and outputs are rescaled to have zero mean and unit standard deviation

over the training set to improve numerical performance. Optimization is performed

using (sub-)gradient descent with random restarts, starting the procedure from 10

randomly initialized 𝛽 and picking the final iterate that achieved minimum train-

ing error. We implement fitting in the Julia programming language, version 1.1.0,

computing gradients using the ForwardDiff package and using the gradient descent

implementation of the Optim package.

We use cross-validation to select the best-performing hyper-parameters (𝐾 and

sense). For each individual outcome, we search over a grid of 𝐾 and sense, and

select the model trained on 𝒟train
𝑖 that achieved the maximum validation set 𝑅2 on

𝒟val
𝑖 . We compute out-of-sample 𝑅2 for the selected model on the test set 𝒟test

𝑖 to

evaluate the model’s true performance, and retrain on the full dataset 𝒟𝑖 for use in

the optimization.

MILO formulation

In the Optimization phase (Section 4.3.2), we formulate problems 𝑆(𝜋) where (mul-

tiple) surrogate models of the form (4.1) appear in the objective and constraints,

depending on the problem instance 𝜋. We present here the MILO formulation for a

model with maximum sense (first option in Equation 4.1), and note that the other

case is similar up to some signs. The full formulation of 𝑆(𝜋) is obtained by combining

the surrogate formulations of all relevant outcomes.

Consider a trained surrogate 𝑓𝑖(𝑥;𝛽) = max𝑘=1,...,𝐾{𝛽0,𝑘+𝛽⊤
𝑘 𝑥} with fixed 𝐾. At

optimization time, model parameters 𝛽 are fixed to their trained values, while inputs

𝑥 are decision variables. Our goal is to model a decision variable 𝑦 ∈ R so that, in any

feasible solution, 𝑦 = 𝑓𝑖(𝑥;𝛽). We use the following big-M formulation to linearize

the function, introducing binary auxiliary variables 𝑧𝑘 ∈ {0, 1} for all 𝑘 ∈ [𝐾]:
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𝐾∑︁
𝑘=1

𝑧𝑘 = 1 (4.2)

𝑦 ≥ 𝛽0,𝑘 + 𝛽⊤
𝑘 𝑥 ∀𝑘 ∈ [𝐾] (4.3)

𝑦 ≤ 𝛽0,𝑘 + 𝛽⊤
𝑘 𝑥+𝑀(1− 𝑧𝑘) ∀𝑘 ∈ [𝐾] (4.4)

where 𝑀 is some sufficiently large fixed value (see below). Intuitively, the binary

variables 𝑧𝑘 encode which of the 𝐾 pieces achieves the maximum value for a given 𝑥;

that is, in any feasible solution we have 𝑧𝑘 = 1 if 𝛽⊤
𝑘 𝑥 = max𝑘′ 𝛽

⊤
𝑘′𝑥 and 0 otherwise.

Constraint 4.2 naturally enforces that one of the pieces must achieve the maximum.

Constraints 4.3 ensure that 𝑦 is lower bounded by the value of each piece, and is

therefore greater than their maximum. Finally, Constraints 4.4 upper bound 𝑦 to

enforce exact equality to the maximum piece; that is, for {𝑘 : 𝑧𝑘 = 1} the upper

bound matches the lower bound, while the remaining upper bounds are assumed to

be even greater for large enough 𝑀 .

For the formulation to be valid then, 𝑀 must be selected so that, for any 𝑥 in

the domain, the upper bounds for the non-maximum pieces do not conflict with the

maximum lower bound. In our implementation, we compute a value for 𝑀 during

pre-processing as follows:

𝑀 = max
𝑘,𝑘′

max
𝑥∈𝒳

{︀
(𝛽0,𝑘 + 𝛽⊤

𝑘 𝑥)− (𝛽0,𝑘′ + 𝛽⊤
𝑘′𝑥)

}︀

In short, we compute the maximum difference between any two pieces over the entire

domain 𝒳 . We note that, when 𝒳 is a continuous domain (as in our case), the inner

optimization (i.e., for fixed 𝑘, 𝑘′) is a simple linear program (LP). We can than obtain

a suitable value for 𝑀 by solving (𝐾2−𝐾) linear optimization problems, one for each

pair of pieces, and take the maximum objective values as 𝑀 .

99



Derived models: Mean Absolute Deviation (MAD)

In our lung allocation implementation, certain outcomes of interest were defined as

mathematical functions of other outcomes. Specifically, transplant rate disparities

for a given patient classification (e.g., by patient blood type) were defined as the

Weighted Mean Absolution Deviation (WMAD) of the individual transplant rates of

each relevant subclass of patients (blood type A, B, AB and O), weighted by number

of candidates in that subclass.

We found that modeling this dependence explicitly in the MILO formulations

yielded better performance (i.e., more accurate surrogate optimization) than training

a new surrogate model for the disparity metric. More concretely, instead of fitting

an affine extremum model to directly predict a WMAD-based disparity metric, we

create what we refer to as a derived surrogate model, whose prediction is obtained by

first calculating transplant rate predictions for each subclass (from the corresponding

surrogate models) and subsequently computing their WMAD.

Mathematically, suppose 𝑦𝑗, 𝑗 ∈ [𝐽 ] are the predicted transplant rates for 𝐽 classes

of patient. The derived surrogate model that predicts transplant rate disparities

among the classes is defined as:

𝑦 = WMAD(𝑦1, . . . , 𝑦𝐽) =
1

𝐽

𝐽∑︁
𝑗=1

𝑤𝑗

⃒⃒⃒⃒
⃒𝑦𝑗 − 1

𝐽

𝐽∑︁
𝑗=1

𝑤𝑗𝑦𝑗

⃒⃒⃒⃒
⃒ (4.5)

where | · | is the absolute value operator, and 𝑤𝑗 is a weight associated with the 𝑗’th

class (e.g., percentage of total population corresponding to the class). Weights are

assumed to sum to one, i.e.,
∑︀

𝑗 𝑤𝑗 = 1.

To use the derived model during optimization, our goal is to model a decision vari-

able 𝑦 ∈ R so that in any feasible solution 𝑦 = WMAD(𝑦1, . . . , 𝑦𝐽). At optimization

time, the weights 𝑤𝑗 are fixed, while 𝑦𝑗 ∀𝑗 ∈ [𝐽 ] are decision variables corresponding to

the outputs of other surrogate models (formulated, e.g., as in Appendix 4.7.3). Here,

we use common techniques to linearize each absolute value in the sum of equation

4.5, and optimization can proceed via MILO [13].
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4.7.4 Simulated outcomes

Table 4.1 lists the full set of simulated outcomes that were modeled, and therefore

allowed to appear in the objective/constraints of our optimization tool during our

collaboration with UNOS and the OPTN. More detailed definitions of the outcomes

and related terminology are provided in Appendix 4.6. The table includes detailed

results from the Surrogate Modeling phase; in particular, for each simulated outcome

𝑗 it shows:

• The minimum and maximum value observed for the outcome over the training

set. These numbers are intended to illustrate the range and scale of values for

each outcome.

• The hyper-parameters of the surrogate model that was ultimately selected

through cross-validation. Models are labeled by their hyper-parameters, namely

whether they used Min/Max sense, and the number of pieces in the affine ex-

tremum class (see Appendix 4.7.3). For example, a “Min7” model indicates that

the function was the point-wise minimum of 7 affine functions. Outcomes that

were defined as the WMAD of other outcomes, i.e., all transplant rate disparity

outcomes, are labeled as “Derived” (see Appendix 4.7.3).

• The out-of-sample 𝑅2 and root mean squared error (rMSE) of the selected

model.

As noted in Section 4.4.1, our surrogate models exhibit remarkably high out-of-sample

𝑅2’s for all outcomes, ranging from 0.85-0.99 with an average of 0.96. Such high

fidelity over the entire domain is key in enabling accurate surrogate optimization

regardless of the user’s desired requirement vector.
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Outcome 𝑙𝑗 𝑢𝑗 Model R2 rMSE
Overall Deaths # 904 1305 Max5 0.98 12
Waitlist Deaths # 399 847 Max5 0.98 12
Post-TX Deaths # 445 538 Min9 0.92 5
Overall Transplants # 3414 3496 Min5 0.94 4
Avg. Net Benefit at TX (days) 10.6 58.3 Min9 0.99 1.0
MLaT 36.0 44.1 Min3 0.98 0.3
MLaT Disparity - OPO 1.1 4.2 Min9 0.93 0.2
Med. Organ Transp. Distance (nm) 74.3 726.3 Max9 0.99 12.3
Avg. Organ Transp. Distance (nm) 132.4 849.7 Max9 0.98 15.7
Organ Transp. Cost (% of current policy) 69.9% 216.6% Max5 0.98 3.0%
Organs Flown (% of total) 49.7% 96.9% Max5 0.99 0.9%
Overall TX Rate 1.25 1.57 Max5 0.98 0.01
TX Rate Disparity - OPO 0.27 1.35 Max5 0.98 0.03
TX Rate - Blood Type A 0.32 1.36 Max5 0.97 0.04
TX Rate - Blood Type AB 0.27 1.39 Max5 0.97 0.04
TX Rate - Blood Type B 0.88 1.48 Max5 0.89 0.03
TX Rate - Blood Type O 1.24 6.81 Max9 0.98 0.12
TX Rate Disparity - Blood Type 0.03 3.15 Derived 0.98 0.06
TX Rate - Age 0-11 0.83 6.28 Min7 0.91 0.19
TX Rate - Age 12-17 1.64 55.26 Min7 0.94 2.65
TX Rate - Age 18-34 1.25 1.96 Max9 0.97 0.02
TX Rate - Age 35-50 1.24 2.00 Max12 0.98 0.02
TX Rate - Age 51-65 0.92 1.49 Max5 0.97 0.02
TX Rate - Age 66+ 1.24 1.95 Max5 0.92 0.04
TX Rate Disparity - Age Group (18+) 0.10 0.37 Derived 0.95 0.01
TX Rate - Diagnosis Group A 0.35 1.54 Max5 0.96 0.05
TX Rate - Diagnosis Group B 0.36 1.71 Max5 0.97 0.04
TX Rate - Diagnosis Group C 1.38 2.89 Max7 0.97 0.04
TX Rate - Diagnosis Group D 1.62 3.46 Max7 0.98 0.04
TX Rate Disparity - Diagnosis Group 0.07 1.43 Derived 0.98 0.03
TX Rate - Female 0.97 1.26 Max7 0.99 0.01
TX Rate - Male 1.50 2.01 Min7 0.94 0.02
TX Rate Disparity - Sex 0.22 0.40 Derived 0.85 0.01
TX Rate - Asian 1.39 2.50 Max5 0.95 0.05
TX Rate - Black 1.15 1.67 Max7 0.97 0.01
TX Rate - Hispanic 1.47 2.69 Max5 0.98 0.03
TX Rate - White 1.17 1.59 Max5 0.96 0.02
TX Rate Disparity - Race 0.02 0.22 Derived 0.99 0.00
TX Rate - Height 0-157cm 0.96 2.14 Max7 0.97 0.04
TX Rate - Height 157-163cm 0.81 1.13 Max7 0.97 0.01
TX Rate - Height 163-168cm 0.79 1.37 Max5 0.95 0.03
TX Rate - Height 168-173cm 0.98 1.53 Max7 0.94 0.02
TX Rate - Height 173-178cm 1.38 1.99 Max7 0.91 0.04
TX Rate - Height 178+cm 1.44 4.17 Min5 0.94 0.15
TX Rate Disparity - Height Group 0.12 0.86 Derived 0.95 0.03

Table 4.1: Surrogate modeling results for simulated lung allocation outcomes.
Acronyms are defined in the Glossary.
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4.7.5 Additional tradeoffs

In Figure 4-5 we provide two additional plots to evaluate the tradeoff between waitlist

mortality and transport burden. The plots exactly parallel Figure 4-3 from the main

paper (see Section 4.4.2 for details), except that two different transport burden metrics

are used in lieu of median organ transport distance in the x-axis: (top) estimated

organ transport cost as a percentage of current policy, and (bottom) percentage of

organs expected to fly. The non-linear (but monotonic) relationship between the

transport metric and placement efficiency in the optimized policies is plotted on the

secondary x-axis at the top. Of note, we observe qualitatively similar results in

terms of diminishing returns to reducing waitlist mortality as placement efficiency is

decreased beyond 10%.

Finally, in Figure 4-6 we plot the worst-case guaranteed transplant rate for adoles-

cent patients aged 12-17 years as a function of the pediatric priority weight, paralleling

Figure 4-4 from the main paper (see Section 4.4.3 for details). We note that trans-

plant rates are very high for this population due to its relatively small size, which

results in short active wait times when they are highly prioritized. A pediatric weight

of 2% is already enough to guarantee a greater transplant rate than under current

policy.
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Figure 4-5: Tradeoff of waitlist mortality and placement efficiency in continuous dis-
tribution.
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Chapter 5

Balancing student preferences and

transport cost in school choice

5.1 Introduction

In the fall of 2020, nearly 50 million students were enrolled in public schools across the

United States, representing more than 15% of the country’s population [67]. Given

the extraordinary effect that education has on student welfare, often well beyond

one’s school years, the operation of public school districts is widely considered one of

the most impactful areas for national public policy in the country. Districts regularly

face a range of challenging problems, from how to design stimulating curricula that

address the needs of a diverse student body, to ensuring equity in access to education

for marginalized and disadvantaged communities.

Crucially, constraints on public education spending often mean that policymakers

need to carefully prioritize between different objectives. This is perhaps nowhere

more evident than in the problem of school assignment, wherein districts must decide

which students will attend which school every year. An assignment mechanism should

accomplish multiple objectives: address students’ individual learning needs, satisfy

family preferences for particular schools, create racially and socio-economically diverse

learning environments, and more. At the same time, it must also consider significant

operational constraints like staffing requirements, school capacity, and transportation
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cost. Assigning students to schools closer to their home, for example, can produce

significant savings for districts that have to bus students to and from school every

day – savings that can then be reinvested in improving other aspects of the system.

Indeed, keeping transportation costs manageable is a primary focus of many districts’

assignment mechanisms, as for example in Boston, where transportation accounts for

over 10% of the district’s $1.3 billion budget [19].

Recent years have seen many districts implement “school-choice”-type assignment

mechanisms, whereby student express preferences for (and can be assigned to) schools

across the district. The goal is to create a system that is both more responsive to

students’ needs and more equitable, particularly as the historical precedent of basing

assignments on students’ neighbourhoods has been shown to propagate racial and

socio-economic inequities [52]. Advocates of these systems also argue that schools re-

spond constructively to the competition induced by a preference-based system, raising

their achievement and productivity to attract better students [40].

School-choice mechanisms typically rely on some variant of the celebrated Deferred

Acceptance (DA) algorithm of Gale & Shapley [33]. Given a (possibly incomplete)

set of student preferences for schools, and school priorities for students, the DA algo-

rithm guarantees a desirable property termed stability ; namely, that there exists no

student-school pairs where both agents prefer each other over their current assign-

ments (known as a blocking pair). This reflects a notion of procedural fairness in how

matches are formed, in that there is no possible change to the assignment that would

make both the student and school happier. The problem of stable matching has been

widely studied in the literature, both theoretically and empirically, with applications

ranging from medical residency matching to school choice [86].

Despite its theoretical elegance and popularity in practice however, stability alone

does not suffice to address all of a school district’s objectives. In realistic settings,

districts often face hard constraints, e.g., siblings that must be assigned to the same

school, or legally-mandated diversity quotas, that are not easy to incorporate in a DA

algorithm. The same is true of different policy objectives, such as minimizing racial

disparities in access to top schools or minimizing transportation cost, since DA does
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not explicitly model an objective function to select among multiple possible stable

solutions. Some objectives may be indirectly optimized by engineering schools’ pri-

orities in the DA algorithm—for example, ranking nearby students higher in order to

decrease transportation requirements—however, such approaches tend to be heuris-

tic and hard to adapt to multiple objectives. As a result, districts have typically

resorted to elaborate choice mechanisms, with varying degrees of success in achieving

the stated policy objectives in practice [77].

In this work, we apply global mixed-integer optimization (MIO) to empirically

study the problem of school choice. MIO formulations provide a natural way to

model (one or more) assignment objectives, as well as external constraints, while

maintaining the notion of stability. To this end, we formulate stable matching as a

MIO and develop a custom pre-solve algorithm to help scale it. We then perform

experiments to characterize the space of stable solutions. In particular, we generate

synthetic preferences for students in the Boston Public Schools (BPS) district, incor-

porating both distance to school and school quality in students’ rankings. We then

optimize over the space of stable solutions to minimize a proxy of bus transportation

cost, namely the sum of distances from students’ homes to their assigned schools

(henceforth, transport distance).

Our experiments suggest that stability is a particularly constraining property in

this setting, and does not allow for significant optimization of transport distance.

Even in the largest-sized problems we consider (16, 255 students and 92 schools),

we find that stable solutions most often number in the single digits, and differ by

no more than 0.13% in their objective values. This observation motivates a second

set of experiments, where we relax stability by allowing a fixed number of blocking

pairs in the matching formulation. Here, we explore through tradeoff curves how

the optimal transport distance varies as we allow more blocking pairs, and observe

that our hypothetical district can decrease transport distance by 12.7% (respectively

28.2%) on average if it allows 1% (resp. 5%) of student-school pairs to be blocking.

These results suggest that, while full stability is quite constraining, it does not need

to be relaxed significantly to realize considerable gains in alternative objectives.
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5.2 The school choice problem

In this section, we introduce a mathematical model of the school choice problem as

originally formulated by Gale & Shapley [33]. We then summarise key results from

the literature that are relevant to this work.

5.2.1 Mathematical model

We first present the mathematical model of the stable school assignment problem.

A matching problem is defined by a set of students ℐ and a set of schools 𝒥 , each

forming one side of the two-sided matching market. A student can be assigned to

no more than one school, and each school 𝑗 is associated with a maximum capacity

𝐶𝑗 ∈ N of students it can accommodate. We will often refer to students and schools

as agents in the market.

All agents provide ranked preference lists for their possible matches on the other

side. We encode these by matrices of real-valued scores, namely values 𝑝𝑖𝑗 ∈ R and

𝑞𝑖𝑗 ∈ R for all (𝑖, 𝑗) ∈ ℐ × 𝒥 , denoting respectively student 𝑖’s utility from being

assigned to school 𝑗 and school 𝑗’s utility from being assigned student 𝑖. Agents’

rankings need not be exhaustive, in which case we refer to the problem as having

incomplete preferences and set 𝑝𝑖𝑗 = 𝑞𝑖𝑗 = −∞ for any inadmissible pair. Finally,

we assume that all preferences are strict, which is to say that no agent is indifferent

between two of their ranked choices.

For convenience in exposition, we define the following notation: the set of admis-

sible student-school pairs is denoted by 𝒮 = {(𝑖, 𝑗) ∈ ℐ × 𝒥 : 𝑝𝑖𝑗 ̸= −∞, 𝑞𝑖𝑗 ̸= −∞}.

We use 𝒫(𝑖) = {𝑗 ∈ 𝒥 : 𝑝𝑖𝑗 ̸= −∞} to refer the set of all schools ranked by student

𝑖, also referred to as 𝑖’s valid schools, and similarly 𝒬(𝑗) = {𝑖 ∈ ℐ : 𝑞𝑖𝑗 ̸= −∞} for

school 𝑗’s valid students. Finally, 𝒫<(𝑖, 𝑗) = {𝑘 ∈ 𝒫(𝑖) : 𝑝𝑖𝑘 < 𝑝𝑖𝑗} is the set of schools

that student 𝑖 prefers less than school 𝑗, and 𝒬<(𝑖, 𝑗) = {𝑘 ∈ 𝒬(𝑗) : 𝑞𝑘𝑗 < 𝑞𝑖𝑗} the

set of students that school 𝑗 prefers less than student 𝑖.

A matching 𝑀 is many-to-one mapping from ℐ to 𝒥 . If a student-school pair

(𝑖, 𝑗) ∈ ℐ×𝒥 is matched in 𝑀 we write that 𝑀(𝑖) = 𝑗 and 𝑖 ∈𝑀−1(𝑗). If a student 𝑖
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is not matched to any school in 𝑀 , we write that 𝑀(𝑖) = 0. A matching is considered

valid if all of the following hold: (1) every student 𝑖 is either unmatched or matched

to a valid school, i.e., 𝑀(𝑖) ∈ 𝒫(𝑖) ∪ {0}; (2) every school 𝑗 is assigned only valid

students, i.e., 𝑀−1(𝑗) ⊆ 𝒬(𝑗); (3) no school exceeds its capacity, i.e., |𝑀−1(𝑗)| ≤ 𝐶𝑗.

The sets ℐ𝑢(𝑀) = {𝑖 ∈ ℐ : 𝑀(𝑖) = 0} and 𝒥𝑢(𝑀) = {𝑗 ∈ 𝒥 : |𝑀−1(𝑗) < 𝐶𝑗} denote

the set of students who are unmatched and the set of schools that are strictly under

capacity in 𝑀 respectively.

We next build up the notion of a 𝛾-stable matching, which we find to be a concep-

tually useful generalization of Gale & Shapley’s original definition of stability [33].

Definition 1 (Student unhappiness) Given a matching 𝑀 , we say that student

𝑖 ∈ ℐ is unhappy with respect to school 𝑗 ∈ 𝒥 if they are not matched to each other

and one of the following is true:

a) 𝑖 is unmatched, i.e., 𝑖 ∈ ℐ𝑢(𝑀).

b) 𝑖 prefers 𝑗 over their current match, i.e., 𝑀(𝑖) ∈ 𝒫<(𝑖, 𝑗).

Definition 2 (School unhappiness) Given a matching 𝑀 , we say that school 𝑗 ∈

𝒥 is unhappy with respect to student 𝑖 ∈ ℐ if they are not matched to each other and

either of the following is true:

a) 𝑗 is strictly under capacity, i.e., 𝑗 ∈ 𝒥𝑢(𝑀).

b) 𝑗 is matched with at least one student they prefer less than 𝑖, i.e.,

𝑀−1(𝑗) ∩ 𝒬<(𝑖, 𝑗) ̸= ∅.

Intuitively, being unhappy with respect to a possible match means that, all other

things equal, one would prefer an outcome where the match happens over their current

outcome. The motivation for this definition is natural if one takes a game theoretic

perspective; a situation where two parties are mutually unhappy is “unstable” in

the sense that the two parties have an incentive to disrupt the overall assignment

mechanism by unilaterally accepting each other.

Definition 3 (Blocking pair) Given a matching 𝑀 , we say that a student-school

pair (𝑖, 𝑗) ∈ 𝒮 is blocking if both parties are unhappy with respect to each other.
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We use 𝑁𝑏(𝑀) to denote the number of blocking pairs in 𝑀 , and 𝑃𝑏(𝑀) to denote the

same as a percentage of the number of admissible pairs in 𝒮, i.e., 𝑃𝑏(𝑀) = 𝑁𝑏(𝑀)/|𝒮|.

Definition 4 (𝛾-Stability) A matching 𝑀 is said to be 𝛾-stable if 𝑃𝑏(𝑀) ≥ 𝛾.

Note that a 1-stable matching exactly corresponds to Gale & Shapley’s original

formulation of stability [33], which requires that no pairs are blocking. We introduce

the more general definition here because it provides a principled, tunable mechanism

to relax stability, as we discuss in Section 5.3.1. For convenience, we still use the

term stable to refer to 1-stable solutions. Finally, we use ℳ𝛾 to denote the space of

all 𝛾-stable matchings, and note that the size of this set is non-increasing in 𝛾.

5.2.2 Literature review

As mentioned, the notion of stability in matching markets was first proposed in the

seminal work of Gale & Shapley [33], who refer to the above as the college admissions

problem. In the original paper, the authors prove the existence of at least one stable

solution for any preference set (as long as their are no extrinsic constraints), and

propose an algorithm that is guaranteed to find such a solution. Since then, the

college admissions problem and its variants have been studied extensively in the

literature, both theoretically and empirically, with perhaps the most notable real-

world application being the matching of graduating medical students to residency

programs [84]. In this section, we summarise key results from the literature that are

relevant to our study, and refer the reader to [86] for a more extensive review.1.

The first key result is, of course, Gale & Shapley’s iterative Deferred Acceptance

(DA) algorithm itself, which comes in two variants. The student-proposing DA al-

gorithm works as follows: initially, each student applies to their top-ranked school,

and each school places its top 𝐶𝑗 (i.e., its capacity) applicants on a waitlist, rejecting

the rest. Rejected applicants then apply to their second-ranked school, and schools

updates their waitlists to include the top 𝐶𝑗 students among either new applicants or

their previous waitlist. The remaining students are rejected (including some who were
1Unless otherwise noted, references for all of the stated results can be found in [86].
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previously on a waitlist) and apply to their next-ranked school that has not already

rejected them. The process repeats until their are no more rejections, at which point

every student is either waitlisted or has been rejected by all of their ranked schools

(in which case they will remain unmatched). The resulting waitlists form a provably

stable matching.

The same is true of the second, school-proposing variant of the DA algorithm.

Here, the procedure is inverted; at each iteration, schools offer admission to any top-

ranked students who have not already rejected them. Students tentatively accept

an offer if it is better than the one they currently hold, in which case they reject

their previous offer and the corresponding school must find a new student to fill the

position. Again, the process repeats until there are no more rejections, at which point

the standing offers form a provably stable matching.

Interestingly, the two algorithms may (and often do) produce different stable

matchings, each optimal for the proposing side. This result is again due to Gale

& Shapley, who in their original paper show that: (1) there are matching instances

for which the algorithms produce different solutions; (2) the student-proposing algo-

rithm gives a student-optimal assignment, meaning that all students are assigned to

their top choice among all schools they would possibly get in any stable assignment;

and (3) the school-proposing algorithm is similarly school-optimal.

The non-uniqueness of stable solutions serves as a key motivation for our work.

We seek to characterize the space of stable solutions in realistic application settings,

and explore the extent to which they can accommodate different objectives, e.g., max-

imizing equity in access or reducing transportation cost. Moreover, we ask whether

relaxing the stability requirement, by allowing a small number of blocking pairs, can

improve other policy objectives. The formulation of stable matching as a mixed-

integer linear optimization (MILO) problem is crucial here, as it allows us to flexibly

model different objectives and constraints.

Optimization techniques have been previously studied in the context of school

choice. Baiou & Balinski provide a description of the stable admissions polytope in

terms of linear constraints [4], and Sethuraman et al. analyze its geometric prop-
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erties [87]. Bodoh-Creed [15] use optimization to investigate the tensions between

student welfare, encouraging neighbourhood schools, and diversity under stability;

however, their approach analyzes system-wide outcomes using a large-scale contin-

uum approximation that does not result in an assignment mechanism per se. Delorme

et al. develop pre-processing heuristics to scale an MILO formulation of the stable

admissions problem [25]. Finally, optimization techniques have been used to design

assignment mechanisms that optimize for particular objectives other than stability

[2, 7, 52, 89].

The final result we wish to highlight is the so-called Rural Hospitals Theorem

(RHT), first proved in [85]:

Theorem 1 (Rural Hospitals Theorem) When all preferences are strict, the set

of matched students and filled positions is the same in every stable matching. Further-

more, any school that is strictly under capacity in some stable matching is matched

with exactly the same set of students in every stable matching.

This remarkable result should already provide some intuition for how constraining

a property stability really is. In particular, the second part of the theorem implies

that a large number of students (i.e., all those assigned to an under capacity school)

only have one possible assignment option under any stable solution. Notably, this

property will form the basis of the pre-solving methodology that allows us to scale

global optimization to realistic problem sizes (Section 5.3.2).

5.3 Optimization methodology

We next present a novel formulation of the stable matching problem in terms of

binary decision variables and linear constraints, which will allow us to optimize over

the space of stable solutions using Mixed Integer Linear Optimization (MILO). Our

formulation readily generalizes to the case of 𝛾-stability, and can incorporate a wide

range of objective functions that may be of interest to school districts. We also

introduce here a custom pre-solve algorithm to help scale the formulation to realistic

problem sizes.
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5.3.1 An MIO formulation for stability

We first introduce the MILO formulation for the case of 1-stable matchings. We use

this particular formulation over others commonly found in the literature, e.g., [4, 46],

because it readily generalizes to our notion 𝛾-stability, as we discuss next. The basic

formulation uses five sets of binary decision variables:

• 𝑥𝑖𝑗 = {student 𝑖 is matched to school 𝑗} for all (𝑖, 𝑗) ∈ 𝒮.

• 𝑦𝑗 = {school 𝑗 is strictly under capacity} for all 𝑗 ∈ 𝒥 .

• 𝑧𝑖 = {student 𝑖 is unmatched} for all 𝑖 ∈ ℐ.

• 𝑢𝑖𝑗 = {student 𝑖 is unhappy w.r.t. school 𝑗} for all (𝑖, 𝑗) ∈ 𝒮.

• 𝑤𝑖𝑗 = {school 𝑗 is unhappy w.r.t. student 𝑖} for all (𝑖, 𝑗) ∈ 𝒮.

where the definition of unhappiness is as in Section 5.2.1. The space of stable match-

ings is then described by the following set of linear constraints:

∑︁
𝑗∈𝒫(𝑖)

𝑥𝑖𝑗 ≤ 1 , ∀𝑖 ∈ ℐ (5.1)

∑︁
𝑖∈𝒬(𝑗)

𝑥𝑖𝑗 ≤ 𝐶𝑗 , ∀𝑗 ∈ 𝒥 (5.2)

𝑧𝑖 = 1−
∑︁

𝑘∈𝒫(𝑖)

𝑥𝑖𝑘 , ∀𝑖 ∈ ℐ (5.3)

𝑦𝑗 ≤ 𝐶𝑗 −
∑︁

𝑖∈𝒬(𝑗)

𝑥𝑖𝑗 ≤ 𝐶𝑗𝑦𝑗 , ∀𝑗 ∈ 𝒥 (5.4)

𝑢𝑖𝑗 = 𝑧𝑖 +
∑︁

𝑘∈𝒫<(𝑖,𝑗)

𝑥𝑖𝑘 , ∀(𝑖, 𝑗) ∈ 𝒮 (5.5)

𝑤𝑖𝑗 ≥ 𝑥𝑘𝑗 , ∀(𝑖, 𝑗) ∈ 𝒮, 𝑘 ∈ 𝒬<(𝑖, 𝑗) (5.6)

𝑤𝑖𝑗 ≥ 𝑦𝑗 , ∀(𝑖, 𝑗) ∈ 𝒮 (5.7)

𝑤𝑖𝑗 ≤ 𝑦𝑗 +
∑︁

𝑘∈𝒬<(𝑖,𝑗)

𝑥𝑘𝑗 , ∀(𝑖, 𝑗) ∈ 𝒮 (5.8)

𝑢𝑖𝑗 + 𝑤𝑖𝑗 ≤ 1 , ∀(𝑖, 𝑗) ∈ 𝒮 (5.9)
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Constraints 5.1 require that each student 𝑖 is assigned to at most one school (they

may of course be unassigned), while constraints 5.2 require that each school do not

exceed its allotted capacity. Constraints 5.3 enforce that 𝑧𝑖 = 1 if and only if student

𝑖 is unmatched, and similarly 5.4 require that 𝑦𝑗 = 0 if and only if school 𝑗 is exactly

at capacity. Constraints 5.5 enforce the definition of 𝑢𝑖𝑗, since the right-hand size

equals 1 either when student 𝑖 is unassigned (𝑧𝑖 = 1), or they are assigned to a school

𝑘 they prefer less than 𝑗. This disjunction can be modeled compactly with an equality

because it is not possible for both student unhappiness conditions to hold at the same

time. Constraints 5.6 – 5.8 perform a similar function for 𝑤𝑖𝑗, but cannot be modeled

with a single equality because a school can be assigned multiple students they prefer

less than 𝑖. Instead their combination enforces that 𝑤𝑖𝑗 = 0 if and only if school 𝑗

is exactly at capacity (i.e., 𝑦𝑗 = 0) and it is not matched with any student 𝑘 that it

prefers less than 𝑖. Finally, constraints 5.9, which we call stability constraints, enforce

that student 𝑖 and school 𝑗 do not form a blocking pair.

We comment here that this formulation has a large number of variables and con-

straints, and it is not a priori clear that even state-of-the-art MILO solvers could

scale to problems of realistic size. Concretely, the number of variables scales as

𝑂(|𝒮|), while the number of constraints is driven by 5.6, and is 𝑂(
∑︀

𝑗∈𝒥 |𝒬(𝑗)|2).2 As

we discuss in the Section 5.3.2, however, the size of the problem can be significantly

reduced, so that solving problems with tens of thousands of students and hundreds

of schools to optimality is possible.

We also note that the formulation can be readily extended to describe the space

of 𝛾-stable solutions. Doing so involves adding new binary variables 𝛼𝑖𝑗 for each

(𝑖, 𝑗) ∈ 𝒮 that encode whether a given pair is blocking, and replacing constraint 5.9

by the following:

2This follows by a counting argument: consider an admissible pair (𝑖, 𝑗) ∈ 𝒮, and suppose that
student 𝑖 is ranked 𝑛’th on school 𝑗’s preference list. Then 𝑖 appears as a less-preferred alternative
for 𝑛−1 of school 𝑗’s admissible students. Hence, the total number of type 5.6 constraints for school
𝑗 is

∑︀|𝒬(𝑗)|
𝑛=1 (𝑛− 1) = 𝑂(|𝒬(𝑗)|2).
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𝑢𝑖𝑗 + 𝑤𝑖𝑗 ≤ 1 + 𝛼𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝒮 (5.10)∑︁
(𝑖,𝑗)∈𝒮

𝛼𝑖𝑗 ≤ ⌊(1− 𝛾)|𝒮|⌋ (5.11)

Intuitively, constraint 5.10 allows (𝑖, 𝑗) to be a blocking pair – that is for both the

student and school to be unhappy – if 𝛼𝑖𝑗 = 1, while constraint 5.11 enforces that no

more than (1− 𝛾)% of pairs are blocking.

In practice, it is prudent (though not strictly necessary) to include the constraint:

∑︁
(𝑖,𝑗)∈𝒮

𝑥𝑖𝑗 ≥ 𝑁 (5.12)

where 𝑁 is a minimum number of students that should be matched to a school, given

as input. We note that, in the basic formulation with 𝛾 = 1, this constraint is either

trivially satisfied or trivially infeasible by virtue of the Rural Hospitals Theorem,

which guarantees that the number of matched students is the same in all stable

solutions. The same is not true when we relax stability, and so we might ask that

at least a certain number of students be matched in the final solution. This would

be desirable in the case where the objective function incentivizes leaving students

unmatched, as is the case for our experiments minimizing total distance between

students and their assigned schools. For the purposes of our study, we set 𝑁 to equal

the (unique) number of students matched when 𝛾 = 1, readily available by using a

DA algorithm to compute a stable solution.

Finally, we note that the above formulation allows us to express a range of useful

objectives as linear functions, which can then be optimized using global MILO solvers.

In our experiments, we use the general form:
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min
∑︁

(𝑖,𝑗)∈𝒮

𝑐𝑖𝑗𝑥𝑖𝑗 (5.13)

to minimize total driving distance between students and their assigned schools, by

setting 𝑐𝑖𝑗 to equal the distance between 𝑖’s home and school 𝑗. The same form could

be used to maximize some notion of assignment utility; for example, setting 𝑐𝑖𝑗 = 𝑛,

where 𝑛 is school 𝑗’s rank on 𝑖’s preference list, would produce a student-optimal

matching in the Gale & Shapley sense (see Section 5.2.2). One could also minimize the

number of unmatched students (−
∑︀

𝑖𝑗 𝑥𝑖𝑗), under capacity schools (
∑︀

𝑗 𝑦𝑗), blocking

pairs (
∑︀

𝑖𝑗 𝛼𝑖𝑗), or weighted sum of any of the above.

5.3.2 Custom pre-solve algorithm

In pre-solving for combinatorial optimization, the goal is to improve computational

performance of solvers by inferring the optimal values for certain variables or elim-

inating unnecessary constraints according to problem structure. Given the size of

formulation 5.1 – 5.9, this is necessary for us to scale our experiments to realistic

problem sizes, which can have tens of thousands of students and hundreds of schools.

In this section, we describe the pre-solve algorithm we developed for the case of fully

stable matching (𝛾 = 1). Possible extensions to general 𝛾 are discussed in Section 5.5.

At a high-level, our pre-solver begins by running the DA algorithm to produce a

(possibly suboptimal) stable solution to the given matching problem. It relies on the

Rural Hospitals Theorem (RHT) to infer a set of assignments that are guaranteed

to appear in any stable solution, and then iterates a series of constraint propagation

rules that may force further assignments, or eliminate certain student-school pairs

from contention. As a result, we are left with an “induced” subproblem consisting of:

(i) a subset of students that still need be matched; (ii) a subset of schools that still

have positions to fill; (iii) a reduced set of admissible pairs for those students and

schools; (iv) a reduced set of potential blocking pairs for which stability constraints

are needed. The induced problem is typically much smaller than in the original, and
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can be passed to an MILO solver to determine the optimal matching according to

some objective.

Step 1: Using the Rural Hospitals Theorem

Given access to a stable solution 𝑀𝐷𝐴, readily available by running either variant of

Gale & Shapley’s DA algorithm, the RHT forces the matching outcomes of a subset

of students; namely, those who are either unmatched in 𝑀𝐷𝐴, or matched to a school

that is strictly under capacity. This first pre-solving step is detailed in Algorithm 1,

which we describe next.

The first part of the RHT states that the set of matched students and filled

positions is the same in every stable solution. We can therefore immediately fix

𝑧𝑖 = 1 for any student that is unmatched under 𝑀𝐷𝐴, as well as all 𝑥𝑖𝑗 = 0 for those

students. Analogously, we can fix 𝑦𝑗 = 1 for any school that did not reach its full

capacity under 𝑀𝐷𝐴, as the unfilled positions must remain so in any stable solution.

Conversely, all matched students under 𝑀𝐷𝐴 must have 𝑧𝑖 = 0 (though we may not

be able to infer an exact assignment) and all remaining schools must have 𝑦𝑗 = 0.

The second part of the theorem, significantly more powerful, states that all schools

that did not fill their positions in 𝑀𝐷𝐴 will receive exactly the same set of students

in all stable solutions. We can therefore fix 𝑥𝑖𝑗 = 1 for any students assigned to said

schools, and also 𝑥𝑖𝑗 = 0 for the rest. In other words, assignment outcomes are fully

determined for this subset of schools.

Thus, by the end of Algorithm 1, we need only optimize over the set of schools

that filled all positions, and students who were assigned to them. Moreover, we can

strengthen our formulation by the following straightforward corollary of the RHT.
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Algorithm 1 fix_rht_variables(𝑥, 𝑦, 𝑧)
Input optimization variables (𝑥, 𝑦, 𝑧) as per Section 5.3.1
Output Fixes the values of some (𝑥, 𝑦, 𝑧) variables as implied by the RHT.
𝑀𝐷𝐴 ← run_deferred_acceptance() # produces a stable solution

for 𝑖 in ℐ do # for each student

if 𝑖 ∈ ℐ𝑢(𝑀𝐷𝐴) then # i is unmatched

fix(𝑧𝑖 = 1)
fix(𝑥𝑖𝑗 = 0) ∀𝑗 ∈ 𝒫(𝑖)

else # i is matched

fix(𝑧𝑖 = 0)
end if

end for

for 𝑗 ∈ 𝒥 do # for each school

if 𝑗 ∈ 𝒥𝑢(𝑀𝐷𝐴) then # j is under capacity

fix(𝑦𝑗 = 1)
fix(𝑥𝑖𝑗 = 1) ∀𝑖 ∈𝑀−1

𝐷𝐴(𝑗)

fix(𝑥𝑖𝑗 = 0) ∀𝑗 ∈ 𝒬(𝑗) ∖𝑀−1
𝐷𝐴(𝑗)

else # j is at capacity

fix(𝑦𝑗 = 0)
end if

end for
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Corollary 1 For any student that was matched in 𝑀𝐷𝐴 but not to an under capacity

school, constraint 5.1 can be changed to an exact equality. Moreover, for any school

that was at capacity in 𝑀𝐷𝐴, constraint 5.2 can be changed to an exact equality and

constraint 5.4 eliminated.

∑︁
𝑗∈𝒫(𝑖)

𝑥𝑖𝑗 = 1 , ∀𝑖 s.t. 𝑀𝐷𝐴(𝑖) ̸= 0, 𝑀𝐷𝐴(𝑖) /∈ 𝒥𝑢(𝑀𝐷𝐴) (5.14)

∑︁
𝑖∈𝒬(𝑗)

𝑥𝑖𝑗 = 𝐶𝑗 , ∀𝑗 /∈ 𝒥𝑢(𝑀𝐷𝐴) (5.15)

Step 2: Propagating constraint implications

Given the assignments made as part of the previous step, we are able to make ad-

ditional deductions about variable values by considering problem structure. We do

so through domain propagation, a common technique in constraint programming for

combinatorial optimization [83]. Algorithm 2 presents a set of rules, each associated

with a given constraint in our formulation, that analyzes all variables values inferred

so far to propose new variables values to fix. Each rule is applied successively until

no rule produces a new deduction, at which point we say that the algorithm has

converged to an irreducible subproblem.

In particular, note that any variable 𝑥𝑖𝑗 that has been fixed to 1 fully determines

student 𝑖’s outcome, and reduces school 𝑗’s capacity by one. In addition, any 𝑥𝑖𝑗

that has been fixed to 0 implies that the corresponding student-school pair is, for all

intents and purposes, inadmissible and can be removed from 𝒮. The following logical

rules can then be used to deduce additional variable values:

1. By Corollary 1, a student that has only one admissible school must be assigned

to it. Similarly, a school whose remaining capacity equals the number of its

admissible students must be assigned all of those students.

2. A student 𝑖 that is forcibly unmatched (by the RHT) or assigned to a school 𝑘

they prefer less than 𝑗 must be unhappy w.r.t. to 𝑗 (𝑢𝑖𝑗 = 1). Conversely, if

121



they must be matched (by Corollary 1) and none of their admissible schools is

preferred less than 𝑗, they will never be unhappy w.r.t. 𝑗 (𝑢𝑖𝑗 = 0).

3. Analogously, a school 𝑗 that is forced to be under capacity (by the RHT) or as-

signed any student 𝑘 they prefer less than 𝑖 must be unhappy w.r.t. 𝑖 (𝑤𝑖𝑗 = 1).

Conversely, if they must fill all positions (by Corollary 1) and none of their

admissible students is preferred less than 𝑖, they will never be unhappy w.r.t 𝑖

(𝑤𝑖𝑗 = 0).

4. To avoid forming a blocking pair, any student 𝑖 that is unhappy w.r.t. to school

𝑗 implies that 𝑗 cannot be unhappy w.r.t. to 𝑖 (𝑤𝑖𝑗 = 0). This in turn implies

that 𝑗 cannot be assigned any student 𝑘 they prefer less than 𝑖 (𝑥𝑘𝑗 = 0).

5. Conversely, any school 𝑗 that is unhappy w.r.t. to student 𝑖 implies that 𝑖

cannot be unhappy w.r.t. school 𝑗 (𝑢𝑖𝑗 = 0). This in turn implies that 𝑖 cannot

be assigned to any school 𝑘 they prefer less than 𝑗 (𝑥𝑖𝑘 = 0).

Note that these rules interact in a way that may cause “cascades” of inferences. For

example, a pair (𝑖, 𝑗) that is eliminated because it would make 𝑗 unhappy (4) may

force 𝑖’s assignment to a different school 𝑗′ (1), which in turn forces 𝑗′ to be unhappy

with respect to a different student 𝑖′ (3), and so forth. Only once all rules fail to

produce a new deduction does the pre-solve algorithm terminate.

Step 3: Extracting the induced subproblem

At this point, we can extract a partial solution to the problem, consisting of those

students that must remain unmatched by the RHT (i.e., 𝑥𝑖𝑗 = 0 for all 𝑗), and

those whose matching has been determined after pre-solving (i.e., 𝑥𝑖𝑗 = 1 for some

𝑗). Certain schools’ outcomes may also have been fully determined, either because

they will never fill their remaining capacity (by the RHT), or because the inferred

assignments exhaust their capacity.

As a result, we are left with a reduced set of students 𝐼 ⊆ ℐ and schools 𝐽 ⊆ 𝒥

whose outcomes have yet to be fully determined. In addition, by eliminating any
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Algorithm 2 propagate_implications(𝑥, 𝑦, 𝑧, 𝑢, 𝑤)
Input optimization variables (𝑥, 𝑦, 𝑧, 𝑢, 𝑤) as per Section 5.3.1
Output Fixes the values of some (𝑥, 𝑦, 𝑧, 𝑢, 𝑤) variables by propagation rules.
Note 1: In what follows, preference information (𝒫s and 𝒬s) exclude pairs found
to be inadmissible in earlier iterations (i.e. when 𝑥𝑖𝑗 is known to be 0). Similarly,
𝐶𝑗 denotes remaining capacity after substracting the number of students known to
be assigned to 𝑗.
Note 2: Conversely, the set 𝒮 includes all possible pairs, even those deemed inad-
missible, since students and schools whose assignments have been fixed can still be
unhappy (and therefore form blocking pairs) depending on other assignments.
while new values are still being inferred do

for 𝑖 ∈ ℐ do # for each student
𝒫(𝑖) = {𝑘} =⇒ fix(𝑥𝑖𝑘 = 1) (by 5.14)

𝑥𝑖𝑘 = 1 =⇒ fix(𝑥𝑖𝑗 = 0) ∀𝑗 ∈ 𝒫(𝑖), 𝑗 ̸= 𝑘 (by 5.14)
end for

for 𝑗 ∈ 𝒥 do # for each school
|𝒬(𝑗)| = 𝐶𝑗 =⇒ fix(𝑥𝑘𝑗 = 1) ∀𝑘 ∈ 𝒬(𝑗) (by 5.15)

𝐶𝑗 = 0 =⇒ fix(𝑥𝑖𝑗 = 0) ∀𝑖 ∈ 𝒬(𝑗) (by 5.15)
end for

for (𝑖, 𝑗) in 𝒮 do # for each admissible pair
𝑧𝑖 = 1 or 𝑥𝑖𝑘 = 1 for some 𝑘 ∈ 𝒫<(𝑖, 𝑗) =⇒ fix(𝑢𝑖𝑗 = 1) (by 5.5)

𝑧𝑖 +
∑︁

𝑘∈𝒫<(𝑖,𝑗)

𝑥𝑖𝑘 = 0 =⇒ fix(𝑢𝑖𝑗 = 0) (by 5.5)

𝑢𝑖𝑗 = 0 =⇒ fix(𝑥𝑖𝑘 = 0) ∀𝑘 ∈ 𝒫<(𝑖, 𝑗) (by 5.5)

𝑦𝑗 = 1 or 𝑥𝑘𝑗 = 1 for some 𝑘 ∈ 𝒬<(𝑖, 𝑗) =⇒ fix(𝑤𝑖𝑗 = 1) (by 5.6-5.7)

𝑦𝑗 +
∑︁

𝑘∈𝒬<(𝑖,𝑗)

𝑥𝑘𝑗 = 0 =⇒ fix(𝑤𝑖𝑗 = 0) (by 5.8)

𝑤𝑖𝑗 = 0 =⇒ fix(𝑥𝑘𝑗 = 0) ∀𝑘 ∈ 𝒬<(𝑖, 𝑗) (by 5.8)

𝑢𝑖𝑗 = 1 =⇒ fix(𝑤𝑖𝑗 = 0) (by 5.9)

𝑤𝑖𝑗 = 1 =⇒ fix(𝑢𝑖𝑗 = 0) (by 5.9)
end for

end while
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combination (𝑖, 𝑗) ∈ ℐ̄ ×𝒥 where 𝑥𝑖𝑗 = 0 after pre-solving, we are left with a reduced

set of admissible pairs 𝒮 ⊆ 𝒮 for said students/schools. We can apply the MILO

formulation to the reduced problem with one slight modification: it is actually possible

for the unhappiness of student or school with fully determined outcomes to depend

on assignments that have not been fully determined. We must therefore change

constraint 5.9 to include all potential blocking pairs rather than just 𝑆. In practice, we

can eliminate many pairs that would never be blocking under the current assignments,

i.e., those where either 𝑢𝑖𝑗 or 𝑤𝑖𝑗 has been fixed to 0. We refer to the set of remaining,

potentially blocking pairs as 𝐵̄.

Discussion and extensions

The induced subproblem is typically much smaller than the original (see Section 5.4.2),

and can be passed to an MILO solver to produce the remaining optimal assignments

for a given objective function. As long as there are no extrinsic constraints, the feasi-

ble set is guaranteed to be non-empty since there always exists a stable solution. And

in the case where that solution is unique, the pre-solve algorithm may even terminate

having found it – though this is not guaranteed.

Finally, we note that when there are extrinsic constraints – e.g., two siblings that

must be assigned to the same school – the feasible set may in fact be empty [84].

In such cases, it is possible to extend the pre-solve algorithm to detect infeasibility

early by checking that propagation rules do not produce conflicting inferences. As

an illustrative example, suppose we have inferred that assigning student 𝑖 to school

𝑗 would cause a blocking pair to form, so that 𝑥𝑖𝑗 = 0 is forced. If the pre-solve

algorithm then also infers that 𝑖’s sibling must attend 𝑗, e.g., because it is the only

admissible school left, we have detected infeasibility as 𝑥𝑖𝑗 cannot also equal 1.
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5.4 The effect of stability on transport distance

In this section, we present experimental results on a range of synthetic school-choice

problems to empirically evaluate the impact of stability on alternative assignment

objectives. To this end, we consider the total distance between students and their

assigned schools as a motivating objective function, since it serves as a proxy for dis-

tricts’ transportation costs for bussing students to and from school. Our experimental

goals are three-fold: first, to evaluate the effectiveness of the pre-solve algorithm (Sec-

tion 5.3.2) in scaling MILO. Second, to characterize the stable solution space and the

extent to which it can accommodate optimization of the alternate objective function.

And, third, to examine tradeoffs between stability and the alternative objective when

stability is relaxed to varying degrees.

5.4.1 Experimental design

Our experiments use synthetic data based on the Boston Public Schools (BPS) district

2017 Transportation Challenge dataset [18]. The dataset contains the addresses of

16,255 hypothetical BPS students and the 92 schools they must be transported to.

We use this information to calculate pair-wise driving distances 𝑑𝑖𝑗 between each

student 𝑖 and school 𝑗, as well as approximate capacities for each school. We then

generate synthetic preferences for both students and schools as follows: we use a

parametric utility function for students that is the weighted sum of driving distance

to school, school quality, and a random component. Students express preferences for

(a random number of) their top-ranked schools according to this utility function, while

the remaining schools are considered inadmissible. At the same time, schools rank all

students that ranked them, based on a utility function that includes only distance to

the student and a random component. Further details on the data generating process

can be found in Appendix 5.6.1.

By varying the weight of the different factors in students’ and schools’ utility func-

tions, we get preference profiles that range from being fully determined by distance

and quality on the one hand, to being completely random on the other. Thus, problem
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instances we generate vary considerably in terms of how much each side’s preferences

correlate with the alternative matching objective, i.e., the sum of driving distances

between each student and their assigned school. We report all results averaged over

several random instances for each preference profile.

Experiments are all parallelized on a cluster of single-CPU machines with ≤ 32GB

of memory. Data processing is performed in python (version 3.7), with driving dis-

tances calculated via the Open Street Maps API [16]. Where required, we use the

implementation of Gale & Shapley’s student-proposing DA algorithm from python’s

matching package [101].3 Formulation of MILO and our pre-solve algorithm are pro-

grammed in Julia (version 1.5.2), while the MILOs are solved using Gurobi’s Mixed-

Integer Linear Programming optimizer (version 9.1) and a time limit of 2 hours unless

otherwise stated.

5.4.2 Results

In the first set of experiments, we consider 500 random instances of the BPS matching

problem using all 16,255 students and 92 schools. Each student ranks between 5 and

10 schools, resulting in problems that have on the order ≈ 135K admissible pairs.

The matching objective is to minimize the total distance between students and their

assigned schools, i.e.,
∑︀

𝑖𝑗 𝑑𝑖𝑗𝑥𝑖𝑗, subject to full stability (formulation 5.1-5.9). We

apply the pre-solve algorithm of Section 5.3.2 to help solve each instance.

Table 5.1 reports average statistics on matching problem size before and after

pre-solve. We observe that the pre-solver fully determines the matchings for 97.7% of

students on average, while the number of admissible pairs is reduced by 99.1%. From

a computational perspective, the improvements are evident: the pre-solve algorithm

terminates within 30 minutes for all instances, while the resulting MILOs are solved

to provable optimality in seconds. We do not report solve times without pre-solve, as

Gurobi fails to solve the root relaxation of any problem within 24 time limit.

We also emphasize here that the reduction in problem size (first four rows of Ta-

3Note that the package’s documentation refers to the college admissions problem as the hospital-
resident assignment problem.
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Table 5.1: Matching problem size before and after pre-solve. Values indicate the
average over 500 full-sized BPS instances, with the standard deviation in parentheses.

Before pre-solve After pre-solve Reduction
# Students 16,255 (0) 369 (252) 97.7% (1.5%)
# Schools 92 (0) 59 (20) 35.7% (21.6%)
# Admissible pairs 134,663 (1,566) 1,256 (851) 99.1% (0.6%)
# Potential blocking pairs 134,663 (1,566) 1,423 (1,030) 98.9% (0.8%)
# Binary variables 269,323 (3,137) 1,571 (1,114) 99.4% (0.4%)
# Constraints 135.3M (29.5M) 11,271 (30,557) ≈ 100% (0.0%)
Pre-solve time (sec) - 927.8 (250.3) -
MILP solve time (sec) - 0.3 (0.7) -

ble 5.1) is applicable beyond our proposed approach, and can improve computational

performance for any matching algorithm that guarantees stability. In particular, other

MILO formulations of stability can leverage the same inferences to reduce the number

of variables and constraints.

In terms of the experimental objectives, the pre-solver results also provide some

intuition as to the nature of the stable solution space. The substantial reduction in

problem size implies that any variance in the optimization objective must come from

the assignment of just 2.3% of students. In other words, the requirement for stability

does not leave a lot of room to optimize transport distance.

In Figure 5-1 we plot a histogram of the total number of stable solutions in each

of the 500 BPS instances. Here, we explicitly enumerate the stable matching space

by solving a sequence of MILOs that use binary no-good constraints to eliminate

previously-found solutions from the feasible set (see Appendix 5.6.1). In 158 of the

500 instances, we find that there is only a single stable solution, while another 199

have five or fewer solutions. Moreover, Figure 5-2 plots a histogram of the percentage

gap between the minimum- and maximum-distance stable solutions, i.e., max−min
min , for

each instance. We observe that, even when there are multiple stable solutions, the

difference in their objective values is no more than 0.13% in any instance. Therefore,

in this case at least, it does not seem possible to optimize the alternative objective

function significantly under the requirement of strict stability.

127



0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21+
# stable solutions

# 
in

st
an

ce
s

Figure 5-1: Distribution of the number of stable solutions over 500 full-sized BPS
matching instances. The number of solutions was determined by solving a sequence
of MILOs, each time excluding all previously found solution from the feasible set via
binary no-good constraints (see Appendix 5.6.1).
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Figure 5-2: Distribution of the percentage difference in objective value for the min-
imum and maximum distance stable solutions over 342 full-sized BPS matching in-
stances. Excluded are the 158 instances where the stable solution was unique.
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These observations motivate a second set of experiments, where we relax stability

and instead consider how much transport distance can be reduced if some blocking

pairs are allowed in the matching. As noted in Section 5.3.2, here we cannot leverage

the Rural Hospitals Theorem in order pre-solve assignments, and so we present proof-

of-concept results on a set of smaller instances. These are generated as before, but

are limited to a subset of 450 students and 10 schools chosen to be distributed as

widely as possible across the Boston area (see Appendix 5.6.1).

We generate 250 such instances with varying preference profiles, and implement

the relaxed stability formulation described in Section 5.3.1. We vary the level of

stability 𝛾 and again set the objective to minimize total transport distance. Since the

number of matched students can vary for different 𝛾, we enforce via constraints that

the solution matches at least as many students as a 1-stable solution, as computed

by the DA algorithm. To compare across instances, we report the objective values of

each solution as a percentage of the objective value of the 1-stable solution found by

the DA algorithm in the same instance.4

Figure 5-3 plots the distribution of optimized transport distance over the 250

instances as a function of 1− 𝛾. On the far left, solutions are constrained to have no

blocking pairs, and therefore do not significantly improve in objective value over the

DA solution (per our earlier results). As stability is relaxed, however, the optimization

realizes gains in terms of reduced transport distance: with just 1% of pairs allowed

to be blocking, we observe a 12.7% ± 4.2% (avg ± sd) reduction in objective value

compared to the DA solution. At 5% of pairs, the reduction is 28.2% ± 8.6%. These

results suggest that, while stability is a rather constraining property, there may be

considerable gains in terms of alternative policy objectives if it is even slightly relaxed.

4Note that, since the set of 1-stable solutions is a subset of 𝛾-stable solutions, the percentage
must always be ≤ 100%.
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Figure 5-3: Students’ average transport distance in the optimal 𝛾-stable solution
as a function of percentage of unstable pairs (1 − 𝛾). The y-axis expressed as a
percentage of the average transport distance in the 1-stable solution given by the
student-proposing DA algorithm. The solid line, error bands, and dashed lines de-
note the median, 25th/75th percentiles, and minimum/maximum respectively over 250
medium-sized BPS instances.
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5.5 Conclusions and future work

In this work, we have presented an empirical analysis of stable matching mechanisms

in the context of school choice. While the notion of fairness that stability ensures

is both intuitive and elegant, it is just one of many possible policy objectives that

districts should consider when designing assignment mechanisms. Global optimization

methods provide a natural language for combining multiple objectives and constraints

(including stability) in the matching problem, and so form the basis for our approach.

Concretely, we develop a custom pre-solve algorithm for MILO and successfully

scale global optimization in the fully stable case. Our experiments on large-scale syn-

thetic problems suggest that this setting may be overly constraining when optimizing

for an alternative objective function, e.g., student transportation cost. Motivated by

this, we propose a natural way to relax stability so that it can be traded off against al-

ternative objectives. Results on smaller synthetic problems suggest that districts can

in fact realize significant gains in the alternative objective with only small sacrifices

to stability.

While these proof-of-concept results are promising, some work remains in scaling

the approach to larger problem sizes for the relaxed stability case. Though the Rural

Hospitals Theorem no longer applies directly, constraint propagation rules such as in

Section 5.3.2 are still valid for inferring assignments once certain variable values have

been fixed. This suggests the possibility of a custom branch-and-bound approach to

solve MILOs: after branching, one might use a modified version of Algorithm 2 to fix

additional variable values or detect infeasibility, and so more efficiently fathom/prune

nodes. We still expect large cascades of inferences, particularly at nodes where the

budget of blocking pairs has been exhausted and the remaining assignments are highly

constrained by the need for stability. The approach could be further augmented with

custom branching rules, e.g., prioritizing assignments that are likely to cause many

blocking pairs, or primal heuristics, e.g., running the DA algorithm on remaining

assignments to produce a solution that is guaranteed to satisfy the stability constraint.

Beyond computational improvements, we also wish to extend our experiments to
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non-synthetic datasets from real school districts. We expect that stability will prove

to be a constraining property in these settings as well, while relaxing it should allow

for matching mechanisms that address districts’ other policy objectives. One might

envision applying the “ethics-by-design” framework we developed in Chapters 3 and

4 to help evaluate global tradeoffs in school choice. Here, the “black-box” function

would be the end-to-end MILO solving process, using a parameterized objective and

constraints to control the utility/efficiency/fairness characteristics of the resulting

matching. An interactive optimization tool could be used, wherein district officials

specify their desired objectives in terms of assignment equity, transportation cost,

level of stability, etc., and a surrogate “meta-optimization” designs a conforming as-

signment mechanism.
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5.6 Appendix

5.6.1 Data and methods

Data pre-processing

As described in Section 5.4.1, our experiments use synthetic preference data generated

for students and schools in the Boston Public Schools (BPS) district. The 2017

BPS Transportation Challenge dataset, which forms the basis of our data generation

process, contains the geographic addresses of 22,420 hypothetical BPS students and

the 134 schools they must be transported to. Before running our experiments, we

augment the dataset as follows:

• For each school, we scrape their 2019 School Quality Framework (SQF) score

[17] from www.bostonschoolfinder.org. We divide the scores by 100 to have

them lie on a unit scale, and refer to school 𝑗’s normalized SQF score as SQF𝑗.

• There are 42 public and charter schools that do not have SQF scores, which we

remove from the dataset along with their assigned students. This leaves 16,255

students and 92 schools.

• We compute the number of students needing transport to each school, denoted

by 𝑁𝑗 for school 𝑗, to be used as a proxy for school capacity.

• We compute the driving distance between each remaining student’s home and

each school, measured in kilometers. We use a graph representation of Boston’s

road network available on Open Street Maps [16], and compute pair-wise dis-

tances as the sum of: (i) the Euclidean distance between a student’s location

and the nearest network node; (ii) Euclidean distance between the school’s lo-

cation and the nearest network node; and (iii) shortest path network distance

between those two nodes. We denote the distance between student 𝑖 and school

𝑗 by 𝑑𝑖𝑗.
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Data generating process

We next describe the random data generating process that creates an instance of the

BPS school choice problem:

1. We assume that the dependence of students’ preferences for schools on distance

(if any) takes the following form: the student assigns a distance score that

equals 1 if the school is within 2km, 0 if it is farther than 10km, and decreases

linearly in between; that is, 𝑓(𝑑) := max
{︀
0,min

{︀
1, 𝑑−2

8

}︀}︀
.

2. Student 𝑖’s utility for being assigned to school 𝑗 is parameterized by a single

value 𝜆 ∈ [0, 1] as follows:

𝑝𝑖𝑗(𝜆) =
𝜆

2
𝑓(𝑑𝑖𝑗) +

𝜆

2
SQF𝑗 + (1− 𝜆)𝑋𝑖𝑗

where 𝑋𝑖𝑗
𝑖𝑖𝑑∼ Uniform(0, 1).

3. School 𝑗’s utility for being assigned student 𝑖 is parameterized by a single value

𝜇 as follows:

𝑞𝑖𝑗(𝜇) = 𝜇̂︀𝑑𝑖𝑗 + (1− 𝜇)𝑌𝑖𝑗

where 𝑌𝑖𝑗
𝑖𝑖𝑑∼ Uniform(0, 1). Here ̂︀𝑑𝑖𝑗 is the driving distance calculated in the

previous section, but min-max normalized over the entire dataset (so that it lies

on the unit scale).

4. Parameters 𝑃min/𝑃max denote the minimum and maximum number of schools

that any student can express preferences for. Each student expresses a prefer-

ence for their top 𝑃𝑖
𝑖𝑖𝑑∼ DiscreteUniform(𝑃min, 𝑃max− 1) schools, ranked accord-

ing to 𝑝𝑖𝑗(𝜆), as well as their originally assigned school.5 The remaining schools

are considered inadmissible for the student.

5. Schools express preference for any student that expressed a preferences for them,

and rank them according to 𝑞𝑖𝑗(𝜇).

5Original assignments are included so that there always exists a matching that is capacity feasible.
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6. The capacity inflation parameter 𝜋 denotes the extra number of school posi-

tions to add to the instance, expressed as a percentage of the total number of

students. Each extra position is opened at a school chosen uniformly-at-random

and independently from other positions. Thus a school’s capacity 𝐶𝑗 is given

by 𝑁𝑗 plus however many of the extra positions they were randomly assigned.

To summarise, our data generating process is parameterized by the student utility

weight 𝜆, school utility weight 𝜇, minimum and maximum number of student prefer-

ences 𝑃min and 𝑃max, and capacity inflation factor 𝜋. Randomization over instances

is given by the random factors in student and school utility functions, number of

preferences expressed by each student, and which schools are assigned extra seats.

Experimental design

For the first set of experiments in Section 5.4, we use the full dataset of 16,255

students and 92 schools. We vary both 𝜆 and 𝜇 over a grid of {0, 0.25, 0.5, 0.75, 1}

and fix (𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥, 𝜋) = (5, 10, 5%), for a total of 25 parameter settings. We then

generate 20 random instances for each parameter setting, for a total of 500 matching

problems.

Each problem is processed by the pre-solver of Section 5.3.2, and the induced

subproblem formulated as an MILO. In order to enumerate the stable solution space,

we make extensive use of so-called “no-good” constraints. A no-good constraint is one

that eliminates just a single solution from the feasible set. To illustrate, suppose that

the values of the 𝑥𝑖𝑗 variables in the no-good solution are given by 𝑥̄𝑖𝑗. Since 𝑥𝑖𝑗 are

binary and fully determine a matching, the constraint:

∑︁
(𝑖,𝑗):𝑥̄𝑖𝑗=0

𝑥𝑖𝑗 +
∑︁

(𝑖,𝑗):𝑥̄𝑖𝑗=1

(1− 𝑥𝑖𝑗) ≥ 1

has the effect of eliminating just the given solution from the feasible set. Intuitively,

it states that any feasible point must have 𝑥 whose Hamming distance from 𝑥̄ is at

least one.
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Thus for each of the 500 problems, we solve a sequence of MILOs that minimize

total matching distance. Each iteration a single no-good constraint is added to elim-

inate the most recently found solution from the feasible set. We repeat the process,

keeping track of the computed solutions, until either the problem becomes infeasible—

in which case the solution space has been enumerated—or we have found more than

20 feasible solutions. In the latter case, we solve one final MILO to maximize total

matching distance, so that both the minimum- and maximum- distance solutions are

in our set.

For the second set of experiments we cannot use the pre-solve algorithm as stated

and so focus on a subset of schools and their assigned students. We formulate a

facility location problem to select the 𝐾 schools that minimize total distance between

all 16,255 students and their nearest selected school. The goal is for these schools

to span the entire geographic area of Boston, so that there is variance within each

student’s distance-based preference scores. We further require that the total capacity

among selected schools is bounded between 𝑁min and 𝑁max. The MILO facility-

location formulation is as follows:

min
𝑥,𝑧

∑︁
(𝑖,𝑗)∈ℐ×𝒥

𝑑𝑖𝑗𝑥𝑖𝑗

s.t.
∑︁
𝑗∈𝒥

𝑧𝑗 = 𝐾

𝑁min ≤
∑︁
𝑗∈𝒥

𝑁𝑗𝑧𝑗 ≤ 𝑁max

∑︁
𝑗∈𝒥

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ ℐ

𝑥𝑖𝑗 ≤ 𝑧𝑗 ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥

𝑥𝑖𝑗, 𝑧𝑗 ∈ {0, 1} ∀𝑖 ∈ ℐ, 𝑗 ∈ 𝒥

where 𝑧𝑗 encodes whether school 𝑗 is selected, and 𝑥𝑖𝑗 whether school 𝑗 is the closest

selected school to student 𝑖.
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We solve the facility location problem setting (𝐾,𝑁min, 𝑁max) = (10, 400, 450),

resulting in a reduced dataset of exactly 450 students and 10 schools. The data

generation process is exactly as before, where we vary both 𝜆 and 𝜇 across a grid of

{0, 0.25, 0.5, 0.75, 1}, and fix (𝑃𝑚𝑖𝑛, 𝑃𝑚𝑎𝑥, 𝜋) = (5, 10, 5%). We generate 10 random

instances for each parameters setting, for a total of 250 random instances. We then run

the 𝛾-stable MILO formulation minimizing total matching distance in each instance.

To generate tradeoff curves, we vary 𝛾 between 0.8 and 0.9 in increments of 0.025,

and between 0.91 and 1 in increments of 0.01, for a total of 3750 MILO solves.

All experiments are parallelized on a cluster of standard CPU machines with

≤ 32 GB of RAM. The pre-solve algorithm is written in the Julia programming

language (version 1.5.2), and MILOs are solved using Gurobi’s Mixed-Integer Linear

Programming optimizer.
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Chapter 6

Conclusions

This thesis develops multi-objective optimization techniques to support policymakers

in designing more efficient, fair, and inclusive policies, with a focus on applications

in transplantation and public education.

In Chapter 2, we consider a fundamental tension between efficiency and fairness

in the geographic distribution of organs recovered for transplantation. We use multi-

objective optimization to generate tradeoff curves comparing three different frame-

works for incorporating geography into patients’ allocation priority. We show that a

continuous distribution concept allows for both the greatest reduction in patient mor-

tality, and the most equitable geographic distribution, among all others considered.

Following the completion of this work, the Organ Procurement & Transplantation

Network (OPTN) Board of Directors issued a directive that all future policy devel-

opment would focus on continuous distribution.

In Chapter 3, the OPTN’s decision prompted us to develop a general framework

for ethics-by-design in scarce resource allocation. We create an optimization-based

interactive application that allows policymakers to specify their desired policy out-

comes in terms of an objective and constraints, and our methodology computes a

conforming policy in near real-time. This enables stakeholders, even those without

technical expertise, to quickly iterate on different policy scenarios and refine their

value judgments on relevant tradeoffs in an evidence-driven way.

Chapter 4 details our collaboration with the United Network for Organ Sharing
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(UNOS) and OPTN Lung Transplantation Committee to help design a new national

allocation policy for lungs. We applied our ethics-by-design framework towards the

design of a continuous distribution allocation policy, and presented key tradeoff anal-

yses on placement efficiency and pediatric priority to help guide the committee’s

decision-making process. The committee’s proposal was unanimously approved by

the OPTN Board of Directors in December of 2021. Starting in 2023, all deceased-

donor lungs in the US will be allocated according to a policy that was significantly

informed by this work, promising to improve patient welfare for years to come.

Finally, in Chapter 5 we present an empirical analysis of school assignment mecha-

nisms using global optimization. We investigate tradeoffs between the popular notion

of matching stability and alternative objective functions, e.g., bus transportation cost.

In our experiments, we find that stability is a particularly constraining property that

does not allow for significant optimization of transport cost. We propose instead a

relaxed notion of stability that can be readily incorporated into a multi-objective

optimization problem, and would allow school districts to balance stability with their

other policy objectives.
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Acronyms

𝜎MMaT standard deviation of MMaT across DSAs.

AC Acuity Circles.

AI Artifical Intelligence.

B2C Broader 2-Circle Distribution.

BPS Boston Public Schools.

CAS Composite Allocation Score.

CD Continuous Distribution.

DA Deferred Acceptance.

DCD Donation after Cardiac Death.

DHHS Department of Health and Human Services.

DSA Donor Service Area.

HHRI Hennepin Healthcare Research Institute.

HRSA Health Resources and Services Administration.

KAS Kidney Allocation System.

LAS Lung Allocation Score.
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LSAM Liver Simulated Allocation Model.

LTC Lung Transplantation Committee.

MAE mean absolute error.

MELD Model for End-Stage Liver Disease.

MILO Mixed Integer Linear Optimization.

MIO Mixed Integer Optimization.

ML Machine Learning.

MLaT Median LAS score at transplant.

MMaT Median MELD at Transplant.

MMRF Minneapolis Medical Research Foundation.

OD Optimized Districts.

OPO Organ Procurement Organization.

OPOM Optimized Prediction of Mortality.

OPTN Organ Procurement & Transplantation Network.

OR Operations research.

PTAUC Post-Transplant Area Under the (survival) Curve.

RHT Rural Hospitals Theorem.

rMSE root mean squared error.

SAM Simulated Allocation Model.

SQF School Quality Framework.
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SRTR Scientific Registry of Transplant Recipients.

TSAM Thoracic Simulated Allocation Model.

UNOS United Network for Organ Sharing.

WLAUC Waitlist mortality Area Under the (survival) Curve.

WMAD Weighted Mean Absolution Deviation.

We note that some of these terms are explained in more detail in the Glossary.
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