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Abstract

Respiratory diseases are a leading cause of death worldwide. Despite modern
medicine, treatment of lung diseases is limited by the tools available to diagnose
these disorders, especially in low resource settings. While tools such as chest x-ray
and CT scans are highly accurate, their high cost provides a high barrier for many
patient populations. The physical exam has been a long standing tried and true
method that provides a low cost solution for for diagnosis of many common lung
diseases including pneumonia. However, this method is subjective and its sensitivity
is limited to the operator ability.

Lung sound classification and using a digital stethoscope can be used to provide an
immediate diagnostic for respiratory-related diseases. The International Conference
on Biomedical and Health Informatics (ICBHI) created a sound data base in 2017
that is annotated with a classification of the lung sound by physicians. In this thesis,
artificial intelligence libraries are used in a deeo learning architecture to identify and
classify the lung sounds. The data set was split into training and test data and
evaluated using standard performance metrics: precision, 92.3%, accuracy, 87.3%,
sensitivity (recall), 87.1%, specificity, 87.5% and F1 Score, 0.89%. Because the data
set is skewed right, the best evaluation metric is the F1 Score, which is a weighted
average of precision and sensitivity. The F1 score was found to be better than other
comparable known attempts on this same data set.

The space for new, innovative, portable and affordable diagnostic devices that
aid patients towards pulmonary health and wellness will likely push the development
further of the acceptance of electronic auscultations. As telemedicine grows, this will
also drive up the demands for such devices. Other holistic measures that are used in
medicine will likely also be be developed as the landscape of healthtech changes what
is possible.

Thesis Supervisor: Daniel Frey
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Chapter 1

Introduction

Respiratory diseases are a leading cause of death worldwide. Despite modern

antibiotics, treatment of pneumonia and other lung diseases is limited by the tools

available to diagnose these disorders especially in low resource settings [58]. While

tools such as chest x-ray and CT scans are highly accurate, their high cost provides a

high barrier for many patient populations [7]. Thus, physical exam remains as a core,

robust method for diagnosis of many common lung diseases. Due to limited sensitivity

and the range of physician (or other healthcare provider) ability, the pulmonary

physical exam is often insufficient for diagnosis [20]. The motivation for this thesis

research is to quantify the the art of medicine of clinical physical exam to using

modern tools.

Recent technological advances in diagnostics have had some clinicians question-

ing the usefulness of more traditional, subjective, holistic examinations of diagnosis

[52]. Counterarguments state that physical examinations remains an important as-

pect of medical care and requires training. Clinicians who are skilled at the bedside

examination make better use of diagnostic tests and order fewer unnecessary tests

[63]. Auscultations by stethoscope is considered to be an essential, low-cost tool and

regarded as a diagnostic irreplaceable tool. Even in cardiology, where auscultation

is considered to play a central role in examination, there too it is quickly becoming

a lost art [24]. Auscultation should not be used as the sole reference for validating

crackle detection algorithms. When used properly, the stethoscope are a valuable and
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cost-effective clinical tool that a well-trained provider can use to make a rapid and

accurate diagnosis with fewer additional tests [14].

In modern day, tech is making waves of change in all the industry it touches. Tech

is entering the healthcare space and transforming the job of physicians. Some of their

tasks will be taken over by artificial intelligence (AI), leaving them to have more time

to work with patients with care and patience [3]. Physicians will have more access

and ease of knowledge of up-to-date information in medical research. They will likely

have less administrative tasks and note taking lags [17].

All physicians, in every speciality, around the globe, are all trained to use a stetho-

scope right from their time in medical school. They routinely listen to lung sounds

during general examinations or when patients indicate distress and especially reach

for it in respiratory cases [51]. Lung auscultations are an important method for physi-

cians in decisions. Auscultation is a subjective method and improper treatment and

referrals accumulate an increased time and monetary cost [24]. Training physicians

in this art is a challenging task because of varying perception of sound and lack of

common nomenclature to express the description of the sound [51].

1.1 Stethoscopes

Since the 1800s, the stethoscope has grown in popularity and eventually been

adopted as the physician’s primary medical tool. From the 1900s on-wards, stetho-

scopes look fairly similar to how they look today with a bin-aural design, flexible

tubing, and a rigid diaphragm. Bowles and Sprague developed the combined bell and

diaphragm design in 1925, then shortly following World War II, Sprague, Rappaport,

and Groom experimented with the design before finding the optimal combination of

the classic double-tube Rappaport-Sprague stethoscope [66].

Sound is produced by an organ in the body, and these acoustic waves cause a

vibration in the stethoscope’s chest piece, which acts as a resonator. This chest piece

has two sides shapes, a flat, disk-like diaphragm and a hollow cup that oscillates with

different frequency ranges. The acoustic vibration travels through an air-filled tube
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that connects to two earpieces and relaying the sounds of the patient’s body to the

listener. The output of the stethoscope is designed to maximize sound pickup. While

the sound is amplified, the signal sounds are still quite low for the listener’s ears and

it takes serious training to hear the subtle differences [10].

Lung auscultation is a diagnostic method used for checking the integrity of lung

function [66]. It is a standard preliminary examination for all patients at hospi-

tals. Health providers use stethoscopes to listen for changes in lung sounds to assess

whether a patient has any obvious lung abnormalities. Despite many advances in

medical equipment, the traditional analog stethoscope remains the main diagnostic

tool used by physicians in lung auscultation [51].

Today, factors such as air pollution, unbalanced diets, excessive stress, erratic sleep

patterns have resulted in more people suffering from respiratory system diseases. In

a recent Department of Health statistics report, lung and respiratory-related diseases

ranked fourth and seventh among the top ten leading causes of death. Being able

to detect these subtle changes and sounds is crucial in our modern lifestyle and our

quest for better health and preventive care [27].

1.2 Human Ear Limits

Studies have been conducted to test the human’s ear capability to detect crackles

in an auscultation signal using simulated crackles superimposed on real breath sounds

[13]. The most important detection errors are due to the intensity of the respiratory

signal, the type of crackles and the amplitude of crackles. The validation of automatic

crackles’ detection algorithms should not take auscultation as a unique reference [23].

Our understanding of the mechanics of breath sounds is imperfect. Analysis of

respiratory sounds in greater detail is an opportunity for us to improve this under-

standing and create an objective relationship between abnormal respiratory sounds

with respiratory pathology [33]. This will aid in the development of a classification

system to more precisely qualify respiratory sounds [23]. Current auscultations are

largely from stethoscope readings which are subjective. An objective system of mea-
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sure with reproducible results is needed and can be provided with smart stethoscopes

[21].

Smart stethoscopes will also be able to capture trend data from longer duration

monitoring for patients at home or at hospital. It can also serve as an aid to students

in medicine learning how to auscultate as it shows the association between acoustical

signal and its image [21].

1.3 Human Pulmonary Auscultations

The primary purpose of the human respiratory system is to exchange carbon

dioxide in our bloodstream with the oxygen from the outside environment. The

lungs act as the exchange border between the atmosphere and our bloodstream, by

circulating the air inside the lungs with every breath, filling them with the surrounding

environment’s available oxygen and expelling carbon dioxide waste [35].

The next section will cover the fundamental understanding of the human respira-

tory system, its basic anatomy and function, the pulmonary auscultation guidelines,

and the principal characteristics of abnormal sounds and their clinical significance.

Extra attention will be placed on the types of abnormal sounds that are most relevant;

crackles and wheezes.

1.3.1 Anatomy

The human respiratory system is divided into two respiratory tracts, the upper

respiratory tract and the lower respiratory tract, see Figure 1-1 [2]. The upper res-

piratory tract consists of the organs which are outside the chest cavity area, which

includes the nose, pharynx and larynx. The lower respiratory tract consists of the or-

gans which are almost entirely inside the chest cavity area, which includes the trachea,

bronchi, bronchioles, alveolar ducts and alveoli [2].

Functionally, there are two zones, the conducting zone and the respiratory zone.

The conducting zone is made up of the respiratory organs that form a path that

conducts the inhaled air into the deep lung region. The respiratory zone is made up
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Figure 1-1: Schematic of upper and lower respiratory systems

of the alveoli and the tiny passageways that open into them where gas exchange takes

place [35].

1.3.2 Physiology

Most of the respiratory tract exists primarily as a system of pipes for air to travel

into alveoli, the only part of the lung that exchanges oxygen and carbon dioxide

with the blood. The alveoli are a single cell membrane that allows for gas exchange

to pulmonary vasculature [35]. The diaphragm and intercostal muscles help with

inspiration by creating a negative pressure inside the chest cavity. The lung pressure

becomes less than the atmospheric pressure causing the lungs to fill with air. The

muscles help with expiration by creating a positive pressure inside the chest cavity,
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where the lung pressure becomes greater than the atmospheric pressure to empty the

lungs of air [35].

1.3.3 Auscultation Procedure

To auscultate the lungs properly, the physician follows a general set of steps [48]:

1. Patient is in a seated or resting position in a quiet environment.

2. Remove cloth that might interfere with the auscultation.

3. Patient to take deep breaths with an open mouth.

4. With the stethoscope’s diaphragm, auscultate anteriorly at the apices, and move

downward till no breath sound is heard. Listen to the back, starting at the apices

and moving downward. One complete respiratory cycle should be heard at each

point.

5. Compare symmetrical points on each side.

6. Listen for the quality of the breath sounds, the intensity of breath sounds, and

the presence of adventitious sounds.

1.4 Physics

The human thorax is comprised of four different types of materials with signifi-

cantly different acoustic properties: hard tissue (bone), soft tissue (muscle, fat, etc.),

air in the major conducting airways of the bronchial tree, and parenchymal tissue

that is a heterogeneous mixture of soft tissue and air found in the alveolar sacs and

smaller bronchioles. The characteristics of these different components affect how

sound is transmitted [2].

18



1.4.1 Absorption of Sound

Sound in the lumen of the lung airways experiences a frequency-dependent ab-

sorption into the airway walls and surrounding parenchymal tissue, in which high-

frequency sounds propagate further within the airway branching structure, while low-

frequency sounds tend to couple into the airway walls sooner. Due to the attenuation

of higher frequency sounds in the surrounding parenchymal tissue, most of the sig-

nal energy of breath sounds recorded on the torso surface is concentrated at lower

frequencies [59].

Analysis of sound transmission in the chest cavity indicate that the chest acts as

an overall low-pass filter by absorbing higher frequencies as sound travels through

it. This filtering effect is altered with the presence of different lung conditions, such

as consolidation or fluid build-up, which can create large acoustic impedance mis-

matches with healthy parenchymal tissue and air. Alternatively, it can also couple

to surrounding soft tissue of the chest wall and propagate with less attenuation, as

compared to healthy parenchymal tissue [60].

1.4.2 Transmission and reflection

Transmission and reflection of sound waves is caused by interfaces between the

semirigid chest wall, pleural spaces which normally contain air but can fill with fluid

in disease, and the lung tissue, which is typically approximated as a homogeneous

mixture of gas and tissue. Intensity of the sound is a quantitative measure of trans-

mission [2].

1.4.3 Resonance

Resonant frequencies are frequencies at which acoustic waves are reflected back

and forth constructively due to interaction with boundaries or interfaces leading to

an amplified response. For the chest overall, resonance depends on several factors,

including the size of the thorax. The lowest, resonant frequency of the chest for adult

men is around 125 Hz, for adult women 150–175 Hz, and for children at 300–400
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Hz [60]. For sound traveling in the lumen of the airways, the resonant frequencies

are a strong function of the geometry and wall properties of the airways whereas

direct chest stimulation will generally bypass these differences. Resonances may also

occur when pathologies create trapped air cavities below the torso surface, as is in

pneumoperitoneum [59].

1.5 Lung Sounds

Lung auscultation is one of the simplest, non-invasive screening methods we have

for respiratory disease or diseases that affect lungs as part of the symptoms, such as

congestive heart failure [2]. Using a stethoscope is a quick and cheap way of screening

patients. Audible symptoms are prone to subjectivity of the investigator. Creating

tools that can assist in both training and diagnostic screening using auscultation will

standardize this art form and make it’s capability impactful [21].

Lung sounds are difficult to define because of their inherent link to anatomy and

condition severity. This also makes training challenging. The waveform from the

lung can also vary by other factors including recording site, flow rate, lung volume,

body position, and different breathing manoeuvres. Furthermore, sound changes with

development, growth, age, environmental changes [26].

Respiratory sounds occur as the result of air flowing through the lungs and are

categorized as normal or abnormal (adventitious). Normal respiratory sounds are

defined as those that are in healthy airways by physiological unforced breathing. Lung

sounds can be divided roughly into normal and abnormal sounds, as shown in Figure 1-

2. Normal breath sounds can be divided into bronchial, vesicular-bronchial, vesicular,

and tracheal sounds. Absence or deficiency of normal breath sounds or manifestation

of adventitious sounds may be an indicator of pulmonary disease. Abnormal breath

sounds can be divided into crackles, rhonchi, and wheezes.
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Figure 1-2: Lung sound classification

1.6 Normal Lung Sounds

1.6.1 Vesicular sounds

Vesicular murmurs can be heard during auscultation in most of the lung areas.

They are easy to hear during inspiration, and can only be heard in the beginning of

expiration. They have a low intensity and if the chest wall is thickened, it can appear

absent [71]. Another reason they could be absent is also if the lung has collapsed due

to the fluid or air pressure of the pleural cavity. In this case, no ventilation in the

affected lung area, or after a pneumonectomy [38].

1.6.2 Bronchovesicular sounds

Normal bronchovesicular sounds can be heard between the scapula at the posterior

chest and center part of the anterior chest [71].

1.6.3 Bronchial sounds

Bronchial sounds are audible over the chest near the second and third intercostal

spaces. They are similar to tracheal sounds, high in pitch and can be heard during
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both inspiration and expiration. They are more clearly heard than vesicular sounds

during expiration. The sounds are high-pitched, higher than vesicular sounds, loud

and tubular [71].

1.6.4 Tracheal sounds

Tracheal sounds fall in the frequency range of 100-4,000 Hz. They can be heard

over the trachea, above the sternum, in the suprasternal notch. They are generated

by turbulent airflow passing through the pharynx and glottis. These sounds are not

filtered by the chest wall [71].

1.7 Abnormal Lung Sounds

The absence or deficiency of normal breath sounds or manifestation of adventitious

sounds may be an indicator of pulmonary disease. Different abnormal lung sounds

indicate different diseases [71]. Pneumonia, chronic bronchitis, bronchiectasis, conges-

tive heart failure, and obstructive pulmonary disease produce crackles. Obstructive

pulmonary disease, asthma, and bronchial stenosis produce wheezes. Pneumonia,

chronic bronchitis, and congestive heart failure produce rhonchi [68]. Figure 1-3

shows the different time-domain characteristics and spectrogram of a normal, wheeze

and crackle lung sound cycle. The wheeze and more so the crackle are the two hardest

abnormal sounds to distinguish [19].

Abnormal breath sounds are another important component in the diagnosis of

lung diseases. Different lung diseases create different lung sounds: Table 1.1 lists

the most commonly known associations between abnormal lung sounds and lung

diseases. Pneumonia, chronic bronchitis, bronchiectasis, congestive heart failure, and

obstructive pulmonary disease produce crackles [70]. Obstructive pulmonary disease,

asthma, and bronchial stenosis produce wheezes. Pneumonia, chronic bronchitis,

and congestive heart failure produce rhonchi. The combined population of patients

suffering from these diseases is about 30% of the global population [68].
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Figure 1-3: Time-domain characteristics and spectrogram of (a) normal, (b) wheeze,
and (c) crackle lung sound cycle

Crackles Wheezes Rhonchi
Pneumonia X X

Chronic bronchitise X X
Bronchiectasis X

Congestive heart failure X X
Obstructive pulmonary disease X

Asthma X
Bronchial stenosis X

Table 1.1: Abnormal lung sounds and lung diseases

1.7.1 Crackles

Crackles, also known as rales or crepitations, are short explosive clicking or crack-

ling sounds that occur from the opening of small airways with a short duration, rang-

ing between 5-40ms. Crackles can occur anywhere in the lung, and can be present

unilaterally or bilaterally [19].

Crackles are typically divided into several main types depending on the charac-

teristic of the sound; coarse, medium, fine, wet or dry [68]. They can be heard most

often during an inspiration. Coarse crackles tend to be long, loud and low pitched,
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towards the early part of the inspiration. Fine crackles are often soft and high pitched

and short, occurring towards the later part of the inspiration [19].

Crackles can also occur in healthy lungs. If they are chronic, this is an indication

that there are small cavities in the lungs collapsed by fluid and/or a lack of aeration

during expiration. These symptoms occur in patients with pneumonia, pulmonary

fibrosis, acute bronchitis and other conditions [37].

Crackles are subtle, hard to hear sounds, so a stethoscope or microphone that is

rubbing over some cloth or even skin or hair can produce similar sounds [34]. These

sounds can easily missed as physicians often ask patients to take deep breathes and

deep breathing masks more crackles than superficial breathing [25]. Fine crackles are

more readily recognizable from their waveform as the amplitude of the crackles differs

more significantly from classic lung sounds. Generally, the duration of a crackle is

lower than 20 ms and the frequency range is between 100 and 200 Hz [42].

1.7.2 Wheezes

Wheezes are continuous sounds, which can last up to the whole respiratory in and

out breath cycle. They are caused by air being forced through small paths due to

obstructions in airways, creating a whistling sound. Wheezes can be detected over the

whole chest area and trachea [5]. Wheezes can vary between patients and the sound

depends on the severity as well as how it was auscultated and where the stethoscope

was placed [33]. Wheezes can be indications of respiratory conditions such as asthma

attacks allergies that cause narrowing or obstruction of airways. They can be heard in

healthy patients in intense physical exercise when airflow is increased. Their waveform

is characterized by periodic waveform with a frequency usually greater than 100Hz

and lasting over 100ms [5].
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Chapter 2

Machine Learning and Artificial

Neural Networks

In this chapter, I describe the machine learning, artificial neural networks and

sound processing techniques used in the classification of lung sounds.

2.1 Artificial Neural Networks

In this section, artificial neural networks, the types of architectures, activation

functions, loss functions, optimization methods and regularization methods are dis-

cussed.

2.1.1 Feed Forward Neural Networks

Feed forward neural networks (FNNs), or multi-layer perceptrons (MLPs), are the

archetypes of deep learning models. The purpose of these networks is to approximate

some function 𝑓 by mapping an input domain to an output domain. This can be

applied to solving complex problems and moving from high dimensional data to a set

of labels. These networks consist of multiple layers, where the first layer is the input

layer, the middle layers in the network are hidden and the last is the output layer.

Each layer create an additional level of abstraction [57].
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Each layer has of a number of neurons that represent activation values and that

determines the width of that layer. Each neuron has a number of input weights that

connect to each of the neurons of the previous layer, with the exception of the neurons

in the input layer. The activation values of the input layer are propagated forward

in the direction of the output layer with no feedback connections. This is where the

name feed forward names is derived from [62].

The network is associated with a directed acyclic weighted graph that describes

how the functions are composed together [62]. The network’s parameters consists

of the weights and biases between layers. The output activation values of a layer

is represented as a vector, with each entry of the vector representing the activation

value of a single neuron. The size of the vector corresponds to the number of neurons

in that layer [8].

The weights between layers are represented as a 2D matrix. Each entry of the

matrix at coordinates 𝑖, 𝑗 represents the weight connecting the neuron 𝑖 from layer 𝑙

−1 to the neuron 𝑗 in layer 𝑙. The biases between layers is represented as a vector

with the same size as the number of neurons in the next layer [8].

2.1.2 Convolutional neural networks (CNNs)

Convolutional neural networks (CNNs) are similar to feed forward neural net-

works. They both use the concept of neurons; each neuron receives an input and

performs an operation. CNNs are different, specialized network for processing data

that is more grid-like, as you find in a time-series [62]. It has three types of layers:

convolutional layers, pooling layers and fully connected layers [6]. Unlike FNN, CNN

uses parameters, referred to as kernals, to decrease the number of parameters needed

for high-dimensional input grids. CNN always has the same number of parameters,

in larger input grids. Kernels are used as detectors for local patterns in data [62].

In a convolutional layer, kernels are a set of small matrices that are applied to the

input grid. The input values in each window are convolved with the weights of that

kernel, added to a bias, and then processed into a nonlinear function. The output is

a single output value for each input window creating a feature map [31]. By applying
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multiple kernels to that same grid I get the same number of feature maps as the

number of kernels in the convolutional layer. The resulting output grid has a depth

of 𝑛 feature maps. The remaining spatial dimension size depend on the previously

defined window size, stride and input spatial dimension size [31].

2.1.3 Loss Function

There are several types of loss functions which have different purposes in machine

learning. Categorical cross entropy is a loss function used for the classification of data

samples. It is used for single label classification, where each data sample belongs

to only one class. It compares the predicted class distribution with the true class

distribution [29].

• The categorical cross entropy loss is defined as [29]:

−
𝐶∑︁
𝑖=1

(𝑡𝑖𝑙𝑜𝑔(𝑝𝑖))

– 𝐶 is the number of classes,

– 𝑡𝑖 is the true probability of class

– 𝑖 and 𝑝𝑖 is the predicted probability of class 𝑖

• Since only one class is set to the value of 1 and the remaining values in 𝑡 are 0,

it is equivalent to [29]:

−𝑙𝑜𝑔(𝑝𝑐)

– 𝑐 is the class index

– 𝑡𝑐 = 1

2.1.4 Activation functions

Activation functions allow the generalization of neural networks in solving various

tasks. They can improve training speed and convergence.
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Rectified Linear Unit (ReLU)

The rectified linear unit (ReLU) activation function is popular in the deep learning

as it has allowed deeper models to converge faster during training and achieve better

results. It is defined as [43]:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

ReLU is faster to compute than other activation functions and allows for simpler

initialization of network parameters [29]. It induces sparse activation of the network’s

hidden units and it has less vanishing gradient problems when compared to the logistic

sigmoid and hyperbolic tangent activation functions [43]. However, it also has some

issues. Some hidden units can become stuck in inactive states regardless of the input.

This means that the gradient of the unit will always be 0 and the unit will stop

training and thus decreases the model’s capacity to learn [29].

Leaky ReLU

The Leaky ReLU (LReLU) activation function fixes the issue of inactive neurons.

It is defined as:

𝑓(𝑥) = 𝑥, 𝑖𝑓𝑥 > 0

𝑓(𝑥) = 𝛼𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The 𝛼 value is a static value defined during the creation of the neural network as

the slope of the negative section of the function. It allows the gradient to be different

from 0, if 𝛼 ̸= 0, which allows the gradient to propagate through the neuron and to

train the weights.

2.1.5 Fourier Transform

The Fourier transform is an integral transformation of a signal from the time

domain to the frequency domain. This allows for examination of the signal in terms

of the presence and strength of the various frequencies. Looking at the frequency

domain allows for methods of signal processing to be applied, including filtering,
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modulation and sampling of a signal [64].

The calculation of the Fourier transform of a finite sequence of values is done with

the Discrete Fourier Transform (DFT) method. The Fast Fourier Transform (FFT) is

an algorithm to calculate the DFT of a signal. Applying the DFT to multiple equally

spaced overlapping small windows of the signal and stacking each window’s spectral

creates a spectrogram that shows the evolution of the signal’s frequency spectrum

over time [46]

2.1.6 Power Spectral Density

The Power Spectral Density (PSD) represents which frequency variations are

strong and which are weak, in units of energy per frequency. PSD is an analysis

method used when a measured signal in the time domain is transformed into the

frequency domain through a Fourier transform. It used to detect the frequencies and

amplitudes of oscillatory signals and any periodicity in the data [49].

2.1.7 Mel Spectrogram

Studies show that humans do not perceive frequencies on a linear scale. We

are much better when we decipher differences in lower frequencies than in higher

frequencies. In 1937, a new scale was proposed by Stevens, Volkmann, and Newmann

where a unit of pitch (equal distances in pitch) sound equally distant to the listener

(as judged by humans). This is known as the mel scale. It is a way to mimic how the

human ear responds to varying frequencies [39]. The frequencies are transformed to

the mel scale to create a Mel Spectrogram (MS).

These steps are required to obtain the mel spectrogram [50]:

1. Separate signal to windows: Sample the input with windows of size n_fft,

making hops of size hop_length each time to sample the next window.

2. Compute FFT for each window to convert from time domain to frequency do-

main.
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3. Generate a mel scale: Take the entire frequency spectrum, and separate it into

n_mels evenly spaced frequencies according to the mel distance.

4. Generate Spectrogram: For each window, decompose the magnitude of the

signal into its components, corresponding to the frequencies in the mel scale.

The mel frequency scale is defined as [39]:

𝑚𝑒𝑙 = 2595× log10(1 + ℎ𝑒𝑟𝑡𝑧/700)

and its inverse is [39]:

ℎ𝑒𝑟𝑡𝑧 = 700× 10𝑚𝑒𝑙/2595−1

2.1.8 Mel Frequency Cepstral Coefficients (MFCC)

The Mel Frequency Cepstral Coefficients (MFCC) has been the standard in of

almost all modern applications in speech and music. It is a tool used for feature

extraction [1].

The algorithm for computing the MFCC of an audio signal uses the following steps

[53]:

1. Frame the signal.

2. Compute the Discrete Fourier Transform (DFT) for each window.

3. Apply the Mel-filterbank to convert frequency to the Mel-scale.

4. Take the Log amplitude of the Mel-scaled spectrum.

5. Compute the Discrete Cosine Transform on the Mel-scaled Log amplitudes.

Framing

Audio signals change their statistical properties overtime because they are not

stationary. By framing a signal into smaller chunks I can appropriate the signal to

be stationary and analyze it [53].
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DFT

Applying the Fourier transform to each of chunk of signal creates a spectrogram

of the signal. This spectrogram denotes spectral content of the signal in the Hertz

scale. At this step, I lose the phase information and keep only the absolute values

[64].

Mel-Scale

Applying the Mel-filter bank converts the Hertz values into the Mel-Scale. The

Mel-Scale is a perceptual scale of pitch which models pitch closer to what humans

perceive rather than actual Hertz values [50].

Log Amplitude

Taking the Log of the amplitude of the Mel-scaled spectrum gives a power spectral

density estimation. This denotes the energy of the different frequency bins [53].

Discrete Cosine Transform

Finally, I compute the Discrete Cosine Transform of the log power spectrum,

treating it again as a signal. The resulting coefficients is the MFCC. This is a cepstral

representation of the audio clip. A cepstrum contains information about the rate of

change at different spectrum bands, which would be the Mel-spaced frequency bins

[54].

Crackles

MFCC might not be applicable to crackles because of extremely short duration,

less than 100 ms, and because of their sudden change in volume [53]. MFCCs have

historically been used with sequence classifiers such as Hidden Markov Models, so its

dependent on the type of classifier [55]. They were meant to model a large vocabulary

in speech recognition, while crackle classification problem is more binary.
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2.2 K-Means Clustering

The most widely used and commonly known method for data-segmented clustering

is K-means clustering [65]. The main purpose for K-means clustering is to process a

large number of high-dimension data to representative data, cluster centers. These

cluster centers can be used to create data classification and compress large amounts

of data. K-means clustering requires finding the number of clusters and reducing the

errors in the cluster iteratively until the errors stop, or there is convergence to the

final clustering results. The steps of implementing the K-means algorithm are [56]:

As an example, if the training sample is 𝑥𝑖

𝑥𝑖 = 𝑥1, 𝑥2, ..., 𝑥𝑚

1. Select K random cluster centers as 𝑢𝑗:

𝑢𝑗 = 𝑢1, 𝑢2, ..., 𝑢𝑘

2. Repeat until convergence:

(a) For each 𝑥𝑖, find and assign it to the nearest cluster center

𝑐𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗‖𝑥𝑖 − 𝑢𝑗‖2

(b) For each category 𝑢𝑗, recalculate the mean value of the cluster and update

the cluster center.

𝑢𝑗 =

𝑚∑︁
𝑖=1

{𝑐𝑖 = 𝑗}𝑥𝑖

𝑚∑︁
𝑖=1

{𝑐𝑖 = 𝑗}

2.3 K-Nearest Neighbor Algorithm

The K-nearest neighbor algorithm clusters objects in the same category closer in

distance. The K-nearest neighbor algorithm is [22]:
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1. Determine the number of nearest points of test data 𝑥 against training data 𝐾.

Use an Euclidean distance equation to compute the distance. For two points in

𝑘 dimensional space, 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑘] and 𝑦 = [𝑦1, 𝑦2, ..., 𝑦𝑘]. The Euclidean

distance between the two calculated by

𝑑(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑘∑︁
𝑖=1

(𝑦𝑖 − 𝑥𝑖)
2

2. When test data x has more data-points than a certain category of K-nearest

points, 𝑥 is decided to be part of that category.
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Chapter 3

Materials and Methods

In this chapter, I describe the dataset that was used in this work to develop the

classification methods, the signal processing methodology, the libraries and tools used

to implement the methods and the experimental methodology for comparing results

of different methods. I also describe the implementation challenges, the proposed

solutions, the advantages and limitations, our choices and our reasoning.

3.1 Approach

I follow these steps: generating a training set, pre-processing audio files, feature

selection, selection and training of a classifier.

1. A large amount of representative data is required to validate machine learning

models. The more data used, the more likely it is that the data is representative

of the general case. This reduces the risk of over-fitting models while making it

more robust against outliers [16].

2. The audio files are labelled as either containing crackles or not, as a whole

sample. I also need to look individual crackles in each file. This reduces the

amount of normal data I have.

3. Pre-process the files to be classified in the same way that the training data

has been pre-processed. Reduce the size of each classification and accurately
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pinpoint locations of the abnormal lung sounds within a given audio file.

4. Find features that represents the data while reducing the number of dimensions

that the classifier has to consider. Generalizing correctly becomes exponentially

more difficult as the number of dimensions of data or feature set increases [41].

5. Validate our model using cross validation to measure specificity and sensitivity.

Use the classified standard from the Tromsø study to evaluate classification

accuracy on clinical data [5].

3.2 Training Set Generation

Before starting, I setup a training set for our data to use. For this, I divided

the data into classes of health (absences of any abnormal sounds) and unhealthy.

Unhealthy was further split into having crackles or wheezes. Audio files were typically

about fifteen seconds long. Excerpts of these files containing each individual crackle

or wheeze was extracted into individual files. For crackles, these excerpts were about

100 ms long. Wheezes last longer and were about three seconds long. Each original

file resulted in about 4000 crackle samples, that had at least one full crackle. The

excerpts were overlapped in case of any crackles that occurred at the edge of the

cutoff window.

3.3 Dataset

3.3.1 Background About the Dataset

The International Conference on Biomedical and Health Informatics (ICBHI) 2017

respiratory sound database was part of an organized scientific challenge to test and

compare the robustness of state of the art techniques for lung sound processing and

classification. The creation of this dataset was motivated by the lack of large publicly

available datasets that could be used to develop and compare different lung sound

processing methods. Funding was provided by the International federation of Medical
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and Biological Engineering. This dataset contains various events (e.g., noise, cough,

wheezes, crackles) collected from both healthy subjects and patients with different

respiratory disorders and each sound is annotated by health professionals [36].

This dataset was chosen because other private datasets were smaller and came

without environmental noise, making them incomparable to actual clinical practice.

The dataset consists of a set of respiratory sound recordings and their respective

annotation files. The audio samples were collected independently by two research

teams: “Respiratory Research and Rehabilitation Laboratory of the School of Health

Sciences, University of Aveiro” (Lab3R) and “Aristotle University of Thessaloniki”

(AUTH) in two different countries, over several years. The dataset contains 920

annotated audio recordings which were collected from 126 participants [23].

The ICBHI 2017 classified of each individual respiratory cycle into one of four

classes: Normal, Crackle, Wheeze, Both collected from healthy subjects and patients

with different respiratory disorders, annotated by health professionals [36]. Figure

3-1 shows an example of an annotated sound recording.

Figure 3-1: Three respiratory cycles: wheezes (green), crackles (blue), and normal
sounds (black). Vertical lines separate the respiratory cycle boundaries (red)
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3.3.2 Data Collection

Each audio recording was obtained using multi-channel or single-channel acquisi-

tion method, with each channel representing an auscultation point of the participant

and each channel is stored in a separate file. The auscultation points are: Anterior

left (Al), Anterior right (Ar), Lateral left (Ll), Lateral right (Lr), Posterior left (Pl),

Posterior right (Pr) and Trachea (Tc) [36].

The types of equipment used by Lab3R to collect the lung sounds were [23]:

• Welch Allyn Meditron Master Elite Plus Stethoscope Model 5079-400 digital

stethoscope

• 3M Littmann Classic II SE stethoscopes with a microphone in the main tube.

• Air coupled electret microphones (C 417 PP, AKG Acoustics) located in capsules

made of teflon.

The types of equipment used by AUTH were [23]:

• WelchAllyn Meditron Master Elite Plus Stethoscope Model 5079-400 digital

stethoscope

• 3M Littmann 3200 digital stethoscope.

Due to different equipment types used for the capture of the lung sounds, the

sampling rate of each audio recording differs based on which was used.

3.3.3 Annotation

Each audio recording was annotated manually into individual respiratory cycles,

where each cycle is given a starting timestamp, an ending timestamp, a binary number

to indicate if the cycle contains a crackle and a binary number to indicate if the

cycle contains a wheeze. The annotation process was done by respiratory health

professionals [23].
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Sound files originating from the Lab3R database were annotated by only one

expert whereas the AUTH dataset was annotated by three experienced physicians,

two specialized pulmonologists, and one cardiologist [36].

3.3.4 Challenge Dataset

The dataset was split into training, 60%, and testing sets, 40%. 2063 respiratory

cycles from 539 recordings derived from 79 participants were included in the training

set, while 1579 respiration cycles from 381 recordings derived from 49 patients were

included in the testing set.

• N is the total number of normal sounds,

• Nn is the number of correctly classified normal sounds

• C is the total number of crackle sounds

• Cc is the number of correctly classified crackle sounds

• W is the total number of wheeze sounds

• Ww is the number of correctly classified wheezes

• B is the total number of sounds that contain both crackle and wheeze sounds

• Bb is the number of correctly classified sounds that contain both adventitious

sounds.

3.3.5 Dataset Statistics

I performed some preliminary statistics on the dataset before I started to get a

sense of the data as shown in Table 3.1.
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Cycle Count Patient Count Max Dur. Min Dur. Avg Dur.
Normal 3,642 124 16.16sec 0.2sec 2.6sec
Crackle 1,864 74 8.74sec 0.37sec 2.79sec
Wheeze 886 63 9.22sec 0.23sec 2.7sec
Both 506 35 8.59sec 0.57sec 3.1sec

Table 3.1: Statistics for each of the cycle classes.

3.3.6 Dataset Observations

The number of class samples in this dataset, Table 3.1 shows it is skewed towards

normal sounds. The duration of each recording session and individual respiratory

cycle has high variability with some patients lack a recording sample for at least one

of their auscultation points or having too many samples for some auscultation points.

Furthermore, some recordings have extremely large respiratory cycles, which is

caused from the placement of the device. Smaller duration respiratory cycles are

often the ending or starting cycles of a recording and have been cut off. Finally, the

properties of the equipment creates different sampling rates in the recordings. All

these factors including noise artifacts and patient demographics make it difficult to

apply a simple method for classification.

3.4 Libraries

The project was implemented using the Python programming language and Google

Colab environment. The module used to load and down-sample the audio files was

the Librosa module. Scipy module was used to filter the audio files with a butter

worth band-pass filter. The input waveform was time-sampled by applying a window

function and then a discrete Fourier transform (DFT). The Tensorflow library was

used as the calculation method for Mel-frequency Cepstral Coefficients (MFCCs) of

an audio signal, while the kapre module was used to calculate the Power Spectral

Density (PSD) and Mel Spectrogram (MS) of the signal. The Keras library was used

to implement the various neural network models, train the models and test them.
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3.4.1 Signal processing methodology

In order to solve the issues of the various sampling rates, the audio recordings

were down-sampled to 4000 Hz, changing the frequency range of the signal from 0

to 2000 Hz. The frequency range needed to detect crackles and wheezes is within

0 to 2000 Hz. Next, I remove noise artifacts by applying a 12th order butter-worth

band pass filter using cutoff frequencies of 120 Hz to 1800 Hz. I choose this filter

and frequency by following what was chosen from the method described in the best

results of the official ICBHI 2017 challenge dataset paper.

Next, the signal was normalized. There were varying amplitudes from the signals

coming from the different auscultation points and participant demographics. Respira-

tory cycles individually normalized, so cycles with differing duration do not influence

the resulting distribution. I calculate the PSD, MS and MFCCs of the signal at run-

time, during cycle classification. The PSD and MS of the signal are converted to the

decibel scale from 0 to -80 once the values are normalized to the range from 0 to

1. The MFCCs are normalized with respect to the mean standard deviation of the

coefficient values of the whole respiratory cycle signal.

3.5 Experimental methodology

In this section, I present the methods used to solve challenges that occurred during

the project.

3.5.1 Batch size

In order to fit multiple audio signals in the same mini-batch, I need to mask or

pad the signals. This was because each respiratory cycle varies in length of duration.

This was the training process required when using Keras; the batch must be a static

tensor [32]. This is a typical requirement for machine learning libraries [15]. Padding

the signals to fit the same size is easier to implement compared to masking and can

be done as a batch process. This does leave the possibility open that the model
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learns the padding in the signal which would result in over-fitting the actual signal

and an overall decreased generalization. It is possible to check for over-fitting with

our evaluation metric if this was the case.

An alternative way to both masking or padding is to use the mini-batch gradi-

ent descent method by calculating the gradient of the model for each input signal

individually and then averaging the gradients. The Keras library does not currently

allow for this type of method of mini-batch gradient calculation [15]. This process

could be implemented manually, which poses the same problem of complexity and

time intensive as masking does. Thus, a mini-batch size of one was used. Training

a model using one sample at a time has its own set of possible problems including

optimizer stability. A work around for this is to use the stochastic gradient descent

optimization method. This has been known to work better than other optimizes and

have less over-fitting issues [4].

This phenomenon from stochastic gradient optimizations is understood by the

following few properties [12].

1. Sharp local min are associated with poorer generalization and produce larger

gradients. Two, by applying quick gradient updates to the model, the model

lands on local sharp min. This nudges the model to leave that the region.

2. With repeated updates, the model reaches a region that has local min that

correlates with better generalization properties.

3. By decreasing the learning rate slowly, the model becomes less sensitive to local

min, which allows it to decrease model loss.

3.5.2 Under sampling

Under sampling on all methods to account for the class imbalance present in the

dataset. Under sampling is a technique used specifically in cases where there is a

need to balance the number of samples per class. It gives a more balanced estimate

on the loss and statistics during the training of machine learning models and on the
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loss and statistics during model training [61]. This helps prevents the model from

memorizing the minority classes first, which gives a false positive accuracy rating as

the resulting model would not be able to be applied to other cases. The maximum

amount of samples from each class is defined as the number of samples in the minority

class. Under sampling is applied to both training and test datasets [32].

I implemented this by doing the following: for N number of training epochs, repeat

• Sample random X amount of samples from each class

• Shuffle samples

• Train model on the samples

3.5.3 Method evaluation and comparison

The challenge has defined metrics that were used to evaluate and compare the

different methods I tested. These metrics are classification accuracy and the classi-

fication confusion matrix to assess and troubleshoot potential pitfalls in the training

process. Final methods were evaluated and compared using the five-fold cross vali-

dation method, see Figure 3-2. Five fold cross valuation is where the data set is split

into a five sections. Each section is used as a testing set at some point. For example,

in the first iteration, the first fold is used to test the model and the rest are used to

train the model. In the second iteration, 2nd fold is used as the testing set while the

rest serve as the training set. This process is repeated until each fold of the 5 folds

have been used as the testing set [67]

3.5.4 Model hyper-parameter search method

I look at different signal features as input for the networks:

• Raw filtered audio signal (1-dimensional)

• PSD of the signal (2-dimensional)
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Figure 3-2: Five fold cross valuation method

• MS of the signal (2-dimensional)

• MFCCs of the signal (2-dimensional)

The hyper-parameters for the networks are:

• PSD parameters:

– PSDNDFT (DFT window size)

– PSDNHOP (DFT window stride)

– PSDFMIN (spectrum y-axis min cutoff)

– PSDFMAX (spectrum y-axis max cutoff)

• MS Parameters

– MSNDFT (DFT window size)

– MSNHOP (DFT window stride)

– MSFMIN (spectrum y-axis min cutoff)

– MSFMAX (spectrum y-axis max cutoff)

– MSNMELS (number of mel conversion kernals to convert the spectrum to

mel scale)

• MFCC parameters:

– MFCCNDFT (DFT window size)
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– MFCCNHOP (DFT window stride)

– MFCCFMIN (resulting spectrum y-axis min cutoff)

– MFCCMAX (resulting spectrum y-axis max cutoff)

– MFCCNMELS (number of mel conversion kernals to convert the spectrum

to mel scale)

– MFCCNMFCCS (number of DCT coefficients to keep)

• Number of convolution layers

• Number of fully-connected layers

• Number of kernels per convolution layer

• Kernel size and stride

The minimum duration of a respiratory cycle in the dataset was found to be is

0.2 seconds. The signal has a sampling rate of 4000 Hz which equals to 800 signal

samples. The signal size has to be larger than the window size to apply DFT so 128ms

(512) was selected as the as the window size for the DFT of the PSD, MS and MFCC.

A larger window size increases the spectrum’s frequency resolution and also increases

the size of the spectrum grid on the frequency axis. Different values were tried and

experimented with for the number of mels and kernals in the convolution layers. The

best results was found from using 64. Three was used as the convolution layers to

balance between over-fitting behavior and having too few layers which hinders the

models ability to learn the signal patterns. The number of fully-connected layers was

kept at one to also limit over-fitting behavior.
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Chapter 4

Results

In this section the results are presented and discussed to gauge how well the

algorithm performed.

4.1 Noise Reduction

After clipping the signals to the appropriate length, the signal was processed first

through the denoising method, Figure 4-1. Looking at the signal in an expanding

time view, Figure 4-2 it is clearer to see that the denoising worked and the signal is

smoother.

Figure 4-1: Original Signal (Blue), on the left vs the Denoised Signal (Red) on the
right
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Figure 4-2: Original Signal (Blue), on the left vs the Denoised Signal (Red) on the
right

4.2 Evaluation Metrics

The standard performance metrics used include precision, accuracy, sensitivity

(recall), specificity, and F1 Score [47]. Comparing our results to the conclusive deci-

sion by the pulmonologists, I am able to determine

• True Positives (TP), an outcome where our model correctly predicts the positive

case.

• True Negatives (TN), an outcome where our model correctly predicts the neg-

ative case.

• False Positives (FP), an outcome where our model incorrectly predicts a positive

case, when it is really negative.

• False Negatives (FN), an outcome where our model incorrectly predicts a neg-

ative case, when it is really positive.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Accuracy is the most intuitive measure and is simply a ratio of correctly predicted

observation to the total observations. Accuracy works best in symmetric datasets

where the number of false positive and false negatives are almost the same [30].
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Precision is the ratio of correctly predicted positive observations to the total predicted

positive observations [30].

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Sensitivity is the ratio of correctly predicted positive observations to the all observa-

tions in that class [30].

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑃 + 𝐹𝑃

Specificity measures the model’s ability to predict true negatives [30].

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

F1 score is the weighted average of Precision and Sensitivity, taking into account both

false positives and false negatives. The F1 score is often more useful than accuracy,

especially in an uneven class distribution, as is in the distribution used here [28].

4.3 Classification

In considering what the best algorithm combination would be, several combina-

tions were tried as described in the Methods section. The final classification selected

and used was evaluated with the evaluation metrics named above, paying more at-

tention to the F1 Score.
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4.4 Evaluation Results

The results above in Table 4.1 indicate fairly accurate results. There were five more

misclassifications in the case of the healthy cases, those with no abnormal lung sounds

and eight fewer misclassifications for the non-healthy cases, those with abnormal lung

sounds of any kind.

Total No. of Subjects 296
True Positives (TP) 81
False Positives (FP) 9
True Negatives (TN) 63
False Negatives (FN) 12

Accuracy 87.27%
Precision 92.28%
Sensitivity 87.10%
Specificity 87.50%
F1 Score 0.886

Table 4.1: Performance Metric Results

Of the data points used, there was some statistical overlap with the highest degree

of separation between healthy and unhealthy recordings. These are were selected as

possible inputs in a neural network for automated categorizing of the data into its

healthy and unhealthy groups. Network optimization included a cross-validation ap-

proach across four different training algorithms of which final network error evaluation

proved the top fourteen input measurements needed to be used.

The final neural network system used comprised of twelve different input param-

eters and yielded an overall accuracy of 87.27% and an F1 Score of 0.89.
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Chapter 5

Conclusion

Since the development of the traditional stethoscope we have made significant

developments that can capture, record, study and recognize auscultations beyond

using the a physician’s judgement [9]. These new capabilities can be a transformative

aid to medical practitioners. The sounds can be stored as a part of the patient’s

medical history. Over time, this raw data combined with the consultation notes and

medical images can provide a more complete picture of where the patient was from

one visit to the next as well as how a pathology is progressing or regressing [45].

Tech is entering the healthcare space at a rapid pace and transforming the job

of physicians. Some of their tasks will be taken over by AI, leaving them to have

more time to work with patients with care and patience [3]. Physicians will have

more access and ease of knowledge of up-to-date information in medical research.

They will likely have less administrative tasks and note taking lags. Computers and

sensors are developing beyond the capabilities of the human ear and can captures and

analyse a larger range of data [45]. With artificial intelligence and more technology

integrated in the medical system and record keeping, we will have better and better

understanding of the nuances and subtleties of pulmonary auscultations which will

lead to new clinical discoveries. Furthermore, these tools are becoming more portable

and able to do more real-time data collection at the bedside with the integration of

the internet of things (IoT) devices [69].

Technological advances in diagnostics have caused some clinicians to question
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the usefulness of more traditional, subjective, holistic examinations of diagnosis [52].

Others argue that the physical examinations remains an important aspect of medical

care and requires training [18]. Clinicians who are skilled at the bedside examina-

tion make better use of diagnostic tests and order fewer unnecessary tests. Even

in cardiac, where auscultation is considered to be a central player in examination,

despite its usefulness and value as a low-cost diagnostic irreplaceable tool, it too is

quick becoming a lost art. When used properly, the stethoscope are a valuable and

cost-effective clinical tool that a well-trained provider can use to make a rapid and

accurate diagnosis with fewer additional tests [14].

5.1 Comparison to Other Work

A few other groups have used this dataset to also work on the classification problem

as presented here. Their work and results can be found on Kaggle.com. The resulting

F1 scores were lower than what was found in this attempt, ranging from 0.6-0.75. This

is likely because of the different methods used in this approach that were different

from what was tried before. I have not been able to directly compare our results to

previous approaches since the source code and datasets used are not available. Our

approach and results differ in a few distinct ways from reviewing the methods used

in other attempts. I included data from healthy patients that were from the general

population. Prior studies data was from patients in hospitals and thus had far fewer

controls. Looking at the results on on specificity and sensitivity, these numbers ranged

widely from under 30% to close to 100%. This is often what happens when there is

overfitting and an imbalance in the training and test dataset. I modified the methods

to avoid overfitting and set aside a training dataset that was different but a good

control for our algorithm.

The methods used consisted of simulated crackles superimposed on real breathing

sounds. The results indicated that the most significant detection errors are owed to

the following two reasons. One, intensity or strength of of the respiratory signal.

Deep breathing masks more crackles than superficial breathing. Second, the type of
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crackles found. Fine crackles are easily recognizable as their waveform differs more

significantly from that of classic lung sounds. The amplitude of the crackles also

changes how difficult they are to distinguish. Crackles are clearly the most difficult

type of lung sound to be able to be detected and distinguished accurately. Thus, I do

not recommend that auscultation alone should not be the sole reference for validating

crackle detection.

5.2 Future Development

Electronic auscultation is still rather nascent and requires a lot more acceptance

and use in the hospital systems [44]. It might still take quite some time before dig-

ital auscultation tools replace a clinician and his stethoscope. The space for new,

innovative, portable and affordable diagnostic device that aid patients towards pul-

monary health and wellness will likely push the development further of this work.

Telemedicine, and its need especially in rural places, developing nations or even dur-

ing a pandemic might also drive up the demands for such devices [11]. For example,

tuberculosis (TB), not included in this thesis, is a bacterial infection of the lungs

that can cause a range of symptoms, including chest pain, breathlessness, and se-

vere coughing. It is life-threatening without treatment and active patients spread

the bacteria through the air. Many infected individuals with TB bacteria go through

a latent period where do not feel sick or experience any symptoms but can spread

the disease. The World Health Organization (WHO) has indicated this is a attention

worthy disease [40]. TB cannot be currently be diagnosed through auscultation, but it

is plausible that new advances and instrumentation can detect the unique pulmonary

pattern and metrics of TB in the future.
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