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Abstract

Unmanned aerial vehicles (UAVs) are becoming an increasingly popular transporta-
tion modality to improve efficiency, cut costs and increase customer service levels
amongst last-mile industry players and academics alike. UAV operations planning
is uniquely challenging because of UAV capacity and range constraints, the host of
aeronautic regulation UAVs are subject to, and the significant externalities it imparts
on the communities that they operate amongst that could materialize into additional
operational restrictions. Previous research contributions have focused on the vehicle
routing, environmental life-cycle analysis, economics and policy implications of un-
manned aerial vehicles for last-mile delivery (UAV-LMD), typically in isolation.

This thesis complements previous efforts by adopting an inter-disciplinary per-
spective of anticipated UAV-LMD operations. It first performs a survey of the most
significant societal and regulatory barriers facing UAV-LMD today and in the coming
decades and offers insight into potential regulatory pathways to constrain operations.
Second, it extends existing UAV routing methodologies to capture these constraints
and UAV-specific routing features in three competing routing models, offering a com-
parative analysis of their performance and identifying performance advantages of a
heuristics-based routing approach. Finally, this thesis performs a sensitivity analysis
of societal and regulatory constraint intensity, technology progression and demand
density on realistic demand instances. It finds that, independent of demand density,
societal and regulatory constraint intensity as well as UAV technology progression lev-
els drive UAV-LMD operational costs with the potential to render it uncompetitive
compared to traditional fulfillment modalities.
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Chapter 1

Introduction

1.1 Motivation

Over the past decade, the logistics industry has experienced substantial growth and
its fair share of technological disruption. Particularly in suburban and urban settings,
consumer demand for same-day or two-hour delivery has ballooned and companies
have struggled to meet demand without incurring substantial last-mile delivery costs.
The last-mile is defined as the last few stages of a parcel’s delivery chain process which
typically happens in the congested neighborhoods of today’s mega-cities. Whilst shift-
ing consumer expectations have played a pivotal role, a symbiosis of trends has driven
immense growth in last-mile delivery operations: intensifying urbanization, increased
purchasing power of the global middle class, the rise of new digital retail business
models, the shift from commercial to private parcel consumer demand, and advance-
ments in delivery vehicle and routing technologies (Joerss et al., 2016a). In the United
States (U.S.), e-commerce players continue to grab market share with online sales’
outpacing offline sales’ growth with compound annual growth rates (CAGRs) of 16%
and 4% from 2012 - 2021 respectively (see Figure 1-1) (Young, 2021).

Figure 1-1: U.S. online versus offline sales as a percentage total of retail spend in $B,
2012-2021.
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The global cost of parcel delivery, excluding pickup, line-haul and sorting costs,
currently amounts to approximately $80B annually with China, Germany and the
U.S. representing 40% of this demand. Not only is the last-mile market large, it is
also growing with recent annual growth rates are between 7-10% for developed coun-
tries but almost 300% in developing countries like India (Joerss et al., 2016b).

The last-mile in a delivery chain is vitally important to firms because it con-
stitutes a disproportionately large share of the parcel delivery cost to a customer,
particularly in urban areas (Joerss et al., 2016a) (see Figure 1-2 (Jacobs, 2019)).
From the perspective of a logistics firm, this problem currently represents an oppor-
tunity to differentiate one’s services and products from other logistics specialists but
also capture more commercial customers that previously managed their own logis-
tics operations in-house. Amazon, United Parcel Service (UPS), Google and FedEx,
among others, are investing heavily in new operational models, technologies, and sci-
entific brain-power to address society’s urban logistics woes.

Figure 1-2: Survey of typical U.S. last-mile cost as a percentage of overall fulfillment
cost.

The last-mile is also a significant contributor to the broader negative sustain-
ability externalities associated with urban logistics, be it economic, social or envi-
ronmental (Deloison et al., 2020). In today’s mega-cities, the face of urban last-mile
logistics has changed. In half a century, an industry that used to be an peripheral
part of daily life has morphed into one patent to every urban consumer. But whilst
the last-mile problem is a global one, much of the early investment is being allocated
to projects in the U.S. With this in mind, this thesis will focus solely on the state of
the last-mile in the U.S., with a handful of allusions to international enterprise.

Due to these key factors, significant market demand exists for new approaches
to last-mile delivery that ameliorate the imparted negative externalities and meet
increasingly demanding customer service level expectations. Last-mile players are
looking to integrate a host of small solutions to achieve the larger objective of effi-
cient urban logistics. Aggregated demand solutions such as parcel lockers and public
drop-off points are already being deployed – an ironic reflection of the “traditional”
logistics operational models prior to the e-commerce boom. Multi-echelon deliv-
ery solutions are also becoming more common in today’s mega-cities as large parcel
trucks becoming increasingly ill-suited to navigate today’s dense suburban and urban
spaces be it because of congestion, urban built density or unfavorable regulation. But
one technology that has received substantial public attention in the past decade for
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last-mile delivery is the unmanned aerial vehicle (UAV), colloquially referred to as a
drone. UAVs not only have the potential to revolutionize the last-mile industry, but
the estimated market size is immense, calculated to exceed $127B globally (Deloison
et al., 2020). UAVs are unique in three ways: low per-vehicle capital expenditures
(CAPEX) costs, autonomous delivery capabilities and the ability to rapidly travel
point-to-point. These three qualities contribute to the growing popularity of UAVs
in the last-mile space.

The key challenges that face the mainstream deployment of unmanned aerial
vehicles for last-mile delivery (UAV-LMD) are regulation, technological advances to
increase their flight range and enable a smoother integration of UAVs into the ex-
isting airspace safety frameworks, and social adoption and acceptance. Since its
inception, however, UAV-LMD players, from incumbent last-mile companies to var-
ious hardware-, software- and/or operations-focused startups have approached the
problem in notably different ways (see Table 2.1). But regardless of their differences
– their engineering (UAV designs, level of automation, UAV power-plant decisions)
to their operations strategy to their target market segment – players will need to con-
tend with the same reality and its host of real-world constraints. This thesis sits at
this nexus: it formulates hypotheses on the real-world constraints facing UAV-LMD
and takes a systems-level approach to studying their implications for the viability of
commercial operations.

1.2 Methodological Gap

In today’s technological world, the rate at which technologies emerge, diffuse into
society and die out is accelerating, bringing new opportunities to suppliers and new
products to consumers. But whilst this immense level of technological innovation
globally promises to improve personal and commercial utility, it is not without its
challenges particularly for the entrepreneurs, engineers, business strategists, regula-
tors and operators responsible for that technology’s integration into society.

Even with the growing emphasis on science, technology, engineering, and mathe-
matics (STEM) educations worldwide and the pools of venture capital (VC) funding
available to tech-savvy entrepreneurs, many promising technologies fail. But today,
these technologies are less black-box devices that can be inserted to solve a static
problem in a siloed context but rather a complex tool or extension of our human
body or society. Why is this the case? One part of the answer is that humanity has
already solved many of the uni-directional, uni-disciplinary problems with the tech-
nology currently available to us; the problems of today are highly inter-disciplinary,
often embedded into multi-dimensional systems. Take the Google Glass for example.
Whilst technologically feasible, the emergent value of the problem it solved (initially
to capture photos and videos more spontaneously but positioned to evolve and serve
as a tool for users to interact with the world via augmented reality (AR) experi-
ences) did not outweigh the social disconcertment it imparted on its user and others.
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This touches upon the idea that the boundaries between technology and society are
blurring and that the conceptual design and operationalization of modern-day tech-
nologies must reflect that. It also offers us insight into the increasingly important
technology policy questions surrounding UAV-LMD that this thesis serves to touch
upon the questions:

• Do we understand the technology, its integration into its supporting systems
and the role that it plays?

• Is it solving a problem with society’s systemic interests and values in mind?

• Do we understand the direct and indirect effects of integrating this technology
in society?

• Is any analysis to understand the effects grounded in frameworks that are con-
sistent with personal liberty, economic development, commercial opportunity
and national interest?

These high-level technology policy questions are what motivate this thesis to
explore UAV-LMD with an inter-disciplinary lens. This thesis will delve further into
the specific literature gaps that it fills in Chapter 2.

1.3 Scope

New aeronautic technologies, such as UAV-LMD or On-Demand-Aviation networks,
often face significant implementation challenges due to operational constraints, system
integration requirements and emergent negative externalities that were not considered
during conceptual design. This thesis seeks to develop a systems approach to evalu-
ate potential integration issues around UAV-LMD and identify crucial, non-technical
interface challenges that may not have previously been considered by the industry.
This thesis is an assessment of the operational and financial viability of UAV-LMD
by various regulatory environments, social externalities, technological limitations and
real-world operational constraints across select case-study scenarios in the U.S. With
that said, this thesis eschews a number of other dimensions of the UAV-LMD propo-
sition:

• This thesis does not address any of the engineering design considerations or
optimization that underpin UAV hardware and/or onboard software decisions.

With their various use-cases and design dimensionalities, UAVs evolved to be
inherently modular and flexible. Whether it be the on-board power-plant, the
lift-generation mechanism, the on-board system suite or the payload capacity,
UAVs are typically designed with a specific use-case in mind. Within UAV-
LMD, for example, a geographically dense area would likely suit a quadcopter
UAV configuration over a lift+push UAV configuration. Thus, UAV-LMD op-
erators would likely need to perform their operations sizing and UAV aircraft
design in parallel. But whilst UAV engineering represents a large part of the
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UAV-LMD value chain, this thesis does not delve into a sensitivity analysis of
the trade-offs between UAV engineering design decisions and their implications
for operations.

• This thesis does not explore the potential environmental benefits of UAV-LMD
over more traditional ground-based delivery modes. The majority of UAVs
do have not tailpipe emissions and, thus appear less emissions-intensive than
delivery trucks. In reality, actual UAV-LMD emissions are heavily dependent
on key operational factors such as the number of packages dropped per mile
traversed distance, demand density, UAV configuration and macro power-grid
efficiency factors such as input energy commodity type and grid loss factors
(Goodchild and Toy, 2018). This thesis avoid this discussion, in part, because
this analysis is solely focused on the economic viability of UAV-LMD and, as
of writing, few environmental incentives exist that would espouse or detract
from UAV-LMD viability. Whilst this may change in the face of new emissions
regulation in the coming years, any incentive schemes or taxes are unlikely to
impact the methodology or analytical results of this thesis but rather change
the cost of the status-quo benchmark that UAV-LMD is compared against.

• This thesis eschews making any specific policy or operational recommendations.
This thesis strictly serves as an exploratory exercise into solutions to solve
the generalized unmanned aerial vehicle routing problem (GURP) with societal
constraints and does not seek to provide specific recommendations for federal
or local regulators, operators, or active members of the public.

• This thesis does not delve into how UAV-LMD should be integrated into the
broader air traffic control (ATC) systems or how UAV-LMD should navigate
constraints set by significant airfields nearby an region of operation.

1.4 Research Questions

This thesis is motivated by the literature gap in assessing the feasibility of UAV-LMD.
It does this by situating itself at the intersection of vehicle routing-based operations
planning and the constraints set by societal and regulatory externalities. This the-
sis presents methodologies to more explicitly evaluate the externalities UAV-LMD
may impart on society and its implications for the financial opportunity available to
commercial providers. Thus, the formal research questions this thesis poses are:

1. Operational Constraints: What are the key social, regulatory, technological
and logistical constraints that would constrain real-world UAV-LMD opera-
tions?

2. Operations Modeling: How can these novel operational constraints be cap-
tured in a generalized vehicle routing optimization model?

3. Feasibility Analysis: Given realistic demand data and operational parame-
ters, is UAV-LMD financially profitable for service providers? Which constraints
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are key cost drivers? What are the social, operational and financial upshots of
UAV-LMD?

Although only tangentially, this thesis’s methodological contribution also extends
beyond UAV-LMD. Driven by many of the same technological advances and urban
livability shortcomings, many nascent markets within the broader urban unmanned
aerial system (UAS) transport industry also represent cases where novel emerging
technologies are being integrated into urban societies; not without their own set of
opportunities, constraints and challenges. There is significant overlap between this
thesis’s study of UAV-LMD feasibility and those being performed for these adjacent
domains, mainly in the joint modeling of the policy and operations research dimen-
sions to more closely capture the social, operational and economic realities of such
operations. Thus, the frameworks and methods developed in this thesis are likely use-
ful for similar feasibility studies of other urban UAS transport technologies in future
research.

1.5 Methodology, Thesis Overview and Organization

Discussed later in Chapter 2, the relevant literature on the topic of UAV-LMD typi-
cally focuses on one dimension of the UAV-LMD problem – be it the policy, operations,
technology, economics or environmental value – but only seldom a number of these
dimensions at once. This thesis sets out to explore how the societal and regulatory
constraints UAV-LMD will likely be subject to in the coming decades can be married
with UAV vehicle routing. The hope is to extract insights into the dependencies and
trade-offs between aspects of the UAV-LMD problem that have not yet been defini-
tively explored and offer a foundation for future work on the operationalization of
UAV-LMD. The over-arching methodology employed in this thesis is illustrated in
Figure 1-3. This methodology is further elucidated in the thesis structure overview
and organization below.

Chapter 1: Introduction. This chapter broaches the concepts around last-mile
delivery as well as defines the high-level summary of the methodological gap this
thesis attempts to fill, the thesis scope, the research questions and thesis structure.

Chapter 2: Background and Literature Review. The concept of UAV-LMD
is a recent development. Chapter 2 offers a deeper dive into the UAV-LMD industry,
its historical underpinnings, current market definition, market scope and the key en-
abling technologies behind UAV-LMD. The objective is to offer the reader context as
to the key operational features and technology that underpin UAV-LMD. Chapter 2
then reviews previous attempts to evaluate the various dimensions of the UAV-LMD
problem commonly focused on in existing literature in isolation and in unified anal-
yses. It concludes by identifying a suitable literature gap for this thesis to fill.
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Figure 1-3: Flow block diagram illustrating high-level approach developed in this
thesis to holistically explore UAV-LMD operations.

Chapter 3: Legal and Regulatory Landscape for UAV Last-Mile Opera-
tions. Chapter 3 serves as the bedrock for the analysis of the potential societal
and regulatory constraints that may restrict UAV-LMD operations over the coming
years. This chapter does so by first analyzing the gamut of current and potential
future regulatory constraints. It also ventures into areas of regulatory uncertainty
to offer readers insight into regulatory domains that have the potential to impinge
on UAV-LMD operations. This analysis is then followed by a similar analysis of the
current and future societal considerations of UAV-LMD and how these may constrain
operations.

Chapter 4: The UAV Routing Problem. Chapter 4 serves to build upon the
analyses in Chapters 2 and 3 to formulate models that solve the GURP. The efforts
of this chapter seek to uncover the challenges with solving the GURP but also offer
a variety of approaches to incorporate such complex features for future work and
research. The chapter concludes with a comparative analysis of the various algorithms
derived and their suitability to full-scale deployment for UAV-LMD operations.

Chapter 5: Operations Case Study Analysis. Chapter 5 brings together Chap-
ters 3 and 4 to offer an example of how holistic operational modeling of the GURP
could be performed. The chapter defines a set of realistic scenarios that represent a
sensitivity analysis of the UAV-LMD operational cost function to explore its key cost
drivers.
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Chapter 6: Conclusion. Chapter 6 reviews the thesis questions posed in Section
1.4 and provides answers to these questions based on the findings in the subsequent
chapters. This chapter concludes with a review of the limitations of the thesis work
presented and avenues for future research.
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Chapter 2

Background and Literature Review

This chapter introduces the notion of unmanned aerial vehicles for last-mile delivery
(UAV-LMD) in more detail by describing its relevant, albeit short, history and the
role it plays in the existing logistics and, specifically, last-mile industries. Note that
this chapter does not provide a comprehensive overview of any the key technological,
social, cultural, regulatory or economic drivers behind the emergence of UAV-LMD,
for which there are many, but rather primes the reader with relevant academic ac-
tivity in the space. This chapter performs a review of the literature pertinent to
the research questions this thesis poses around UAV-LMD, namely the analyses of
its regulatory and non-regulatory implications (see Section 2.2.1) and approaches to
model operations (see Section 2.2.2).

2.1 Unmanned Aerial Vehicles for Last-Mile Deliv-
ery

2.1.1 Historical Underpinnings

The earliest UAV-LMD operation at scale was arguably Zipline’s medical supply net-
work in Rwanda which launched in October of 2016 (Landhuis, 2018). Before 2016,
UAV-LMD was first tested by the Swiss Postal Service as early as 2015 in partner-
ship with Matternet, a US-based unmanned aerial vehicle (UAV) logistics start-up
(Swiss Post, 2018). But UAV-LMD was an idea first broached by Jeff Bezos, then
CEO of Amazon, back in 2013 (Hamilton, 2019). Ever since 2013, UAVs as a delivery
fulfillment modality has become increasingly more popular and received wider atten-
tion both in academia and industry. Both logistics industry incumbents and new
players explored the opportunity of defining the parameters of a new transportation
modality, from the aircraft design and configuration to the supporting infrastructure
and communication protocols required, to any ancillary services that support the
software or hardware fleets of UAVs operating semi-autonomously or autonomously
daily. Amazon was faced with legislative barriers domestically in the United States
(U.S.) and was impelled to set up a research & development (R&D) center in Cam-
bridge, United Kingdom (UK), where it performed its first successful home delivery
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in 2016. Alphabet’s Wing was a close follower, predominantly operating out of test
sites at Virginia Tech and in the suburbs of Canberra, Australia. The United States
Postal Service (USPS) scrambled to join the race and polled the American public in
mid-2016 to evaluate their perception of this novel delivery modality (Singh, 2017).

But the UAV, as a technology, has existed in the civilian domain since as early
as the 1990’s, with lightweight quadcopters developed as toys for children in Japan
(Darack, 2017). It was not until the mid 2000’s did the necessary technology, discussed
further in Section 2.1.2, UAVs become more commonplace in civil society. This was
mostly for recreational photo and video capture for both indoor and outdoor flight.
This period of recreational use was pivotal in familiarizing populations around the
world with the technology to be more likely publicly accepted in the commercial
domain. But in line with its research- and military-centric origin, the UAV recently
became a technology of national interest, specifically in the U.S.,

“To promote continued technological innovation and to ensure the global leader-
ship of the United States in this emerging industry, the regulatory framework for
UAS operations must be sufficiently flexible to keep pace with the advancement
of UAS technology” (Trump Administration, 2017).

This initiative helped to dissolve tension between federal regulators and the do-
mestic UAV-LMD industry, encouraging players such as Amazon and Wing to re-shore
their experimental operations and prioritize domestic launches for their initial service
launches.

Figure 2-1: UAV-LMD economics – hypothetical UAV fulfillment modality versus
alternative current fulfillment competitors for 5 lb. package delivered within 10 mi.

Whilst the original proponents of UAV-LMD such as Amazon or Wing empha-
sized the immense value of UAV-based fulfillment to consumers, namely shorter de-
livery times, a more reliable service and lower shipping costs either built onto or
into the purchase price of the good, a key driver for UAV-LMD adoption is simply
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the economics. Figure 2-1 highlights the advantages that UAVs possess in offering
a cheap delivery modality that can meet exceedingly tight order-to-delivery turn-
around times (Keeney, 2015; Levitate Capital). This is driven by their lower capital
expenditures (CAPEX) requirements, energy requirements and absence of a major
labor cost component, especially in the scenario where UAV fleets are autonomously
operated.

2.1.2 Key Enabling Technologies

Understanding the role UAVs in the last-mile industry can be aided by exploring the
key enabling technologies that underpin UAVs emergence and popularity. Such an
analysis offers insight into the opportunities that original equipment manufacturers
(OEMs) envisaged upon entering the last-mile industry and the pressures the indus-
try exerts on UAV R&D and aircraft design. Whilst technologies can be classified
in a variety of ways, this thesis adopts a from-first-principles approach to technology
classification that may be relatively uncommon in UAV-relevant literature, see Fig-
ure 2-2. With that said, such a classification system is common in the aeronautics
and aerospace realms today and will be adopted here to reflect similarly macro-level
technology roadmapping best-practices (De Weck, 2022).

Figure 2-2: Enabling technologies for civilian UAV-LMD classified in 5x5 technology
matrix.

Distributed electric propulsion (DEP) can be defined as a propulsion system
that leverages electric motors distributed around the aircraft and are commonly asso-
ciated with increases in propulsive efficiency, fuel or energy economy, vehicle handling
and enhanced power plant redundancy, and reductions in emissions and noise pollu-
tion. Such systems often suit aircraft with steep climb and descent profiles, extreme
flight envelopes and those with innovative control mechanisms. Additionally, they can
be cheaper to manufacture, assemble and maintain since power plant mis-function is
typically easier to diagnosis and per-unit replacement costs are lower.

Computer-Aided Aircraft Design This pertains to advancements in computa-
tional power and software that has enabled aircraft designers to more closely capture
aerodynamic and structural behaviors of aircraft in computer-based simulations prior
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to otherwise expensive iterative build-and-test development phases.

UAV Aircraft Design and Configuration refers to novel UAV aircraft design con-
figurations that have emerged via pressures from use-cases in the last-mile industry
guiding UAV technology development. The earliest UAVs for last-mile delivery were
more commonly quadcopters (see Figure 2-3a). The hexacopter and octacopter con-
figurations had also existed to serve specific heavy-lift and short flight-time use-cases
such as advanced aerial filming or rescue operations (see Figure 2-3b). The fixed-
wing drone spawned out of the need for a more stable, reliable, long distance UAV; a
configuration that Zipline championed in all their operations (see Figure 2-3c). But
the fixed-wing configuration requires a large infrastructure footprint for take-off and
landing and, hence, the lift+push configuration emerged (see Figure 2-3d). Whilst
this is not a novel aircraft configuration – early aircraft such as the Lockheed AH-
56 Cheyenne were lift+push aircraft since they were modeled as helicopters with a
pusher prop at its rear end – they were notoriously hard to design with complex aero-
dynamic phenomena disrupting stable flight particularly in the transition between
vertical flight and forward flight. The lift+push configuration is becoming the more
prominent aircraft design in UAV-LMD operations today with Wing being the most
advanced urban last-mile UAV-LMD operator which has adopted this technology.
Their UAV design offers a competitive balance between range, maneuverability, ver-
tical take-off and landing (VTOL) capabilities and certifiability.

Lightweight Structural Materials are essential in aircraft design beyond UAV de-
sign because aircraft need both reliable structural integrity under a variety of loading
conditions and reliable materials over the course of many take-off and landing cycles.
UAVs are predominantly made of thermoplastics and carbon fiber-reinforced com-
posites. Carbon fiber has become progressively cheaper over the past few decades,
pushed down by consumer pressure across a variety of high performance industrial
products, from sports equipment to the automotive and racing vehicles industry to
the medical industry to passenger aircraft. UAVs have benefited from such material
innovation in their structural components as well as in their high-performance com-
ponents such as propellers and sensors.

Lightweight, Energy-Dense Batteries form the basis for UAV’s emergence as a
viable transportation modality in the last-mile industry. Lightweight, energy-dense
lithium-ion batteries have drastically improved energy density per unit mass, robust-
ness across a wide range of environmental conditions and price-point. They also offer
flexible form factors and can continue to provide substantial power and energy out-
puts after repeated charge-discharge cycles. Figure 2-4 captures these improvements
along energy-density and price-point dimensions (Roper, 2020).

Connectivity and Global Positioning System (GPS) location tracking that
is wide-ranging and reliable are essential for enabling extended visual line of sight
(EVLOS) or beyond visual line of sight (BVLOS) UAV-LMD operations and ensur-
ing the UAV network to protect against external malign actors both now and in the
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(a) Quadcopter configuration. (b) Hexacopter configuration.

(c) Fixed-wing configuration. (d) Lift+push configuration.

Figure 2-3: Commonly occurring UAV configurations.

future. Strong connection links will also enable autonomously operated UAVs to be
safely integrated into unmanned aircraft system traffic management (UTM) networks.
Such communication links need to be robust against external intruders or blockers but
also in the face of inclement weather, congestion in cellular networks or power outages.

Guidance, Navigation and Control pertains to a UAV’s ability to detect, process,
and avoid obstacles in real-time leveraging only onboard computing resources. This
is a difficult technological challenge since such algorithms require both significant
computational power and time, potentially too long to avoid an incoming aerial object
or obstacle at relative travel speeds. Control pertains to the UAV’s ability to precisely
track its own motion and attitude in 3D space using accelerometers and gyrometers
and to maintain stability in uncontrolled environments. These sensors should, thus,
be precise themselves, have low power requirements, and continually share data with
remote operators.

2.1.3 Market Definition and Scope

Although UAVs are slowly being assimilated into civil society filling various com-
mercial, industry, and recreational use-cases, a large proportion of the public still
perceive UAVs as a sophisticated military technology. This is, in part, because of a
lack of specificity in the term “drone” which refers to dual-use quadcopters and fixed-
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Figure 2-4: Li-ion battery price point and energy density trends over previous decade.

wing UAVs as well as the larger fixed-wing, often weaponized, military unmanned
aircraft. This thesis strictly discusses the former non-weaponized small-form aerial
vehicles. With the emergence of real-time connectivity and increased societal famil-
iarity with advanced autonomous technologies, businesses and entrepreneurs across
many industries realized the dual-use value of UAVs such as for surveillance, photog-
raphy, video capture, inspection, advanced sensory data collection, goods transport
and even passenger transport in larger-form air-taxi configurations. The U.S. repre-
sents a significant proportion of the overall market for non-military UAV applications,
growing from $40M to over $1B from 2012 to 2017 and represents a strong signal how
UAVs could be commercially deployed in other markets in later years (Cohn et al.,
2017).

UAV-LMD is the specific intersection of commercial UAV deployment for last-
mile delivery services. Within this sliver of the broader commercial UAV industry,
understanding this market requires an understanding of its value chain (see Figure 2-
5). Even within this sub-sector of the market, further segmentation can be made
based on the specific goods being transported and operators behind any UAV-LMD
fleet. The most common examples of such segments are: 1) retail and e-commerce;
2) postal services and package delivery; 3) food and beverage delivery; or 4) healthcare
and emergency services, each involve a fleet of UAVs fulfilling consumer demand over
a demand region. But whilst there are players and unanswered questions about
industry trajectory in each section of this value chain and across each of the market
sub-sectors, this thesis solely focuses on the Operators section in Figure 2-5. This is
because the majority of the remaining barriers to UAV-LMD are operational in scope.
In particular, this thesis asserts that the key remaining barriers to broad-based UAV-
LMD deployment are:

• Infrastructure: One major appeal of UAVs for commercial applications is its
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Figure 2-5: Commercial UAV-LMD value chain with this thesis predominantly adopt-
ing the analytical perspective of an UAV-LMD operator.

relatively modest infrastructure requirements. Zipline’s inaugural operations
in Rwanda, for instance, were highly attractive to the Rwandan government
because of its low upfront CAPEX requirements and relatively outsized impact
on public health. With that said, as UAV applications become more integrated
in society and urban landscapes, their infrastructure requirements will become
more complex: maintenance shops, charging stations, take-off and landing fa-
cilities and other communication assets will all need to comply with the societal
and regulatory environment in which they reside. Not only will these systems
need to be robust to ensure safe and efficient low-altitude aerial operations in
dense urban areas, but they are also mostly untested infrastructure concepts
that will require additional testing and certification.

• Technology: This thesis eschews a broader discussion of UAV’s technological un-
derpinnings, in part, because UAVs rely on a number of sophisticated enabling
technologies: autonomous flight, collision detection and avoidance, lightweight
but energy-dense battery technology, integrated UTM systems and GPS and
additional location technologies. This thesis’s perspective is that whilst many
of these technologies already exist and operate to a performance level accept-
able for commercial deployment, their robustness, failure modes and response
pathways or security against external actors have not necessarily been corrobo-
rated. This thesis avoids a more detailed discussion here predominantly because
many of these technologies span multiple industries and are not being solely
developed for commercial UAV deployment or UAV-LMD specifically. Thus,
verifying these technologies’ areas of uncertainty will likely come from a variety
of industries and, thus, lies beyond the scope of this thesis.

• Regulation: Many national and local regulators are grappling with drafting
adequate UAV regulatory frameworks for commercial applications. This is,
in part, because both the technology and its applications are novel and, rela-
tive to historical aerial operations, they are much more closely integrated with
societies, particularly in urban operations. Because vehicles operating in the
The National Airspace System (NAS) can present a national security risk, the
Federal Aviation Administration (FAA) is notably strict on commercial UAV
operations prior to any pre-drafted regulatory framework. Thus, it is likely that
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the regulatory process and timeline will ultimately determine when many UAV
applications become viable. Because new regulation is often an amalgamation
of regulation in adjacent industries, historical case law and newly drafted law,
this thesis recognizes an opportunity to survey the landscape of pertinent UAV-
LMD regulation to better understand both current regulation and how it could
evolve over time. Since regulation has a direct impact on operations, this the-
sis concludes that a survey of regulation and its implications for operations is a
necessary exercise to more closely evaluate operational feasibility of UAV-LMD.

• Public Acceptance: Public acceptance is a pivotal barrier to UAV-LMD since
expected operations are likely to be closely integrated into urban landscapes
and, thus, have a more direct impact on the quality of lives of civil society
members. Discussed in more detail in Section 3.1, even though the FAA is the
sole regulator of the NAS, the public do have leverage to impel local regulators
to enact regulation that can severely constrain UAV-LMD operations in that
local region. This would render any CAPEX or other operational investments
in that region by the operator futile. Thus, operators do have to be cognizant
and sensitive to local public opinion and acceptance. There is ample literature
and historical learnings from the aviation industry and beyond on how to pro-
mote public acceptance, but offering contributions to the academic literature
on this topic lies beyond the purview of this thesis. With that said, this thesis
recognizes the value of surveying current academic and industry opinions on the
barriers to public acceptance for UAV-LMD and understanding its implications
for operations.

• Economic Drivers: Finally, this barrier captures the question if demand will
indeed materialize for commercial UAVs applications, or UAV-LMD specifically
over a sufficiently long time frame to sustain an industry and the associated lead-
times on regulation, technological development and service deployment. This
thesis recognizes the importance of understanding the target customer, their
changing needs over time and their suitability to a commercial UAV service.
With that said, for the purposes of this thesis’s case study analysis, demand
is assumed to be derived not by spawning a whole set of new customers and
unique demand needs but rather appropriating demand from the existing last-
mile industry. In this way, this thesis works closely with logistics partners to
understand their demand base characteristics and their customers’ suitability
to UAV-LMD services specifically.

Note that each of these key barriers directly impacts UAV-LMD operations. Op-
erational feasibility will ultimately determine whether industry players will launch
UAV-LMD fulfillment services that support the rest of the value chain since this is
where the exogenous demand actually injects revenue into the value chain. In this
light, this thesis opts to solely focus on UAV-LMD operations and assimilate its most
critical barriers into a operations-centric feasibility analysis. Table 2.1 summarizes
the key industry players that reside in the “Operators” section of the UAV-LMD
value chain depicted in Figure 2-5 with reference to specific players that span mul-
tiple sections in the value chain and represent multi-domain players. Finally, it is
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worth noting that this thesis, along with the modeling approaches it adopts, strives
to be good type-agnostic. One exception here is if that good has specific operational
requirements such as time-dependent cold-storage expiry times. Whilst such needs
could be adequately modeled through the available parameters in this thesis’s mod-
eling framework, it is beyond the purview of this thesis to capture these operational
edge-cases from the perspective of the goods being transported.

2.2 Literature Review

This section attempts to cover the academic literature pertinent to the dimensions of
UAV-LMD that this thesis brings into focus. The last few years have seen a large num-
ber of publications on UAV-LMD, especially in academic literature. Whilst economics
and operations have proved popular topics to analyze via quantitative survey-based,
analytical, or simulation-based models, research into regulatory frameworks or the
societal externalities of UAV-LMD have been explored less frequently.

The scientific research on UAV-LMD can take many various directions related to
the many research questions that have been posed to the industry before commercial
deployment at scale. Such questions span the outstanding areas of uncertainty dis-
cussed in Section 2.1.3 that present barriers to deployment: technological readiness,
regulatory readiness, novel infrastructure needs, communication technologies, pub-
lic acceptance and evaluating the magnitude of any societal externalities imparted,
demand economics, available routing optimization methods, and the implications of
each of these issues for operations. This complexity manifests in more difficult op-
erational decisions, for example: 1) larger vehicle fleets to optimize the utility of;
2) operations close to dense urban areas with a multitude of additional constraints
and safety risks; 3) complex and random dynamics from temporary flight restrictions
to inclement weather to interacting with other aerial vehicles and UAV-LMD operator
fleets; and 4) autonomous operations. This problem is seemingly too broad with too
many influencing forces to rigorously study in any isolated academic analysis, hence
why the majority of literature pieces focus on either one or a few dimensions of the
larger UAV-LMD research problem at a time. This thesis makes assumptions around
technological readiness, infrastructure needs, and consumer demand and, in doing so,
only focuses on the societal and regulatory constraints, routing optimization methods
and their implications for operational decisions. Thus, this literature review eschews
any review of academic work outside of these three domains.

At a high level, this literature review provides a sound introduction to relevant
literature domains for its reader to become familiar with the key qualitative and
quantitative topics of discussions, approaches and insights later derived. This is
performed in three parts by exploring: 1) the society- and policy-centric literature
studies, and 2) the routing-centric literature studies. The thesis then touches upon
those contributions that could be considered cross-disciplinary in nature, that attempt
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to marry qualitative and quantitative evaluations of UAV-LMD at a systems level to
derive insights.

2.2.1 Society-Centric Studies

This section summarizes various literature contributions that evaluate UAV-LMD
from a society-centric standpoint. This thesis classifies the relevant literature based
on their analysis approach and thematic focus, shown in a comparative summary in
Table 2.2. The following paragraphs describe literature grouped by their thematic
focus for consistency and continuity. Kellermann et al. (2020a) provide a relatively
comprehensive overview of the literature in this society-centric domain. They also
cover the topical issues that are commonly discussed in such literature in short detail
as an informative introduction to any reader new to this domain.

With regards to papers that focus on the societal implications of UAV-LMD,
they predominantly consider the positive and/or negative externalities of commer-
cial UAV deployment at scale and generally offer abstract conjectures of the poten-
tial externalities. For instance, Bujak and Śliwa (2017) and de Miguel Molina and
Santamarina Campos (2018) claim substantial benefits for societies and economies.
Such benefits include a reduction in traffic congestion, reduced commuting times and,
thus, macro-economic benefits, as per Heutger and Kückelhaus (2014). Kornatowski
et al. (2018) also hints at the possibility that UAV-LMD enable an efficient sharing
economy. With regards to some of the quoted negative externalities, Applin dis-
cusses the liability issues with autonomously operated UAVs. Schlag (2013) and Rao
et al. (2016) highlight the potential for UAV-LMD to erode personal privacy barriers.
Jensen (2016) suggests this would be made worse if UAV-LMD operators leverage col-
lected data beyond navigation and other operation-based use-cases. Gulden (2017)
and Nentwich and Hórvath (2018) caution that UAV-LMD could instigate extreme
consumption patterns that adversely affect urban livability. Finally, Kraus et al.
(2020) discuss the various ways in which UAV technology is spreading in society
based on its popularity and various use-cases.

The following papers discuss the safety and security implications of UAV-LMD.
Again, these papers discuss the positive and negative externalities of commercial UAV
operations. Examples of positive externalities are typically centered on using a fleet
of UAVs as nodes in a law enforcement sensory network. Stöcker et al. (2017) high-
light the safety issues of crashes, malfunctions and air collisions, particularly relevant
in dense urban areas, as per Clothier et al. (2015). Kitonsa and Kruglikov (2018),
Rao et al. (2016) and Smith (2015) discuss UAVs being used for criminal or terrorist
purposes either as a vehicle masked to appear as part of a commercial fleet or by
remotely hacking one of the UAVs in the fleet.

With regards to ethical dilemmas presented by UAV-LMD at scale, Nelson et al.
(2019) suggest the potential for UAV-LMD to violate personal privacy and private
spaces, eroding the public sense of anonymity. Schlag (2013) and Chiang et al. (2019)
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suggest this is only exaggerated by the fact that UAVs, at typical cruise heights, are
almost invisible to the naked eye but still able to perceive objects and people on the
ground with accuracy. Nentwich and Hórvath (2018) highlight that UAVs will need
to operate high-definition sensors for navigation purposes and are likely to infringe on
personal privacy claims by the nature of their operations. Wang et al. (2021) propose
that strict no-fly zones could help mitigate some of the negative ethical externalities
imparted by UAV-LMD. Chiang et al. (2019) suggest that operators should be highly
transparent about the data they collect, why it was collected and how it is being used.

The environmental positive and negative externalities of UAV-LMD at scale are
also topics touched upon in literature, with both sides being equally popular per-
spectives taken by academics and other contributors. Haidari et al. (2016) perform
a sensitivity analysis in an applied scenario with real-world vaccine demand data
and demonstrates the potential distribution cost savings via UAV-LMD. Figliozzi
(2017) performs a life-cycle analysis of UAV-LMD relative to other delivery modes
such as bicycles and electric vehicles via continuous approximation, and offer insight
that UAV-LMD are more environmentally attractive when other delivery modes are
highly under-utilized capacity-wise. Goodchild and Toy (2018) evaluate UAV-LMD
along two environmentally motivated metrics: CO2 and total travel distance. They
derive that to minimize the emissions of delivery operations in its entirety, UAV-
LMD should be deployed in regions nearby the distribution center (DC), allowing
larger ground-based modes to be better utilized in long-range deliveries. Kitonsa and
Kruglikov (2018) suggest UAVs, either for goods or passenger transport, represent
an opportunity to transition to sustainable mobility. Park et al. (2018) takes a more
critical stance, suggesting that few analyses have conducted full life-cycle emissions
analysis of commercial UAVs at scale in urban environments. They propose lever-
aging green energy to charge batteries or locating UAV warehouses strategically to
minimize energy consumption.

Other papers discuss the public acceptance barriers. For example, Lidynia et al.
and Clothier et al. (2015) suggest that the negative externalities of commercial UAVs
operations will likely be apparent to bystanders since they are such novel technolo-
gies so closely integrated into urban landscapes. Otto et al. (2018) suggest increased
dialogue, transparency of operations and its benefit to the public as key tools to im-
prove public acceptance metrics. de Miguel Molina and Santamarina Campos (2018)
suggest that incorporating a set of technical measures that alleviate the worst of the
negative externalities and that are effectively transmitted into the public sphere is
critical to inspiring public acceptance.

From the perspective of law and regulation, most discuss the need for dynamic
and purpose-built regulation to protect societies against the unique negative exter-
nalities that UAV-LMD imparts. Luppicini and So (2016) suggest exactly this. Rule
(2016) specifically analyzes the benefits of “drone zoning” as a regulatory tool to pro-
tect against the variety of negative externalities covered in the literature. Sehrawat
(2018) offers a deep dive into the various liability issues with UAV-LMD operations
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and potential liability pathways, particularly if operated remotely or autonomously.

In summary, the society-centric literature generally ruminates upon the potential
positive and negative externalities of UAV-LMD from a predominantly qualitative
standpoint with only a select few papers leveraging quantitative models to derive
insights.

[Intentionally left blank]
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Table 2.1: Overview of the key UAV-LMD industry players.

Company Description Competencies
Amazon first broached their pursuit of UAVs for last-mile deliv-
ery in 2013. Within Amazon Prime Air, the company developed
UAV hardware, software and operational know-how and pushed
the FAA to permit commercial UAV testing operations BVLOS.
Nevertheless, Amazon began testing in more favorable regulatory
environments in Cambridge, UK and Vancouver, CA.

UAV hardware
On-board software
Logistics systems
Regulation Advocacy

UPS launched UPS Flight Forward in 2019 but began early testing
of their truck-and-drone delivery system, Workhorse Workfly, as
early as 2017. In October 2019, UPS were to first to gain FAA full
Part 135 Standard Certification, allowing the company to operate
a fully remote UAV delivery network across the United States with
an unlimited number of UAVs launch hubs, both day and night.

UAV hardware
On-board software
Logistics systems
Regulation Advocacy

Early in 2014, DHL unveiled their UAV delivery service, announc-
ing their in-house Parcelcopter design in parallel. It was the first
to commercially integrate UAV deliveries into their broader logis-
tics network, providing service to remote towns in Germany with
a focus on medical supplies and small goods. Now in its fourth
iteration, the Parcelcopter has evolved in configuration, payload
capacity, range and use-case.

UAV hardware
On-board software
Logistics systems
Regulation Advocacy

Originally headquartered in Australia, Flirtey partnered with the
University of Nevada as it relocated to United States focusing on
UAV technology and the UAV-LMD logistics system development.
They performed the first FAA-approved commercial UAV deliv-
ery in July 2015. Flirtey held partnerships with 7-Eleven (U.S.)
and Domino’s Pizza (New Zealand), in cases fully integrating the
service chain from customer orders through to delivery.

UAV hardware
On-board software
Logistics systems

Founded in 2011, Matternet provides end-to-end UAV-LMD of-
ferings to customers. First championing the truck-and-drone de-
livery model in partnership with Mercedes-Benz Vans, Matternet
has since pivoted into pure-play UAV-LMD with standing part-
nerships with UPS and Japan Airlines. Most recently, Matternet
announced a stand-alone medical goods delivery service in Labor,
Berlin, DE, as the first urban BVLOS operation globally.

UAV hardware
On-board software
Logistics systems

Wing’s parent company, Alphabet, has been investing in UAV
delivery via its R&D subsidiary, Google X, since 2012. Wing
soon showcased their lift+push UAV design and winch delivery
technology. Testing in Logan City, AU and Virginia, U.S., Wing
has been working with regulators and the public to inform UAV
design, operational decisions and their in-house UTM platform.

UAV hardware
On-board software
Logistics systems
Regulation Advocacy
UTM/ATC

The Chinese e-commerce giant launched their UAV delivery ven-
ture in 2015 with initial investments into UAV hardware. With a
focus on remote regions across China, by the end of 2017, JD.com
had already performed thousands of deliveries across outer-Beijing
and other provinces. The CAAC permitted JD.com to build out
UAV landing platforms across the country.

UAV hardware
On-board software
Logistics systems
Regulation Advocacy
Infrastructure

Founded in 2013, this software-focused Israeli company developed
the first cloud-based UAV delivery service and operations man-
agement system. The latter system enables suppliers to leverage
Flytrex’s fleet of UAVs as a shared resource with access to posi-
tioning, capacity, range and other live data. Since 2016, Flytrex
have announced pilot programs in Ukraine and Reykjavik, IS to
provide BVLOS autonomous UAV-LMD service.

UAV hardware
On-board software
Logistics systems
Cloud integration

In partnership with the Rwandan government, Zipline launched
a national UAV delivery service in 2016 to supply remote health
facilities. They offer an in-house fixed-wing UAV design, novel
launch and retrieval mechanisms, remote BVLOS connectivity
and delivery via parachute. Designed around the needs of local
doctors, the service is integrated into existing SMS networks. in
2020, Zipline announced a new partnership with Walmart, U.S.

UAV hardware
On-board software
Logistics systems
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2.2.2 Routing-Centric Studies

Discussed in light detail in Section 1.1 and in more detail in Chapter 4, this thesis’s
analysis features a generalized unmanned aerial vehicle routing problem (GURP) im-
plementation that aids in its exploration of UAV-LMD operational feasibility given
real-world constraints. This model implementation serves the purpose of providing
a quantitative pathway to deriving realistic operational performance and cost met-
rics given varying scenario input parameters; but the structure of this model is not
beholden to any other constraints. This section explores the various ways academics
have conjectured to capture UAV-LMD operations in a quantitative model and how
this thesis builds upon existing literature. Much of the current UAV-LMD operations
literature is grounded in more traditional operations research domains that manifest
in applied last-mile logistics and routing discourse.

Otto et al. (2018) present a comprehensive overview of current optimization
methods to solve problems that emerge as UAVs are applied in commercial settings.
They cover problems such as area coverage, search and rescue, data acquisition, com-
munication linking and sequential location visits. Khoufi et al. (2019) provide a clas-
sification methodology for UAV-LMD applications centered around the number of
vehicles, solution approaches and applications. The analysis by Chung et al. (2020) is
centered on UAV-aided vehicle routing, commonly referred to as the truck-and-drone
delivery system and, thus, classifies UAV-LMD routing operational models based on
whether UAVs operate independently or as part of a mobile multi-vehicle system.
Moshref-Javadi and Winkenbach (2021) provide a comprehensive overview of either
UAVs leveraged in last-mile delivery from the vehicle routing perspective. They offer
insight into the operational models typically modeled in literature, their applications
and common solution approaches to solve such UAV-based vehicle routing problems
(VRPs). They also provide a comprehensive classification system that succinctly cap-
tures the different ways UAVs could be integrated into a last-mile fulfillment network.
This classification framework is as follows:

• Pure-Play: UAVs deliver packages directly to customers from a central DC.

• Un-synchronized Multi-Modal: multiple modes of transportation are used in
parallel but asynchronously to fulfill customer demand. The customer pool can
be split between transportation modes or shared between them such that the
same customer can be visited multiple times by different transportation modes.

• Synchronized Multi-Modal: multiple modalities are used in parallel and syn-
chronously to fulfill customer demand. Transportation modes work in symbiosis
to enhance each other’s baseline performance capabilities. An example of such
a fulfillment mode is a set of UAVs being placed atop of a ground-based truck
and launched at strategic locations in the demand region to serve customers
whilst the truck also continues to serve customers directly.

• Resupply Multi-Modal: This is similar to the Synchronized Multi-Modal except
that the vehicles are not moving around the demand region together but rather
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one transportation mode is used to supply an advanced base or transshipment
point from where the second transportation mode is operating out of to serve
customer demand. This is akin to a two-echelon fulfillment network with each
echelon consisting of different transportation modes.

Note that whilst in the strictest sense, UAV-LMD encapsulates any customer
fulfillment network that leverages UAVs in any part of its last-mile system, this thesis
uses the term UAV-LMD to strictly refer to the Pure-Play fulfillment model. In this
sense, this thesis eschews any discussion of multi-echelon or multi-modal last-mile ful-
fillment networks that may include UAVs as part of the network and, instead, solely
focuses on isolated UAV fleets deployed to serve customers directly from a central-
ized fulfillment DC. This section goes on to highlight the relevant academic efforts
to capture the operational considerations of the Pure-Play UAV-LMD model through
a structured framework that categorizes literature by the key features, assumptions,
and modeling approaches employed.

Table 2.3 offers a comparative overview of key UAV-LMD routing literature along
these specific differentiating factors relative to this thesis’s modeling approach in
Chapter 4. At a high level, the routing literature solves the UAV-LMD fulfillment
problem, what this thesis refers to as the unmanned aerial vehicle routing problem
(URP), with differing tools, characteristics and objective functions. Since the earlier
literature papers in 2014, more complex versions of the URP problem has been getting
progressively more complex and capturing more features and objectives. Some also
take a different perspective around determining the optimal location and capacity of
a recharging station network whilst others are more focused on the vehicle routing
elements.

First, a number of papers take a facility location optimization approach to solving
the URP. Hong et al. (2018) solve a location covering problem for UAV recharging
stations for a URP problem. The UAVs are modeled to avoid barriers and obsta-
cles in their environment such as buildings or no-fly zones but each UAV can serve
only one customer per trip. UAVs can recharge at locations along their flight path
to their destination. A mixed-integer linear program (MILP) and heuristic method
are proposed to solve this problem. Chauhan et al. (2019) derive a facility location
problem solution that maximizes total number of customers served with UAV power
consumption derived as a weight-dependent function. But UAV batteries are assumed
as not rechargeable or replaceable. Shavarani et al. (2019) also model the URP as
a dynamic capacitated facility location problem for UAV-LMD. UAVs are flight and
capacity limited but can stop at refueling stations on their way to serve customers.
Kim and Matson (2017) solve the URP with pickups and deliveries for medical sup-
plies with the added extension of providing the optimal number of UAV drone launch
locations via a location covering problem. Aurambout et al. (2019) model the URP
with the motivation of understanding how many people would benefit from the tech-
nology and its costs versus added value to society. They identify specific communities
that would benefit and solve a location allocation problem to determine the most
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beneficial set of beehive locations for UAVs to fulfill demand from. Shao et al. (2020)
solve the URP for long-distance UAVs trips using mid-way fulfillment and mainte-
nance stations with the goal to minimize total number of stops at the midway stations.

The following papers take approaches that incorporate midway recharge, mainte-
nance, or goods pickup facilities to extend otherwise limited UAV ranges or minimize
customer fulfillment times. Additionally, these papers look at a similar extension of
the URP that involves multiple DC locations from which UAVs can depart and return
to interchangeably. Rabta et al. (2018) present a model for disaster relief operations
whereby UAVs can serve multiple demand locations and recharge either at DCs or
at locations on the way to their destination. Yadav and Narasimhamurthy (2017)
formulate an extension of the URP in that UAVs can pickup packages from multiple
warehouses and deliver packages to multiple customers per trip. Two heuristic solu-
tion approaches are offered that maximize UAV utility.

The following papers take a more traditional routing approach to modeling the
URP with operational constraints sequentially added to complexify the problem.
Some of these papers also include complex power consumption models to better cap-
ture the UAV’s weight-dependent energy consumption dynamics. Note, whilst some
papers model demand stochastically, others assume a static demand set. Finally,
some attempt to capture multi-modal fulfillment models that incorporate UAVs into
a broader fleet of heterogeneous vehicles. San et al. (2016) describe a swarm of UAVs
performing last-mile fulfillment with payload capacity constraints along multiple com-
modities and a limited flight range, solved with a genetic algorithm. Dorling et al.
(2016) present two URP models, one that minimizes total delivery time subject to
cost constraints whilst the other minimizes cost subject to time constraints. Both
capture energy consumption via a linearized weight-dependent power consumption
model. They also present a simulated annealing algorithm that solves these mod-
els, performing a sensitivity analysis around specific input parameters. Coelho et al.
(2017) solve the URP with some additional complexity: UAVs operate at two cruise
altitudes stratified by travel distance and UAV size. They also offer a medley of
objective functions and a heuristic approach to solve the problem. Torabbeigi et al.
(2020) focus more on the effect of battery consumption on the efficiency of UAV-
LMD. They model a facility location problem with energy consumption modeled as
linearly dependent on payload weight. Cheng et al. (2020) closely model the GURP
solved in this thesis, formulating a number of exact approaches to solving the URP
with several operational constraints such as customer time window (TW) and UAV
weight-dependent power consumption logic (linearized in the same fashion as Dorling
et al. (2016)). Liu et al. (2019) solve a dynamic VRP for on-demand pickup and
delivery. UAVs have a fixed payload capacity and flight time. The stochastic demand
is accumulated in specific time intervals and then fulfilled. Ulmer and Streng (2019)
develop a dynamic multi-modal fulfillment model whereby trucks serve customers
nearby the DC, and UAVs venture to serve customers far away from the DC. The
results demonstrate that the total ground-based truck fleet size can be significantly
reduced if UAVs are incorporated.
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In summary, there have been a variety of approaches that academics have taken
at a quantitative routing level for a number of different applications that motivates
the modeling approach taken. The URP represents a complex extension of the tra-
ditional VRP problem since it incorporates a broad set of more complex operational
constraints. This thesis leverages the tried-and-tested modeling approaches as inspi-
ration for adopting a specific modeling approach in Chapter 4.

[Intentionally left blank]
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2.2.3 Discussion and Research Gap

Much of the society-centric literature touches upon themes that are discussed in more
depth in Chapter 3. Whilst the literature, and the concomitant chapter in this thesis,
do not cover the whole spectrum of possible society-related externalities that could
emerge from UAV-LMD operations at scale, both discuss the issues that are most
commonly cited and the set of potential solutions. Much of the motivation for the
society-centric work is to inform operators of the potential negative externalities they
could unwittingly impart on society and provide material for newly drafted commer-
cial UAV-specific regulation to be enacted either at the local or federal level.

With regards to the routing-centric literature, the majority of the contribu-
tions attempt to innovatively model the additional complexity of the URP, thereby
adding to the rich body of vehicle routing literature. Some papers incorporate more
real-world constraints such as altitude stratification logics or UAV energy consump-
tion patterns to more closely capture real-world UAV-LMD operations. In both the
society-centric and routing-centric cases, this thesis identifies a gap in the literature
bodies in that whilst the society-centric literature generally avoids quantitative mod-
els to further explain their insights, the routing-centric literature leverages little to
no society-centric considerations in their modeling of UAV-LMD operations.

There are exceptions to this assertion, however. For example, Haidari et al.
(2016) models UAV-LMD for vaccine distribution for Gaza and Mozambique exam-
ple case studies. They leverage a discrete-event simulation model (termed HERMES)
to capture real-world operational constraints such as 1) a more complex cost func-
tion that includes storage, transport, infrastructure, and labor, and 2) a realistic
benchmark for ground-based transport of vaccines that incorporates non-symmetric
distance matrices, variable speed functions dependent on road condition, congestion
and seasonality. Marrying such detailed constraints with their simulation model yields
detailed results on tipping points in the total cost of UAV-LMD operations to be cost-
competitive with the existing ground-based fulfillment modes.

The analysis of Figliozzi (2017) is centered on better evaluating the C02 emis-
sions of UAV-LMD via a comprehensive life-cycle analysis of the UAVs. They also
offer a comparative analysis to other promising fulfillment modalities such as elec-
tric tricycles and electric trucks to offer a benchmark of comparison. They uniquely
model UAV-LMD operations in detail for both one-to-one and one-to-many last-mile
fulfillment networks and develop a from-first-principles energy consumption model for
quadcopter UAVs to more closely quantify real energy consumption patterns.

Goodchild and Toy (2018) take a similarly sustainability-motivated approach
to Figliozzi (2017) by attempting to evaluate to what extent UAV-LMD integration
into existing ground-based fulfillment networks could reduce overall CO02 emissions.
Whilst they do not perform as comprehensive life-cycle analysis as does Figliozzi
(2017) for UAVs fulfilling last-mile demand, their analysis is grounded in a truck-
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based C02 emissions baseline that is reduced by demand being outsourced to UAVs.
The UAVs sport their own C02 emissions pattern that is driven by upstream energy
production emissions and total energy consumed in flight.

Glick et al. (2022) take a uniquely integrated approach to UAV-LMD for time-
sensitive medical supplies fulfillment. They quantitatively model meteorological con-
ditions such as wind, rain and temperature as well as stochastic demand of medical
supplies as inputs into a fulfillment reliability model based on a UAV available battery
capacity. Such a line of research would likely help operators with time-critical ful-
fillment constraints to define worst-case boundaries for UAV-LMD to more robustly
design their fulfillment networks with additional insights into which meteorological
phenomenon is the most impactful to to operations.

However, with the exception of such application-specific academic papers above
and others, there exists a dearth of cross-disciplinary academic contributions that
attempt to model the more nuanced real-world constraints that UAV-LMD will likely
face, particularly for commercial consumer packaged good (CPG) demand in urban
areas. It is at this nexus that this thesis sits: to capture the operational implications
of otherwise nuanced society-specific constraints that typically remains outside the
purview of more traditional vehicle routing literature. This thesis does not attempt
to derive extensive insights into which of these society-centric constraints will most
significantly impact UAV-LMD operations but rather offer a modeling pathway for
such constraints in familiar quantitative routing models.

47



THIS PAGE INTENTIONALLY LEFT BLANK

48



Chapter 3

Social and Regulatory Barriers to
Unmanned Aerial Vehicles for
Last-Mile Delivery

Full-scale commercial deployment of unmanned aerial vehicles for last-mile delivery
(UAV-LMD) promises to fill urban skies with fleets of package-carrying unmanned
aerial vehicles (UAVs) flying at low altitudes and at high speeds in close proximity
to the many hazards present in today’s mega-cities. However, despite the vision
and effort of numerous last-mile players over the past decade, UAV-LMD has not yet
materialized in this way. The non-existence of these services evinces the fact that there
exist significant barriers and operational constraints that continue to bar successful
commercial ventures. This chapter explores the host of hurdles and challenges facing
UAV-LMD today. It does so in two ways:

1. Legal and Regulatory Barriers: This chapter analyzes the status-quo of applica-
ble regulation in the United States (U.S.) and their related legal interpretations.
In light of emerging consumer and industry interest in UAV-LMD, many regu-
latory and legal questions have surfaced in the past decade and, only recently,
has apposite regulation been put in place to offer guidance. That goes without
saying that there have been numerous cases already where regulation, societal
norms and nascent UAV-LMD operations have prompted legal action. The rel-
evant regulation will continue to evolve as the industry scales, so a survey of
remaining areas of regulatory uncertainty is also necessary.

2. Societal Barrier: This chapter explores UAV-LMD’s potential societal external-
ities through a historical lens of low-altitude aerial operations. It also surveys
current opinions of academics and industry stakeholders (regulators, commer-
cial players and thought-leaders) to gauge their viewpoints and philosophies
that capture society’s potential concerns.

This chapter summarizes these challenges and assesses how they will shape future
UAV-LMD operations. Thus, this chapter attempts to synthesize these constraints
down to which are directly relevant to UAV-LMD routing decisions and which are not.
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Figure 3-1: Overview of Chapter 3 structure and analysis: social and regulatory
barriers to unmanned aerial vehicles for last-mile delivery.

These relevant constraints then guide the generalized unmanned aerial vehicle routing
problem (GURP) formulation in Chapter 4 and the spectra of sensitivity scenarios and
analyses performed in Chapter 5. Figure 3-1 conveys the structure of this chapter and
the topics it discusses diagrammatically. Note, whilst this chapter attempts to provide
a comprehensive structural overview of the relevant societal and regulatory constraints
to UAV-LMD, this thesis does not claim to pose recommendations for regulators,
operators and active members of the public. It summarizes the current status quo
and, in places, suggests ways to model specific constraints. These suggestions are
simplifications of the constraints for comprehension and ease of modeling, not surmises
of how any particular constraint will materialize in future UAV-LMD operations.
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3.1 Legal and Regulatory Barriers to Unmanned Aerial
Vehicle for Last-Mile Delivery Operations

Over the past century the aviation industry has worked closely with local and na-
tional regulators to define what has become a complex set of airspace infrastructure
and air traffic management protocols through national statutes, regulations, stan-
dardized best practices, legal rulings and analysis of aviation accidents. What has
resulted is an airspace management ecosystem that offers efficiency and unmatched
levels of safety and redundancy compared to other transportation ecosystems.

Widespread deployment of UAV-LMD promises to install multiple fleets of UAVs
across various geographies operating numerous daily flights per day at low altitudes.
Low-altitude aerial operations at this scale and breadth will represent an unprece-
dented and untested regulatory conundrum for local and national regulators alike.
Please note that regulations in this sector are likely to be in continuous flux over
the coming decades. Thus, this thesis highlights the possibility that any regulation
quoted here may be re-drafted in the coming years.

3.1.1 The Status Quo for Legal and Regulatory Barriers

The current state of air traffic control (ATC), airspace class definition and design,
and aircraft operational rights is the product of decades of trial, error and litiga-
tion. Fast forward to 1958, the Federal Aviation Act established the Federal Aviation
Administration (FAA) and made it responsible for the control and use of navigable
airspace within the United States. The FAA created the The National Airspace Sys-
tem (NAS) to protect persons and property on the ground, and to establish a safe
and efficient airspace environment for civil, commercial, and military aviation. Thus,
all aerial vehicles operating in the airspace above the U.S. are expected to adhere to
the appropriate operational, airspace and ATC constraints publicly enforced by the
FAA. Figure 3-2 depicts the various airspace classes of the U.S. NAS (FAA Safety
Team, 2020). Note that an aerial vehicle seeking entry to an airspace class must at a
minimum liaise with the relevant ATC entity and adhere to a unique set of hardware
and operational constraints.

Whilst medium- and high-altitude aircraft operations generally follow a homo-
geneous set of operational constraints across the U.S., operational constraints for
low-altitude flight (generally assumed to be sub-5000 ft.) can vary dramatically from
one location to the next. Whilst this is not supposed to be the case given the FAA’s
mandate to be the sole regulator of all navigable airspace in the U.S., this is predom-
inantly due to the non-aviation-related constraints discussed in Section 3.2 and local
best practices.

The most relevant existing FAA regulations that applies to UAV-LMD are housed
in the FAA Part 107 Drone Regulations and FAA Part 135 Charter-Type Services
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Figure 3-2: Airspace classification structure for U.S. NAS.

(Rupprecht). Unlike Part 107 which was exclusively drafted for UAV flight, Part 135
is an already existing set of rules to govern inter-state and intra-state air delivery of
mail and other goods. A UAV-LMD provider can certify its operations under either
Part 107 or Part 135, however, each come with their unique set of constraints. The
key constraints that emerge out of a Part 107 certification are:

1. The UAV must be flown within visual line of sight (VLOS) of the pilot in
command. This is very constraining for operators and the industry is pushing
for regulations to permit extended visual line of sight (EVLOS) and eventually,
beyond visual line of sight (BVLOS) (FAA § 107.31 Part 107, 2020). Figure 3-3
depicts the differences between these terms, courtesy of (Woo et al., 2018).

2. A UAV operator is mandatory for UAV flight, i.e. the UAV cannot be au-
tonomously flying. Furthermore, there is a strict one-to-one relationship be-
tween operator and UAV. Note that waivers have been granted that null this
requirement for test purposes (FAA § 107.35 Part 107, 2020).

3. UAVs cannot be operated over a non-participating person, property populated
with people or a moving vehicle, again another non-starter for urban UAV-LMD
operations (FAA § 107.39 Part 107, 2020).

4. The UAVs cannot be operated in Class B, C, or D airspace and some defini-
tions of class E airspace without an authorization or waiver. These classes are
depicted in Figure 3-2.

5. Unless under a 107 waiver, if the UAV is to be considered under Part 107, it
must weigh under 55 lbs. and remain under a 400 ft. altitude ceiling (Woo
et al., 2018).

On the other hand, a Part 135 certificate can permit BVLOS operations. And
the current FAA rhetoric is that Part 135 will continue to be extended and adapted to
accommodate for UAV-LMD by including additional constraints and adding excep-
tions to rules that do not apply to UAVs. With that said, those that seek to comply
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Figure 3-3: Visual illustration of visual line of sight terminology.

with Part 135 will need to meet a long list of requisites including aircraft certification,
maintenance standards, operations manuals, training programs enactments, an Eco-
nomic Authority certificate from the Department of Transportation, and insurance
coverage for operations. Part 135 offers four types of certificates each with their own
set of pros and cons, in order in general ease of certification:

• Single Pilot Certificate: a single-pilot operator is a certificate holder that is
limited to using only one pilot for all Part 135 operations.

• A Single Pilot in Command Certificate: one pilot in command and three second
pilots in command. There are also limitations on the size of the aircraft and
the scope of the operations.

• A Basic Operator Certificate: a maximum of five pilots, including second in
command pilots. A maximum of five aircraft can be used in their operation.

• A Standard Operator Certificate: fundamentally no limits on the size or scope
of operations. However, the operator must be granted authorization for each
type of operation they want to conduct (Federal Aviation Administration, 2022a).

However, in discussing the regulatory constraints applicable to low-altitude flight
in more detail, one can distill current regulatory frameworks, be it Part 107, Part 135
or other relevant Federal Aviation Regulations (FAR)s under some broader opera-
tionally relevant constraints: operating weight constraints, operating altitude min-
imums and maximums, in-air vehicle separation restrictions, take-off and landing
locations and procedures, non-airspace related flight zoning restrictions and safety-
related procedures and precautions.
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3.1.1.1 Operating Altitude Minimums and Maximums

The status quo for operating altitude constraints for general aircraft are prescribed
via minimum altitude requirements in FAR Part 91 General Operating and Flight
Rules §91.119 states:

“Except when necessary for takeoff or landing, no person may operate an aircraft
below the following altitudes:

(a) Anywhere: An altitude allowing, if a power unit fails, an emergency land-
ing without undue hazard to persons or property on the surface.

(b) Over congested areas: Over any congested area of a city, town, or settle-
ment, or over any open air assembly of persons, an altitude of 1,000 feet
above the highest obstacle within a horizontal radius of 2,000 feet of an
aircraft.

(c) Over other than congested areas: An altitude of 500 feet above the sur-
face, except over open water or sparsely populated areas. In those cases,
the aircraft may not be operated closer than 500 feet to any person, vessel,
vehicle, or structure.

(d) Helicopters: Helicopters may be operated at less than the minimums pre-
scribed in paragraph (b) or (c) of this section if the operation is con-
ducted without hazard to persons or property on the surface. In addition,
each person operating a helicopter shall comply with any routes or alti-
tudes specifically prescribed for helicopters by the Administrator.” (FAA
§ 91.119 Part 91, 2020).

Figure 3-4: Pictorial depiction of current regulatory framework FAR Part 91 §91.119
for aircraft flight minimums.

This is shown pictorially in Figure 3-4. Thus, this FAR suggests that minimum
altitude requirements depend on both the vehicle type, population and property den-
sity below the flight path and the ability of the pilot to safely execute an emergency
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landing without putting bystanders and property at undue risk. Interestingly, section
(d) exempts helicopters from all altitude minimums except for the emergency landing
contingency. This is also interesting since it does not capture any notion of noise,
privacy, trespass or other non-aviation-specific legality concerns that are discussed in
Section 3.2. Another interesting insight is the qualitative and subjective nature of
the terms “congested” and “sparsely populated” which are often determined on a case-
by-case basis. Varying legal interpretations of these terms published by the FAA’s
Office of the Chief Counsel in past case-law underscores how such language is com-
monly misinterpreted by operators, pilots, and legal practitioners alike (Reigel, 2008).

With all this said, these regulations are currently not applicable to UAV-LMD
because UAV-LMD must be certified via FAA Part 107 at a minimum and Part 135
to permit broader BVLOS operations at scale. The aforementioned regulations are
included to offer insight into the key drivers behind altitude minimums for general
aircraft and, thus, what the key drivers for UAV-LMD are likely to be. Under the
current regulations for UAV-LMD, FAA Part 107 stipulates that commercial UAVs
cannot be flown above an altitude of 400 ft. without special permission from the FAA.

Another reference point is the “Drone Integration and Zoning Act of 2019,” a bill
introduced in the U.S. Senate on October 16, 2019 and reintroduced in 2021 which
proposes the following key altitude restrictions (Lee Utah, 2019). These restrictions
are pictorially interpreted in Figure 3-5 and below:

• S.2607.3.e.1: “Nothing in this section may be construed to ... prohibit the
Administrator from promulgating regulations related to the operation of
unmanned aircraft systems at more than 400 feet above ground level;

(A) The Administrator [FAA] shall not authorize the operation of a civil
unmanned aircraft in the immediate reaches of airspace above prop-
erty without permission of the property owner.

... in the case of a structure that exceeds 200 feet above ground level, the
Administrator shall not authorize the operation of a civil unmanned
aircraft –
(i) within 50 feet of the top of such structure; or
(ii) within 200 feet laterally of such structure or inside the property

line of such structure’s owner, whichever is closer to such struc-
ture.

(B) The Administrator shall not authorize the physical contact of a civil
unmanned aircraft, including such aircraft’s take-off or landing, with a
structure that exceeds 200 feet above ground level without permission
of the structure’s owner.

(C) The Administrator [FAA] shall ensure that the authority of a State, lo-
cal, or Tribal government to issue reasonable restrictions on the time,
manner, and place of operation of a civil unmanned aircraft system
that is operated below 200 feet above ground level is not preempted.”

with the term “immediate reaches” defined as
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S2607.2.4: “The term ‘immediate reaches of airspace’ means, with respect to the
operation of a civil unmanned aircraft system, any area within 200 feet above
ground level.”

and the term “reasonable restrictions” defined as

S2607.2.4.b.3: “reasonable restrictions on the time, manner, and place of oper-
ation of a civil unmanned aircraft system include the following:

(A) Specifying limitations on speed of flight over specified areas.
(B) Prohibitions or limitations on operations in the vicinity of schools, parks,

roadways, bridges, moving locations, or other public or private property.
(C) Restrictions on operations at certain times of the day or week or on specific

occasions such as parades or sporting events, including sporting events that
do not remain in one location.

(D) Prohibitions on careless or reckless operations, including operations while
the operator is under the influence of alcohol or drugs.

(E) Other prohibitions that protect public safety, personal privacy, or property
rights, or that manage land use or restrict noise pollution.”

Figure 3-5: Pictorial depiction of suggested regulatory framework in “Drone Integra-
tion and Zoning Act of 2019” for aircraft flight minimums.

Whilst the “Drone Integration and Zoning Act” has not progressed past the bill
introduction phase as of May 2022, its approach to and frameworks for UAV-LMD
altitude minimums can offer a benchmark this thesis can build off of. In translation,
the Act suggests that UAV-LMD should:

• not be permitted to fly above 400 ft.;

• not be permitted to fly in the immediate reaches of private property, defined as
200 ft. above ground level (AGL);

• not be permitted to fly within 50 ft. vertically and 200 ft. laterally of a structure
that exceeds 200 ft. in altitude;
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• be subject to state and local regulation below 200 ft. with the FAA reserving
sole authority of regulation above 200 ft.

This structurally means that UAV-LMD is strictly limited to the altitude range
of 200-400 ft. nationwide and is subject to local and state regulation in altitude
ranges below 200 ft. It also means that UAVs are inherently limited in their ability to
vertically scale structures that protrude into this altitude range if they do not offer
50 ft. of clearance between their roof and the 400 ft. altitude ceiling.

A key takeaway is that sub-200 ft. altitudes are emerging as an area of regulatory
uncertainty. This is because minimum altitude constraints in these altitudes are likely
going to be left to local regulators to manage and that their methodologies for defin-
ing such regulations will likely be driven by definitions of noise nuisance, privacy and
trespass (discussed in Section 3.2) but also definitions of land-use zoning, perceived
congestion levels, protected regions (such as schools or parks), and the eventuality of
irregular public events. Many of these definitions are likely to differ between states
and municipalities, making minimum altitude constraints all the more complex for
UAV-LMD operators.

Finally, in the constraint sensitivity analysis performed in Chapter 5, this the-
sis assumes the operating altitude minimums and maximums to be kept constant.
This is because the operating band of 200 - 400 ft. derived from case law, pertinent
but incomplete bills and FAA regulation is already highly constraining and tighter
altitudes bound likely conflict with in-air UAV separation requirements that are fur-
ther discussed in Section 3.1.1.3. Thus, the outer bounds of 200-400 ft. as altitude
minimums and maximums are not varied in the sensitivity analysis.

3.1.1.2 Operating Weight Constraints

Just as in the case of minimum and maximum altitude constraints, when it comes
to operating weight constraints, how local and municipal regulators are likely to
constrain operations is the most obvious area of uncertainty. The current status quo
for operating weight constraints comes from FAA Part 107 which limits the UAV’s
max take-off weight (MTOW) to under 55 lbs. actually in the definition of what size
vehicle can be legally certified under Part 107, quoted as

“Part 107 defines a small unmanned aerial system (UAS) as any uncrewed air-
craft weighing less than 55 pounds” (FAA § 107.3 Part 107, 2020).

The FAA does offer a pathway to operate UAVs with MTOWs with more than 55
lbs. via what is termed a 49 U.S.C. 44807 grant of exemption whereby the operator
must prove,

1. “Is in the public interest; and
2. Would not adversely affect safety or would provide a level of safety equal

to that provided by the regulation.” (Malecha, 2019).
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It is noted that being granted this exemption is particularly difficult for UAVs
because, as of now, the vehicles themselves do not go through a standardized and rig-
orous aircraft design and performance envelope certification process making proving
(b) more difficult for operators. Figure 3-6 highlights the key weight dimensions –
empty weight, max payload capacity and MTOW – for the major UAV-LMD hard-
ware players. It is worth noting that the majority of players have designed vehicles
subservient to the Part 107 MTOW limit of 55 lbs. by way of minimizing their
vehicle’s empty weight via aircraft design and my constraining their max payload ca-
pacity either artificially or via other dimensional constraints such as volume or safety.
Amazon’s delivery UAV is the only outlier here, likely because they possess a fleet of
already weight-compliant UAVs and have designed their latest UAV expecting change
in the MTOW constraint in future regulation.

Figure 3-6: Survey of leading UAV-LMD industry leaders in UAV hardware empty
weight, max payload weight and MTOW.

Given this anticipated upper bound on weight of 55 lbs., at least in the near
future, the next question to evaluate is if there is potential for tighter upper bounds
that could further constrain operations. Looking to the “Drone Integration and Zoning
Act of 2019”, one can interpret the stipulation to answer this question.

S.2607.3.e.1.C: “The Administrator [FAA] shall ensure that the authority of a
State, local, or Tribal government to issue reasonable restrictions on the time,
manner, and place of operation of a civil unmanned aircraft system that is
operated below 200 feet above ground level is not preempted.” (Lee Utah,
2019).

Firstly, the term “manner” could well provide grounds for local or state regulators
to apply apply operating weight constraints that are more constraining than the FAA’s
55 lb MTOW limit. With that said, the bill is peppered with references to the 200
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ft. boundary between national airspace under the purview of the FAA and local
regulators. If relevant regulation evolves along the lines of the bill’s rationale, the
FAA will likely continue to dominate UAV-LMD regulation with limited authority
outsourced to local regulators. Could local regulators restrict total operating weight
for periods of a UAV’s flight trajectory that occur below 200 ft. such as take-off,
delivery and landing? Whilst it remains unclear how courts will interpret this gray
area, this thesis judges the likelihood that local regulators can further constrain total
operating weight across a sufficiently large geographic region is too low for variable
weight constraints to be integrated into any explicit model.

3.1.1.3 In-Air Vehicle Separation Restrictions

The notions of airspace structure and in-air separation exist to provide a priori separa-
tion and organization of aerial traffic in what is otherwise an unconstrained operating
environment. This is particularly true for altitudes well above geological and urban
structures. Thus, in-air separation is not a safety-related or operational challenge
unique to UAV-LMD but to both manned and unmanned aviation more broadly. Be-
yond controlled airspace, aircraft separation services are not typically provided by
ATC towers. Instead, aircraft operators are left to their own devices to remain “well
clear” of other aerial vehicles and maintain an “acceptable” level of safety. the idea
of ”acceptable” level of safety is a complex conundrum, particularly in the aviation
industry, but it typically comes down to rigorous simulations that certify that the
probability of catastrophic disaster and human fatalities are similar to an equivalent
probability in another domain in aviation or transport. The notion of “well clear,” on
the other hand, stems from FAR Part 91 General Operating and Flight Rules, which
states only two requirements to meet compliance:

• 91.111: “... not operate so close to another aircraft as to create a collision
hazard”; (FAA § 91.111 Part 91, 2020)

• 91.113: “Vigilance shall be maintained ... so as to see and avoid other
aircraft ... pilots shall alter course to pass well clear of other air traffic.”
(FAA § 91.113 Part 91, 2020).

FAR Part 91 goes on to state that formation flight is possible if all pilots in
command agree to the formation, with the only exception being if there are paid
passengers on board any of the participating aircraft. But to translate these FAR
Part 91 requirements into guidelines for manned aircraft pilots today, a mixture of
rules are applied depending on cruise altitude. The first approach to self-separation
is cruise altitude stratification based on flight direction. This often takes the shape of
the quadrantal rule, which is enforced within the altitude range of 3000 ft. to FL240
(Ford, 1983). In the quadrantal rule, aircraft with headings between 000–089∘ are
required to fly at odd altitudes in multiples of 1000 ft., whilst aircraft with headings
090–179∘ are constrained to odd altitudes in multiples of 1500 ft. Similarly, flights
with headings between 180–269∘ must utilize even altitudes in multiples of 1000 ft.,
whilst flights with headings in the range of 270–359∘ are constrained to even altitudes
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in multiples of 1500 ft. This approach typically applies to aircraft flying under Instru-
ment Flight Rules (IFR) above 2000 ft. mean sea level (MSL) or aircraft flying under
Visual Flight Rules (VFR) above 3000 ft. MSL. With that said, all IFR flights must
provide specific flight trajectories before take-off which may not precisely follow these
altitude separation standards. For aircraft cruising above FL240 (which is a unit of
aircraft altitude, or flight level, measured at standard air pressure and expressed in
hundreds of ft.) a similar hemispheric rules is commonly used. This rule ensures
that cruising aircraft above FL240 with travel directions in ranges of 000–089∘ and
090–179∘ are assigned to odd altitudes in multiples of 10, while cruising aircraft with
headings between 180–269∘ and 270–360∘ are constrained to even flight levels in mul-
tiples of 10 (Ford, 1983). Both airspace structure frameworks exist to lower conflict
probability and thus decrease incidence probabilities and increase airspace capacity.

For low-altitude aircraft operations, however, self-separation via altitude stratifi-
cation based on heading either: 1) has not been comprehensively defined and trialed;
2) is not currently well adopted, or 3) is not currently mandated as part of operational
regulations. Instead, self-separation is predominantly maintained via longitudinal and
latitudinal separation. One additional dimension to in-air vehicle separation that is
relevant to low-altitude flight is that of repeating time intervals between sequential
take-off and landing procedures. Both fixed-wing and rotary-wing (i.e., helicopters)
aircraft generate strong wake vortices during take-off and landing maneuvers that
emanate from the wing-or blade-tips. The kinetic energy contained in these vortices
dissipates over the following minutes but, until then, can prove disruptive forces in
the aerodynamics of following aircraft. But since the strength of such vortices de-
creases with the mass of the aircraft responsible, take-off and landing time intervals
have not been commonly discussed in the context of UAV-LMD operations. However,
if such UAVs are operated in an airfield with other much larger aircraft, such time
delays will, indeed, have to be taken into account to ensure the UAVs do not enter
potentially unstable flight dynamics.

A commonly cited method for installing low-altitude airspace structure is to sim-
ply duplicate the ground-level street network in the air to serve as UAV “highways”
(Thompson, 2019). This is a popular idea because urban street networks contain a
great deal of positional information about the physical layout and geographical con-
straints of a city and its buildings. Furthermore, this could minimize the negative
externalities that UAV-LMD are likely to impart on society – be it noise, privacy or
trespass – just by being strictly situated over streets and highways. With regards to
noise, not only would UAV-LMD noise pollution likely be masked by that from the
road traffic below, but the public are likely more tolerant of noise emitted on streets
because of its historic association with road-traffic and noise. With regards to privacy
and trespass, since streets are, on the whole, public goods and assets, UAV-LMD can
eschew the risks associated with private property on either side of street. This is to
say that much of the information and benefits contained in urban street networks can
be quickly assimilated into the low-altitude airspace structure with little overhead.
With all its benefits, the notion of UAV “highways” has not yet been adopted in prac-
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tice because of some key issues. First, such “highways” could well substantially reduce
the efficient point-to-point travel advantages that UAV-LMD has over ground-based
delivery modes. Thus, UAV-LMD industry players are actively push back against
such regulation. Second, the aviation industry is unfamiliar with the notion of aerial
“highways”, particularly true in low-altitude flight, since airspace structures until now
have been built upon distinctions between VFR and IFR and the quadrantal and
hemispheric rules. Third, such “highways” could constrict UAV-LMD operations to a
narrow lateral and vertical band of airspace and inadvertently increase conflict and
collision probabilities. Such a narrow band of airspace may simply not be adequate
to support expected UAV-LMD delivery volumes.

So although requirements for in-air separation are not well defined for low-
altitude aircraft operations or uniquely defined for urban areas, they are currently
commonly accepted in more traditional aviation domains to provide a safer and more
fluid airspace. In high flight-density regions such as New York City, the FAA has
worked with local regulators to define special flight rules and communication frequen-
cies that go beyond FAR Part 91 and accepted airspace management frameworks to
further minimize conflict probabilities (Federal Aviation Administration, 2022c). This
thesis posits that in-air separation frameworks will either exist as accepted standards
in low-density UAV-LMD regions or as special operating procedures, codified in regu-
lation, in high-density UAV-LMD regions. But the shape that such frameworks take
in both scenarios remains unclear. Because time-dependent separation during take-off
and landing procedures is predominantly driven by safety concerns operating in wake
vortices, such operating constraints are not modeled in the UAV-LMD routing model.

With regards to altitude stratification protocols, dynamic detection and avoid-
ance algorithms that UAVs will likely leverage as fail-safe collision avoidance mech-
anisms are beyond the scope of this thesis. Their dynamism alone defines them as
closer to a stochastic routing problem than the static models this thesis is centered
around. Instead, this thesis attempts to incorporate a static altitude stratification
protocol akin to the hemispheric or quadrantal rules for urban UAV-LMD opera-
tions. Based on the analyses of drone collision probabilities based on kinetic theory
and interesting insights on how to strictly minimize collision probability in a dense
urban area, this thesis adopts the following altitude stratification logic for modeling
purposes (also depicted in Figure 3-7):

• UAVs travel due north (315-045∘) in the altitude range of 200-250 ft.;

• UAVs travel due east (045-135∘) in the altitude range of 250-300 ft.;

• UAVs travel due south (135-225∘) in the altitude range of 300-350 ft.; and

• UAVs travel due west (225-315∘) in the altitude range of 350-400 ft.

The specifics of such a stratification logic is not critical. This thesis, instead,
seeks to understand the impact a stratification logic can have on the unmanned aerial
vehicle routing problem (URP) solution. Note that such an airspace structure does
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Figure 3-7: Graphic of proposed altitude stratification protocol for UAV-LMD.

not address the collision risk when UAVs ascend into and descend from their allo-
cated altitude strata to take-off or land. One approach is to analytically show that
the probabilities of collision based on expected UAV numbers meet an acceptable risk
threshold, and not intervene with specific protocols (doo). Another approach would
be to perform take-off and landing procedures in conjunction with unmanned aircraft
system traffic management (UTM) systems (as they are today for the majority of
larger manned aviation operations) to further minimize collision probabilities.

Such a stratification protocol could also break down if geographical barriers do
not permit UAVs to fly due north because of their allocated altitude range but do
permit travel due east, south or west. One solution would be to strictly disallow
UAVs beyond their allocated altitude strata with UAVs that want to fly due north
having circumnavigate any geographical obstacle. Another solution could be to allow
UAVs to travel beyond their allocated altitude strata but with safety contingencies
such as a maximum time in a different altitude strata or a certain level of on-board
collision avoidance capability.

This thesis ignores both scenarios in its modeling of the URP because they rep-
resent edge case scenario that are not likely to alter the directional insights that
Chapter 5 seeks to uncover about UAV-LMD sensitivity to societal constraints. In
the constraint sensitivity analysis in Chapter 5, this thesis assumes that, in the base-
line case, no in-air separation is enforced, but in all other cases, the proposed altitude
stratification protocol is employed. Note, this constraint is not made more restrictive
in any way as part of the constraint sensitivity analysis but rather held constant.

3.1.1.4 Take-Off and Landing Considerations

Traditionally, manned aircraft that could be considered and regulated as low-altitude
aircraft operations often spent the majority of their flight time at altitudes well above
the prescribed minimum flight altitude and even well above low-altitude heights all
together. During take-off and landing procedures, however, these aircraft operated
in much closer proximity to urban structures and human populations below. Cur-
rently, take-off and landing procedures are regulated as exemptions to the rules that
pertain to low-altitude flight. As discussed in Section 3.1.1.1, FAR §91.119 exempts
aircraft that are performing take-off or landing maneuvers from the prescribed flight
minimums (FAA § 91.119 Part 91, 2020). Pilots of these manned aircraft must ad-
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here to procedures and standards that are publicly available and often part of the
pre-flight airspace familiarization procedure for that particular airfield. Additionally,
pilots are typically informed about local hazards and safety considerations for that
particular airfield and nearby airfields. Take-off and landing operations at locations
not designated as official airfields are often possible but likely subject to a different
set of operational and regulatory constraints often set by local municipal and state
regulators. These are typically designed to protect against the societal externalities
(see Section 3.2) that landowners and local communities are impacted by.

UAVs involved in UAV-LMD are not only likely to be in close proximity to
ground-based hazards during take-off and landing but also during their package de-
livery procedures and even in cruise flight considering their current altitude range
restrictions. Thus, whilst much of this regulatory structure will likely also apply to
UAVs involved in UAV-LMD, it is unclear if any additional constraints will emerge
for UAV-LMD specifically. Even for manned aircraft, regulations around take-off and
landing procedures for low-altitude aircraft are ill-defined at the federal level. Thus,
this thesis posits that take-off and landing constraints for UAV-LMD will likely be
more heavily dependent on local and state regulations rather than the FAA, and that
the shape such constraints take will be highly dependent on the local stakeholders
involved and their preferences. §S.2607.3.e.1 in the “Drone Integration and Zoning
Act of 2019” empowers local and state regulators to regulate the “time, manner and
place of operation” UAV operations. This power could well be exercised to reflect the
needs and expectations of the community stakeholders involved. In this eventuality,
this thesis expects take-off and landing procedures to also be regulated as to protect
those same needs and expectations in a similar fashion, be it via maximum noise
emissions standards, flight frequency caps or flight time-of-day restrictions.

Thus, from the perspective of federal regulation, this thesis assumes there to be
no additional take-off- and landing-specific regulations relevant for UAV-LMD. And
for modeling purposes, this thesis does not attempt to model the different potential
eventualities that local and state regulators could enact via local take-off and landing
constraints. Instead, this thesis assumes a simple heuristic for take-off and landing
procedures: UAVs do not perform a shortened vertical take-off maneuver followed
by an angled climb segment to cruise altitude. Instead, it is assumed that UAVs
perform a single vertical take-off climb maneuver to their cruise altitude at which
they transition to horizontal flight. This avoidance of an angled climb and descent is
assumed for the UAVs’ landing maneuvers as well.

3.1.1.5 Flight Zoning Restrictions

Today, UAV-LMD airspace restrictions and flight zoning is predominantly instituted
by the FAA and are termed “No Drone Zones.” The FAA operates an online platform,
B4UFLY, in partnership with ALoft, formally Kittyhawk, that informs UAV operators
where they are permitted and not permitted to fly. It also guides users through the
process of submitting for automatic authorization to fly in non-controlled airspace
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regions but does not facilitate this process for controlled airspace regions, known
as the FAA’s Low Altitude Authorization and Notification Capability (LAANC),
since such authorization must be granted by the ATC unit of the relevant airport or
airfield. The types of “No Drone Zones” that currently exist are (Federal Aviation
Administration, 2022b):

• Prohibited airspace: these regions of airspace fully prohibit aerial operations,
both manned and unmanned, and are typically time-independent. Such areas
are established under national welfare interests. Examples of such areas are
Thurmont, MD, the site of Presidential retreat Camp David or Naval Subma-
rine Base Kings Bay, GA. These are typically clearly depicted and publicized
on aeronautical charts, see Figure 3-8a, and also feature on the B4UFLY appli-
cation.

• Restricted airspace: regions of airspace through which any civilian aviation traf-
fic, both manned and unmanned, are not permitted but may only be exercised
during certain “active” times. These regions often contain unusual and haz-
ardous operations such as missile launch sites, air combat training, military
bases.

• Local restrictions: in some locations, UAV take-off and landing operations are
restricted by state, local, territorial or tribal regulatory agencies. Note that
these operators have the power to specifically restrict take-off and landing op-
erations but currently do not possess the power to restrict flight in the airspace
above the identified area. This will be discussed in further detail in Section 3.1.2.
Additionally, national, state and potentially municipal parks or prisons and
detainment locations, sport stadiums, schools and hospitals also represent lo-
cations that are often capable of imposing zoning restrictions through various
regulatory or advisory pathways. Whilst many of these locations are explicitly
stated on public forums and informational pages, it can often be unclear whether
a specific location is, indeed, restricted airspace mandated through regulation
or rather through a flight zoning advisory memorandum.

• Temporary flight restrictions: these are specific areas for which UAV operations
are not permitted for a limited period of time with pre-approved certification by
the FAA. Examples of such restrictions may include sporting events, presidential
movements, natural disasters or security-sensitive areas designated by other
federal agencies. Such restrictions can include geo-fencing, altitude minimums
and maximums, time and the types of operations that are permitted.

In addition to “No Drone Zones” and the various levels of zoning restrictions
mentioned above, there are likely to be additional context-specific restrictions based
on the agreements the UAV-LMD operator has reached with any ATC operators of
airfields that have jurisdiction of the region of operation. For example, an UAV-LMD
operator in Boston, MA, will likely have had to gain an operations waiver from both
the FAA and work directly with Boston Logan International Airport to establish
additional zoning and time-dependent zoning restrictions based on any emergency
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take-off or landing events centered at Logan. So whilst, today, UAV-LMD operators
may be totally barred from the Class B airspace imposed by Boston Logan unless
granted a waiver, closer collaboration between operator and Boston Logan could
mean that UAV-LMD has to simply avoid a tighter geo-fence around Boston Logan
and the projected take-off and approach flight paths into its six runways. UAV orig-
inal equipment manufacturer (OEM) DJI actually provides an informational flight
zoning service worldwide for its customers through which they advise to avoid high-
altitude flight in Boston Logan’s published approach flight paths (DJI, 2022). This
thesis leverages these vaguities around potential additional zoning restrictions as part
of the constraint sensitivity analysis in Chapter 5. This thesis posits that many of the
locations that are now only considered “restricted airspace” and “local restriction” lo-
cations above in certain regions across the U.S. will become more commonly enforced
across the country, these locations being: stadiums and sporting locations, prisons
and detainment locations, schools, national, state and certain municipal parks and
hospitals.

In the case study analysis in Chapter 5, this thesis first leverages existing flight
restrictions instituted by the FAA as a baseline for solving the GURP. But because
the case study analysis intends to vary the intensity of the exogenous constraints on
UAV-LMD operations, this thesis must assume additional flight zoning restrictions
that surpass the current baseline zoning restrictions. Thus, based on historical tem-
porary flight restriction ordinances and cases of apposite local regulation, this thesis
posits that the additional locations are iteratively added to the GURP problem def-
inition as the intensity of the exogenous constraints is increased. For the Greater
Boston region, the location of the case study in Chapter 5, this thesis manually geo-
fences these regions forming lateral polygons that act as no-fly zones for UAV-LMD
operations. These polygons feed into the visibility graph logic discussed in Section 3.3
that defines the permissible flight trajectory a UAV can take between two points to
serve demand, which in turn dictates the distance matrix that the GURP models
employ.

Currently “No Drone Zones” are exclusively instituted by the FAA with state
and local regulators only permitted to enact pseudo-zoning restrictions via take-off
and landing operations constraints. The trade-offs of federal versus local regulation
particularly with regards to UAV-LMD zoning restrictions will be discussed in more
detail in Section 3.1.2. But as mentioned in Section 3.1.1.4, potential local take-off
and landing restrictions will not be modeled in this thesis. Furthermore, because of
the temporal dimension of temporary flight restrictions, they too will not be captured
in the models this thesis leverages since it is the static URP that this thesis seeks to
capture. The notion and importance of time-dependent regulation, however, will be
discussed in more detail in Section 3.1.2.
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(a) Prohibited airspace, Camp David, MD. (b) Restricted airspace Yucca Flat nu-
clear test site, AZ.

Figure 3-8: Prohibited and restricted airspace aeronautical chart examples.

3.1.1.6 Safety-Related Procedures and Precautions

When it comes to precautionary safety measures, the aviation industry is steeped in
history and regulation and typically receives a substantial amount of public scrutiny
around safety practices and track records. In 1926 to 1927, there were a total of 24
fatal commercial aircraft accidents amounting to an accident rate of 1 for every 1
million miles flown. Scaled to today’s flight hours, this would equate to 7000 fatal
incidents per year. Today’s actual rate (during the period of 2002 to 2011 assumed
to be comparable to today’s safety record) is 0.6 fatal incidents per 1 million miles
or a 99.9% decrease (CAA, 2013). Whilst aviation safety is an incredibly detailed
and complex topic, there is value in exploring some of the overarching themes that
aviation safety is centered around. This section does not seek to explore the broad
topic that is how UAV-LMD safety precautions will likely evolve over the coming
years. Instead, this section aims to simply filter the safety precautions taken for
general manned aircraft operations for those constraints potentially relevant for UAV-
LMD and supplement these constraints with any UAV-specific safety constraints that
could emerge. ost offers an accessible summary of key aviation safety themes.

General aviation safety themes.

Safety hazards

• Weather: from lightning strikes to ice and snow, aircraft are designed to mini-
mize the risk of catastrophic system failure in these eventualities. For instance,
aircraft are covered in a metal “skin” that offer the first line of protection from
lightning strike but they also contain a second metal mesh “skin” that conducts
electricity around the outside of the vessel, minimizing risk of voltage shocks to
those onboard and onboard flight controls and wiring. Of course, flight trajec-
tory planning to minimize lightning strike risk is also a critical precautionary
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strategy. Pre-flight de-icing procedures and built-in de-icing technologies on
aircraft wings and engines intakes also exist.

• Component or structural failures: whilst there are a number of precautionary
measures (discussed below) taken to minimize the risk of foreign object damage,
excessive load cycling and material fatigue or manufacturing defects, aircraft are
designed with numerous redundancies and flight envelope buffers to mitigate
catastrophic engineering failures.

• Human factors: pilot error is often cited as the most common factor in avia-
tion accidents. Typical causes of human error are pilot fatigue, communication
failures or incompetence, all of which are combated via training procedures
and certification processes such as rigorous pilot licensing, Crew Resource Man-
agement procedures, rules and regulations around protecting crew health and
alertness and a technological push to flight autonomy and augmenting onboard
decision making processes.

• Runway safety: Runway incidents typically fall within the following incident
types: runway excursion (the aircraft exits the runway incorrectly), overrun
(runway overshoot), incursion (a foreign object incorrectly enters the runway),
and confusion (miscommunications or misunderstandings during take-off or
landing procedures).

Accident survivability

• Airport design: ground-based infrastructure design can have a large impact
on aviation safety, also often dictated around the types of aircraft the airport
was designed around (propellers versus jets). Runway buffers and technologies
(one example being engineered materials arrestor systems), security protocols
and onsite emergency services all serve to minimize the likelihood of accidents
becoming fatal.

• Emergency response procedures: from onboard evacuation procedures and as-
sociated technologies to aircraft design centered around frictionless evacuation
to onboard and airport-based emergency response equipment and materials, the
aviation industry and aircraft design is designed around worst-case emergency
response scenarios.

Precautionary measures

• Certification: is the means through which regulators, namely the FAA, manage
risk through safety assurance providing a level of confidence that a proposed
product or operation will meet the safety expectations set by the regulator
and the society that regulator is representing. Certification is pervasive in the
aviation industry and can be categorized in the following buckets:

− Airmen: pilot, mechanic and crew typically fall in this category;
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− Aircraft: airworthiness (whether a particular aircraft meets safety stan-
dards as is fit to fly) and type certificates (whether a particular kind of
aircraft is approved to fly) based on aircraft design and testing. Special air-
worthiness also falls in this category and is often used to cover experimen-
tal aircraft to promote research & development (R&D), but with severely
limited scope for operations.

− Production: pertains to a manufacturer’s approval to manufacture the
vehicle or vehicle components that fall under an approved vehicle type cer-
tificate, based on the manufacturers personnel, equipment, quality control
and product testing.

− Air carrier: typically covers airline and airline operator, pilot and training
school, repair station and maintenance training certification.

− Airport: certifies airports for their ability to serve scheduled and unsched-
uled aircraft with all necessary safety equipment, procedures, personnel,
training and infrastructure available.

• Information and communication: information overload, pronunciation issues
and communicative misunderstandings are key reasons behind aviation inci-
dents. ATC providers, pilots and crew are often required to speak several lan-
guages as a redundancy to the de-facto worldwide aviation language, English,
for which trainees must pass examinations for to receive their licenses. Further-
more, a host of standardized phrases and communication protocols used across
airports and countries are adopted to minimize the risk of misunderstandings.

• Pre-flight checks: these are typically a list of tasks that should be performed
by pilots and crew prior to take-off or after the aircraft docks at its final land-
ing gate to improve flight safety by ensuring no important tasks are forgotten
or overlooked. Pre-flight checks also serve to identify any damage or material
fatigue that might have accrued during recent flights but between larger main-
tenance overhaul schedules that could compromise performance in an upcoming
flight.

• Aircraft maintenance: because of the often extreme performance routines that
aircraft undergo and the natural cycling of aircraft operations (repeated take-
off, climb, cruise and landing operations), the components and materials on
the aircraft typically undergo wear-and-tear and material fatigue. Extensive
documentation, protocols and regulations exist to ensure aircraft maintenance
is performed comprehensively and to an acceptable standard regardless of where
it is performed and by whom. Maintenance licensing also serves this purpose.
Aircraft design can also be significantly guided around maintainability.

The UAV-LMD perspective.

Much of these high-level safety priorities has been and will need to continue
to be translated into FAR Part 107, FAR Part 135 and any additional regulatory
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frameworks in the coming years to ensure the safety expectations of the stakehold-
ers involved are met, one key stakeholder being the urban communities in which
UAV-LMD will likely operate. However, whilst many of these safety precautions
will necessarily be translated over to UAV-LMD before substantial commercial op-
erations could commence, it is beyond the purview of this thesis to extrapolate how
these best practices in commercial manned aviation could look in UAV-specific reg-
ulation. This section addresses only those safety precautions considered relevant to
and implementable in the URP this thesis solves, i.e. impact UAV operational times
and procedures between the start and end of the delivery day.

Safety hazards for instance typically refer to factors extrinsic to the operation
of the UAV itself such as weather, human factors, take-off and landing safety and
vehicle component failures. Whilst component and structural failures could well be
related to how a UAV is operated, it is more likely to a manufacturing default or
material failure. Thus, this thesis eschews conversations around safety hazards. Acci-
dent survivability also falls into this category of safety precautions that lie outside of
the day-to-day operations of UAV-LMD and is, thus, not considered in this thesis’s
URP.

Certification, particularly from the perspective of manufacturing, materials test-
ing, operational fatigue and degradation and maintenance and standardization of
personnel training, is pivotal to ensure a certain level of safety is met across UAV-
LMD operations and it remains a clear gap in current regulatory frameworks for
UAV-LMD. But however pivotal such certification is to UAV-LMD safety, this thesis
is only concerned with regulation that directly pertains to operations. This also ap-
plies to the information and communication protocols currently standard in manned
aviation. Much of this is already captured in FAR Part 107 and will not be discussed
in more detail here. One dimension of precautionary measures that could emerge
as an operational constraint, however, is that pertaining to pre-flight checks and
post-flight inspections. This is because pre-flight checks are, indeed, operational con-
straints that current commercial air-freight and airlines contend with as they strive
to minimize time that the aircraft is grounded, i.e. airport turn-around times. This
section begins to analyze current FAR Part 107 pre-flight check requirements for
UAVs and supplements this with additional pre-flight check requirements from cur-
rent manned aircraft operations that this thesis suspects may be appended to current
requirements as UAV-LMD continues to scale. Future UAV-LMD operators will likely
leverage other standard pre-flight procedures such as the personal/pilot, aircraft, en-
vironment, and external pressures (PAVE) and illness, medication, stress, alcohol,
fatigue, emotion (IMSAFE) checklists.

FAR Part 107 §107.49 “Preflight familiarization, inspection, and actions for air-
craft operation” currently stipulates the following with additional additional guidance
provided through an Advisory Circular 107-2A on §107.49:

(a) “Assess the operating environment, considering risks to persons and prop-
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erty in the immediate vicinity both on the surface and in the air. This
assessment must include:

1) Local weather conditions;
2) Local airspace and any flight restrictions;
3) The location of persons and property on the surface; and
4) Other ground hazards.

(b) Ensure that all persons directly participating in the small unmanned air-
craft operation are informed about the operating conditions, emergency
procedures, contingency procedures, roles and responsibilities, and poten-
tial hazards;

(c) Ensure that all control links between ground control station and the small
unmanned aircraft are working properly;

(d) If the small unmanned aircraft is powered, ensure that there is enough
available power for the small unmanned aircraft system to operate for the
intended operational time;

(e) Ensure that any object attached or carried by the small unmanned air-
craft is secure and does not adversely affect the flight characteristics or
controllability of the aircraft; and

(f) If the operation will be conducted over human beings under subpart D
of this part, ensure that the aircraft meets the requirements of §107.110,
§107.120(a), §107.130(a), or §107.140, as applicable.” (FAA § 107.49 Part
107, 2020a).

Advisory Circular 107-2A on §107.49 goes on to assert:

7.3: “Pursuant to the requirements of §107.49 ... the remote PIC must inspect
the small UAS to ensure that it is in a condition for safe operation prior to each
flight. This inspection includes examining the small UAS for equipment damage
or malfunction(s). This preflight inspection should be conducted in accordance
with the small UAS manufacturer’s inspection procedures when available ...
and/or an inspection procedure developed by the small UAS owner or operator.”
(FAA § 107.49 Part 107, 2020b).

and details specific pre-flight inspection items for UAVs in §7.3.4:

1. “Visual condition inspection of the small UAS components;
2. Airframe structure (including undercarriage), all flight control surfaces,

and linkages;
3. Registration markings, for proper display and legibility;
4. Moveable control surface(s), including airframe attachment point(s);
5. Servo motor(s), including attachment point(s);
6. Propulsion system, including powerplant(s), propeller(s), rotor(s), ducted

fan(s), etc.;
7. Check fuel for correct type and quantity;
8. Check that any equipment, such as a camera, is securely attached;
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9. Check that control link connectivity is established between the aircraft
and the control station (CS);

10. Verify communication with small unmanned aircraft and that the small
UAS has acquired GPS location from the minimum number of satellites
specified by the manufacturer;

11. Verify all systems (e.g., aircraft and control unit) have an adequate power
supply for the intended operation and are functioning properly;

12. Verify correct indications from avionics, including control link transceiver,
communication/navigation equipment, and antenna(s);

13. Display panel, if used, is functioning properly;
14. Check ground support equipment, including takeoff and landing systems,

for proper operation;
15. Verify adequate communication between CS and small unmanned aircraft

exists; check to ensure the small UAS has acquired GPS location from the
minimum number of satellites specified by the manufacturer;

16. Check for correct movement of control surfaces using the CS;
17. Check flight termination system, if applicable;
18. Check that the anti-collision light is functioning (if operating during civil

twilight and night);
19. Calibrate small UAS compass prior to any flight;
20. Verify controller operation for heading and altitude;
21. Start the small UAS propellers to inspect for any imbalance or irregular

operation;
22. At a controlled low altitude, fly within range of any interference and

recheck all controls and stability; and
23. Check battery levels for the aircraft and CS.”

Between FAR Part 107 and the Advisory Circular, the FAA has provided ample
material for operators to build upon and for this thesis to postulate how pre-flight
checks will be integrated into daily operations. However, the FAR Part 107 pre-flight
check regime detailed above would be required before every UAV flight and, thus,
may strike the reader as stringent and costly both in time-delay and labor. UAV
operators can also expect to be required to perform periodic maintenance checks as is
required for commercial aircraft. On top of the standard pre-flight check, commercial
aircraft undergo a series of more involved maintenance checks termed line-, A-, B-,
C-, and D- checks which are done on a periodic basis measured by total flight hours or
total number of flight cycling since the last check of the same type (National Aviation
Academy, 2020). Whilst flight cycling may seem an arbitrary unit of maintenance
measure, it is deemed important, particularly in commercial aircraft, to prevent ex-
cessive material cycling and fatigue. However, in both Part 107 and the Advisory
Circular 107-2A the FAA has not detailed specific maintenance schedules for UAVs
but only stipulates:

7.2: “[S]cheduled and unscheduled overhaul, repair, inspection, modification,
replacement, and system software upgrades ... necessary for flight. ... operator
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should maintain ... in accordance with manufacturer’s instructions ... or, if one
is not provided, ... may choose to develop one.”

7.2.1: “The manufacturer may identify components of the small UAS that
should undergo scheduled periodic maintenance or replacement based on time-
in-service limits (such as flight hours, cycles, and/or the calendar-days). Op-
erators should adhere to the manufacturer’s recommended schedule for such
maintenance.”

7.2.1.1: “If the small UAS manufacturer or component manufacturer does
not provide scheduled maintenance instructions, the operator should es-
tablish a scheduled maintenance protocol.”

The FAA’s maintenance guidelines, thus, do not provide specific time-limits for
maintenance and defer to 1) UAV OEMs to provide suggested maintenance schedules;
and 2) UAV operators to supplement or define their own maintenance schedules to
maintain safe operations. This thesis, thus, posits that the key drivers that operators
will respond to that will guide maintenance check time limits will likely be 1) operators
seeking to minimize the time-delay, labor cost and equipment cost associated with
more frequent maintenance checks; 2) ad-hoc FAA inspections to ensure maintenance
compliance; and 3) consumer, societal or internal pressure to maintain high safety
standard or reputation. To determine a ballpark figure for maintenance check time-
limits that are the current industry standard, this thesis’s author collaborated closely
with industry partners and stakeholders to glean the expected maintenance schedules
and pre-flight check execution time requirements and quoted these in Table 4.7. In
the constraint analysis of Chapter 5, this thesis simply intensifies the magnitude of
these maintenance and pre-flight check time delays relative to this posited benchmark
with the baseline run assuming no pre-flight and maintenance check requirements.

3.1.2 Miscellaneous Regulatory Issues and Areas of Uncer-
tainty

This section is a qualitative survey of areas of regulatory uncertainty that remain
unresolved in current regulatory frameworks, literature and discussions. A recent
techno-ethical review of commercial UAV literature quoted the most cited concerns
for commercial UAV deployment were the safety of ground-based bystanders and legal
pathways that espouse personal protection legal claims. Whilst these concerns are
well documented both in the literature and this thesis, public concern will continue
to guide how the relevant regulation evolves. Whilst much of the discussion in this
section is not directly relevant for this thesis’s modeling approach, unresolved issues
can provide insight into the evolution and trajectory of UAV-LMD regulation in the
coming years.

3.1.2.1 The Time Component of Regulation

To increase the efficiency and applicability of regulation, regulators could leverage
time-dependent regulation to a greater degree than currently so in FAR Part 107
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and 135 (Rule, 2016). UAV-LMD operations are likely to be short-lived interferences
that repeat multiple times a day. Thus, they are also more likely able to adapt to
time-dependent regulation. Furthermore, the specific time of day or year can sig-
nificantly alter on how UAV operations are perceived by bystanders. For example,
residential communities may prioritize privacy, particularly in the afternoon hours on
the weekends during the summer months when their outdoor back yards and swim-
ming pools are more frequently used. UAV-LMD operations could well be considered
more disruptive, annoying and intrusive at these times compared to afternoon hours
on the weekends during the winter months. Thus, whilst currently only seen in FAA
issued Temporary Flight Restrictions (TFRs), time-specific operational constraints
via localized regulatory pathways could become common-place.

3.1.2.2 Local and State Versus Federal Regulatory Divergence

The balance of regulatory authority between local versus federal regulators is an
issue that exists in legislation beyond just UAV-LMD; however, UAV-LMD is dis-
tinct in the aviation sector in that it is very closely integrated with local geographies
and communities. Historically, the regulatory authority in this sector has generally
been more heavily skewed towards the federal regulators (Rupprecht). Indeed, the
FAA is well suited to address many of the emerging regulatory challenges associ-
ated with UAV-LMD: flight restrictions around otherwise federally regulated entities
such as airports, military facilities, national borders and other manned aerial traffic
(Mark Connot, 2016). National UAV registration and tracking programs also enable
a level of traceability, standardization and identification for law enforcement officials.
Finally, uniform federal certification addressing manufacturing, maintenance and op-
erational safety provides a nation-wide industry standard for UAV aircraft design and
sales across the country.

However, until now, the FAA’s roll-out of pertinent regulation in response to the
rapid appearance of commercial and private UAV deployment has been widely crit-
icized as slow and insufficient to protect against the localized externalities imparted
by UAV operations. On the other hand, local and state regulators are commonly
thought quicker-to-legislate and better suited to draft regulation more closely aligned
with local community sentiments and requirements. The FAA currently claims pre-
emptive regulatory authority over the majority of these local issues as well. Whilst
the FAA allows some flexibility when it comes to creating and implementing UAV
regulation at local levels, it advises states and municipalities not to stray too far away
from their operational guidelines. However, in many contexts, their ability to enact
standardized regulation at the national level has little to no bearing on addressing
these localized concerns. With more and more states and municipalities drafting their
own set of UAV usage laws through alternative regulatory pathways such as personal
protection law or laws that protect property rights, it is becoming increasingly ap-
parent that gaps exist in the FAA’s ability to protect the public. For example, in
2013, the Oregon state legislature passed a law providing landowners the right to
legal action against individuals operating UAVs below 400 ft. above their property
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(Koebler, 2013). The law assumed that these were repeated UAV flights and the oper-
ator had been notified. So whilst not in direct contradiction to the altitude-minimum
guidelines in the ‘Drone Integration and Zoning Act of 2019”, this highlights 1) the
ability of local regulators to constraint UAV-LMD operations even without substan-
tial aviation-specific regulatory authority, and 2) their willingness to take regulatory
stances in direct conflict with federal regulators.

Whilst local regulators may be better suited to translate the needs of local com-
munities into regulatory frameworks, there is a trade-off between localized represen-
tation and the emergence of a “patch-work” of differing low-altitude regulatory frame-
works (Rule, 2016). In this case, operators will incur a compliance cost of adjusting
operations to each regional regulatory framework which could result in differing alti-
tude, trajectory, speed, MTOW or operating time requirements. This thesis supports
the need for increased local and state regulatory authority but with the keeping of
this trade-off in mind for the economic feasibility of UAV-LMD operators.

The method of analysis that this thesis undertakes could well be informative
for quantitatively measuring this trade-off: by varying levels of specific regulatory-
specific operational constraints, a better understanding of UAV-LMD’s sensitivity to
specific constraints could be gleaned. This could inform along which dimensions local
and federal regulators should be willing to concede authority with minimal impact
on operations and which other dimensions more significantly harm an operator’s abil-
ity to provide UAV-based service. Furthermore, by instituting varying intensities of
constraints in different sub-regions of the same demand set, this model could pro-
vide insights into how harmful a patchwork of regulatory constraints would be to
operations.

3.1.2.3 Localized Flight Zoning Restriction

One of the greatest potential advantages for increase local regulatory authority is
for a systematic tailoring of UAV no-fly zones and other localized flight restrictions
specific to the needs and requirements of specific communities. Naturally, these needs
will likely stem from the personal protection expectations discussed in further detail
in Section 3.2.1. Since these are needs that emerge out of local phenomena such as
population demographics, expected background noise levels or familiarity with UAV
technology, it is expected that these needs vary from neighborhood to neighborhood.
Localized UAV flight zoning authority can enable the national low-altitude airspace
account for such differences in the same way that land use zoning has served that
function for nearly a century (Rule, 2016). Adjusting the flight restrictions based on
the changing needs of the local community is also easier if regulated locally, especially
if resistance to UAV-LMD begins to thaw and operators seek to serve that regional
market.

This thesis posits, however, that continually changing flight zoning restrictions
could represent a heavy drag on establishing stable UAV-LMD operations in a specific
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area because of the high up-front infrastructure, regulatory compliance, public accep-
tance and supply chain costs associated with establishing operations in that region.
It remains unclear how local regulators will approach zoning restrictions, but local
regulators adopting different methodologies is a possibility.

3.2 Societal Barriers

On February 15, 2015, President Obama issued a public memorandum titled “Promot-
ing Economic Competitiveness While Safeguarding Privacy, Civil Rights, and Civil
Liberties in Domestic Use of Unmanned Aircraft Systems” (The White House, 2015).
In the memorandum, the administration asserted their expectation that the FAA ac-
count for privacy, security, and transparency while integrating UAVs into the NAS.
This section dissects the potential for negative societal externalities that would likely
emerge from commercial UAV-LMD in urban environments at scale. This analysis is
informed predominately by available literature pertaining to UAVs in urban areas and
low-altitude aviation operations in the past. But the reader should note that much
of this analysis is predictive and estimative since there are few societies that have,
up to today, experienced UAV-LMD and document its set of longer-term negative
externalities.

3.2.1 Personal Protection

Under the umbrella of personal protection, private individuals have the right to pro-
tect themselves and their property from the potentially harmful encroachment of
others. These rights often, but not exclusively, manifest in legal claims such as tres-
passing, nuisance and invasion of privacy. This section will explore each of these claim
types in turn and determine how relevant, if at all, are they to UAV-LMD operations.

3.2.1.1 Trespass

Trespass is typically defined as knowingly encroaching upon another person’s land or
property without permission. The Second Restatement of Torts at §159 states that
an aerial vehicle can be deemed trespassing if it “enters into the immediate reaches of
the air space next to the land, and it interferes substantially with the [owners] use and
enjoyment of his land” (Sugarman, 1991). The Second Restatement of Torts offers
additional guidance for such cases by suggesting flights a) over 500 ft. are unlikely to
be intrude into private airspace, b) flights under 50 ft. most likely are and c) flights
at 150 ft. is circumstance dependent. And a strong trespassing case typically requires
the vehicle’s intrusion to detract from the use and enjoyment of that private property.

Interestingly, in 2015 the FAA issued guidance which anticipated that states and
cities will likely regulate UAV-LMD operations, but encouraged close consultation
with the FAA prior to enacting laws. This is in line with broader separation of
powers between state and federal regulation, particularly in local policing domains
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– including land use, zoning, privacy, trespass, and law enforcement operations. In
2018, however, the FAA modified this guidance by adding the comment that state
and local governments “are not permitted to regulate” UAV flight paths and altitudes.

“[F]lying at legal altitudes [that is, less than 400 feet] over another person’s
property without permission or a warrant would reasonably be expected to
constitute a trespass.” (Skorup, 2021).

Whilst the frameworks that will guide accusations of trespassing of low-altitude
aerial vehicles remain vague, legal risk in this domain will likely force UAV-LMD
operators to adapt their operations accordingly. UAV-LMD players may well estab-
lish direct trespass easements with their direct customers via terms and conditions
contracts. But, of course, this does not capture those external to the transaction.

3.2.1.2 Nuisance

Nuisance is typically defined as the substantial and unreasonable interference of an in-
dividual’s enjoyment of their property through a thing or activity. Thus, it is likely to
be more applicable to UAVs operating at low altitudes. Unlike trespassing, nuisance
describes the type of harm that is inflicted and is not tied to property boundary or
private airspace definitions. It is simply whether a thing or activity interferes with an
individuals enjoyment of their private property. Historically, in general aviation and
commercial aircraft operation, nuisance claims have been submitted against owners
of aircraft, airports. They are also typically based in state law or municipal regula-
tion. There has been no guidance to date on if this will remain in the hands of local
regulators or be absorbed into federal aviation regulation.

Whilst UAV’s dust disturbance and noise footprints are typically smaller com-
pared to helicopters and, thus, less likely to qualify as a nuisance claim, UAV-LMD
will mean aerial pass-overs will be more frequent, operations will be more geographi-
cally dense and the average flight altitude will be lower because of repeated take-off
and landing maneuvers. This thesis posits that whilst nuisance claims may be put
forward against future UAV-LMD operations, operators themselves will not actively
consider nuisance externalities with the precautions taken for the other societal ex-
ternalities likely sufficient to also cover nuisance concerns.

3.2.1.3 Invasion of Privacy

Finally, invasion of privacy is defined as the unjustifiable intrusion into the personal
life of another without consent. The Second Restatement of Torts at §652b asserts

“[o]ne who intentionally intrudes, physically or otherwise upon the solitude
or seclusion of another or his private affairs or concerns, is subject to
liability to the other for invasion of his privacy, if the intrusion would be
highly offensive to a reasonable person.” (Sugarman, 1991).

76



In this light, the tort of invasion of privacy would not require the disclosing of
information or images, just acquiring. Thus, the risk to UAVs is clear. UAVs will
likely require an array of cameras and sensors that will continuously monitor their
surroundings to avoid collisions surrounding objects: buildings, trees, telephone and
power lines, birds, and other aerial vehicles. This is particularly true if operations
become near-autonomous, but this will be discussed further in Chapter 5.

As a back-stop to minimize legal exposure, UAV-LMD operators may be mo-
tivated to record, store and even review a UAV’s flight mission footage. Should a
UAV-LMD operator’s employee have the right to review imagery or video captured
by the UAV in flight? Should UAV operators be able to utilize the data a UAV
collects for other commercial uses either internally as a commodity sold onto a third
party? Just as Apple contends with pressure from security agencies and courts to
disclose stored data on iPhones that could be used as evidence in legal proceedings,
will UAV-LMD operators need to contend with such requests to share aerial data in
similar contexts? Based on The Second Restatement of Torts, if an operator obtains
data of a property that is deemed “highly offensive” by the courts, they would be
liable to a claim for damages and/or an injunction for invasion of privacy.

In the U.S., March 15, 2017 signified the most resolute effort yet by Sen. E.
Markey (D-Mass.) and Rep. P. Welch (D-Vt.) to introduce federal legislation to
regulate UAVs. It actually took the form of a UAV privacy framework. Entitled
the “Drone Privacy and Transparency Act of 2017”, the proposed regulations sug-
gested three methods to safeguard personal privacy threatened by UAVs: 1) require
every person or firm seeking to use a UAV for commercial purposes to obtain pre-
authorization to operate the UAV. This entails providing certain information about
where, when, and for what purposes the UAV will be flown, and whether it will
collect, sell, or otherwise use personal information about any individuals; 2) require
the FAA to publicly disclose this information on the Internet; and 3) ban any use of
UAVs by law enforcement personnel without a warrant (Hall, 2017). Whilst it was
never enacted, this piece of legislation signals to industry stakeholders the general
intentions of Congress active members – the issues that face UAV-LMD extend far
beyond the mere operational regulations.

3.2.1.4 Regulatory Pathways to Limit Personal Protection Externalities

Over the years, federal and state courts have handled many cases that challenged the
legality of aerial footage of bystanders and private property being taken and stored
by persons or companies. Such legal action typically questioned the admissibility of
data collected in this way through filings for trespassing or personal nuisance. These
cases often concluded supporting the aerial vehicle operator as long as they operated
in accordance to FAA regulations rather than siding with or expanding on the rights
of landowners or bystanders.
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To what extent a landowner owns the airspace above their property has been a
question with an unclear answer since the 1946 United States v Causby case, in which
a chicken farmer sued the U.S. government for flying military planes at such low
altitudes over his home that his chickens committed suicide out of agitation (Legal
Information Institute). The U.S. Fourth Amendment protects citizens from unrea-
sonable search and seizure, particularly in areas where they can expect a certain level
of privacy, namely their home or the curtilage of their home. But whilst one can
expect privacy under the Fourth Amendment, objects, activities or statements that
are exposed in plain view are not subject to the same privacy entitlements. This is
why the Fourth Amendment has never required passers-by to shield their eyes when
passing by a home (Brenner, 2005). This begs the question, which interpretation of
the Fourth Amendment should UAVs be subject to?

Recent rulings in the U.S. can provide insights into how privacy concerns will be
viewed in UAV-LMD operations. In Florida v Riley U.S. Supreme Court case, it was
argued

“there is reason to believe that there is considerable public use of airspace at
altitudes of 400 feet and above[.]” ((Supreme Court of United States, 1988))

Below 400 ft., this argument defending privacy encroachment weakens. Addi-
tionally, such issues are often heavily influenced by state and federal circuit law.
With that said, as of today, FAA Part 135 air carriers are protected by the Airline
Deregulation Act that prevents states from enforcing laws

“related to a price, route, or service of an air carrier.” (49 U.S.C. 41713, (United
States Code, 2006 Edition, Supplement 5, Title 49 - Transportation, 2005))

The European Union (EU) more advanced when it comes to enacting data pri-
vacy regulations than the U.S. In 2016, the European Commission and the Council
of the European Union approved the General Data Protection Regulation (GDPR),
instituted on 25 May, 2018 (Voigt and Von dem Bussche, 2017). One key facet of the
GDPR is its purpose to “return control” to EU citizens over their personal data. One
key dimension of the GDPR is that personal data is considered significant and “sen-
sitive” to the private citizen if that data reveals information about that individual’s
racial or ethnic origin, political opinions, religious or philosophical beliefs, trade-union
membership, genetic makeup or bio-metric, health or sexual characteristics (Hoffmann
and Prause, 2018). For UAV operators, the following excerpt applies:

“the controller shall be able to demonstrate that the data subject has consented
to the processing of his or her personal data and the data subject shall have
the right to withdraw his or her consent at any time.” Article 7, GDPR, (Voigt
and Von dem Bussche, 2017)

The GDPR makes a distinction between the “data subject,” the “controller,” and
the “processor” in data collection processes. In future UAV-LMD operations, the
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lines between these stakeholders will become blurred. UAVs will become more au-
tonomous, the software engineers responsible will reside in remote locations and a
number of UAV-LMD operators will operate across various locations with different
integration and deployment strategies.

The perspective of UAV-LMD operators can be dissected into two viewpoints:
1) the three most common personal protection externalities discussed above are al-
ready captured in the various flight trajectory, operating time or minimum altitude
constraints set forth by the FAA; or 2) it is the operator’s responsibility to minimize
this risk and the snowball effect of worsening public relations with the public and, po-
tentially, serviceable available market. To this end, this thesis seeks to explore along
which dimensions a UAV-LMD operator would self-constrain operations to minimize
such externalities:

• Flight trajectory constraints: actively avoid areas with community members
that are likely sensitive to personal protection violations.

• Minimum altitude constraints: artificially set higher minimum altitude con-
straints either across all parts of a flight mission or over specific areas with
community members that are likely sensitive to personal protection violations;

• Operating time constraints: self-regulate UAV-LMD operating times to more
closely align with periods of the day during which any impacted community
members are less likely to be impacted by UAV-LMD operations and avoid
more personally sensitive periods of the day.

Note that these societal constraints reflect community needs that are extremely
local in scope, hinting at the broader discussion of how local versus federal regulatory
authority will be balanced for UAV-LMD in the future. Also note that the opera-
tor’s tools to minimize personal protection externalities are predominantly the same
as those present in FAA regulations, namely trajectory, altitude, and operating time
constraints. Whilst this thesis could hypothesize as to whom these sensitive communi-
ties are, an analysis of which communities are more sensitive to these externalities has
not been performed in literature and only briefly touched upon in industry-led efforts.
A Virginia Tech report centered around public perspectives on Wing’s operation con-
cludes that, amongst those surveyed, 87% “like the idea of drone [UAV] delivery” and
89% “would use the service” (Xu, 2017). This survey-based report does not detail
the characteristics of those communities not in favor of Wing’s UAV-LMD operations
and their specific qualms with the service. A survey-based approach to defining these
sensitive communities is likely the most effective way to inform any society-driven
operational constraints that operators who opt for self-regulation should adhere to.
Because of this disconnect between literature and necessary public opinion field-work
to translate such societal constraints to operational constraints, this thesis eschews
these constraints in its modeling of the URP.
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3.2.2 Noise

While urban communities tend to tolerate public safety helicopter flights (such as
for medical or emergency operations) they have historically opposed frequent non-
essential helicopter use in urban environments. This is, in part, because of the low
frequency and clear community value of public sector helicopter use. Until now, only
isolated municipal regulation has allowed small helicopter transportation services to
take hold in cities like New York and Sao Paulo. Across other geographies, noise
concern has often limited the scalability of any commercial helicopter urban aerial
mobility operation, from flight frequency to route flexibility. But UAV-LMD will
be just this: it will likely operate closer to bystanders on the ground, in a variety
of geographic areas, at different times of the day and more frequently than current
low-altitude aircraft operations.

Estimating the impact of noise on a society is non-trivial from both a technical
and social level. With that said, it is likely that the public will naturally benchmark
the noise impact of UAV-LMD with the only other commonly-occurring low-altitude
aerial vehicle: helicopters. Compared to helicopters, UAVs emit a higher-pitched
noise that may be perceived as incessant, since a UAV remains at low altitudes for
longer periods than helicopters, which typically just perform brief pass-overs. It is
this characteristic – their acoustic profile and operational pattern – that will dictate
how UAVs are received in urban areas.

The UAV-LMD industry is dominated by either quadcopter or lift+push vehicle
UAV configurations. Both sport propellers with the latter differing in that forward
flight is not powered by a thrust imbalance between front and back rotors but via
a separate forward thrust system altogether. The dominant noise sources can be
understood via Figures 3-9a, 3-9b:

• Propeller blades: UAV propeller blades are the most notable broadband noise
source. Their high blade tip generates significant downwash and associated lift
disturbances that contribute to the unique tonal noise of the craft compared to
traditional aircraft or helicopters.

• Payload: UAVs with heavier payloads generate more noise since more lift is
required to counteract the added payload weight translating to high propeller
speeds, additional air displacement, more turbulence and, thus, more noise.

• Forward flight: In a quadcopter configuration, forward flight is achieved by an
imbalance in thrust vectors between the rear and front propeller disks, tipping
the UAV in the direction of travel. This difference in rotational speeds can
generate lift disturbances that increase noise production.

• Wind: Whilst wind can have a masking effect on UAV noise, it can also require
the UAV to perform compensatory thrust maneuvers to maintain controlled
flight. This results in additional irregular, high-pitched noises on top of the
base noise profile.
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(a) Quadcopter configuration. (b) Lift+push configuration.

Figure 3-9: UAV force diagrams in quadcopter and lift+push configurations.

Beyond this, however, estimating noise levels emitted from low-altitude commer-
cial UAV-LMD operations is non-trivial from both a technical and social level. This
is because little data and research exists that characterize the acoustic profile of UAVs
or how the public would respond to such frequent noise disturbances. Furthermore,
UAVs are likely to undergo substantial design adjustments as firms learn more about
their demand base, operational limitations and regulatory constraints. But whilst
analyzing UAV noise pollution on a quantitative level may be a difficult and, poten-
tially, futile exercise, there are a variety of qualitative insights one can make to guide
future regulatory and commercial decisions.

For one, it is not precisely the amount of noise pollution that matters but rather
its annoyance factor. This comprises of the pitch, frequency, length of time and
variability of the noise that matters. Furthermore, whilst considering the acoustic
profile of a single UAV is important, the fleet noise profile over an extended time
period is what bystanders take note of. Thus, frequency of UAV-LMD operations
in a specific area also drives the annoyance factor. UAV-LMD network design will
likely play a pivotal part in municipal and commercial strategy to minimizing the
negative externalities of UAV noise pollution. For example, some research suggests
that a highly decentralized launch and retrieval network would reduce the overall
noise footprint since the UAVs would spend less time in the air and travel shorter
distances to their destinations (Lohn, 2017).

Regulatory pathways to limit noise externalities

The FAA has historically defined noise regulations in the NAS although local
and state regulators do have a non-binding say in how their community noise stan-
dards are define. With that said, there are numerous examples of where aircraft
or helicopter operations were curtailed or prohibited altogether because stakeholders
objected to the aircraft noise pollution. One example is that of low-flying helicopters
in Los Angeles prompting California representatives to push Congress to, in turn,
push the FAA to draft new helicopter noise regulations and ultimately resulting in
the Los Angeles Residential Helicopter Noise Relief Act of 2013 (Rep. Schiff, 2013).
Whilst the Act did not strictly prohibit low-altitude helicopter operations outright, it
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provided voluntary measures for operators in the Los Angeles region to reduce noise.
Historically, larger manned aircraft and helicopter noise emissions are curtailed via
airfield-specific operational constraints. For example, specific airports would limit
operations that 1) fly in a certain direction over especially sensitive communities; 2)
occur in noise-sensitive times (most commonly late at night and early morning hours);
and 3) the total number of take-off and landing maneuvers performed per unit time of
operation. This is effective since such aircraft and helicopters are most noise-polluting
when performing these low-altitude take-off and landing maneuvers but not necessar-
ily during climb, descent or cruise flight regimes. But since UAVs in UAV-LMD are
expected to operate at low-altitudes for the majority of a flight mission, this the-
sis expects noise constraints to extend beyond just take-off and landing procedures.
With that said, take-off and landing locations will naturally increase flight density
as UAVs will necessarily originate and finish their missions at that location. Looking
specifically at FAR Part 107, it currently only quotes noise as a potential operational
issue but concludes the following:

“the FAA lacks sufficient evidence at this time to justify imposing operating
noise limits on ... UASs” (Federal Aviation Administration, 2021).

Part 107 does currently limit noise emissions, however, through two pathways:
1) it constrains the MTOW of UAVs certified under PArt 107 to 55 lbs.; and 2)
commercial UAVs are not permitted to fly over people not directly involved in the
UAV’s operation. However, such constraining flight trajectories are changing with
FAR Part 135 exceptions being granted to UAV-LMD operators. So whilst there
does not yet exist a comprehensive set of UAV noise emissions standards either for
individual UAVs or a fleet of commercial UAVs, there are some high-level approaches
to minimizing UAV-LMD noise emissions that have been discussed in literature that
would emerge in future FAA regulation:

• Technological: FAA regulation or public pressure can incentivize UAV OEMs
to explore engineering solutions to noise emissions mitigation such as improved
propeller designs, increased distributed propulsion or vibration and acoustics
redesign. Such regulation can be both binding or voluntary with the latter
more commonly seen in advisory circulars in historical noise mitigation efforts.

• Operating constraints: The FAA frequently institutes TFRs around special
public- or other noise sensitive-events that prohibit flight over these areas either
during specific times, at certain altitudes or with maximum MTOWs. Specific
helicopter routes, airport transition routes and VFR highways for reduce broad-
based noise pollution by aggregating flights over sparsely populated areas or
areas less sensitive to noise such as industrial parks or highways. Finally, the
FAA enables airports to alter low-altitude approach and departure paths for
noise-mitigation purposes through the FAA Airport Noise Program, through
which pilots can be asked to adhere to specific noise emission guidelines. Aside
from specific mitigation strategies, acoustic noise mapping pertaining to UAV-
LMD is a field being heavily researched as a tool to combat noise pollution.
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Such a model combines a representative noise model for the UAV type and con-
figuration in question, a translational scaling of a single UAV to a fleet of UAVs
operating over the course of a time period, an understanding how such noise
emissions propagates in the surrounding environment capturing factors such as
the weather, exogenous noise polluters, and any noise muting characteristics.
Such a model would be valuable to UAV-LMD stakeholders, be it regulators,
operators or the public, since it provides a set of measurable metrics for noise
emissions given differing operating circumstances against which regulations, op-
erations and public expectations can be tuned. Thus, acoustic mapping would
be an enabler of other noise mitigation solutions.

Whilst it remains unclear which of the two noise mitigation approaches are be-
ing more heavily pursued by the FAA and UAV-LMD industry players, this thesis
leverages existing operations-based noise mitigation strategies for urban helicopter
operations as a foundation for the UAV-LMD industry:

• cruise at higher altitudes;

• steeper take-off and landing procedures to minimize total time spent at low-
altitudes;

• minimize specific noise emission profiles that are considered highly noticeable,
penetrating or annoying. One example for helicopters is impulsive noise gener-
ation which is the loud repeated beating noise helicopters generate often when
cruising at high speeds, also commonly referred to as “blade slap”; and

• avoid noise sensitive areas via detailed flight trajectory planning.

This thesis adopts all of these noise mitigation approaches in its modeling effort
to capture operating noise pollution constraints except for that pertaining to noise
emissions profile management. This thesis assumes that UAV-LMD operators intro-
duce self-imposed constraints to minimize noise externalities with additional mini-
mum altitude restrictions in addition to minimum altitude constraints that emerge
from UAV regulation. This thesis also assumes additional drone zoning restrictions
around locations that are likely to be noise-sensitive. that there are many factors that
dictate what defines a noise-sensitive area. In literature, some methodologies collect
key geographic features and characteristics and leverage predictive models trained on
submitted noise complaint data to measure noise sensitivity. Other methods rely on
surveys to gauge noise sensitivity in place of noise complaint metrics. Some exam-
ples of geographic features are: population density, age, race and ethnic demographic
spreads or land zoning types or proximity to other noise-pollution sources. With this
said, delving into the details of noise sensitivity science is beyond the scope of this
thesis. In the case-study analysis in Chapter 5, this thesis leverages the 2016 Greater
Boston Noise Report and, specifically, the Neighborhood Sound Annoyance Levels
Map (see Figure 3-10) to discern regions in the Greater Boston Area that will likely
be more noise-sensitive to UAV-LMD (Walker et al., 2016).

83



Figure 3-10: Neighborhood sound annoyance levels map.

The intensity of these restrictions are increased incrementally in the sensitivity
analysis in Chapter 5. But rather than incrementally adding noise-sensitive regions
to the GURP problem definition, this thesis incrementally increases the additional
altitude a UAV must cruise at above its minimum flight altitude, as discussed in
Section 3.3 and specifically in Table 3.1.

3.2.3 Environmental Concerns

Unrelenting growth of the last-mile industry has taken its toll on local urban and
global environments alike due to an ever increasing number of trucks required to ful-
fill demand and the fuel consumption and emissions associated with operations. The
World Economic Forum study forecasts a 36% rise in the number of delivery vehicles
in the world’s top 100 cities by 2030, leading to an emissions increase of over 30%
(Deloison et al., 2020). UAV-LMD excites many industry firms because of its poten-
tial to transport goods in a fraction of cost, time, and energy of today’s methods.
The majority of UAVs consume electricity and, thus, have no emissions when com-
pared to a ground-based fuel-consuming truck at the tailpipe. But, the environmental
friendliness of UAVs depends on factors that extend past the tailpipe and might be

84



offset by: a) the UAV configuration, b) the size and weight of the cargo, c) the po-
tentially longer linehaul distances they incur to fulfill a set of demand given their
limited payload and battery capacities, d) the additional warehouses or charging sta-
tions required to extend their limited flight ranges, e) the carbon intensity of different
upstream power generation systems, and f) the economic- or energy- competitiveness
of alternative-fuel vehicles (e.g., electric and natural gas trucks). Furthermore, sev-
eral studies point towards a lack of scientific evidence of the environmental benefits
of UAV-LMD as compared to existing modes of transport (Kellermann et al., 2020b;
Park et al., 2018; Stolaroff et al., 2018).

In UAV-LMD, emissions savings generally stem from the reduction of deploying
under-utilized ground-based vehicles rather than fully replacing traditional ground-
based vehicles (Chiang et al., 2019). This is particularly relevant in rural areas where
distances traversed by ground-based vehicles are longer than by an aerial UAV and
demand is not easily consolidated into single vehicles. Thus, it is not fair to compare
UAV-LMD and traditional delivery vehicles on a one-to-one basis but rather measure
by how much do the total fulfillment network emissions drop due to an introduction
of UAV-LMD as part of the fulfillment mix. For example, UAV-LMD could have a
net-positive effect on fulfillment network emissions if specific routes that, if performed
by traditional ground-based modes, are mired in significant ground-based congestion,
long and indirect road network routes (such as around large geological features or bod-
ies of water) or across challenging terrain like steep gradients. Re-allocating many of
these specific delivery routes to UAV-LMD could increase the overall sustainability
of the entire fulfillment system.

Looking at the literature, however, it is relatively deep, albeit awash with oper-
ational, regulatory, and performance assumptions to constrain this problem. Across
the board, there is consensus in literature that if deployed deliberately, small UAV-
LMD services delivering small payloads over short distances could almost halve CO2

emissions as compared to the same set of demand being served by a traditional ground-
based diesel delivery vehicle (Goodchild and Toy, 2018). These results depend on a
variety of assumptions – upstream energy generation fuel sources, warehouse net-
works design, or UAV battery technology improving in the coming years. Findings
also suggest that as UAV size, distance, and payload weight increase, these savings
do not scale linearly, but rather UAV emissions tend towards that of a typical diesel
ground vehicle (Stolaroff, 2018).

Aside from CO2 emissions, there exists a series of other sustainability concerns
pertinent to the UAV-LMD discussion. A broader life-cycle analysis of the UAVs,
infrastructure, components and equipment necessary is also vital to fairly assess
UAV-LMD’s long-term sustainability feasibility (Figliozzi, 2017). A life-cycle analy-
sis usually involves all the necessary steps to consume a product, the product being
UAV-LMD for consumer packaged goods (CPGs), foods or other consumer goods,
including raw material production, manufacturing, distribution (the UAV-LMD step
that this thesis predominantly focuses on), disposal and auxiliary transportation re-
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quirements. A large part of the vehicle disposal carbon footprint is the degradation
and disposal of the lithium-ion polymer battery. Because of their long charge times
and general ease of exchange, some UAV-LMD operators may allocate multiple bat-
tery packs per UAV platform. This enables higher utilization of the UAV asset that,
over the course of the assert lifetime, is re-captured in saved capital expenditures
(CAPEX) and extra labor costs in asset down times.

There is little to no regulatory pressure to minimize UAV-LMD emissions, how-
ever, minimizing 1) the CAPEX costs of UAVs or lithium-ion batteries that are no
longer functional; and 2) electricity costs in charging depleted batteries; and 3) under-
utilized labor costs when assets are grounded (for battery charging or otherwise), is
fundamentally aligned minimizing life-cycle and routing emissions for UAV-LMD.
In assessing what all of these sustainability implications mean for operational con-
straints, this thesis discerns the following operational incentives:

• to efficiently combine customers in single trips in a one-to-many versus a one-
to-one delivery manner to avoid unnecessary line-haul energy consumption pat-
terns, increased battery switching time delays and labor costs and battery degra-
dation both from a cost and sustainability perspective;

• to find the trade-off between excessive payload weight with the associated non-
linear increase in energy consumed and repeated flights;

• to fly at lower altitudes to minimize unnecessary energy consumed in vertical
take-off and landing maneuvers; and

• minimize flight distances and fly point-to-point as much as possible adhering to
strict no-fly zones.

These are directly translated into modeling decisions in Section 3.3.

3.3 Translating Societal and Regulatory Constraints
into Modeling Extensions

This section summarizes this chapter, highlighting the specific exogenous societal and
regulatory constraints that are explicitly modeled in the coming chapters and GURP
model formulations. Each potential societal or regulatory constraint discussed in this
chapter is included in Table 3.1 with their set of associated operational constraints
also included alongside. This section concludes with a summary of which operational
constraints are prioritized and how they are integrated into the model.

Note that whilst these societal constraint modeling implementations are included
here, they are not leveraged in the modeling results of Chapter 4. This is because
Chapter 4 is fundamentally a benchmarking exercise with its results culminating
in Section 4.4. Chapter 4 exists to benchmark the various GURP models against
one another and corroborate the value of the Heuristic Approach (HA) in faster
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computational run-times and near-optimal solutions. Instead, the finalized exogenous
constraints discussed in this section are only implemented in the GURP model that
is employed in Chapter 5 as the analysis attempts to marry the routing algorithms
with exogenous constraints to solve the GURP. Finally, note that the intensity of the
exogenous constraints quoted in Table 3.1 is varied as part of the sensitivity analysis
in Chapter 5. See Section 5.3 and Figure 5-3 for more details on how these operational
constraints are varied between case study scenarios.

Taking the various exogenous constraints quoted in Table 3.1, this thesis then
aggregates the constraints into the specific operational constraint pathways that are
captured in the GURP problem formulation. These constraint pathways are: 1) al-
titude minimums and maximums; 2) MTOW constraints; 3) flight restrictions; and
4) maintenance and pre-flight checks.

• Altitude minimums and maximums: all UAVs must cruise in the 200-400 ft.
altitude range and adhere to region-specific altitude minimum requirements.
These region-specific altitude minimums do not stem from any specific regula-
tory structure but from this thesis’s supposition that, in certain areas, there
exist urban structures that extend beyond the 200 ft. altitude minimum forcing
UAVs to maintain a 200 ft. lateral and 50 ft. vertical clearance. Further-
more, due to the in-air separation constraints, depending on the UAV heading,
it must adhere to the altitude stratification protocol depicted in Figure 3-11.
Additionally, because of the environmental concerns and incentive to minimize
energy consumption, UAVs are assumed to always cruise at their lowest permis-
sible cruise altitude given the aforementioned constraints. It is assumed that
the UAV ascends to its minimum-permissible cruise altitude based on its flight
trajectory and remains at that altitude for the flight duration instead of per-
forming a staged ascent. See Figure 3-12 for a pictorial example of this logic.
Finally, because of noise pollution externalities, UAVs operate at either a 15, 30
or 45 ft. (depending on the assumed exogenous constraint intensity) clearing
above the otherwise optimal cruise altitude over noise-sensitive areas as defined
in Section 3.2.2. This is further elucidated in Figure 5-3.

• MTOW constraints: the total UAV weight can never exceed 55 lbs throughout
the duration of its route. This constraint extends beyond MTOW since UAVs
can pick up customer demand, meaning in-flight operating weight can exceed
MTOW unlike traditional commercial passenger aircraft.

• Flight restrictions: UAVs must strictly adhere to FAA instituted no-fly zones
at all times. The types of locations included in the flight zoning restrictions
varies based on the exogenous constraint intensity assumed. See Figure 5-3
for more details. Flight trajectories are laterally plotted around flight zoning
restrictions leveraging a visibility graph algorithm. An asymmetric distance
matrix is then built upon the resulting visibility graph. A visibility graph is a
computational geometry methodology often used in robot motion and trajectory
planning given a confined feasible region of operation. Within this region, a set
of start and end points exist as well as a set of obstacles that any agents cannot
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enter into. With this initial state, a visibility graph initializes nodes at each
point in the region and at each corner of each obstacle. It then builds edges
from every node to every other visible node, a visible node defined as a node
that can be reached in a straight line from the start node without intersecting
with any obstacle boundaries. Thus, when the visibility graph is queried to get
the shortest path between two points, a shortest-path algorithm, such as the
popular A*-Algorithm, is employed whilst only traversing existing edges. This
thesis leverages the extremitypathfinder Python package (Michelfeit et al.,
2021).

• Maintenance and pre-flight checks: all UAVs must adhere to a maintenance and
pre-flight check schedule in line with the expected industry standards as defined
with industry partners. The magnitude of the associated time delays varies
based on the exogenous constraint intensity assumed. See Figure 5-3 for more
details.

Figure 3-11: Cruise altitude determination logic aggregating exogenous constraints.
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Figure 3-12: Pictorial illustration of non-staged cruise altitude determination logic,
expanded illustrative example for UAV traversing arc between nodes 2 and 3.

[Intentionally left blank]
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Constraint Type Description Operational Constraint

Regulatory

Status Quo Assume operational waivers granted
for all restricting airspace classes

Altitude Minimums and
Maximums Altitude between 200-400 ft. and

maintain 50 ft. vertical and 200
ft. lateral separation from structures
that exceed 200 ft.

Operating Weight Con-
straints MTOW of 55 lbs.

In-Air Vehicle Separation
Constraints Altitude stratification protocol:

Bearing 315-045∘ within 200-250 ft.;
Bearing 045-135∘ within 250-300 ft.;
Bearing 135-225∘ within 300-350 ft.;
Bearing 225-315∘ within 350-400 ft.

Take-Off and Landing
Considerations –

Flight Zoning Restric-
tions Non-temporary FAA issued flight re-

strictions.

Safety-Related Proce-
dures and Precautions Maintenance and pre-flight check re-

quirements driven by cumulative op-
erational metrics as per Table 4.7.

Miscellaneous Regulatory
Considerations –

Societal
Personal Protection –

Noise Pollution Concerns Assume 45 ft. additional vertical
clearance over noise-sensitive areas
such that UAVs operate at upper-end
of permissible cruise altitude range
given altitude stratification protocol.

Environmental Concerns Optimal routing approach, energy
cost objective function component,
weight-dependent energy consump-
tion logic, cruise at minimum per-
missible altitude and visibility-graph
approach to flight trajectory defini-
tion.

Table 3.1: Summary of exogenous societal and regulatory constraints translated into
GURP modeling decision.
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Chapter 4

The UAV Routing Problem1

4.1 Introduction

This thesis, up until now, has introduced unmanned aerial vehicles for last-mile de-
livery (UAV-LMD) and the key societal and regulatory hurdles between it, major
commercial deployment and widespread adoption. As a reminder, the research ques-
tions this thesis poses are:

1. Operational Constraints: What are the key social, regulatory, technological
and logistical constraints that would constrain real-world UAV-LMD opera-
tions?

2. Operations Modeling: How can these novel operational constraints be cap-
tured in a generalized vehicle routing optimization model?

3. Feasibility Analysis: Given realistic demand data and operational parame-
ters, is UAV-LMD financially profitable for service providers? Which constraints
are key cost drivers? What are the social, operational and financial upshots of
UAV-LMD?

To answer these questions, in particular the second question, this thesis derives
a methodology to understand the key operational routing decisions in light of the
societal and regulatory constraints. This model ought to capture:

1. the fundamental daily routing constraints of a UAV-LMD fleet;

2. the advanced operational routing constraints unique to unmanned aerial vehicles
(UAVs);

3. the additional social and regulatory constraints relevant to day-to-day opera-
tions; and

4. the notion of realistic total operational cost for a representative customer de-
mand set.

1This chapter contains content that is partially under review for publication in a peer-reviewed
journal.

91



The problem this thesis and, thus, this method, solves is termed the generalized
unmanned aerial vehicle routing problem (GURP). In order to solve the GURP, this
thesis first develops an exact mathematical programming formulation of the problem
(see Section 4.3.1) before presenting an efficient two-stage formulation of the problem
(see Section 4.3.2) as well as an efficient heuristic to solve larger problem instances
(see Section 4.3.3).

The first two solution approaches are developed to innovatively solve the GURP
and to corroborate the computational efficiency, consistency, robustness and optimal-
ity of the heuristics approach. As detailed in Chapter 2, there is ample literature
material around vehicle routing (and its variants) to build upon. Thus, these two
exact solution approaches, termed the Exact Approach (EA) and Exact Two-Staged
Approach (ETSA), are based upon formulations to solve the vehicle routing problem
(VRP) but extended to capture the additional UAV-LMD-specific constraints. The
heuristics approach, on the other hand, termed the Heuristic Approach (HA), serves
as this thesis’s core GURP model to optimize UAV-LMD operations at scale in rea-
sonable computation time. This chapter describes all three solution approaches in
detail.

4.2 Problem Definition

As detailed in Chapter 2.2, the VRP literature is steeped in decades of history. The
VRP has previously been extended in many of the dimensions that this thesis neces-
sitates to solve the GURP, namely:

• multi-commodity flow and capacity constraints;

• ability to jointly serve delivery and pickup demand;

• deterministic time window (TW) constraints; and

• fixed-fleet, multi-vehicle, multi-trip functionality.

In the extant literature, the unmanned aerial vehicle routing problem (URP),
alternatively referred to as the drone delivery problem (DDP) or vehicle routing prob-
lem with drones (VRPD), has been formulated as an extension of the VRP additional
novel energy consumption constraints. This thesis seeks to combine all of these con-
straint extensions into a set of three routing solution methods (the HA, EA and
ETSA) extending functionalities as required. Furthermore, this thesis incorporates
the relevant societal and regulatory constraints in the model as novel extensions,
referred to as exogenous constraints going forward. This package of extended con-
straints and real-world restrictions specific to UAV-LMD is what is captured by the
term “generalized” in GURP. This section also introduces the set and parameter def-
initions used across all three GURP solution approaches. Tables 4.1 and 4.2 provide
overviews of the sets, model parameters, and constants used in the model formulation.
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The problem is defined as a directed graph 𝐺 = (𝑁,𝐴) where 𝑁 is defined in
Table 4.1. The total number of customer nodes in a given demand set is 𝑛 and nodes
0, 𝑛+1 denote the starting and returning distribution center (DC) nodes respectively.
Each customer is associated with a non-negative demand across three commodities
– package count, weight and volume. Note that customers are disaggregated at the
package level such that each package’s commodity characteristics aggregate to the
customer’s total demand across the commodities. This package-level data echelon is
important since the model assumes that customers that cannot be served in one trip
can be disaggregated and served across multiple trips. Finally, each customer node
is either a delivery or pickup, as defined in Table 4.2.

Each customer node is associated with a hard TW with starting and ending times
as defined in Table 4.2, including the DC nodes denoting the operation’s earliest
possible start and latest possible end times. A fleet of 𝐾 UAVs, see Table 4.1, is
initialized and strictly operates out of the DC with no limits on the total number
of flights performed, flight hours, customers served or otherwise for each UAV. Each
UAV sports a series of vehicle parameters defined in more detail in Section 4.4.1
and are capacitated along each commodity dimension as well as available on-board
energy. Between nodes, UAVs must incur a pre-defined travel distance and time,
dictated by the geography, each UAV’s vehicle parameters and set of geography-
specific exogenous constraints. It is worth noting here that the GURP is notionally
formulated as a heterogeneous VRP to offer additional modeling flexibility; however,
for the scope of this thesis’s analysis, this functionality is not exercised. Finally, the
modeling extensions to capture the exogenous constraints is covered in more detail in
Section 3.3.

Set Definition

𝑁 set of nodes 𝑁 ∈ {0, 1, 2...,n,n+1}
𝑁 ′ set of customer nodes 𝑁 ′ ∈ {1, 2...,n}
𝑁+ set of customer nodes and starting DC 𝑁+ ∈ {0, 1, 2...,n}
𝑁− set of customer nodes and ending DC 𝑁− ∈ {1, 2...,n,n+1}
𝐴 { (𝑖, 𝑗) : 𝑖 ∈ {0}, 𝑗 ∈ 𝑁 ′ and 𝑖 ∈ 𝑁 ′, 𝑗 ∈ {𝑛+ 1}, 𝑖 ̸= 𝑗 } 𝐴 ∈ {(0, 1), (0, 2), ..., (𝑛, 𝑛+ 1)}
𝐴′ { (𝑖, 𝑗) : 𝑖 ∈ 𝑁 ′, 𝑗 ∈ 𝑁 ′, 𝑖 ̸= 𝑗 } 𝐴′ ∈ {(1, 2), (1, 3), ..., (𝑛− 1, 𝑛)}
𝐾 set of UAVs in fleet 𝐾 ∈ {1, 2, ..., 𝐿}

Table 4.1: Notation of GURP model formulation: set definitions.

For notational convenience, sets 𝐴 and 𝐴′ are defined to denote the possible set
of inter-node traverseable arcs with set 𝐴 including the two DC nodes (0, 𝑛 + 1).

4.2.1 Key Problem Assumptions

This section covers the key problem assumptions inherent to VRPs and additional
assumptions made in formulating the GURP. Whilst this may not be a comprehensive
list, the hope is that this list informs the reader of any room for additional fidelity
and espouses the notion that the GURP being solved is adequately reflective of real-
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Parameter Definition Domain Units

𝐷𝑖,𝑗 distance between 𝑖, 𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 km
𝑇𝑡𝑜𝑖,𝑗 take-off travel time when traversing arc 𝑖, 𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 deci-time
𝑇𝑙𝑎𝑖,𝑗 landing travel time when traversing arc 𝑖, 𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 deci-time
𝑇𝑡𝑟𝑖,𝑗 cruise travel time when traversing arc 𝑖, 𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 deci-time
𝑇𝑖,𝑗 total travel time when traversing arc 𝑖, 𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 deci-time
𝑄𝑖,𝑗 trip count incurred when traversing arc 𝑖, 𝑗 ∀ (𝑖, 𝑗) ∈ 𝐴 [-]
𝑆𝑘
𝑖 UAV 𝑘’s service time of node 𝑖 ∀ 𝑖 ∈ 𝑁 ′,∀ 𝑘 ∈ 𝐾 deci-time

𝑈𝑘
0 UAV 𝑘’s standard load time at DC ∀ 𝑘 ∈ 𝐾 deci-time

𝑈𝑘
+ UAV 𝑘’s maintenance check time at DC ∀ 𝑘 ∈ 𝐾 deci-time

𝑈𝑘
− UAV 𝑘’s pre-flight check time at DC ∀ 𝑘 ∈ 𝐾 deci-time

𝑃+
𝑖 delivery package demand at node 𝑖 ∀ 𝑖 ∈ 𝑁 ′ [-]

𝑊+
𝑖 delivery weight demand at node 𝑖 ∀ 𝑖 ∈ 𝑁 ′ kg

𝑉 +
𝑖 delivery volume demand at node 𝑖 ∀ 𝑖 ∈ 𝑁 ′ m3

𝑃−
𝑖 pickup package demand at node 𝑖 ∀ 𝑖 ∈ 𝑁 ′ [-]

𝑊−
𝑖 pickup weight demand at node 𝑖 ∀ 𝑖 ∈ 𝑁 ′ kg

𝑉 −
𝑖 pickup volume demand at node 𝑖 ∀ 𝑖 ∈ 𝑁 ′ m3

𝑃 𝑘 vehicle package capacity ∀ 𝑘 ∈ 𝐾 pkgs.
𝑊 𝑘 vehicle weight capacity ∀ 𝑘 ∈ 𝐾 kg
𝑉 𝑘 vehicle volume capacity ∀ 𝑘 ∈ 𝐾 m3

𝐹 𝑘 UAV 𝑘’s battery capacity ∀ 𝑘 ∈ 𝐾 kQh
𝑇 UAV flight time capacity before maintenance check ∀ 𝑘 ∈ 𝐾 deci-time
𝑄 UAV trip-count capacity before maintenance check ∀ 𝑘 ∈ 𝐾 [-]
𝐴𝑖 start commit time of node 𝑖 ∀ 𝑖 ∈ 𝑁 deci-time
𝐵𝑖 end commit time of node 𝑖 ∀ 𝑖 ∈ 𝑁 deci-time
𝐶𝑘

𝐹 UAV 𝑘’s daily depreciation cost ∀ 𝑘 ∈ 𝐾 $/day
𝐶𝑘

𝐷 UAV 𝑘’s distance travel cost ∀ 𝑘 ∈ 𝐾 $/km
𝐶𝑘

𝑊 UAV 𝑘’s regular shift wage cost ∀ 𝑘 ∈ 𝐾 $/km
𝐶𝑘

𝐸 UAV 𝑘’s energy cost ∀ 𝑘 ∈ 𝐾 $/kwh
𝐿 No. UAVs in fleet [-]
Γ𝑘 UAV 𝑘’s average fraction of DC maintenance checks ∀ 𝑘 ∈ 𝐾 0-1
𝑅 total hours in a day’s operation deci-time

Table 4.2: Notation of GURP model formulation: model parameters.

world circumstances as to be informative in case-study analysis of Chapter 5. The
assumptions made can be aggregated as follows:

• Operational decisions:

− each route starts and ends at the DC, i.e. starts at node 0 and ends at
node 𝑛 + 1;

− each customer must be visited exactly once or be considered strictly infea-
sible to serve based on the infeasibility algorithm defined in Algorithm 3;

− each UAV has a unique set of vehicle parameters but is part of a fixed fleet
size (this functionality is excluded for the purposes of the analysis in this
chapter and Chapter 5);

− all UAV capacity constraints and node TWs must be strictly respected.

• Energy consumption model:
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− battery capital expenditures (CAPEX) degradation costs associated with
how the battery is charged and discharged are neglected;

− energy consumption can be disaggregated into three unique flight regime
consumption models – horizontal, hover and vertical flight – that, in turn,
inform the energy consumption patterns for four flight maneuvers, specif-
ically: take-off, landing, customer service and cruise (see Figure 4-1 for a
pictorial illustration of the flight regimes modeled);

− power consumption can be linearized from non-linear from-first principles
equations derived in Appendix A;

− the UAV does not consume energy when waiting in the field.

Finally, this chapter defines the GURP but notably only solves this problem
over the course of a single operational day, in part, because the assumption that only
the daily operational perspective simplifies the problem and is sufficient to assess
UAV-LMD feasibility. VRPs have typically been solved on the scale of a single day’s
operation mainly because a day was and still is the more repeatable unit of operational
cost incurred by the fleet operator. Demand materializes daily and many of the
exogenous factors relevant to operators evolve on a daily basis – traffic, incoming
supply of goods to be delivered, the availability of labor etc. – and, thus, a daily
solution to the VRP for their operations became the status quo. Granted vehicle fleet
composition can, indeed, change across days and weeks forcing the operator to solve a
slightly modified VRP. Furthermore, the demand location, density, volume, and type
can evolve in patterns on the weekly or monthly, or seasonal time-scale. However,
on the whole, the daily unit of measure captures all the key measures of operational
cost for which individually modified VRPs can be solved. This thesis opts to solve
the GURP on a daily basis since an evaluation of economic and operational feasibility
of UAV-LMD can adequately be determined based on the operational cost patterns
that emerge from solving the GURP for daily demand across a range of societal,
regulatory, geographical and technological constraints. Any additional insights that
could evolve on the week, month, or seasonal time-scales can be adequately gleaned
qualitatively.

4.3 Methodology

4.3.1 Exact Model Formulation

This section introduces the EA model formulation. Firstly, Table 4.3 defines the deci-
sion variables used across the two mixed-integer linear program (MILP)-based formu-
lations. The EA is formally defined by first formulating the basic capacitated VRP
with TWs in Section 4.3.1.1, followed by an extension of this basic model with addi-
tional UAV-specific constraints in Section 4.3.1.2. Section 4.3.1.3, proposes a number
of measures to improve the computational performance of the extended model.
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Variable Definition

𝑥𝑘
𝑖,𝑗 UAV 𝑘 traverses arc 𝑖, 𝑗

𝑦𝑘𝑗 UAV 𝑘 serves customer 𝑖
𝑧𝑘𝑖,𝑗 UAV 𝑘 visits DC between 𝑖, 𝑗
𝑢𝑘
𝑖,𝑗 UAV 𝑘 maintenance between 𝑖, 𝑗

𝑡𝑘𝑖,𝑗 UAV 𝑘 elapsed time by arc 𝑖, 𝑗 since maintenance
𝑞𝑘𝑖,𝑗 UAV 𝑘 no. trips by arc 𝑖, 𝑗 since maintenance
𝑝𝑘+𝑖,𝑗 UAV 𝑘 delivery no. packages on arc 𝑖, 𝑗

𝑤𝑘+
𝑖,𝑗 UAV 𝑘 delivery weight on arc 𝑖, 𝑗

𝑣𝑘+𝑖,𝑗 UAV 𝑘 delivery volume on arc 𝑖, 𝑗

𝑝𝑘−𝑖,𝑗 UAV 𝑘 pickup no. packages on arc 𝑖, 𝑗

𝑤𝑘−
𝑖,𝑗 UAV 𝑘 pickup weight on arc 𝑖, 𝑗

𝑣𝑘−𝑖,𝑗 UAV 𝑘 pickup volume on arc 𝑖, 𝑗

𝑝𝑘𝑖,𝑗 UAV 𝑘 total no. packages on arc 𝑖, 𝑗
𝑤𝑘

𝑖,𝑗 UAV 𝑘 total weight on arc 𝑖, 𝑗
𝑣𝑘𝑖,𝑗 UAV 𝑘 total volume on arc 𝑖, 𝑗
𝜏𝑘𝑗 arrival time of UAV 𝑘 at node 𝑗
𝜐𝑘
𝑖,𝑗 UAV 𝑘 time spent at DC between 𝑖, 𝑗

𝑒𝑘𝑖,𝑗 UAV 𝑘 energy consumed traversing 𝑖, 𝑗
𝑓𝑘
𝑗 UAV 𝑘 energy consumed by 𝑖
𝑓 ′𝑘
𝑖 UAV 𝑘 energy consumed at DC from 𝑖
𝑎𝑘 UAV 𝑘 activated
𝑐𝑓 fleet depreciation cost
𝑐𝑑 cost of distance travel
𝑐𝑤 cost of wage
𝑐𝑡𝑟 cost of time travel
𝑐𝑐𝑑 cost of wage spent at DC
𝑐𝑤𝑡 cost of wage spent waiting
𝑐𝑠 cost of wage spent serving customers
𝑐𝑒 cost of energy
𝑐 total cost

Table 4.3: Notation of GURP model formulation: decision variables.

4.3.1.1 Basic Capacitated Multi-Commodity Routing Model With Time
Windows

This section details the foundational model formulation that supports a capacitated
multi-vehicle VRP with TWs which will then be extended further in sections below
to capture the full extent of the GURP.

Minimize 𝑐 = 𝑐𝑓 + 𝑐𝑑 + 𝑐𝑤 + 𝑐𝑒, (4.1)

where

𝑐𝑓 =
∑︁
𝑘∈𝐾

𝑎𝑘𝐶𝑘
𝐹 , (4.2)
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𝑐𝑑 =
∑︁
𝑘∈𝐾

𝐶𝑘
𝐷

∑︁
𝑖∈𝑁 ′

∑︁
𝑗∈𝑁 ′𝑖 ̸=𝑗

𝐷𝑖,𝑗𝑥
𝑘
𝑖,𝑗 , (4.3)

𝑐𝑤 = 𝑐𝑡𝑟 + 𝑐𝑑𝑐 + 𝑐𝑤𝑡 + 𝑐𝑠 (4.4)

𝑐𝑡𝑟 =
∑︁
𝑘∈𝐾

𝐶𝑘
𝑊

∑︁
𝑖∈𝑁 ′

∑︁
𝑗∈𝑁 ′𝑖 ̸=𝑗

𝑇𝑖,𝑗𝑥
𝑘
𝑖,𝑗 , (4.5)

𝑐𝑑𝑐 =
∑︁
𝑘∈𝐾

⎛⎝𝐶𝑘
𝑊

∑︁
𝑖,𝑗∈𝐴′

𝑢𝑘𝑖,𝑗 * 𝑈+
0 +

∑︁
𝑖,𝑗∈𝐴′

(𝑧𝑘𝑖,𝑗 − 𝑢𝑘𝑖,𝑗) * 𝑈−
0 +

∑︁
𝑖,𝑗∈𝐴′

𝑧𝑘𝑖,𝑗 * 𝑈0

⎞⎠ , (4.6)

𝑐𝑤𝑡 =
∑︁
𝑘∈𝐾

𝐶𝑘
𝑊

∑︁
𝑗∈𝑁 ′

𝜏𝑤
𝑘
𝑗 (4.7)

𝑐𝑠 =
∑︁
𝑘∈𝐾

𝐶𝑘
𝑊

∑︁
𝑗∈𝑁 ′

𝑇𝑠𝑗 (4.8)

𝑐𝑒 =
∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑁 ′

∑︁
𝑗∈𝑁 ′𝑖 ̸=𝑗

𝐶𝑘
𝐸𝑒

𝑘
𝑖,𝑗 , (4.9)

subject to

𝑎𝑘 ≥ 𝑦𝑘𝑖 , ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.10)∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑁+

𝑥𝑘𝑖,𝑗 = 1, ∀𝑗 ∈ 𝑁 ′, (4.11)

∑︁
𝑖∈𝑁+

𝑥𝑘𝑖,𝑗 −
∑︁
𝑖∈𝑁−

𝑥𝑘𝑗,𝑖 = 0, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.12)

∑︁
𝑖∈𝑁+

𝑥𝑘𝑖,𝑗 +
∑︁
𝑖∈𝑁−

𝑥𝑘𝑗,𝑖 = 2𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.13)

∑︁
𝑗∈𝑁 ′

𝑥𝑘0,𝑗 −
∑︁
𝑗∈𝑁 ′

𝑥𝑘𝑗,𝑛+1 = 0, ∀𝑘 ∈ 𝐾, (4.14)

∑︁
𝑖∈𝑁+𝑖 ̸=𝑗

𝑝𝑘+𝑖,𝑗 −
∑︁

𝑖∈𝑁−𝑖 ̸=𝑗

𝑝𝑘+𝑗,𝑖 = 𝑃+
𝑗 𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.15)

∑︁
𝑖∈𝑁+𝑖 ̸=𝑗

𝑤𝑘+
𝑖,𝑗 −

∑︁
𝑖∈𝑁−𝑖 ̸=𝑗

𝑤𝑘+
𝑗,𝑖 = 𝑊+

𝑗 𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.16)

∑︁
𝑖∈𝑁+𝑖 ̸=𝑗

𝑣𝑘+𝑖,𝑗 −
∑︁

𝑖∈𝑁−𝑖 ̸=𝑗

𝑣𝑘+𝑗,𝑖 = 𝑉 +
𝑗 𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.17)

∑︁
𝑖∈𝑁+𝑖 ̸=𝑗

𝑝𝑘−𝑖,𝑗 −
∑︁

𝑖∈𝑁−𝑖 ̸=𝑗

𝑝𝑘−𝑗,𝑖 = −𝑃−
𝑗 𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.18)

∑︁
𝑖∈𝑁+𝑖 ̸=𝑗

𝑤𝑘−
𝑖,𝑗 −

∑︁
𝑖∈𝑁−𝑖 ̸=𝑗

𝑤𝑘−
𝑗,𝑖 = −𝑊−

𝑗 𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.19)

∑︁
𝑖∈𝑁+𝑖 ̸=𝑗

𝑣𝑘−𝑖,𝑗 −
∑︁

𝑖∈𝑁−𝑖 ̸=𝑗

𝑣𝑘−𝑗,𝑖 = −𝑉 −
𝑗 𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.20)

𝑝𝑘+𝑖,𝑗 + 𝑝𝑘−𝑖,𝑗 = 𝑝𝑘𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.21)

𝑤𝑘+
𝑖,𝑗 + 𝑤𝑘−

𝑖,𝑗 = 𝑤𝑘
𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.22)
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𝑣𝑘+𝑖,𝑗 + 𝑣𝑘−𝑖,𝑗 = 𝑣𝑘𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.23)

𝑝𝑘𝑖,𝑗 ≤ 𝑃 𝑘𝑥𝑘𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.24)

𝑤𝑘
𝑖,𝑗 ≤𝑊 𝑘𝑥𝑘𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.25)

𝑣𝑘𝑖,𝑗 ≤ 𝑉 𝑘𝑥𝑘𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.26)

𝑝𝑘+𝑖,𝑛+1 = 0, 𝑤𝑘+
𝑖,𝑛+1 = 0, 𝑣𝑘+𝑖,𝑛+1 = 0, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.27)

𝑝𝑘−0,𝑗 = 0, 𝑤𝑘−
0,𝑗 = 0, 𝑣𝑘−0,𝑗 = 0, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.28)

𝜏𝑘𝑖 + 𝑇 𝑘
𝑡𝑟𝑖,𝑗 + 𝑆𝑘

𝑖 −𝑀 ′
(︁
1− 𝑥𝑘𝑖,𝑗

)︁
≤ 𝜏𝑘𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴′, ∀𝑘 ∈ 𝐾, (4.29)

𝜏𝑘𝑖 ≥ 𝐴𝑖, 𝜏𝑘𝑖 ≤ 𝐵𝑖, ∀𝑖 ∈ 𝑁−, ∀𝑘 ∈ 𝐾, (4.30)

𝑈𝑘
0 + 𝑢𝑘𝑖,𝑗𝑈

𝑘+
0 +

(︁
1− 𝑢𝑘𝑖,𝑗

)︁
𝑈𝑘−
0 ≤ 𝜐𝑘𝑖,𝑗 +𝑀 ′′

𝑖,𝑗

(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀(𝑖, 𝑗) ∈ 𝐴′, ∀𝑘 ∈ 𝐾, (4.31)

𝜏𝑘𝑖 + 𝑇𝑡𝑟𝑖,𝑛+1 + 𝑆𝑘
𝑖 + 𝑇𝑡𝑟0,𝑗 + 𝜐𝑘𝑖,𝑗 ≤ 𝜏𝑘𝑗 +𝑀 ′′𝑘

𝑖,𝑗

(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀(𝑖, 𝑗) ∈ 𝐴′, ∀𝑘 ∈ 𝐾, (4.32)∑︁

𝑖∈𝑁 ′, 𝑖 ̸=𝑗

𝑧𝑘𝑖,𝑗 ≤ 𝑥𝑘0,𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.33)

∑︁
𝑗∈𝑁 ′, 𝑗 ̸=𝑖

𝑧𝑘𝑖,𝑗 ≤ 𝑥𝑘𝑖,𝑛+1, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.34)

∑︁
𝑖∈𝑁 ′

∑︁
𝑗∈𝑁 ′𝑖 ̸=𝑗

𝑧𝑘𝑖,𝑗 + 𝑎𝑘 =
∑︁
𝑗∈𝑁 ′

𝑥𝑘0,𝑗 , ∀𝑘 ∈ 𝐾, (4.35)

with

𝑥𝑘𝑖,𝑗 ∈ {0, 1}, ∀ (𝑖, 𝑗) ∈ 𝐴, ∀ 𝑘 ∈ 𝐾, (4.36)

𝑢,𝑖,𝑗𝑧
𝑘
𝑖,𝑗 ∈ {0, 1}, ∀ (𝑖, 𝑗) ∈ 𝐴′, ∀ 𝑘 ∈ 𝐾, (4.37)

𝑦𝑘𝑗 ∈ {0, 1}, ∀ 𝑗 ∈ 𝑁 ′, ∀ 𝑘 ∈ 𝐾, (4.38)

𝑎𝑘 ∈ {0, 1}, ∀ 𝑘 ∈ 𝐾, (4.39)

𝑓𝑘
𝑗 , 𝑓

′𝑘
𝑗 , 𝑡𝑘𝑗 , 𝑞

𝑘
𝑗 ≥ 0, ∀ 𝑗 ∈ 𝑁 ′, ∀ 𝑘 ∈ 𝐾, (4.40)

𝜏𝑘𝑗 ≥ 0, ∀ 𝑗 ∈ 𝑁, ∀ 𝑘 ∈ 𝐾, (4.41)

𝑝𝑘+𝑖,𝑗 , 𝑤
𝑘+
𝑖,𝑗 , 𝑣

𝑘+
𝑖,𝑗 , 𝑝

𝑘−
𝑖,𝑗 , 𝑤

𝑘−
𝑖,𝑗 , 𝑣

𝑘−
𝑖,𝑗 , 𝑝

𝑘
𝑖,𝑗 , 𝑤

𝑘
𝑖,𝑗 , 𝑣

𝑘
𝑖,𝑗 , 𝑒

𝑘
𝑖,𝑗 ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝐴, ∀ 𝑘 ∈ 𝐾, (4.42)

𝜐𝑘𝑖,𝑗 ≥ 0, ∀ (𝑖, 𝑗) ∈ 𝐴′, ∀ 𝑘 ∈ 𝐾, (4.43)

and

𝑀 ′ = 𝑅, 𝑀 ′′𝑘
𝑖,𝑗 = 𝑇 𝑘

𝑡𝑟𝑖,𝑛+1
+ 𝑆𝑘

𝑖 + 𝑈𝑘
0 + 𝑈𝑘+

0 + 𝑈𝑘−
0 + 𝑇𝑡𝑟0,𝑗 +𝐵𝑖. (4.44)

Domain constraints. Constraints 4.36 - 4.43 denote the domains of the decision
variables and ensure non-negativity where required.

Routing constraints. Constraints 4.10 activates the UAV if it is used to serve
at least one customer. Constraints 4.11 ensures each customer is visited only once
whilst Constraints 4.12 ensures each incoming arc is paired with an outgoing arc.
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Constraints 4.13 connects the traversed arc variable with the customer service variable
whilst Constraints 4.14 ensures each DC launch is associated with one other DC
return.

Flow conservation and sub-tour elimination constraints. Constraints 4.15,
4.16 and 4.17 enforce commodity flow through each node whilst ensuring each node’s
demand is satisfied for each delivery commodity: package count, weight and volume.
Constraints 4.18, 4.19 and 4.20 are the equivalent for each pickup commodity. These
six constraints also eliminate sub-tours.

Capacity constraints. Constraints 4.21, 4.22 and 4.23 sum the delivery and pickup
amounts for each commodity into a total commodity amount for each arc. Con-
straints 4.24, 4.25 and 4.26 ensure the UAV commodity capacity is respected along
each arc. Constraints 4.27 enforce delivery package, weight and volume commodities
on the UAV to be zero when the UAV returns to the DC w hilst Constraints 4.28
ensure the same for each pickup commodity when launching from the DC.

Timing constraints. Constraints 4.29 establishes a time relationship between two
consecutive nodes within a trip. Constraints 4.30 maintains TW feasibility. Con-
straints 4.31 simply captures the expected time spent at the DC in an auxiliary
variable between the final and start nodes of two consecutive trips. Finally, Con-
straints 4.32 establishes a time relationship between the final and start nodes of two
consecutive trips.

Multi-trip constraints. Constraints 4.33, 4.34 and 4.35 tie variables x and z.
Specifically, Constraints 4.33 and 4.34 ensures a DC return can only be performed
if DC-return and DC-launch arcs exist for those nodes. Constraints 4.35 ties the
number of DC returns to the number of launches and the UAV activation variable,
allowing a UAV in the fleet to remain inactive if necessary. Finally, Equation 4.44 𝑀 ′

can be shown to be equal to the total time of operation and 𝑀 ′′𝑘
𝑖,𝑗 equal to the longest

possible travel time between nodes 𝑖, 𝑗 with an intermediary DC-return adjusted by
node 𝑖’s end-commit-time.

4.3.1.2 Model Extension with UAV-Specific Operational Constraints

In this section, we define the UAV-specific operational constraints added to the mod-
els, namely energy, flight time and trip count constraints.

Energy constraints. The following details the from-first-principles energy equa-
tions that capture UAV energy consumption in various flight regimes and the subse-
quent energy constraints.

𝑓𝑘
𝑗 ≤ 𝐹 𝑘𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.45)

𝑓 ′𝑘
𝑖 ≤ 𝐹 𝑘𝑥𝑘𝑖,𝑛+1, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.46)
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𝑓𝑘
𝑗 ≥ 𝑓𝑘

𝑖 + 𝑒𝑘𝑖,𝑗 −𝑀 ′′′𝑘
𝑖,𝑗

(︁
1− 𝑥𝑘𝑖,𝑗

)︁
, ∀𝑖, 𝑗 ∈ 𝐴′, ∀𝑘 ∈ 𝐾, (4.47)

𝑒𝑘𝑖,𝑗 ≥ 𝑠𝑎𝑖,𝑗
⃒⃒
𝑤𝑘

𝑖,𝑗
+ 𝑠𝑠𝑖,𝑗

⃒⃒
𝑤𝑘

𝑖,𝑗
−𝑀 ′′′𝑘

𝑖,𝑗

(︁
1− 𝑥𝑘𝑖,𝑗

)︁
, ∀𝑖, 𝑗 ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.48)

𝑓 ′𝑘
𝑖 ≥ 𝑓𝑘

𝑖 + 𝑒𝑘𝑖,𝑛+1 −𝑀 ′′′𝑘
𝑖,𝑛+1

(︁
1− 𝑥𝑘𝑖,𝑛+1

)︁
, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.49)

𝑓𝑘
𝑗 ≥ 𝑒𝑘0,𝑗 −𝑀 ′′′𝑘

0,𝑗

(︁
1− 𝑥𝑘0,𝑗

)︁
−𝑀 ′′′𝑘

𝑖,𝑗 𝑢𝑘𝑖,𝑗 −𝑀 ′′′𝑘
𝑖,𝑗

(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.50)

where 𝑀 ′′′𝑘
𝑖,𝑗 = 𝑠𝑎𝑖,𝑗

(︀
𝑊 𝑘
)︀

+𝑠𝑠𝑖,𝑗
(︀
𝑊 𝑘
)︀

+𝐹 . The non-linear energy equations for travel
(tr), takeoff (to), landing (la), and hover (ho) are as follows:

𝑠𝑎𝑟𝑐
⃒⃒
𝑤𝑘

𝑖,𝑗
= ℎ𝑡𝑜

⃒⃒
𝑤𝑘

𝑖,𝑗
𝑇𝑡𝑜𝑖,𝑗 + ℎ𝑡𝑟

⃒⃒
𝑤𝑘

𝑖,𝑗
𝑇𝑡𝑟𝑖,𝑗 ,+ℎ𝑙𝑎

⃒⃒
𝑤𝑘

𝑖,𝑗
𝑇𝑙𝑎𝑖,𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.51)

𝑠𝑠𝑒𝑟𝑣𝑒
⃒⃒
𝑤𝑘

𝑖,𝑗
= ℎℎ𝑜

⃒⃒
𝑤𝑘

𝑖,𝑗
𝑈𝑖, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾. (4.52)

Constraints 4.45, 4.46 ensure the battery capacity is not exceeded. Constraints 4.48
defines the energy matrix whilst Constraints 4.47, 4.49 enforce energy conservation
through the nodes. Finally, constraint 4.50 sets a lower bound reset for the energy
tracker at each trip start. Equation 4.51 captures the total energy consumed travers-
ing an arc whilst Equation 4.52 captures the energy consumed serving a customer
if hover-based service is assumed. These equations are dependent on the power-
consumption equations for a quadcopter UAV:

ℎ𝑡𝑟
⃒⃒
𝑤𝑘

𝑖,𝑗
= 𝑇𝑊𝑅3

(︁(︁
𝑀 + 𝑤𝑘

𝑖,𝑗

)︁
𝑔
)︁3

𝜌
√
2

, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.53)

ℎ𝑡𝑜
⃒⃒
𝑤𝑘

𝑖,𝑗
= 𝑇𝑊𝑅

√
𝑇𝑊𝑅− 1

(︁(︁
𝑀 + 𝑤𝑘

𝑖,𝑗

)︁
𝑔
)︁ 3

2

√︂
1

𝜌𝐴
, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.54)

ℎ𝑙𝑎
⃒⃒
𝑤𝑘

𝑖,𝑗
= ℎ𝑡𝑜

⃒⃒
𝑤𝑘

𝑖,𝑗
, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.55)

ℎℎ𝑜
⃒⃒
𝑤𝑘

𝑖,𝑗
=

⎯⎸⎸⎷(︁(︁𝑀 + 𝑤𝑘
𝑖,𝑗

)︁
𝑔
)︁3

2𝜌𝐴
, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.56)

where 𝑔 = 9.81𝑚𝑠−2, 𝑀 is the total UAV mass (𝑘𝑔), 𝜌 is the fluid density of air
(𝑘𝑔𝑚−3), and 𝐴 is the UAV’s total rotor disc area (𝑚2). Equations 4.53, 4.54, 4.55
and 4.56 represent the non-linear power consumption equations for a quadcopter A.
Note, it is assumed take-off and landing power consumption patterns are identical. In
both Dorling et al. (2016) and Cheng et al. (2018), only the horizontal flight regime is
considered, with horizontal power consumption modeled as hover flight as per Equa-
tion 4.56. Whilst we arrive at the same result for the hover flight regime, we derive
each additional flight regime’s power consumption equation from first principles. See
Appendix A. Again, see Figure 4-1 for a pictorial version of the energy consumption
logic broken into the independent flight regimes.

Flight time constraints. In a similar fashion to Constraints 4.45–4.50, the follow-
ing constraints track and constrain a UAV’s flight time as it pertains the maintenance
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Figure 4-1: UAV energy consumption formulation logic disaggregated into indepen-
dent flight regimes.

check logic.

𝑡𝑘𝑗 ≤ 𝑇 𝑘𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.57)

𝑡′𝑘𝑖 ≤ 𝑇 𝑘𝑥𝑘𝑖,𝑛+1, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.58)

𝑡𝑘𝑗 ≥ 𝑡𝑘𝑖 + 𝑇 𝑘
𝑖,𝑗 −𝑀 ′′′′𝑘

𝑖,𝑗

(︁
1− 𝑥𝑘𝑖,𝑗

)︁
, ∀𝑖, 𝑗 ∈ 𝐴′, ∀𝑘 ∈ 𝐾, (4.59)

𝑡′𝑘𝑖 ≥ 𝑡𝑘𝑖 + 𝑇 𝑘
𝑖,𝑛+1 −𝑀 ′′′′𝑘

𝑖,𝑛+1

(︁
1− 𝑥𝑘𝑖,𝑛+1

)︁
, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.60)

𝑡𝑘𝑗 ≥ 𝑇 𝑘
0,𝑗 −𝑀 ′′′′𝑘

0,𝑗

(︁
1− 𝑥𝑘0,𝑗

)︁
−𝑀 ′′′′𝑘

𝑖,𝑗 𝑢𝑘𝑖,𝑗 −𝑀 ′′′′𝑘
𝑖,𝑗

(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.61)

Constraints 4.57, 4.58 ensure the flight time capacity is not exceeded. Con-
straints 4.59, 4.60 ensure flight time conservation through the nodes. Finally, con-
straint 4.61 sets a lower bound reset for the flight time tracker at each trip start.

Trip counts. Just as with energy and flight time, this section details the constraints
that track and constraint a UAV’s trip count as it pertains the maintenance check
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logic.

𝑞𝑘𝑗 ≤ 𝑄𝑘𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.62)

𝑞′𝑘𝑖 ≤ 𝑄𝑘𝑥𝑘𝑖,𝑛+1, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.63)

𝑞𝑘𝑗 ≥ 𝑞𝑘𝑖 +𝑄𝑘
𝑖,𝑗 −𝑀 ′′′′′𝑘

𝑖,𝑗

(︁
1− 𝑥𝑘𝑖,𝑗

)︁
, ∀𝑖, 𝑗 ∈ 𝐴′, ∀𝑘 ∈ 𝐾, (4.64)

𝑞′𝑘𝑖 ≥ 𝑞𝑘𝑖 +𝑄𝑘
𝑖,𝑛+1 −𝑀 ′′′′′𝑘

𝑖,𝑛+1

(︁
1− 𝑥𝑘𝑖,𝑛+1

)︁
, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.65)

𝑞𝑘𝑗 ≥ 𝑄𝑘
0,𝑗 −𝑀 ′′′′′𝑘

0,𝑗

(︁
1− 𝑥𝑘0,𝑗

)︁
−𝑀 ′′′′′𝑘

𝑖,𝑗 𝑢𝑘𝑖,𝑗 −𝑀 ′′′′′𝑘
𝑖,𝑗

(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾, (4.66)

Constraints 4.62, 4.63 ensure a UAV’s max trip count capacity is not exceeded.
Constraints 4.64, 4.65 ensure trip count conservation through the nodes. Finally,
Constraint 4.66 sets a lower bound reset for the trip count tracker at each trip start.

Maintenance check constraints. This section details additional constraints that
enable the EA model to track the maintenance check dimensions – energy, flight time
and trip count – between trips.

𝑓𝑘
𝑗 ≥ 𝑓 ′𝑘

𝑖 −𝑀 ′′′𝑘
𝑖,𝑛+1

(︁
1− 𝑥𝑘𝑖,𝑛+1

)︁
+ 𝑒𝑘0,𝑗 −𝑀 ′′′𝑘

𝑖,𝑗 𝑢𝑘𝑖,𝑗 −𝑀 ′′′𝑘
𝑖,𝑗

(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾,

(4.67)

𝑡𝑘𝑗 ≥ 𝑡′𝑘𝑖 −𝑀 ′′′′𝑘
(︁
1− 𝑥𝑘𝑖,𝑛+1

)︁
+ 𝑇 𝑘

0,𝑗 −𝑀 ′′′′𝑘𝑢𝑘𝑖,𝑗 −𝑀 ′′′′𝑘
(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾,

(4.68)

𝑞𝑘𝑗 ≥ 𝑞′𝑘𝑖 −𝑀 ′′′′′𝑘
(︁
1− 𝑥𝑘𝑖,𝑛+1

)︁
+𝑄𝑘

0,𝑗 −𝑀 ′′′′′𝑘𝑢𝑘𝑖,𝑗 −𝑀 ′′′′′𝑘
(︁
1− 𝑧𝑘𝑖,𝑗

)︁
, ∀𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾,

(4.69)

with

𝑀 ′′′′ = 2𝑇, 𝑀 ′′′′′ = 2𝑄. (4.70)

Note that Constraints 4.67 is identical to Constraints 4.61 except with two addi-
tional starting terms which, together, capture the final energy of the trip immediately
preceding. The same logic applies for Constraints 4.68 and 4.67, and Constraints 4.69
and 4.69 but for flight time and trip count, respectively.

4.3.1.3 Improving Model Performance

In this section, we introduce linearization strategies followed by valid inequalities and
user cuts implemented to further strengthen model performance.
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Model linearization. The power consumption are linearized in Equations 4.53-
4.56 and are rewritten as follows, where the 𝛼’s and 𝛽’s are the linearized coefficients
as shown in Appendix A.4:

ℎ𝑡𝑟

(︁
𝑤𝑘
𝑖,𝑗

)︁
= 𝛼𝑡𝑟

(︁
𝑀 + 𝑤𝑘

𝑖,𝑗

)︁
+ 𝛽𝑡𝑟, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.53’)

ℎ𝑡𝑜

(︁
𝑤𝑘
𝑖,𝑗

)︁
= 𝛼𝑡𝑜

(︁
𝑀 + 𝑤𝑘

𝑖,𝑗

)︁
+ 𝛽𝑡𝑜, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.54’)

ℎ𝑙𝑎

(︁
𝑤𝑘
𝑖,𝑗

)︁
= 𝛼𝑙𝑎

(︁
𝑀 + 𝑤𝑘

𝑖,𝑗

)︁
+ 𝛽𝑙𝑎, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾, (4.55’)

ℎℎ𝑜

(︁
𝑤𝑘
𝑖,𝑗

)︁
= 𝛼ℎ𝑜

(︁
𝑀 + 𝑤𝑘

𝑖,𝑗

)︁
+ 𝛽ℎ𝑜, ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾. (4.56’)

Valid inequalities: routing. Finally, we implement valid inequalities to further
strengthen the model:

𝑥𝑗,𝑖 ≤ 𝑦𝑘𝑖 , ∀𝑖 ∈ 𝑁 ′, ∀𝑗 ∈ 𝑁−, ∀𝑘 ∈ 𝐾, (4.71)∑︁
𝑘∈𝐾

∑︁
𝑗∈𝑁 ′

𝑥𝑘0,𝑗 ≤ 𝑛, (4.72)

∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑁 ′

∑︁
𝑗∈𝑁 ′𝑗 ̸=𝑖

𝑧𝑘𝑖,𝑗 ≤ 𝑛− 1, (4.73)

∑︁
𝑖∈𝑁 ′,𝑖 ̸=𝑗

𝑧𝑘𝑖,𝑗 +
∑︁

𝑖∈𝑁 ′,𝑖 ̸=𝑗

𝑧𝑘𝑗,𝑖 ≤ 2𝑎𝑘, ∀𝑗 ∈ 𝑁 ′, 𝑘 ∈ 𝐾, (4.74)

𝑧𝑘𝑖,𝑗 + 𝑥𝑘𝑖,𝑗 ≤ 1, ∀𝑖, 𝑗 ∈ 𝐴′, 𝑘 ∈ 𝐾. (4.75)

∑︁
𝑘∈𝐾

∑︁
𝑗∈𝑁 ′

𝑥𝑘0,𝑗 ≥ max

(︃⌈︃∑︀
𝑖∈𝑁 ′ 𝑃

+
𝑖

𝑃

⌉︃
,

⌈︃∑︀
𝑖∈𝑁 ′ 𝑊

+
𝑖

𝑊

⌉︃
,

⌈︃∑︀
𝑖∈𝑁 ′ 𝑉

+
𝑖

𝑉

⌉︃
,

⌈︃∑︀
𝑖∈𝑁 ′ 𝑃

−
𝑖

𝑃

⌉︃
,

⌈︃∑︀
𝑖∈𝑁 ′ 𝑊

−
𝑖

𝑊

⌉︃
,

⌈︃∑︀
𝑖∈𝑁 ′ 𝑉

−
𝑖

𝑉

⌉︃)︃
,

(4.76)

Constraints 4.71 is a logical inequality between customer service and arcs tra-
versed whilst Constraint 4.72 sets an upper bound for total number of DC launches.
Constraint 4.73 and 4.74 set upper bounds for the total number of DC-visits. Con-
straint 4.76 all set lower bounds for the total number of DC-launches based on the
total demand for each commodity type across relative to the UAV commodity capac-
ity in both delivery and pickup dimensions. Finally, Constraints 4.75 enforces that
there can only exist either a DC-return, a traversed arc or neither of these actions
between two nodes but not both simultaneously.

Valid inequalities: energy. Additionally, Constraints 4.77 sets the lower bound
for the energy matrix assuming that the minimum energy consumed between any two
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nodes is equal to the UAV consumption with zero payload,

𝑒𝑘𝑖,𝑗 ≥ 𝑥𝑘𝑖,𝑗
(︀
𝑠𝑎𝑖,𝑗

⃒⃒
0
+ 𝑠𝑠𝑖,𝑗

⃒⃒
0

)︀
∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑘 ∈ 𝐾. (4.77)

Valid inequalities: commodity capacities. Additionally, there exist logical cuts
that exclude sequences of arcs that can be pre-determined as infeasible via simple
commodity or energy capacity calculations. For any given arc sequence, 𝐴, of length
𝑙 (e.g., [0, 1, 4, 6, 8, 𝑛 + 1] where the indices of this arc are [𝑖0, 𝑖1, ..., 𝑖5]) and where
𝑛 + 1 is the return DC node, this constraint is implemented as

𝑥𝑖1,𝑗2 + ...+ 𝑥𝑖3,𝑖4 ≤ 𝑙 − 1. (4.78)

And if the implementation of Constraints 4.78 results in the following holding
for node 𝑗,

𝑥𝑖,𝑗 = 0, 𝑥𝑗,𝑖 = 0, ∀𝑖 ∈ 𝑁 ′, (4.79)

then the following valid inequality can be additionally implemented:

∑︁
𝑖∈𝑁 ′,𝑖 ̸=𝑗

𝑧𝑘𝑖,𝑗 +
∑︁

𝑖∈𝑁 ′,𝑖 ̸=𝑗

𝑧𝑘𝑗,𝑖 ≥ 𝑦𝑘𝑗 , ∀𝑗 ∈ 𝑁 ′, 𝑘 ∈ 𝐾. (4.80)

Constraint 4.78 arises when a UAV traversing sequence of arcs 𝐴 exceeds any
of its commodity or energy capacities on any of the arcs. As Constraints 4.78 is
continually implemented in the pre-solve phase, Constraints 4.79 could simultaneously
arise, suggesting there are no feasible customer arcs in or out of node 𝑗, only from- or
to- DC arcs. Thus, node 𝑗 must be singly served from the DC and Constraints 4.80
can be implemented which ensures that if node 𝑗 is being served by UAV 𝑘, there
must exist a node pairing 𝑖, 𝑗 or 𝑗, 𝑖 between which a DC-return is performed so that
node 𝑗 can be singly served.

4.3.2 Exact Two-Stage Approach

In this section, we introduce the iterative model formulation which leverages much of
the EA formulation, except it solves one sub-problem of the EA in an second MILP-
based model. This approach seeks to simplify the core problem the routing model is
required to solve by making assumptions around the fraction of maintenance checks
each UAV is required to make at the DC over the course of its operational day. By
fixing this maintenance check fraction, the possible solution space is tightened and
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the computational speed is improved. Determining the optimal fraction of mainte-
nance checks is performed in a second-stage model, and this is done in an iterative
manner such that the overall solution approach takes a staged approach to reaching
the optimal or near-optimal solution in shorter time.

From hereon the two models that form the ETSA will be referred to as Exact
Two-Staged Approach Stage-1 (ETSA-1) and Exact Two-Staged Approach Stage-2
(ETSA-2). Figure 4-2 is a schematic of how the iterative model functions. Note,
each time the ETSA-2 receives a valid solution from ETSA-1, it works to reduce the
solution cost further by re-ordering the trip sequence and reducing the maintenance
check fraction in an effort to minimize asset downtime. The ETSA-1, on the other
hand, receives an improved solution from ETSA-2 and attempts to switch both trip
and stop sequences to further improve the overall solution cost whilst assuming a
fixed maintenance check fraction. Importantly, whilst ETSA-1 operates across the
UAV fleet, ETSA-2 operates on each UAV in the fleet individually.

Figure 4-2: ETSA solution approach schematic, highlighting iterative solution
logic and customer-based versus trip-based sequencing improvement formulations for
ETSA-1 and ETSA-2 respectively.

4.3.2.1 Exact Two-Stage Approach – Stage 1

The ETSA-1 is structurally identical to the EA model formulated in Section 4.3.1,
specifically Equations 4.1–4.80 with Equations 4.57–4.66 omitted. During the ETSA-
1, the only operational constraints that need to be adhered to are the per-trip energy
capacity and per-trip flight time constraint. The multi-trip energy, flight time and trip
count constraints can be outsourced to the ETSA-2. This is to simplify the problem
of determining during which DC visit to activate the maintenance check. Instead,
the ETSA-1 is provided a minimum maintenance check count fraction determined
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by the ETSA-2 model. To replace the omitted Constraints 4.57–4.66, the following
constraints are included:

∑︁
𝑖∈𝑁 ′

∑︁
𝑗∈𝑁 ′

𝑢𝑘𝑖,𝑗 ≥ Γ𝑘
∑︁
𝑖∈𝑁 ′

∑︁
𝑗∈𝑁 ′

𝑧𝑘𝑖,𝑗 , ∀𝑘 ∈ 𝐾, (4.81)

𝑢𝑘𝑖,𝑗 ≤ 𝑧𝑘𝑖,𝑗 , ∀𝑖, 𝑗 ∈ 𝐴′, ∀𝑘 ∈ 𝐾. (4.82)

Constraints 4.81 ensures the number of activated maintenance checks does at
least exceeds the minimum number of maintenance checks determined by the ETSA-
2 model, calculated as the total number of DC visits multiplied by the fraction of
determined maintenance checks per UAV in the fleet. Constraints 4.82 ensures that a
maintenance check can only occur when the UAV visits the DC. The ETSA-2 model
is formulated in Section 4.3.2.2.

4.3.2.2 Exact Two-Stage Approach – Stage 2

The ETSA-2 receives each UAV’s finalized route from the ETSA-1 with informa-
tion about the route’s number of trips as well as each trip’s duration and energy
requirement. The ETSA-2 re-orders the sequence of trips within a UAV’s route
without changing the sequence of stops within a trip with the objective to minimize
total cost. The key method by which the model minimizes cost is by sequencing
the customers and necessary maintenance checks such that the key cost components
– number of UAVs required, total operating time, total distance traveled and total
energy consumed – are minimized. Thus, it is fundamentally an assignment problem.
Throughout the formulation in Equations 4.83–4.101, index 𝑖 refers to trip 𝑖 in the
received UAV route whilst index 𝑗 refers to a trip position that a trip ought to be
assigned to.

In addition to Tables 4.1 through 4.3, Tables 4.4, 4.5 and 4.6 summarize addi-
tional sets, relevant model parameters and decision variables used to formulate the
ETSA-2 model, respectively. Note that 𝑤 denotes total number of trips performed
by a specific UAV’s route, hereon referred to as UAV 𝑘.

Set Definition

𝑊 set of UAV trips {1,2...,𝑤}
𝑊+ set of UAV trips with final trip omitted {1,2...,𝑤 − 1}
𝑊− set of UAV trips with first trip omitted {2...,𝑤}
𝑊𝑗 set of UAV trips with trips beyond trip 𝑗 omitted {1,2...,𝑗 − 1}

Table 4.4: ETSA-2 set definitions.

Minimize 𝑐 = 𝑐𝑑 + 𝑐𝑡 + 𝑐𝑤 + 𝑐𝑒, (4.83)
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Parameter Definition Domain Units

𝐴𝑖 earliest start time of trip 𝑖 ∀𝑖 ∈𝑊 deci-time
𝐵𝑖 latest start time of trip 𝑖 ∀𝑖 ∈𝑊 deci-time
𝑇𝑖 trip 𝑖 flight duration ∀𝑖 ∈𝑊 deci-time
𝐷𝑖 trip 𝑖 distance traversed ∀𝑖 ∈𝑊 km
𝐸𝑖 trip 𝑖 energy consumed ∀𝑖 ∈𝑊 kWh

Table 4.5: ETSA-2 parameters.

Variable Definition

𝑥𝑖,𝑗 trip 𝑖 assigned to position 𝑗 binary
𝑝𝑗 maintenance check activated after position 𝑗 binary
𝑞𝑗 trip-count maintenance check activated after position 𝑗 binary
𝑡𝑗 flight-time maintenance check activated after position 𝑗 binary
𝑒𝑗 energy consumption maintenance check activated after position 𝑗 binary
𝑎𝑗 position 𝑗 start time continuous
𝑏𝑗 position 𝑗 end time continuous

Table 4.6: ETSA-2 decision variables.

where

𝑐𝑑 = 𝐶𝑘
𝐷, (4.84)

𝑐𝑡 = 𝐶𝑘
𝑇

∑︁
𝑖∈𝑊

𝐷𝑖, (4.85)

𝑐𝑤 = 𝐶𝑘
𝑊 (𝑏𝑛 − 𝑎1) , (4.86)

𝑐𝑒 = 𝐶𝑘
𝐸

∑︁
𝑖∈𝑊

𝐸𝑖, (4.87)

subject to

𝑁∑︁
𝑖=1

𝑥𝑖,𝑗 = 1,
𝑁∑︁
𝑖=1

𝑥𝑗,𝑖 = 1, ∀𝑗 ∈𝑊, (4.88)

𝑀𝑢𝑝𝑗 ≥ 𝑢𝑗 , ∀𝑗 ∈𝑊, (4.89)
𝑀𝑡𝑝𝑗 ≥ 𝑡𝑗 , ∀𝑗 ∈𝑊, (4.90)
𝑀𝑒𝑝𝑗 ≥ 𝑒𝑗 , ∀𝑗 ∈𝑊, (4.91)

𝑞𝑗 ≥ 𝑞𝑗−1 + 1−𝑀𝑞𝑝𝑗−1, ∀𝑗 ∈𝑊−, (4.92)

𝑡𝑗 ≥ 𝑡𝑗−1 +
∑︁
𝑖∈𝑊

𝑇𝑖𝑥𝑖,𝑗 −𝑀𝑡𝑝𝑗−1, ∀𝑗 ∈𝑊−, (4.93)

𝑒𝑗 ≥ 𝑒𝑗−1 +
∑︁
𝑖∈𝑊

𝐸𝑖𝑥𝑖,𝑗 −𝑀𝑒𝑝𝑗−1, ∀𝑗 ∈𝑊−, (4.94)
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𝑞𝑗 ≥ 1, ∀𝑗 ∈𝑊, (4.95)

𝑡𝑗 ≥
∑︁
𝑖∈𝑊

𝑇𝑖𝑥𝑖,𝑗 , ∀𝑗 ∈𝑊, (4.96)

𝑒𝑗 ≥
∑︁
𝑖∈𝑊

𝐸𝑖𝑥𝑖,𝑗 , ∀𝑗 ∈𝑊, (4.97)

𝑄𝑗 ≤ 𝑄𝑘, 𝑡𝑗 ≤ 𝑇 𝑘, 𝑒𝑗 ≤ 𝐹 𝑘, ∀𝑗 ∈𝑊, (4.98)

𝑏𝑗 = 𝑎𝑗 +

𝑁∑︁
𝑖=1

𝑥𝑖,𝑗𝑇𝑖, ∀𝑗 ∈𝑊, (4.99)

𝑎𝑗+1 = 𝑏𝑗 + 𝑈0 + 𝑈+
0 𝑝𝑗 + 𝑈−

0 (1− 𝑝𝑗) , ∀𝑗 ∈𝑊+, (4.100)

𝑎𝑗 ≥
𝑁∑︁
𝑗=1

𝑥𝑖,𝑗𝐴𝑖, 𝑎𝑗 ≤
𝑁∑︁
𝑗=1

𝑥𝑖,𝑗𝐵𝑖, ∀𝑗 ∈𝑊, (4.101)

with

𝑀𝑢 = 𝑤 + 1, 𝑀𝑡 = 𝐵0, 𝑀𝑒 = 𝐹 𝑘. (4.102)

Constraints 4.84, 4.85, 4.86, 4.87 capture the fixed, distance traversed, wage and
energy costs of UAV 𝑘’s operation. Constraints 4.88 ensure there is an exclusive
and exhaustive matching between trips and trip positions in the sequence. Con-
straints 4.89, 4.90 and 4.91 translate the trip-count, flight time and energy mainte-
nance check trackers onto the cumulative maintenance check tracker. Constraints 4.92,
4.93, 4.94 ensure trip-count, flight time and energy between subsequent trip positions.
Constraints 4.95, 4.96, 4.97 enforces that trip position 𝑗’s trip-count, flight time and
energy are strictly greater than or equal to those dimensions of trip 𝑖 assigned to
trip position 𝑗. Constraints 4.98 ensure that the multi-trip trip-count, flight time and
energy do not exceed their allowable capacity before a maintenance check must be ac-
tivated. Constraints 4.99 simply fixes trip position 𝑗’s end time. Constraints 4.100 ties
the end time and start times of subsequent trip positions. Finally, Constraints 4.101
ensure that trip position 𝑗’s start and end time are within the start and end time
ranges permissible trip 𝑖 assigned to trip position 𝑗.

4.3.3 Efficient Heuristic Solution Approach

Even in scenarios with a small number of customers to service, the EA and ETSA
can take a prohibitively long time to reach optimality. Under real-world solution time
constraints, a faster but potentially sub-optimal solution may be desirable. In this
section, we develop a heuristics-based approach to solve the UAV routing problem
as a tool to solve otherwise intractable demand instances whilst optimizing for the
same cost function. The developed heuristic not only serves as a potential avenue to
feasible, albeit sub-optimal solutions, but also as a naive warm-start tool for the EA
and ETSA.

108



4.3.3.1 High-Level Heuristic Solution Approach

There are two steps to the heuristic solution approach: 1) a sequential insertion
heuristic, the I1 algorithm followed by the Savings algorithm; and 2) a series of
pseudo-random improvement operator applications that, together, constitute a final
solution improvement step. The high-level HA solution approach is covered in Algo-
rithm 1.

The functionality captured in the I1SavingsInsertion function in Algorithm 1
is now discussed. Both the I1 and Savings algorithms insert customers sequentially
until no more customers are left un-served. At each insertion iteration, the most sim-
ilar customer to the customers already on the UAV routes is selected with similarity
defined simply the average customer geographic proximity to all the other customers
on the route. The I1 algorithm is specifically used for TW stops whilst the Savings
algorithm is only employed after all the TW stops have already been inserted and only
non-TW stops remain. In both algorithms, each customer is inserted in the sequence
position as to minimize the overall fleet routing cost. If no insertion is feasible, then
a new vehicle is created and this customer is assigned as the seed customer. The TW
stops are first inserted ahead of the non-TW stops, since it is assumed that conflicting
TWs without enough time for a vehicle to serve both stops and travel between the
stops forces an additional vehicle to be dispatched to still meet that hard TW con-
straint. Thus, routing the TW stops first provides a lower bound for the total number
of vehicles required, providing the Savings algorithm with as many insertion options
as possible whilst minimizing the fixed UAV activation cost such that the Savings
algorithm can efficiently minimize total fleet cost as it inserts remaining non-TW
stops. This procedure is elucidated in Algorithm 2. Any more detail regarding the I1
and Savings algorithms will not be included here and, instead, this thesis defers to
the extensive literature on both algorithms (Bräysy and Gendreau, 2005; Clarke and
Wright, 1964).

Algorithm 1: High level HA solution approach.
1 Inputs: 𝑙: a list of customers to be assigned to UAV routes.
2 𝑅 ← I1SavingsInsertion(𝑙);
3 𝑅 ← RouteImprovement(𝑅);
4 Outputs: 𝑅 a set of UAV routes filled with the stops from 𝑙.

4.3.3.2 Insertion Feasibility

This section covers how insertion feasibility is explicitly evaluated at each step in the
I1 and Savings insertion algorithms across the various feasibility dimensions: time,
distance, and energy. These feasibility checks are also leveraged in the route improve-
ment step described in Section 4.3.3.3. Prior to any route-specific feasibility checks,
an overarching service feasibility check is run to filter out any outright infeasible
customers. Whilst the later feasibility functions would return these customers are
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Algorithm 2: HA I1 and Savings insertion logic.
1 Inputs: 𝑙: a list of customers to be assigned to UAV routes.
2 𝑙𝑇𝑊 ← getTWstops(𝑙);
3 𝑙𝑛𝑜𝑇𝑊 ← getnoTWstops(𝑙);
4 𝑅 ← I1(𝑙𝑇𝑊 );
5 𝑅 ← Savings(𝑙𝑛𝑜𝑇𝑊 , 𝑟);
6 Outputs: 𝑅 a set of UAV routes filled with the stops from 𝑙.

infeasible and the end-result would be the same, these customers would remain in the
customer insertion for the duration of the insertion procedure substantially extend-
ing insertion run-times. Thus, the model proactively removes infeasible customers
prior to insertion such that all customers provided to the insertion algorithms are
fundamentally serviceable given the operational constraints.

Service feasibility. This feasibility check exists to filter out customers who exist
in the provided demand set but are fundamentally infeasible to serve based on opera-
tional constraints, vehicle constraints or customer-specific constraints. The method-
ology is captured in Algorithm 3 with its functions described in more detail below.

Algorithm 3: Service feasibility logic.
1 Inputs: 𝑠: a set of customers that exist in the demand region.
2 𝑠′ ← FilterInfeasibleGeography(𝑠);
3 𝑠′ ← FilterInfeasibleCommodity(𝑠′);
4 𝑠′ ← FilterInfeasibleEnergy(𝑠′);
5 Outputs: 𝑠′ a filtered set of customers that are strictly serveable by the

pre-defined UAV fleet.

The FilterInfeasibleGeography function identifies customers that geograph-
ically reside in regions that are deemed no-fly zones by the exogenous constraint
scenario defined for the particular demand set. Also note that if the minimum alti-
tude for a particular region is higher than the maximum flight altitude for the UAV,
there is no feasible flight altitude in this region and all customers in this region are
also considered infeasible.

The FilterInfeasibleCommodity function is built upon the assumption that if
a particular customer is not serveable as a whole, its demand can be disaggregated
to the package level such that each package or group of packages can be served in-
dividually. This disaggregation is done such that the total demand of each subset of
packages served by the UAV is smaller than the UAV’s capacity along that commod-
ity. With that said, the disaggregation logic attempts to maximize the total demand
of each package subset to minimize the need for repeated, unnecessary customer vis-
its. If at the single package level the package exceeds the UAV’s capacity along any
of the commodity dimensions, that package is considered strictly infeasible to serve
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and excluded from the demand set.

Finally, the FilterInfeasibleEnergy function validates if each customer, disag-
gregated at the package level, is serveable from the DC in a single point-to-point trip
given the UAV’s maximum available on-board battery capacity given any exogenous
constraints that may exist between the DC and customer that may alter the flight
trajectory taken to serve that customer. This also takes into account each package’s
weight and its impact on the UAV’s energy consumption. If a UAV cannot serve a
single package given these societal constraints and energy capacity, that package is
considered infeasible and excluded from the demand set.

Route feasibility. The overarching feasibility function aggregates the other feasi-
bility functions and is termed IsValidFromScratch. Its input is a list of customers
and, customer-by-customer, the function incrementally appends the customer to a list
of test customers and runs the full energy, timing and distance validation. This func-
tion is detailed in Algorithm 4. The algorithm first dissects the list of customers into
trips by determining at which points in the sequence do the cumulative payload com-
modity totals exceed the UAV’s carrying capacity and inserting a return-to-center at
that point, captured in the function InitialReturnsToCenter. Then, starting from
an empty customer list, it then iteratively adds a single customer to a test list and
evaluates the energy feasibility of each new resulting trip. If any trip is considered
infeasible, the most recent customer appended to the end is initialized separately
as a new trip which should strictly be energy-valid. This procedure is captured in
BreakTrips. At this point, the final set of return-to-center points is known. The
final distance and time feasibility checks are then performed.

Distance feasibility. The isDistanceValid algorithm is detailed in Algorithm 5 and
ensures the total distance traversed does not exceed the total allowable UAV travel
distance.

Time feasibility. The isTimingValid algorithm is detailed here in Algorithm 6.
This algorithm is also leveraged to keep track of the trips, flight time and energy ac-
crued between maintenance checks, activating a maintenance check and the associated
delays when one of the check criteria are met.

Energy feasibility. Finally, energy feasibility is only validated in the BreakTrips
algorithm since it is at this point that every trip is either energy feasible or broken
into smaller sub-trips to become energy feasible. Thus, the BreakTrips algorithm and
IsEnergyValid algorithm used internally in the former are detailed below in Algo-
rithms 7 and 8, respectively.
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Algorithm 4: IsValidFromScratch logic.
1 Inputs: 𝑙: a potential sequence of customers to be served by a UAV.
2 𝑟 ← InitialReturnToCenter(𝑙);
3 𝑙𝑡𝑒𝑠𝑡 ← [];
4 for 𝑖 in range(len(𝑙)) do
5 𝑙𝑡𝑒𝑠𝑡.append(𝑙[i]);
6 𝑡 ← GetTrips(𝑟);
7 𝑡 ← BreakTrips(𝑡, 𝑟);
8 𝑡, 𝑣𝑎𝑙𝑖𝑑 ← isDistanceValid(𝑡);
9 if not 𝑣𝑎𝑙𝑖𝑑 then

10 return False
11 end
12 𝑡, 𝑣𝑎𝑙𝑖𝑑 ← isTimingValid(𝑡);
13 if not 𝑣𝑎𝑙𝑖𝑑 then
14 return False
15 end
16 end
17 Outputs: True, provides sequence of customers represents feasible UAV

route.

4.3.3.3 Route Improvements

This section elucidates how the route improvement operators step is structured. The
process consists of a set of operations to be performed, 1) internal to each UAV
route, and 2) between UAV routes. The route improvement solution iterates through
a fixed number of both operator repetitions. Naturally, inter-UAV improvement op-
erators can only work if there exists more than one UAV route for the given solution.
Whilst there exists a maximum number of total improvement operator iterations, the
procedure can also be terminated if one of the following conditions is met:

• a user-defined number of operations has been performed with no improvement;
or

• a user-defined number of operations has been performed with an improvement
of less than a user-defined percentage.

At each iteration, the exact improvement operator is chosen pseudo-randomly
and the probability of choosing the operator is based on an exponentially smoothed
weight that is computed using the success rate of the operator and the ratio of average
time per operation of that types to all other operators of that type that is updated at
each iteration. The list of available operators and the operator weight update logic
is not included in this section, but appears in Appendix B.
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Algorithm 5: IsDistanceValid logic.
1 Inputs: 𝑡: a list of potential customer trips to be served by a UAV; 𝑟: return

to center indices; 𝑟𝑎𝑛𝑔𝑒𝑚𝑎𝑥: operator-set max UAV range.
2 𝑑 ← 0;
3 for i in range(len(𝑡)) do
4 𝑑′ ← getTripDistance(𝑡[𝑖]);
5 𝑑 ← 𝑑 + 𝑑′;
6 if 𝑑 ≥ 𝑟𝑎𝑛𝑔𝑒𝑚𝑎𝑥 then
7 return False
8 end
9 end

10 Outputs: True, provides sequence of customers represents feasible UAV
route.

4.4 Analysis

4.4.1 Parameter Definition

This section discusses how vehicle parameter settings for the UAV fleet are chosen.
Note, the UAV fleet is assumed homogeneous along these parameters even though the
model supports heterogeneity. This chapter defines the median vehicle parameters,
i.e. the parameters that the model benchmarking runs in Section 4.4 are run with.
In Chapter 5, however, permutations to these median vehicle parameters are made
to suit more realistic demand sets as well as to capture evolving UAV technology
evolution as further discussed in Section 5.3.2.

Whilst this thesis could delve into the reasoning behind specific vehicle parame-
ters choices, much of this discussion was done in conjunction with industry partners
and stakeholders in the UAV-LMD industry with current and future UAV technologi-
cal evolution in mind. Thus, this thesis does not detail the specific discussions behind
parameters. Further, technological evolution is a dimension of sensitivity analysis in
Chapter 5 and how this thesis projects such evolution along these vehicle parameters
will be discussed in Section 5.3. The median vehicle parameters are quoted in Ta-
ble 4.7. Note, the units clicks is a unit measure of time whereby there are 100 clicks
in 1 hour.

4.4.2 Data and Problem Instances

This section covers the specific data and problem instances leveraged in this chapter
to validate the three GURP models against one another and confirm their compa-
rable performance. This thesis defines a demand set for this benchmarking exercise,
denoted Set 𝐴, which is adopted from literature which, in turn, was gleaned from the
commonly used Solomon instances (Cheng et al., 2018; Solomon, 1987). Within Set
𝐴, this thesis leverages two subsets, Set 𝐴1 and Set 𝐴2 which simply place the DC
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either at the corner of the demand region or at its center, respectively. More detail
on Set 𝐴 definitions and assumptions is not included in this thesis but can be found
in references (Cheng et al., 2018).

This thesis leverages two demand set types, Set 𝐴1 and Set 𝐴2, to prove ad-
ditional robustness of the GURP models against artifacts of the demand and DC
locations relative to the demand. Within each subset, Set 𝐴1 and Set 𝐴2, the number
of customers increases from 10 customers in steps of 5 to 30 customers. For each
customer size instance, there exists three randomly generated instances so that, when
benchmarking models against one another in Section 5.4, any unexpected artifacts
that exist in a specific instance do not skew results substantially.

Note, the only difference between Set 𝐴 as defined by Cheng et al. (2018) and
in this thesis is simply an extension of the set to include additional features, namely
package count and volume dimensions to a particular customer’s demand. The cus-
tomer’s package count and volume demand is based on a random sampling from the
probability distribution derived from the existing distribution of demand in Set 𝐴
but strictly confined between 0 and the maximum capacity of the UAV along that
dimension. For the original demand in Set 𝐴, this probability distribution was defined
such that 40% of customers draw their demand from a uniform distribution from [0.1,
0.7] and the remaining 60% of customers draw from a uniform distribution from [0.1,
maxcapacity_weight], maxcapacity_weight being set to 1.5 kg in the case of Cheng
et al. (2018). It is also assumed that customer pickups do exist at a 1/10 probabil-
ity rate derived from real parcel demand data. Finally, it is then assumed that the
assumed UAV fleet size, 𝐿, is calculated as:

𝐿 = max
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which assumes that each UAV would perform three trips on average. As a reminder to
the reader, the GURP formulations in this chapter are written to support a heteroge-
neous UAV fleet but this functionality is not exercised in this thesis. One important
note is that since customer locations in the Solomon instances are not in the ge-
ographic coordinate system, this thesis assumes that the quoted distances amount
to travel times that are exactly translated in seconds. This means that the quoted
fixed_speed vehicle parameter goes unused since it is strictly used to translate arc
distances into arc travel times; however, it will be used in the real-world problem in-
stances of Chapter 5 since customer locations are in the geographic coordinate system.
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4.4.3 Model Benchmarking Results

This section documents the comparative benchmark results obtained when comparing
the models’ key performance metrics between the three available GURP models,
namely the EA, ETSA and HA. Figure 4-3 illustrates how this benchmarking exercise
is performed. At a high level, each demand set, Set 𝐴1 and Set 𝐴2, has four customer
demand sets in it, 15, 20, 25 and 30 customers. In each of these customer demand
sets there are three randomly generated instances such that when the models are
run across all three instances and their performance metrics averaged, the likelihood
that artifacts in the demand set yield inconsistencies in the results is reduced. Each
GURP model is run on each of these instances; however, it is run multiple times based
on the problem definition. This problem definition is varied with additional problem
features added in individually for complexity, termed scenarios. These scenarios are
also shown in the problem definition matrix in Figure 4-3. These are labeled as follows
with their short form label also included in parentheses:

• Benchmark: the most simple problem formulation with no additional features
other than multi-trip, multi-vehicle, weight-commodity capacity and weight-
dependent energy consumption functionality;

• Maintenance Check (pf): the benchmark problem formulation with mainte-
nance check and pre-flight check functionality included;

• Time Window (tw): the benchmark problem formulation with customer TW
functionality included;

• Commodity (comm): the benchmark problem formulation with maintenance
multi-commodity capacity functionality included;

• Full Feature (ff): the benchmark problem formulation with all other available
functionality included;

• Full Feature + Valid Inequalities (ffvi): the full feature problem formulation
with model valid inequalities and user cuts activated;

• Full Feature + Valid Inequalities + Warm Start (ffviws): the full feature prob-
lem formulation with model valid inequalities and user cuts activated as well as
leveraging the HA as a feasible solution warm start.

Note, the HA does not have different model formulations for the Full Feature, Full
Feature + Valid Inequalities, and Full Feature + Valid Inequalities + Warm Start
scenarios since these additional model functionalities do not apply to a heuristic
formulation. This, the quoted results for the HA are the same across these three
scenarios.

These results serve to validate the comparable optimality, computational run-
time advantage, and validity of the HA in comparison with the two exact models
such that it can be deployed at scale in the case study analysis in Chapter 5. But
specifically, with this available performance data, each model can be compared against
one another for each combination of problem definition, demand set, and customer
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Figure 4-3: GURP model performance benchmarking methodology illustrated, total-
ing to 168 scenario-instance runs.

count demand set. This offers insight into: 1) the impact of additional problem com-
plexity on the models’ performance metrics; 2) the performance differences between
the three GURP models; and 3) the scalability of each model across increasing num-
bers of customers. Finally, the benchmark solves are run in the macOS terminal on
Python 3.8 using a licensed optimization solver, Gurobi 9.1.1, with all parameters set
to their default parameters. The experiments are performed on MacBook Pro 2.6GHz
6-Core Intel Core i7 with 16 GB of RAM on MacOS Big Sur 11.6.4.

The charts shown in this chapter are a subset of the results. This is to provide the
reader a sufficient understanding of the insights and performance patterns between
the three GURP models. To do this, this section only shows results for Set 𝐴1 since
the performance patterns across GURP models between Set 𝐴1 and Set 𝐴2 are similar
and showing both would be a duplication of results. Additional charts for Set 𝐴2 are
included in Appendix C. The key performance metrics quoted are:

• Termination [/3] : the total number of instances that are solved to optimality
(measured as models that reached the termination criteria of 1% within the
run-time limit of 7200 seconds;

• Gap [%] : the percentage gap between the upper bound (defined as the objec-
tive of the best known feasible solution) and the lower bound (defined as the
best possible objective given a discrete variable domain relaxation) at model
termination;

• CPU [s] : the total computation run-time required before model termination;
and

• UB [$] : the upper bound objective value at model termination.
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The first set of results, shown in Figure 4-4, illustrates the impact of additional
problem definition complexity on the GURP models’ performance metrics. A subset
of metrics are shown, namely CPU [s] and UB [$]. The discussion is structured by
analyzing each GURP model in turn followed by overarching takeaways:

• Exact Approach:

− CPU [s] : the most notable takeaway is the varying computation speeds
of the various model formulations. Whilst the benchmark scenario lies in
the middle of the other scenarios, the Time Window scenario is notably
faster. This is likely because the inclusion of TWs constrains the overall
solution space such that customers can only be visited at certain times of
the day. Whilst for heuristic models, TWs typically increase computation
time by requiring more feasibility checks to be performed, TWs improve EA
computation time. Also noteworthy is the notable run-time improvements
achieved when adding valid inequalities and warm starts to the Full Feature
scenario.

− UB [$] : It can be seen that compared to the Benchmark scenario, all other
scenarios mean an increase in the UB which is expected since for each
case, the problem definition is more tightly constrained than the Bench-
mark problem definition. Note that whilst the Maintenance Check and
Time Window scenarios represent relatively small increases in the UB, the
Commodity scenario results drives the UB significantly higher. It can be
inferred that having multi-commodity capacity features is also what drives
the Full Feature, Full Feature + Valid Inequalities and Full Feature +
Valid Inequalities + Warm Start scenarios to the high UB shown in the
chart. Finally, it can be seen that including Valid Inequalities into the EA
model formulation results in a notable improvement on the CPU [s]. Fur-
thermore, adding the heuristic Warm Start functionality greatly increases
the CPU [s] performance.

• Exact Two-Staged Approach:

− CPU [s] : The ETSA exhibits similar CPU patterns to the EA with the ex-
ceptions that the Maintenance Check scenario takes the longest in compute
time. This is surprising because the full-feature scenarios have additional
complexifying problem features and one would expect them to take longest
to solve. This thesis attributes this result to an artifact of the ETSA in
that it may solve scenarios in a different manner to the EA because of its
two-staged iterative approach.

− UB [$] : The UB results, on the other hand, are very similar to that of the
EA.

• Heuristics Approach:

117



− CPU [s] : Firstly, it can be seen that the CPU solve times are significantly
lower than the two MILP-based models. It exhibits a similar pattern to
the ETSA in that the Maintenance Check model takes the longest.

− UB [$] : The UB patterns between scenarios is also notably similar to the
two MILP-based models with a little less consistency between the results
of different customer counts. Otherwise, the Benchmark scenario provides
a lower bound on the best overall solution cost with other scenarios until
the Full Feature scenarios resulting in an increase in the UB.

Figure 4-4: Demand Set A1: GURP model performance comparison across problem
definition scenarios.

These results can be shown in a different way, comparing algorithms against one
another for each performance metric for each scenario. The majority of these charts
are included in Appendix C but the Full Feature + Valid Inequalities + Warm Start
scenario results are included here, since this represents the full problem formulation of
the GURP. Furthermore, the comparisons drawn between GURP models by analyzing
the Full Feature + Valid Inequalities + Warm Start scenario can also be gleaned from
analyzing the other charts in Figure 4-5. The key takeaways from these charts are as
follows:

• Term. [/3] : In general, the EA can solve to optimality for small numbers of
customers but its ability to reach optimality within the 7200 second time limit
is quickly lost as the number of customers is increased. The ETSA generally
performs better on this front, more often reaching optimality before the time
limit as the number of customers increases. Finally, the HA is quoted here to
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always reach optimality. This is not strictly true because it is not solving an
MILP-based optimization problem, but can be said to always terminate at what
it discerns as the best solution.

• CPU [s] : The EA typically takes the longest to solve and very quickly plateaus
at the run-time limit of 7200 seconds. The ETSA is notably faster and similarly
gets slower as the number of customers is increased. Finally, the HA is orders
of magnitudes faster with clear computational performance advantages over the
MILP-based models.

• Gap [%] : The percentage optimality gap at termination reflects a similar pat-
tern to that of the CPU [s] performance metric. The EA struggles to close
the MIP-Gap, especially as the number of customers is increased. The ETSA
shows strong performance however would likely increase just as the EA did at
larger customers instances. Finally, the HA does not have a legitimate Gap [%]
definition so is quoted at 0%.

• UB [$] : Finally, the UB results show that the two MILP-based models typically
reach similar UB results, highlighting the relative advantages of the ETSA over
the EA. These models both significantly beat the HA which strictly finds less
cost-optimal solutions than the two MILP-based models.

Figure 4-5: Demand Set A1: Full feature + valid inequalities + warm start scenario
across customer demand sets and GURP models.

In summary, these results and discussion points highlight the following key in-
sights:

1. Figure 4-4 shows that increasing the problem definition complexity by adding in
additional features and constraints to the benchmark capacitated VRP results
in: a) increases in compute times, and b) increases in the best operational cost
for UAV-LMD operations;
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2. Figure 4-5 shows that the ETSA can reach similar final operational cost solutions
in better computational times than the EA and more often solve to optimality
across the instances tested.

3. Figure 4-5 also shows that the HA, whilst finds solutions that are strictly worse
in operational cost of the GURP, its computational run-time advantages are
significant. This points to the HA as a valid and valuable model to be deployed
in large-scale case study analyses to solve the GURP, as in Chapter 5.

[Intentionally left blank]
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Algorithm 6: IsTimingValid logic.
1 Inputs: 𝑡: a list of potential customer trips to be served by a UAV; 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒:

UAV fleet departure time;
2 𝑛𝑡𝑟𝑖𝑝𝑠, 𝑡𝑡𝑟𝑖𝑝𝑠, 𝑒𝑡𝑟𝑖𝑝𝑠, 𝑙𝑣𝑡𝑝𝑟𝑒𝑣 ← 0, 0, 0, 𝑡𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
3 for 𝑖 in range(len(𝑡)) do
4 𝑡𝑡𝑟𝑖𝑝 ← GetTripDuration(𝑡[𝑖]);
5 𝑒𝑡𝑟𝑖𝑝 ← GetTripEnergy(𝑡[𝑖]);
6 𝑛𝑡𝑟𝑖𝑝𝑠 ← 𝑛𝑡𝑟𝑖𝑝 + 1;
7 𝑡𝑡𝑟𝑖𝑝𝑠 ← 𝑡𝑡𝑟𝑖𝑝𝑠 + 𝑡𝑡𝑟𝑖𝑝;
8 𝑒𝑡𝑟𝑖𝑝𝑠 ← 𝑒𝑡𝑟𝑖𝑝𝑠 + 𝑒𝑡𝑟𝑖𝑝;
9 𝑐𝑢𝑠𝑡𝑓𝑖𝑟𝑠𝑡 ← t[0];

10 𝑡_𝑡𝑜_𝑐𝑢𝑠𝑡𝑓𝑖𝑟𝑠𝑡 ← GetTCenterToCust(𝑐𝑢𝑠𝑡_𝑓𝑖𝑟𝑠𝑡);
11 𝑡_𝑙𝑒𝑎𝑣𝑒 ← 𝑐𝑢𝑠𝑡𝑓𝑖𝑟𝑠𝑡.getSCT() - 𝑡_𝑡𝑜_𝑐𝑢𝑠𝑡𝑓𝑖𝑟𝑠𝑡
12 𝑙𝑣𝑡𝑝𝑟𝑒𝑣 ← max(𝑙𝑣𝑡𝑝𝑟𝑒𝑣, 𝑡_𝑙𝑒𝑎𝑣𝑒)
13 𝑣𝑎𝑙𝑖𝑑, 𝑏𝑣𝑡𝑝𝑟𝑒𝑣 = IsTripTimingValid(𝑡[𝑖], 𝑙𝑣𝑡𝑝𝑟𝑒𝑣)
14 if not 𝑣𝑎𝑙𝑖𝑑 then
15 return False
16 end
17 if i < len(𝑡)-1 then
18 𝑡𝑛𝑒𝑥𝑡_𝑡𝑟𝑖𝑝 ← GetTripDuration(𝑡[i+1])
19 𝑒𝑛𝑒𝑥𝑡_𝑡𝑟𝑖𝑝 ← GetTripEnergy(𝑡[i+1])
20 if (𝑛𝑡𝑟𝑖𝑝𝑠+1 ≥ 𝑛𝑡𝑟𝑖𝑝𝑠_𝑛𝑜_𝑝𝑓) or (𝑡𝑡𝑟𝑖𝑝𝑠 + 𝑡𝑛𝑒𝑥𝑡_𝑡𝑟𝑖𝑝 ≥ 𝑡𝑡𝑟𝑖𝑝𝑠_𝑝𝑓) or (𝑒𝑡𝑟𝑖𝑝𝑠

+ 𝑒𝑛𝑒𝑥𝑡_𝑡𝑟𝑖𝑝 ≥ 𝑒𝑡𝑟𝑖𝑝𝑠_𝑝𝑓) then
21 𝑛𝑡𝑟𝑖𝑝, 𝑡𝑡𝑟𝑖𝑝𝑠, 𝑒𝑡𝑟𝑖𝑝𝑠, 𝑡_𝑑𝑒𝑝𝑜𝑡 ← 0, 0 ,0
22 𝑡_𝑑𝑒𝑝𝑜𝑡 ← 𝑡𝑙𝑜𝑎𝑑 + 𝑡𝑚𝑎𝑖𝑛

23 else
24 𝑡_𝑑𝑒𝑝𝑜𝑡 ← 𝑡𝑙𝑜𝑎𝑑 + 𝑡𝑝𝑓
25 end
26 𝑙𝑣𝑡𝑝𝑟𝑒𝑣 = 𝑏𝑣𝑡𝑝𝑟𝑒𝑣 + 𝑡_𝑑𝑒𝑝𝑜𝑡 + 𝑡𝑙𝑜𝑎𝑑
27 end
28 end
29 Outputs: True, provides sequence of customers represents feasible UAV

route.
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Algorithm 7: BreakTrips logic.
1 Inputs: 𝑙: a potential sequence of customers to be served by a UAV; 𝑡: a list

of potential customer trips to be served by a UAV.
2 for 𝑖 in range(len(𝑡)) do
3 𝑣𝑎𝑙𝑖𝑑 ← IsEnergyValid(𝑡[𝑖]);
4 if not valid then
5 𝑡′1, 𝑡′2 ← 𝑡[𝑖][:-1], 𝑡[𝑖][-1:];
6 𝑡.remove(𝑡[i]);
7 𝑡.insert(𝑡′1, i);
8 𝑡.insert(𝑡′2, i+1);
9 end

10 𝑟.append(𝑙.index(𝑡′2[0])
11 end
12 Outputs: 𝑡: a list of potential customer trips to be served by a UAV 𝑟:

return to center indices;

Algorithm 8: IsEnergyValid logic.
1 Inputs: 𝑡′: a single trip of customers being served by a UAV.
2 for 𝑖 in range(len(𝑡)) do
3 𝑣𝑎𝑙𝑖𝑑 ← GetTripEnergy(t[i]);
4 if not 𝑣𝑎𝑙𝑖𝑑 then
5 return False
6 end
7 end
8 Outputs: True, trip represents feasible UAV trip;
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Category Parameter Value Units

Capacity

maxcapacity 4 [-]
maxcapacity_volume 0.02 [𝑚3]
maxcapacity_weight 1.5 [kg]
maxcapacity_energy 0.27 [kWh]

Operational time

departure_time 0900 [clicks]
regular_shift_time 800 [clicks]
clicks_loading 2 [clicks]
clicks_maintenance 25 [clicks]
clicks_preflight 5 [clicks]
clicks_takeoff 1 [clicks]
clicks_landing 1 [clicks]
service_time_per_package_delivery 1 [clicks]
service_time_per_package_pickup 2 [clicks]
service_time_fixed_pickup 1 [clicks]
service_time_fixed_delivery 1 [clicks]

Operational cost

cost_fix 2.00 [$/day]
cost_per_distance 0.10 [$/km]
cost_click_regular 0.50 [$/click]
cost_per_energy_kwh 0.1 [$/kWh]

Vehicle specifications

power_auxiliary_kilowatts 0.01 [kW]
power_efficiency_factor 1 [0-1]
area_cross_section_vehicle 0.9 [𝑚2]
thrust_to_weight_ratio 1.3 [-]
mass_vehicle 10 [kg]
altitude_winch 0.004 [km]
winch True [boolean]
power_winch_kilowatts 0.01 [kWh]
fixed_speed 40 [km/hr]
fixed_speed_vertical 1 [km/hr]

Pre-flight constraints
max_trips_before_maintenance 5 [-]
max_clicks_before_maintenance 100 [clicks]
max_maintenance_energy_fraction 0.1 [0-1]

Table 4.7: Median UAV vehicle parameters for benchmarking analysis.
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Chapter 5

Operations Case Study Analysis1

5.1 Introduction

As a reminder, this thesis’s research questions are defined as:

1. Operational Constraints: What are the key social, regulatory, technologi-
cal and logistical constraints that would constrain real-world unmanned aerial
vehicles for last-mile delivery (UAV-LMD) operations?

2. Operations Modeling: How can these novel operational constraints be cap-
tured in a generalized vehicle routing optimization model?

3. Feasibility Analysis: Given realistic demand data and operational parame-
ters, is UAV-LMD financially profitable for service providers? Which constraints
are key cost drivers? What are the social, operational and financial upshots of
UAV-LMD?

This chapter addresses the final research question. This chapter serves to illus-
trate how the generalized unmanned aerial vehicle routing problem (GURP) routing
models derived in Chapter 4 can be leveraged to explore the sensitivity of UAV-LMD
operations to exogenous constraints, demand density and technology progression.
These represent the three dimensions along which this chapter’s sensitivity analysis
is defined. To do this, this chapter explores:

• leverage a realistic demand data set to closely capture future UAV-LMD oper-
ations;

• adequately capture the per-day operational costs of UAV-LMD operations in a
scalable model in tractable computation time;

• translate potential cost drivers into a sensitivity analysis from which insights
can be derived as to which drivers are the most impactful.

1This chapter contains content that is partially under review for publication in a peer-reviewed
journal.
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The value of this analysis is not in the results themselves but the holistic ap-
proach to solving the GURP that offers insights into the trade-offs that real-world
constraints impose on UAV-LMD. Such an analysis is valuable to UAV-LMD opera-
tors and regulators to better discern which operational constraints are most significant
in rendering UAV-LMD no longer economically viable.

5.2 Data and Problem Instances
This section details the specific data-sets employed and the key assumptions implicit
to leveraging this data in this thesis’s analysis. The data used in the following case-
study is artificially generated leveraging insights into demand pattern distributions
from industry partners. The industry partner data available contains customer-level
demand data over the course of one month in the greater Boston, MA, region with
the following features below. The artificial data derived reflects each of these data
features, engineering obfuscating features with various methods. These methods are
also included below:

• Customer ID

• Date: the date that the customer demand was fulfilled;

• Location (latitude, longitude): the specific geo-location of the customer;

− Artificial obfuscation: the demand density loosely follows a two-dimensional
normal distribution in all directions centered in downtown Boston. Thus,
the artificial customer locations are sampled from this 2D normal distri-
bution curve with an un-skewed covariance matrix. Locations sampled to
be in non-land regions such as lakes, rivers and oceans are excluded and
re-sampled until successfully sampled on land. Locations that are sampled
beyond the allowable operational radius of the unmanned aerial vehicle
(UAV) from the distribution center (DC) location of 6.25 km are also ex-
cluded and re-sampled.

• Package Count : the total number of package demand during drop;

• Package-specific weight : the weight of each package in the drop;

• Package-specific volume: the volume of each package in the drop;

• Start commit time: the earliest allowable fulfillment time;

• End commit time: the latest allowable fulfillment time;

− Artificial obfuscation: for the package count, weight, volume, start commit
times and end commit times, an empirical cumulative distribution func-
tion (ECDF) is derived for each demand dimension. ECDFs represent a
cumulative probability that a variable sampled will take a value less than
or equal to a specific value of that variable. The artificial data is then
generated by sampling from these ECDF functions for each customer ini-
tialized.
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• Delivery or pickup: whether the customer demanded delivery or pickup service.

Note, the model is defined on a operational per-day basis. Thus, this demand
is segregated by the date that it is fulfilled. Also note that the total number of
customers was the only input variable that was selected outside the scope of the
industry’s historical demand data. This was simply because the allowable range of
UAV operations is commonly artificially constrained in the literature and in industry
practice. To reflect this, this thesis also constrains the range to 6.25 km and, thus,
fixes the total number of customers in that range to a fraction of the total historical
demand of the greater Boston region.

To capture demand density variations as part of the sensitivity analysis, this was
done by simply increasing the total number of customers in the pre-defined demand
area. Note, the package, weight and volume demand patterns per stop were not
changed but preserved based on the distributions from industry data. This demand
variation is shown pictorially in Figure 5-1. Within the confines of the demand
distributions, radius and geographic constraints, the demand density is varied. defined
as sparse (600 customers, D0 ), moderate (800 customers, D1 ), dense (1000 customers,
D2 ), and super-dense (1200 customers, D3 ).

Figure 5-1: Illustration of demand density variation in Boston, MA.
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5.3 Sensitivity Analysis Scenario Definitions
This section describes the sensitivity analysis this chapter undertakes in more detail
by describing the specific constraint intensities, technological evolution, and demand
density assumptions that form the building blocks of each unique scenario run. The
goal of this analysis is to discern which dimensions – UAV technology or exogenous
societal and regulatory constraints – have the most significant impact on UAV-LMD
operational cost and, thus, economic feasibility.

This analysis is based upon 64 different scenarios that vary the three sensitivity
factors (with their prefixes D, C, and T included since they are used as a taxonomy
for defining a specific scenario). The final scenario sensitivity analysis matrix looks
as per Figure 5-2.

1. D: demand density;

• D0: Sparse (600 customers);

• D1: Moderate (800 customers);

• D2: Dense (1000 customers);

• D3: Super-dense (1200 customers);

2. C: specific exogenous constraint intensities (see Figure 5-3 for details on what
constitutes various exogenous restriction intensities);

• C0: Baseline (no restrictions);

• C1: Minimal;

• C2: Moderate;

• C3: Severe;

3. T: UAV’s technological evolution (see Figure 5-5 for details on what vehicle
parameters constitute each technology progression level):

• T0: Today;

• T1: 5 years;

• T2: 10 years;

• T3: 15 years.
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Figure 5-2: Summary scenario sensitivity analysis matrix.

5.3.1 Varying Societal and Regulatory Constraint Intensity

This section details the specific exogenous constraints modeled in the sensitivity anal-
ysis and how their intensities were varied to capture either less or more constraining
exogenous constraint scenarios. This section builds off much that was described in
Table 3.1 with pictorial examples of how the constraints were explicitly translated into
model constraints. Note, this section also defines a baseline scenario against which all
subsequent scenarios are benchmarked against. This baseline scenario should yield
the least costly UAV-LMD deployment scenario from an operational perspective since
it captures only the most obvious and already enforced exogenous constraints that
are present today.

At a high level, the motivation behind this scenario definition approach is un-
derstand how increasing the intensity of exogenous constraints affects expected UAV-
LMD and operating costs. To reduce the granularity and simplify the analysis, these
exogenous constraints, derived from the exogenous analysis of Chapter 3, are not
varied independently. Instead, they are varied together. For example, if the altitude
constraints are made more stringent, so are the flight restriction constraints and the
noise constraints. This can be understood via Figure 5-3.
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Figure 5-4: Illustration of minimal, moderate and severe exogenous constraint inten-
sities, depicting no-fly zones and noise-sensitive regions as discussed in Figure 5-3.
Note, baseline constraint scenario is no exogenous constraints and is not shown here.

5.3.2 Technological Evolution Projections

In a similar fashion to the intensity of the exogenous constraints applied in Sec-
tion 5.3.1, to capture the effects of evolving UAV technology, specific vehicle param-
eters that are likely to advance in the coming years are assumed to change in parallel
across four 5-year time periods. The parameters, their assumed technological pro-
gression, and the time-frames over which they progress derive from discussions with
industry partners and insights gleaned from their UAV hardware research & develop-
ment (R&D) efforts and technology roadmapping projections. It is beyond the scope
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of this thesis to delve into the specific foundations of this technological progression
since, at its core, this analysis seeks to understand if broad technological progression
assumptions do, indeed, affect the overall operational cost solution. To achieve this,
this thesis does not delve into details around the specific vehicle parameters other
than to base them in ongoing industry research.

[Intentionally left blank]
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5.4 Results

This section discusses the results from the 64 scenario runs completed as per the
scenario sensitivity matrix illustrated in Figure 5-2. The comprehensive results data
tables for these runs are included in Appendix D. Delving into specific key perfor-
mance indicators (KPIs) from the case study scenarios, Figure 5-6 fills in Figure 5-2
with the cost-per-package results for each scenario whilst Figure 5-7 offers a deeper
dive into the operational costs. Figure 5-8 shows the operational cost break-downs
into its components averaged across demand densities but disaggregated by tech-
nology levels and scaled to 100%. Figure 5-9 is similar in that it also shows the
operational cost break-downs into its components averaged across demand densities
but disaggregated by exogenous constraint intensities. These cost components are as
follows:

• Fixed cost: (cf): the total fixed cost of operating a single UAV over the course
of the day. It can be thought of as the asset depreciation cost of each UAV over
its lifetime incurred on a single day.

• Wage cost: (cw): The labor costs associated with operating the UAV fleet. It
scales with the time each UAV remains in operation totaled across the whole
fleet.

• Distance cost: (cd): A proxy measure for additional distance-based costs that
might be incurred with UAV operations such as damages, liabilities and repair
and maintenance.

• Energy cost: (ce): The cost of electricity to match the total energy consumed
across all UAVs in the fleet, scaled by the cost of energy per kWh.

Finally, Figure 5-10 shows the average time UAVs spend at the DC across exoge-
nous constraint and technology progression scenarios. Analyzing Figures 5-6 through
5-8 some key insights can be gleaned:

Exogenous constraint intensity significantly impacts operational cost:
As the exogenous constraint intensity increases (along the x-axis in Figure 5-6), the
cost-per-package fulfillment costs of UAV-LMD strictly rise across all demand density
scenarios. This pattern can be clearly seen in Figure 5-7 as well. This confirms the
hypothesis that increased societal and regulatory pressure does, indeed, increase the
cost of UAV-LMD. This can be seen in Figure 5-6 since, independent of the demand
density or technology progression level employed, the costs always increases as one
moves to the right along each row of each matrix. Between the Baseline scenario
and Severe scenarios for each demand density and the level of technology progression
of UAVs today, the cost-per-package increases by, on average, 483% or more than
four-fold, highlighting the severe impacts of increase exogenous constraints on cost-
effective UAV-LMD operations.

Figure 5-8 shows how the costs break down, highlighting that much of the cost
increase can be attributed to wage-cost increases. Even as technology progression
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Figure 5-6: Daily operational cost-per-package fulfilled for each scenario across ex-
ogenous constraint intensity, technology progression and demand density sensitivity
spectra.

Figure 5-7: Daily operational cost-per-package fulfilled across exogenous constraint
intensity and technology progression levels by demand densities.

advances and the total cost-per-package drops, the wage cost continues to be a more
important cost driver. This is because the wage costs scale with the total operational
time across all the UAVs in the fleet. As seen in Figure 5-10, the total time spent
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Figure 5-8: Daily operational cost-per-package break-down across exogenous con-
straint intensity by technology progression levels averaged across demand densities.

Figure 5-9: Daily operational cost-per-package break-down across technology progres-
sion levels by exogenous constraint intensity averaged across demand densities.

at the DC increases dramatically as the exogenous constraint intensity increases be-
cause of the increase in maintenance and pre-flight check delays the operators must
incur. The majority of this increase is driven by the maintenance checks, which,
as a reminder, must be performed if any of the max_trips_before_maintenance,
max_clicks_before_maintenance or max_maintenance_energy_fraction parame-
ters are exceeded.
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Figure 5-10: Average time a UAV spends at DC across technology progression levels
and exogenous constraint intensity, averaged across demand densities.

It is interesting to note that this relationship holds independent of the demand
density, which can often impact the efficiency of a last-mile modality, most often
because higher densities can support larger drop sizes, thus, less time can be spent
traveling between customers per package dropped. Note that the cost-per-package
metrics seem to vary across demand densities without a clear trend either up or
down. This thesis attributes this to the imprecision of the un-optimality gap between
the Heuristic Approach (HA) and true optimality of the solution. This is discussed
earlier in Section 5.4 and later in the thesis limitation in Section 6.3. Also note
that this relationship holds independent of the technological progression level. With
that said, the percentage increases between the Baseline and Severe scenarios is less
pronounced at today’s technology level compared to future technology levels at an
average of 250%, 530%, 680%, and 480% for today’s, 5 year, 10 year and 15 year
technology levels respectively.

Technology progression significantly reduces UAV-LMD operational
cost: In the opposite way to how introducing exogenous constraints increases UAV-
LMD operational cost, as technology progression advances further into the future,
it can be seen that the cost-per-package of UAV-LMD tends to decrease. This can
be seen via Figure 5-7 in that cost-per-package curves strictly move closer to zero as
the technology progresses. This occurs across all demand scenarios and exogenous
constraint scenarios; the average percentage decrease in cost from today’s technology
to technology in 15 years is over 85%. This is consistent across all demand den-
sity scenarios with no discernable variation around the 85% cost reduction between
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them. This precipitous reduction in cost is prodominantly driven by reductions in
the wage-cost, seen in Figure 5-9. The 50% reduction in wage-cost every 5 years of
technological progression in Figure 5-5 is the key driver, based on the assumption
that for every 5 years, a single laborer can manage double the number of UAVs over
the course of the operational day.

No discernable relationship between demand density and operational
cost: As mentioned above, demand density is often a key driver of operational cost for
traditional ground-based last-mile fulfillment modes. This is because inter-customer
drive times are significant relative to the total time spent out in the field and per-
forming package drops. In the case of UAV-LMD, however, because travel times are
not beholden on ground-based congestion and are point-to-point, UAVs time delays
are predominantly driven by other time delays such as the maintenance and pre-flight
checks. This underscores why additional societal constraints have such a large impact
on UAV-LMD since the maintenance check time delays were increased by 100%, or
doubled, between each exogenous constraint intensity.

Thus, naturally, the cheapest scenario is the Baseline constraint scenario (no
exogenous restrictions) with technology available 15 years from now and the most
expensive is the Severe constraint scenario with today’s technology. A baseline cost-
per-package for existing ground-based fulfillment methods is not an easily quotable
number because it is driven by many factors: infrastructure circuity, congestion, labor
costs, demand density, average drop sizes and service level and timeliness promised.
It is also beyond the scope of this thesis to delve into such an analysis. Whilst the
data in Figure 2-1 quotes the cost-per-packages for existing last-mile incumbents, it
is specifically for a 5 lb package serviced within a 10 mile radius. Experience with
industry partners have suggested cost-per-packages as low as $1.00 when demand
densities are high, no unionized over-time labor is being utilized and drop sizes are
large. The results in this section suggest that UAV-LMD can, indeed, exceed the
inflection point at which it is not longer cost-optimal to use UAVs over traditional
ground-based fulfillment modalities, especially if the demand conditions are favorable
to ground-based vehicles. Furthermore, severe exogenous constraints have the ability
to render UAV-LMD economically non-viable.

[Intentionally left blank]
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Chapter 6

Conclusion

This thesis proposes solutions to the generalized unmanned aerial vehicle routing
problem (GURP) in a holistic fashion, bringing together considerations that will
guide the operational and technological development and deployment of unmanned
aerial vehicles for last-mile delivery (UAV-LMD) operations. A systems-level analysis
approach is adopted to discern the inter-relationships between competing dimensions
that dictate the form that UAV-LMD operations take, namely the societal and regula-
tory constraints and vehicle routing considerations at the heart of traditional last-mile
fulfillment literature and practice.

In Chapter 2, this thesis first explores the existing literature pertaining to UAV-
LMD, identifying a literature and research gap in an inter-disciplinary approach to
UAV-LMD that marries operations planning and vehicle routing with notions of so-
cietal and regulatory constraints in a holistic modeling framework. It also explores
methodologies to formally model UAV-LMD operations based upon extensions to
the traditional vehicle routing problem (VRP) literature. In Chapter 3, the thesis
then performs a survey of apposite societal and regulatory constraints that currently
and are likely to impact UAV-LMD operations. The thesis posits implementation
pathways for specific societal and regulatory issues that do have have notable his-
torical cases of implementation in the unmanned aerial vehicle (UAV) domain or
adjacent commercial aviation regulation. Following this in Chapter 4, the thesis ex-
plores three solution approaches to solving what it terms the GURP, a extension of
the VRP specific to UAV routing to include operational and the set of exogenous con-
straints determined in Chapter 3. It identifies the computational run-time benefits of a
heuristic-based approach to solving the GURP compared to traditional mixed-integer
linear program (MILP)-based methods. Finally, in Chapter 5, this thesis deploys
the heuristics-based GURP model on a set of demand scenarios in Greater Boston
to discern the impact of varying levels of exogenous constraint intensity, technology
progression and demand density on the operational cost of UAV-LMD.
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6.1 Review of Thesis Research Questions

To conclude this thesis, this section revisits the original thesis research questions
posed in Section 1.4 along with a succinct recapitulation of the relevant findings and
results derived in this analysis.

Operational constraints: What are the key social, regulatory, technologi-
cal and logistical constraints that would constrain real-world UAV-LMD
operations? The key societal and regulatory constraints are identified to mani-
fest in UAV-LMD operations via seven key operational modeling restrictions in the
near- to medium-term. These constraints are identified based on the survey of aca-
demic and industry literature performed in Chapter 3. These are covered in Table 6.1.

This thesis notes that there are many pathways for regulators, both local and
federal, to enact policies in the interest of protecting against any specific externality
of UAV-LMD. Unless penned into law or proposed in currently deliberated bills in the
United States (U.S.) Congress, there is little to no historical evidence as to which av-
enue will likely be adopted to protect against said externality. In this way, this thesis
highlights the immense levels of regulatory uncertainty surrounding UAV-LMD. One
potential source of regulatory inspiration this thesis identifies lies in the ways in which
commercial passenger airlines are currently regulated and operationally constraint to-
day. However, this thesis also uncovers that many of the regulatory frameworks that
exist in the commercial airline domain today are not wholly reflected in apposite UAV-
LMD regulation today. Thus, this indicates that there remains room for regulators
to leverage existing commercial aviation regulation and draft similarly constraining
policies for UAV-LMD in the coming years.

Of these societal and regulatory constraints quoted in Table 6.1, the most well
delineated and patent constraints today are the altitude minimums and maximums,
operating weight constraints, and flight zoning restriction which all exist in statute.
The remaining constraints are amalgamations of tangentially apposite regulation or
historical case law.

Operations modeling: How can these novel operational constraints be cap-
tured in a generalized vehicle routing optimization model? This thesis in-
troduces a variety of novel constraints to the VRP that are modeled across the three
GURP models formulated in Chapter 4. The key elements of this modeling approach
are as follows:

Capacitated multi-commodity routing model with time window (TW). This
is formulated as traditional VRP with multiple commodity dimensions captured as
parallel flow conservation constraints (see Section 4.3.1.1).
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Constraint Type Description Operational Constraint

Regulatory

Status Quo Assume operational waivers granted
for all restricting airspace classes

Altitude Minimums and
Maximums Enforced operational altitude range

with additional vertical and horizon-
tal separation protocols from vehicles
and obstacles.

Operating Weight Con-
straints Maximum max take-off weight

(MTOW) limitations.

In-Air Vehicle Separation
Constraints Static or dynamic altitude stratifi-

cation logic with additional static
or dynamic lateral vehicle separa-
tion protocols and on-board collision
avoidance capabilities.

Flight Zoning Restric-
tions Temporary and permanent Federal

Aviation Administration (FAA) is-
sued flight restrictions.

Safety-Related Proce-
dures and Precautions Regulated and enforced manufactur-

ing, maintenance and operational
safety practices.

Societal
Noise Pollution Concerns Region- and time-specific restrictions

to mitigate noise pollution with po-
tential to further constrain opera-
tions based on flight frequency.

Environmental Concerns Optimal routing approach, energy
cost objective function, adoption of
minimum permissible cruise altitude,
and minimum traversed distance ap-
proach to flight trajectory planning.

Table 6.1: Key societal and regulatory constraints to UAV-LMD and their high-level
operational modeling restrictions.

UAV-specific operational constraints. These include weight-dependent energy
consumption, flight time, trip count and maintenance check constraints that are all
modeled as flow conservation constraints. In the case of energy consumption, a from-
first-principles energy consumption model is derived and linearized (see Appendix A)
and modeled as an asymmetric flow conservation constraint through each customer
node. In the other constraints mentioned, they are also modeled as asymmetric flow
conservation constraints in that they are only accountable as the UAV returns to and
then leaves the depot node, not customer nodes.
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Valid-inequalities. These include valid inequalities that are common and well
known in existing VRP literature as well as novel constraints that are unique to
the GURP defined. The key valid inequalities unique to this problem are those that
pertain to UAV energy consumption between nodes and the pre-defined user-cuts
that can be included in the model if a specific sequence of arcs and nodes traversed
can be predefined as infeasible (see Section 4.3.1.3).

Additional solution approaches. The Exact Two-Staged Approach (ETSA) is for-
mulated in this thesis to decompose the GURP into two more simple problems, both
solved in tandem. This model yields notable run-time improvements on the bench-
mark Exact Approach (EA) whilst achieving near-optimal solutions. The Heuristic
Approach (HA) is also formulated as a purely heuristic model to meet computational
run-time scalability requirements for real-world case-study analysis of UAV-LMD as
in Chapter 5.

Feasibility analysis: Given realistic demand data and operational param-
eters, is UAV-LMD financially profitable for service providers? Which
constraints are key cost drivers? What are the social, operational and
financial upshots of UAV-LMD? This thesis determines that the exogenous so-
cietal and regulatory constraints introduced into the GURP have a significant impact
on the total cost of UAV-LMD operations and should not be ignored in future industry
operations scoping efforts. Of these constraints, the most impactful to UAV-LMD’s
cost of operation are time delays because of safety and precautionary measures taken
via regulation or self-imposed restrictions around maintenance and pre-flight checks.
These drive up the wage-cost since it is assumed a certain amount of labor must tend
to UAV-LMD operations.

UAV technology progression is also determined to be a key driving factor behind
UAV-LMD’s success. Because the wage-costs associated with UAV-LMD make up
the bulk of the cost, advancements in autonomy or maximizing the number of UAVs
per laborer are key operational practices that would help drive down the overall cost
of operation. On the other hand, demand density seems to have little to no effect on
the overall efficiency of UAV-LMD fulfillment network, likely because of the UAVs’
ability to fly point-to-point, avoiding circuitous routes due to inefficiently designed
infrastructure or ground-based congestion.

UAV-LMD’s economic attractiveness and competitiveness is not explicitly de-
fined in this thesis, in part, because defining a benchmark operational cost is not
straightforward without an explicit modeling tool or set of continuous approximation
equations to capture the nuances around demand densities, service levels, infrastruc-
ture circuity and demand drop size unique to the problem instances leveraged in this
thesis. Thus, whilst this thesis does not take a strict stance on the economic feasibil-
ity of UAV-LMD, it posits that a set of severely constraining societal and regulatory
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constraints imposed on UAV-LMD operations with UAV technology available today
could well render operations economically unattractive.

6.2 Additional Contributions

In addition to the insights this thesis provides to answer the specific research questions
proposed, there exist other domains in which this thesis’s analysis is valuable. These
domains span across the policy, social and operations research dimensions of the
UAV-LMD problem. Each of these contributions are discussed briefly below.

1. The UAV-LMD literature review this thesis includes in Chapter 2 offers a com-
prehensive survey and review of apposite literature to what is a relatively new
domain in operations research, last-mile logistics, aeronautic policy and urban-
planning. The literature review focuses on routing-specific and society-specific
literature, but covers the gamut of academic contributions since the inception
of UAV-LMD as a commercial proposition.

2. In Chapter 3, this thesis visits areas of societal and regulatory constraint un-
certainty that lie beyond the purview of commonly occurring operational con-
straints or constraints that can be inferred from historical aviation regulation.
These domains include dynamic time-dependent regulation, the divergence of
regulatory alignment between local and federal regulators, and the associated
emergence of highly localized flight zoning restrictions. Whilst the latter most
issue is not totally novel to the aviation community, it rarely surfaces in public
regulatory dialogue and discourse, and could pose a significant operational and
legal conundrum if imposed inconsistently or across a wide range of geographies.

3. This thesis offers potential protocols and approaches for translating the interest
of society into regulations that directly constrain UAV-LMD operations and
protect individuals from its potentially negative externalities. The key protocols
put forward pertain to:

(a) In-air vehicle separation: the bearing-based altitude stratification protocol
proposed in Section 3.1.1.3;

(b) Flight zoning restrictions: the visibility-graph-based trajectory planning
logic proposed in Section 3.3;

(c) Safety-related procedures and precautions: the maintenance and pre-flight
check scheduling optimization modeling approach discussed in Section 3.1.1.6
and formulated in Section 4.3.1.2.

(d) Noise pollution concerns: the noise pollution mitigation protocol broached
in Section 3.2.2 and defined in Section 3.3 involving additional altitude
clearance above noise-sensitive communities;

(e) Environmental concerns: the energy modeling and routing efficiency fea-
tures included to help capture the environmental externalities in the GURP
solution approach defined in Section 3.3.
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4. This thesis puts forth a novel from-first-principles UAV energy consumption
model across four generalizeable flight regimes. This model captures both fixed-
wing and quadcopter vehicle configurations and included additional operational
features such as utilization of a winch delivery system and auxiliary power
requirements.

6.3 Limitations of Study and Future Work

UAV-LMD as a concept, business model, and area of operations and policy research is
still in its infancy. As a result, there remain many domains of significant uncertainty
surrounding various dimensions of UAV-LMD: UAV technology and technological
progression, markets and a definitive use-case, infrastructure requirements and its
impact on operations, regulation or societal acceptance to name but a few poten-
tially derailing factors. In this light, the approach this thesis adopts is structured
to maximize the generalizability of the insights derived and avoid areas of significant
uncertainty. Whilst this approach by and large avoids areas that require significant
assumptions to be made, simplifying assumptions are likely necessary in any holistic
systems-level approach. This thesis acknowledges these limitations and includes them
in the discussion below. These limitations are useful in that they also qualify as ripe
grounds for future work.

1. In defining the geographic restrictions that pertain to noise-sensitive communi-
ties or no-fly zones for the case study analysis of the Greater Boston Region in
Chapter 5, this thesis inherited data from existing noise-sensitivity research and
dialogue on locations likely to be considered no-fly zones in the future. This
is not a robust approach because: 1) whilst often present in case law, these
locations are the opinion of researchers, industry players, and regulators but
are not instituted in statute; and 2) restrictions over such areas will likely likely
change and evolve in the coming decades as the demographics in those regions
evolve and public acceptance campaigns are instituted. This thesis assumes a
static state of the world in this regard. It could benefit from exploring a variety
of different geographic restriction scenarios based on shared driving factors such
as the regulatory motivation or historical patterns in how the local and federal
regulators have collaborated to institute similar restrictions in the past.

2. Similarly, the broader societal and regulatory constraint analysis in Chapter 3
could be considered a snapshot of the current UAV-LMD landscape and does
not take into account any public or regulatory evolution in any of the specific
issues raised. The analysis did attempt to project each specific issue into the
future but limited this effort because there are little to no literature or historical
grounds to form such opinions. This thesis opted for a more measured approach
to evaluating the potential societal and regulatory considerations because, in
many ways, the motivation of this thesis is to uncover the value of a holistic,
inter-disciplinary approach to UAV-LMD operations modeling and potential
modeling and analysis avenues for future research.

144



3. Also pertinent to the societal and regulatory constraint analysis in Chapter 3,
this thesis strictly excludes any dynamic, time-dependent constraints such as
weather, presence of other aircraft, temporary flight restrictions or time-dependent
geographic restrictions for noise or no-fly zones. This thesis would benefit
greatly by including these operational features, but it would require an approach
to solving the GURP that can capture dynamic changes in the constraints that
govern the operations planning model. This is not an easy task and could
require a simulation-based approach over the static MILP- or heuristic-based
approach that is adopted in this thesis.

4. In developing models to solve the GURP in Chapter 4 and deploying the HA in
the case study analysis of Chapter 5, this thesis accepts a level of un-optimality
with the HA in exchange for improved computational run-times. This is a limi-
tation worth mentioning not because the level of un-optimality is unacceptable
but rather because there exists variation in the level of un-optimality when
comparing the HA to the EA or ETSA. This underscores a level of uncertainty
around the final key performance indicators (KPIs) shown in the case study
results and analysis in Section 5.4. Such an analysis would benefit from ei-
ther an improved HA that minimizes the optimality gap or a novel approach
to leveraging the exact models, potentially in a divide-and-conquer approach
when solving to fulfill a specific set of demand.

5. In the case study analysis of Chapter 5, not only are the demand distributions
artificial, but they are based on a single industry partner’s demand distributions
and for a single metropolitan area. Such assumptions limit the generalizability
of the analysis since UAV-LMD, like other last-mile fulfillment methods, are
often significantly impacted by the geography and demand patterns of different
demand regions. This thesis could benefit from multiple case-study analyses
across multiple metro-areas to evince the generalizability of the results obtained.

6. Finally, this thesis strictly explores the pure-play UAV-LMD operational model,
as defined by Moshref-Javadi and Winkenbach (2021), and not any adjacent
UAV-LMD fulfillment methods that represent a number of industry player’s
current deployment strategies. For example, multi-modal UAV-LMD opera-
tions in parallel with traditional ground-based fulfillment modalities is what
will most likely be seen in the coming decades. Other operational models such
as the truck-and-drone system or a multi-echelon resupply multi-modal opera-
tional network are also popular strategies. This thesis isolates UAV-LMD as a
single modality, thus losing the ability to provide insights on how UAV-LMD
would change the operational KPIs of other operational models. This would
be valuable to help glean any symbiosis inter-relationships between fulfillment
modalities that cannot be explored in this thesis’s isolated approach.
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6.4 Final Thoughts
UAVs deployed to fulfill last-mile delivery demand stand to disrupt the status quo
for how societies transfer goods across geographic landscapes and mega-cities. They
have the potential to help make cities more environmentally sustainable, equitable
and economically productive, unlocking what some term the sharing economy. In-
dividuals, rich and poor, urban or rural, could have greater access to a breadth of
goods and services unlike ever before in the history of our societies. This has impli-
cations for urban planners who could lessen the importance of having to design cities
and their suburbs to support commutes or their proximity to infrastructure arter-
ies. UAV-LMD has the potential to be a bastion of what some term the “internet of
things.” Finally, it is on the cusp of disrupting the last-mile industry and offer service
levels at costs that have historically been unreachable.

But for all of their technological promise to recast our cities and logistics indus-
tries, there remain some key questions that still remain unanswered, most notably:
how will UAV-LMD be received by society and regulators and how will their reaction
impact the economics and feasibility of such a service? Furthermore, could it neg-
atively impact the communities amongst which it operates such that the economic
benefits do not outweigh its negative externalities? Is it a net-benefit for the soci-
ety and cities in which it is deployed? The past few decades have exemplified novel
technologies being deployed at scale – from ride-hailing mobility to machine learning
hiring algorithms – for which society has absorbed the toll of the “move fast and break
things” strategy. In this way, could UAV-LMD also be a double-edged sword?

This thesis explores the peripheries of this question by tackling the first step
in answering them: it marries the societal and regulatory considerations with UAV-
LMD operations planning in an economic feasibility analysis. In doing so, it offers a
multitude of in-roads for how to: 1) evaluate the societal and regulatory constraints,
2) model the the intersection of these constraints with traditional VRP operations
planning, and 3) deploy models to explore the inter-dependencies between the key
driving factors between UAV-LMD’s success.

Faced with these untold opportunities but set of challenges, the last-mile industry
and its various stakeholders have an opportunity to define a future for UAV-LMD and
its stakeholders. A more likely postulation is that the “last-mile” delivery problem is
unabating and it will continue to pressure key industry players to innovate with new
technologies, operational models or business models. The technology policy question
will remain central to UAV-LMD in the coming years. But where there are problems,
there are opportunities. Undoubtedly, societies, cities, regulators, and logistics players
with a stake in solving the “last-mile” problem are in strong position to capitalize on
its opportunities.
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Appendix A

Drone Power Consumption Equation
Derivations

A.1 Hover Flight

Thrust from a single propeller disk of the quadcopter can be written as

𝑇 = 2𝜌𝐴𝑣𝑤, (A.1)

where 𝑇 is thrust (𝑁), 𝜌 is air density (𝑘𝑔𝑚−3), 𝐴 is the propeller disk (𝑚2),
and 𝑤 is the induced velocity through the propeller disk (𝑚𝑠−1). 𝑣 is the resultant
velocity (𝑚𝑠−1) and can be written as

𝑣 =
(︀
(𝑤 − 𝑉 𝑠𝑖𝑛𝛼)2 + (𝑉 𝑐𝑜𝑠𝛼)2

)︀ 1
2 , (A.2)

where 𝑉 is the speed of the quadcopter relative to the air around in (𝑚𝑠−1). We
know that in hover, 𝑉 = 0, therefore

𝑣 = 𝑤. (A.3)

Therefore,

𝑇 = 2𝜌𝐴𝑤2. (A.4)

In hover, the quadcopter thrust must be equal to its weight, therefore

4𝑇 = 𝑚𝑡𝑜𝑡𝑔 = 8𝜌𝐴𝑤2, (A.5)

where g is the gravitational constant (𝑚𝑠−2). The 4 exists since we have four
propellers. Therefore

𝑤 =

√︂
𝑚𝑡𝑜𝑡𝑔

8𝜌𝐴
. (A.6)

Power consumed by as quadcopter is
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𝑃 = 𝐷𝑉 + 𝑇𝑤, (A.7)

where 𝐷 is the drag on the quadcopter (𝑁). Since we know in hover that 𝑉 = 0

𝑃 = 𝑇𝑤 = 𝑚𝑡𝑜𝑡𝑔𝑤 = 𝑚𝑡𝑜𝑡𝑔

√︂
𝑚𝑡𝑜𝑡𝑔

8𝜌𝐴
. (A.8)

Therefore,

𝑃ℎ𝑜𝑣 =

√︃
(𝑚𝑡𝑜𝑡𝑔)3

2𝜌𝐴
. (A.9)

This power is calculated in (𝑊 ) and represents the energy consumed per unit
second used by the quadcopter in hover.

A.2 Horizontal Flight

In horizontal flight, the force equilibrium allows the following to be derived:

𝐹𝑇 𝑐𝑜𝑠 (𝛼)− 𝐹𝑑 = 𝑚𝑡𝑜𝑡�̇�, (A.10)

where �̇� is the rate of change of horizontal speed (𝑚𝑠−2). Therefore,

𝑇𝑐𝑜𝑠 (𝛼)− 1

2
𝜌𝐶𝐷𝐴𝑒𝑓𝑓𝑉

2 = 𝑚𝑡𝑜𝑡�̇�, (A.11)

where 𝐶𝐷 is the quadcopter drag coefficient and 𝐴𝑒𝑓𝑓 is the area of the Quad-
copter facing forward incoming airflow (𝑚2). We know that �̇� = 0, therefore

𝑇𝑐𝑜𝑠 (𝛼)− 1

2
𝜌𝐶𝐷𝐴𝑒𝑓𝑓𝑉

2 = 0. (A.12)

This can be written as

𝑉ℎ𝑜𝑟 =

√︃
2𝑇𝑐𝑜𝑠 (𝛼)

𝜌𝐶𝐷𝐴𝑒𝑓𝑓

. (A.13)

We can use the definition of thrust-to-weight (𝑇𝑊𝑅 = 𝑇
𝑚𝑡𝑜𝑡𝑔

) here as follows:

𝑉ℎ𝑜𝑟 =

√︃
2𝑇𝑊𝑅𝑚𝑡𝑜𝑡𝑔𝑐𝑜𝑠 (𝛼)

𝜌𝐶𝐷𝐴𝑒𝑓𝑓

. (A.14)

Now addressing 𝐴𝑒𝑓𝑓 , we know that

𝑠𝑖𝑛𝛼 =
𝐴𝑒𝑓𝑓

𝐴
≈ 𝑚𝑡𝑜𝑡𝑔

𝑇
≈ 1

𝑇𝑊𝑅
, (A.15)

therefore,
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𝑉ℎ𝑜𝑟 =

√︃
2𝑇𝑊𝑅𝑚𝑡𝑜𝑡𝑔𝑐𝑜𝑠 (𝛼)

𝜌𝐶𝐷
1

𝑇𝑊𝑅

, (A.16)

𝑉ℎ𝑜𝑟 =

√︃
2𝑇𝑊𝑅2𝑚𝑡𝑜𝑡𝑔𝑐𝑜𝑠 (𝛼)

𝜌𝐶𝐷

. (A.17)

Finally 𝐶𝐷 for a quadcopter can be approximated to that of a flat plate, which
is as follows:

𝐶𝐷𝑓𝑙𝑎𝑡 𝑝𝑙𝑎𝑡𝑒
= 2𝐶𝑓 + 2𝑠𝑖𝑛2𝛼, (A.18)

where 𝐶𝑓 is the skin friction coefficient and can be assumed to be zero. We know
from equation (A.15) that 𝑠𝑖𝑛𝛼 can be substituted such that the equation above reads
as

𝐶𝐷𝑓𝑙𝑎𝑡 𝑝𝑙𝑎𝑡𝑒
=

2

𝑇𝑊𝑅2
. (A.19)

Thus, 𝑉ℎ𝑜𝑟 can be written as

𝑉ℎ𝑜𝑟 =

√︃
2𝑇𝑊𝑅2𝑚𝑡𝑜𝑡𝑔𝑐𝑜𝑠 (𝛼)

𝜌 2
𝑇𝑊𝑅2

, (A.20)

𝑉ℎ𝑜𝑟 =

√︃
𝑇𝑊𝑅4𝑚𝑡𝑜𝑡𝑔𝑐𝑜𝑠 (𝛼)

𝜌
. (A.21)

Finally, assuming 𝛼 = 45∘, 𝑐𝑜𝑠 (𝛼) = 1√
2
,

𝑉ℎ𝑜𝑟 =

√︃
𝑇𝑊𝑅4𝑚𝑡𝑜𝑡𝑔

𝜌
√

2
. (A.22)

Power consumed in horizontal flight can be written as

𝑃 = 𝑇𝑉ℎ𝑜𝑟. (A.23)

This equation is true since energy (𝐽) is always equated to work done which is
force (𝑁) multiplied by distance (𝑚). Since power (𝑊 = 𝐽/𝑠) is energy per unit time,
power is equated to work done per unit second which is force multiplied by distance
over unit time, or in other words, force (𝑁) multiplied by velocity (𝑚𝑠−1). Therefore,

𝑃 = 𝑇𝑊𝑅𝑚𝑡𝑜𝑡𝑔

√︃
𝑇𝑊𝑅4𝑚𝑡𝑜𝑡𝑔

𝜌
√

2
, (A.24)

which finally reads as
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𝑃 = 𝑇𝑊𝑅3

√︃
(𝑚𝑡𝑜𝑡𝑔)3

𝜌
√

2
. (A.25)

This power is calculated in (𝑊 ) and tells us the energy consumed in horizontal
flight per unit second used by the quadcopter.

A.3 Vertical Flight

In vertical flight, the force balance can be written as:

𝐹𝑇 − 𝐹𝑔 − 𝐹𝑑 = 𝑚𝑡𝑜𝑡�̇�, (A.26)

where �̇� is the rate of change of vertical speed (𝑚𝑠−2) and can be assumed to be
equal to 0 in a vertical ascent at constant velocity. Therefore,

𝑇 −𝑚𝑡𝑜𝑡𝑔 −
1

2
𝜌𝐶𝐷𝐴𝑒𝑓𝑓𝑉

2 = 0. (A.27)

Rearranging to write 𝑣 (i.e. 𝑣𝑣𝑒𝑟) in terms of thrust:

𝑣𝑣𝑒𝑟 =

√︃
2(𝑇 −𝑚𝑡𝑜𝑡𝑔)

𝜌𝐶𝐷𝐴𝑒𝑓𝑓

, (A.28)

which can be written in terms of thrust-to-weight ratio (TWR) as:

𝑣𝑣𝑒𝑟 =

√︃
2𝑚𝑡𝑜𝑡𝑔

𝜌𝐶𝐷𝐴𝑒𝑓𝑓

√
𝑇𝑊𝑅− 1. (A.29)

In vertical flight, the effective area associated with drag, 𝐴𝑒𝑓𝑓 , is equivalent to the
total cross-sectional surface area, 𝐴. Furthermore, the power consumed is equivalent
to the thrust multiplied by the vertical velocity as discussed in the section above.
Therefore, the power consumed in vertical flight can be written as:

𝑃 = 𝑇

√︂
2𝑚𝑡𝑜𝑡𝑔

𝜌𝐶𝐷𝐴

√
𝑇𝑊𝑅− 1, (A.30)

which can be written in terms of the thrust-to-weight ratio as:

𝑃 = 𝑇𝑊𝑅𝑚𝑡𝑜𝑡𝑔

√︂
2𝑚𝑡𝑜𝑡𝑔

𝜌𝐶𝐷𝐴

√
𝑇𝑊𝑅− 1, (A.31)

which can be simplified to

𝑃 = 𝑇𝑊𝑅
√
𝑇𝑊𝑅− 1(𝑚𝑡𝑜𝑡𝑔)

3
2

√︂
2

𝜌𝐶𝐷𝐴
. (A.32)

Finally, we know that the drag coefficient of a flat plate can be written as de-
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scribed in (A.18). Again, we can assume the skin friction coefficient to be negligible,
so the only drag component we are concerned about is form drag. Since the quad-
copter is moving vertically upwards, 𝑠𝑖𝑛(𝛼) is equal to 1, and, therefore, 𝐶𝐷 is equal
to 2. Therefore, the final equation for power consumed in vertical flight can be written
as:

𝑃 = 𝑇𝑊𝑅
√
𝑇𝑊𝑅− 1(𝑚𝑡𝑜𝑡𝑔)

3
2

√︂
1

𝜌𝐴
. (A.33)

This power is calculated in (𝑊 ) and represents the energy consumed in vertical
flight per unit second used by the quadcopter.

A.4 Power Consumption Linearization
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Figure A-1: Linearized power consumption functions for four modeled flight regimes.
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Appendix B

Route Improvement Operators

This section delves into the details of the route-improvement operator step of the
Heuristic Approach (HA) described in Section 4.3.3. As a reminder, the route im-
provement process consists of a set of operations to be performed 1) internal to each
unmanned aerial vehicle (UAV) route; and 2) between UAV routes. The route im-
provement solution iterates through a fixed number of both operator repetitions.
Whilst there exists a maximum number of total improvement operator iterations, the
procedure can also be terminated if one of the following conditions are met:

• a user-defined number of operations have been performed with no improvement;
or

• a user-defined number of operations have been performed with an improvement
of less than a user-defined percentage.

At each iteration, the exact improvement operator is chosen pseudo-randomly
and the probability of choosing the operator is based on an exponentially smoothed
weight that is computed using the success rate of the operator and the ratio of average
time per operation of that types to all other operators of that type that is updated
at each iteration. In general, there are three main categories of operators:

• Random: an operator for which all the inputs are chosen at random. Whilst
computationally efficient, its success at improving the solution is unpredictable.
It can, however, help solutions get out of local optima.

• Greedy : an operator for which the initial set of inputs is chosen at random, but
the operator searches for the best possible operation to perform, given these
initial inputs. Because of this approach, it is computationally inefficient but
typically exhibits higher success rates.

• Semi-greedy an operator which, like the other two categories, is provided with
random set of inputs and then, like the greedy operator, attempts to find the
best possible operation. Unlike the greedy operator, however, the semi-greedy
operator is limited to a specific number of possible operations before terminating
and selecting the best potential operations from the list of operations it has
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explored thus far. Such an operator brings together the best of the other two
operator types. Whilst it is typically more computationally intensive compared
to a random operator, it typically yields higher success rates, is faster than a
fully greedy operator, and can help explore the solution space and avoid local
minima.

The the list of available operators is included below, but the specifics of the
operators themselves are not discussed. This is because these are common operators
used in heuristic vehicle routing implementations in the literature. The author points
readers to available resources, see Cordeau et al. (2002). The list of intra- and inter-
route operators employed during this step are as follows:

• Intra-route:

− Semi-Greedy Swap
− Semi-Greedy Insertion
− Random 2-Opt Exchange
− Random 3-Opt Exchange

• Inter-route:

− Random Exchange

− Semi-Greedy Remove

− Semi-Greedy Cross

− Semi-Greedy Shift

The operator weight update logic, referred to as a roulette wheel, is formulated as
follows: it is a strategy for choosing an item from a discrete probabilistic distribution.
The weights of the operators are updated at each stage of the route improvement
iterations, the objective being to adapt the probability of choosing the operators
based on their success rate and their historical computational run-time.

The weights are initialized to:

𝑤𝑖 =
1

𝑛_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠
∀ 𝑖 𝑖𝑛 𝐼 (B.1)

If 𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is the average time taken for all operators since last update and 𝑡𝑖,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is
the average time taken for operations of type i since last update, then, letting 𝑀𝑖 be
a multiplier for the operator 𝑖 such that:

𝑀𝑖 =

{︂
1 if 𝑡𝑖,𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ≤ 𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑡𝑖,𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒

otherwise (B.2)

The multiplier, 𝑀𝑖, will negatively affect the probability of choosing operator 𝑖
if its average run-time is longer than that of the average run-time of all the other
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available operators, making the weights adaptable both based on success and run-
time. Then, the new weight for operator 𝑖 is computed using an adapted exponential
smoothing function:

𝑤𝑖,𝑛𝑒𝑤 = (1− 𝛼)𝑤𝑖,𝑜𝑙𝑑 + 𝛼

∑︀𝑏
𝑘=𝑎 𝑆𝑘

𝑏− 𝑎
𝑀𝑖 (B.3)

where 𝑆𝑘 is the success value of the operator for operation 𝑘 and 𝑎 and 𝑏 are the
beginning and end operation numbers, respectively, for the period under considera-
tion.

[Intentionally left blank]

165



THIS PAGE INTENTIONALLY LEFT BLANK

166



Appendix C

Algorithmic Benchmark Results

[Intentionally left blank]
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(a) Demand set A1.

(b) Demand set A2.

Figure C-1: Benchmark runs varying number of customers and GURP model.
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(a) Demand set A1.

(b) Demand set A2.

Figure C-2: Benchmark pre-flight check runs varying number of customers and GURP
model.
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(a) Demand set A1.

(b) Demand set A2.

Figure C-3: Benchmark TW runs varying number of customers and GURP model.
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(a) Demand set A1.

(b) Demand set A2.

Figure C-4: Benchmark multi-commodity runs varying number of customers and
GURP model.
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(a) Demand set A1.

(b) Demand set A2.

Figure C-5: Benchmark full-feature runs varying number of customers and GURP
model.
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(a) Demand set A1.

(b) Demand set A2.

Figure C-6: Benchmark full-feature and valid inequality runs varying number of cus-
tomers and GURP model.
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(a) Demand set A1.

(b) Demand set A2.

Figure C-7: Benchmark full-feature, valid inequality and warm-start runs varying
number of customers and GURP model.
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Figure C-8: Demand Sets A1 and A2: scenario performance comparison across cus-
tomer demand sets for EA.

Figure C-9: Demand Sets A1 and A2: scenario performance comparison across cus-
tomer demand sets for ETSA.
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Figure C-10: Demand Sets A1 (left) and A2 (right): scenario performance comparison
across customer demand sets for HA.

176



T
ab

le
C

.1
:

G
U

R
P

m
od

el
be

nc
hm

ar
ki

ng
re

su
lt

s
fo

r
B

en
ch

m
ar

k,
M

ai
nt

en
an

ce
C

he
ck

,
T

im
e

W
in

do
w

an
d

C
om

m
od

it
ie

s
pr

ob
le

m
de

fin
it

io
n

sc
en

ar
io

s.

E
A

E
T

S
A

H
A

S
et

N
o
.

C
u
st

O
p
t

[/
3
]

G
ap

[%
]

C
P
U

U
B

L
B

T
/
d

O
p
t

[/
3
]

G
ap

[%
]

C
P
U

U
B

L
B

T
/
d

O
p
t

[/
3
]

G
ap

[%
]

C
P
U

U
B

L
B

T
/
d

B
en

ch
m

ar
k

A
1

15
3

0.
99

%
45

.5
5

20
1.

21
19

3.
25

10
.3

3
3

0.
60

%
37

.7
7

17
9.

73
17

6.
22

6.
33

3
0.

00
%

10
.1

2
30

1.
79

30
1.

79
4.

33

20
3

1.
31

%
36

64
.7

8
41

4.
95

40
2.

21
10

.2
0

3
0.

48
%

46
5.

08
58

8.
86

58
4.

25
11

.7
5

3
0.

00
%

15
.7

0
61

4.
63

61
4.

63
4.

00

25
0

14
.9

1%
72

00
.2

8
28

9.
09

19
1.

02
7.

25
3

8.
88

%
28

86
.1

5
75

4.
03

69
3.

76
11

.8
0

3
0.

00
%

26
.6

3
91

7.
06

91
7.

06
5.

67

30
0

11
.3

6%
72

00
.4

1
66

5.
78

57
0.

36
11

.2
0

1
13

.4
6%

54
04

.8
8

38
2.

18
28

6.
38

8.
50

3
0.

00
%

49
.8

9
94

6.
01

94
6.

01
6.

33

A
2

15
3

1.
13

%
14

58
.6

6
19

6.
45

18
7.

00
6.

60
3

0.
77

%
6.

51
14

2.
02

13
6.

28
5.

50
3

0.
00

%
17

.4
9

66
4.

54
66

4.
54

4.
67

20
3

1.
12

%
14

23
.2

1
50

7.
35

49
4.

26
9.

67
3

0.
57

%
14

7.
51

45
5.

76
45

1.
23

8.
40

3
0.

00
%

29
.5

5
92

3.
65

92
3.

65
6.

00

25
1

1.
67

%
54

10
.0

1
10

15
.8

8
98

7.
04

15
.2

5
3

0.
57

%
11

02
.1

4
83

2.
02

82
6.

03
12

.0
0

3
0.

00
%

22
.0

1
12

71
.9

2
12

71
.9

2
6.

00

30
1

2.
31

%
57

90
.0

5
10

34
.8

9
99

4.
51

15
.0

0
2

3.
21

%
24

11
.3

8
12

66
.2

1
12

28
.9

4
16

.3
3

3
0.

00
%

93
.8

9
14

00
.4

7
14

00
.4

7
8.

50

M
ai

n
te

n
an

ce
C

h
ec

k

A
1

15
1

0.
79

%
99

.1
2

48
7.

98
48

4.
11

3.
00

2
0.

93
%

29
.5

2
40

6.
64

40
2.

87
2.

50
3

0.
00

%
6.

46
51

2.
02

51
2.

02
3.

00

20
1

2.
52

%
50

60
.1

0
53

6.
17

52
2.

68
4.

00
3

0.
98

%
30

97
.7

8
53

1.
40

52
6.

18
4.

00
3

0.
00

%
8.

38
79

8.
58

79
8.

58
4.

33

25
0

19
.9

5%
72

00
.6

2
62

1.
78

49
5.

92
4.

00
0

18
.9

9%
72

00
.1

8
61

6.
59

49
8.

10
4.

00
3

0.
00

%
45

.7
0

90
5.

73
90

5.
73

5.
67

30
0

17
.6

2%
72

00
.8

1
68

7.
59

56
5.

43
4.

33
0

17
.2

6%
72

00
.4

4
69

0.
70

57
0.

02
4.

67
3

0.
00

%
75

.1
3

93
4.

01
93

4.
01

6.
33

A
2

15
3

0.
75

%
8.

25
61

4.
51

61
0.

10
3.

67
3

0.
94

%
13

.5
5

61
1.

19
60

5.
44

3.
67

3
0.

00
%

7.
03

74
7.

54
74

7.
54

4.
67

20
3

0.
93

%
27

9.
74

78
5.

59
77

8.
32

5.
00

1
0.

98
%

42
1.

94
80

6.
65

79
8.

72
5.

00
3

0.
00

%
13

.4
6

90
2.

65
90

2.
65

6.
00

25
2

0.
97

%
10

20
.1

9
89

4.
24

88
5.

56
5.

00
2

0.
99

%
25

34
.9

5
92

2.
96

91
3.

81
5.

50
3

0.
00

%
24

.3
8

12
17

.6
0

12
17

.6
0

8.
00

30
1

0.
98

%
23

81
.7

0
96

4.
94

95
5.

46
6.

00
1

4.
45

%
71

32
.6

5
98

0.
83

93
6.

14
6.

00
3

0.
00

%
40

.6
9

11
97

.4
6

11
97

.4
6

8.
67

T
im

e
W

in
d
ow

s

A
1

15
3

0.
95

%
7.

36
55

4.
31

54
9.

04
3.

33
3

0.
95

%
11

.8
4

54
7.

95
54

2.
78

3.
00

3
0.

00
%

2.
89

15
11

.4
4

15
11

.4
4

3.
67

20
3

0.
96

%
74

6.
25

69
2.

93
68

6.
27

5.
00

3
0.

96
%

70
7.

40
69

6.
26

68
9.

57
5.

00
3

0.
00

%
5.

90
10

33
.3

0
10

33
.3

0
7.

33

25
1

3.
11

%
50

41
.8

6
77

9.
77

75
5.

05
4.

67
1

3.
17

%
49

53
.4

3
77

7.
61

75
2.

42
4.

67
3

0.
00

%
9.

05
19

55
.9

0
19

55
.9

0
7.

67

30
0

2.
42

%
72

00
.5

8
80

1.
97

78
2.

57
6.

00
0

6.
06

%
72

01
.0

1
85

1.
40

79
8.

83
5.

67
3

0.
00

%
18

.3
1

19
76

.0
7

19
76

.0
7

10
.0

0

A
2

15
3

1.
00

%
5.

68
67

8.
49

67
1.

72
4.

00
3

0.
89

%
3.

04
72

7.
10

72
0.

67
4.

33
3

0.
00

%
3.

05
92

1.
18

92
1.

18
5.

00

20
3

0.
89

%
87

.8
7

92
1.

64
91

3.
34

7.
00

3
0.

99
%

16
.5

2
94

7.
38

93
7.

97
7.

00
3

0.
00

%
6.

82
11

89
.7

2
11

89
.7

2
9.

50

25
3

0.
86

%
21

1.
82

11
27

.8
0

11
17

.9
7

7.
33

3
0.

96
%

11
9.

23
11

84
.6

6
11

73
.2

7
7.

50
3

0.
00

%
9.

74
16

82
.0

0
16

82
.0

0
10

.3
3

30
3

0.
99

%
12

34
.4

3
11

91
.2

7
11

79
.5

3
7.

33
3

0.
79

%
26

0.
33

13
85

.9
9

13
75

.1
7

10
.0

0
3

0.
00

%
16

.8
2

25
59

.6
2

25
59

.6
2

10
.6

7

C
om

m
o
d
it

ie
s

A
1

15
3

0.
99

%
45

.5
5

10
75

.0
7

10
64

.3
9

10
.3

3
3

0.
60

%
37

.7
7

11
22

.8
8

77
6.

22
6.

33
3

0.
00

%
1.

23
11

22
.8

8
11

19
.8

5
10

.3
3

20
2

1.
15

%
28

87
.6

9
13

34
.1

3
13

18
.4

5
14

.3
3

3
0.

48
%

46
5.

08
14

04
.5

3
11

84
.2

5
11

.7
5

3
0.

00
%

5.
45

14
04

.5
3

14
00

.1
4

14
.3

3

25
0

1.
77

%
72

00
.5

3
17

01
.0

2
16

70
.9

3
17

.0
0

3
8.

88
%

28
86

.1
5

18
38

.8
1

12
93

.7
6

11
.8

0
3

0.
00

%
9.

86
18

38
.8

1
18

29
.5

7
17

.0
0

30
0

2.
81

%
72

00
.3

5
21

26
.5

4
20

66
.9

0
21

.0
0

1
13

.4
6%

54
04

.8
8

18
65

.9
3

88
6.

38
8.

50
3

0.
00

%
16

.9
9

18
65

.9
3

18
50

.0
3

21
.0

0

A
2

15
1

1.
46

%
36

18
.9

8
10

64
.3

5
10

49
.1

8
11

.0
0

3
0.

77
%

6.
51

11
14

.5
2

73
6.

28
5.

50
3

0.
00

%
1.

62
11

14
.5

2
11

04
.6

3
11

.0
0

20
2

1.
30

%
25

57
.7

6
14

23
.7

1
14

04
.9

3
14

.0
0

3
0.

57
%

14
7.

51
14

49
.2

6
10

51
.2

3
8.

40
3

0.
00

%
3.

15
14

49
.2

6
14

49
.2

6
13

.5
0

25
0

1.
90

%
72

00
.1

5
18

56
.4

3
18

20
.9

0
18

.6
7

3
0.

57
%

11
02

.1
4

19
44

.2
2

14
26

.0
3

12
.0

0
3

0.
00

%
8.

40
19

44
.2

2
19

41
.2

4
18

.6
7

30
0

2.
65

%
72

00
.2

8
20

78
.1

8
20

22
.8

0
21

.0
0

2
3.

21
%

24
11

.3
8

22
96

.8
7

18
28

.9
4

16
.3

3
3

0.
00

%
16

.7
8

22
96

.8
7

22
83

.4
7

21
.5

0

177



T
ab

le
C

.2
:

G
U

R
P

m
od

el
be

nc
hm

ar
ki

ng
re

su
lt

s
fo

r
Fu

ll
Fe

at
ur

e,
Fu

ll
Fe

at
ur

e
+

V
al

id
In

eq
ua

lit
ie

s
+

Fu
ll

Fe
at

ur
e

+
V
al

id
In

eq
ua

lit
ie

s
+

W
ar

m
St

ar
t
pr

ob
le

m
de

fin
it

io
n

sc
en

ar
io

s.

E
A

E
T

S
A

H
A

S
et

N
o
.

C
u
st

O
p
t

[/
3
]

G
ap

[%
]

C
P
U

U
B

L
B

T
/
d

O
p
t

[/
3
]

G
ap

[%
]

C
P
U

U
B

L
B

T
/
d

O
p
t

[/
3
]

G
ap

[%
]

C
P
U

U
B

L
B

T
/
d

F
u
ll

F
ea

tu
re

s

A
1

15
3

0.
96

%
48

.3
2

10
74

.3
2

10
64

.0
1

10
.3

3
3

0.
94

%
17

.4
8

11
30

.9
2

11
20

.2
6

10
.3

3
3

0.
00

%
3.

54
23

12
.9

9
23

12
.9

9
11

.3
3

20
0

1.
88

%
72

00
.1

6
12

29
.0

9
12

05
.9

4
15

.0
0

3
0.

97
%

26
1.

90
14

38
.2

7
14

24
.3

3
14

.6
7

3
0.

00
%

7.
32

26
73

.3
1

26
73

.3
1

15
.6

7

25
0

1.
46

%
72

00
.0

9
17

73
.0

0
17

46
.7

5
17

.0
0

1
0.

99
%

19
81

.8
7

17
85

.4
4

17
67

.8
2

17
.0

0
3

0.
00

%
12

.6
8

20
92

.7
9

20
92

.7
9

18
.0

0

30
0

3.
12

%
72

00
.1

1
20

22
.3

3
19

57
.3

4
21

.6
7

1
0.

98
%

41
53

.7
7

21
92

.6
3

21
71

.2
4

21
.0

0
3

0.
00

%
22

.5
2

28
94

.0
2

28
94

.0
2

24
.0

0

A
2

15
3

0.
94

%
28

.9
9

10
76

.3
9

10
66

.3
3

11
.0

0
3

0.
65

%
3.

75
11

29
.6

4
11

22
.0

2
11

.0
0

3
0.

00
%

3.
24

22
53

.8
7

22
53

.8
7

11
.0

0

20
3

1.
00

%
11

75
.0

3
14

22
.4

8
14

08
.2

7
14

.0
0

3
0.

98
%

91
.5

2
15

04
.5

5
14

89
.8

6
14

.0
0

3
0.

00
%

6.
79

23
31

.1
0

23
31

.1
0

15
.0

0

25
0

1.
65

%
72

00
.0

8
18

26
.2

7
17

96
.1

9
19

.0
0

2
0.

80
%

86
.7

2
20

43
.8

7
20

27
.4

1
19

.5
0

3
0.

00
%

8.
41

27
60

.2
1

27
60

.2
1

20
.3

3

30
0

3.
40

%
72

00
.2

3
20

06
.8

0
19

40
.3

2
21

.0
0

1
0.

99
%

33
32

.3
8

22
17

.9
0

21
95

.9
8

20
.0

0
3

0.
00

%
21

.2
5

32
60

.2
1

32
60

.2
1

21
.0

0

F
u
ll

F
ea

tu
re

+
V
al

id
In

eq
u
al

it
ie

s

A
1

15
3

0.
96

%
15

.4
3

10
74

.3
3

10
64

.0
6

10
.3

3
2

0.
50

%
0.

86
11

84
.3

2
11

78
.3

4
10

.5
0

3
0.

00
%

3.
54

23
12

.9
9

23
12

.9
9

11
.3

3

20
0

1.
44

%
49

97
.8

4
13

45
.0

2
13

25
.8

7
14

.6
7

3
0.

36
%

5.
01

14
38

.2
7

14
33

.0
1

14
.6

7
3

0.
00

%
7.

32
26

73
.3

1
26

73
.3

1
15

.6
7

25
0

1.
52

%
72

00
.1

3
17

48
.1

7
17

21
.5

0
17

.3
3

3
0.

67
%

31
.4

0
18

66
.4

9
18

53
.8

0
17

.3
3

3
0.

00
%

12
.6

8
20

92
.7

9
20

92
.7

9
18

.0
0

30
0

2.
30

%
72

00
.2

1
17

45
.2

8
17

05
.1

8
22

.0
0

3
0.

55
%

32
.8

4
21

60
.1

7
21

48
.3

3
21

.3
3

3
0.

00
%

22
.5

2
28

94
.0

2
28

94
.0

2
24

.0
0

A
2

15
3

0.
98

%
13

.8
6

10
88

.6
4

10
77

.9
6

11
.0

0
3

0.
45

%
1.

41
11

01
.8

1
10

96
.8

2
11

.0
0

3
0.

00
%

3.
24

22
53

.8
7

22
53

.8
7

11
.0

0

20
3

0.
91

%
36

4.
37

14
22

.4
9

14
09

.6
5

14
.0

0
3

0.
55

%
11

.5
4

14
86

.4
3

14
78

.2
6

13
.5

0
3

0.
00

%
6.

79
23

31
.1

0
23

31
.1

0
15

.0
0

25
0

1.
90

%
72

00
.1

5
18

71
.4

0
18

35
.8

4
19

.3
3

3
0.

92
%

9.
30

20
02

.4
6

19
83

.9
8

19
.0

0
3

0.
00

%
8.

41
27

60
.2

1
27

60
.2

1
20

.3
3

30
0

2.
55

%
72

00
.1

9
20

64
.1

2
20

10
.1

3
20

.6
7

3
0.

95
%

28
.1

0
21

50
.8

4
21

30
.3

9
20

.6
7

3
0.

00
%

21
.2

5
32

60
.2

1
32

60
.2

1
21

.0
0

F
u
ll

F
ea

tu
re

+
V
al

id
In

eq
u
al

it
ie

s
+

W
ar

m
S
ta

rt

A
1

15
1

0.
94

%
17

.4
8

11
30

.9
2

11
20

.2
6

10
.3

3
3

0.
60

%
14

.5
4

11
39

.9
4

11
33

.1
5

10
.3

3
3

0.
00

%
3.

54
23

12
.9

9
23

12
.9

9
11

.3
3

20
1

0.
97

%
26

1.
90

14
38

.2
7

14
24

.3
3

14
.6

7
3

0.
17

%
25

.4
0

12
76

.6
1

12
74

.4
1

14
.0

0
3

0.
00

%
7.

32
26

73
.3

1
26

73
.3

1
15

.6
7

25
0

0.
99

%
19

81
.8

7
17

85
.4

4
17

67
.8

2
17

2
0.

62
%

61
.5

1
18

86
.5

7
18

74
.6

8
17

.5
0

3
0.

00
%

12
.6

8
20

92
.7

9
20

92
.7

9
18

.0
0

30
0

0.
98

%
41

53
.7

7
21

92
.6

3
21

71
.2

4
21

3
0.

70
%

12
9.

03
21

47
.2

4
21

32
.0

7
21

.6
7

3
0.

00
%

22
.5

2
28

94
.0

2
28

94
.0

2
24

.0
0

A
2

15
3

0.
65

%
3.

75
11

29
.6

4
11

22
.0

2
11

3
0.

50
%

13
.1

9
10

78
.8

8
10

73
.0

2
10

.3
3

3
0.

00
%

3.
24

22
53

.8
7

22
53

.8
7

11
.0

0

20
0

0.
98

%
91

.5
2

15
04

.5
5

14
89

.8
6

14
3

0.
65

%
32

.0
9

14
81

.5
4

14
71

.9
3

13
.6

7
3

0.
00

%
6.

79
23

31
.1

0
23

31
.1

0
15

.0
0

25
0

0.
80

%
86

.7
2

20
43

.8
7

20
27

.4
1

19
.5

1
0.

36
%

58
.3

4
19

56
.1

5
19

49
.0

7
19

.0
0

3
0.

00
%

8.
41

27
60

.2
1

27
60

.2
1

20
.3

3

30
0

0.
99

%
33

32
.3

8
22

17
.9

0
21

95
.9

8
20

2
0.

42
%

13
0.

99
21

23
.0

9
21

14
.5

3
21

.0
0

3
0.

00
%

21
.2

5
32

60
.2

1
32

60
.2

1
21

.0
0

178



Appendix D

Case Study Analysis Results Data
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