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Abstract

Identifying subtle changes in brain activity in the early stages of pathology is cru-
cial for gaining understanding of the causes and mechanisms of neurodegenerative
diseases such as Alzheimer’s disease (AD). Mapping high dimensional brain connec-
tivity information to a lower dimensional latent space can allow quantitative anal-
ysis of the subtle changes in brain activity and create information-rich inputs to
downstream classification tasks. Using a Hyperbolic Graph Convolutional Network
(HGCN), we embed functional brain connectivity graphs derived from magnetoen-
cephalography data to a Poincare disk instead of traditional Euclidean space. The
Poincare disk is a negatively curved unit disk that encourages a continuous tree-like
(and low-dimensional) embedding where paths between sibling nodes pass through a
more central parent node. This model allows scale-free graphs to be embedded into 2
dimensions with low distortion while maintaining a conformal mapping of angles to
Euclidean space. The Poincare model is particularly useful for neuroscientific analy-
sis, as brain networks are generally scale-free, and the low dimensional mappings can
facilitate learning despite the typically small datasets that are available in the field.
The embeddings provide a parsimonious description of both similarity and hierarchy,
which can be used to study the role of individual brain regions and known functional
subnetworks, such as the default mode network (DMN) and ventral attention network
(VAN). We used the hyperbolic embeddings to assess MEG brain network alterations
in subjects with Subjective Cognitive Decline, a pre-clinical precursor to AD in which
the subject cannot be objectively diagnosed through traditional neuropsychological
testing. Poincare embeddings were used to classify subjects’ disease state and iden-
tify functional changes in the interconnectivity of several subnetworks as well as the
overall hierarchical placement of those networks.
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Chapter 1

Introduction

1.1 Alzheimers Disease

Alzheimer’s disease (AD) is neurodegenerative brain disorder and the most common

form of dementia. In 2020, worldwide AD prevalance was estimated at 50 million [24],

with diagnosis rates predicted to rise in the near future. Total diagnoses are predicted

to rise to the worldwide total of 152 million cases by 2050 [7]. However, delaying the

onset or progression of the disease by 1 year would lead to an overall drop in 9 million

patients [14]. Understanding the earliest disruptions to normal neural behavior is key

to treating existing pathologies as well as preventing new progressions.

1.1.1 Known biomarkers

Several biomarkers form a profile of AD that can provide clues for the structural causes

and early detection of AD as well as evidence of its damage. These include atrophy of

the cortex, reduction in cerebral spinal fluid (CSF) decreased fluorodeoxyglucose 18F

(FDG) uptake on Positron emission tomography (PET) and elevated CSF tau and

APOE genetic status [40]. Amyloid beta accumulation have been studied particularly

as a biomarker that exists in the precursor stages to AD. Animal models suggest that

the excitation/inhibition balance is disrupted during progression of AD, leading to

the alteration of large-scale brain networks. In particular, increased levels of Amyloid-
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Beta proteins damage inhibitory terminals of GABAergic neurons, leading to neural

hyperactivity.[9] This is followed by a hypoactivity that is characterstic of the later

stages of AD. This monotonic increase, followed by monotic decrease is known as the

"X-Model" of AD conversion.[39]

1.1.2 MCI

Mild Cognitive Impairment is a key prodromal stage of AD that is characterized by

disruptions on neurophysiological tests such as clinical dementia rating, mini-mental

state examination (MMSE) score and Montrial Congnitive Assessment (MoCa) [22].

It does not meet the criteria of dementia, but MCI patients present with many of

the biomarkers for fully developed AD. MCI, can be stable or progressive with ap-

proximately 10-15 percent of patients progressing to dementia per year, while others

remain stable or improve over time [15]. According to the X-model, progressive MCI

demonstrates the characteristic hyperactivity which is closely followed by neural dis-

connect and the onset of dementia.[39]

1.1.3 Subjective Cognitive Decline

Subjective Cognitive Decline is an early potential precursor to MCI and AD. It is

defined by self-experienced persistent decline in cognitive capacity in comparison with

a previously normal status that is unexplainable by an acute event, psychiatric disease

or neurological disease. [25] Although a variety of diseases may cause SCD, there is

evidence that a majority of SCD patients already contain AD biomarkers. There is

a significant conversion to MCI, which some argue to be as high as 8% annually [41].

Many clinical tests cannot detect the self-perceived cognitive deficiency at the SCD

stage. Detection and understanding of the neural signatures of SCD may lead to

preventative treatments or retroactive cures by understanding the root causes of the

origins of the AD pathological cascade.
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1.2 Magnetoencephalography

Magnetoencophalograph (MEG) is a functional brain scan that directly measures

the magnetic fields produced by intraneuronal circuits, a more direct measurement

of neuronal activity than methods relying on metabolic responses (fMRI,FDG-PET

[26][2][23]. Direct measurement allows for an excellent temporal resolution in MEG

imaging, as it need not rely on the rest of the body to react in order to measure

a proxy of neural activity. This temporal resolution is a major advantage over cur-

rent biomarkers, as it allows MEG to capture subtle brain alterations associated with

different brain disorders [38][52][31]. MEGs are taken via a casing surrounding the

head with no direct contact and as such is completely non-invasive. Electropysolog-

ical measurements have shown to successfully track several AD biomarkers, such as

increased Amyloid-𝛽 levels and tau deposits and corresponding synaptic disruptions.

[10][44][4]. Given this, MEG imaging is a promising avenue for developing accessi-

ble biomarkers for tracking, diagnosing and understanding stages on the pathological

cascade of AD.

1.2.1 Brain Wave Types

Direct measurement of neural activity allows the waveforms to be split into bands of

activity. Certain frequency regions have been classically used in neuroscience, and are

described in Table 1.1 [1]. Disruptions in each of these bands have been studied as

biomarkers on the AD cascade. Hyper/Hyposynchronicity in the alpha/beta bands

have studied as indicators of MCI onset as discussed in [31][3]. MCI and AD are

associated with decreases in the power of gamma rhythms, especially in conjunction

with genetic APOE4 mutations [35][19], although these studies consider the overall

intensity of the rhythms and not the synchronicity across regions. Alternatively,

increases in the power of the theta band has been linked to MCI and atrophy in the

hippocampus [34] [20]. Clearly, evidence from each of these bands is complex and

non-linear, and as such deserve extended analysis.

15



Frequency Bands
Band Type Band Frequency
Theta (𝜃) 4-8 Hz
Alpha (𝛼) 8-12 Hz
Beta (𝛽) 12-35 Hz
Gamma (𝛾) 35+ Hz

Table 1.1: Frequency Bands

1.2.2 Regions of Interest

MEG imaging measures the magnetic activity at discrete grids in the brain. A key step

in the analysis of this step is the parcelation of those grids into larger, interpretable

Regions of Interest (ROIs). This analysis uses the AAL90 Template, which describes

90 ROIs, 45 pairs of symmetric regions [36]. Further discussion of parcellation is

found in Section 3.2.3.

1.2.3 Connectivity Matrix

MEG imaging provides the raw waveform of activity over an extended period of time

at those discrete grids. Many metrics exist for synthesizing these individual wave-

forms into single measures of connectivity. These include Pearson correlation, mutual

information, phase locking value (PLV), and correction imaginary phase locking value

(ciPLV)[37][8][50]. While our analysis uses PLV, the application of any of these met-

rics allows different functional neuroimaging methods (fMRI, PET and MEG) to be

translated into the general form of a connectivity matrix. This takes the form of a

symmetric square matrix 𝐶, where the value at 𝐶[𝑖, 𝑗] = 𝐶[𝑗, 𝑖] indicates the connec-

tivity value of regions 𝑖, 𝑗.
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Chapter 2

Previous Work

2.1 Brain as a Graph

Given the ROIs of a brain and a connection between them, the brain can naturally

be embedding as a graph with nodes and edges representing ROIs and connections

respectively. The most natural method is to pick a threshold for connectivity value

at which the nodes are considered to be linked. Although we will use the PLV matrix

from MEG scans, this method generalizes to any functional brain image that can

provide a connectivity matrix.

2.2 Graph Embedding

While graphs are a useful method for conceptualizing structured data, it is not trivial

to perform normal mathematical operations on a graph. For that reason, it is helpful

to map nodes to a latent geometric space that maintains the structures of the graph.

In particular, these methods try to faithfully maintain the relative closeness of nodes

in the embedding space to closeness in the graph. Graph embeddings have found suc-

cess learning meaningful representations of various complex networks such as airport

networks, internet routing and protein folding. Traditional methods include Isomap

and node2vec, which have been applied to brain networks in fMRI. Xu et al embeds

brain graphs into a probabilistic geometry that is used to predict progression or sta-

17



bility of MCI for both fMRI and MEGs [51][50]. In general, embedding methods are

self-supervised and thus do not need large training sets. Many methods are trans-

ductive, that is they operate only on one graph and to not transfer knowledge from

one datapoint to another.

Metrics of the fidelity of a graphs embedding include Mean Average Precision

(mAP) and distortion. mAP is a relative measure that compares how often non-

nieghbor nodes are mapped closer than neighbor nodes

2.3 Graph Machine Learning

The past few years have seen the emergence of Graph Neural Networks (GNNs) that

operate explicitly in the graph domain by passing weights only from node to connected

node. Due to their interpretability and superior performance, these methods have

become the default method for graph analysis in diverse modalities. More recently,

GNN methods have appeared in fMRI literature. [28] uses GNNs with ROI pooling

for disease detection and interpretation Wang and Kim use traditional GNN methods

for various tasks on the Human Connectome Project (HCP).

2.3.1 Message Passing Framework

GNNs take an input feature vector for every node, which is aggregated between

neighboring nodes in successive layers. At every layer, node 𝑖 calculates it’s hidden

state

ℎ𝑙
𝑖 = 𝑊 𝑙𝑥𝑙−1

𝑖 + 𝑏𝑙 (2.1)

where 𝑥𝑘
𝑖 is the representation of node 𝑖 at step 𝑙, 𝑊 𝑙 ∈ R𝑑𝑙−1×𝑑𝑙 where 𝑑𝑙 is the

dimension on the representation at layer 𝑙 and the matrix 𝑊 contains the learned

parameters of the model. This hidden state is then passed as a message to all of its

direct neighbors.

18



The state of a node evolves according to

𝑥𝑙+1
𝑖 = 𝜎(ℎ𝑙

𝑖 + 𝐴𝐺𝐺𝑗∈𝑁(𝑖)(ℎ
𝑙
𝑗) (2.2)

where 𝐴𝐺𝐺 is a generic aggregation function, and 𝜎 is a nonlinear function. Common

aggregation functions include averages, summations and learned attention aggregation

networks[11] . The choice of input feature 𝑥0
𝑖 is discussed further in 3.3.3 .

2.4 Hyperbolic Spaces

2.4.1 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry that studies spaces of negative cur-

vature. In network science, hyperbolic geometry has gained attention for its ability

to model hierarchical data. Intuitively, hyperbolic space can be thought of as a 2D

disk with a fixed radius. Distances between two points “cost” exponentially more as

they reach the edge of the disk, such that distance to reach the edge itself is infinite.

Shortest paths in this space are not straight lines, but arcs that bend closer to the

origin to take advantage of the lower cost. The midpoint of that arc is analogous to

a common parent node in the tree. Just as the number of child nodes in a branch-

ing tree grows exponentially with distance from the root, the continuous space for

embeddings grows with distance from the origin. Networks with tree-like structures

can be embedded in this space with fewer dimensions and with less distortion than

in the Euclidean space. Figures 2-1(a,b) give a sense for the intuition behind using

hyperbolic geometry to embed trees.

2.4.2 Hyperbolic Math and Machine Learning

Applying standard deep learning algorithms in hyperbolic space presents many diffi-

culties, as many standard operations are not obviously defined. Here, we give a brief

primer on equations necessary for intuition, and offer literature for a deeper dive
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[16][42].

The fundamental operation in the hyperbolic space is the distance function:

𝑑(𝑢, 𝑣) = arccos

(︂
1 + 2

||𝑢− 𝑣||2

(1− ||𝑢||2)(1− ||𝑣||2)

)︂
(2.3)

Intuitively, the hyperbolic distance increases whenever the distance between 𝑢 and 𝑣

increases, or either node tends towards the radius of the disk.

In the case where a particular operation is not-defined or intractable in hyperbolic

space, the logarithmic and exponential maps are used. The exponential map takes 𝑥ℎ,

a point in hyperbolic space, 𝑣𝑥 and the tangent vector that is hyperbolic to the hy-

perbolic space at 𝑥, and transforms 𝑥ℎ− > 𝑥𝑒 the euclidean equivalent. After normal

euclidean operations are applied in this space, the logarithmic mapping transforms

𝑥′
𝑒− > 𝑥′

𝑡. This trick is computationally useful, but will exacerbate errors due to noise

or numerical precision [11].

2.4.3 Hyperbolic Embedding

As such, deep learning has been enabled in the hyperbolic space and forms an ex-

citing frontier for brain embeddings. There have been a few attempts to leverage

hyperbolic deep learning for connectivity embeddings. [49] uses Mercator, a hyper-

bolic implementation of Isomap and studies population differences in patients with

Autism, while [17] implements the Poincare Embeddings from [32] to recreate known

functional subnetworks such as the Default Mode Network and the Executive System

2.4.4 Hyperbolic Graph Neural Network

Hyperbolic geometry is a natural fit for GNNs, as many of the complex networks that

are analyzed as graphs have implicit hierarchies built in. Several concurrent works

have adapted GNNs to work in a space where some common operations, such as taking

a mean of a set, do not have known closed formed solutions. Liu et al. [29] presents

HGNN which projects hyperbolic embeddings to the Euclidean tangent space and

aggregates messages with a Euclidean mean. Alternatively, Chami et al [11] presents

20



(a) Geodesics on the Poincare Disk
(b) Embedding a perfect tree on 2D
Poincare Disk

Figure 2-1: Hyperbolic Visualization (a) Due to the negative curvature, the distance be-
tween points grows exponentially with respect to Euclidean distance as points approach the
boundary. This leads to shortest paths that are not straight lines, but segments of circles
orthogonal to the boundary (b) A tree embedding with all connected nodes equally spaced
(all segments are of equal hyperbolic length). (Visualations taken from [32])

HGCN that learns the curvature of the space instead of assuming a fixed curvature,

which allows for more precise projection to Euclidean space, and learns an attention

vector that weights messages for aggregation. These two papers cover fundamentally

different tasks. HGCN takes one or a few large graphs, predicts missing links and

classifies nodes. For example, the model takes a graph of the world’s airports and

predicts the population of the region to which the airport belongs. Alternatively,

HGNN classifies the graphs themselves (i.e., predicting properties of a molecule).
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Chapter 3

Methods

The following section will present the pipeline for the MEG embeddings and corre-

sponding design choices. Section 3.1 describes the patient study, Section 3.2 describes

how the connectivity matrix is formed from raw MEG, Section 3.3 describes choices

in creating the graph from the connectivity matrix, Section 3.4 describes the core

HGCN embedding algorithm and modifications made too it.

3.1 Participants

The following study consists of an initial cognitive screening and MEG, an experi-

mental period and a follow up screening and MEG. For further detail, see[45]

Recruitment for this study was from Centre for Prevention of Cognitive Impairment

(Madrid Salud), the FAculty of Psychology of the Complutense University of Madrid

(UCM), and the hospital Clinico San Carlos (HCSC) in Madrid, Spain between Jan-

uary 2014 and December 2015. All participants were between 65-80 years old, right-

handed and Spanish natives.

During the initial screening, patients were assessed on various cognitive tasks in-

cluding – and placed into the SCD or Healthy Control (HC) groups based on diagno-

sis. The diagnosis of SCD was agreed on by multidisciplinary consensus in accordance

with the following criteria i. Self-reported cognitive concern ii. No possible SCD con-

23



founders such as medication or psycho-affective disorders). iii. Patient > 60 years

at the onset of SCD iv. SCD occuring within last 5 years v. Patient does not have

MCI. MCI patients were additionally not eligble for the health control group. The

eligible group was further narrowed by removing 34 patients who did not atttent the

second MEG session and 22 patients whose scans presented technical reconstruction

issues. The resulting sample consists of 41 HC and 49 SCD patients. These patients

were randomly split into a trained group (n=46, 24 SCD) that underwent a cognitive

training program and placebo group (n=44, 25 of which SCD). These groups were

adjusted for age. The experimental group (Trained) underwent the training according

to the UMAM Method[33].

3.2 MEG

3.2.1 Data Acquisition and pre-processing

MEGs were acquired at the Laboratory of Cognitive and Computational Neuroscience

(UCM-UPM) in the Centre of Biomedical Technology (CTB)(Madrid, Spain) using a

306 channel (102 magnetometers, 204 planar gradiometers). Four minutes of resting-

state electrophysiological activity were recording while patients rested awake with

their eyes closed. MEG data were acquired using a sampling rate of 1000 Hz and

an online anti-alias band-pass filter between 0.1 and 330 Hz. Recordings were pro-

cessed offline using a tempo-spatial filtering algorithm [47] to eliminate magnetic noise

originating outside the head. This algorithm was repeated to compensate for head

movement during the recording. Data were segmented into 4-s intervals of artifact-free

activity (epochs). The number of clean epochs did not differ across groups,

3.2.2 Source Reconstruction

Clean epochs were band-pass filtered into classic MEG bands Table 1.1 using a 1800th

order FIR filter using a hamming window. To avoid edge effects, the epochs were

padded with 2 seconds of real data on each end, which were removed upon filtering.
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The source model consisted of 1220 sources that were places in a homogeneous grid of 1

cm using the Montreal Neurological Institute (MNI) template which was converted to

subject space by affine transformation. MEG sources were anatomically parcelled into

90 regions of interest (ROI) as defined in the Automated Anatomical Labeling atlas

[36]. The lead field was calculated with a single-shell head model [37] with a unique

boundary defined by the inner skull generated from the individual T-1 weighted MRI

using Fieldtrip. Source reconstruction was performed for each subject using a Linearly

Constrained Minimum Variance (LCMV) beamformers [48]. Beamformer Filters were

obtained using the computed lead field, the epoch averaged covariance matrix, and a

1pct regularization matrix.

3.2.3 Connectivity Analysis

Functional Connectivity (FC) between each source was estimated using the phase

locking value (PLV) which estimates source to source connectivity according the phase

synchronization [37]. This metric is based on the assumption that the degree of non-

uniformity of phase differences between two time-series is a proxy of their coupling.

PLV has shown high reliability across MEG recordings [18]. Connectivity of ROI to

ROI was calculated by averaging the pairwise PLV values between all sources in any

two ROIs:

𝑃𝐿𝑉𝐴,𝐵 =
1

𝑁𝐴𝑁𝐵

∑︁
𝑁𝐴

∑︁
𝑁𝐵

⃒⃒⃒⃒
⃒ 1𝑇 ∑︁

𝑡

𝑒−𝑗(𝜑𝐴𝑘
(𝑡)−𝜑𝐵𝑙

(𝑡))

⃒⃒⃒⃒
⃒ (3.1)

where 𝜑𝐴𝑘
(𝑡) and 𝜑𝐵𝑙

(𝑡) are the instantaneous phases of the signal 𝐴𝑘 and 𝐵𝑙 at

the instant 𝑡, 𝑇 is the number of temporal points per epoch, 𝑗 is the imaginary unit,

𝑁𝐴 is the number of sources in area A, and 𝐴𝑘 is the 𝑘th source inside that area.

We calculate this value for every source, for every frequency band, and are left with

six 90x90 connectivity matrices (one for each frequency band).

3.2.4 RSN Assignment

Resting State Networks (RSNs) are subnetworks of ROIs that act together for different

mental functions. Changes in the patterns of these RSNs are known to be indicators
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of neural disturbances, such as the pDMN hyperactivation in patients with SCD [45].

Atlases that describe ROIs of these functional networks often differ greatly from

structural atlases like the AAL because they are based on patterns of communication

instead of physical structures in the brain. Through an accumulation of studies

into different RSNs [43][6][21][5], we form a collective atlas which we will refer to at

𝐴𝑡𝑙𝑅𝑆𝑁 . 𝐴𝑡𝑙𝑅𝑆𝑁 describes 8 RSNs. RSNs contain anywhere from 4 to 12 Functional

ROIs, which we are defined by a 3d coordinates. In order to assign ROIs in AAL to

RSNs described in 𝐴𝑡𝑙𝑅𝑆𝑁 , we adopt a simple technique of mapping regions that

have significant spatial overlap using the center coordinates of each 𝐴𝑡𝑙𝑅𝑆𝑁 ROI

and the grid coordinate of each MEG source. Each source is included in a functional

ROI if it falls within a certain radius 𝑟 of the center of that ROI. Each AAL ROI is

given an inclusion score for each RSN indicating the percentage of its sources that

fall within 𝑟. Mathematically speaking:

𝑃𝑅,𝐴 =
1

𝑁𝐴

∑︁
𝑁𝐴

∑︁
𝑁𝑅

⎧⎪⎨⎪⎩1, if 𝑑𝑖𝑠𝑡(𝐶𝐴𝑘
, 𝐶𝑅𝑓

) < 𝑟

0, otherwise
(3.2)

Where 𝐴,𝑁𝐴,and 𝐴𝑘 are as before, 𝑅 is a certain functional RSN in 𝐴𝑡𝑙𝑅𝑆𝑁 , 𝑅𝑓

is a the 𝑓𝑡ℎ functional ROI belonging to 𝑅, 𝑁𝑅 is the number of functional ROIs in

𝑅, 𝑃𝑅,𝐴 is the probability that region 𝐴 belongs to 𝑅, 𝑑𝑖𝑠𝑡 is the distance between

two points, 𝐶𝑖 is the 3d subject space coordinate of point i, and 𝑟 is the threshold

radius. Note that an average is only taken over the number 𝑁𝐴, not 𝑁𝑅, because the

score calculates the percentage of all nodes in 𝐴 that are near any ROI in 𝑅.

Lastly, an inclusion threshold 𝑡 is selected such that 𝐴 is assigned to 𝑅 if 𝑃𝑅,𝐴 > 𝑡.

ROIs are allowed to be assigned to multiple RSNs. 𝑟 was selected at 1.5 cm to account

for the 1 cm resolution of MNI coordinates. This threshold gives enough space for
√
2𝑐𝑚 which allows for all coordinate cubes that share at least one edge. Given 𝑟, 𝑡

was chosen to be .3, as it limited all RSNs to reasonable size and regions known to

belong to a network were correctly placed. Figure 3-1 shows a summary of RSNs,

while Appendix A shows full inclusion lists for each RSN.
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Figure 3-1: Resting State Networks and an example ROI.

3.2.5 Noisy Augmentation

The data is augmented by randomly injecting gaussian noise into the ROI connectivity

matrix of each band at low levels (𝜎 = 𝜎𝑏 * .01) where 𝜎𝑏 is the standard deviation

of the MEG band 𝑏 for the entire dataset. This is applied 3 times per scan to create

𝑛 = 180 * 3 = 540 scans per band.

3.3 Creating Brain-Graph

3.3.1 Band Selection

Given the scope of our analysis, we limit our data to two MEG bands. Previous

statistical analysis of this dataset in [45] studies effects of SCD on the alpha band

connectivity, which clearly warrant further analysis. In order to maximize informa-

tion, we would like to analyze the band that shares the least information with the

alpha band. Figure 3-2 shows the average correlation value between bands for the

PLV values of the corresponding ROIs. We note that the alpha band is significantly

less correlated with other bands. Additionally, the lowest correlation of any two bands

is Alpha with Gamma. With this in mind and given other research showing gamma

band pathological influence, we will study Alpha and Gamma bands.
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Figure 3-2: Average correlation of bands tends to increase based on their spectral
proximity

3.3.2 Threshold Selection

The connectivity matrix is transformed into a binary adjacency matrix by applying

a threshold. Values above this threshold will become a 1 and signify an edge while

the rest will be become 0s. The PLV distributions of the bands differ, so we select a

consistent percentile that will translate to the individual thresholds in each band. We

select the eightieth percentile, which corresponds to .329 and .247 PLV for the alpha

and gamma bands respectively. This is the highest threshold value before the graphs

become disconnected. A highly disconnected graph causes problems for a HGCN

as nodes become isolated from the any incoming messages. This problem is slightly

remedied by adding a virtual node that is with connections to every node as discussed

in [29]

3.3.3 Input Features

Selection of input features is key to a meaningful information aggregation in all graph-

based neural networks. The selected information will be passed back and forth but

this aggregation cannot make meaning out of nothing. For example,an atom can be

represented as a one-hot feature for describing its atom type and an integer of its

atomic weight [29], while a PPI can be represented as a 16-dimensional feature of

RNA expression levels of the corresponding proteins [46] and an article in a citation

network can be represented by a bag-of-words vector indicating word presence in
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the title or text body. For graphs without obvious node features, structural node

features, such as node degree, can help GNNs capture information on neighborhood

patterns.[13]. Alternatively, each node can be given a unique one-hot identity vector

to capture information unique to that node, although this be unsuitable for large

graphs as the number of parameters will explode with the number of nodes.

Previous GNN research in brain connectomics has used a mix of the previous methods.

[12] The connectivity vector for each node can be used as the input feature [28] ,

although this runs into the scaling consideration as the identity vector. A final idea

is to leverage the symmetry of the AAL atlas by creating a binary "Side-of-Brain"

variable and an identity vector that is shared by the corresponding left and right

ROIs, shrinking the input space by slightly less than half.

3.4 HGCN

We use the HGCN architecture found in [11] as the core of our embedding model.

However, we make several modifications. As we discuss, some modifications are made

to make the model more suitable to our problem, while others to update the model

given recent advancements in hyperbolic machine learning.

3.4.1 Prediction loss via FermiDirac Decoder

For linking prediction and optimization, the HGCN uses the Fermi-Dirac decoder as

described in [32][27]. The Fermi-Dirac decoder is a generalization that computes,

given some metric distance 𝑑(𝑖, 𝑗), the probability of an edge existing between nodes

𝑖,𝑗 according to 𝑃 (𝑖 ∈ 𝑁𝑗|𝑥𝐿
𝑖 , 𝑥

𝐿
𝑗 ) = 1

𝑒(𝑑(𝑖,𝑗)−𝑟)/𝑡+1
. Here, 𝑟 represents the inflection

point at which the probability of an edge transitions from above .5 to below and 𝑡

represents the steepness the probability rise and falls beyond that point, as demon-

strated in Figure 3-3. We expand on the FermiDirac decoder in section Figure 3.4.2

to create a loss function weighted by the connection strength instead of our derived

binary edges. Additionally, we explore learnable fermi-dirac parameters in Figure

3.4.5
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(a) The 𝑘 parameter horizontally shifts
the probability distribution

(b) The 𝑡 parameter shifts steepness of
the probability distribution.

Figure 3-3: Fermi-Dirac Probability Distributions with varying parameters

3.4.2 Weighted Loss Function

Although our model uses binary edges, we would like to make as much use of the initial

PLV values as possible. One possibility is to use the PLV features as input vectors

to the HGCN. Additionally, we can infuse the PLV values into our loss function.

The Fermi-Dirac decoder is described as predicting connection probability, but the

predicted quantity need not be an actual probability. Following this idea, we stretch

the PLV values to the [0,1] range and treat this value as the ground truth probability

of a connection. The model then learns to predict this value, so that nodes connected

by the highest PLV value will not be treated the same as nodes with a PLV value

just above the threshold.

3.4.3 Iterative Training

The original HGCN framework is designed for link prediction in large scale graphs,

such as airport networks and disease networks with nodes from between 500 to 5000

nodes. In general, they are single graphs that are learned with the validation being

held out edges on the same graph. The HGCN is inductive, as shown by an experi-

ment on a disease progression network in which the model was trained on one distinct
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subgraph and validated on the another.

Our task is fundamentally different as it seeks to synthesizing learning from many sim-

ilar graphs. Thus we implemented an iterative training schedule with batch learning

that is standard in current deep learning.

3.4.4 Frechet Mean

As discussed in Section 2.3.1, the aggregation of messages is a fundamental step in

any Graph Convolutional Neural Network. The most common method of aggregation

is to take the mean of all incoming messages. In the hyperbolic space, the execution of

a mean operation is not a trivial. The hyperbolic analogue of the mean is the Frechet

Mean, which did not have a close form, differentiable solution until developments

after the publication of the HGCN [30]. With this in mind, we replace the simplify

the HGCN by removing the attention-based aggregation layer with a Frechet Mean

aggregation. This eliminates unnecessary parameters as well as avoiding an additional

logarithmic map to the tangent space.

3.4.5 Learnable Fermi Dirac Parameters

Previous work on hyperbolic embeddings has treated the 𝑘 and 𝑡 parameters as hy-

perparameters, where both papers take them to be 2 and 1 respectively. Changes to

these parameters change the optimal embedding space, so a deeper inspection seems

to be warranted. As mention in [11], changes to the curvature of the geometry itself

can be mimicked by finding the correct 𝑘,𝑡 pair. In that vein, we create 𝐹𝐷 mode for

the HGCN in which the model’s normal parameters are frozen and the Fermi-Dirac

features are adjusted by gradient descent. The training protocol alternated so that

the model is put in 𝐹𝐷 mode on every third epoch, jointly learning the embeddings

and the optimal distance function. This feature is used for exploratory purposes only

to prevent instability in the analyzed embeddings.
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Chapter 4

Results

In this section, we will describe results of link embeddings through several lenses.

First, we look at the quality of embeddings in terms of link prediction in 4.1.1.

Then we will analyze the patterns of brain regions and rsns and differences across

brain waves in 4.2. Finally, we will examine differences between disease groups from

statistical method and classification in 4.3 and 4.4.

4.1 Embedding Results

4.1.1 Link Prediction

Although our models are trained using the fermi-dirac decoder for probability pre-

diction, we measure the embedding quality using a standard metric, mean average

precision (mAP) so that comparisons can be made on a standard scale. We use the

mAP to assess both the optimal embedding dimension and to show the benefits of

using the hyperbolic geometry for our embeddings in Figure 4-1. We find that the

hyperbolic embeddings consistently outperform the euclidean embeddings, especially

at the lowest dimensions. Based on the diminishing improvements after adding more

than 3 dimensions, we use 3 dimensions for the remainder of our analysis.
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Figure 4-1: Mean Average Precision for Hyperbolic and Euclidean embeddings of the
alpha band with different numbers of dimensions.

4.2 Brain Analysis

In this section, we analyze the embeddings themselves for patterns and hierarchies.

On visual inspection of the embeddings in Figure 4-2, we see that the ROIs in the

Salience Network and Posterior Default Mode Network seem to be the most central

to hyperbolic hierarchy. Additionally, we see a strong divide between regions on

the left and right hemispheres. RSNs generally are divided symmetrically across the

axis of the hemisphere. Certain RSNs (Visual, Anterior DMN) are clustered tightly

along that hemisphere so that all the nodes connect, where as other RSNs (Ventral

Attention, Frontoparietal) are symmetrical at a distance. One may predict that the

ROIs assigned to an RSN are the most important to brain function and would all

be centrally located. Figure 4-3 show that many unassigned nodes are located more

centrally than nodes in RSNs.

A visual comparision of the gamma embeddings shows that many nodes are pushed

closer to the edges than in the alpha embeddings, particularly one cluster that involved

the dominated by the Visual Network. In general, the alpha band embeddings seem

to be spread more evenly across the disk than gamma band embeddings.
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(a) Alpha band embeddings show clear
distinctions across side of the brain and
symetrical clusters of RSNs

(b) Embedding of the Gamma band
shows similar patterns, but with certain
clusters pushed toward the disk bound-
ary.

Figure 4-2: 2D Hyperbolic Embeddings of Patient 50 (plotting only ROIs that are
assigned to an RSN)

(a) Alpha Band embeddings show nodes
spread evenly across the disk.

(b) Gamma Band embeddings show a
skewed distribution of brain regions.

Figure 4-3: 2D Hyperbolic Embeddings of Patient 90 (plotting all nodes)
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4.2.1 Hyperbolic Feature Analysis

Our analysis in the following passages shows several plots similar to 4-4. The metric

"Cluster Radius from Origin" describes the average hyperbolic distance of every node

in any particular cluster. A low radius corresponds to a more central cluster. The

metric "Cluster Cohesion" describes the average pairwise distance between all nodes

in the same RSN. A low cohesion corresponds to a tightly embedded cluster. The

cluster in question can be found directly below the plot. The two cluster types we look

at are "All" and "RSN", where "All" is every node in a scan and "RSN" is every node

assigned to that RSN. The plots show the group-wise probability distributions for a

metric for some split in the data (ie. Alpha/Gamma bands, Healthy/SCD patients).

P-value statistics indicate the probality that the group distributions are statistically

significant. A star denotes significant p-value and q-values, where the q-value is an

FDR correction. Each node radius is averaged over 10 random initialized HGCN

training sessions.

4.2.2 Alpha-Gamma Band Analysis

Following that format, we analyze differences in the Alpha and Gamma band em-

beddings. In Figure 4-4a, we broadly analyze the embeddings by overall hyperbolic

radius. We find that the average node is closer to the origin in the Alpha than the

Gamma embeddings. This may indicate a more connected network. Next, we ana-

lyze the RSNs in 4-4b and find that the changes in hyperbolic radius are not uniform

across functional subnetworks. Rather some RSNs tend closer to the center in Gamma

bands (aDMN, SN) while others tend rather away (VN, FPN). Overall, RSNs radii in

the Alpha band are more evenly distributed, compared to the Gamma band in which

certain RSNs are very central and others are much more distal.
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(a) Alpha Embeddings result in nodes
that are closer to the origin on average.

(b) Closer analysis show the changes of in
hierarchy of RSNs.

Figure 4-4: Statistical Difference in embedding radius (q value < .05 considered
significant, FDR corrected for p-values)

4.3 Disease Analysis

In this section, we perform a similar analysis on embedding differences in the SCD

and HC groups with separate comparisons made for the Alpha and Gamma bands.

Figures 4-5a and 4-5c show a similar trend among RSNS: the most dorsal regions

increase in centrality. This corresponds with existing literature that describes an

hypersynchronicity of neural activity in early stages of the AD cascade. Figures

4-5b and 4-5d show a related trend: a tightening of clusters. Most of RSNs with

significant cluster tightening also significantly increased their hierarchy. This may

mean that the nodes in that region became more active overall, and not just within

their cluster. The exception to this is the Posterior Default Mode Network. While

the pDMN experiences slight, but non-significant, decrease in radius, the difference

in cluster cohesion is quite significant in both sets of embeddings, possibly signifying

an insulation of the network.

4.4 Disease Classification

Finally, we show the usefulness of our method feature extraction for downstream tasks

by performing classification tasks with and without the hyperbolic radius features.
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(a) RSN Cluster Radius (Alpha) (b) RSN Cluster Cohesion (Alpha)

(c) RSN Cluster Radius (Gamma) (d) RSN Cluster Cohesion (Gamma)

Figure 4-5: Between group changes in RSN embedding statistics between HC and SCD
groups
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Figure 4-6: Disease Classification AUC-ROC Scores.

We discuss results as seen in Figure 4-6. Using an SVC classifier, we first attempt

to classify our patients as HC or SCD with the raw PLV adjacency matrices. This

method provides a .67 and .77 area under the ROC curve (AUC-ROC) for Alpha and

Gamma bands respectively. Next we augment the PLV matrix of each band with the

RSN Features from that band (Same Band Embedding), which increases AUC-ROC

scores to .73 and .78.

Given the lack of complete correlation show in 3.3.1, we anticipate an increase in

classification score from combining the information of the two bands. By combining

the two PLV matrices (Raw Alpha + Raw Gamma), we increase ROC-AUC to .8.

Finally, we augment each PLV value with the RSN Features from the other band

(PLV + Cross Band Embedding), and see our highest scores of .8 and .86.

These results demonstrate two ways that the embeddings are useful. i. In the case

of same band embeddings, the embeddings have extracted information that was not

useful in the PLV form, ii. in the case of cross band embeddings, the embeddings’

fewer dimensions creates a dense packaging of information compared to concatenating

two already large matrices.
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Chapter 5

Discussion and Limitations

Our study supports analysis done by [45] suggesting a hypersynchronicity in sub-

jects with SCD. However, while their analysis finds specific increases in the posterior

Default Mode Network, our method suggests an alternate framework in which the

pDMN remains stationary at the center of a shrinking hierarchy.

These implications are further supported by hypersyncronicity in the gamma fre-

quency band. Further research into the similarities and differences between the bands

could examine the role of structural hierarchies of the resulting functional networks.

Based on the visual skew of the embeddings and the lack of information gain from

Same-Band embedding augmentation, the gamma band initially seems to be a less

natural fit in the hyperbolic space. However, this may be an artifact of an unrelated

circumstance and should be investigated further.

Additionally, this study did not explore the effects of cognitive training on the sub-

jects. In keeping with the spirit of early training and understanding of the AD

cascade, an in-depth analysis of the cognitive training on the changes in hierarchy

could provide a more causal understanding of resulting changes in hierarchy.
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Appendix A

Resting State Network Assignments

Figure A-1: DAN ROI Assignment
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Figure A-2: FPN ROI Assignment

Figure A-3: pDMN ROI Assignment

Figure A-4: SMN ROI Assignment

Figure A-5: VAN ROI Assignment

Figure A-6: VAN ROI Assignment

Figure A-7: aDMN ROI Assignment
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