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Abstract

Every algorithmic learning problem becomes vastly more tractable when reduced to
a convex program, yet few can be simplified this way. At the heart of this thesis are
two hard problems with unexpected convex reformulations. The Paulsen problem, a
longstanding open problem in operator theory, was recently resolved by Kwok et al
[40]. We use a convex program due to Barthe to present a dramatically simpler proof
with an accompanying efficient algorithm that also achieves a better bound. Next,
we examine the related operator scaling problem, whose fastest known algorithm uses
convex optimization in non-Euclidean space. We expose a fundamental obstruction
to such techniques by proving that, under realistic noise conditions, hyperbolic space
admits no analogue of Nesterov’s accelerated gradient descent. Finally, we generalize
Bresler’s structure learning algorithm from Ising models to arbitrary graphical models.
We compare our results to a recent convex programming reformulation of the same
problem. Notably, in variants of the problem where one only receives partial samples,
our combinatorial algorithm is almost unaffected, whereas the convex approach fails
to get off the ground.

Thesis Supervisor: Ankur Moitra
Title: Norbert Wiener Professor of Mathematics
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Chapter 1

Introduction

Modern machine learning owes its life to nonconvex optimization. Throwing gradient

descent at a problem as complicated as a neural network’s loss function will never

work in theory, but engineers do not seem to care.

However, nonconvex optimization is expensive in both time and energy [27]. Also,

despite the apparent generality of stochastic gradient descent, toolbox of tricks are

frequently required to avoid overfitting or bursting into a slurry of NaNs [42]. In

rare happy occasions though, we can formulate a learning problem in terms of convex

optimization. For example, consider matrix completion, the problem of filling in the

missing entries in a matrix to make it low-rank. Matrix completion was inspired by

the Netflix Prize [14], which tasked researchers with filling in the unknown entries of

a matrix 𝑁 whose 𝑖𝑗th entry is how many stars user 𝑖 rates movie 𝑗. It is reasonable

to guess that 𝑁 is approximately low-rank, if its entries depend only on a limited

number of factors such as movie genre, number of explosions, etc.

Though matrix completion is NP-complete, Candes and Tao [14] showed that,

under realistic incoherence conditions, it can be solved exactly by minimizing the

‘nuclear norm’ of the matrix. Since the nuclear norm of a matrix is a convex function

of the entries, Candes and Tao’s result is a miraculous case of a non-convex problem

being reformulated as a convex program.

The thrust of this thesis is twofold. We will see two more cases of hard problems –

graphical model structure learning and the Paulsen problem – solved using fortuitous
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convex formulations. Yet, we will also see some fundamental limits of convex opti-

mization. In the case of graphical model structure learning, the delicate construction

of the ‘miraculous’ convex program renders it inflexible to small perturbations of the

problem. Combinatorial approaches, on the other hand, can easily adapt to such

changes. Meanwhile for the Paulsen problem, we will explore a generalization which

ties into the far-reaching problem of convex optimization in non-Euclidean manifolds.

We will prove a new and fundamental lower bound on how efficient convex optimiza-

tion can be in negatively curved geometries.
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1.1 The Paulsen problem

The Paulsen problem was once thought to be “one of the most intractable problems

[in frame theory]” [17, 16]. To state the problem, we need the following definition:

Definition 1. We say that a set of vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ R𝑑 is an equal norm

Parseval frame if
𝑛∑︁

𝑖=1

𝑣𝑖𝑣
𝑇
𝑖 = 𝐼 and ‖𝑣𝑖‖2 =

𝑑

𝑛
for each 𝑖.

Alternatively, we say that it is an 𝜀-nearly equal norm Parseval frame if

(1− 𝜀)𝐼 ⪯
𝑛∑︁

𝑖=1

𝑣𝑖𝑣
𝑇
𝑖 ⪯ (1 + 𝜀)𝐼 and (1− 𝜀)

𝑑

𝑛
≤ ‖𝑣𝑖‖2 ≤ (1 + 𝜀)

𝑑

𝑛
for each 𝑖.

Equal-norm Parseval frames are a generalization of orthonormal bases. Indeed,

when 𝑛 = 𝑑, they are the same thing.

Let us list a few examples of equal-norm Parseval frames. The vertices of any

Platonic solid work, because the high degree of symmetry of these solids guarantees

that the vertices are in isotropic position. The union of two equal-norm Parseval

frames, scaled appropriately, is also equal-norm Parseval. The examples end there.

Only a few other algebraic constructions are known [59].

Signal decoding algorithms perform especially well for equal-norm Parseval frames

that also satisfy the Grassmannian property, meaning the closest pair of vectors is as

far apart as possible [48]. Such frames also see application in quantum information

theory [45]. Unfortunately, they are difficult to construct.

Holmes and Paulsen [31] observed that large frames with random vectors are,

with high probability, 𝜀-nearly equal norm Parseval. They attempted to construct a

nearly-optimal frame by first finding a large Grassmannian frame, and then correcting

it to be equal-norm Parseval. But is this actually possible? Given an 𝜀-nearly equal

norm Parseval frame, can we always nudge each vector by a small distance to make it

exactly equal-norm Parseval? This question became known as the Paulsen problem

[6]. Let us formally state it now:

11



Question 1. Let 𝑣1, . . . , 𝑣𝑛 ∈ R𝑑 be an arbitrary 𝜀-nearly equal norm Parseval frame.

Does there necessarily exist an exactly equal norm Parseval frame 𝑤1, . . . , 𝑤𝑛 ∈ R𝑑,

such that the total squared distance
∑︀

‖𝑣𝑖 − 𝑤𝑖‖2 is at most 𝑝𝑜𝑙𝑦(𝑑, 𝜀)? What is the

best upper bound on the total squared distance?1

1.1.1 Prior work

How does one nudge a frame so that it satisfies both the equal-norm and Parse-

val equalities? The most vanilla method is gradient descent. Casazza, Fickus, and

Mixon [18] showed that when 𝑛 and 𝑑 are relatively prime, gradient descent achieves

total squared distance 𝑂(𝑑42𝑛14𝜀2). Unfortunately this does not resolve the Paulsen

problem because the bound depends on 𝑛.

Kwok, Lau, Lee and Ramachandran [40] gave the first bound that was polyno-

mial in 𝜀 and 𝑑. Through a tour-de-force utilizing operator scaling, connections to

dynamical systems and ideas from smoothed analysis, they proved that the squared

distance can be bounded by 𝑂(𝜀𝑑13/2).

Their proof works by defining a differential equation that continuously nudges a

frame in order to simultaneously correct the
∑︀

𝑣𝑖𝑣
𝑇
𝑖 = 𝐼 and ‖𝑣𝑖‖2 = 𝑑

𝑛
conditions.

The flow does not have an obvious interpretation as a gradient descent. They show

that naively applying this flow amasses total squared distance 𝑂(𝜀𝑑2𝑛). However, by

first perturbing the vectors randomly, the total squared distance loses its dependence

on 𝑛 and goes down to 𝑂(𝜀𝑑13/2).

1.1.2 A connection to convex optimization

The space of possible vector-nudging strategies is dauntingly large. We will follow the

truism ‘restrictions breed creativity’ and restrict ourselves to a simple strategy: pick

a linear transformation 𝐴 and then move each vector 𝑣𝑖 to
√︀
𝑑/𝑛 𝐴𝑣𝑖

‖𝐴𝑣𝑖‖ . Now our task

is twofold: (a) prove that it is always possible to make an equal-norm Parseval frame

this way, and (b) prove that if 𝐴 is chosen well, then the total squared distance is
1Or to word it confusingly: is a nearly equal norm Parseval frame always nearly an equal norm

Parseval frame?
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small. For our first task, we will appeal to a connection between the Paulsen problem

and convex optimization first discovered by Barthe.

Problem 2. Given vectors 𝑣1, . . . , 𝑣𝑛, find a square matrix 𝐴 such that the scaled

unit vectors ̂︂𝐴𝑣1, . . . ,̂︂𝐴𝑣𝑛 are Parseval.

Barthe [5] analyzed this problem and found an unexpected relationship between 𝐴

and the solution to a convex program. Hardt and Moitra [30] also studied this convex

optimization problem, giving necessary and sufficient criteria for its solvability, as

well as proving a strong convexity condition that implies an efficient solution.2 It

turns out the problem can always be solved as long as not too many of the vectors 𝑣𝑖

lie in a low-dimensional subspace.

1.1.3 Our contribution

The first resolution of the Paulsen problem, Kwok et al’s tour-de-force paper, was

104 pages long and highly complex. Our contribution is a dramatically simpler proof,

that also yields a much better bound and comes with a simple efficient algorithm.

Theorem 3. For each 𝜀-nearly equal norm Parseval frame 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ R𝑑, there

exists an exactly equal norm Parseval frame 𝑤1, 𝑤2, . . . , 𝑤𝑛 with total squared distance∑︀
‖𝑣𝑖 − 𝑤𝑖‖2 = 𝑂(𝜀𝑑2).

Specifically: let 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ R𝑑 be an 𝜀-nearly equal norm Parseval frame with

vectors in general position3. Then using Barthe’s work, one can efficiently find a pos-

itive semidefinite matrix 𝐴 such that
√︁

𝑑
𝑛
̂︂𝐴𝑣1, . . . ,√︁ 𝑑

𝑛
̂︂𝐴𝑣𝑛 is an equal-norm Parseval

frame. We prove in Chapter 2 that the total squared distance
∑︁⃦⃦⃦

𝑣𝑖 −
√︁

𝑑
𝑛
̂︂𝐴𝑣𝑖⃦⃦⃦2 is

at most 𝑂(𝜀𝑑2).

It is easy to construct examples requiring 𝑂(𝜀𝑑) total squared distance [17]. It

would be interesting to close the gap between 𝑂(𝜀𝑑) and 𝑂(𝜀𝑑2).
2Barthe’s paper as well as Hardt and Moitra’s use the term “radial isotropic position” rather than

“Parseval frame.” Vectors are said to be in radial isotropic position iff their scaled unit vectors are
Parseval.

3Vectors not in general position are no obstruction. Just randomly nudge them by an arbitrarily
small amount before applying this theorem.
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1.2 Convex optimization in curved geometries

1.2.1 A generalization of our Paulsen strategy

The operator scaling problem, defined by Gurvits [29], is a multidimensional general-

ization of our linear-transformation-based strategy for handling the Paulsen problem.

Problem 4 (Operator Scaling). Given matrices 𝑉1, . . . , 𝑉𝑛 : R𝑑 → R𝑛 where 𝑑 > 𝑛,

find matrices 𝑆 : R𝑛 → R𝑛 and 𝐴 : R𝑑 → R𝑑 so that, setting 𝑊𝑖 = 𝑆𝑉𝑖𝐴, we have

∑︁
𝑊𝑖𝑊

𝑇
𝑖 = 𝐼𝑛 and

∑︁
𝑊 𝑇

𝑖 𝑊𝑖 =
𝑚

𝑑
𝐼𝑑.

The two equality conditions here should spark déjà vu back to the definition of

an equal-norm Parseval frame. Kwok et al [40] noticed that Problem 2, our linear-

transformation-based strategy for the Paulsen problem, can be reduced to operator

scaling. Say we want to solve Problem 2 for a certain list of vectors 𝑣1, . . . , 𝑣𝑛 ∈ R𝑑.

Construct an equivalent instance of operator scaling by defining each 𝑉𝑖 as the matrix

whose 𝑖th column is 𝑣𝑖 and whose other columns are zero. Why is this equivalent?

Well, let (𝑆,𝐴) be the solution to this operator scaling problem. The matrix 𝐴 is the

solution to the original instance of Problem 2, taking the role of transforming each

vector 𝑣𝑖 via the same linear transformation. Then, 𝑆 scales each resulting vector to

have unit norm. The two equality conditions in the operator scaling problem mandate

the unit norm and Parseval conditions respectively.

The fastest known algorithm for operator scaling uses convex optimization [3].

However, rather than the typical convex optimization in Euclidean space, this algo-

rithm optimizes a geodesically convex function defined over a specific space of PSD

matrices.

1.3 Geodesically convex optimization

The first and most fundamental question about convex optimization is: what is the

fastest way to do it? In this work we consider first-order black-box convex optimiza-

14



tion. This means that there is an unknown function 𝑓 promised to be convex, and an

algorithm can query any point 𝑥 to learn 𝑓(𝑥) and ∇𝑓(𝑥). The goal of the algorithm

is to find a point 𝑥 such that 𝑓(𝑥)− 𝑓(𝑥⋆) < 𝜀, where 𝑥⋆ denotes the minimizer of 𝑓 .

In 1983, Nesterov solved this problem for Euclidean space with his breakthrough

discovery of accelerated gradient descent [43]. This technique is also known as

adding a momentum term. For an 𝛼-smooth and 𝛽-strongly convex function 𝑓

whose minimum is distance 𝑟 from the origin, the task of finding a point 𝑥 satis-

fying 𝑓(𝑥)− 𝑓(𝑥⋆) < 𝜀 takes 𝑂(𝛽/𝛼 · log(𝑟/𝜀)) queries for ordinary gradient descent.

But accelerated gradient descent needs just 𝑂(
√︀
𝛽/𝛼 · log(𝑟/𝜀)) queries, a quadratic

improvement.

Nesterov’s method is provably optimal [43], thus completing our understanding in

Euclidean space. But what about in curved spaces?

In other manifolds, the natural analogue of ‘convex’ is called ‘geodesically convex’:

Definition 2. A function 𝑓 : 𝑀 → R is geodesically convex if it is convex along

every geodesic. In other words, whenever 𝑥(𝑡) : R → 𝑀 parametrizes a constant-

speed geodesic, the function 𝑓(𝑥(𝑡)) must be convex.

In Euclidean space, a function is convex iff its Hessian (i.e. its matrix of second

derivatives) is everywhere semipositive definite. The properties 𝛼-smooth and 𝛽-

strongly convex are, likewise, equivalent to the Hessian having all eigenvalues at most

𝛼 and at least 𝛽. Pleasingly, this turns out to be true in curved manifolds as well

[55, 1, 54]. To define the Hessian in curved geometries, we use the property that all

manifolds look like Euclidean space if you zoom in far enough. Formally, given an

𝑛-dimensional manifold 𝑀 and a point 𝑥 ∈ 𝑀 , the exponential map, 𝑒𝑥𝑝𝑥 : R𝑛 → 𝑀 ,

maps 𝑥 to the origin, maps straight lines through the origin to geodesics through 𝑥,

and preserves angles at 𝑥. Pulling a function 𝑓 : 𝑀 → R back through the exponential

map allows us to compute its derivatives.

Optimization in curved spaces sees application in the fastest known algorithms

for computing Brascamp-Lieb constants [28, 3] and solving related problems like the

null cone problem [12, 10, 11]. In machine learning, it arises in matrix completion
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[13, 51, 57], dictionary learning [19, 49], robust subspace recovery [65], mixture models

[32] and optimization under orthogonality constraints [24]. In statistics, some basic

problems like estimating the shape of an elliptical distribution [61, 26] or estimating

matrix normal models [52, 4] are best viewed through the lens of geodesic convexity.

In recent years there has been significant effort to adapt the key tools and ideas in

convex optimization to the Riemannian setting. This includes giving new determin-

istic [63], stochastic [35, 53], variance-reduced [47, 62], projection-free [60], adaptive

[34] and saddle-point escaping [20, 50] first-order methods. Many new ingredients are

needed because the traditional analyses in the Euclidean setting rely on the linear

structure. Still, one of the key challenges has remained elusive thus far:

Is there a Nesterov-like accelerated gradient method for geodesically convex

functions on a Riemannian manifold?

This question is particularly natural in settings where the curvature is non-positive,

since it inherits many useful properties of Euclidean space such as having unique

geodesics between any pair of points. There has been notable partial progress. Zhang

and Sra [64] were among the first to clearly articulate this question. They gave

a method that achieves Nesterov-like acceleration if you start sufficiently close to

the optimum. Since then, the aim has been to develop methods that achieve global

acceleration. Ahn and Sra [2] gave a partial answer by giving a method that converges

strictly faster than gradient descent and eventually accelerates when close enough to

the optimum. Martínez-Rubio [41] gave a method that achieves global acceleration

but at the expense of having hidden constants that depend exponentially on the

diameter of the space.

1.3.1 Our contribution

We prove that under a realistic noise assumption, acceleration is impossible even in

the simplest of settings where we want to minimize a distance squared function in the

hyperbolic plane. Our proof assumes that the gradient oracle returns an answer that

has just an exponentially small amount of noise. In comparison, in the Euclidean
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setting it is possible to achieve Nesterov-like acceleration with an inverse polynomial

amount of noise [23].

Theorem 5. Given access to a 𝛿-noisy gradient oracle, any algorithm for finding a

point within distance 𝑟/5 of the minimum of a 1-strongly convex and 𝑂(𝑟)-smooth

function in the hyperbolic plane that succeeds with probability at least 2/3 must make

at least

Ω

(︂
𝑟

log 𝑟 + log 1/𝛿

)︂
queries in expectation. Here 𝑟 is a bound on how far the optimum is from the origin.

An accelerated method would require just 𝑂(
√
𝑟 log(𝑟)) queries. See Chapter 3

for the precise definition of 𝛿-noisy and full version of the theorem.

Remark. While it may at first seem like a limitation to restrict to functions whose

condition number depends on the radius, we show in Appendix A that in the hyper-

bolic plane this is inevitable in the sense that every geodesically convex function has

a condition number that is at least linear in the radius.

The key intuition is short and simple: In negatively curved spaces, the volume of a

ball grows so fast that information about the past gradients is not useful in the future.

Indeed for discrete approximations to the hyperbolic plane, it is not hard to make

this intuition precise. Take an infinite regular binary tree – a shape which embeds

isometrically into the hyperbolic plane. Suppose we are optimizing the distance-

squared function, starting from an unknown point in this tree distance 𝑟 away from

the optimum. Each query can only tell us how far we are from the optimum and

what direction along the tree to go. This is only 𝑂(log 𝑟) bits of information, so we

need 𝑂(𝑟/ log 𝑟) queries. Of course in the actual hyperbolic plane, the direction of the

gradient holds much more information than just one of the three possible directions

along a tree. This is roughly why we require the noise hypothesis for our result. This

intuition also helps clarify why existing acceleration results need to assume that you

are already within a constant neighborhood of the optimum or depend badly on the

radius.
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Subsequently, Criscitiello and Boumal [20] improved upon our result by discarding

the noise hypothesis. They replace the noise obstacle with a sequence of bump func-

tions, thereby preventing any deterministic algorithm from achieving acceleration in

a negatively curved space.
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1.4 Graphical models

Our final example of the application and limits of convex optimization comes from

graphical models, also known as Markov random fields. These are a popular model

for defining high-dimensional distributions of correlated discrete random variables.

Graphical models are named as such because they use a graph to encode conditional

dependencies among a collection of random variables. More precisely, the distribution

is described by an undirected graph 𝐺 = (𝑉,𝐸) where to each of the 𝑛 nodes 𝑢 ∈ 𝑉

we associate a random variable 𝑋𝑢 which takes on one of 𝑘𝑢 different states.

The first graphical model was physics’ Ising model [9]. There the 𝑛 nodes represent

particles which can each be either spin-up or spin-down. The potential energy of a

state 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of such a particle system, which we will denote by 𝐻𝜃(𝑥),4

depends both on individual particles and on pairwise interactions between them.

Because of this, 𝐻𝜃(𝑥) can be written in the form

𝐻𝜃(𝑥) := −
∑︁
𝑖

𝜃𝑖(𝑥𝑖)−
∑︁
𝑖1,𝑖2

𝜃𝑖1,𝑖2(𝑥𝑖, 𝑥2).

Here the 𝜃𝑖 and 𝜃𝑖1,𝑖2 are functions taking as input the state at node 𝑖 (respectively,

at nodes 𝑖1, 𝑖2) and outputting a contribution to the potential energy. The underlying

graph 𝐺 of this model has an edge between two nodes 𝑖1, 𝑖2 if these particles interact,

i.e. if 𝜃𝑖1,𝑖2 is not identically zero.

In physics, Ising models follow the Boltzmann distribution: the probability of the

system being in state 𝑥 is proportional to exp(−𝐻𝜃(𝑥)).5 A crucial property of this

distribution is that for any particle 𝑢, if we observe the states of its neighbors 𝑁(𝑢),

then it is not possible to gain even more information about the state of 𝑢 by observing

any other particles except for 𝑢 itself [36]. In other words, letting 𝑁(𝑢) denote the

set of 𝑢’s neighbors and 𝑋 the distribution of the system, the conditional mutual

information 𝐼(𝑋𝑢;𝑋𝐺∖𝑁(𝑢)∪{𝑢}|𝑋𝑁(𝑢)) is zero. We will call this the neighbor property.

Graphical models generalize Ising models in two ways. They allow nodes to have

4H is for Hamiltonian. (No relation.)
5In physics there is also a temperature term, but we will disregard this.
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more than two states, and they allow more than pairwise interactions. The potential

energy function of a graphical model is given by

𝐻𝜃(𝑥) = −
∑︁

𝑖1<𝑖2<···<𝑖ℓ

𝜃𝑖1𝑖2...𝑖ℓ(𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖ℓ).

Here the 𝜃𝑖1𝑖2...𝑖ℓ are functions [𝑘𝑖1 ] × · · · × [𝑘𝑖ℓ ] → R taking as input the states at

nodes 𝑖1, . . . , 𝑖ℓ. The 𝜃𝑖1𝑖2...𝑖ℓ must be identically zero if these nodes are not a clique

in the underlying graph 𝐺. As before, the probability of a state 𝑥 is proportional to

exp(−𝐻𝜃(𝑥)), so

Pr(�⃗� = 𝑥1, 𝑥2, . . . , 𝑥𝑛) = exp

(︃ ∑︁
𝑖1<𝑖2<···<𝑖ℓ

𝜃𝑖1𝑖2...𝑖ℓ(𝑥𝑖1 , 𝑥𝑖2 , . . . , 𝑥𝑖ℓ)− 𝐶

)︃
,

where 𝐶 is a constant to normalize the total probability to 1. It turns out that every

distribution of system states of 𝐺 with the neighbor property can be written in this

form, as long as every configuration has positive probability. [36]

In this paper, we will be primarily concerned with the structure learning problem.

Given samples from a graphical model, our goal is to learn the underlying graph 𝐺

with high probability.

1.4.1 Historical progress

It turns out the difficulty of structure learning hinges on the maximum degree of 𝐺.

Per Santhanam [46], when a graphical model’s underlying graph has 𝑛 nodes and

maximum degree 𝑑, structure learning requires a number of samples that scales like

exp(𝑑) log(𝑛). So recovering the graph requires time at least ≈ exp(𝑑) · 𝑛 log(𝑛).

Bresler, Mossel, and Sly were the first to give a learning algorithm for general

graphical models [8]. Their idea is that, using the neighbor property, one can verify

a guess for a node 𝑢’s neighborhood. Unfortunately, although their method is near-

optimal in sample complexity, running their algorithm requires exhaustively searching

over all possible neighborhoods for each node, which takes time 𝑂(𝑛𝑑).

In a 2014 breakthrough specific to the Ising model, Bresler [7] replaced the ex-
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haustive search with a greedy algorithm. For each node 𝑢, his algorithm grows a

candidate neighborhood 𝑆 so as to minimize the empirical 𝐼(𝑋𝑢;𝑋𝐺∖𝑆∪{𝑢};𝑋𝑆). Su-

perfluous vertices may get added to 𝑆, but they are pruned in the final step. This

algorithm remains near-optimal in sample complexity, and brings the running time

down to a comfortable 𝑂(𝑛2 log 𝑛), albeit with doubly-exponential dependence on the

maximum degree 𝑑.

In 2016, three different groups made simultaneous progress on the problem.

Vuffray et al [58] unveiled a totally different approach. Whereas all previous at-

tacks on structural learning were combinatorial, their paper relied on analysis and

convex optimization. They found a convex function 𝑓 whose minimizer is related

to the energy parameter 𝜃. Their method improves the dependence on 𝑑 to singly-

exponential, at the cost of raising the dependence on 𝑛 to 𝑂(𝑛4) (though they con-

jecture 𝑂(𝑛2) is possible).

Simultaneously, Kilvans and Meka [37] invented a new structure learning algorithm

using a sparse multiplicative weight update algorithm. Their method works for either

of the two generalizations of Ising model – non-binary states, or 𝑟-wise interactions –

but not (yet) both at once. Their algorithm has running time just �̃�(𝑛2) for pairwise

interactions and 𝑛𝑂(𝑟) for 𝑟-wise interactions, with singly-exponential dependence on

𝑑. They can also replace the bounded-degree requirement with a bound on the ℓ1

norm of each node’s interactions.

Also simultaneously, Koehler, Moitra, and I generalized Bresler’s method to arbi-

trary graphical models. In Chapter 4, we will show how, given an arbitrary 𝑛-node

graphical model with maximum degree 𝑑 and at most 𝑟-wise interactions, we can re-

construct its graph in time 𝑂(𝑛𝑟), with doubly-exponential dependence on 𝑑. (Recall

that for the Ising model there are only pairwise interactions so there 𝑟 = 2.) We

will also showcase the limits of the convex optimization approach. The existence of

Vuffray et al’s convex function 𝑓 is a minor miracle, but by the same token their

method is brittle to minor perturbations of the problem. For example, if one can only

observe samples of the graphical model with a random 1/2 of the nodes revealed,

then our combinatorial approach works with no change, whereas convex optimization
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collapses.
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Chapter 2

The Paulsen problem

2.1 The convex program

In this section, we will showcase the connection Barthe found between Parseval frames

and convex optimization [5].

Theorem 6. Given vectors 𝑣1, . . . , 𝑣𝑛 in general position (i.e. no 𝑘 + 1 live in any

𝑘-dimensional subspace), there is a positive semidefinite linear transformation 𝐴 so

that the scaled unit vectors ̂︂𝐴𝑣1, . . . ,̂︂𝐴𝑣𝑛 form a Parseval frame.

Theorem 7. Given vectors 𝑣1, . . . , 𝑣𝑛 ∈ R𝑑 in general position, the function

𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑛) = log det
(︁∑︁

𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖

)︁
− 𝑑

𝑛

∑︁
𝑡𝑖

is convex, attains a minimum, and furthermore, at any 𝑡 attaining the minimum, the

positive semidefinite linear transformation

𝐴 =
(︁∑︁

𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖

)︁−1/2

makes the vectors ̂︂𝐴𝑣1, . . . ,̂︂𝐴𝑣𝑛 a Parseval frame.

That the function is convex can be deduced from known properties of logdet.

That it attains a minimum is, perhaps surprisingly, not straightforward, and depends
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crucially on the vectors being in general position. Hardt and Moitra [30] show that

𝑓 fails to attain a minimum iff too many of the 𝑣𝑖 are contained within a subspace.

They use this to present an algorithm to determine, given a set of vectors, whether

many of them live in the same subspace. They also prove a strong convexity condition

implying that solving the convex program is efficient.

As for the final claim – that 𝐴 puts the vectors in radial isotropic position – I will

sketch Barthe’s proof.

Proof. Let 𝑡 minimize

𝑓(𝑡1, 𝑡2, . . . , 𝑡𝑛) = log det
(︁∑︁

𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖

)︁
− 𝑑

𝑛

∑︁
𝑡𝑖.

Then ∇𝑓(𝑡) = 0. Using the fact that the derivative of log det𝑋 is (𝑋−1)𝑇 , this means

Tr

(︂(︁∑︁
𝑒𝑡𝑖𝑣𝑖𝑣

𝑇
𝑖

)︁−1

𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖

)︂
− 𝑑/𝑛 = 0 for all 𝑖.

Now set 𝐴 =
(︀∑︀

𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖

)︀−1/2 as per the theorem. Note that 𝐴 is positive semidefinite.

The gradient condition becomes

Tr
(︀
𝐴2𝑒𝑡𝑖𝑣𝑖𝑣

𝑇
𝑖

)︀
− 𝑑/𝑛 = 0.

By rearranging this equality, we can pinpoint ‖𝐴𝑣𝑖‖:

𝑑/𝑛 = Tr
(︀
𝐴2𝑒𝑡𝑖𝑣𝑖𝑣

𝑇
𝑖

)︀
= 𝑒𝑡𝑖 Tr

(︀
𝑣𝑇𝑖 𝐴

2𝑣𝑖
)︀

(using the identity Tr(𝑋𝑌 𝑍) = Tr(𝑌 𝑍𝑋))

= 𝑒𝑡𝑖 ‖𝐴𝑣𝑖‖2
(2.1)

Now since we know ‖𝐴𝑣𝑖‖, we can tackle the Parseval condition. This is the isotropy

condition we want to prove:

∑︁ 𝐴𝑣𝑖(𝐴𝑣𝑖)
𝑇

‖𝐴𝑣𝑖‖2
=? 𝑛

𝑑
𝐼.
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Rearrange, using the fact that 𝐴 is positive semidefinite:

∑︁ 𝐴𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖 𝐴

𝑑/𝑛
=? 𝑛

𝑑
𝐼∑︁

𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖 =? 𝐴−2(︁∑︁

𝑒𝑡𝑖𝑣𝑖𝑣
𝑇
𝑖

)︁−1/2

=? 𝐴

(2.2)

And this is exactly our definition of 𝐴, so the equality is true.

2.2 Resolving the Paulsen problem

With this machinery in place, our algorithm to solve the Paulsen problem is not hard

to guess:

Input vectors 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ R𝑑 which form an 𝜀-nearly equal norm Parseval

frame.

Apply small perturbations 𝜂𝑖 so that 𝑣1 + 𝜂1, . . . , 𝑣𝑛 + 𝜂𝑛 are in general posi-

tion. (If they were already in general position, we can just set 𝜂𝑖 = 0.) Set

𝑢1, 𝑢2, . . . , 𝑢𝑛 as the resulting vectors scaled to norm
√︀
𝑑/𝑛.

Finally, find a positive semidefinite linear transformation 𝐴 using theorem 6,

and output the equal-norm Parseval frame 𝑤1, . . . , 𝑤𝑛 :=
√︁

𝑑
𝑛
̂︂𝐴𝑢1, . . . ,

√︁
𝑑
𝑛
̂︂𝐴𝑢𝑛.

Theorem 8. This algorithm yields an equal-norm Parseval frame 𝑤1, . . . , 𝑤𝑛 such

that the total squared distance
∑︀

‖𝑣𝑖 − 𝑤𝑖‖2 is at most 14𝜀𝑑2 = 𝑂(𝜀𝑑2).

To prove this, we will first show that we did not lose much by going from 𝑣𝑖

to 𝑢𝑖: that is,
∑︀

‖𝑣𝑖 − 𝑢𝑖‖2 is small, and that the 𝑢𝑖 are a 4𝜀-nearly equal norm

Parseval frame. This is a relatively straightforward calculation, and as we go along

we will quantify how small we need the perturbations to be. The meat of the proof

is Lemma 1, where we prove that
∑︀

‖𝑢𝑖 − 𝑤𝑖‖2 = 𝑂(𝜀𝑑2).

Proof. Let 𝑉 = 𝑣1, 𝑣2, . . . , 𝑣𝑛, and similarly for 𝑈 and 𝑊 . First we want to bound
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the squared distance between 𝑉 and 𝑈 . We can upper bound

‖𝑣𝑖 − 𝑢𝑖‖2 ≤
(︁√︂𝑑

𝑛
−
√︂

(1− 𝜀)
𝑑

𝑛

)︁2
+ 𝛾 ≤ 𝜀𝑑

𝑛
,

where 𝛾 ≤ ‖𝜂𝑖‖2 + 2‖𝜂𝑖‖ is a term that depends on the perturbation and if 𝛾 ≤
(1−

√
1−𝜀)𝜀𝑑
𝑛

then the last inequality holds. Now summing over all pairs of vectors we

get that ‖𝑉 − 𝑈‖2 ≤ 𝜀𝑑.

Next we observe that the vectors in 𝑈 are still a nearly equal norm Parseval frame.

After adding the perturbations, if ‖𝜂𝑖‖ ≤
√︀
𝑑/𝑛 · 𝜀

2
for each 𝑖, then each vector 𝑣𝑖 was

scaled by a factor between
√
1− 2𝜀 and

√
1 + 2𝜀. Also if we take ‖𝜂𝑖‖ ≤ 𝜀

2𝑛
for each

𝑖, then we conclude that the vectors in 𝑈 are a 4𝜀-nearly equal norm Parseval frame.

What remains is to bound the total squared distance between 𝑈 and 𝑊 . In

Lemma 1, we show that ‖𝑈 −𝑊‖2 ≤ 6𝜀𝑑2.

Finally, for any three vectors 𝑎, 𝑏 and 𝑐 we have the triangle-like inequality

‖𝑎− 𝑐‖22 ≤ 2
(︁
‖𝑎− 𝑏‖22 + ‖𝑏− 𝑐‖22

)︁
.

This follows from the parallelogram identity which says that ‖𝑥 + 𝑦‖22 + ‖𝑥 − 𝑦‖22 =

2‖𝑥‖22+2‖𝑦‖22 for any vectors 𝑥 and 𝑦 . We can then substitute 𝑥 = 𝑎−𝑏 and 𝑦 = 𝑏−𝑐

and omit the ‖𝑥− 𝑦‖22 term to get the inequality above. In any case when we apply

this for all triples of vectors 𝑣𝑖, 𝑢𝑖 and 𝑤𝑖 we have

‖𝑉 −𝑊‖2 ≤ 2 ‖𝑉 − 𝑈‖2 + 2 ‖𝑈 −𝑊‖2 ≤ 14𝜀𝑑2.

This completes the proof.

Lemma 1. With 𝑈 , 𝐴 and 𝑊 as defined1 in the proof of Theorem 8, we have that

‖𝑈 −𝑊‖2 ≤ 6𝜀𝑑2.

Let us first motivate the proof. The mapping from 𝑈 to 𝑊 , namely 𝑢𝑖 →
√︁

𝑑
𝑛
̂︂𝐴𝑢𝑖,

1To be precise, 𝑈 is a 4𝜀-nearly equal-norm Parseval frame; each 𝑢𝑖 has norm
√︀

𝑑/𝑛; and 𝐴 is a

positive semidefinite matrix such that the vectors 𝑤𝑖 =
√︁

𝑑
𝑛
̂︂𝐴𝑢𝑖 form an equal-norm Parseval frame.
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is a function from the 𝑑-dimensional radius-
√︁

𝑑
𝑛

sphere to itself. As 𝐴 is positive

semidefinite, we can work in an orthonormal eigenbasis 𝑒1, 𝑒2, . . . , 𝑒𝑑. In this basis,

the mapping from 𝑈 to 𝑊 should pull vectors towards the ±𝑒𝑗 with larger eigenvalues,

and push vectors away from the ±𝑒𝑗 with smaller eigenvalues.

Visualization of a possible mapping if 𝑒1, 𝑒2, 𝑒3 are in order of biggest to smallest

eigenvalue.

But the Parseval condition is equivalent to
∑︀

𝑖(𝑤
𝑇
𝑖 𝑒𝑗)

2 = 1 for all 𝑗. This equality

almost holds for 𝑈 and exactly holds for 𝑊 . So intuitively, there cannot be too much

movement towards the ±𝑒𝑗 with larger eigenvalues, or else
∑︀

𝑖(𝑤
𝑇
𝑖 𝑒𝑗)

2 would overshoot

its target of 1. So, since all the movement is in the same direction – away from smaller

eigenvalues and towards larger ones – there cannot be too much movement overall.

Without further ado, the proof.

Proof. First we introduce a notion of majorization:

Definition 3. For 𝑑 element sequences 𝑥 and 𝑦 we say 𝑥 ⪰ 𝑦 if for all 1 ≤ 𝑗 ≤ 𝑑 we

have
∑︀𝑗

𝑖=1 𝑥𝑖 ≥
∑︀𝑗

𝑖=1 𝑦𝑖 and moreover
∑︀𝑑

𝑖=1 𝑥𝑖 =
∑︀𝑑

𝑖=1 𝑦𝑖.

Next we introduce a notion of distance, similar to the Wasserstein distance, but

for vectors that are not necessarily nonnegative:
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Definition 4. If 𝑥 ⪰ 𝑦, we define

𝒯 (𝑥, 𝑦) :=
𝑑∑︁

𝑗=1

𝑗(𝑦𝑗 − 𝑥𝑗).

The following alternative definition is equivalent and will be convenient for us:

Fact 9. If 𝑥 ⪰ 𝑦 then

𝒯 (𝑥, 𝑦) =
𝑑∑︁

𝑗=1

𝑗∑︁
𝑖=1

𝑥𝑖 − 𝑦𝑖.

Proof. Since by assumption
∑︀𝑑

𝑗=1 𝑥𝑗 =
∑︀𝑑

𝑗=1 𝑦𝑗 we can write

𝒯 (𝑥, 𝑦) =
𝑑∑︁

𝑗=1

𝑗(𝑦𝑗−𝑥𝑗)+
𝑑∑︁

𝑗=1

(𝑑+1)(𝑥𝑗−𝑦𝑗) =
𝑑∑︁

𝑗=1

(𝑑+1−𝑗)(𝑥𝑗−𝑦𝑗) =
𝑑∑︁

𝑗=1

𝑗∑︁
𝑖=1

𝑥𝑖−𝑦𝑖

which completes the proof.

Next we relate 𝒯 (𝑥, 𝑦) and ‖𝑥 − 𝑦‖1 specifically when 𝑥 ⪰ 𝑦. What makes this

bound subtle is that the vector 𝑥− 𝑦 can (and will) have negative entries. What will

make 𝒯 easier to work with is that it, unlike ‖𝑥− 𝑦‖1, it is linear.

Lemma 2. If 𝑥 ⪰ 𝑦 then ‖𝑥−𝑦‖1
2

≤ 𝒯 (𝑥, 𝑦).

Before we proceed to the proof of the above lemma let us introduce a kind of

Wasserstein distance 𝒲(𝑥, 𝑦) on the integers from 1 to 𝑑. It will not exactly be the

usual definition because we allow 𝑥 and 𝑦 to have negative entries and so there is no

way to interpret them as a distribution. Nevertheless we define:

Definition 5.

𝒲(𝑥, 𝑦) := sup
𝑓

𝑑∑︁
𝑗=1

𝑓(𝑗)(𝑥𝑗−𝑦𝑗) s.t. 𝑓 : {1, 2, · · · , 𝑑} → R and |𝑓(𝑖)−𝑓(𝑗)| ≤ |𝑖−𝑗| for all 𝑖, 𝑗

Next we give an alternative characterization of 𝒲(𝑥, 𝑦):
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Fact 10. If
∑︀𝑑

𝑗=1 𝑥𝑗 =
∑︀𝑑

𝑗=1 𝑦𝑗 then

𝒲(𝑥, 𝑦) =
𝑑∑︁

𝑗=1

⃒⃒⃒(︁ 𝑗∑︁
𝑖=1

𝑥𝑖

)︁
−
(︁ 𝑗∑︁

𝑖=1

𝑦𝑖

)︁⃒⃒⃒
.

Proof. First, since
∑︀𝑑

𝑗=1 𝑥𝑗 =
∑︀𝑑

𝑗=1 𝑦𝑗 we can assume without loss of generality that

𝑓(𝑑) = 0. Now we can rewrite 𝑓 in terms of its increments, starting from 𝑓(𝑑), as

𝑓(𝑗) =
∑︀𝑑−1

𝑖=𝑖 𝛿𝑖 where each 𝛿𝑖 must be between −1 and 1. It now follows that

𝑑∑︁
𝑗=1

𝑓(𝑗)(𝑥𝑗 − 𝑦𝑗) =
𝑑−1∑︁
𝑖=1

𝛿𝑖

𝑖∑︁
𝑗=1

𝑥𝑗 − 𝑦𝑗

and the optimal choice for each 𝛿𝑖 is to set it to the sign of
∑︀𝑖

𝑗=1 𝑥𝑗 − 𝑦𝑗. From this

it follows that

𝒲(𝑥, 𝑦) =
𝑑∑︁

𝑗=1

⃒⃒⃒(︁ 𝑗∑︁
𝑖=1

𝑥𝑖

)︁
−
(︁ 𝑗∑︁

𝑖=1

𝑦𝑖

)︁⃒⃒⃒
which completes the proof.

Now we are ready to prove Lemma 2:

Proof. Using Fact 9 we have

𝒯 (𝑥, 𝑦) =
𝑑∑︁

𝑗=1

(︁ 𝑗∑︁
𝑖=1

𝑥𝑖

)︁
−
(︁ 𝑗∑︁

𝑖=1

𝑦𝑖

)︁
=

𝑑∑︁
𝑗=1

⃒⃒⃒(︁ 𝑗∑︁
𝑖=1

𝑥𝑖

)︁
−
(︁ 𝑗∑︁

𝑖=1

𝑦𝑖

)︁⃒⃒⃒
= 𝒲(𝑥, 𝑦)

where the second equality follows from the assumption 𝑥 ⪰ 𝑦 and the last equality

follows from Fact 10. Finally, in Definition 5 we can set 𝑓(𝑗) to be the sign of 𝑥𝑗 − 𝑦𝑗

divided by two. This now implies 𝒲(𝑥, 𝑦) ≥ ‖𝑥−𝑦‖1
2

which completes the proof.

Lastly we define some useful sequences of helper vectors. Throughout, we will

work in an orthonormal basis where 𝐴 is diagonal and its diagonal entries are sorted

𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑. Such a basis exists since 𝐴 is positive semidefinite. In this

basis, let 𝑢∘2
𝑖 denote the result of entrywise squaring 𝑢𝑖 and define 𝑤∘2

𝑖 similarly. By

construction, for each 𝑖, the sums of the entries in 𝑢∘2
𝑖 and in 𝑤∘2

𝑖 are both 𝑑/𝑛.
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Additionally, we prove in Claim 1 that 𝑤∘2
𝑖 ⪰ 𝑢∘2

𝑖 for each 𝑖. Now we have

‖𝑈 −𝑊‖2 =
𝑛∑︁

𝑖=1

𝑑∑︁
𝑗=1

(︁
(𝑢𝑖)𝑗 − (𝑤𝑖)𝑗

)︁2
≤

𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

⃒⃒⃒
(𝑢𝑖)

2
𝑗 − (𝑤𝑖)

2
𝑗

⃒⃒⃒
=

𝑛∑︁
𝑖=1

‖𝑢∘2
𝑖 − 𝑤∘2

𝑖 ‖1

where the first inequality follows because for any real values 𝑎 and 𝑏 with the same

sign we have (𝑎−𝑏)2 ≤ |𝑎2−𝑏2|. Applying Lemma 2 along with further manipulations

gives

‖𝑈 −𝑊‖2 ≤ 2
𝑛∑︁

𝑖=1

𝒯 (𝑤∘2
𝑖 , 𝑢∘2

𝑖 ) = 2𝒯
(︁ 𝑛∑︁

𝑖=1

𝑤∘2
𝑖 ,

𝑛∑︁
𝑖=1

𝑢∘2
𝑖

)︁
= 2

𝑑∑︁
𝑗=1

𝑗
(︁ 𝑛∑︁

𝑖=1

((𝑢𝑖)𝑗)
2−((𝑤𝑖)𝑗)

2
)︁
.

Since 𝑊 is Parseval, we have that
∑︀𝑛

𝑖=1((𝑤𝑖)𝑗)
2 = 1 for all 𝑗. And because 𝑈 is

4𝜀-nearly Parseval, we have
∑︀𝑛

𝑖=1((𝑢𝑖)𝑗)
2 ≤ 1 + 4𝜀 which gives

‖𝑈 −𝑊‖2 ≤ 2
𝑑∑︁

𝑗=1

𝑗 · 4𝜀 = 4𝜀𝑑(𝑑+ 1) ≤ 6𝜀𝑑2

completing the proof.

Claim 1. With 𝑢∘2
𝑖 and 𝑤∘2

𝑖 as defined in Lemma 1, we have 𝑤∘2
𝑖 ⪰ 𝑢∘2

𝑖 .

Proof. Recall that by construction, 𝑢∘2
𝑖 and 𝑤∘2

𝑖 are nonnegative and the sum of

their entries is the same. Thus showing that for any 1 ≤ 𝑗 < 𝑑, the inequality∑︀𝑗
𝑘=1(𝑤

∘2
𝑖 )𝑘 ≥

∑︀𝑗
𝑘=1(𝑢

∘2
𝑖 )𝑘 holds follows from showing instead that

∑︀𝑗
𝑘=1(𝑤

∘2
𝑖 )𝑘∑︀𝑑

𝑘=𝑗+1(𝑤
∘2
𝑖 )𝑘

≥
∑︀𝑗

𝑘=1(𝑢
∘2
𝑖 )𝑘∑︀𝑑

𝑘=𝑗+1(𝑢
∘2
𝑖 )𝑘

.

Now to complete the proof we observe that

∑︀𝑗
𝑘=1(𝑤

∘2
𝑖 )𝑘∑︀𝑑

𝑘=𝑗+1(𝑤
∘2
𝑖 )𝑘

=

∑︀𝑗
𝑘=1 𝜆

2
𝑘((𝑤𝑖)𝑘)

2∑︀𝑑
𝑘=𝑗+1 𝜆

2
𝑘((𝑤𝑖)𝑘)2

≥
∑︀𝑗

𝑘=1 𝜆
2
𝑗((𝑢𝑖)𝑘)

2∑︀𝑑
𝑘=𝑗+1 𝜆

2
𝑗((𝑢𝑖)𝑘)2

=

∑︀𝑗
𝑘=1((𝑢𝑖)𝑘)

2∑︀𝑑
𝑘=𝑗+1((𝑢𝑖)𝑘)2

=

∑︀𝑗
𝑘=1(𝑢

∘2
𝑖 )𝑘∑︀𝑑

𝑘=𝑗+1(𝑢
∘2
𝑖 )𝑘

where the inequality follows from the assumption 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑 ≥ 0.
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2.3 An Algorithm for the Paulsen Problem

Every step of the proof of Theorem 8 is straightforward to implement algorithmically,

except for the step where we compute the transformation 𝐴 that places the set of

vectors 𝑈 in radial isotropic position. Fortunately, Hardt and Moitra [30] gave an

algorithm for computing 𝐴. We will state a special case of their main theorem, which

is sufficient for our purposes.

Theorem 11. [30] Let 𝛿 > 0 and 𝛼 > 0. Suppose 𝑈 = 𝑢1, 𝑢2, . . . , 𝑢𝑛 ∈ R𝑑 has

the property that every set of 𝑑 vectors are linearly independent. Then there is an

algorithm to find a linear transformation 𝐴 so that, setting 𝑤𝑖 =
√︁

𝑑
𝑛
̂︂𝐴𝑢𝑖 as usual, we

have
𝑛∑︁

𝑖=1

𝑤𝑖𝑤
𝑇
𝑖 = 𝐼 + 𝐽

where ‖𝐽‖∞ ≤ 𝛿 — i.e. the largest entry of 𝐽 in absolute value is at most 𝛿. The

running time is polynomial in 1/𝛼, log 1/𝛿 and 𝐿 where 𝐿 is an upper bound on the

bit complexity of 𝑈 .

By combining their algorithm with our proof of Theorem 8 we get:

Corollary 12. Suppose 𝑉 = 𝑣1, 𝑣2, . . . , 𝑣𝑛 ∈ R𝑑 is an 𝜀-nearly equal norm Parseval

frame. Furthermore suppose 𝑛 > 𝑑. Then given 𝛾 > 0, there is an algorithm to

compute a 𝛾-nearly equal norm Parseval frame 𝑊 with

‖𝑉 −𝑊‖2 ≤ 14𝜀𝑑2

whose running time is polynomial in log 1/𝛾 and 𝐿 where 𝐿 is an upper bound on the

bit complexity of 𝑉 .

Proof. We perturb 𝑉 as in the proof of Theorem 8 and run the algorithm in The-

orem 11 on 𝑈 with 𝛿 = 𝛾𝜀
𝑑3

so that the output is a 𝛾𝜀
𝑑
-nearly equal norm Parseval

frame. Note that our bound on the squared distance between 𝑉 and 𝑊 in Lemma 1

used the fact that 𝑊 was an equal norm Parseval frame. But it is easy to see that
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the slack in the bounds we used can accommodate a 𝛾𝜀
𝑑
–nearly equal norm Parseval

frame instead.
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Chapter 3

There is no acceleration in the

hyperbolic plane

3.1 The Hyperbolic Plane

This section serves as an introduction to the hyperbolic plane H2, establishing the

important facts we use for our proof as well as intuition for our main result. The first

and most important fact about the hyperbolic plane is that it is very large:

Fact 13. [15] The circumference and area of a hyperbolic circle are both exponential

in its radius.

For illustration, consider a tiling of the hyperbolic plane with congruent equilateral

pentagons. As you can see, the number of pentagons at distance 𝑟 from the origin

grows exponentially in 𝑟.
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This gives intuition for our result. If you are attempting to minimize a function

whose minimum lies somewhere within a ball of radius 𝑟, the hyperbolic plane forces

you to search over a much larger area than any fixed dimension of Euclidean space

would. This inherently makes it harder to exploit information from past queries about

the function value and gradient, when you are interested in reaching a point far away

from the origin.

3.1.1 Why Pirates Don’t Search for Treasure in the Hyper-

bolic Plane

The purpose of this subsection is to provide intuition for our main theorem and is

not required to understand our results. Imagine a pirate who has buried treasure

in the desert somewhere at distance 100 away from her. She does not remember

exactly where the treasure is, but is in possession of a compass which points towards

it. The compass’ reading has error, though: on the order of 10−16 degrees. (This

setting is analogous to an algorithm able to make noisy queries to the gradient of

some function.) In the Euclidean plane, the pirate could easily find the treasure: take

a compass bearing, walk 100 steps, and dig. An error of 10−16 degrees would literally

be subatomic.

However, if the pirate attempted this strategy in the hyperbolic plane, she would
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end up at distance just over 190 from her treasure. She would have started to walk

away from the treasure after just a few steps! (Specifically, a constant number of

steps that scales with log(1/10−16).) Therefore, she would have to repeatedly look

at her compass every few steps in order to make progress towards the treasure. This

is why gradient descent has only linear convergence in hyperbolic spaces. Of course,

this falls short of explaining why no algorithm converges faster. I am indebted to the

video game HyperRogue [39] for giving intuition about the hyperbolic plane. One

level of this game features a similar scenario with pirates and compasses.

3.2 Optimization with a Noisy Gradient Oracle

In this section we define the main model we will be interested in. Moreover we recall

convergence bounds in the Euclidean case, particularly those that continue to hold in

the presence of a small amount of noise, as a point of comparison.

Definition 6. The radius-𝑟 gradient optimization model is as follows: There is an

unknown differentiable function 𝑓 whose minimum is within distance 𝑟 of the origin.

An algorithm may query points 𝑥 within distance 1000𝑟 of the origin.1 Upon querying

𝑥, the algorithm learns 𝑓(𝑥) and the gradient ∇𝑓(𝑥).

Definition 7. In the noisy version of the model, instead of learning the exact values

of 𝑓(𝑥) and ∇𝑓(𝑥), the algorithm receives 𝑓(𝑥)+𝑧1 and ∇𝑓(𝑥)+𝑧2 where 𝑧1 and 𝑧2 are

noise. We do not require the noise to be of a specific form such as Gaussian, uniform,

etc – we only require that the noise terms for different queries are independent.

Definition 8. We say noise is 𝑐-non-concentrated if on any query, the probability

distribution function of the noise is everywhere bounded above by 𝑐. We say noise is

𝐶-precise if the noise term never has magnitude larger than 𝐶.

1The number 1000 is arbitrary and only affects constants inside big-O notation. The reason for
this assumption is as follows: if an algorithm were to query a point 𝑥 superexponentially far away
from the origin and learn 𝑓(𝑥) + noise, then 𝑓(𝑥) would be so large that the noise term could be
disregarded completely. Thus, removing this assumption would require a more refined noise model,
such as multiplicative noise.
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In Euclidean space, a small amount of noise does not preclude acceleration. As a

point of comparison, we restate the key result (Theorem 7) from [23]:

Theorem 14 (from [23]). There is an algorithm that, given 𝐶-precise noisy oracle

access to an 𝐿-smooth 𝜇-strongly convex function 𝑓 and its gradient, along with a

starting point at distance 𝑑 from the minimum of 𝑓 , outputs after 𝑘 oracle queries a

point 𝑥𝑘 such that

𝑓(𝑥𝑘)−min 𝑓 ≤ 𝑂
(︁
𝐿𝑑 ·min

(︁
1/𝑘2, exp(−𝑘/2

√︀
𝜇/𝐿)

)︁
+min

(︁
𝑘 · poly(𝐶),

√︀
𝐿/𝜇

)︁)︁
.

(The bound in the original paper is more precise, making big-O constants explicit

and using a more refined notion of precision.) This theorem implies that accelerated

gradient descent works in Euclidean space even in the presence of noise, provided

that the noise has magnitude at most some inverse polynomial in 𝑟. Contrast our

main result: in hyperbolic space, accelerated gradient descent is impossible even with

exponentially small noise.

3.3 The Noisy Gradient Task in the Hyperbolic Plane

In this paper we will prove lower bounds for minimizing arguably the simplest geodesi-

cally convex function, the distance squared function.

Fact 15. In the hyperbolic plane, the distance squared function 𝑥 ↦→ 𝑑(𝑥, 𝑥⋆)2 is

geodesically convex and its minimum is 𝑥⋆. At distance 𝑟 from 𝑥⋆, this function is

1-strongly convex and (𝑟/ tanh 𝑟)-smooth.

The strong convexity and smoothness come from the formula for its Hessian given

in [25].

Without noise, an algorithm could locate 𝑥⋆ exactly in one query, because any

gradient is guaranteed to both point exactly at 𝑥⋆ and indicate the distance to 𝑥⋆.

What about with noisy gradients?
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Within the hyperbolic disc of radius 𝑟 centered at the origin, our function 𝑓 is

𝑂(𝑟)-smooth and 1-strongly convex. (As an aside, in Theorem 35 we show that for

any 𝛽-smooth and 𝛼-strongly convex function in the hyperbolic disk we must have

𝛽/𝛼 = Ω(𝑟)). If Nesterov-like acceleration in the hyperbolic plane were possible we

should be able to locate 𝑥⋆ to within distance 1 in time 𝑂(
√
𝑟). Unfortunately, as we

will show, this task is impossible. Even worse, it is impossible to get any polynomial

factor speedup in the convergence.

Theorem 16. In the radius-𝑟 noisy gradient optimization model in the hyperbolic

plane, if queries receive noisy answers with 𝑐-non-concentrated 𝐶-precise noise, then

any algorithm that can find a point within distance 𝑟/5 of the minimum of the function

that succeeds with probability at least 2/3 must make at least

Ω

(︂
𝑟

log 𝑟 + log𝐶 + log 𝑐

)︂

queries. This is true even if the function is guaranteed to be 1-strongly convex and

𝑂(𝑟)-smooth at every point within distance 𝑟 from the origin.

To prove this result, we will generalize the noisy gradient model to any setting in

which an agent makes queries and receives probabilistic answers over a discrete set

of possibilities. In this general setting, we will prove a lower bound on the number of

queries needed to determine the state of the world.

3.3.1 Noisy Query Games

Definition 9. A noisy query game is a tuple (𝑛,𝑄,𝒳 , 𝑓), with which the following

one-player game is played: A secret number 𝑖⋆ is chosen uniformly at random from

{1, 2, . . . , 𝑛}. The player’s goal is to determine 𝑖⋆. To do so, the player may make a

query 𝑞 ∈ 𝑄 and receive an observation 𝑋 ∈ 𝒳 . The observation is sampled using

some probability distribution function 𝑓𝑞,𝑖⋆(𝑥). The player wins when they can guess

𝑖⋆ with probability at least 2/3.

We remark that for us 𝒳 will be a region in Euclidean space and we will use |𝒳 |

37



to denote its volume. The noisy game broadly seems to be a natural model for a

class of noisy learning tasks. In particular, it generalizes the noisy gradient task in

the hyperbolic plane, as we show in the following comment:

Comment 17. Consider the noisy gradient task in which we place 𝑛 = 𝑒Θ(𝑟) points

equally in a circle of radius 𝑟 in the hyperbolic plane, so that the points are distance

≥ 𝑟/2 apart. (This is possible because circles are exponentially large – see [15], page

92 – so greedily picking points one at a time and removing a ball of radius 𝑟/2 around

each runs out of volume only after exponentially many steps.) The secret number

𝑖⋆ corresponds to one of these points 𝑥⋆. Define the function 𝑓(𝑥) = dist(𝑥, 𝑥⋆)2

whose optimum is 𝑥⋆. The player makes queries in 𝑄 := a region in the hyperbolic

plane with radius 𝑂(𝑟), and receives noisy gradient observations. Now the player can

win if and only if they can locate the optimum of 𝑓(𝑥), among the discrete set of

possibilities, with probability at least 2/3.

We now state our lower bound for noisy query games:

Theorem 18. In a noisy query game (𝑛,𝑄,𝒳 , 𝑓), suppose the noise is 𝑐-non-concentrated,

i.e. all probability distribution functions 𝑓𝑞,𝑖⋆ are everywhere bounded above by some

constant 𝑐. Then for the player to be able to guess 𝑖⋆ with probability at least 2/3, the

player must make at least Ω( log𝑛
log(𝑐|𝒳 |)) queries.

Theorem 18 is difficult to prove directly, because the player’s knowledge is a

posterior distribution over the options {1, 2, . . . , 𝑛} which can change in complicated

ways. To overcome this obstacle and prove Theorem 18, we will define an easier

‘transparent’ version of the noisy query game, where the player’s knowledge is a

subset of {1, 2, . . . , 𝑛} representing which options could possibly be the correct one.

Then we will show that even in the easier version of the game, the player needs many

queries in expectation to succeed.

3.3.2 The Transparent Noisy Query Game

In a noisy query game, observations are sampled from probability distribution func-

tions 𝑓𝑞,𝑖 on a space 𝒳 . One way to sample an observation from 𝑓𝑞,𝑖 is to sample
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uniformly from the region under its graph. Let 𝐺𝑞,𝑖 denote this region. Note that the

volume of 𝐺𝑞,𝑖 must be 1, because probabilities always sum to 1. In the transparent

noisy query game, we answer a query 𝑞 by telling the player a point (𝑥, 𝑦) uniformly

sampled from the graph region 𝐺𝑞,𝑖⋆ . In the normal query game the player only learns

𝑥, so the normal version can only be harder.

The key question is: How does the player’s knowledge update when she receives an

observation (𝑥, 𝑦)? For any option 𝑖 whose graph area 𝐺𝑞,𝑖 does not include the point

(𝑥, 𝑦), the player learns that 𝑖 cannot possibly be correct. For the rest of the options,

the player learns nothing. This is because observations are sampled uniformly and

each 𝐺𝑞,𝑖 has unit area, so by Bayes’ rule the player’s posterior on 𝑖⋆ remains uniform

over all remaining options. (Here we have assumed that the prior is uniform at the

beginning.)

Indeed, this convenient property is the reason we defined this transparent version:

It allows us to easily analyze the player’s progress by tracking only the number of

remaining possible options, rather than the messy details of what happens to the

posterior distribution.

Lemma 3. Suppose all the 𝑓𝑞,𝑖 are 𝑐-non-concentrated distributions. Then in the

transparent noisy query game, a query decreases the logarithm of the number of pos-

sible remaining options by at most log (𝑐|𝒳 |) in expectation.

Proof. Let 𝑚 be the number of options remaining before the query. For convenience,

use the notation 𝑁(𝑥, 𝑦) for the number of graph areas 𝐺𝑞,𝑖, among the 𝑚 remaining

options, that contain (𝑥, 𝑦). If the player receives the query result (𝑥, 𝑦), they would

be left with 𝑁(𝑥, 𝑦) remaining options. So after the query, the expected number of

options remaining is

E𝑖⋆

⎡⎢⎣ ∫︁
𝐺𝑞,𝑖⋆

log (𝑁(𝑥, 𝑦)) 𝑑𝑥𝑑𝑦

⎤⎥⎦ ,

where the expectation is taken uniformly at random from among the 𝑚 remaining

options. Moving the expectation inside the integral sign and using the assumption
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that all graph areas are contained within 𝒳 × [0, 𝑐], we get that the above expectation

is equal to:

∫︁
𝒳×[0,𝑐]

𝑁(𝑥, 𝑦)

𝑚
log (𝑁(𝑥, 𝑦)) 𝑑𝑥𝑑𝑦

Since each graph has area 1, the integral
∫︀
𝒳×[0,𝑐]

𝑁(𝑥, 𝑦) is 𝑚. So by Jensen’s

inequality, subject to this restriction, the above quantity is minimized when 𝑁 is

constant over the entire domain 𝒳 × [0, 𝑐]. The minimum value is

∫︁
𝒳×[0,𝑐]

𝑚/𝑐|𝒳 |
𝑚

log (𝑚/𝑐|𝒳 |) 𝑑𝑥𝑑𝑦 = log (𝑚/𝑐|𝒳 |) = log𝑚− log (𝑐|𝒳 |) .

So the expectation of the logarithm of the number of possible options left decreases

by at most log (𝑐|𝒳 |), as desired.

Now we can prove our main lower bound for the noisy query game:

Proof of Theorem 18. Let 𝑛𝑖 denote the number of possible remaining options after

𝑖 steps. Thus we have 𝑛0 = 𝑛. Now let 𝑋 be a random variable that represents the

cumulative progress the algorithm has made. In particular let

𝑋 =
𝑇∑︁
𝑖=1

log 𝑛𝑖−1 − log 𝑛𝑖.

Applying Lemma 3 and Markov’s bound we have that 𝑋 ≤ 3E[𝑋] with probability

at least 2/3. If the algorithm succeeds at being able to determine 𝑖⋆ after 𝑇 steps we

must have 𝑛𝑇 = 1. Putting everything together we have

0 = log 𝑛𝑇 = log 𝑛−𝑋 ≥ log 𝑛− 3|𝑇 | log(𝑐|𝒳 |)

and rearranging completes the proof.
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3.3.3 Proof of the Main Theorem

Our main result now follows easily from the machinery of noisy query games:

Proof of Theorem 16. Suppose we want to minimize the function 𝑓(𝑥) = dist(𝑥, 𝑥⋆)2.

This function is 1-strongly convex and 2𝑟-smooth within distance 𝑟 of the origin. (As

mentioned earlier, [25] shows the eigenvalues of the Hessian are 1 and 𝑟/ tanh 𝑟 ≤

𝑟+1.) First we apply the reduction in Comment 17 so that we have 𝑛 = 𝑒Θ(𝑟) points

with pairwise distance at least 𝑟/2. Moreover 𝑥⋆ is among them and corresponds to

the secret number 𝑖⋆ in the noisy query game.

In the setting of Theorem 16, a player makes queries within a certain region of the

hyperbolic plane, and learns the (noisy) function value and gradient at their query

point. They are tasked with finding a point within distance 𝑟/5 of 𝑥⋆. Because the 𝑛

points have pairwise distance at least 𝑟/2, doing so requires figuring out which of the

𝑛 points is 𝑥⋆. So the player must win the query game, which by Theorem 18, takes

at least log𝑛
log(|𝑋|𝑐) queries.

We picked 𝑛 = 𝑒Θ(𝑟) above, and the value of 𝑐 is stated in Theorem 16’s assump-

tions. But what is |𝒳 |, i.e. the volume containing all query answers? Since the

player’s queries are restricted to a region in the hyperbolic plane of radius 𝑂(𝑟), the

true answer to their query is a function value in the interval [0, 𝑂(𝑟2)] along with a

gradient in the disk 𝐵(0, 𝑂(𝑟)) ⊆ R2. (Recall that the gradient lives in R2, not the

hyperbolic plane.) By assumption, the noise causes error at most 𝐶, so the observed

query answer must lie in

[−𝐶,𝑂(𝑟2) + 𝐶]×𝐵(0, 𝑂(𝑟) + 𝐶) ⊂ R3.

This is a compact set whose volume is a polynomial in 𝑟 and 𝐶. In particular we

have |𝒳 | ≤ 𝑂(𝑟4𝐶3). Therefore overall the player needs at least

log 𝑛

log(|𝒳 |𝑐)
=

𝑟)

log(𝑐) +𝑂(log 𝑟 + log𝐶)

queries. This completes the proof.
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3.3.4 Removing the noise hypothesis

In 2021, Criscitiello and Boumal [21] improved upon our result by replacing the noise

hypothesis with a carefully-constructed sequence of bump functions.

Their key strategy is to answer queries so that, after every query, there are a great

many smooth and strongly convex functions 𝑓1, . . . , 𝑓𝑁 consistent with all queries so

far, yet the minima of the 𝑓𝑖 are far apart. In their ‘Pièce de résistance’ lemma,

they show how, given any query, one can modify each 𝑓𝑖 by a small bump function

and then adversarially return a query result consistent with many different 𝑓𝑖. Their

construction is very technical so we will not attempt to sketch it here.

One open problem still remains. Criscitiello and Boumal proved that acceleration

is impossible for any deterministic algorithm. This leaves open a very slim crack

through which a randomized algorithm might slip. It would be satisfying to seal this

crack.
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Chapter 4

Learning graphical models

In 2015, Bresler [7] gave a simple greedy algorithm to learn the structure of a bounded

degree Ising model. For each node 𝑢, the algorithm grows a set 𝑆 of guesses for 𝑢’s

neighbors. Let 𝑋𝑆 denote the random variable representing the joint state of nodes

in 𝑆. Then the key fact enabling the greedy algorithm is the following:

Fact 19. For every node 𝑢, for any set 𝑆 ⊆ 𝑉 ∖ {𝑢} that does not contain all of

𝑢’s neighbors, there is a node 𝑣 ̸= 𝑢 which has non-negligible conditional mutual

information (conditioned on 𝑋𝑆) with 𝑢.

Bresler’s algorithm uses this fact to repeatedly find a node 𝑣 ̸∈ 𝑆 with large correlation

with 𝑢 and add it to 𝑆. Since there is only so much information about 𝑢 we can

possibly acquire, this algorithm must halt in an amount of time depending on the

bound on 𝐼(𝑢; 𝑣|𝑋𝑆).

Fact 19 is simultaneously surprising and not surprising. When 𝑆 contains all the

neighbors of 𝑢, then 𝑋𝑢 has zero conditional mutual information (again conditioned

on 𝑋𝑆) with any other node because 𝑋𝑢 only depends on 𝑋𝑆. Conversely shouldn’t

we expect that if 𝑆 does not contain the entire neighborhood of 𝑢, that there is some

neighbor that has nonzero conditional mutual information with 𝑢? The difficulty is

that the influence of a neighbor on 𝑢 can be cancelled out indirectly by the other

neighbors of 𝑢. The key fact above tells us that it is impossible for the influences to

all cancel out. But is this fact only true for Ising models or is it an instance of a more
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general phenomenon that holds for any graphical model?

4.0.1 Our Techniques

In this chapter, we give a vast generalization of Bresler’s [7] lower bound on the con-

ditional mutual information. We prove that it holds in general graphical models with

higher order interactions provided that we look at sets of nodes. More precisely we

prove, in a graphical model with up to 𝑟-wise interactions, the following fundamental

fact:

For every node 𝑢, for any set 𝑆 ⊆ 𝑉 ∖ {𝑢} that does not contain all of 𝑢’s

neighbors, there is a set 𝐼 of at most 𝑟 − 1 nodes which does not contain

𝑢 where 𝑋𝑢 and 𝑋𝐼 have non-negligible conditional mutual information

(conditioned on 𝑋𝑆).

Remark 20. It is necessary to allow 𝐼 to be a set of size 𝑟 − 1. For any integer 𝑟,

there are graphical models where for every node 𝑢 and every set of nodes 𝐼 of size at

most 𝑟 − 2, the mutual information between 𝑋𝑢 and 𝑋𝐼 is zero.

The starting point of our proof is a more conceptual approach to lower bounding

the mutual information. Let 𝑁(𝑢) denote the neighbors of 𝑢. What makes proving

such a lower bound challenging is that even though 𝐼(𝑋𝑢;𝑋𝑁(𝑢)) > 0, this alone is

not enough to conclude that 𝐼(𝑋𝑢;𝑋𝑗) > 0 for some 𝑗 ∈ 𝑁(𝑢). Indeed for general

distributions we can have that the mutual information between a variable and a set

of variables is positive, but every pair of variables has zero mutual information. The

distribution produced by a general graphical model can be quite unwieldy (e.g. it is

computationally hard to sample from) so what we need is a technique to tame it to

make sure these types of pathologies cannot arise.

Our approach goes through a two-player game that we call the GuessingGame

between Alice and Bob. Alice samples a configuration 𝑋1, 𝑋2, . . . 𝑋𝑛 and reveals 𝐼

and 𝑋𝐼 for a randomly chosen set of 𝑢’s neighbors with |𝐼| ≤ 𝑟 − 1. Bob’s goal

is to guess 𝑋𝑢 with non-trivial advantage over its marginal distribution. We give
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an explicit strategy for Bob that achieves positive expected value. Our approach is

quite general because we base Bob’s guess on the contribution of 𝑋𝐼 to the overall

clique potentials that 𝑋𝑢 participates in, in a way that the expectation over 𝐼 yields an

unbiased estimator of the total clique potential. The fact that the strategy has positive

expected value is then immediate, and all that remains is to prove a quantitative

lower bound on it using the law of total variance. From here, the intuition is that if

the mutual information 𝐼(𝑋𝑢;𝑋𝐼) were zero for all sets 𝐼 then Bob could not have

positive expected value in the GuessingGame. This can be made precise and yields

a lower bound on the mutual information. We can extend the argument to work with

conditional mutual information by exploiting the fact that there are many clique

potentials that do not get cancelled out when conditioning.

4.0.2 Our Results

Recall that 𝑁(𝑢) denotes the neighbors of 𝑢. We require certain conditions (Defini-

tion 12) on the clique potentials to hold, which we call 𝛼, 𝛽-non-degeneracy, to ensure

that the presence or absence of each hyperedge can be information-theoretically de-

termined from few samples (essentially that no clique potential is too large and no

non-zero clique potential is too small). Under this condition, we prove:

Theorem 21. Fix any node 𝑢 in an 𝛼, 𝛽-non-degenerate graphical model of bounded

degree and a subset of the vertices 𝑆 which does not contain the entire neighborhood

of 𝑢. Then taking 𝐼 uniformly at random from the subsets of the neighbors of 𝑢 not

contained in 𝑆 of size 𝑠 = min(𝑟 − 1, |𝑁(𝑢) ∖ 𝑆|), we have E𝐼 [𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆)] ≥ 𝐶.

See Theorem 27 which gives the precise dependence of 𝐶 on all of the constants,

including 𝛼, 𝛽, the maximum degree 𝐷, the order of the interactions 𝑟 and the upper

bound 𝐾 on the number of states of each node. We remark that 𝐶 is exponentially

small in 𝐷, 𝑟 and 𝛽 and there are examples where this dependence is necessary [46].

Next we apply our structural result within Bresler’s [7] greedy framework for

structure learning to obtain our main algorithmic result. We obtain an algorithm for

learning graphical models on bounded degree graphs with a logarithmic number of
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samples, which is information-theoretically optimal [46]. More precisely we prove:

Theorem 22. Fix any 𝛼, 𝛽-non-degenerate graphical model on 𝑛 nodes with 𝑟-order

interactions and bounded degree. There is an algorithm for learning 𝐺 that succeeds

with high probability given 𝐶 ′ log 𝑛 samples and runs in time polynomial in 𝑛𝑟.

Remark 23. An 𝑟 − 1-sparse parity with noise is a graphical model with order 𝑟

interactions. This means if we could improve the running time to 𝑛𝑜(𝑟) this would

yield the first 𝑛𝑜(𝑘) algorithm for learning 𝑘-sparse parities with noise, which is a

long-standing open question. The best known algorithm of Valiant [56] runs in time

𝑛0.8𝑘.

See Theorem 29 for a more precise statement. The constant 𝐶 ′ depends doubly expo-

nentially on 𝐷. In the special case of Ising models with no external field, Vuffray et al.

[58] gave an algorithm based on convex programming that reduces the dependence on

𝐷 to singly exponential. In 4.5 we will explain how to generalize their convex program

to arbitrary graphical models, though it is unclear whether their efficiency bounds

generalize as well. In contrast, in greedy approaches based on mutual information like

the one we consider here, doubly-exponential dependence on 𝐷 seems intrinsic. As in

Bresler’s [7] work, we construct a superset of the neighborhood that contains roughly

1/𝐶 nodes where 𝐶 comes from Theorem 21. Recall that 𝐶 is exponentially small in

𝐷. Then to accurately estimate conditional mutual information when conditioning

on the states of this many nodes, we need doubly exponential in 𝐷 many samples.

However, there is a distinct advantage to greedy based methods. Since we only

ever need to estimate the conditional mutual information on a constant sized sets of

nodes and when conditioning on a constant sized set of other nodes, we can perform

structure learning with partial observations. More precisely, if for every sample from

a graphical model, we are allowed to specify a set 𝐽 of size at most a constant 𝐶 ′′

where all we observe is 𝑋𝐽 we can still learn the structure of the graphical model.

We call such queries 𝐶 ′′-bounded queries.

Theorem 24. Fix any 𝛼, 𝛽-non-degenerate graphical model on 𝑛 nodes with 𝑟-order

interactions and bounded degree. There is an algorithm for learning 𝐺 with 𝐶 ′′-
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bounded queries that succeeds with high probability given 𝐶 ′ log 𝑛 samples and runs in

time polynomial in 𝑛𝑟.

See Theorem 32 for a more precise statement. This natural scenario arises when it is

too expensive to obtain a sample where the states of all nodes are known. The only

other results we are aware of for learning with bounded queries work only for Gaussian

graphical models [22]. We also consider a model where the state of each node is erased

(i.e. we observe a ‘?’ instead of its state) independently with some fixed probability

𝑝. See Theorem 33 for a precise statement. The fact that we can straightforwardly

obtain algorithms for these alternative settings demonstrates the flexibility of greedy,

information-theoretic approaches to learning.

In concurrent and independent work and using a different approach, Klivans and

Meka [38] gave an algorithm for learning graphical models with 𝑟-order interactions

and maximum degree 𝐷 with a non-degeneracy assumption corresponding to a bound

on the ℓ1-norm of the derivatives of the clique potentials. Under our non-degeneracy

assumptions, their algorithm runs in time 𝑛𝑟 and has sample complexity 2𝐷
𝑟
(𝑛𝑟)𝑟 and

under related but stronger assumptions than we use here, their sample complexity

improves to 2𝐷
𝑟
𝑟𝑟 log 𝑛.

4.1 Preliminaries

For reference, all fundamental parameters of the graphical model (max degree, etc.)

are defined in the next two subsections. In terms of these fundamental parameters, we

define additional parameters 𝛾 and 𝛿 in (4.4), 𝐶(𝛾,𝐾, 𝛼) and 𝐶 ′(𝛾,𝐾, 𝛼) in Theorem

26 and Theorem 27 respectively, and 𝜏 in (4.8) and 𝐿 in (4.9).

4.1.1 Graphical models and the Canonical Form

We study the problem of structure learning for graphical models. Formally, a graph-

ical model is specified by a hypergraph ℋ = (𝑉,𝐻) where each hyperedge ℎ ∈ 𝐻

is a set of at most 𝑟 vertices and 𝑉 = [𝑛]. To each node 𝑖, we associate a random
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variable 𝑋𝑖 which can take on one of 𝑘𝑖 different states/spins/colors so that 𝑋𝑖 ∈ [𝑘𝑖].

Let 𝐾 be an upper bound on the maximum number of states of any node. To each

hyperedge ℎ = (𝑖1, 𝑖2, · · · 𝑖ℓ) we associate an ℓ-order tensor 𝜃𝑖1𝑖2···𝑖ℓ with dimensions

𝑘𝑖1 ×· · · 𝑘𝑖ℓ which represents the clique interaction on these nodes. When (𝑖1, 𝑖2, · · · 𝑖ℓ)

are not a hyperedge in ℋ we define 𝜃𝑖1𝑖2···𝑖ℓ to be the zero tensor.

The potential energy of the model being in state 𝑋 = (𝑋1, . . . , 𝑋𝑛) is given by

𝐻𝜃(𝑋) = −
𝑟∑︁

ℓ=1

∑︁
𝑖1<𝑖2<···<𝑖ℓ

𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ). (4.1)

The joint probability of the model being in state 𝑋 = (𝑋1, . . . , 𝑋𝑛) is proportional

to exp(−𝐻𝜃(𝑋)), and is therefore given by

Pr(𝑋 = 𝑥) = exp

(︃
𝑟∑︁

ℓ=1

∑︁
𝑖1<𝑖2<···<𝑖ℓ

𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ)− 𝐶

)︃
(4.2)

where 𝐶 is a constant normalizing the total probability to one. For notational con-

venience, even when 𝑖1, . . . , 𝑖ℓ are not sorted in increasing order, we define 𝜃𝑖1···𝑖ℓ(𝑎1, . . . , 𝑎ℓ) =

𝜃𝑖
′
1···𝑖′ℓ(𝑎′1, . . . , 𝑎

′
ℓ) where the 𝑖′1, . . . , 𝑖′ℓ are the sorted version of 𝑖1, . . . , 𝑖ℓ and the 𝑎′1, . . . , 𝑎′ℓ

are the corresponding copies of 𝑎1, . . . , 𝑎ℓ.

The parameterization above is not unique. It will be helpful to put it in a normal

form as below. A tensor fiber is the vector given by fixing all of the indices of the

tensor except for one; this generalizes the notion of row/column in matrices. For

example for any 1 ≤ 𝑚 ≤ ℓ, 𝑖1 < . . . < 𝑖𝑚 < . . . 𝑖ℓ and 𝑎1, . . . , 𝑎𝑚−1, 𝑎𝑚+1, . . . 𝑎ℓ fixed,

the corresponding tensor fiber is the set of elements 𝜃𝑖1···𝑖ℓ(𝑎1, . . . , 𝑎𝑚, . . . , 𝑎ℓ) where

𝑎𝑚 ranges from 1 to 𝑘𝑖𝑚 .

Definition 10. We say that the weights 𝜃 are in canonical form1 if for every tensor

𝜃𝑖1···𝑖ℓ , the sum over all of the tensor fibers of 𝜃𝑖1···𝑖ℓ is zero.

Moreover we say that a tensor with the property that the sum over all tensor

fibers is zero is a centered tensor. Hence having a graphical model in canonical form
1This is the same as writing the log of the probability mass function according to the Efron-Stein

decomposition with respect to the uniform measure on colors; this decomposition is known to be
unique. See e.g. Chapter 8 of [44]

48



just means that all of the tensors corresponding to its clique potentials are centered.

Next we prove that every graphical model can be put in canonical form:

Claim 2. Every graphical model can be put in canonical form.

Proof. We will recenter the tensors one by one without changing the law in (4.2).

Starting with an arbitrary parameterization, observe that if the sum along some

tensor fiber is 𝑠 ̸= 0, we can subtract 𝑠/𝑘𝑖𝑚 from each of the entries in the tensor

fiber, so the sum over the tensor fiber is now zero, and add 𝑠 to 𝜃𝑖∼𝑚(𝑎∼𝑚) without

changing the law of 𝑋 in (4.2). Here 𝑖∼𝑚 is our notation for 𝑖1, . . . , 𝑖𝑚−1, 𝑖𝑚+1, . . . 𝑖ℓ.

By iterating this process from the tensors representing the highest-order interactions

down to the tensors representing the lowest-order interactions2, we obtain the desired

canonical form.

4.1.2 Non-Degeneracy

We let 𝐺 = (𝑉,𝐸) be the graph we obtain from ℋ by replacing every hyperedge with

a clique. Let 𝑑𝑖 denote the degree of 𝑖 in 𝐺 and let 𝐷 be a bound on the maximum

degree. Let 𝑁(𝑖) denote the neighborhood of 𝑖. Then as usual 𝐺 encodes the inde-

pendence properties of the graphical model. Our goal is to recover the structure of 𝐺

with high probability. In order to accomplish this, we will need to ensure that edges

and hyperedges are non-degenerate.

Definition 11. We say that a hyperedge ℎ is maximal if no other hyperedge of strictly

larger size contains ℎ.

Informally, we will require that every edge in 𝐺 is contained in some non-zero

hyperedge, that all maximal hyperedges have at least one parameter bounded away

from zero and that no entries are too large. More formally:

Definition 12. We say that a graphical model is 𝛼,𝛽-non-degenerate if

2We treat 𝐶 as the lowest order interaction, so when we are subtracting from the 1-tensors
(vectors) 𝜃𝑖 to recenter them, we add the corresponding amount to 𝐶.
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(a) Every edge (𝑖, 𝑗) in the graph 𝐺 is contained in some hyperedge ℎ ∈ 𝐻 where

the corresponding tensor is non-zero.

(b) Every maximal hyperedge ℎ ∈ 𝐻 has at least one entry lower bounded by 𝛼 in

absolute value.

(c) Every entry of 𝜃𝑖1𝑖2···𝑖ℓ is upper bounded by a constant 𝛽 in absolute value.

We will refer to a hyperedge ℎ with an entry lower bounded by 𝛼 in absolute value

as 𝛼-nonvanishing. Each of the above non-degeneracy conditions is imposed in order

to make learning 𝐺 information-theoretically possible. If an edge (𝑖, 𝑗) were not

contained in any hyperedge with a non-zero tensor then we could remove the edge and

not change the law in (4.2). If a hyperedge contains only entries that are arbitrarily

close to zero, we cannot hope to learn that it is there. We require 𝛼-nonvanishing just

for maximal hyperedges so that it is still possible to learn 𝐺. Finally if we did not

have an upper bound on the absolute value of the entries, the probabilities in (4.2)

could become arbitrarily skewed and there could be nodes 𝑖 where 𝑋𝑖 only ever takes

on a single value.

4.1.3 Bounds on Conditional Probabilities

First we review properties of the conditional probabilities in a graphical model as well

as introduce some convenient notation which we will use later on. Fix a node 𝑢 and

its neighborhood 𝑈 = 𝑁(𝑢). Then for any 𝑅 ∈ [𝑘𝑢] we have

𝑃 (𝑋𝑢 = 𝑅|𝑋𝑈) =
exp(ℰ𝑋

𝑢,𝑅)∑︀𝑘𝑢
𝐵=1 exp(ℰ𝑋

𝑢,𝐵)
(4.3)

where we define

ℰ𝑋
𝑢,𝑅 =

𝑟∑︁
ℓ=1

∑︁
𝑖2<···<𝑖ℓ

𝜃𝑢𝑖2···𝑖ℓ(𝑅,𝑋𝑖2 , · · · , 𝑋𝑖ℓ)

and 𝑖2, . . . , 𝑖ℓ range over elements of the neighborhood 𝑈 ; when ℓ = 1 the inner sum

is just 𝜃𝑢(𝑅). To see that the above is true, first condition on 𝑋∼𝑢, and see that the
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probability for a certain 𝑋𝑢 is proportional to exp(ℰ𝑋
𝑢,𝑅), which gives the right hand

side of (4.3). Then apply the tower property for conditional probabilities.

Therefore if we define (where |𝑇 |𝑚𝑎𝑥 denotes the maximum entry of a tensor 𝑇 )

𝛾 := sup
𝑢

𝑟∑︁
ℓ=1

∑︁
𝑖2<···<𝑖ℓ

|𝜃𝑢𝑖2···𝑖ℓ |𝑚𝑎𝑥 ≤ 𝛽
𝑟∑︁

ℓ=1

(︂
𝐷

ℓ− 1

)︂
, 𝛿 :=

1

𝐾
exp(−2𝛾) (4.4)

then for any 𝑅

𝑃 (𝑋𝑢 = 𝑅|𝑋𝑈) ≥
exp(−𝛾)

𝐾 exp(𝛾)
=

1

𝐾
exp(−2𝛾) = 𝛿. (4.5)

Observe that if we pick any node 𝑖 and consider the new graphical model given by

conditioning on a fixed value of 𝑋𝑖, then the value of 𝛾 for the new graphical model

is non-increasing.

4.1.4 Lower Bounds for Conditional Mutual Information

As in Bresler’s work on learning Ising models [7], certain information theoretic quan-

tities will play a crucial role as a progress measure in our algorithms. Specifically, we

will use the functional

𝜈𝑢,𝐼|𝑆 := E𝑅,𝐺

[︁
E𝑋𝑆

[︁⃒⃒⃒
Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺|𝑋𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)Pr(𝑋𝐼 = 𝐺|𝑋𝑆)

⃒⃒⃒]︁]︁
where 𝑅 is a state drawn uniformly at random from [𝑘𝑢], 𝐺 is an |𝐼|-tuple of states

drawn independently uniformly at random from [𝑘𝑖1 ] × [𝑘𝑖2 ] × . . . × [𝑘𝑖|𝐼| ] where 𝐼 =

(𝑖1, 𝑖2, . . . 𝑖|𝐼|). This will be used as a proxy for conditional mutual information which

can be efficiently estimated from samples. The following lemma is a version of Lemma

5.1 in [7] that works over non-binary alphabets.

Lemma 4. Fix a set of nodes 𝑆. Fix a node 𝑢 and a set of nodes 𝐼 that are not

contained in 𝑆. Then √︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆) ≥ 𝜈𝑢,𝐼|𝑆.
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Proof.√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆) =

√︂
1

2
E𝑋𝑆=𝑥𝑆

[𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆 = 𝑥𝑆)]

≥ E𝑋𝑆=𝑥𝑆

[︃√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆 = 𝑥𝑆)

]︃

= E𝑋𝑆=𝑥𝑆

[︃√︂
1

2
𝐷𝐾𝐿(Pr(𝑋𝑢, 𝑋𝐼 |𝑋𝑆 = 𝑥𝑆)||Pr(𝑋𝑢|𝑋𝑆 = 𝑥𝑆)Pr(𝑋𝐼 |𝑋𝑆 = 𝑥𝑆))

]︃
≥ E𝑋𝑆

[sup
𝑅,𝐺

[|Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺|𝑋𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)Pr(𝑋𝐼 = 𝐺|𝑋𝑆)|]]

≥ E𝑋𝑆
[E𝑅,𝐺[|Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺|𝑋𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)Pr(𝑋𝐼 = 𝐺|𝑋𝑆)|]]

= 𝜈𝑢,𝐼|𝑆

where the first inequality follows from Jensen’s inequality, and the second inequality

follows from Pinsker’s inequality.

4.1.5 No Cancellation

In this subsection we will show that a clique interaction of order 𝑠 cannot be com-

pletely cancelled out by clique interactions of lower order.

Lemma 5. Let 𝑇 1···𝑠 be a centered tensor of dimensions 𝑑1 × · · · × 𝑑𝑠 and suppose

there exists at least one entry of 𝑇 1···𝑠 which is lower bounded in absolute value by a

constant 𝜅. For any ℓ < 𝑠 and 𝑖1 < · · · < 𝑖ℓ let 𝑇 𝑖1···𝑖ℓ be an arbitrary centered tensor

of dimensions 𝑑𝑖1 × · · · × 𝑑𝑖ℓ. Define

𝑇 (𝑎1, . . . , 𝑎𝑠) =
𝑠∑︁

ℓ=1

∑︁
𝑖1<···<𝑖ℓ

𝑇 𝑖1···𝑖ℓ(𝑎𝑖1 , . . . , 𝑎𝑖ℓ) (4.6)

and suppose the entries of 𝑇 are bounded by a constant 𝜇. Then for any ℓ and

𝑖1 < · · · < 𝑖ℓ, the entries of 𝑇 𝑖1···𝑖ℓ(𝑎𝑖1 , . . . , 𝑎𝑖ℓ) are bounded above by 𝜇ℓℓ.

Proof. The sum over all values of indices 𝑎1, . . . , 𝑎𝑠 on the right hand side is zero, so

the same must hold for the left hand side. Assume for contradiction that every entry

of 𝑇 is upper bounded by 𝜇, to be optimized later. For each 𝑚 from 1 to 𝑠, consider
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summing over all of the indices except 𝑎𝑚, which is held fixed. Using that the sum

over tensor fibers is zero, we observe that the right hand side of (4.7) is just

𝑇 𝑖𝑚(𝑎1)
∏︁

𝑚′ ̸=𝑚

𝑑𝑚′

and the left hand side is strictly bounded in norm by 𝜇
∏︀

𝑚′ ̸=𝑚 𝑑𝑚′ so |𝑇 𝑖𝑚(𝑎𝑚)| < 𝜇

for all 𝑎𝑚. We have proven this for all 𝑚 from 1 to 𝑠.

Now we proceed by induction, assuming that 𝑡 indices are fixed. We will show

that the entries of the 𝑡-tensors are bounded above by 𝜇𝑔(𝑡) for 𝑔(𝑡) = 2𝑡(𝑡+1)/2 and

have already proven this for 𝑡 = 1. Now suppose we fix 𝑎1, . . . , 𝑎𝑡. We rearrange (4.7)

to get

𝑇 (𝑎1, . . . , 𝑎𝑠)−
𝑡−1∑︁
ℓ=1

∑︁
{𝑖1<···<𝑖ℓ}⊂[𝑡]

𝑇 𝑖1···𝑖ℓ(𝑎𝑖1 , . . . , 𝑎𝑖ℓ)

= 𝑇 1···𝑡(𝑎1, . . . , 𝑎𝑡) +
𝑠∑︁

ℓ=1

∑︁
{𝑖1<···<𝑖ℓ}̸⊂[𝑡]

𝑇 𝑖1···𝑖ℓ(𝑎𝑖1 , . . . , 𝑎𝑖ℓ).

When we fix indices 𝑎1, . . . , 𝑎𝑡 and sum over the others, all but the first term on the

rhs vanishes, and by applying the triangle inequality on the lhs and the induction

hypothesis we get that

𝑑𝑡+1 · · · 𝑑𝑠

(︃
𝜇+

𝑡−1∑︁
ℓ=1

(︂
𝑡

ℓ

)︂
𝜇𝑔(ℓ)

)︃
> 𝑑𝑡+1 · · · 𝑑𝑠𝑇 𝑢𝑖2···𝑖𝑡(𝑎1, . . . , 𝑎𝑡)

so taking 𝑔(𝑡) such that 𝑔(0) = 1 and

𝑔(𝑡) ≥
𝑡−1∑︁
ℓ=0

(︂
𝑡

ℓ

)︂
𝑔(ℓ)

and in particular 𝑔(𝑡) = 𝑡𝑡 works, because

𝑡𝑡 = (1 + (𝑡− 1))𝑡 =
𝑡∑︁

ℓ=0

(︂
𝑡

ℓ

)︂
(𝑡− 1)ℓ ≥

𝑡−1∑︁
ℓ=0

(︂
𝑡

ℓ

)︂
ℓℓ.
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Thus we get that all the entries of 𝑇 𝑖1···𝑖ℓ(𝑎𝑖1 , . . . , 𝑎𝑖ℓ) are bounded above by 𝜇ℓℓ, which

completes the proof.

We are now ready to restate the above result in a more usable form:

Lemma 6. Let 𝑇 1···𝑠 be a centered tensor of dimensions 𝑑1 × · · · × 𝑑𝑠 and suppose

there exists at least one entry of 𝑇 1···𝑠 which is lower bounded in absolute value by a

constant 𝜅. For any ℓ < 𝑠 and 𝑖1 < · · · < 𝑖ℓ let 𝑇 𝑖1···𝑖ℓ be an arbitrary centered tensor

of dimensions 𝑑𝑖1 × · · · × 𝑑𝑖ℓ. Let

𝑇 (𝑎1, . . . , 𝑎𝑠) =
𝑠∑︁

ℓ=1

∑︁
𝑖1<···<𝑖ℓ

𝑇 𝑖1···𝑖ℓ(𝑎𝑖1 , . . . , 𝑎𝑖ℓ). (4.7)

Then the sum over all the entries of 𝑇 is 0, and there exists an entry of 𝑇 of absolute

value lower bounded by 𝜅/𝑠𝑠.

Proof. We apply the previous lemma with 𝜇 = 𝜅/𝑠𝑠, and get that all the entries of

𝑇 1···𝑠 are bounded in absolute value by 𝜇𝑠𝑠, giving a contradiction.

4.2 The Guessing Game

Here we introduce a game-theoretic framework for understanding mutual information

in general graphical models. The GuessingGame is defined as follows:

1. Alice samples 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑋 ′ = (𝑋 ′
1, . . . , 𝑋

′
𝑛) independently from the

graphical model

2. Alice samples 𝑅 uniformly at random from [𝑘𝑢]

3. Alice samples a set 𝐼 of size 𝑠 = min(𝑟−1, 𝑑𝑢) uniformly at random from the neighbors

of 𝑢

4. Alice tells Bob 𝐼, 𝑋𝐼 and 𝑅

5. Bob wagers 𝑤 with |𝑤| ≤ 𝛾𝐾
(︀

𝐷
𝑟−1

)︀
54



6. Bob gets Δ = 𝑤1𝑋𝑢=𝑅 − 𝑤1𝑋′
𝑢=𝑅

Bob’s goal is to guess 𝑋𝑢 given knowledge of the states of some of 𝑢’s neighbors.

The graphical model (including all of its parameters) are common knowledge. The

intuition is that if Bob can obtain a positive expected value, then there must be some

set 𝐼 of neighbors of 𝑢 which have non-zero mutual information. In this section, will

show that there is a simple, explicit strategy for Bob that yields positive expected

value.

4.2.1 A Good Strategy for Bob

Here we will show an explicit strategy for Bob that has positive expected value. Our

analysis will rest on the following key lemma:

Lemma 7. There is a strategy for Bob that wagers at most 𝛾𝐾
(︀

𝐷
𝑟−1

)︀
in absolute value

that satisfies

E𝐼,𝑋𝐼
[𝑤|𝑋∼𝑢, 𝑅] = ℰ𝑋

𝑢,𝑅 −
∑︁
𝐵 ̸=𝑅

ℰ𝑋
𝑢,𝐵.

Proof. First we explicitly define Bob’s strategy. Let

Φ(𝑅, 𝐼,𝑋𝐼) =
𝑠∑︁

ℓ=1

𝐶𝑢,ℓ,𝑠

∑︁
𝑖1<𝑖2<···<𝑖ℓ

1{𝑖1···𝑖ℓ}⊆𝐼𝜃
𝑢𝑖1···𝑖ℓ(𝑅,𝑋𝑖1 , . . . , 𝑋𝑖ℓ)

where 𝐶𝑢,ℓ,𝑠 =
(𝑑𝑢𝑠 )
(𝑑𝑢−ℓ

𝑠−ℓ )
. Then Bob wagers

𝑤 = Φ(𝑅, 𝐼,𝑋𝐼)−
∑︁
𝐵 ̸=𝑅

Φ(𝐵, 𝐼,𝑋𝐼).

Notice that the strategy only depends on 𝑋𝐼 because all terms in the summation

where {𝑖1 · · · 𝑖ℓ} are not a subset of 𝐼 have zero contribution.

The intuition behind this strategy is that the weighting term satisifes

𝐶𝑢,ℓ,𝑠 =
1

Pr[{𝑖1, . . . 𝑖ℓ} ⊂ 𝐼]
.
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Thus when we take the expectation over 𝐼 and 𝑋𝐼 we get

E𝐼,𝑋𝐼
[Φ(𝑅, 𝐼,𝑋𝐼)|𝑋∼𝑢, 𝑅] =

𝑟∑︁
ℓ=1

∑︁
𝑖2<···<𝑖ℓ

𝜃𝑢𝑖2···𝑖ℓ(𝑅,𝑋𝑖2 , · · · , 𝑋𝑖ℓ) = ℰ𝑋
𝑢,𝑅

and hence E𝐼,𝑋𝐼
[𝑤|𝑋∼𝑢, 𝑅] = ℰ𝑋

𝑢,𝑅 −
∑︀

𝐵 ̸=𝑅 ℰ𝑋
𝑢,𝐵. To complete the proof, notice that

𝐶𝑢,ℓ,𝑠 ≤
(︀

𝐷
𝑟−1

)︀
which using the definition of 𝛾 implies that |Φ(𝑅, 𝐼,𝑋𝐼)| ≤ 𝛾

(︀
𝐷
𝑟−1

)︀
for

any state 𝐵, and thus Bob wagers at most the desired amount (in absolute value).

Now we are ready to analyze the strategy:

Theorem 25. There is a strategy for Bob that wagers at most 𝛾𝐾
(︀

𝐷
𝑟−1

)︀
in absolute

value which satisfies

E[∆] ≥ 4𝛼2𝛿𝑟−1

𝑟2𝑟𝑒2𝛾
.

Proof. We will use the strategy from Lemma 7. First we fix 𝑋∼𝑢, 𝑋 ′
∼𝑢 and 𝑅. Then

we have

E𝐼,𝑋𝐼
[∆|𝑋∼𝑢, 𝑋

′
∼𝑢, 𝑅] = E𝐼,𝑋𝐼

[𝑤|𝑋∼𝑢, 𝑅]
(︁
Pr[𝑋𝑢 = 𝑅|𝑋∼𝑢, 𝑅]−Pr[𝑋 ′

𝑢 = 𝑅|𝑋 ′
∼𝑢, 𝑅]

)︁
which follows because ∆ = 𝑟1𝑋𝑢=𝑅 − 𝑟1𝑋′

𝑢=𝑅 and because 𝑟 and 𝑋𝑢 do not depend

on 𝑋 ′
∼𝑢 and similarly 𝑋 ′

𝑢 does not depend on 𝑋∼𝑢 . Now using (4.3) we calculate:

Pr[𝑋𝑢 = 𝑅|𝑋∼𝑢, 𝑅]−Pr[𝑋 ′
𝑢 = 𝑅|𝑋 ′

∼𝑢, 𝑅] =
exp(ℰ𝑋

𝑢,𝑅)∑︀
𝐵 exp(ℰ𝑋

𝑢,𝐵)
−

exp(ℰ𝑋′
𝑢,𝑅)∑︀

𝐵 exp(ℰ𝑋′
𝑢,𝐵)

=
1

𝐷

(︁∑︁
𝐵 ̸=𝑅

exp(ℰ𝑋
𝑢,𝑅 + ℰ𝑋′

𝑢,𝐵)− exp(ℰ𝑋
𝑢,𝐵 + ℰ𝑋′

𝑢,𝑅)
)︁

where 𝐷 =
(︁∑︀

𝐵 exp(ℰ𝑋
𝑢,𝐵)

)︁(︁∑︀
𝐵 exp(ℰ𝑋′

𝑢,𝐵)
)︁
. Thus putting it all together we have

E𝐼,𝑋𝐼
[∆|𝑋∼𝑢, 𝑋

′
∼𝑢, 𝑅] =

1

𝐷

(︁
ℰ𝑋
𝑢,𝑅−

∑︁
𝐵 ̸=𝑅

ℰ𝑋
𝑢,𝐵

)︁(︁∑︁
𝐵 ̸=𝑅

exp(ℰ𝑋
𝑢,𝑅+ℰ𝑋′

𝑢,𝐵)−exp(ℰ𝑋
𝑢,𝐵+ℰ𝑋′

𝑢,𝑅)
)︁
.

56



Now it is easy to see that

∑︁
distinct 𝑅,𝐺,𝐵

ℰ𝑋
𝑢,𝐵

(︃∑︁
�̸�=𝑅

exp(ℰ𝑋
𝑢,𝑅 + ℰ𝑋′

𝑢,𝐺)− exp(ℰ𝑋
𝑢,𝐺 + ℰ𝑋′

𝑢,𝑅)

)︃
= 0

which follows because when we interchange 𝑅 and 𝐺 the entire term multiplies by a

negative one and so we can pair up the terms in the summation so that they exactly

cancel. Using this identity we get

E𝐼,𝑋𝐼
[∆|𝑋∼𝑢, 𝑋

′
∼𝑢] =

1

𝑘𝑢𝐷

∑︁
𝑅

∑︁
𝐵 ̸=𝑅

(︁
ℰ𝑋
𝑢,𝑅−ℰ𝑋

𝑢,𝐵

)︁(︁
exp(ℰ𝑋

𝑢,𝑅+ℰ𝑋′

𝑢,𝐵)−exp(ℰ𝑋
𝑢,𝐵+ℰ𝑋′

𝑢,𝑅)
)︁

where we have also used the fact that 𝑅 is uniform on 𝑘𝑢. And finally using the fact

that 𝑋∼𝑢 and 𝑋 ′
∼𝑢 are identically distributed we can sample 𝑌∼𝑢 and 𝑍∼𝑢 and flip a

coin to decide whether we set 𝑋∼𝑢 = 𝑌∼𝑢 and 𝑋 ′
∼𝑢 = 𝑍∼𝑢 or vice-versa. Now we have

E𝐼,𝑋𝐼
[∆|𝑌∼𝑢, 𝑍∼𝑢] =

1

2𝑘𝑢𝐷

∑︁
𝑅

∑︁
𝐵 ̸=𝑅

(︁
ℰ𝑌
𝑢,𝑅−ℰ𝑌

𝑢,𝐵−ℰ𝑍
𝑢,𝑅+ℰ𝑍

𝑢,𝐵

)︁(︁
exp(ℰ𝑌

𝑢,𝑅+ℰ𝑍
𝑢,𝐵)−exp(ℰ𝑌

𝑢,𝐵+ℰ𝑍
𝑢,𝑅)
)︁
.

With the appropriate notation it is easy to see that the above sum is strictly positive.

Let 𝑎𝑅,𝐵 = ℰ𝑌
𝑢,𝑅 + ℰ𝑍

𝑢,𝐵 and 𝑏𝑅,𝐵 = ℰ𝑍
𝑢,𝑅 + ℰ𝑌

𝑢,𝐵. With this notation:

E𝐼,𝑋𝐼
[∆|𝑌∼𝑢, 𝑍∼𝑢] =

1

2𝐷𝑘𝑢

∑︁
𝑅

∑︁
𝐵 ̸=𝑅

(︁
𝑎𝑅,𝐵 − 𝑏𝑅,𝐵

)︁(︁
exp(𝑎𝑅,𝐵)− exp(𝑏𝑅,𝐵)

)︁
.

Since exp(𝑥) is a strictly increasing function it follows that as long as 𝑎𝑅,𝐵 ̸= 𝑏𝑅,𝐵 for

some term in the sum, the sum is positive. In Lemma 8 we prove that the expectation

over 𝑌 and 𝑍 of this sum is at least 4𝛼2𝛿𝑟−1

𝑟2𝑟𝑒2𝛾
, which completes the proof.

4.2.2 A Quantitative Lower Bound

Here we prove a quantitative lower bound on the sum that arose in the proof of

Theorem 25. More precisely we show:
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Lemma 8.

E𝑌,𝑍

[︁∑︁
𝑅

∑︁
𝐵 ̸=𝑅

(︁
ℰ𝑌
𝑢,𝑅−ℰ𝑌

𝑢,𝐵−ℰ𝑍
𝑢,𝑅+ℰ𝑍

𝑢,𝐵

)︁(︁
exp(ℰ𝑌

𝑢,𝑅+ℰ𝑍
𝑢,𝐵)−exp(ℰ𝑌

𝑢,𝐵+ℰ𝑍
𝑢,𝑅)
)︁]︁

≥ 4𝛼2𝛿𝑟−1

𝑟2𝑟𝑒2𝛾
.

Proof. Setting 𝑎 = ℰ𝑌
𝑢,𝑅 + ℰ𝑍

𝑢,𝐵 and 𝑏 = ℰ𝑌
𝑢,𝐵 + ℰ𝑍

𝑢,𝑅, letting 𝐷′ = 𝐾3 exp(2𝛾) ≥ 𝐷,

and taking an expectation over the randomness in 𝑌 and 𝑍, we have

E𝑌,𝑍

[︁∑︁
𝑅

∑︁
𝑅 ̸=𝐵

(𝑎− 𝑏)(𝑒𝑎 − 𝑒𝑏)
]︁
= E[

∑︁
𝑅

∑︁
𝑅 ̸=𝐵

(𝑎− 𝑏)

∫︁ 𝑎

𝑏

𝑒𝑥𝑑𝑥]

≥ E[
∑︁
𝑅

∑︁
𝑅 ̸=𝐵

(𝑎− 𝑏)2𝑒−2𝛾] ≥ 1

𝑒2𝛾

∑︁
𝑅

∑︁
𝑅 ̸=𝐵

Var[𝑎− 𝑏]

where the inequality follows from the fact that 𝑎, 𝑏 ≥ −2𝛾. In the following claim, we

give a more convenient expression for the above quantity.

Claim 3. ∑︁
𝑅

∑︁
𝑅 ̸=𝐵

Var[𝑎− 𝑏] = 4𝑘𝑢
∑︁
𝑅

Var[ℰ𝑌
𝑢,𝑅].

Proof. Using the fact that 𝑎− 𝑏 = (ℰ𝑌
𝑢,𝑅 − ℰ𝑌

𝑢,𝐵) + (ℰ𝑍
𝑢,𝐵 − ℰ𝑍

𝑢,𝑅) we have that

∑︁
𝑅

∑︁
𝑅 ̸=𝐵

Var[𝑎− 𝑏] =
∑︁
𝑅

∑︁
𝐵 ̸=𝑅

Var[(ℰ𝑌
𝑢,𝑅 − ℰ𝑌

𝑢,𝐵) + (ℰ𝑍
𝑢,𝐵 − ℰ𝑍

𝑢,𝑅)]

= 2
∑︁
𝑅

∑︁
𝐵 ̸=𝑅

Var[(ℰ𝑌
𝑢,𝑅 − ℰ𝑌

𝑢,𝐵)]

= 2
∑︁
𝑅

∑︁
𝐵 ̸=𝑅

(︁
2Var[ℰ𝑌

𝑢,𝑅]− 2Cov
(︁
ℰ𝑌
𝑢,𝑅, ℰ𝑌

𝑢,𝐵

)︁)︁
= 2

∑︁
𝑅

(︁
2(𝑘𝑢 − 1)Var[ℰ𝑌

𝑢,𝑅]− 2Cov
(︁
ℰ𝑌
𝑢,𝑅,

∑︁
𝐵 ̸=𝑅

ℰ𝑌
𝑢,𝐵

)︁)︁
= 2

∑︁
𝑅

(︁
2(𝑘𝑢 − 1)Var[ℰ𝑌

𝑢,𝑅]− 2Cov
(︁
ℰ𝑌
𝑢,𝑅,−ℰ𝑌

𝑢,𝑅

)︁)︁
= 4𝑘𝑢

∑︁
𝑅

Var[ℰ𝑌
𝑢,𝑅]

where the second to last equality follows from the fact that the tensors are centered

which gives
∑︀

𝑅 ℰ𝑌
𝑢,𝑅 = 0 for any 𝑌 . This completes the proof.
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Now we can complete the proof by appealing to the law of total variance. By

assumption there is a maximal hyperedge 𝐽 = {𝑢, 𝑗1 . . . 𝑗𝑠} containing 𝑢 with |𝐽 | ≤ 𝑟,

such that 𝜃𝑢𝐽 is 𝛼-nonvanishing. Then we have

∑︁
𝑅

Var[ℰ𝑌
𝑢,𝑅] ≥

∑︁
𝑅

Var[ℰ𝑌
𝑢,𝑅|𝑌∼𝐽 ] =

∑︁
𝑅

Var[𝑇 (𝑅, 𝑌𝑗1 , . . . , 𝑌𝑗𝑠)|𝑌∼𝐽 ]

where the tensor 𝑇 is defined by treating 𝑌∼𝐽 as fixed as follows:

𝑇 (𝑅, 𝑌𝑗1 , . . . , 𝑌𝑗𝑠) =
𝑟∑︁

ℓ=2

∑︁
𝑖2<···<𝑖ℓ

𝜃𝑢𝑖2···𝑖ℓ(𝑅, 𝑌𝑖2 , · · · , 𝑌𝑖ℓ).

Now we claim there is a choice of 𝑅, 𝐺 and 𝐺′ so that |𝑇 (𝑅,𝐺)− 𝑇 (𝑅,𝐺′)| > 𝛼/𝑟𝑟.

This follows because from Lemma 6 we have that 𝑇 is 𝛼/𝑟𝑟-nonvanishing. Hence

there is a choice of 𝑅 and 𝐺 so that |𝑇 (𝑅,𝐺)| > 𝛼/𝑟𝑟. Because 𝑇 is centered there

must be a 𝐺′ so that 𝑇 (𝑅,𝐺′) has the opposite sign.

Finally for this choice of 𝑅 we have

Var[𝑇 (𝑅, 𝑌𝑗1 , . . . , 𝑌𝑗𝑠)|𝑌∼𝐽 ] ≥
𝛼2𝛿𝑟−1

2𝑟2𝑟

which follows from the fact that Pr(𝑌𝐽∖𝑢 = 𝐺) and Pr(𝑌𝐽∖𝑢 = 𝐺′) are both lower

bounded by 𝛿𝑟−1 and the following elementary lower bound on the variance:

Claim 4. Let 𝑍 be a random variable such that 𝑃𝑟(𝑍 = 𝑎) ≥ 𝑝 and 𝑃𝑟(𝑍 = 𝑏) ≥ 𝑝,

then

Var(𝑍) ≥ 𝑝

2
(𝑎− 𝑏)2.

Proof.

Var(𝑍) ≥ 𝑝(𝑎−E[𝑍])2 + 𝑝(E[𝑍]− 𝑏)2 ≥ 𝑝
(︁
𝑎− 𝑎+ 𝑏

2

)︁2
+ 𝑝
(︁
𝑏− 𝑎+ 𝑏

2

)︁2
=

𝑝

2
(𝑎− 𝑏)2.
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Putting this all together we have

E𝑌,𝑍

[︁∑︁
𝑅

∑︁
𝑅 ̸=𝐵

(𝑎− 𝑏)(𝑒𝑎 − 𝑒𝑏)
]︁
≥ 4𝛼2𝛿𝑟−1

𝑟2𝑟𝑒2𝛾

which is the desired bound. This completes the proof.

4.3 Implications for Mutual Information

In this section we show that Bob’s strategy implies a lower bound on the mutual

information between node 𝑢 and a subset 𝐼 of its neighbors of size at most 𝑟− 1. We

then extend the argument to work with conditional mutual information as well.

4.3.1 Mutual Information in graphical models

Recall that the goal of the GuessingGame is for Bob to use information about the

states of nodes 𝐼 to guess the state of node 𝑢. Intuitively, if 𝑋𝐼 conveys no information

about 𝑋𝑢 then it should contradict the fact that Bob has a strategy with positive

expected value. We make this precise below. Our argument proceeds in two steps.

First we upper bound the expected value of any strategy.

Lemma 9. For any strategy,

E[∆] ≤ 𝛾𝐾

(︂
𝐷

𝑟 − 1

)︂
E𝐼,𝑋𝐼 ,𝑅

[︁
|Pr[𝑋𝑢 = 𝑅|𝑋𝐼 ]−Pr[𝑋𝑢 = 𝑅]|

]︁
.

Proof. Intuitively this follows because Bob’s optimal strategy given 𝐼, 𝑋𝐼 and 𝑅 is

to guess

𝑤 = sgn(Pr[𝑋𝑢 = 𝑅|𝑋𝐼 ]−Pr[𝑋𝑢 = 𝑅])𝛾𝐾.
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More precisely, we have

E[∆] = E𝐼,𝑋𝐼 ,𝑅

[︁
E𝑋∼𝐼 ,𝑋′

[︁
𝑟1𝑋𝑢=𝑅 − 𝑟1𝑋′

𝑢=𝑅

⃒⃒⃒
𝐼,𝑋𝐼 , 𝑅

]︁]︁
= E𝐼,𝑋𝐼 ,𝑅

[︁
𝑟Pr[𝑋𝑢 = 𝑅|𝑋𝐼 ]− 𝑟Pr[𝑋 ′

𝑢 = 𝑅]
]︁

= E𝐼,𝑋𝐼 ,𝑅

[︁
𝑟Pr[𝑋𝑢 = 𝑅|𝑋𝐼 ]− 𝑟Pr[𝑋𝑢 = 𝑅]

]︁
≤ 𝛾𝐾

(︂
𝐷

𝑟 − 1

)︂
E𝐼,𝑋𝐼 ,𝑅

[︁
|Pr[𝑋𝑢 = 𝑅|𝑋𝐼 ]−Pr[𝑋𝑢 = 𝑅]|

]︁
which completes the proof.

Next we lower bound the mutual information using (essentially) the same quantity.

We prove

Lemma 10.√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼) ≥

1

𝐾𝑟
E𝑋𝐼 ,𝑅

[︁
|Pr(𝑋𝑢 = 𝑅|𝑋𝐼)−Pr(𝑋𝑢 = 𝑅)|

]︁
.

Proof. Applying Lemma 4 with 𝑆 = ∅ we have that√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼) ≥ E𝑅,𝐺

[︁
|Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺)−Pr(𝑋𝑢 = 𝑅)Pr(𝑋𝐼 = 𝐺)|

]︁
= E𝑅,𝐺

[︁
Pr(𝑋𝐼 = 𝐺)|Pr(𝑋𝑢 = 𝑅|𝑋𝐼 = 𝐺)−Pr(𝑋𝑢 = 𝑅)|

]︁
=

1∏︀
𝑖∈𝐼 𝑘𝑖

∑︁
𝐺

Pr(𝑋𝐼 = 𝐺)E𝑅[|Pr(𝑋𝑢 = 𝑅|𝑋𝐼 = 𝐺)−Pr(𝑋𝑢 = 𝑅)|]

≥ 1

𝐾𝑟
E𝑅,𝑋𝐼

[︁
|Pr(𝑋𝑢 = 𝑅|𝑋𝐼)−Pr(𝑋𝑢 = 𝑅)|

]︁
where 𝑅 and 𝐺 are uniform (as in the definition of 𝜈𝑢,𝐼|𝑆).

Now appealing to Lemma 9, Lemma 10 and Theorem 25 we conclude:

Theorem 26. Fix a non-isolated vertex 𝑢 contained in at least one 𝛼-nonvanishing

maximal hyperedge. Then taking 𝐼 uniformly at random from the subsets of the neigh-
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bors of 𝑢 of size 𝑠 = min(𝑟 − 1, 𝑑𝑒𝑔(𝑢)),

E𝐼

[︃√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼)

]︃
≥ E𝐼 [𝜈𝑢,𝐼|∅] ≥ 𝐶(𝛾,𝐾, 𝛼)

where explicitly

𝐶(𝛾,𝐾, 𝛼) :=
4𝛼2𝛿𝑟−1

𝑟2𝑟𝐾𝑟+1
(︀

𝐷
𝑟−1

)︀
𝛾𝑒2𝛾

.

4.3.2 Extensions to Conditional Mutual Information

In the previous subsection, we showed that 𝑋𝑢 and 𝑋𝐼 have positive mutual infor-

mation. Here we show that the argument extends to conditional mutual information

when we condition on 𝑋𝑆 for any set 𝑆 that does not contain all the neighbors of

𝑢. The main idea is to show that there is a setting of 𝑋𝑆 where the hyperedges

do not completely cancel out each other in the new graphical model we obtain by

conditioning on 𝑋𝑆.

More precisely fix a set of nodes 𝑆 that does not contain all the neighbors of 𝑢

and let 𝐼 be chosen uniformly at random from the subsets of neighbors of 𝑢 of size

𝑠 = min(𝑟 − 1, |𝑁(𝑢) ∖ 𝑆|). Then we have

E𝐼 [

√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆)] = E𝐼 [

√︂
1

2
E𝑋𝑆=𝑥𝑆

[𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆 = 𝑥𝑆)]]

≥ E𝐼,𝑋𝑆=𝑥𝑆

[︃√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆 = 𝑥𝑆)

]︃

which follows from Jensen’s inequality. Now conditioned on 𝑋𝑆 = 𝑥𝑆 the resulting

distribution is again a graphical model and 𝛾 does not increase.

Definition 13. Let 𝐸 be the event that conditioned on 𝑋𝑆 = 𝑥𝑆, node 𝑢 is contained

in at least one 𝛼/𝑟𝑟-nonvanishing maximal hyperedge.

Lemma 11. Pr(𝐸) ≥ 𝛿𝑑

Proof. When we fix 𝑋𝑆 = 𝑥𝑆 we obtain a new graphical model where the underlying

hypergraph is

ℋ′ := ([𝑛] ∖ 𝑆,𝐻 ′) where 𝐻 ′ = {ℎ ∖ 𝑆|ℎ ∈ 𝐻).
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For notational convenience let 𝜑(ℎ) be the image of a hyperedge ℎ in ℋ in the new

hypergraph ℋ′. What makes things complicated is that a hyperedge in ℋ′ can have

numerous preimages. The crux of our argument is in how to select the right one

to show is 𝛼/𝑟𝑟-nonvanishing. First we observe that 𝑢 is contained in at least one

non-empty hyperedge in ℋ′. This is because by assumption 𝑆 does not contain all

the neighbors of 𝑢. Hence there is some neighbor 𝑣 /∈ 𝑆. Since 𝑣 is a neighbor of 𝑢

it means that there is a hyperedge ℎ ∈ 𝐻 that contains both 𝑢 and 𝑣. In particular

𝜑(ℎ) contains 𝑢 and is nonempty.

Now that we know 𝑢 is not isolated in ℋ′, let ℎ* be a hyperedge in ℋ that contains

𝑢 and where 𝜑(ℎ*) is maximal. Now let 𝑓1, 𝑓2, . . . 𝑓𝑝 be the preimages of 𝜑(ℎ*) so that

without loss of generality 𝑓1 is maximal in ℋ. Now let 𝐽 = ∪𝑝
𝑖=1𝑓𝑖∖{𝑢}. In particular,

𝐽 is the set of neighbors of 𝑢 that are contained in at least one of 𝑓1, 𝑓2, . . . 𝑓𝑝. Finally

let 𝐽1 = 𝐽 ∩ 𝑆 := {𝑖1, 𝑖2, . . . 𝑖𝑠} and let 𝐽2 = 𝐽 ∖ 𝑆 := {𝑖′1, 𝑖′2, . . . 𝑖′𝑠′}. We can now

define

𝑇 (𝑅, 𝑎1, . . . , 𝑎𝑠, 𝑎
′
1, . . . , 𝑎

′
𝑠′) =

𝑝∑︁
𝑖=1

𝜃𝑓𝑖

which is the clique potential we get on hyperedge 𝜑(ℎ*) when we fix each index in

𝐽1 ⊆ 𝑆 to their corresponding value.

Suppose for the purposes of contradiction that all the entries of 𝑇 are strictly

bounded in absolute value by 𝛼/𝑟𝑟. Then applying Lemma 5 in the contrapositive we

see that the entries of 𝑓1 are strictly bounded above in absolute value by 𝛼, but 𝑓1 is

maximal and thus 𝛼-nonvanishing, which yields a contradiction. Thus there is some

setting 𝑎*1, . . . , 𝑎
*
𝑠 such that the tensor

𝑇 ′(𝑅, 𝑎′1, . . . , 𝑎
′
𝑠′) = 𝑇 (𝑅, 𝑎*1, . . . , 𝑎

*
𝑠, 𝑎

′
1, . . . , 𝑎

′
𝑠′)

has at least one entry with absolute value at least 𝛼/𝑟𝑟. Under this setting, 𝜑(ℎ*) is

𝛼/𝑟𝑟-nonvanishing and by construction maximal in ℋ′ and thus we would be done.

All that remains is to lower bound the probability of this setting. Since 𝐽1 is a subset

of the neighbors of 𝑢 we have |𝐽1| ≤ 𝑑. Thus the probability that (𝑋𝑖1 , . . . , 𝑋𝑖𝑠) =

(𝑎*1, . . . , 𝑎
*
𝑠) is bounded below by 𝛿𝑠 ≥ 𝛿𝑑, which completes the proof.
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Now we are ready to prove a lower bound on conditional mutual information:

Theorem 27. Fix a vertex 𝑢 such that all of the maximal hyperedges containing

𝑢 are 𝛼-nonvanishing, and a subset of the vertices 𝑆 which does not contain the

entire neighborhood of 𝑢. Then taking 𝐼 uniformly at random from the subsets of the

neighbors of 𝑢 not contained in 𝑆 of size 𝑠 = min(𝑟 − 1, |𝑁(𝑢) ∖ 𝑆|),

E𝐼

[︃√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆)

]︃
≥ 𝐸𝐼 [𝜈𝑢,𝐼|𝑆] ≥ 𝐶 ′(𝛾,𝐾, 𝛼)

where explicitly

𝐶 ′(𝛾,𝐾, 𝛼) :=
4𝛼2𝛿𝑟+𝑑−1

𝑟2𝑟𝐾𝑟+1
(︀

𝐷
𝑟−1

)︀
𝛾𝑒2𝛾

.

Proof. We have

E𝐼,𝑋𝑆

[︃√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆)

]︃
≥ E𝐼,𝑋𝑆=𝑥𝑆

[︃√︂
1

2
𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆 = 𝑥𝑆)1𝐸

]︃
≥ 𝛿𝑑𝐶(𝛾,𝐾, 𝛼)

where the last inequality follows by invoking Lemma 11 and applying Theorem 26 to

the new graphical model we get by conditioning on 𝑋𝑆 = 𝑥𝑆.

4.4 Applications

4.4.1 Learning graphical models

We now employ the greedy approach of Bresler [7] which was previously used to

learn Ising models on bounded degree graphs. Let 𝑥(1), . . . , 𝑥(𝑚) denote a collection

of independent samples from the underlying graphical model. Let ̂︁Pr denote the

empirical distribution so that

̂︁Pr(𝑋 = 𝑥) =
1

𝑚

𝑚∑︁
𝑖=1

1𝑥(𝑖)=𝑥.

Let ̂︀E denote the expectation under this distribution, i.e. the sample average.
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In our algorithm, we will need estimates for 𝜈𝑢,𝑖|𝑆 which we obtain in the usual

way by replacing all expectations over 𝑋 with sample averages:

̂︀𝜈𝑢,𝑖|𝑆 := E𝑅,𝐺
̂︀E𝑋𝑆

[|̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝑖 = 𝐺|𝑋𝑆)− ̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆)̂︁Pr(𝑋𝑖 = 𝐺|𝑋𝑆)|].

Also we define 𝜏 (which will be used as a thresholding constant) as

𝜏 := 𝐶 ′(𝛾, 𝑘, 𝛼)/2 (4.8)

and 𝐿, which is an upper bound on the size of the superset of a neighborhood of 𝑢

that the algorithm will construct,

𝐿 := (8/𝜏 2) log𝐾 = (32/𝐶 ′(𝛾, 𝑘, 𝛼)2) log𝐾. (4.9)

Then the algorithm MrfNbhd at node 𝑢 is:

1. Fix input vertex 𝑢. Set 𝑆 := ∅.

2. While |𝑆| ≤ 𝐿 and there exists a set of vertices 𝐼 ⊂ [𝑛] ∖𝑆 of size at most 𝑟− 1

such that ̂︀𝜈𝑢,𝐼|𝑆 > 𝜏 , set 𝑆 := 𝑆 ∪ 𝐼.

3. For each 𝑖 ∈ 𝑆, if ̂︀𝜈𝑢,𝑖|𝑆∖𝑖 < 𝜏 then remove 𝑖 from 𝑆.

4. Return set 𝑆 as our estimate of the neighborhood of 𝑢.

The algorithm will succeed provided that ̂︀𝜈𝑢,𝐼|𝑆 is sufficiently close to the true

value 𝜈𝑢,𝐼|𝑆. This motivates the definition of the event 𝐴:

Definition 28. We denote by 𝐴(ℓ, 𝜀) the event that for all 𝑢, 𝐼 and 𝑆 with |𝐼| ≤ 𝑟−1

and |𝑆| ≤ ℓ simultaneously, ⃒⃒
𝜈𝑢,𝑖|𝑆 − ̂︀𝜈𝑢,𝑖|𝑆 ⃒⃒ < 𝜀.

We let 𝐴 denote the event 𝐴(𝐿, 𝜏/2).
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The proof of the following technical lemma is left to an appendix.

Lemma 12. Fix a set 𝑆 with |𝑆| ≤ ℓ and suppose that for any set 𝑇 ⊇ 𝑆 with

|𝑇 ∖ 𝑆| ≤ 𝑟, that

|̂︁Pr(𝑋𝑇 = 𝑥𝑇 )−Pr(𝑋𝑇 = 𝑥𝑇 )| < 𝜎.

If 𝜎 ≤ 𝜀𝐾−ℓ 𝛿ℓ

5
then for any 𝐼 with |𝐼| ≤ 𝑟 − 1,

⃒⃒
𝜈𝑢,𝑖|𝑆 − ̂︀𝜈𝑢,𝑖|𝑆 ⃒⃒ < 𝜀.

Lemma 13. Fix ℓ, 𝜀 and 𝜔 > 0. If the number of samples satisfies

𝑚 ≥ 15𝐾2ℓ

𝜀2𝛿2ℓ

(︁
log(1/𝜔) + log(ℓ+ 𝑟) + (ℓ+ 𝑟) log(𝑛𝐾) + log 2

)︁
then Pr(𝐴(ℓ, 𝜀)) ≥ 1− 𝜔.

Proof of Lemma 13. Fix ℓ, 𝜀 and 𝜔 > 0. Let 𝑚 denote the number of samples. By

Hoeffding’s inequality, for any set 𝑇 ,

Pr[|̂︁Pr(𝑋𝑇 = 𝑥𝑇 )−Pr(𝑋𝑇 = 𝑥𝑇 )| > 𝜎] ≤ 2 exp(−2𝜎2𝑚)

and taking the union bound over all possibly 𝑥𝑇 for 𝑇 with |𝑇 | ≤ ℓ+𝑟, of which there

are at most

ℓ+𝑟∑︁
𝑖=1

(︂
𝑛

𝑖

)︂
𝐾𝑖 ≤

ℓ+𝑟∑︁
𝑖=1

(𝑛𝐾)𝑖 ≤ (ℓ+ 𝑟)(𝑛𝐾)ℓ+𝑟

many, we find the probability that |̂︁Pr(𝑋𝑇 = 𝑥𝑇 )− Pr(𝑋𝑇 = 𝑥𝑇 )| > 𝜎 for any such

𝑇 is at most

(ℓ+ 𝑟)(𝑛𝐾)ℓ+𝑟2 exp(−2𝜎2𝑚).

Therefore taking

𝑚 ≥ log(1/𝜔) + log(ℓ+ 𝑟) + (ℓ+ 𝑟) log(𝑛𝐾) + log 2

2𝜎2
(4.10)
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ensures this probability is at most 𝜔.

Now applying Lemma 12 and substituting 𝜎 = 𝜀𝐾−ℓ 𝛿ℓ

5
into (4.10), we see that

the result holds if

𝑚 ≥ 15𝐾2ℓ

𝜀2𝛿2ℓ

(︁
log(1/𝜔) + log(ℓ+ 𝑟) + (ℓ+ 𝑟) log(𝑛𝐾) + log 2

)︁
.

Lemma 14. Assume that the event 𝐴 holds. Then every time a node 𝑖 is added to

𝑆 in Step 2 of the algorithm, the mutual information 𝐼(𝑋𝑢;𝑋𝑆) increases by at least

𝜏 2/8.

Proof. For a particular iteration of Step 2, let 𝐼 denote the newly added set of nodes,

and 𝑆 the set of candidate neighbors before adding 𝐼. Then we must show for 𝑄 =

𝜏 2/8 that

𝐼(𝑋𝑢;𝑋𝑆∪{𝐼}) ≥ 𝐼(𝑋𝑢;𝑋𝑆) +𝑄

which by the chain rule for expectation is equivalent to

𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆) ≥ 𝑄.

Applying Lemma 4 and the fact that event 𝐴 holds, we see√︂
1

2
· 𝐼(𝑋𝑢;𝑋𝐼 |𝑋𝑆) ≥

1

2
𝜈𝑢,𝐼|𝑆 ≥ 1

2

(︀̂︀𝜈𝑢,𝑖|𝑆 − 𝜏/2
)︀
.

Thus the algorithm only adds node 𝑖 to 𝑆 if ̂︀𝜈𝑢,𝑖|𝑆 ≥ 𝜏 , so the chain of inequalities

implies that

𝐼(𝑋𝑢;𝑋𝑖|𝑋𝑆) ≥
1

2
(𝜏 − 𝜏/2)2 = 𝜏 2/8.

Lemma 15. If event 𝐴 holds then at the end of Step 2, 𝑆 contains all of the neighbors

of 𝑢.

Proof. Step 2 ended either because |𝑆| > 𝐿 or because there was no set of nodes
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𝐼 ⊂ [𝑛] ∖ 𝑆 with ̂︀𝜈𝑢,𝐼|𝑆 > 𝜏 . First we rule out the former possibility. Whenever a new

element is added to 𝑆, the quantity 𝐼(𝑋𝑢;𝑋𝑆) increases by at least 𝜏 2/8. But

𝐼(𝑋𝑢;𝑋𝑆) ≤ 𝐻(𝑋𝑢) ≤ log𝐾

because 𝑋𝑢 takes on at most 𝐾 states. Thus if |𝑆| > 𝐿 then

log𝐾 ≥ 𝐼(𝑋𝑢;𝑋𝑆) > 𝐿(𝜏 2/8) = log𝐾

which gives a contradiction.

Thus at the end of Step 2 we must have that there is no set of nodes 𝐼 ⊂ [𝑛]∖𝑆 witĥ︀𝜈𝑢,𝐼|𝑆 > 𝜏 . Suppose for the purposes of contradiction that 𝑆 does not contain all of the

neighbors of 𝑢. Then by Theorem 27, there exists a subset of the neighbors such that

𝜈𝑢,𝐼|𝑆 ≥ 𝐶 ′(𝛾, 𝑘, 𝛼) = 2𝜏 , and because event 𝐴 holds we know ̂︀𝜈𝑢,𝐼|𝑆 > 2𝜏 − 𝜏/2 > 𝜏 ,

which gives us our contradiction and completes the proof of the lemma.

Lemma 16. If event 𝐴 holds and if at the start of Step 3 𝑆 contains all neighbors of

𝑢, then at the end of Step 3 the remaining set of nodes are exactly the neighbors of 𝑢.

Proof. If 𝐴(ℓ) holds, then during Step 3,

̂︀𝜈𝑢,𝑖|𝑆∖{𝑖} < 𝜈𝑢,𝑖|𝑆 + 𝜏/2 ≤
√︂

1

2
𝐼(𝑋𝑢;𝑋𝑖|𝑋𝑆) + 𝜏/2 = 𝜏/2

for all nodes 𝑖 that are not neighbors of 𝑢. Thus all such nodes are pruned. Further-

more, by Theorem 27, ̂︀𝜈𝑢,𝑖|𝑆∖{𝑖} > 𝜈𝑢,𝑖|𝑆∖{𝑖} − 𝜏/2 ≥ 2𝜏 − 𝜏/2 = 3𝜏/2 for all neighbors

of 𝑢 and thus no neighbor is pruned. This completes the proof.

Recall that 𝛾 ≤ 𝛽𝑟𝐷𝑟, 𝛿 = 𝑒−2𝛾/𝐾, (𝐶 ′(𝛾,𝐾, 𝛼))−1 = 𝑂(𝐾
𝑟+1𝑟2𝑟

𝛼2𝛿2𝐷
𝐷𝑟−1𝛾𝑒−2𝛾) and

𝐿 = 𝑂(𝐶 ′(𝛾,𝐾, 𝛼)−2).

Theorem 29. Fix 𝜔 > 0. Suppose we are given 𝑚 samples from an 𝛼, 𝛽-non-

degenerate graphical model with 𝑟-order interactions where the underlying graph has
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maximum degree at most 𝐷 and each node takes on at most 𝐾 states. Suppose that

𝑚 ≥ 60𝐾2𝐿

𝜏 2𝛿2𝐿

(︁
log(1/𝜔) + log(𝐿+ 𝑟) + (𝐿+ 𝑟) log(𝑛𝐾) + log 2

)︁
.

Then with probability at least 1 − 𝜔, MrfNbhd when run starting from each node

𝑢 recovers the correct neighborhood of 𝑢, and thus recovers the underlying graph 𝐺.

Furthermore, each run of the algorithm takes 𝑂(𝑚𝐿𝑛𝑟) time.

Proof. Set ℓ = 𝐿 and 𝜀 = 𝜏/2 in Lemma 13. Then event 𝐴 occurs with probability

at least 1− 𝜔 for our choice of 𝑚. Now by Lemma 15 and Lemma 16 the algorithm

returns the correct set of neighbors of 𝑢 for every node 𝑢.

To analyze the running time, observe that when running algorithm MrfNbhd at

a single node 𝑢, the bottleneck is Step 2, in which there are at most 𝐿 steps and in

each step the algorithm must loop over all subsets of the vertices in [𝑛] ∖ 𝑆 of size

𝑟 − 1, of which there are
∑︀𝑟−1

ℓ=1

(︀
𝑛
ℓ

)︀
= 𝑂(𝑛𝑟−1) many. Running the algorithm at all

nodes thus takes 𝑂(𝑚𝐿𝑛𝑟) time.

Remark 30. Note that when we plug in the values of 𝛾 and 𝛿 we get that the overall

sample complexity of our algorithm in terms of 𝐷 and 𝑟 is doubly exponential in 𝐷𝑟.

4.4.2 Learning with Bounded Queries

In many situations, it is too expensive to obtain full samples from a graphical model

(e.g. this could involve needing to measure every potential symptom of a patient).

Here we consider a model where we are allowed only partial observations in the form

of a 𝐶-bounded query:

Definition 31. A 𝐶-bounded query to a graphical model is specified by a set 𝑆 with

|𝑆| ≤ 𝐶 and we observe 𝑋𝑆

Our algorithm MrfNbhd can be made to work with 𝐶-bounded queries instead

of full observations by a simple change: instead of estimating all of the terms ̂︀𝜈𝑢,𝐼|𝑆
jointly from samples, we estimate each one individually by querying a fresh batch of
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𝑚′ samples of {𝑢} ∪ 𝐼 ∪ 𝑆 every time the algorithm requires ̂︀𝜈𝑢,𝐼|𝑆. First we make an

elementary observation about MrfNbhd:

Observation 1. In Step 2, MrfNbhd only needs ̂︀𝜈𝑢,𝐼|𝑆 for all 𝐼 with |𝐼| ≤ 𝑟 − 1.

Similarly at Step 3, MrfNbhd only needs ̂︀𝜈𝑢,𝑖|𝑆∖𝑖 for each 𝑖 ∈ 𝑆.

Thus the number of distinct terms ̂︀𝜈𝑢,𝐼|𝑆 which MrfNbhd needs is at most 𝐿(𝑟 −

1)𝑛𝑟−1 for Step 2 and 𝑅 for Step 3, which in total is at most 𝐿𝑟𝑛𝑟−1.

Lemma 17. Fix a node 𝑢, a set 𝑆 with ℓ = |𝑆|, a set 𝐼 with |𝐼| ≤ 𝑟 − 1 and fix 𝜀

and 𝜔 > 0. If the number of samples we observe of 𝑋𝑆∪𝐼∪{𝑢} satisfies

𝑚′ ≥ 15𝐾2ℓ

𝜀2𝛿2ℓ

(︁
log(1/𝜔) + log(ℓ+ 𝑟) + (ℓ+ 𝑟) log(𝑛𝐾) + log 2

)︁
then

|𝜈𝑢,𝐼|𝑆 − ̂︀𝜈𝑢,𝐼|𝑆| < 𝜀

with probability at least 1− 𝜔.

Proof. This follows by the same Hoeffding and union bound as in proof of Lemma 13.

Theorem 32. Fix an 𝛼, 𝛽-non-degenerate graphical model with 𝑟-order interactions

where the underlying graph has maximum degree at most 𝐷 and each node takes on at

most 𝐾 states. The bounded queries modification to the algorithm returns the correct

neighborhood of every vertex 𝑢 using 𝑚′𝐿𝑟𝑛𝑟-bounded queries of size at most 𝐿 + 𝑟

where

𝑚′ =
60𝐾2𝐿

𝜏 2𝛿2𝐿

(︁
log(𝐿𝑟𝑛𝑟/𝜔) + log(𝐿+ 𝑟) + (𝐿+ 𝑟) log(𝑛𝐾) + log 2

)︁
,

with probability at least 1− 𝜔.

Proof. Invoking Lemma 17 with 𝜔′ = 𝜔
𝐿𝑟𝑛𝑟 , 𝜀 = 𝜏/2 and ℓ = 𝐿, we get that each

query to ̂︀𝜈𝑢,𝐼|𝑆 fails (i.e. is wrong by at least 𝜏/2) with probability at most 𝜔
𝐿𝑟𝑛𝑟 . We

observed that Algorithm MrfNbhd makes at most 𝐿𝑟𝑛𝑟−1 queries of the form, ̂︀𝜈𝑢,𝐼|𝑆.
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Therefore, by a union bound, with probability at least 1− 𝜔/𝑛, the bounded queries

algorithm answers all of those queries to within tolerance 𝜏/2.

Now it follows as in Theorem 29 that the algorithm returns the correct neighbor-

hood of node 𝑢 with probability at least 1−𝜔/𝑛, and taking the union bound over all

nodes 𝑢 it follows that the algorithm recovers the correct neighborhood of all nodes

with probability at least 1− 𝜔. This completes the proof.

4.4.3 Learning with Random Erasures

Here we consider another variant where we do not observe full samples from a graphi-

cal model. Instead we observe partial samples where the state of each node is revealed

independently with probability 𝑝 and is otherwise replaced with a ‘?’, and the choice

of which nodes to reveal is independent of the sample. We can apply our algorithm

in this setting, as follows.

Lemma 18. With probability at least 1 − 𝜀, if we take 𝑁 ℓ log𝑛+log ℓ+log𝑁/𝜀
𝑝2

samples

then we will see each set 𝑆 at least 𝑁 times for every |𝑆| ≤ ℓ.

Proof. Each sample has at least a 𝑝ℓ chance of being observed, and there are at most

ℓ𝑛ℓ many different sets 𝑆. So by a union bound,

𝑃𝑟[exists unobserved 𝑆 after 𝑡 steps] ≤ 𝑛ℓ(1− 𝑝ℓ)𝑡 ≤ 𝜀/𝑁

if we take 𝑡 = ℓ log𝑛+log ℓ+log𝑁/𝜀
𝑝2

. Repeating this 𝑁 times, we see that with

𝑁𝑡 = 𝑁
ℓ log 𝑛+ log ℓ+ log𝑁/𝜀

𝑝2

many samples, we see every 𝑆 at least 𝑁 times with probability at least 1− 𝜀.

Lemma 19. Fix ℓ, 𝜀 and 𝜔 > 0. If the number of samples satisfies

𝑚 ≥ 𝑁
ℓ log𝑁 + log ℓ+ log 2𝑁/𝜔

𝑝2
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where

𝑁 =
15𝐾2ℓ

𝜀2𝛿2ℓ

(︁
log(2/𝜔) + log(ℓ+ 𝑟) + (ℓ+ 𝑟) log(𝑛𝐾) + log 2

)︁
then Pr(𝐴(ℓ, 𝜀)) ≥ 1− 𝜔.

Proof. Observe by Lemma 18, taking 𝜀 = 𝜔/2 that with probability at least 1−𝜔/2,

for every set 𝑆 with |𝑆| ≤ ℓ we see at least 𝑁 samples revealing all of the members

of 𝑆. Condition on this event; now the proof is exactly the same as Lemma 13 taking

𝜔′ = 𝜔/2. Applying Hoeffding and Lemma 12 and taking the union bound, we see

that event 𝐴 holds with probability at least 𝜔/2. Therefore the total probability 𝐴

occurs is at least 1− 𝜔/2− 𝜔/2 = 1− 𝜔.

Theorem 33. Fix 𝜔 > 0. Suppose we are given 𝑚 samples from an 𝛼, 𝛽-non-

degenerate graphical model with 𝑟-order interactions where the underlying graph has

maximum degree at most 𝐷 and each node takes on at most 𝐾 states. Suppose that

𝑚 ≥ 𝑁
ℓ log 𝑛+ log𝐿+ log 2𝑁/𝜔

𝑝2

where

𝑁 =
60𝐾2𝐿

𝜏 2𝛿2𝐿

(︁
log(2/𝜔) + log(𝐿+ 𝑟) + (𝐿+ 𝑟) log(𝑛𝐾) + log 2

)︁
.

Then with probability at least 1 − 𝜔, MrfNbhd when run starting from each node

𝑢 recovers the correct neighborhood of 𝑢, and thus recovers the underlying graph 𝐺.

Furthermore, each run of the algorithm takes 𝑂(𝑚𝐿𝑛𝑟) time.

Proof. By Lemma 19, given our assumption on 𝑚 the event 𝐴 occurs with probability

at least 1− 𝜔. Conditioned on event 𝐴, the algorithm returns the correct answer by

the same argument as Theorem 29.

4.5 Interaction screening

In 2016, Vuffray et al [58] discovered a convex programming approach to Ising model

structure learning. Here we will exposit their method while simultaneously general-

izing it to arbitrary graphical models.
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Definition 14. In a graphical model, define the local energy 𝐻𝜃,𝑢(𝑥) at a node 𝑢 to

be the contribution to the total energy 𝐻𝜃(𝑥) added by hyperedges that include 𝑢:

𝐻𝜃,𝑢(𝑥) := −
𝑟∑︁

ℓ=1

∑︁
(𝑖1,𝑖2,...,𝑖ℓ)∋𝑢

𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ)

Take care that the total energy 𝐻𝜃(𝑥) is not the sum of the local energies 𝐻𝜃,𝑢(𝑥),

since each hyperedge 𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ) contributes to the energy at multiple different

nodes.

Vuffray et al use the local energy in an Ising model to define a convex optimization

problem. Here we generalize the approach to arbitrary graphical models.

Definition 15. Given a guess 𝜃 for the parameters of a graphical model, the Interac-

tion Screening Objective 𝒮𝑢(𝜃) is defined as the expected value of exp(𝐻𝜃,𝑢(𝑥)). In the

context of sampling, use the notation 𝒮𝑢(𝜃) for the empirical mean of exp(𝐻𝜃,𝑢(𝑥)).

Observe 𝒮𝑢(𝜃) is convex because it is a weighted sum of convex functions. Mirac-

ulously, it turns out the minimizer of this convex function is the true value of the

graphical model’s parameters at all cliques that include 𝑢. (Note that 𝒮𝑢(𝜃) only de-

pends on the parameters of 𝜃 for interactions involving 𝑢, so by finding its minimizer

we learn the local structure of the graphical model around 𝑢.)

Theorem 34. For a graphical model with energy parameter 𝜃⋆, the function 𝒮𝑢 is

minimized, among all 𝜃 in canonical form, by 𝜃⋆.

Proof. Since 𝒮𝑢 is convex, it suffices to show the gradient at 𝜃⋆ is zero. This requires

some careful setup. There are very many partial derivatives 𝜕
𝜕𝜃𝑖1···𝑖ℓ (𝑥1,...,𝑥ℓ)

𝒮𝑢(𝜃
⋆).

The partial derivatives with 𝑢 ̸∈ (𝑖1, . . . , 𝑖ℓ) must be zero, since 𝒮𝑢(𝜃) does not

even depend on these tensors 𝜃𝑖1···𝑖ℓ .

But when 𝑢 ∈ (𝑖1, . . . , 𝑖ℓ), the partial derivatives are not in general zero. Fortu-

nately this does not spoil the theorem, as we care only about those 𝜃 in canonical

form. Our task is to show that the gradient is zero in all directions that keep 𝜃 in

canonical form.
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Take an arbitrary tensor 𝜃𝑖1···𝑖ℓ with 𝑢 ∈ (𝑖1, . . . , 𝑖ℓ). We aim to show that for

any direction of change in 𝜃𝑖1···𝑖ℓ that keeps it in canonical form, the resulting partial

derivative of 𝒮𝑢(𝜃
⋆) is zero. It will be convenient to slightly abuse partial derivative

notation so that, for example, 𝜕𝑥,𝑦 𝑥2 + 𝑦3 + 𝑧 = 2𝑥𝜕𝑥+ 3𝑦2𝜕𝑦.

𝜕𝜃𝑖1···𝑖ℓ𝒮𝑢(𝜃
⋆)

= 𝜕𝜃𝑖1···𝑖ℓE𝑥 [exp(𝐻𝜃,𝑢(𝑥))]

=
∑︁
𝑥

Pr(model is in state 𝑥) · 𝜕𝜃𝑖1···𝑖ℓ exp(𝐻𝜃,𝑢(𝑥))

=
∑︁
𝑥

Pr(model is in state 𝑥) · exp(𝐻𝜃,𝑢(𝑥)) · 𝜕𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ)

=
∑︁
𝑥

exp(−𝐻𝜃⋆(𝑥)− 𝐶 +𝐻𝜃⋆,𝑢(𝑥)) · 𝜕𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ)

Behold: by the definition of the local energy 𝐻𝜃⋆,𝑢(𝑥), every term that involves

the node 𝑢 cancels out in the exponent −𝐻𝜃⋆(𝑥)−𝐶+𝐻𝜃⋆,𝑢(𝑥). This means that two

different states 𝑥, 𝑥′ that differ only at node 𝑢 have equal values of exp(−𝐻𝜃⋆(𝑥) −

𝐶 + 𝐻𝜃⋆,𝑢(𝑥)). This motivates us to split the sum over states 𝑥 into a double sum:

one over the state 𝑥𝑢 at 𝑢, and the other over the state 𝑥∼𝑢 everywhere else.

∑︁
𝑥∼𝑢

∑︁
𝑥𝑢

exp(−𝐻𝜃⋆(𝑥)− 𝐶 +𝐻𝜃⋆,𝑢(𝑥)) · 𝜕𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ)

=
∑︁
𝑥∼𝑢

exp(−𝐻𝜃⋆(𝑥)− 𝐶 +𝐻𝜃⋆,𝑢(𝑥))
∑︁
𝑥𝑢

𝜕𝜃𝑖1···𝑖ℓ(𝑥𝑖1 , . . . , 𝑥𝑖ℓ)

The inner sum is always 0, by the definition of canonical form. Thus the gradient

is 0 in any direction that preserves canonical form. This completes the proof.

By finding the minimizer of 𝒮𝑢 for each node 𝑢, one recovers the full structure

of the graphical model. The canonical form constraint is no hindrance to gradient

descent, since it is just a set of linear constraints. Alas, there is one obstacle: in the
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context of sample complexity, we can only estimate 𝒮𝑢 using the empirical mean 𝒮𝑢.

Nevertheless, Vuffray et al prove that, with the addition of an appropriately scaled ℓ1

regularization term, one can use the convex program to reconstruct bounded-degree

Ising models with high probability given enough samples. It is unclear whether their

error bounds can generalize to arbitrary graphical models.

Observe that this convex programing method cannot solve the bounded query or

random erasure variants of the problem.
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Appendix A

Lower Bounds on the Condition

Number in the Hyperbolic Plane

In Euclidean space, the function 𝑓(𝑥) = ||𝑥||2 is 1-smooth and 1-strongly convex at

every point. However, as we will show, in the hyperbolic plane geodesically convex

functions always have a condition number that depends on the radius:

Theorem 35. If f is a 𝛽-smooth, 𝛼-strongly convex function defined in a hyperbolic

disk of radius 𝑟, then 𝛽/𝛼 ≥ Ω(𝑟).

Proof. First we will give the intuition for the proof. Consider a geodesic that dips a

distance of 1 into the disk of radius 𝑟 (see the picture below). On the one hand, due to

𝛼-strong convexity, the value of 𝑓 must vary a large amount along this geodesic. But

on the other hand, this geodesic is short, so by 𝛽-smoothness 𝑓 cannot vary much.

These two properties will give us a lower bound on the condition number.

Now we proceed to the formal proof. Of all points at distance 𝑟 − 1 from the

center of the disk, let 𝑥 be one at which 𝑓 is minimal. Without loss of generality

suppose that 𝑓 = 0 at the center of the disk. By convexity and the minimality of 𝑥,

we deduce that

𝑓(𝑦) ≥ 𝑟

𝑟 − 1
𝑓(𝑥)

for all 𝑦 on the circumference of the disk. By 𝛼-strong convexity, 𝑓(𝑥) ≥ Ω(𝛼𝑟2).

Now draw a geodesic through 𝑥, as pictured, perpendicular to the geodesic between
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the center of the disk and 𝑥. This geodesic intersects the disk at two points 𝑦 and 𝑦′.

By 𝛽-smoothness,
1

2
(𝑓(𝑦) + 𝑓(𝑦′)) ≤ 𝑓(𝑥) +𝑂(𝛽𝑑(𝑦, 𝑦′)2).

Finally, in hyperbolic geometry, the distance 𝑑(𝑦, 𝑦′) is 𝑂(1). See Lemma 20 for an

explicit calculation justifying this. Finally combining the three inequalities in the

previous paragraph gives 𝛽/𝛼 ≥ Ω(𝑟), as desired.

𝑥 𝑦

𝑦′

Distance 𝑟 − 1

Radius 𝑟

Lemma 20. A hyperbolic triangle with two sides of length 𝑟, whose altitude between

those sides has length 𝑟 − 1, has a third side of length 𝑂(1).

Proof. This is a straightforward calculation using formulas from [33]. Let 𝑐 denote

the length of the third side and 𝐴 denote the measure of either angle adjacent to

side 𝑐. (Those angles are equal because the triangle is isoceles.) The hyperbolic law

of cosines from [33] gives cos𝐴 = (−1+cosh 𝑐) cosh 𝑟
sinh 𝑐 sinh 𝑟

. The altitude length formula gives

sin𝐴 = sinh(𝑟−1)
sinh 𝑟

. Using 1− sin2 = cos2 gives:

1− sinh2(𝑟 − 1)

sinh2 𝑟
=

(−1 + cosh 𝑐)2 cosh2 𝑟

sinh2 𝑐 sinh2 𝑟
.

Rearranging the above expression, we get:

(︂
1− sinh2(𝑟 − 1)

sinh2 𝑟

)︂
sinh2 𝑟

cosh2 𝑟
=

(−1 + cosh 𝑐)2

sinh2 𝑐
.

As 𝑟 → ∞ the left-hand side tends to 1− 1
𝑒2

≈ 0.86. Then solving the right-hand side

for 𝑐 gives a solution, unique in the reals, that is approximately 3.31, which is 𝑂(1)
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as desired.
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Appendix B

Graphical models: proof of Lemma 12

Proof. Observe the left hand side of our desired inequality is bounded by

𝐸𝑅,𝐺

⃒⃒̂︀E𝑋𝑆
[|̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺|𝑋𝑆)− ̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆)̂︁Pr(𝑋𝐼 = 𝐺|𝑋𝑆)|]

− E𝑋𝑆
[|Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺|𝑋𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)Pr(𝑋𝐼 = 𝐺|𝑋𝑆)|]

⃒⃒
.
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So it suffices if we can bound for every 𝑅 and 𝐺

⃒⃒⃒̂︀E𝑋𝑆
[|̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺|𝑋𝑆)− ̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆)̂︁Pr(𝑋𝐼 = 𝐺|𝑋𝑆)|]

− E𝑋𝑆
[|Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺|𝑋𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)Pr(𝑋𝐼 = 𝐺|𝑋𝑆)|]

⃒⃒⃒
=
⃒⃒⃒∑︁

𝑥𝑆

|̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)− ̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|

− |Pr(𝑋𝑢 = 𝑅,𝑋𝑖 = 𝐺,𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|
⃒⃒⃒

≤
∑︁
𝑥𝑆

⃒⃒⃒
|̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)− ̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|

− |Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|
⃒⃒⃒

≤
∑︁
𝑥𝑆

⃒⃒⃒̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)− ̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)

−Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆) +Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)
⃒⃒⃒

≤
∑︁
𝑥𝑆

|̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅,𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|

+
∑︁
𝑥𝑆

|̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|

≤ 𝐾 |𝑆|𝜎 +
∑︁
𝑥𝑆

|̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)−

Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|.

To bound the second term, observe

|̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|

≤ ̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)|̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|

+Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)|

≤ |̂︁Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝐼 = 𝐺,𝑋𝑆 = 𝑥𝑆)|+ |̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)|

≤ 𝜎 + |̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆)|
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and furthermore

|̂︁Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)−Pr(𝑋𝑢 = 𝑅|𝑋𝑆 = 𝑥𝑆)| =

⃒⃒⃒⃒
⃒ ̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝑆 = 𝑥𝑆)

− Pr(𝑋𝑢 = 𝑅,𝑋𝑆 = 𝑥𝑆)

Pr(𝑋𝑆 = 𝑥𝑆)

⃒⃒⃒⃒
⃒

which in turn we can bound as

≤

⃒⃒⃒⃒
⃒ ̂︁Pr(𝑋𝑢 = 𝑅,𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝑆 = 𝑥𝑆)

− Pr(𝑋𝑢 = 𝑅,𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝑆 = 𝑥𝑆)

⃒⃒⃒⃒
⃒

+

⃒⃒⃒⃒
⃒Pr(𝑋𝑢 = 𝑅,𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝑆 = 𝑥𝑆)

− Pr(𝑋𝑢 = 𝑅,𝑋𝑆 = 𝑥𝑆)

Pr(𝑋𝑆 = 𝑥𝑆)

⃒⃒⃒⃒
⃒

≤ 𝜎

𝛿|𝑆|
+Pr(𝑋𝑢 = 𝑅,𝑋𝑆 = 𝑥𝑆)

⃒⃒⃒⃒
⃒Pr(𝑋𝑆 = 𝑥𝑆)− ̂︁Pr(𝑋𝑆 = 𝑥𝑆)̂︁Pr(𝑋𝑆 = 𝑥𝑆)Pr(𝑋𝑆 = 𝑥𝑆)

⃒⃒⃒⃒
⃒ ≤ 𝜎

𝛿|𝑆|
+

𝜎

𝛿|𝑆| − 𝜎
.

Finally, if 𝜎 < 𝜀𝐾−ℓ 𝛿ℓ

5
then because |𝑆| ≤ ℓ and 𝜎 < 𝛿ℓ/5 < 𝛿ℓ/2

𝐾 |𝑆|𝜎 +
∑︁
𝑥𝑆

(︂
𝜎 +

𝜎

𝛿|𝑆|
+

𝜎

𝛿|𝑆| − 𝜎

)︂
= 𝐾 |𝑆|𝜎

(︂
2 +

1

𝛿|𝑆|
+

1

𝛿|𝑆| − 𝜎

)︂
< 𝐾 |𝑆|𝜎

(︂
2

𝛿|𝑆|
+

1

𝛿|𝑆|
+

2

𝛿|𝑆|

)︂
< 𝜀.

This completes the proof.
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