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ABSTRACT

Solutions to plane electromagnetic wave scattering by a coated perfectly con-
ducting cylinder will be investigated. Cylindrical structures serve as a model for the
study of radio wave diffraction over the earth and radar cross section prediction. An
eigenfunction series solution can be obtained by matching tangential £ and H -fields
of solutions to Maxwell’s equations in the coating and air. Unfortunately, the eigen-
function solution converges slowly at high frequencies, when free space wavelength is
small compared to cylinder radius. The Watson Transformation is used to convert
the eigenfunction series into an integral solution. This integral can be solved using
the stationary phase approximation, yielding a solution in the illuminated region that
contains the incident field and specular reflections. The specular field is expressed as
the incident field multiplied by a reflection coefficient and “spread factor.”

In addition, the integral solution is evaluated by deforming the contour and pick-
ing up the pole contributions. This gives an exact residue series solution that is quickly
convergent at high frequencies. The expression for each term of the residue series yields
a mode amplitude and a propagation constant for the corresponding mode. The to-
tal diffracted field is the sum of the radiation due to all of the modes. The residue
series solution is used for calculation of the multiply encircling creeping waves. The
exact residue series, while converging quickly at high frequencies, poses difficulties in
its numerical computation because it requires the computation of Bessel functions of
complex order and complex argument. An alternative to the exact residue series so-
lution is an approximate residue solution formulated by Habashy. The approximated
solution avoids many computational difficulties encountered when solving for the exact
solution directly. Finally, asymptotic approximations of Hankel functions are applied
to recast the approximate residue series solution into a ray optics format. Test cases
are presented that compare the results from the eigenfunction, specular, and exact and
approximate residue series solutions.
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CHAPTER 1

INTRODUCTION

Scattering of electromagnetic waves by a coated perfectly conducting cylinder
has many applications. In the 1940s and 50s, the scattering of cylindrical structures
served as a model to study the phenomena of diffraction of radio waves over the earth.
The study of creeping wave diffraction is also helpful in understanding the coupling of
antennas lying on a curved surface [29]. More recently, scattering of coated cylinders
has been of great interest in the field of radar cross section prediction because many
objects of interest can be adequately modelled as éylinders. One particular application
is the study of the effects of dielectric coating on the radar cross section of re-entry ve-
hicles or aircraft [19]. Furthermore, approximate as well as exact solutions of canonical

shapes such as cylinders have lead to the scattering solutions of more complex shapes.

The objective of this thesis is to examine various electromagnetic plane wave
scattering solutions by coated perfectly conducting cylinders. Elliot [4] has derived
an exact eigenfunction series solution by matching boundary conditions on solutions
to Maxwell Equations. The eigenfunction series may provide adequate results for low
frequency, when wavelength is comparable to the radius of the cylinder. Unfortunately,
the eigenfunction series is slowly convergent for higher frequencies. Numerous papers
discuss various high frequency solutions to cylinder scattering. Wu [38] has solved the
scattering of a cylinder and sphere in the limit of small wavelength using asymptotic

expansion techniques for the perfectly conducting case. Wang [36] has approached the
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high-frequency problem by modelling the coated cylinder as a cylinder with constant
impedance boundary condition. This latter approach has yielded fairly accurate results
for cylinders with moderate coating thicknesses, but loses accuracy as coating thickness

becomes comparable with the cylinder radius.

To obtain a quickly convergent exact solution for higher frequencies, Habashy
(11] and Wang [36-7] employ the Watson Transformation. The Watson Transformation
converts the eigenfunction series into a residue series. Next, the residue series is equated
with a contour integral enclosing the upper half plane, which is then converted back
into another residue series solution as a function of the order of the Bessel functions
in the equation. This final residue series is quickly convergent at higher frequencies.
The poles of the residues correspond to the resonant modes of the cylinder. Thus,
total scattering can be expressed as the sum of the scattering due to all of the resonant

modes of the structure [11].

For the residue s‘eries solutions, separate solutions apply to the illuminated region
and the shadow region. The solution is presented in a format similar to that of the
Geometrical Theory of Diffraction (GTD) formulated by Keller [16]. In the illuminated
region, scattering is attributed to a specular reflection term plus a diffraction term due
to multiply encircling creeping waves. Earlier, Keller [17] had derived a simple formula
for the reflected and diffracted field by applying the theory of geometrical optics. More
sophisticated approximate solutions for the specular field have been derived by Kim
[18] and Eelstrom [13] using the stationary phase approximation. The specular field is
expressed as the incident field at the specular point multiplied by a reflection coefficient
and “spread factor.” In general, almost all of the scattering in the illuminated region

is due to the specular field. Thus, in most cases, an approximate formula for the
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specular field alone accurately predicts scattering in the illuminated region. In cases
where there is resonance, i.e. one of the modes has low attenuation and appreciable
amplitude, the lowest order resonant creeping wave mode assumes a larger role in the
scattering solution. In this case, the creeping wave must be added on to the specular

field to yield an accurate result.

In the shadow region, the specular field makes no contribution to scattering and
only the diffracted field in the form of creeping waves exists. Creeping wave contribu-
tions are mathematically expressed in terms of the sum of the radiation due to each
mode propagating on the cylinder. In the GTD ray format, creeping waves are created
when an incident ray strikes the coating surface and generates a ray that azimuthally
“creeps” around the air-coating surface of the cylinder. The location of the poles of
the residue series defines the propagation constants of the creeping wave modes, which
determine the phase velocity and attenuation. These poles, called Regge poles, are
calculated as the roots of the denominator of the expression resulting from the Wat-
son Transformation. This requires the finding of roots of a transcendental equation
containing cylindrical Bessel functions of complex order as well as complex argument.
Wang [37] and Paknys [25] have calculated the propagation constants of the excited
creeping wave modes for an impedance cylinder by numerically solving such a transcen-
dental equation. Paknys [26], Wang [36], and Kim [18] have gone further to calculate
roots and present plots describing the trajectories of the Regge poles for a dielectric
coated cylinder.

The coefficients of the residue series define the radiation amplitude of the creeping

wave modes. An exact solution for the residue series gives highly accurate results in the

deep shadow region. Unfortunately, the numerical computation of the series coefficients
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using the exact equation is difficult and cumbersome. The impedance model simplifies
the expression for the residue series coefficients and yields accurate results for thin
coatings whose thickness is small compared to the radius of curvature. Paknys’ analysis
[26] of the impedance of the coated cylinder gives insight into resonance phenomena,
when the creeping wave attenuation is very low. As is shown in Paknys [25-27], the
creeping wave at resonance represents a coupling of the high attenuation creeping wave
with the low attenuation guided wave associated with the planar dielectric slab backed

by a ground plene.

Yet another solution has been formulated by Habashy [11], in which various
asymptotic approximations are employed in the residue series equation to arrive at an
approximate form of the residue series solution. As part of the high-frequency analysis,
Habashy also examines the creeping wave case from a guided wave point of view, and
thus solves for the diffracted field at resonance. This is accomplished by first looking
at the guidance condition of modes in a flat dielectric slab backed by a ground plane.
The coated cylinder idthen treated as a perturbation of the flat slab case, where the

perturbation is due to the curvature of the cylinder.

Further work in this area includes the scattering solution in the transition region,
the narrow region representing the “twilight” betweer the illuminated and shadow
region. This work is necessary because both the formulation for the specular field in
the lit region and the residue series of the creeping wave in the shadow region diverge in
the transition region. Kim [18] has derived a solution based on Fock-type Airy functions
in the formalism of Pathak’s Uniform Theory of Diffraction (UTD) [28]. Other work
includes Kato’s [15] derivation of the specular and diffracted fields for a plane wave

incident upon a coated conducting cylinder at oblique angles of incidence.
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In Chapter 2, three exact scattering solutions from a coated perfectly conducting
cylinder are derived. By expressing the field inside and outside the coating as sums
of cylindrical harmonics, the eigenfunction series solution for TE and TM polarized
are obtained by matching boundary conditions. To obtuin solutions convergent for
high frequency, the Watson Transformation is used to convert the eigenfunction series
into an integral solution. Using contour integral methods, a residue series solution is
derived. The latter yields an exact expression for creeping waves and total field in the

shadow region.

In Chapter 3, the integral solution from Chapter 2 is cast into the GTD ray
format. Scattering is expressed by two expressions, one valid in the illuminated region,
the other in the shadow region. The expression in the illuminated region can be further
divided into two parts. The first part is solved using stationary phase approximations.
The result equals the incident field plus the specular reflections. The second part of the
expression can be solved by deforming the contour and picking up the residues. This
gives the creeping wave diffraction in the illuminated region. Thus, the entire field in
the illuminated region equals the sum of the incident field, reflected field, and creeping
waves. In the shadow region, the incident field is eclipsed by the cylinder. Therefore
the entire field in the shadow region consists only of the creeping waves, and the residue
series sufficiently calculates the field in the shadow region. Test cases are presented
which compare the results from the GTD specular solution and the eigenfunction series
solution.

In Chapter 4, an approximate formulation to the residue series solution is pre-

sented. Using various asymptotic expansions of the Hankel functions, the approximate

formulation converts the modal and amplitude equations into a simpler form involving
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Airy functions. The residue series solution converges quite rapidly for higher frequen-
cies because the attenuation coefficients increase rapidly with mode number. Thus,
only a few terms in the residue series are necessary for an accurate result. Test cases
corupare the results of the exact and approximation residue series solutions with those
of the exact eigenfunction solution.

In Chapter 5, the work in this thesis is summarized and some relevant future

work is proposed.
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CHAPTER 2

EXACT SCATTERING SCLUTIONS

In this chapter, the exact eigenfunction series solution will be derived. Due to the
azimuthal symmetry of cylinders, the calculation of the scattered field can be carried
out using the modal approach. First, the total field is expanded into a series of cylin-
drical harmonics. By matching boundary conditions, the eigenfunction solution can
be obtained exactly. Unfortunately, this series solution becomes slowly convergent at
higher frequencies (kob > 10). Using the Watson transformation, this slowly conver-
gent series can be converted into a series more efficient to numerical computation. The
series is then converted into a contour integral, which can then be solved using residue
calculus. The final result is the residue series solution, which represents the sum of the
resonant modes of the structure. The residue series solution is quickly convergent for

high frequencies.

Eigenfunction Series Solution

Consider an infinite perfectly conducting cylinder of radius ¢ whose axis lies
along the z-axis lying in free space. The conducting cylinder is coated with material of
permittivity €; and permeability ;. The coating has a thickness d and thus extends
from p=a to p=b, where b = a+d. See Figure 2.1 for the TM case. We assume an
incident plane wave whose k-vector is perpendicular to the axis of the cylinder. Two

incident polarizations, TM and TE, will be considered.
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M, &

o, &

Figure 2.1 The Scattering Object: Coated Cylinder

The TM case
For the TM case, the electric field is parallel to the axis of the cylinder (z-

direction). Thus, the electric field is given by:
E= 2Ege™*0% = 3 Foe—thoocosd (2.1)

where ko is the wavenumber in free space.

To match boundary conditions, the exponential is expressed as a sum of cylindri-

cal harmonics that satisfies the Helmholtz wave equation:

e tkopcosd f; amJm(kop)e™?. (2.2)

m=-00
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Taking advantage of orthogonality relations for e™¢ as well as the integral rep-

resentation for the Bessel function
1 2% ikopcosd—ingting/2
Jn(kop) = -2—1';/0 d¢e ’ (2.3)

we get a, = e~*"*/2 Therefore,

e~ ikopcosd _ Z J,.(lcmo)e:""""""“"/2 (2.4)
n=-co
and
E =3B Y Ju(kop)en==/2), (2.5)

The scattered waves can be expressed as a weighted sum of outgoing cylindrical

harmonic waves:

E' =3E)y A H (kop)e™é—=/2), (2.6)

n

We simply sum the incident and scattered fields to get the total field in the free

space region:

Eo = 2Eo Y [Ja(kop) + AnH (kop)] e™(4-7/D (2.7)
while the total field in the coating is the superposition of outgoing and ingoing cylin-
drical waves.

E, =:E, Y [BuHD (k1p) + CoHP (k)| eim#—/D (2.8)
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In each of the respective regions (j = 0,1), the magnetic field can be derived

from the electric field using Faraday’s law:

(2.9)

Now that the formulations of total electric and magnetic fields have been obtained,
we now apply boundary conditions. Setting tangential E and tangential H continuous

at p =b gives the relations:

BoHM (k1a) + CoH D (kya) = Jo(kob) + A H(kob)

% [J,',(kob) + AnH,,(,’)'(kob)] = ?B,.H,(})’(klb) + Co H®(kyb)
1

Setting tangential E equal to zero at p = R gives the following:
B H"(kya) + CoH P (k1a) = 0

After some algebraic manipulation, we get the result:

4 — __Ja(kod) = 57T (ko)

m 2.10)
HY (kob) — SmH (kob) (2107

where
_ ioky BO(kD) HE kr) — BO'(kib) B (kya) 2.10)

" mk (k) HD (kra) — BD (kb)) H D (kra)

This can also be equivalently expressed in terms of Bessel and Neumann functions:

gm _ ZoJn(k10)Ny(k1b) — No(kra)J'(keb)
" T 7y Ju(k1)Noa(kyb) — No(kra)don(ksd)’

(2.12)
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where Z, and Z; are the impedances of free space and coating, respectively.

Since Jo(€) = L[HM(E) + HP(€)], the field in the free space region can be

expressed as:

— " 1 N:.I,n in(¢d—=
0o=23E0}; [H,‘.”(kop) - Fgﬂil’(kop)] ein(#==/2) (2.13)

n

where

N7 =p ko H (kob) [HE (knb) H) (kra) — HE (ko) HO (kya)]

— poky HP(kod) [H (ki) HP (kra) — HY' (kib)HM (kya)]  (2.14)

D7 =pikoHY (kob) [HD (k1) HP (k1b) — HP (knb) HO (kya)]

— poky H(kod) [HE (kib) HE (kra) — HP' (ki) HP (kra)] . (2.15)

N and D7 comprise the numerator and denominator, respectively, of the ratio A4, .
The superscript m refers to values in the TM case. In later sections where the TE

case is presented, the superscript e will be used.

The TE Case
For the TE case, the magnetic field is parallel to the axis of the cylinder ( 2-

direction). The magnetic field in the free space and coating is, respectively,

Ho=2Ho Y [Ja(kop) + AnH(kop)] e™(#=7/) (2.16)
Hy=:Hy ) [BuHM(k1p) + CaH (k)] 76712 (2.17)
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The electric field in each respective region (j = 0,1) is obtained using Ampere’s

Law:
— 1 18
L (218)

Applying boundary conditions at p = b and p = R gives the relations:

B,H(kya) + CoHO(kya) = J,.(kob) + A HM)(kob)
ko [J,’,(kob) + AnHS (kob)] = B W HV (k1) + Co HP (1b)

Ji(k1a) + A H Y (kya) = 0
After some algebraic manipulation, we get the result:

ae — __ Jallob) — S5Jn(kob) (2.19)

" HY(kob) — SeHD (kob)

where

e _ toky HO' (kb)) HPY (kya) — HV(kyb)HY (kya)
mk B (k) B (kya) — HD (ki) B (kya)

(2.20)

This can also be equivalently expressed in terms of Bessel and Neumann functions:

Zo Jo(k1a) N, (k1d) — N, (kaa)Jy (Kid)

Z Jr’;(kla)Nn(klb) - N,’,(k;a).l,.(klb) ’ (2‘21)

St =

The free space solution is:

Ho= 53 Ho Y | B (hop) — TEHlap)| - (2.22)

n
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where

NE =e€1ko H® (kob) [H,(,l)(kob)H,(f)'(kla) — HP (k:B)HLY (kya)|

— eky H () (kob) [H,(,l)'(klb)H,(f)’(kla) - H,(,’)’(klb)H,(f)'(kla)] (2.23)

D;, =e ko HS (kob) [HO) (k18) HEY (kya) — B (ky8) B (k1a)]

— eky H (kob) [H,(,"’(klb)H,(f)'(kla) - H,(f)’(klb)H,(}”(kla)] . (2.29)

Integral Solution
When the radius of the cylinder is not small compared to wavelength (kob > 1),
the series solution (2.11) converges very slowly, making it impractical for numerical
computation. The Watson transformation relates this slowly convergent series to a
contour integral as shown in Figure 2.2. According to Cauchy’s theorem, the contour
integral is equal to the sum of the residues. Assuming that A4, has no poles on the
real axis, the residue poles arise from the zeros of sinv7 in the denominator. Thus we

have the relation

o ; iv($~)
> ™4, = = dve———A,,, {2.25)

o 2Jc  sinvr

To apply the Watson transformation, we let

4= 5 B o) - TEED )] e (2.26)

such that the electric field is

eiy(¢-’)

sin v

Eo = EEo Z e"“’A,, = iEo ‘{C dv
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1
I
A
Complex v-plane
C
1%
== Fﬁ—H—-ﬂm—’ R
C

Figure 2.2 Contour for Watson Transformation with poles

-—oo-i& eiv(¢_')
= Eo hm / dv " A
§—0 2 oo+.s oo_.s sin v

1 =) 1 i .
— bl w(p—x) —iv(Pp-x)
Eoz /_ [ e A (2.27)
Since
HE)(E) = " HO(E)

HE)(e) = > HYXE),

it can be easily shown that

DT, () = e*"DJ(¢§)
NZ,(§) = e N (§).
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Therefore,
AL(8) = e A(6).

Finally, the solution can be simplified as

cosv(¢p — )
sinvmw

E, = EEO% /_ ~ dv [Hf,z)(kop) - %H,S‘)(kop)] e /2, (2.28)

Similarly, for the TE case, the Watson Transformation yields the following H -

field:
. 1 o cosv(p— ) ) _ N ) —ivn/2
0= zHoz‘/:_‘=° dv P H;*)(kop) —E;H" (kop)| e . (2.29)

Residue Series Solution

The solution for the fields in the TM case (2.28) and the TE case (2.29) can be
solved by deforming the contour into a closed loop in the upper-half plane as shown in
Figure 2.3. The integral around the half-circle contour goes to zero as R approaches
infinity in the v-plane. By Cauchy’s theorem, the integrals in (2.28) and (2.29) are
equal to the sum of the residues of the poles of the integrand in the upper-half v -plane.
Since the H{!(kop) and H(*(kop) terms in (2.28) and (2.29) has no poles in the uppef
v -plane, the residues are picked at the poles of the ratio %‘: . More simply, the pole
locations are chosen at the zeros of D, .

Therefore, solutions for both TM and TE take the form:

F =:nF, Z —Eg"i‘ cos vn(¢ — )
n=1 Ly “Viv=n

_—ivan/2 77(1)
sin Vn" hd HVQ (kOP) (2.30)
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kob R

Figure 2.3 The Upper Half Plane Contour and Poles of the Modal Expansion
where F is the electric field for the TM case and magnetic field for the TE case. v,

is defined as the n** root of the modal equation

D, =0. (2.31)

Equation (2.30) is the residue series solution, while (2.31) is the modal equation
whose solution defines the values of v,. v, refers to the root of (2.31) with the n*h
lowest imaginary part. Each term of the summation in (2.30) represents a natural
mode excited within the structure. Via the residue series solution, the total scattered
field is generated by a series of scattering contributions of each resonant mode. Every
mode or term in the residue series corresponds to a unique propagation constant v,

and amplitude. The propagation constant is determined as the solution to the tran-
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scendental equation D, = 0 (2.31). Its real part equals the phase velocity of the waves

of the excited modes; its imaginary part equals the attenuation of the waves.

v =, (2.32)
Vi=a (2.33)

where
v=v 4+ (2.34)

Once equation (2.31) is solved and v, is obtained, the amplitude is calculated by

plugging v, into the expression within the summation of (2.30).

Numerical Computation

Of the three exact solutions, the eigenfunction series and residue series solutions
are easy to implement numerically because they are summations instead of integrals.
In the low frequency limit, when kob < 20, the eigenfunction series solution will
converge quickly and thus yield accurate results. For high frequencies (kob > 20),
where the eigenfunction solution becomes slowly convergent, the residue series solution
is very quickly convergent. Usually only the first two terms of the residue series are
necessary for high accuracy. While the eigenfunction solution gives scattering for all
angles 0 < ¢ < 27, the residue series solution is convergent only in the deep shadow

region. This is due to the fact that

COSUn(@ — m)e~#n™/2  _j[giun(d-7/2) 4 giva(3n/2-9)]

(2.35)

sinv,7 1 — eiva2n
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Using the Debye approximation for Hankel functions,

2 5‘/2 —13 —pp cos™? -
HS')(kop)z\/W(képz_uz)l/z"( eI e e hoe) /) (2.36)

Since we may approximate v, & kob for the first few dominant terms, the expo-

nential dependence is approximately equal to:

ea'ko VL {et'v.;[¢—(1r/2)—col“ (5/0)) + evn [8x/2—¢~cos—! (b/p)]} (237)

Since the imaginary part of v, is positive, equation (2.37) shows that the residue

series will converge only when

T oeos (2 37 _ os1 (2
2+cos (p)<¢< 5~ cos (p . (2.38)

This region is the shadow region.
A high frequency solution for the illuminated region is obtained by evaluating the

integral solutions (2.28) and (2.29). These integrals are solved in the following chapter.
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CHAPTER 3

SPECULAR FIELD

In Chapter 2, an exact eigenfunction series solution was derived by matching
boundary conditions. Because the eigenfunction solution is slowly convergent for higher
frequencies, the Watson Transformation is used to convert it into another exact solution
more suitable for higher frequency computation. Nevertheless, the computation of the
exact solutions (2.28-2.30) presents difficulties because they are not in closed form as
are the eigenfunction solutions (2.13) and (2.22).

This chapter presents the derivation of an approximate solution to equations
(2.28) and (2.29) by Kim and Wang [16]. These solutions will give the specular scat-
tered field as viewed by an observer in the illuminated region. The specular field yields
the greatest contribution to scattering in the illuminated region.

Equations (2.28) and (2.29) both can be generalized into the format:

Fo = 3F, 1/@ duc_os._xM [H,(,”(kop) - %Hﬂl)(kop)] e~vr/2 (3.1)

~o0 sinvw

where F, is the free space electric field for the TM case and magnetic field for the TE

case.
Since
cos 'f(¢ i) S + e-’wff_’ﬂ (3.2)
sinvw sinvr

(3.1) can be broken into two parts:

Fo=F"+F" (3.3)
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where
T = 1 Fys > [ dvets [H(z)(kp) H(l)(kp)] ~ivn/2 (3.4)
and
— 2 cosvg H® N 22(1) ] ive/2
F* =iF, / dusmwr[ (kp) — H (kp) (3.5)

F is the field due to the sum total of incident field, reflections, and dominant

diffraction effects. F is due to the multi ly encircling creeping waves.
P g g

To calculate the specular reflections, we need to break up (3.4) into two parts:

Fém =L + 1, (3.6)
where
1 ® e r(2) —ivn/2
I = -Z—Fo ./_o° dve® H* (kop)e (3.7
and
1 o . . N, .
- v 2V rr(1) —ivn/2
L=-3F /_  dve*S SLED (kop)e (3.8)
Solving I,

By replacing the Hankel function in (3.7) with its integral representation
H.(,z)(kop) = l/ daei(kopeona-i—va—w/z) (3.9)
T JIy

and switching integrals, I; becomes
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Figure 3.1 Contour Path for Hankel Functions of First and Second Kind

1

I1=21r

Fo [ dagtereme /  duemmstr=a) (3.10)
2 )

The integration path I'; for the integral representation of H(?)(kop) is shown in Figure

3.1.

The inverse Fourier transform of a complex exponential is a delta function. Thus,

I, simplifies into:

1 .
- thkopcosa b
L = o /;3 dae 2nb(a — ¢ — )

= Fpe ikopcord (3.11)

We assumed that a = ¢ + 7 lies on the contour I'; to arrive at the final expression in
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(3.9). This implies that

(3.12)

(L

<¢<

|

Therefore, under constraints imposed by (3.10), I, is simply an expression for the
incident field.
Solving I,

I, will be solved asymptotically using the stationa.rj phase approximation. Solv-
ing I is more difficult than I; because the former contains the expression %’f , which
contains Hankel functions having four different arguments (kop, kob, kia, k1b). This
difficulty can be handled by dividing (3.8) into two parts:

I, =F,5 + Fa¢ (3.13)
where
Fys = -% /:.., °: dug—:ml)(kop)e‘"@-*/’) (3.14)
and
Foo = —%/;k: dug—:Hf,l)(kop)e‘”("’"/z) (3.15).

The stationary phase approximation states that most of the contribution to the
integral comes from the saddle point. If we assume that the stationary phase point v,
is not close to kob, then the contribution due to the end point v = kob is negligible.

Assuming that v is not close to kob such that v — kob/gg|v|}, then

H)(kob) ~ — HP(kob) (3.16).
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With the approximation (3.16), Lgf can be simplified as:

(%) Tx-1 (3.17)
F;5 , in turn, simplifies into:
1> wenq) —ivn/2
B> =—3 /,.ﬁ | dve B (kop)e (3.18)

(3.18) holds true for both the TE and TM cases.
The far-field region implies that p > b and therefore v < kob. Soin the far-field,

the Hankel function in (3.16) can be replaced by the first term of Debye’s asymptotic

approximation.
2 . . .
(1) s —in/4 _ikop(sina—a cosa) .
H (kep) ‘/W—_—kop o e (3.19)
where
cosa = é (3.20)

under the constraint that the real part of a is between 0 and .

0<R{a} <~ (3.21)

F;5 can be rewritten as:

(3.22)

e""/ 4 /oo e"’oﬂ’ ()

Fy = —F,
z.> o\/ﬁﬂ'kop kob Y Vsina
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Figure 8.2 The physical meaning of the stationary point

such that

®(v) =sina — -é:;(a -9+ 7m/2)

29

(3.23)

The integral of (3.22) can be deformed into the steepest descent path I',s. Then it

can be evaluated at the stationary phase point v, :

Fy> = Foe hrcor#

under the constraint that &'(v,) = 0. Thus,

The physical meaning of o at the stationary point is shown in Figure 3.2.

(3.24)

(3.25)
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Since a, must lie on I',y and satisfy (3.21), then we have the constraint on ¢:

< ¢l < (3.26)

(ST

p 2

@.b is the angle of the shadow boundary, as shown in Figure 3.2.
Equations (3.11) and (3.24) are expression for the incident field. The former
represents the incident field within the range |§| < §, the latter within I < |¢| < ¢,

These two regions cover the entire illuminated region.

Solving F>.

The stationary phase approximation is also applied to the evaluation of Fy. of
(3.15). First the variable %f is expressed in terms of Hankel functions, which are
then replaced with their Debye approximations. Then the integral is evaluated at the
stationary phase point.

-D'!: in (3.13) can be expressed in terms of Hankel functions:

NA\™  HP(kob
(35) = B, k) ome (3.28)
D, HV(kob)
where
me — _ H (kob)/HD (kob) + iS™¢ (3.29)
YT HM (kob)/HY (kob) + iSme '

S;M¢ is defined in equation (2.11) after replacizg complex v with integer n.
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Because the integral over v in (3.15) ranges from —oo to kob, each Hankel
functions in (3.28) and (3.29) can be replaced by its Debye approximations. The ap-
proximation for H{!)(kob) is given in equation (3.19). The approximation for H(®)(kob)
is obtained by simply substituting ¢ for —i in (3.19). After the following substitutions,

P« and C, can be approximated as:

(2e)™ s seitubinr g .30
where
me ,_ Siny — Spe
Cy ~ sin‘r + SLn,e (3-31)
and
— cos~! [ 2
v = cos (kob) (3.32)
Substituting (3.30) into the integral expression of (3.15) yields:
1 kob —i2(kob sin y—v) e (1) v(¢-x/2)
Fl = -EFO dyie R0 ERT=W) L O™ H (Y (kop)et #7/2), (3.33)

Replacing the Hankel function in (3.33) with the Debye approximation (3.19)

gives the following result:

‘e—i%/4  pkob me
s / G2 gimarts) (3.34)

where

$(v) =sina—acosa — 2% siny + k—V;(Z'y + ¢ —=n/2) (3.35)
0
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To find derivatives of &, we use the relations:

d_a -1
dv ~ kopsina

and

dy -1
dv ~ kobsinvy

Taking derivatives of & with respect to v gives:

' 1
®(v)= k—-—(—a+27+¢—1r/2) (3.36)
op
and
" 1 2 1
&)= kZp (kopsin'y B kobsina) (3.37)
At the stationary phase point v =v,, $'(v,) = 0. This determines the relation-
ship
a,—2y,=¢—7/2 (3.38)
where
~1[ Vs
.= — 3.39
a, = cos ( kop) (3.39)
— cost (2
Ys = COs (kob) . (3.40)

Thus, at the stationary phase point v,,

®(v,) =sina, — gpksin'y, (3.41)
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and

psina, bsin e

8" (v,) = k;p( 1 2 ) (3.42)

The physical meaning of the stationary phase point is shown in Figure 3.3. The
stationary points can be expressed in terms of the geometric quantities as shown in

Figure 3.3.

l, =psina, — bsin~, (3.43)

Yo=7/2—0; =7/2 — ¢ (3.44)

Figure 3.8 The physical meaning of the stationary point

The values of a, and 4, at the stationary phase point fall under the constraints:
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0<R{a,} <

0<R{7v}<~ (3.45)

The integral of (3.34) can now be evaluated using the stationary phase values of

®(v) and its derivatives. Therefore,

_ C., iko (puin oy~ 2bsin-y, ) 1
F2< = Fo—me Q”(V.) (3046)

Finally, after some algebraic manipulation, the scattered field can be expressed

_ / bsiny ikol, ,—ikobsiny,
Fz< = FoC,,. me e (3.47)

Reflected Field
The final result for Fp can be represented as the field due to the specular
reflection of the incident field. Thus, a solution of equation (3.47) can be cast into
the Geometrical Theory of Diffraction (GTD) format. It becomes clear that this field

solution consists of the reflected field when expressed in the form:

Fpc =u'-R™*. S, . ¢ihols (3.48)
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bsiny
=V peina, +1, (352

u' = Fpe~*hopcséi represents the incident ray impinging on point Q of the cylinder.

where

R™¢ = C™* is the reflection coefficient, S, is the “spread factor”, and e'*/ is the
phase shift due to propagation. S, represents the effect of the “spreading” of the

power due to the curvature of the cylinder.

Figure 3.4 The Reflected Field

We can see that the reflection coefficient approximates to:

. Qme
me . cosbi — S

~ cosb; + ST° (3.53)

where S is shown in equation (2.11).
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Replacing the Hankel functionsin S™* by their Debye approximations yields the

results for reflection coefficients for TM and TE, respectively.

R = Mo+ i1, cos 8;/ cos 0, tan(¥)

7o — 171 cos b; / cos 6, tan( V) (3.54)

_ 7o + im cos 8;/ cos 6; tan(¥)

B = 70 — i1y cos 8,/ cos §; tan(¥)

(3.55)

where 7o and 7, are the characteristic impedances of the air and coating respectively.

V¥ is defined as:

¥ = kyi(bsin oy — asina,) — kob(ap — a,) sin §; (3.56)
where
: ko . .\’
sinap = cosb, = |1 — % sin 0; (3.57)
1
and

2 2
sina, = Jl - (2 sin0¢) = \Jl - (@ sin 0;) (3.58)
a kia

From figure 3.3, applying the law of sines yields the relation between 6; and ¢:
e k-
¢ = 26; — sin ;sxn é;| . (3.59)

l, can also be expressed in terms of ¢ and §;:

j, = £sin(é = 6:) (3.60)

sin 6;
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Calculated Results

Programs were written that calculate the scattered field from cylinders using both
the eigenfunction series solution and the GTD specular solution. The computer code
employing the eigenfunction series are listed in Appendix A. The code using the GTD
specular solution presented in this chapter are shown in Appendix B. Both programs
have the same main program but have different subroutines linked to EIGEN.FOR.

To confirm the validity of the GTD specular solution, test cases are presented in
Figures 3.5 to 3.10 to compare the results from the GTD specular and eigenfunction
solutions. The incident field has unit amplitude, and the total fields a fixed radial
distance are plotted. The parameters b,a,p, and p are defined in Figures 3.1 and
3.4. p is the distance between the observation point P and the cylinder axis O. d
is the coating thickness, b — a. The frequency such that kob = 20 was chosen as an
intermediary region such that the eigenfunction series, integral solution, and residue
series all converge properly for comparison. This makes b = 10/7A = 3.18)\. From
equation (3.25), the shadow boundary lies at ¢,, ~ 161°.

While the eigenfunction series converges for all values of ¢, the GTD solution
converges only within the illuminated region |¢| < ¢,5. Thus all the plots show the
eigenfunction results for total field from ¢ = 0° to ¢ = 180°, but the GTD specular
field only from ¢ = 0° to ¢,, = 161°. As ¢ approaches &, the GTD solution
gradually diverges from results of the eigenfunction solution.

As can be seen in nearly all the following figures, the GTD specular solution
matches well with the eigenfunction solution deep in the lit region. Toward the shadow

boundary, however, the GTD solution converges more slowly and loses accuracy. In
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Figures 3.5 and 3.10, the large lobes of the eigenfunction curve in the shadow region
indicates the existence of strong creeping wave diffraction at their own coating thick-
nesses. Strong creeping waves are due to a guidance phenomena of the coating. When
the frequency and coating properties are such that guidance occurs, the cylinder is said
to be resonant. In Figure 3.10 in particular, the GTD solution does not match so well
with the eigenfunction solution. The large lobes in the shadow region indicated very
strong creeping waves. In this case, the creeping waves are strong enough to signifi-
cantly affect the scattered field even in the illuminated region. The smaller diffraction
in the shadow region in Figures 3.6 to 3.9 indicate that the cylinder is not resonant for

those cases.
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CHAPTER 4

CREEPING WAVE DIFFRACTION

The creeping waves in the illuminated region and the entire radiation in the
shadow region involve only the diffracted field. The diffracted rays contributing to scat-
tering are called “creeping waves” because the rays traverse about the outer perimeter
of the coating as if they were “creeping.” The diffracted field both in the illuminated
and shadow regions are solved using the residue series solution. The residue series so-
lution of (2.30) is an exact expression for the total scattered field in the shadow region.
Because the cosv(¢ —7) term in (2.30) is convergent within the shadow region, it is
not necessary to break up the field into the dominant diffraction and multiply encir-
cling creeping wave parts. For the illuminated region, the cosine term cos v(p — )
in (2.30) does not converge, but the cosine term cosv¢ in (3.5) does. Therefore, the
residues series expression for the illuminated region is similar in form to (2.30).

The equation

oo cos Vn¢ w..l’/z (1)
z=: —ai; ]V-yn e H, ' (kop) (4.1)

is valid for angles within the illuminated region,
0 > ¢ < ¢cb

. The numerical computation of (4.1) requires the computation of Hankel functions

of complex argument and complex order. In order to eliminate the need for such

.
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computation, an approximate form of the residue series by Habashy [11] is presented
here. The modes of the diffracted field correspond to the poles in the v-plane in the
vicinity of kob. We first make the initial assumption that v & kob, solve for the modal
equation, and then show that this assumption is self-consistent. For the case derived
here, wavelength is small compared to the dimensions of the cylinder—that is, koa > 1

and kob > 1. The following analysis is useful for high frequency scattering.

Expressions for N, and D,
In order to find the resonant modes, we need to find the roots for modal equation.

For the TM case, the modal equation is:

D =pkoHV (kob) [HO (k1b)HE) (kya) — HP(kyb)HS (k1a)]

—poky H{D (kob) [HY (kyb) HP (k1 a) — HO(kb)H (ko)) =0 (4.2)

Since v & kob and kob > 1, the following approximations by Olver [24] apply to
HM(kob), HM(kod), H®(kob), and H(?'(kob) when order and argument are large

and almost equal:

HY(E) ~ 2 (%) v e P Ai{ - (v-¢) (g) v e~/3} (4.3a)
() ~ -2 (f)} s ai{ = g () o) (431)
HI(¢) ~ -2 (g) 1 e P ai{ — (v~ €) (g-)1 e*/3} (4.3¢)
H'(£) ~ — (g) ’ e P A — (v - (-) v e*/3} (4.3d)
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The Airy function satisfies the differential equation:

Ai"(§) = £Ai(§) (44)

Since |k;| > |ko| and b = R, the following Debye approximations [6] apply to
HM(kyb), HO'(kyb), H(kyd), H®(kyb), H(kia), and H{?(k1b) when order

and argument are large but unequal:

HI(E) ~ \/%e"” (4.5a)
HY(E) ~ ,/:; ¢ (4.55)
HA(§) ~ \/ge““’ (4.5¢)

H®(&) ~ —i 2; ;= (4.5d)

where

z = /€2 — 2

% =z —vcos (%) - %
The approximations by Olver are more powerful than Debye in that the former

reduces to the latter as argument and order are no longer equal. When we substitute

these asymptotic approximations, we get the results:

8 (2 \3 So
Dyt =- '# (r.b) e-“,am cos(tho — ¥)
1/3 .
{Az(—-a) ( kfb) f%e"”"Ai’(—a) tan(o — ¢)] ) (4.6)
8 (2 \/°
v =-=(g) s m cos(3fo — ¥)

'[-"’3‘4'(%"*”) (kib) l:kSOb i e-ws)t“(%”wl 4D
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where

/s .
o= o) (Z) e

So = \/(k1b)? —v?
S = y/(k1a)? — 12
‘¢'o —_ 1,b =c+vb

c=So—S

= cos—? [ _ cas-1 (Y
b = cos (k,R) cos (klb) '

48

The identical scale factors in front of both D™ and N™ cancel. So for conve-

nience, D' and N* can be redefined as:

2

1/3
Dy = 4i(—a) - () tiakob

e 4i(~a) tan(o ~ ¥) = 0

and

. . /3 ;
NP = —e=/3 gi(ae=/3) + (‘2") ”'—MAi’(ae"”"")tan(% - ¥).

kob ,uoSo

The chain rule is used to find %Jf: .

where

(4.8)

(4.9)

(4.10)

(4.11)
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and

8;?: — _ 4¥(—a) [1 4 Havkod ﬂwkob an(to — ) + £1E0 #1 o sec’(dyo N ¢)]
2 \'/? ik b
_ (m) #10 ;o -.«/saAz(-a) tan(so — ). (4.12)

If we retrace the preceding steps for the TE case, we get:

1/3
kob) éokl SD u/aAz(__a) tan(¢o - ¢) (4.13)

D; = Ai'(—a) + ( > ko kx

— Ai(ae™"/3) tan(s — %). (4.14)

NS = —e“'/sAi'(ae“*/3) - (kab)1 o €ok1 So

2 61’00 k b

Equations (4.13) and (4.14) can be recast into a form similar to the TM equations.

_ 2 €1kob e=i%/3 431( _ T
= Ai(—a) - ( k b) L% e Ai(~a) tan(o — % ~ 3) =0 (4.15)
2 1/3 kob . -7
N: = —e™"/3 fi(ae~"/?) + (k b) 2105?0 Ai'(ae™/3) tan (o — ¢ — g) (4.16)

If we define a weighting factor w™*, equations (4.8-9) and (4.15-16) can be more

succinctly written as:

DI = Ai(—a) — w™Ai'(—a) =0 (4.17)

N = —e~"/3 4i(ae™"/3) + w™ Ai'(ae~*"/*). (4.18)
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D: = Ai(—a) — w*Ai'(—a) =0 (4.19)
N = —e™/® 4i(ae™™/%) + w® Ai'(ae™/?). (4.20)
where
w™ = (;f;)m ";‘fsl:’e"*’s tan(o — ) (4.21)
and
w = () b e secto - ) (4:22)

Since —secf = tan(6 — 7/2), then the modal equations for the TM and TE case differ
only with the substitution of £ with 2, and ¥ — 4 with ¥ — 3o — 7/2.

% can be easily deduced from (4.10) using the above substitutions:

6D 8D 8a

v _ da Ov (4.23)
where
60% == 4i'(-a) [1 + eluggb tan(po — ¥ — 7/2) + elkob sec’ (1o — ¥ — 7/2)
2 1/3 €1kob _",/3
- (kob) oS, © | adi(=a)tan(o — ¥ —7/2). (4.24)

where §2 is given in equation (4.11).

Creeping Wave Modes
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If a is the root for the modal equation D, = 0, the poles v, are given by

V= kob +a (%‘) e"/3 (4.25)

and v can be broken into real and imaginary components:

1/3
V' = R{v} = kob + % (k—;b-) (a' — V3a") (4.26)

1/3
V' =S{v} = % (%) (a" + v/3a') (4.27)

The real part of v corresponds to the phase factor of the creeping wave mode while
the imaginary part corresponds to the attenuation.

For the uncoated case, the modal equations take the forms:

DI = Ai(—a) =0 a = 2.338, 4.088, 5.521, 6.787, ... (4.28)

D: = Ai'(—a) =0 a =1.019, 3.248, 4.820, 6.163, ... (4.29)

Note that the modal equation for the uncoated case becomes identical to the
coated case as w — 0. For the coated case, the weighting variables w™ and w* both

contain tan(®o — ). When expanded to the first order term for § = d/R, then

I kob\ 2 k0
Yo — 9P & kydy|1 — (klla) ~ kld‘/l - % (4.30)

Since 3o — % is a function of d, w oscillates from —oco to oo periodically due to
the tangent term. Assuming that our coating is lossless, we can consider some simple

limiting cases.
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TM case

1) For values of d such that tan(vo — ) < (2/keb)!/?, then w™ ~ 0. Therefore,
the modal equation D]* appears as the uncoated TM equation. At this range of
thickness d, the creeping waves undergo the same attenuation and phase shift as if the
cylinder had no coating at all.

2) For values of d such that 1, — ¢ ~ (2m — 1)r/2 where m is any integer,
tan(to—1) blows up and w™ approaches infinity. In this case, the TM modal equation
appears as the TE uncoated case and has the same attenuation as a TE wave on a
uncoated cylinder.

TE case

1) For values of d such that tan(1o—1%) > (2/kob)*/3, then w*® > 1. The modal
equation D; appears as tke uncoated TM equation. Thus the coated TE wave has the
same attenuation as TM waves on an uncoated cylinder.

2) For values of d such that ¥9—1 ~ mr where m is any integer, tan(¥o—%) = 0
and w® = 0. In this case, the modal equation D¢ is the same as the uncoated TE
case.

These twofold cases for each polarization imply that as a function of d, the roots
of the modal equation move from the value of a in one limiting case to the other.
Since the roots of the two limiting cases are the zeros of Ai(—a) and Ai'(—a), then
we can expect the roots a to move between the zeros of Ai(—a) and Ai'(—a). a,
corresponds to the n** mode, which oscillates between the nt* zeros of Ai(—a) and
Ai'(—a). For example, a; would move from 2.338 to 1.019, while a, would go 4.088
from 3.248.

At least for the lower order modes, a is not large because the zeros of Ai(—a)
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and Ai(—a) are not large. Since we are discussing the high frequency limit where
kob > 1, we can the make the approximation:

1 [kob\'?

From (4.26), it is deduced that ' = kob and v’ > v". So for the lower order modes,
where a is not too large, our assumption that v & kob is self-consistent.

While the limiting cases indicate that the poles move between uncoated TM and
TE values, it is clear that the first limiting cases for both TM and TE cover a wide
range of values of d. On the other hand, the second limiting cases cover only discrete
integer multiple values. Thus, a plot of the attenuation of either TM or TE would have
long plateau at the uncoated TM level, interrupted by sharp downward jumps to the
uncoated TE level.

Figures 4.1 and 4.2 show plots of the attenuation coefficient of the first three
modes for the TM and TE cases, respectively. The plots graph attenuation scaled by
a constant as a function of coating thickness at a frequency of 100 MHz. The coating
permittivity is ¢; = 3¢y and the permeability of that of free space, u; = po. The
radius of the cylinder is approximately that of the earth’s: b = 6700 meters. For both
plots, the thickness is varied from 8.0 to 10.2 meters. The coating in this case can be
used to model vegetation or other ground cover on the earth.

To generate the data for these plots, the Muller root finding algorithm was used
to compute the roots of equations (4.17) and (4.19). Once the roots a, were found, v
was calculated by equation (4.38). As expected, both the TM and TE plots show long
plateau periodically interrupted by sharp downward drops which signify the switching
of the values.
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Resonance occurs at the transition points in thickness d where |w| is of order 1.
At the transition points, the roots are switching from the values of the uncoated TM
case and the uncoated TE case. The pass through the transition region causes the root
to “drop” to a lower order level. So a root that starts at a n** order mode level drops
to an n—1* order mode. As shown in Figures 4.1 and 4.2, the roots drop to the next
lower mode with each transition region from a TM plateau, to a TE descent, down
to a TM plateau one order lower than originally. Thus, the root trajectories trace a
downward staircase. For the zero order mode, the attenuation drops to zero, and the

root “disappears.” Hence, the lowest order creeping wave mode undergoes resonance.
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The “staircase” plots of Figure 4.1 and 4.2 can be explained with the plot of
the roots a shown in Figure 4.3. As the thickness d is varied through the resonance
region, all of the roots a, follow a curved path resembling a sine wave. When the
resonance region 1s passed, the n** order root eventually reaches the former value for
the n—1% root. From Figure 4.3, the second order root starts at 4.1 when d = 7.01m

and reaches 2.34 when d = 7.02.

The “staircase” behavior of the roots as shown in Figures 4.1 to 4.3 are confined
primarily to low loss coatings. A lossy coating will introduce a complex wavenumbver

ky , which will in turn cause 1% — 1o to become complex. Thus, the tan(i —1,) termin
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the weighting variables w will no longer exhibit an oscillatory behavior with increasing
or decreasing d, and resonance will no longer occur periodically.

Furthermore, even with a lossless coating, the periodic recurrence of resonance,
i.e. a sharp drop of attenuation of the lowest mode, hinges upon the fact that thickness
is small compared to cylinder radius. This was assumed in the approximation made in
(4.30). When the coating is comparable to cylinder radius, (4.30) no longer holds and
the oscillatory behavior of w will gradually cease.

Calculation of the Creeping Wave Fields

Solving the modal equation (4.17) and (4.19) numerically yields the propagation
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constants v, for the residue series solution (2.30). With these constants calculated, the
next step is to calculate the variables N, and %D., . Calculation based on the exact
expressions (2.14-5) and (2.23-4) requires a subroutine that computes Bessel functions
with complex order and complex argument. Furthermore, the numerical derivative of
D, must be calculated numerically. Alternatively, approximate expressions (4.10) and

(4.9) can be used to calculate N, and B%D" .

The following plots of creeping wave diffraction compare the relative accuracies
of the exact and approximate expressions. This is done by plotting them with the
results calculated from the eigenfunction series solutions (2.13) and (2.22), which are
presumed to be the “correct” solution. Once again, the incident field is assumed to
have unit amplitude, and the total field is plotted. Just as in the Chapter 3, the
frequency is chosen such that kob =20 to ensure that both eigenfunction and residue
series solution converge. The following plots will compare the creeping wave diffraction
of the eigenfunction, exact residue series, and approximate residue series. The range
of validity of the program CBESNY used to calculate Bessel function of complex order
and complex argument limited the calculations to only the two lowest order modes.
For this reason, only the first two modes of both the exact and approximate solutions
for the residue series solution are used. Nevertheless, when kob = 20, the residue series
converges quite rapidly, and two modes are generally sufficient to accurately calculate

the field in the deep in the shadow region.

In most of the following plots, the deep shadow region shows a good match be-
tween the eigenfunction and both residue series solutions. As expected, as observation
angle ¢ approaches the shadow boundary ¢,;, the residue series no longer converges

quickly. More terms become necessary, and the two terms calculated no longer supply
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an accurate result. In the conditions in Figure 4.5, the cylinder is undergoing res-
onance, as indicated by the multiple lobes from the eigenfunction and exact residue
series solutions. Unfortunately at resonance, the approximate solution tends to break
down in amplitude calculation. When the attenuation coefficient of the lowest order
mode drops considerably, the approximate equations for N, and D, lose their accu-
racy, hence the mismatch of the approximate residue solution and the eigenfunction
solution. When loss is introduced in Figure 4.7, the cylinder is no longer resonant as
in the lossless case of Figure 4.5. The loss tends to attenuate the wave further, and in
some cases, will prevent resonance of the creeping wave. In the case of a lossy coating,
the results from the exact and approximate residue series equations of Figures 4.6 and

4.7 still also give a good match with the eigenfunction solution.
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Ray Format for Creeping Wave

More approximations can be used to reformulate (2.30) to show the ray optics of
creeping waves. For the field near the scatterer (p ~ b), we use the approximation in

(4.3a) for the Hankel function in (2.30).

1/3 o
F~ —iz27F, (kz_p) e~i*/3 E C.. [e.'u..(é-w/z) + eiu.(ig-'_.g.)]
0 n=1

Ai {-(u,. — kop) (i'j—p) . e-‘*/"'} (4.31)

If we Taylor expand the Airy function in (4.31) around p = b to the first order

of p, we get the expression:

9 \1/3 o -
T o~ —i2 Sl —in/3 iva(d—7/2) iva(F-9)] .
F~—i22nF, (kop) e E C.. [e Vn + e ]

n=1

1/8°
. [Ai(~a) + ko(p — b) (-,;-02;) e~/ 3Ai'(--a.)] (4.32)

where
C. = N,. 1
va = oo,] "1 — eivatr
v y=vn

From the ko(p—b) termin (4.32), it can be concluded that the field varies linearly

with p in the limit where px b.
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When p > b, the Hankel function in (2.30) can be replaced with the approxima-

tion in (4.5a):

Fx ~izFoe ™4y B, {2 4 e#a(F-9)] ¢inm (4.33)

n=1

where

'BVu = Cyn\/g(kgpz - szl)—%

Yoo = \Vk3p? — V2 — v, cos™? (—l-/-'-'-) .

kop

Expanding to the first order around v = kob gives
I II
VkoP -Vl ko\/P —bz—z‘/kz——
p —

. 1.0
v, cos™? (-V—") ~ v, cos™? (2) +1 |V cos™? (E) ——nln
kOP P pP kg - V,’?
Thus, the field can be simplified to:

F ~ —isnFye /4 Z B, "‘°(V —¥4ue) gmanve

n=1

+ eiko(\/ P"‘b"ﬂh)e—ﬂuﬂul (4.35)

where

)
N 0]
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Equation (4.36) gives some physical meaning into how the creeping waves prop-
agate. As shown in Figure 4.3, y, and y. refer to the radial distance the waves creep
on the outer interface at p = b. The phase factor in (4.35) indicates that the creeping
waves propagate as if they travelled on the outer coating-air interface. The coating
properties px; and €, and thickness d seem to have primary effect on the attenu-
ation o and the amplitude B,,. Once the rays have travelled distance y, and y.
on the cylinder and have partially attenuated, they leave the cylinder and strike the

observation point.

Figure 4.8 Rays of the Creeping Wave

In the region close to the cylinder (p = b), the field varies linearly with distance
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p. In the far region, the phase expression for the fields indicates that the rays of the
creeping waves appear to run along the outer coating perimeter without penetrating
the coating. On the other hand, the field solution shows that the mode amplitudes

and attenuation values are largely determined by coating properties and thickness.
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CHAPTER 5

CONCLUSION

The scattering of a perfectly conducting cylinder coated with a material with per-
mittivity ¢ and permeability x4 by a plane electromagnetic wave can be solved in three
forms: eigenfunction series, integral, and residue series solutions. In simplest form, the
fields inside and outside the coating are expressed as sums of cylindrical harmonics. As
a separable product of p and ¢ dependent terms, each term of the eigenfunction series
is a solution to Maxwell’s equation. By setting tangential £ and tangential F equal
at both the conducting-coating and coating-air interfaces, the weighting coefficients
of each harmonic term is determined. This solution, expressed as a weighted sum of
cylindrical harmonics, is called the eigenfunction series solution. Unfortunately, the
eigenfunction series solution is slowly convergent for higher frequencies and is imprac-
tical for use with numerical computation. An alternate form for higher frequencies is

needed.

The Watson Transformation is used to convert this slowly convergent series into
a contour integral whose path of integration encircles the real axis of the v -plane.
This contour integral can be simplified into a definite integral from —oo to +oco to
yield the exact integral solution. To avoid tedious numerical integration, the stationary
phase approximation can be applied to yield a meaningful result. First, the integral
solution can be algebraically divided into two parts. After applying stationary phase,

it becomes clear that one part represents the incident field, while the other represents
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the specular reflection. The specular and diffracted field can be cast into the format of
Keller’s Geometrical Theory of Diffraction. Two phenomena can be noted about how
the coated cylinder reflects the incident rays. First, most of the specular reflection is
a result of reflection from the point on the cylinder where Snell’s Law is satisfied. In
other words, most of the contribution to scattering occurs at the point on the cylinder
surface where the angle of incident equals the angle of reflection. Second, the reflected
field can be expressed as an incident fieid multiplied by a “spread factor.” Thus, a
reflection coefficient is derived. This GTD specular solution represents the dominant

scattering effects in the illuminated region.

The exact integral solution can also be solved by deforming the integral path
upward into a loop enclosing the upper half v-plane. This final contour inte _ral is
solved by picking up the residues in the upper half v-plane. The final result is called
the residue series solution, which represents the scattered field as a sum of contributions
of the natural modes of the structure. The residue series solution is quickly convergent
because all but the first few modes have such high attenuation constants so as to render
them negligible in their contribution to total scattering. Usually only a few terms are

sufficient is yield an accurate result.

The residue series involves waves that propagate or “creep” around the outer
perimeter of the coating. These creeping waves are analogous to the creeping waves
around a perfectly conducting cylinder as investigated by Watson [33]. Similar to the
Watson modes, the creeping wave modes for the coated cylinder have propagation
constants lying ir the vicinity of kob. The residue series solution includes the multiply
encircling creeping wave component in the illuminated region and the entire field in the

shadow region. Thus, a convergent solution for high frequency scattering are obtained
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via the residue series solution.

While the numerical computation of the eigenfunction and GTD specular so-
lutions is straightforward, the computer implementation of the exact residue series
solution encounters sevaral difficulties. Before the residue series can be evaluated, the
location of the poles must be calculated by solving for the roots of a transcendental
equation involving the computation of cylindrical bessel functions of complex order and
complex argument. Computer programs that calculate bessel functions of complex ar-
gument and complex order are rare. The only program that could be found and is used
for test cases for this thesis is CBESNY by Goldstein[9]. Computation of the Regge
poles are rather cumbersome in that there exists many local minima to sidetrack the
root-finding procedure on the wrong path. Round-off error of the program also makes
root-finding at certain coating thickness impossible. Furthermore, the range of validity
of CBESNY limits root-finding to only the lowest two modes. Nevertheless, in some

cases, CBESNY may provide adequate accuracy to yield some fairly good results.

The Habashy [10] method provides a good alternative to the impedance cylinder
approach. With the initial assumption that the poles v lie in the vicinity of kob, uni-
form asymptotic approximations of the Hankel function are used to simplify the modal
and amplitude equations in the residue series. The approximate equations involve the
computation of complex Airy functions rather than Bessel functions. Thus, the tran-
scendental equation is greatly simplified and root-finding for the Regge poles becomes
considerably easier. The computation of the series coefficients also become less in-
volved. For thin coatings, due to the behavior of the Airy functions, the Regge pole
trajectories move in a periodic fashion as thickness is varied [11]. In accordance with

Wang’s impedance model, the movement of the Regge poles as predicted by Habashy’s
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formulation imply that cylinders with thin coatings may be accurately modelled as
impedance cylinders. The Habashy algorithm yields fairly good results except at res-
onance, where some of the asymptotic approximations of the Hankel functions are no
longer valid.

Upon inspection of the approximate modal equation, some limiting cases become
apparent. For both the TE and TM modes, as a function of coating thickness, plateau
at TE uncoated levels, interrupted by periodic sharp drops that cut through to the TM
uncoated levels. The resonant creeping wave modes can be calculated by finding the
roots to the modal equation numerically. The results of one such calculation are shown
in plots in Figures 4.1 and 4.2. The plateau at the TE uncoated levels are confirmed
by the plots, but at the transition points, the rcots drop to the next lower order mode
level, tracing the path of downward staircases.

Finally, expression for the fields in the shadow region is obtained. In the region
close to the cylinder (p ~ b), the field varies linearly with distance p. In the far
region, the phase expression for the fields indicates that the rays of the creeping waves
appear to run along the outer coating perimeter without penetrating the coating. On
the other hand, the field solution shows that the mode amplitudes and attenuation

values are largely determined by coating properties and thickness.

To verify the theory, the various exact and approximate scattering solutions were
implemented on computer code. Results from programs which calculate the bistatic
plane wave scattering based upon the eigenfunction solution, the GTD specular re-
flection solution (illﬁminated region), and the residue series solution (shadow region)
are compared. Comparison of the scattering solutions of the approximate and exact

solutions indicate that in most cases the approximate solution derived herein are valid.
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Only in deep resonance does the approximate residue series solution lose its accuracy.
Also, test cases also show that the GTD specular and eigenfunction solutions give well

matched results in the illuminated region.

Future Work
Future work can be done to find an alternate approximate solution that will yield
accurate results in the deep resonance condition. More accurate asymptotic expansions
for Hankel functions than those used in Chapter 4 may produce a better approximate
formulation for residue series. Other relevant future work include extending the ap-

proximate solution to plane wave incident at oblique angles.
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c This program calculates the eigenfunction solution

Cc
Cc
c
c

Cc

of scattering of

infinite cylinders. Link with Bessel routines and COEFF,FIELD

Data about the cylinder

is inserted into the file EIGENDATA. Results are written in EIGENOUT.

Main Program

real kO,ad,b,rho

real phi,phi1,phi2,dphi

complex epsr,mur,k1

complex u,znorm,field,inc, fieldi fieldt
common /cyl/ znormk0k1,b,a,ipol,nconv,nconv1,nconv2,inear
complex*16 ¢{100)

complex permr

common /cyl1/ permr

complex*16 ampl{20),nus(20)
common /cyl3/ ampl,nus

open(unit=1,status="old' file='"eigen.data’)
open(unit=2 status="new’ file='eigen.out)

read(1,*) kO,epsr,mur,ipol

read(1,*) b,drho

read(1,*) phi1,phi2,nphi,nconv,nconvi,nconv2
read(1,*) igtd,iinc,inear

open(unit=4 status="new" file='eigen2.out)

a = b-d
u=(.0,1.0)

k1 = kO*sart(epsr*mur)
znorm = sgrt{mur/epsr)
if (ipol .eq. 0) then
permr = mur
else
permr = epsr
endif

¢ Compute the coefficients

if (igtd .ne. 1) call coeff(rho,c)

dphi = (phi2-phi1)/(nphi-1)
if (igtd .eq. 0) write(2,*) nphi

inc =0
if (igtd .eq. 0) then
do np=1,nphi
phi=phi1 + dphi * (np-1)
if (iinc .ne. 0) inc = exp(-u*k0*rho*cosd(phi))
fieldt = field(phi,c,rho)+inc
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write(2,*) phi,absl{fieidt)
c write(4,*) phi,arg(fieldt)
end do
elseif (igtd .eq. 1) then
do np=1,nphi
phi = phil + dphi*(np-1)
thi = phi
phix = 2*thi - asind(b/rho*sind(thi))
if (iinc .ne. 0) inc = exp({-u*k0*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+inc
write(2,*) phix,abs(fieldt)
c write(4,*) phix,arg(fieidt)
end do
else
do np=1,nphi
phi = phil + dphi*(np-1)
thi = phi
phix = 2*thi — asind(b/rho*sind(thi))
if (iinc .ne. 0) inc = exp(-u*kO*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+field(phix,c,rho)+inc
write(2,*) phix,abs(fieldt)
c write(4,*) phix,arg(fieldt)
end do

endif
100 continue

close(unit=1)
close{unit=2)
close{unit=3)
end

function arg(z)
complex z

phi = aimag(log(z))
c arg = phi*45./atan(1d0)
arg = phi
return
end
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The following subroutines COEFF and FIELD are to be linked with the
main program to calculate the eigenfunction solution for a
coated cylinder.

This subroutine calculates the coefficients for the subroutine FIELD.

It also requires the subroutine BESSEL to supply the desired
values for the Bessel functions.

0O00000

subroutine coeff(rho,bc)

real rho,phi,phir,kO

complex znormk1

common /cyl/ znormk0.,k 1,b,a,ipol,nconv,nconv 1,nconv2
complex*16 arg,jn(100),yn(100),jpn(100),ypn(100)
complex*16 jn1(100),yn1(100),jpn1(100),ypn1(100)
complex*16 u,d(100),c(100)

complex*16 bc(1)

compiex*16 h1,h2,h1p,h2p

real pio2

open(unit=3,status="new’ file="eigen 1.out)

write(6,220)
220 format{/, Computing coated eigenfunc solution’)

u=(.0,1.0)

arg=k 1*a
call bessel(arg,nconv,jn,yn,jpn,ypn)

arg=k 1*b
call bessel(arg,nconv,jn1,yn1,jpn1,ypn1)

do 100 i=1,nconv2
if (ipol .eq. 0) then
cli}=—u/znorm*(jn(if*ypn 1(i)-yn(i)}*jpn 1(i))
+ / (jn(i*yn1(i)=yn(i}*jn 1(i))
else
cli}=—u*znorm*(jpn(i)*ypn 1(i)}-ypnl(i)*jpn 1(i))
+ / (jen(if*yn1(i)-ypn(i)*jn 1(i))
end if ‘
100 continue

arg = kO*b
call bessel(arg,nconv1,jn,yn,jpn,ypn)

do 200 i=1,nconv2

h1 = jn(i) + u*yn(i)

hip = jpn(i) + u*ypnli)

d(i) = -(jpn(i) - u*c(iPjn(i)) / (h1p - u*cli*h1)
200 continue

arg = kO*rho
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50

300

call bessei(arg,nconv,jn,yn,jpn,ypn)

h1 = jn(1) + u*yn(1)
bc(1) = d(1)*h1

jou 1
write(3,50) ibc(1)
format(' c(,i2,)=',2g11.4)

do 300 i=2,nconv2
h1 = jn(i) + u*yn(i)
beli) = 2% d(i*h1 *(-u)**(i-1)
write(3,50) ibeli)

continue

close(unit=3)
return

end

¢ The following function calculates the fields based upon the coefficients

c
c

computed by the subroutines COATED1 or UNCOATED1.
the distance RHO, the angle PHI, and the coefficients C.

complex function field(phi,c,rho)
real phi,phir,rho,kO

complex*16 c(1)

complex znormk1,u

common /cyl/ znormkOk 1,b,a,ipol,nconv,nconv 1,nconv2

u = (0,1.0)

phir = 3.14159265/180.*phi
field=0

field = c(1)

do i=2,nconv2

field = cfi)*cos((i~1)*phir) + field
end do

return

end

complex function fieldi(thi,c.rho)
real thirho

complex*16 c{1)

return

end

The arguments are
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C
C
c
(>
c

C

c

This program calculates the eigenfunction solution
of scattering of infinite uncoated cylinders.
Link with Bessel routines and COEFF,FIELD
Data about the cylinder
is inserted into the file EIGENDATA. Results are written in EIGENOUT.

Main Program

real kO,a,db,rho

real phi,phil,phi2,dphi

complex epsr,murk1

complex u,znorm,field,inc fieldi,fieldt
common /cyl/ znormkOk1,b,a,ipol,nconv,nconv1,nconv2,inear
complex*16 ¢(100)

complex permr

common /cyl1/ permr

complex*16 ampl(20),nus(20)
common /cyl3/ ampl,nus

open(unit=1,status='old’ file="eigen.data’)
open(unit=2 status="new’ file="eigen.out)

read(1,*) kO,epsr,mur,ipol

read(1,*) b,drho

read(1,*) phi1,phi2,nphi,nconv,nconv1,nconv2
read(1,*) igtd,iinc,inear

open(unit=4 status="new’ file='eigen2.out)

a = b-d
u=(.0,1.0)

k1 = kO*sgrt{epsr*mur)
znorm = sqgrt{mur/epsr)
if (ipol .eq. 0) then
permr = mur J
else
permr = epsr
endif

Compute the coefficients
if (igtd .ne. 1) call coeff(rho,c)

dphi = (phi2-phi1)/(nphi-1)
if (igtd .eq. 0) write(2,*) nphi

inc = 0
if (igtd .eq. 0) then
do np=1,nphi
phi=phi1 + dphi * (np-1)
if (iinc .ne. 0) inc = exp(-u*k0*rho*cosd(phi))
fieldt = field(phi,c,rho)+inc
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100

write(2,*) phi,abs(fieidt)
write(4,*) phiarg(fieldt)
end do
elseif (igtd .eq. 1) then
do np=1,nphi
phi = phi1 + dphi*(np-1)
thi = phi
phix = 2*thi - asind(b/rho*sind(thi))
if (iinc .ne. Q) inc = expl(-u*kO*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+inc
write(2,*) phix,abs(fieldt)
write(4,*) phix.arg(fieldt)
end do
else
do np=1,nphi
phi = phi1 + dphi*(np-1)
thi = phi
phix = 2*thi - asind(b/rho*sind(thi))
if (iinc .ne. 0) inc = exp(-u*kO*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+field(phix,c.rho)+inc
write(2,*) phix,abs(fieldt)
write(4,*) phix,arg(fieldt)
end do

endif
continue

close(unit=1)
close(unit=2)
close{unit=3)
end

function arg(z)
complex z

phi = aimagl(log(z))

arg = phi*45./atan(1d0)
arg = phi

return

end
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ratioy = yn(nord+1)/ynn
ratioj = jn(1)/jn0

c If ratioj=1.0, then Jn(z) values are good. If ratioy=1.0 Yn(z) values
c are good.

write(6,300) arg1,nord-1, ratiojratioy
300 format(' arg=',2f8.3' ord='i3,/, ratj=,2g11.4, raty=",2g11.4)

write(6,301) jn(1),yn(nord+1)
301 format(' jnO=',2g11.4, ynn=',2g11.4,/)

return
end
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¢ The following programs are linked to the main program to calculated the
c exact eigenfunction solution for a perfectly conducting cylinder without
c coating.

subroutine coeff(rho,c)

real rho,phi,phirk0O,b,a

complex znormk1

common /cyl/ znorm,k0 k 1,b,a,ipol,nconv,nconv 1,nconv2
complex*16 arg,jn(100),yn(100),jen(100),ypn(100)
complex*16 u,d(100),c(1)

complex*16 h1,h2,h1p,h2p

real pio2

u=(.0,1.0)

arg = kO*b
call bessel(arg.nconv1,jn,yn,jon,ypn)

do 200 i=1,nconv2

if (ipol .eq. O) then
h1 = jn(i) + u*yn(i)
d(i) = -jn(i)/h1
else
h1p = jpnl(i) + u*ypn(i)
dli) = -jpn(ih1p
endif

200 continue

arg = kO*rho
call bessel(arg,nconv,jn,yn,jpn,ypn)

h1 = jn(1) + u*yn(1)
c{1) = d(1)*h1

do 300 i=2,nconv2

h1 = jn(i) + u*yn(i)

cli) = 2.* d(i)*h1 * (-u)**(i-1)
300 continue

return
end

¢ The following function calculates the fields based upon the coefficients
c computed by the subroutines COATED1 or UNCOATED1.

complex function field{phi.c,rho)

real phi,phir.rhc k0

complex*16 c(1)

compiex znormk1i,u

common /cyl/ znorm,k0 k 1,b,aipol,nconv,nconv 1,nconv2

u = (0,1.0)
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phir = 3.14159265/180.*phi
field=0

field = (1)

do i=2,nconv2

field = cli)*cosl(i- 1)*phir) + field
end do

return

end
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¢ This subroutine calculates cylindrical bessel functions Jn(z) and Yn(z)
c and their derivatives.
c This subroutine utilizes the bessel routines JNCOMPLEX and YNCOMPLEX
C to calculate the bessel functions of zero and first order.
C Recursion relations are used to calculate the higher orders and the
c derivatives of the bessel functions.

subroutine bessel(arg,nord,jn,yn,jpn,ypn)

complex*16 arg,jn{1),yn(1),jen(1),ypn(1)

complex*16 invarg

complex argl,jncmplex,yncmplex

complex jn0,ynn,ratiojratioy

invarg = (1.0,.0)/arg

argl = arg
c write(6,*) ‘arg= 'arg

n = nord

i = n+1

jn(i) = jncmplex(arg1.n)

in(i+1) = jncmplex(arg1,n+1)

jpnli) = =jn(i+1) + n*invarg*jn(i)

do 100 n=nord-1,0,-1

i =n+1

jnli) = 2¥n+1*invarg*jn(i+1) - jn(i+2)

jen(i) = -jn(i+1) + n*invarg*jn(i)
100 continue

n=20

i = n+l

yn(ij = yncmplex(arg1,n)

yn(i+1) = yncmplex(arg1,n+1)

ypn(i) = —yn(i+1)

ypn(i+1) = yn(i) ~ invarg*yn(i+1)

do 150 n=2,nord

i = n+1

yn(i) = 2¥n-1)*invarg*yn(i-1) - yn(i-2)

ypn{i) = yn(i-1) - n*invarg*yn(i)
150 continue

¢ Testing for accuracy of values ..
ynn = yncmplex{arg1,nord)
jn0 = jncmplex(arg1,0)
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This is a sample data file, EIGENDATA.

6.28319 (4.0.0) (1.0} 1
3.1831 0.10 10.

0. 180. 81 2 70 30
012

kO epsr mur ipol

b d rho

phi1 phi2 nphi nconv nconv1l nconv2
igtd iinc inear

(root guesses)

ipol: TM=0 TE=1

If igtd .ne. O, then do NOT allow zero or shadow region angles to be situated
between phi1 and phi2.

iinc: add incident field?
igtd=0:No GTD specular, eigenfunction only OR creeping wave only

igtd=1:GTD specular only
igtd=2:GTD specular + creeping wave



LI

|

e

The Libraries
Massachusetts Institute of Technology
Cambndge, Massachusetts 02139

Institute Archives and Special Collections
Room 14N-118
(617) 253-5688

This is the most complete text of the
thesis available. The following page(s)
were not included in the copy of the

thesis deposited in the Institute Archives
by the author:
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c
(o
c
c
c

c

This program calculates the GTD specular solution of scattering of
infinite cylinders. Link with COEFF for the illuminated specular
reflection program.

Data about the cylinder
is inserted into the file EIGENDATA. Results are written in EIGENOUT.

Main Program

real kO,a,d,b,rho

real phi,phi1,phi2,dphi

complex epsrmurk i

complex u,znorm,field,inc fieldi fieldt
common /cyl/ znormkOQk 1,b,a,ipol,nconv,nconv 1,nconv2 inear
complex*16 ¢(100)

complex permr

common /cyl1/ permr

complex*16 ampl(20),nus(20)
common /cyl3/ ampl,nus

open(unit=1,status="old’ file="eigen.data’)
open(unit=2, status="new’ file="eigen.out)

read(1,*) k0,epsr,mur,ipol

read(1,*) bd,rho

read(1,*) phi1,phi2,nphi,nconv,nconv 1,nconv2
read(1,*) igtd,iinc,inear

open{unit=4 status="new’ file='eigen2.out)

a = b-d
u=(.0,1.0)

k1 = kO*sqrt(epsr*mur)
znorm = sqrt(mur/epsr)
if (ipol .eq. O) then
permr = mur
else
permr = epsr
endif

- ¢ Compute the coefficients

if {igtd .ne. 1) call coeff(rho,c)

dphi = (phi2-phi1)/(nphi-1)
if (igtd .eq. 0) write(2,*) nphi

inc = 0
if (igtd .eq. O) then
do np=1,nphi
phi=phi1 + dphi * (np-1)
if (iinc .ne. 0) inc = exp{-u*k0*rho*cosd(phi))
fieldt = field(phi,c,rho)+inc
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write(2,*) phi,abs(fieldt)
c write(4,*) phi,arg(fieldt)
end do
elseif {igtd .eq. 1) then
do np=1,phi
phi = phi1 + dphi*{np-1)
thi = phi
phix = 2*thi - asind{b/rho*sind(thi))
if (iinc .ne. 0) inc = expl(-u*k0*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+inc
write(2,*) phix,absl(fieldt)
c write(4,*) phix,arg(fieldt)
end do
else
do np=1,nphi
phi = phi1 + dphi*(np-1)
thi = phi
phix = 2*thi - asind(b/rho*sind(thi))
if {iinc .ne. 0) inc = exp(-u*k0*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+field(phix,c,rho)+inc
write(2,*) phix,abs(fieldt)
c write(4,*) phix,arg(fieldt)
end do

endif
100 continue

close(unit=1)
close(unit=2)
close(unit=3)
end

function arg(z)
complex z

phi = aimag(log(z))
c arg = phi*45./atan{1d0)
arg = phi
return
end
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This program calculates the specular field of a coated infinite cylinder.
This program is based upon equations derived by Kim & Wang using
stationary phase methods and GTD. The object code is to be linked
with EIGENOBJ.

0000

complex function fieldi(thi,c.rho)

real rho,thi,kO

complex znormk 1

common /cyl/ znormk0k1,b,a.ipol,nconv
complex u,rj

real pio2,2,sp

real bcosi,bsini

u={.0,1.0)
bcosi = b*cosd(thi)
bsini = b*sind(thi)

phi = 2*thi - asind(bsini/rho)
12 = rho*sgrt(1. — (bsini/rho)**2) - bcosi

c write(6,*) ‘thi='thi,’ bcosi='bcosi
sp = sqrtlbcosi/(2*12 + bcosi))

call refl(rj,thi,rho)

fieldi = exp(u*k0*(12-bcosi))*rj*sp
return

end

subroutine refi(rj,thi,rho)

complex rj

real thi,rho

real kOb,a

complex znorm,k1,u

common /cyl/ znormk0,k1,b,a,ipol,nconv
complex cost,sinbak 1d,psi,tanpsi

real cosi,sini

u=(0.,1.0)

sini = sind(thi)

cosi = cosd(thi)

cost = sqrt{1. - ((1.0..0)/k 1*kO*sini)**2 )

sinba = sgrt{1. —{(1.0,.0)/(k 1*a)*kO*b*sini)}**2 )
c k1d = k1*b-a)
c psi = k1d*cost

psi = k1*b*cost-a*sinba)
+ ~ kO*b*sini¥{cost-sinba)/sqrt(1-sinba**2)

tanpsi = sin(psi)/cos(psi)
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¢ This program calculates the exact residue series solution of scattering of
infinite cylinders. Link with Bessel routines and COEFF.

¢ reflection program.

¢ Data about the cylinder

c is inserted into the file EIGENDATA. Results are written in EIGENOUT.

(o]

(o]

Main Program

real kO,a,db,rho

real phi,phil,phi2,dphi

complex epsrmurk1

complex u,znorm,field.inc fieldi fieldt
common /cyl/ znormk0Ok 1,b,a,ipol.nconv,nconv 1,nconv2,inear
complex*16 ¢(100)

complex permr

common /cyl1/ permr

complex*16 ampi{20),nus(20)
common /cyl3/ ampl,nus

open(unit=1,status="old' file='eigen.data’)
open(unit=2 status="new’ file="eigen.out)

read(1,*) kO,epsr,mur,ipol

read(1,*) bdrho

read(1,*) phi1,phi2.nphi.,nconv,nconv1,nconv2
read(1,*) igtd,iinc,inear

c open(unit=4 status="new’ file="eigen2.out)

a = b-d
u=(.0,1.0)

k1 = kO*sqrt{epsr*mur)
znorm = sqgrt(mur/epsr)
if (ipol .eq. 0) then
permr = mur
else
permr = epsr
endif

¢ Compute the coefficients
if (igtd .ne. 1) call coeff(rho.c)

dphi = (phi2-phi1)/(nphi-1)
c if (igtd .eq. 0) write(2,*) nphi

inc = 0
if (igtd .eq. 0) then
do np=1,nphi
phi=phi1 + dphi * {(np-1)
if (iinc .ne. 0) inc = exp{-u*kO*rho*cosd(phi))
fieldt = field(phi,c,rho)+inc
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100

write(2,*) phi,abs(fieldt)
write(4,*) phi,arg(fieldt)

end do
elseif (igtd .eq. 1) then
do np=1,nphi
phi = phil + dphi*(np-1)
thi = phi

phix = 2*thi - asind(b/rho*sind(thi))
if (iinc .ne. 0; inc = exp(-u*k0*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+inc
write(2,*) phix,abs(fieldt)
write(4,*) phix,arg(fieldt)
end do
else
do np=1,nphi
phi = phil + dphi*(np-1)
thi = phi
phix = 2*thi - asind(b/rho*sind(thi))
if {iinc .ne. 0) inc = exp(-u*kO*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+field{phix.c,rho)+inc
write(2,*) phix,abs(fieldt)
write(4,*) phix,arg(fieldt)
end do

endif
continue

close{unit=1)
close(unit=2)
close(unit=3)
end

function arg(2)
complex z ’

phi = aimagliog(z))

arg = phi*45./atan(1d0)
arg = phi '
return-

end
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¢ This program calculates the creeping wave fields on a coated infinite
cylinder using the exact residue series solution.

This program is similar to those in CREEP.FOR except

that we use the axact equations with bessel functions instead of
utilizing Habashy's approximations. This is to be linked with EIGENOBJ.

O000

subroutine residues(roots,rho)

complex*16 roots(1),num,den,dmodal,dmodp
complex u,znorm,k 1

real kOb,a

common /cyl/ znormkO.k 1,b,a,ipol.nconv
complex permr.fkibk1la

real kOb,pi

common /cyl1/ permr.fk1bk 1akOb
complex*16 ampl(20)rat,nu,nu2,dnu
common /cyl3/ ampl

complex arg,order,h1,bjp(100),byp(50)
dimension bjre(100),bjim(100),yre(50),yim(50)
complex*16 h1pOb,h10b,j1b,y1b,jp1b,ypib,jlayla,jplaypia
complex*16 h2p0b,h20b,h1krho,sn

u = (.0,1.0)
pi = 4*atan(1d0)

do 100 i=1,nconv
nu = rootsfi)
n = int{real(nu))
order=nu-n+1

arg=k0Ob

call cbesny(arg,order,n,bjre,bjim,yre,yim,bjp,byp)
h1pOb = bjp(n) + u*byp(n)

h10b = bjre(n)-yim(n) + u*(bjim(n)+yre(n))
h2p0b = bjp(n) - u*byp(n)

h20b bjre(n)+yim(n) + u*(bjim(n)-yre(n))

arg=k 1b

call cbesny(arg,order,nbjre,bjim,yre,yim,bjp,byp)
j1b = bjre(n) + u*bjim(n)

ylb = yreln) + u* yim(n)

ip1b = bjp(n)

yp1b = bypi(n)

arg = kla

call cbesny(arg,order,n,bjre,bjim,yre,yim,bjp,byp)
jla = bjre(n) + u*bjim(n)

yla = yre{n) + u* yim(n)

jpla = bjp(n)

ypla = byp(n)

if (ipol .eq. O) then
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sn = (jpib*yla - jla*yp1b)/(jib*y1a - jia*y1b)/znorm

else

sn = znorm*(jp1b*ypla - jpla*ypib)/(j1b*ypla - jpla*y1b)
end if

den = h1pOb - sn* h10b
num = h2p0Ob - sn* h20b

c dnu = .04
write(6,*) ‘enter dnu’
read(5,*) dnu

nu2 = nu+dnu
dmodp = (dmodal{nu2)-den)/dnu
rat = num/dmodp

c write(6,199) h1p0b,h10bh2p0b,h20b,sn

c199 format( h1pOb=',2g11.4, h1 Ob='2g11.4,/’ h2p0Ob='2g11.4,
c + ' h20b=',2g11.4, sn=',2g11.4)

c write(6,205) dmodal(nu2),den,dmodal(nu2)-den

write(6,200) i,n,rat,num,dmodp
200 format{’ mode 'i2,: n=i3, rat=",2g11.4,/ nmod=,2g11.4,
+ ' dmodp=',2g11.4)

arg=k0*rho
call cbesny(arg,order,nbjrebjim,yrs,viin,bjp,byp)
hikrho = bjre(n)-yim(n) + u*(bjim(n)+yre(n))

ampl(i) = pi*rat/sin(nu*pi)*exp(-u*nu*pi/2.)th 1krho

100 continue
return
end

complex*16 function dmodal(nu)
compiex*16 nu

complex u,znormxk1

real kO,b,a

common /cyl/ znorm.,k0,k1,b,aipol,nconv
complex permr.fkibkila

real kOb

common /cyl1/ permr,fk1bk1ak0b
dimension bjre(100),bjim(100),yre(50),yim(50)
complex bjp(100),byp(50)

complex arg,order

complex*16 h1pOb,h10b,j1b,y1b,jp1b,yp1b,jlayylajplaypia
complex*16 sn

u=(.0,1.0)
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n = int(real(nu))-1
order=nu-n+1

arg=kOb

call cbesny(arg,order,n,bjre,bjim,yre,yim,bjp,byp)
h1pOb = bjp(n) + u*byp(n)

h10b = bjre(n)}-yim(n) + u¥bjim(n)+yre(n))

arg=k 1b

call cbesny(arg,order,nbjrebjim,yre,yimbjp,byp)
jib = bjre{n) + u*bjim(n)

ylb = yre(n) + u* yim(n)

jp1b = bjp(n)

yp1b = byp(n)

arg = kla

call cbesny(arg,order,nbjrebjim,yre,yim,bjp,byp)
jla = bjre(n) + u*bjim(n)

yla = yre(ln) + u* yim(n)

jpla = bjp(n)

ypla = byp(n)

if (ipol .eq. 0) then :

sn = (jpib*yla - jla*ypib)/(jlb*y1a - jla*y1b) /znorm
else

sn = znorm*(jp1b*ypla ~ jpla*yp1b)/(j1b*ypla - jpla*yib)
end if

dmodal = h1pOb - sn* h10b
c write(6,222) nu,abs(dmodal®
222 format(' nu=',2g11.4, abs=',g10.4)

return
end -

subroutine coeff(rho,roots)

real rho

complex*16 roots{1),dmodal,dm
dimension infer{100)

complex u,znormxk1

real kOb,a ’

common /cyl/ znormk0,k1,b,aipol,nconv
complex permr.fkibkila

real kOb

common /cyl1/ permr,t,x1bk1akCb
complex*16 ampl(20),nu

common /cyl3/ ampi

real absd

external dmodal ...

u = {0,1.0)"
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105

100

pi = 4.0*atan(1d0)

kOb = kO*b
kib = k1*b
kla = k1*a

epsi = .005
nsig = 8

kn=0

nguess = nconv
itmax = 150

n = nconv

write(6,*) 'enter guess for roots nu: '
do i=1n

read(1,*) rootsli)

write(6,105) irootsli)

format(' nu(,i2,)= ',2f8.3)

end do

call zanlyt(dmodal.epsi,nsig kn,nguess,n roots,itmax,infer,ier)

do i=1n

nu = rootsfi)

dm = dmodal(nu)

absd = abs(dm)

write(6,100) i,nu,absd,dm

end do

format(’ root,i2,: nu='2f8.3’ abs='g10.4, dmod='2g11.4)

" call residues(roots,rho)

return
end

complex function field(phi,roots,rho)
complex*16 roots(1)

complex u,znormxk1

real kO,b,a

common /cyl/ znormk0k1,b,a,ipol,.nconv
complex permr.fk1bkia

real kOb -

common /cyl1/ permr,fk1bk1a.kOb
complex*16 ampl(20),nu’

common /cyi3/ ampl

u = {0,1.0)
pi = 4.*atan(1d0)
phir ‘=_-pi/180.! * phi
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field = 0.

do 200 i=1nconv
¢ calculating values of global variables for DMODP and NMOD subroutines
nu = rootsli)
field = ampl(i) * cos(nu*{phir-pi)) + field
200 continue

return
end

complex function fieldi(phi,c,rho)
complex*16 ¢(1)

return

end
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This is a sample data file, EIGENDATA.

6.28319 (4.0,0) (1.0) 1
3.1831 0.10 10.

0. 180. 81 2 70 30
102

(23,5)

(21,2)

kO epsr mur ipol

b d rho

phi1 phi2 nphi nconv nconvl nconv2
igtd iinc inear

(root guesses)

ipol: TM=0 TE=1
If igtd .ne. 0, then do NOT allow zero or shadow region angies to be situated
between phil and phi2.

iinc: add incident field?
igtd=0:No GTD specular, eigenfunction only OR creeping wave only

igtd=1:GTD specular only
igtd=2:GTD specular + creeping wave
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c This program calculates the approximate residue series solution

¢ of scattering of

¢ infinite cylinders. Link with Bessel routines and COEFFFIELD, and

¢ Data about the cylinder

c is inserted into the file EIGENDATA. Results are written in EIGENOUT.

c Main Program
real kO,ad,b,rho
real phi,phil,phi2,dphi
complex epsr.murk1
complex u.znormfield,inc fieldi fieldt
common /cyl/ znormk0.k 1,b,a,ipol,nconv,nconv 1,nconv2 inear
complex*16 ¢(100)
complex permr
common /cyl1/ permr
complex*16 ampl(20),nus(20)
common /cyl3/ ampl.nus

open(unit=1,status="old’ file="eigen.data’)
open(unit=2,status='new‘,fiIe=‘eigen.out’)

read(1,*) kO,epsr mur,ipol

read(1,*) bdrho

read(1,*) phi1,phi2,nphinconv,nconv1,nconv2
read(1,*) igtd,iinc,inear

c open(unit=4,status=’new',file='eigen2.out’)

a = b-d
u=(.0,1.0)

k1 = kO*sqrt{epsr*mur)
znorm = sqrt{mur/epsr)
if (ipol .eq. 0) then
permr = mur
else
permr = epsr
endif

¢ Compute the coefficients
if (igtd .ne. 1) call coeff(rhoc)

dphi = (phi2-phi 1)/(nphi~1)
c if (igtd .eq. 0) write(2,*) nphi

inc = 0
if (igtd .eq. 0) then
do np=1,nphi
phi=phi1 + dphi * (np-1)
if (iinc .ne. 0) inc = expl(-u*kO*rho*cosd(phi))
fieldt = field(phi,c,rho}+inc
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write(2,*) phiabs(fieldt)
write(4,*) phi,arg(fieldt)
end do
elseif (igtd .eq. 1) then
do np=1nphi
phi = phil + dphi*(np-1)
thi = phi
phix = 2*thi - asind(b/rho*sind(thi))
if (iinc .ne. 0) inc = exp(-u*kO*rho*cosd(phix))
fieldt = fieldi(thi,c,rho)+inc
write(2,*) phix.abs{fieldt)
write(4,*) phix,arg(fieldt)
end do
else
do np=1,nphi
phi = phi1 + dphi*(np-1)
thi = phi
phix = 2*thi - asind(b/rho*sind(thi))
if (iinc .ne. 0) inc = exp(-u*k0*rho*cosd(phix))
fieldt = fieldi(thi,c rho)+field(phix,c,rho)+inc
write(2,*) phix,abs(fieldt)
write(4,*) phix,arg(fieldt)
end do

endif
continue

close(unit=1)
close{unit=2)
close{unit=3)
end

function arg(z)
complex 2

phi = aimagllog(z))
arg = phi*45./atan(1d0)
arg = phi

return

end
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¢ This program calculates the creeping wave fields on a coated infinite

C
C

422

cylinder. The equations were derived by Habashy and are convergent

for high frequencies. This is to be linked with EIGENOBJ.

subroutine residues(c,rho)

complex*16 ¢(1),nmod.dmodp

complex*16 nu,sb,sa psitanpsi

complex*16 ar,airy.airyp

complex u,znormk

real kOb,a

common /cyl/ znormkOk1,b,aipol,nconv,nconv1,nconv2 inear
complex permrfkibkla

real kOb,delta pi

common /cyl1/ permr.fk1bk1akOb.delta
complex*16 ampl(20),nus(20),rat,dmodal
common /cyl3/ ampl,nus

complex*16 etabb

compiex*16 z.ex

complex arg,order,h1,bjp(100),byp(50)
dimension bjre(100),bjim(100),yre(50),yim(50)
real kOrho,rr

u = (0,1.0)
pi = 4.*atan(1d0)

do 100 i=1,nconv
ar = cfi)
nu = kOb + ar*f
sb = sgrtlk 1b**2 - nu**2)
sa = sgrt(k1a**2 - nu**2)
psi = delta*(sa- nu**4/sa**3/6.)
if (ipol .ne. 0) psi = psi-2*atan(1d0)
tanpsi = sin(psi)/cos(psi)

eta = nu**2/(k1a**2 - nu**2)
bb = 1+eta-delta*(1+.5*eta*(3+.5%eta)) +delta**2*(1+.5%eta*
(4*eta+eta**2))
bb = -nu/k 1a/sqrt(1+eta)*delta*bb-(1./6.)*eta** 1.5*delta
dmodp = 1+ permr*kOb*nu/sb**3*tanpsi +
permr*kOb*bb/sb/cos(psi)**2
dmodp = -airypl-ar}*dmodp - permr*ar/f/sb*kOb*airy(~ar)*tanpsi

ex = explu*pi/3)

Z = ar/ex

nmod =-airy(z)/ex + kOb*ex/f*permr/sb*airyp(z)*tanpsi
scale = -8*u/pi/b/f*sqri{sb/sa)*cos(psi)

write(6,422) kOb,f,permr
format(' kOb="g9.2, f=',2g9.2, permr='2g9.2)

nus{i) = nu
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kOrhe = kO*rho
rat = nmod/dmodp*f

if (inear.eq.0) then
c Far-field solution
ex1 = exp(u*nu*2.*pi)
ampl(i}= exp(-u*3.*pi/4.) *sqrt{2.*pi)*rat/(1-ex1)
+ / ((kOrho)**2-nu**2)** 25
elseif (inear .eq. 1) then
¢ Near-field solution
ex1 = explu*nu*2.*pi)
rr = (2./kOrho)**{1./3.)
z = rr *¥nu-kOrho) /explu*pi/3.)
ampl(i) = —u*2.*pi*rr*exp(-u*pi/3.)*rat/(1-ex1)*airy(-z)
elseif (inear .eq. 2) then
¢ Exact solution in shadow region
n1 = int{dreal(nu))-1
order = nu-n1+1
arg = kOrho
call cbesnylarg,order,n1bjrebjim,yreyimb ip.byp)
h1 = bjre(n1)-yim(n1) + u* (bjim(n1) + yre(n1))
ampl(i) = pi*trat *h1 * exp(-u*nu*pi/2.) /sin{nu*pi)
else
¢ Creeping wave in illum region
n1 = int(dreal(nu))-1
order = nu-n1+1
arg = kOrho
call cbesnylarg,order,nibjrebjim,yreyimbjpbyp)
h1 = bjre(n1)-yim(n1) + u* (bjim(n1) + yre(n1))
ampl(i) = 2*pi*rat *h1 * explu*nu*pi/2.) /sin(nu*pi)
endif

write(6,320) iratnmod,dmodp/f
320 format(’ mode’;i2,: rat=',2g11.4,

+ ' nmod=,2g11.4; dmodp/f=',2g11.4)
100 continue
return
end

complex function field(phi,c,rho)

complex*16 c(1)airy,airyp

complex u,znormxk1

real kO,b,a

common /cyl/ znormk0.k 1,b,a ipol,nconv,nconv 1,nconv2 inear
complex permrfkibkla

real kOb,delta

common /cyl1/ permr.fk1bk1akOb,delta

complex*16 ampl(20),nus(20)

common /eyi3/- ampl.nus:
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complex cnu,bnu.ex
real phir,ray,ya,yc.alpha
complex*16 nu,rathi
complex*16 z

u = (0,1.0)

pi = 4.*atan(1d0)
phir = pi/180. * phi
field = O.

do 200 i=1,nconv
c calculating values of global variables for DMODP and NMOD subroutines
nu = nusli)

if (inear .eq. 0) then
¢ Far-field solution
yc = b*(phir-pi/2.-acos(b/rho))
ya = b*(1.5*pi-phir-acos(b/rho))
alpha = dimag(nu)/b
ray = sqrtrho**2-b**2)

field = ampl(i) * (exp(u*kO*(ray+yc)-alpha*yc) +
+ expl(u*kO*(ray+ya) -alphat*ya)) + field

elseif (inear .eq. 1) then

¢ Near-field solution
field = ampl(i) *(exp(u*nu*(phir-pi/2.))

+ +explu*nu*(1.5*pi-phir))) + field

elseif (inear .eq. 2) then

c Exact solution in shadow region
field = ampl(i) * cos(nu*(phir-pi)) + field
else
field = ampl(i) * cos(nu*phir) + field
endif

200 continue

return
end

subroutine coeff(rho,c)

real rho

complex*16 c¢(1)

dimension infer{100)

complex u,znormk1

real kO,ba

common /cyl/ znorm,kG.k1,b,aipol.nconv
complex*16 dmodal,ar

complex permr.fkibkla

real kOb,deita

common /cyl1/ permr.fk1ibk1akO0b.delta
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105

100

complex*16 ampl(20),nus(20)
common /cyl3/ ampl,nus
complex nu,w

real absd

external dmodal

common /weight/ w

u = (.0,1.0)
pi = 4.0*atan(1d0)

kOb = kO*b
k1b = k1*b
kla = k1*a

f = (kOb/2.)**(1.0/3.0)*expl{u*pi/3.)
delta = {b-a)/b

.00001
6

epsi
nsig
kn=0
nguess = nconv
itmax = 100

n = npconv

write(6,*)

write(6,*) ‘'enter guess for roots a:
do i=1,n

read(1,*) cfi)

write(6,105) i.cli)

format(' a(,i1,)=',2f11.2)

end do

call zanlyt(dmodal.epsi,nsig kn,nguess,n,c.itmax,infer,ier)

do i=1,n

ar = cfi)

nu = kOb + ar*f

absd = abs(dmodal(ar))

write(6,100) iar,nu,absd

end do

format(' root.,i2,: a= '2f8.3,' nu='2f9.5,’ absd="g11.4)

call residues(c,rho’

retur .
end -

complex*16 function dmodal(ar)
complex*16 ar.airy,airyp
complex u,znormxk 1

real kOb,a
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00

common /cyl/ znormk0.,k1,b,a ipol.nconv
complex permr.fkibkla

real kOb,delta

common /cyl1/ permr.fkibk1akOb.delta
complex*16 nu,sa,sb,psi tanpsi

complex w

common /weight/ w

nu = kOb + ar*f

sb = sgrtlk 1b**2 — nu**2)

sa = sgrtlk1a**2 - nu**2)

psi = delta*(sa- nu**4/sa**3/6.)

if {ipol .ne. 0) psi = psi-2.*atan(1d0}
tanpsi = sin(psi)/cos(psi)

w = —kOb*permr/f /sb * tanpsi

if (abs(w) .1t 1e+8) then
dmodal = airy(-ar) + w*airyp(-ar)
else
dmodal = airy(-ar)/w + airyp(-ar)
endif

return

end

complex function fieldi{phi,c.rho)
complex*16 c¢(1)

return

end
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complex*16 function airy(a)
complex*16 af1,f2,w1,w2fa3,f0
complex*16 x1,x2

integer n

complex*16 m,|

complex*16 airye

if (abs(a).gt 6) then
airy=airye(a)
return
endif

356502805389
25881940379
a*a*a

x1
x2
a3

n=20
f1 =1
f2 = a
f =1
wl =1
w2 = a

do while (abs(f1).gt.0.05*abs(f))
n = n+1t

m = 3*n

I = m+1

f =f1

fO=f2

f1 = f1*a3/(m*(m-1))

f2 = f2*a3/(1*(1-1))

wl = wi+f1
w2 = w2+f2

end do

airy = x1*w1 - x2*w2
return
end

complex*16 function airyp(a)
complex*16 af1,f2,wiw2fa3f0
complex*16 x1,x2,0ne

integer n

complex*16 m,|

complex*16 airyep

if (abs(a) .gt 6) then

airyp=airyep(a)
return
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complex*16 function airy(a)
complex*16 af1,f2,w1,w2fa3,f0
complex*18 x1,x2

integer n

complex*16 m.|

endif

x1 = .355602805389
x2 = .25881940379
a3 = a*a*a

one = (1.0,.0)

= 1
a*a/(2.#3.*one)
f1

1

-3

f2 = a3/(3.*4.*one)
fO = f2

wil = 3*f1

w2 = 1 + 4*f2

do while (abs(f1).gt0.05*abs(f))
n = n+1
m = 3*n
| = m+1

f=f1
fo=f2

f1 = f1*a3/(m*m-1))
f2 = f2*a3/(1*(1-1))

wl = wil+f1*m
w2 = w2+f2%

end do
airyp = x1*w1 - x2*w2

return
end
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c The following function calculates airy functions and derivatives for
large argument (z> 6) using asymptotic expansion.

c

0O0000

complex*16 function airye(a)
complex*16 aarg.ail,ai2,ex
real*8 piarga

pi = 4*atan(1.d0)

arga = dimag(log(a))

if (abslarga/pi) .It. .8) then
call airy1(a,airye)
return
endif

arg=2.*pi*(.0,1.0)/3.
ex = explarg)

call airyH{a*ex,ail)
call airy {a/ex,ai2)

airye=-ail*ex - ai2/ex
return
end

complex*16 function airyep(a)
complex*16 a.arg,ail,ai2,ex
real*8 pi,arga

pi = 4.*atan(1.d0)

arga = dimagl(log(a))

if (abs(arga/pi) .It. .8) then
call airyipfa,airyep)
return
endif

arg=2.*pi*(.0,1.0)/3.
ex = explarg)

call airy1p(a*ex,ail)
call airy1pla/ex,ai2)

airyep=—-ail/ex - ai2*ex
return
end

subroutine airy 1(a,ai)
complex*16 a,ai,csiterm,sum

csi = (2/3)*a**1.5
term=—(1.0..0)/csi*15./216.
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100

100

sum = l+term
do 100 k=26
m=6*%k-1
term= —(m-4)*m-2)*m*term/(csi*2 16.*k*(2*k-1))
sum = sum+term
continue

ai= .28209479 1*a*¥(-.25)*exp(-csi)*sum

return
end

subroutine airy 1p(a,aip)
complex*16 a,aip,csi,term,sum

csi = .06666666667*a**1.5
term=(1.0,.0)/csi*21./216.
sum = l+term

do 100 k=26
m=6*k+1
term = —(m-8/*(m-4)*m*term/(csi*2 16.%(2*k-1)*k)
sum = sum+term
continue

aip =-.282094791*a**(.25)*exp(-csi)*sum
return
end

complex*16 function airypz(a)
complex*16 a,zcsi,term,sume,sumo
real*8 pio4

2 =-a
CsSi=.666666666667*2**1.5
term = —(1..0)/csi*21./216.
sume = 1.

sumo = term

k = 1

do i=1,6
k = k+1
m = 6%k+1

term = —(m-8/m-4)*m*term/(csi*2 16.*k*(2*k~1))
sume = sume + term

k = k+1
m = 6%k+1
term = (Mm-8)¥m-4)*m*term/(csi*2 16.*k*(2*k-1))
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[t NeoXo K Ne]

150

This subroutine calculates cylindrical bessel functions Jn(z) and Yn(z)

and their derivatives.

This subroutine utilizes the bessel routines JNCOMPLEX and YNCOMPLEX
to calculate the bessel functions of zero and first order.
Recursion relations are used to calculate the higher orders and the

derivatives of the bessel functions.

subroutine bessel(arg,nord,jn,yn,jpn,ypn)

complex*16 arg,jn(1),yn(1).jpn(1),ypn(1)
compliex*16 invarg

complex argl,jncmplex,yncmplex
complex jn0,ynnratiojratioy

invarg = (1.0.0)/arg
argl = arg
write(6,*) 'arg= 'arg

n = nord
i = n+1

jnli) = jncmplex(arg1,n)
jnli+1) = jncmplex{arg1,n+1)
jpnli) = —jn(i+1) + n*invarg*jn(i)

do 100 n=nord-1,0,-1

i = n+1

jn(i) = 2¥n+1)*invarg*jn(i+1) - jn(i+2)
jpn(i) = =jn(i+1) + n*invarg*jn(i)
continue

n=0
i =n+1

yn(i) = yncmplex(arg1,n)

yn(i+1) = yncmplex{arg1,n+1)
ypn(i) = —yn(i+1)

ypnli+1) = ynli) - invarg*yn(i+1)

do 150 n=2nord

i = n+l

yn(i) = 2%n-1)*invarg*yn(i-1) - yn(i-2)
ypn(i) = yn(i-1) - n*invarg*yn(i)
continue

¢ Testing for accuracy of values ..

ynn = yncmplex{arg1,nord)
jin0 = jncmplex{arg1,0)
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ratioy = yn{nord+1)/ynn
ratioj = jn(1)/jnO

¢ If ratioj=1.0, then Jn(z) values are good. If ratioy=1.0 Yn(z) values
c are good.

write(6,300) arg1.nord-1 ratiojratioy
300 format{ arg=,2f8.3, ord=i3/, ratj=,2g114, raty=,2g11.4)

write(6,301) jn(1),yn(nord+1)
301 format( jn0=',2g11.4, ynn=",2g114,)

return
end



