Success Classification for Object Navigation
by
Albert Yue

B.S., Computer Science and Engineering and Mathematics,
Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2022
(© Massachusetts Institute of Technology 2022. All rights reserved.

Author ..o
Department of Electrical Engineering and Computer Science
May 13, 2022

Certified Dy . ..o
Pulkit Agrawal

Assistant Professor

Thesis Supervisor

Accepted by o
Katrina LaCurts
Chair, Master of Engineering Thesis Committee

Success Classification for Object Navigation
by
Albert Yue

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2022, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Object navigation is the embodied task of navigating to an instance of a specified
object in unseen environments. Previous work has made impressive progress on the
problem, but there remains much room for improvement with current state-of-the-art
methods reaching a success rate of less than one in three. In this work, we evaluate
a state-of-the-art approach, identifying false positives in object detection as the main
point of failure. We propose introducing a new module to verify success when the
agent attempts to stop. We introduce a learning-based classifier that learns and
compares embeddings for visual observations and object categories and find that it
works well at predicting success, outperforming both naive baselines and a heuristic-
based classifier. We also find no improvement when using a ensemble model for
semantic segmentation, although we believe there is more to be tested before arriving
at a conclusive judgement.

Thesis Supervisor: Pulkit Agrawal
Title: Assistant Professor

Acknowledgments

I would like to thank Prof. Pulkit Agrawal for his mentorship and guidance on this
project.

Thank you to Haokuan Luo, Felix Wang, and Zhang-Wei Hong for their collabo-
ration on object navigation work, as well as to all the other members in the lab that
helped me with my compute, engineering, and research questions.

Thank you to my friends and family for all of their support in the past year, and
for every point that has led up to now. Thank you especially to Aaditya Singh for all

of the fruitful conversations about research and philosophy.

Contents

1 Introduction

2 Background and Related Work

2.1 Object Navigation

2.2 Existing work in

Object Navigation

2.3 Semantic Segmentationo

3 Failure Mode Analysis of SOTA
3.1 Analysisof EEAux

4 Method

4.2.1 Learning-based Classifier

4.2.2 Heuristic Baseline

4.3 Ensembling Modelo

5 Results
5.1 SGE Baseline .

5.2 Image-Goal Feature Aggregation Methods

5.3 Predicted Semantics

5.4 Ensemble Model

6 Conclusion

13

15
15
16
17

19
20

23
23
24
25
26
27

29
29
32
33
37

39

6.1 Future Work 39

6.1.1 Improving Success Verification 39
6.1.2 Further Improvements to Semantic Understanding 40
A Implementation Details 43
B SGE Baseline results for the argmax variant of SGE 45

List of Figures

2-1

2-2

5-1

5-2

The model architecture of the 2021 Habitat ObjectNav Challenge win-
ner, taken from their paper [24|, which we use as the basis for our own

agent. ..o Lo e

RGB, depth, and predicted semantics for two consecutive frames in a
bathroom. The sink is correctly labelled at time ¢ = 0 but then labelled

as multiple object categories (sink, table, cabinet) at t =1.

RGB, depth, and semantics for a view in a MP3D validation scene
in which semantics are incorrect. The ground outside the window is
erroneously labelled as a bed (dark pink), which leads to the agent

moving to the window and stopping when looking for a bed.

Model architectures for each form of embedding aggregation. In (a),
the output of the CNN visual encoder is concatenated with a learned
embedding of the target object and passed through a final neural net-
work. In (b), the dot product is taken between the output of the
visual encoder and learned positive and negative embeddings of the

target object to compute the output logits.

Balanced accuracies of the concatenation and dot product models on

the train and validation sets. 0L
Balanced accuracies of classifiers trained using ground-truth and pre-

dicted semantics. We use the pretrained RedNet weights from [24] for

prediction.

17

18

22

25

33

9-3

0-4

9-5

9-6

A-1

Balanced accuracies of classifiers trained using predicted semantics ini-
tialized randomly or using the trained ground-truth model.
Balanced accuracies of classifiers using different methods to produce
semantic inputs. In sampling), five inputs are sampled from the pre-
dicted probabilities and the success prediction logits are averaged. In
weighted embeddings, a linear combination of the predicted probabili-
ties and embeddings from the embedding layer in our pretrained visual
encoder are computed. We trained all models for 300 epochs except the
sampling based method, which was trained for 200 due to the increased
time overhead from multiple forward passes.
Balanced accuracies of classifiers trained using ensemble predicted se-
mantics. We use the pretrained RedNet weights from [24] for predic-

tion and train 5 heads on top using 100K randomly sampled views from

Balanced accuracies of classifiers trained using single RedNet and en-
semble predicted semantics using the weighted embedding method to

produce semantic inputs. Lo

Balanced accuracies of classifiers using ensemble semantic predictions

for different learning rateso

10

List of Tables

3.1 Occurrence of failure modes of EEAux [24] over 300 validation episodes.
Each row reports the percentage of failures attributed to a particular
cause along with 95% confidence intervals. The primary cause of failure
is false positives in object detection followed by exploration related
issues of loop, trapped and explore. The second column shows how
these numbers change when the agent is provided with ground truth,
instead of predicted, semantic maps. The last row reports the overall

success rate. L L e

4.1 Per-object breakdown of training and validation examples in our gen-

erated success verification dataset, along with total counts.

5.1 Validation accuracy and balanced accuracy of SGE baseline using ground-
truth semantics on each target object as well as overall. We also com-
pare these results to a single logistic regression trained over all of the

data, labelled “Single Reg.”

5.2 Validation accuracy, accuracy on each class, and balanced accuracy of
SGE baseline using RedNet predicted semantic probabilities on each
target object as well as overall. We also compare these results to
a model trained on the argmax variant of SGE and a single logistic

regression trained over all of the data, labelled “Single Reg.”

11

9.3

B.1

B.2

Validation accuracy, accuracy on each class, and balanced accuracy
of SGE baseline using ensemble predicted semantic probabilities on
each target object as well as overall. We also compare these results
to a model trained on the argmax variant of SGE and a single logistic

regression trained over all of the data, labelled “Single Reg.”

Validation accuracy, accuracy on each class, and balanced accuracy of
SGE baseline using the argmax of RedNet predicted semantics on each
target object as well as overall. We also compare these results to a

single logistic regression trained over all of the data, labelled “Single

Validation accuracy, accuracy on each class, and balanced accuracy of
SGE baseline using the argmax of ensemble predicted semantics on
each target object as well as overall. We also compare these results to

a single logistic regression trained over all of the data, labelled “Single

12

32

46

Chapter 1

Introduction

In the advent of household robots, autonomous navigation has become a necessary
skill for embodied, artificial agents to perform. Consider the scenario where a robot
is brought to a new unseen environment and asked to find a target object, such as a
sink or table. For the robot to succeed in this task, known as object navigation, it
must not only be able to view the environment and detect the target object, but also
effectively explore the unseen environment and successfully navigate to the object
once found.

To this end, the Habitat ObjectNav Challenge [3]| has been held for the past three
years, providing a common dataset and standardized metrics to compare proposed
techniques. The challenge uses Matterport 3D [4], a set of high-quality scene meshes
of indoor spaces, as environments for navigation. Contestants additionally have ac-
cess to a dataset of episodes, which include a specified scene, target object, starting
state, and valid locations for success. Agents can train using the train and valida-
tion scenes and episode dataset, and are evaluated on a held-out test set of unseen
scenes. The current state-of-the-art (SOTA) approach submitted to the challenge
uses reinforcement learning to train an end-to-end policy network [24|. While these
techniques can succeed for a diverse set of homes and target objects, they are still far
from perfect, with the top performance have a success rate of less than one in three.

In this work, we evaluate an existing state-of-the-art method in object navigation,

identify the current challenges and major failure modes of the approach, and work to

13

address them. We classify evaluation episodes using a set of failure categories based
on previous analysis [24], extending the analysis in that work, and identify object
detection and semantic segmentation as the primary bottleneck of current agents.
We propose introducing a success verifier module to the agent to mitigate failures
in object detection, and investigate different methods to construct and train such a
classifier. We find that a learned success classifier can outperform a heuristic baseline
and present the following results with regards to such a classifier: 1) learning and
comparing representations of the visual observations and target object performs better
than training a network that takes these as inputs, 2) transferring trained models from
ground-truth to predicted semantic inputs performs well initially but is comparable
at convergence, and 3) different methods for converting semantic predictions into
inputs for the downstream classifier perform similarly. We also present results using
a ensemble model for semantic segmentation via multiple independent final layers,
and find that the model performs similarly to the original semantic segmentation

model.

14

Chapter 2

Background and Related Work

2.1 Object Navigation

In object navigation [2|, an agent is placed in an unseen environment and must navi-
gate to an instance of the specified object category. The agent is given no information
about the environment beforehand (e.g. a map) and must take actions to observe the
environment. It has access to several onboard egocentric sensors: RGB-D cameras
and a GPS+Compass that gives a global position and orientation. The agent has a
discrete action space: move forward, turn left, turn right, and stop. The agent may
have two additional actions to provide a second axis to rotate the camera, namely
tilt up and tilt down. An episode is considered successful if the agent stops within 1
meter of an object of the target category and can see the object from some camera
orientation within 500 timesteps (corresponding to 500 actions). We use two metrics
to evaluate the performance of agents: success rate, the percentage of episodes in

which the agent succeeds; and success weighted by path length (SPL), defined as

1 l;
St

i—1 max(pi, lz)

where N is the number of episodes, S; is a binary indicator of success, [; is the shortest
path length to an object of the specified category, and p; is the path length taken

by the agent. SPL provides a measure of path efficiency along with success, as more

15

efficient agents will score higher in terms of SPL. Note that a perfect score of 1 on
SPL is infeasible in object navigation, as the agent has no information about the
environment beforehand and must spend time exploring the environment first.

For our work, we use the Habitat simulator [19] to simulate photo-realistic indoor
environments and the Habitat Challenge framework [3|. In this framework, the for-
ward step size is 0.25 meters, and turn and tilt angles are 30 degrees. We use the
Matterport3D (MP3D) [4] dataset, a set of high-quality scene meshes of indoor spaces
that can be used as 3D environments for simulation. MP3D contains 90 scenes across
the train/val/test splits and 40 labelled semantic categories, although we only use the

21 categories hand-picked by the Habitat Challenge [3| as target categories.

2.2 Existing work in Object Navigation

Object navigation has been part of the 2020 and 2021 Habitat Challenges [3], and
prior works have found some success in the task. It should be noted that a simple
RGB-D CNN+RNN baseline using a ResNet-50 [10] visual encoder and DD-PPO
[23] gets a 0.00 success rate on the test set !, despite its near-perfect performance
in point navigation, where the agent navigates to a specified relative coordinate [23].
More recently, Ye et al. (2021) won the 2021 contest by building on top of the
baseline, adding semantic features, auxiliary tasks and an exploration reward (see
Figure 2-1) [24]. Similarly, Khandelwal et al. (2021) replace the visual encoder
with a pretrained CLIP ResNet-50 [12]. Maksymets et al. (2021) also builds off the
CNN-+RNN baseline, but instead augments the training scene dataset by inserting
objects to increase object and trajectory diversity [17].

Along with end-to-end learning approaches, other approaches maintain an inter-
mediate state representation to aid in navigation. Commonly, researchers use simul-
taneous localization and mapping (SLAM) to construct a map to use for planning
[7, 21]. Chaplot et al. (2020) maintain a semantic map and use it to predict likely

next locations to explore and find the target object [6]. This approach was further

1On the leaderboard https:/ /eval.ai/web/challenges/challenge-page/802/leaderboard /2192

16

RMM | Aux Actin
% - - N Policg — left
RMNN | Aux E
\ — S — Tethqla-red — stop
SGE ("0.1") — | g Paolicy
“Find a Chair® =—+| | RNMN | ALx

GPS + Compass =\ - J

Figure 2-1: The model architecture of the 2021 Habitat ObjectNav Challenge winner,
taken from their paper [24], which we use as the basis for our own agent.

iterated on in [5], in which they introduce an intrinsic reward to observe objects from
angles that provide high semantic confidence and use collected trajectories to further
finetune the semantic segmentation model. Luo et al. (2022) present a similar agent
for object navigation, using a simple semantic-agnostic exploration strategy, object

verification, and a multi-scale collision map [16].

2.3 Semantic Segmentation

Scene understanding is one of the biggest goals in computer vision, and semantic
segmentation comprises a large part of this field. Recent work in object navigation has
used pretrained semantic segmentation networks [10, 9, 11| to provide their policies
with semantic information.

In embodied tasks, agents make observations over time, in which observations
between time steps are highly correlated with each other as the agent remains in
the same environment. For example, if the agent sees a table and moves towards it,
the next observations will most likely contain the same table until the agent moves
past or turns away from it. However, classic semantic segmentation models make
predictions on a per-frame basis and do not store information about past frames or
predictions. Therefore, they can be prone to making inconsistent predictions, as seen
in Figure 2-2. Some prior works have tried to improve accuracy by exploiting these
temporal relationships, such as [18] and [26], which use optical flow networks to prop-

agate predictions. As optical flow is computationally intensive, and thus impractical

17

Figure 2-2: RGB, depth, and predicted semantics for two consecutive frames in a
bathroom. The sink is correctly labelled at time ¢ = 0 but then labelled as multiple
object categories (sink, table, cabinet) at ¢ = 1.

for real-time inference, more recent approaches instead incorporate temporal consis-
tency as a component of the loss and via knowledge distillation during training [15].
Similarly, Wang et al. (2021) construct a memory and use attention to relate the
current frame and previous frames [22|. With regards to object navigation, Luo et
al. (2022) introduce a learned model that incorporates past semantic information to

verify positive target detection and mark false positives [16].

18

Chapter 3

Failure Mode Analysis of SOTA

To guide our work, we investigate the current performance of the state-of-the-art in
object navigation. Namely, we focus on the 2021 Habitat Challenge winner, which
we refer to as the End-to-End Auxiliary Task agent (EEAux) [24]. We group failures
into the following modes, which can then be broadly grouped as failures related to
target object detection, exploration, policy failures after finding the object, and other

miscellaneous issues.

e False Detection: Detecting a wrong object as the target category.
e Missed Detection: Failure to detect the object even though it was in view.
e Loop: Poor exploration due to looping over the same locations.

e Trapped: Repeated collisions with the same or nearby objects cause the agent

getting trapped in coverage. Includes when the agent is trapped in spawn.

e Explore: Generic failures to find the target object although the agent explores
new areas efficiently. Includes semantic failures e.g. going outdoors to find a

bed.

e Attention: Despite detecting the target object, the agent ignores and does not

navigate to the seen object.

e Last mile: Failure to navigate to the detected target object.

19

e Commitment: Continues past the detected target object.

e Stairs: The target is on a different floor and the agent is unable to navigate

up/down stairs.

e Misc: Other causes of failure such as scene mesh artifacts, the agent randomly

quitting the episode, etc.

These failures modes are based off those presented in EEAux [24] when analyzing
their agent. However, Ye et al. (2021) [24] only do so for agents with ground-truth
semantic information. In practice, the agent will not have access to this information,
so previous analysis does not provide the full picture on how the agent would perform
in object navigation. We not only replicate the analysis with ground-truth informa-
tion, but also investigate the failure modes of the more practical agent that predicts
semantics using a pretrained semantic segmentation model.

In addition, we compute a 95% confidence interval using bootstrapping [8|.

3.1 Analysis of EEAux

We collected and analyzed 300 validation episodes using the pretrained weights re-
leased by Ye et al [24]. The breakdown of failure modes can be found in Table 3.1.
We find that when using semantic predictions of the scene, false positives of the
target object comprise the largest individual failure mode, accounting for over a third
of all failures. Indeed false positives can have a significant impact on the agent’s
behavior, leading it to plan specific paths to move towards the (incorrectly) detected
object and, most impactful, stop and end the episode thinking that it has found the
target. In addition, we observed a smaller proportion of failures in which the semantic
segmentation model failed to detect the target object despite seeing it, which led the
agent to miss the target and continue exploring the environment. The second most
prevalent type of failures are those related to exploration, accounting for about a third
of failures in total. The remaining failure modes each account for a small percentage

of the failures, with the misc mode accounting a remaining 21.9%.

20

Failure Mode EEAux % | EEAux GT %
False Detection 35.3+6.3 14+19
| Missed Detection | 6.3+3.2 | 14£19 |
Loop 14.7+ 4.6 222+ 6.8
Trapped 12.5+£4.3 13.9+£5.6
L Explore | 89£3.7 | | 125£54 |
Attention 22419 3.5+3.0
Last Mile 27+2.1 3.5+3.0
_ _Commitment | 09+12 | 28+27 |
Stairs 04+0.9 6.9+4.2
Misc 219454 319+ 7.6
Success Rate 25.3 51.7

Table 3.1: Occurrence of failure modes of EEAux [24] over 300 validation episodes.
Each row reports the percentage of failures attributed to a particular cause along
with 95% confidence intervals. The primary cause of failure is false positives in
object detection followed by exploration related issues of loop, trapped and explore.
The second column shows how these numbers change when the agent is provided with
ground truth, instead of predicted, semantic maps. The last row reports the overall
success rate.

We also analyzed EEAux when it was provided ground-truth semantic informa-
tion. Unsurprisingly, the agent suffered less from failures in object detection, account-
ing for only about 3% of all failures. We did observe a couple failures due to an error
in the ground-truth semantics, as shown in Figure 3-1. The remainder of failures
remain distributed across the failure modes in a similar way to the proportions with
predicted semantics, with exploration-related failures comprising a majority of the re-
maining failures and a small rate of other non-misc failure modes. Note that while the
percentages have increased as object detection is not an issue with the ground-truth,
the number of failures has remained roughly the same, with the increase in success
rate being almost entirely accounted for by the mitigation of the object detection
failure modes. This indicates that EEAux suffers from issues related to exploration

and navigating to found targets that are disjoint for any issues with object detection.

As we found object detection to cause the most failures, we focused our work on
first improving this component of the agent. To this end, we propose an additional

module to the end of the policy that verifies if the given observations are indicative

21

rgb depth semantic

RV
Eh .
RNkJ
FikE)

|

Figure 3-1: RGB, depth, and semantics for a view in a MP3D validation scene in which
semantics are incorrect. The ground outside the window is erroneously labelled as a
bed (dark pink), which leads to the agent moving to the window and stopping when
looking for a bed.

of success and overrides the stop action outputted by the policy net if a false success
is detected, similar to the verifier introduced in a map-based approach in [16]. Key
to this module is a success classifier, which determines with the stop action should be
accepted or overridden. We describe our approach to implementing such a classifier

in the next section.

22

Chapter 4

Method

4.1 Data

As we plan to apply our work to the object navigation task, we use the Matterport3D
dataset (MP3D [4]) to generate image data for fine-tuning our success classifier mod-
els. For success verification, we generate positive examples by sampling viewpoints for
labelled target objects in MP3D. To generate negative examples, we run EEAux [24]
with predicted semantics to collect training episodes and use the last frame from each
unsuccessful episode. This not only provides which generic examples where the target
object is missing, but also examples in which the agent failed due to falsely detecting
the target object, both of which we want our success classifiers to be accurate on. In
both cases, we only use scenes from the training split of MP3D, to be able to test the
generalizability of introducing a success verification module to the agent. Overall,
we generate a dataset of about 5500 examples, comprised of about 4000 positive and
1500 negative examples. The breakdown of examples by target object can be found
in Table 4.1. Note that more common objects occur more in the dataset, as both the
viewpoint sampling and validation episodes scale with the number of target instances.

For training semantic segmentation models, we follow previous work [24, 16] in
collecting about 100K random views evenly from the training MP3D scenes (1792
per scene). We split the scenes into a 80/20 train-val split. We end up with 80640

training examples and 19712 validation examples.

23

Target Object | Train Examples | Val Examples
bathtub 56 20
bed 141 40
cabinet 333 72
chair 919 223
chest of drawers 184 40
clothes 35 9
counter 117 35
cushion 534 124
fireplace 56 12
gym equipment 9 5
picture 252 68
plant 223 55
seating 101 35
shower 121 28
sink 193 64
sofa 130 35
stool 132 50
table 548 123
toilet 140 33
towel 163 32
tv monitor 46 6
Overall 4433 1109

Table 4.1: Per-object breakdown of training and validation examples in our generated
success verification dataset, along with total counts.

4.2 Success Verification

We define the success verification problem as follows: given a set of egocentric image
observations and a target object category, predict whether our location is a success or
not. The model will have access to RGB and depth observations, as well as ground-
truth semantic masks in some experiments. As our dataset is not balanced, we train
using a class-weighted cross-entropy loss (see Appendix A for exact weights) and
evaluate using balanced accuracy, i.e. the average of the accuracies for each class.
For semantic segmentation, we use a RedNet model [11] with the pretrained weights

provided by [24] by finetuning on 100K randomly sampled views from MP3D.

24

o —
c
Q g
o b=}
o
2
CNN E
W
Q E]
5 £ NN —» Success Pred.
E
V] —
m N
el
. 5
Target Object ————> E» /
=

(a) Model with embedding concatenation

a —
& 2
«]

3

CNN E NN

L g
5 s Success Pred.
£
) —
%] g

£

w

Target Object - %
5
¥

(b) Model with embedding dot product

Figure 4-1: Model architectures for each form of embedding aggregation. In (a), the
output of the CNN visual encoder is concatenated with a learned embedding of the
target object and passed through a final neural network. In (b), the dot product is
taken between the output of the visual encoder and learned positive and negative
embeddings of the target object to compute the output logits.

4.2.1 Learning-based Classifier

We consider two main architectures for the success classifier, shown in Figure 4-1,
distinguished by their methods for aggregating the visual observation and target ob-
ject embeddings for downstream prediction. In the concat model (Figure 4-1a), we
concatenate these two embeddings and pass it through a neural network that outputs
the logits for each class. For our work, we use a single linear layer. The second dot
product architecture, we instead have two embeddings per object category, corre-

sponding to the positive and negative classes, which we then take dot products with

25

a compressed visual embedding to get the corresponding logits. We implement the
compression network as a single linear layer. Utilizing a dot product for embedding
comparison aligns well with work in other fields, such as in few shot learning where
approaches like prototypical networks [20] learn a metric space for classification by
comparing test examples to class prototype representations. For both architectures,
we use a ResNet model [10] with the weights from the visual encoder of the policy
network from the baseline [24]|. For the semantic input, we pass in a semantic mask
that labels each pixel with a single class. Each object label is mapped to an embed-
ding, with the embedding dimension acting as the channel dimension. This is then
concatenated with the RGB-D image along the channel dimension and then passed
through the ResNet model. We present the results of our comparison of the two
architectures in Section 5.2.

In addition, we investigate three different ways to convert predicted semantic log-
its into an input for the success classifier. The first two convert the logits into a
semantic mask with a class per pixel, either through an argmax of the logits or by
sampling the probability distribution given by a softmax activation. In the latter,
we average multiple success predictions by sampling multiple masks from the pre-
dicted logits. The semantic mask is then passed through a pretrained embedding
layer, mapping each class to an embedding vector. For the third method, we use the
probability distribution as coefficients and compute a linear combination of semantic
embedding weights per pixel. This method takes inspiration from previous work like
mixup [25] that also mix together different inputs, although we do so in hopes of in-
terpolating results from uncertain predictions rather than to improve generalization

by encouraging interpolation. The results for these experiments are in Section 5.3.

4.2.2 Heuristic Baseline

Along with learning-based models for predicting success, we also consider a logistic
regression classifier. Specifically, this classifier takes semantic images and computes
the percentage of the image that contains the target object. Ye et al. (2021) used

this feature, known as “Semantic Goal Exists" (SGE), and ablation studies show that

26

the feature had a significant impact on the success and SPL of the agent [24]. We
hypothesize that this feature should also work well to determine success, as it tells
both whether the target object is in view and roughly indicates proximity to target
object—a larger SGE correlates with being closer to the target object, as closer objects
will take more of the agent’s view. Effectively, we are using SGE as a heuristic for
success, finding a threshold determined by a learned weight and offset from logistic
regression on the training data.

When using predicted semantics, we consider two methods to compute SGE: 1)
taking the argmax of logits per pixel and computing the percentage of pixels labelled
as the target object class, and 2) computing the mean of the predicted probability for
the target object. The second approach retains the relative uncertainties of predic-
tions, as more certainty leads to higher probabilities and therefore a higher mean. We
hypothesize that this additional granularity maybe useful, as more certainty should
strengthen the confidence of the success prediction. We train a L2-regularized logistic
regression model per target object category and compute the balanced accuracy for
each and in total. We use a balanced weighting of the classes in the loss function to

account for class imbalance. We present these results in Section 5.1.

4.3 Ensembling Model

In addition to a RedNet model [11] for semantic segmentation, we also train an
ensemble model by independently training 5 heads from the RedNet last layer output,
implemented as 2D transposed convolutional layers. We use the pretrained weights
from [24] for the frozen RedNet, aligning with our single non-ensemble predictions.
We train this model for 100 epochs. Further implementation details can be found in
Appendix A and results for the ensemble model for success verification are presented

in Section 5.4.

27

28

Chapter 5

Results

5.1 SGE Baseline

We train a logistic regression for each target object category and compute their indi-
vidual and collective accuracies, accuracies on each class, and balanced accuracies (see
Table 5.1). When using ground-truth semantics, we find that the baseline achieves
a balanced accuracy of 50.2 on the validation set, performing slightly better than a
random classifier which would achieve a balanced accuracy of 50. In addition, we
trained a single logistic regression fitted to the entire training dataset and evaluated
on the entire validation dataset, and found that our per-object model outperformed
the model by 4.6%. We conjecture that this may partly be due to the per-object
model’s ability to align its weights with the specific target object—larger objects will
have a larger SGE when in view than smaller objects from the same distance, so the
threshold for success may differ among the categories. A full breakdown of accuracies
by target object can be found in Table 5.1. Note that the poor performance on the
gym equipment class is partially attributed to the lack of data, including a lack of
negative examples in the validation set, so we mostly ignore the target object in our
discussion here.

When using predicted semantics, we consider two methods for computing an SGE
feature, as described in Section 4.2.2, and report their results in Table 5.2. Overall,

we found that using prediction probabilities performed slightly better between to

29

Target Object | Accuracy | Pos. Acc. | Neg. Acc. | Balanced Accuracy
bathtub 40.0 0.0 100.0 50.0
bed 65.0 75.0 41.7 58.3
cabinet 66.7 94.0 4.5 49.3
chair 59.2 69.5 22.4 46.0
chest of drawers 70.0 93.1 9.1 51.1
clothes 33.3 14.3 100.0 o7.1
counter 714 100.0 0.0 50.0
cushion 62.9 82.6 6.2 44.4
fireplace 25.0 0.0 50.0 25.0
gym equipment 0.0 0.0 0.0 0.0
picture 60.3 86.7 8.7 47.7
plant 27.3 24 100.0 51.2
seating 48.6 100.0 0.0 50.0
shower 78.6 100.0 14.3 o7.1
sink 79.7 98.0 20.0 59.0
sofa 17.1 10.0 60.0 35.0
stool 82.0 93.2 0.0 46.6
table 47.2 25.0 88.4 56.7
toilet 51.5 100.0 5.9 52.9
towel 50.0 31.8 90.0 60.9
tv monitor 50.0 100.0 0.0 50.0
Overall 57.5 67.1 33.2 50.2
Single Reg. 62.8 80.0 16.0 48.0

Table 5.1: Validation accuracy and balanced accuracy of SGE baseline using ground-
truth semantics on each target object as well as overall. We also compare these results
to a single logistic regression trained over all of the data, labelled “Single Reg.”

two methods. We conjecture that this may partially be due to the finer granularity
in its computed SGE feature, which mitigates the impact of incorrect predictions.
In contrast, argmax uses more of an all-or-nothing approach, so a false positive or
false negative can have a much more significant impact on the overall SGE. The full
results for argmax can be found in Table B.1. We also note that among the individual
logistic regression models, more of them are accurate on only one class in the argmax
formulation. Notably, 12 of the 21 are perfectly accurate on one class and perfectly
inaccurate on the other, as opposed to only 4 when using ground-truth semantics and
zero when using predicted probabilities. Also, we again found that the per-object
model outperformed a single logistic regression over the entire dataset.

Finally, we also experiment on the two methods of computing SGE to train a per-

30

Target Object | Accuracy | Pos. Acc. | Neg. Acc. | Balanced Accuracy
bathtub 75.0 83.3 62.5 72.9
bed 42.5 32.1 66.7 49.4
cabinet 59.7 64.0 50.0 57.0
chair 55.6 58.6 44.9 51.8
chest of drawers 55.0 58.6 45.5 52.0
clothes 66.7 85.7 0.0 42.9
counter 45.7 44.0 50.0 47.0
cushion 37.1 25.0 71.9 48.4
fireplace 58.3 83.3 33.3 58.3
gym equipment 0.0 0.0 0.0 0.0
picture 54.4 66.7 30.4 48.6
plant 61.8 70.7 35.7 53.2
seating 60.0 35.3 83.3 59.3
shower 67.9 90.5 0.0 45.2
sink 65.6 65.3 66.7 66.0
sofa 60.0 56.7 80.0 68.3
stool 48.0 40.9 100.0 70.5
table 39.8 22.5 72.1 47.3
toilet 57.6 56.2 58.8 97.5
towel 75.0 86.4 50.0 68.2
tv monitor 50.0 0.0 100.0 50.0
Overall 53.1 51.8 56.5 54.2
Argmax 51.1 48.4 58.1 53.3
Single Reg. 41.3 70.1 26.8 48.5

Table 5.2: Validation accuracy, accuracy on each class, and balanced accuracy of SGE
baseline using RedNet predicted semantic probabilities on each target object as well
as overall. We also compare these results to a model trained on the argmax variant
of SGE and a single logistic regression trained over all of the data, labelled “Single

Reg.”

object logistic regression using the ensemble semantic segmentation model. Similar

to our results with the single RedNet model, we found that computing SGE with the

predicted probabilities (see Table 5.3 tended to perform better, with a similar 6.7%

increase in balanced accuracy. The full results for the argmax variant can be found

in Table B.2. Unlike our other SGE baseline results, we found that a single logistic

regression fitted to the entire dataset performed better in this case.

31

Target Object | Accuracy | Pos. Acc. | Neg. Acc. | Balanced Accuracy
bathtub 75.0 83.3 62.5 72.9
bed 42.5 32.1 66.7 49.4
cabinet 59.7 64.0 50.0 57.0
chair 55.6 58.6 44.9 51.8
chest of drawers 55.0 58.6 45.5 52.0
clothes 66.7 85.7 0.0 42.9
counter 45.7 44.0 50.0 47.0
cushion 37.1 25.0 71.9 48.4
fireplace 58.3 83.3 33.3 58.3
gym equipment 0.0 0.0 0.0 0.0
picture 54.4 66.7 30.4 48.6
plant 61.8 70.7 35.7 53.2
seating 60.0 35.3 83.3 59.3
shower 67.9 90.5 0.0 45.2
sink 65.6 65.3 66.7 66.0
sofa 60.0 56.7 80.0 68.3
stool 48.0 40.9 100.0 70.5
table 39.8 22.5 72.1 47.3
toilet 57.6 56.2 58.8 97.5
towel 75.0 86.4 50.0 68.2
tv monitor 50.0 0.0 100.0 50.0
Overall 51.9 51.6 52.7 52.2
Argmax 40.8 30.2 67.7 48.9
Single Reg. 45.3 52.4 55.6 54.0

Table 5.3: Validation accuracy, accuracy on each class, and balanced accuracy of SGE
baseline using ensemble predicted semantic probabilities on each target object as well
as overall. We also compare these results to a model trained on the argmax variant
of SGE and a single logistic regression trained over all of the data, labelled “Single
Reg.”

5.2 Image-Goal Feature Aggregation Methods

As discussed in our Section 4.2.1, we compared two methods to aggregate the visual
features and target embedding within the success classifier; namely, to concatenate
the two and pass them through a neural network (a linear layer in our case) or to
compute the dot product between the visual features and target embedding. We
trained models using each method for 300 epochs using the ground-truth semantic
segmentation labels and plotted their balanced accuracy in Figure 5-1. Note that

while dot product aggregation significantly outperformed concatenation in training,

32

0.85 1

0.80 -

0.75 1

0.70 -

0.65 1

Accuracy

0.60 1

0.55 1

0.50 1

I I
0 50 100 150 200 250 300
Epoch

— goncat train = dot train === gge baseline
concat val = dot val

Figure 5-1: Balanced accuracies of the concatenation and dot product models on the
train and validation sets.

some of this increase could be explained by overparameterization, as the dot product
model effectively learns a separate set of weights (i.e. the target embedding) per target
category, whereas the concatenation model must learn a linear head that generalizes to
all target categories. However, we still find that dot product aggregation outperforms
concatenation on the validation set, and use this mode for the all models in sections

below.

5.3 Predicted Semantics

In practice, agents will not have access to ground-truth semantic information in ob-
ject navigation, as agents are placed in unseen environments at test time. In this
section, we continue our experiments by using predicted semantics. As shown in

Figure 5-2, we suffer a significant drop in balanced accuracy, due to the decrease in

33

0.85 1
0.80 -
0.75 1

0.70 4
0.65 - Mﬂwﬁﬂ?ml‘ﬁ%wﬁﬁ WP
060 1 AN’

0.55 1

Accuracy

0.50 1

I I I
0 50 100 150 200 250 300
Epoch

— gt train — rednet train
gt val — rednet val

Figure 5-2: Balanced accuracies of classifiers trained using ground-truth and predicted
semantics. We use the pretrained RedNet weights from [24] for prediction.

accuracy in the semantic input. In addition, we try initializing our classifier weights
to that of the trained ground-truth model from Section 5.2, but find that while we
see improved validation accuracy at the onset of training, the two models plateau to

similar accuracies at convergence as shown in Figure 5-3.

Figure 5-4 compares the balanced training and validation accuracies of our success
classifier model using three methods of converting semantic predictions into inputs.
We trained the models that use argmax and a weighted sum of pretrained embeddings
for 300 epochs, whereas we trained the sampling based method for 200 epochs due to
the increased overhead due to having multiple forward passes per prediction. We find
that all methods are comparable to each other, with accuracies tracking each other

through all epochs.

34

0.80 1

075

070

065

Accuracy

060

055 1

050 1

I I I
0 50 100 150 200 250 300
Epoch

= random init train = gt inikt train === gge baseline
= random init val = gt init val

Figure 5-3: Balanced accuracies of classifiers trained using predicted semantics ini-
tialized randomly or using the trained ground-truth model.

35

0 50 100 150 200 250 300
Epoch

= grgmax train - sampling 5 train - weighted embeddings train
argmax val — sampling 5 val — weighted embeddings val

Figure 5-4: Balanced accuracies of classifiers using different methods to produce se-
mantic inputs. In sampling), five inputs are sampled from the predicted probabilities
and the success prediction logits are averaged. In weighted embeddings, a linear com-
bination of the predicted probabilities and embeddings from the embedding layer in
our pretrained visual encoder are computed. We trained all models for 300 epochs
except the sampling based method, which was trained for 200 due to the increased
time overhead from multiple forward passes.

36

0.725 A

0.700 1

0675

0650 A

0625 1

Accuracy

0.600

0.575

0.550 1

0525 4

Epoch

— agrgmax train —— weighted embeddings train === gge baseline
argmax val — weighted embeddings val

Figure 5-5: Balanced accuracies of classifiers trained using ensemble predicted seman-
tics. We use the pretrained RedNet weights from [24] for prediction and train 5 heads
on top using 100K randomly sampled views from MP3D.

5.4 Ensemble Model

Finally, we replace the original RedNet model with an ensemble model for seman-
tic segmentation. We use the average of the probability outputs for prediction, and
investigate the impact of different methods to produce semantic inputs on the per-
formance of the trained downstream success classifier. We omit the sampling method
as we found it to be more time and memory intensive. Like with the single RedNet
model, we found that these methods perform comparable to each other, as shown in
Figure 5-5. In addition, as shown in Figure 5-6, we found that the success classifier
trained using semantic predictions from the ensemble model performs about the same

if not slightly worse than the same method using a single RedNet.

37

0.85

080 1

075 1

070 1

Accuracy

065 1

EDD 251} 300

Epuch

— rednet train — gnsemble train
rednet wal —gnsemble val

Figure 5-6: Balanced accuracies of classifiers trained using single RedNet and ensem-
ble predicted semantics using the weighted embedding method to produce semantic
inputs.

38

Chapter 6

Conclusion

In this work, we identify false positives in object detection to be the main mode of
failure for current state-of-the-art agents for object navigation. We propose a method
to combat false positives by verifying assumed success by the policy network (i.e.
when the policy outputs the stop action) and overriding the action to continue the
episode if verification fails. In this work, we primarily work on the main compo-
nent for such a module: a classifier to determine success from the agent’s egocentric
visual observations. We find that learning a joint visual-semantic embedding space
and comparing the visual and target object representations performs well at classi-
fying success in object navigation. We also did some preliminary investigation into
using ensembling to improve the semantic segmentation model, but find our current

approach to underperform the original RedNet model.

6.1 Future Work

6.1.1 Improving Success Verification

As discussed, we plan to implement a success verification module in our agent using
the best performing success classifier. The module would activate if the policy network
outputs a stop action and if the classifier identifies the current observation as a false

positive, the agent’s actions for the next few timesteps will be replaced by a series of

39

turn actions to orient the agent away from the offending viewpoint.

We also expect that we could iterate and improve the dataset we generate for
success verification. Note that while in our success verification dataset all positive
examples have the target object in view, in the object navigation task as defined by
Habitat [3] we do not necessarily have to end with the target in view, only that the
agent is in a position such that there is a camera orientation in which the target is
in view. However, we expect expanding positive examples to such situations would
lead to many similar images in both classes, making the decision boundary harder to
find. As we mainly wanted to use this success classifier to combat false positives, we
expect a stricter set of positive examples to help with this. In practice, we may find
that a result in between combating false positives and false negatives to work better,
which would be the interest of future work.

Finally, we would like to extend our work with ensemble models, as we found our
results with the ensemble model to fall below that of a single RedNet model. We
would like to continue tuning our training of the ensemble last layers, as we generally
found RedNet to require a large amount of GPU RAM for even a single 480 x 640
image. In addition, we could likely improve the ensemble model by using more recent

techniques, such as adding an adversarial loss as proposed in [14].

6.1.2 Further Improvements to Semantic Understanding

In addition, we expect that improvements to semantic segmentation inputs to the
policy network would improve performance on object navigation. Related, Chaplot
et al (2021) [5] found that by maximizing segmentation confidence in exploration via
an intrinsic reward and then finetuning using images of MP3D scenes using labels
generated from the most confident predictions improves upon previous state-of-the-
art in map-based object navigation agents. This method helps address three concerns:
1) overcoming the distribution shift between Internet-curated images and embodied
observations, as the latter may not fully frame visible objects; 2) avoid uncertain
predictions by finetuning to high confidence labels; and 3) enable the first two even

if ground-truth labels are not available. Therefore, we hypothesize that techniques

40

to improve prediction accuracy and quantify uncertainty would also improve end-to-
end learning-based solutions. In particular, we expect that we could apply the same
ensemble training and proposed extensions [14] to improve semantic segmentation
predictions that are passed to the policy network. We may also be able to draw upon

more recent work in uncertainty prediction, such as deep evidential networks [1].

41

42

Appendix A

Implementation Details

For the SGE baselines, we train a L2-regularized logistic regression per target object,
with a regularization coefficient of 0.1 and each class-specific loss term is weighed by
the inverse of the proportion of the dataset that is class i.

We train our success classifiers using gradient descent with cross-entropy loss, the
Adam optimizer [13], and a batch size of 128 on a single Volta V100. Due to the
class imbalance in our generated dataset, we reweigh each term by 1 — P, where P,
is the proportion of the dataset that is class i. We use a learning rate of 3 x 10~*
for all training procedures. When using ensemble semantic segmentation models, in
which we use micro-batching of size 8 due to CUDA memory limitations, we also tried
scaling the learning rate down by a factor of % = 16 accordingly, but found training
results to be comparable if not worse, as shown in A-1. Also we use an embedding
dimension of 4 when embedding semantic masks, aligning with the visual encoder
used by [24].

We train the ensemble semantic segmentation model using cross-entropy loss, the
Adam optimizer, and a batch size of 4 on 2 Volta V100 GPUs. We found it generally
difficult to increase the batch size per GPU, as we found RedNet to require a large
amount of CUDA RAM for training (on the order of over 5 GB per batch). We use

an learning rate of 2 x 1073, a momentum of 0.9, and weight decay of 107%.

43

070 1

068 1

066 1

064 1

062 1

Accuracy

060 1

| Ly

056 1

054 +

I ! I
0 25 50 75 100 125 150 175 200
Epoch

= |r 3e-4/1& train = |r 3e-d train
= r 3e-4/16 val m——r 3e-4 val

Figure A-1: Balanced accuracies of classifiers using ensemble semantic predictions for
different learning rates

44

Appendix B

SGE Baseline results for the argmax

variant of SGE

Included here are the full results on the SGE baselines where SGE was computed by
finding the proportion of pixels labelled as the target object after taking the argmax

of predicted semantics per pixel.

45

Target Object | Accuracy | Pos. Acc. | Neg. Acc. | Balanced Accuracy
bathtub 40.0 0.0 100.0 50.0
bed 30.0 0.0 100.0 50.0
cabinet 30.6 0.0 100.0 50.0
chair 71.3 86.8 16.3 51.6
chest of drawers 57.5 55.2 63.6 59.4
clothes 66.7 85.7 0.0 42.9
counter 28.6 0.0 100.0 50.0
cushion 73.4 98.9 0.0 49.5
fireplace 50.0 0.0 100.0 50.0
gym equipment 0.0 0.0 0.0 0.0
picture 58.8 88.9 0.0 44.4
plant 25.5 0.0 100.0 50.0
seating 57.1 294 83.3 56.4
shower 75.0 100.0 0.0 50.0
sink 78.1 95.9 20.0 58.0
sofa 14.3 0.0 100.0 50.0
stool 12.0 0.0 100.0 50.0
table 35.8 10.0 83.7 46.9
toilet 51.5 0.0 100.0 50.0
towel 31.2 0.0 100.0 50.0
tv monitor 50.0 0.0 100.0 50.0
Overall 51.1 48.4 58.1 53.3
Single Reg. 32.2 78.5 20.1 49.3

Table B.1: Validation accuracy, accuracy on each class, and balanced accuracy of
SGE baseline using the argmax of RedNet predicted semantics on each target object
as well as overall. We also compare these results to a single logistic regression trained
over all of the data, labelled “Single Reg.”

46

Target Object | Accuracy | Pos. Acc. | Neg. Acc. | Balanced Accuracy
bathtub 75.0 83.3 62.5 72.9
bed 42.5 32.1 66.7 49.4
cabinet 59.7 64.0 50.0 57.0
chair 55.6 58.6 44.9 51.8
chest of drawers 55.0 58.6 45.5 52.0
clothes 66.7 85.7 0.0 42.9
counter 45.7 44.0 50.0 47.0
cushion 37.1 25.0 71.9 48.4
fireplace 58.3 83.3 33.3 58.3
gym equipment 0.0 0.0 0.0 0.0
plant 61.8 70.7 35.7 53.2
seating 60.0 35.3 83.3 59.3
shower 67.9 90.5 0.0 45.2
sink 65.6 65.3 66.7 66.0
sofa 60.0 56.7 80.0 68.3
stool 48.0 40.9 100.0 70.5
table 39.8 22.5 72.1 47.3
toilet 57.6 56.2 58.8 57.5
towel 75.0 86.4 50.0 68.2
tv monitor 50.0 0.0 100.0 50.0
Overall 40.8 30.2 67.7 48.9
Single Reg. 48.2 91.0 10.2 50.6

Table B.2: Validation accuracy, accuracy on each class, and balanced accuracy of SGE
baseline using the argmax of ensemble predicted semantics on each target object as
well as overall. We also compare these results to a single logistic regression trained
over all of the data, labelled “Single Reg.”

47

48

Bibliography

[

2l

13l

4]

15]

6]

17l

18]

191

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep
evidential regression. In NeurlPS, 2020.

Peter Anderson, Angel X. Chang, Devendra Singh Chaplot, Alexey Dosovit-
skiy, Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh
Mottaghi, Manolis Savva, and Amir Roshan Zamir. On evaluation of embodied
navigation agents. arXiv preprint arXiw:1807.06757, 2018.

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets,
Roozbeh Mottaghi, Manolis Savva, Alexander Toshev, and Erik Wijmans. Ob-
jectNav revisited: On evaluation of embodied agents navigating to objects. arXiv
preprint arXw:2006.15171, 2020.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niess-
ner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d:
Learning from rgb-d data in indoor environments. International Conference on

3D Vision (3DV), 2017.

Devendra Singh Chaplot, Murtaza Dalal, Saurabh Gupta, Jitendra Malik, and
Ruslan Salakhutdinov. Seal: Self-supervised embodied active learning. In
NeurIPS, 2021.

Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhut-
dinov. Object goal navigation using goal-oriented semantic exploration. NeurlPS,
2020.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Kumar
Gupta, and Ruslan Salakhutdinov. Learning to explore using active neural slam.
ICLR, 2020.

Bradley Efron and Robert Tibshirani. The bootstrap method for assessing sta-
tistical accuracy. Behaviormetrika, 12(17):1-35, 1985.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision, pages

2961-2969, 2017.

49

[10]

|11

12|

13|

[14]

[15]

|16]

17]

18]

[19]

20]

21

22|

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
viston and pattern recognition, pages 770-778, 2016.

Jindong Jiang, Lunan Zheng, Fei Luo, and Zhijun Zhang. Rednet: Residual
encoder-decoder network for indoor rgh-d semantic segmentation. arXiv preprint
arXw:1806.01054, 2018.

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kemb-
havi. Simple but effective: Clip embeddings for embodied ai. arXiv preprint
arXw:2111.09888, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In ICLR, 2015.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In NeurlPS,
2017.

Yifan Liu, Chunhua Shen, Changqgian Yu, and Jingdong Wang. Efficient semantic
video segmentation with per-frame inference. In ECCV, 2020.

Haokuan Luo, Albert Yue, Zhang-Wei Hong, and Pulkit Agarwal. Stubborn: A
strong baseline for indoor object navigation. arXiv preprint arXiv:2203.07359,
2022.

Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik Wijmans, Woj-
ciech Galuba, Stefan Lee, and Dhruv Batra. Thda: Treasure hunt data augmen-
tation for semantic navigation. In ICCV, 2021.

David Nilsson and Cristian Sminchisescu. Semantic video segmentation by gated
recurrent flow propagation. In C'VPR, 2018.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wij-
mans, Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik,
Devi Parikh, and Dhruv Batra. Habitat: A platform for embodied ai research.
ICCV, pages 9338-9346, 2019.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for
few-shot learning. In NeurlPS, 2017.

Aleksey Staroverov, D. Yudin, I. N. Belkin, Vasily Adeshkin, Yaroslav K. Solo-
mentsev, and Aleksandr I. Panov. Real-time object navigation with deep neu-
ral networks and hierarchical reinforcement learning. IEEE Access, 8:195608—
195621, 2020.

H. Wang, Weining Wang, and Jing Liu. Temporal memory attention for video
semantic segmentation. arXiv preprint arXiw:2102.08643, 2021.

50

[23] Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee, Irfan Essa, Devi
Parikh, Manolis Savva, and Dhruv Batra. Decentralized distributed ppo: Solving
pointgoal navigation. arXiv preprint arXiv:1806.1911.00357, 2019.

[24] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary tasks and
exploration enable object navigation. /CCV, 2021.

[25] Hongyi Zhang, Moustapha Cissé, Yann Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. In /CLR, 2018.

[26] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature
flow for video recognition. In C'VPR, 2017.

51

