
Preliminary Investigation of Productivity Tools for
Memory Profiling in Parallel Programs

by
Elizabeth Zou

S.B. Computer Science and Engineering, Mathematics
Massachusetts Institute of Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022
© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2022
Certified by. .

Charles E. Leiserson
Professor

Thesis Supervisor
Certified by. .

Tim Kaler
Postdoctoral Associate

Thesis Supervisor
Certified by. .

Alexandros-Stavros Iliopoulos
Postdoctoral Associate

Thesis Supervisor
Accepted by .

Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Preliminary Investigation of Productivity Tools for Memory

Profiling in Parallel Programs

by

Elizabeth Zou

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As computing efficiency becomes constrained by hardware scaling limitations, code
optimization grows increasingly important as an area of research. The impact of
certain optimizations depends on whether a program is compute-bound or memory-
bound. Memory-bound computations especially benefit from program transforma-
tions that improve their data locality, to better exploit modern memory hierarchies.
Reuse distance is a useful measure for analyzing data locality in an architecture-
agnostic way, i.e., independent of specific cache sizes. Previous work has researched
different ways to calculate reuse distance, ranging from deterministic to probabilistic
and using different definitions of reuse distance.

This thesis investigates the use of static compiler instrumentation tools to imple-
ment memory analysis tools for parallel programs. I show how the comprehensive
static instrumentation (CSI) framework can be used to compute the reuse-distance
of memory locations in a sequential execution of a program. For analyzing parallel
programs, it is necessary to contextualize the memory access patterns with the logical
parallel structure of the code. To this end, I show how reuse distance calculations can
be organized according to the logical parallel structure of the program by building
a series-parallel tree using CSI. I present several potential algorithms for using this
instrumentation to calculate statistics for average and peak memory bandwidth in
parallel codes. Although these instrumentation tools remain prototypes, they consti-
tute a compelling proof-of-concept for the use of CSI to perform memory analysis in
parallel codes.

Thesis Supervisor: Charles E. Leiserson
Title: Professor

Thesis Supervisor: Tim Kaler
Title: Postdoctoral Associate

3

Thesis Supervisor: Alexandros-Stavros Iliopoulos
Title: Postdoctoral Associate

4

Research Acknowledgments

This research was sponsored in part by the United States Air Force Research Lab-

oratory under Cooperative Agreement Number FA8750-19-2-1000. The views and

conclusions contained in this document are those of the authors and should not be

interpreted as representing the official policies, either expressed or implied, of the

United States Air Force or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes notwithstanding any

copyright notation herein.

5

6

Acknowledgments

Thanks to my supervisor, Professor Charles E. Leiserson of MIT CSAIL and the

Supertech Research Group for their support of this thesis work. Specifically, huge

thanks to my advisers Tim Kaler and Alexandros-Stavros Iliopoulos for their weekly

advice, the large amount of time spent in the last week helping me edit the thesis

before submission, and for being great people to work with. Thanks to Tao B. Schardl

as well for his helpful comments.

Thanks to fellow Supertechie and MEng student Wanlin Li for helping me fix

figures at 4:59AM, among other things. Thanks to my family, my boyfriend Michael

Huang, and all my other friends for their support and encouragement.

7

8

Contents

1 Introduction 15

1.1 Motivation . 17

1.2 Instrumentation . 18

1.3 Reuse Distance . 19

1.3.1 An Illustrative Example with Matrix Multiplication 20

1.4 Reuse Distance Calculator . 23

1.5 Memory Bandwidth Analysis . 24

1.6 Thesis Structure . 25

2 Microbenchmarks 27

2.1 Reordering Nested Loops . 28

2.2 Reordering Struct Fields . 28

2.3 Reordering Function Calls . 29

2.4 Array of Structs vs. Struct of Arrays 29

3 The Reuse Distance Calculator 33

3.1 Tree Implementation . 34

3.2 Extension Ideas . 36

4 Metrics and Results 39

4.1 Metrics . 39

4.2 Results . 42

9

5 The Series-Parallel Tree 45

5.1 Specification . 45

5.2 Data Logged . 47

5.3 Algorithm . 47

5.4 Computation DAG . 48

5.5 Example . 49

6 Parallel Memory Bandwidth Analysis 55

6.1 Parallel Memory Bandwidth Calculation Pattern 56

6.2 Average Memory Bandwidth . 56

6.3 Peak Memory Bandwidth . 60

7 Conclusion 67

7.1 Industry Benchmarks . 67

7.2 Average Memory Bandwidth Given 𝑝 Processors 68

10

List of Figures

1-1 Matrix Multiplication (ijk, PseudoCode) 20

1-2 Matrix Multiplication (ikj, PseudoCode) 21

1-3 Total Reuse Distance vs. Matrix Size 22

1-4 Reuse Distance Calculator (LinkedList, PseudoCode) 23

2-1 Function Calls 1 (Slow, PseudoCode) 29

2-2 Function Calls 2 (Fast, PseudoCode) 29

2-3 Array of Structs (PseudoCode) . 30

2-4 Struct of Arrays (PseudoCode) . 30

2-5 Array of Structs Program (PseudoCode) 31

2-6 Struct of Arrays Program (PseudoCode) 31

3-1 TreeNode (PseudoCode) . 34

3-2 Example Program . 35

5-1 Example Program . 46

5-2 Example Series-Parallel Tree . 46

5-3 Linear Scan Program . 50

5-4 Linear Scan Series-Parallel Tree . 51

5-5 Linear Scan Series-Parallel Tree with Numbered Data Nodes 52

5-6 Linear Scan Computation DAG . 53

6-1 Memory Bandwidth Calculation (Algorithm Pattern) 56

6-2 Average Memory Bandwidth Calculation (Infinite Processors) 57

11

6-3 Linear Scan Series-Parallel Tree with Average Memory Bandwidth Cal-

culations . 59

6-4 Peak Memory Bandwidth Calculation (Infinite Processors) 61

6-5 Linear Scan Series-Parallel Tree with Peak Memory Bandwidth Calcu-

lations (Infinite Processors) . 62

6-6 Peak Memory Bandwidth Calculation (𝑝 Processors) 64

6-7 Linear Scan Series-Parallel Tree with Peak Memory Bandwidth Calcu-

lations (𝑝 Processors) . 65

12

List of Tables

1.1 Reuse Distance Calculations for Matrix Multiplication (ijk) 22

1.2 Reuse Distance Calculations for Matrix Multiplication (ikj) 23

4.1 Microbenchmark Results . 43

6.1 Linear Scan Peak Memory Bandwidth Calculations (𝑝 Processors) . . 64

13

14

Chapter 1

Introduction

Programming today is unlike programming fifty years ago. Whether it be for soft-

ware, simulations, or data science, codebases are growing increasingly larger and more

complicated. As Moore’s Law scaling comes to an end [18, 20, 29], optimizing memory

access becomes increasingly important and necessary to maintain and enable further

improvements in computing efficiency.

The cost of memory accesses in a program depends both on the spatial and tem-

poral locality. Modern hardware architectures employ a hierarchical cache structure.

Computations with good data locality are served by the smaller, faster levels of the

hierarchy. Conversely, computations which exhibit poor data locality tend to benefit

less from hardware caches and consequently have worse performance. With advances

in processor speed outpacing those of memory [34], the importance of optimizing a

program’s memory locality has grown over time.

Memory analysis tools and profilers have proven to be highly effective at helping

programmers understand and optimize the performance of their programs. One area

of research focuses on code analysis tools that help programmers understand and

instrument the memory accesses of both serial and parallel programs. An example is

Cachegrind, a tool suite part of Valgrind [23] for simulation based analysis of memory

access behavior. Another example is ThreadSanitizer [30], a dynamic detector of data

races.

These tools are typically unaware of the logical parallel structure of a program, but

15

can still provide useful insights by profiling each thread in the program independently.

Tools like this can analyze parallel executions to measure memory locality, memory

bandwidth, cache behavior, cache contention, and detect data races. Such tools,

however, are often only able to measure a particular execution of a parallel program

because they lack visibility into the program’s logical parallel structure.

For certain problems, such as race detection, there is precedent for using the logical

parallel structure of the program to provide more useful program analysis tools. For

example, the Cilksan CSI tool [27] implements a provably correct race detector that

detects race conditions based on the logical parallel structure of the program. This

enables Cilksan to provide stronger guarantees than other tools, like ThreadSanitizer,

which only detect race conditions that actually occur during a particular parallel

execution of a code. Another example is Cilkmem [16], which computes the worst-

case 𝑝-processor memory high-water mark for parallel programs that perform dynamic

memory allocations.

In my thesis, I explore the potential of comprehensive static instrumentation (CSI)

[26] as a framework for implementing memory analysis tools that are able to under-

stand the logical parallel structure of a task-parallel program. I begin by showing how

to implement a reuse distance calculator within CSI and demonstrate that reuse dis-

tance correlates with program runtime performance using a set of microbenchmarks

with common patterns of memory-access reorganization. Next, I show how the reuse

distance calculator can be adapted to detect, dynamically at runtime, memory ac-

cesses that are likely to result in data movement across different levels of a machine’s

cache hierarchy. These statistics based on reuse distance can be organized within a

series-parallel tree, also termed spawn tree [12], that is built using CSI. Lastly, I pro-

pose algorithms for analyzing the series-parallel tree, augmented with reuse distance

statistics, to analyze the average and worst-case 𝑝-processor memory bandwidth of

a parallel program. These tools and algorithms remain prototypes, but they serve

to demonstrate the viability of performing memory analysis based on logical parallel

structure using CSI.

The remainder of this chapter is structured as follows. Section 1.1 provides addi-

16

tional motivation for memory analysis tools for parallel codes. Section 1.2 explains

instrumentation decisions and background on the framework I chose to use. Section

1.3 defines reuse distance and provides examples showing how reuse distance mea-

sures memory locality, and Section 1.3.1 walks through an example program that

demonstrates how reuse distance analysis can provide insight to the memory usage of

a program. Section 1.4 gives an overview of the prototype reuse distance calculator

I implemented as part of my investigation, and Section 1.5 introduces the memory

bandwidth analysis work I completed. Finally, Section 1.6 describes the structure of

the remaining chapters of this thesis.

1.1 Motivation

Performance bottlenecks due to poor data locality or suboptimal access patterns are

often difficult to diagnose. The typical programmer will often not have a detailed

understanding of the memory behavior of their code, or how it impacts performance.

Even among expert programmers, it is often difficult to pinpoint memory-related

bottlenecks and understand how these bottlenecks impact the overall performance of

complex codes or improve the memory usage.

Simple program transformations can impact memory behavior and hence perfor-

mance. For example, reordering loops, given that correctness is preserved, can benefit

a program’s performance [1, 2, 22]. A well-known example is matrix multiplication,

where memory locality can be significantly improved with a loop reordering. In a

similar way, reordering function calls or fields in a struct may also have a significant

effect on program performance due to better memory locality. One more example

of better memory locality resulting from simple changes to code is reorganizing data

from an array of structs to a struct of arrays, or vice versa. But how to we determine

which components of a program benefit from the application of these transformations?

My thesis investigates technologies that make it easier for programmers to identify

memory-related bottlenecks in their code, allowing them to target critical sections of

their program for further optimization.

17

1.2 Instrumentation

This section describes the instrumentation technologies I used to implement proto-

types of the memory analysis tools described in this thesis. The specific instrumenta-

tion framework I use is the Comprehensive Static Instrumentation framework (CSI)

which has been used to implement other tools for parallel programs written using Cilk

[6], such as the Cilksan race detector [27], Cilkscale scalability profiler [27], and Cilk-

mem memory high-water mark analyzer [16]. CSI is a framework that can be used to

inject code into programs so that a variety of profiling tools, such as race detectors,

cache simulators, code-coverage analyzers, etc. can “observe and investigate runtime

behavior” [26]. My work serves as a demonstration of memory analysis techniques for

measuring data locality and parallel memory bandwidth using CSI.

CSI enables writing instrumentation tools as C libraries. Under CSI, profiling

tools can insert custom instrumentation on top of the compiler, with standard hooks

available at many parts of the execution, such as before and after each memory access,

before and after each function call, etc. CSI provides this flexibility without much of

a tradeoff in terms of efficiency and performance. CSI is also accessible – it is very

easy for other researchers to take an existing tool and make changes to it, or extend

its functionality.

CSI allows instrumentation of the logical structure of a task-parallel program. The

way CSI accomplishes this is by adding hooks around specific elements of the LLVM

IR. The Tapir/LLVM extension [28] augments LLVM’s intermediate representation

with 3 additional instructions (detach, reattach, and sync) that are used to express

logical parallelism in a program. Consequently, a CSI tool can instrument the log-

ical parallel structure of a program by implementing hooks for these Tapir/LLVM

instructions. All of the above are readily available with OpenCilk [27], making it

simple and straightforward for Cilk programmers to create sophisticated and helpful

profiling tools while keeping the overhead low.

There are alternative instrumentation approaches such as the use of hardware

performance counters [35], binary instrumentation techniques [4, 40], and compiler

18

passes [38], each with its own pros and cons. Ultimately, I chose to explore the feasi-

bility of CSI as a framework for memory analysis because it allows you to investigate

the logical parallel structure of a program, and because I believe that the ease with

which tools written using CSI can be extended facilitates further research.

1.3 Reuse Distance

In this section, I introduce reuse distance and explain why it is a useful program

property to analyze. Reuse distance is a useful program property due to its relation

to memory or reference locality, the tendency of a processor to access the same set

of memory locations repetitively over a short period of time [32]. Because modern

machines have hierarchical memory, with the most frequently accessed data being the

fastest to access, analyzing memory locality is crucial to understanding the memory

behavior of programs.

There are two basic types of memory locality:

• Temporal locality refers to the reuse of specific data within a relatively small

time duration.

• Spatial locality, also termed data locality [11], refers to the use of data elements

close in memory location.

One of the common metrics used to analyze program memory locality is the con-

cept of reuse distance, also known as stack distance [5]. Generally speaking, in a

sequential execution, reuse distance is the number of distinct data elements accessed

between two consecutive references to the same element. Reuse distance is a useful

measurement due to its relationship to cache miss ratios (given some cache size) [31]

and various other locality measures [39].

A hypothetical analysis of reuse distance’s relationship to cache miss ratios despite

being inherently cache-oblivious is as follows. If a memory access has reuse distance

of 33000, and the machine the program is running on has L1 cache size of 32000,

then under the naive LRU stack algorithm, accessing that data value misses the L1

19

cache. More realistically, we can measure reuse distance based on cache lines, rather

than individual memory locations. This way, if cache line size is 64 and the L1 cache

size of a machine is 32000, then a memory access to a cache line with reuse distance

505 > 500 = 32000 ÷ 64 will incur a miss to the L1 cache and thus higher memory

costs.

1.3.1 An Illustrative Example with Matrix Multiplication

In this section, I show how reuse distance calculations can measure the locality of

a program’s memory accesses. Specifically, I illustrate the use of a reuse distance

calculator on an example program that performs matrix multiplication. We will walk

through two versions of the example program, what memory behavior we expect to

see in each version, and how that relates to program runtime, along with the output

from actually computing the metrics we are looking for.

A simple example I analyzed is matrix multiplication. It is well known that for

the naive algorithm with triple nested for loops, different nesting orderings of the

loop index can lead to drastically different program runtimes. Figure 1-1 shows one

implementation. If 𝑁 is the size of the matrix and we set 𝑁 = 1000, this first and

slower implementation runs in 4.791s. However, a simple loop reordering as in Figure

1-2 gives a much faster algorithm: with 𝑁 = 1000 as well, this second and faster

implementation, after loop reordering, runs in 0.426s.

Figure 1-1 Matrix Multiplication (ijk)
1: for each 𝑖 < 𝑁 do
2: for each 𝑗 < 𝑁 do
3: for each 𝑘 < 𝑁 do
4: 𝑐[𝑖][𝑗]← 𝑎[𝑖][𝑘]× 𝑏[𝑘][𝑗]
5: end for
6: end for
7: end for

The differences in performance of these two codes for matrix multiplication can

be better understood by analyzing each implementation’s memory access patterns. If

we look at the line of code within the triple nested for loops, we notice that if each

20

Figure 1-2 Matrix Multiplication (ikj)
1: for each 𝑖 < 𝑁 do
2: for each 𝑘 < 𝑁 do
3: for each 𝑗 < 𝑁 do
4: 𝑐[𝑖][𝑗]← 𝑎[𝑖][𝑘]× 𝑏[𝑘][𝑗]
5: end for
6: end for
7: end for

loop iteration uses a different value for 𝑖, then c[i][j] and a[i][k] will incur high

memory costs; similarly, if each iteration uses a different value for 𝑘, then b[k][j] will

incur a high memory cost. This is because a change in index for the first dimension of

the matrix means that a new cache-line is likely accessed for each value. Since both

implementations have i in the outer-most loop, c[i][j] and a[i][k] incur relatively

low memory costs in both implementations. However, in the first implementation,

the access to b[k][j] is high memory cost, as the inner-most loop iterates over k; in

contrast, in the second implementation, the inner-most loop iterates over j, so values

of b[k][j] on the same cache line are accessed one after another.

This difference in memory locality for the accesses to b[k][j] explains the large

speedup we see from optimizing the memory usage. If we were to measure total reuse

distance summed across the entire program execution, we expect matrix multiplica-

tion (ikj) to have significantly lower total reuse distance than matrix multiplication

(ijk).

I ran an experiment to measure the reuse distances of these two codes, and present

the results as follows. As we expected, when adjusting the parameter 𝑁 and running

the reuse distance calculator, we see that the total reuse distance summed across the

program execution scale an order faster for the slower implementation than the faster

one. The measured numbers are graphed in Figure 1-3, shown below.

The difference in total reuse distance in the two programs comes almost entirely

from the memory usage in the line of code

c[i][j] += a[i][k] * b[k][j].

21

Figure 1-3: Total reuse distance vs. matrix size for two different implementations of
matrix multiplication (pseudocodes in Figure 1-1 and Figure 1-2); linear scale (left)
and log scale (right).

If we measure reuse distance metrics associated with specific parts of the code,

down to a line number and a column number, we expect the memory accesses from

c[i][j] to have shorter reuse distances than those from a[i][k] and b[k][j] in

matrix multiplication (ijk), since i and j are the two outer loops; similarly, we

expect the memory accesses from a[i][k] to have shorter reuse distances than those

from c[i][j] and b[k][j] in matrix multiplication (ikj), since i and k are the two

outer loops.

Using 𝑁 = 500, tables 1.1 and 1.2 below summarize the reuse distance patterns

of the slower and faster implementations respectively.

Memory Access Average Reuse Distance RMS Reuse Distance
c[i][j] 3.00 3.00

a[i][k] 1501.00 1501.00

b[k][j] 126625.63 178105.57

Table 1.1: Reuse distance calculations (in number of distinct memory locations be-
tween two accesses to the same memory location) for matrix multiplication (ijk).

Overall, the output of this reuse distance calculator is sensible and correlates

well with what we would expect to see. As expected, the slower implementation

has patterns of longer reuse distance, and we can conclude that reuse distance is an

effective metric that correlates well with program runtime and can provide insight

22

Memory Access Average Reuse Distance RMS Reuse Distance
c[i][j] 129.35 182.34

a[i][k] 63.50 124.01

b[k][j] 65257.74 65257.74

Table 1.2: Reuse distance calculations (in number of distinct memory locations be-
tween two accesses to the same memory location) for matrix multiplication (ikj).

to potential speedups in programs. To understand precisely why these numbers are

what they are, see Section 4.2. In next sections, I give an overview of the work I

completed for my thesis, along with any artifacts developed as part of the study.

1.4 Reuse Distance Calculator

The first part of my thesis study involves examining reuse distance metrics and their

relation to program memory behavior. To do so, I created a prototype CSI tool that

calculates reuse distance. In Section 1.3, I defined what reuse distance is and why I

chose to analyze it. In this section, I briefly discuss the implementation of this reuse

distance calculator.

A simple reuse distance calculator may take the form of a linked list [21]. Using

the definition of reuse distance presented in Section 1.3, a possible implementation is

as follows (Figure 1-4):

Figure 1-4 Reuse Distance Calculator
1: for each 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 do
2: 𝑎𝑑𝑑𝑟𝑛𝑜𝑑𝑒← createNode(𝑎𝑑𝑑𝑟𝑒𝑠𝑠)
3: if 𝑎𝑑𝑑𝑟𝑛𝑜𝑑𝑒 ∈ 𝑙𝑖𝑠𝑡 then
4: 𝑟𝑒𝑢𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑙𝑖𝑠𝑡.index(𝑎𝑑𝑑𝑟𝑛𝑜𝑑𝑒)
5: 𝑙𝑖𝑠𝑡.remove(𝑎𝑑𝑑𝑟𝑛𝑜𝑑𝑒)
6: 𝑙𝑖𝑠𝑡.insertFirst(𝑎𝑑𝑑𝑟𝑛𝑜𝑑𝑒)
7: end for

The algorithm in Figure 1-4 has per memory access runtime of 𝑂(𝑁), where 𝑁

is the size of program data, and thus an overall runtime of 𝑂(𝑇𝑁), where 𝑇 is the

length of execution. Instead of using this algorithm, I improve the per memory

23

access runtime to 𝑂(log𝑁) in Section 3 by using a self-balancing binary search tree

[3, 25, 33], bringing the overall tool runtime down to 𝑂(𝑇 log𝑁).

1.5 Memory Bandwidth Analysis

The second part of my thesis is concerned with analyzing the memory bandwidth re-

quirements of parallel programs. If the memory bandwidth of a program exceeds the

theoretical machine upper bound of memory bandwidth, then the program’s execu-

tion becomes limited by this memory bandwidth, as opposed to lack of computation

power. In this section, I discuss how I approached the problem of analyzing a parallel

program’s memory bandwidth requirements using the code’s logical parallel structure.

I propose that a program’s average and peak memory bandwidth requirements

can be useful measures for understanding the scalability of task-parallel programs

and investigate an approach for measuring average and peak bandwidth requirements

for scaling a computation using multiple processors. My approach utilizes the series-

parallel tree representation of a parallel computation, together with reuse distance

measurements within and across subtrees. This makes it possible to collect measure-

ments with a serial execution of a program and use them to reason about the expected

effects of parallelism.

The data bandwidth requirement of a program can be defined as the total data

movement divided by time. My approach to measuring data movement is based on

calculations performed by the reuse distance calculator. Given a reuse distance 𝐾, I

consider any memory access that has reuse distance greater than 𝐾 to result in data

movement between different levels of cache. Different values of 𝐾 can be selected to

target different cache sizes or different levels of the cache hierarchy. My approach to

measuring time is similar to the approach taken in other CSI tools such as Cilkscale

[27] where time is measured by the number of LLVM pseudo instructions executed,

which are used by the compiler to estimate the cost of program instructions.

The memory bandwidth analysis tool for parallel programs employs the reuse dis-

tance calculator’s measurements, which are organized within a series-parallel tree.

24

This is a data structure, maintained at runtime, that captures series-parallel relation-

ships in program execution. Both data movement and time are recorded in this data

structure, where program execution is represented with a tree structure of compu-

tation nodes, which are either serial or parallel. The children of serial nodes run in

series, while the children of parallel nodes run in parallel. The series-parallel tree is

described in more detail in Section 5.

I developed prototypes of analysis algorithms for calculating memory bandwidth.

The cases covered by these prototype algorithms are the average memory bandwidth

of a program assuming infinite processors, the peak memory bandwidth assuming

infinite processors, and the peak memory bandwidth given a limited number of pro-

cessors 𝑝. The details of these algorithms are elaborated on in Chapter 6. I also

propose ideas for an algorithm computing the average memory bandwidth for 𝑝 pro-

cessors in Section 7.2.

1.6 Thesis Structure

The remainder of this thesis is divided as follows. First, I shall explain the reuse dis-

tance calculator and analyze benchmark programs empirically. Chapter 2 discusses

the benchmark programs I created and selected to use for my evaluations. Chapter

3 describes the reuse distance calculator, and Chapter 4 defines metrics I measure

and presents my empirical studies. Second, I modify the tool to perform memory

bandwidth analysis. Chapter 5 talks about the integration of a series-parallel tree to

model the logical parallel structure of parallel code, and Chapter 6 discusses differ-

ent algorithms for performing memory bandwidth analysis and presents preliminary

results applying these prototypes to simple programs. Finally, Chapter 7 concludes

with extensions and ideas I didn’t get a chance to work on but could be interesting.

25

26

Chapter 2

Microbenchmarks

In this chapter, I describe benchmark programs for testing and demonstrating the

functionality of the prototype reuse distance calculator I developed. In the introduc-

tion, we used matrix multiplication as an example to demonstrate the functionality

of our calculator and how it can be used to give programmers insight as to where the

memory bottlenecks of a program may be located. For this example, we created two

different implementations of the same algorithm; one with better memory locality

than the other, and hence better reuse distance patterns and faster program runtime.

I propose a set of microbenchmark programs like this matrix multiplication example,

and apply my prototype tool to them, to assess the potential of a reuse distance CSI

profiling tool as an aid towards identifying program regions or structures where data

locality can be improved. Numerical results are presented in Section 4.2.

I discuss four simple code changes that may lead to different memory usage pat-

terns, and microbenchmarks I came up with to exhibit such changes in memory usage

patterns. Specifically, I designed these microbenchmarks to exhibit different reuse

distance patterns before and after the code changes, and verified that their runtimes

were positively correlated with reuse distance. This is done by creating two different

implementations for each case, one before the code change, and one after. I then

evaluate the performance and output of these benchmarks on the reuse distance tool

we create in Section 4.2.

The microbenchmarks presented here are simple, but they correspond to common

27

patterns and design decisions which are often found in real programs. They serve

to validate the premise of my prototype tool, as well compare the performance and

results of different versions of the same tool. This was helpful as I implemented

an inefficient but straightforward reuse distance calculator based on the algorithm

presented in Figure 1-4, and used it to confirm the accuracy of the more complicated

but more efficient one as described in Chapter 3.

2.1 Reordering Nested Loops

One simple code change we aim to target is a reordering of nested for loops. This

can lead to a significant improvement in the memory locality of a program when the

loop reordering allows data values on the same cache line to be accessed one after

another in the inner-most loop. The microbenchmark we proposed for this is the

matrix multiplication example, described in more detail in Section 1.3.1.

2.2 Reordering Struct Fields

In a large struct with many fields, putting fields that are loaded or accessed together

in loop iterations adjacent to each other in the struct can improve memory locality.

This is because by doing so, these loops can touch fewer cache lines. For example, if

all fields touched by a loop can be rearranged to fit on one cache line, as opposed to

being spread apart on multiple different cache lines, then the total number of distinct

cache lines needed to be accessed one after another by that loop decreases, and the

peak memory bandwidth as well.

Similarly, we may also want to reorder fields to enable vectorization opportunities.

Rather than having a struct with fields of the data types [char, int, char, int, char,

int, char] in that order, where chars are 1 byte and ints are 4 bytes, it may be better

for performance to reorganize the fields into the order [int, int, int, char, char,

char, char].

28

2.3 Reordering Function Calls

Similar to reordering nested loops, assuming that program correctness is preserved,

reordering function calls such that those which access overlapping memory addresses

are adjacent in program execution may help improve memory locality. For example, if

we have arrays 𝑎𝑟𝑟1 and 𝑎𝑟𝑟2, and functions myFunc1 and myFunc2 that operate

on arrays, then a program with alternating accesses to the two arrays (Figure 2-1)

can achieve better memory locality by reordering the function calls (Figure 2-2).

Figure 2-1 Function Calls 1
1: myFunc1(𝑎𝑟𝑟1)
2: myFunc1(𝑎𝑟𝑟2)
3: myFunc2(𝑎𝑟𝑟1)
4: myFunc2(𝑎𝑟𝑟2)

Figure 2-2 Function Calls 2
1: myFunc1(𝑎𝑟𝑟1)
2: myFunc2(𝑎𝑟𝑟1)
3: myFunc1(𝑎𝑟𝑟2)
4: myFunc2(𝑎𝑟𝑟2)

In this scenario, we expect the code snippet presented in Figure 2-2 to run faster

than the code snippet presented Figure 2-1 due to the more efficient memory access

patterns. The significance of the memory locality improvement and thus the speedup

is related to the cache sizes of the machine and the number cache misses at each level

incurred by the two programs. For the maximum difference in performance between

the two implementations, the arrays are sized to perfectly fill up a given cache level.

2.4 Array of Structs vs. Struct of Arrays

The last code change we propose microbenchmarks for is changing data organization

from an array of structs to a struct of arrays, or vice versa. In many software applica-

tions, we end up having data similar to a matrix of values, e.g. a list of students each

with associated data like name and age. In these scenarios, we can have a Student

29

struct with fields name and age (Figure 2-3), and store data as an array of structs. Al-

ternatively, we can have a Students struct with fields names and ages, where names

and ages are both arrays and Students is thus a struct of arrays (Figure 2-4).

Figure 2-3 Array of Structs
1: struct Student
2: 𝑛𝑎𝑚𝑒 : string
3: 𝑎𝑔𝑒 : int
4: ℎ𝑒𝑖𝑔ℎ𝑡 : int
5: 𝑤𝑒𝑖𝑔ℎ𝑡 : int
6: end struct

Figure 2-4 Struct of Arrays
1: struct Students
2: 𝑛𝑎𝑚𝑒𝑠 : string array
3: 𝑎𝑔𝑒𝑠 : int array
4: ℎ𝑒𝑖𝑔ℎ𝑡𝑠 : int array
5: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 : int array
6: end struct

But which of these is better? Depending on the application, the answer may swing

either way. If we only select a few students but go through all the fields associated

with each student, we expect to see the array of structs perform better. An example

program where we expect to see this result is shown in Figure 2-5.

In this program, we expect getAvgsArrayOfStructs to perform better than

getAvgsStructOfArrays. This is intuitive from the memory access patterns

triggered by lines 6 through 8 and 16 through 18. Because we are only querying one

out of every one hundred students, the array of structs data structure, which keeps the

data values associated with each individual student adjacent in memory, is expected

to have better memory locality and thus perform better than the struct of arrays data

structure, where the queries jump back and forth in memory.

On the other hand, if we access all the students’ ages, but not the names or other

data of the students, then we expect the struct of arrays to perform better. An

example program where we expect to see this result is shown in Figure 2-6.

In this program, we expect getAvgAgeStructOfArrays to perform better

30

Figure 2-5 Array of Structs Program
1: function getAvgsArrayOfStructs(𝑛, 𝑝𝑒𝑜𝑝𝑙𝑒)
2: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 0
3: 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡← 0
4: 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡← 0
5: for each 𝑖 < 𝑛, 100 | 𝑖 do
6: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒+ 𝑝𝑒𝑜𝑝𝑙𝑒[𝑖].𝑎𝑔𝑒
7: 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡← 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡+ 𝑝𝑒𝑜𝑝𝑙𝑒[𝑖].ℎ𝑒𝑖𝑔ℎ𝑡
8: 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡← 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡+ 𝑝𝑒𝑜𝑝𝑙𝑒[𝑖].𝑤𝑒𝑖𝑔ℎ𝑡
9: end for

10: return 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒÷ 𝑛, 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡÷ 𝑛, 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡÷ 𝑛

11:
12: function getAvgsStructOfArrays(𝑛, 𝑝𝑒𝑜𝑝𝑙𝑒)
13: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 0
14: 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡← 0
15: 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡← 0
16: for each 𝑖 < 𝑛, 100 | 𝑖 do
17: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒+ 𝑝𝑒𝑜𝑝𝑙𝑒.𝑎𝑔𝑒𝑠[𝑖]
18: 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡← 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡+ 𝑝𝑒𝑜𝑝𝑙𝑒.ℎ𝑒𝑖𝑔ℎ𝑡𝑠[𝑖]
19: 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡← 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡+ 𝑝𝑒𝑜𝑝𝑙𝑒.𝑤𝑒𝑖𝑔ℎ𝑡𝑠[𝑖]
20: end for
21: return 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒÷ 𝑛, 𝑡𝑜𝑡𝑎𝑙ℎ𝑒𝑖𝑔ℎ𝑡÷ 𝑛, 𝑡𝑜𝑡𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡÷ 𝑛

Figure 2-6 Struct of Arrays Program
1: function getAvgAgeArrayOfStructs(𝑛, 𝑝𝑒𝑜𝑝𝑙𝑒)
2: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 0
3: for each 𝑖 < 𝑛 do
4: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒+ 𝑝𝑒𝑜𝑝𝑙𝑒[𝑖].𝑎𝑔𝑒
5: end for
6: return 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒÷ 𝑛

7:
8: function getAvgAgeStructOfArrays(𝑛, 𝑝𝑒𝑜𝑝𝑙𝑒)
9: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 0

10: for each 𝑖 < 𝑛 do
11: 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒← 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒+ 𝑝𝑒𝑜𝑝𝑙𝑒.𝑎𝑔𝑒𝑠[𝑖]
12: end for
13: return 𝑡𝑜𝑡𝑎𝑙𝑎𝑔𝑒÷ 𝑛

than getAvgAgeArrayOfStructs. This is because of the memory access pat-

terns triggered by lines 4 and 10. The ages are stored consecutively in memory in the

struct of arrays data structure, but not in the array of structs data structure; so if

we were to count the total number of cache lines touched by these memory accesses,

31

which is correlated to the amount of data moved between cache levels, we will see

that the memory accesses in line 10 touch significantly fewer cache lines than those

in line 4, thus giving the struct of arrays better memory locality.

32

Chapter 3

The Reuse Distance Calculator

This chapter describes my implementation of a prototype reuse distance calculator,

which is a tool that observes the execution of a program and tracks memory usage

with reuse distance (as defined in Section 1.3). The analysis of a program’s execution

in my tool takes place online, where each memory access is processed as it happens

during program execution, and the collected reuse distance information is aggregated

at the end of the program to report metrics such as the total reuse distance, average

reuse distance, or the number of memory accesses with reuse distance > 𝑁.

In the introduction, I presented the algorithm for a simple reuse distance cal-

culator given an address trace (Figure 1-4), which calculates the reuse distance of

each individual memory access using a linked list [21]. Although inefficient with a per

memory access runtime of 𝑂(𝑁) and overall runtime of 𝑂(𝑇𝑁), where 𝑁 is the size of

program data and 𝑇 is the length of execution, this algorithm is simple and straight-

forward, and I implemented it to provide a benchmark reuse distance calculator to

compare a second version of the tool against for debugging purposes.

The remainder of this chapter is structured as follows. Section 3.1 describes the

second implementation of the reuse distance calculator, which compared to the first

implementation, trades off complexity for efficiency. Section 3.2 suggests extensions

to the prototype tool that can enable more complicated analyses and expand its use

cases.

33

3.1 Tree Implementation

A more efficient implementation of the reuse distance calculator is a self-balancing

binary search tree of unique memory accesses, arranged by time of access [3, 25, 33].

This brings the per memory access runtime from 𝑂(𝑁) down to 𝑂(log𝑁), where 𝑁

is the size of program data, and the overall reuse distance calculator runtime from

𝑂(𝑇𝑁) down to 𝑂(𝑇 log𝑁), where 𝑇 is the length of execution. This approach

simplifies the interval tree of holes method proposed by Almási et al. [3] with the

observation that for the sake of calculating reuse distances of each individual memory

access, we do not need to track holes at all.

The Binary Search Tree

In this subsection, we describe the data structures utilized for the reuse distance

calculator. We implement a self-balancing binary search tree, where each node in the

tree represents a memory address. In addition, we maintain a mapping from each

memory address to its corresponding TreeNode. This way, given a memory address,

we can easily find its place in the tree. Figure 3-1 below shows the declaration of the

TreeNode struct.

Figure 3-1 TreeNode
1: struct TreeNode
2: 𝑙𝑒𝑓𝑡 : TreeNode
3: 𝑟𝑖𝑔ℎ𝑡 : TreeNode
4: 𝑝𝑎𝑟𝑒𝑛𝑡 : TreeNode
5: 𝑠𝑖𝑧𝑒 : int
6: 𝑎𝑑𝑑𝑟 : uintptr_t
7: end struct

In our implementation, we also maintain two invariants:

• The memory addresses in the tree are unique. For example, if we have address

trace 𝐴𝐵𝐵𝐶𝐵𝐷𝐴, the set of memory addresses in the tree will be {𝐴,𝐵,𝐶,𝐷}.

• The memory addresses in the tree are sorted by order of last access. For example,

if we have address trace 𝐴𝐵𝐵𝐶𝐵𝐷𝐴, the memory addresses in the tree will be

34

{𝐶,𝐵,𝐷,𝐴}, in that order.

Reuse distance is easy to calculate assuming these two invariants. Given a memory

access and the corresponding memory address 𝑥, the reuse distance of that access is

the number of nodes in the tree that come after the node corresponding to 𝑥. We

can calculate this by find the node corresponding to 𝑥 and its place in the tree using

the mapping we maintain, then using the augmented subtree sizes to calculate the

number of nodes that come after it. This calculation is performed in 𝑂(log 𝑛) time.

If no TreeNode corresponding to 𝑥 has been created yet, then we know this memory

address has never been accessed before, and can treat it as a new memory access. This

algorithm for processing each memory access is shown in Figure 3-2. If an address has

been accessed before, we calculate the reuse distance using subtree sizes and move

that TreeNode to the end; if not, we create a new TreeNode and insert it at the end

of the tree.

Figure 3-2 Example Program (Series-Parallel Tree in Figure 5-2)
1: function processMemoryAccess(𝑡𝑟𝑒𝑒,𝑚𝑎𝑝𝑝𝑖𝑛𝑔, 𝑎𝑑𝑑𝑟)
2: if 𝑎𝑑𝑑𝑟 ∈ 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 then
3: 𝑟𝑒𝑢𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← 𝑡𝑟𝑒𝑒.numAfter(𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑎𝑑𝑑𝑟])
4: 𝑡𝑟𝑒𝑒.remove(𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑎𝑑𝑑𝑟])
5: else
6: 𝑟𝑒𝑢𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒← None
7: 𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑎𝑑𝑑𝑟]← createNode(𝑎𝑑𝑑𝑟)
8: 𝑡𝑟𝑒𝑒.insertLast(𝑚𝑎𝑝𝑝𝑖𝑛𝑔[𝑎𝑑𝑑𝑟])
9: return 𝑟𝑒𝑢𝑠𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

We walk down the tree to rebuild unbalanced subtrees whenever the tree is mod-

ified by either an insertion or a deletion. This keeps the runtime logarithmic instead

of linear. We define the imbalance ratio 𝑟 of subtree 𝑠 as

𝑟 =
min(𝑠.𝑙𝑒𝑓𝑡.𝑠𝑖𝑧𝑒, 𝑠.𝑟𝑖𝑔ℎ𝑡.𝑠𝑖𝑧𝑒)

𝑠.𝑠𝑖𝑧𝑒
,

and rebuild subtrees that have imbalance ratios below 0.3, excluding base cases. This

is done by performing rotations of these subtrees while maintaining the correct order

of the nodes, similar to AVL trees.

35

Instrumentation and CSI Hooks

This subsection introduces the CSI hooks used for the reuse distance calculator I

developed and the data collection that happens. Besides the standard csi_init hook

that gets called before program execution, where we initialize our data structures and

set up reporting functions on program exit, the reuse distance calculator part of my

tool only uses two CSI hooks: csi_before_load and csi_after_store. These hooks

instrument memory accesses and pass to our tool the memory addresses queried, which

we put through processMemoryAcesses from the algorithm shown in Figure 3-2.

As reuse distance data is calculated inside these hooks, the tool records the reuse

distances for each memory access and maps them to the corresponding source code

locations. The calculator can track all of the following performed by a specific location

in the code, down to the line and column numbers:

• The number of accesses to new memory addresses.

• The total number of memory accesses.

• The list of the reuse distances of memory accesses, or any value that can be

computed given this list, such as the total, average, or root mean square of the

reuse distances of memory accesses.

As a proof-of-concept for the use of CSI to perform memory analysis, this prototype

tool is written in a way such that it is easy to add or remove other information for

the tool to track, associate with source code locations, and compute metrics with.

The current metrics supported using this collected data and outputted by the tool

are described more in Chapter 4.2.

3.2 Extension Ideas

In addition to the tool being easily extendable in terms of data collected online and

output metrics, below are some ideas for further extensions:

36

• Creating a version of the tool where analysis is performed offline, separate from

program execution. This could enable much more complicated analysis with

an address trace, such as probability-based quantitative analysis of the nature

studied by Gupta et al. [14].

• Compute non-linear cost function of whole program reuse distance with step

functions based on cache sizes for tool output. The idea behind this extension

is coming up with a single, one-value metric that the tool can output to give

initial insight to program memory usage for any code.

• Integrating the tool into an IDE. This allows this profiling tool to be published

and used by other programmers and researchers.

• Generalizing the tool’s usage to languages other than C. An easy argument can

be made as to why the insights generated by this tool can be useful for program-

mers for other languages as well; however, we would need to find alternative

instrumentation to CSI.

37

38

Chapter 4

Metrics and Results

In this chapter, I describe the different metrics my reuse distance calculator measures.

I also present numerical results collected by running the tool on the benchmark pro-

grams introduced in Chapter 2.

4.1 Metrics

This section breaks down the design of the reuse distance metrics into three parts:

what the tool measures, how it aggregates these measurements, and what is actually

reported during tool output. Each of these three parts is explained in more detail

below.

Measurement

The reuse distance calculator I created is capable of measuring reuse distance with

different granularities. This is the same idea as the simple example given in Section

1.3, where I gave hypothetical numbers for reuse distances both when measured for

individual memory locations and based on cache lines. Specifically, reuse distance

can be calculated on a:

• Per memory address basis. In other words, each specific memory address is its

own unit, treated as distinct from all other memory addresses. A reuse distance

39

calculation is only triggered when the exact memory address is accessed again.

• Per cache line basis. When measuring in this way, memory addresses from the

same cache line are treated as the same memory location. Assuming a cache

line size of 64, this can be done by zero-ing out the last 6 bits of each memory

address. Other cache line sizes can be modeled with the same approach using

a different number of bits.

• Any other neighborhood size [14]. Just like the per cache line basis measure-

ments, multiple memory addresses can be lumped into one group and treated

as a singular memory location. However, the neighborhood size does not need

to be a power of two, and may be anything useful for analysis.

Any of the above different measurement granularities can be applied to a variety of

aggregation and reporting methods. These are presented in the following subsections.

Aggregation

Another point of flexibility in my reuse distance tool is the scope of aggregation. This

can either be a span of code whose collected reuse distance data is aggregated and

reported together, or be based on the location of a data access in memory relative to

other data accesses. There are three main scopes of aggregation:

• The entire program. As it suggests, this scope is simply an aggregation across

the entire program execution and the entire memory space. Example outputs

include a sum of all the reuse distances incurred by the program, the average

reuse distance of all data accesses, and the number of distinct memory locations

accessed throughout the entire program.

• A section of the source code. This can be anything from a specific location in

the code, such as a[i][j], to the body of a specific function. The tool can

also support anything in between, such as aggregating the reuse distance data

associated with data accesses incurred by a specific line of code or by code

wrapped in a specific loop.

40

• A consecutive chunk of memory. At the lowest level, this may be a single

memory address or a cache-line. However, this is different from the measurement

granularities introduced in the previous section: aggregating the reuse distance

numbers collected for memory addresses in a cache-line is different from treating

all those memory addresses as the same memory location, and thus collecting

different reuse distance numbers.

At higher levels, this may take the form of aggregating for memory locations

found in the same cache block, or those belonging to the same allocation.

These aggregation methods may be used with any of the different measurement

granularities described in the previous subsection. However, some combinations may

not make sense – for example, treating memory addresses in the same cache line as

the same memory location but aggregating reuse distance data for each individual

memory address.

Reported Metrics

After aggregating the reuse distance data, the tool is capable of reporting a variety of

different metrics. Since the purpose of the tool is to generate output that is insightful

for each specific program use case, there is no single numerical metric it reports as

a “one metric fits all”. Instead, the tool reports a wide selection of metrics that the

user may customize and draw insight from whichever seems most meaningful. An

overview of the metrics the tool can report is as follows:

• Aggregated reuse distance numbers. The tool currently supports the total reuse

distance summed across a scope of aggregation, along with the average or RMS

reuse distance across the same scopes. The tool is also able to support the

reporting of any metric that can be calculated using the list of reuse distances.

• Number of memory accesses. The reuse distance calculator is able to aggregate

and report information such as the total number of memory accesses performed

by the program, or the number of distinct memory locations accessed.

41

• Information on cache hits and misses. If provided with numbers on cache-sizing,

the tool can estimate the number of hits and misses for each cache level based

on the reuse distances, using the LRU stack model. Although this number is not

necessarily accurate, it’s a reasonable measurement and can provide important

insight into program memory usage.

Now that we’ve described what the tool measures, how it’s aggregated, and what

is actually reported, the next section gives results acquired from running the tool on

the benchmark programs introduced in Chapter 2.

4.2 Results

In this section, we present the results collected from running the reuse distance cal-

culator from Chapter 3 on the benchmarks described in Chapter 2. For each of the

target benchmark properties listed in Chapter 2, we created a program with two ver-

sions to demonstrate that the proposed code changes can improve runtime, and that

this effect can be seen in the tool’s reuse distance metrics. The following programs

were created:

• For reordering nested loops, we created matmul. This is a matrix multiplication

program, where the two versions have different loop orders. The pseudocode is

shown and the analysis is explained in detail in the Section 1.3.1.

• For reordering struct fields, we created music. The most important part of the

program is two versions of a struct, where the suboptimal version has alternating

int and int[] fields, while the reordered version has all the int fields adjacent

to each other and all the int[] fields adjacent to each other.

• For reordering function calls, we created cash. This program maintains two

arrays of values, and isolated operations are performed on the two arrays. The

suboptimal version of the program takes the form shown in Figure 2-1, where

the two arrays are operated on in alternating order, and the reordered version of

42

the program takes the form shown in Figure 2-2, where the multiple operations

on each array are performed adjacent in program flow.

• For showing that a struct of arrays can outperform an array of structs, we

created ppl. This benchmark is developed using the template in Figure 2-5.

• For showing that an array of structs can outperform a struct of arrays, we

created ppl2. This benchmark is developed using the template in Figure 2-6.

Table 4.1 lists the program average reuse distances measured for the two versions

of each microbenchmark. These numbers are measured using a cache line granularity

and aggregated over the entire program.

Benchmark Average Reuse
Distance (slow)

Average Reuse
Distance (fast) Runtime Speedup

matmul 12.01 5.54 91.1%

music 4.92 3.39 7.00%

cash 3.52 2.80 22.8%

ppl 4.53 3.34 37.7%

ppl2 3.16 0.56 32.21%

Table 4.1: Program average reuse distance measurements (in number of distinct mem-
ory locations between two accesses to the same memory location) for microbench-
marks.

Observe that the amount of speedup we achieve from making the adjustments

proposed for each microbenchmark doesn’t perfectly match the decrease in average

reuse distance of a program. This is expected – program average reuse distance is

not an end all be all metric, but it successfully shows that reuse distance does give

insight into program memory locality, and we can conclude that it is a useful program

property.

Notes

There are a few things to note about this prototype tool that results in the aggre-

gated reuse distance metrics outputted not perfectly matching what we would come

43

up with calculating with pen and paper. According to CSI hooks, data accesses from

some parts of the source code trigger multiple memory locations being accessed. One

possible explanation is that the data may either be larger than one machine word, or

aligned in a way such that it covers multiple machine words. From my preliminary

investigations, the larger the problem size, the more memory locations are accessed

this way, leading to larger average reuse distances. For example, in the slower imple-

mentation of matrix multiplication (pseudocode in Figure 1-1 and aggregated reuse

distance metrics in Table 1.1), b[k][j] appears to trigger two memory accesses, lead-

ing to the reuse distance of memory addresses accessed by c[i][j] to be 3 instead

of 2. On the other hand, in the faster implementation of matrix multiplication (pseu-

docode in Figure 1-2 and aggregated reuse distance metrics in Table 1.2), if we use a

small matrix size such as 𝑁 = 5, the average and RMS reuse distances of a[i][k]

both drop to 2, as we would expect with our definition of reuse distance.

Additionally, some memory addresses are referenced to non-existent parts of the

source code, e.g. line −1 or column −1. This is an issue related to the compilation

to LLVM IR, since CSI directly extracts the source code locations from the LLVM

IR. When this happens, a side effect is that aggregated reuse distance metrics can be

slightly off for other parts of the source code.

Despite these caveats, the reuse distance calculator can give important insight

into program memory locality.

44

Chapter 5

The Series-Parallel Tree

This chapter describes the series parallel tree that I use to capture the logical parallel

structure of an instrumented program. The series-parallel tree is used to implement

the prototype memory analysis tools I describe in Chapter 6. With the series-parallel

tree structure, we can model the logical parallelism of codes, as opposed to only being

able to analyze actualized parallelism. In the past, this property of series-parallel trees

has been used to design provably good race detectors [13, 19]. For my thesis, I model

and analyze the execution of parallel code with any number of processors 𝑝, even if

the machine the code is running on only has 1 processor.

This chapter is structured as follows. Section 5.1 defines a series-parallel tree.

Section 5.2 describes the information we record in this data structure, and Section

5.3 presents the CSI-specific algorithm used to create the tree. Section 5.4 introduces

an alternative representation, the computation DAG, which may better illustrate

program flow or be used in different analyses. Finally, Section 5.5 walks through a

sample program and its series-parallel tree and computation DAG.

5.1 Specification

A series-parallel tree is a representation of program execution with computation

nodes. In the implementation I used, adapted from the work of Kaler et al. [17, 15],

there are three types of nodes:

45

1. Serial nodes: the children of serial nodes run in series.

2. Parallel nodes: the children of parallel nodes run in parallel.

3. Data nodes: these nodes have no children; instead, they represent sequences

of computation and hold any data or information logged during this time.

In this structure, each serial and parallel node will have as children one or more

data nodes, and a non-negative number of serial and parallel nodes. We show an

example program with its corresponding series-parallel tree below, in Figures 5-1 and

5-2 respectively. In this program, a call to dotProduct will trigger two calls to

multiply in parallel. Aside than this, computation executes serially.

Figure 5-1 Example Program (Series-Parallel Tree in Figure 5-2)
1: function multiply(𝑥, 𝑦)
2: return 𝑥× 𝑦

3:
4: function dotProduct(𝑥[2], 𝑦[2])
5: 𝑎← cilk_spawn multiply(𝑥[0], 𝑦[0])
6: 𝑏← multiply(𝑥[1], 𝑦[1])
7: cilk_sync
8: return 𝑎+ 𝑏

S

DP

S

D

S

D

Figure 5-2: Example series-parallel tree of dot product (program in Figure 5-1).

The root serial node represents entrance to the dotProduct function. Its child

parallel node splits into two serial nodes, each representing the two parallel multiply

function calls, and its child data node represents the computation associated with the

return statement. The serial nodes on the third level also each have their child data

node, which holds any information logged during the execution of their corresponding

lines of code.

46

5.2 Data Logged

In this section, I describe how data is logged to the data nodes during the creation

of the tree. Each data node holds the following information about its corresponding

sequence of computation:

• A list of events that occurred. These include data loads and stores, the allocation

and freeing of memory, entering and exiting functions, etc.

• The list of memory addresses the program loaded from or stored to. We also

track the corresponding CSI IDs for these loads and stores.

• The amount of data movement with reuse distances greater than 𝐾. This is

recorded in bytes, and 𝐾 can be set to estimate the amount of data moved

between cache levels, etc.

• The number of LLVM pseudo instructions executed. These serve as timing

measurements for the different segments of the computation.

In addition to the above, the implementation structure also allows for simple mod-

ifications and extensions. If one wanted to include the specific list of reuse distances

incurred by the memory accesses, one could easily update the tool to include that.

Some of this information is later accessed to compute memory bandwidth metrics used

to further study the behavior of parallel programs, as we shall discuss in Chapter 6.

5.3 Algorithm

In this section, I describe the algorithm for building a series-parallel tree dynamically

at runtime and describe its implementation in CSI. Specifically, we examine how

the implementation invokes different CSI hooks, and when data logging occurs. An

overview of the series-parallel tree implementation is as follows:

• At the start of the program, we initialize the series-parallel tree in the tool and

create the root node, which is always a serial node.

47

• Serial and parallel nodes are opened, closed, or synced during the CSI hooks

for Tapir control flow. Specifically, we do the following for each of the 6 hooks:

– csi_task: this is called after entering a spawned task following a cilk_spawn.

A serial node is opened.

– csi_task_exit: the serial node is closed.

– csi_detach: this is called within the spawn function helper, right before

entering a spawned task following a cilk_spawn. A parallel node is opened.

– csi_detach_continue: this is called before the continuation of code ex-

ecution following a cilk_spawn and its csi_detach. A serial node is

opened.

– csi_before_sync: the serial node opened with csi_detach_continue is

closed.

– csi_after_sync the parallel nodes opened with csi_detach are synced.

• We invoke the CSI hooks csi_after_load and csi_after_store for logging

information on memory accesses. For information regarding function calls, we

use the CSI hooks csi_func_entry and csi_func_exit. We also instrumented

the tool to log data to the nodes during hooks for memory allocation; specifically,

during csi_after_alloca, csi_after_allocfn, and csi_after_free.

This summarizes the essence of our implementation of the series-parallel tree data

structure. In Chapter 6, I introduce code that walks through the series-parallel tree

and uses the data we collected to compute memory bandwidth metrics.

5.4 Computation DAG

This section describes the process to create a computation DAG, or series-parallel

graph [37], based on the series-parallel tree. This alternative representation is helpful

for visualization and understanding, especially since a series-parallel tree may end up

large and complicated, with many nested levels of serial and parallel nodes.

48

Data nodes in the series-parallel tree become nodes in the computation DAG,

while serial and parallel nodes simply dictate the edge relations between the nodes.

Specifically, graph construction is as follows:

• We create a source terminal 𝑠 and sink terminal 𝑡. Computation starts at the

source, follows the directed edges, and ends at the sink.

• For a serial node in the series-parallel tree, we string its children in series.

For example, given a single root serial node with child nodes 𝑎, 𝑏, 𝑐, we draw a

directed edge from the 𝑠 → 𝑎, from 𝑎 → 𝑏, from 𝑏 → 𝑐, and from 𝑐 → 𝑡. This

represents the fact that 𝑎 must be computed before 𝑏, and 𝑏 before 𝑐.

• For a parallel node in the series-parallel tree, we put its children in parallel

in the new graph. For example, given a single root parallel node with child

nodes 𝑎, 𝑏, 𝑐, we draw a directed edge from 𝑠 → 𝑎, 𝑠 → 𝑏, 𝑠 → 𝑐, and from

𝑎→ 𝑡, 𝑏→ 𝑡, 𝑐→ 𝑡. This represents the fact that the computations of 𝑎, 𝑏, and

𝑐 can occur in any order, but all must complete for the program to terminate.

When creating this graph, any subtree can be abstracted with a node. The node

can then be replaced with the graph corresponding to that subtree, where the source

and sink terminals are collapsed. An example creation of this computation DAG will

accompany the series-parallel tree example in the next section.

5.5 Example

This section walks through an example program and the series-parallel tree generated

by my prototype tool. Compared to the dot product example from Section 5.1,

this example involves a cilk_for loop and presents the actual series-parallel tree

produced, rather than a theoretical diagram.

We introduce a program that performs a parallel linear scan of an array of size

𝑁. The program does so by reading through the array and computing the average of

the values: specifically, it starts by initializing the array with random integers, then

49

scans through the array, reading every value it holds and computing the average of

all values in the array. Parallelism is present in the loop that walks through the array

to compute the average. The pseudocode is shown below in Figure 5-3. For 𝑁 = 4,

this program generates the series-parallel tree in Figure 5-4.

Figure 5-3 Linear Scan Program (Series-Parallel Tree in Figure 5-4)
1: function getAverage(𝑛, 𝑎𝑟𝑟)
2: 𝑡𝑜𝑡𝑎𝑙← 0
3: cilk for 𝑖 < 𝑁
4: 𝑡𝑜𝑡𝑎𝑙← 𝑡𝑜𝑡𝑎𝑙 + 𝑎𝑟𝑟[𝑖]
5: end for
6: return 𝑡𝑜𝑡𝑎𝑙 ÷ 𝑛

7:
8: function linearScan(𝑛)
9: 𝑎𝑟𝑟 ← 𝑖𝑛𝑡[𝑛]

10: for each 𝑖 < 𝑛 do
11: 𝑎𝑟𝑟[𝑖]← random integer
12: end for
13: return getAverage(𝑛, 𝑎𝑟𝑟)

We examine and walk through the generated series-parallel tree. In this prototype

tool implementation, the trees generated are unbalanced, as if instrumentation came

before Tapir loops. We notice that there are 4 parallel nodes, one for each spawn

from the cilk_for. Each parallel node spawns two serial nodes 𝑎 and 𝑏, for the two

tasks that program execution splits off into after a spawn respectively. The shorter

subtree rooted in 𝑎 corresponds to the spawned off iteration of the for loop, while

the taller subtree rooted in 𝑏 corresponds to the program execution that continues

and ends up spawning more parallel tasks for future iterations of the loop. Each

serial and parallel node has exactly one data node as children, with the exception

of the root serial node – this node has two data nodes as children, one before the

parallel node and one after the parallel node. This matches what we expect to see

from the program pseudocode in Figure 5-3, since there are instructions executed and

computation completed both before the first spawn and after it. On the other hand,

we do expect the other serial and parallel nodes to have only one child data node,

since program execution continues in one of the child nodes.

50

S

DP

S

P

S

P

S

P

S

D

DS

D

D

DS

D

D

DS

D

D

DS

D

D

Figure 5-4: Series-parallel tree of linear scan program using array size 𝑁 = 4 (program
in Figure 5-3).

We now create the computation DAG for this series-parallel tree. We first label

the data nodes with numbers, as shown in Figure 5-5. The constructed computation

DAG from this tree, following the previously outlined steps, is shown in Figure 5-6.

The child nodes of a parallel node in the series-parallel tree always diverge from

and converge to the same two nodes in the computation DAG. This follows directly

from the definition of this graph that program execution flows one-way. In other

words, a node cannot be executed until all its ancestors have been executed. Because

of this, the graph can also be viewed as a topological sort of the computation nodes,

and can thus be analyzed for many other calculations. For example, this is the typical

representation used when analyzing the work and span of parallel programs.

Now that we’ve explained the series-parallel tree integrated into our tool, we

discuss the application of memory bandwidth analysis in which we utilize it in the

Chapter 6.

51

S

2P

S

P

S

P

S

P

S

14

12S

13

11

9S

10

8

6S

7

5

3S

4

1

Figure 5-5: Series-parallel tree of linear scan program with numbered data nodes,
using array size 𝑁 = 4 (program in Figure 5-3, original series-parallel tree in Figure
5-4).

52

𝑠

1

4 3

2

𝑡

5

7 6 8

10 9 11

13 12 14

Figure 5-6: Computation DAG of linear scan program using array size 𝑁 = 4 (pro-
gram in Figure 5-3, original series-parallel tree in Figure 5-4, series-parallel tree with
numbered data nodes in Figure 5-5).

53

54

Chapter 6

Parallel Memory Bandwidth Analysis

This chapter overviews the memory bandwidth analysis I performed in my study,

including metrics I propose to analyze parallel program memory bandwidth, and how

to compute them.

For hardware specifications, memory bandwidth is defined as the rate at which

data can be read from or stored into a semiconductor memory by a processor [36],

usually expressed in units of bytes per second. This is crucially related to the ques-

tion of whether a program is memory-bound or computation-bound: if the memory

bandwidth of a program measured for a specific execution exceeds the theoretical

machine upper bound of memory bandwidth, then the program’s execution becomes

limited by this memory bandwidth, as opposed to lack of computation power.

Following this train of thought, the intuitive definition of actualized memory band-

width we want to measure should also take on a form related to the rate bytes per

second. Introduced in Section 1.5, given a reuse distance 𝐾, we can consider any

memory access with reuse distance greater than 𝐾 to result in data movement be-

tween different levels of cache. Thus, as memory accesses with reuse distance less

than 𝐾 can be considered to incur very low memory costs, we only measure the data

movement, in bytes, of those accesses with reuse distance greater than 𝐾. However,

program runtime tends to fluctuate with factors outside of the program’s control. In

searching for a more deterministic measurement of “runtime”, we settle on the number

of LLVM pseudo instruction executed, which is the compiler’s internal cost measure

55

for program instructions, and correlates well with program runtime.

Thus, our chosen memory bandwidth metric is as follows:

data movement
time

=
data movement

of LLVM pseudo instructions executed
.

We will be computing this metric for parallel programs, both the average memory

bandwidth and the peak memory bandwidth.

6.1 Parallel Memory Bandwidth Calculation Pattern

All of the algorithms I explored follow the same pattern. The format taken is as the

following (Figure 6-1):

Figure 6-1 Memory Bandwidth Calculation (Algorithm Pattern)
1: function memoryBandwidth(𝑛𝑜𝑑𝑒)
2: if 𝑛𝑜𝑑𝑒 is a data node then
3: base case
4: return
5: initialize metric values
6: for each 𝑐ℎ𝑖𝑙𝑑 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
7: memoryBandwidth(𝑐ℎ𝑖𝑙𝑑)
8: if 𝑛𝑜𝑑𝑒 is serial then
9: update metric values for the serial case

10: else if 𝑛𝑜𝑑𝑒 is parallel then
11: update metric values for the parallel case
12: end for

Although the format is the same, how each type of node is treated is different

across the different algorithms we propose for the different use cases. Each is described

in more detail in the following sections.

6.2 Average Memory Bandwidth

This section covers algorithms to calculate the average memory bandwidth of a pro-

gram, given its series-parallel tree recording the data movement and runtime in num-

ber of LLVM pseudo instructions in each part of the program execution.

56

Infinite Processors

In the theoretical case of having infinite processors, we can assume that all child

computation nodes of a parallel node in the series-parallel tree run in parallel with each

other. Thus, even though it could be short of realistic for large parallel programs, this

measure if asymptotic and useful in helping us understand the program or algorithm’s

memory limits.

The aggregation of the data recorded in data nodes is as follows (Figure 6-2):

Figure 6-2 Average Memory Bandwidth Calculation (Infinite Processors)
1: function averageMemoryBandwidth(𝑛𝑜𝑑𝑒)
2: if 𝑛𝑜𝑑𝑒 is a data node then
3: return
4: 𝑛𝑜𝑑𝑒.𝑑𝑎𝑡𝑎𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡← 0
5: 𝑛𝑜𝑑𝑒.𝑡𝑖𝑚𝑒← 0
6: for each 𝑐ℎ𝑖𝑙𝑑 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
7: averageMemoryBandwidth(𝑐ℎ𝑖𝑙𝑑)
8: 𝑛𝑜𝑑𝑒.𝑑𝑎𝑡𝑎𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡← 𝑛𝑜𝑑𝑒.𝑑𝑎𝑡𝑎𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡+ 𝑐ℎ𝑖𝑙𝑑.𝑑𝑎𝑡𝑎𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡
9: if 𝑛𝑜𝑑𝑒 is serial then

10: 𝑛𝑜𝑑𝑒.𝑡𝑖𝑚𝑒← 𝑛𝑜𝑑𝑒.𝑡𝑖𝑚𝑒+ 𝑐ℎ𝑖𝑙𝑑.𝑡𝑖𝑚𝑒
11: else if 𝑛𝑜𝑑𝑒 is parallel then
12: 𝑛𝑜𝑑𝑒.𝑡𝑖𝑚𝑒← max(𝑛𝑜𝑑𝑒.𝑡𝑖𝑚𝑒, 𝑐ℎ𝑖𝑙𝑑.𝑡𝑖𝑚𝑒)

13: end for

In other words, we compute the total data movement of the program by summing

up all data movement across the different parts of the program, and compute the total

runtime in number of LLVM pseudo instructions executed by taking the maximum

runtime of the program, given infinite processors. This is done by summing up the

number of instructions in serial and taking the maximum of the number of instructions

running in parallel. We can then divide the total data movement measured this way

by the total runtime measured this way to get the average memory bandwidth as

described by our metric.

To test this algorithm, I ran it on the series-parallel tree generated for the linear

scan program with array size 𝑁 = 4. Results on this example program are, of course,

only useful for didactic purposes to illustrate the behavior of the memory bandwidth

analysis algorithms. For such small loops with very little work per-iteration, the

57

benefits of parallel execution are marginal. To demonstrate the memory bandwidth

calculations in this small example, we set the reuse distance threshold to 𝐾 = 0. The

data movement and time values calculated for each node is shown in Figure 6-3.

We can immediately see a few things that match our expectations:

• Among the children of the root serial node, the first data node is significantly

larger than the last data node. This is what we expect to see since the array

allocation and initialization occurs before the parallel part of the program, with

very few lines of code after.

• On the same level, the amount of data scanned through is on the same order in

that first data node and in the parallel node. This makes sense since we make

one pass through the array for initialization, and one pass through the array

when scanning through. There are minor differences from other parts of the

code using other (non-array) variables.

• Under the four parallel nodes corresponding to the four cilk_spawns, there is

a serial node with bandwidth values 40/22. This corresponds to a processor

performing the actual code within the parallel loop, and matches our expecta-

tions that all four use the same amount of data and cost the same number of

instructions.

• As we expect, for small amounts of parallelism such as this example with array

size 𝑁 = 4, parallel computing is simply not worth the overhead – both the

data movement and time measurements of the subtree rooted at the highest

level parallel node is significantly higher than 4 times the measurements of the

serial node representing the actual code inside the loop being executed.

Overall, the program’s average memory bandwidth is 600/5217 = 0.115 bytes

of data moved per LLVM instruction executed. We compare this number to the

measurements we obtain with the other memory bandwidth calculations in future

sections.

58

S, 600/5217

D, 280/1491 P, 308/3706

S, 40/22

D, 40/22

D, 60/54 S, 208/3706

D, 24/1228 P, 184/2478

S, 40/22

D, 40/22

D, 0/0 S, 144/2478

D, 24/1228 P, 120/1250

S, 40/22

D, 40/22

D, 0/0 S, 80/1250

D, 24/1228 P, 56/22

S, 40/22

D, 40/22

D, 0/0 S, 16/17

D, 16/17

D, 12/20

Figure 6-3: Series-parallel tree with average memory bandwidth calculations of linear
scan program using array size 𝑁 = 4 (program in Figure 5-3) and reuse distance
threshold 𝐾 = 0. Nodes are in the format of [𝑇, 𝑑, 𝑡], where 𝑇 is the type of the node
(serial, parallel, or data), 𝑑 is the total data movement of the subtree rooted at that
node in bytes, and 𝑡 is the total time of the subtree rooted at that node in number
of LLVM instructions executed.

𝑝 Processors

A measure that may have more realistic applications is the same metric, but measured

for a specific number of processors 𝑝. My idea for this diverges from the general parallel

memory bandwidth calculation pattern for the other three calculations presented in

Section 6.1; different from this pattern, the implementation for this idea would take

a much more complicated form.

59

I did not implement this as part of my thesis work, so the idea and proposed

algorithm are further elaborated on in the conclusion (Chapter 7).

6.3 Peak Memory Bandwidth

Although the average memory bandwidth metric gives us good insight into the mem-

ory usage of a program, something more relevant to detecting whether or not a pro-

gram is memory-bound is the measurement of peak memory bandwidth. As the name

suggests, peak memory bandwidth is the maximum memory bandwidth, as a rate,

during the entire program execution. If this rate ever exceeds the specified memory

bandwidth the hardware provides, then our program is, at least partially, memory-

bound.

Infinite Processors

If we assume infinite processors, then the calculation is straightforward – we analyze

the computation DAG and perform simple aggregations, just like the average memory

bandwidth algorithm for infinite processors.

However, different from that algorithm, we want to sum the numbers for parallel

nodes, and take the maximum for the serial nodes. This makes sense since we are now

measuring bandwidth as a single number, as opposed to breaking it down into data

movement and time – this is because when calculating peak bandwidth, the other

measurement that matters is the rate, as opposed to for average, where the amount

of time spent moving data at a specific rate also matters. This algorithm is shown in

Figure 6-4.

As for the average memory bandwidth algorithm assuming infinite processors, I

ran the peak memory bandwidth algorithm assuming infinite processors on the series-

parallel tree generated for the linear scan program with array size 𝑁 = 4 and reuse

distance threshold 𝐾 = 0. The peak memory bandwidth calculated as a rate of bytes

moved per LLVM instruction executed for each node is shown in Figure 6-5.

We can notice many similar things as the ones we did for Figure 6-3. However,

60

Figure 6-4 Peak Memory Bandwidth Calculation (Infinite Processors)
1: function peakMemoryBandwidth(𝑛𝑜𝑑𝑒)
2: if 𝑛𝑜𝑑𝑒 is a data node then
3: 𝑛𝑜𝑑𝑒.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ← 𝑛𝑜𝑑𝑒.𝑑𝑎𝑡𝑎𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡÷ 𝑛𝑜𝑑𝑒.𝑡𝑖𝑚𝑒
4: return
5: 𝑛𝑜𝑑𝑒.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ← 0
6: for each 𝑐ℎ𝑖𝑙𝑑 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
7: peakMemoryBandwidth(𝑐ℎ𝑖𝑙𝑑)
8: if 𝑛𝑜𝑑𝑒 is serial then
9: 𝑛𝑜𝑑𝑒.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ← max(𝑛𝑜𝑑𝑒.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑐ℎ𝑖𝑙𝑑.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ)

10: else if 𝑛𝑜𝑑𝑒 is parallel then
11: 𝑛𝑜𝑑𝑒.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ← 𝑛𝑜𝑑𝑒.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ+ 𝑐ℎ𝑖𝑙𝑑.𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

12: end for

different from that approach, the peak bandwidth tree also lets us easily trace the

parts of the program that incur high instantaneous memory bandwidth – specifically,

for each serial node, it is obvious from the diagram which of its child nodes is con-

tributing most to this bandwidth metric. In the same way, for each parallel node, we

can look at the peak bandwidth calculations for its child nodes and easily determine

if work was split equally in terms of memory usage.

Compared to the overall average memory bandwidth of 0.115 bytes per LLVM

instruction, the peak bandwidth is a high 9.325 bytes per LLVM instruction for this

program. However, all things considered, this makes sense – since the demonstrative

problem size is small, more work and time is spent on initialization and overhead,

as opposed to the memory-intensive sections, thus leading to a lower overall average

memory bandwidth.

Although the average memory bandwidth metric gives better insight to a pro-

gram’s overall performance and limitations, which can guide asymptotic conclusions,

the peak memory bandwidth metric is more useful in determining whether or not

there is an instance during runtime where a program is actually memory-bound. In

the next section, we examine calculations of peak memory bandwidth, but restricting

computation to 𝑝 processors.

61

S, 9.325

D, 0.188 P, 9.325

S, 1.818

D, 1.818

D, 1.111 S, 6.396

D, 0.020 P, 6.396

S, 1.818

D, 1.818

D, 0.000 S, 4.578

D, 0.020 P, 4.578

S, 1.818

D, 1.818

D, 0.000 S, 2.759

D, 0.020 P, 2.759

S, 1.818

D, 1.818

D, 0.000 S, 0.941

D, 0.941

D, 12/20

Figure 6-5: Series-parallel tree with peak memory bandwidth calculations of linear
scan program using array size 𝑁 = 4 (program in Figure 5-3), reuse distance threshold
𝐾 = 0, and infinite processors. Nodes are in the format of [𝑇, 𝑏], where 𝑇 is the type
of the node (serial, parallel, or data), and 𝑏 is the peak memory bandwidth of the
subtree rooted at that node as a rate of bytes of data moved per LLVM instruction
executed.

𝑝 Processors

Similar to the section on average memory bandwidth, a measure with more realistic

applications is the same metric, but measured for a specific number of processors

𝑝. We are able to compute this for any reasonable 𝑝, because of the ability of the

series-parallel tree design to model logical parallelism (Chapter 5).

To calculate the peak memory bandwidth for a program given a specific number

62

of processors, we can use dynamic programming to allocate processors to the children

of parallel nodes.

In the computation DAG, since each numbered node corresponds to a data node,

we can assign each node its memory bandwidth as a rate by dividing its data move-

ment by its time in number of LLVM pseudo instructions executed. The peak memory

bandwidth of the program is then the maximum rate we can obtain by summing across

nodes in parallel, with the restriction that we can sum at most 𝑝 nodes at once.

Note that if the number of processors available 𝑝 is greater than or equal to the

maximum number of nodes that can be running in parallel, then the peak memory

bandwidth calculation is the same as the calculation for infinite processors.

For 𝑝 less than the maximum number of nodes that can be running in parallel, the

calculation is actually simpler with the original series-parallel tree. We maintain a

table for each node in the computation DAG, which gives the computed peak memory

bandwidth for any number of processors allocated to that node, up to 𝑝 processors.

For any node 𝑥, given the tables of its child nodes, we can compute the table for 𝑥

using dynamic programming. The exact algorithm is shown below (Figure 6-6):

To paraphrase the main part of the algorithm, the peak bandwidth of a parallel

node is the maximum sum of peak bandwidth of its child nodes, for some allocation

of the available processors. This corresponds to the idea of summing across nodes

that can be run in parallel in the computation DAG, and accounts for the nodes not

directly in a subtree by maintaining a table that gives the peak bandwidth for any

number of processors up to 𝑝.

As for the previous two algorithms, I ran the peak memory bandwidth algorithm

for 𝑝 processors on the series-parallel tree generated for the linear scan program with

array size 𝑁 = 4, using a range of values for 𝑝. The overall peak memory bandwidth

computed is shown below in Table 6.1:

Even though the for loop only has 4 iterations, the maximum number of branches

that can be running in parallel is 6; this is because each parallel node in the actualized

series-parallel tree has 3 children. We can count this maximum number of parallel

tasks in any of the series-parallel tree diagrams annotated with memory bandwidth

63

Figure 6-6 Peak Memory Bandwidth Calculation (𝑝 Processors)
1: function peakMemoryBandwidth(𝑛𝑜𝑑𝑒, 𝑝)
2: 𝑛𝑜𝑑𝑒.𝑡𝑎𝑏𝑙𝑒← double[𝑝+ 1]
3: if 𝑛𝑜𝑑𝑒 is a data node then
4: for each 0 < 𝑖 ≤ 𝑝 do
5: 𝑛𝑜𝑑𝑒.𝑡𝑎𝑏𝑙𝑒[𝑖]← 𝑛𝑜𝑑𝑒.𝑑𝑎𝑡𝑎𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡÷ 𝑛𝑜𝑑𝑒.𝑡𝑖𝑚𝑒
6: end for
7: return
8: for each 𝑐ℎ𝑖𝑙𝑑 in 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
9: peakMemoryBandwidth(𝑐ℎ𝑖𝑙𝑑, 𝑝)

10: if 𝑛𝑜𝑑𝑒 is serial then
11: for each 0 < 𝑖 ≤ 𝑝 do
12: 𝑛𝑜𝑑𝑒.𝑡𝑎𝑏𝑙𝑒[𝑖]← max(𝑛𝑜𝑑𝑒.𝑡𝑎𝑏𝑙𝑒[𝑖], 𝑐ℎ𝑖𝑙𝑑.𝑡𝑎𝑏𝑙𝑒[𝑖])
13: end for
14: else if 𝑛𝑜𝑑𝑒 is parallel then
15: 𝑡𝑒𝑚𝑝← double[𝑝+ 1]
16: for each 0 ≤ 𝑖 < 𝑝 do
17: for each 0 < 𝑗 ≤ 𝑝− 𝑖 do
18: 𝑡𝑒𝑚𝑝[𝑖+ 𝑗]← max(𝑡𝑒𝑚𝑝[𝑖+ 𝑗], 𝑛𝑜𝑑𝑒.𝑡𝑎𝑏𝑙𝑒[𝑖] + 𝑐ℎ𝑖𝑙𝑑.𝑡𝑎𝑏𝑙𝑒[𝑗])
19: end for
20: end for
21: for each 0 < 𝑖 ≤ 𝑝 do
22: 𝑛𝑜𝑑𝑒.𝑡𝑎𝑏𝑙𝑒[𝑖]← max(𝑛𝑜𝑑𝑒.𝑡𝑎𝑏𝑙𝑒[𝑖], 𝑡𝑒𝑚𝑝[𝑖])
23: end for
24: end for

𝑝 Program Peak Memory Bandwidth
1 1.818

2 3.636

3 5.455

4 7.273

5 8.384

≥ 6 9.325

Table 6.1: Peak memory bandwidth calculations (in bytes of data moved per LLVM
pseudo instruction executed) of linear scan program using array size 𝑁 = 4 and 𝑝
processors (program in Figure 5-3).

numbers, excluding data nodes that used 0 bytes of data and executed 0 LLVM

instructions. Thus, for 𝑝 ≥ 6, the calculated numbers are the same as those calculated

using the peak memory bandwidth algorithm assuming infinite processors, as we

64

would expect.

Using 𝑝 = 3, the peak memory bandwidth calculated as a rate of bytes moved per

LLVM instruction executed for each node is shown in Figure 6-7.

S, 5.455

D, 0.188 P, 5.455

S, 1.818

D, 1.818

D, 1.111 S, 5.455

D, 0.020 P, 5.455

S, 1.818

D, 1.818

D, 0.000 S, 4.578

D, 0.020 P, 4.578

S, 1.818

D, 1.818

D, 0.000 S, 2.759

D, 0.020 P, 2.759

S, 1.818

D, 1.818

D, 0.000 S, 0.941

D, 0.941

D, 12/20

Figure 6-7: Series-parallel tree with peak memory bandwidth calculations of linear
scan program using array size 𝑁 = 4 (program in Figure 5-3), reuse distance threshold
𝐾 = 0, and 𝑝 = 3 processors. Nodes are in the format of [𝑇, 𝑏], where 𝑇 is the type
of the node (serial, parallel, or data), and 𝑏 is the peak memory bandwidth of the
subtree rooted at that node as a rate of bytes of data moved per LLVM instruction
executed.

Observe that nodes whose subtrees use up to at most 𝑝 = 3 processors have the

same peak bandwidth as those calculated assuming infinite processors – this makes

sense, since for those subtrees, 𝑝 = 3 is equivalent to having infinite processors.

65

Similar to the diagram for infinite processors, we can also easily trace along this

diagram and pinpoint which parts of the program execution are contributing to the

overall peak bandwidth.

66

Chapter 7

Conclusion

Now that I’ve presented all parts of my thesis work, this chapter wraps up my thesis

with discussions on extensions that I did not get a chance to work on and ideas that

are not fully flushed out.

Section 3.2 lists a few extension ideas for the reuse distance calculator. If I were

to work on this project for longer, it would be cool to implement some of those

extensions and reanalyze the tool. In addition, I would want to evaluate the tool

on industry standard benchmarks, and fully develop an algorithm for calculating the

average memory bandwidth of a parallel program given 𝑝 processors. These two ideas

are discussed in further detail in the following sections.

7.1 Industry Benchmarks

Something I wanted to try but didn’t get a chance to is running my reuse distance

calculator and performing memory bandwidth analyses on a set of industry standard

benchmarks. One set of benchmarks that could serve this purpose is the Rodinia

Benchmark Suite.

The University of Virginia Rodinia Benchmark Suite is a collection of parallel pro-

grams which targets heterogeneous computing platforms with both multicore CPUs

and GPUs [8, 9]. The Rodinia benchmarks cover “a wide range of parallel com-

munication patterns, synchronization techniques and power consumption”, and has

67

given insight on the growing importance of memory-bandwidth limitations and the

consequent importance of data layout.

Example applications in this benchmark suite include back propagation, breadth-

first search, and k-nearest neighbors; computations cover graph traversal, dense linear

algebra, dynamic programming, etc. The domains that utilize such programs include

medical imaging, fluid dynamics, physics simulation, image/video compression, and

many more.

This benchmark suite is a good choice for my study of reuse distance and memory

bandwidth analysis both because of the relevance of memory-bandwidth work related

to it, and because of its coverage of parallel computing applications – it represents

the broad range of scientific computing my research targets, ranging from physics

simulations to artificial intelligence algorithms.

The version that I would want to use is the transpilation into an OpenCilk imple-

mentation by Tao B. Schardl.

7.2 Average Memory Bandwidth Given 𝑝 Processors

I came up with a preliminary idea for computing the average memory bandwidth

of a parallel program given a limited number of 𝑝 processors. This idea is not fully

flushed out yet, and takes on a different approach from the other memory bandwidth

algorithms – notably, an implementation of this algorithm would not exhibit the

simple parallel memory bandwidth calculation pattern described in Section 6.1.

Similar to the calculation of average memory bandwidth with infinite processors,

we want to aggregate the total data movement and the total time in number of

LLVM pseudo instructions. Total data movement is same as the infinite processors

case, where we just sum the data movements collected for all data nodes; however,

the calculation for time is more complex.

To paraphrase, we want to calculate 𝑇𝑝, the runtime of the program using 𝑝

processors. Since our computation model follows the fork-join model [24, 10], we can

allocate processors with the work-stealing scheduling strategy [7].

68

https://github.com/neboat/rodinia-cilk
https://github.com/neboat/rodinia-cilk

To do so, we can simply model the work-stealing scheduling strategy – maintain a

queue of work items for each processor, where any parallel spawned tasks are placed

on the queue of the same worker. Idle workers then actively try to steal work items

from the queues of busy workers. This way, the computation order is maintained,

while runtime is minimized heuristically.

Specifically, when a worker is working on a serial node, the children of the serial

node are placed on the queue as one work item, maintaining the defined order of

execution, since they must be executed in series. On the other hand, when a worker

is working on a parallel node, the children of the parallel node are placed on the queue

as separate work items at the same time, which other idle workers are free to steal.

It is noted that the computation of that parallel node is not finished until the work

on all child nodes has completed and returned. If a parallel node is a child of a serial

node, then all children of the parallel node must be completed before the siblings that

come after the parallel node maybe be computed.

Whether or not this algorithm works, or if it computes useful metrics, is untested.

69

70

Bibliography

[1] Walid Abu-Sufah, David Kuck, and Duncan Lawrie. On the performance en-
hancement of paging systems through program analysis and transformations.
Computers, IEEE Transactions on, C-30:341 – 356, 06 1981.

[2] I. Al-Furaih and S. Ranka. Memory hierarchy management for iterative graph
structures. In Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing, pages 298–
302, 1998.

[3] George Almási, Cundefinedlin Caşcaval, and David A. Padua. Calculating stack
distances efficiently. SIGPLAN Not., 38(2 supplement):37–43, jun 2002.

[4] Andrew R Bernat and Barton P Miller. Anywhere, any-time binary instrumenta-
tion. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools, pages 9–16, 2011.

[5] Kristof Beyls and Erik D’Hollander. Reuse distance as a metric for cache be-
havior. In Proceedings of the IASTED Conference on Parallel and Distributed
Computing and systems, volume 14, pages 350–360. Citeseer, 2001.

[6] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiser-
son, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. ACM SigPlan Notices, 30(8):207–216, 1995.

[7] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5):720–748, sep 1999.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heteroge-
neous computing. In Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC), IISWC ’09, page 44–54, USA, 2009. IEEE
Computer Society.

[9] Shuai Che, Jeremy W. Sheaffer, Michael Boyer, Lukasz G. Szafaryn, Liang Wang,
and Kevin Skadron. A characterization of the rodinia benchmark suite with
comparison to contemporary cmp workloads. In IEEE International Symposium
on Workload Characterization (IISWC’10), pages 1–11, 2010.

71

[10] Melvin E. Conway. A multiprocessor system design. In Proceedings of the
November 12-14, 1963, Fall Joint Computer Conference, AFIPS ’63 (Fall), page
139–146, New York, NY, USA, 1963. Association for Computing Machinery.

[11] NIST Big Data Public Working Group Definitions and Taxonomies Subgroup.
Big data engineering (frameworks). In NIST Big Data Interoperability Frame-
work, volume 1. National Institute of Standards and Technology, 2019.

[12] Mingdong Feng and Charles E Leiserson. Efficient detection of determinacy races
in cilk programs. Theory of Computing Systems, 32(3):301–326, 1999.

[13] Jeremy T Fineman. Provably good race detection that runs in parallel. PhD
thesis, Massachusetts Institute of Technology, 2005.

[14] Saurabh Gupta, Ping Xiang, Yi Yang, and Huiyang Zhou. Locality principle
revisited: A probability-based quantitative approach. Journal of Parallel and
Distributed Computing, 73(7):1011–1027, 2013. Best Papers: International Par-
allel and Distributed Processing Symposium (IPDPS) 2010, 2011 and 2012.

[15] Tim Kaler. Sptree. https://github.com/timkaler/SPTree, 2021.

[16] Tim Kaler, William Kuszmaul, Tao B Schardl, and Daniele Vettorel. Cilkmem:
Algorithms for analyzing the memory high-water mark of fork-join parallel pro-
grams. In Symposium on Algorithmic Principles of Computer Systems, pages
162–176. SIAM, 2020.

[17] Tim Kaler, Tao B Schardl, Brian Xie, Charles E Leiserson, Jie Chen, Aldo Pareja,
and Georgios Kollias. Parad: A work-efficient parallel algorithm for reverse-mode
automatic differentiation. In Symposium on Algorithmic Principles of Computer
Systems (APOCS), pages 144–158. SIAM, 2021.

[18] Tim Tim FS Kaler. Programming technologies for engineering quality multicore
software. PhD thesis, Massachusetts Institute of Technology, 2020.

[19] Tushara C Karunaratna. Nondeterminator-3: A provably good data-race detector
that runs in parallel. PhD thesis, Massachusetts Institute of Technology, 2005.

[20] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul,
Butler W Lampson, Daniel Sanchez, and Tao B Schardl. There’s plenty of room
at the top: What will drive computer performance after moore’s law? Science,
368(6495):eaam9744, 2020.

[21] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Eval-
uation techniques for storage hierarchies. IBM Systems journal, 9(2):78–117,
1970.

[22] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data locality
with loop transformations. ACM Trans. Program. Lang. Syst., 18(4):424–453,
jul 1996.

72

https://github.com/timkaler/SPTree

[23] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’07,
page 89–100, New York, NY, USA, 2007. Association for Computing Machinery.

[24] Linus Nyman and Mikael Laakso. Notes on the history of fork and join. IEEE
Annals of the History of Computing, 38(3):84–87, 2016.

[25] Frank Olken. Efficient methods for calculating the success function of fixed-space
replacement policies. Technical report, Lawrence Berkeley Lab., CA (USA), 1981.

[26] Tao B. Schardl, Tyler Denniston, Damon Doucet, Bradley C. Kuszmaul, I-
Ting Angelina Lee, and Charles E. Leiserson. The CSI framework for compiler-
inserted program instrumentation. Proc. ACM Meas. Anal. Comput. Syst., 1(2),
dec 2017.

[27] Tao B. Schardl, I-Ting Angelina Lee, and Charles E. Leiserson. Brief announce-
ment: Open cilk. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures, SPAA ’18, page 351–353, New York, NY, USA,
2018. Association for Computing Machinery.

[28] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding
fork-join parallelism into llvm’s intermediate representation. In Proceedings of
the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’17, page 249–265, New York, NY, USA, 2017. Association
for Computing Machinery.

[29] Tao Benjamin Schardl. Performance engineering of multicore software: Devel-
oping a science of fast code for the post-Moore era. PhD thesis, Massachusetts
Institute of Technology, 2016.

[30] Konstantin Serebryany and Timur Iskhodzhanov. Threadsanitizer: Data race
detection in practice. In Proceedings of the Workshop on Binary Instrumentation
and Applications, WBIA ’09, page 62–71, New York, NY, USA, 2009. Association
for Computing Machinery.

[31] Wesley Smith, Aidan Goldfarb, and Chen Ding. Beyond time complexity:
Data movement complexity analysis for matrix multiplication. arXiv preprint
arXiv:2203.02536, 2022.

[32] William Stallings. Computer memory system overview. In Computer organiza-
tion and architecture: designing for performance (8th ed.), Upper Saddle River,
NJ, 2010. Pearson Prentice Hall.

[33] Rabin Andrew Sugumar. Multi-configuration simulation algorithms for the eval-
uation of computer architecture designs. PhD thesis, University of Michigan,
1993.

73

[34] Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new beginning
for information technology. Computing in Science & Engineering, 19(2):41–50,
2017.

[35] Wikipedia contributors. Hardware performance counter — Wikipedia, the free
encyclopedia. https://en.wikipedia.org/w/index.php?title=Hardware_
performance_counter&oldid=1018317779, 2021. [Online; accessed 24-
November-2021].

[36] Wikipedia contributors. Memory bandwidth — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Memory_bandwidth&
oldid=1018429919, 2021. [Online; accessed 5-May-2022].

[37] Wikipedia contributors. Series–parallel graph — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Series%E2%80%
93parallel_graph&oldid=1037819119, 2021. [Online; accessed 13-May-2022].

[38] Robert Wilson, Robert French, Christopher Wilson, Saman Amarasinghe, Jen-
nifer Anderson, Steve Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary Hall, Mon-
ica Lam, et al. The suif compiler system: a parallelizing and optimizing research
compiler. Technical report, Stanford University Technical Report No. CSL-TR-
94-620, 1994.

[39] Liang Yuan, Chen Ding, Wesley Smith, Peter Denning, and Yunquan Zhang.
A relational theory of locality. ACM Transactions on Architecture and Code
Optimization (TACO), 16(3):1–26, 2019.

[40] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R Sekar. A platform for
secure static binary instrumentation. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environments,
pages 129–140, 2014.

74

https://en.wikipedia.org/w/index.php?title=Hardware_performance_counter&oldid=1018317779
https://en.wikipedia.org/w/index.php?title=Hardware_performance_counter&oldid=1018317779
https://en.wikipedia.org/w/index.php?title=Memory_bandwidth&oldid=1018429919
https://en.wikipedia.org/w/index.php?title=Memory_bandwidth&oldid=1018429919
https://en.wikipedia.org/w/index.php?title=Series%E2%80%93parallel_graph&oldid=1037819119
https://en.wikipedia.org/w/index.php?title=Series%E2%80%93parallel_graph&oldid=1037819119

	Introduction
	Motivation
	Instrumentation
	Reuse Distance
	An Illustrative Example with Matrix Multiplication

	Reuse Distance Calculator
	Memory Bandwidth Analysis
	Thesis Structure

	Microbenchmarks
	Reordering Nested Loops
	Reordering Struct Fields
	Reordering Function Calls
	Array of Structs vs. Struct of Arrays

	The Reuse Distance Calculator
	Tree Implementation
	Extension Ideas

	Metrics and Results
	Metrics
	Results

	The Series-Parallel Tree
	Specification
	Data Logged
	Algorithm
	Computation DAG
	Example

	Parallel Memory Bandwidth Analysis
	Parallel Memory Bandwidth Calculation Pattern
	Average Memory Bandwidth
	Peak Memory Bandwidth

	Conclusion
	Industry Benchmarks
	Average Memory Bandwidth Given p Processors

