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Abstract

This thesis investigates the estimation of machine model parameters and the rotor
speed of an induction machine from the stator voltages and currents. A major difficulty
in estimation is the nonlinearity of the induction machine model. Since the dynamic
structure in a small induction machine can be separated into two time scales, the esti-
mation algorithm can also be separated into two time scales. In addition, since stator
resistance is difficult to estimate and errors in this may corrupt the whole estimation
it should be estimated separately. Based on observations, three linear but coupleci
regression models are derived.

Utilizing the two-time scale property, the estimation is separated into a slow time
scale and a fast time scale. Moreover, the slow time scale estimation is divided into
two stages. One is a stator-resistance-only estimator. The other is the estimator of
other machine parameters. The fast time scale estimator estimates rotor speed only.
Variable forgetting factors and periodic covariance resets are used in order to eliminate
estimator windup and provide good tracking characteristics.

Numerical simulations and off-line analysis of actual experiments are done to demon-

strate the performance of the algorithm. The results show good ability to track pa-
rameter and speed variations.

Thesis Supervisor : Dr. George C. Verghese

Title : Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Problem Statement and Approach

The advances during the past 20 years in the area of “Field-Oriented Control” of
AC drives [4,23,24] have made pﬁssible the use of induction machine drives in high
performance industrial applications where DC drives had been exclusively used. Be-
cause of their simple and robust structure, induction machine drive systems have many
advantages over DC machines, especially in their lower cost and maintenance-free char-

acteristics.

Field-Oriented Control requires an accurate knowledge of the parameters and the
electrical and mechanical variables of the induction machine. Therefore, two significant
problems arise in the control of an induction machine: first, the estimation or measure-
ment of the electrical and mechanical variables; second, the estimation or measurement

of the machine parameters.

The common approach in high performance control of induction machine drive

systems involves the use of a speed sensor connected to the shaft of the machine. The

12



use of this sensor has two major drawbacks. First, it obstructs the mechanical interface
between the motor and the load, interfering with the requirements of tight coupling
or close spacing in the mechanical layout or imposing the application of undesirable
gear trains or belts. Second, it generally requires the use of brushes or light sources
that require maintenance, which represents a weak link in the system in terms of
reliability. Therefore, the use of the sensor in the induction machine drive system
spoils the mechanical simplicity and robust structure of the machine, which are two of

the most important reasons to use these drives instead of DC machines [33].

High performance estimation can be realized by knowing the characteristics of the
system. The dynamic analysis of a small induction machine and an estimation scheme

which exploits the system characteristics are introduced in (33].

The preseni research work extends the work in [33], addressing the problem of
estimating the rotor speed and machine parameters based on measurements of the
stator voltages and currents. The research is aimed at eventual development of a low
cost and simple Field-Oriented Control algorithm for induction machines that avoids
using an expensive speed sensor. In this thesis the design and testing of an estimation
algorithm for these quantities is presented. The approach used in this research is the
following. Based on two-time-scale properties of small induction machine systems (33],
three linear regression models are derived, relating measured quantities to those that
need to be estimated. Then estimation using recursive least squares (RLS) with several
practical modifications is proposed. The algorithm is verified using both simulated data

and actual experimental data.

The thesis is organized as follows. Chapter 1 introduces the induction machine
model. In Chapter 2 the requisite theoretical background is discussed. Chapter 3 shows
three linear regression models for estimation. Then, in Chapter 4, a two-time-scale
three-stage estimator algorithm using recursive least squares with practical modifica-

tions is proposed. In Chapter 5, the proposed algorithm is validated using synthesi

13



data. Chapter 6 shows the off-line estimation results using actual experimental data.

Chapter 7 summarizes the thesis and addresses future work.

1.2 Induction Machine Model

The modeling of an induction machine is a well known area and [5,23,24] provide a
good description of these models. A quick review is included here in order to establish

the notation.

Using the assumption of magnetic linearity and sinusoidally distributed windings
in the stator, applying conservation of energy, and exploiting the Park transformation

[23,25], the induction machine model referred to stator-fixed coordinates is given by
d\ 0 0 |
A+ v (1.1)
0 wJ .

T —] — -1
2 - (nes

d‘ﬁ’r _ " B (T'em—TL)
&t - P['H‘”'+ H ] (12)
M 03
Tem = 2L.L,-—M2’\ (_J 0 A (1.3)
A = Li (1.4)
where p denotes the number of pole pairs and
T
i = (if,i7) (1.5)
v = (vf,vf‘)r (1.6)
LI MI
L = (1.7)
MI LI
RI 0
R = (1.8)
0 R.I)



[+1)
I = (1.9)
01
[+7)
J = (1.10)
10

In the above model the rotor speed (w,) and the stator and rotor fluxes () are
state variables. The subscripts s and r stand for stator and rotor quantities and i and
v denote the terminal current and voltage vectors. R, and R, are the stator and rotor
resistance, and L,, L, and M are the stator, rotor and mutual inductance, respectively.
Finally, B is the friction coefficient, H is the combined inertia of rotor plus mechanical

load, T.. is the electromagnetic torque, and Ty is the load torque.

For a squirrel cage induction machine, the voltage vector takes the form v =
T
(vf‘,OT) . Using a standard isomorphism to represent two-axis real variables as a

complex variable[29], (1.1) - (1.4) are reduced to

A aie [0 A (1.11)
dt 0 jw 0

dw, B T — T
T, = L.L’: g Im(3) (1.13)
A = Li (1.14)
where
) (L. M)
L = (1.15)
M L,)
) ( R, 0 )
R = (1.16)
0 R, :

Under constant speed operation, (1.11) is a linear time invariant (LTI) model. There-

fore, the transfer function from (complex) stator voltage to (complex) stator current

15



is

af
@

+ L‘(Tl: _jwr)

H, = 4 - 1.17
() =77 (BEELE  jo ) + B (L~ ju) (1.17)
where
7. = L,/R, (1.18)
o = L.L,— M? (1.19)

Note that the rotor speed w, enters as a parameter in this transfer function. The
use of this model to estimate the rotor speed and machine parameters was introcuced

in [29] and is refined and extended in this thesis.

16



Chapter 2

Theoretical Background

2.1 Hierarchical Structure

Two-time-scale properties in small induction machines are presented in [33]. The eigen-
values of a small induction machjﬁe, derived using a small signal model and assuming
constant speed operation, are classified in three groups by use of participation faciors
[27]: the stator eigenvalues, the rotor eigenvalues, and the speed eigenvalue. The fast
ones (those with larger real part) are usually associated with the electrical subsystem
(stator and rotor), and the slow eigenvalue is associated with the mechanical subsys-
tem (speed). Considering the evolution of the electrical variables in an interval of
time much smaller than the mechanical time constant, the machine fluxes and currents
changes significantly, while the rotor speed remaine almost constant. For constant ro-
tor speed, the electrical equations (1.1), (1.4) of the machine model constitute a linear
time invariant (L'1l) system, with stator voltage and current appearing as input and
output for the model, and with the rotor speed appearing as a parameter of this model.
Hence a parameter estimation algorithm based on the linear electrical equations, with

convergence faster than the mechanical time constant, can estimate rotor speed as an

17



additional machine parameter. The algorithm must be designed to adapt to changes

in the parameters, so that variations in speed and other parameters can be tracked.

2.2 Linear Regression Model

There are several ways to describe the dynamic relationship between the input and

output signals. The linear regression models in our work take the form

yo(k) = C(k)0 (2.1)
o = (a1 gy by .- bm) (2.2)
Okt) = (=wk) - -ualk) w(k) - (k) ) (2.3)

with yi(k), uj(k) being the observed output and input variables at time kA, where A
is the sampling interval and ¢ = 0,1, ---,n,j =1, 2, ---, m. The vector 4 contains the
parameters to be estimated. The components of C(k) are called regression variables or

regressors.

For notational simplicity, y(k) is used instead of yo(k) in the rest of this thesis.

2.3 Model-Based Parameter Estimation

One way to estimate the parameter vector of (2.1) is by measuring a “prediction error”

or “innovation error” defined by

n(k) = y(k) - C(k)8(k ~ 1) (2.4)
where é(k — 1) is the parameter estimate at time (k — 1)A. The prediction error 5(k)
gets its name from the fact that, according to the model, y(k) = C(k)8 if 6 is the

18



u(k) y(k)
——* System

e(k) & (k-1)
Estimator

| Adjustable
Model

T

Figure 2.1: Structure of Model Based Parameter Estimation

v(k)

“true” parameter. The estimation algorithm adjusts the model parameters to try and

reduce the future error. This mechanism is illustrated in Figure 2.1.

The parameter estimate is updated via the equation:

B(k) = B(k — 1) + K(k) [y(k) - C(k)d(k - 1)] (2.5)

The challenge in such an estimation scheme is how to pick the estimator gain K(k)

in (2.5) in order to obtain desirable behavior.

The notion of desirable behavior here is that the estimation algorithm should display
good tracking of both the machine parameters and the rotor speed. As can be easily
seen in (2.5), the gain K(k) should be kept big enough to track the variations of
the parameters and small enough to get an averaging effect over time under noisy

circumstances. There is a trade-off between these two performance requirements.

There are many ways to attempt to achieve these objectives. Some good references

of are [26] and [34].
In order to get good tracking characteristics, it is necessary to discard old data. This

19



is done by use of a forgetting factor. However, unless care is taken, this introduces the
possibility of estimator windup, where K(k) goes to 0. A variable forgetting factor
[17] can be introduced to reduce the possibility of estimator windup. There are other
methods to reduce or eliminate the possibility of estimator windup. Possible ways are
by use of a so-called “periodic covariance reset” [19], through a “richness detector”
[3,13] or an “error deadzone” [22]. Note that adjusting the forgetting factor and the
richness detector do not guarantee the elimination of the estimator windup while the

periodic covariance reset method does.

20



2.4 Recursive Least Squares Estimation

The basic idea of the Recursive Least Squares (RLS) estimation method is to compute

the parameter vector 8 in order to minimize the weighted quadratic cost function

N
=Y B(N,i) | (i) |12 (2.6)

i=1

where G(N, 1) is a weighting sequence such that

N
B(N,i) = kH a(k) (2.7)
=i+1
and
e(i) = y(i) — c(2)8 (2.9)

Here o(k) is termed a forgetting factor. Picking a(k) to discard old data that might
not contain sufficient information for estimating the present value of parameters will

keep the gain K(k) from going to zero.

The recursive solution for this algorithm shown in [34] to be :

b(k) = 6(k—1)+K(k) [y(k) — C(k)d(k — 1)] (2.10)
- P(k-1)CT(k)

K(k) = a(k)+C(k)P( “1)CT (k) (2.11)
B _ P(k —1)CT(k)C(k)P(k — 1)

P = o [P~ ST R —he (212)

P(0) = pI (2.13)

where p is a positive number that reflects the uncertainty in our guess of the initial
estimate 9(0) of the parameter vector. This algorithm has the same structure as (2.5).
The new parameter estimate is based only on the previous estimate §(k — 1), the

measurements at time kA, a(k), and the previous covariance matrix! P(k — 1).

1The term covariance is used in this context to point out the similarity between the structure of the
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2.5 Variable Forgetting Factor

For nearly deterministic systems, a one-step forgetting factor chosen to maintain con-
stant a scalar measure of the information content of the estimator enables the pa-
rameter estimates to follow both slow and sudden changes in the plant dynamics [17].
Furthermore, the use of a variable forgetting factor a(k) with correct choice of informa-
tion bound can avoid one of the major difficulties associated with constant exponential

weighting of past data - namely, “blowing-up” of the covariance matrix of the estimates.

The reasoning behind this scheme is as follows. For a nearly deterministic system
the a posteriori error will at each step tell something about the state of the estimator.
If the error is small, a reasonable strategy will be to retain as much information as
possible by choosing a forgetting factor close to unity. If, on the other hand, the
error is larger, the sensitivity to recent data should be increased by choosing a smaller
forgetting factor. This will shorten the effective memory length of the estimator until

the parameters are readjusted and.the errors become smaller.

The proposed algorithm [17] related to estimation is :

g(k) = CT(k)b(k-1) (2.14)
e(k) = y(k)—g(k) (2.15)
_ P(k — 1)C(k)
Kk) = TTermpk - 1)o@ (2.16)
0(k) = O(k—1)+K(k)e(k) (2.17)
_ [1 — CT(k)K(k)e*(k)
a(k) = 1- 5 (2.18)
T
P(k) = [X- K(k)i(i’;)]P(k — 1) (2.19)

If the right-hand side of (2.18) is less than some minimum value a,,;,, set a(k) =

estimator given by (2.10) - (2.12) and the Kalman filter. This matrix does not represent the actual

covariance of the estimator error unless the forgetting factor is always equal to unity.
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Qmin- The matrix ¥, is the variance of the measurement noise in the observation

equation (2.1).

2.6 Periodic Covariance Reset

Goodwin [19] proved the convergence of a _ :lf-tuning regulator using ordinary recursive

least squares with covariance resetting and proposed the following two algorithms.

The first one is :

P(k) = uI (2.20)
P(k — 1)C(k)CT (k)P(k — 1)
1+ CT(k)P(k — 1)C(k)

P(k) = P(k—1)— (2.21)

where (2.20) is for specific k’s (say for k = 10 x i where i is integer) and (2.21) is for
other k’s.

The second one is :

P(k — 1)C(k)CT (k)P(k — 1)

P(k) = P(k—1) ~ = S P(E ~ 1)) (2.22)
P(k) = B(k) (2.23)
P(k) = P(k)+ Q(k) (2.24)

where Equation (2.23) is for the case the trace of P(k) exceeds a preset bound and
Equation (2.24) is for other case, that is, the case that trace of P(k) is less than a
preset bound or 0 < Q(k) < oo. Since this second method checks trace of P(k) before

updating P(k), it is similar to the method which is described in Section 2.8.
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2.7 Richness Detector

Estimator windup in the absence of persistent excitation is characterized by increase
of either norm of PC or that of ¢. Therefore, proposed is the algorithm to stop the
updating of the parameters and the covariance matrix when PC or ¢ is sufficiently

small or in a preset bound [3,13,22]. The proposed algorithm using the norm of ¢ is

8(k) = 6(k—1)+K(k)D[e(k)) (2.25)
e(k) = y(k)— C(k)o(k —1) (2.26)

where

0 if (k)| < 6
e(k) if |e(k)| > 6

De(k)] = { (2.27)

2.8 Other Methods

There are other several ways to prevent or reduce the estimator windup. One is to
keep the trace of P constant [3]. Another is to forget information only in the direction

in which new information is gathered [3].
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Chapter 3

Linear Regression Models for

Estimation

3.1 Introduction

As is shown previously, the evolution of the electrical variables of the machine over an
interval of time that is short relative to speed variations can be approximated by an
LTI model. The transfer function from stator voltages to stator currents for this LTI

model using complex variables was computed and given in (1.17).

In this chapter three linear regression modele based on the transfer function will
be derived. The estimation algorithm will estimate the parameters of these linear
regression models. From these estimates, some of the machine parameters as well as
the rotor speed can be estimated. Since there are five physical parameters (R,, R,, L,,
L., M) and rotor speed (w,), but only five independent equations, not all parameters

can be estimated.

The possibility of different arrangements of the parameter estimation model is dis-
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cussed in this chapter, and the use of state variable filters to avoid differentiation of

measured signals is also described.

3.2 Linear Regression Model for Parameter Esti-

mation

Let us for notational simplicity, rename the coefficients of the transfer function (1.17)

in the following way :

o = B;L_rjﬂ_jw, (3.1)

' LrR‘ 1 . 5

o = 7 (T,_Jw') (3-2)

L,

bl = -;- (33)
L (1

= Zr(_= _; 4

bo = 2 (g i) (3.4)

Using this notation the transfer function from stator voltages to stator currents is given
by

b18 + bo
324+ ay8+ ag

H(s) = (3.5)

Taking the inverse Laplace transformation, a second order differential equation re-

lating stator voltages and currents can be obtained from (3.5). This equation is

d%i, di, : di,
7 + al_ﬂ + agt, = 617[ + bov, (3.6)

There are many ways to express this second order differential equation in a form
that yields a regression model like (2.1). One way, assuming perfect knowledge of

rotor speed (w,) and stator resistor (K, ), and writing two real equations instead of one
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complex one, is

dva _ R,da 1 w,(vs — R,ip)

dy, di .
_dtﬂ - R,'c‘ue - wr(va — Rsza)

where p,, p;, and p; are defined by

P = L.6
— L.

P2 = f
_ 1

Pz = 'l—’,.

and where § =1 — zf;, .

Another form of solution is

d?i di di di : :
e + 0. 58 ] _ [ ~% % - Rl + (v~ Byig) va — Riia

d3i di dig dv di . .
iy @ B —we(va— Ria) vg— Riig

where p,, P2, and p3 are defined by

_ 1
pl - T',6
_ 1
P2 = L.6
_ 1
Ps = f-

2; ; i .
[d‘ wrﬂ dia “"Ua-f-R.Zq

d’—iﬂ—w dia  dig —vg+R,ip

(3.11)

(3.12)
(3.13)

(3.14)

Since the estimation algorithm is implemented in a microprocessor, the discrete

time expression of the measurement equation is necessary. This equation at time kA

where A is the sampling period is given by

(3.15)



where y,(k) denotes the left-hand terms of (3.7) or (3.11) and C,(k) is the first matrix
and 6, the second matrix of the right-hand terms of (3.7) or (3.11) respectively. Note
that @, is the unknown parameter vector, which can be estimated using this linear
regression model. By estimating the parameters of this model, some of the physical
parameters can be obtained [10]. The subscript p is used here to show this model as

parameter estimator.

3.3 Linear Regression Model for Stator Resistor

Estimation

A different arrangement of (3.5) can be obtainea when rotor speed w, and all machine
Farameters except R, are known. In this case the following linear regression model for

stator resistance estimation can be obtained :

yr(k) = Cr(k)R, (3.16)

where

£ di dig _ 4
Gt + PR+ e — G2 — pave - wevg

(3.17)

d3i d i
] pl__zﬂ + pz.z‘tﬂ _— plwrd_dtﬂ. — d_:té —_ pavp +wrva

[ dig .

—S8 — Daty — W,V
Cr(k) = g . (3.18)
-2 — pstg + w,v,

and where all the quantities are measured at time kA. The subscript R is used here
to point out the difference between this model and the previous model. The quantities

Yr and Cpr can be written in terms of p,, ps, ps.
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3.4 Linear Regression Model for Rotor Speed Esti-

mation

Using a similar argument, a linear regression model where the speed is the only unknown

parameter is

Yo(k) = Cu(k)w. (3.19)

and where

volk) = Liap, + 42 (p, + R,) + iapsR, — 22 — v,p, 520)
v - d2i i . v .
L o+ d—df(Pz +R,) +ispaR, - d—df — VgP3

S
C.(k) = p‘;‘ o+ v (3.21)
| +P17?+Rsza - Va

and where all the quantities are measured at time kA. The subscript w is used here to

point out the difference between this model and the previous model.

3.5 State Variable Filters to Avoid Differentiation

The derivatives of stator voltages and currents that appear in the preceding regression
equations are not available as measurable quantities. In addition, a direct analog or
digital differentiation of these quantities causes problems because of the amplication of

disturbence noise and quantization effects of the A/D-converters.

Though it is not possible to get derivative terms directly from measurements, some
kind of signal processing can make it possible. A general treatment of this problem is
presented in [15]. One possible method is using state variable filters presented in (33].
Note that the state variable filter should be in controllable canonical form to get the

necessary derivative terms. Another possible method involves “modification functions”
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[14]. State variable filters are used in this research because the main interest is eventual

real-time application.

The Bode plots of the second order state variable filter used in both the simulations
and the experimental setup are shown in Figures 3.1 - 3.3. Those plots show that at
frequencies below cutoff the filter makes available the filtered output and its derivatives.
Frequencies higher than the cutoff frequency should be eliminated by another filter in

order for noise to be suppressed above cutoff.
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Chapter 4

Estimator Design

4.1 Introduction

In Chapter 3 three linear regression models that relate rotor speed, stator resistance
and other physical parameters to .stator voltages and stator currents were presented.
Ir this chapter an algorithm to estimate all of the three groups of quantities using
those models is described. The algorithm involves the use of Recursive Least Squares
(RLS) estimation. Various ad hoc practical modifications introduced in Chapter 2 to

overcome implementation problems are also incorporated.

4.2 Two-Time-Scale Structure

According to the discussion about hierachical structure in Chapter 2, it is natural to
separate the estimator algorithm into two portions. One is a fast estimator portion
which estimates the rotor speed, and the other is a slow estimator which estimates

machine parameters. By using this separation, the whole algorithm can track parameter
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and speed variations, which occur at different time scale.

There is another advantage to using this separation scheme. If both the parameters
and the rotor speed are estimated at the same time, an expensive hardware with fast
computation power is required in order to get good tracking, especially for rotor speed
changes. Since the expensive part of the estimation (i.e. the slow estimator which
requires more computation time) can be executed less frequently, however, one can
assign the slow estimator to background mode, and allow the rotor speed (or speed-
only) estimator to use hardware resources. This idea is shown in Figure 4.1 for the case
where the speed estimate is updated twice as often as the parameter estimate. How to

synchronize the two-time-scale estimator is shown in Figure 4.2.
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4.3 Two-Stage Slow Estimator

As mentioned in Section 3.1, the stator resistance is very difficult to estimate if left in
with the other machine parameters, and its inclusion can jeopardize the whole estima-
tion. Therefore the stator resistance estimator is implemented as an additional stage

of the slow estimator.

The structure in the slow estimator is as follows. Treating the rotor speed estimate
from the speed-only estimator and the most recent parameter estimates as “true” val-
ues, the estimator estimates stator resistance, assuming that this is the only unknown
quantity. After updating the stator resistance estimate, the estimator will estimate
other machipe parameters, but now assuming the rotor speed and the stator resistance
are exactly known. Then the slow estimator transfers the machine parameter values to

the speed-only estimator to renew those values for its speed estimation task.

The structure of whole estimation algorithm is shown in Figure 4.3.

4.4 Practical Considerations

In order to get good tracking and eliminate or reduce the possibility of estimator
windup, the methods introduced in Chapter 2 should be used in the estimator algo-
rithm. Since the goal of this research is to develop a real time implementable algorithm
for parameter and speed estimation of induction machines, the whole algorithm should
be as simple as possible, taking account of the desire for microprocessor implementa-
tion. The rotor speed estimator should be especially simple because it must be updated

very fast to track relatively fast variations in speed.

Fortunately the linear regression model for rotor speed estimation is simple (see

Section 3.4). Instead of the usual matrix inversion, it requires only scalar division,
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since the number of estimated quantities is one. Similarly, the linear regression model
for stator resistance estimation is simple too. Therefore the only complicated model is

for estimating the other parameters.

In this research both variable forgetting factor and periodic covariance reset methods
are applied. The periodic covariance reset scheme used here resets the covariance matrix
P(k) to a preset value puI if the trace of P(k) exceeds a preset value. The reason that
both are used is as follows. A variable forgetting factor may cause estimator windup,
even though it gives a good tracking possibility. Periodic covariance reset may not give
good tracking characteristics, but it eliminates the possibility of estimator windup. By
combining both methods, good parameter tracking without estimator windup can be

realized.

Another practical feature used is to hold the previous covariance matrix if at least
one of the diagonal elements of the covariance matrix becomes wuegative. One more

practical method used is to set the limit of one-step parameter change.

Note that these practical methods are applied to the most complicated linear re-
gression model only in order to make the algorithm as simple as possibie. For the other

models, constant forgetting factors are used.
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Chapter 5

Simulation Studies for the

Estimator

5.1 Introduction

The analysis of the proposed estimator is very difficult because of the nonlinearity, time-
varying characteristics, and the combination of three mutually dependent regression
equations in the algorithm. In this chapter the performance of the estimator is studied

through simulations.

This chapter is structured as follows. First, the simulation model used for data
generation is given. Second, the estimation results under noise-free situations are pre-

sented. Third, the estimation results for a noisy enviroment are presented.
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Parameter Value
L, 0.0293 H
L, 0.0293 H
M 0.0277 H
R, 0.3700
R, 0.1260 Q
Inertia 0.0065 Kgm?
Rated Speed 2,500 rpm
number of pole pairs 2

Table 5.1: Machine Parameters of a 3.1 Horsepower Induction Machine from Blocked

Rotor Test and No Load Test
5.2 Simulation Model for Data Generation

In this section the closed-loop scheme of induction machine drive scheme which is used
for simulation is presented. The data was generated using the SYSTEM — BUILD
part of the M AT RI X x software package.

The actual machine used as a basis for simulation is a 3.1 horsepower induction ma-
chine. The machine parameters of the induction machine using the traditional “Blocked
Rotor Test” and “No Load Test” [16] are shown in Table 5.1, though actual parameters
in operatior will be expected to take different values.

Using these machine parameters the machine model is simulated using the closed-

loop V/f = constant and slip frequency control scheme with PI controller shown in
Figure 5.1, [5]. A 3-pulse Pulse Width Modulation (3-pulse-PWM) scheme is used

for the driving wave form in order to generate a sufficiently rich signal in current
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Figure 5.1: Block Diagram of Control Scheme

measurements. In this simulation the motor driving circuit was simulated in an abc
frame while the motor was simulated in the af (two-axis)-frame. See Appendix B for

the details of the control scheme and the data generation model.

All stator currents and voltages are fed to second order Bessel-type anti-aliasing
filters and state variable filters. The outputs of the state variable filters are sampled

at’l msec interval. The magnitudes of the measurements in peak-to-peak value are :

Non-derivative term of currents : 10?

1st-derivative term of currents : 10°

2nd-derivative term of currents : 10°
Non-derivative term of voltages : 10°
1st-derivative term of voltages : 10°

Considering the through rate and the input and output voltage range of actual op-

erational amplifiers, it is very difficult to realize similar characteristics to this digital
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realization built in MATRIXy, even if scaling is applied. Therefore the actual im-
plemetation of state variable filter should be deliberately reviewed. One way to avoid
this problem in real time implementation is to install state variable filters digitally
same as the simulations. But in this case another microprocessor may be needed for
this job and produce more time delay. Also note that in this case measurements should

be sampled much faster to get good differential characteristics [14].
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5.3 Estimation Results without Noise

Using the data generated by the drive scheme simulated ir the previous section, the es-
timator tracking capabilities under noise-free circumstar.ces have been studied. Repre-
sentative results are presented here. The initial values of parameters for this estimation

run are as follows :

&, = 0 (5.1)
R, = 0.7 x (true value) (5.2)
p1 = 0.9 x (true value) (5.3)
P2 = 0.9 x (true value) (5.4)
p3 = 0.9 x (true value) (5.5)

The forgetting factors for the speed-only estimator and the stator-resistance estima-
tor are constant (see a,, and ap respectively) while the forgetting factor for parameter

estimation is a variable forgetting factor corresponding to noise variance I :

a, = 0.8 (5.6)
ap = 0.98 (5.7)
o = 1.6x10° (5.8)

In the process of choosing an appropriate noise variance, the error caused by incor-
rect parameter estimates was assumed to be nearly equal to the error caused by noise.
Then ¥, was chosen for the forgetting factor to be around 0.99 when the parameter es-
timates converge to certain values and to be around 0.95 when the parameter estimates

change their values.

The fast estimator (the speed-only estimator) operates every 1 msec while the slow

estimator (the stator-resistance estimator and the parameter estimator) operates every
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10 msec. The periodic covariance reset was not implemeted because there was no
sign of estimator windup. The richness detector was implemented just for monitoring.
Since there was neither sign of estimator windup nor the estimated parameter deviation
from true value when the norms of € and PC were small, the stopping of updating the

parameters and the covariance matrix was not implemented.

The estimation results are shown in Figure 5.2 - 5.4. The results show that the
algorithm exhibits a good tracking performance for speed variation, except for low

speed transients.

One possible reason of poor speed estimation in low speed transients is following.
The assumption that speed is almost constant in the evolution of electrical variables
may not hold. Moreover the signal at low speed transient may not be so rich as that at
high speed transients. The combination of these two might cause such poor estimation
result. In order to get good tracking at low speed transient, nolinear estimator might

be required to omit the assumption of constant speed operation.

Note that the parameier associated with higher order derivative terms (say pl)
is tracked better than that associated with lower order ones (say p3). This behavior
was also seen in (33] and is attributed to the richness of the corresponding regressor
variables. This can be verified easily by checking the sensitivity of the model. Also
note, however, that sensitivity of the parameters is very dependent on the scaling of

the measurements.
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5.4 Estimation Results- with Noise

In the previous section it was shown by simulation that the estimation algorithm has
the ability to track the rotor speed and the parameters. In this section the case where

the measurements of stator voltages and currents are corrupted by noise is studied.

In the usual least squares estimator the uncertainty is restricted to the measure-
ments y(k). However, since in this linear regression model case not only y(k) but also
C(k) is dependent on the measurements obtained from the state variable filters, the
uncertainty is present in both of them. If the uncertainty on C(k) is small, a good
estimate of # should be expected based on the least squares criterion. Otherwise the
estimates based on the least squares may be expected to be poor. This fact makes the

validation of estimation in a noisy enviroment important in the present algorithm.

The estimation results with around 2 percent white noise on stator voltages and
currents are shown in Figures 5.5 - 5.7. The initial values of parameters are same as
the previous section. The simulation results shows the estimator can track the rotor

speed. Though it is not a rigorous validation, it is enough for our purposes.
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Chapter 6

Off-Line Analysis of Experimental
Data

6.1 Introduction

The estimator simulations presented in the previous chapter were useful for the initial
analysis of the estimator algorithm. The next step to evaluate this algorithm is to test
it off-line on data taken from an actual induction machine drive system. In order to
test the estimator with real data, the test bench at the Technische Universitiat Berlin
(TUB), built by Ms. D. Elten who is currently a Ph.D. candidate of TUB, is used.
The system was designed to provide phase currents and line voltages under the open-
loop voltage-fed control scheme. The rotor speed is also measured by a tachometer to
compare with its estimated value. The induction machine used for this experiment was

a 300-Watt 2-pole-pair induction machine.

Machine parameters of this induction machine obtained from “Blocked Rotor Test”

and “No Load Test” [16] are shown in Table 6.1.



Parameter Value
L, 0.2731 H
L, 0.2700 H
M 0.2550 H
R, 5.50
R, 7.00
number of pole pair 2

Table 6.1: Machine Parameters of a 300 Watt Induction Machine from Blocked Rotor
Test and No Load Test

6.2 Experimental Set-Up

The data for off-line analysis is acquired using an Analog Data Acquisition Machine
(ADAM) by René & Maurer, Swi-tzerland. The acquired data is then transferred to
an IBM-PC. From th-re it is downloaded to a VAX 11/750 computer, where it is pro-
cessed using the M AT RI X x software package on which antialiasing and state variable
filters are implemented, followed by the estimator algorithm. Figure 6.1 shows a block
diagram of the experimental system. All of the experimental data analyzed in this

chapter was taken from this system.

In this experimental set-up, an open-loop voltage-fed control scheme is used. The
stator voltage and frequency can be changed but not be controlled automatically® in

closed loop.

In the transformer and filter unit the phase currents are picked up using Hall sensors

!This experimental set-up was originally designed for fault detection of induction machines under

steady operating conditions.
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and the line voltages are picked up using resistors. The speed signal is picked up by a
frequency/voltage converter after a 100Hz low pass filter. All measurements are scaled
to an appropriate voltage range and sampled at 20kHz. Finally two phase currents,
two line voltages and speed are obtained for a maximum of 6.4 seconds in a special
format (not ASCII format). This time constraint and the format are imposed by the

particular data acquisition system that was used.
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6.3 Data Processing before Estimation

Since the data is not in ASCII format, it should be transfered to ASCII format using
the CONTOA.C program written by Ms. D. Elten (see Appendix C). After that it can

be fed to a VAX. The next step is adding header data for MATRIX x to load it.

The data is then fed to antialiasing filters state variable filters implemented using
the SYSTEM — BUILD function of MATRIX x. The outputs of the state variable
filter are subsampled (at 10 kHz) and scaled appropriately and transformed from the
abc-frame to the af-frame, also using SYSTEM — BUILD functions. Note that
MATRIXx can accept a maximum of 100,000 variables. Also note that in order to
get good differential characteristics, the sampling frequency of measurements should

be 20 times higher than the cut-off frequency [14].

Before proceeding with the estimation, it is worth examining the waveforms of
line voltages and phase currents shown in Figures 6.2 - 6.3 at «» =50Hz. Also power
spectra are shown in Figure 6.4. ‘The power spectra show promising characteristics
for estimation because they have clean low-order harmonics. Note that a second order

Bessel-type filter is used for the antialiasing filter.

Finally, the waveform of the voltages and currents in the a8-frame are shown in

Figure 6.5.

The transformation from phase currents in the abc-frame to those in the af3-frame

HEKMIb

Similarly the transformation from line voltages in the abc-frame to phase voltages in

is shown in (6.1).

(6.1)
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Figure 6.6: Relation between abc-Frame and af-Frame

[ Tl } (6.2)
N

where the relation between' the abc-frame and the af-frame is shown in Figure 6.6.

the af-frame is shown in (6.2).

]

it
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6.4 Estimation

In this section two types of estimation are studied. First, different model estimation
possibilities are studied using one-step batch least squares estimation. Second, recursive

least squares estimation using the proposed algorithm is presented.

6.4.1 Model Comparison by Batch Least Squares Estimation

In this batch least squares estimation the complex transfer function model is used for
computational simplicity. Since one of the coefficients in the transfer function (1.17)

is not complex but real, this causes undesirable compensation in imaginary part which

should be identically zero.

The first thing examined here is the possibility of estimation with unknown stator
resistance. Table 6.2 shows the estimation results when the lefthand term in the linear
regressor (2.1) is ‘f:—t';‘. Table 6.3 shows the estimaticn results when this term is 4. Since
rotor speed measured by a speed sensor is the most reliably available term in machine
parameters and rotor speed, it is natural to evaluate the estimation performance by
evaluating the rotor speed estimate. It is also checked that no parameter can take
negative values. Neither of the above arrangements of the regressor seems to produce

good estimation results.
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Parameter Data 1 | Data 2 | Data 3
(R,L. + R.L,)/(L.L,5) | 720.73 | 727.59 | 794.93
w, 308.15 | 382.06 | 329.47
R./(L,T.6) 92512. | 166060. | 98716.
w,Rs/(L,d) -42714. | 164340. | 144230.
1/(L,8)--+(a) 37.5517 | 37.5496 | 37.4603
1/(L,8T,)--+(b) 2541.2 | 1374.4 | 1785.9
| w,ﬂj,5) -+ +(c) 12337. | 15599. | 16627.
_w, by speed sensor 316.7 379.8 442.8
w, by (¢)/(a) 328.53 | 415.42 | 443.86
T, by (a)/(b) 0.01478 | 0.02732 | 0.02098

Table 6.2: Estimated Parameters Based on Equation for f—“},

Assuming R, is Unknown



Parameter " Data 1 | Data 2 | Data 3
L,§ - 0.0240 0.024; 0.0238
R, + (L,/T;) 19.6106 | 19.4732 | 21.3899
L,bw, 4.3418 | 7.2090 | 6.0155
R,/T, 4650.0 | 5197.1 | 9868.4
R,w, 2440.8 | 2452.4 | 1495.8
1/T,---(a) 81.866 | 34.842 | 46.337
w, 236.41 | 316.08 | 335.46
r—

w, by speed sensor | 316.7 379.8 442.8

T, by 1/(=) h;.01222 0.02870 | 0.02158

Table 6.3: Estimated Parameters Based on Equation for
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The next thing to be examined is the possibility of estimation with known stator
resistance. Table 6.4 shows typical estimation results when the lefthand term in the
linear regressor (2.1) is %. Table 6.5 shows these estimation results when the leftl: 1
term in the linear regressor is ‘%’t‘ - R.%. The estimated speed is compared against

the measured rotor speed. It is also checked that no parameter takes negative values.

According to these results, the model with known stator resistance (=5.5{2) can
estimate better than the model with unknown stator resistance. Moreover, the model

whose lefthand term is %": - R.% is better than the other.

Therefore, the empirically known fact that stator resistance is very difficult to esti-
mate is observed here again. In addition the model whose lefthand term is .17.,: - R.ffi—":
turned out to be most promising in the estimation. Taking account of this result, a two-
stage estimator for slow (parameter) estimation (one for stator-resistance estimation,

the other for estimating the remaining parameters) is proposed.

Other batch least squares estimations with different stator resistance values (=
2.75Q,11Q) were done. Their results show that the estimated rotor speed is quite
robust to the stator resistance variations, in other words, quite decoupled from the

stator resistance variations, though detailed results are not presented here.
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Table 6.4: Estimated Parameters Based on Equation for

Table 6.5: Estimated Parameters Based on Equation for

R, = 5.50

Parameter "Datal Data 2 | Data 3
1/(T.6) 475.012 | 579.205 | 562.422

w, 171.816 | 255.187 | 210.178
1/(L,8)--+(a) | 36.8985 | 37.4569 | 36.563
1/(T.L,6)--(b) || 1438.4 | 1818.4 | 1734.2
w,/(L,8) (<) 10868. | 13422. | 14923.
w, by (c)/(a) | 20454 | 358.33 | 408.14
T, by (2)/(b) " 0.02565 | 0.02060 | 0.02509
w, by speed se;r 316.7 379.8 442.8

a2,

s Assuming R, = 5.50

Parameter Data 1 | Data 2 | Data 3

B 0L, --(a) 0.0252 | 0.0248 | 0.0250
L,/T, 13.021 | 15.652 | 15.641
6L,w,--(b) 5.9147 | 8.6193 | 8.8300
1/T, - (c) 41.275 | 51.173 | 50.940

w, ﬂﬂ 367.56 | 423.22

w, by (b)/(a) 2_34.71 347.55 | 353.20
T, by 1/(c)_ 0.02423 | 0.01954 | 0.01963

w, by speed se:sor " 316.7 379.8 442.8
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6.4.2 Recursive Least Squares Estimation

In this section some of the recursive estimation results are presented. The values of
Table 6.1 are used as initial estimates of the parameters. It is important to remember
that the parameter estimates based on Blocked Rotor Test and No Load Test might
not be very good because the actual operating condition is different from these test
conditions. Note that stator resistance value can be obtained just by checking the

resistance value between terminals.

Two estimation results are presented. One is a speed-up transient, shown in Figures

6.7 - 6.9. The other is a speed-down transient, shown in Figures 6.10 - 6.12.

The results show good estimation in steady state, but the estimate displays a highly
undesirable “kick” in the wrong direction at the start of the transient. The possible

reasons for this undershoot are explored via simulations in the next section.

The oscillation in the speed estimates at lower speed is correlated with the fun-
damental frequency of measurements. Since there is no oscillation of speed estimate
at higher speed, too many harmonics included in measurements might cause this os-
cillation. Taking the moving average over one electrical cycle will surely reduce this
bounding. This method give us 2 more smooth estimate, but the tracking ability is
degraded. This tradeoff between noise insensitivity and tracking ability always exists

in estimation.

Sharp changes in estimated values might be caused by the insufficient suppress of
high frequency harmonics in measurements. These can be eliminated or reduced by

installing shaper low pass filters before measurements are fed to state variable filters.

In this estimation richness detector was implemented only for monitoring the rich-
ness of the corresponding regressor variables. But since there was neither symptom of

estimator windup nor the estimated value deviation from true value when the norms

67



of ¢ and PC were small, the stopping of updating the parameters and the covariance

matrix was not executed.
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6.5 Simulated Data

In order to analyze the undershoot in the transients displayed in Figure 6.7 and 6.10
(similar to the step response of a system containing a right-half-plane zero), simulated
data under noise-free environment were generated. Data for a speed-up transient shown
in Figure 6.13 - Figure 6.15 displays good similarity between actual data and simulated
data, and thereby providing some confidence in the quality of the simulation.

The inertia of machine is assumed 0.0002K gm?. The machine parameters used in

simulation are from Table 6.1.
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The estimation algorithm was checked using the simulated data. The result is
shown in Figure 6.16 - Figure 6.18. It has a small sign of undershoot phenomena at the
start of the transient state. Compared with other simulation results (though they are
not presented here), the undershoot phenomena is more significant as the parameter
estimation is poorer. This phenomena is quite significant when the estimated rotor
resistance is bigger than the true value, though there might be other combinations of

wrong (biased) estimated parameters.

One possible reason why the phenomena is so significant in the estimation using
actual data is that the actual measurements at the transient state is not so rich as
those at the steady state considering the noisy environment. Note that simulated data
were generated under noise-free environment. Lack of the richness may cause biased

estimator in parameters and therefore cause the undershoot phenomena.

When the measurements at the transient state are rich, another possible reason
of this phenomena is that the speed estimation at the transient state might be more
suceptable to poor machine parameter estimation than the steady state since at the

steady state speed is estimated quite well.

Other possible reasons of this phenomena are skin effect, core loss, magnetic nolin-

earity, and unsymmetric windings which are negelected in the modeling procedure.

According to Figure 6.17 and 6.18 the estimated values of P2, P3, and R, do not
converge to true values. The estimated parameters p, and p; seem to compensate each
other to get good estimate for the most sensitive parameter p; and this result seems to
affect the estimate of R,. According to [3], this type of biased estimator might not be

a severe problem in adaptive control.

Some analysis of the effect of parameter number reduction in estimation using this

simulated data is presented in Appendix E.
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Chapter 7

Summary and Future Work

7.1 Summary

This thesis addressed the problem of estimating the rotor speed and machine param-
eters based on measurements of sfator voita.ges and currents. The ideas and tools of
parameter estimation theory were combined with the properties of induction machines,
empirical ideas were used to improve the estimation, and modifications were made to
enable the estimation algorithm to (eventually) operate in real time. The contribu-
tion of this research work is the methodology used to derive a real time implementable

estimator.

Chapter 2 described theoretical background which is necessary to develop the esti-

mation scheme, including practical issues for real time estimation.

In Chapter 3, three linear regression models were derived. One relates rotor speed to
the stator voltages and currents, and their derivatives. Another relates stator resistance
to the stator voltages and currents, and their derivatives. The third relates other

machine parameters to the stator voltages and currents, and their derivatives. An
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approach to avoiding taking the derivative terms of stator voltages and currents was

also discussed.

Chapter 4 described how to organize the whole estimation scheme using the three
linear regression models derived in Chapter 2. First the structure of model-based esti-
mation was presented. The estimation algorithm is based on a recursive least squares
approach. Two-time-scale separation was applied between the speed estimation and
the machine parameter estimation. Two-stage separation was applied between stator
resistance estimation and the estimation of the other machine parameters. Then, to
take account of tracking capability and eliminate or reduce so-called estimator windup

phenomena, variable forgetting factor and periodic covariance reset methods were used.

In Chapter 5 the performance of the proposed estimator was studied by numerical
simulations. The measurement data is generated by a three-pulse PWM voltage-fed
inverter under closed-loop slip frequency control. The estimator showed good tracking
performance except for low speed transients. The performance with observation noise

was also presented.

Estimation results using an actual 200 watt induction machine were presented in
Chapter 6. The control scheme used in this experiment was an open-loop constant-
voltage frequency-fed drive. The results showed that the proposed estimator can con-
verge to appropriate values once a machine reaches a steady state, even though it may
not give good results during the transient. The analysis of the undershoot phenomena
at the beginning of the speed transient has not compieted yet. This result might be
caused by lack of richness in signal and/or poor machine parameters estimation, es-
pecially poor rotor resistance estimation. Another possible reason is the assumption

made in modeling process.
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7.2 Future Work

First of all, the undershoot ~henomena at the beginning of the speed transient should be
analyzed completely because it spoils the control when this estimator is implemented in

closed-loop control. If necessary, a nonlinear estimation algorithm should be developed.

The next thing to be done is to increase the order of the antialiasing filter. The

sharper the slope, the smoother the estimation result might be.

The real-time implementation of this algorithm is the next issue. The implemen-
tation of the state variable filter is especially important. Since it was implemented in
MATRIXx in this research, there was no need to worry about the constraint of an
actual circuit. If it is implemented in hardware, the throughput and scaling of the
signal should be consideied. One way to avoid this constraint is to install a digital
filter instead of an analog circuit. This causes more time delay than an analog filter,

however.

After all the work of tuning up the estimator, there are still issues related to the im-
plemnentation of an adaptive controller using the proposed estimator. For this purpose,
it is necessary to develop an algorithm to get physical parameter velues from estimated

parameters. By getting physical parameters a robust speed control can be realized.
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Appendix A

Two-Axis Machine Model in

Stator-Fixed Coordinates

A.1 Introduction

In this Appendix, the two-axis (af-frame) machine model in stator fixed coordinates
is presented. First, the electrical machine model is presented, beth without core loss

and with core lcss. Second, the mechanical model is presented.

A.2 | Electrical Model

The electrical model is derived using the equivalent circuit per axis shown in Figure A.1.

Since for a squirrel cage induction machine the rotor circuit is short circuited, the

followiug equations are obtained.

v.(t) = R,i.(t)+%’i—t) (A.1)
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0 = R,i,(t)+§-/\st(Q——Jw,A,(t)

where the flux equations are :

Ad(t) = L,i(t) + Am(t)
A(8) = Lurke(t) + Aml?)

and for the model without core loss :

Am(t) = Lm(is(t) +1.(2))

while for the model with core loss

dAm(t) _ Rye
dt = L,

Am(t) + Rye(in(2) + 8. (1))

The relation to the notation used in Chapter 1 is :
L. = L+ Lnm
L, = L,+L,
M = L,

(A.2)

(A.3)
(A.4)

(A.5)

(A.6)

(A.7)
(A.8)
(A.9)

Note that H,_(s) =1i,(s)/v,.(s) is the input admittance assuming w, is constant.

A.3 Mechanical Model

The modification to a two-axis model does not make any difference in the mechanical

equation. Therefore

dw, _ [ 2 +Tem_TL]
a - PlTEY H
0 J
T = P M T A
2L,L. — M? 3 o

(A.10)

(A.11)



where p means the number of pole pairs and

and the notation is :

rotor speed
friction coefficient
inertia (rotor+load)

mechanical load

: electromagnetic torque
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Figure A.1: Equivalent Circuit Per Axis
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Appendix B

Closed-Loop Control Scheme

B.1 Introduction

In this appendix the organization of the simulated machine model is presented. First,
the basic idea is presented. Second, the detailed mechanization built in MATRIX x is

presented. Note that the model is described in stator-fixed coordinates.

B.2 Basic Idea

The drive scheme simulated is a voltage-fed constant V/f one, under slip frequency
control, and using 3-pulse PWM (Pulse Width Modulation) in order to get sufficient
low order harmonics in stator voltages and currents. This control scheme is shown in

Figure 5.1.

The driving circuit is realized in the abc-frame with respect to ground. Then,
it is translated to the abc-frame with respect to the neutral point. Next, the frame

transformation from the abc-frame to the ap (two-axis)-frame is applied. This driving
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voltages are supplied to the motor model described in the af-frame. The rotor speed
is fed back to the driving circuit to close the control loop. A Pl-controller is installed
in the driving circuit to get good control characteristics. P-gain and I-gain for this
Pl-controller are 1 and 0.6 respectively. One possible way to determine the gains of a
Pl-controller is presented in [35]. The machine parameters used in this simulation is

shown in Table 5.1.

B.3 Implementation Details

An overview of mechanization without noise is shown in Figure B.1. Individual blocks
are shown in Figures B.2 - B.7. The driving voltage waveforms with in the af-frame

at 262 rad/sec operation are shown in Figure B.8 for reference.
A brief explanation of some blocks is following.

SYSTEM is composed of six blocks. First one is CNTRL super-block which de-
scribes inverter control scheme. Second one is MOTOR super-block which describes
motor model. Third one is SVF-V super-block which includes antialiasing filters and
state variable filters for voltage measurements. Fourth one is SVF-I which includes
antialiasing filters and state variable filters for current measurements. LOAD block
which describes mechanical load is fifth one. LDCHG block which give the opportunity

to change the load in the course of operation is sixth block.

CNTRL super-block is organized from six blocks. SPDCMD block gives the refer-
ence speed command. Second one generates the error between reference command and
true speed. Pl-controller is installed in PICNT block. Fourth one is LIMIT block which
restricts saturation limit of controlled slip. In fifth block true speed and controlled slip
are summed. The output of fifth block is fed to V/FCNT super-block which realizes

constant V/F voltage-fed inverter.

91



V/FCNT super-block has six blocks. AMP block generates the mapping from con-
trolled frequency to the peak-to-peak voltage of fundamental frequency with low speed
compensation. In SIN-1F three phase sinusoidal waves with fundamental frequency
are generated. TRW-6F generates triangle wave with 6-th order frequency. In PV-C
super-block both of the outputs of SIN-1F and TRW-6F are compared and three phase
voltages in the abc-frame with respect to ground are generated. Then they are trans-

formed the voltages with respect to neutral point. Furthermore, they are transformed

to the af-frame in ABCDQ.

MOTOR super-block is composed of three blocks. ELECT super-block describes
electrical model of machine. Mechanical subsystem of machine is described by SPEED
and EMTRQ. SPEED gives the state equatation of speed while EMTRQ generates

electromagnetic torque.

ELECT super-block is composed of 5 blocks. The state variables are flux vectors
which are implemented in INTGR and EXPRES. In F=>C current vector is generated.
RSSTR gives the resistor values of stator and rotor. RESCHG offers the opportunity

to chage those values in the course of operation.
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Figure B.2: Individual Block of Simulation Model-1
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Figure B.4: Individual Block of Simulation Model-3
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Appendix C

Program for Data Conversion to

ASCII Format

/********************************************************/

/* CONTOA.C 02.11.88 Dagmar Elten */
/* This program converts the hex-data of the files */
/* procuced by the transient recorder 'ADAM’ into */
/* data files in ASCII format */
/% input : "data.hex" */
/* output: "data.asc" *x/

/********************************************************/

#include "stdio.h"

main()

{

int n, range, tsample, channel, block, mask, creat(), open();
int infile;

long int i;

char ccc, buffer(2], ascibuf[10];
unsigned int intbuf;

short sss;

unsigned int count=2, £fd;

double value, vrange;

FILE *fopen(), *outfile;

outfile=fopen("data.asc","w");
infile = open("data.hex",BREAD);
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if ( infile<0)

printf("
printf("

while (

printf("Opening of input file ’data.hex’ was not possible");
exit();

}
***xxk** DATA - CONVERSION : data.hex ===> data.asc kA kkAA\D" ) :

===l=l--:-----a----an-:--usa:m:s-sa::aaa--====-=----=---a-:--n\n\n " ’

(read(infile,buffer,count)) == count)

{
if ( buffer[0] == 'y’ )
{

i = 0;

channel = buffer[1]+l ;

fprintf(outfile, "\n*\n* \tCannel no. %d\n*",channel);
printf("channel = %d\t",channel);

}

if (i == 294)
{
tsample = buffer[0]*256 + buffer[1]); /* us */
printf("tsample = 3%d us\t",tsample);
fprintf(outfile," \tt.sample = %d us\n*",tsample);

}
if (1 == 25 )
{
mask = buffer(0] | 0xff00;
printf("mask = %$4x\t",mask);

}
if (i == 9)

{
block = buffer{0] ;

printf("block = %d\t",block);
fprintf(outfile, "\tblock length = %d\n*",block);

}
if (1 == 30 )
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range = buffer(1l];
switch(range)

case 21:
vrange=12;
break;
case 24:
vrange = 25;
break;
default:
printf("no common range!!");
exit();

}
printf("range = $.0f V\n",vrange);
fprintf(outfile,"\tRange of Voltage = %.0f wn*\n",vrang

}
if (i == 64 ) n=20;
if (i>64)

{

strncpy(&intbuf,buffer,2);

intbuf = intbuf & mask;

value = ( (double)intbuf/64000.0 - 0.5 ) * vrange;
fprintf(outfile,"%7.3f " value);

n++;
if ((n == 8 )
{
n = 0;
fprintf(outfile,“\n");
/ } }

i++;

}
fclose(outfile);
}
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Appendix D

Recursive Least Squares Estimation

Program

//
// Recursive Least Squares Estimation Program

// ]

// by Kazuaki Minami

//

J/*kkxrkkkGiven Initial Valuer*ikxxrxkhkhhkkhhkik
//*Lr,Ls,M,Rr,Rs,wr H *
//*last,st,set ; set=ast*integer *
//*var ; *
//*ps0,psc0,pf0 ; *
//*******************************ﬁ************

/7

//*****************************************

//* INITIALIZE *
//*************************************t***
clear zeta;clear lambda;clear wr;
Ls=0.0293;Lr=0.0293;M=0.0277;Rs=0.370;Rr=0.126;
sigma=Ls*Lr-M**2.delta=sigma/(Lr*Ls);Tr=Lr/Rr;
pl=Ls*delta;p2=Ls/Tr;p3=1/Tr;
wr(l)=y(1,11)*0.9;

wrma(l)=wr(1l);

wrerr(l)=wrma(l)-y(1,11);

rc=Rs;

Rs=Rs*0.7; // initial value of Rs

r(1)=Rs;

zc=[{pl p2 p3])’';// Constraint of zeta
pl=0.9*pl;p2=0.9*p2;p3=0.9*p3;

zetas=[pl p2 p3]’;
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/7
lct=st+1l; // Loop Counter for sample Timing

lcs=1; // Loop Counter for Slow estimation
lcf=1; // Loop Counter for Fast estimation
lcc=1; // Loop Counter for periodic Cov. reset
//lambda(lcs)=lambda(;

psO=10*eye(3);//

ps=ps0; // Cov. matrix of slow estimation
psll(1l)=ps(1l,1);ps22(1l)=ps(2,2);ps33(lcs)=ps(3,3);
psr0=10; //

psr(l)=psr0; // Cov. matrix of Rs estimation (scaler)
ipsr=1/psr0; //

pf0=10; //
pf(1)=pfo0; // Cov. matrix of fast estimation (scalar)
ipf=1/pf(1); //

zeta(:,lcs)=zetas; // store initial zeta
//*****************************************

//* HMAIN *
S/ hkkhkhkkhkhhhhhkhhhhhkhhhrhhhhhhhrhhhhhrthin

while lct+set<=last+st,... // set;Slow Estimate Time
..//*****************************************

..//* UPDATE FAST (SPEED ONLY) ESTIMATE *
..//*****************************************
for i=st:st:set,... // st;Sampling Timing
lcf=lcf+l;...
yEr=[y(lct,3) y(lct,2) y(lct,1l) y(lct,8) y(lct,7)];...
yfi=[y(lct,6) y(lct,5) y(lct,4) y(lct,10) y(lct,9)];...
yf=[yfr;yfil*[pl p2+Rs p3*Rs -1 -p3]’;...
cfr=[y(lct,2) y(lct,1l) y(lct,7));...
cfi=[y(lct,5) y(lct,4) y(lct,9)];...
cf=[-cfi;cfr]*[pl Rs -1]’;.
ipf=0. 8*1pf+cf'*cf e // forgettlng factor=0.8

if ipf<0,ipf=1/pf(lcf-1);... // periodic covariance reset
elseif ipf<0.01,ipf=1/pf0;...
end, ...
errwr=yf-cf*wr(lcf-1);...// prediction error
pf(lcf)=1l/ipf;... // covariance windup check
rdwl(lcf-1)=norm(cf/ipf);... // richness detector
rdw2(1lcf-1)=norm(ercwr);... //
wr(lcf)mwr(lcf-1)+cf’*errwr/ipf;...
if wr(lcf)>wr(lcf-1)+10,wr(lcf)=wr(lcf-1)+10;end,...
if wr(lcf)<wr(lcf-1)-10,wr(lcf)=wr(lcf-1)-10;end,..
if lcf<4,wrma(icf)=wr(lcf);...
glse wrma(lcf)=(wr(lcf-3)+wr(lcf-2)+wr(lcf-1)+wr(lcf))/4;
end;...
wrerr(lcf)=wrma(lcf)-y(lct,11);...
..// transfer data for slow estimate
if i=st,...
wrt=wrma(lcf);...
ylt=y(lct,1l);y2t=y(1lct,2);y3t=y(lct, 3),y4t-y(lct 4);y5t=y(lct,5);..
dy6t-y(1ct +6);yT7tav(lct,7);yB8t=y(1lct,8);y9t=y(1lct, 9),y10t-y(lct 10);
end, ...
lct=lct+st;...
end, ...
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.//*****************************************

..//* UPDATE SLOW (PARAMETER) ESTIMATE *
S/ ek dek ke kkhkkhk e hdkdkddekkoddhokhohhkdokkhkdokkk

l.l//
..// Rs estimation assuming parameter & speed are known

4
ysr=[(pl*y3t)+(p2*y2t+pl*wrt*y5t)+( -y8t)+(-p3*y7t-wrt*yot);...
(pl*y6t)+(p2*ySt-pl*wrt*y2t)+(-yl0t)+(-p3*ySt+wrt*y7t)];...
csr=[ (-y2t)+(-p3*ylt)+(-wrt*ydt);...
(-ySt)+(-p3*ydt)+( wrtrylt)];...
ipsr=0.98*ipsr+csr’*csr;... // forgetting factor=0.98
if ipsr<0,ipsr=1/psr(lcs);... // periodic covariance reset
elseif ipsr<0.01,ipsr=1/psr0;...
end, ...
errrssysr-csr*r(lcs);...// prediction error
psr(lcs+l)=1/ipsr;... // covariance windup check
rdrl(lcs)=norm(csr/ipsr);... // richness detector
rdr2(lcs)=norm(errrs);... //
r(lcs+l)=r(lcs)+csr’*(ysr-csr*r(lcs))/ipsr;...
if r(lcs+1l)>r(lecs)*1.05,r(lcs+l)=r(1lcs)*1.05;end,...// one step chanc
if r(lcs+1)<r(lcs)*0.95,r(lcs+l)=r(lcs)*0.95;end,...// limit
if r(lcs+l)>4*rc,r(lcs+l)=4*rc;end;...
if r(lcs+l)<rc/4,r(lcs+l)=rc/4;end;...
Rs=r(lcs+1l);...

ceo//
...// parameter estimation assumig wr & Rs are known

ced//

cs=[ [y3t+wrt*y5t] y2t [Rs*ylt-y7t] ; ...
[y6t-wrt*y2t] y5t [Rs*ydt-y9t] 1;...

ys={ y8t-Rs*y2t+wrt*[y9t-Rs*ydt];yl0t-Rs*ySt-wrt*[{y7t-Rs*ylt] ;...
zetad=[pl p2 p3]’;...
smeye(2)+cs*ps*cs’;invs=inv(s);...
ks=ps*cs’*invs;...
e(:,lcs)=ys-cs*zetad;...// prediction error
delta=ks*e(:,1lcs);...

e/
rdsl(lcs)=norm(ps*cs’);... // richness detector
rds2(lcs)=norm(e(:,1lcs));...//

106




...// one step parameter chage limit
if delta(l)>pl/20,delta(l)=pl/20;end,...
if delta(l)<-pl/20,delta(1l)=-pl/20;end,...
if delta(2)>p2,/20,delta(2)=p2/20;end,...
if delta(2)<-p2/20,delta(2)=-p2/20;end,...
if delta(3)>p3,/20,delta(3)=p3/20;end,...
if delta(3)<-p3/20,delta(3)=-p3/20;end,...
N4
zetad=zetad+delta;...
lambda(lcs)=1-e(:,lcs)'*invs*e(:,1lcs)/var;...
if lambda(lcs)<0.95,lambda(lcs)=0.95;end,...
if lambda(lcs)>1l,lambda(lcs)=1;end,...
if ps(1,1)+ps(2,2)+ps(3,3)>10,1lambda(1lcs)=1;end,...
psold=ps;... // save previous ps
ps=(ps-ps*cs’*invs*cs*ps)/lambda(lcs);...// Var. Forgetting Fact.
if ps(1,1)+ps(2,2)+ps(3,3)>100,ps=ps0;end,...// Periodi Cov. Reset
if ps(1,1)<0,ps=psold;...
elseif ps(2,2)<0,ps=psold;...
elseif ps(3,3)<0,ps=psold;...

end’oo.

psll(lcs+l)=ps(1l,1);... // covariance windup check

ps22(lcs+1)=ps(2,2);... // covariance windup check

ps33(lcs+1)=ps(3,3);... // covariance windup check
0.0//

...// Project Estimate Parameter Space & Estimate Regulation
N4
ztemp=[zetad(1l) zetad(2) zetad(3)]’;...
for j=1:3,...
if ztemp(j)<zc(j)/4,ztemp(j)=2zc(j)/4;end,...
éf ztemp(j)>zc(j)*4,ztemp(j)=2c(j)*4;end,...
end,...
pl=ztemp(l);p2=ztemp(2);p3=ztemp(3);...
zetas=[pl p2 p3]’';...
lcs=1lcs+l;...
zeta(:,lcs)=zetas;...
end
return
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Appendix E

Effect of I Parameter Number

Reduction in Estimation

E.1 Introduction

This appendix is written to show the difference between parameter estimation for on-

line rotor speed estimation and parameter estimation for off-line failure detection.

In parameter estimation for on-line rotor speed estimation, there is no speed sensor
in the measurement system. On the other hand, it is possible to use a speed sensor to

reduce the number of parameters in parameter estimation for off-line failure detection.

In failure detection of induction machines, stator resistance and rotor speed are
often assumed as known parameters. The assumption of known stator resistance might

be possible only for short time steady state operation.

The comparison below is done using simulated data with the parameters obtained

from the Blocked Rotor Test and No Load Test.
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Figure E.1: Estimated Parameters with No Assumption
E.2 No Assumption for Stator Resistor and Rotor
Speed
The estimation results with no assumption regarding stator resistance and rotor speed

is shown in Figure E.1. The results show that the estimated parameters converge to

wrong (biased) values, though the estimated speed shows good tracking characteristics,

see Figure E.2.

E.3 Stator Resistor as a Known Parameter

The estimation results with known stator resistance are shown in F igure E.3. The
results show that the estimated parameters do converge to true values, though the

convergence speed is not so fast.
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Figure E.3: Estimated Parameters with Known Stator Resistor
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Figure E.4: Estimated Speed in rad/sec with Known Stator Resistor

E.4 Stator Resistor and Rotor Speed as Known Pa-

rameters

The estimation results with known stator resistance and rotor speed is shown in Fig-
ure E.3. The results show that estimated parameters do converge to true values very
quickly. According to these results, failure detection setting should give more stable
estimation results than in on-line rotor speed estimation. A possible reason for these
results is the reduction of the number of parameters, especially the elimination of the

most sensitive parameter (stator resistance).
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E.5 Comments

The idea that the fewer the number of parameters, the less difficult the estimation, is
illustrated very clearly here. Parameter estimation for off-line failure detection under
constant speed operation is much easier than parameter estimation for on-line rotor

speed estimation.
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Appendix F

Present Status of Experiment at

MIT

F.1 Introduction

In order to test the estimator at MIT, a test bench using Industrial Drive’s ASC-3
induction machine drive system has been designed. The system uses a voltage-fed
Pulse-Width-Modulation (PWM) . The test bench was designed to provide outputs of
the state variable filters as inputs to the estimation algorithm. The rotor speed is also

measured by a tachometer, to compare with its estimated value.

The data for off-line experimentation is acquired using the data acquisition sys-
tem DAS-20 by MetraByte Co. which is installed on Compaq-386 computer. The
acquired data is downloaded to a VAX11/750 computer where it is processed using the
MATRI X x software package on which simulations and estimations were carried cut.

Figure F.1 shows the block diagram of the experimental system.
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F.2 Drive System

The induction machine drive system (model ASC-3) donated by Industrial Drives Inc.
includes a three phase rectifier, an inverter, a controller board, and a 3.1 horsepower
induction machine. As supplied, the drive system was equipped with a tachometer to
provide speed measurement, and Hall effect sensors with required buffering circuitry to
provide phase current measurements. A resistively loaded DC generator was used to

provide a mechanical ioad to the machine.

F.3 Signal Processing Board

The overview of the signal processing beard is shown in Figure F.2. The obtained
measurements are filtered phase currents, and their first and second derivatives, as well
as filtered line voltages and their first derivatives. Every measurement is scaled to

+10V in order to maximize the resolution.

Since voltage signals are not provided by the ASC-3 system, two isolation amplifiers
are used to get line voitages. These isolation amplifiers provide the isolation from the
high voltage output of inverter and scale the 300 V signals to voltage levels that can
be handled by linear IC’s. Figure F.3 shows the detailed circuit using Analog Devices’
AD210.

The antialiasing filter circuit is shown in Figure F.4. This filter was designed using a
second order Bessel type low pass filter with cutoff frequency of 500 Hz. The bandwidth
was chosen at 500 Hz hecause the maximum frequency of the fundamental components
of currents and voltages is 150 Hz (at 4000 rpm). A standard 741 was used to implenient

this filter.

The state variable filter circuit is shown in Figure F.5. This filter was also designed
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using a second order Bessel type low pass filter with cutoff frequency of 500 Hz. Burr-
Brown’s universal filter IC (UAF41) was used to implement this filter in a compact

way.
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F.4 Data Acquisition System

For data acquisition MetraByte’s DAS-20 data acquisition system was used. Metra-
Byte’s model DAS-20 is a multifunction high speed Analog/Digital I/O expansion board
for IBM-PC compatible machines that can be used for data acquisition and signal anal-
ysis. It provides 16 analog input channels but only 11 channels are required for our
experiment. The input voltage range for each hannel is £10V. Using SAMPLE.BAS
(28] program written in BASIC on the Compaq-386, 11 channel data can be sampled
up to 2 kHz and stored up to 1000 samples. See [9] for further reference on different
features of the DAS-20 system.

F.5 Scaling and Frame Transformation

After the data has been collected, it should be rescaled to its original value because
the data is scaled by the signal processing board. Then it is transformed from the
abc-frame to the a8-frame since the estimator program deals with a3-frame data. The

transformation matrix from phase currents in the abc-frame to phase currents in the

BRIk

The transformation matrix from line voltages in the abc-frame to phase voltages in the

-]

af-frame is :

(F.1)

af-frame is :
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F.6 Spectrum of Current and Voltage

In order to check the harmonics of the signals, a spectrum analysis of phase current
and line voltage is done. Figure F.6 shows the power spectrum of the line voltage.
Figure F.7 shows the power spectrum of the phase current acquired by a current probe.
Figure F.8 shows the power spectrum of the phase current at the ASC-3 phase current
output. Since both Figure F.7 and Figure F.8 are quite similar, the phase current

output of ASC-3 can be used for our measurement.

As can be seen very clearly, the waveforms for 60 Hz operation have much more
harmonics than 50 Hz operation. This means that the richness of signals at steady state
highly depends on the operating point. Therefore the performance of the estimator
may change dramatically according to the operating point. For transient and other
load conditions, the richness of the signals should be different, and therefore further

analysis will be required.
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F.7 Suggestion for Future Work

Since the experiment at MIT has just started, there are-plenty of things to do. First of
all, the isolation amplifier’s characteristics should be checked using the spectrum ana-
lyzer. The power spectrum of the output of the isolation amplifier should be compared
with that of the raw line voltage below cutoff frequency, because the isolation amplifier
uses a certain excitation frequency to transfer the signal from its input to output. If
this frequency is not high enough, the signal is distorted badly. This can cause lack of

richness of the processed signal.

The next thing to be considered is implementing a scaling circuit at every stage
of the state variable filter. As can be realized easily, there is large difference in the
magnitudes of signals among filter outputs. This makes certain outputs sensitive to
noise. Moreover the order of output magnitudes is reversed from the simulated (digital)
state variable filter outputs in MATRIXx. The reason seems to be that in an actual
circuit there are limitations such as through rate, input voltage range, output voltage
range, etc. These limitations do not hold in MATRIXx. If scaling does not make
things better, it is reasonable to implement a digital state variable filter instead of an
analog filter, though it may require another microprocessor and much higher sampling

rate of measurements [14].

Another thing to try is no-load operation. This may generate richer signals. Also
it may be useful to increase the order of antialiasing filter, to reduce unnecessary high

frequency signal.

Once good estimation results are obtained, the next step is to close the loop, i.e.
to install an adaptive controller in real time. I expect the continuing research will be

successfully done in a couple of years.
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