
Smoothed Complexity of Network Coordination
Games

by

Julian T. Viera

B.S. in Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2022

Certified by. .
Constantinos Daskalakis

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Smoothed Complexity of Network Coordination Games

by

Julian T. Viera

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The problem of finding or computing Nash equilibria has been an important problem
in economics and computer science for decades. Classical worst-case and expected-
case analyses have shown that in many cases for many types of games, computing
Nash equilibria is intractable. However, it has been empirically shown that in many
instances, approximate Nash equilibria can be computed efficiently. Thus, there is
a growing interest in the smoothed complexity of games. That is, the complexity
of computing Nash equilibria when the inputs to the problem are confined to look
more like real-world inputs. This thesis provides a further analysis of the smoothed
complexity of network coordination games. We specifically look at the smoothed com-
plexity of the 2-Flip algorithm. While we do not prove that using the 2-Flip algorithm
on 2-Flip-Max-Cut achieves smoothed quasipolynomial time, we discuss multiple at-
tempts at this goal, and hope to provide other researchers with the inspiration to
prove quasipolynomial time.

Thesis Supervisor: Constantinos Daskalakis
Title: Professor

3

4

Acknowledgments

I could not have written this thesis without the help of countless people along the

way.

I would like to especially thank Costis Daskalakis and Noah Golowich for their

endless support throughout the research and writing process. Your advice throughout

our meetings has been wonderful. Both of you have provided me with the confidence

and the knowledge to write this thesis.

Of course I can’t forget the endless cheers I got from New Jersey along the way.

To Mom, Dad, Noah, Markela, Tyler, Tanner, Aunt Laura, and all of the other Vieras

and Evangelistas, I cannot thank you enough for your encouragement every step of

the way.

Thank you also to my roommates at Norf! Spencer, Mark, Tyler, and Keithen,

your confidence in me every day drove me forward. Thank you for the many times

you let me discuss my work and my questions with you. You may not realize it, but

those discussions played a major role in figuring out many of the problems discussed

here.

Thank you to every teacher in Colonia and New Egypt that I ever had. Thank

you to every professor in every course I’ve taken at MIT. Thank you to all the friends

and classmates I’ve met along the way. Thank you, once again, to my family and my

closest friends. You know who you are.

And thank you God.

5

6

Contents

1 Introduction 9

1.1 Game Theory Background . 10

1.1.1 Games and Nash Equilibria 10

1.1.2 Complexity Classes . 11

1.2 Discussion Outline . 13

2 Related Work 15

2.1 Smoothed Complexity . 15

2.2 Local-Max-Cut and the FLIP Algorithm 16

2.3 Generalizing to Max-𝑘-Cut . 17

2.4 Network Coordination Games . 18

2.5 Smoothness-Preserving Reductions 19

2.6 𝑘-NetCoordNash to 2-Flip-Max-Cut 21

2.7 Motivation for Our Work . 22

2.7.1 Local-Max-Cut . 22

2.7.2 Network Coordination Games 22

3 Techniques and Definitions 25

3.1 High-Level Proof Overview . 25

3.2 Relation to Network Coordination Games 26

3.3 Definitions . 27

4 Smoothed Analysis of 2-Flip-Max-Cut 29

7

4.1 A Smaller Rank Bound . 29

4.2 Redefining a 𝑘-Repeating Sequence 34

5 Concluding Remarks 37

5.1 Overview of Techniques and Background 37

5.2 Remaining Questions . 38

8

Chapter 1

Introduction

At the heart of algorithmic game theory is the problem of computing Nash equilibria.

The problem asks: Given a game with some players, where each player has a set of

strategies they can take and a reward function dependent on the actions each player

takes, find a local optimum. In other words, find a set of strategies for each player

such that no player can unilaterally improve their payoff.

While it is known that Nash equilibria always exist, the problem of actually com-

puting them for general games is known to be intractable. However, there are many

games for which the complexity of computing Nash equilibria is an open problem. In

fact, the creation of new complexity classes such as PLS and CLS were motivated in

part by the complexity of computing Nash equilibria.

Historically, many problems in algorithmic game theory have still been shown to

be intractable. However, empirical evidence has shown that many of these problems

are rarely hard in realistic situations. Worst-case analysis is dominated by artificially

constructed cases that are not representative of typical instances. At the same time,

traditional average-case analysis is dominated by completely random inputs which

have certain properties with high probability, which is also not representative of typ-

ical instance This gap between the observed efficiency of game theory algorithms and

a lack of formal proofs to support said efficiency is slowly being filled by a relatively

new area of research: smoothed complexity. Smoothed complexity analysis consid-

ers inputs perturbed with random noise. This is much more analogous to real-world

9

inputs, and allows us to get complexity results that are more in line with real-life

efficiency.

This paper provides an analysis of the smoothed complexity of network coordi-

nation games and a study of 2-Flip-Max-Cut. Past research has shown that network

coordination games have polynomial smoothed complexity for complete graphs, and

pseudopolynomial smoothed complexity for arbitrary graphs. We provide a discussion

of the smoothed complexity of 2-Flip-Max-Cut, a closely related graph problem, and

analyze multiple attempts to show that this problem has a smoothed quasipolynomial

time.

1.1 Game Theory Background

Before we begin, it is useful to introduce important concepts in game theory that will

be mentioned throughout this paper.

1.1.1 Games and Nash Equilibria

Formally, we define a game as a set of players, where each player has some set of

strategies they can choose from. We define a "strategy profile" for a player as a

deterministic or probabilistic choice of strategies that player takes. We define the

payoff that a player receives as the value they obtain, and it is a function of both

their strategy profile and the profiles of all other players. We assume that each player

is selfish, and they are only trying to maximize their individual payoffs. We also

assume that players do not communicate with each other and have no ability to

collude.

A Nash equilibrium is defined as a set of strategy profiles where no individual

player can unilaterally improve their payoff. In other words, assuming all other players

keep the strategy profiles assigned to them in the equilibrium, the current player has

no better option than their equilibrium strategy profile. A Nash equilibrium in which

each player determines their strategies deterministically (i.e. each player chooses one

strategy to play) is referred to as a pure Nash equilibrium. On the other hand, a Nash

10

equilibrium in which any players choose their strategies probabilistically is referred

to as a mixed Nash equilibrium. Note that a Nash equilibrium may not maximize

the total payoff of all players in the game, and the strategy profiles that do maximize

the total payoff do not necessarily constitute a Nash equilibrium, since in that case

one player may be able to improve their individual payoff by changing their strategy.

Rather, a Nash equilibrium represents a local optimum in some sense. And due to

the fact that no player can improve by acting unilaterally, a Nash equilibrium is

considered a point of reasonable stability (again, assuming players cannot collude).

Nash equilibria are an extremely important area of research because of their preva-

lence in the real world. Many situations in nature, markets, social networks, and vari-

ous other fields can be modelled as games. Determining where and if these real-world

games will converge to a Nash equilibria is a significant area of interest.

1.1.2 Complexity Classes

The classes P and NP are familiar to anyone in the field of computer science. However,

these complexity classes do not sufficiently capture the complexity of many problems

in algorithmic theory. Computing Nash equilibria for general games is known to be

intractable, and even for many simple games, finding Nash equilibria is hard under

worst-case analysis. However, a variety of empirical evidence shows that many dif-

ferent types of games do indeed converge to Nash equilibria in nature, and there

are many algorithms that have been shown to efficiently compute Nash equilibria

for certain games with real-world inputs. To better identify the complexity of game

theoretic problems in the real world, new complexity classes have been defined to en-

capsulate these problems. These complexity classes also have important applications

in machine learning and other areas of theoretical computer science.

Papadimitriou [8] defined the class PPAD which encapsulates the complexity of

computing Nash equilibria in general games. The class can be defined by one of its

complete problems, End-Of-The-Line. The problem states, given a graph 𝐺 (possibly

exponentially large, i.e. represented by a set of vertices and black-box predeces-

sor/successor function to compute predecessors/successors of a given node) with no

11

isolated vertices, with every vertex having at most one predecessor and one successor,

and a "source" vertex 𝑠 in 𝐺 with no predecessor, find a vertex 𝑡 ̸= 𝑠 that is either

a "sink" node with no successor or another "source" node with no predecessor. The

abbreviation stands for "Polynomial Parity Argument on Directed Graphs", and it

is the class of problems that can be shown to be total by a parity argument on a

graph. It has been shown that computing Nash equilibria in general is equivalent

to End-Of-The-Line, and thus computing Nash equilibria is also a PPAD-complete

problem.

Johnson et al. [7] introduced the class PLS, for "Polynomial Local Search" to de-

scribe the complexity of local search problems. The class can be defined by the prob-

lem Local-Opt: Given a polynomial-time neighborhood function 𝑓 and a polynomial-

time potential function 𝑝, find a point 𝑥 that is a local minimum of 𝑝 with respect

to 𝑓 . The class PLS is smaller than PPAD, but many problems in game theory and

machine learning have been shown to be PLS-complete.

To analyze problems that have a solution because of both a fixed point argument

(like PPAD) and a potential argument (like PLS), Daskalakis [5] introduced CLS,

which is equal to PPAD ∩ PLS. An example of a CLS-complete problem is Banach-

Fixed-Point, in which we seek to find an approximate fixed point of a contraction

map 𝑓 on a metric space (𝑀,𝑑). Because this problem is a fixed point computa-

tion, it is obviously in PPAD. But note that finding a fixed point is the equivalent of

minimizing the distance 𝑑(𝑓(𝑥), 𝑥) between a point 𝑥 and its corresponding mapping

𝑓(𝑥). Therefore, we can use 𝑝(𝑥) := 𝑑(𝑓(𝑥), 𝑥)) as a potential function to see that this

problem is in PLS. Many problems of interest are known to lie within CLS, including

finding KKT points and computing mixed Nash equilibria in coordination games,

congestion games, and simle stochastic games. CLS more tightly encapsulates the

complexity of many game theoretic problems. This paper, and much of the current

research in algorithmic game theory, seeks to find even tighter complexity bounds on

specific problems in game theory, via algorithmic approaches and reductions to other

problems.

12

1.2 Discussion Outline

Here we will provide a high-level overview of the discussion throughout the rest of

the paper.

Chapter 2 introduces prior research. We will introduce smoothed complexity,

network coordination games, and local max cut and results from other papers on

these topics. We will introduce some useful proofs from other papers at a high level

to motivate our discussion in Chapters 3 and 4.

Chapter 3 will discuss our key ideas and techniques at a high level. We will also

explain variables and definitions that will be used throughout Chapter 4.

Chapter 4 will show our analysis of the 2-Flip Algorithm for 2-Flip-Max-Cut.

While we do not prove a quasipolynomial runtime, we discuss attempts at a proof

that can potentially act as a starting point for future research. We will also discuss

how proof of a quasipolynomial runtime relates to prior work in network coordination

games.

Lastly, Chapter 5 will provide a review of our discussion and how it relates to prior

work. We will then discuss the most pressing questions that have yet to be answered

in the literature.

13

14

Chapter 2

Related Work

In this chapter, we will discuss some of the related work around smoothed complex-

ity and its use in network coordination games. We will introduce the definition of

smoothed complexity and explain how it has been used to study network coordination

games and Local-Max-Cut. We will also introduce smoothness-preserving reductions

and how prior research in this area motivates our main result.

2.1 Smoothed Complexity

While there are many local search problems (traveling salesman, clustering, linear

programming, etc.) with algorithms that are efficient in practice, there has been a

growing desire for a theoretical support of this efficiency. In many of these cases,

there exist contrived adversarial inputs that can make reaching a local optimum take

exponential time, and thus worst-case analysis does not accurately represent practi-

cal efficiency. Additionally, expected case analysis considers random inputs, which

often have special properties with high probability. Again, this is not an accurate

representation of the real world. To solve this issue, Spielman and Teng [10] invented

smoothed analysis, a more realistic approach in which inputs are perturbed by a small

amount of random noise. Since this is often the case in reality with measurement er-

rors, rounding errors, etc., smoothed analysis provides a much more useful analysis

for equilibrium computation problems.

15

In some sense, smoothed complexity is concerned primarily with cases that could

actually arise in the real world. Thus, a polynomial smoothed complexity for com-

puting Nash equilibria for a specific game, while less strict than worst-case, formally

gives us confidence that that algorithm will find a Nash equilibrium in polynomial

time in practice. This also gives us confidence that in real-world situations or envi-

ronments that resemble a game theory problem, the players will converge to a Nash

equilibrium in polynomial time.

Since computing Nash equilibria is ultimately a local optimization problem, much

of the recent research uses approaches from smoothed analysis. The following four

sections provide more detail on related work on smoothed algorithms for Local-Max-

Cut (a closely related optimization problem), and some recent smoothed analysis for

network coordination games.

2.2 Local-Max-Cut and the FLIP Algorithm

The problem of Max-Cut is, given a graph 𝐺 = (𝑉,𝐸) with edge weights 𝑤 : 𝐸 → R,

to find a partition (𝑉1, 𝑉2) of the vertices that maximizes the sum of the edges between

𝑉1 and 𝑉2. Local-Max-Cut is a variant of this problem in which we seek to find a

"locally optimal" maximum cut. That is, a cut that cannot be improved upon by

unilaterally moving any one node in the graph from one partition to the other. One

way to solve this is the FLIP algorithm, which takes an arbitray starting partition

(𝑉1, 𝑉2) and iteratively moves one node from 𝑉1 to 𝑉2 or vice versa. Throughout

this paper, we will also refer to Local-Max-Cut as 1-Flip-Max-Cut, as The algorithm

continues until all possible transitions of one node do not improve the total weight

of the cut. In the smoothed analysis approach, we consider an input graph 𝐺 =

(𝑉,𝐸) where instead of fixing each edge weight deterministically, they are described

using a probability density function 𝑓𝑒 : [−1, 1] → [0, 𝜑]. While it is known that

finding a locally optimal solution is PLS-complete, Etscheid and Roglin [6] show that

the smoothed number of steps of the FLIP algorithm is bounded from above by a

polynomial in 𝑛log𝑛 and 𝜑.

16

Note that there are an exponential number of possible flips, so in the worst-case,

the FLIP algorithm will take exponential time for Local-Max-Cut. However, in the

smoothed case, we are guaranteed a quasipolynomial time regardless of initial cut

and pivot rules [6]. While Local-Max-Cut might not seem related to game theory

on the surface, it is a local optimization problem with a potential function that

has many relationships to a variety of games, including network coordination games.

Additionally, the smoothed analysis approach of Etscheid and Roglin [6] provides a

foundation for the following related work and the work conducted for this paper.

Further research has led to significant improvements from the quasipolynomial

time given here. Building on the same smoothed complexity framework, Angel et

al. [1] showed that any implementation of the FLIP algorithm for Local-Max-Cut

terminates in at most 𝑛(𝜑 log 𝑛)𝑐 steps for complete graphs, where 𝑐 is a universal

constant. This bound was then improved upon even further by Bibak et al. [2], which

showed that for every constant 𝜂 > 0, any implementation of the FLIP algorithm

terminates in 𝑂(𝜑𝑛7.829+3.414𝜂) steps. Most recently, Chen and Guo [4] improved the

polynomial in 𝑛log𝑛 and 𝜑 bound by Etscheid and Roglin [6] for general graphs to a

polynomial in 𝑛𝑂(
√
log𝑛) and 𝜑.

2.3 Generalizing to Max-𝑘-Cut

The problem of Local-Max-Cut is sometimes referred to as Max-2-Cut, as the prob-

lem is to find a local maximum of the cut weight where we partition the nodes into

two disjoint sets. The more general problem, Local-Max-𝑘-Cut, seeks to find a local

maximum cut weight when the vertices are partitioned into 𝑘 disjoint sets.

Smoothed complexity for variable 𝑘 is an active area of research. Research by

Bibak et. al. [2] shows that Local-Max-3-Cut can be solved in smoothed polyno-

mial time for complete graphs, and Local-Max-𝑘-Cut for arbitrary 𝑘 can be solved in

quasipolynomial time for complete graphs. The smoothed complexity of Local-Max-

𝑘-Cut for arbitrary graphs is still an open problem.

We suspect that Local-Max-𝑘-Cut has a close relationship with network coor-

17

dination games, as we can think of each of the 𝑘 partitions as holding one of 𝑘

strategies for each player. A formal smoothness-preserving reduction from network

coordination games to Local-Max-𝑘-Cut would provide an alternative algorithm for

computing Nash equilibria in network coordination games, and potentially provide

speedup results in practice.

2.4 Network Coordination Games

We define a network coordination game by an undirected graph 𝐺 = (𝑉,𝐸) where

each node 𝑣 ∈ 𝑉 plays a 2-player coordination game with each of its neighbors. Each

node has 𝑘 possible strategies to choose from, so each coordination game between

each (𝑢, 𝑣) pair is represented by a payoff matrix 𝐴𝑢𝑣. Once each node 𝑣 takes an ac-

tion, the payoffs are fixed, and we define the payoff for an individual node 𝑣 to be the

sum of all of its payoffs. We define NetCoordNash as the problem of finding a Nash

equilibrium in a network coordination game. More specifically, 𝑘-NetCoordNash is

the problem where each player has 𝑘 strategies.

Network coordination games are an important area of research in computer sci-

ence and beyond because of their many applications. Network problems in computer

science, social networks, job finding, and voting are just a few of the problems that

can be modelled by a network coordination game.

Boodaghians et al. [3] show that 𝑘-NetCoordNash, a PLS-complete problem, has

a smoothed quasipolynomial time algorithm. They do this both through an algorith-

mic approach and via reductions.

For the algorithmic approach, they show that when 𝑘 is a constant and each entry

of each 𝐴𝑢𝑣 is perturbed independently at random, any "sufficiently long" sequence

of steps of any better-response algorithm will make only little improvement with low

probability. Their analysis combines and extends much of the work done by Angel et.

al. [1] on Local-Max-Cut, while also showing that Local-Max-Cut is a special case of

network coordination games where 𝑘 = 2 [3]. The proof also relies heavily on rank

analysis and union bounds. This analysis mirrors the framework created by Etscheid

18

and Roglin [6] to show quasipolynomial smoothed complexity for 1-Flip-Max-Cut. In

Chapter 4, we will use a similar framework in proving our main result.

Boodaghians et al. [3] also provide a well-defined framework for randomized,

smoothness-preserving reductions. With this framework, an alternative algorithm for

2-strategy network coordination games is shown, and a conditional one for general

network coordination games. We will introduce the concept of smoothness-preserving

reductions and their importance in the following section.

2.5 Smoothness-Preserving Reductions

In algorithmic analysis, it is often useful to reduce a problem to some other problem.

However, the traditional method of reduction does not accurately handle smoothed

inputs, because we may not have guarantees that the corresponding inputs in the re-

duction are also smoothed. Below we provide the definition of smoothness-preserving

reductions introduced by Boodaghians et al. [3]. Note that 𝜎 is a vector of strategies

representing the chosen strategies of each player.

Definition 2.5.1 (Strong and Weak Smoothness-Preserving Reductions). A ran-

domized, smoothness-preserving reduction from a search problem 𝒫 to 𝒬 is defined

by polynomial-time computable functions 𝑓1, 𝑓2, and 𝑓3, and a real probability space

Ω ⊆ R𝑑, such that,

• For any (𝐼,𝑋) ∈ 𝒫, and for arbitrary 𝑅 ∈ Ω, (𝑓1(𝐼), 𝑓2(𝑋,𝑅)) is an instance of

𝒬, such that all (locally optimal) solutions 𝜎 map to a solution 𝑓3(𝜎) of (𝐼,𝑋).

• Whenever the entries of 𝑋 and 𝑅 are drawn independently at random from

distributions with density at most 𝜑, then 𝑓2(𝑋,𝑅) has entries which are inde-

pendent random variables with density at most 𝑝𝑜𝑙𝑦(𝜑, |𝑋|, |𝑅|). This is called

a strong reduction.

• If the entries of 𝑓2(𝑋,𝑅) instead of being independent are linearly independent

combinations of entries of 𝑋 and 𝑅, and the density is similarly bounded, then

call it a weak reduction.

19

This framework created by Boodaghians et al. [3] allows us to reduce problems in

smoothed complexity from one to another. Ideally, we can create strong smoothness-

preserving reductions, because then we can be sure that the inputs to 𝒬 are also

perturbed by random and independent noise, and thus the instance of 𝒬 we get from

the reduction is exactly a smoothed instance of 𝒬. And if 𝒬 has an algorithm that

runs efficiently on smoothed instances, then we can immediately conclude that 𝒫 also

has an algorithm that runs efficiently on smoothed instances of 𝒫 .

While they are ideal, there has been little prior work done in the area of useful

strong smoothness-preserving reductions. Weak smoothness-preserving reductions,

on the other hand, have been easier to find. However, they provide a challenge. Note

that if we have a weak smoothness-preserving reduction from a smoothed instance of

𝒫 to 𝒬, the noise in the inputs to 𝒬 is no longer entirely independent. Because the

inputs to 𝒬 have some level of correlation, it is not clear or obvious that common

algorithmic techniques for smoothed problems will still work on the given instance

of 𝒬. And if they do, it may very well be case that they are no longer as efficient

as if the noise was independent. As a result, weak smoothness-preserving reductions

will require careful analysis of how correlated noise affects the specific problem being

used for 𝒬.

The good news is that recent research suggests efficient algorithms exist for at

least some problems with inputs with some "small" amount of correlated noise. In

Boodaghians et al. [3], they provide a weak smoothness-preserving reduction from

𝑘-NetCoordNash to 2-Flip-Max-Cut. While they do not show that 2-Flip-Max-Cut

admits an efficient smoothed polynomial time algorithm with the corresponding cor-

relation in noise, they do show that if a problem 𝒫 has a weak smoothness-preserving

reduction to Local-Max-Cut (also known as 1-Flip-Max-Cut) on an arbitrary com-

plete graph, then 𝒫 has a quasipolynomial smoothed complexity. This also provides

the framework for us to conclude that once we show that 2-Flip-Max-Cut can be

solved efficiently with the FLIP algorithm, then so can the smoothed case of network

coordination games.

A high-level overview of their reduction from 𝑘-NetCoordNash to 2-Flip-Max-Cut

20

and the motivation for our work are discussed in the following sections.

2.6 𝑘-NetCoordNash to 2-Flip-Max-Cut

We define an instance of a network coordination game as a graph 𝐺 = (𝑉,𝐸) where

each node 𝑣 ∈ 𝑉 represents a player, and each edge (𝑢, 𝑣) ∈ 𝐸 has a matrix 𝐴𝑢𝑣,

where 𝐴𝑢𝑣[𝑖, 𝑗] is the payoff players 𝑢 and 𝑣 receive when 𝑢 takes strategy 𝑖 and 𝑣

takes strategy 𝑗. We refer to a set of pure strategy profiles with the vector 𝜎.

For a weak smoothness-preserving reduction from 𝑘-NetCoordNash to 2-Flip-Max-

Cut, Boodaghians et al. [3] take the graph 𝐺 from the network coordination game

instance and create a new graph 𝐺′ which has locally optimal cuts that correspond to

strategy profiles, and cut values that correspond to the total payoff of those strategy

profiles.

The graph is created as follows. For each node 𝑢 ∈ 𝑉 and each strategy 𝑖, create a

node (𝑢, 𝑖) to represent player 𝑢 choosing strategy 𝑖. Also create two terminal nodes

𝑠 and 𝑡, and connect all other nodes to them. Draw edges between each (𝑢, *), and

draw edges between each pair (𝑢, *) and (𝑣, *) if 𝑢 and 𝑣 share an edge in the network

coordination game. The edges are then weighted such that an optimal partition into

sets 𝑆 and 𝑇 must have 𝑠 ∈ 𝑆 and 𝑡 ∈ 𝑇 , and 𝑆 contains exactly one pair (𝑢, *) for

each player 𝑢. Here 𝑆 corresponds to a pure Nash equilibrium where if (𝑢, 𝑖) appears

in 𝑆, that corresponds to player 𝑢 picking strategy 𝑖.

Also note that any player 𝑢 moving from strategy 𝑖 to another strategy 𝑖′ would

be represented by taking (𝑢, 𝑖) out of 𝑆 and replacing it with (𝑢, 𝑖′). In other words,

two nodes in the graph would be moved, or a 2-flip. Therefore, any locally maximum

cut up to 2 flips would exactly correspond to a pure Nash equilibria.

Also note that any player 𝑢 moving from strategy 𝑖 to another strategy 𝑖′ would

be represented by taking (𝑢, 𝑖) out of 𝑆 and replacing it with (𝑢, 𝑖′). In other words,

two nodes in the graph would be moved, or a 2-flip.

21

2.7 Motivation for Our Work

Below we discuss how the presented related work motivates our work on Local-Max-

Cut and network coordination games.

2.7.1 Local-Max-Cut

The problem of Local-Max-Cut has been studied extensively by theoretical computer

scientists and algorithmic game theorists alike. However, there remains a significant

gap between the runtime of the FLIP algorithm empirically and what researches have

been able to formally prove.

Additionally, it is still an open problem how generalizing Local-Max-Cut affects

the runtime of the FLIP algorithm. Boodaghians et al. [3] briefly discuss 𝑑-Flip-Max-

Cut, in which we wish to find a local maximum cut up to 𝑑 flips of nodes. Obviously,

increasing 𝑑 causes some complexity increase, but it is conjectured that at least in the

case of 𝑑 = 2, the runtime of the FLIP algorithm is the same as 1-Flip-Max-Cut. We

provide a definition of a 2-Flip algorithm for smoothed instances of the 2-Flip-Max-

Cut problem, and seek to provide a starting point for a proof that this algorithm runs

in quasipolynomial time.

2.7.2 Network Coordination Games

As Boodaghians et al. [3] have shown, 2-Flip-Max-Cut is a problem closely related

to network coordination games. Additionally, the 2 flips may correspond to a player

switching strategies in numerous other games, so it is possible that 2-Flip-Max-Cut

has close relationships with other types of games as well.

Because Boodaghians et al. [3] does not directly show that 2-Flip-Max-Cut can be

solved efficiently, the most efficient algorithm known for network coordination games

(presented by Boodaghians et al. [3] in which they apply the Better Response Algo-

rithm directly to a smoothed instance of a network coordination game) still depends

exponentially on 𝑘. It is realistic to consider large values of 𝑘, and thus we wish to

prove a runtime independent of 𝑘. If the 2-Flip algorithm converges in quasipolyno-

22

mial time for 2-Flip-Max-Cut, we can conclude, via the weak smoothness-preserving

reduction presented by Boodaghians et al. [3] from 𝑘-NetCoordNash to 2-Flip-Max-

Cut, that 𝑘-NetCoordNash also has a quasipolynomial algorithm independent of 𝑘.

23

24

Chapter 3

Techniques and Definitions

In this chapter, we will provide a high-level overview of the key techniques we use

in our attempts to show that 2-Flip-Max-Cut has a quasipolynomial runtime using

the 2-FLIP algorithm. In Chapter 4 we will see a more technical analysis of these

techniques.

3.1 High-Level Proof Overview

Our framework follows the general outline provided in Etscheid et al. [6] that shows a

quasipolynomial runtime for the FLIP algorithm on 1-Flip-Max-Cut. At a high level,

the steps of the proof are as follows:

1. Define the 2-FLIP algorithm.

2. Show that for any "𝑘-repeating sequence", there is some subset 𝑇 of the set of

repeating pairs 𝐷 such that the linear combinations of these pairs are linearly

independent.

3. Using Step 2, conclude that any 𝑘-repeating sequence has linear combinations

of a sufficient rank.

4. Show that for any 𝑘-repeating sequence of 5𝑛2 flips, the probability that all of

the steps made little to no improvement is very low.

25

5. Show that it is impossible for any sequence of 5𝑛2 flips to not be a 𝑘-repeating

sequence.

6. Conclude that the expected number of flips is a quasipolynomial in 𝜑 and 𝑛.

The key difference here from the proof in Etscheid et al. [6] is that rather than a

flip being an individual node, we are now defining a flip as a random pair of nodes

that are being flipped. Careful work is needed here to ensure that the framework of

the proof for 1-Flip-Max-Cut works in this case.

3.2 Relation to Network Coordination Games

In Theorem 3.6 of Boodaghians et al. [3], it is shown that 𝑘-NetCoordNash (the

problem of computing a pure Nash equilibrium in network coordination games where

each player has 𝑘 strategies), admits a weak smoothness-preserving reduction to 2-

Flip-Max-Cut. However, without any proof on the complexity of 2-Flip-Max-Cut, the

conclusion we are left with from Boodaghians et al. [3] is that 𝑘-NetCoordNash has

a smoothed quasipolynomial time with 𝑘 in the exponent.

Suppose instead that one could show that the 2-FLIP algorithm solves smoothed

instances of 2-Flip-Max-Cut in quasipolynomial time. Then, as noted in Boodaghians

et al. [3], this would imply that there exists a smoothed quasipolynomial algorithm

for 𝑘-NetCoordNash for non-constant 𝑘. Such a result would significantly improve

upon the current best runtime analysis, which increases exponentially with 𝑘.

Also note that in the reduction from 𝑘-NetCoordNash to 2-Flip-Max-Cut in Boodaghi-

ans et al. [3], the graph produced for 2-Flip-Max-Cut is complete if and only if the

graph for the given smoothed instance of 𝑘-NetCoordNash is complete as well. There-

fore, a potential weaker (but still valuable) result would be to show that smoothed

instances of 2-Flip-Max-Cut where the graph is complete have a quasipolynomial

runtime. If this were the case, then we could conclude that smoothed instances of

𝑘-NetCoordNash where the graph is complete have a smoothed efficient algorithm for

non-constant 𝑘.

26

The Etscheid and Roglin paper [6] shows that the FLIP algorithm (i.e. the 1-Flip

algorithm where each flip is only one node) for 1-Flip-Max-Cut has a runtime of a

polynomial in 𝜑 and 𝑛𝑂(log𝑛). While we are unable to show the same runtime for the

2-Flip algorithm on 2-Flip-Max-Cut, it is believed that 2-Flip-Max-Cut can be solved

in a similar runtime. Chapter 4 will discuss our attempts at reaching this runtime.

3.3 Definitions

Below we will provide formal definitions of the two things we

Definition 3.3.1 (2-Flip Algorithm). Let the 2-Flip Algorithm be the following pro-

cess for an instance of the 2-Flip-Max-Cut problem on a graph 𝐺 = (𝑉,𝐸):

1. Randomly assign nodes to the two partitions to create a random starting con-

figuration.

2. Pick a random pair of nodes 𝑢, 𝑣 ∈ 𝑉 . If flipping each of 𝑢 and 𝑣 to the partition

opposite of the one they are currently in, perform that flip. Repeat this process

until no possible pair of nodes yields such an improvement.

Note that the complexity of the 2-Flip Algorithm is the number of moves required

for any implementation of the 2-Flip Algorithm to terminate.

Definition 3.3.2 (𝑘-Repeating Sequence). For an instance of 2-Flip-Max-Cut with

the graph 𝐺 = (𝑉,𝐸), let 𝑛 = |𝑉 |, 𝑚 =
(︀
𝑛
2

)︀
and let parameter 𝑘 = ⌈5 log2𝑚⌉. We

call a sequence of ℓ ∈ N consecutive steps 𝑘-repeating if at least ⌈ℓ/𝑘⌉ different pairs

of nodes move at least twice in the sequence.

So for each two consecutive moves of a pair of nodes, we can obtain a linear

combination which only contains edges to active nodes. This will be discussed further

in Chapter 4.

27

28

Chapter 4

Smoothed Analysis of 2-Flip-Max-Cut

Below we provide a detailed description at our attempts of showing a quasipolynomial

runtime for 2-Flip-Max-Cut. The framework we have used largely follows that of the

analysis in Etscheid and Roglin [6].

In the search for a quasipolynomial algorithm for 2-Flip-Max-Cut, we have ex-

plored two main ideas. The first was, for a set 𝐷 of repeating pairs, rather than find

a subset 𝑇 ⊆ 𝐷 of size |𝐷|/𝑐 for some constant 𝑐 where the linear combinations in 𝑇

are linearly independent, we sought to find a subset 𝑇 of size Ω(
√
𝐷).

Our second area of work was to modify the lemmas from Etscheid and Roglin [6]

such that the linear combinations in 𝐷 itself must be linearly independent, and thus

𝑇 = 𝐷. The key issue here is proving that 𝐷 is of a sufficient size. Both of these

areas of work are discussed below.

Note also that here we are looking at 2-Flip-Max-Cut where the graph 𝐺 is com-

plete, i.e. each pair of nodes shares an edge. This fact will be vital to our analysis

below.

4.1 A Smaller Rank Bound

Below we show a starting point for the analysis of the 2-Flip algorithm on 2-Flip-Max-

Cut if 𝑇 has size at least Ω(
√
𝐷). Note that the lemmas we introduce are similar to

the ones presented in Etscheid and Roglin [6], but our definitions are slightly different

29

because each flip and linear combination refers to a pair rather than an individual

node.

Lemma 4.1.1. Let 𝑆 be a 𝑘-repeating sequence of pairs of length ℓ with an arbitrary

starting configuration. Consider the union of sets of linear combinations obtained

by adding the linear combinations of two consecutive moves of a pair which moves

multiple times. Then the rank of these linear combinations is at least
√︀

⌈ℓ/𝑘⌉.

Proof. Let 𝑆 be a 𝑘-repeating sequence of length ℓ. We construct an auxiliary graph

𝐺′ = (𝑉,𝐸 ′) in the following way: Let 𝐷 ⊆ 𝑉 × 𝑉 be the set of pairs (𝑢, 𝑣) which

move at least twice in the sequence 𝑆. Define 𝑛(𝑢, 𝑣) as the number of occurrences

and 𝜋𝑢𝑣(𝑖) as the position of the 𝑖th occurrence of a pair (𝑢, 𝑣) in the sequence 𝑆. For

a pair (𝑢, 𝑣) ∈ 𝐷 and 1 ≤ 𝑖 < 𝑛(𝑢, 𝑣), let 𝐿𝑢𝑣(𝑖) be the sum of the linear combinations

corresponding to the moves 𝜋𝑢𝑣(𝑖) and 𝜋𝑢𝑣(𝑖+1). For any 𝐿𝑢𝑣(𝑖), let 𝐸𝑖
𝑢𝑣 be the set of

edges {𝑢,𝑤} and {𝑣, 𝑤} connecting 𝑢 and 𝑣 with all nodes 𝑤 which occur in 𝐿𝑢𝑣(𝑖),

i.e., all nodes 𝑤 which move an odd number of times between 𝜋𝑢𝑣(𝑖) and 𝜋𝑢𝑣(𝑖 + 1).

For every pair (𝑢, 𝑣) ∈ 𝐷 and every 1 ≤ 𝑖 < 𝑛(𝑢, 𝑣), the set 𝐸𝑖
𝑢𝑣 is not empty because

𝐿𝑢𝑣(𝑖) cannot be zero in every component as it is the sum of two improving steps.

Set 𝐸𝑢𝑣 =
⋃︀

𝑖𝐸
𝑖
𝑢𝑣 and 𝐸 ′ =

⋃︀
(𝑢,𝑣)∈𝐷 𝐸𝑢𝑣.

Claim 4.1.2. Let 𝑇 ⊆ 𝐷 where every pair (𝑢, 𝑣) ∈ 𝑇 contains at least one node

𝑢* /∈ 𝑇 ′ ∖ {𝑢, 𝑣}, where 𝑇 ′ is the set of all nodes that appear in a pair in 𝑇 . If for

every pair (𝑢, 𝑣) ∈ 𝑇 , the node unique to 𝑇 has a neighbor 𝑤 ∈ 𝑉 ∖ 𝑇 ′ in the graph

𝐺′, then there are indices 1 ≤ 𝑖𝑢𝑣 < 𝑛(𝑢, 𝑣) for all (𝑢, 𝑣) ∈ 𝑇 such that the linear

combinations {𝐿𝑢𝑣(𝑖𝑢𝑣) : (𝑢, 𝑣) ∈ 𝑇} are linearly independent.

Proof. Let (𝑢, 𝑣) ∈ 𝑇 and let 𝑢* be the node in the pair (𝑢, 𝑣) unique to that pair.

Let 𝑤 ∈ 𝑉 ∖ 𝑇 ′ be a neighbor of 𝑢*, so (𝑢*, 𝑤) ∈ 𝐸𝑖𝑢𝑣
𝑢𝑣 . By definition, the edge (𝑢*, 𝑤)

cannot be covered by an other node in 𝑇 ′ ∖{𝑢*, 𝑣} because no other pair in 𝑇 contains

𝑢*. Hence it does not occur in any linear combination 𝐿𝑢′𝑣′(𝑖), (𝑢′, 𝑣′) ∈ 𝑇 ∖ {(𝑢, 𝑣)}.

30

As this argument holds for every (𝑢, 𝑣) ∈ 𝑇 , the linear combinations selected this way

must be linearly independent.

Claim 4.1.3. There exists a subset 𝑇 ⊆ 𝐷 with |𝑇 | ≥ Ω(
√︀

|𝐷|) and 1 ≤ 𝑖𝑢𝑣 < 𝑛(𝑢, 𝑣),

(𝑢, 𝑣) ∈ 𝑇 , such that the linear combinations {𝐿𝑢𝑣(𝑖𝑢𝑣) : (𝑢, 𝑣) ∈ 𝑇} are linearly

independent.

Proof. We first show that for a set of pairs 𝐷, there must be a subset 𝑇 ⊆ 𝐷 where

|𝑇 | ≥ Ω(
√︀

|𝐷|).

To prove this, let 𝑇 ⊆ 𝐷 be the largest set of pairs each with a unique node, and

let 𝑀 = |𝑇 |. We know that the most nodes 𝑇 could possibly have is 2|𝑇 | = 2𝑀 , since

every node in every pair could be unique. We know that every node that appears in

𝐷 must also appear in 𝑇 , because otherwise we could add a new pair with a unique

node into 𝑇 , which would contradict 𝑇 being the largest set of pairs each with a

unique node. Therefore, the maximum number of pairs in 𝐷 is
(︀
2𝑀
2

)︀
= 𝑂(𝑀2). Since

|𝐷| ≤ 𝑂(𝑀2) and |𝑇 | ≥ 𝑀 , we conclude that |𝑇 | = Ω(
√
𝐷).

By definition, the 𝑇 we defined above has at least one unique node for every pair.

For a given pair (𝑢, 𝑣), let 𝑢* be the node in (𝑢, 𝑣) that is unique to that pair. And

let 𝑤 be any node in 𝑉 ∖ 𝑇 ′. Because the input graph is complete, we know that the

edge (𝑢*, 𝑤) is in the graph. We also know, since 𝑢* is unique to that pair, that no

other pair can cover that edge. Therefore for each pair we have a unique edge, and

thus 𝑇 is a valid subset.

Lemma 4.1.4. Denote by ∆(ℓ) the smallest improvement made by any 𝑘-repeating

sequence of length ℓ where every step increases the potential with an arbitrary starting

configuration. Then for any 𝜀 > 0,

Pr[∆(ℓ) ≤ 𝜀] ≤ (2𝑛)2ℓ(2𝜑𝜀)
√

⌈ℓ/(2𝑘)⌉

31

Proof. We first fix a 𝑘-repeating sequence of length ℓ. As there are ℓ steps in this

sequence, and each step is a pair of nodes, there are at most 𝑛2ℓ choices for the

sequence. We will use a union bound over all these 𝑛2ℓ many choices and over all

possible starting configurations of the pairs that are active in the sequence. This gives

the additional factor of 22ℓ since at most 2ℓ nodes can move.

For a fixed starting configuration and a fixed sequence, we consider a pair (𝑢, 𝑣)

which moves at least twice and linear combinations 𝐿1 and 𝐿2 which correspond to

two consecutive moves of the pair (𝑢, 𝑣). As after these two moves node 𝑢 and 𝑣

are in their original partition again, the sum 𝐿 = 𝐿1 + 𝐿2 contains only weights

belonging to edges between 𝑢 and 𝑣 and other nodes that have moved an odd number

of times between the two moves of the pair (𝑢, 𝑣). In particular, 𝐿 contains only

weights belonging to edges between active nodes, for which we fixed the starting

configuration.

Only if 𝐿 ∈ (0, 2𝜀], both 𝐿1 and 𝐿2 can takes values in (0, 𝜀]. Hence it suffices to

bound the probability that 𝐿 ∈ (0, 2𝜀]. Due to Lemma 4.1.1, the rank of the set of

all linear combinations constructed like 𝐿 is at least
√︀

⌈ℓ/𝑘⌉. We can apply Lemma

B.3.1 of [9] to obtain a bound of (2𝜀𝜑)
√

⌈ℓ/𝑘⌉ for the probability that all these linear

combinations take values in (0, 2𝜀]. Together with the union bound this proves the

claimed bound on ∆(ℓ).

Below we show that a sequence of 5𝑚 steps where 𝑚 =
(︀
𝑛
2

)︀
= 𝑂(𝑛2) must be

𝑘-repeating. The proof is exactly the same as in Etscheid and Roglin [6], except here

we have 𝑚 instead of 𝑛.

Lemma 4.1.5. Let 𝑚 =
(︀
𝑛
2

)︀
= 𝑂(𝑛2) and denote by ∆ := min

1≤ℓ≤5𝑚
∆(ℓ) the minimum

improvement by any 𝑘-repeating sequence of length at most 5𝑚 where every step in-

creases the potential, starting with an arbitrary starting configuration. Then ∆ is a

lower bound for the improvement any sequence of 5𝑚 steps makes.

Proof.

32

Definition 4.1.6. We call a sequence 𝐴1, . . . , 𝐴𝑞 of sets a non-𝑘-repeating block

sequence of length ℓ if the following conditions hold.

(i) For every 1 ≤ 𝑖 < 𝑞, |𝐴𝑖| = 𝑘.

(ii) 1 ≤ |𝐴𝑞| ≤ 𝑘.

(iii)
∑︀𝑞

𝑖=1 |𝐴𝑖| = ℓ.

(iv) For every 𝑖 ≤ 𝑗, the number of elements that are contained in at least two sets

from 𝐴𝑖, . . . , 𝐴𝑗 is at most 𝑗 − 𝑖.

We denote by 𝑛𝑘(ℓ) the cardinality of 𝐴1∪ . . .∪𝐴𝑞 minimized over all non-𝑘-repeating

block sequences of length ℓ.

It is easy to see that any sequence 𝑆 of length ℓ which does not contain a 𝑘-

repeating subsequence corresponds to a non-𝑘-repeating block sequence of length ℓ

with ⌈ℓ/𝑘⌉ blocks if we subdivide 𝑆 into blocks of length 𝑘. It then suffices to show

that there is no non-𝑘-repeating block sequence of length 5𝑚 with at most 𝑚 elements.

In other words, 𝑛𝑘(5𝑚) > 𝑚.

If 𝑚 ≤ 3, then there are at least two blocks 5𝑚 > 𝑘, but 𝑘 = ⌈5 log2𝑚⌉ > 𝑚

such that the first condition of Definition 4.1.6 cannot be satisfied. Therefore we can

assume 𝑚 ≥ 4.

Let 𝑞 = ⌈5𝑚/𝑘⌉ and let 𝐴1, . . . , 𝐴𝑞 be a non-𝑘-repeating block sequence of length

5𝑚 with exactly 𝑛𝑘(5𝑚) different elements 𝑥1, . . . , 𝑥𝑛𝑘(5𝑚) contained in 𝐴1 ∪ . . .∪𝐴𝑞.

Construct an auxiliary graph 𝐻 as follows: Introduce a vertex 𝑖 ∈ 𝑉 (𝐻) for each set

𝐴𝑖. For an element 𝑥𝑖, let 𝜌(𝑖) be the number of different sets which contain 𝑥𝑖 and let

𝐴𝑖1 , . . . , 𝐴𝑖𝜌(𝑖) (𝑖1 < . . . < 𝑖𝜌(𝑖)) be these sets. Define 𝑃𝑖 = {(𝑖𝑗, 𝑖𝑗+1) : 1 ≤ 𝑗 < 𝜌(𝑖)}.

Then define 𝐸(𝐻) =
⋃︀𝑛𝑘(5𝑚)

𝑖=1 𝑃𝑖 as the disjoint union of these sets. Therefore, edges

in 𝐻 represent neighbored occurrences of a repeat element.

The rest of the proof in Etscheid and Roglin [6] is to show that |𝐸(𝐻)| > 4𝑚. We

also know that each edge in 𝐻 means one less different pair we need in the sequence.

Thus,

33

𝑛𝑘(5𝑚) =

𝑞∑︁
𝑖=1

|𝐴𝑖| − |𝐸(𝐻)| = 5𝑚− |𝐸(𝐻)| > 5𝑚− 4𝑚 = 𝑚

Since 𝑛𝑘(5𝑚) > 𝑚, that means that a sequence of length 5𝑚 that is non-𝑘-

repeating must contain more than 𝑚 =
(︀
𝑛
2

)︀
pairs. Since that is impossible, we can

conclude that any sequence of 5𝑚 = 5
(︀
𝑛
2

)︀
must be 𝑘-repeating and satisfy our rank

bounds from above.

The key problem with this process is the size of 𝑇 . In Etscheid and Roglin [6],

they show that |𝑇 | ≥ |𝐷|/3, a crucial component in giving a runtime polynomial in

𝜑 and 𝑛𝑂(log𝑛). Because here we are only able to show that |𝑇 | ≥ Ω(
√
𝐷), it is not

entirely clear how significantly this affects the runtime. However, we do believe that

the runtime in this case would be on the order of 2
√
𝑛 at best. While this would

be a marginal improvement, it is still far from the expected runtime for 2-Flip-Max-

Cut based on empirical results. To determine how this smaller subset 𝑇 affects the

runtime of the 2-Flip algorithm, further analysis is needed.

4.2 Redefining a 𝑘-Repeating Sequence

An alternative approach to combat this issue of 𝑇 being too small could be to provide

a new definition of what exactly a 𝑘-repeating sequence is.

In the framework of Etscheid and Roglin [6], a 𝑘-repeating sequence of length ℓ

is just any sequence with at least ⌈ℓ/𝑘⌉ elements that repeat at least twice in the

sequence. The rest of the results come from proving that there is some large enough

subset 𝑇 of these repeats that has all of the linear independence properties that we

want.

A potential idea is to define a 𝑘-repeating sequence such that the set of repeats

itself contains the linear independence properties that we want. In our case with

2-Flip-Max-Cut, we would like to define a 𝑘-repeating sequence as one where at least

⌈ℓ/𝑘⌉ different pairs move at least twice, and each of these repeating pairs contains at

least one unique node relative to the other repeating pairs. In this case, for complete

34

graphs, 𝐷 itself satisfies the desired linear independence constraint, so we can just

set 𝑇 = 𝐷.

We suspect it may be the case that 𝐷 is large enough to guarantee a smoothed

quasipolynomial runtime where the sequence is still of a relatively small polynomial

length. However, new analysis will be required to determine how to prove this. For

example, if we tried to use the same proof as Etscheid and Roglin [6] that a sequence

of a certain length must be 𝑘-repeating under this new definition, it is not necessarily

true that each edge in 𝐻 would correspond to decreasing the number of unique pairs

needed by exactly 1. Therefore, either an entirely new approach or another way to

conceptualize and design 𝐻 is needed here.

As it stands in the current research, improvements in the complexity of 𝑘-NetCoordNash

rely significantly on the complexity of 2-Flip-Max-Cut.

35

36

Chapter 5

Concluding Remarks

5.1 Overview of Techniques and Background

In this thesis we have discussed at a broad level the pressing questions in algorithmic

game theory. We introduced the complexity classes PPAD, PLS, and CLS. While

these classes have significance outside of the world of game theory, their creation has

been heavily influenced by the goal to further pin down the complexity of computing

Nash equilibria in various games.

These complexity classes, and much of the work in algorithmic game theory in

general, seek to bridge the gap between what is achieved empirically and what can be

proven theoretically. While worst-case analysis considers contrived, unrealistic inputs

and expected-case analysis considers completely random inputs which often share

certain useful properties, smoothed analysis provides researchers a way to formally

analyze the runtimes of algorithms in a more realistic setting. By considering inputs

perturbed by some amount of random noise, we can get a more accurate representation

of how these algorithms will work in practice.

The games of special interest to our research are network coordination games.

With networks appearing everywhere in the world, including nature, finance, and

computer science, these games are of special interest to both theorists and pragmatists

alike.

There has been significant prior work done on these games. Most recently, Boodaghi-

37

ans et al. [3] have shown that computing pure Nash equilibria in network coordination

games (a PLS-complete problem under worst-case analysis) has a smoothed quasipoly-

nomial runtime (in both 𝑛, the number of players, and 𝑘, the number of strategies

each player has) when the network graph is complete. However, we suspect that a

smoothed runtime independent of 𝑘 is possible, as suggested by Boodaghians et al.

[3] in their reduction of 𝑘-NetCoordNash to 2-Flip-Max-Cut.

Our work seeks to summarize our attempts made to bridge this gap. Specifically,

we would like to show a smoothed quasipolynomial runtime for 2-Flip-Max-Cut where

the graph is complete. This result would immediately imply that network coordina-

tion games for complete graphs have a smoothed efficient runtime. We have discussed

using the same framework as Etscheid and Roglin [6], in which we get a set 𝑇 such

that |𝑇 | ≥ Ω(
√
𝐷). Unfortunately, this set 𝑇 is likely too small and will not provide

an efficient runtime.

Another potential area of work is to consider redefining what a 𝑘-repeating se-

quence is. If we define these sequences such that 𝐷 itself has the linear independence

properties that we want and 𝐷 is of some large enough size, then we can immediately

conclude that a large enough set 𝑇 exists since it can be 𝐷 itself. While we expect

that this will require some creative new analysis, we suspect that sequences may not

need to be too large to guarantee a large enough set 𝐷 that satisfies our desired

constraints.

5.2 Remaining Questions

As stated in the section above, one of our key questions for future research is how we

can build upon our two paths to show a smoothed quasipolynomial time for 2-Flip-

Max-Cut.

There are also many other closely related problems that warrant further research.

For one, it is of much interest to look beyond 2-Flip-Max-Cut into the more general

problem discussed by Boodaghians et al. [3] of 𝑑-Flip-Max-Cut.

Another related problem of interested is of Max-𝑘-Cut presented by Bibak [2].

38

Rather than consider a maximum cut across two partitions up to some number of

flips, this problem considers the case where we have 𝑘 different partitions, and we seek

to maximize the sum of the edge weights across all of the partitions. Bibak [2] shows

that Max-Cut (the problem where 𝑘 = 2) can be solved in smoothed polynomial

time, improving upon the result shown by Angel et al. [1], and also that Max-𝑘-

Cut yields a smoothed polynomial complexity for complete graphs and a smoothed

quasipolynomial complexity for arbitrary graphs. We suspect it may be possible to

leverage the smoothness-preserving reductions presented in Boodaghians et al. [3] to

reduce 𝑘-NetCoordNash to Max-𝑘-Cut.

39

40

Bibliography

[1] Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in
smoothed polynomial time. arXiv:1610.04807 [cs, math], April 2017. arXiv:
1610.04807.

[2] Ali Bibak, Charles Carlson, and Karthekeyan Chandrasekaran. Improving the
smoothed complexity of FLIP for max cut problems. arXiv:1807.05665 [cs], July
2018. arXiv: 1807.05665.

[3] Shant Boodaghians, Rucha Kulkarni, and Ruta Mehta. Smoothed Efficient Al-
gorithms and Reductions for Network Coordination Games. arXiv:1809.02280
[cs], February 2019. arXiv: 1809.02280.

[4] Xi Chen, Chenghao Guo, Emmanouil-Vasileios Vlatakis-Gkaragkounis, Mihalis
Yannakakis, and Xinzhi Zhang. Smoothed complexity of local Max-Cut and
binary Max-CSP. arXiv:1911.10381 [cs], November 2019. arXiv: 1911.10381.

[5] Constantinos Daskalakis and Christos Papadimitriou. Continuous Local Search.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics, January 2011.

[6] Michael Etscheid and Heiko Röglin. Smoothed Analysis of Local Search for the
Maximum-Cut Problem.

[7] S Johnson. How Easy Is Local Search?

[8] Christos H. Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and System Sciences, 48(3),
June 1994.

[9] Heiko Roeglin. The Complexity of Nash Equilibria, Local Optima, and Pareto-
Optimal Solutions. April 2008.

[10] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. CoRR, cs.DS/0111050,
2001.

41

