
Attack Planner: Systematization and Expansion of
Persistence Knowledge

by

Eric Jiang

B.S. Electrical Engineering and Computer Science, Massachusetts
Institute of Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2022

Certified by. .
Howard Shrobe

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Attack Planner: Systematization and Expansion of

Persistence Knowledge

by

Eric Jiang

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

The internet has become a component of society’s critical infrastructure. However,
the benefit of using the internet has been accompanied by an increasing volume of
cyberattacks. Although documentation of these cyberattacks does exist, it is not
readily machine processable are often in a form that is even hard for people to un-
derstand. In order to protect systems against these attacks, companies have to hire
penetration testers to help them find vulnerabilities within the system. However, this
can be very expensive and time consuming. It is also very hard to be completely
thorough and comprehensive with penetration testing as there are so many different
types of attacks.

The AttackPlanner is tool developed at CSAIL that allows users to easily under-
stand the flow of an attack campaign as well as the different ways adversaries can
achieve their goals, by representing cyberattacks in the form of trees called attack
trees. In parallel with the development of the Attack Planner, CALDERA is another
tool that assists in this project. My focus of this project is to expand the Attack-
Planner’s plan repertoire, and its capabilities. There are many different purposes to
which cyberattacks are put; this thesis focuses on the persistence aspect of attacks.
By persistence, we assume that the attacker already has penetrated the system and
can execute a malicious process, but the attacker’s goal is to implant an "advanced
persistent threat" (APT) that can survive system reboot and continue exploiting the
system over sustained periods of time.

Thesis Supervisor: Howard Shrobe
Title: Principal Research Scientist

3

4

Acknowledgments

This thesis is only possible due to the support from the following individuals. It is

impossible to show how much I appreciate them. I am forever grateful.

First, I would love to thank my thesis advisor, Dr. Howard Shrobe, for his invalu-

able advice, patience, and guidance throughout this project. I am truly grateful for

being able to work with such a great and knowledgeable person. I will forever cherish

the conversations we’ve had, both technical and non-technical.

I would like to also thank my mother, sister, relatives, and grandparents for the

support over the years. Their support has always driven me to succeed and be happy

with whatever I do.

Finally, I would like to say thank you to my friends who have been with me

throughout my years at MIT. I love you all. I am looking forward to the interactions

we have in the next chapters of my life.

After submitting this thesis, I am looking forward to starting the next chapter of

my life in industry. Reflecting upon my undergraduate and graduate years, I believe

that I am very lucky with the opportunities I have had when it comes to all aspects

of my college life. Whether it is regarding my academics, career, or social life, I am

forever grateful for all the opportunities MIT has provided for me.

5

6

Contents

1 Introduction 13

1.1 Motivation Background . 13

1.2 Overview of Project . 14

2 Background Work 17

2.1 Attack Trees . 17

2.2 Attack Planning Predecessors . 20

2.3 CALDERA . 25

3 AttackPlanner 27

3.1 Brief Overview . 27

3.2 Generating an Attack Campaign . 28

3.3 Defining the Enterprise Threat Environment 29

3.4 AttackPlanner Keywords . 36

3.5 Using Macros and Keywords . 37

3.6 Analyzing Function Call Trace . 39

4 Persistence 41

4.1 What is Persistence . 41

4.2 Persistence in the AttackPlanner . 41

4.3 DLL Hijack Search Order . 42

4.4 Boot or Logon Autostart Execution:

Registry Run Keys . 45

7

4.5 Boot or Logon Autostart Execution:

Startup Folder . 47

5 Summary and Closing Remarks 49

5.1 Contributions . 49

5.2 Use Cases of Attack Planners . 49

5.3 Future Work . 50

8

List of Figures

2-1 Attack Tree Example . 18

2-2 QUASAR Linux Getaddrinfo Attack Example 20

2-3 Tool suite with NuSMV model checker 21

2-4 Network Attack Graph Toolkit Architecture 22

2-5 Architecture of Grandata Lab’s solution 22

2-6 Deciduous Decision Tree Example . 24

3-1 Wilee Example Graphic . 29

3-2 Lateral Motion Graphic . 37

3-3 Lateral Motion Method . 38

3-4 Connect Via Action . 38

3-5 Achieve Remote Execution Goal . 38

4-1 DLL Hijack Persistence Attack Method 42

4-2 Achieve Persistent Remote Execution Goal 43

4-3 Search Path Predicates . 44

4-4 Store File Action . 44

4-5 Run Keys that are run upon boot up 45

4-6 Registry Run Key Attack Method . 46

4-7 Make Registry Entry Action . 46

4-8 Startup Folder Attack Method . 47

9

10

List of Tables

3.1 Select Macros in AttackPlanner . 30

3.2 Select Keywords in AttackPlanner . 36

11

12

Chapter 1

Introduction

1.1 Motivation Background

The internet has become a component of society’s critical infrastructure. However,

the benefit of using the internet has been accompanied by an increasing volume of

cyberattacks. Although documentation of these cyberattacks does exist, it is not

readily machine processable and is often in a form that is even hard for people to

understand. In order to protect systems against these attacks, companies have to

hire penetration testers to help them find vulnerabilities within the system. However,

this can be very expensive and time consuming. It is also very hard to be completely

thorough and comprehensive with penetration testing as there are so many different

types of attacks.

The AttackPlanner is tool developed at CSAIL that allows users to easily under-

stand the flow of an attack campaign as well as the different ways adversaries can

achieve their goals, by representing cyberattacks in the form of trees called attack

trees. In parallel with the development of the Attack Planner, CALDERA is another

tool that assists in this project. My focus of this project is to expand the Attack-

Planner’s plan repertoire, and its capabilities. There are many different purposes to

which cyberattacks are put; this thesis focuses on the persistence aspect of attacks.

By persistence, we assume that the attacker already has penetrated the system and

can execute a malicious process, but the attacker’s goal is to implant an "advanced

13

persistent threat" (APT) that can survive system reboot and continue exploiting the

system over sustained periods of time.

MITRE has produced the ATT&CK matrix which documents different types of

cyberattacks in one centralized framework. However, the descriptions of these at-

tacks are in English, often cryptic and inadequate, and are not amenable to machine

processing. Once one is able to understand a particular attack, system managers will

have to test these attacks on their own systems to find vulnerabilities. This practice

is known as penetration testing (or Pen Testing). Pen Testing is time consuming and

requires expertise that is in short supply. After the penetration testing stage, one

will also have to figure out ways to patch this vulnerability or find mitigation tactics

to prevent exploits from happening. Furthermore, there are a large variety of system

types, ranging from cloud systems, hardware servers, IoT devices, electrical grid, nu-

clear plant, and and other industrial control systems. Given that one instance of pen

testing is time consuming, having to do this across many different types of systems

introduces a multiplicative time factor that is not scalable.

1.2 Overview of Project

As a result, in this project, I have taken steps to reach the goal of creating an auto-

mated system that can document these kinds of attacks in an easily understandable

manner. I focused on one broad type of attack tactic known as persistence. There

are a few existing software systems that are the foundation of this project. The first

of which is the AttackPlanner[18] developed by Principal Research Scientist Howard

Shrobe. The AttackPlanner is a tool that is able to generate the sequence of steps

in an attack campaign, given a particular environment and a system. This tool also

visualizes these attacks in a format known as an attack tree which makes it easy

to follow when considering the different options an attacker has when executing an

attack. The second tool is called CALDERA[9] developed by MITRE. This software

is what we have been using to automate simulations of attacks on existing systems.

In Chapter 2, I go into detail about the background and history of research done

14

on attack trees and attack planners.

In Chapter 3, I introduce the AttackPlanner and its capabilities thus far. I also

give details on how the AttackPlanner generates plans and the systematization of

knowledge used by the AttackPlanner.

In Chapter 4, I introduce the concept of persistence and show how it corresponds

in the AttackPlanner. I step through the methods that I’ve implemented in the

AttackPlanner and the model created out of it.

In Chapter 5, I give a summary of my contributions to the AttackPlanner, the

use cases of the AttackPlanner, and future works that can be done.

15

16

Chapter 2

Background Work

2.1 Attack Trees

When pen testing was first brought to existence, traditional methods mostly consisted

of generating attack trees. An attack tree’s root node symbolizes the overarching goal

of an attack. Each children of the parent node are equivalent to sub-goals that an

attacker needs to achieve in order to achieve the parent node’s goal. Some attack trees

incorporate the use of logical "and" and "or" gates to show inclusivity and exclusivity

of goals. As one goes down the attack tree, the path represents an enumeration of

the possible steps in an attack.

One of the first papers that introduced the concept of attack trees was by Bruce

Schneier in 1999 as a fault decision tree[15]. Schneier’s paper developed the use of fault

tree analysis, which analyzes the occurrence of failure in a system. Each parent node

in the tree is considered a point of failure in the system, and each child of the parent

is a cause of the failure happening. Additionally, each child node has an associated

probability of occurring, giving a certain probability of the attack happening in a

holistic view. Figure 2-1 is an example of an attack tree from Bruce Schneier’s paper.

In Figure 2-1, Schneier outlines the attack tree for opening a safe. In order to

open the safe, the attacker would need to do one of the following: pick the lock,

learn the combo of the lock, cut open the safe, or the safe would have to be installed

improperly beforehand. If the attacker had learnt the combo, then before learning

17

Figure 2-1: Attack Tree Example

the combo, the attacker would have discovered the combo via finding the combo

written somewhere or getting the combo from the victim themselves. The same logic

goes for each subsequent level of the tree. Each leaf node is also determined to be

either impossible or possible to achieve. For example, "Pick Lock" is deemed to be

impossible, denoted by the letter "I" in the node, whereas "Cut Open Safe" is deemed

to be possible, denoted by the letter "P". In order to generate this kind of attack

tree, one would need to have comprehensive background knowledge of the system,

and be able to think from the attacker’s perspective.

Risk analysis has been a recent use of attack trees. A paper by Amenaza Technolo-

gies Limited, attack trees were viewed as fault trees to give a picture of how much risk

was associated with a system and to assess the likelihood of the attack happening[5].

The paper claims that there is a fundamental difference between fault trees and at-

tack trees. The difference is that in fault trees, the leaf nodes are considered to be

18

independent to other leaf nodes. For attack trees, leaf nodes are considered to be

interdependent with each other, especially those that are a part of "AND" gates. By

combining the concepts of probabilities and leaf independence/interdependence, the

paper attempts to model attack trees for risk analysis. With respect to the proba-

bilities associated with each leaf node, they propose establishing a metric or rating

for the likelihood of the action to be performed. In addition, they also proposed to

attempt to calculate the monetary cost of performing the attack or action.

19

2.2 Attack Planning Predecessors

Since the publication of Schneier’s paper, the concept of attack trees has become

increasingly popular. With this rise in popularity, comes the creation of attack cam-

paign plans. Attack campaign plans contain a sequence of steps which attackers

can use to achieve their goal within an particular enterprise infrastructure. Attack

campaign planners are tools that generate these attack campaign plans.

Over the years, several attack planning tools have been developed. Quasar, devel-

oped at MIT Lincoln Labs, is an attack planning tool that helps defend against and

analyze memory corruption attacks[20]. It helps create attack models that gives the

effect attacks can have upon systems, and shows the current coverage of the system’s

defenses against attackers. The attack trees in this tool were used to represent exist-

ing dependencies and defenses in the system that attackers can exploit or bypass to

achieve their goals. An example of the defense results of QUASAR are shown below

in terms of attack capability and coverage.

Figure 2-2: QUASAR Linux Getaddrinfo Attack Example

Automating the generation of attack trees has been a goal of several research

teams. [21] from the University of Denmark attempts to create a logical formula that

characterizes an attack tree. The top level idea of this process is: Given a process

and a goal of this process, we can generate a formula by backwards chaining from the

goal in the formula. The generation of this formula includes the use of converting a

process into a set of formulae in the form of 𝜑 → 𝑝 where 𝜑 is the "antecedent" and

𝑝 is the "consequence" of this "antecedent". From these formulae, the authors can

derive a recursive back chaining function from the bottom level "consequences" to

the top level "antecedent".

20

Wing, Lippman et al.[16] use state machines to generate attack graphs. First, they

model the network as a finite state machine in which state transitions correspond to

attacker actions. At the top level, there is a network property noted that the attacker

wants to penetrate.

Figure 2-3: Tool suite with NuSMV model checker

The team uses a modified version of the NuSMV model checker to create an attack

graph. Then, they analyze the attack graph in two different ways. The first of which

is to use the attack graph to figure out what is the minimal number of mitigations

necessary to thwart the attacker’s plan. The second form of analysis requires an

assumption that there is data on the probability of certain network events happening.

If the attack graph is annotated with these probabilities, the attack graph can be

viewed as a Markov Decision Process (MDP). Using MDP value iteration algorithm,

the attacker’s optimal path or most probable method of attack can be derived[16].

Wing, along with Oleg Sheyner, also created an attack graph toolkit based on

several network specifications and attack models. It was used in conjunction with

MITRECorp’s Outpost and Lockheed Martin’s ANGI, which are two systems that

consistently gather network data. Using the data from these two systems, the toolkit

is able to create network specifications for a particular network. Along with network

specifications, they also used corresponding security specifications, or CVE’s , to

generate attack graphs and visualize them in a GUI. This process is shown below[22].

A team in Grandata Labs in 2012 developed another tool for attack planning.

Their solution included the use of a description environment fed into a planner. The

21

Figure 2-4: Network Attack Graph Toolkit Architecture

planner would then send its attack trees to a penetration testing framework to simu-

late penetration testing[13].

Figure 2-5: Architecture of Grandata Lab’s solution

As somewhat of a follow up to this paper, the author published a paper on finding

the optimal attack path given an attack tree for non-deterministic environments. The

algorithm utilized a modified version of Dijkstra’s and Floyd-Warshall’s algorithms.

They were able to build a probabilistic planner that could solve scenarios with 500

machines. Although the results showed that the run-time of the best path algorithm

was slightly worse than a deterministic method used by previous researchers, the team

22

argues that if the implementation had been written in C or C++ instead of Python,

it would have been faster[14].

Gregory Falco, a former MIT PHD student, has also conducted research on attack

planning, but utilizes it in an interesting context: urban infrastructure. Falco set out

to create risk models for SCADA systems, given that IoT devices are prone to a variety

of high impact attacks such as worm attacks and propagation attacks. Additionally,

Falco talks about the usage of attack planners being able to mitigate, and aid in

formulating a defense response against attacks[3].

A team at Princeton University developed a tool called MulVAL, which is an

end-to-end framework that executes vulnerability analysis on networks. This tool

has shown decent results during its presentation and testing at the Red Hat Linux

platform. It was able to detect 84% of the Red Hat vulnerabilities reported in the

Open Vulnerability Assessment Language (OVAL), which is a vulnerability language.

It includes a reasoning system based off of certain rules that represent exploits, com-

promise propagation, and multi-hop network access. It also has an analysis algorithm

that utilizes a network’s policy specification and attack simulations[11].

Another system that was created to utilize attack planners on network security

was NetSPA. The overarching goal of NetSPA was to compute attack graphs for

user-specified networks. In NetSPA, users were able to define a network and its

configuration, create models of actions that attackers could utilize, and generate all

possible attack graphs for that network. It utilized several different databases to help

generate these attack graphs. The most important database was its action database

which contained a collection of actions that attackers could take against a network[1].

In addition to the above research reports, there have also been a few commercial

software tools that generate attack trees and attack plans. The first of which is de-

veloped by ISOGRAPH called AttackTree. This tool uses attack models to calculate

the probability of an attack’s success given a system. This tool also allows users to

calculate the cost and difficulty of these attacks by manually entering cost values

and difficulty ratings for specific actions in the attack trees[6]. Another tool that is

not exactly an attack tree generator, but is related is called Deciduous. This tool

23

is mainly used as a security decision tree generator. In this model, there are a few

components to the trees. They include: facts, attacks, mitigations, and goals. Facts

are concepts that are true to a system. Attacks are specific actions that attackers

can take against the system. Mitigations are specific actions that defenders can take

against attacks. Goals are the attacker’s end goal for an attack[17].

Figure 2-6: Deciduous Decision Tree Example

As you can see from this image, the decision tree gives possible actions an at-

tacker can take, ways that a defender can mitigate this attack, and an attacker’s

counterattack to bypass this mitigation in order to achieve the end goal.

24

2.3 CALDERA

CALDERA is the second tool used. Developed and released by MITRE in 2019, it

is a comprehensive tool that allows developers to automate and simulate attacks in

a closed and safe environment. CALDERA takes an adversary profile as an input

and is able to execute an attack plan based on that profile[9]. Additionally, this

system was built around MITRE’s ATT&CK framework, which is a comprehensive

attack matrix of many different types of attacks[10]. This results in CALDERA being

proficient in variety as it contains adversary profiles from the three major operating

systems: MacOS, Linux, and Windows. Additionally, because CALDERA uses an

adversary profile as an input, it seems feasible to feed in the attack tree output from

the AttackPlanner as a way to link up the two software systems.

25

26

Chapter 3

AttackPlanner

3.1 Brief Overview

The AttackPlanner is a tool that, given a particular computational environment,

is able to generate an attack graph, a set of attack campaigns specifically for that

environment [18]. The attack graph encompasses many possible ways in which this

goal can be met as there are usually many different ways of going about achieving

this goal. As a result, a path on the tree represents an attack plan for the goal at the

root node. This makes it easy to understand for people who are viewing the details

of the attack tree.

Because the AttackPlanner is given a computational environment, the Attack-

Planner needs to have comprehensive knowledge of the victim. As a result, the

AttackPlanner is able to model the various systems and hardware out in the world

such as operating systems, network topology, file systems, and so on. Another feature

of the AttackPlanner is that it’s able to model the dependencies of the computational

resources of the environment, such as data integrity, user capabilities, and privacy.

The base knowledge of the AttackPlanner comes from reasoning about the steps

within an attack campaign, while also taking into account the environment this attack

campaign is executed in, as well as the goal that is achieved. As a result, systemati-

zation of knowledge for the AttackPlanner is key to its enhancement.

27

3.2 Generating an Attack Campaign

When generating an attack campaign in the AttackPlanner the first step is to identify

a top level goal. Then the AttackPlanner identifies the underlying sub-goals needed

to achieve that top level goal and then creates sub-trees to achieve the sub-goals. This

reduction to sub-goals is repeated until the sub-goal is simple enough to be achieved

via a subset of primitive actions defined in the AttackPlanner. The leaf nodes in

the attack plans are actions instead of sub-goals. This is known as hierarchical task

net planning, which works by problem reduction rather than generative state space

search[19]. In this case, we are trying to find smaller sub-goals with each iteration

level.

The generation of sub-trees in the attack planner is done by an algorithm called

Depth First Backtracking Search. This algorithm was first popularized by the lan-

guage Prolog, which is one of the first logic programming language developed and

still used in AI development[2].

The AttackPlanner is primarily written in a domain specific language (DSL) em-

bedded in Common Lisp. The style of this DSL is similar to the Planning Domain

Definition Language (PDDL), which is a standard encoding language for planning

tasks[4]. The features of this language include the use of a few concepts. The first of

which is the use of objects, which are the things in the world that are related to the

planning task. The second of which are predicates. Predicates represent the proper-

ties with respect to the objects in relation to the environment or planning task. The

third is the initial state, which is a description of the environment before the attack

campaign begins.. The fourth is the overarching goal of the planning task, known as

the goal specification. Lastly are the actions that are used to change the state of the

environment. This DSL is itself implemented in the Joshua reasoning system (itself

a DSL based in Common Lisp). Joshua provides a database of assertions (also called

predications) as well as forward and backward chaining rules that draw inferences

from the set of assertions.

28

3.3 Defining the Enterprise Threat Environment

The AttackPlanner needs two pieces of information in order to compile an attack

campaign. They are the structure of the victim enterprise and the servers that the

attacker controls. The AttackPlanner uses a set of macros to define these structures.

These macros expand into code that create assertions that set the foundations of the

Allegro Common Lisp (Joshua) reasoning system. Joshua is the language used for the

AttackPlanner because it contains features that make planning easier to implement.

It does this by allowing the change of data structures without having to change the

knowledge structure of the original data structure, and is able to incorporate other

tools without modifying the tool[12]. The macros defined in the AttackPlanner allow

the attacker to look for and understand the enterprise structure given the elements

the attacker already has. Some key macros are detailed in Table 3.1.

Figure 3-1: Wilee Example Graphic

To demonstrate these macros for better understanding, we can set up an example

environment. We will use the "Wilee" example in the AttackPlanner as an example.

Figure 3-1 shows a general overview of the Wilee example. The top level goal of the

29

Macro Definition
defexternal-internet an external attacker’s internet IP address
define-attacker the certain properties of an attacker
define-enterprise the victim entity that the attacker is trying

to affect
defresource the objects or resources that are available

in the environment, whether it is for the
attacker or the victim

defauthorization-pool defining a group of identities and privileges
that are managed in a unified way

defcapability creating a privilege or permissions that ex-
ists in the topology

defsite defining enclaves or domains of an entity
defsubnet defining sub-domains of an enclave or a

larger domain
defensemble defining a group of computers that are uni-

form
defcomputer creates a computer entity in the environ-

ment
defuser creates a user or entity
defblacklist defines what entities are not allowed in the

network
defprocess defines a process that is going to be exe-

cuted in the environment

defrouter creates a router that belongs to an entity
defswitch creates a switch associated with an entity

Table 3.1: Select Macros in AttackPlanner

Wilee example is for the attacker to corrupt the high database server in the server

enclave. However, the attacker is blocked from accessing it. As a result, the attacker

has to work around this by utilizing the worker enclave. The issue is that the worker

enclave only has access to the low database server in the server enclave. Only admins

have access to the high database server. Thus, one method to get access to the high

database server is to steal the admin credentials. One way to do so is to somehow

bait the admin to log into one of these worker enclave machines using the admin’s

credentials, which allows the attacker to steal the credentials. We now have the attack

plan of the Wilee example as follows:

1. Log into a worker machine

30

2. Install two pieces of malware on this machine

• Key logger malware

• Kill disk malware

3. Lure an admin to log into the compromised machine

• Fill the disk with nonsense

• Alert the admin about abnormal activity

4. Use key logger malware to steal admin credentials

5. Use admin credentials to log into high database server

6. Attacker now has control of the high database server

Now that we have the attack, it’s time to translate the environment into the At-

tackPlanner. We define the attacker IP address that is outside the victim environment

via defexternal-internet. An example is:

(defexternal-internet outside ("192.168.0.0" "255.255.0.0"))

Besides the attacker IP address, we can also define or assume traits of the attacker

via define-attacker. We can say that the attacker lives in a location outside of the

victim environment, and possesses a download and adware server.

(define-attacker attacker

:location outside

:download-servers attacker-download-server

:adware-servers attacker-adware-server)

Next comes the definition of the victim enterprise. The victim enterprise needs

to be thoroughly detailed due to having an accurate picture of the environment. The

AttackPlanner needs to know:

1. The network topology

31

2. Computers and computing resources

3. Users using the computers to access the computing resources

4. The access control matrix

We can define enterprise as follows:

(define-enterprise victim)

(defauthorization-pool victim-authorization-pool)

(defcapability sysadmin victim-authorization-pool)

(defcapability user-read victim-authorization-pool

:greater (sysadmin))

(defcapability user-write victim-authorization-pool

:lesser (user-read)

:greater (sysadmin))

Here, we see that the enterprise name is "victim". Additionally, the privileges

of the victim are defined by the victim-authorization-pool. Lastly, the capabilities

or permissions of the victim enterprise’s members are defined by defcapability. This

is how the permissions of the access control matrix is defined. They are defined in

a lattice structure as you can see. First, we have the highest privilege level which

is indicated by sysadmin having the victim authorization pool. The sysadmin has

the privilege to user-read and user-write indicated by the keyword greater. The lesser

keyword indicates that the current privilege is higher than the corresponding privilege.

Thus, user-read is a strictly less privilege than user-write.

Next, we define the access control matrix’s computing resource via defresource.

The high database server has a high data server as the computer, and in order to

access this resource one must have the following permissions:

• Write to the high data server

• Read the contents of the high data server

This is how the high database server is defined:

32

(defresource high-database database

:computers (high-data-server)

:capability-requirements ((write data-high-write)

(read data-high-read)))

We also have to define the users of the worker enclave. This includes the computing

resources of the workers and the permissions.

(defuser typical-worker-bee

:user-type normal-user

:ensemble worker-computers

:computers (typical-worker-computer)

:typical t

:capabilities (user-write)

:authorization-pools (victim-authorization-pool)

:has-weak-password ’yes)

One note for this particular macros is that it represents the entirety of the user

space, indicated by :typical t. This reduces the redundancy of having to manually

add individual users to the AttackPlanner and allows for a user abstraction.

We can also define a group of worker computers via defensemble as follows:

(defensemble worker-computers

:enterprise victim

:size 40

:address-range ("192.168.0.0" "255.255.255.0"))

This shows that the worker computers are part of the victim enterprise, the number

of worker computers there are, and the IP addresses of these computers.

Within this ensemble, we can define a typical computer as:

(defcomputer typical-worker-computer windows-computer

:ip-address-string "192.168.0.3"

33

:typical t

:authorization-pool victim-authorization-pool

:ensemble worker-computers

:superuser ())

This states that the typical worker computer has the IP address of 192.168.0.3, is

representative of a typical computer, is part of the victim-authorization-pool, and is

part of the worker-computers ensemble.

The last few important macros are defrouter, defswitch, and defblacklist. defrouter

and defswitch define routers and switches that act as gateways to the servers. In order

to go from one machine to another, they will have to pass through a router and the

switch associated with the destination.

(defrouter victim-router ("192.168.0.1" "192.168.10.1"

"192.168.20.1")

:authorization-pool victim-authorization-pool

:superuser typical-sysadmin

:external-networks (outside))

Here we have the victim router with the specified IP addresses. It contains the

victim-authorization-pool and only the sysadmin is able to access it.

(defswitch worker-net-switch wired-switch "192.168.0.2"

:authorization-pool victim-authorization-pool

:superuser typical-sysadmin)

The switch defined is the worker network switch. As a result, if anyone were to

enter the worker network, they would have to pass through the victim router and this

worker-net-switch.

Lastly, defblacklist define the "firewall" rules of the network topology. Each router

and switch will have their own rules of what to forward and what not to forward.

Everything that is defined by defblacklist will not be forwarded.

34

(defblacklist (telnet victim-router)

:block everywhere)

This states that any telnet packet will be rejected by the victim-router. This

includes telnet packets that originate from the IP address of the victim environment.

35

3.4 AttackPlanner Keywords

Outside of the low level threat enterprise description, there is also the attack methods

that exist in the attacker’s disposal. These attack methods comprise of key words

that define actions, goals, steps to the attack, and in some cases, prerequisites for the

attack to happen. Object definitions and typings are also declared in these attack

methods. Table 3.2 has a detailed list of the important the keywords for attack

methods, actions, and goal definitions.

Keyword Definition
defattack-method defining an attack method
define-action defining the actions that are available to

attackers
define-goal defining the goals that an attacker can

achieve
to-achieve the top level goal for the attacker to

achieve
output-variables the "return" value, which can be informa-

tion about what has been compromised
bindings defining objects
guards rules that need to be satisfied
typing defining object types
prerequisites the conditions for the attack method to

take place
plan the steps to the attack method
sequential a modifier to the plan that indicates each

step are done in order
goal sub-goals of the attack method
actions actions involved in the attack method
post-conditions the change that has happened after the at-

tack method has executed
attack-identifier the attack method’s ID according to

MITRE’s ATT&CK matrix

Table 3.2: Select Keywords in AttackPlanner

36

3.5 Using Macros and Keywords

To show these macros and keywords in the AttackPlanner, we describe a lateral

motion attack. When it comes to accomplishing an attack, usually the attacker is

unable to directly take control of the victim server. To circumvent this, the attacker

will typically get a foothold of a machine that is connected to the main victim target

and achieve remote execution upon that machine. Because the attacker can remotely

execution from the foothold, the attacker can then affect the main target. This process

is detailed in Figure 3-2.

Figure 3-2: Lateral Motion Graphic

To see this graphic translated to the AttackPlanner, we have Figure 3-3.

First, we have the defattack-method keyword to declare the attack method called

lateral-motion. Next we have the top level goal of to-achieve which is to get a foothold

on a machine that is related to the target machine. Then, there is the bindings and

typing blocks that instantiates any objects or entities that describe the attacker’s

resources and the enterprise threat environment. guards is similar to the concept of

prerequisites, but includes the not keyword that negates the rules. The main portion

of the attack method lies in the plan keyword in which the steps of the attack method

37

Figure 3-3: Lateral Motion Method

are enumerated. We have a sequential plan as follows:

1. Check to see if the current machine has been used as a foothold before. If it

was used before, then find another machine. Otherwise, keep using.

2. Achieve remote execution on the foothold machine.

3. Connect the foothold computer to the target computer.

Lastly, the final result once this attack has succeeded is that the attacker has a

foothold on the target machine.

Figure 3-4: Connect Via Action

Figure 3-5: Achieve Remote Execution Goal

Figure 3-4 elaborates upon how the action connect-via is defined and Figure 3-5

shows the goal achieve-remote-execution.

38

3.6 Analyzing Function Call Trace

Here is a partial trace outputted from the AttackPlanner regarding the lateral motion

attack method:

> Trying backward rule LATERAL-MOTION (Goal...)[ACHIEVE-GOAL [GET-

FOOTHOLD #<OBJECT (HIGH-DATA-SERVER)> DATABASE-PROTOCOL]

> Trying backward rule REMOTE-EXECUTION-TO-CORRUPT-ATTACHMENT (Goal...)[

ACHIEVE-GOAL [ACHIEVE-REMOTE-EXECUTION #<OBJECT (TYPICAL-WORKER-

COMPUTER)> ?NEW-FOOTHOLD-ROLE]

> Trying backward rule REMOTE-EXECUTION-VIA-CORRUPT-EMAIL (Goal...)[

ACHIEVE-GOAL [GET-USER-TO-CLICK-ON #<OBJECT (ATTACKER)> #<OBJECT (

TYPICAL-SYSADMIN)> ?ANONYMOUS4554 ?ANONYMOUS4555]

> Exiting backward rule REMOTE-EXECUTION-VIA-CORRUPT-EMAIL

> Trying backward rule REMOTE-EXECUTION-VIA-CORRUPT-EMAIL (Goal...)[

ACHIEVE-GOAL [GET-USER-TO-CLICK-ON #<OBJECT (ATTACKER)> #<OBJECT

(TYPICAL-WORKER-BEE)> ?ANONYMOUS4554 ?ANONYMOUS4555]

> Trying backward rule LATERAL-MOTION (Goal...)[ACHIEVE-GOAL [GET-

FOOTHOLD #<OBJECT (EMAIL-SERVER)> SMTP]

> Exiting backward rule LATERAL-MOTION

> Succeeding backward rule REMOTE-EXECUTION-VIA-CORRUPT-EMAIL

> Succeeding backward rule REMOTE-EXECUTION-TO-CORRUPT-ATTACHMENT

> Succeeding backward rule LATERAL-MOTION

> Trying backward rule MODIFY-THROUGH-ACCESS-RIGHTS (Goal...)[ACHIEVE-

GOAL [MODIFY DATA-INTEGRITY #<OBJECT (HIGH-DATABASE)>]

> Trying backward rule ACHIEVE-A-RIGHT-YOU-ALREADY-HAVE (Goal...)[

ACHIEVE-GOAL [ACHIEVE-ACCESS-RIGHT WRITE #<OBJECT (HIGH-DATABASE)> ?

OTHER-ROLE]

39

> Succeeding backward rule ACHIEVE-A-RIGHT-YOU-ALREADY-HAVE

> Succeeding backward rule MODIFY-THROUGH-ACCESS-RIGHTS

We can see that the AttackPlanner is trying to execute a lateral motion attack

and checking to see if the rules have been satisfied. Each line in the trace shows the

method name to execute along with the arguments provided to the method name.

We can also see in the third line, the AttackPlanner tries to send a corrupt email to a

sysadmin. However, this fails as indicated by the next line when the AttackPlanner

exits the remote execution via corrupt email rule. In the line after, the AttackPlanner

tries to send a corrupt email to a worker machine. This method succeeds as indicated

by a later line that states "Succeeding backward rule REMOTE-EXECUTION-VIA-

CORRUPT-EMAIL".

This is an example of the AttackPlanner’s Depth First Search Backtracking. We

first visit each node, in this case rules, of the plan. If there is a failure in the node or

rule, then the AttackPlanner outputs a fail message. After failing, the AttackPlanner

will backtrack to the parent node, and check to see if any other children exist. If the

children do exist, then it will go down that branch and try the rules there. Otherwise,

the AttackPlanner will backtrack again and the recursion continues until all rules have

been attempted.

40

Chapter 4

Persistence

4.1 What is Persistence

According to MITRE, persistence tactics are attacks that gives the adversary a

foothold within a system even if the victim tries to cut off access via restarts, changed

credentials, and more. To maintain a foothold on these systems, attackers will gen-

erally try to execute access, action, or configuration changes. Some typical methods

that allow attackers to execute this are by hijacking the code base or adding startup

code[8].

4.2 Persistence in the AttackPlanner

In this chapter, we will be talking about the different persistence methods imple-

mented in the AttackPlanner. I assume that initial penetration has already occurred

in the system already. The reason being is that initial penetration is a whole other

tactic categorized by MITRE. Another reason is for the simplicity of understanding

how attacks works. Initial penetration is already a large goal for an attacker, and

so is persistence. Generally, in a persistence attack, the attacker will already have

some foothold on the system. A few initial penetration attacks are outlined in the

AttackPlanner as well.

41

4.3 DLL Hijack Search Order

Systematization of knowledge in the AttackPlanner is necessary since it is the main

basis of how the AttackPlanner develops its knowledge. As a result, part of my work

involves adding persistence methods in the AttackPlanner.

Figure 4-1: DLL Hijack Persistence Attack Method

Figure 4.1 is an example of a persistence attack method called a DLL hijack search

order. To give some background, a DLL, on Windows machines, is a Dynamic Link

Library that is used by one or more applications or services. When these applications

or services utilize a DLL, the DLL will start and run in the background to help them

run. Additionally, there can be multiple versions of this DLL file in one system.

Usually, an application that has a dependency on a DLL will specify the full path

of the DLL that it uses. If no path is specified, then the application or service will

find the DLL by scanning the system in a specified hierarchical order called a search

order[7]. A DLL hijack search order is when an attacker infiltrates a system and places

a malicious DLL in a specified directory of the victim’s machine. The malicious DLL

has the same name as a legitimate DLL, but is placed in a directory that is earlier in

the search order than where the legitimate DLL is located. If it’s earlier in the search

42

order, then the malicious DLL will be used instead of the legitimate DLL, thus the

word "hijack" in the attack name.

You can see the keywords of Table 3.2 being used in this attack method. The

name of this attack method indicated by defattack-method is dll-hijack-search-order.

Then there is the top level goal of the attacker achieving persistent remote execu-

tion. The to-achieve keyword is also how variables are passed down in the attack

method. The output or return variable of this function is the victim user’s informa-

tion, which is to show us who has been compromised. The bindings define the objects

used in the method. For example, attacker-download-server is a given object in the

AttackPlanner in which we store attacker and download-server information. Then,

the malware-directory variable is initialized to the download-server’s malware direc-

tory. And lastly, the malicious-dll variable comes from the download-server’s malware

directory’s files. The typing contains all the types of the objects being used in this

attack. The prerequisites of this attack include a check to see if the directory that

the attacker is trying to place a file in is before the legitimate DLL’s directory, and a

check to see if both DLL’s are in the search order. Next, we have the attack-method

plan, which is the sequential order of steps to execute this attack. As you can see, the

steps include a goal of achieving remote execution (initial penetration), an action of

downloading a malicious DLL on the victim computer from the malicious download

server, another action of loading this malicious DLL onto the victim computer, a goal

of achieving an access write to let the attacker write the file into the system, and the

final action of storing this file into the system. The post-condition of this attack is that

the attacker now has persistent remote execution upon the victim machine. Finally,

the attack-identifier of this attack is T1574.001 on MITRE’s ATT&CK matrix.

Figure 4-2: Achieve Persistent Remote Execution Goal

In Figure 4-2, I show how a goal is defined in the context of DLL hijack search

order. As you can see, victim-computer and victim-role are used and passed down

the attack method.

43

Figure 4-3: Search Path Predicates

In Figure 4-3, I show two predicates that are used in the prerequisites block of the

attack method. Predicates are essentially macros that model the network description

for generating attacks. The keyword define-aplan-predicate is how one would define

a predicate in the AttackPlanner. As you can see, the predicates is-in-search-path

and precedes-in-search-path are predicates that help the AttackPlanner identify the

system description. This is because is-in-search-path checks to see if a directory is

in the search path, and precedes-in-search-path checks to see if a directory is located

earlier in the search path than another directory.

Figure 4-4: Store File Action

Figure 4-4 shows an action called store-file being made in the AttackPlanner.

The keyword define-action creates the action. In order for the action to succeed, it

requires three parameters that are indicated by actor, directory, and file. In order

for the action to execute, there’s also a prerequisite of the predicate has-permission

that needs to be fulfilled. Once the action executes, the file that was passed into the

store-file action is now located in the directory specified.

44

4.4 Boot or Logon Autostart Execution:

Registry Run Keys

One type of persistence techniques involve automatically starting upon a boot up

of the machine or logging into a machine. In order to do so, attackers will change

system settings or system configurations. Once these changes have taken place and

the machine boots up, a persistent program will execute to achieve a secondary goal

of privilege escalation. The problem now becomes: How do attackers link or correlate

this persistent program to automatically execute upon machine boot up.

One of the ways include manipulating registry run keys. A registry on Windows

is a hierarchical database that contains information about configuration settings for

Windows applications. Within the registry, there are run keys that indicate what is

run upon a machine boot up.

Figure 4-5: Run Keys that are run upon boot up

Figure 4-5 shows the Run Keys on Windows that execute upon machine boot up.

Adding run keys to the registry is quite simple. An attacker can do this remotely via

the victim’s terminal, which is easy once an attacker gets a foothold on the victim

machine. Additionally, the attacker will have to download the malicious persistent

payload onto the victim machine. The creation of the run key will have to match and

correlate to this malicious file.

Here is the attack method detailing the attack described. There is the overarching

goal of achieving remote persistent execution. The definition of the malicious file is

located in bindings. The declaration of the registry and the run keys are in typings.

Executing this attack is a 3 step process detailed earlier. There is achieving remote

execution which is the initial penetration and getting a foothold on the victim ma-

45

Figure 4-6: Registry Run Key Attack Method

chine. The goal of installing malware is the installation of the malicious persistent

file. Finally, the registry entry is made with an action detailed in Figure 4-7.

Figure 4-7: Make Registry Entry Action

46

4.5 Boot or Logon Autostart Execution:

Startup Folder

Related to the registry run keys is the startup folder. The difference is that when

Windows is booted up, the registry run keys are executed first over the startup folder.

However, the startup folder does contain information and resources for Windows that

are automatically executed upon Window’s startup.

In this particular attack, it’s very similar to the registry run key attack. The

difference is that the malicious persistent file is stored in the Window’s startup folder.

In order to do so, the attacker will need to have administrative privileges to write a

file and store it inside the startup folder.

Figure 4-8: Startup Folder Attack Method

Figure 4-8 shows the attack method for the startup folder attack method. Once

again the malicious persistent file is defined in bindings. The attack method process

has the initial goal of achieving remote execution. Next, the attacker will need to get

write access to the folder by the goal achieve-access-right. Lastly, the attacker will

have to store the file in the startup folder.

47

48

Chapter 5

Summary and Closing Remarks

5.1 Contributions

Expanding upon the knowledge base of the AttackPlanner, I was able to add some of

the main prevalent persistence tactics according to MITRE. By adding this family of

persistence methods along with the functionalities for these persistence methods to

work, many more possible attack plans have opened up for the AttackPlanner.

5.2 Use Cases of Attack Planners

Attack plans can have many use cases. The first of which is that it helps with system

auditing. Being able to run a system against an attack planner, whether it is individ-

ual attacks or a suite of attacks, it is immensely helpful in knowing the vulnerabilities

within the system. Another use case is penetration testing. CALDERA, a tool devel-

oped by MITRE, was started to be used in conjunction with the AttackPlanner. Sam

Dorchuck, a former Masters student at MIT, had a thesis detailing being able to parse

an AttackPlanner’s attack plan into an input that CALDERA would accept. From

there, CALDERA would build an environment based on the parsed input and run

automated tests of attacks against a given network topology. This is definitely a step

in the right direction when it comes to automating penetration testing, as it would

save a lot of time and money. The third use case is for hunting for attack plans. At

49

the Defense Advanced Research Projects Agency (DARPA), there is a Cyber-Hunting

at Scale (CHASE) program whose goal is to develop automated tools to find and de-

tail attacks, gather data surrounding the attacks, and formulate defensive measures

against these attacks. Creating defensive measures against attacks is also called mit-

igation planning, which is another possible use case. An attack plan is very useful

when it comes to detailing attacks and aiding in defending against attacks. A fourth

use case is that it can aid in system redesign. By knowing what vulnerabilities to

look out for via attack plans and attack graphs, system designers can modify their

existing systems to patch these vulnerabilities. Lastly, there is risk analysis. There

have been research groups that have been using attack plans to analyze a system’s

risk factors, which is seeing how prone these systems are when it comes to system

design. As a result, a conversation of trade offs ensues. There may be ideas to focus

more on fault tolerance, but a side effect of that would be a lesser focus on simplicity.

A lot of factors to consider when it comes to system design, but attack plans are

definitely a good tool to aid in the decision making process and weighing risk factors.

5.3 Future Work

There are a few extensions of the AttackPlanner that are possible. The first of which is

further systematization of the AttackPlanner. Expanding upon the knowledge base of

the AttackPlanner is always needed for the improvement of the AttackPlanner. How-

ever, doing this manually can be a daunting task for the entire MITRE ATT&CK

matrix. Thus, the question of automating this process has come up. Some of this

involves scraping the MITRE website as well as doing natural language processing to

analyze the wording of the description of attacks and convert them into the language

of the AttackPlanner. A third extension is to fully automate the process of using the

AttackPlanner in conjunction with CALDERA to penetration test. This involves au-

tomating the generation of attack plans, parsing and delivering them to CALDERA,

and having CALDERA run goal-directed systems testing.

50

Bibliography

[1] Michael Lyle Artz. NetSPA: A Network Security Planning Architecture. PhD
dissertation, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, May 2002.

[2] Ulle Endriss. Search Techniques for Artificial Intelligence, 2005. PowerPoint
slides of Prolog.

[3] Gregory J. Falco. Cybersecurity for Urban Critical Infrastructure. PhD Disserta-
tion, Massachusetts Institute of Technology, Department of Urban Studies and
Planning, June 2018.

[4] Malte Helmert. An Introduction to PDDL, October 2014. PowerPoint slides of
Planning Domain Definition Language.

[5] Terrance R. Ingoldsby. Attack Tree-based Threat Risk Analysis. Technical re-
port, Amenaza Technologies Limited, 2021.

[6] ISOGRAPH. Attack Tree Threat Analysis Software, 2019. Documentation of
ISOGRAPH.

[7] Microsoft. Dynamic-link Library Search Order, July 2021. Online site for Win-
dows DLL Search Order.

[8] The MITRECorporation. Persistence, October 2018. Online site for MITRE’s
Persistence Tactics.

[9] The MITRECorporation. CALDERA, March 2021. Documentation for MITRE’s
CALDERA.

[10] The MITRECorporation. MITRE ATT&CK Matrix, November 2021. Online
site for MITRE ATT&CK Matrix.

[11] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. Mulval: A
Logic-based Network Security Analyzer. 14th USENIX Security Symposium,
2005.

[12] Steve Rowley, Howard E Shrobe, Robert Cassels, and Walter Hamscher. Joshua:
Uniform Access to Heterogeneous Knowledge Structures, or Why Joshing is Bet-
ter than Conniving or Planning. In AAAI, pages 48–52, 1987.

51

[13] Carlos Sarraute. Automated Attack Planning. CoRR, abs/1307.7808, 2013.

[14] Carlos Sarraute, Gerardo Richarte, and Jorge Lucángeli Obes. An Algo-
rithm to Find Optimal Attack Paths in Nondeterministic Scenarios. CoRR,
abs/1306.4040, 2013.

[15] Bruce Schneier. Attack Trees. Dr.Dobb’s Journal, 1999.

[16] Oleg Sheyner, Joshua Haines, Somesh Jha, and Jeannette M. Wing Richard Lipp-
man, editors. Automated Generation and Analysis of Attack Graphs, Security
and Privacy. IEEE Symposium, May 2002.

[17] Kelly Shortridge. Deciduous: A Security Decision Tree Generator, July 2021.
Documentation of Deciduous.

[18] Howard Shrobe. Computational Vulnerability Analysis for Information Surviv-
ability. AI Magazine, 23(4):81, 2002.

[19] Reid Simmons. Planning, Execution & Learning: Hierarchical Task Net Plan-
ning, September 2001. PowerPoint slides of Hierarchical Task Net Planning.

[20] Richard Skowyra, Steven R. Gomez, David Bigelow, James Landry, and Hamed
Okhravi. Quasar: Quantitative Attack Space Analysis and Reasoning. Technical
report, MIT Lincoln Laboratory, 1988.

[21] Roberto Vigo, Flemming Nielson, and Hanne Riis Nielson. Automated Gener-
ation of Attack Trees. Technical report, 2014 IEEE 27th Computer Security
Foundations Symposium, July 2014.

[22] Jeannette M. Wing and Oleg Sheyner. Tools for Generating and Analyzing
Attack Graphs. FMCO, 2003.

52

