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Scalable Models and Policy Learning

for Online Marketplaces

by

Madhav Kumar

Submitted to the Department of Management
on April 29, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Management

Abstract

This dissertation contains three essays on designing scalable models and policy
learning methods for online marketplaces. The underlying theme across all chap-
ters is the development of data-driven practical solutions that help improve busi-
ness operations and customer experiences in e-commerce.

The first chapter offers a new perspective on creating promotional bundles in
cross-category retail. A scalable approach is designed that efficiently leverages
historical purchases and consideration sets to learn heuristics for complementar-
ity and substitutability using machine learning-based embeddings. Subsequently,
thousands of candidate bundles are created based on these heuristics and their ef-
fectiveness is tested using a field experiment. Offline policy learning is applied
to the experimental data to optimize the retailer’s bundle design policy. The opti-
mized policy is robust across product categories, generalizes well to the retailer’s
entire assortment, and provides an expected improvement of 35% in revenue over
the baseline policy.

The second chapter investigates the impact of algorithmic pricing on consumer
behavior. The adoption of algorithmic pricing by an online retailer led to con-
siderably higher price volatility. Analysis of detailed clickstream data, comple-
mented with lab experiments, suggests that consumers become more price sensi-
tive when exposed to frequently changing prices caused by algorithms. Further-
more, it shows that a key mechanism driving this behavior is price salience. This
finding is economically consequential because even if implementing algorithmic
pricing is profitable, it triggers unintended side effects that modify consumer be-
havior in ways that undermine those gains.

The third chapter augments choice models and recommendation systems with
consumer consideration sets. Recommendations systems are commonly used in
online marketplaces to suggest relevant items (products in case of e-commerce,
content in case of social media, and music/movies in case of entertainment plat-
forms) to users. In the case of online retail, these systems typically use histori-
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cal purchases to learn consumer preferences and then predict what consumers are
likely to buy next. The suggested method enhances the learning of consumer pref-
erences by flexibly incorporating consumers’ historical consideration sets along
with purchases with a sequential deep learning model. The search augmented
recommendation system better captures consumers’ latent preferences, more ac-
curately predicts future actions, and substantially outperforms strong baselines.
Finally we show that these gains are distributed across the entire spectrum of con-
sumers and not concentrated among a small subset of high usage consumers.

Thesis Supervisor: Sinan Aral
Title: David Austin Professor of Management
Professor of Information Technology and Marketing

Thesis Supervisor: Dean Eckles
Title: Mitsubishi Career Development Professor
Associate Professor of Marketing
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Chapter 1

Scalable Bundling via Dense Product

Embeddings

Abstract

Bundling, the practice of jointly selling two or more products at a discount, is a
widely used strategy in industry and a well-examined concept in academia. Schol-
ars have largely focused on theoretical studies in the context of monopolistic firms
and assumed product relationships (e.g., complementarity in usage). There is,
however, little empirical guidance on how to actually create bundles, especially
at the scale of thousands of products. We use a machine-learning-driven approach
for designing bundles in a large-scale, cross-category retail setting. We leverage
historical purchases and consideration sets determined from clickstream data to
generate dense representations (embeddings) of products. We put minimal struc-
ture on these embeddings and develop heuristics for complementarity and substi-
tutability among products. Subsequently, we use the heuristics to create multiple
bundles for each of 4,500 focal products and test their performance using a field
experiment with a large retailer. We use the experimental data to optimize the
bundle design policy with offline policy learning. Our optimized policy is robust
across product categories, generalizes well to the retailer’s entire assortment, and
provides expected improvement of 35% (∼$5 per 100 visits) in revenue from bun-
dles over a baseline policy using product co-purchase rates.
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1.1 Introduction

Bundling is a widespread product and promotion strategy used in a variety of

industries such as fast food (meal + drinks), telecommunications (voice + data

plan), cable (TV + broadband), and insurance (car + home insurance). Given its

pervasiveness, it has received considerable attention with over six decades of re-

search analyzing conditions under which it is profitable, the benefits of different

bundling strategies, and its welfare consequences. However, despite the vast lit-

erature, scholars have offered retailers little empirical guidance on how to create

good promotional bundles. For example, consider a medium-sized online retailer

with an inventory of 100,000 products across multiple categories. Which two prod-

ucts should the retailer use to form discount bundles? There are
(︀
105

2

)︀
≈ 5 billion

combinations. Conditional on selecting a candidate product, there are 99,999 op-

tions to choose from to make a bundle. Is there a principled way that the managers

can use to select products to form many bundles?

In this study, we offer a new perspective on the bundle design process which

leverages historical consumer purchases and browsing sessions. We use them to

generate latent dense vector representations of products in such a way that the

proximity of two products in this latent space is indicative of “similarity” among

those products. Importantly, we distinguish between the representation of prod-

uct purchases and representation of consideration sets, where consideration sets

include the products that were viewed together during a browsing session. We

posit that products that are frequently bought together tend to be more comple-

mentary whereas products that are frequently viewed but not purchased together

tend to be more substitutable. Then, depending on whether the products were

more frequently co-purchased or co-viewed, the degree of similarity in the latent

space suggests complementarity or substitutability respectively. We put minimal

structure on this latent-space-based contextual similarity to generate product bun-

dles. We learn consumers’ preferences over these suggested bundles using a field

experiment with a large U.S.-based online retailer. We combine machine learning
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methods with counterfactual off-policy evaluation to optimize the bundle design

policy using the results of the field experiment. Our optimized policy improves

revenue by 35% (∼$5 per 100 visits) over the benchmark policy.

Many of the earlier papers on bundling hinged on analytical models that relied

on pre-specified product complementarity or substitutability (Adams and Yellen,

1976; Schmalensee, 1982, 1984; Venkatesh and Mahajan, 1993; Venkatesh and Ka-

makura, 2003). Furthermore, most studies work with the idea that a single firm

is producing the goods, bundling them together, and then selling them at the dis-

counted price (Derdenger and Kumar, 2013). However, a more realistic picture —

and the one we consider in this study — is one of a downstream retailer bundling

products from different firms. Our work focuses on the empirical side of bundling

and enhances the existing literature in economics and marketing in three ways.

First, instead of considering pre-defined relationships among products, we gener-

ate continuous metrics that are heuristics for the degree of complementarity and

substitutability based on historical consumer purchases and consideration sets.

Second, we test the effectiveness of our methodology by running a field experi-

ment with a large online retailer in the US, providing empirical color to a largely

theoretical literature. Third, we explore the idea of generating bundles from im-

perfect substitutes to tap into the variety-seeking behavior of consumers, which

we call variety bundles.

More practically, our approach has several important features that add to the

literature as well as the practice of creating bundles. For instance, a major strength

of our approach is that we can learn relationships between two products which

have very few, or even zero co-purchases, but may still be strongly related to each

other. We do this in a scalable way which allows us to systematically explore a

space that would otherwise be considered of limited value in designing bundles.

This permits us to develop an effective bundle design strategy in a large-scale

cross-category retail setting where co-purchases are sparse, a relatively unexplored

context in bundling studies. In our results, we find that bundle purchases and rev-

enue are highly correlated with purchase embeddings after netting out the effect of
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historical co-purchases. Bundles in the top quintile of residualized complementar-

ity scores are ∼2-3 times more likely to be purchased as compared to the bundles

in the bottom quintile.

Further, we design our experiment to explore the potential bundle space effi-

ciently. Rather than creating bundles completely at random, we use empirically-

guided bundling strategies to create multiple bundles for the same product. This

allows us to learn consumer preferences for a large and varied set of bundles while

showing bundles that are “meaningful” and have a reasonable likelihood of pur-

chase. We do this by using four simple but intuitive bundling strategies to gener-

ate candidate bundles. For a given focal product, we create - 1) a bundle with

the strongest cross-category complement based on purchase embeddings (CC),

2) a bundle with the strongest cross-department complement based on purchase

embeddings (DC), 3) a variety bundle with the closest imperfect substitute based

on the consideration embeddings (VR), and 4) a bundle based on historical co-

purchase frequency (CP). We use off-policy evaluation on the results of the field

experiment to optimize the bundle design policy (Dudik et al., 2014; Zhou et al.,

2018; Athey and Wager, 2021). The optimized policy increases the expected bundle

purchases by ∼ 31% and expected bundle revenue by ∼ 35% over the benchmark

policy.

Importantly, we also provide implementable strategies for managers. Identify-

ing the best bundles for a retailer with an assortment of 100,000 products involves

considering an action space with millions of potential bundles, a combinatorially

challenging task. Our methodology allows us to filter this action space in a prin-

cipled data-driven way using machine-learning-based heuristics, providing sub-

stantial efficiency gains while accounting for consumer preferences. For example,

some of the bundles created by category managers include different volumes of the

Harry Potter book series, branded sports team gear (hand towel and bath towel),

and same-brand shampoo and conditioner. Our approach adds several types of

bundles to this set: cross-category complements such as dryer sheets with scent

boosters, fruit and vegetable snacks with protein supplements, mouthwash with
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deodorants, and variety bundles such as rotini with penne pasta, and citrus soda

with root beer. More broadly, we provide insights at the category level as well.

For example, we find that fresh products make good bundles with pantry, snack

foods, and dairy & eggs. Sports and nutrition products go well with candy, gum,

& chocolate, and laundry + cleaning supplies work well too.

We provide references for related work in the next section. Sections 3 and 4

describe the data and embeddings. Section 5 provides the experiment design and

the process we used to create candidate bundles for it. Section 6 describes the

optimized bundling policy. Section 7 translates our results into actionable and

implementable managerial insights. Section 8 concludes.

1.2 Related work

Our study draws inspiration from two distinct strands of literature: the bundling

literature from economics, marketing and operations research, and the recommen-

dation systems literature from computer science and marketing.

1.2.1 Economics, marketing, and operations research

Literature on bundling is vast and has evolved over the decades.1 Early work

focused on understanding bundling as an effective tool for price discrimination

(Stigler, 1963; Adams and Yellen, 1976). Research interests further evolved to find-

ing conditions under which a firm might choose to sell its products as indepen-

dent components vs. pure bundles vs. mixed bundles (Schmalensee, 1982, 1984;

Venkatesh and Mahajan, 1993; Venkatesh and Kamakura, 2003). With the availabil-

ity of granular choice data, the interest shifted towards building complementarity-

based structural models for bundle choice (Chung and Rao, 2003; Chao and Der-

denger, 2013; Derdenger and Kumar, 2013; Prasad et al., 2015). For example, Chung

and Rao (2003) build a multi-category choice model for bundles based on the at-

1See Stremersch and Tellis (2002) for an introductory guide to bundling from a marketing per-
spective and Rao et al. (2018) for a chronological account of the bundling literature.
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tributes of the products. They estimate their parameters by pre-defining a set of

physical features and attributes for personal computers. Although their choice

model does account for cross-category bundles and hence, heterogeneous compo-

nents, they use narrowly defined categories with all products being complements

in usage. More recently, Derdenger and Kumar (2013) empirically test some of the

bundling theories described in the earlier bundling papers with hand-held video

games. They investigate the options of pure bundling vs. mixed bundling along

with the dynamic effects of bundling for durable complementary products and

find that mixed bundling leads to higher revenues.

Much of the work on bundling is focused on a multi-product monopolist. Bhar-

gava (2012) extends the ideas to study the impact of a merchant bundling prod-

ucts from different firms. He builds an analytical model to find conditions un-

der which pure bundling and pure components are profitable. He further shows

that bundling may not be profitable due to vertical and horizontal channel con-

flicts unless the firms can coordinate on prices. Among empirical works, Yang and

Lai (2006) use association rules to create bundles of books based on shopping-cart

data and browsing data. They find that these bundles sell more than the bundles

based solely on order data or solely using browsing data. Although, Yang and Lai

(2006)’s idea and our idea are similar in spirit, i.e., both use browsing and purchase

data to generate bundles, our scopes are widely different - books vs. cross-category

retail. Nevertheless, a key takeaway from their study is that they found incremen-

tal value in using browsing data in addition to purchase data in forming bundles,

an idea that we leverage too. Jiang et al. (2011) also study bundling in the context of

an online retailer selling books and use non-linear mixed integer programming to

recommend the next best product given what it is currently in the basket. They do

numerical studies to show that their method leads to more customers purchasing

discounted bundles as well as improved profits for the retailer.

To summarize, previous research has carefully examined the efficacy of dif-

ferent bundling strategies in a variety of settings with a multitude of tools such

as graphical analysis, analytical frameworks, probabilistic, and structural models,
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survey-based empirical exercises, and modeling historical purchase data. Conclu-

sions, though numerous, are contingent on the assumptions the researchers have

made. Depending upon the context, researchers have found bundles of comple-

mentary, substitutes, and independent products to be profitable. With lessons from

these papers as strong a foundation, our paper offers a new perspective to an old

problem. We do not attempt to fill any “gap” in the literature but rather deliver

a novel prescriptive methodology that is rooted in data, is empirically validated

using a field experiment, and is practically implementable by retail managers.

1.2.2 Market-basket analysis and recommender systems

Work on recommendation systems is wide and varied spanning multiple academic

genealogies. Our work is related to Grbovic and Cheng (2018); Barkan and Koenig-

stein (2016); Rudolph et al. (2016), who generate product embeddings for tasks

such as recommendations and personalization of vacation stays, songs, and gro-

ceries respectively. The core data framework in these papers is similar to ours, in

which there is unstructured data of a sequence of objects generated through re-

peated actions of an agent. Those actions could be rating different movies by a

viewer (Rudolph et al., 2016), or listening to songs (Barkan and Koenigstein, 2016),

or purchasing multiple products together (Rudolph et al., 2016, 2017; Ruiz et al.,

2017).

Ruiz et al. (2017) also look at product baskets to build a model of consumer

choice, eventually generating latent representations of products that can then be

used to identify economic relationships among products such as complementarity

and substitutability. We find their work insightful since our setting is quite simi-

lar — we also inspect product baskets to generate dense latent representations of

products and then use them to learn product relationships. However, there are

three important distinctions. First, they only consider products that were pur-

chased together and use the embeddings from the purchase space to determine

complements and substitutes. We, on the other hand, use clickstream data that
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allows us to identify consideration sets before purchases and define a heuristic

of substitutability through products that are viewed together but not purchased

together. Second, our ultimate objective is different from theirs. They propose a

novel model in the utility-choice framework; we are in effect taking the utility-

choice framework as given and using our version of that framework to design

retail product bundles. Third, though less important, is that our model training

approaches are different. Their approach is based on variational inference (VI)

while ours is based on a shallow neural network.

Our work is also closely related to the market-basket analysis literature from

marketing. Especially relevant are Jacobs et al. (2016), Gabel et al. (2019), and Chen

et al. (2020) who present scalable approaches to market-basket analysis. Gabel et al.

(2019) provide a thorough introduction to product embeddings and their use in

market mapping. Chen et al. (2020) study product competition using embeddings.

We build upon their work and extend product embeddings to capture complemen-

tarity and substitutability by leveraging both purchase and consideration data. We

also go further from a generalized introduction of the concept of product embed-

dings to a specific use-case of designing bundles and provide an empirical solution

to the problem. Jacobs et al. (2016) propose LDA-X, an approach based on Latent

Dirichlet Allocation to predict the customer’s next purchase. In spirit, our paper is

also related to Gabel and Timoshenko (2020) who use the idea of product embed-

dings, combined with a custom neural network architecture, to predict consumer

choice that can further help optimize coupon allocations. Our idea is along similar

lines where we learn product embeddings to solve a downstream task.

Our paper adds to this literature in multiple ways. First, we combine both

purchase and considerations set data to learn product embeddings that represent

different dimensions of the consumer choice process, thereby extracting additional

value from large-scale clickstream data. Second, we effectively combine these rep-

resentations to learn consumer preferences for thousands of bundles using a field

experiment. Third, we use off-policy learning on the results of the field experiment

to design an optimized bundling policy that performs substantially better than the
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benchmark policy (Zhou et al., 2018; Athey and Wager, 2021). To the best of our

knowledge, these are all novel contributions to the literature on bundling.

1.3 Data

We use clickstream data from a large online retailer in the US in which we observe

entire user sessions of views, clicks, and purchases. The retailer sells products

across multiple categories such as grocery, household, health and beauty, pet, baby

products, apparel, electronics, appliances, and office supplies. The data span all

consumer activity on the retailer’s website from January 2018 to June 2018 during

which we observe multiple users and multiple sessions of each user.2

For each consumer session, we observe all the products that the consumer

viewed and/or purchased along with the number of units of each product bought

and the price. For all products, we know the product category hierarchy. The

product category hierarchy can be understood using a simple example. Consider

Chobani Nonfat Greek Yogurt, Strawberry. Its hierarchy would be Grocery (𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡)

→ Dairy & Eggs (𝐴𝑖𝑠𝑙𝑒) → Yogurt (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦), where 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 represents the

highest hierarchy, 𝐴𝑖𝑠𝑙𝑒 is a sub-level of 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, and 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 is a sub-level

of 𝐴𝑖𝑠𝑙𝑒 (and hence 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡). Throughout the paper, we will refer to hierar-

chical categorical levels as 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, 𝐴𝑖𝑠𝑙𝑒, and 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦. In our data, we have

products across 912 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠. It is important to note that we do not use any

product meta-data for training the model. The product category hierarchy is only

used for qualitatively validating the model, a point we discuss later, and generat-

ing different bundles subject to constraints on category co-membership.

As is typical of e-commerce websites, the raw clickstream data include many

views of very rarely purchased products. The retailer’s assortment consists of

more than 500,000 products, of which most products have never been bought. We

filter these rarely purchased products to retain the top 35,000 products by views,

2A session is defined as a visit to the retailer’s website by a user. A session continues until
there is no activity by the user for 30 minutes on the website. If the user performs an action after 30
minutes of inactivity, it is considered to be a new session by the same user.
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which include more than 90% of all purchases. After filtering, we cover about

947, 000 sessions made by ∼ 534, 000 users, which generated ∼ 861, 000 purchase

baskets (products purchased in the same transaction) and ∼ 589, 000 consideration

sets consisting of products viewed together. In the raw data, the number of con-

sideration sets is much larger than the number of purchase sessions since many

browsing sessions don’t have any purchase. For our purpose, we only consider

sessions with purchases. Further, we include only those products in the consider-

ation set whose detailed page the consumer visited. Hence, the number of consid-

eration sets is smaller than the number of purchase sessions. Observation counts

from our working sample are presented in Table A1 in Appendix A.

1.3.1 Purchase baskets and consideration sets

A typical user shopping session includes browsing a range of products, potentially

across multiple categories, and then purchasing a subset of them. In this process,

the user first forms a consideration set, i.e., a set of products from which the con-

sumer intends to finally choose from. In effect, from our model’s perspective, the

user creates two product baskets during a shopping session — products viewed

and products purchased, which form our units of analysis in this study. We con-

sider the products viewed but not purchased as the consumer’s consideration set

and the products purchased as the purchase basket. For consideration sets, we

include only those products whose description page the consumer visited. It is

important for us to distinguish between these two sets of products since this sepa-

ration allows us to learn different relationships between products, i.e., they could

be potential complements or potential (imperfect) substitutes, as we explain later.

Figure 1-1(a) shows an illustrative purchase basket. In this case, the user bought

coffee, milk, cookies (breakfast foods), along with chips and salsa (snacks), tooth-

paste, and dish pods (household products). Our model and associated heuristics

have been designed to infer that coffee, milk, and cookies are potential comple-

ments. Not only that, we want to go one step further and infer that coffee and
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milk are stronger complements than coffee and cookies. The signal for these rela-

tionships comes from thousands of purchase baskets where we are likely to find

coffee and milk being purchased together more frequently than coffee and cookies.

Similarly, we want to infer that chips and salsa are complements. The consumer in

this case also purchased toothpaste and dish pods. Ex-ante we do not expect any

complementarity between these items and the rest of the basket and this may just

be idiosyncratic noise particular to this shopping session.3

We also observe the corresponding consideration set for the same consumer,

shown in Figure 1-1(b). The consideration set includes products that were viewed

but not purchased together. We see that the consumer viewed different brands and

flavors of coffee before purchasing one. Our model would infer them as potential

substitutes. Further, the model would also pick out the different types of chips that

the consumer searched. For inferring potential substitutes, we rely on the assump-

tion that users search for multiple products before purchasing one, a pattern we

do observe in the data.

Table 1.1 shows the summary statistics at a basket level. On average, a con-

sumer searches 7 products for each one bought. The mean of products bought

(or viewed) is higher than the median, indicating a long right tail of baskets with

many products. Within each basket, the median number of departments is 1, al-

luding to the concept of a focused shopping trip, i.e., a particular shopping session

for groceries, a different one for household supplies, a third one for apparel, and

so on. Further, we see that the average purchase basket consists of products from

3 different categories.

1.4 Product embeddings

Inferring product relationships from consumer choice has largely been the bastion

of economics and marketing scholars studying micro-econometric discrete choice

3Note that the model does not make use of textual labels of the products. It ingests hashed
product IDs and finds the relationships between these IDs without ever looking at the product
name or category.
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(a) Purchase basket

(b) Consideration set

Figure 1-1: Illustrative purchase baskets and consideration sets created during a user
shopping session

models of consumer demand in which a consumer typically chooses one prod-

uct out of an assortment of within-category options. Such models constrain the

consumer’s choice set to close (but potentially imperfect) substitutes, rendering

cross-category comparison extremely difficult. Most of these models are also lim-

ited in the number of products and transactions they can handle, though the latter

concern has been ameliorated with the rise in computational power. Furthermore,

previous models only allow us to use features of products that are easily observ-

able and quantifiable such as brand, price, and size. However, consumers make

choices based on many factors such as the product description, packaging, and

reviews, all of which are difficult to quantify and not intuitive to compare across

categories of products.

Our approach loosens the grip of all these constraints by (1) considering multi-

product choices in the same shopping session, (2) leveraging cross-category pur-

chase baskets and consideration sets, (3) ensuring scalability in the number of
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Table 1.1: Summary statistics per user session

Purchased Viewed

Products

Mean 3.6 21.3
SD 4.2 34.1

Median 2 9
Max 202 1365

Category

Mean 3.0 4.0
SD 2.9 5.3

Median 2 2
Max 69 122

Aisle

Mean 2.4 2.6
SD 1.9 2.5

Median 2 2
Max 28 48

Department

Mean 1.6 1.7
SD 0.8 1.0

Median 1 1
Max 10 14

Price

Mean 44.6 303.7
SD 52.1 526.1

Median 32.3 127.4
Max 2,697 17,480

Note: A user session is defined a visit to the retailer’s
website by a user. A session continues until there is
no activity by the user for 30 minutes on the website.
If the user performs an action after 30 minutes of
inactivity, it is considered to be a new session by the
same user.

products, transactions, and browsing sessions, and (4) imposing minimal structure

on product characteristics. For example, in our setting of online retail with 35, 000

products across hundreds of categories, inferring relationships between products

through cross-price elasticity is not feasible. Co-purchases at the product level

are too sparse to generate reliable estimates. Over 90% of the product pairs have

never been purchased together. To analyze this sparse high-dimensional data ef-

ficiently, we adapt methods from the machine learning literature and customize

them to suit our case. Our model condenses a large set of information about each

product into dense continuous vector representations, which facilitate easy com-

parison of products across categories. Moreover, our method is also useful when

considering categories of products with thin purchase histories, an area which is

particularly difficult for structural choice models, allowing us to infer relationships

even among products with few, or even no, purchases.

Our model belongs to the general class of vector space models where discrete

tokens can be represented as continuous vectors in a latent space, such that tokens

that are similar to each other are mapped to points that are closer in the space.

Popular examples of vector space models include tf-idf, and the relatively newer,
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word2vec (Mikolov et al., 2013a,b). Though both the examples above rely on the

distributional hypothesis, models such as tf-idf are commonly referred to as count-

based methods and are based on coarse statistics of co-occurrences of words in

a text corpus, where models such as word2vec are based on prediction methods

(Baroni et al., 2014). While a count-based model, such as an n-gram tf-idf, is simpler

to understand, estimating the parameters of becomes increasingly complex as n

increases
(︀
𝒪(|𝒱|𝑛)

)︀
, where |𝒱| is the size of the vocabulary. Count-based methods

also cause problems when they face unforeseen n-grams and require smoothing to

deal with them.

Neural probabilistic language models, like word2vec, deal with both these con-

cerns by changing the objective function from modeling the likelihood of the cor-

pus to predicting the probability of a word given its surrounding words. This not

only condenses the representation of each word to a much lower dimension as

compared to the size of the vocabulary but also removes the need for smoothing

to generate probabilities estimates for new token sequences. It is important to note

here that while neural models also rely heavily on co-occurrences, they go much

beyond the simple notion of co-occurrence to help us learn about word pairs that

may not have been frequently observed together in the past. In our context (as we

will explain below), this implies that we can learn about product pairs that may

have low co-purchases but are still be strongly related to each other. We describe

our training and validation procedure below. In Appendix B, we provide an intu-

itive description and the formal equations for the model.

1.4.1 Training and validation

We train neural embeddings using a slightly modified version of word2vec on pur-

chase baskets and consideration sets separately. We describe the training proce-

dure on purchase baskets below (training on consideration sets similar). We start

by only taking baskets that have more than one product. Since our model is de-

signed to learn within-session relationships among products, we can only use pur-
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chase baskets (or consideration sets) with 2 or more products. We then split the

data into a development sample (Jan-2018 - May 2018) and a testing sample (June

2018). We further randomly split the development sample into a 90% training

sample and a 10% validation sample. We use the validation sample to tune hyper-

parameters.

We begin training by initializing the embeddings randomly with a 35,000 × 100

dimensional matrix. Here, 35, 000 represents the size of our assortment and we are

seeking a 100-𝑑 representation for each product. We split the training data into

batches (as is standard in training neural networks) and subsequently split each

basket into each combination of two-product pairs. We draw 20 times as many

negative samples as positive samples using the marginal (uni-gram) distribution

(Mikolov et al., 2013b). With the observed product pairs as positive labels and

the generated negative samples as negative labels, we compute the cross-entropy

loss and propagate it backward to update the embeddings. The model is trained

with TensorFlow and we use the in-built Adam optimizer (Kingma and Ba, 2015)

to update the weights.

The hyperparameters mentioned in the above paragraph are the optimal ones

obtained by checking the performance of the model on 10% held-out validation

data. To get these parameters, we first do a random search by running a smaller

version of the model using product categories (level 3 hierarchy) to identify a nar-

rower range of hyper-parameters over which the model performs well. This helps

navigate the hyper-parameter space efficiently and iterate quickly over different

configurations of the model (Bergstra and Bengio, 2012). We then run the com-

plete model using the actual products on this narrower range to learn the optimal

hyper-parameter values. This process is done separately for purchase baskets and

consideration sets. While optimizing the model parameters, we learned that 𝒟, the

embedding dimension, has the biggest impact on model performance. A larger

𝒟 typically provides more accurate results since it can capture more complex re-

lationships among products. However, this comes at the cost of a substantially

larger training time. In our experiments, we found that 𝒟 = 100 provided the best
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results on out-of-sample validation data. Reassuringly, other researchers have also

found 100−𝑑 representation to work well for products on similar data sets (Ruiz

et al., 2017).

We check the model’s fit on an out-of-time hold-out test set which consists of

all shopping sessions in June-2018. We test the model on purchase baskets and

consideration sets separately. We also compare the model’s performance to popu-

lar benchmarks used in recommendation systems and market-basket analysis. We

train four models - 1) Latent Dirichlet Allocation (LDA) (Blei et al., 2003; Jacobs

et al., 2016), 2) Singular Value Decomposition (SVD)(Halko et al., 2010; Bell et al.,

2008), 3) Non-negative Matrix Factorization (NNMF) (Cichocki and Phan, 2009),

and 4) Item-based Collaborative Filtering (CF) (Linden et al., 2003). We also in-

clude a baseline model which uses only raw historical co-purchase/co-view rates.

We compare each benchmark model’s score with our model using Hit Rate @ 10,

which is a commonly used metric to evaluate recommendation systems. The re-

sults are shown in Table 1.2. We see that for both the cases - purchases and consid-

eration sets, our product embeddings perform better.

Table 1.2: Model performance with Hit Rate @ 10 on held-out test data

Purchases Consideration sets

Product embeddings 0.039 0.023
LDA 0.035 0.018
SVD 0.033 0.021
Non-negative matrix factorization 0.034 0.016
Item-based collaborative filtering 0.029 0.020
Historical co-purchase/co-view rate 0.027 0.014
Note 1: The table shows performance for product embeddings and benchmark
models on held-out test data as measured by hit-rate@10. The benchmark
models were chosen based on literature review and include the common ap-
proaches used in market-basket analysis and recommender systems. Hit rate
has been re-scaled by multiplying all values with 100.

1.4.2 Visualizing embeddings

It is instructive to visualize what the embeddings represent and understand why

using them for designing bundles is a good idea. Below we visualize the purchase
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and consideration set embeddings. Since our trained embeddings representations

are 100−𝑑, we post-process them using t-SNE (van der Maaten and Hinton, 2008;

Gabel et al., 2019) and project them to a 2−𝑑 map. To ensure proper convergence

for t-SNE, we initialize the process by first running principal component analysis

on the embeddings.

Purchase embeddings

Purchase embeddings are shown in Figure 1-2. For visual clarity, we highlight the

department of the product and show products from the top five departments –

groceries, health & beauty, household, baby, and pet supplies. A cursory glance

reveals some confirmatory patterns. While we see a clear separation among prod-

ucts from different categories, there is also some overlap among departments. In

this space proximity to the other products indicates a higher likelihood of the two

products occurring in similar contexts, or in our case, similar types of baskets.

Proximity among the products in this space suggests a higher degree of comple-

mentarity.4

As a more granular example, we zoom into the grocery department and look at

snack foods, meats, dairy & eggs, and chocolates. Ex-ante we would expect snack

foods to have a stronger positive relationship with candy & chocolates, and meats

to have a stronger relationship with dairy & eggs. Figure 1-3 presents evidence

for this hypothesis with snack foods being much closer to candy & chocolates than

to either meat products or dairy & egg products. In fact, there is considerable

overlap among snack foods with candy & chocolates, suggesting a high degree of

complementarity between them.

In addition to testing relationships among products from different but pre-

existing categories (typically created by the retailer), we can also generate new

sub-categories of products and check how well they go with products from other

categories. For instance, in Figure 1-4, we compare organic groceries with snack

4These embeddings are plotted in a latent space and hence the scale of this axis is immaterial;
only proximity between the points is important.
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Figure 1-2: Purchase embeddings for top-5 departments

foods. Although there is no pre-defined organic category of products, as a proof-

of-concept, we do a simple string search of the word “organic” in the names of

the products. We then visualize them along with snack foods to see what kind of

organic products are related to snack foods. The upper highlighted portion of Fig-

ure 1-4 shows a high degree of complementarity among nuts, dried seeds such as

watermelon seeds, trail mixes, jerky and dried meats, and seaweed snacks. On the

other hand, the lower highlighted portion of the graph shown less of an overlap

and mainly consists of cookies, chips & pretzels. We believe that having a flexible

and scalable model such as this can provide crucial insights about market struc-

ture, brand competition, product positioning, user preferences, and personalized

recommendations.

We dig deeper to the product level and inspect a few focal products. Consider,

for instance, organic potatoes. In the purchase space, the products closest to or-

ganic potatoes include other organic fruits and vegetables such as organic celery,

organic grape tomatoes, and organic green bell peppers. Similarly, products clos-
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Figure 1-3: Purchase embeddings for within grocery aisles

est to dish-washing liquid include other household items, and in some cases can be

narrowed to the space of cleaning products, such as paper towels, laundry deter-

gents, and steel cleaners. As a third example, we look at a product from the health

and beauty category — Neutrogena Oil-Free Acne Wash Redness Soothing Cream

Facial Cleanser. Products that go along with this facial cleanser and include other

hygiene and beauty products such as liners, rash cream, body wash, and deodor-

ant. More details about the close complements of these focal products along with

their complementarity score (described later) are presented in the Appendix A in

Tables A2, A3, and A4.

We take this visual and tabular evidence as support for our claim that prod-

ucts that frequently co-appear in product baskets tend to have a higher degree of

complementarity between them.
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Figure 1-4: Purchase embeddings for organic groceries and snack foods

Embeddings vs. co-purchases

A natural contender for extracting signals of complementarity is using the co-

purchase frequency directly. Hence, it is worth highlighting what we obtain from

the embeddings that is otherwise not available through co-purchase counts. Fig-

ure 1-5 plots (log) historical co-purchase rate as observed in the data along with a

heuristic for complementarity (described later) generated from the embeddings for

a random sample of 5,000 product pairs. A quick glance reveals that although co-

purchases are sparse ( 10%) as shown by points at the extreme left end of the graph,

yet there is considerable variation in the scores of these products. This is because

the model is able to smooth over the raw co-purchase counts over thousands of

product pairs and learn relations even between products that have never been pur-

chased together. For example, some of the product pairs with zero co-purchase his-

tory but high complementarity score include – 1) Colgate Total Whitening Tooth-

brush + Dove Sensitive Skin Body Wash Pump, 2) Breakstone’s Sour Cream +
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Lemons, 3) Nutella & Go Pretzel + Clif Bar Energy Bar Variety Pack. Ex-post it is

easy to see why these pairs should have a high complementarity score. However,

identifying these pairs from a large assortment is challenging. Our approach is

able to do this in a scalable way, which allows us to systematically explore a space

that would otherwise be considered of limited value in designing bundles. More-

over, we highlight the department of the focal product to confirm that co-purchase

is a limiting factor across the entire assortment and not just a few categories only.

No co−purchases

Breakstone's Sour Cream + Lemons

Colgate Total  + Dove Body Wash

Nutella & Go Pretzel 
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Figure 1-5: Historical co-purchase rate and complementarity score from purchase
embeddings

Notes: Products with zero copurchase are shown at x = -5.0. Points are categorized with the department of the focal product.

1.4.3 Consideration set embeddings

Similar to purchase embeddings, we generate product embeddings using histori-

cal co-views of products, i.e., by observing how frequently do products co-occur in

consideration sets formed during thousands of shopping trips. These embeddings

also lie in a similar 100-dimensional space. We condense them to a 2−𝑑 space us-

ing t-SNE (van der Maaten and Hinton, 2008) and plot the top-5 departments in
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Figure 1-6. The overall theme of the embeddings remains largely similar to that

in purchase embeddings. However, there are two notable distinctions. First, the

inter-department clusters are further separated away indicating that most views

are confined to within-department products. This reinforces the evidence from Ta-

ble 1.1, where we see that most search sessions are confined to one department.

Second, there are well-defined sub-clusters within the department cluster, which

self-classify into finer aisles and categories. For instance, the lowest olive colored

cluster comprises only of “Breakfast Foods” (𝐴𝑖𝑠𝑙𝑒), primarily containing “Hot Ce-

reals and Oats” (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦), with the occasional presence of “Granola & Muesli”

(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦). On the other end of the plot, the topmost purple cluster consists of sup-

plies for our furry friends. This cluster only contains meat-based meals (𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦)

for dogs (𝐴𝑖𝑠𝑙𝑒). These observations also lend merit to our hypothesis that co-

views are good indicators of substitution across products, an insight we explore

more below.

Hot Cereals & Oats

Meat−based Dog Food

Sunscreen

−50

0

50

−50 0 50

Department Baby Grocery Health & Beauty Household Pet

Figure 1-6: Consideration set embeddings for top-5 departments

At a more granular level, we look at aisles within the grocery department in
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Figure 1-7. We see more refined sub-clusters as compared to purchase embeddings

for the same grocery products. For example, the annotated cluster of purple points

at the bottom of the graph is for popcorn and the annotated cluster of purple points

in the center is for dried fruit and vegetable snacks.
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Figure 1-7: Consideration set embeddings for organic groceries and snack foods

Similar to the purchase space, we inspect the same three products and calcu-

late their proximity to other products in the consideration space. For example,

organic potatoes are now closer to other varieties of potatoes in the consideration

space such as golden potatoes, red potatoes, and even sweet potatoes, indicating

a higher degree of substitutability among them. This in contrast to the purchase

space where organic potatoes were closer to other organic fruits and vegetables.

Similarly, dish-washing liquid is now closer to other types and brands of dish-

washing detergents such as liquids and soaps of different scents and sizes. Fi-

nally, the acne face wash shows considerable similarity with varieties of acne face

washes. However, in this case, there is a strong brand effect with all potential sub-

stitutes being from the same brand - Neutrogena. It could be that users have strong

preferences for brands when it comes to health and beauty products or that there is
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a single dominant brand in the product line. More examples of products closer to

each other in the consideration space are provided in the Appendix A in Tables A5,

A6, and A7.

1.4.4 Product relationships

A critical ingredient in the recipe of our bundle generation process is the relation-

ship between any two products in the retailer’s entire assortment. We want the

relationship to be described by a metric that is continuous and category agnostic

so that we can compare the strengths of the relationships that a particular prod-

uct has with other products in the assortment as well as compare strengths of the

relationships across product pairs. In other words, we’d like to be able to make

both within-product as well as between-product comparisons. For example, we

want to be able to say that coffee and cups are stronger complements than coffee

and ketchup as well as that coffee and cups are stronger complements than tea

and salt. This example seems obvious, however, it becomes increasingly hard to

infer these relationships when there are thousands of products in the assortments

and co-purchases among pairs of products are sparse as shown in Figure 1-5. With

35,000 products in the retailer’s assortment, there are close to 60 million product

combinations with over 90% of the co-purchases being zero. Moreover, we want

these relationships to be inferred from the data we observe and not be pre-imposed

by the retailer. Analogously, we want to learn that coffee and tea are stronger sub-

stitutes than coffee and fruit juice.

With this objective in mind and based on the evidence described above, we use

cosine similarity, a simple and intuitive metric, as a heuristic for product relation-

ships. This heuristic is similar to the one used by Ruiz et al. (2017) and works well

when trying to summarize distances in high-dimensional spaces.

Hence, we generate a heuristic for the degree of complementarity between
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products 𝑖 and 𝑗 in the purchase space as:

𝑐𝑖𝑗 =
𝑢𝑏
𝑖 · 𝑢𝑏

𝑗

‖𝑢𝑏‖‖𝑢𝑏‖
, (1.1)

where 𝑢𝑏
𝑖 and 𝑢𝑏

𝑗 are the embeddings of products 𝑖 and 𝑗 in the purchase space

respectively, and ‖ · ‖ is the norm of the embedding vector.

Similarly, we generate a heuristic for the degree of substitutability between two

products 𝑖 and 𝑗 in the consideration space,

𝑠𝑖𝑗 =
𝑢𝑠
𝑖 · 𝑢𝑠

𝑗

‖𝑢𝑠‖‖𝑢𝑠‖
, (1.2)

where 𝑢𝑠
𝑖 and 𝑢𝑠

𝑗 are the embeddings of products 𝑖 and 𝑗 in the consideration space

respectively, and ‖ · ‖ is the norm of the embedding vector.

To give an overview of what these product relationships look like, we present

examples with a few focal products. Table 1.3 shows the top-5 complements and

substitutes for products from three categories. In the first section, we consider

hummus and we see that strong complements with it are baby carrots, greek yo-

gurt, and mandarins. On the other hand, substitutes are other varieties of hum-

mus. Similarly, for eyeliner, we find that complementary products include other

skin-care and beauty products, whereas its substitutes are other varieties of eye-

liner. Lastly, for household cleaning products such as dish soap, we find other

types of cleaning products as strong complements and other varieties of dish soap

as strong substitutes. These product relationship scores form the basis of our bun-

dle design process and our field experiment, which we describe next.

A natural question ask is why we use two separate embeddings instead of com-

bining them into a single set as done in Ruiz et al. (2017) and Gabel et al. (2019)?

A qualitative answer here is interpretability, both for researchers and managers.

The two embeddings capture different behaviors. By keeping the concept of com-

plementarity and substitutability separately operable, we provide the option to

explore the respective space in a guided way, especially in the case of designing
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bundles. A more data-backed answer is that it works better. As we show later, us-

ing the two scores together delivers a better-optimized bundling policy than using

either score individually (see Figure 1-8).

Table 1.3: Product relationships using the complementarity and substitutability
heuristics

Product Predicted complements in the purchase space Predicted substitutes in the consideration space

Sabra
Classic
Hummus
Cups

Cal-Organic Baby Carrot Snack Pack Sabra Supremely Spicy Hummus
Chobani Fruit On The Bottom Low-Fat Greek Yogurt Sabra Roasted Red Pepper Hummus Cups
Sabra Hummus Singles Sabra Greek Olive Hummus
Breakstone’s 2% Milkfat Lowfat Cottage Cheese Sabra Classic Hummus
Halos Mandarins Sabra Hummus Singles

L’Oreal
Paris
Infallible
Eyeliner

Chloe Eau De Parfum Spray L’Oreal Paris Brow Stylist Definer, Brunette
Olay Ultra Moisture Body Wash, Shea Butter L’Oreal Paris Brow Stylist Definer, Dark Brunette
John Frieda Frizz Ease Daily Nourishment Leave-In L’Oreal Paris Infallible Super Slim Eyeliner, Black
Smashbox NEW Photo Finish Foundation Primer Pore Milani Eye Tech Extreme Liquid Liner, Blackest Black
Olay Quench Ultra Moisture Lotion W/ Shea Butter, Revlon Colorstay Eyeliner, 203 Brown

Ecover
Dish Soap,
Pink
Geranium

Forever New Fabric Care Wash Ecover Dish Soap, Lime Zest
Ecover Fabric Softener, Sunny Day Earth Friendly Products Ecos Dishmate Dish Soap, Lavender
Ecover Dish Soap, Lime Zest Ecover Zero Dish Soap
Full Circle Laid Back 2.0 Dish Brush Refill Earth Friendly Products Ecos Dishmate Dish Soap Pear
Giovanni Organic Sanitizing Towelettes Mixed Earth Friendly Products Ecos Dishmate Dish Soap Almond

Note: For each focal product, the table shows the top-5 complements as determined by the embeddings in the purchase space and the top-5
substitutes as determined by the embeddings in the consideration space.

1.5 Bundle generation and experiment design

We follow a two-stage strategy to design bundles. In the first stage, we create a

candidate set of bundles using the metrics of complementarity and substitutabil-

ity described above and run a field experiment to gauge consumer responses to

bundles with varying characteristics, especially scores derived from the product

embeddings. The motivation here is to develop a principled exploratory strategy

that is based on a more refined action space derived using historical purchases and

consideration sets. In the second stage, we use the results of the field experiment to

learn an optimized bundle design policy. We then scale the optimized policy to the

entire assortment of products, identifying bundles with high success likelihood in

terms of expected purchase rates and revenue.

We describe our strategy to create a candidate set of bundles for the field ex-

periment below. In what follows, we consider bundles of two products — a “fo-

cal” product and an “add-on” product. The focal product is the main product on

whose page the bundle offer is shown and the add-on is the product on which the
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discount is applied. An illustrative example of how this is implemented on the re-

tailer’s website is shown in Figure A1. For instance, consider ??. Here, a consumer

visited the detailed page for ‘Doritos Tortilla Chips‘ and was shown an option to

purchase ‘Doritos Salsa‘ along with the chips for a 10% discount on the price of the

salsa. If the consumer would like to purchase the bundle, they can add it directly

to the cart. This setup is consistent across all the promotional bundles we have in

the experiment.

1.5.1 Candidate bundles

Our ultimate objective in this study is to identify the best promotional bundles

from a large assortment. To this end, we need to learn consumer preferences over

a wide set of bundles. A possible approach to learn these preferences is to cre-

ate a large number of bundles using randomly drawn product pairs. However,

this would be a poor approach – both in terms of power as well as in terms of

creating a bad shopping experience for the consumers. At the other end, we can

simply leverage the historical co-purchase rates among products and for each fo-

cal product pick the product with the largest co-purchase rate. However, as shown

in Figure 1-5, co-purchases are sparse, and constraining ourselves to historical co-

purchases would not allow us to explore the large assortment space. This would

eventually not add much value to the consumer experience either.

A more principled way to navigate this space is to find candidate bundles with

a “high” likelihood of purchase that are diverse enough to allow guided explo-

ration. Our embeddings-based approach allows us to implement this strategy ef-

ficiently. We leverage the relationship scores to generate a varied set of bundles.

Specifically, for each focal product, we create multiple bundles across different cat-

egories, casting a wide exploratory net for learning consumer preferences, while

exploiting the strength of relationships between products to guide the learning.

It helps to fix notation and work with an example. In what follows, we seek

to create a bundle 𝑏𝑖𝑗 for a focal 𝑖 by choosing a product 𝑗 from the assortment 𝒱
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of size | 𝒱 |, which is our case is 35,000. The bundle 𝑏𝑖𝑗 bundle will be shown on

𝑖’s page. 𝑐𝑖𝑗 and 𝑠𝑖𝑗 are the respective complementarity and substitutability scores

between 𝑖 and 𝑗. To make the exposition easier, we fix 𝑖 for the examples below to

be ‘Domino Sugar’ and call it �̄�. Our four candidate bundling strategies are:

1. Co-purchase bundles (CP): The first category of bundles is based on high ob-

served co-purchase frequency. For each focal product, we select the product

that it has been most frequently co-purchased in our training sample. These

bundles are the natural contenders for a simple data-driven bundling strat-

egy - products that have been purchased frequently together in the past will

have a higher likelihood of being purchased together in the future as well,

ceteris paribus. They also serve as a useful starting point of our bundle design

strategy since we can map these bundles back to the underlying complemen-

tarity and substitutability scores, allowing us to learn more generalized pat-

terns. However, these bundles are limited in scope since this strategy (a) does

not generate bundles of products that have never been co-purchased before,

(b) uses co-purchase information even when it is very noisy, e.g., bundling

products if they have been co-purchased, say, 2 times in the past, (c) does not

explore cross-category options since most of the bundles come from the same

categories or aisles. For �̄� = ‘Domino Sugar’, the co-purchase bundle includes

‘Sugar in the Raw Natural Cane Turbinado Sugar Packets, 100 Ct‘.

𝑏𝐶𝑃
�̄�𝑗 =𝑗∈𝒱,𝑗 ̸=�̄�

{︀
Co-purchase rate�̄�𝑗

}︀
, �̄� ∈ 𝒱 (1.3)

2. Cross-category complements (CC): For a focal product 𝑖, we consider the

strongest complement for 𝑖 across a different category but within the same

department based on 𝑐𝑖𝑗 as shown in Equation 1.4. The idea behind this

strategy is to identify products that are most likely to be complements in

usage and hence having the focal product under consideration would in-

dicate a high likelihood of purchasing the add-on product as well. How-

ever, to add an element of exploration, we pair products across different cat-
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egories. In case of a tie with the above co-purchase bundles, we use the sec-

ond strongest complement. For ‘Domino Sugar’, the strongest cross-category

complement is ‘International Delight Coffeehouse Inspirations Single Serve -

Caramel Macchiato’ and hence we create a bundle with these two products.

𝑏𝐶𝐶
�̄�𝑗 =𝑗∈𝒱,𝑗 ̸=�̄�

{︀
𝑐�̄�𝑗 | Category(𝑖) ̸= Category(𝑗)

}︀
, �̄� ∈ 𝑉 (1.4)

3. Cross-department complements (DC): These bundles are similar in spirit

to the cross-category complementary bundles mentioned above except that

they specifically search over departments that are different from that of the

focal product. Since most purchases within a trip come from the same depart-

ment, as shown in Table 1.1, we tend to find stronger complements within

the same department. Hence, the motivation in this arm is to explore cross-

department bundles (e.g., household supplies and beauty products) of prod-

ucts that would otherwise not be considered. Equation 1.5 shows the formal

criterion. For ‘Domino Sugar’, the strongest cross-department complement

is ‘Solo Plastic Spoons, White, 500 Ct’.

𝑏𝐷𝐶
�̄�𝑗 =𝑗∈𝒱,𝑗 ̸=�̄�

{︀
𝑐�̄�𝑗 | Dept.(𝑖) ̸= Dept.(𝑗)

}︀
, �̄� ∈ 𝒱 (1.5)

4. Variety (VR): Extant research has suggested the benefit of bundling (imper-

fect) substitutes to capture a larger portion of the consumer surplus and im-

prove profitability (Lewbel, 1985; Venkatesh and Kamakura, 2003)5. We ex-

plore this idea empirically by creating bundles of products that are close to

each other in the consideration space. The rationale here is that products

that appear to be potential substitutes may in fact also be complements over

time or complements within a household. If this is true, then bundling prod-

ucts that are imperfect substitutes could help exploit variety-seeking behav-
5There is the caveat that consumers may actually be forward looking and just buy the products

ahead of time while they are being sold at a discount thereby having no impact on the overall sales
of the retailer. We do not investigate inter-temporal substitution patterns here while noting that it
is an interesting avenue to study further.
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ior among consumers and generate incremental sales for the retailer. We use

𝑆𝑖𝑗 to find the strongest variety bundle as shown in Equation 1.6. For �̄� =

‘Domino Sugar’, the strongest variety bundles includes ‘Splenda No Calorie

Sweetener 400 Count‘.

𝑏𝑉 𝑅
�̄�𝑗 =𝑗∈𝒱,𝑗 ̸=�̄�

{︀
𝑆�̄�𝑗

}︀
, , �̄� ∈ 𝒱 (1.6)

It is important to note that these strategies are not the "arms" of a random-

ized experiment which we plan to horse-race with each other. Rather they are a

data-driven way to picking good yet varied candidate bundles to learn consumer

preferences.

1.5.2 Experiment design

We use these bundling strategies to create four distinct bundles for 4, 500 top-

selling products after removing products with any retailer-specified restrictions

for the field experiment.6 We select the top-selling products as they get maximum

traffic on the retailer’s website. We create 4, 500 × 4 = 18, 000 bundles across the

different strategies mentioned above and institute them in the retailer’s system.

These different strategies for generating bundles should not be understood as dif-

ferent treatment arms that we aim to compare; rather they are different strategies

for sampling a priori promising bundles, yielding data with which to optimize bun-

dle selection.

Basic characteristics of the bundles created by the four strategies are shown in

Table 1.4. We show the results for 11, 296 bundles which were viewed at least once

during the experiment, and hence are part of our subsequent analysis. All values

in this table are calculated based on the pre-experiment data used for training. The

number of bundles viewed is different across the four bundle types since there is

6These include products that cannot be part of sales or promotions due to special manufacturer–
retailer contracts.
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flux in the inventory and depending upon the location and time of the consumer,

a bundle may or may not be available. We calculate the co-purchase rate for the

product pairs. Price-1, Rating-1, Purchase rate-1 correspond to the average price of

the focal products, their average user-provided rating, and their historical individ-

ual purchase rates. Analogously, Price-2, Rating-2, and Purchase rate-2 correspond

to the same variables for the add-on product. The last four rows show the mean

of binary variables which take the value 1 if both the product belong to the same

department, aisle, category, and brand respectively.

Table 1.4: Mean pre-experiment product characteristics for candidate bundles in
the experiment

Cross Cross Variety Co-
category dept. purchase

(CC) (DC) (VR) (CP)

Bundles 3, 092 2, 418 3, 287 2, 499
Comp. score (𝑐𝑖𝑗) 0.34 0.22 0.41 0.40
Sub. score (𝑠𝑖𝑗) 0.39 0.20 0.74 0.58
Co-purchase rate 0.10 0.02 0.23 0.29
Price - 1 10.70 10.96 10.22 9.53
Price - 2 8.32 10.16 10.06 8.63
Purchase rate - 1 0.04 0.04 0.04 0.04
Purchase rate - 2 0.05 0.06 0.04 0.04
Product rating - 1 4.70 4.72 4.69 4.69
Product rating - 2 4.70 4.80 4.69 4.72
Same dept 0.99 0.00 1.00 0.88
Same aisle 0.55 0.00 0.99 0.71
Same category 0.02 0.00 0.98 0.53
Same brand 0.17 0.10 0.46 0.44

Note 1: Co-purchase rate has been multiplied by 100. Price-1, Purchase
rate-1, and Product rating-1 show the average price, average historical
purchase rate, and the average product rating of the focal product in
each bundle type. Price-2, Purchase rate-2, and Product rating-2 are cor-
responding variables for the add-on product. Same department, Same
aisle, Same category, and Same brand are binary variables that indicate
if the two products are from the same department, aisle, same category,
and brand respectively.

We ran the field experiment for ∼3 months from July 2018 to September 2018.

The experiment was run at a user–product level, such that if a user 𝑚 searched for

product 𝑖 which has a bundle associated with it, then the user would be random-

ized into one of the four strategies, i.e., the user would be shown one of the four

bundles associated with the focal product. Let’s say that user 𝑚 was randomized

into the cross-category complement bundle strategy for product 𝑖, then every time

𝑚 searched for 𝑖, she would be offered the opportunity to buy the cross-category
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complement bundle (𝑏𝐶𝐶
𝑖𝑗 ) with the 10% discount. The user need not buy the bun-

dle and can still purchase either the focal product directly or the add-on product

without any discount. After searching for 𝑖, if 𝑚 searched for product 𝑘, she would

again be randomized into any of the four strategies. However, if she searched

for 𝑖 again, she would see the same cross-category complement bundle (𝑏𝐶𝐶
𝑖𝑗 ). To

give a perspective of how the bundle offer is presented to the user, we show two

illustrative examples in Figure A1.

1.6 Optimized bundling policy

An overview of the results from the field experiment is shown in Table 1.5. ∼180,000

users viewed 11,296 bundles ∼227,000 times during the experiment. Viewing a

bundle is the same as visiting the focal product’s detailed page (as shown in Fig-

ure A1). We also capture clicks on the bundle component on the web page, the

number of bundles added-to-cart (ATC), bundle purchases, and revenue. The third

column shows the same metrics as a proportion of the total number of bundle

views.7

Table 1.5: Key metrics from the field experiment

Count Count/View

Unique bundles viewed 11, 296 -
Users 180, 428 -
Total bundle views 227, 311 -
Bundles added-to-cart 1, 963 0.008
Bundle purchases 739 0.003
Bundle revenue 17, 136 0.07

Note 1: The third column is the second column divided
by the total number of views and can be interpreted as
the conversion rate conditional on exposure.

We further investigate the results for each bundling strategy. Table 1.6 shows

variation in the views, cart-additions, purchases, and revenue from bundles across

the three strategies which use product embeddings to pick candidate bundles, and

7These metrics are only from the transactions involving bundles. The users may have visited
and bought other items from the retailer, including the focal or add-on products independently.
Those transactions are not captured here.
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Table 1.6: Experiment results split by candidate bundling strategy

Cross Cross Variety Co-
category dept. purchase

Bundles viewed 3, 092 2, 418 3, 287 2, 499
Views 58, 525 50, 616 58, 195 59, 975
Users 55, 104 47, 730 54, 840 56, 526
Bundle ATC 468 227 707 841
Bundle purchases 173 83 343 432
Bundle revenue ($) 2, 795 1, 062 6, 080 7, 199

ATC / View 0.008 0.004 0.012 0.014
Purchase / View 0.003 0.002 0.006 0.007
Revenue / View ($) 0.048 0.021 0.104 0.120

Table 1.7: Results from optimized bundling policy on hold-out test data

Optimized policy Baseline policy Optimized - Baseline

ATC / 100 Views 1.709 1.412 0.297
[0.127, 0.467]

Purchases / 100 Views 1.112 0.845 0.267
[0.059, 0.512]

Revenue / 100 Views ($) 19.36 14.37 5.090
[0.217, 9.57]

Note 1: We learn the optimized policy using focal products for which all four bundles had at
least one view during the experiment. This provides a more intuitive understanding of how
the optimized policy is learned. We provide results for the policy trained on all bundles in the
Appendix in Figure A2

.

Note 2: The numbers in Panel B are scaled by 100 and can be interpreted as ATC / 100 views or
Revenue / 100 views. Confidence intervals are from 1000 bootstrap replications.

the fourth strategy which is based on historical co-purchase rates. The second half

of Table 1.6 calculates the values of these metrics per view. We find good variation

in bundle purchases across the four strategies, which provides us valuable training

data to learn an optimized policy that picks the best bundle for each focal prod-

uct. Table 1.7 presents the results from the optimized bundling design policy. We

describe the details of how we learned the optimized policy next.

1.6.1 Learning the optimized policy

We assign multiple bundles to a focal product the field experiment. In essence, this

means that each focal product has multiple treatments. We then ask which treat-

ment is best for a given focal product. Note that this is different from just picking

the strategy that performs the best on average across all products in the experi-

ment. We want to pick the best bundling strategy for each focal product, given its
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complementarity and substitutability scores, and other product characteristics.

Before learning the optimized policy, we run a comparative predictive model-

ing exercise to identify the best classifier suited to our case. We train five classi-

fiers to predict bundle add-to-cart (ATC) as the binary label. We use an up-the-

funnel metric such as ATC since it provides more power as compared to fitting the

model directly on bundle purchases which is a highly imbalanced target variable.

We choose XGBoost (Chen and Guestrin, 2016) after comparing to other popular

benchmarks used for predictive modeling - logistic regression, hierarchical logistic

regression, LASSO, and Random Forest. The results from this comparative exercise

are available in Table A9.

A point to note is that not all candidate bundles were viewed by consumers

during the experiment. Hence, we don’t know what the outcome for the bundles

would have been had they received views during the experiment. To circumvent

this constraint, we learn the optimized policy using focal products for which all

four bundles received at least one view during the experiment. This does not im-

pact our results but makes the process easier to understand. We provide results for

the optimized policy learned using all the bundles in the Appendix in Figure A2.

They are qualitatively similar to results described below.

To learn the optimized policy, we first randomly split the experiment data into

a training and testing sample. To ensure there is no leakage for the same product,

we create the train-test split by randomizing focal products to either of the two

samples. Hence, all bundles and observations for a particular focal product are

either in the train sample or the test sample. We train an XGBoost model using

cross-fitting on the training data with bundle add-to-cart as the binary label. We

use the product relationship scores and other pre-treatment covariates as indepen-

dent variables. This is our outcome model. We generate cross-fitted predictions

and aggregate the predictions to bundle-level. Finally, for each focal product, we

then select the bundle with the highest average predicted value.

For the selected bundles, we tabulate the average outcomes on the test data

for the corresponding observed variables — bundle ATC, bundle purchases, and
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bundle revenue. To compute the averages, we use the self-normalized IPW estima-

tor, which is essentially a normalized version of the Horvitz-Thompson estimator.

We run 1000 bootstrap replications of this process to estimate uncertainty and get

the confidence intervals. We do a similar process for the baseline policy in which

we select bundles based on the historical co-purchase rate only. We compare the

performance of the policies on the test data. Table 1.7 shows the gains from the op-

timized policy over the benchmark policy. On average, we find that the optimized

policy improves purchases by ∼ 31% and revenue by ∼ 35% over the benchmark

policy ($5 per 100 views). In the appendix, we replicate this process using all focal

products. The results are shown in Figure A2 and are qualitatively similar.

1.6.2 Comparing policies based on different relationship scores

We highlight the benefits of using both the complementarity score and the substi-

tutability score to optimize the bundling policy. In Figure 1-8 we show the results

from an exercise where we optimize the bundling policy using both the scores

(as described above), or select bundles using only the complementarity score, or

the substitutability score. The policy using only complementarity scores is based

on the process as described above, but can only select bundles from the “comple-

mentary“ space. It uses the predictions from the XGBoost model to select the best

bundle from one of the three complementary categories – cross-category comple-

ments, cross-department complements, co-purchase bundles. The policy using the

substitutability score selects the variety bundle for each focal product. In theory, if

there are more types of variety bundles, then this policy can select the best bundle

using the predictions from the model as the optimized policy does.

The figure shows the results on held-out test data. The blue bars show the

point estimates for revenue on test data and the red error bars are 95% confidence

intervals for the difference between the optimized policy and the baseline policy

(with the point estimate of the baseline policy added in to facilitate comparison).

The baseline policy uses the historical co-purchase rates to select the bundles. We
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find that the policy that uses both the scores performs considerably better than a

policy that uses either scores individually or the baseline policy.

Red bars are 95% CI for difference 

 between optimized policy and baseline policy

$0

$5

$10

$15

$20

$25

Optim
ized policy 

 with both scores
Policy with 

 Comp. score
Policy with 

 Sub. score

Baseline policy

R
ev

en
ue

 x
 1

00

Figure 1-8: Revenue from the optimized bundling policy vs. policies that only use
either the complementarity score (𝑐𝑖𝑗) or the substitutability score (𝑠𝑖𝑗)

Note: The optimized policy is trained on 897 focal products for which all bundles received at least one view during the
experiment. It uses both the scores to find the best bundle for a given focal product. The second bar only uses the comple-
mentarity score to find the best bundle and the third bar only uses the substitutability score, i.e., the variety bundle. The
last bar is the benchmark policy based on co-purchase rate.

1.6.3 Embeddings vs. co-purchase revisited

A strength of our approach is that we can learn relationships among products that

may have very few, or even zero co-purchases historically, but may still be strongly

related to each other, as shown in Figure 1-5. Here, we revisit the issue and pro-

vide more concrete evidence for this using two approaches. In the first approach,

we generate 1,000,000 potential bundles for 16,245 focal products. We then score

these bundles using the optimized policy and the baseline policy described above.

For each focal product, we select the best bundle as suggested by the respective
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policies. For the optimized policy, the best bundle is selected using the score gen-

erated by the XGBoost model and for the baseline policy, it is based on the histor-

ical co-purchase rate. We record the predicted revenue from both the policies and

the percentage of zero co-purchase bundles selected by the optimized policy. To

estimate the uncertainty, we bootstrap this process 100 times.

The results are shown in Figure 1-9. To highlight the difference between the

two policies we split the focal products into deciles based on their historical pur-

chase rate and then graph the results within each decile. Two things are evident

– 1) the optimized policy vastly outperforms the baseline policy in each group,

and 2) the difference becomes larger as we select the right tail, i.e., the less popu-

lar products. We also record the proportion of bundles selected by the optimized

policy in which the products had never been co-purchased before. We see that as

we move towards the less-popular products, the optimized policy picks more and

more bundles with no co-purchases. The baseline policy, which uses historical co-

purchases only, is severely handicapped in generating additional value from the

less popular products.

It is important to note that the gains reflected in Figure 1-9 heavily rely on the

model. This is in contrast to Figure 1-8 where the model was just used to select

the best bundles but the evaluation of the policy was done non-parametrically on

held-out test data. Here, we don’t observe yet observe the outcomes for the new

bundles and hence extrapolate their success using the predictions from the model.

To provide more evidence for the benefits of our approach, we test its value for

in-sample, i.e., the bundles used in the field experiment from a different perspec-

tive. We assess the value-added by the product relationship scores, specifically the

complementarity score (𝑐𝑖𝑗) over and above the historical co-purchase rate. We do

this by first residualizing the outcomes, bundle purchases and bundle revenue, us-

ing historical co-purchase rate and other pre-treatment covariates (except 𝑐𝑖𝑗 and

𝑠𝑖𝑗). Second, we also residualize 𝑐𝑖𝑗 using the historical co-purchase rate and other

pre-treatment covariates. We then regress the residuals from the first regression

on the residuals from the second regression, which gives us the impact of comple-
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Figure 1-9: Revenue from optimized bundling policy and baseline policy on new
bundles generated from the retailer’s assortment

Note: We score 1M potential out-of-sample bundles for 16,000 focal products. The focal products are first ordered as per
their historical purchase rate with the most popular products on the left. The products are then grouped into deciles and

the policies are used to score all bundles for the products falling in each decile.

mentarity score on bundle success net of the effect of historical co-purchase. We

repeat the same process of bundle revenue. In both cases, we find that the residu-

alized complementarity score is highly predictive of residualized bundle success.

The results are shown in the Appendix in Figure A3.

1.6.4 Limitations

In the literature, bundling involves two steps – 1) deciding which two products

should be bundled together, and 2) setting their joint price. Both these problems

are quite challenging to solve, especially at scale. In this study, we primarily fo-

cus on the first one and attempt to do it well. We choose prices based on insti-

tutional constraints and managerial suggestions. We use a reasonable discount of

10% which is commonly observed in online retail which allows us to focus on the

problem of creating bundles with the best products. In this sense, our results can

be considered a lower bound on the effect of scalable bundling. With more opti-
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mally chosen prices, the retailer can expect to improve its profit and also serve its

customers better. Modifying prices at our scale with thousands of products is not

a feasible option. The trade-off is then to choose a small subset of products and

determine their optimal bundle prices while sacrificing scale or developing a scal-

able approach with reasonable guardrails on price discounts. Both strategies have

their merits and demerits. However, since much of the past literature has focused

on the former, we chose to bring in a new perspective and focus on the latter.

1.7 Managerial insights

In this section, we build intuition about the results and focus on managerial in-

sights. We use the results from the optimized policy as a guide to further uncover

important insights. To motivate the analysis, we manually inspect the trees from

the XGBoost model trained to learn the optimized policy. We present two sample

trees in the Appendix in Figure A4. In many trees such as these, we find splits

that interact the product relationship scores with product categories or prices of

the two products with each other. We delve deeper into these findings below.

To make the managerial insights easily interpretable, we build a hierarchical lo-

gistic regression (Gelman and Hill, 2007) to predict bundle add-to-cart. We allow

partial pooling across product aisles and the effects of the product relationship

scores to vary by the aisle of the focal product. More details on the model along

with the estimated coefficients are provided in Appendix C. We focus on three in-

sights for managers in the bundle design process - 1) across-category robustness

of the scores, 2) cross-category bundles, and 3) relative prices of bundle compo-

nents. Before we proceed, we duly note that while these insights are correlational,

we believe they provide valuable interpretable and implementable strategies for

managers.
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1.7.1 Consistency and variation across categories

We use the varying slopes in the hierarchical model to examine the robustness

(homogeneity) of the predictive relationship between complementarity and substi-

tutability scores and add-to-cart across different product aisles. Figure 1-10 shows

the point estimate of the aisle-specific slopes (including the common slope param-

eter from Table C1) and the 95% confidence intervals. We plot the varying slopes

for both the heuristics across different product aisles and find that the positive as-

sociation of both the scores is fairly robust across all aisles, alluding to the ability

of our approach to generalize across the retailer’s entire assortment.
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Figure 1-10: Aisle-varying slopes for product relationship scores from hierarchical
logistic regression

1.7.2 Cross-category bundles

A feature of our approach is the ability to form cross-category bundles at scale.

This is important for a large retailer which sells products across hundreds of cate-

gories. We can use the hierarchical model to learn bundle success likelihood across
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multiple product category combinations allowing us to generalize our findings

outside of the bundles in the experiment. To this end, we first randomly create

20,000 out-of-sample bundles from the retailer’s assortment across all product cat-

egories. We score these bundles by generating predictions using the model. We

then aggregate the predictions to category-combination levels using the categories

of both the products and inspect the patterns we see.

A condensed view of the result is shown in Figure 1-11, which plots the aver-

age predicted probability, expressed in percentage, for each category combination.

Larger darker circles imply a higher average likelihood of bundle add-to-cart and

the color bar below shows the percent likelihood of success. The product-category

combinations are sorted using spectral clustering. Note that this matrix is asym-

metric, the probability of success for bundles with focal product A + add-on prod-

uct B is different from the probability of success of a bundle with focal product B

+ add-on product A. To make the visual example easier to read, we average these

probabilities and make the matrix symmetric.

A few interesting patterns are visible and we highlight certain cells for discus-

sion using (*). For example, the two clusters at the extreme ends of the graph —

the top left, and the bottom right, show aisles of products that would be good

contenders for cross-category bundles. Fresh produce, dairy and eggs, meat and

seafood, snacks, pantry, and soups and side dishes make good bundles with each

other. Similarly, sports nutrition products, breakfast foods, and candy make good

bundles with each other. Among other combinations, cleaning products go well

with laundry, skin care, and interestingly, candy. Candy and chocolates also make

a good combination with pantry goods. We also see product combinations in the

mid-left of the graph that show cases where cross-category bundling may not be

effective.
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Figure 1-11: Predicted probabilities aggregated to product category combinations.

Note: The color bar shows % likelihood of success. (*) Cells highlighted for discussion.

1.7.3 Relative prices

Real-world retail bundles, as in our case, are typically asymmetric, i.e., there is

a “focal” product that the consumer is seeking to buy and an add-on product is

included with a discount to sell both products to the consumer. To incentivize the

consumer to buy both products, either the second one is sold at a discount, as we

do, or the bundle has a single joint price that is lower than the sum of prices of the

two components. While we cannot directly identify the optimal price/discount

for the bundle due to the reasons mentioned above, we highlight general-purpose

guidelines on which products to choose to make a bundle, given their prices.

We first test whether there is an asymmetric impact of the prices of the two
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products, i.e., whether consumers are more sensitive towards the price of the focal

product vs. the add-on product or vice versa. We do a Wald’s test for the equality

of the two price coefficients and reject the null that the coefficients are equal. Con-

sumers are more sensitive towards the price of the add-on product as compare to

the focal product. The results are shown in Table C2.

Next, we include a binary variable in the model that takes the value 1 if the

price of the focal products is greater than or equal to the price of add-on product.

The coefficient for the indicator is shown in Model (2) in table C1. We find a strong

positive effect of this asymmetric price relation on bundle success.

We provide visual evidence of this effect in Figure 1-12 in which we first create

6 buckets for prices for both the focal and add-on products and then aggregate pos-

terior predictions from the hierarchical model in these groups. Most of the mass

of the predictions is in the upper left corner, where most of the bundles also lie.

We can clearly see the asymmetry in the effect of relative prices. Consumers prefer

bundles where the add-on product is cheaper than the focal product. This effect

can partly be explained by consumer’s shopping intentions. Bundles are shown

on the focal product’s page which the consumer has self-selected to view with the

intention of purchasing the focal product. The add-on is then an additional pur-

chase and getting a discount on a cheaper item induces the consumer to purchase

the bundle. A few examples of successful bundles where the focal product’s price

is strictly greater than the add-on product’s price include – ‘1) Method 4X Laundry

Detergent, Beach Sage + Method Fabric Softener, Beach Sage, 2) Blue Diamond Al-

monds, Bold Wasabi & Soy Sauce + Hapi Snacks Hot Wasabi Coated Green Peas,

and 3) Dole California Whole Pitted Dates + Prince Of Peace 100% Natural Ginger

Candy.

1.8 Discussion

We propose a novel machine learning-based bundle design methodology for a

large assortment of retail products from multiple categories. Our methodology is
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Figure 1-12: Predicted bundle add-to-cart probabilities across prices groups of fo-
cal and add-on products

based on the historical purchases and considerations sets generated by consumers

while shopping online. We create two continuous dense representations of prod-

ucts (embeddings) in the purchase space and in the consideration space using pur-

chase baskets and consideration sets respectively. We put minimal structure on

these embeddings and create heuristics of complementarity and substitutability

between products. In essence, we exploit the notion that products that are “close”

in the purchase space are potential complements, and products that are “close” in

the consideration space are potential substitutes.

We use these heuristics to create multiple bundles for each of 4,500 focal prod-

ucts and learn consumer preferences over these bundles using a field experiment

run in collaboration with a large online retailer in the US. We especially create

bundles across product categories and using imperfect substitutes to explore the

potential bundle space in a principled way. We apply offline policy evaluation to

the results of the field experiment to learn an optimized bundling policy. The op-

timized policy increase expected revenue by ∼34% (∼ $5 per 100 views) over the
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benchmark policy.

To the best of our knowledge, ours is the first study to leverage historical pur-

chase and search patterns to generate discount bundles at this scale. Our setting

of cross-category online retail is also relatively unexplored in marketing and eco-

nomics bundling studies. Moreover, previous studies have primarily been theoret-

ical or lab-based and have typically pre-assumed relationships among products to

derive their insights. On the other hand, combining a machine learning model with

an online field experiment, we provide empirical evidence and generate general-

izable insights from a large number of bundles across multiple product categories.

For example, we find that beverages, snacks, and laundry products are good con-

tenders for cross-category bundles with most categories. Meat and seafood go

quite well with canned food and fresh produce. On the other hand, health care

and baby supplies are not good candidates for cross-category bundles.

Our study has some constraints as well. We duly note that we trade-off “struc-

ture” for scale and this has its pros and cons. With our method, we are able to

work with a much larger set of products and explore a combinatorially complex

space efficiently. As a result, we don’t focus on the micro-foundations of the model

or attempt to tie the model to theory. For instance, we do not look at cross-price

elasticities to identify complements or substitutes but rather define them in a way

that suits our purpose.

Additionally, although we include price by controlling for it while designing

the optimized bundling policy, we do not explicitly include it in the experiment.

We believe it would be insightful to randomize the discount in the experiment

and investigate the impact on the results. For example, we hypothesize that the

retailer would need to provide a smaller discount for complementary bundles and

a relatively larger one for variety bundles. However, experimenting with prices at

this scale is not trivial. Not only because of institutional/bureaucratic constraints

but the sheer number of guardrails one would need to ensure the stability of the

system could lead to a very challenging implementation.

Finally, we believe that our work is just the first step in a new direction for bun-
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dle design. A valuable next step would be to further extend this method to design

personalized bundles. Personalized bundling strategies, in addition to providing

more value to customers, could also help the retailer segment the market better.

56



Bibliography

Adams, W. and Yellen, J. L. (1976). Commodity bundling and the burden of
monopoly. The Quarterly Journal of Economics, 90(3):475–498.

Athey, S. and Wager, S. (2021). Policy learning with observational data. Economet-
rica, 89(1):133–161.

Barkan, O. and Koenigstein, N. (2016). ITEM2VEC: neural item embedding for
collaborative filtering. In 26th IEEE International Workshop on Machine Learning
for Signal Processing, MLSP 2016, Vietri sul Mare, Salerno, Italy, September 13-16,
2016, pages 1–6.

Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t count, predict! a system-
atic comparison of context-counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 238–247, Baltimore, Maryland. Association for
Computational Linguistics.

Bell, R. M., Koren, Y., and Chris, V. (2008). The bellkor 2008 solution to the netflix
prize.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res., 13(null):281–305.

Bhargava, H. K. (2012). Retailer-Driven Product Bundling in a Distribution Chan-
nel. Marketing Science, 31(6):1014–1021.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach.
Learn. Res., 3(null):993–1022.

Chao, Y. and Derdenger, T. (2013). Mixed bundling in two-sided markets in the
presence of installed base effects. Management Science, 59(8):1904–1926.

Chen, F., Liu, X., Proserpio, D., Troncoso, I., and Xiong, F. (2020). Studying product
competition using representation learning. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’20, page 1261–1268, New York, NY, USA. Association for Computing Machin-
ery.

Chen, T. and Guestrin, C. (2016). XGBoost: A scala ble tree boosting system. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 785–794, New York, NY, USA. ACM.

Chung, J. and Rao, V. R. (2003). A general choice model for bundles with multiple-
category products: Application to market segmentation and optimal pricing for
bundles. Journal of Marketing Research, 40(2):115–130.

57



Cichocki, A. and Phan, A.-H. (2009). Fast local algorithms for large scale non-
negative matrix and tensor factorizations. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, E92.A(3):708–721.

Derdenger, T. and Kumar, V. (2013). The dynamic effects of bundling as a product
strategy. Marketing Science, 32(6):827–859.

Dudik, M., Erhan, D., Langford, J., and Li, L. (2014). Doubly Robust Policy Evalu-
ation and Optimization. Statistical Science, 29(4):485 – 511.

Gabel, S., Guhl, D., and Klapper, D. (2019). P2v-map: Mapping market structures
for large retail assortments. Journal of Marketing Research, 56(4):557–580.

Gabel, S. and Timoshenko, A. (2020). Product choice with large assortments: A
scalable deep-learning model.

Gelman, A. and Hill, J. (2007). Data analysis using regression and multi-
level/hierarchical models, volume Analytical methods for social research. Cam-
bridge University Press, New York.

Grbovic, M. and Cheng, H. (2018). Real-time personalization using embeddings
for search ranking at airbnb. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, page 311–320, New
York, NY, USA. Association for Computing Machinery.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2010). Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decom-
positions.

Jacobs, B. J., Donkers, B., and Fok, D. (2016). Model-based purchase predictions
for large assortments. Marketing Science, 35(3):389–404.

Jiang, Y., Shang, J., Kemerer, C. F., and Liu, Y. (2011). Optimizing E-tailer Profits
and Customer Savings: Pricing Multistage Customized Online Bundles. Market-
ing Science, 30(4):737–752.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
Bengio, Y. and LeCun, Y., editors, 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings.

Lewbel, A. (1985). Bundling of substitutes or complements. International Journal of
Industrial Organization, 3:101–107.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: item-
to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781.

58



Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Proceedings
of the 26th International Conference on Neural Information Processing Systems - Vol-
ume 2, NIPS’13, pages 3111–3119, USA. Curran Associates Inc.

Prasad, A., Venkatesh, R., and Mahajan, V. (2015). Product bundling or reserved
product pricing? price discrimination with myopic and strategic consumers.
International Journal of Research in Marketing, 32(1):1–8.

Rao, V. R., Russell, G. J., Bhargava, H., Cooke, A., Derdenger, T., Kim, H., Kumar,
N., Levin, I., Ma, Y., Mehta, N., Pracejus, J., and Venkatesh, R. (2018). Emerging
Trends in Product Bundling: Investigating Consumer Choice and Firm Behavior.
Customer Needs and Solutions, 5(1):107–120.

Rudolph, M., Ruiz, F., Athey, S., and Blei, D. (2017). Structured embedding models
for grouped data. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems 30, pages 251–261. Curran Associates, Inc.

Rudolph, M., Ruiz, F. J. R., Mandt, S., and Blei, D. M. (2016). Exponential family
embeddings. In Proceedings of the 30th International Conference on Neural Informa-
tion Processing Systems, NIPS’16, pages 478–486, USA. Curran Associates Inc.

Ruiz, F. J. R., Athey, S., and Blei, D. M. (2017). SHOPPER: A Probabilistic Model
of Consumer Choice with Substitutes and Complements. Papers 1711.03560,
arXiv.org.

Schmalensee, R. (1982). Commodity bundling by single-product monopolies. The
Journal of Law & Economics, 25(1):67–71.

Schmalensee, R. (1984). Gaussian demand and commodity bundling. The Journal
of Business, 57(1):S211–30.

Stigler, G. J. (1963). United states vs. loew’s inc.: A note on block booking. Supreme
Court Review, pages 152–157.

Stremersch, S. and Tellis, G. J. (2002). Strategic Bundling of Products and Prices: A
New Synthesis for Marketing. Journal of Marketing, 66(1):55–72.

van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605.

Venkatesh, R. and Kamakura, W. (2003). Optimal bundling and pricing under a
monopoly: Contrasting complements and substitutes from independently val-
ued products. The Journal of Business, 76(2):211–231.

Venkatesh, R. and Mahajan, V. (1993). A probabilistic approach to pricing a bundle
of products or services. Journal of Marketing Research, 30(4):494–508.

59



Yang, T. C. and Lai, H. (2006). Comparison of product bundling strategies on dif-
ferent online shopping behaviors. Electronic Commerce Research and Applications,
5(4):295–304.

Zhou, Z., Athey, S., and Wager, S. (2018). Offline multi-action policy learning:
Generalization and optimization. arXiv.

60



Appendix

A Supplementary tables and figures

Table A1: Observation counts from the working sample

Count

Total users 534,284
Total sessions 947,955
Total purchase baskets 861,963
Total consideration sets 589,552
Unique products 35,000
Note 1: The table shows the size of the work-
ing sample after filtering out purchases and
searches involving right tail products. We
retain the top-35,000 products that include
more than 90% of the purchases in our sam-
ple period.
Note 2: Purchase baskets include products
purchased and consideration sets include
products viewed but not purchased. The
number of consideration sets are less than the
number of purchase baskets because we de-
fine a product viewed only if the user opens
the description page of the product. The user
can, however, purchase without opening the
product description page by directly adding
the product to the cart while browsing.

61



Examples of products close to the focal product in the purchase space

Table A2: Products close to “Organic Russet Potatoes, 5 Lb (10-12 Ct)" in the pur-
chase space

Product Comp. score

Organic Celery Hearts, 16 Oz 0.75

Organic Grape Tomatoes, 1 Pint 0.74

Organic Green Bell Peppers, 2 Ct 0.74

Organic Carrots, 2 Lb 0.73

Organic Cauliflower, 1 Ct 0.73

Organic Garlic, 8 Oz 0.72

The Farmers Hen Large Organic Eggs, 1 Dozen 0.70

Organic Bananas, Minimum 5 Ct 0.69

Organic Broccoli Crowns, 2 Ct 0.69

Organic Romaine Hearts, 3 Ct 0.69

Note 1: The complementarity score (Comp. score) is a measure of proximity in the purchase

space and is indicative of complementarity. A higher score implies stronger complemen-

tarity. The score is normalized such that the maximum possible value is 1.

Table A3: Products close to “Joy Ultra Dishwashing Liquid, Lemon Scent, 12.6 oz"
in the purchase space

Product Comp. score

Bounty Paper Towels, White, 12 Super Rolls 0.50

Tide PODS Plus Downy HE Turbo Laundry Detergent Pacs 0.48

P&G 45Oz Cmp Gel Detergent 0.48

The Art of Shaving Shave Cream, Sandalwood 0.47

Bounty Towel, Bounty Essentials 0.46

Bounty Paper Towels, Select-A-Size, 6 Triple Rolls 0.46

Lillian Dinnerware Pebbled Plastic Plate 0.45

Saratoga Spring Water 0.45

CLR Stainless Steel Cleaner 0.45

Pepcid Complete Dual Action Acid Reducer and Antacid Chewcap 0.45

Note 1: The complementarity score (Comp. score) is a measure of proximity in the purchase

space and is indicative of complementarity. A higher score implies stronger complemen-

tarity. The score is normalized such that the maximum possible value is 1.
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Table A4: Products close to “Neutrogena Oil-Free Acne Wash Redness Soothing
Cream Facial Cleanser, 6 Fl. Oz" in the purchase space

Product Comp. score

U By Kotex Barely There Daily Liners 0.53

Aveeno Active Naturals Daily Moisturizing Body Yogurt Body Wash 0.52

Palmer’s Cocoa Butter Formula Bottom Butter 0.52

Neutrogena Oil-Free Acne Wash Redness Soothing Facial Cleanser 0.51

Neutrogena Oil-Free Acne Face Wash Pink Grapefruit Foaming Scrub 0.49

Maybelline New York Fit Me Matte & Poreless Foundation, Natural Beige 0.48

Secret Invisible Solid Anti-Perspirant Deodorant 2 Ct 0.47

Motrin IB, Ibuprofen, Aches and Pain Relief 0.47

Nature’s Bounty Hair, Skin & Nails Gummies Strawberry 0.47

Equate Ibuprofen Pain Reliever/Fever Reducer 200 mg Tablets 0.46

Note 1: The complementarity score (Comp. score) is a measure of proximity in the purchase space

and is indicative of complementarity. A higher score implies stronger complementarity. The score

is normalized such that the maximum possible value is 1.
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Examples of products close to the focal product in the consideration space

Table A5: Products close to “Organic Russet Potatoes, 5 Lb (10-12 Ct)" in the con-
sideration space

Product Sub. score

Green Giant Organic Golden Potatoes, 3 Lb 0.95

Green Giant Organic Red Potatoes, 3 Lb 0.95

Organic Russet Potatoes, 3 Lb 0.95

Green Giant Klondike Gourmet Petite Purple-Purple Fleshed Potatoes, 24 Oz 0.93

Green Giant Klondike Fingerling Potatoes, 24 Oz 0.93

Green Giant Golden Potatoes, 5 Lb 0.92

Organic Sweet Potatoes, 3 Lb 0.92

Green Giant Klondike Petite Red-White Fleshed Potatoes, 24 Oz 0.92

The Little Potato Garlic Herb Potato Microwave Kit, 16 Oz 0.92

The Little Potato Company Garlic Herb Oven Griller Kit, 16 Oz 0.91

Note 1: The substitution score (Sub. score) is a measure of proximity in the consideration space

and is indicative of substitutability. A higher score implies stronger substitutability. The score is

normalized such that the maximum possible value is 1.

Table A6: Products close to “Joy Ultra Dishwashing Liquid, Lemon Scent, 12.6 oz"
in the consideration space

Product Sub. score

Joy Dishwashing Liquid, Lemon, 5gal Pail 0.83

Joy Dishwashing Liquid 38 oz Bottle 0.79

Joy Dishwashing Liquid Lemon Scent 12.6 oz Bottle 0.71

Palmolive Ultra Anti-Bacterial Dish Soap, Orange, 56 Oz 0.70

Ajax Triple Action Dish Soap, Orange, 12.6 Oz 0.69

Palmolive Ultra Dish Soap, Orange, 25 Fl Oz 0.69

Biokleen Natural Dish Liquid, Citrus, 32 Oz, 12 Ct 0.69

Palmolive OXY Plus Power Degreaser Dish Soap, 10 Oz 0.69

Ajax Super Desgreaser Dish Soap, Lemon, 52 Oz 0.69

Ajax Dish Soap, Tropical Lime Twist, 52 Oz 0.68

Note 1: The substitution score (Sub. score) is a measure of proximity in the consideration

space and is indicative of substitutability. A higher score implies stronger substitutability.

The score is normalized such that the maximum possible value is 1.
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Table A7: Products similar to “Neutrogena Oil-Free Acne Wash Redness Soothing
Cream Facial Cleanser, 6 Fl. Oz" in the consideration space

Product Sub. score

Neutrogena Oil-Free Acne Face Wash With Salicylic Acid, 6 Oz. 0.84

Neutrogena Oil-Free Acne Face Wash Daily Scrub With Salicylic Acid, 4.2 Fl. Oz. 0.84

Neutrogena Oil-Free Acne Face Wash Pink Grapefruit Foaming Scrub 0.83

Neutrogena Naturals Purifying Pore Scrub, 4 Fl. Oz. 0.82

Neutrogena Rapid Clear Stubborn Acne Cleanser, 5 Oz 0.82

Neutrogena All-In-1 Acne Control Daily Scrub, Acne Treatment 4.2 Fl. Oz. 0.82

Neutrogena Oil-Free Acne Wash Pink Grapefruit Cream Cleanser, 6 Oz 0.82

Neutrogena Oil-Free Acne Face Wash With Salicylic Acid, 9.1 Oz. 0.81

Neutrogena Men Oil-Free Invigorating Foaming Face Wash, 5.1 Fl. Oz 0.80

Neutrogena Oil-Free Acne Face Wash Pink Grapefruit Foaming Scrub, Salicylic Acid Acne Treatment, 6.7 Fl. Oz. 0.80

Note 1: The substitution score (Sub. score) is a measure of proximity in the consideration space and is indicative of substitutability. A

higher score implies stronger substitutability. The score is normalized such that the maximum possible value is 1.
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Table A9: AUC for predicting bundle add-to-cart on hold-out test data

Model AUC

Baseline 0.6635
Logistic 0.7023
Hierarchical Logistic 0.6967
LASSO 0.7009
Random Forest 0.7073
XGBoost 0.7276

Note 1: The baseline model ex-
cludes the product relationship
heuristics – 𝑐𝑖𝑗 & 𝑠𝑖𝑗

Note 2: Hierarchical Logistic
regression is a mixed effects
model with varying slopes that
allows the effects of 𝑐𝑖𝑗 & 𝑠𝑖𝑗
to vary by product category.
We estimate it using Restricted
Maximum Likelihood.
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Illustrative examples of bundles from the field experiment

(a) Complementary bundle example

(b) Variety bundle example

Figure A1: Illustrative examples from the field experiment

68



Policies optimized using the outcome model directly

In Figure 1-8, we use 897 focal products for which all four bundles types had at

least one view during the experiment. Here, we repeat the analysis using all the

focal products. We learn the optimized bundling policy in the same way as before.

For focal products that did not have all four bundles viewed, the optimized policy

selects from the remaining set. The results are shown in Figure A2. The policy

which uses both scores preforms the best here as well. Moreover, the results for

this policy are qualitatively similar to the policy optimized in Figure 1-8.

Red bars are 95% CI for difference 

 between optimized policy and baseline policy
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Figure A2: Revenue from the bundling policy optimized using all focal products

Note: The optimized policy uses both the scores to find the best bundle for a focal product. The second bar only uses the
complementarity score to find the best bundles and the third bar only uses the substitutability score and selects the variety
bundle. The last bar is the benchmark policy based on co-purchase rate.
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Effect of complementarity score net of co-purchase

Figure A3 shows the results from the exercise described in where we regress resid-

ualized bundle success (purchases and revenue) on residualized complementar-

ity score (𝑐𝑖𝑗). We residualize both variables by regressing them on historical co-

purchase rate. The left panel of the figure shows the effect on residualized bundle

purchases by residualized complementarity score quintiles. The right panel shows

the impact on bundle revenue. In both cases, we see a large increase in bundle

success as the complementarity score increases.
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(b) Effect on bundle revenue

Figure A3: Effect of complementarity score on bundle success net of historical
co-purchase rate
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Sample trees from XGBoost model used to optimize the bundling

policy

(a) Sample tree showing the interaction between the

complementarity score and focal product aisle

(b) Sample tree showing the interaction between prices

of the two products

Figure A4: Sample trees from the XGBoost model trained to learn the optimized bundle
design policy
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B Embeddings model

We provide intuition behind the product embeddings model below and formalize

it subsequently. We explain the model for purchase baskets. The case for consider-

ation sets in analogous; only the input products change.

B.1 Intuition

Our model is a slightly modified version of a widely used shallow learning tech-

nique from the machine learning literature used to analyze discrete, sparse data

(Mikolov et al., 2013a,b). It has been fairly popularized in recent years due to its

application in analyzing text. In the natural language processing (NLP) field, the

intuition behind this method is simple — words that occur frequently in the same

context are likely to have a semantic, and syntactic, relationship with each other.

For instance, consider the following sentences:

Esha has milk, cereal, and coffee for breakfast

The tragedy is that she pours her milk before the cereal

She also has coffee with milk in the evening

She prefers coffee with a little bit of sugar

In these sentences, milk and cereal appear together frequently (relatively speaking)

and that milk and coffee also appear together frequently. Our understanding of

language, plus banal observation of the world, tells us that milk and cereal are

“related” and that milk and coffee are also “related”. Essentially, these are the

kinds of associations that we attempt to capture with our model, albeit with some

refinements.

Translating the language from text documents to retail products, we exploit the

notion of product baskets, i.e., we take products purchased together by consumers,

and think of them as text sentences. The underlying idea is that products that

appear frequently together in multiple baskets have a relationship that is beyond
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mere random co-occurrence. To make this idea clear, consider Esha’s consumption

basket as shown below. It reproduces the sentences from above with everything

but the products consumed removed. For the sake of exposition, we also add

variants of the products consumed. The baskets then look like:

𝑏1 : low fat milk, crunchy cereal, dark roast coffee

𝑏2 : low fat milk, dark roast coffee

𝑏3 : dark roast coffee, raw sugar

These baskets are perfectly valid sentences for our algorithm to process with each

product being a word and each sentence being a combination of these products.

We can then build a model similar to the one used in NLP to learn relationships

among products, with two important caveats: (1) the order of the products in our

basket does not matter, and (2) our model needs to consider only two products

at a time since we are building bundles with only two-component products. We

thus transform each basket to a two-product combination with all possible permu-

tations. This gives us the following baskets:

𝑏11 : low fat milk, crunchy cereal

𝑏12 : crunchy cereal, dark roast coffee

𝑏13 : low fat milk, dark roast coffee

𝑏21 : low fat milk, dark roast coffee

𝑏31 : dark roast coffee, raw sugar

This transformation effectively converts our unstructured data to a simple clas-

sification problem where all the instances above form positive cases. To opera-

tionalize this model, we need two more inputs: (1) negative cases for the model

to distinguish between products purchased together and products not purchased

together, and (2) an optimization algorithm to learn the parameters. One can sim-

ply sample negative cases by considering pairs of products that do not occur in the
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same baskets, but are present in the inventory (Mikolov et al., 2013b). This process

is called negative sampling in the NLP literature. We can think of more complex

negatively sampled procedures where we generate negative samples taking into

account the product category hierarchy. For example, for generating negative sam-

ples for milk + coffee, one should use milk + tea instead of milk + batteries. We

tried this approach while training our model. It ended up adding substantial com-

plexity to the training procedure without any gains. Hence, we used the method

recommended in the literature to generate negative samples from a unigram dis-

tribution (Mikolov et al., 2013b).

Returning to our example, we now have both positively labeled samples and

negatively labeled samples. Hence, we can run our favorite classification algo-

rithm to train the parameters. Of course this is an overly-simplified stylized exam-

ple. We present a more formal treatment of the underlying process and the model

in the next sub-section.

To complete the picture, along with products purchased together, we also con-

sider products from users’ consideration sets, which include products that were

viewed together in the same browsing session. We similarly break them into pairs

of two products to form positive cases, and likewise generate negative cases.

Lastly, with recent advances in machine learning methods and computational

infrastructure there are now multiple ways to train these models (e.g., word2vec8,

glove9). We use Tensorflow10, which provides gpu support so that we can easily

scale the model to a large volumne of data. We describe the model formally be-

low in the context of purchase baskets. The reasoning can be easily extended to

consideration sets.

B.2 Formal model

Consider a retailer with a assortment 𝒱 of size. Suppose our representative con-

sumer, Esha, purchases 5 products, forming the product basket 𝑏1: {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5}.

8https://radimrehurek.com/gensim/models/word2vec.html
9https://nlp.stanford.edu/projects/glove/

10https://www.tensorflow.org/
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Our objective is then to predict the products {𝑤2, 𝑤3, 𝑤4, 𝑤5} given the product 𝑤1.

Unlike natural language models, we do not consider the order of the products,

but use the entire remaining basket to be the context for product 𝑤1. Let 𝒞 be the

set of context products, such that, 𝒞(𝑤) represents the set of products in the con-

text for product 𝑤. With the basket above, given the product 𝑤1 and its context

𝒞(𝑤1) = {𝑤2, 𝑤3, 𝑤4, 𝑤5}, we want to maximize the log-likelihood of the basket,

ℒ𝑏1 =
∑︁
𝑤∈𝑏1

log𝑃
(︀
𝒞(𝑤)|𝑤

)︀
. (1.7)

Here we introduce the concept of embeddings, the dense continuous represen-

tations we are trying to estimate. Suppose that each product in the assortment is

represented by two d-dimensional real-valued vectors, 𝑣 and 𝑢. The matrices U

(|𝒱| × d) and V (d × |𝒱|) are the emebdding matrices, where 𝑢𝑖 and 𝑣′𝑖 give two

representations for product 𝑤𝑖. V is the input matrix and U is the output matrix.

The process of predicting 𝒞(𝑤1), given 𝑤1 boils down to estimating the probabil-

ity 𝑃
(︀
𝒞(𝑤)|𝑤

)︀
mentioned in 1.7. Considering one element 𝑤2 from 𝒞(𝑤1), we can

write this probability using the logit model,

𝑃
(︀
𝑤2|𝑤𝑖

)︀
= 𝑃 (𝑢2|𝑣′1) =

exp(𝑢2 · 𝑣′1)∑︀|𝒱|
𝑘=1 exp(𝑢2 · 𝑣′1)

, (1.8)

where 𝑢2 is the second row from the output embedding matrix U and 𝑣′1 is the first

column from the input embedding matrix V.

Generalizing expression 1.8 to account for all products in the context, we can

write the conditional probability term in the objective function shown in 1.7 as:

𝑃
(︀
𝒞(𝑤𝑖)|𝑤𝑖

)︀
=

∏︁
𝑤𝑗∈𝒞(𝑤)

exp(𝑢𝑤𝑗
· 𝑣′𝑤𝑖

)∑︀|𝒱|
𝑘=1 exp(𝑢𝑤𝑘

· 𝑣′𝑤𝑖
)

(1.9)

A point to note is the calculation of the denominator in the above expression.

Typically, |𝒱| is quite large and hence for computational efficiency we employ neg-
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ative sampling as described in (Mikolov et al., 2013b) to approximate the denomi-

nator. With negative sampling, we use only select a sample of the negative exam-

ples to update at each iteration. We use a unigram distribution to sample negative

examples such that more frequently occurring products across baskets are selected

more likely to be chosen. Assuming we select, 𝑁𝑠 negative examples, we can write

the approximate probability expression as

𝑃
(︀
𝒞(𝑤𝑖)|𝑤𝑖

)︀
=

∏︁
𝑤𝑗∈𝒞(𝑤)

exp(𝑢𝑤𝑗
· 𝑣′𝑤𝑖

)∑︀𝑁𝑠

𝑘=1 exp(𝑢𝑤𝑘
· 𝑣′𝑤𝑖

)
. (1.10)

Plugging this value in the log-likelihood function to estimate the probability of

each product in the context 𝒞(𝑤𝑖) for given a target product 𝑤𝑖, we get

ℒ𝑏1 =
∑︁
𝑤∈𝑏1

[︂ ∑︁
𝑤𝑗∈𝒞(𝑤𝑖)

(︂
log 𝜎(𝑢𝑤𝑗

· 𝑣𝑤𝑖
) +

𝑁𝑠∑︁
𝑘 ̸=𝑗,𝑘=1

log 𝜎(−𝑢𝑤𝑘
· 𝑣𝑤𝑖

)

)︂]︂
, (1.11)

where 𝜎(𝑥) = 1
1+exp(−𝑥)

is the sigmoid function.

We estimate the parameters U and V by maximizing the likelihood of all baskets

in the data set. The log-likelihood for the entire data set is given in Equation 1.12,

where ℬ is the set of all product baskets observed in the data,

ℒℬ =
∑︁
𝑏∈ℬ

∑︁
𝑤∈𝑏

[︂ ∑︁
𝑤𝑗∈𝒞(𝑤𝑖)

(︂
log 𝜎(𝑢𝑤𝑗

· 𝑣𝑤𝑖
) +

𝑁𝑠∑︁
𝑘 ̸=𝑗,𝑘=1

log 𝜎(−𝑢𝑤𝑘
· 𝑣𝑤𝑖

)

)︂]︂
. (1.12)

In practice, we use Adam (Kingma and Ba, 2015) to update the embedding vectors

while minimizing the negative log-likelihood. Optimal hyper-parameters of the

training algorithm including the dimensions of the embedding matrices are found

using a hold-out validation set. In our model, we use 𝒟 = 100 and 𝑁𝑠 = 20.
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C Hierarchical model

To build intuition on how the product relationship scores influence bundle success

and also to check their robustness across categories, we build a hierarchical logistic

regression with varying slopes. We allow the effects of 𝑐𝑖𝑗 and 𝑠𝑖𝑗 to vary by the

focal product aisle and the intercepts to vary by both – the focal product aisle and

the add-on product aisle. We estimate the model shown in Equation 1.13.

𝑃𝑟(𝑌𝑖𝑗 = 1|View𝑖) = logit−1

(︂
𝛼𝑘[𝑖]𝑗 + 𝛼𝑘[𝑗]𝑖 + 𝛽𝑐

𝑘[𝑖]𝑗𝑐𝑖𝑗 + 𝛽𝑠
𝑘[𝑖]𝑗𝑠𝑖𝑗 + 𝛾𝑇𝑊𝑖𝑗

)︂
(1.13)

𝛼𝑘[𝑗] ∼ 𝒩 (0, 𝜎2)⎛⎜⎜⎜⎝
𝛼𝑘[𝑖]

𝛽𝑐
𝑘[𝑖]

𝛽𝑠
𝑘[𝑖]

⎞⎟⎟⎟⎠ ∼ 𝒩

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

𝜇𝛼

𝜇𝛽𝑐

𝜇𝛽𝑠

⎞⎟⎟⎟⎠ ,Σ

⎞⎟⎟⎟⎠
where 𝑖 indexes the focal product, 𝑗 is the add-on product, 𝑘[𝑖] is the aisle of the

focal product and 𝑘[𝑗] is the aisle of the add-on product. Together, 𝑖𝑗 make one

bundle and we estimate the probability of the bundle being added-to-cart, condi-

tional on the user viewing the focal product 𝑖. The intercept 𝛼𝑘 is allowed to vary

by both aisles. The slopes 𝛽𝑐 and 𝛽𝑠, i.e., the coefficients for the complementar-

ity heuristic 𝑐𝑖𝑗 and the substitutability heuristic 𝑠𝑖𝑗 vary by the aisle of the focal

product. Pre-treatment variables and other product meta-data are captured by the

vector 𝑊 with their parameters 𝛾 held fixed. The varying parameters are estimated

jointly with each parameter having a separate mean and variance. Their variances

and covariances are given by the 3× 3 matrix Σ.

Setting up the model in a hierarchical fashion helps us account for unobserved

variation in product aisles that is not captured in a pooled regression model. Fur-

ther, since we model the product aisles separately, we can use the model to gener-

ate predictions for aisles that were not part of our training data, and hence gener-

alize our findings to a larger domain. In addition to statistical benefit, the hierar-
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chical modeling also provides a systematic way to analyze the robustness of our

model across aisles, as we show in Figure 1-10.

Estimation results from Model 1.13 are shown in the first column of Table C1.We

find the both the scores are significant and positive, even after controlling for basic

product features including the historical co-purchase rate. In the second column,

we test whether asymmetry in prices has an effect on bundle success. We include

a binary indicator that takes value 1 if 𝑃𝑟𝑖𝑐𝑒− 1 ≥ 𝑃𝑟𝑖𝑐𝑒− 2. We find that bundles

where the add-on product has the same or lesser price are more successful. The

last coefficient in column 2 shows the result. We also test this using ANOVA. The

results are shown in Table C2.

Table C1: Mixed effects hierarchical logistic regression to predict bundle add-to-
cart

Dependent variable:

Bundle add-to-cart

(1) (2)

Comp. score 0.377*** 0.373***

(0.046) (0.046)
Sub. score 0.276*** 0.265***

(0.048) (0.048)
Hist. co-purchase rate 0.068*** 0.066***

(0.010) (0.010)
Price-1 −0.064 −0.154***

(0.047) (0.056)
Price-2 −0.350*** −0.251***

(0.051) (0.060)
Same brand 0.342*** 0.330***

(0.062) (0.062)
Diff. category | Same aisle 0.212*** 0.209***

(0.059) (0.059)
Hist. purchase rate-1 −0.014 −0.011

(0.027) (0.027)
Hist. purchase rate-2 0.027 0.026

(0.027) (0.027)
Rating-1 0.078 0.078

(0.070) (0.070)
Rating-2 −0.068 −0.067

(0.063) (0.064)
Price-1 ≥ Price-2 0.245***

(0.077)

Observations 227,311 227,311
Log Likelihood −10,706 −10,701
Bayesian Inf. Crit. 21,647 21,649

Note 1: *p<0.1; **p<0.05; ***p<0.01
Note 2: Intercepts vary by focal and add-
on product aisles. 𝑐𝑖𝑗 and 𝑠𝑖𝑗 vary by focal
product aisle.
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Table C2: Wald’s test for equality of two price coefficients in Model 1

𝜒2 Chi Df Pr(>𝜒2)

Price-1 = Price-2 in Model 1 10.44 1 0.001
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Chapter 2

Algorithmic Pricing and Consumer

Sensitivity to Price Volatility

Abstract

Algorithmic pricing can be broadly defined as a formula to set prices by a com-
puter. It is typically associated with a lower cost of changing prices and a greater
frequency of price changes. While commonly observed in ride-sharing, lodging,
and airline tickets, there has been recent evidence of its implementation in phar-
maceutical drugs, gasoline, and online retail. However, little is known about how
consumers respond to encountering frequently changing prices for goods. Here
we use detailed clickstream data from an online retailer that varied pricing meth-
ods to examine how exposure to the frequently-changing prices feature of algo-
rithmic pricing affects purchase behavior. Aggregate analysis at the product-week
level, before-and-after event studies around adoption time, and granular user-level
models, all show a consistent pattern — exposure to price volatility increases price
sensitivity. This is economically consequential because, even if implementing al-
gorithmic pricing is profitable, it triggers unintended side effects that modify con-
sumer behavior in ways that may undermine those gains. We complement these
empirical findings with laboratory experiments and provide evidence for a key
underlying mechanism—price salience.
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2.1 Introduction

$6.19 at 10:30 pm on Sunday, $6.39 at 3:28 am on Monday, $5.99 at 3:42 am, $2.99

at 4:28 am, $4.26 at 4:44 am, $3.99 at 8:40 am, and $4.47 at 12:21 pm. One may

be forgiven for assuming these are prices for a stock listed on the stock exchange.

These are, in fact, seven distinct prices of a single regular carbonated cola drink

over the course of only two days in an online grocery retailer in the United States.

How do consumers react when they see prices changing frequently?

Algorithmic pricing has been expanding across industries and channels. What

perhaps used to be a specialized feature of airline tickets (McAfee and Te Velde,

2006) has now been documented in ride-sharing platforms (Chen, 2016; Cohen

et al., 2016), gasoline markets (Assad et al., 2020), allergy drugs in online retailers

(Brown and MacKay, 2019), and Amazon’s durable goods marketplace (Chen et al.,

2016).

However, as with artificial intelligence or other forms of automation technolo-

gies (Brynjolfsson and McAfee, 2014; Ford, 2015; Agrawal et al., 2018), algorithmic

pricing is an intangible concept that is not easy to dissect. The most salient fea-

ture identified in the literature is the striking price volatility, as measured by the

number of price changes, over time (Chen et al., 2016; Calvano et al., 2019; Brown

and MacKay, 2019; Assad et al., 2020). Research has shown that sellers that adopt

algorithmic pricing are found to update prices several times per day. For example,

Amazon is known to change product prices ∼2.5 million times a day or, equiv-

alently, the price for a product listed on Amazon changes every 10 minutes on

average (Business Insider, 2018). Comparable examples from other industries in-

clude Smart Pricing by Airbnb (Airbnb, 2017) and Surge Pricing by Uber (Dholakia,

2015). In Uber’s case, prices change as frequently as every three to five minutes

(Washington Post, 2015).

We obtain clickstream data from an online retailer that contains abundant ex-

amples similar to the one in the introductory paragraph. Figure 2.1 shows visually

compelling evidence. We can distinguish between periods of stable prices initially
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versus those of extremely volatile prices later on.
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Figure 2.1: Examples of Price Variation: Daily Price with Periods of High Volatility
Highlighted in Blue

A primary focus of the literature has been on studying whether, and how, the

adoption of algorithmic pricing can alter competition incentives across rival firms

(Miklós-Thal and Tucker, 2019; Calvano et al., 2019; Brown and MacKay, 2019;

Hansen et al., 2021; Asker et al., 2021). However, despite its increasing prevalence,

we know little about how consumers react when they are exposed to the strikingly

high price volatility of machine algorithms. We contribute to this discussion by

studying whether and how consumers’ price sensitivity reacts to heightened price

volatility, as measured by frequency of price changes and exposure to multiple

unique prices, caused by pricing algorithms. While we are mindful that price sen-

sitivity covers just one dimension of the greater realm of consumer behavior, price

sensitivity has been a fundamental question in the economics and marketing lit-

erature. To illustrate, early papers on advertising were in fact absorbed about the

connection between advertising and price sensitivity (Dorfman and Steiner, 1954;
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Becker and Murphy, 1993). And to date, this question remains contested (Sethura-

man et al., 2011).

Important exceptions in the area of consumer behavior are the studies of Haws

and Bearden (2006) and Weisstein et al. (2013), which show that unusual price dif-

ferences may evoke feelings of unfairness and thereby reduce willingness-to-pay.1

These findings are obtained in the context of laboratory experiments, and there-

fore highlight the need to understand more “realistic shopping environments and

under conditions of higher involvement” (Haws and Bearden, 2006). Although

not in the context of algorithmic pricing, prior studies have shown that deep price

promotions can trigger customer antagonism or incentivize promotion-seeking be-

haviors (Mela et al., 1997; Anderson and Simester, 2004; Hendel and Nevo, 2004;

Rotemberg, 2005; Anderson and Simester, 2010; Elberg et al., 2019). Reflecting

upon this collection of evidence, it is reasonable to assume that consumer behav-

ior will not be indifferent to algorithmic pricing; but it is not immediately clear in

which direction.

We begin with a conceptual discussion of how algorithmic pricing affects con-

sumers’ price sensitivity in Section 2.2. The conceptual framework discusses two

conflicting behavioral components. On the one hand, algorithmic pricing height-

ens price salience. We connect to Chetty et al. (2009); Bordalo et al. (2013, 2020),

who study consumer choice in the context of boundedly rational consumers and

salience effects. Relatedly, Finkelstein (2009); Busse et al. (2013); Hastings and

Shapiro (2013); Busse et al. (2015); Aparicio and Rigobon (2020); Blake et al. (2021)

find empirical support to the role of salience in offline and online markets. On

the other hand, algorithmic pricing obfuscates the price anchor, namely “jams” the

signal of good or bad deals. A number of conceptual and behavioral articles have

examined limited price recall and constrained attention across attributes, such as

Monroe (1973); Dickson and Sawyer (1990a); Lichtenstein et al. (1993); Thomas

et al. (2010); Caplin and Dean (2015); Jung et al. (2019). The novelty of our work lies

1Some studies use the term “dynamic pricing”. Throughout this work, we maintain the algo-
rithmic pricing or machine pricing terminology.
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in conceptualizing the ambiguous effect of algorithmic pricing through the lens of

consumer behavior; and more precisely, the connection of price sensitivity to the

role of price salience and price anchors—two critical behavioral findings that are

often treated separately.

With these ideas in mind, we proceed to study algorithmic pricing in a field set-

ting. We collaborate with an online retailer in the United States that implemented

algorithmic pricing. Overall, the data covers a subset of 2,044 products and more

than 670,000 distinct consumers for 15 months. Critically, the clickstream dataset

covers both search and purchases, allowing tracking patterns of visitation and pur-

chases across and within users. This is important because, intuitively, we can ex-

ploit the fact that distinct consumers browsed and purchased the same product,

but they had different exposure to prices (and price volatility).

Three core empirical strategies are used to estimate the effect of price volatility

on price sensitivity. First, we build intuition by estimating aggregate models at the

weekly-UPC level, allowing us to obtain comparable estimates to frequently used

scanner data. We find own-price elasticities that are qualitatively similar to those

in prior work (Anderson and Simester, 2008; Hitsch et al., 2019; DellaVigna and

Gentzkow, 2019; Semenova et al., 2017). Second, we consider a before-and-after

event study around the time of adoption of algorithmic pricing in each product.

Similar to Assad et al. (2020), adoption dates can be recovered by observing un-

usual spikes in price volatility. Importantly, this experimentation varied across

products and across categories over time, and is presumably exogenous to a cus-

tomer’s decision to visit the platform. Section 2.4 presents these results. Finally,

in Section 2.5, we build upon these motivating signs to estimate a more stringent

model of exposure to price volatility at the user level. We use two identification

strategies - an instrumental variables approach and randomization inference to pin

down the causal effect of frequently changing prices, and hence exposure to mul-

tiple unique prices for the same product, on purchase behavior. We find a consistent

pattern throughout: price volatility makes demand more price sensitive.

We are mindful that, despite the granular clickstream dataset, it is not possi-
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ble to exert complete control over a large-scale and long time-span field setting.

Therefore, we conduct laboratory experiments to test the key effect of algorith-

mic pricing in a controlled environment. We implement a between-subject design

in which participants are randomly assigned to two treatment conditions: stable

pricing and algorithmic pricing. Participants in each cell are asked to simulate on-

line purchases over a set of periods, and the price fluctuates from period to period.

Importantly, the price series are calibrated with the real data, i.e. the stable prices

and algorithmic prices mimic the prices of the online platform. Once again, and

most importantly, participants are more price sensitive when exposed to higher

price volatility. The experiment is implemented in two different subject pools—

Amazon Mechanical Turk and MBA students. Section 2.6 presents the details.

Returning to the conceptual framework, we provide evidence that price salience

is a key behavioral mechanism through which sensitivity to price volatility oper-

ates. We motivate a behavioral model with field data, obtained from a technology

company, supporting the intuition that prices capture additional “bits” of atten-

tion ((Jacoby, 1984)). Using eye-tracking technology installed in digital screens

(placed in physical stores), we find that showing prices captures more attention,

compared to signage without prices. We interpret this evidence, albeit secondary,

as a valuable step in the direction of price salience: if prices were to actually change

on the screens, the attention (salience) would very likely be much greater. We then

formally test for salience effects in the lab experiment. More precisely, following a

vast tradition in the literature (Alba and Chattopadhyay (1986); Kissler et al. (2007);

Finkelstein (2009); Kroft et al. (2013); Gaspelin et al. (2015)), a series of recall ques-

tions in the lab indicate that price volatility exacerbates price salience. While we

emphasize the role of salience, we make no claim that it precludes other processes

to operate as well—an interesting question for future research.

Taken together, these findings shed light on the non-obvious side effects of al-

gorithmic pricing. Consumers are not indifferent to price volatility: it modifies

the shopping behavior and increases price sensitivity. Intuitively, a more price-

sensitive demand “eats” some of the benefits that presumably could have been ex-
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tracted had price elasticity remained unaffected by the extreme price fluctuation.

While beyond the scope of our work, in theory, this side effect could be utilized

as “input” to perfect the technology. Said differently, it speaks to the possibility

of personalizing algorithmic pricing to mitigate behavioral reactions. For example,

suppose that the machine determines that the optimal price is $3.17. Moreover,

suppose that a given consumer has recently visited that product twice, and on

those occasions, the price was $3.09 and $3.99. Perhaps it is better, for this con-

sumer, to coarsen the price to the already-seen $3.09, rather than to show $3.17, a

new price for that consumer. In statistical parlance, one can think of this as adding

a penalty or regularization term on the number of price changes the algorithm is

allowed to make. The new price may be a “better” price but the trade-off needs to

be judged after netting out the negative impact of increased price sensitivity.

2.2 Conceptual Framework

In a standard friction-less shopping process, a representative consumer decides

whether to buy a single product based on two attributes, namely the quality and

the price (Lilien et al. (1995)). The decision is often summarized as 𝑣 = 𝑞 − 𝑝, and

the outside option 𝑣 = 0 implies no purchase. Algorithmic pricing alters the role

of the price attribute, in ways that connect to various mechanisms studied in the

literature.

Salience: Increasing the frequency of price changes makes the price attribute

more salient, relative to the attributes that remain static (brand, package, features,

etc.). The shift in relative salience can be thought of as changing the decision

weights between a product’s price and value (Bertini and Wathieu, 2008; Aparicio

and Rigobon, 2020; Bordalo et al., 2020; Blake et al., 2021). Salience shifts irrespec-

tive of the sign of the price change, although the effect may be exacerbated when

prices increase. In fact, Rotemberg (2005) and Anderson and Simester (2010) have

shown that consumers develop antagonism when they realize that they have paid

a higher price. That price variation might attract attention to prices can be indi-
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rectly related to evidence of how salient, visual attributes are over-weighted in the

decision (Krider et al. (2001); Folkes and Matta (2004)).

Signal to Noise: Consumers retrieve (or form) an anchor or reference price

and compare it with the current price. Abundant research has explored how the

price anchor is formed and the extent to which it can be manipulated by vari-

ous forms of price presentation strategies (Kalyanaram and Winer (1995); Ander-

son and Simester (2003); Amaldoss and He (2018)). Typically, the price anchor is

formed and updated upon exposure to past prices of the same product, advertised

prices, or reference products in the category (Vanhuele and Drèze (2002); Jindal

and Aribarg (2021); André et al. (2021)). Echoing prior studies showing limited

price recall (Monroe (1973); Dickson and Sawyer (1990a); Lichtenstein et al. (1993)),

algorithmic pricing exposes consumers to a complicated price path, often iterating

between many distinct prices. This unstable path makes the price anchor noisier.

Algorithmic pricing obfuscates the price anchor and, thereby, reduces sensitivity

to notions of good or bad deals. Returning to the example in the Introduction: it is

not obvious what the typical price for the carbonated cola should be.

This conceptual discussion captures two critical conflicting effects of algorith-

mic pricing. On the one hand, it increases price sensitivity by making the price

a more salient element in the decision. The salience occurs as a result of shifting

the relative variation between product attributes. Note that, interestingly, price

sensitivity may be exacerbated even for consumers for whom the willingness-to-

pay is greater than the actual price, i.e. an unnecessary side effect given that those

consumers would have purchased this product regardless. On the other hand,

it decreases price sensitivity by obfuscating the anchor price. Constant iterations

between prices make the anchor price noisier (it “jams” the signal), thereby miti-

gating the reaction to a better or worse deal. We return to testable implications of

this model in the context of lab experiments in Section 2.6.

To motivate the discussion that follows, we provide empirical evidence of price

salience using novel experiment data from brick-and-mortar retailers. Digital screens

are often placed in physical stores (e.g., supermarkets, gas stations, fashion stores)
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to advertise selected products of the assortment. We collaborate with a European

marketing analytics company which manages the content of these campaigns with

its partner retailers. Throughout a period of approximately two months, the com-

pany placed regular advertisements on those digital screens; in some cases with

prices and in some other cases without prices. Importantly, the screen is equipped

with an eye-tracking technology that records consumer-level eye views and time

spent viewing.

While in practice it is infeasible to capture a price change (i.e., the price is con-

stant in the digital screens), the eye-tracking sensor allows testing whether prices

increase attention. Our empirical strategy resembles prior work in which salience

of an attribute entails attention to that attribute (Duncan, 1984; Folkes and Matta,

2004), and time is used as a measure of attention (Townsend and Kahn, 2014; Cian

et al., 2015).

We test whether showing prices in the screens captures additional signage at-

tention (controlling for the number of eye-views). In total, the data includes 3,570,646

distinct eye-views and 42 digital campaigns throughout two months. The average

per-person view time of a screen, conditional on viewing, is approximately 7 sec-

onds. Let 𝑣𝑖𝑡 be the total number of views to screen 𝑖 on day 𝑡 and let 𝑡𝑡 be the

total time spent viewing screen 𝑖 on day 𝑡. Time is measured in milliseconds. The

measure of interest is 𝜏 ≡ 𝑡𝑖𝑡
𝑣𝑖𝑡

, i.e. the time spent per eye view. We then estimate

the following model:

𝜏𝑖𝑡 = 𝛽0 + 𝛽1𝑃𝑟𝑖𝑐𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑𝑖 + 𝛿𝑡 + 𝛾𝑠 + 𝜖𝑖𝑡 (2.1)

where 𝑃𝑟𝑖𝑐𝑒𝐷𝑖𝑠𝑝𝑙𝑎𝑦𝑒𝑑𝑖 is an indicator variable that takes value 1 when the screen

𝑖 contains a price (and 0 otherwise); and 𝛿𝑡 and 𝛾𝑠 denote day- and store- fixed

effects, respectively.

Table 2.1 shows the results. When the digital screens display prices, time spent

viewing the screen increases by 227 milliseconds (𝑝 < 0.01). This evidence sup-

ports the idea that price is a product feature prone to be salient and thereby to
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Table 2.1: Eye-Tracking and Price Salience

Attention Time

Price Displayed 226.68***

(33.03)

Fixed-effects
Store ✓
Day ✓

Fit statistics
Obs. 139, 978
𝑅2 0.15

capture additional cognitive attention. Furthermore, it complements the impli-

cations of algorithmic pricing. That is, because prices tend to capture attention,

high-frequency price variation would presumably capture even more “bits” of at-

tention and thereby heighten the role of price salience. Further research, perhaps in

a laboratory setting with the availability of fMRI technology (like Karmarkar et al.

(2015)), is needed to better examine the behavioral decision-making process. For

our purpose, we find this evidence motivating to more keenly study how height-

ened price volatility, caused by algorithmic pricing, makes price more salient and

hence may influence consumer price sensitivity.

2.3 Data and Empirical Setting

We use data from an online retailer in the United States to examine the scope and

implications of algorithmic pricing. Throughout the relevant time period, the re-

tailer tried out algorithmic pricing for thousands of products across a wide range

of categories, departments, and price levels. This empirical setting is particularly

well-suited to studying behavior in response to algorithmic pricing for two rea-

sons. First, the data includes clickstream records at the user level, which allows us

to observe the entire sequence of the click activity (e.g., image impressions, search

queries, product views, add-to-carts, orders placed). Moreover, the online gro-

ceries context involves repeated purchases across users and products, as well as a
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relatively large assortment breadth.

Table 2.2 reports summary statistics on the data. We focus on a subset of prod-

ucts that experienced algorithmic pricing and, additionally, a minimum threshold

of purchase records. Overall, the data covers 2,044 distinct products across gro-

ceries, household supplies, baby products, health and beauty, and pet supplies.

The data covers 15 months, 673,677 distinct consumers, and over 2.6 million units

sold.

Table 2.2: Data Description

Summary Statistics

(1) Distinct consumers 673,677
(2) Categories Household Supplies, Baby, Health &

Beauty, Grocery, Pet Supplies
(3) Distinct products 2,044
(4) Time period 15 months
(5) Units sold 2, 659, 906
(6) Algorithmic periods 32%

There is no single definition of algorithmic pricing. In this work, we focus on

one dimension of algorithmic pricing—a greater frequency of price changes. This

echoes a growing literature that identifies price volatility as one of its most distinc-

tive features (Chen et al. (2016); Brown and MacKay (2019); Assad et al. (2020)). We

operationalize this concept in the field data as follows. For each product and week

pair, we compute the sum of absolute price changes and the number of unique

prices; if the first measure in any given week is greater than its respective median

values across all weeks, and if the second one is greater than three, then we classify

that week as an algorithmic pricing period.2 Return to Figure 2.1 for some vi-

sual examples using this definition. The pattern of results remains quantitatively

similar under alternative thresholds and definitions, e.g. based on the standard

deviation of prices, number of price changes, or absolute size of price changes.

2An important digression is helpful. Conceptually, it is possible that the output of the algo-
rithm is to set a flat price, e.g., collusion between two rival firms (Miklós-Thal and Tucker (2019);
Calvano et al. (2019)). This definition essentially implies that there the price changed frequently
and substantially within a week. At least in our field setting, institutional knowledge strongly
indicates that periods in which the price fluctuates intensively are driven by the implementation
or experimentation of price algorithms (e.g., price matching, a grid of mark-up rules, inventory
triggers).
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Robustness results are presented in Appendix G.

Summary statistics split by algorithmic pricing and stable pricing periods are

shown in Appendix A. Furthermore, a variance decomposition test, shown in Ap-

pendix B, indicates that the product-week indicator of algorithmic pricing signifi-

cantly explains a large portion of the price variation.

2.4 Aggregate Purchase Behavior

We proceed with a series of models with data aggregated at the product-week

level, which allows us to more directly contrast our demand estimates with those

using scanner data (typically at the same aggregation level). Later in Section 2.5 we

consider consumer-level exposure to price volatility. Before we proceed, it would

help to fix notation. Users are indexed with 𝑖 = {1, . . . , 𝐼}, products with 𝑗 =

{1, . . . , 𝐽}, product categories with 𝑐 = {1, . . . , 𝐶}, and time with 𝑡 = {1, . . . , 𝑇}.

In much of our analysis cases, 𝑡 is year-week unless specified otherwise. 𝑌 is the

number of units purchased and 𝑃 is price.

We initially consider a reduced form demand model similar to Hitsch et al.

(2019). We aggregate purchases at the weekly level, compute the unit-weighted

price, and estimate the following baseline fixed-effects model:

log(𝑌𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑗𝑡) + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑗𝑡 (2.2)

where 𝑌𝑗𝑡 is the number of units sold for product 𝑗 in week 𝑡 and 𝑃𝑗𝑡 is the quantity-

weighted price for product 𝑗 at time 𝑡. 𝜇 & 𝜏 are product and time fixed effects

respectively.

To understand the potential impact of algorithmic pricing on consumer behav-

ior, we augment Equation 2.2 by including indicators for weeks during which the

price for a product was highly volatile, as per the definition in the previous sec-

tion. We simply call these weeks "algorithmic pricing weeks". Further, we interact

these indicators with (log) price to test whether these high price-volatility periods
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influence consumer price sensitivity. The updated model is:

log(𝑌𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑗𝑡) + 𝛽2𝐴𝑗𝑡 + 𝛽3𝛽3𝛽3 log(𝑃𝑗𝑡)× 𝐴𝑗𝑡 + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑗𝑡 (2.3)

where 𝐴𝑗𝑡 is a binary indicator that equals 1 if product 𝑗 is under an algorithmic

pricing week during year-week 𝑡.

The results are shown in Table 2.3. Our focus is on 𝛽3; the interaction between

price and the algorithmic pricing indicator. A negative 𝛽3 indicates that demand

is more price sensitive when exposed to high-frequency price variation. Consider

the baseline own-price elasticity of -1.51 in column (2). In periods of algorithmic

pricing, the price sensitivity increases 0.087, which represents a sizable 5.8% in

relative terms.

If algorithmic pricing makes the demand more price-sensitive, one might imag-

ine that a greater intensity of price volatility exacerbates price sensitivity. Indeed,

we find that as we require a higher number of distinct prices in a given week to be

classified as an algorithmic pricing week, the estimand of interest becomes more

price-sensitive. For example, the effect increases from approximately -0.07 to -0.10

when the threshold of distinct prices increases from two to five, as shown in Ap-

pendix C.

To provide visual intuition for what these results imply, we draw the demand

curves for three product categories – dog supplies, chips, and fresh produce. We

estimate the demand separately during algorithmic and stable pricing weeks after

residualizing the quantity and price. The results are shown in Figure 2.2. For all

three categories, we find the demand curve becomes flatter, i.e., the demand be-

comes more price sensitive. Furthermore, the rotation in the demand curve varies

across the categories indicating potential heterogeneity. For example, the demand

for dog supplies and chips changes much more than the demand for fresh produce.

We explore this heterogeneity later in the section.

Next, in column (3) of Table 2.3, we remove the holiday period (mid-November

to mid-January), a time when retailers typically run multiple promotions, and re-
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estimate model 2.3. Here again, we find that even outside the holiday period, the

effect is strong. We believe that this evidence is suggestive of important changes

in consumer behavior as a result of the firm’s pricing policy. We explore this hy-

pothesis more in later sections and use consumer-level data to causally estimate

the impact. In the remainder of this section, we provide more evidence for the

aggregate result using multiple specifications.

First, as in Anderson and Simester (2008), we estimate a quasi-Poisson demand

model as follows:

P(𝑌𝑗𝑡 = 𝑦) =
𝑒−𝜆𝑗𝑡𝜆𝑞

𝑗𝑡

𝑞!
, 𝑞 = 0, 1, 2, . . . (2.4)

log(𝜆𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑗𝑡) + 𝛽2𝐴𝑗𝑡 + 𝛽3𝛽3𝛽3 log(𝑃𝑗𝑡)× 𝐴𝑗𝑡 + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑗𝑡 (2.5)

The results are presented in column (4) in Table 2.3. Overall, we find very close

estimates to those of the baseline model, reported in column (2).

Table 2.3: Aggregate Elasticity Estimates with Multiple Specifications

Dependent Variables: Log units Units Log units
Gaussian Gaussian Poisson Ortho ML Mixed effects

Model: (1) (2) (3) (4) (5) (6)

Variables
Elasticity -1.525*** -1.508*** -1.545*** -1.558*** -1.052*** -1.424***

(0.100) (0.101) (0.101) (0.135) (0.109) (0.108)
Algo 0.260*** 0.263*** 0.232*** 0.032*** 0.285***

(0.036) (0.041) (0.040) (0.011) (0.034)
Elasticity × Algo -0.087*** -0.088*** -0.081*** -0.150** -0.103***

(0.015) (0.017) (0.018) (0.062) (0.017)

Fixed-effects
Product Yes Yes Yes Yes Yes Yes
Year week Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 122,309 122,309 103,954 122,309 59,157 122,309
R2 0.558 0.559 0.558 - 0.399 -
Log-Likelihood -112,205 -111,987 -95,450 -591,338 -46,113 -116,096

Two-way (Product & Year week ) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Additionally, we consider recent methods in machine learning. We imple-
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ment Semenova et al. (2017)’s approach of estimating own-price elasticities us-

ing orthogonal-machine learning. The methodology allows us to include a high-

dimensional set of features as controls, including lagged values for price and pur-

chases. The model is estimated in two-stages. In the first stage, we residualize the

outcome (purchases) and the independent variable of interest (price) using lagged

values of purchases, price, indicator for algorithmic pricing week, indicators for

product, product category, and time. In the second stage, we regress the residual-

ized outcome on the residualized price, the indicator for algorithmic pricing week,

and the interaction of the two. To ensure unbiased estimates, regressions in the

two stages are estimated on different sub-samples. More formally, the model is

defined as follows:

First stage, estimated on sample S:

log(𝑌𝑗𝑡) = 𝛽0𝑦 + 𝑔𝑦(𝛽𝑦𝐴𝑗𝑡, 𝛿𝑦

𝑡−4∑︁
𝑡−1

log(𝑌𝑗𝑡), 𝛾𝑦

𝑡−4∑︁
𝑡−1

log(𝑃𝑗𝑡), 𝜇𝑗, 𝜏𝑡) + 𝜖′𝑗𝑡 (2.6)

log(𝑃𝑗𝑡) = 𝛽0𝑝 + 𝑔𝑝(𝛽𝑝𝐴𝑗𝑡, 𝛿𝑝

𝑡−4∑︁
𝑡−1

log(𝑌𝑗𝑡), 𝛾𝑝

𝑡−4∑︁
𝑡−1

log(𝑃𝑗𝑡), 𝜇𝑗, 𝜏𝑡) + 𝜖′′𝑗𝑡 (2.7)

Second stage, estimated on sample S’ (𝑆 ∩ 𝑆 ′ = 𝜑):

log(𝑌𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑗𝑡) + 𝛽2𝐴𝑗𝑡 + 𝛽3 log(𝑃𝑗𝑡)× 𝐴𝑗𝑡 + 𝜖𝑗𝑡 (2.8)

where 𝑌𝑗𝑡 are the residuals from Model 2.6 and 𝑃𝑗𝑡 are the residuals from Model

2.7. 𝑔𝑦() & 𝑔𝑝() are functions that control for lagged features, product, category, and

time effects. In our case, we use penalized 𝑙-1 regressions. Column (5) in Table 2.3

then shows the result from Equation 2.8. We again see that the results lead to the

same conclusion as our baseline model, with the coefficient on the interaction term

being negative.
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Figure 2.2: Price-Sensitive Demand Rotation

Notes: The graphs show demand curves across three categories after taking out the effects of product and time from log
quantity and log price. The red demand curve is estimated separately by only considering periods of stable pricing. Analo-
gously, the blue demand curve is estimated separately for periods of algorithmic pricing.

2.4.1 Heterogeneity Across Product Categories

To unpack the heterogeneity across product categories, we estimate a hierarchical

mixed-effects model (Gelman and Hill, 2006). Previous literature has used simi-

lar random effects models to study price elasticities and online consumer behavior

(e.g. Hoch et al., 1995). Mixed-effects models allow for partial pooling of informa-

tion across products and categories. In our case, we use them to efficiently estimate

product-level elasticities and conduct sub-group analysis. We use a nested hierar-

chical approach where we allow the intercept and slopes to vary by category and

by each product within that category; we also allow the intercept to vary over time.

The model is estimated using Restricted Maximum Likelihood. Varying the price

elasticities with categories and products allows pooling of information across lev-

els and regularizes coefficients in a data-driven way. We estimate the following

model:

log(𝑌𝑗𝑡) = 𝛽0𝑐𝑗𝑡 + 𝛽1𝑐𝑗 log(𝑃𝑗𝑡) + 𝛽2𝑐𝑗𝐴𝑗𝑡 + 𝛽3𝑐𝑗 log(𝑃𝑗𝑡)× 𝐴𝑗𝑡 + 𝜖𝑗𝑡 (2.9)

where 𝛽0𝑐𝑗𝑡 is the intercept that is allowed to vary by category, product, and year-

week, and all three slope coefficients 𝛽1𝑐𝑗, 𝛽2𝑐𝑗, 𝛽3𝑐𝑗 are allowed to flexibly vary by
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category and by product within a category.

Results from the mixed-effects model are shown in column (6) in Table 2.3.

Once again, the results are qualitatively similar to the previous models. Reassur-

ingly, the estimated own-price elasticities are qualitatively similar to recent studies

using grocery data (Hitsch et al., 2019; Semenova et al., 2017). See the product-

level distribution of own-price elasticities in Appendix D. In Figure D.5, we show

the distribution of elasticities during algorithmic pricing and stable pricing peri-

ods, as depicted. We see that during periods of algorithmic pricing, there is a

significant shift in greater price sensitivity across most products.

As a motivation to understand the value of these flexible models, multilevel

analysis of variance (ANOVA) supports the inclusion of varying intercept and

slope parameters. The results in Appendix B show that varying slopes explain

a significant portion of the purchase variation.

The mixed-effects models allow us to take a step further in decomposing the

results across products categories. Figure 2.3 shows the percentage change in price

elasticity during algorithmic pricing weeks split by product category. For simplic-

ity, we visualize 20 categories, 10 with the smallest change in elasticity and 10 with

the largest change in elasticity. The red dashed line is the global average across

all categories. Overall, and interestingly, we observe some but not fundamental

heterogeneity across products. The biggest change is seen in stockable snacks,

cleaning products, and pet supplies. On the other hand, health and beauty prod-

ucts such as skin care, hair care, and digestion & nausea see the smallest changes.

In Appendix E we test for heterogeneity using different sub-groups such as expen-

sive and cheap products, popular and unpopular products, and perishable and

non-perishable products.

Our set of analyses serves two purposes – 1) it facilitates comparison with pre-

vious research using scanner data and helps establish common ground with ex-

isting literature, 2) it provides motivation to explore implications of algorithmic

pricing at a more granular level. The results from Table 2.3, while significant and

robust to specifications, do not allow causal identification of the impact of algo-
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Figure 2.3: Top-10 and Bottom-10 Product Categories Based on Percentage Change in
Price Elasticity During Algorithmic Pricing Weeks

rithmic pricing on consumer behavior. Other than the potential impact of algorith-

mic pricing, current estimates could also be a reflection of either common demand

shocks or compositional changes in demand, or a mix of the three. We conduct

a more granular analysis with consumer visit-level data in the coming sections to

identify this effect.

2.4.2 Before-and-After

We build upon the aggregate analysis with an event-study approach exploiting the

first time algorithmic pricing was adopted in each product. We identify the date

of the first algorithmic pricing week as per Section 2.3 and conduct an event study

before-and-after the adoption. Importantly, we observe significant variation across

products, i.e. different products had their first experimentation of algorithmic pric-

ing in different dates. The same is true across product categories. (Appendix F

presents the distribution of the timestamps of the first events.)

We report two main specifications: one in which we pool observations at the
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product-week level, and a second in which we utilize observations at the user x

product x week level. Appendix F reports robustness specifications. First, we

estimate the following fixed-effects model:

log(𝑌𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑗𝑡) + 𝛽2𝑃𝑜𝑠𝑡𝑗𝑡 + 𝛽3 log(𝑃𝑗𝑡)× 𝑃𝑜𝑠𝑡𝑗𝑡 + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑗𝑡 (2.10)

where 𝑃𝑜𝑠𝑡𝑗𝑡 is a binary indicator that takes the value 1 if 𝑡′ < 𝑡 < 𝑡′ + 8 weeks

for product 𝑗 and 𝑡′ is the first week when product 𝑗 is under algorithmic pric-

ing. To estimate the models, we use a window ±8 weeks around the first week

when a product adopted algorithmic pricing. However, to ensure robustness of

our results, we consider three window cut-offs, i.e. adoption after 12 weeks of our

sample start date, adoption after 20 weeks, and adoption after 28 weeks.

The results for products who adopted 20 weeks or after are shown in the first

column of Table 2.4. Our main coefficient of interest is the one on the interaction

between log price and the post-period indicator. We find that once the product

switches to an algorithmic pricing regime, sensitivity to price changes increases.

The above result provides suggestive evidence towards increased price sensi-

tivity. However, these results could partly be driven by compositional changes

in the underlying user population. The granular scope of the data allows us to

exclude this explanation by examining the same set of users who visit the prod-

uct before and after the adoption of algorithmic pricing. We do this by using a

different specification in which we estimate price sensitivity before-and-after the

algorithmic pricing adoption at the user level. We use the same cut-offs as the ag-

gregate model; however, we only consider users who browsed the product in both

periods (i.e., before adoption and after adoption). More formally, we estimate the

following fixed-effects model:

log(𝑌𝑖𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑖𝑗𝑡) + 𝛽2𝑃𝑜𝑠𝑡𝑗𝑡 + 𝛽3 log(𝑃𝑖𝑗𝑡)× 𝑃𝑜𝑠𝑡𝑗𝑡 + 𝛿𝑖𝑗 + 𝜖𝑖𝑗𝑡 (2.11)

where 𝑌𝑖𝑗𝑡 is the number of units of product 𝑗 purchased by user 𝑖 at time 𝑡 and

𝑃𝑖𝑗𝑡 is the average price for product 𝑗 seen by consumer 𝑖 during time-period 𝑡.
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Note that here there are only two time-period observations per user-product pair,

i.e. one before the product adopts algorithmic pricing and the second after the

product adopts algorithmic pricing. Importantly, this allows to control for user-

product fixed effects (𝛿𝑖𝑗). We are interested in 𝛽3, the coefficient on the interaction

of average price and the indicator for the post-period. Similar to Equation 2.10,

𝑃𝑜𝑠𝑡𝑗𝑡 takes the value 1 if 𝑡′ < 𝑡 < 𝑡′ + 8 weeks, where 𝑡′ is the first week when

product 𝑗 is under algorithmic pricing. As in the aggregate case, to ensure the

robustness of our results, we consider three window cut-offs for adoption – 12

weeks, 20 weeks, and 28 weeks.

The results are shown in the second column of Table 2.4. Since we control

for user-product fixed effects, i.e., we estimate the coefficient using variation only

within the same user-product pair. We see that after products adopt algorithmic

pricing, consumers become more price sensitive. We posit that this effect is primar-

ily driven by repeated exposure to different prices for the same product, which

makes price more salient, making consumers put more weight on it during the

purchase decisions. We explore this hypothesis in subsequent sections.

2.5 Consumer-Level Exposure to Price Volatility

The field data from the online retailer covers detailed browsing and shopping

clicks at the consumer level. This granular data allows to estimate the effect of al-

gorithmic pricing by exploiting consumer-level exposure to price variation while

controlling for user-, product-, and time- fixed effects. Intuitively, consumers that

had exposure to more distinct prices and a higher frequency of price changes, had

a larger exposure to algorithmic pricing when shopping online groceries.

We introduce a model at the user level that bears resemblance to prior studies

investigating the “stock” of advertising (Erdem et al. (2008); Shapiro et al. (2021)).

In our case, we translate the model to one where, instead of advertising, we keep

track of the stock of price volatility exposure. Said differently, the model accounts

for spillovers of price volatility across products when accumulating the exposure
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Table 2.4: Aggregate and User-Level Price Sensitivity Before and After Adoption of
Algorithmic Pricing

Dependent Variables: Log units Units
Model: (1) (2)

Variables
Log price -1.03** -1.12***

(0.389) (0.222)
Post period 0.238*** 0.208***

(0.084) (0.058)
Log price × Post period -0.101*** -0.072***

(0.035) (0.025)

Fixed-effects
Product Yes
Year week Yes Yes
User-product Yes

Fit statistics
Observations 7,652 42,864
R2 0.687 0.465
Log-Likelihood -5,003 -57,195

Model (1): Two-way (Product & Year week) standard-errors
Model (2): Three-way (User, Product & Year week) standard-errors
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The first column is OLS regression of total weekly sales on average weekly price. Post period is a binary variable
that takes the value 1 after a product adopts algorithmic pricing. Second column emulates the spirit of the first regression
at the user-level. Each observation is at the user-product-period level, i.e., there is one observation for a user-product pair
before algorithmic pricing adoption for that product and one observation after it. The dependent variable is the number of
units purchased and price is average across all exposure for that user-product pair.

over time. Conceptually thinking of algorithmic pricing through the lens of ad-

vertising and price sensitivity (Dorfman and Steiner (1954); Becker and Murphy

(1993)) is helpful because it illustrates that algorithmic pricing cannot be reduced

to a simple A/B test. Instead, its core effect must consider the accumulation of

price volatility across products and over time.

With these ideas in mind, we define the following user-level model:

𝑌𝑖𝑗𝑡 = 𝑓(𝑃𝑖𝑗𝑡, 𝐴𝑖𝑡, 𝑋𝑖𝑗𝑡; 𝜖𝑖𝑗𝑡) (2.12)

where 𝑌𝑖𝑗𝑡 is the number of units of product 𝑗 purchased by user 𝑖 at time 𝑡.

𝐴𝑖𝑡 is the cumulative effect of algorithmic pricing that user 𝑖 has accumulated till

time 𝑡. It is the total number of unique prices that the consumer has seen over the

past 𝐿 days across all products that the consumer browsed. In our regressions,
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we use 𝐿 ∈ {7, 15, 30, 60} days to account for different intensities of exposure to

algorithmic pricing. We refer to 𝐴𝑖𝑡 as the algorithmic pricing stock or, succinctly,

the algo-pricing stock. 𝑋𝑖𝑗𝑡 are user history variables that account for the user’s

search and purchase intensity. We are interested in understanding how exposure

to 𝐴𝑖𝑗𝑡 modifies user behavior.

We use the following econometric specification for the model:

P(𝑌𝑖𝑗𝑡 = 𝑦) =
𝑒−𝜆𝑖𝑗𝑡𝜆𝑞

𝑖𝑗𝑡

𝑞!
, 𝑞 = 0, 1, 2, . . .

log(𝜆𝑖𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑖𝑗𝑡) + 𝛽2𝐴𝑖𝑡 + 𝛽3 log(𝑃𝑖𝑗𝑡)× 𝐴𝑖𝑡+

𝛿𝑋𝑖𝑗𝑡 + Γ𝑖 + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑖𝑗𝑡 (2.13)

Here again, we are interested in the coefficient 𝛽3, which is the interaction be-

tween price and the algorithmic pricing stock. A negative value for 𝛽3 indicates

that consumers become more price sensitive after exposure to algorithmic pricing.

In the regression, we measure the stock using the total number of unique prices

that a consumer has been exposed to for the products that she visited more than

once. As an example, say the consumer visited the product page for Nutella thrice

in the past 15 days and saw two different prices. In addition, she visited the page

for Diet Coke once and hence just saw one price for it. Her algorithmic pricing stock

𝐴𝑖𝑡 is two. The price for Diet Coke is not counted since she only visited the product

once. 𝑋𝑖𝑗𝑡 are controls that account for the browsing intensity of the consumer.

They include the total number of visits that the consumer made in the past 𝐿 days,

the total number of products browsed per visit, and the total number of purchases

made. Γ𝑖 are user-level fixed effects, 𝜇𝑗 are product fixed effects and 𝜏𝑡 are week

fixed effects.

The motivation behind this model is to investigate whether consumers who

are exposed to more unique prices for the same product, i.e. they have a larger

𝐴𝑖𝑡, tend to become more price sensitive. Arguably, one may worry that since

𝐴𝑖𝑡 is not randomly assigned but rather dictated by the user’s search process, the
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effect of exposure to algorithmic pricing on purchase behavior is not identified.

For example, a given consumer who tends to search more may intrinsically be

more price-sensitive and hence may repeatedly visit the retailer’s website to fetch

a good deal. As a consequence of their repeated visits, they naturally get exposed

to different prices for the same product. Hence, the effect we estimate is just an

artifact of browsing intensity and not necessarily a change in behavior.

Fortunately, the granular nature of clickstream data allows to finely control for

time-varying browsing and purchase intensity of consumers. Estimation of the

model then critically depends upon conditional variation in 𝐴𝑖𝑡. More specifically,

we need variation in 𝐴𝑖𝑡 conditional on the number of visits, i.e., we need users

who visited the same product the same number of times but were exposed to a

different number of prices. Figure 2.4 presents this variation. Panel (a) shows

the marginal distribution of algorithmic pricing stock aggregated at the user-date

level. Panel (b) shows the conditional distribution of algorithmic pricing stock

aggregated at the user-product-date level. Each facet in Panel (b) conditions on the

number of visits made by users for the same product. For example, the top-right

facet of Panel (b) shows that users who visited a product five times in the past 30

days could have been exposed to anywhere between one and five unique prices.

This variation allows us to control for the browsing intensity of users. To control

for unobserved time-invariant user and product heterogeneity, we use user- and

product- fixed effects.
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(b) Distribution of Algo-Pricing Stock Conditional on the Number of Vis-

its. Each panel is a different number of visits for the same product.

Figure 2.4: Marginal and Conditional Distributions of Algorithmic Pricing Stock over a
30-day Period

Finally, to causally pin down the effect of algo-pricing stock 𝐴𝑖𝑡, we use two
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identification strategies – one based on instrumental variables and the second is

based on randomization inference. Both strategies crucially depend upon the vari-

ation in the timing of user’s visits to the website. Specifically, we assume that the

exact time a user visits the retailer’s website is as-good-as-random. Then, if she

would have visited a few hours earlier or later, then she may have seen a different

price for the products she visits. Consequently, this changes her exposure to al-

gorithmic pricing, i.e., it changes the number of unique prices she ends up seeing.

We explain both approaches in the sections below.

2.5.1 Instrumental Variables

To capture observed time-varying heterogeneity we include detailed user and user-

product level controls such as the number of products searched, the number of

total purchases made in the past, and the number of purchases for this particular

product made in the past. Further, to causally pin down the effect of algo-pricing

stock 𝐴𝑖𝑡, we exploit variation in the timing of user visits and calculate the number

of unique prices the user could have seen, had she come at a different time, but did

not see. This gives us an instrument for 𝐴𝑖𝑡. The intuition behind the instrument is

that the purchase decision of a consumer naturally depends on the prices seen, but

does not depend upon the prices not seen. However, prices for a particular prod-

uct are correlated across time. Hence, the prices the consumer did not see cannot

influence the outcome directly, except through their correlation with the prices she

did see.

To make things concrete, consider two users A and B who both visited the re-

tailer’s website thrice in the past 15 days, albeit on different days or at different

times on the same day. For simplicity, assume that both saw the same product

three times. During the past 15 days, the price for this product was fluctuating

independently of these two users’ visits (because of competitor effects, inventory

state, and/or aggregate demand). Because of the difference in timing of their vis-

its, user A was exposed to only one unique price for the product whereas user B
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was exposed to three unique prices. The purchase decision that both the users are

to make today depends upon the current price as well as the history of prices ob-

served. However, it does not depend upon the prices not observed, except through

their correlation with the observed prices. This makes the prices for the same prod-

uct during the same time period that the consumer could have seen but did not see

a valid instrument.

It is worth pointing out that this is a non-causal instrument. We don’t observe

exogenous shocks to prices at the system level. Rather we carefully isolate inde-

pendent variation for each user based on their historical visit times. While not di-

rectly comparable, this instrument is similar in spirit to the one used by Assad et al.

(2020) and Ellison and Ellison (2009). Assad et al. (2020) first identify station-level

adoption of algorithmic pricing software in the gasoline markets using changes in

high-frequency markers of prices3 and then identify brand-level adoption using

the proportion of the brand’s stations who have adopted. Their instrument is non-

causal as well and works on the assumption that brand-level adoption decisions

are independent of local station-level shocks. Ellison and Ellison (2009) use prices

of products from one category with prices from another category to estimate price

elasticities for PC-RAM modules.

For estimation, we use a two-stage control function approach as described in

Petrin and Train (2010) where we instrument for the algo-pricing stock (𝐴𝑖𝑡) and

its interaction with price (log(𝑃𝑖𝑗𝑡)×𝐴𝑖𝑡). In the first stage, we run two regressions

– 1) 𝐴𝑖𝑗 on the two instruments, exogenous controls (𝑋𝑖𝑗𝑡) and the fixed effects

from Equation 2.13, and 2) log(𝑃𝑖𝑗𝑡)×𝐴𝑖𝑡 on both instruments, exogenous controls,

and fixed effects. In the second stage, we run the regression from Equation 2.13

by including the residuals from the two first-stage regressions. This control func-

tion is equivalent to running a TSLS procedure for instrumental variables when

the outcome is linear. In our case, since our model for user purchases is a Poisson

regression, we use the control function approach instead. Finally, to take into ac-

count the uncertainty from the first-stage estimation, we use clustered bootstrap to

3We follow a similar idea in our before-and-after analysis in Section 2.4.2.
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Table 2.5: User-Level Price Sensitivity Estimates using Two-Stage Control Func-
tions

Dependent Variable: Units
Baseline Control Function

Model: (1) (2) (3) (4)

Variables
Log price -1.13*** -1.11*** -1.03*** -1.01***

(0.086) (0.079) (0.087) (0.081)
Log price x Algo pricing stock -0.045*** -0.052*** -0.206*** -0.211***

(0.008) (0.015) (0.021) (0.021)
Algo pricing stock 0.284*** 0.268*** 0.566*** 0.669***

(0.018) (0.033) (0.043) (0.059)
Log # of prior purchases - total -0.268*** -0.281***

(0.006) (0.010)
Log # of total visits -0.247*** -0.273***

(0.009) (0.017)
Log # of product visits 1.86*** 1.85***

(0.030) (0.032)
First stage residual - 1 -0.330*** -0.486***

(0.045) (0.066)
First stage residual - 2 0.197*** 0.199***

(0.023) (0.020)

Fixed-effects
User, Product, and Year-Week

Fit statistics
Observations 7,891,405 7,891,405 7,891,405 7,891,405
Pseudo R2 0.206 0.245 0.206 0.245
Log-Likelihood -3,084,927.3 -2,934,026.1 -3,083,960.9 -2,933,163.3

Two-way (User & Product) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The table shows baseline estimates (columns 1 and 2) and two-stage control function estimates (columns 3 and 4)
for the consumer-level model in Equation 2.13. Algorithmic pricing stock and time-varying history variables are calculated
over a 30-day period. The dependent variable in all models is the number of units of a particular product, purchased by a
user during a single visit. All models control for user, product, and year-week fixed effects. Standard errors for columns 3
& 4 are estimated using clustered bootstrap to account for first-stage estimation error.

estimate standard errors.

The results are shown in Table 2.5. The first two columns show the baseline

model where we don’t use the control functions. After controlling for the user’s

browsing and purchase intensity, plus the user, product, and year-week fixed ef-

fects, we find that consumers who were exposed to more unique prices do become

more price sensitive. In columns 3 and 4, we use a control function approach which

accounts for potential endogeneity in algorithmic pricing stock. We find that, after

correcting for endogeneity, the effect of algorithmic pricing stock almost doubles

in absolute value. These results provide direct evidence of consumers becoming

more sensitive due to heightened volatility in prices caused by algorithmic pric-
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Table 2.6: First stage results for user level control function regression

Dependent Variables: Algo pricing stock Log price x Algo pricing stock
Model: (1) (2)

Variables
# of prices not seen -0.127*** -0.900***

(0.004) (0.018)
Log price x # of prices not seen -0.012*** 0.237***

(0.001) (0.006)
Log price 0.079*** -1.06***

(0.012) (0.046)
Log # of prior purchases - total 0.144*** 0.290***

(0.003) (0.006)
Log # of total visits 0.590*** 1.31***

(0.006) (0.015)
Log # of product visits 0.219*** 0.441***

(0.005) (0.019)

Fixed-effects
User, Product, and Year-Week

Fit statistics
Observations 8,918,548 8,918,548
R2 0.783 0.733
Log-Likelihood -4,015,435.5 -11,739,843.7
F-test 152.1 115.5

Two-way (User & Product) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

ing. In all models, the algorithmic pricing stock and user history variables are

calculated over a 30-day period. In the appendix, we provide robustness checks

where user history is calculated over 7, 15, and 60-day periods. Furthermore, we

also test for the robustness of functional form in Equation 2.13 by running vanilla

OLS and correcting for endogeneity using two-stage least squares. Across all spec-

ifications, we unanimously find that exposure to more unique prices for the same

product makes consumers more price sensitive.

Heterogeneity by Consumer Type

We investigate how the change in sensitivity varies by consumer type. We use two

measures of consumer heterogeneity – historical purchases and tenure. For the

first one, we calculate the number of total purchases made by a user in the past 60

days and split the consumer base at the median. Similarly, we calculate the tenure

of the user on the retailer’s platform from the date of the user’s first visit and split

at the median. We then re-estimate Model 2.13 separately for each sub-group using
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the two-stage control function approach described above.

The results are shown in Table 2.7. Columns (1) and (2) show the estimates

for high-value and low-value customers, as defined by historical purchases. Over-

all, we find the effect of exposure to algorithmic pricing on price sensitivity to be

strong and negative, i.e., both “high-value” and “low-value” consumers become

more price sensitive. However, as a proportion of their baseline elasticity, high-

value consumers, on average, experience twice as large of a change in price elas-

ticity as compared to low-value consumers. This comparatively larger change also

holds for consumers with a longer tenure with the retailer.

Table 2.7: User Level Sub-Group Analysis using Two-Stage Control Functions

Dependent Variable: Units

Purchases >= Median Purchases < Median Tenure >= Median Tenure < Median

Model: (1) (2) (3) (4)

Variables

Log price -0.802*** -1.27*** -0.835*** -1.17***

(0.072) (0.099) (0.076) (0.091)

Log price x Algo pricing stock -0.275*** -0.256*** -0.266*** -0.170***

(0.023) (0.026) (0.023) (0.031)

Algo pricing stock 0.664*** 1.74*** 0.649*** 1.48***

(0.072) (0.094) (0.076) (0.095)

Log # of prior purchases - total -0.243*** - -0.206*** -1.29***

(0.012) (0.012) (0.028)

Log # of total visits -0.249*** 0.256*** -0.275*** 0.124***

(0.025) (0.034) (0.024) (0.037)

Log # of product visits 1.65*** 3.19*** 1.61*** 2.84***

(0.034) (0.036) (0.032) (0.044)

First stage residual - 1 -0.459*** -0.794*** -0.430*** -1.01***

(0.083) (0.087) (0.087) (0.090)

First stage residual - 2 0.233*** 0.186*** 0.215*** 0.169***

(0.024) (0.023) (0.025) (0.026)

Fixed-effects

User, Product, and Year-Week

Fit statistics

Observations 3,846,987 3,483,403 3,833,666 3,357,457

Pseudo R2 0.252 0.298 0.252 0.295

Log-Likelihood -1,583,530.4 -1,174,606.6 -1,540,480.2 -1,206,230.1

Two-way (User & Product) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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2.5.2 Haphazard Visitation Timing

Our second identification strategy is based on the assumption that the exact time

users visit is as-good-as random. Consequently, the actual price they end up see-

ing depends on the time they visit. Because prices change frequently, had they

come a few hours earlier or later, they may have seen a different price. We build

on this thought experiment and posit a randomization scheme that allows us iden-

tification and inference — using Fisherian randomization inference — of the effect

of algorithmic pricing stock on consumer behavior.

An Ideal Experiment of Exposure to Algorithmic Pricing

It is instructive to ponder what an ideal experiment for exposure to algorithmic

pricing, i.e. exposure to high volatility in prices would look like. One may pre-

sume that an A/B test at the user or product level could help us achieve a clear

identification of the impact of price volatility on consumer purchase behavior.

However, notice that even if such a test were possible, the real exposure cannot

be captured in a single event, rather it accumulates over time and this stock would

be heavily driven by the user’s browsing intensity. That is, a simple A/B test can

be understood as an encouragement design (Holland, 1988) that indirectly induces

variation in exposure to varied prices.

We try to emulate an “ideal” experiment with observational data using ran-

domization inference. The idea is similar to how Donnelly et al. (2019) use sur-

rounding weekly in-store price changes to estimate price elasticities for groceries.

However, in our case, there are complex dependencies in the data since consumers

visit multiple times to purchase multiple products. Furthermore, price changes

occur at many different times. Independently of any particular user’s visit, prices

for products are changing due to different factors such as inventory or competitive

pressures. Hence, the actual price a consumer sees conditional on visit depends

upon her time of visit. If she were to visit a few hours earlier or later, then she

may end up seeing a different price for the same product. We use the idea that the

110



actual visit time of a particular user is as-good-as-random to generate counterfac-

tual distributions of price exposure and algorithmic pricing stock. Subsequently,

we use these counterfactual exposures to causally pin down the effect of exposure

to multiple prices on consumer behavior.

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

9:35 14:05 17:05 20:05

$3.99 $4.99 $4.99$4.99

8:25 18:00 13:40 08:26

$3.99 $3.99 $4.99$3.49

$3.99 $4.29 $4.99$3.49

Algorithmic 
Pricing Stock

2

3

4

January 2019

Visit 1 Visit 2 Visit 3 Visit 4

16:15 22:05 6:0523:35

Actual Visit

Permutation 1

Permutation 2

Figure 2.5: Permuted user visits by re-drawing user visit times within a ± 48 hour
window of actual visit time.

Figure 2.5 helps build intuition behind this procedure. For simplicity, consider

a single user who visits a single product four times during a two-week period. The

dates and times the user visits are shown in the first row of the figure. Across these

four visits, the user sees two distinct prices, and hence the total algorithmic pricing

stock is 2. Consider the first visit of the user on Jan-15 at 9:15 AM. Suppose that

instead of 9:15 AM on Jan-15, she visited the product at 8:25 AM on Jan-16. Then,

all else equal, she would have been exposed to three prices, and her algorithmic

pricing stock would be 3.

We generalize this idea and shuffle all visits for a user within ± 48 hours of

the original visit, keeping the total number of visits and the products visited each

time fixed. Since the prices are fluctuating independently of this user’s visit and

not personalized, she could get exposed to a different price in each permutation.
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Consequently, each permutation of a user’s visit to the retailer’s website creates a

counterfactual price exposure and algorithmic pricing stock. The collection of all

permutations for a user gives a vector of counterfactual price exposures and algo-

pricing stocks. We use these counterfactual exposures and algo-pricing stocks for

identification and inference. To give a sense of how the permuted assignments

look like, Figure 2.6 shows the probability distribution of observed algo-pricing

stock and permuted algo-pricing stock averaged across permutations. Overall we

find that randomizing user’s visit time does expose them to different prices for the

same product. The distribution of observed algo-pricing stock exposure is shown

in Figure I.10 in the Appendix.
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Figure 2.6: Conditional Distribution of Permuted Algo-Pricing Stock Given Observed
Algo-Pricing Stock

It is important to test the validity of the assumption that consumer visit times

are random. We present analysis similar to Donnelly et al. (2019) in which we

compare the coefficients obtained by running the model on the actual data with the

coefficients obtained by running the model on the permuted data. Since our data

has more complex dependencies at the user and product level, we estimate the full
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fixed effects model specified in Equation 2.14 for each counterfactual exposure. For

each permutation, we calculate the algo-pricing stock and user history variables

over a 30-day period.

P(𝑌𝑖𝑗𝑡 = 𝑦) =
𝑒−𝜆𝑖𝑗𝑡𝜆𝑞

𝑖𝑗𝑡

𝑞!
, 𝑞 = 0, 1, 2, . . .

log(𝜆𝑖𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑖𝑗𝑡) + 𝛽2𝐴𝑖𝑡 + 𝛽3 log(𝑃𝑖𝑗𝑡)× 𝐴𝑖𝑡+

+ log(𝑃𝑖𝑗𝑡) + 𝐴𝑖𝑡 + log(𝑃𝑖𝑗𝑡)× 𝐴𝑖𝑡

+ Γ𝑖 + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑖𝑗𝑡 (2.14)

where log(𝑃𝑖𝑗𝑡) is the average log price for a user, product, visit combination across

all permutations, 𝐴𝑖𝑡 is the average algo-pricing stock across all permutations, and

log(𝑃𝑖𝑗𝑡)× 𝐴𝑖𝑡 is the average value of the interaction between log price and algo-

pricing stock across all permutations. If the treatments have no effect, then on

average across permutations, we would expect their effect to be centered at zero.

The results from this test are shown in Figure 2.7 where we plot the distribution

of 𝑧-stats from each permuted regression. We do indeed find that the treatments

affect the outcome. The red line in each panel is the observed 𝑧-stat from the actual

regression run using the observed exposures.

Estimation Results

Finally, for inference, we estimate Equation 2.14 using the observed values of log

price, algorithmic pricing stock, and their interaction while still controlling for

the mean value of the independent variables across permutations. The results are

shown in Table 2.8. As with the permutations, we use a 30-day window to calculate

the observed algorithmic pricing stock. We estimate the model for a random sam-

ple of 30,000 consumers. As with the instrumental variables approach, we find

that exposure to multiple prices for the same product does make the consumers

substantially more price sensitive.
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Figure 2.7: Placebo Tests using Counterfactual Price Exposure and Algo-Pricing Stock

Note: The blue histogram shows the distribution of 𝑧-scores obtained by running Model 2.14 on permuted data. The dashed
red line is the 𝑧-score from the regression using observed data. All permutations and models are estimated on a random
sample of 30,000 customers and the algo-pricing stock is calculated over a 30-day period.

2.6 Lab Experiments

The analysis in Section 2.5 shows that exposure to more number of unique prices

increases price sensitivity. We are mindful that in a field setting it is not possible to

exert full control over the unobserved reasons consumers decide to visit the online

grocery platform. To address this limitation, we conduct a laboratory experiment

to test the effect of price volatility in a controlled environment. The experimental

design is simple: we ask participants to simulate purchase decisions, i.e. partic-

ipants must click how many units they intend to buy each period. Participants

are randomly assigned to two treatment conditions: stable prices and algorithmic

prices. To the best of the authors’ knowledge, there are no studies in the litera-

ture that have explored algorithmic pricing and price sensitivity in a laboratory

experiment.
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Table 2.8: User-level Price Sensitivity Estimates using Randomization Inference

Dependent Variable: Units purchased

Variables
Log price -1.06***

(0.205)
Log price × Algo stock -0.110***

(0.042)
Algo stock 0.425***

(0.093)
Mean price across perm. 0.034

(0.203)
Mean algo stock across perm. -0.126

(0.081)
Mean price x Algo stock across perm. -0.003

(0.039)

Fixed-effects
User, Product, and Year-Week

Fit statistics
Observations 505,425
Pseudo R2 0.236
Log-Likelihood -192,254.8

Two-way (User & Product) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The table shows the estimates from Model 2.14 estimated using the observed values of price, algo-pricing stock, and
their interaction. The algo-pricing stock is computed over a 30-day period and the model is estimated for a random sample
of 30,000 users.

2.6.1 Experiment Design

The online shopping simulation involves a single product (e.g., a Nutella or Nes-

tle’s Cocoa), it lasts 12 periods, and the price might fluctuate from period to period.

Participants decide how many units to buy (from 0 to 5) each period. They receive

a budget at the beginning which is automatically adjusted based on the units that

they have bought so far. Answers are sequential, i.e. participants answer period

1, then period 2, etc. Responses are incentivized by offering a bonus payout that

depends on the total units bought and total savings, i.e. users that buy more (less)

units when the price is low (high) receive a larger payout. Finally, many series of

12 prices are simulated based on the real data according to two pricing regimes:

stable pricing and algorithmic pricing. In particular, the price sequences across

conditions have a very similar average price (but different volatility and frequency

of price changes).

For example, four periods under stable pricing might be ($5.98, $5.98, $5.76,
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$5.76); while the same periods under algorithmic pricing might be ($6.01, $5.88,

$5.63, $5.91). Importantly, the price variation closely resembles the online grocer’s

strategy of stable pricing and algorithmic pricing, respectively. In periods of al-

gorithmic pricing prices fluctuate frequently and often in tiny amounts, and in

periods of stable pricing, prices are fairly stationary with small infrequent jumps.

We run two lab experiments – one on Amazon Mechanical Turk4 and the other

with MBA students from a large European university. Among the MBA students,

the study covers 139 distinct users (self-reported average age 29.8 and 68% male),

52% randomly assigned to stable pricing, and 48% randomly assigned to algorith-

mic pricing. Additional methodological details and robustness specifications are

reported in Appendix J. Reassuringly, we find similar results from the lab experi-

ment on MTurk (Appendix J).

2.6.2 Lab Experiment Results

We estimate the following model:

log(𝑌𝑖𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑖𝑡) + 𝛽2𝐴𝑙𝑔𝑜𝑖 + 𝛽3 log(𝑃𝑖𝑡)× 𝐴𝑙𝑔𝑜𝑖 + 𝜖𝑖𝑡 (2.15)

where 𝑌𝑖𝑡 and 𝑃𝑖,𝑡 denote the quantity and price, respectively; 𝐴𝑙𝑔𝑜𝑖 is an in-

dicator variable that takes value 1 if user 𝑖 was assigned to the online shopping

simulation with algorithmic prices (and 0 otherwise). As with the models before,

we are interested in 𝛽3, the coefficient on the interaction.

The results from the lab experiment are presented in Table 2.9. Consistent with

the findings in Sections 2.4 and 2.5, participants exhibit a more price sensitive de-

mand when exposed to prices with high volatility.

4MTurk has become a standard platform to conduct lab experiments in pricing (e.g., Wadhwa
and Zhang (2015))
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Table 2.9: Price Elasticity – Lab Experiment with MBA Students

Dependent Variables: Log units Units
Gaussian Gaussian Poisson

Model: (1) (2) (3)

Variables
(Intercept) 1.70*** 1.23*** 1.38***

(0.101) (0.135) (0.162)
Elasticity -0.651*** -0.371*** -0.722***

(0.059) (0.076) (0.091)
Algo 0.863*** 1.61***

(0.195) (0.266)
Algo x Elasticity -0.516*** -0.962***

(0.114) (0.160)

Fit statistics
R2 0.03901 0.04511
Log-Likelihood -1,479.5 -1,474.2 -2,632.7

One-way (User) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

2.6.3 Price Salience and Recall

We now revisit the conceptual framework discussed in Section 2.2 to conceptualize

potential mechanisms underlying the effects. A critical role in that framework

is price salience: variation in prices shifts attention to the price attribute thereby

making consumers more price sensitive.

We make progress showing that salience indeed is a relevant mechanism. After

the 12-period simulated shopping trip, we show participants in the lab experiment

a different product (Oreo) for 5 seconds. Along with the standard product pack-

aging, the image includes the product’s price. We then ask participants in both

groups to recall the price and size of the Oreo. We hypothesize that, if algorithmic

pricing makes prices more salient, then a larger proportion of users in that treat-

ment condition will be able to better recall the price of Oreo’s. We operationalize

salience as recall, consistent with the tradition in behavioral sciences, economics,

and marketing. See, for example, Alba and Chattopadhyay (1986); Kissler et al.

(2007); Finkelstein (2009); Kroft et al. (2013); Gaspelin et al. (2015).

We test whether the proportion of correct responses is higher in the algorith-

mic pricing condition. Thus, we first classify a participant with a correct response

if their answer was within $0.05 of the correct price. More formally, consider a
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participant 𝑖 who answers 𝑋𝑖; we define recall 𝑅𝑖 as follows:

𝑅𝑖 =

⎧⎪⎨⎪⎩1, if |𝑋𝑖 − 𝑃 *| ≤ 0.05

0, otherwise
(2.16)

where 𝑃 * is the correct prices of Oreo’s. Therefore, the proportion of correct re-

spondents in each treatment condition is:

𝑝𝑎𝑙𝑔𝑜 =
1

𝑛𝑎𝑙𝑔𝑜

∑︁
𝑖

𝑅𝑖

𝑝𝑠𝑡𝑎𝑏𝑙𝑒 =
1

𝑛𝑠𝑡𝑎𝑏𝑙𝑒

∑︁
𝑖

𝑅𝑖

We then test the null whether 𝑝𝑎𝑙𝑔𝑜 ≤ 𝑝𝑠𝑡𝑎𝑏𝑙𝑒 using a two-sample proportions

test. The results are shown in Figure 2.8. We find that participants in the al-

gorithmic pricing condition are more likely to correctly recall the price of Oreo

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.03). The proportions test is robust to using different cut-offs, e.g.

{$0.02, $0.03, $0.04}. Furthermore, we find no difference between the two condi-

tions when asked to recall the size of the Oreo’s package. Taken together, this

evidence supports that a process through which high volatility increases price sen-

sitivity is price salience. We emphasize that further research should examine the

existence of additional mechanisms.

2.7 Discussion

Industry practitioners often express the concern of “lagging behind” in the race

of adopting state-of-the-art pricing technology. Improvements in this technology

typically include some form of machine-based tool to set or update prices. In this

paper, we show that a stylized distinctive feature of algorithmic pricing, namely
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Figure 2.8: Testing Price Salience using Recall

Notes: Blue bars indicate the proportion of respondents who were able to recall the price of a second product (Oreo’s) within
$0.05 of the correct price. Red confidence bands are the 95% interval for the point estimate.

price volatility, modifies consumer behavior. We show, in the field and in the lab,

that price volatility makes demand more price sensitive. Once again, the effect

is identified within-consumers: greater exposure to algorithmic pricing makes a

given consumer more price-sensitive. Our findings also indicate that a key mech-

anism through which this happens is salience in the price attribute.

This set of results encourages scholars to further connect technical innovations

and consumer behavior. In light of the role of price salience, consumers are not

indifferent to how online retailers change prices. Therefore, methodological im-

provements in the back-end (e.g., speed of optimization, high-dimensional inputs,

price matching) are not sufficient in isolation; their connection to front-end user

experiences is extremely relevant. Even if some form of machine-based pricing

tool is profitable, it may trigger or shift salience to prices. And it is not obvious

that all retailers benefit from price salience.

Thinking more broadly, which businesses want their customers to become more

price-sensitive? The answer is probably very few. Perhaps price aggregator plat-

forms or everyday low prices (EDLP) retailers might stand to benefit, but in gen-

eral, businesses would like to avoid this side effect of algorithmic pricing. Said
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differently, while a retailer would not want to shut down algorithmic pricing, it

would like to avoid the negative effect on price sensitivity. Our work suggests that

price algorithms could be improved by accounting for consumer-level sensitivity

to price volatility—a dimension often overlooked.

Finally, there are promising paths to further expand the analysis presented here.

While we focus on understanding one process mechanism, namely salience, we

are aware that it does not exclude other processes. Future work could explore the

moderating role of price knowledge (Dickson and Sawyer, 1990b), price fairness

(Xia et al., 2004; Anderson and Simester, 2008; Allender et al., 2021), fairness to

machine algorithms (Lee, 2018), limited memory (Chen et al., 2010), or the forma-

tion of price cues.

It is also interesting to differentiate short-term reactions from long-term im-

plications. Algorithmic pricing technology is fairly new and even specialized AI

vendors are continually experimenting and updating their models. Studying the

long-term impact of this new-age pricing technology on consumer behavior and

market structure will help inform both business strategies and regulatory policies.

Another important dimension, which is beyond the scope of the current paper, to

consider is competition. Firms are not using pricing algorithms in isolation and a

key input to these algorithms is competitor price. Characterizing the equilibrium

effects between consumers and firms when multiple players in the market adopt

algorithmic pricing is a promising, albeit challenging, avenue to pursue.
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Appendix

A Algorithmic Pricing Periods

Table A.1 shows additional descriptive statistics for periods (weeks) identified

with and without algorithmic pricing. Overall, the statistics indicate that the mea-

sure of algorithmic pricing does capture periods in which the price of a product

experienced intense variation.

Table A.1: Summary Statistics During Algorithmic and Non-Algorithmic Weeks

Stable pricing Algo. pricing

Observations 81, 337 40, 972

Std. price 0.08 0.33

Mean price 9.14 9.23

Min price 9.05 8.82

Max price 9.27 9.75

Weekly price changes 0.7717 3.536

Figure A.1 visualizes, in the form of a heat map, the percent of products across

categories that experience algorithmic pricing over time. Reassuringly, there is

variation in exposure to algorithmic pricing across products within and across cat-

egories, as well as throughout the time-series of the data.
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Figure A.1: Share of Products per Category under Algorithmic Pricing

Notes: Each cell is a category-week combination

If prices were dynamically updated according to a mark-up rule (e.g., 𝑝𝑖𝑡 = 𝑚 *

𝑐𝑖𝑡), changes in price (𝑝𝑖𝑡) might be triggered by changes in cost (𝑐𝑖𝑡). However, and

interestingly, periods of algorithmic pricing do not appear to be driven by high-

frequency changes in costs. Panels (a) and (b) of Figure A.2 show the distribution

of the cost and price changes in algorithmic pricing weeks and in non algorithmic

pricing weeks, respectively. Summary statistics are reported in Table A.2. Overall

the evidence indicates, similar to Fisher et al. (2018), that algorithmic or dynamic

pricing is not primarily driven by cost shifters.
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Figure A.2: Costs and Price Changes during Algorithmic and Non-Algorithmic Pricing
Periods

Table A.2: Variation in Costs and Prices during Algorithmic and Non-Algorithmic
Pricing Periods

Cost Std. Price Std.

Stable pricing 1.419 0.078

Algorithmic pricing 1.476 0.379
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B Statistical Tests of the Algorithmic Pricing Indicator

Table B.3 shows the results of a 𝜒2 test for the significance of the algorithmic pric-

ing indicador, as defined in Section 2.3. We find that both the algorithmic pricing

indicator and its interaction with price capture a statistically significant portion of

the purchase variation.

Model Log Lik. 𝜒2 p.value

Only price -112,205.29 - -

Price + algorithmic pricing indicator -112,074.71 256.95 < 0.001

Price + algorithmic pricing indicator + interaction -112,004.51 138.06 < 0.001

Table B.3: 𝜒2 Test for Algorithmic Pricing

Additionally, Table B.4 shows the results of the ANOVA test for varying inter-

cepts by product and by category. The results support the existence of individual

differences in price elasticities across products and categories.

Model Log Lik. 𝜒2 p.value

Varying intercept by product -118514.4 - -

Varying intercept and slope by product -114814.5 7399.65 < 0.001

Varying intercept and slope by category and product (nested) -114565.3 498.44 < 0.001

Table B.4: ANOVA Test for Mixed Effects
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C Definition of Algorithmic Pricing

Does more intensity in algorithmic pricing magnify the price sensitivity? Figure

C.3 shows that that it does. More precisely, a more stringent definition of algorith-

mic pricing (i.e., a product-week pair is required to exhibit a more intense price

variation to be classified as an algorithmic pricing week) increases the interaction

with the price elasticity. The intensity is measured by the minimum number of

unique prices in a given product-week.
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Figure C.3: Change in Price Elasticity with Increasing Variation in Prices
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D Own-Price Elasticities

Figure D.4 shows the distribution of the own-price elasticities computed at the

product-level. Price elasticities are restricted to those significant at the 10%. Panel

(a) depicts the distribution using a separate linear regression for each product, and

Panel (b) depicts the distribution using a multilevel model allowing the elasticity

to vary by product.
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Figure D.4: Distribution of Own-Price Elasticities

Figure D.5 shows the distribution of the product-level own-price elasticities

during algorithmic and stable pricing weeks.
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Figure D.5: Product-level distribution of price elasticities during stable and
algorithmic pricing periods estimated using mixed-effects model
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E Types of Products

We examine whether the effect of algorithmic pricing on price sensitivity varies

across types of products. We consider three classifications of products: cheap and

expensive, high-revenue and low-revenue, perishable or non-perishable. The re-

sults are shown in Figures E.6, E.7, and E.8, respectively. In all graphs, the dashed

red line in the center is global average across categories.
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Figure E.6: Estimated price elasticity across products split by price quartile.

We use first 16 weeks of our sample to calculate the average price for each product and categorize them into quartiles based on average

price. Elasticiies are estimated using mixed-effects model similar to Equation 2.9 on the remaining sample.
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Figure E.7: Estimated price elasticity across less popular and more popular prod-
ucts.

We use first 16 weeks of our sample to calculate the total revenue for each product and categorize them into quartiles based on total

revenue. Elasticiies are estimated using mixed-effects model similar to Equation 2.9 on the remaining sample. We shope the top and

bottom quartile for clarity. The middle two quartiles were centered at the global average.
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Figure E.8: Estimated price elasticity across perishable and non-perishable prod-
ucts.

Perishable products include categories such as dairy & eggs, meat & seafood, and fresh produce. Elasticiies are estimated using mixed-

effects model similar to Equation 2.9 on the remaining sample.
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F Before-and-After Events

We estimate the effect of algorithmic pricing through a before-and-after event study,

exploiting variation in the timestamp different products had their first algorithmic

pricing week. Figure F.9 shows that there is considerable variation in the timing

of adopting algorithmic pricing across products. See also Figure A.1 for heatmap

split by category.
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Figure F.9: Histogram of the First Event of Algorithmic Pricing for All 2,044 Products
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Table F.5: Robustness checks for aggregate elasticity estimates before and after
algorithmic pricing periods

Dependent Variable: Log units

12 weeks 28 weeks

Model: (1) (2)

Variables

Elasticity -1.25*** -1.03**

(0.258) (0.389)

Post period 0.154*** 0.238***

(0.057) (0.084)

Elasticity × Post period -0.065*** -0.101***

(0.024) (0.035)

Fixed-effects

Product Yes Yes

Year week Yes Yes

Fit statistics

Observations 19,607 7,652

R2 0.644 0.687

Log-Likelihood -14,557 -5,003

Two-way (Product & Year week) standard-errors

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table F.6: Robustness tests for user-level price sensitivity before and after algorith-
mic pricing periods

Dependent Variable: Units

12 weeks 28 weeks 12 weeks 20 weeks 28 weeks

Model: (1) (2) (3) (4) (5)

Variables

Log price -1.13*** -0.953*** -0.950*** -0.964*** -0.877***

(0.181) (0.287) (0.140) (0.172) (0.233)

Post period 0.187*** 0.245*** 0.184*** 0.199*** 0.240***

(0.052) (0.073) (0.052) (0.061) (0.073)

Log price × Post period -0.049** -0.084*** -0.049** -0.070** -0.083**

(0.024) (0.032) (0.024) (0.027) (0.032)

Fixed-effects

User Yes Yes Yes

Product Yes Yes Yes

User-product Yes Yes

Year week Yes Yes Yes Yes Yes

Fit statistics

Observations 60,404 27,264 99,008 65,894 38,784

Pseudo R2 0.450 0.496 0.429 0.448 0.479

Log-Likelihood -79,801 -36,816 -114,626 -78,589 -48,176

Three-way (User & Product & Year week) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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G Aggregate Robustness Checks

We test whether the effect of algorithmic pricing on price sensitivity is robust to

the definition of price sensitivity. In Table G.7 we repeat the models of Table 2.3

using the following definition of algorithmic pricing week:

A product is under algorithmic pricing in a given week if:

1. The total absolute change in price in that week is greater than the median

total absolute change acorss all weeks; AND,

2. The number of changes in price in that week is greater than the median num-

ber of changes in prices across all weeks

Note that in both the Tables, 2.3 and G.7, the idea is to capture high frequency

price variation in prices; what differs is how we quantify those changes. Table

G.7’s results show that our results are robust to a different definition of algorithmic

pricing.
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Table G.7: Elasticity estimates with multiple specifications and different algo-week
indicator

Dependent Variables: Log units Units Log units

Gaussian Poisson Gaussian Ortho ML

Model: (1) (2) (3) (4)

Variables

Elasticity -1.518*** -1.581*** -1.371*** -2.533***

(0.100) (0.135) (0.128) (0.044)

Algo 0.1051*** 0.094*** 0.029**

(0.0328) (0.034) (0.014)

Elasticity × Algo -0.031** -0.032** -0.273***

(0.014) (0.015) (0.063)

Post period 0.202***

(0.056)

Elasticity × Post period -0.062**

(0.024)

Fixed-effects

Product Yes Yes Yes

Year week Yes Yes Yes

Fit statistics

Observations 122,309 122,309 122,309 90,316

59,157

R2 0.558 0.567 0.326

Log-Likelihood -112,172.42 -592,395.11 -82,303.68 -49,620.81

Product & Year week standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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H Consumer Level Robustness Checks

Table H.8: Robustness checks for user level elasticity estimates using OLS and
TSLS

Dependent Variable: Log units
(1) (2)

Model: OLS TSLS

Variables
Log price -0.093*** -0.088***

(0.007) (0.008)
Log price x Algo pricing stock -0.001** -0.003***

(0.0006) (0.001)
Algo pricing stock 0.006*** 0.036***

(0.001) (0.011)
# of sku per visit -0.227*** -0.131***

(0.006) (0.042)
# of total visits -0.018*** -0.037***

(0.001) (0.009)
# of prior purchases -0.025*** -0.026***

(0.0007) (0.0008)

Fixed-effects
User Yes Yes
Product Yes Yes
Year week Yes Yes

Fit statistics
Observations 4,621,411 4,621,411
Log-Likelihood -292,530.2 -295,076.2

Two-way (User & Product) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The table shows OLS and two-stage least square estimates for the consumer-level model in Equation 2.13. Algorith-
mic pricing stock and time-varying history variables are calculated over a 30-day period. The dependent variable is the log
number of units of a particular product, purchased by a user during a single visit.
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Table H.9: Robustness checks for user level elasticity estimates using different
number of days for historical data

Dependent Variable: Units
7 days 15 days 60 days

Model: (1) (2) (3) (4) (5) (6)

Variables
Log price -1.05*** -0.837*** -1.01*** -0.840*** -0.948*** -0.854***

(0.083) (0.091) (0.081) (0.087) (0.079) (0.083)
Log price x Algo pricing stock -0.074*** -0.203*** -0.079*** -0.170*** -0.063*** -0.104***

(0.008) (0.018) (0.007) (0.013) (0.005) (0.010)
# of sku per visit -1.74*** -0.472 -1.92*** -0.422 -2.78*** -1.39***

(0.071) (0.315) (0.064) (0.319) (0.074) (0.363)
Log # of total visits -0.150*** -0.434*** -0.142*** -0.455*** 0.013 -0.285***

(0.015) (0.071) (0.013) (0.066) (0.014) (0.076)
Log # of prior purchases - total -0.265*** -0.279*** -0.248*** -0.268*** -0.366*** -0.386***

(0.010) (0.010) (0.008) (0.009) (0.010) (0.011)
Algo pricing stock 0.269*** 0.925*** 0.241*** 0.853*** 0.182*** 0.648***

(0.022) (0.098) (0.017) (0.088) (0.014) (0.095)
First stage residual - 1 -0.711*** -0.667*** -0.517***

(0.097) (0.087) (0.094)
First stage residual - 2 0.153*** 0.115*** 0.063***

(0.020) (0.015) (0.011)

Fixed-effects
User Yes Yes Yes Yes Yes Yes
Product Yes Yes Yes Yes Yes Yes
Year week Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 2,672,388 2,672,388 3,680,937 3,680,937 5,206,155 5,206,155
Pseudo R2 0.235 0.235 0.231 0.231 0.228 0.228
Log-Likelihood -1,029,052.5 -1,028,759.8 -1,443,524.4 -1,443,161.3 -2,086,407.0 -2,086,154.9

Two-way (User & Product) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: The table shows two-stage control function estimates for the consumer-level model in Equation 2.13. Algorithmic
pricing stock and time-varying history variables are calculated over 7-day, 15-day, and 60-day periods. The dependent
variable in all models is the number of units of a particular product, purchased by a user during a single visit. All models
control for user, product, and year-week fixed effects. Standard errors for columns 3 & 4 are estimated using clustered
bootstrap to account for first-stage estimation error.
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I Exposure to Algorithmic Pricing Stock

Figure I.10 shows the distribution of user level algorithmic pricing stock over a

30-day period.
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Figure I.10: Observed 30-day Algo-Pricing Stock Across Users
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J Lab Experiment

We conduct two lab experiments – one on Amazon Mechanical Turk and the other

with MBA students from a large European university. Participants are randomly

assigned to two pricing regimes: stable pricing or algorithmic pricing. The set-up

and task are similar in both studies, only the prices are re-drawn randomly. As

described in Section 2.6, the algorithmic pricing condition is characterized by high

frequency price changes (calibrated using real data from the online retailer). Figure

J.11 shows one pair of price series used in the experiment (we used 4 pairs in total).
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Figure J.11: Sampled price series for lab experiment

Note: A user was randomly assigned to either of these pricing conditions and then their purchase behavior was recorded.

J.1 MBA Students

Table J.10 shows the summary statistics across the two conditions. Important to

note is that the average price is similar but the standard deviation of prices is much

higher in the algorithmic pricing condition.

Table J.13 in the main text shows the results from the main model. Here, we

do a robustness check by including user fixed effects in the estimation. In the lab

experiment, since a given participant is only allocated to one of the conditions and

hence the main effect of the pricing regime is not identified. Hence we run separate

regressions for the stable pricing and algorithmic pricing users, while accounting
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Table J.10: Summary Statistics from Lab Experiment with MBA Students

Algo Stable 𝑝

Obs. 864 804
Users 72 67
Mean price 4.42 4.49 0.66
SD price 0.33 0.11
Units purchased 14.9 14.2 0.08

(3.66) (4.04)
Spend 64.7 62.6 0.20

(9.52 ) (9.54)

The third columns shows the p-value from a t-test
testing the difference in means across the two con-
ditions.

for user-level fixed effects. The results are presented in Table J.11 and, once again,

show that price sensitivity is higher in the algorithmic pricing regime.

Table J.11: Robustness check for lab experiment with MBA students using fixed effects
estimation

Dependent Variable: Log units
Combined Algo Stable

Model: (1) (2) (3)

Variables
Elasticity -3.23*** -3.68*** -1.25

(0.259) (0.269) (0.759)

Fixed-effects
User Yes Yes Yes

Fit statistics
R2 0.16332 0.25041 0.07662
Log-Likelihood -1,364.0 -681.39 -673.43

One-way (User) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

J.2 MTurk Experiment

Table J.12 shows the summary statistics across the two conditions from the MTurk

experiment. Again the average prices are quite similar, only the standard deviation

of price varies.

We repeat the exercises of estimating elasticity using two specifications for the

MTurk lab experiment as well. The results are in Tables J.13 and J.14. Again, in

both specifications we find that consumers in the algorithmic pricing condition
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Table J.12: Summary Statistics from MTurk Lab Experiment

Algo Stable 𝑝

Obs. 504 564
Users 42 47
Price 6.17 6.40 0.18
SD Price 2.83 1.21
Units purchased 11.2 10.2 0.25

(3.66) (4.04)
Spend 60.1 56.2 0.041

(8.1) (9.71)

The third columns shows the p-value from a t-test
testing the difference in means across the two con-
ditions. Standard errors in parantheses.

exhibit greater price sensitivity.

Table J.13: Price Elasticity – Lab Experiment

Dependent Variables: Log units Units
Gaussian Gaussian Poisson

Model: (1) (2) (3)

Variables
(Intercept) 1.22*** 1.12*** 1.72***

(0.053) (0.085) (0.186)
Log price -0.385*** -0.340*** -1.00***

(0.025) (0.038) (0.091)
Algo 0.207** 0.500**

(0.102) (0.228)
Log price x Algo -0.099** -0.244**

(0.047) (0.118)

Fit statistics
R2 0.064 0.066 -
Log-Likelihood -815.50 -814.75 -1,384.3

One-way (User) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table J.14: Robustness check for lab experiment results using fixed effects estima-
tion

Dependent Variable: Log units
Combined Algo Stable

Model: (1) (2) (3)

Variables
Elasticity -1.51*** -1.54*** -1.38**

(0.292) (0.338) (0.680)

Fixed-effects
User Yes Yes Yes

Fit statistics
R2 0.35 0.37 0.33
Log-Likelihood -620.59 -295.86 -324.62

One-way (User) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Chapter 3

Search Augmented Choice Models

and Recommendation Systems

Abstract

Choice models and recommendation systems are commonly used in online mar-
ketplaces to suggest relevant items (products in case of e-commerce, content in
case of social media, and music/movies in case of entertainment platforms) to
users. These systems include large-scale machine learning models that are trained
on historical interaction data. For example, in case of online retail, recommender
systems use historical purchases to learn consumer preferences and recommend
products that consumers would like to buy in future. Similarly, econometric choice
models of demand are typically designed to live in the purchase space, i.e., they
are based on the set of products historically purchased. We augment these systems
by including information from users’ historical consideration sets. We first show
how one can improve logit-type demand models using data from consideration
sets. Subsequently, we enhance recommendation systems by flexibly incorporat-
ing granular consumer search data along with purchase data using a sequential
deep learning-based approach. The search augmented recommendation system
better captures consumers’ latent preferences, more accurately predicts future ac-
tions, and substantially outperforms strong baselines. Finally we show that these
gains are distributed across the entire spectrum of consumers and not concentrated
among a small subset of high usage consumers.
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3.1 Introduction

Choice models and recommendations systems are ubiquitous tools for learning

consumer preferences and predicting future consumption. These models are typi-

cally estimated using historical transaction/consumption data where one observes

previous choices made by the consumer. Common examples include logit choice

models using scanner data (Guadagni and Little, 2008), demand models estimated

using hierarchical bayes (Allenby and Rossi, 1998), and cross-category purchase

models using modern machine learning methods (Donnelly et al., 2021). These

models have proven immensely useful in deepening our understanding of con-

sumer behaviour, decoding the underlying decision process, and subsequently

generating prescriptive guidelines on how to better serve consumers.

A limitation of these models is that they all live in the purchase space, i.e.,

they are estimated and evaluated on products that consumers have historically

purchased. However, extant research has shown that consideration sets are an

important factor that eventually influence choice (Hauser and Wernerfelt, 1990).

Given the nature of the data that these choice models work with (most commonly

scanner data), observing the consideration set is quite difficult. Often to get to

the consideration set scanner data need to be enhanced using consumer surveys

which are neither scalable nor economical. To get around the limitation of not

observing the consideration set, typical choice models make the strong assumption

that all the products in the assortment (within the same category) that the user did

not eventually choose, were part of the user’s consideration set. For instance, if a

user is shopping for coffee and purchases Starbucks, the choice modeler assumes

that all other brands that were available at the time, were part of the consumer’s

consideration set, irrespective of whether the consumer actually considered them

or not.

Aside from choice models, many online marketplaces use recommender sys-

tems to learn consumer preferences and predict future demand. These models

are heavily used in industry across a range of platforms such as e-commerce, on-

148



line travel, media streaming, and online news. Most recommendation systems are

based on collaborative filtering in which consumer preferences are learned through

similarity within users and within items. The similarity is estimated by generating

a low-rank approximation of large sparse interaction matrix. In e-commerce, this

matrix includes the set of products that the user has purchased in the past. Here

again, most of these models are trained on the purchase space and do not account

for the set of products users considered but did not purchase.

In this study, we extend the scope of choice models and recommendation sys-

tems by including information from users’ consideration sets, i.e., the products

that consumer consider but do not eventually buy. We partner with an online re-

tailer in the US and use granular clickstream in which we observe all consumer

activity. Specifically, we observe the products that consumers visit by navigating

to their product detailed page and the products that consumers buy. We classify

the former as a user’s consideration set and the latter as their purchase basket.

With this granular data, we augment choice models and recommendation sys-

tems by including information for all the products that users visit but do not buy.

This allows us to better learn consumer preferences and more accurately predict

future purchases. Using multiple econometric and machine learning models, we

show the information from consideration sets is valuable and robust to different

model choices. Subsequently, we design a scalable sequential deep learning frame-

work that flexibly accounts for information from historical consideration sets. We

allow for cross-category and cross-product pooling of information. We learn con-

sumer preference weights for products by optimizing for a personalized pairwise

ranking objective, the Bayesian Personalized Ranking (BPR) loss. Here again we

find that information from consideration sets help drive substantial gains in model

performance. Moreover, these gains are not concentrated among a small set of

heavy users but rather distributed across the entire spectrum.
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3.2 Relevant literature

This work connects to the literature on choice models, consideration sets, recom-

mendation systems, and applications of deep learning in marketing.

Literature on choice models is deep and wide. Starting with Guadagni and Lit-

tle (2008), who build a logit demand model of brand choice using scanner data,

research has evolved both in substantive scope and applied methods (Winer, 1986;

Tellis, 1988; Kamakura and Russell, 1989; Mela et al., 1997). Allenby and Rossi

(1998) introduce a hierarchical Bayesian model to estimate consumer preferences

while accounting for consumer heterogeneity. More recently, machine learning

has gained popularity in estimating scalable choice models. For instance, Dew

et al. (2020) use Gaussian Processes, a Bayesian non-parametric method, to learn

dynamics in consumer preferences over time. Ruiz et al. (2017) and Donnelly et al.

(2021) use methods from probabilistic matrix factorization to learn consumer pref-

erences for products across multiple categories. We build on this work by incorpo-

rating information consideration sets in demand models.

Our work is also closely related to the research on consideration sets. Part of

our underlying motivation dwells from the idea that consideration sets are a “real”

phenomena that strongly influence eventual consumption. Hauser and Werner-

felt (1990) make the distinction between consideration sets and consumption clear

based on the net utility of evaluating another brand. Roberts and Lattin (1991)

estimate a model for consideration set composition on ready-to-eat cereals and

compare their two-stage model of consideration and choice against the popular

one-stage choice model. They find that the two-stage model more accurately pre-

dicts eventual consumption. Hauser et al. (2010) investigate how consumers se-

lect products that they will include into their consideration set using cognitively

simple decision rules. Dzyabura and Hauser (2011) develop a method for active

machine learning that adaptively selects questions to maximize information about

consumers’ decision rules. We approach the consideration set literature from an

empirical standpoint and ask how we can effectively use consideration sets at scale
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to more accurately learn consumer preferences?

Recommendation systems are a well-studied topic in both marketing and com-

puter science. Typically, the objective in these papers is to design recommenda-

tion systems so that the platform can better learn user preferences. For example,

Ansari et al. (2018) build a supervised topic model for recommending movies, Ja-

cobs et al. (2016) use LDA to model purchase baskets in retail, and Lu et al. (2016)

build a computer vision-based garment recommender for in-store recommenda-

tions. Dzyabura and Hauser (2019) look at the problem differently and suggest de-

signs for recommendation systems when consumers themselves don’t really know

their preferences. They suggest a system that encourages consumers to search

products with diverse attribute levels.

Finally, deep learning is being increasingly used for solving many core mar-

keting problems. For example, Dhillon and Aral (2021) develop a custom deep

learning architecture to model dynamic user consumption patters for online news.

Chen et al. (2020) and Gabel and Timoshenko (2020) use the idea of product em-

beddings to learn consumer preferences for offline grocery retail. More broadly,

Timoshenko and Hauser (2019) and Chakraborty et al. (2022) use deep learning

on online reviews to understand customer needs and score attribute sentiments

respectively.

On the recommender systems and deep learning front, we contribute to the

literature two novel ideas – 1) a flexible way of incorporating consideration sets,

and 2) a new architecture that accounts for sequential shopping patterns and scales

well to large assortments.

3.3 Data

We use clickstream data from a large online retailer in the U.S. Our data span 9

months of activity from October 2018 to June 2019 and include everything the con-

sumers do on the retailer’s website. The retailer’s assortment includes general

purpose products such as groceries, pet supplies, household supplies, baby prod-
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ucts, health & beauty products etc.

Importantly, we observe all the products that consumers view and those that

consumers buy along with the price, category, and activity timestamp. This allows

us to observe each consumer’s consideration set and her purchase basket. From

the clickstream logs, we sample data for 30,000 consumers and the top 2,000 most

popular products by revenue. The observation counts from our working sample

are given in Table 3.1. The most popular categories by revenue are shown in the

Appendix in Figure A.1.

Table 3.1: Observation counts from working sample

# Obs 1, 292, 297
# Users 30, 000
# Products 2, 044
# Categories 177
Departments Grocery, Household, Pet

Baby, Health & Beauty

An important element in our analysis is the classification of products based on

consumer actions. Specifically, we classify the assortment for each user-session

into three parts: the products that the user buys, the products that the user views

but does not buy, and the products that the user does not view. Subsequently,

we label these three disjoint sets as the user’s purchase basket, consideration set,

and not considered products. Table 3.2 shows the summary statistics for purchase

baskets and consideration sets at the session level.

Table 3.2: Consideration sets and purchase baskets

Consideration Purchase
Sets Baskets

# Products 8.44 2.57
(10.07) (2.02)

# Categories 3.47 2.31
(3.54) (1.65)

Price 10.79 10.58
(8.63) (9.11)

Note 1: Mean values for each variable along with
standard deviations in parentheses.

A point worth highlighting here is the decision rule to classify a product as

being viewed or not. For instance, if a consumer searches for coffee and the prod-
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uct listing page presents 20 products on the first results page, then which of these

are taken as products viewed. Here, we use the most stringent definition of prod-

ucts viewed and take only those products to be part of the consideration set whose

detailed page the consumer clicked on. An illustrative consumer journey with pur-

chase baskets and consideration sets over time is shown in Figure 3.1. The example

highlights the first interaction the user had on the retailer’s website. It also high-

lights sessions when the user only viewed certain products but did not purchase

anything. Our granular clickstream records these interactions and our model is

designed to leverage this data efficiently.

Figure 3.1: Illustrative consumer journey showing purchase baskets and
consideration sets at multiple time points

3.4 Consideration sets and discrete choice models

In the first set of analysis, we augment typical discrete choice models with data

from consumers’ consideration sets. Typical discrete choice models estimate user

preferences for products within a particular category based on historical purchases.

To estimate the model, they assume that all the products not purchased were part
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of the consideration set. Mechanically, for the regression, products purchased have

an outcome value 1 and all the products (within the same category) have outcome

value 0. One can then estimate the parameters using maximum likelihood.

We start with the question: what if we observe the consideration set? Many on-

line retailers, like the one we partner with, track the entire consumer journey, log-

ging products that consumers view but do not buy. This allows us to approximate

the set of products the user considered before making her decision. Observing the

consideration set, or a noisy approximation of it, can then, in theory, help in better

estimating user preferences and demand. We explore the idea of leveraging con-

sideration sets with two strategies – 1) improving the measurement of the outcome

(Y) variable, and 2) enhancing the feature set (X).

For the first case, we estimate a discrete-choice demand model for the coffee

category in two ways – a) including everything in the assortment that was not pur-

chased as 0, 2) including only those products that were viewed but not purchased,

i.e., the consideration set, as 0. The model specification is shown in Equation 3.1.

The model is estimated at a user-session level, and 𝑌𝑖𝑗𝑡 takes the value 1 only if the

user 𝑖 purchased product 𝑗 at time 𝑡. The parameter estimates and in-sample fit

statistics are shown in Table A.1.

𝑌𝑖𝑗𝑡 = 𝛽0 + 𝛽1 log(𝑃𝑗𝑡) + 𝛾𝑖 + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑖𝑗𝑡 (3.1)

We first evaluate the model using the 𝑈2 measure as prescribed in Hauser

(1978). 𝑈2 essentially measures amount of reduction in uncertainty due to a model.

As prescribed in Hauser (1978), we use the null model as all the product choices

being equally likely, and compare it with the model in which product choices are

equally likely within the consideration set of each user. That is, for the null model,

we have 𝑝𝑖𝑗 = 1
𝐽

, and for the model being evaluated, we have 𝑝𝑖𝑗 = 1
𝐽𝑖
∀𝐽𝑖 ∈ 𝐶𝑖,

where 𝐽𝑖 is the total number of products and 𝐶𝑖 is the consideration set for user 𝑖.

The results are shown in the second column of Table 3.4. The results show a 𝑈2 of
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0.4, which implies that only using the consideration set explains about 40% of the

total uncertainty in final choice.

Furthermore, we investigate the out-of-sample fit for these models on future

purchases. It is important to note that both models have the same specification

and the same number of cases where 𝑌𝑖𝑗𝑡 = 1; the only difference is in the cases

where 𝑌𝑖𝑗𝑡 = 0. Consequently, we evaluate the models using metrics that focus on

getting the positive outcomes right. We use two metrics for this: F1-score, which is

the harmonic mean of precision (the positive predictive value) and recall (the true

positive rate), and AUC, which measures the probability that a randomly sampled

positive cases is ranked higher than a randomly sampled negative case. The results

are shown in Table 3.4. We find that on both measures, the choice model that

incorporates users’ consideration set performs substantially better.

Table 3.3: Performance of discrete-choice model in the coffee category

Uncertainty F1-score AUC
Typical choice model 2.30 0.11 0.62
Choice model with consideration set 0.94 0.21 0.71
Gain/Uncertainty explained 𝑈2 = 0.40 (+90.0%) (+14.5%)

Note 1: Both choice models are estimated on data using the coffee category only. Typ-
ical choice model is a logistic regression where the dependent variable is 1 if the user
purchased a product during a shopping session and all the other coffee products are
labelled 0. The choice model with consideration set is also a logistic regression where
the dependent variable is 1 if the user purchases the product in a given session. The
products from the user’s consideration set are taken as 0. The first evaluation criterion
is in-sample 𝑈2 from Hauser (1978). The latter two are out-of-sample.

We explore the second strategy of incorporating consideration sets in choice

models by enhancing the feature set in a standard machine learning framework.

Specifically, we construct features related to the user’s visitation patterns over time

that indicate how frequently a product was considered but not purchased. We first

explore the predictive value if these features in a regression framework. Specifi-

cally, we estimate the following model:

log(𝑌𝑖𝑗𝑡) = 𝛽0 + 𝛽1 log(𝑃𝑗𝑡) + 𝛽2 log(
∑︁
𝑇

𝑌𝑖𝑗𝑡−1) + 𝛽3 log(
∑︁
𝑇

𝑆𝑖𝑗𝑡−1)+

𝛾𝑖 + 𝜇𝑗 + 𝜏𝑡 + 𝜖𝑖𝑗𝑡 (3.2)

155



where 𝑌𝑖𝑗𝑡 is the number of units of product 𝑗 purchased by user 𝑖 at time 𝑡. 𝑃𝑗𝑡 is

the price of product 𝑗 at time 𝑡.
∑︀

𝑇 𝑌𝑖𝑗𝑡−1 is the number of units of 𝑗 bought by 𝑖 in

the past 𝑇 days. We vary 𝑇 to be 7, 15, 30, and 60 days.
∑︀

𝑇 𝑆𝑖𝑗𝑡−1 is the number of

times 𝑖 visited the product detail page of 𝑗 in the past 𝑇 days but did not purchase

it, i.e., it is the number of times 𝑗 was in 𝑖’s consideration set. 𝛾𝑖, 𝜇𝑗 , 𝜏𝑡 are user,

product, and time fixed effects. The model is estimated at a user-session level.

The goal of this exercise is to understand how much of an effect 𝑆, the consider-

ation set, has after controlling for previous purchases, and user and product fixed

effects. Accounting for fixed effects here is important since we don’t want to pick

up the effect of users’ latent tendency to search more, and hence having a high 𝑆

value. Analogously, we want to remove the tendency of certain products to get

searched more. If this effect is significant and substantial, then it is important that

online marketplaces effectively leverage this information to better target and serve

their customers.

We first show the effect of 𝑆 on future 𝑌 using a binscatter plot presented in Fig-

ure 3.2. We partial out user and product fixed effects and then regress partialled-

out Y on partialled-out S. We see that, even after controlling for user and product

fixed effects, consideration set significantly predicts future purchases.
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Figure 3.2: Binscatter plot of (residualized) future purchases on (residualized)
past considersation sets

We extend this analysis by estimating the full model shown in Equation 3.2,

which controls for historical purchases. Accounting for historical purchases is

common in choice models estimated using scanner data. Our goal is to investi-

gate whether consideration sets can provide information over and above historical

purchases. The results are shown in Figure 3.3. The points and bars show the es-

timate of 𝛽3 and 95% confidence intervals from Model 3.2. Each point is from a

separate regression where 𝑆 is calculated over different time periods - 7 days, 15

days, 30, days, and 60 days. The graph shows that even after controlling for his-

torical purchases, historical consideration sets are predictive of future purchases.
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Figure 3.3: Estimates and 95% confidence intervals for the number of past visits.
The outcome variable is the number of units of a product purchased during a

user-session. The standard errors are clustered by user and product.

3.4.1 Machine Learning models

In our second set of analysis, we use two classes of machine learning models –

1) penalized regression and 2) boosted trees to further investigate the predictive

impact of consideration sets on future purchases. For both classes of models, we

predict the set of products purchased at time 𝑡 for each user with historical data

(purchases and consideration sets) up to time 𝑡 − 1. In addition, we also include

variables such as price, product category, hour of day, and day of week.

To evaluate the model, we keep the last visit for each user aside as held-out test

data. For hyper-parameter tuning we randomly split the training data into 90%

data for fitting and 10% data for tuning. Penalized regression is fit using Lasso and

boosted trees using XGBoost (Chen and Guestrin, 2016). We evaluate the models

using F1-score and AUC on the test data. The results are shown in Table 3.4. We

see that for both the model classes, including the consideration set substantially

improves the performance. It is important to note that these gains come even after
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including the historical purchases in the model.

Table 3.4: Performance of machine learning models in predicting future purchases

F1-score AUC
Previous purchase 0.12 0.5
(Binary indicator)
Lasso 0.29 0.601
(Only purchases)
Lasso 0.32 0.645
(Purchases + consideration) (+10.0%) (+7.5%)
Boosted Trees 0.32 0.581
(Only purchases)
Boosted Trees 0.36 0.671
(Purchases + consideration) (+12.5%) (+15.4%)

Note 1: Out of sample performance of machine learning
models in predicting future purchases. The number in
parenthesis are the percentage increase in performance
metrics of models with purchase and consideration history
over the models that only include purchase history.

We go a step further and plot the most important features in the XGBoost mod-

els. Feature importance plots, like the one shown in Figure 3.4 show the relative

importance of individual features in predicting the outcome, after controlling for

all other variable in the model. Figure 3.4 shows that, even after accounting for

price and historical purchases, the variable that is most influential in predicting

future purchases is the number of times the product was part of the consideration

set.
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Figure 3.4: XGBoost feature importance for predicting future purchases
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3.5 Deep learning based recommender system

We now develop a scalable sequential deep learning framework that flexibly ac-

counts for historical purchases and consideration sets. The analysis in the previ-

ous section, while insightful, was constrained in a number of ways. For example,

it only used historical purchases and considerations of the same product to predict

future purchases, completely ignoring cross-product or cross-category relations.

So, for instance, if a user purchases coffee in the previous session, the models don’t

take that information into account while predicting the likelihood of purchasing

creamer today.

We expand the scope the analysis from the previous section by developing

a sequential deep learning based recommender system that flexibly accounts for

historical cross-product purchases and considerations, easily accommodates other

high-dimensional sparse features such as product category and user zip code, and

scales well to large data sizes. Furthermore, as recommendation systems are typi-

cally used to generate user-specific rankings of products, we directly optimize for

ranking using Bayesian Personalized Ranking.

Bayesian Personalized Ranking is a pairwise personalized ranking loss com-

monly used in recommendation systems with implicit feedback, i.e., in cases where

positive examples are observed (clicks or purchases) but negative examples are

not. Negative examples need to be first generated, through sampling or some

other pre-defined procedure, and then fed to the model to optimize the loss.

3.5.1 Architecture

Our model architecture is shown in Figure 3.5. For a given user 𝑖, the model com-

bines user features one-hot encoded user-id, with pooled historical purchases and

historical consideration sets. Historical purchases included one-hot encoded prod-

uct ids that were purchased in the previous session. The product ids are passed

through a 64-dim embedding layer. Since the number of purchases vary by ses-

sion, we max-pool the embeddings to get a 64-dim representation of the previ-
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ous visit’s purchase basket. Similarly, all the products that were considered but

not purchased are passed through a separate embedding layer of 64-dim and then

max-pooled to get a 64-dim representation of the entire consideration set. Both rep-

resentation are then concatenated and passed through a fully-connected network

(FCN) head. Each layer in the FCN has a tanh activation function. A dropout

layer with 0.3 probability is added for regularization.

The user representation and the historical user state (combination of historical

purchase basket and consideration set) are multiplied to get an updated user-state

representation. This representation is then used to optimize for the Bayesian Per-

sonalized Ranking (BPR) loss using items that were actually purchased as positive

cases and randomly sampled items as negative cases. All sets of embeddings are

then jointly trained using backpropagation with an Adam optimizer and BPR loss.

Figure 3.5: Sequential deep learning architecture to flexibly predict future
purchases
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3.5.2 Performance

We evaluate the model on data from the last visit of each user, which is not used to

fit the model. We look at three metrics typically used for evaluating recommender

systems, Hit Rate, Mean Recall, and Mean Average Precision. All the metrics are

calculated by generating a rank ordered list of top-10 items the model thinks the

user is likely to purchase in the last session.

In addition to our sequential deep learning model, we also test a few baselines

starting with random predictions, most popular predictions, matrix factorization

(MF), and matrix factorization optimized for BPR loss. For both sets of matrix fac-

torization based recommender systems, we estimate the model with and without

consideration set and highlight the gains from including consideration sets. Across

all the different models, we see that including consideration set data substantially

improves model performance on all three metrics.

Table 3.5: Performance of deep learning based recommender system

Hit-Rate MAP Mean Recall

Random Baseline 0.48 0.12 0.12

Popular Baseline 7.39 2.28 2.27

MF 30.32 15.74 15.59

(Only purchases)

MF 36.98 19.48 19.32

(Purchases + consideration) (+21.9%) (+23.7%) (+23.9%)

MF: BPR Loss 36.11 19.36 19.23

(Only purchases)

MF: BPR Loss 41.19 23.60 23.46

(Purchases + consideration) (+14.0%) (+21.9%) (+21.9%)

Sequential DNN: BPR Loss 37.73 21.85 21.74

(Only purchases)

Sequential DNN: BPR Loss 47.67 27.66 27.48

(Purchases + consideration) (+27.0%) (+26.5%) (+26.4%)

Note 1: Metrics are calculated using top-10 recommenda-

tions generated by the model for the last visit of each user

in the sample.

We further investigate the source of these gains across users and products. In
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Figure 3.6, we plot the performance (Recall @ 10) of the sequential model with and

without consideration sets across quintiles of users. The quintiles are created based

on users’ purchase history in the training data, i.e., users in the 5𝑡ℎ quintile include

the top 20% users in terms of revenue on the retailer’s platform. Ex-ante, one might

worry that using the consideration sets generates benefits for only those users for

whom we have a lot of history, which tend to be the ones in the 5𝑡ℎ quintile. How-

ever, Figure 3.6 shows that this is not the case. In fact, the gains are distributed

across the entire spectrum of consumers.
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Figure 3.6: XGBoost feature importance for predicting future purchases

We also split the gains based on product to check if the model performs better

on certain types of products. Figure 3.7 shows the top-10 and worst-10 categories

based on model performance on the test data. While not as clearly discernible as

the user case, we find that food based products are generally well-predicted by

the model as compared to household and beauty products. One reason behind

this difference in gains is the relative frequency with which products within these

categories are purchased. Generally, food related products are purchased at more

regular intervals as compared to household products, and the model is able to pick
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that up easily.

Cleaning Tools
Beauty Tools & Accessories

Cleaning Products
Food Storage

Skin Care
Personal Care

Paper & Plastic Products
Laundry

Pantry
Pasta & Pasta Sauce

Breakfast Foods
Dairy & Eggs

Cat Treats
Meat & Seafood

Beverages
Cat Litter & Housebreaking

Cat Food
Baby Food & Formula

Sports Nutrition & Diet
Dog Food

0.0 0.2 0.4
Recall @ 10

C
at

eg
or

y

Figure 3.7: XGBoost feature importance for predicting future purchases

3.6 Discussion

We investigate the benefit of using historical consideration set data to predict fu-

ture purchases. We use multiple computational approaches such as discrete-choice

logit models, quasi-Poisson demand models, penalized regression, boosted trees,

and a custom sequential deep learning model to evaluate the gains provided by

consideration sets. Overall, we find robust and substantial gains in using data

from historical consideration sets to predict future purchases. For example, in-

cluding consideration sets in a simple penalized regression model improves out-

of-sample performance by 10% and more flexibly including them in a sequential

deep learning model improves performance by 27%. Moreover, these gains are

distributed across the entire spectrum of consumers as defined by quintiles based

on historical revenue.

Consideration sets, more broadly, are an important phenomena that are crucial
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to more deeply understand consumer behavior. We find this to be a promising

area of research, especially given the increasing share of online marketplaces in

consumer spending. The rise of online marketplaces such an e-retailers, online

travel portals, and content discovery platforms gives researchers and firms an op-

portunity to observe the entire journey of consumer decision processes at scale.

Tying this fine grained view of consumer search, consideration, and choice, can

unlock many insights into how consumer preferences form and evolve.
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Appendix

A Supplementary tables and figures
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Figure A.1: Top-20 most popular categories by revenue
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Table A.1: Discrete choice model with and without consideration sets

Dependent Variable: Purchase indicator
Model: Typical With

consideration set

Variables
Log price -2.33*** -3.25***

(0.130) (0.297)

Fixed-effects
User & Product

Fit statistics
Observations 56,192 10,982
Squared Correlation 0.026 0.223
Pseudo R2 0.054 0.206
BIC 50,130.4 26,768.8

Clustered (User & Product) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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B Tuned hyper-parameters for DNN

Hyper-parameters were tuned using a random held-out 10% validation sample.

• Embedding dimensions: 64

• Optimizer and learning rate: Adam, 0.001

• Number of epochs: 40

• Batch size: 1,024
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