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Abstract

Integer programs provide a powerful abstraction for representing a wide range of real-
world scheduling problems. Despite their ability to model general scheduling prob-
lems, solving large-scale integer programs (IP) remains a computational challenge in
practice. The incorporation of more complex objectives such as robustness to dis-
ruptions further exacerbates the computational challenge. With the advent of deep
learning in solving various hard problems, this thesis aims to tackle different computa-
tionally intensive aspects of scheduling with learning-based methods. First, we apply
reinforcement learning (RL) to the Air Force crew-scheduling problem and compare
it against IP formulations which explicitly optimize for minimization of overqualifi-
cation and maximization of training requirements completed. We show that the RL
agent is equally effective as its IP counterpart when the reward function is engineered
according to the objective we want to optimize. We also show that the RL formu-
lation is able to optimize for multiple objectives with simple modifications to the
reward structure, whereas the IP methods require separate formulations for their ob-
jective functions. Then we present Neural network IP Coefficient Extraction (NICE),
a novel technique that combines reinforcement learning and integer programming to
tackle the problem of robust scheduling. More specifically, NICE uses reinforcement
learning to approximately represent complex objectives in an integer programming
formulation. We use NICE to determine assignments of pilots to a flight crew sched-
ule so as to reduce the impact of disruptions. We compare NICE with (1) a baseline
integer programming formulation that produces a feasible crew schedule, and (2) a
robust integer programming formulation that explicitly tries to minimize the impact
of disruptions. Our experiments show that NICE produces schedules that are more
robust to disruptions than the baseline formulation, with computation times that are
lower than those of the corresponding robust integer program.
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Title: William E. Leonhard (1940) Professor of Aeronautics and Astronautics

3



4



Acknowledgments

I would like to acknowledge a number of people who have shaped my experience in

graduate school over the last two years.

I am indebted to Prof. Hamsa Balakrishnan, my advisor and would like to thank

her. She is the most supportive advisor one could ever hope for – she has always

encouraged me in every aspect of my grad school life, and went above and beyond to

support me at the times that I really needed it. She has been very accommodating

when I ventured into research areas that were probably not the lab’s primary focus

at the time, and has been extremely supportive of my collaborations with other

researchers over the last two years. She has always advocated for a healthy work-life

balance for her students and has fostered an extremely friendly and collaborative

culture within her research group.

I would like to thank Luke Kenworthy, Christopher Chin, Matthew Koch and

Travis Smith with whom I worked closely on the USAF-MIT AI Accelerator project.

Christopher and Matthew helped me in getting up to speed with the Air Force sched-

uler terminologies. I thoroughly enjoyed discussing the different learning-based for-

mulations for the project with Luke and Travis. Part of this thesis would not have

been possible without Luke. I would also like to thank the other members of the AI

Accelerator team including, Michael Snyder, Kendrick Cancio, Jessamyn Liu, Amy

Alexander, Ronisha Carter and Allison Chang.

I enjoyed working with Karthik Gopalakrishnan, Victor Qin and Geoffrey Ding

on the multi-agent navigation problem (and I look forward to continue working with

them through my PhD). I would like to thank Karthik for encouraging me to explore

problems in this field for my PhD, mentoring me and being a patient collaborator to

bounce ideas off of.

I have been fortunate to collaborate with MEng students Simran Pabla and Car-

son Smith and UROP Akila Saravanan on their MEng thesis and UROP projects

respectively. Working with them has been quite fun and broadened my research

perspectives towards different applications.

5

http://www.mit.edu/~hamsa/
https://www.linkedin.com/in/luke-kenworthy-7909b2163/
https://www.linkedin.com/in/chris-chin-9702a05b/
https://www.linkedin.com/in/matthew-koch/
https://github.com/Travis42
https://www.linkedin.com/in/michael-j-snyder/
https://www.linkedin.com/in/kendrick-cancio/
https://www.linkedin.com/in/amy-alexander-7a421b4/
https://www.linkedin.com/in/amy-alexander-7a421b4/
https://www.linkedin.com/in/ronisha-c-a905a9121/
https://www.linkedin.com/in/allison-an-chang/
https://karthikg.mit.edu/about-me
https://victor-qin.com/
https://aeroastro.mit.edu/dnm-geoffrey-ding/
https://www.linkedin.com/in/simran-pabla/
https://www.linkedin.com/in/carson-smith-b2bb0b14a/
https://www.linkedin.com/in/carson-smith-b2bb0b14a/


I would like to express my gratitude to Prof. Balaraman Ravindran (IIT Madras,

India), Dr. Harshad Khadilkar, Prof. Abhishek Sinha (IIT Madras, India) who men-

tored me during my undergraduate studies, and helped me find my feet in research.

I would also like to thank everyone I collaborated with on the problem sets and

the projects for the courses I took here at MIT. Their help made working on the psets

more fun (and easy). I would also like to thank my friends for being really good Zoom

buddies (and in-person) throughout the pandemic. Special thanks to Rebecca Jiang,

Adwait Kulkarni, my aunt and her family for helping me out in setting myself up after

moving to Cambridge and taking care of me after my ACL injury. I am also grateful

to the MIT Cricket Club and the MIT Korean Karate Club and the members of these

two clubs for letting me continue with cricket and learn martial arts respectively.

I would also like to thank the MIT SuperCloud [40] for providing high performance

computing resources that have contributed to the research results reported within this

thesis.

This section would be incomplete if I did not acknowledge projects that I was

enthusiastic about, but did not work out. These projects taught me a lot about

the research problems I was working on and that helped me in shaping my current

research interests.

Finally, I couldn’t be where I am today without the unconditional support of my

parents and my sister. They have cheered me through every accomplishment and

setback, acted as my sounding board and reassured me with their boundless love.

6

http://www.cse.iitm.ac.in/~ravi/
https://sites.google.com/view/harshad/home
https://home.iitm.ac.in/abhishek.sinha/
https://www.linkedin.com/in/rebecca-jiang/
https://www.linkedin.com/in/kulkarniadwait98/


Contents

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Project Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Integer Programming Methods for Scheduling . . . . . . . . . 15

1.3.2 Learning-Based Approaches to Scheduling . . . . . . . . . . . 16

1.3.3 Robust Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Reinforcement Learning for Scheduling 19

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Reinforcement Learning Notation . . . . . . . . . . . . . . . . 20

2.1.2 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . 21

2.2 Markov Decision Process for Crew Scheduling . . . . . . . . . . . . . 23

2.2.1 Reinforcement Learning Formulation . . . . . . . . . . . . . . 23

2.2.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Random Event Generation . . . . . . . . . . . . . . . . . . . . 25

2.2.4 State Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.6 Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Action space masking . . . . . . . . . . . . . . . . . . . . . . . 30

7



2.3.3 Minimizing Overqualification . . . . . . . . . . . . . . . . . . 31

2.3.4 Maximizing Completion of Training Requirements . . . . . . . 32

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 35

3 Combining Reinforcement Learning and Integer Programming 37

3.1 Knowledge Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Baseline Integer Program Formulation . . . . . . . . . . . . . 40

3.2.2 Buffer Formulation . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.3 NICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 RL Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Scheduling Parameter Selection . . . . . . . . . . . . . . . . . 49

3.3.3 Baseline Scheduling Performance . . . . . . . . . . . . . . . . 50

3.3.4 Highly-Constrained Scheduling Scenarios . . . . . . . . . . . . 51

3.3.5 Move-up Crews . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 55

4 Conclusions 57

A Proofs 59

A.1 Proof of Simplified PPO Objective Function . . . . . . . . . . . . . . 59

B Data 63

B.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1.1 Flight Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1.2 Pilot Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C Hyperparameters for Experiments 67

8



List of Figures

2-1 Actor Critic: The actor (policy) takes in the state as the input and

gives out the action to take. The critic takes in the state and the

action suggested by the critic to evaluate the actor. (Image taken from

[48]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-2 Variation of the overqualification score as a function of overqualifica-

tion. The tanh function allows for some slack in overqualification upto

the cutoff and then gives a score of zero when the overqualification is

much larger than the cutoff . . . . . . . . . . . . . . . . . . . . . . . 29

2-3 Fraction of the total events in the episode for which the agent is able

to assign pilots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2-4 Average overqualification obtained by the RL agent for different val-

ues of 𝑂𝑄𝑤𝑡 compared against the MIP and the advanced OQ MIP

formulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2-5 Number of training requirements completed by the RL agent for dif-

ferent values of 𝑟𝑒𝑞𝑤𝑡 and 𝑂𝑄𝑤𝑡 = 1 compared against the Training

Requirement MIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2-6 Average overqualification obtained by the RL agent for different val-

ues of 𝑟𝑒𝑞𝑤𝑡 and 𝑂𝑄𝑤𝑡 = 1 compared against the OQ MIP and the

advanced OQ MIP formulations. . . . . . . . . . . . . . . . . . . . . . 34

9



3-1 The procedure for executing NICE is quite similar to the RL model

from Chapter 2. But instead of choosing the pilot suggested by the

RL agent (choosing the pilot with the maximum probability), we use

the predicted probability distribution over the pilots to feed in the IP

formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3-2 Once we train our network, in the Monte Carlo approach, we run the

scheduler 𝑛 times, shuffling the order of slots each time. We then

average the probability values in the output layer across the 𝑛 runs

over pilots and slots to obtain our NICE coefficients. Finally, we pass

these coefficients to the IP solver to obtain our NICE-generated schedule. 46

3-3 The isomorphism between the IP and DES formulation for the crew

scheduling problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10



List of Tables

3.1 Average and standard deviation of disruptions across scheduling meth-

ods when flights are delayed (lower values are better). Scheduling

density of 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Average and standard deviation of disruptions across scheduling meth-

ods when flights are delayed (lower values are better). Scheduling

density of 2. Buffer IP did not build a single schedule for 90 minutes

and timed out, so we do not include it. . . . . . . . . . . . . . . . . . 50

3.3 Average and standard deviation of disruptions across scheduling meth-

ods when flights are delayed (lower the better). Scheduling density of

1. The NICE and RL schedulers used the move-up reward function in

their underlying neural network. . . . . . . . . . . . . . . . . . . . . . 54

11



12



Chapter 1

Introduction

1.1 Motivation

Air Force Crew scheduling involves assigning pilots to events according to the pilot

qualifications, the event requirements, the pilot requirements, etc. Due to these com-

plex constraints, crew-scheduling is a challenging combinatorial optimisation problem.

The creation of a typical schedule can take 3 human schedulers working 9 hours/day,

a total of 27 hours. Thus, there is a scope to improve the scheduling process by

automating it so that these human schedulers who are typically airmen from the

squadrons, can focus on other important duties.

Furthermore, even the most experienced schedulers can run into problems with

scheduling due to unforeseen disruptions in flights (missions popping-up/dropping

randomly), pilot availability (emergency leaves). This can cause a variety of issues

for the schedulers where they have to make major changes in the schedules or even

completely discard the previously created schedules to create new ones. This issue

has been alleviated with recent work by Chin [10] and Koch [25] where they introduce

various integer programming (IP) formulations to optimize for different metrics and

also account for disruptions for robust scheduling. Although, these IP formulations

can be used to explicitly optimize for certain metrics, they need to be done separately

for each metric the schedulers might care about. In essence, it is hard to combine

13



multiple objective functions in a single optimization formulation. Along with this, the

robust scheduling IP can sometimes fail or take a lot of time to produce schedules due

to its complexity in a heavily disrupted scenario. To tackle these issues, this thesis

aims to use reinforcement learning to account for multiple objective functions with a

single scheduling agent. Also, this thesis introduces a hybrid approach for the robust

scheduling problem which is able to produce more robust schedules with significantly

lesser computation times.

1.2 Project Background

With the need of improving and simplifying the scheduling process, the Air Force

has been developing Puckboard which is a web-based software application to assist

human schedulers. Traditionally, the schedulers have used pucks on whiteboards as

a representation of pilot assignments whilst creating schedules; and hence the name

Puckboard). The goal of Puckboard is not to replace the human schedulers but to

assist them. The advantage of Puckboard is that the schedulers do not have to cross-

reference multiple whiteboards when creating schedules. Currently, Puckboard is

used to automatically generate pilot assignments for flights. Puckboard accounts for

the availability of the pilots, the qualification levels of the pilots, etc. when creating

schedules. However, the human schedulers note that it is more time-consuming to

clean the schedules created using Puckbboard than to manually assign pilots to flights.

Prior work by Chin [10] and Koch [25] has improved the Puckboard functionality by

including specialized integer programming formulations to optimize for feasibility of

schedules, minimization of overqualification, maximization of training requirements

completed and accounting for robustness towards disruptions in the schedules.

14



1.3 Related Work

1.3.1 Integer Programming Methods for Scheduling

Personnel scheduling has been a long-standing challenge in Operations Research, and

has been the focus of much research over the past several decades [14, 49]. Integer

programs (IPs) and mixed integer programs (MIPs)1 have been widely-used for per-

sonnel scheduling, in large part due to their ability to represent general scheduling

problems. However, despite the power of IPs to model scheduling problems, solving

large-scale IPs in practice is often computationally challenging [38]. Most real-world

applications also need robust schedules, namely, schedules that do not require consid-

erable adjustments to personnel assignments in the event of an unforeseen disruption.

While robust MIP-based formulations of scheduling problems can be developed, they

are usually at least as computationally challenging as their non-robust counterparts

[50, 52, 13, 5].

The scheduling of flight crews (e.g., pilots) is a personnel scheduling problem that

arises in the context of aviation [19, 8, 21, 60]. Similar to other scheduling problems,

crew scheduling has traditionally been tackled using large-scale IPs, both for airline

and military flight crews [26, 47]. Although there are quite a lot of similarities in

the military crew scheduling problem and the airline crew scheduling problem, there

aren’t a lot of research works focused solely on the military crew scheduling. Both

have to consider pilot/crew qualifications, training requirements of the pilots/crew,

rest requirements and leave days of the pilots/crew.

In [21], the author constructs an integer program for joint flight scheduling and

crew scheduling. The crew assignments are made by maximizing the total “rewards"

across all pilots, where the reward is associated with the number of training require-

ments completed. This work considers three qualification levels (instructors, leads,

students) whereas, in our case, Puckboard has around 32 qualification levels along

with more granularized qualification levels like night and air-drop qualifications. Sim-
1We use the terms integer program (IP) and integer linear program (ILP) interchangeably un-

less noted otherwise; similarly for mixed-integer program (MIP) and mixed-integer linear program
(MILP).
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ilarly, in [31], the author maximizes the number of scheduled flights whilst considering

the constraints but does not consider details in departure and arrival times.

1.3.2 Learning-Based Approaches to Scheduling

Successes in deep (reinforcement) learning have motivated research that focuses on

obtaining end-to-end solutions to combinatorial optimization problems; e.g., the trav-

elling salesman problem [37, 30, 59, 56, 28] or the satisfiability problem (SAT) [2, 58].

RL has also been used for resource management and scheduling in a diverse set of

real-world applications. For example, Gomes [15] uses an asynchronous variation of

the actor-critic method (A3C) [34] to minimize the waiting times of patients at health-

care clinics. The lack of readily available optimization methods for this problem due

to the ad-hoc nature of patient appointment scheduling motivates the usage of RL for

this application to model the uncertainty. Mao et al. [32] introduce DeepRM which

uses resource occupancy status in the form of images as the states and uses neural

networks for training the RL agent. Chen et al. [9] improve upon DeepRM by modi-

fying the state-space, reward structure and the network used in the DeepRM paper.

Chinchali et al. [11] use RL for cellular network traffic scheduling. They incorporate

a history of the states observed to re-cast the problem as a Markov Decision Process

(MDP) [39] from a non-Markovian setting. Along with this modification, they con-

struct a reward function that can be modified according to user preferences. In all of

the works above, the models used application-specific state space, action space, and

reward structures to optimize special-purpose objective functions to create schedules.

In recent work, Nair et al. [36] use a bipartite graph representation of a MIP and

leverage graph neural networks [42, 24] to train a generative model over assignments

of the MIP’s integer variables. We do not use generative models to solve an IP formu-

lation, but instead use RL to formulate the IP itself. Very recent work by Ichnowski et

al. [20] uses RL to speed up the convergence rates in quadratic optimization problems

by tuning the inner parameters of the solver.
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1.3.3 Robust Scheduling

Flight delays are the main cause of disruption to crew schedules in commercial avia-

tion; buffers (or slack in the schedule) have therefore been considered as a mechanism

to achieve schedule stability amidst flight delays [55, 7]. A buffer refers to the amount

of time between the successive flights flown by a particular pilot. By increasing these

buffers, a new pilot assignment is less likely to be needed due the initially-planned

pilot being delayed, and therefore being unable to make the flight. In [47], the author

builds on top of [31] to include departure and arrival times.

1.4 Outline

In Chapter 2, we present a reinforcement learning based formulation for the Air-Force

crew scheduling problem. We also discuss the effect of the reward structure on the

performance of the reinforcement learning agent and compare metrics like overqualifi-

cation and training requirements completed. In Chapter 3, we combine reinforcement

learning and integer programming to introduce a hybrid approach called NICE. We

show that this approach can be used to tackle the problem of robust scheduling. The

work presented in this chapter is largely based on research that was published in [22].

We finally end with conclusions and future work in Chapter 4. The code for reproduc-

ing our experiments with the RL formulation and the NICE approach can be found

at https://github.com/nsidn98/pilotRLNew and https://github.com/nsidn98/NICE

respectively.
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Chapter 2

Reinforcement Learning for

Scheduling

Deep reinforcement learning (RL) has proved to be very successful in achieving super-

human performances in a wide variety of tasks like playing Go [45], Chess [46], Atari-

video games [35, 33], high-dimensional robot control [29] and solving physics-based

control problems [17]. There have been many works which have used reinforcement

learning for obtaininig end-to-end solutions for combinatorial optimization problems

like the travelling salesman problem [37, 30, 59, 56, 28], satisfiability problem (SAT)

[2, 58], scheduling [15, 32, 9, 11]. All of the works mentioned above require application-

specific state space, action space and reward structure to optimize for special-purpose

objective functions. Similarly, we introduce a reinforcement learning formulation for

obtaining schedules for the Air-Force Crew Scheduling problem. Our reinforcement

learning formulation has an easily understandable reward structure to mimic objective

functions used in similar integer programming (IP) formulations. We show that the

RL agent 1 is able to perform as well as the IP formulations with respect to metrics

like feasibility of schedules, minimizing overqualification and completion of training

requirements. The advantage of the RL formulation is that multiple metrics can

be combined in the reward function to optimize with a single agent whereas the

IP formulation require separate objective functions which in turn create different

1The code is available at https://github.com/nsidn98/pilotRLNew
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schedules when optimizing for different metrics.

We begin this chapter with some background on reinforcement learning where we

introduce the reinforcement learning notation and a reinforcement learning algorithm-

Proximal Policy Optimisation in Section 2.1. In Section 2.2 we introduce the Markov

Decision Process for the crew scheduling problem, the environment we use for sim-

ulating the crew scheduling problem along with the different reward structures used

for optimizing different metrics. This is followed by the experiments and the re-

sults in Section 2.3. And finally the chapter ends with the discussion of the results,

conclusions and future work in Section 2.4 and 2.5.

2.1 Background

Below, we give a brief summary on the notation used in context of reinforcement

learning (RL) and an on-policy RL algorithm: Proximal Policy Optimization (PPO)

[43].

2.1.1 Reinforcement Learning Notation

Reinforcement learning tries to solve sequential decision problems by learning from

trial and error. An RL setting consists of a Markov Decision Process which is based

on the Markov assumption of “given the present, the future does not depend on the

past". A standard MDP consists of a 4-tuple ⟨𝒮,𝒜,ℛ𝑎,𝒫𝑎⟩. The set of states or

state space is denoted by 𝒮, the set of actions or the action space is denoted by 𝒜,

the immediate reward received after transitioning from state 𝑠 to 𝑠′ due to action

𝑎 is denoted by ℛ𝑎(𝑠, 𝑠
′). The dynamics of the MDP is modelled by the transition

probability function 𝒫𝑎(𝑠, 𝑠
′) which denotes the probability that action 𝑎 in state 𝑠

will lead to state 𝑠′. In practice, an RL agent interacts with an environment ℰ which

has the MDP tuple mentioned above embedded in it. At each time step 𝑡, the agent

receives a state 𝑠 ∈ 𝒮 and selects an action 𝑎 ∈ 𝒜 according to its policy 𝜋. After the

action, the agent observes a scalar reward 𝑟 = ℛ𝑎(𝑠, 𝑠
′) and receives the next state

𝑠′. The goal of the agent is to choose actions to maximize the cumulative sum of

20



Figure 2-1: Actor Critic: The actor (policy) takes in the state as the input and gives
out the action to take. The critic takes in the state and the action suggested by the
critic to evaluate the actor. (Image taken from [48])

rewards over time. In other words, the action selection implicitly considers the future

rewards. The discounted return is defined as 𝑅𝑡 =
∑︀∞

𝜏=𝑡 𝛾
𝜏−𝑡𝑟𝜏 , where 𝛾 ∈ [0, 1] is a

discount factor that trades-off the importance of recent and future rewards.

Reinforcement Learning algorithms can be divided into two main sub-classes:

Value-based and Policy-based methods. In value-based methods, values are assigned

to states by calculating an expected cumulative score of the current state. Thus, the

states which get more rewards, get higher values. In policy-based methods, the goal

is to learn a map from the states to actions, which can be stochastic as well as deter-

ministic. A class of algorithms called actor-critic methods [27] lie in the intersection

of value-based methods and policy-based methods, where the critic learns a value

function and the actor updates the policy in a direction suggested by the critic.

2.1.2 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [43] is an actor-critic method used to train RL

agents. The motivation of PPO is “how can one take the biggest possible improvement
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step on a policy using the data the agent currently has access to, without stepping too

far away to cause a drop in the performance". In essence, PPO ensures that a new

update of the current policy does not change it too much from the previous policy.

This leads to less variance in training at the cost of some bias, but ensures smoother

training and also makes sure the agent does not go down an unrecoverable path of

taking unreasonable actions. PPO uses a clipped surrogate objective function which

is a first order trust region approximation. The purpose of the clipped surrogate

objective is to stabilize training via constraining the policy changes at each step.

PPO updates policies as:

𝜃𝑘+1 = argmax
𝜃

E
𝑠,𝑎∼𝜋𝜃𝑘

[𝐿(𝑠, 𝑎, 𝜃𝑘, 𝜃)] (2.1)

where 𝜃𝑘 are the parameters of the policy 𝜋 at the 𝑘th iteration and is usually

parametrized with neural networks. Each update typically includes taking multi-

ple steps of stochastic gradient descent (SGD) [23, 41] to maximize the objective.

Here 𝐿 is given by:

𝐿(𝑠, 𝑎, 𝜃𝑘, 𝜃) = min

(︂
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

𝐴𝜋𝜃𝑘 (𝑠, 𝑎), clip
(︂

𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

, 1− 𝜖, 1 + 𝜖

)︂
𝐴𝜋𝜃𝑘 (𝑠, 𝑎)

)︂
(2.2)

where 𝜖 is a hyperparameter which signifies how far away the new policy is allowed

to go from the old. The above objective function can be simplified to (the proof can

be viewed in Appendix A):

𝐿(𝑠, 𝑎, 𝜃𝑘, 𝜃) = min

(︂
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

𝐴𝜋𝜃𝑘 (𝑠, 𝑎), 𝑔(𝜖, 𝐴𝜋𝜃𝑘 (𝑠, 𝑎))

)︂
(2.3)

where,

𝑔(𝜖, 𝐴) =

⎧⎨⎩ (1 + 𝜖)𝐴 𝐴 ≥ 0

(1− 𝜖)𝐴 𝐴 < 0.

When the advantage 𝐴 is positive, its contribution to the objective can be written

as:

𝐿(𝑠, 𝑎, 𝜃𝑘, 𝜃) = min

(︂
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

, (1 + 𝜖)

)︂
𝐴𝜋𝜃𝑘 (𝑠, 𝑎) (2.4)
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Because the advantage is positive, the objective will increase if the action becomes

more likely. But the min in the equation puts a limit to how much the objective can

increase. Once 𝜋𝜃(𝑎|𝑠) > (1 + 𝜖)𝜋𝜃𝑘(𝑎|𝑠), the min in the equation limits this term to

hit a ceiling of (1 + 𝜖)𝐴𝜋𝜃𝑘 (𝑠, 𝑎). Thus, the new policy does not benefit by going far

away from the old policy.

When the advantage 𝐴 is negative, its contribution can be written as:

𝐿(𝑠, 𝑎, 𝜃𝑘, 𝜃) = max

(︂
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

, (1− 𝜖)

)︂
𝐴𝜋𝜃𝑘 (𝑠, 𝑎) (2.5)

Because the advantage is negative, the objective will increase if the action becomes

less likely. But the max in the equation limits it to how much the objective can

increase. Once 𝜋𝜃(𝑎|𝑠) < (1− 𝜖)𝜋𝜃𝑘(𝑎|𝑠), the max in the equation limits this term to

hit a ceiling of (1− 𝜖)𝐴𝜋𝜃𝑘 (𝑠, 𝑎). Thus, again the new policy does not benefit by going

far away from the old policy.

2.2 Markov Decision Process for Crew Scheduling

2.2.1 Reinforcement Learning Formulation

In this section, we introduce the task of building schedules for a version of the flight

crew scheduling problem, hereafter referred to as the “crew scheduling problem,”

which has a long history in both commercial and military aviation [3, 16, 12]. We

consider the scenario in which we are given a collection of flights that must be flown

by a given squadron (i.e., a group) of pilots. Every flight has multiple slots, each

of which must be filled by a different pilot. Each slot has qualification requirements

that must be satisfied by any pilot who is assigned to that slot. Depending on their

qualification, a pilot would only be eligible to fill a subset of slots. Finally, every

pilot has some specified availability. We discretize our schedule into days, although

other time discretizations could be used. In other words, a feasible schedule assigns

pilots to slots such that every flight in the schedule horizon is fully covered, and the

qualification requirements for the slots and availability restrictions of the pilots are
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satisfied.

Since this work was carried out in collaboration with the MIT-US Air Force AI

Accelerator, our problem formulation focuses on the constraints and preferences for

US Air Force C-17 Squadrons. Consequently, our formulation differs from some of

the standard crew scheduling formulations in prior literature, which have been largely

in the context of airline flight crews. For example, all of the squadron’s flights start

and end at the same place, so we do not factor in crew relocation. Also, in the data

we received, the start and end dates of the flights included the required crew rest

time, so we did not need to explicitly model this. However, flying squadrons have

more granular pilot qualification levels than what have been considered in airline crew

scheduling.

We model the building of a valid schedule with a discrete event simulation (DES):

at each time step, we take an action, which affects the state of our system. The main

idea of our reinforcement learning scheduling approach is to order the slots that need

to be scheduled and, at each slot, pick a pilot to assign to that slot. If we get through

all of the slots, we end up with a complete schedule, though filling all of the slots is

not a guarantee; the RL scheduling agent could back itself into a corner, leaving no

pilots to assign to a given slot based on its previous decisions. We use Proximal Policy

Optimization (PPO) [43], which is an actor-critic method where the actor chooses the

action for the agent and the critic estimates the value function. The actor network

gives a probability distribution over the pilots to choose given the state input and the

action is chosen by sampling from this distribution.

2.2.2 Environment

To train our RL agent, we create an OpenAI Gym [6] type environment for the

crew scheduling problem. We utilize an anonymized dataset from a US Air Force

squadron to construct a random event generator. The dataset contains 87 pilots with

32 different qualifications and 801 flights across over six months, each containing

between 2–3 slots. There are 16 different types of flights, where the type determines

the qualification requirements for the slots on the flight. These flights are subdivided
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into two categories: missions and simulators, which we treat equivalently except

for the purposes of our random event generation. There are 7 mission types and 9

simulator types. We train our RL agent on randomly generated flights based on this

dataset. More information about the dataset can be found in Appendix B.

2.2.3 Random Event Generation

To simulate the environment in our OpenAI Gym type environment, we generate

flights randomly by modelling the randomness according to the dataset. To generate

the random flights, we first divid our dataset into simulators and missions that started

in 26 different full-week intervals. For each week, we create 𝛼 random mission-based

flights, where 𝛼 is drawn from a normal distribution with a mean and standard

deviation equal to the mean and standard deviation of missions across all 26 weeks.

Similarly, we also create 𝛽 random simulator-based flights, where 𝛽 is drawn from

a similar distribution that uses simulators instead of missions. The dataset also

contains a variety of training requirements that each pilot, ideally, would fulfill; the

number of times the pilot should fulfill each requirement; and information about which

flight satisfied which training requirements. Along with the training requirement

information, each flight contains two binary training requirement qualifiers (TRQs)

to help determine which training requirements the flight fulfills.

For each flight generated, we pick a random day in the scheduling week for it to

start. We then randomly pick a type for the flight, where the probability of picking

that type of mission was proportional to the number of times it showed up in the

dataset. To determine the length of duration for the flight, we randomly sample a

flight length from a flight of the selected type from the dataset. We follow an identical

process to generate each simulator, except each simulator started and ended on the

same day, so we did not randomly pick a length. The dataset provides the dates each

pilot is on leave, which we used directly. Then, we created a fixed ordering of slots

that need to be scheduled. We order the slots first by the corresponding flight’s start

date and use the flight’s arbitrary unique ID as a tie-breaker. We order slots of the

same flight by ascending qualification. The assignment of a pilot to a slot serves as a
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time-step in our DES.

We define the MDP constructed for the Crew Scheduling problem in the next

section.

2.2.4 State Space

The state space for our RL agent includes:

1. A binary vector for the pilots available for the current slot

2. A flattened vector encoding the current event to be scheduled, consisting of:

(a) A one-hot encoding of the event type

(b) A binary vector indicating whether each training requirement was true or

false

(c) A binary vector representing the pilots assigned to the current event (Each

event may have 2-3 pilot slots)

(d) The event duration (in days)

(e) The number of days between the start of the scheduling episode and the

start of the event

(f) The number of days between the start of the scheduling episode and the

end of the event

3. A vector containing the total number of training requirement fulfillments each

pilot could receive for flying that event, if it were flown a sufficient number of

times

Note that we do not use the training requirement information outside of the state

space formulation for our RL scheduler. In our experiments, we found that including

the training requirements from our dataset in the state space helped our RL agent

perform better. We suspect that they helped our neural network better reason about

trade-offs when selecting a particular pilot for a slot.
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2.2.5 Action Space

The RL agent has to select a pilot from the given set of pilots for any given state.

This technique, previously used by Washneck et al. [53] for production scheduling,

gives us an action space size equal to the number of pilots in the squadron.

2.2.6 Reward Function

There are a lot of different objective functions the schedulers care about while creat-

ing these schedules. Accordingly, we construct reward functions which mimic those

objectives.

Feasibility

According to the user studies conducted by the Puckboard team [10, 25], the number

one priority of the schedulers is to create a valid feasible schedule. Hence, we give a

score of +1 for placing a valid pilot to slot and penalize the agent by giving a score

of -10 if the agent does not place a valid pilot to the slot or it fails to complete the

assignment of pilots to all the slots in the current episode. At the end of the episode,

we give a score of +10 if it is successful in completing all the assignments in the

episode.

𝑟𝑝𝑙𝑎𝑐𝑒 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1, valid pilot placed

−10, invalid pilot placed or

incomplete assignments in episode

+10, complete assignments in episode

(2.6)

Overqualification

After feasibility, schedulers prioritize minimizing overqualifications. Overqualification

is the difference between the qualification rank of the pilot allotted to the slot and

the minimum qualification rank required for that slot. For example, if the minimum

qualification rank required for slot ‘A’ is “FPNC" (which is equivalent to the lowest
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rank and hence rank=1) and the qualification rank of the pilot assigned to slot A is

“FPQC" (which is the sixth lowest rank and hence rank=6), the overqualification for

that slot is 6− 1 = 5. The schedulers want to minimize overqualifications so that the

highly qualified pilots are available for the harder flight missions but the schedulers

allow for some slack in the overqualifications. For instance, having an overqualification

of 3 is fine as it might be possible that there weren’t any low ranking pilots available

for the event but having an overqualification of 20 is not preferred as it is highly

unlikely that there weren’t any other pilots within 20 ranks for that particular slot.

Hence, we construct our overqualification score as:

𝑟𝑂𝑄 = tanh(𝑐𝑢𝑡𝑜𝑓𝑓 −𝑂𝑄), (2.7)

where 𝑂𝑄 is the overqualification for the current slot to which the pilot is assigned

and 𝑐𝑢𝑡𝑜𝑓𝑓 is the slack allowed for overqualification. We use 𝑐𝑢𝑡𝑜𝑓𝑓 = 5 for our

experiments. Figure 2-2 shows the variation of the overqualification score as a function

of overqualification.

Training Requirements

The schedulers also care for the completion of the training requirements of the pilots

in the squadron. Pilots need to complete certain minimum training requirements to

progress through the ranks along with staying current in their rank. Also, this pre-

vents pilots from flying the same type of flight repeatedly. To incentivize completion

of training requirements for pilots, we give a +1 score if the agent places a pilot to

a slot which reduces the training requirement of the pilot by one and give a zero

otherwise.

𝑟𝑟𝑒𝑞 =

⎧⎪⎨⎪⎩+1 training requirement satisfied

0 otherwise
(2.8)

Reward structure: Combining the feasibility, overqualification and training re-
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Figure 2-2: Variation of the overqualification score as a function of overqualification.
The tanh function allows for some slack in overqualification upto the cutoff and then
gives a score of zero when the overqualification is much larger than the cutoff

quirements scores from Equations 2.6, 2.7 and 2.8, we get the reward function as:

𝑟 = 𝑝𝑖𝑙𝑜𝑡𝑃 𝑙𝑎𝑐𝑒𝑤𝑡 · 𝑟𝑝𝑙𝑎𝑐𝑒 +𝑂𝑄𝑤𝑡 · 𝑟𝑂𝑄 + 𝑟𝑒𝑞𝑤𝑡 · 𝑟𝑟𝑒𝑞 (2.9)

where 𝑂𝑄𝑤𝑡 and 𝑟𝑒𝑞𝑤𝑡 are weights to scale the relative importance of placing valid

pilots to slots, overqualification and completion of training requirements.

2.3 Experiments

2.3.1 Evaluation Procedure

We explain the evaluation procedure we use for all of our experiments in this sec-

tion. We train all of our RL agents using Proximal Policy Optimisation (PPO) for

10, 000 epochs, where each epoch consists of 4000 environment steps. While train-

ing our RL agent, after every 10, 000 environment steps, we evaluate the model for

10 episodes. We average the results over these 10 episodes and plot them. All the
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hyperparameters for our experiments are available in Appendix C. The episodes are

randomly generated in the simulator using the procedure described in Section 2.2.3.

For comparison against baseline methods, we create 100 random episodes and cre-

ate schedules for those set of events using the corresponding MIP formulations for

military crew-scheduling introduced in [10, 25].

2.3.2 Action space masking

With the discrete action space defined in Section 2.2.5, the number of valid actions

possible at any time step changes as the episodes progress through. For example,

at a particular state we have 10 pilots available for the current slot but in the next

time-step, we have 14 pilots available. This might be due to various different reasons

like some new pilots got freed up from their previous assignments, the new event

had a lower qualification requirement and hence more pilots were eligible for it, etc.

To avoid repeatedly sampling invalid actions in this discrete action space, we apply

PPO in conjunction with a technique known as action-masking, which “masks out"

invalid actions and then just sample from those actions that are valid as used in recent

works on RL for game-based environments like StarCraft, DOTA, etc. [4, 51, 57]. In

essence, action-masking re-normalizes the probability distribution predicted by the

actor network to only account for valid pilots and then sample actions from this

re-normalized distribution.

Figure 2-3 shows the learning curve for the RL agent with and without action-

masking. Clearly, the action-masking helps in improving the sample complexity of

the agent and is able to assign pilots to all the events in the episode. Whereas, on

the other hand the “naïve" method (without action-masking) is not able to complete

all the assignments even after training for 12, 000 episodes. For this experiment we

use 𝑂𝑄𝑤𝑡 = 0 and 𝑟𝑒𝑞𝑤𝑡 = 0 in Equation 2.9 as we just care about finding feasible

schedules. For all further experiments in this chapter, we use action-masking since it

has a clear advantage with sample complexity as compared to the naïve method.
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Figure 2-3: Fraction of the total events in the episode for which the agent is able to
assign pilots

2.3.3 Minimizing Overqualification

Before using the complex reward function as described in Equation 2.9 which com-

bines feasibility, overqualification and completion of training requirements, we show

the impact of 𝑂𝑄𝑤𝑡 on the performance of the agent. We vary 𝑂𝑄𝑤𝑡 and set

𝑝𝑖𝑙𝑜𝑡𝑃 𝑙𝑎𝑐𝑒𝑤𝑡 = 1−𝑂𝑄𝑤𝑡. Hence the reward at any time step is:

𝑟𝑡 = 𝑂𝑄𝑤𝑡 · tanh(𝑐𝑢𝑡𝑜𝑓𝑓 −𝑂𝑄) + (1−𝑂𝑄𝑤𝑡) (2.10)

We compare this against the overqualification minimizing mixed-integer program

(MIP) introduced by Koch [25]. Koch introduces two different formulations for mini-

mizing overqualifications. The first formulation attempts to assign the lowest qualified

pilot feasible for each slot. We denote this formulation as MIP in our results. The

second formulation, which we call Advanced OQ MIP in our results, uses a subset of

qualifications for a few type events (AD and SOLL II). Since only special qualified

pilots are able to fly the AD and SOLL II events, it would be unnecessary to consider
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Figure 2-4: Average overqualification obtained by the RL agent for different values of
𝑂𝑄𝑤𝑡 compared against the MIP and the advanced OQ MIP formulations.

the entire set of qualification ranks to evaluate the overqualification. And hence the

advanced OQ MIP formulation adjusts for these ranks while evaluating the objective

function.

Figure 2-4 shows the average overqualification per event slot for the RL agent

and both of the MIP formulations. The average overqualification obtained by the

MIP formulation on a set of randomly created events for a duration of 6 months

is 1.7223 ± 0.0233 and that for the advanced MIP formulation is 0.2225 ± 0.0832.

The RL agent is able to perform almost as well as the MIP formulation when the

overqualification weights 𝑂𝑄𝑤𝑡 = 0.5 and 𝑂𝑄𝑤𝑡 = 1 but is outperformed by the

Advanced OQ MIP. With the specialized objective function for the Advanced OQ MIP

the optimizer is able to find much better solutions with respect to overqualification.

2.3.4 Maximizing Completion of Training Requirements

For experiments with maximisation of training requirements, we set 𝑂𝑄𝑤𝑡 = 1 and

𝑝𝑖𝑙𝑜𝑡𝑃 𝑙𝑎𝑐𝑒𝑤𝑡 = 0.1 and vary the value of 𝑟𝑒𝑞𝑤𝑡. We set 𝑂𝑄𝑤𝑡 = 1 because it gave the
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least average overqualification as shown in the previous section. We set 𝑝𝑖𝑙𝑜𝑡𝑃 𝑙𝑎𝑐𝑒𝑤𝑡 =

0.1 because we did not want the that term to dominate the reward value. Hence the

reward at any time step is:

𝑟𝑡 = 0.1 · 𝑟𝑝𝑙𝑎𝑐𝑒 + tanh(𝑐𝑢𝑡𝑜𝑓𝑓 −𝑂𝑄) + 𝑟𝑒𝑞𝑤𝑡 · 𝑟𝑟𝑒𝑞 (2.11)

Since there are two different metrics: overqualification and number of training

requirements completed, we use MIP formulations with two different objective func-

tions for comparisons. We use the same overqualification (and advanced OQ) MIP

formulations as defined in the previous section for the overqualification metric. For

comparing the training requirements metric, we use a different MIP formulation which

explicitly maximizes the number of training requirements completed in the schedule

introduced by Koch [25]. This formulations works with similar constraints as the

OQ minimizing MIP. But the schedules created by the OQ minimizing MIP and the

training requirements maximizing MIP can be different since they optimize different

objective functions. On the other hand the schedule created with the RL agent tries

to optimize for both overqualification and training requirements in a single schedule.

Figure 2-5 shows the variation in the number of training requirements completed in

an episode with different values of 𝑟𝑒𝑞𝑤𝑡 for the RL agent and the training requirement

MIP formulation. The average number of training requirements completed by the

MIP formulation on a set of randomly created events for a duration of 6 months is

68.5321±1.0421. Figure 2-6 shows the variation of average overqualification obtained

with the same RL agent for different values of 𝑟𝑒𝑞𝑤𝑡. The RL agent is able to perform

as well as the training requirement MIP formulation and the overqualification MIP

formulation even whilst trying to optimize two different objective functions at the

same time. Again, it is still not able to perform as well as the Advanced OQ MIP.
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Figure 2-5: Number of training requirements completed by the RL agent for different
values of 𝑟𝑒𝑞𝑤𝑡 and 𝑂𝑄𝑤𝑡 = 1 compared against the Training Requirement MIP

Figure 2-6: Average overqualification obtained by the RL agent for different values
of 𝑟𝑒𝑞𝑤𝑡 and 𝑂𝑄𝑤𝑡 = 1 compared against the OQ MIP and the advanced OQ MIP
formulations.
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2.4 Discussion

The results show that the RL agent is able to learn to create schedules which op-

timize for different objective functions. The RL agent is able to perform as well as

the overqualification MIP (on average) when the reward structure just optimizes for

overqualification but is not able to perform as well as the advanced OQ MIP for-

mulation. This is because of the modified overqualification definitions used in the

MIP formulation. When optimizing for both completion of training requirements and

overqualifications, the RL agent is again able to perform as well as the overqualifica-

tion MIP and the training requirement MIP (on average). The advantage of the RL

agent is that it is able to optimize for both together whereas there is a requirement

of having two different formulations (objective functions) for these two metrics in the

MIP case.

2.5 Conclusions and Future Work

In this chapter we introduced a reinforcement learning formulation for the Air-Force

crew scheduling problem. We defined the state space, action space and the reward

structure for the RL formulation. The reward structures were defined according to

the metrics (minimizing overqualification and maximizing completion of training re-

quirements) we wanted to optimize. We first show that action masking is important

in improving the sample complexity of training the RL agent with the defined MDP

formulation. Then we show that the RL agents with a reward structure engineered

to optimize for certain metrics are able to perform as well as their MIP counterparts.

We show that the RL agent can optimize for multiple metrics in a single formula-

tion whereas the MIP formulations require separate objective functions. The final

conclusion is that, although the RL agent is able to perform as well as their MIP for-

mulations, it is never able to perform better than it. This is partly because the MIP

formulation has a global view of the problem and can backtrack its decisions whereas

the RL agent has a local view of the problem and cannot make any changes to the
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actions it took in the beginning of the episode. To this end we combine reinforcement

learning with integer programming in the next chapter to get the advantages of both.

Future work includes experimenting with more metrics, having a user preference vari-

able to adjust the trade-off between the different metrics to optimize with the RL

agent.
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Chapter 3

Combining Reinforcement Learning

and Integer Programming

In many practical applications, it is important that the schedules are robust to un-

certainties. Robust scheduling involves the building of schedules that will undergo

minimal change when faced with unknown future disruptions. Whilst MIP formula-

tions of scheduling problems can be extended to account for robustness, the result-

ing problems are often much more computationally challenging than their baseline,

non-robust counterparts. Even with state-of-the-art solvers, such modifications to

accommodate robustness can add hours to the time needed to compute an optimal

schedule, sometimes making them impractical for real-world use.

Thus we propose a technique, Neural network IP Coefficient Extraction (NICE),

that seeks to find a quick-but-approximate solution to a scheduling problem with an

additional robustness objective, by using reinforcement learning (RL) to guide the IP

formulation. First a feasible schedule is created using a baseline IP. Simultaneously,

we train an RL model to build a schedule for the same problem, using a reward

function that leads to more robust schedules (but that would have added considerable

computational burden if encoded directly in the IP formulation). Then, rather than

use the RL model to create a schedule directly, we use the probabilities in its output

layer to assign coefficient weights to the decision variables in our simpler IP to create a

feasible schedule. By doing so, we leverage the intuition behind knowledge distillation
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[18] that the distribution of values in the output layer of a neural network contains

valuable information about the problem.

NICE allows us to approximate the robust scheduling formulation with signifi-

cantly fewer variables and constraints. Across a variety of disruption scenarios, we

find that NICE creates schedules with 33–48% fewer changes than the baseline. More-

over, in certain practical problem instances, NICE finds a solution in a matter of sec-

onds; the corresponding IP that explicitly optimizes for robustness fails to produce a

solution within 90 minutes for the same scenarios.

In essence, NICE is a technique to approximate complicated IP formulations using

RL. To the best of our knowledge, NICE1 is the first method to use information

extracted from neural networks in IP construction. We illustrate the performance

of NICE in creating robust (disruption-resistant) crew schedules (i.e., assignments of

pilots to flights). However, robust crew scheduling is only one application of NICE;

we believe that the method is potentially applicable to a wider range of discrete

optimization problems.

We begin this chapter with some background on knowledge distillation (upon

which NICE is based) in Section 3.1. In Section 3.2 we show the baseline integer

programming (IP) formulation, a modified buffer IP formulation, introduce the mo-

tivation behind NICE and the algorithmic details of our NICE formulation. This is

followed by experiments and results in Section 3.3 where we show the effectiveness

of NICE in different scenarios. Finally we end with the discussions of the results

obtained, conclusions and future work in Sections 3.4 and 3.5.

3.1 Knowledge Distillation

Hinton et al. [18] explored the use of internal neural network values to distill the

knowledge learned by a model. They reasoned that the probabilities in a neural

network’s output layer carry useful information, even if only the maximum probability

value is used for ultimate classification: “An image of a BMW, for example, may only

1The code is available at https://github.com/nsidn98/NICE
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have a very small chance of being mistaken for a garbage truck, but that mistake is

still many times more probable than mistaking it for a carrot.” In this work, they

used the values from the input to the output layer of a larger neural network, as well

as the training data itself, to train a smaller neural network. This smaller neural

network achieved fewer classification errors than a network of the same size trained

only on the training data. Using a similar approach, they trained a neural network

on speech recognition data with the same architecture as a neural network trained on

the data directly. They found that the new, distilled model performed better than

the original one; it also matched 80% of the accuracy gains attained by averaging

an ensemble of 10 neural networks with the same architecture, each initialized with

different random weights at the beginning of training. Similarly, our approach uses

the probabilities output by a neural network to extract objective function coefficient

weights.

3.2 Approach

In this section, we seek to build robust schedules for the “crew scheduling problem”

and use the same setup of assigning pilots to slots in the flights as described in Section

2.2.1. To reiterate, we consider the scenario in which we are given a collection of flights

that must be flown by a given squadron of pilots. Each flight has multiple slots, each

of which must be filled by a different pilot. Each slot has qualification requirements

that must be satisfied by any pilot who is assigned to that slot. Depending on their

qualification, a pilot would only be eligible to fill a subset of slots. Finally, every

pilot has some specified availability. We discretize our schedule into days. A feasible

schedule assigns pilots to slots such that every flight in the schedule horizon is fully

covered, and the qualification requirements for the slots and availability restrictions

of the pilots are satisfied.
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3.2.1 Baseline Integer Program Formulation

Chin [10] and Koch [25] created a baseline IP for the crew scheduling problem, pro-

ducing a satisfactory assignment with respect to all relevant constraints. We use a

similar construction for our baseline IP, with the primary difference of using a decision

variable for the assignment of each pilot to each slot, rather than one for each pilot

to each flight. We define the following sets and subsets:

𝑖 ∈ 𝐼 The set of pilots

𝑓 ∈ 𝐹 The set of flights

𝑠 ∈ 𝑆 The set of all slots

𝑈𝑓 ⊂ 𝐹 Flights that conflict with flight 𝑓

𝐿𝑖 ⊂ 𝐹 Flights that conflict with pilot 𝑖’s leave

𝑆𝑓 ⊂ 𝑆 The set of slots belonging to flight 𝑓

𝑄𝑖 ⊂ 𝑆 Slots that pilot 𝑖 qualifies for

We use the binary decision variable 𝑋𝑖𝑠, which is 1 if pilot 𝑖 ∈ 𝐼 is assigned to slot

𝑠 ∈ 𝑆, and 0 otherwise. We now have the following equation:

max
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝑆

𝑋𝑖𝑠 (1.1)

such that:

𝑋𝑖𝑠 = 0 ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐿𝑖, 𝑠 ∈ 𝑆𝑓 (1.2)

𝑋𝑖𝑠 = 0 ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 ∖𝑄𝑖 (1.3)∑︁
𝑠∈𝑆𝑓

𝑋𝑖𝑠 ≤ 1 ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹 (1.4)

∑︁
𝑖∈𝐼

𝑋𝑖𝑠 = 1 ∀𝑠 ∈ 𝑆 (1.5)

∑︁
𝑠∈𝑆𝑓

𝑋𝑖𝑠 +
∑︁

𝑠′∈𝑆𝑓 ′

𝑋𝑖𝑠′ ≤ 1 ∀𝑖 ∈ 𝐼, 𝑓 ∈ 𝐹, 𝑓 ′ ∈ 𝑈𝑓 (1.6)

𝑋𝑖𝑠 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆 (1.7)
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Constraints (1.2) and (1.3) ensure that pilots are only assigned to slots that they

are qualified for, and that pilots will never be assigned to flights that conflict with

their leave. Constraint (1.4) prevents the scheduling of pilots to multiple slots on

the same flight. Constraint (1.5) ensures that every slot gets filled by exactly one

pilot. Constraint (1.6) prevents assignment of pilots to conflicting flights. We make

our pilot-slot decision variable binary with Constraint (1.7). Finally, Equation (1.1)

ensures that we fill as many slots as possible. Due to our requirement that each slot

have exactly one pilot associated with it, this equation always produces the same

objective value.

3.2.2 Buffer Formulation

Chin [10] utilizes additional constraints and decision variables to optimize schedules

for robustness by increasing the amount of buffer time between flights. For our

purposes, we consider the buffer time between two flights to be the number of full

days between their start and end time. For example, suppose pilot X is assigned to

flights A and B ; flight A ends on day 1, and flight B starts on day 5. We say that

there is a buffer time of 3 days for pilot X.

To incorporate buffers into an IP, Chin [10] identifies all flight pairings that would

create a buffer less than or equal to some maximum threshold, 𝑇buffer, used to dampen

the complexity of realistic problem instances. Then, {0, 1} decision variables 𝐵𝑖𝑓𝑓 ′

for all pilots 𝑖 ∈ 𝐼 and flights 𝑓, 𝑓 ′ ∈ 𝐹 × 𝐹 are created. Constraints are used to

ensure that 𝐵𝑖𝑓𝑓 ′ is 1 if and only if the following conditions are met:

1. 𝑓 ̸= 𝑓 ′

2. Pilot 𝑖 qualifies for at least one slot in both 𝑓 and 𝑓 ′.

3. 𝑓 and 𝑓 ′ have a buffer between 0 and 𝑇buffer, inclusive.

4. Pilot 𝑖 is assigned to consecutive flights 𝑓 and 𝑓 ′.
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Chin [10] then defines a buffer penalty 𝑏𝑖𝑓𝑓 ′ ∈ [−1, 0) that gets more negative for

lower buffers: down to -1 when the buffer between 𝑓 and 𝑓 ′ is 0, and closest to 0 when

the buffer is 𝑇buffer. Note that buffers longer than 𝑇buffer effectively have a penalty of

0. Finally, he incorporates all of this into the following objective function to optimize

buffer time:

max
∑︁
𝑖∈𝐼

∑︁
𝑓,𝑓 ′∈𝐹×𝐹

𝑏𝑖𝑓𝑓 ′𝐵𝑖𝑓𝑓 ′ (3.2)

In our buffer IP, we incorporate this formulation with the assistance of additional

auxiliary {0,1} decision variables for each pilot-flight combination, setting it to 1 if a

pilot is assigned to any slot on a given flight, and 0 otherwise. In our experiments,

we found that, in certain problem instances, the buffer IP was highly effective in

producing robust schedules.

3.2.3 NICE

Motivation

As seen in Chapter 2, when building schedules with non-robustness objectives, the

RL-produced schedules would often approach the effectiveness of the IP schedules

with respect to the optimized metric (over-qualification, completion of training re-

quirements), but would never do better. This observation gave us two insights.

First, the RL model assigns pilots to slots sequentially, operating in a “greedy”

fashion. Once an assignment is made, it cannot be changed. Thus, the RL agent

lacks a global view of the full schedule in its state space, meaning it has imperfect

information at the time of each pilot assignment. In contrast, the IP scheduling

approach, which optimizes an objective function across all pilot assignments, can

factor in tradeoffs created by the complex interplay of related constraints.

Second, it was clear that our RL scheduling agent was capable of learning. While

it could not match the performance of the IP schedules in our preliminary exploration,

it still produced schedules with considerably better objective performance than the

baseline. When scheduling objectives can easily be captured in an IP, this observation
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is not particularly helpful. However, for more complicated optimizations that integer

programming struggles with, this insight proves useful: to avoid the greedy pitfalls

of RL for scheduling while still leveraging the knowledge learned by our neural net-

work, we can use the probabilities produced by the output layer in our IP scheduling

formulation.

These two observations motivated the creation of NICE. NICE uses RL to ap-

proximate sophisticated integer programs with a simpler formulation. We apply this

technique to the crew scheduling problem.

NICE IP Formulation

As an IP, NICE closely resembles the baseline formulation. The only difference is

in the coefficients for the objective function. Recall that our decision variable, 𝑋𝑖𝑠,

is 1 if pilot 𝑖 is assigned to slot 𝑠 and 0 otherwise. This variable aligns neatly with

our RL scheduling formulation, which considers slots in a fixed order. At each slot,

it produces a probability for each pilot that captures how likely assigning that pilot

to that slot is to maximize reward in a given scheduling episode. It then assigns

the pilot with the maximum probability to that slot. We can use 𝑎𝑖𝑠 to refer to the

probabilities output by the network for the assignment of pilot 𝑖 to slot 𝑠. Now, to

leverage the knowledge learned by the RL scheduling approach in our IP formulation,

we can incorporate 𝑎𝑖𝑠 into our objective function:

max
∑︁
𝑖∈𝐼

∑︁
𝑠∈𝑆

𝑎𝑖𝑠𝑋𝑖𝑠 (3.3)

With this new equation, our IP scheduling approach is incentivized to pick the pilot

with the highest probability possible at each slot, subject to constraints and possible

rewards for other slots. This new formulation approximately captures the reward

function used by the RL agent while giving it a global view of pilot assignment.

Figure 3-1 shows the procedure for executing NICE.
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Figure 3-1: The procedure for executing NICE is quite similar to the RL model from
Chapter 2. But instead of choosing the pilot suggested by the RL agent (choosing the
pilot with the maximum probability), we use the predicted probability distribution
over the pilots to feed in the IP formulation

Extracting Probability Weights

An important issue we had to address was the extraction of 𝑎𝑖𝑠 from our RL neural

network. The actions taken at each state of the RL scheduling process can impact

the pilot probability vector at later states. Thus, the order that the RL scheduler

fills the slots has a potentially confounding impact on the 𝑎𝑖𝑠 weights. Extracting

the probability vector at each slot while running the RL scheduling process as normal

could cause the specific actions taken to bias our 𝑎𝑖𝑠 values, diminishing the advantage

of the IP scheduler’s global outlook.

In our experiments, we used two different approaches. In the first one, we took a

Monte Carlo approach, trying to approximate the average weight across all possible

orders of scheduling the slots. In this approach, we randomly shuffled the order of

slots that the RL scheduler had to assign and then recorded the 𝑎𝑖𝑠 weights at each

step of the scheduling process. We ran this process 𝑛 times to get 𝑛 total 𝑎𝑖𝑠 values for

each pilot-slot pair. If the RL agent could not fill a slot in that round of scheduling,
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we set the 𝑎𝑖𝑠 value to 0. We then averaged the 𝑛 values for each pilot-slot pair to

get our final 𝑎𝑖𝑠 values. Note that this method causes the scheduling process to take

longer for higher values of 𝑛 because it has to run more RL scheduling rounds.

The next approach, which we call the “blank slate” approach, exploits the fact

that the probability weights for the pilots produced by the first slot do not depend on

any previous actions taken. Thus, we can make each slot our first scheduled slot to

get weights that do not depend on previous decisions. To do so, for each slot 𝑠 in our

fixed order, we initialized a new RL agent with the same underlying neural network,

cutting out all of the states that occur before 𝑠 then extracting the 𝑎𝑖𝑠 values for the

pilots on that slot.

Figure 3-2 demonstrates using the Monte Carlo approach to extract weights from

the neural network, then feeding those weights into the IP scheduler. To summarize,

to build our NICE schedule:

1. We train a neural network on the DES version of the crew scheduling problem.

2. We use either the Monte Carlo or “blank slate” approach to extract probabilities

from the output layer of the neural network for the assignment of each pilot to

each slot.

3. For each pilot-slot combination, we use the extracted probability as the coeffi-

cient (𝑎𝑖𝑠) for its respective pilot-slot decision variable (𝑋𝑖𝑠)

4. Using this objective function and its constraints, we solve the IP to obtain our

scheduling solution.

We note that while we apply NICE specifically to the crew scheduling problem in

this paper, NICE is highly generalizable as it can be used to obtain a solution to any

problem where there is an isomorphism between the IP and DES formulation. Figure

3-3 show the isomorphism for the robust crew scheduling problem.
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Figure 3-2: Once we train our network, in the Monte Carlo approach, we run the
scheduler 𝑛 times, shuffling the order of slots each time. We then average the proba-
bility values in the output layer across the 𝑛 runs over pilots and slots to obtain our
NICE coefficients. Finally, we pass these coefficients to the IP solver to obtain our
NICE-generated schedule.

Incorporating Robustness

To use NICE to build robust schedules, we train an RL scheduler to optimize buffer

time in its assignments. To do so, we include a reward of 𝑏+1 whenever the RL agent

places a pilot on an event that forms a buffer of length 𝑏 with the pilot’s most recent

event. We add the +1 term to reward the agent for making a placement, regardless

of buffer. We give the agent a reward of 𝑇 −1 when it places a pilot with no previous

events scheduled. We chose 𝑇 − 1 because this is the maximum reward for the 𝑇 -day

schedules that the RL agent trains on. For example, imagine pilot X is assigned to

a 0-day flight starting and ending on day 1. If the pilot were assigned to a flight

starting on day 7, that assignment would earn a reward of 6, because there are 5
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Figure 3-3: The isomorphism between the IP and DES formulation for the crew
scheduling problem

days between day 1 and day 7, exclusive. We do not use a maximum buffer value

like 𝑇buffer in the IP formulation because larger 𝑇buffer values do not noticeably affect

the run time of our program like it does with the IP. We included two exceptions

to this reward policy. First, to incentivize building full schedules, the agent earns a

reward of 25 when all slots in an episode are scheduled. Second, to deter the creation

of incomplete schedules, we give the agent a reward of −10 when it is unable to

schedule all events in an episode.

In short, we give local rewards to our RL agent to help it build complete, robust

schedules using buffers as a heuristic; our hope is that this training method will

ultimately produce probability weights that, when extracted, lead our IP solver to

build robust schedules.

3.3 Experiments

3.3.1 RL Training

To train our RL agent, we use the same Open AI Gym type environment introduced in

Chapter 2. To build the neural network for our NICE scheduler, we trained a variety

of models with different hyperparameter combinations. One of the hyperparameters

of particular interest was the training schedule density, 𝑑. Recall that we scheduled
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𝛼 flights and 𝛽 simulators in a round of scheduling. During training, we multiplied

𝛼 and 𝛽 by 𝑑 so the agent would schedule more flights in the same time period. We

trained RL models with 𝑑 ∈ {1, 2, 3}. We trained a model with 5 different seeds for

each value of 𝑑, ultimately creating 3 × 5 = 15 different neural networks for testing.

The hyperparameters for all the experiments are listed in the Appendix C. We note

that, because the output layer is equal to the size of the number of pilots, adding a

pilot would require us to re-train the network with the new shape.

Configuration

The state space for the RL agent includes:

1. A binary vector for the pilots available for the current slot

2. A flattened vector encoding the current event to be scheduled, consisting of:

(a) A one-hot encoding of the event type

(b) A binary vector indicating whether each training requirement was true or

false

(c) A binary vector representing the pilots assigned to the current event (Each

event may have 2-3 pilot slots)

(d) The event duration (in days)

(e) The number of days between the start of the scheduling episode and the

start of the event

(f) The number of days between the start of the scheduling episode and the

end of the event

3. A vector containing the total number of training requirement fulfillments each

pilot could receive for flying that event, if it were flown a sufficient number of

times
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% Flights Number of Disruptions Significance of Difference
(𝑝-value)

Delayed NICE Baseline IP RL Buffer IP NICE- NICE- NICE-
Baseline RL Buffer

25 0.34 ± 0.71 0.61± 1.07 32.6± 7.33 0± 0 0.03 < 0.01 < 0.01

50 0.67 ± 0.92 1.16± 1.55 27.1± 7.13 0± 0 < 0.01 < 0.01 < 0.01

75 0.66 ± 0.99 1.13± 1.73 23.0± 6.34 0± 0 0.01 < 0.01 < 0.01

100 0.63 ± 0.82 1.06± 1.50 17.9± 6.29 0± 0 0.01 < 0.01 < 0.01

Table 3.1: Average and standard deviation of disruptions across scheduling methods
when flights are delayed (lower values are better). Scheduling density of 1.

3.3.2 Scheduling Parameter Selection

For further experimentation, we had to pick the best combination of RL model and

weight extraction method to use. We parameterize our weight extraction methods

with the variable 𝑛, where 𝑛 = 0 represents the “blank slate” extraction method

mentioned previously, and 𝑛 > 0 represents the 𝑛 value used in the Monte Carlo

approach.

To select the best combination, we built an environment where, using the same

flight generation process to train the RL scheduler, we generate 1 week’s worth of

flights. From these flights and associated slots, we generate pilot-slot pairings using

the baseline integer program and the NICE schedule with weights extracted from

the selected RL network and the given 𝑛 value. Next, one day into the schedule,

we delayed 50% of the flights that had not already left. We pushed back each flight

by a number of days randomly chosen uniformly between 1 and 3, figuring that

delays longer than 3 days were relatively rare. To fix this disruption in both of these

schedules, we used an integer program that minimized the number of changes to

the pilot-slot pairings. From this disruption resolver, we end up with the number

of disruptions that occurred under each schedule. Sometimes, we would randomly

generate a series of flights that made it impossible for the IP or NICE approach to

schedule because a pilot-slot pairing did not exist that met all of the constraints. In

these cases, we skipped to the next series of randomly-generated flights, not recording

any disruption data because there was no schedule to disrupt. Then, for each neural

network and for each 𝑛 value 𝑛 ∈ {0, 2, 4, 8} (60 experiments total), we ran this
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% Flights Number of Disruptions Significance of Difference (𝑝-value)
Delayed NICE Baseline IP RL NICE-Baseline NICE-RL
25 1.99 ± 1.99 2.99± 2.68 59.2± 13.1 < 0.01 < 0.01

50 3.17 ± 2.27 5.01± 4.33 51.2± 12.2 < 0.01 < 0.01

75 3.32 ± 2.33 6.32± 5.64 43.1± 12.4 < 0.01 < 0.01

100 2.81 ± 2.23 4.70± 4.49 35.4± 10.5 < 0.01 < 0.01

Table 3.2: Average and standard deviation of disruptions across scheduling methods
when flights are delayed (lower values are better). Scheduling density of 2. Buffer IP
did not build a single schedule for 90 minutes and timed out, so we do not include it.

scenario 20 times, comparing the average number of schedule disruptions between the

baseline IP and the NICE scheduler across those 20 runs.

We calculated the ratio of disruptions, 𝑟, between the two methods, where 𝑟 <

1 indicates that the NICE method provided a schedule with fewer disruptions on

average than the IP baseline. We then determined the median 𝑟 value over seed

values for each training density and weight extraction method combination. We used

the lowest median 𝑟 value to determine our final scheduling method and underlying

neural network for NICE. As a result of this process, we obtained a network trained

with a density of 1 and an 𝑛 value of 2. In this case, across seed values, three

networks produced the same median value for this combination, so we arbitrarily

chose a network from those three models. The median 𝑟 value was 0.25, with a range

of 0.08 (0.25 to 0.33). We used this network and 𝑛 value in our further experiments.

Overall, the combinations had fairly stable performance over seed values, with

the highest range in 𝑟 across seeds being 0.81. Notably, the 𝑛 value of 0 produced

the 3 highest ranges (0.81, 0.69, and 0.56), indicating that the “blank slate” weight

extraction method led to a wider range of disruptions in produced schedules across

random seeds.

3.3.3 Baseline Scheduling Performance

To show the efficacy of NICE scheduling, we ran our best scheduling combination

on the same disruption scenario, this time using different percentages 𝑓 of flights

delayed. We selected 𝑓 values of 25%, 50%, 75%, and 100% and ran each scenario
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100 times. We compared NICE to directly using our RL agent or using the buffer

integer program (with 𝑇buffer = 4 days). We show the results of our buffer-rewarded

NICE scheduler in Table 3.1. During these runs, the buffer IP and NICE scheduler

had similar run times, both averaging less than 0.85 seconds to create each schedule.

We note that, because the constraints are exactly the same between the IP and

NICE scheduling approaches, we skipped recording the disruption value for the IP

scheduler if and only if we also skipped the disruption value for the NICE scheduler.

Because of this alignment, the 𝑝-values comparing the two methods were obtained

using a 2-tailed dependent t-test for paired samples between the NICE and IP sched-

ulers. This was not the case for the RL approach, which can generate a partial

schedule, stopping when it is not able to assign a pilot to the next slot due to its pre-

vious decisions. When the RL approach created a partial schedule, we did not record

its performance on that schedule to include in the average because it was unable to

produce a full schedule like the baseline IP and NICE schedulers. For this reason, in

the NICE vs. RL comparison, we use Welch’s t-test [54] for independent samples.

3.3.4 Highly-Constrained Scheduling Scenarios

In the schedule disruption scenario that we considered, the buffer IP formulation had

little trouble building a robust schedule in a reasonable amount of time. However,

the time advantages of NICE become apparent in a more constrained scheduling

setting. To demonstrate this efficiency, we performed the same experiment on NICE,

averaging over 100 trials. This time, though, we used a scheduling density of 2,

creating twice the number of flights on average in each round of scheduling. This

scenario is realistic in settings where, due to outside factors, many flights must be

filled. For timing reasons, we only compared NICE with the baseline IP and the pure

RL scheduler. We show the results for this experiment in Table 3.2. Importantly,

across all flight delay percentages, the NICE scheduler took an average of between

1.85 and 1.90 seconds to build a schedule, with a standard deviation between 0.55 and

0.60 seconds. We ran the exact same experiment for each disruption percentage for

10 iterations with the buffer-optimizing IP. However, we ended each experiment after
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90 minutes, at which point the buffer IP had not finished building a single schedule.

3.3.5 Move-up Crews

During our experimentation, we considered another factor that can lead to more

robust schedules, move-up crews [44]. We found that move-up crews, even when

optimally scheduled, did not create particularly robust schedules, but we include our

experimental results here for reference. For the sake of clarity, because we dealt with

individual pilots rather than crews, we will depart from the literature and use the

term move-up pilot rather than move-up crew. A move-up pilot is someone who, by

nature of their qualification and one of their scheduled flights, is readily available to

move up to another flight should someone on that flight become unavailable, perhaps

due to a delayed flight.

IP Formulation

We use a similar IP formulation to Chin [10] to increase move-up pilots in our sched-

ules. We first define a threshold, 𝑇move, for how far out we should look for move-up

pilots. Now, we give a more formal definition of a move-up pilot: pilot 𝑗 ∈ 𝐼, assigned

to flight 𝑔 ∈ 𝐹 , is a move-up pilot for slot 𝑠 ∈ 𝑆𝑓 on flight 𝑓 ∈ 𝐹 if and only if all of

the following conditions hold:

1. 𝑓 ̸= 𝑔

2. Flight 𝑔 starts at the same time as or later than flight 𝑓 , and no later than

𝑇move days after 𝑓 starts.

3. Flight 𝑔 ends at the same time as or later than flight 𝑓 .

4. Pilot 𝑗 is not on leave that overlaps with f.

5. Pilot 𝑗 is not scheduled to any flights that start before 𝑓 and overlap with 𝑓 .

6. Pilot 𝑗 is qualified for slot 𝑠.
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Using constraints, we define the binary decision variable 𝑀𝑗𝑔,𝑓𝑠 to be 1 if pilot 𝑗

assigned to flight 𝑔 is a move-up pilot for slot 𝑠 on flight 𝑓 . We then use additional

variables to build an objective function to maximize the number of move-up pilots in

our final schedule. We can achieve this with the following objective function:

max
∑︁
𝑖∈𝐼

∑︁
𝑓,𝑔∈𝐹×𝐹

∑︁
𝑠∈𝑆𝑓

𝑀𝑗𝑔,𝑓𝑠 (3.4)

Reinforcement Learning Agent Training

To train an RL scheduler to optimize for move-up pilots, we followed the same exper-

imental procedure for the buffer-optimized RL scheduler, but we changed the reward

function. For move-up pilots, we give a reward of 𝑚 + 1 whenever our agent assigns

pilot 𝑗 to a slot on flight 𝑔, where 𝑚 is the number slots on other flights that pilot

𝑗 can serve as a move-up pilot for. We use a maximum move-up time (like 𝑇move) of

2 days. We did not do so out of concern for program run time; on a practical level,

moving a pilot to a flight any more than 2 days earlier would cause a significant bur-

den on the pilot rather than supply the convenient schedule alleviation that move-up

pilots are supposed to provide. Just like the reward function for buffers, we include

a -10 penalty for incomplete schedules and a +25 reward for complete schedules. We

trained 15 total neural networks with the move-up pilot reward structure, using 5

different random seeds and schedule densities of 1, 2, and 3.

Model Selection

We followed the same procedure as the buffer-rewarded networks to select the best

network and 𝑛 value to use for our weight extraction method. We used 𝑛 values of 0,

2, 4, and 8. We used this procedure to obtain 𝑟, the ratio of average disruptions in

the baseline IP schedule to average disruptions in the NICE schedule with the chosen

parameters. 𝑟 < 1 indicates that the NICE schedule had fewer disruptions on average.

The best median 𝑟 value was 0.46, with a range of 0.38 (0.25 to 0.63), produced with

a scheduling density of 2 and an 𝑛 value of 2. Two networks with these parameters
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and different seed values produced the median value, so we picked one arbitrarily. We

used this model in our subsequent experiments.

The range across seeds for our move-up-rewarded NICE scheduler (0.38) was no-

tably higher than the range for our best buffer-rewarded scheduling method, which

was 0.08. Like the buffer-rewarded schedulers, the 𝑛/density combinations also had

fairly stable performance across random seeds. The 3 highest ranges across random

seeds were 0.88, 0.69, and 0.68. Similar to the buffer-rewarded schedulers, the 2

highest ranges were produced by the “blank slate” weight extraction method (𝑛 = 0).

Baseline Scheduling Performance

Using the selected model and 𝑛 value, we ran the same disruption scenario as the

buffer-rewarded NICE scheduler over 100 iterations. We compared the NICE sched-

uler against the baseline IP scheduler, the RL scheduler with the same underlying

neural network, and the move-up IP scheduler with a 𝑇move value of 2. The results

are shown in Table 3.3.

% Flights Number of Disruptions Significance of Difference
(𝑝-value)

Delayed NICE Baseline IP RL Buffer IP NICE- NICE- NICE-
Baseline RL Buffer

25 0.63 ± 0.93 0.61± 1.07 32.6± 7.42 0.33± 0.63 .88 < .01 < .01

50 1.05 ± 1.13 1.16± 1.55 27.6± 7.24 0.68± 0.90 .51 < .01 < .01

75 1.19 ± 1.25 1.13± 1.73 23.9± 6.44 0.74± 1.04 .73 < .01 < .01

100 1.11 ± 1.14 1.06± 1.50 19.1± 6.47 0.65± 0.88 .76 < .01 < .01

Table 3.3: Average and standard deviation of disruptions across scheduling methods
when flights are delayed (lower the better). Scheduling density of 1. The NICE and
RL schedulers used the move-up reward function in their underlying neural network.

3.4 Discussion

Our results clearly show the advantages of the NICE approach. In the baseline

scheduling scenario, NICE produced schedules that provided 40% to 45% of the dis-

ruption reduction of the buffer IP compared to the baseline IP. In a powerful display
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of its usefulness, in a dense scheduling environment, NICE performed 33% to 48%

better than the baseline IP, producing 100 schedules with an average time of less than

2 seconds while the buffer IP failed to produce a single schedule in 90 minutes. In

all of these experiments, the NICE scheduler overwhelmingly outperformed the RL

scheduler from which it was derived. These outcomes indicate that NICE can harness

various advantages of IP and RL scheduling to build a hybrid approach that improves

on both methods used independently.

In the less-constrained baseline scheduling environment, NICE performed worse

than the buffer IP, though it still did better than the baseline. In this scenario, in

a similar amount of time as NICE, the buffer IP produced perfect schedules with

no disruptions after flights were delayed. This result highlights the ideal use-case

for NICE: situations where approximate results are useful and the size of the integer

program makes it infeasible to solve in a reasonable amount of time. The more

constrained (density = 2) scenario fits this description well; the high number of flights

in a shorter interval created more constraints and variables in the buffer formulation

than our IP solver could handle. By contrast, NICE was able to produce a robust

schedule in under 2 seconds, on average.

The move-up IP scheduler produced more robust schedules than any of the other

methods, but it did not perform as strongly as the buffer IP scheduler, which entirely

eliminated schedule disruptions across all percentages of flights delayed in our previous

experiment. This weakness likely explains the performance of the NICE scheduler

based on the move-up reward function, which showed no significant difference in

schedule disruptions compared to the baseline IP scheduler. Because of the relative

inefficacy of increasing the number of move-up pilots in producing robust schedules,

we decided to focus our efforts on using buffers to reduce disruptions.

3.5 Conclusions and Future Work

In this chapter, we introduced NICE, a novel method for incorporating knowledge

gleaned from reinforcement learning into an integer programming formulation. We
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applied this technique to a robust crew scheduling problem, looking at the assignment

of pilots to flights so as to minimize schedule disruptions due to flight delays. We

used NICE to build a scheduler for this problem where the RL agent proposes weights

for the selection of crew members, and the IP assigns the crew members using those

weights. In our experiments, NICE outperformed both the baseline IP and the RL

scheduler in creating schedules that are resistant to disruptions. Furthermore, in cer-

tain practical environments that caused the robust scheduling (buffer IP) formulation

to be prohibitively slow, NICE was able to create a robust schedule in a matter of

seconds.

The introduction of nonlinear objectives or constraints can deteriorate the com-

putational performance of MIP and IP solvers. The underlying formulations are no

longer integer linear programs or mixed-integer linear programs. However, the reward

structure used to train an RL agent is not bound by such restrictions. While this

paper used NICE to approximate linear constraints and additional variables in an IP,

it would be interesting to see how the approach performs when faced with nonlinear

constraints.

Finally, we have shown the efficacy of NICE in robust crew scheduling. Given that

IPs have long been a mainstay of discrete optimization, we believe that the approach

could be useful in addressing other scheduling problems. Understanding the types

of optimization problems for which NICE is most effective is an interesting topic for

further research.
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Chapter 4

Conclusions

In this thesis we introduced two learning-based solution approaches for the crew-

scheduling problem: reinforcement learning for optimizing different metrics, and a

hybrid approach combining reinforcement learning with integer programming for ro-

bust scheduling.

While developing an RL approach to crew scheduling, we first described the state

space, action space and the reward structure. The reward structures were defined

according to the objectives (minimizing overqualification and maximizing completion

of training requirements) that schedulers wanted to optimize. Action masking was

found to be important in improving the sample complexity of training the RL agent

with the defined MDP formulation. Then we showed that the RL agents with a

reward structure engineered to optimize for certain metrics were able to perform as

well as their IP counterparts. Further, we showed that the RL agent could optimize

for multiple metrics in a single formulation, whereas the IP formulations required

separate objective functions. It is worth noting that although the RL agent was able

to perform as well as a corresponding IP formulation, it is never able to perform

better than it. A major reason for this is that the IP formulation has a global view of

the problem over the entire planning period, whereas the RL agent has a local view

of the problem and cannot make any changes to the actions it took in the beginning

of the episode.

To this end we combined reinforcement learning with integer programming to
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introduce NICE. We applied this technique to a robust crew scheduling problem,

looking at the assignment of pilots to flights so as to minimize schedule disruptions

due to flight delays. We used NICE to build a scheduler for the problem where the

RL agent proposed weights for the selection of crew members, and the IP assigned

the crew members using those weights. We showed that NICE outperformed both

the baseline IP and the RL scheduler in creating schedules that were resistant to

disruptions. Furthermore, in certain practical environments that caused the robust

scheduling (buffer IP) formulation to be prohibitively slow, NICE was able to create

a robust schedule in a matter of seconds. Given that IPs have long been a main-

stay of discrete optimization, a promising direction for further research would be the

application of NICE to other scheduling problems.
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Appendix A

Proofs

A.1 Proof of Simplified PPO Objective Function

This proof was taken from the SpinningUp Repository [1]. The PPO objective func-

tion is:

𝐿𝐶𝐿𝐼𝑃
𝜃𝑘

(𝜃) = E
𝑠,𝑎∼𝜃𝑘

[︂
min

(︂
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

𝐴𝜃𝑘(𝑠, 𝑎), 𝑐𝑙𝑖𝑝

(︂
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

, 1− 𝜖, 1 + 𝜖

)︂
𝐴𝜃𝑘(𝑠, 𝑎)

)︂]︂
,

where 𝜃𝑘 are the parameters of the policy iteration 𝑘 and 𝜖 is a small hyperparameter.

Proposition: The PPO-Clip objective can be simplified to:

𝐿𝐶𝐿𝐼𝑃
𝜃𝑘

(𝜃) = E
𝑠,𝑎∼𝜃𝑘

[︂
min

(︂
𝜋𝜃(𝑎|𝑠)
𝜋𝜃𝑘(𝑎|𝑠)

𝐴𝜃𝑘(𝑠, 𝑎), 𝑔
(︀
𝜖, 𝐴𝜃𝑘(𝑠, 𝑎)

)︀)︂]︂
,

where

𝑔(𝜖, 𝐴) =

⎧⎪⎨⎪⎩(1 + 𝜖)𝐴 𝐴 ≥ 0

(1− 𝜖)𝐴 otherwise

Proof. Suppose 𝜖 ∈ (0, 1). Define

𝐹 (𝑟, 𝐴, 𝜖) = min (𝑟𝐴, 𝑐𝑙𝑖𝑝(𝑟, 1− 𝜖, 1 + 𝜖)𝐴)
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When 𝐴 ≥ 0,

𝐹 (𝑟, 𝐴, 𝜖) = min (𝑟𝐴, 𝑐𝑙𝑖𝑝(𝑟, 1− 𝜖, 1 + 𝜖)𝐴)

= 𝐴min (𝑟, 𝑐𝑙𝑖𝑝(𝑟, 1− 𝜖, 1 + 𝜖))

= 𝐴min

⎛⎜⎜⎜⎝𝑟,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 𝜖, 𝑟 ≥ 1 + 𝜖

𝑟, 𝑟 ∈ (1− 𝜖, 1 + 𝜖)

1− 𝜖, 𝑟 ≤ 1− 𝜖

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

= 𝐴min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min(𝑟, 1 + 𝜖), 𝑟 ≥ 1 + 𝜖

min(𝑟, 𝑟), 𝑟 ∈ (1− 𝜖, 1 + 𝜖)

min(𝑟, 1− 𝜖), 𝑟 ≤ 1− 𝜖

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 𝐴min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 𝜖, 𝑟 ≥ 1 + 𝜖

𝑟, 𝑟 ∈ (1− 𝜖, 1 + 𝜖)

𝑟, 𝑟 ≤ 1− 𝜖

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 𝐴min(𝑟, (1 + 𝜖))

∴ 𝐹 (𝑟, 𝐴, 𝜖) = min(𝑟𝐴, (1 + 𝜖)𝐴)
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When 𝐴 < 0,

𝐹 (𝑟, 𝐴, 𝜖) = min (𝑟𝐴, 𝑐𝑙𝑖𝑝(𝑟, 1− 𝜖, 1 + 𝜖)𝐴)

= 𝐴max (𝑟, 𝑐𝑙𝑖𝑝(𝑟, 1− 𝜖, 1 + 𝜖))

= 𝐴max

⎛⎜⎜⎜⎝𝑟,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + 𝜖, 𝑟 ≥ 1 + 𝜖

𝑟, 𝑟 ∈ (1− 𝜖, 1 + 𝜖)

1− 𝜖, 𝑟 ≤ 1− 𝜖

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

= 𝐴min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(𝑟, 1 + 𝜖), 𝑟 ≥ 1 + 𝜖

max(𝑟, 𝑟), 𝑟 ∈ (1− 𝜖, 1 + 𝜖)

max(𝑟, 1− 𝜖), 𝑟 ≤ 1− 𝜖

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 𝐴min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑟, 𝑟 ≥ 1 + 𝜖

𝑟, 𝑟 ∈ (1− 𝜖, 1 + 𝜖)

1− 𝜖, 𝑟 ≤ 1− 𝜖

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 𝐴max(𝑟, (1− 𝜖))

∴ 𝐹 (𝑟, 𝐴, 𝜖) = min(𝑟𝐴, (1− 𝜖)𝐴)

Summarising for all cases,

𝐹 (𝑟, 𝐴, 𝜖) = min(𝑟𝐴, 𝑔(𝜖, 𝐴)),

where, as before, 𝑔(𝜖, 𝐴) = (1 + 𝜖)𝐴 for 𝐴 ≥ 0, and 𝑔(𝜖, 𝐴) = (1− 𝜖)𝐴 for 𝐴 < 0.

The intuition from this: if a given state-action pair has negative advantage 𝐴, the

optimisation wants to make 𝜋𝜃(𝑎|𝑠) smaller, but no additional benefit to the objective

function is conferred by making 𝜋𝜃(𝑎|𝑠) smaller than (1− 𝜖)𝜋𝜃𝑘(𝑎|𝑠). If a state-action

pair has positive advantage 𝐴, the optimisation wants to make 𝜋𝜃(𝑎|𝑠) larger, but no

additional benefit is gained by making 𝜋𝜃(𝑎|𝑠) larger than (1 + 𝜖)𝜋𝜃𝑘(𝑎|𝑠)
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Appendix B

Data

B.1 Dataset

The data was obtained from multiple databases from the US Air Force, which in-

cludes Aviation Resource Management System (ARMS), Graduate Training Integra-

tion Management System (GTIMS) and Global Reach. The data sources include his-

torical flights (dates/type/crew type/etc.), crew requirements for each type of flight,

pilot training requirements, pilot evaluation dates, pilot unavailability, and pilots’

qualifications. The following section is a more detailed description of the dataset

used.

B.1.1 Flight Data

There are three different types of flight events: simulators, locals and missions. These

flights can be broken down further into different flight types: Air Land (AL), Air-

drop (AD), and Special Operations Low Level II (SOLL II). AL flights are the most

common type of flight and do not require special qualified pilots, whereas the AD

and SOLL II flights require the pilots to have special qualifications. Additionally, all

types of flights may require Air Refueling (AR), if the flight happens to have a long

flying time.

To fly these flights, there are two types of crews: augmented and basic. Augmented
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crew flights require a minimum of three pilots to fly a flight and basic crew flights

have a minimum requirement of two pilots. Within the augmented crew types, there

are special augmented designations if the flight requires AD, SOLL II, or AR. Thus,

the pilots with special qualifications are required for these more specialized flights.

To create schedules, the schedulers are given the date, start time, and type of flight

training. And each mission, has a set of attributes associated with it like required

crew, special requirements, itinerary, schedule of stops and locations, etc.

B.1.2 Pilot Data

The two most imporatant attributes assiciated with each pilot in the squadron is their

unavailability and qualification ranks. Unavailability can be due to various reasons

like leave, temporary duties (TDYs), additional duties, appointments, etc. The un-

availability for the pilots is described with a start and end date. The qualification

rank is generally denoted by a five-character string (FPQC5, FPCC5, etc.). Here

the first three letters denote their Air Land (AL) Qualification, the fourth letter is

their training level and the last letter is their special duty qualification. The training

level is generally denoted designated as level A, B or C and is set by the squadron

commander to establish the more experienced pilots. The special duty qualifications

are for flights/missions that require Air Drop (AD), Special Operations Low Level

II (SOLL II) or other complext miscellaneous tasks. The pilots in the dataset have

four different groups of qualifications ranging from highest to lowest as: Evaluator

Pilots (EP), Instructor Pilots (IP), Mission Pilots (MP) and Flight Pilots (FP). The

dataset consists of 86 pilots where there are 8 EPs, 37 IPs, 8 MPs, 33 FPs. Along with

qualification ranks and unavailability, each pilot has training requirements which get

renewed periodically as each training requirement has a different evaluation date and

the renewal of these requirements assures that the pilots are current in their qualifi-

cation. Also discussed above in regards to personnel data are the pilot’s semi-annual

or periodic training requirements and their different evaluation dates. Pilots have

required types of flights they must fly semi-annually or periodically to stay current

with their qualifications and ability to fly. So usually, pilots prefer to fly on flights
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that help them to constantly work towards meeting their training requirements. For

instance, a specific pilot would be against flying the same type of simulator over and

over again because that repetition would not help them progress in their flying career.

Furthermore, pilots typically like to be in control of their own schedule for various

reasons, so they will voluntarily request to fly flights they are interested in or are

necessary to continue to move up the ranks.

B.1.3 Assumptions

In this thesis we make a few assumptions to simplify the proposed methods. First,

we assume each pilot can only fly one event per day. In reality, a pilot can fly two

simulators in the same day, but it does not happen very often and really only happens

when a specific squadron is struggling to find available pilots. In determining pilot

availability, we also have to account for crew rest, which is the rest time a pilot is

legally required to take after completing a flight. There is typically no crew rest for

simulator flights, but for training and mission flights, the necessary crew rest can be

from hours to days. We assume crew rest is taken care of for the locals based on our

first assumption that only one flight can be flown per day. However, for the missions,

we are given historical data on how long a pilot is on crew rest for based on the day

the postmission debrief occurs, so we assume that accounts for crew rest for those

flights. Scheduling a future event has a projected duration, but of course this time is

truly uncertain. Thus, adding in a buffer time, like in the commercial airline industry,

and using crew rest regulations allow us to obtain a projected duration that a pilot

is unavailable both for the flight and the accompanied crew rest.
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Appendix C

Hyperparameters for Experiments

Below is the table of hyperparameters used for our experiments for the reinforcement

learning experiments:

Hyperparameters for the RL environment

Parameter Name Value Definition

num_pilots 87 Number of pilots in the squadron

num_event_types 13 Number of types of events

use_training_req True Whether to use training requirements in the

state representation

max_duration 7 Number of days to schedule for

avg_assignments_week 80 Average number of pilot-event assignments

per week (used for random event generation)

flight_density 1 The density of flights per week, where 1 is

average. (2 would be twice the average and

is only used for experiments with NICE)

num_parallel_envs 50 Number of parallel environments to run to

collect episodes
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Hyperparameters for PPO

Parameter Name Value Definition

steps_per_epoch 4000 Number of steps of interaction (state-action

pairs) for the agent and the environment in

each epoch

epochs 10000 Number of epochs of interaction (equivalent

to number of policy updates) to perform

𝛾 0.99 Discount factor

clip-ratio 0.2 Parameter for clipping in the policy objec-

tive. Roughly: how far can the new policy

go from the old policy while still improving

the objective function

learning_rate𝜋 3× 10−4 Learning rate for the policy network

learning_rate𝑣 1× 10−3 Learning rate for the value function network

train_pi_iters 80 Maximum number of gradient descent steps

to take on policy loss per epoch

train_v_iters 80 Maximum number of gradient descent steps

to take on value function loss loss per epoch.

𝜆 0.97 Lambda for GAE-Lambda

target_KL 0.01 KL-divergence allowed between the new and

old policies after an update

eval_freq 10000 Number of steps after which the policy is

evaluated

num_test_rollouts 10 Number of episodes for which the policy is

evaluated
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