
Analyzing Student’s Problem-solving Approaches in
MOOCs using Natural Language Processing

by
ByeongJo Kong

B.E., Kyung Hee University (2010)
Submitted to the System Design and Management Program and the

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Science in Engineering and Management
and

Master of Science in Electrical Engineering and Computer Science
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
System Design and Management Program and

Department of Electrical Engineering and Computer Science
May 6, 2022

Certified by .
Una-May O’Reilley

Principal Research Scientist, MIT Computer Science & Artificial Intelligence Lab
Thesis Supervisor

Certified by .
Erik Hemberg

Research Scientist, MIT Computer Science & Artificial Intelligence Lab
Thesis Supervisor

Accepted by .
Joan S. Rubin

Executive Director,
System Design and Management

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Analyzing Student’s Problem-solving Approaches in MOOCs using

Natural Language Processing

by

ByeongJo Kong

Submitted to the System Design and Management Program and the Department of
Electrical Engineering and Computer Science
on May 6, 2022, in partial fulfillment of the

requirements for the degrees of
Master of Science in Engineering and Management

and
Master of Science in Electrical Engineering and Computer Science

Abstract
Problem-solving processes are an essential part of learning. Knowing how students ap-
proach solving problems can help instructors improve their instructional designs and ef-
fectively guide the learning process of students. This thesis proposes a natural language
processing (NLP) driven method to capture online learners’ problem-solving approaches
while using Massive Open Online Courses (MOOCs) as a learning platform. It employs an
online survey to gather data, NLP techniques, and existing educational theories to investi-
gate this in the lens of both computer science and education.

The thesis considers survey responses from students enrolled in a computer program-
ming course taught on edX in Spring 2021. A total of 7,482 free-text responses are se-
lected from 44,864 responses collected through the survey. The thesis shows how NLP
techniques, i.e. preprocessing, topic modeling, and text summarization, must be tuned to
extract information from a large-scale text corpus. The proposed method discovered 18
problem-solving approaches from the text data, such as using pen and paper, peer learning,
trial and error, etc. By using datasets from 2020 and 2021, we also learned that there are
strong topics that appear over the years, such as clarifying code logic, watching videos, etc.
Lastly, we used existing educational theories to discuss the findings from a viewpoint of
education.

Thesis Supervisor: Una-May O’Reilley
Title: Principal Research Scientist of MIT Computer Science & Artificial Intelligence Lab

Thesis Supervisor: Erik Hemberg
Title: Research Scientist of MIT Computer Science & Artificial Intelligence Lab

2

Acknowledgments

Throughout the course of this journey, I have received a great deal of support and guidance.

I would not have achieved this much without the kind support and love of many others.

I would first like to express my sincere gratitude to Erik Hemberg and Una-May O’Reilly

for giving me the opportunity to work with them on this research. They provided incred-

ible support and guidance to further improve the research. I am truly grateful for their

constant help and advice, which taught me a great deal and enabled me to advance in re-

search. I would also like to thank Ana Bell for providing help which substantially helped

our research. I must express my gratitude to my parents and sister who provided continu-

ous support and encouragements at every moment. Their unwavering love helped me stay

strong and positive through the tough times. I also owe my sincere thanks to Myoung Se-

ung Park, my aunt, and dear friends Sung-Hwan Choi, Keonyoung Ahn for encouragement,

faith and love.

I humbly extend my gratitude to all concerned persons who showed support and love

along my journey in life.

3

Contents

1 Introduction 11

1.1 Research Questions . 13

1.2 Contributions . 15

2 Related Work 16

2.1 Problem-solving and learning behavior analysis 16

2.2 NLP applications in MOOCs . 17

2.3 Task-Structure framework . 18

3 Methods 21

3.1 Data Collection of Problem-solving Approaches 23

3.1.1 Course . 23

3.1.2 Survey questions . 24

3.2 Text Preprocessing . 24

3.2.1 Sentence Tokenization . 25

3.2.2 Spelling Correction . 25

3.2.3 Remove Stopwords and Contraction/Abbreviation Expansion 26

3.2.4 Collocation Detection . 27

3.2.5 Part of Speech (POS) Filtering . 28

3.2.6 Denoising through Key Phrase Extraction 28

3.3 Grouping Problem-solving Approaches with Topic Modeling 29

3.3.1 Bag-of-Words based Topic Modeling 30

3.3.2 Transformer-based Topic Modeling 33

4

3.3.3 Topic Modeling Measurement . 36

3.4 Generating Readable Text Summarization 37

3.4.1 Input Data . 37

3.4.2 Text Summarization Model . 38

3.4.3 Summarization Evaluation . 38

3.5 Educational Theories . 39

3.5.1 Task-structure Framework . 40

3.5.2 Active/Passive Learning Framework 40

4 NLP Pipeline Sensitivity Analysis and Tuning 41

4.1 Data Labeling . 41

4.2 Preprocessing . 43

4.3 Topic Modeling . 45

4.3.1 Text Clustering Test . 45

4.3.2 Keywords Interpretations . 47

4.3.3 Method’s Sensitivity Analysis . 48

4.4 Text Summarization . 50

4.4.1 Quantitative and Qualitative Evaluations 50

4.5 Task-Structure Formulation . 53

5 Experiments 56

5.1 Experimental Setup . 57

5.2 Preprocessing . 58

5.3 Topic Modeling . 58

5.4 Text Summarization . 58

5.5 Educational Implications . 59

5.5.1 Task-structure Framework . 59

5.5.2 Active/Passive Learning Framework 60

5.6 Discussion and Limitation . 61

5.6.1 Preprocessing . 62

5.6.2 Topic Modeling . 62

5

5.6.3 Text Summarization . 63

5.6.4 Educational Implications . 63

5.7 Use Case Diagrams . 64

5.7.1 Boundary and Architecture of the System 64

5.7.2 Stakeholder Needs and Relationships 65

6 Conclusion and Future Work 68

6.1 Conclusion . 68

6.2 Future Work . 70

6.2.1 Addressing Research Limitations 70

6.2.2 Building on the Findings of Research 70

A List of Generated Bigrams 73

B Survey Analysis: Multiple-choice Questions 74

B.1 Background . 74

B.1.1 Survey questions . 74

B.2 Multiple-choice Questions Analysis . 75

B.2.1 Responses - Rating . 75

B.2.2 Responses - Multi-selection . 76

Bibliography 80

6

List of Figures

1-1 Growth of MOOCs . 11

1-2 George Veletsianos et al. discovered learner interactions in social networks

outside of MOOC platform by surveying 13 individuals [13] 13

3-1 Research workflow of capturing students’ problem-solving approaches in

MOOCs. The workflow has five phases each with inter-connected sub-

components. 22

3-2 Contraction Expansion . 26

3-3 Part of Speech tagging and syntactic dependencies of a sample sentence . . 28

3-4 Examples of keyBERT outputs. A relatively high nr_candidates will create

more diverse keyphrases [19] . 29

3-5 Topic modeling process of LDA [3] . 30

3-6 Cosine similarity measurement [15] . 32

3-7 Coherence Scores per topic number (K) of LDA and GSDMM 32

3-8 Workflow of transformer-based topic modeling 33

3-9 DBSCAN can find non-linearly separable clusters, which cannot be done

by k-means or Gaussian Mixture EM clustering. [52] 35

3-10 Example of computing the B-Cubed precision and recall [4] 37

3-11 Workflow of text summarization . 37

3-12 A paragraph of top five sentences from a topic that is fed into the text

summarization model for summarization. 38

3-13 An example of bottom-up formulation of a task-structure. Subtasks are

formulated based on identified methods 40

7

4-1 Descriptions of test components, parameters, and evaluation approaches . . 42

4-2 Data setup for the performance test. 685 responses were sampled from the

entire dataset and labeled for the performance testing 42

4-3 Count of clustered responses by problem-solving methods 43

4-4 Clustering accuracy (F1 Score) by algorithms with different max N-gram

values . 45

4-5 (a) Visualization of problem-solving approaches clustered by DBSCAN;

(b) Clustering accuracy by algorithms with 20 test iterations and max N-

gram of key phrase extraction set to 11 . 46

4-6 Topic clusters and keywords generated by Topic Modeling 47

4-7 Topic modeling results of survey responses from year 2020, 2021, and com-

bined dataset . 49

4-8 Heatmap of common keywords occurrences between problem-solving meth-

ods . 52

4-9 Task-structure of programming formulated based on identified problem-

solving methods . 55

5-1 Flowchart of the preprocessing steps and the number of remaining responses 58

5-2 Topic Modeling result of 1,644 responses 59

5-3 OPM of MOOCs and NLP system’s architecture 65

5-4 Stakeholder map for MOOCs and suggested NLP system with characteri-

zation of the needs illustrated . 66

B-1 Area graphs of multiple-choice questions 77

B-2 Q5. What previous/external resources were helpful for these exercises?

Select all that apply . 77

B-3 Bump chart showing the rank of Helpful Resources by Unit 78

B-4 Q10. Please choose 2 or 3 values that are most important to you (there is

no right answer) . 78

B-5 Bump chart showing the rank of Important Values by Unit 79

8

List of Tables

1.1 Key terms and descriptions . 14

2.1 Key examples of research papers investigated in the literature review 19

3.1 Programming exercises by weeks where the surveys were conducted 23

3.2 Questions asked in the survey . 24

3.3 Abbreviations included in the contraction list for expansion 26

4.1 Preprocessing Performance Test Setup . 44

4.2 Clustering Accuracy (F1 Score) . 44

4.3 Interpretation of Topic Modeling Keywords 48

4.4 The properties of the datasets . 50

4.5 ROUGE F1 results . 53

4.6 Topic summarization generated by PEGASUS model 54

5.1 Types of libraries and models used to perform NLP tasks in this research.

Each of the setting is optimized based on the performance test results de-

scribed in Chapter 4 . 57

5.2 Results of topic modeling and text summarization. Column (1) ID is used

as an identifier in Table 5.3, (2) frequency of topic, (3) topic keywords from

topic modeling, (4) generated summaries by the summarization model, and

(5) examples of input sentences to the summarization model 60

5.3 Categorization of methods by Active/Passive Learning (row) and Subtasks

(column). ID is the identifier that helps locate the topic in Table 5.2. Un-

derlines indicate the methods that took place outside the platform. 61

9

A.1 Examples of created bigrams . 73

B.1 Time and locations of survey conducted on students in a MOOC. The

course has total 9 weeks of units. 75

B.2 Multiple-choice questions in the survey 76

10

Chapter 1

Introduction

Massive Open Online Courses (MOOCs) are a prevalent mode of educational delivery for

higher education. Particularly with the outbreak of Covid-19 in early 2020, universities and

many students around the world are now conducting their educational activities on online

platforms like MOOCs. In 2021, approx. 19.4K MOOCs were announced or launched by

around 950 universities worldwide. In 2021 alone, around 3.1K courses were added [44].

Figure 1-1: Growth of MOOCs [44]1

Online learning, however, requires different learning engagement and behaviors of stu-

dents compared to traditional classroom learning. Classroom learning is usually teacher-

centered, or passive learning, where the instructor controls classroom dynamics. Often

1Statistics do not include China. Source: class central

11

it is considered restrictive, inflexible, and impractical [40], whereas, in online learning,

students independently analyze the information and adopt a diverse set of skills and self-

directed learning strategies to successfully assimilate learning content [43]. In such setting,

students often proactively seek learning resources that are outside the course boundary to

facilitate their learning processes.

There are many previous studies analyzing the types of activities students carry out

during the online learning, which mainly focused on the activities recorded by the learning

platform, e.g., watching video lectures, submitting assignments, and discussing in forums

[27, 24, 8]. They often conduct students’ behavioral pattern analysis using the event log

and clickstream data. However, students’ activities that take place outside the learning plat-

form have received relatively little attention despite their potential influence on the learner

retention [13]. A qualitative study conducted based on a small-group (13 individuals) sur-

vey, as shown in Fig 1-2, suggests that students often carry out learning activities outside

the MOOC platform, such as social media interactions, notetaking, and in-person discus-

sion with friends [49]. The study also claims that the understanding of the full spectrum of

learners’ activities in open online courses is limited by the extensive dependence on the log

files and clickstream data analysis.

This thesis seeks to shed a new light on the less explored part of online learning ac-

tivities by proposing a framework that captures the holistic spectrum of student’s learning

activities carried out both inside and outside the MOOC platform. It particularly delves

into identifying the problem-solving approaches as they encompass various insights in stu-

dents’ approaches in the discovery of learning and bridging the knowledge gaps [6]. By

Problem-solving approaches, here, it means the types of strategies and methods students

use to solve course problems in MOOCs. For instances, student may ask friends for help,

re-watch video lectures, look discussion forums, use IDE, etc. The suggested framework is

designed with Natural Language Processing (NLP) methods to process and extract insights

from the large amount of text data generated by students. For the data collection, we used

an online survey method to ask students to describe their problem-solving approaches in

text. Then to clean the data and extract relevant and readable information, we processed the

collected free-text responses with NLP techniques, such as Preprocessing, Topic Modeling

12

Figure 1-2: George Veletsianos et al. discovered learner interactions in social networks
outside of MOOC platform by surveying 13 individuals [13]

and Text Summarization.

The preprocessing is an essential part of this research as we are dealing with user-

generated data with noise, such as grammatical and spelling errors, missing values, etc.

The topic modeling technique is used to discover topics (in our case problem-solving ap-

proaches) from large-scale text data, while we used the text summarization technique to

generate readable narrative summaries of discovered topics to make them contextually rich

and easy to understand. Furthermore, educational theories, such as task-structure and ac-

tive/passive learning frameworks, are used to translate the findings into educational impli-

cations.

1.1 Research Questions

The research questions focus on developing a scalable method to investigate problem-

solving approaches of students in MOOCs by utilizing NLP techniques. The thesis also

explores ways to derive educational implications from the findings using existing educa-

13

Table 1.1: Key terms and descriptions

Terms Description
Massive Open Online

Course (MOOC)
An online course aimed at unlimited participation and

open access across the world without prerequisites

Problem-solving approach
In this research, it refers to a strategy or a method
used by a student to solve course problems in the

MOOC

Natural Language
Processing (NLP)

A subfield of AI concerned with giving computers the
ability to understand, process, and analyze massive

text data

Preprocessing
A method to clean and remove noise from text data

and make it ready to be fed into the model

Topic modeling
A method to extract topics from text corpus by
automatically clustering word groups that best

represent the topic

Text summarization
A method to shorten long sentences or paragraphs

without omitting critical information

Task-structure framework
A framework that describes possible ways a task can

be decomposed into subtasks that need to be solved to
complete the entire task.

Active/Passive learning
framework

Types of learning methods categorized based on the
students’ level of participation in the learning process

tional theories. The following list includes the questions that the thesis aims to answer:

Research question 1. (Overarching question) Can we capture the students’ problem-

solving approaches carried out both inside and outside the MOOC platform? See Section

6.1.

Research question 2. (Technical question) Do NLP-driven methods identify accurate

problem-solving information? See Section 5.2 through 5.4

2.1 Can they maintain high accuracy with extremely noisy, large-scale text data?

2.2 Can topic modeling accurately discover the problem-solving methods?

Research question 3. (Educational question) What are the educational implications of

identified problem-solving approaches? See Section 5.5

3.1 Using the task-structure framework.

3.2 Using the active/passive learning framework.

14

1.2 Contributions

The thesis makes the following contributions:

1. Introduces an NLP pipeline that incorporates online survey, topic modeling, and text

summarization for discovering student’s problem-solving methods carried out both

inside and outside the MOOC platform

2. Combines various preprocessing techniques that contributed to reducing the noise of

the text data, which noticeably improved the performance of topic modeling.

3. Demonstrates that transformer-based (BERT) topic modeling achieves significantly

improved accuracies in identifying problem-solving methods from large text data

4. Showcases how text summarization technique can contribute to enhancing the limited

readability of topic modeling results, which are based on a list of keywords

5. Uses task-structure and active/passive learning frameworks to translate the findings

into educational implications, which can be useful for instructors to improve their

teachning strategies

The overall structure of the paper is organized as follows:

• Chapter 1 Introduction: Brief overview of research gap & goals, and contributions.

• Chapter 2 Related Work: Literature review of Background information about the
concepts and techniques used in the research.

• Chapter 3 Methods: Detailed explanation about the research design and methods.

• Chapter 4 NLP pipeline Sensitivity Analysis and Tuning: Description of the ex-
perimental setup

• Chapter 5 Experiments: Results and findings of the research, discussions and lim-
itations.

• Chapter 6 Conclusion and Future Work: Summary and future research directions.

• Appendix A: List of Generated Bigrams.

• Appendix B: Survey Analysis: Multiple-choice Questions.

15

Chapter 2

Related Work

This chapter discusses previously published articles and papers of related research to show

how our work fills in gaps in previous work. We particularly looked into studies that are re-

lated to problem-solving and learning behavior analysis in the online learning setting, NLP

applications in MOOCs, and education theories that can help us guide the interpretation of

problem-solving approaches in the educational perspectives.

2.1 Problem-solving and learning behavior analysis

Observing learners’ behavioral information is considered an important prerequisite to an-

alyze the student’s learning experience, performance, motivation, and so on [48]. Many

earlier studies we reviewed focused on analyzing the learner’s behaviors based on the data

collected from some MOOC platforms. Some expanded from investigating the students’

behavioral data to building predictive models of the student performance [42, 29, 26, 36].

Chamizo-Gonzalez et al. (2015) [25] and Al-Musharraf et al. (2016) [1] studied on the cor-

relation between the students’ learning behaviors and academic performance by analyzing

learners’ records, such as uploading assignments, posting on forums, taking online quizzes,

and so on. Many studies showcased interesting insights on how the learners’ behaviors are

represented in the learning process in online courses and their influences on the academic

performances. However, many of the studies solely focused on the learners’ activities that

took place on the MOOC platform. As some researchers claimed [13, 49], we saw the

16

lack of in-depth discussion on the learners’ activities that take place outside the MOOC

platform.

Furthermore, relatively few studies focused on identifying the students’ problem-solving

approaches in MOOCs. Among the previous studies we reviewed, many examined the

problem-solving patterns of students by analyzing the activity logs. Lee [32] conducted a

clustering analysis on the problem-solving patterns of students using hierarchical cluster-

ing algorithms. The study used the clickstream data and the number of problems solved to

analyze how they are correlated with the course completion rates. In another study [28],

students were clustered based on the measures of performances, which include the number

of attempted and solved problems, the number of steps taken, time spent, and final grades.

The study recognized the difficulties in finding discernible clusters that could better pre-

dict performance and serve as a basis for personalization. While these studies focus on the

quantitative analysis based on the log records from the platform, Alexander et al. [45] used

a qualitative analysis using an online survey and natural language processing. It uses topic

modeling method to discover the topics from the survey responses. Based on the topic key-

words obtained through the topic modeling, the study identifies common problem-solving

procedures described by the students.

2.2 NLP applications in MOOCs

In recent years, there is a fast-growing number of studies that adopt NLP methods in their

research on MOOCs. Topic modeling is one of the widely used methods among the pre-

vious studies. Liu et al. [35] and Peng et al. [41] used Behavior–Emotion Topic Model

(BETM) method to discover the students’ sentiments towards course contents from the

course reviews. Other topic modeling techniques such as Brown clustering, Naive Bayes

Classifier, and Latent Dirichlet Allocation (LDA) were also used to categorize discussion

forum threads into sentiments and topics [51, 53, 50, 12], which provided valuable informa-

tion for studying the relationships between sentiment and course dropout. There is a recent

movement towards using language transformers, such as Bidirectional Encoder Represen-

tations from Transformers (BERT), to enhance the topic modeling performance [5, 21].

17

Atagün et al. [5] observed the performance of topic modeling by clustering vector repre-

sentations obtained from BERT and LDA models. According to the study, transformer-

based approach proved to have contributed significantly to improving the performance of

topic modeling.

2.3 Task-Structure framework

Task-structure framework is a concept that helps identify problem solving strategies and

subtasks, which must be fulfilled to complete the entire task. It describes possible ways a

task can be decomposed into more manageable subtasks that need to be solved to complete

the entire task. Chandrasekaran [10, 11] and Stroulia et al. [47] used a task-structure ap-

proach to design problem-solving for a complex AI problem. They both developed a task

structure by conducting a task analysis, which involves decomposing a task into subtasks,

applicable methods for it, and the knowledge requirements for the methods. Silverman

et al. [46] used task-structure in the context of physical education to examine the inter-

relationships between the ways teachers structure practice tasks and practice variables for

students of differing skill levels. The study suggested that skill level, task structure, and

practice are clearly related.

Filling the Research Gap

After an extensive literature review, see Table 2.1 for a list of key examples, we identified

two potential research gaps: (1) Many previous research focused on the use of event log

or clickstream data for learners’ behavioral analysis or academic performance prediction,

but we saw relatively small number of research dealing with students’ problem-solving

approaches. (2) Topic modeling is one of popular NLP techniques used to analyze the

student’s reviews or posts, but they were conducted mainly by statistical models such as

LDA or LDA-modified models. These models may be less accurate as they do not have an

ability to capture contextual information.

This thesis aims to fill the research gap by (1) suggesting a research method that can

analyze the MOOCs users’ problem-solving approaches at scale. (2) proposing an NLP

18

Table 2.1: Key examples of research papers investigated in the literature review

Problem-solving & Learning Behavior Analysis
Author Data Description

Jasmine Paul at al.,
(2019) [1]

548 student grades
Compared academic performance of online

learners vs. classroom learners
Radhika Santhanam et

al., (2008) [2]
134 student GPA

records
Analyzed the impact of self-regulatory skills
on the learning outcomes of online learners

Khe Foon Hew (2016)
[3]

Review comments
of 965 students

Analyzed the design factors of a MOOC that
influence the student’s engagement

Philip J. Guo et al.
(2014) [4]

6.9 million video
watching sessions
from four MOOCs

Analyzed used engagement time and
problem attempt records to measure the
impact of video production on student

engagement
Fernanda Cesar

Bonafini, (2017) [5]
817 video watching
records of students

Built a predictive model to predict the
probability of MOOC completion

Matthieu Cisel,
(2018) [6]

7,614 survey
responses

Conducted the qualitative analysis of
responses to study the interactions between

course users in MOOCs
George Veletsianos et

al., (2015) [7]
Interviews from 13
students in MOOCs

Examined the learners’ activities and
experiences in MOOCs

Xiaoliang Zhu et al.,
(2021) [10]

Behavior data of
76,843 learners
from a MOOC

platform

Analyzed the students’ behavior data, such
as progress of quiz, scores, etc., to predict

the students’ academic performance

Youngjin Lee, (2018)
[19]

Log files of 4,337
students

Analyzed the log files that captured activities
of weekly homework and quiz problems to

cluster students by problem-solving patterns
NLP Applications in MOOCs

Author Data Description
Sannyuya Liu et al.,

(2019) [22]
12,524 course

reviews
Used BSTM model to detect topics

discussed in the reviews

Miaomiao Wen et al.,
(2014) [24]

36,590 discussion
posts from three
MOOC courses

Conducted a sentiment analysis of words
using a sentiment lexicon map to observe the

relation between opinion expressed by
students and the dropout rate

Xiao Yang-Cai et al.,
(2021) [25]

7,836 course
reviews

Used LDA model to conduct topic modeling

Jovita M. Vytasek,
(2017) [26]

813 posts from a
MOOC’s

discussion forum

Used MALLET toolkit to conduct topic
modeling

19

pipeline that applies advanced preprocessing methods, contextual language model, and text

summarization model to enhance the accuracy and readability of topic modeling’s results.

20

Chapter 3

Methods

This chapter describes the details of data collection and NLP techniques used to capture

students’ problem-solving information from the collected free-text survey responses. It

describes the technical concepts integrated in the NLP pipeline, such as preprocessing,

topic modeling, and text summarization. The last section of this chapter discusses the

education theories that are used to interpret the findings in the lens of education. The full

workflow of the research is illustrated in Fig 3-1.

The research consists of five main phases. The first phase is the data collection, where

an online survey was used to collect responses from the students enrolled in a MOOC. The

second to fourth phases are inter-connected NLP pipelines designed to extract the problem-

solving information from the collected responses; these three phases are preprocessing,

topic modeling, and text summarization. The last fifth phase uses educational frameworks

to analyze the results through the educational lens and draw educational implications. Each

of phases is designed to deliver specific tasks as described below.

1. Data collection: Free-text responses are collected from students taking a MOOC,

which describe students’ approaches in solving problems. The survey was done

through the built-in A/B Testing feature in the MOOC platform (https://www.edx.org/).

See Section 3.1 for details.

2. Preprocessing: Data cleaning and transformation are conducted to minimize the

noise and remove redundant information. This phase involves 8 steps of preprocess-

21

ing; sentence tokenization, stopwords removal, expansion of contraction, spelling

correction, lemmatization, collocation detection, POS filtering, and key phrase ex-

traction. See Section 3.2 for details.

3. Topic modeling: This phase detects the types of problem-solving methods students

discussed in the survey responses. This paper explores two different types of topic

modeling approaches: Bag-of-words and Embedding based models. See Section 3.3

for details.

4. Text Summarization: A narrative summary is generated for each topic. This task is

performed to help end-users easily understand the context and details of the topic by

providing readable summaries rather than keywords. See Section 3.4 for details.

5. Analysis on Educational Implications: The identified problem-solving approaches

are translated into educational implications using existing educational theories, i.e.

task-structure and active/passive learning frameworks. See Section 3.5 for details.

Figure 3-1: Research workflow of capturing students’ problem-solving approaches in
MOOCs. The workflow has five phases each with inter-connected sub-components.

22

3.1 Data Collection of Problem-solving Approaches

Data was collected from the MIT 6.00.1x course, a MOOC hosted by edX (https://www.edx.org/)

using curriculum developed by MIT. It was taught over nine weeks in Spring 2021. After

completing an exercise, students were randomly selected to respond to eleven survey ques-

tions asking for feedback using the built-in A/B testing feature in edX.

In total, 44,864 responses were collected from 5,121 students. Among these responses,

we selected 7,482 (16.7%) responses for Question 2 to conduct our research. The question

asks about the students’ problem-solving approaches. Please see Section 3.2.2 for details.

3.1.1 Course

The course 6.00.1x is an introductory computer science course which teaches basic Python

programming skills and general computer science concepts. Students can watch lectures

and complete coding exercises based on the presented material. The exercises have two dif-

ferent formats. Finger Exercises (“FEX”) are shorter, ungraded assignments meant to help

students understand a concept. Problem Sets (“PS”) are longer, graded assignments meant

to test knowledge and demonstrate applications of certain skills. The survey questions were

asked in response to Finger Exercises and Problem Sets 1, 2 and 4, where the number de-

notes the week which they occurred in the course. Table 3.1 provides a description of each

exercise where the surveys were conducted.

Week Problem Description
1 FEX 1 Boolean operations
1 PS 1 String processing
2 FEX 2 Bisection search
2 PS 2 Bisection search applications
4 FEX 4 Recursion
4 PS 4 Game creation

Table 3.1: Programming exercises by weeks where the surveys were conducted

23

3.1.2 Survey questions

The survey questions were consisted of 5 free-text questions and 6 multiple-choice ques-

tions. Survey participants were asked mainly about their learning experiences, particularly

related to the course difficulties and the self-reflections. The list of questions asked in the

survey is shown in Table 3.2. For this research, the free-text question (Q2) is used, which

asks: "Please outline your approach to solving this exercise. For example, you can describe

how you may have corrected your problem-solving process."

For reference, we included the survey results of Multiple-choice Questions (MCQ) in

Appendix B.

Table 3.2: Questions asked in the survey

No. Questions Format

Q1
Reflecting on these exercises, is there any other feedback you

would like to provide?
Free-text

Q2
Please outline your approach to solving any of these exercises. For

example, you can describe how you may have corrected your
problem-solving process

Free-text

Q3 How challenging were these exercises? MCQ
Q4 How prepared did you feel for these exercises? MCQ

Q5
What previous/external resources were helpful for these exercises?

Select all that apply
MCQ

Q6 If you answered OTHER above, you may explain here Free-text
Q7 How motivated are you to continue this course? MCQ
Q8 Do you find these exercises useful? MCQ

Q9
Can you describe a specific situation in which you will use this

knowledge?
Free-text

Q10 Please choose 2 or 3 values that are most important to you MCQ

Q11
How does taking these exercises reflect and reinforce your most

important values? Focus on your thoughts and feelings, and don’t
worry about spelling, grammar, or how well written it is.

Free-text

3.2 Text Preprocessing

There is a large amount of noise in the text data such as stopwords, misspellings, irrele-

vant information, etc. To reduce the noise level, we employed a chain of preprocessing

steps consisted of following eight steps: 1) sentence tokenization, 2) spelling correction, 3)

24

stopwords removal, 4) contraction expansion, 5) lemmatization, 6) collocation detection,

7) POS filtering, and 8) key phrases extraction. 78% of the data was discarded during the

preprocessing, but the performance of topic modeling improved significantly thanks to the

improved data quality.

3.2.1 Sentence Tokenization

Each response is tokenized (split) into sentences. This is because a single response may

contain multiple sentences that discuss about different topics. By tokenizing the responses

into sentences, it can reduce the conflicting topics within a single entry and each sentence

with an independent topic can serve as a separate single entry. To perform the sentence

tokenization, sent_tokenize() tokenizer from the Natural Language Toolkit (NLTK) library1

is used. It divides a string (response) into a list of substrings based on the predefined

delimiters. It contains trained data to identify sentence structures, as well as considers the

punctuation (e.g. periods, commas, etc.) in the sentences.

3.2.2 Spelling Correction

SymSpell [20], which is based on the Symmetric Delete spelling correction algorithm, is

used to correct the spelling errors. SymSpell relies on frequency dictionaries derived from

a large collection of English books, which is used originally for [30]. SymSpell is selected

over other available algorithms for its fast speed and ability to handle complex expressions.

SymSpell was able to recover sentences like "Wekeep readin th eslides inthe lcture" to " We

keep reading the slides in the lecture". SymSpell took approximately 821 words / second

to scan and correct our text data. As a side effect, it removes punctuation. For this reason,

the sentence tokenization must be conducted in prior to this step as it relies on some of

punctuation to perform the task.

1NLTK: https://www.nltk.org/

25

3.2.3 Remove Stopwords and Contraction/Abbreviation Expansion

To remove stopwords, we used simple_preprocess() function from the Gensim Library2 and

the stopwords list from Natural Language Toolkit (NLTK). simple_preprocess() converts a

document into a list of tokens. Then they are iterated through the NLTK’s stopwords list to

check if a token is a stopword or not; the token is removed if it is a stopword.

Along with this process, the contractions and abbreviations are expanded. Contractions

are words or combinations of words which are shortened by dropping letters and replacing

them by an apostrophe. For example, we’re = we are; we’ve = we have; I’d = I would.

Figure 3-2: Contraction Expansion

This process is necessary to recognize contractions as abbreviations for a sequence

of words, otherwise we’re and we are are considered as two completely different words.

This could make the computation more expensive by increasing the dimensionality of the

document-term matrix. We used English contractions found at [14] to perform this task.

Additionally, we included the following abbreviations in Table 3.3 for expansion, which

were commonly found in our data.

Abbreviation Expansion
ai artificial intelligence
a.i. artificial intelligence
ml machine learning
ar augmented reality
vr virtual reality
cs computer science
no. number

T.A. teaching assitant
TA teaching assistant

pyhton python
phyton python
sypder ide

Table 3.3: Abbreviations included in the contraction list for expansion

2Gensim: https://pypi.org/project/gensim/

26

The list was also used to correct misspellings which were unrecognized by SymSpell,

such as ’phyton’ and ’pyhton’, and to convert a brand name into a general term, such as

’spyder’ to ’ide’.

3.2.4 Collocation Detection

A collocation is a phrase of two or more words representing a common expression. By

looking into the collocations in the responses, we can gain insights into phrases which

frequently appear in the student responses. Here, we used models.Phrases() function from

the Gensim library to detect and create Bigrams, which are two adjacent words with a

high occurence. It automatically detects common phrases, such as multi-word expressions

and word n-gram collocations, from a stream of sentences by scoring the words occuring

together using the equation below.

𝑠𝑐𝑜𝑟𝑒(𝑤𝑖, 𝑤𝑗) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖𝑤𝑗) − 𝛿

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖) × 𝑐𝑜𝑢𝑛𝑡(𝑤𝑗)
(3.1)

Where,

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖𝑤𝑗) is the frequency of word 𝑤𝑖 and 𝑤𝑗 appearing together

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖) is the frequency of words 𝑤𝑖’s appearance

𝑐𝑜𝑢𝑛𝑡(𝑤𝑗) is the frequency of words 𝑤𝑗’s appearance

𝛿 is a discounting coefficient which prevents from creating too many phrases

To run Phrases(), you need two parameters; min_count and threshold (𝛿). The 𝛿 is used

as a discounting coefficient and prevents too many phrases consisting of very infrequent

words to be formed. The bigrams with score above the chosen threshold are then used

as phrases [38]. The higher the values of these parameters, the harder for words to be

combined. Using min_count=4, threshold=10 produced the most sensible outputs based

on the human judgment. Examples of created bigrams are shown in Appendix A.1.

27

3.2.5 Part of Speech (POS) Filtering

POS filtering was used to detect and filter out sentences with poor structures. We particu-

larly looked for sentences that do not have a Verb or a Noun and removed them from the

dataset. To build the filter, we first used SpaCy library3 to classify the POS tag of a word;

a process of marking up the words in a sentence to a particular part of speech based on its

definition and context. Fig. 3-3 is an example of POS tagging performed by the SpaCy

library.

Figure 3-3: Part of Speech tagging and syntactic dependencies of a sample sentence

Usually, words can fall into one of the following major categories: N(oun), V(erb),

Adj(ective), Adv(erb). It is shown in Fig 3-3 how each word in a sentence can be catego-

rized into one of the POS. Once the POS tagging is completed, we used this information to

identify and remove poorly written sentences, which don’t have a Verb or a Noun.

3.2.6 Denoising through Key Phrase Extraction

The key phrase extraction is an automated process of extracting words and phrases that are

considered most relevant to the input text. This is an important preprocessing step that helps

remove irrelevant information (noise) from the dataset. There are many available packages

and methods to perform this task (e.g., Rake, TF-IDF, TextRank, etc.). Here, we used

KeyBERT [23] for its ability to capture contextual information and produce outstanding

results. It uses BERT embeddings to get document-level and word-level representations,

then uses cosine similarity to find the words that are most similar to the document [23].

Please see Figure 3-4 for the inner process of KeyBERT.

3SpaCy: https://spacy.io/

28

There are two key parameters to configure:

• keyphrase_ngram_range: This sets the length (words) range of the result. It takes

in the tuple format of (X, Y), where X = min, Y = max INTEGER values. The

values are set to (3,11) as it showed the best performance in the text clustering. If the

maximum value (Y) is bigger than 11, the clustering accuracy started to decrease.

• nr_candidates: This increases the diversity in the key phrases by setting a higher

value. There is a tradeoff between accuracy and diversity. If you increase the

nr_candidates, you will get diverse keywords, but that are not very good representa-

tions of the document. would advise you to keep nr_candidates less than 20% of the

total number of unique words in your document. [19].

Figure 3-4: Examples of keyBERT outputs. A relatively high nr_candidates will create
more diverse keyphrases [19]

The maximum value of keyphrase_ngram_range has a significant impact on the topic

modeling. For this reason, we created a dedicated section that covers this issue in Section

4.2.

3.3 Grouping Problem-solving Approaches with Topic Mod-

eling

The following two approaches are implemented to perform the topic modeling:

1. Latent Dirichlet Allocation (LDA)[7] and Gibbs Sampling Dirichlet Multinomial

Mixture (GSDMM)[54], which operate based on the Bag-of-Words representation

and probability distribution of words

29

2. Bi-directional Encoder Representations from Transformers (BERT)[16] and Density-

based spatial clustering of applications with noise (DBSCAN)[17] algorithm, which

operate based on the embedding and semantic similarity measurements

3.3.1 Bag-of-Words based Topic Modeling

In this approach, LDA and GSDMM models are used. Both LDA and GSDMM are popu-

larly used to discover hidden topics from a large-scale text corpus.

• LDA is an unsupervised learning model that considers documents as bags of words.

It assumes that the each document is a mixture of topics and each topic is a mixture

of words.

• GSDMM is a modified LDA and well-known for its outstanding performance on

short text. With 63.8% of our text inputs being less than 10 words long, we decided

to include GSDMM to compare the performance with LDA.

Figure 3-5: Topic modeling process of LDA [3]

We used the Gensim library 4 to implement the LDA, and MovieGroupProcess library 5 to
4Gensim: https://pypi.org/project/gensim/
5MovieGroupProcess: https://github.com/rwalk/gsdmm

30

implement GSDMM. There are three main hyperparameters for both LDA and GSDMM;

𝛼 controls the number of topic expected in the document, 𝛽 controls the distribution of

words per topic in the document, and K defines how many topics we need to extract. After

running tests, we used a setting of 𝛼 = 0.3, 𝛽 = 0.005 for their good performance. See

Figure 3-5 for detailed inner workings of topic modeling.

K-value selection

The number of topics (K-value) is one of the crucial hyperparameters that determines the

results of LDA and GSDMM. The K-value is manually entered into the model. The most

popular method to select the optimal K-value is to use the coherence scores. The coher-

ence scores in topic modeling measure how interpretable the topics are to humans. Here,

we used the coherence metrics called CV. It creates content vectors of words using their

co-occurrences, then calculates the score using normalized point-wise mutual information

(NPMI) and the cosine similarity.

NPMI is the normalized variant of pointwise mutual information (PMI). PMI is a rank

measure the likelihood of co-occurrence of two words, taking into account the fact that

it might be caused by the frequency of the single words. Hence, the algorithm computes

the (log) probability of co-occurrence scaled by the product of the single probability of

occurrence as follows [2]:

𝑃𝑀𝐼(𝑎, 𝑏) = 𝑙𝑜𝑔(
𝑃 (𝑎, 𝑏)

𝑃 (𝑎)𝑃 (𝑏)
) (3.2)

Cosine similarity is a measurement that quantifies the similarity between two or more

vectors. It is the cosine of the angle between vectors and described mathematically as

the division between the dot product of vectors and the product of the euclidean norms or

magnitude of each vector.

𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦{𝐴,𝐵} =
𝐴 · 𝐵

‖ 𝐴 ‖‖ 𝐵 ‖
=

∑︀𝑛
𝑖=1 𝐴𝑖𝐵𝑖√︀∑︀𝑛

𝑖=1 𝐴
2
𝑖

√︀∑︀𝑛
𝑖=1 𝐵

2
𝑖

(3.3)

Here, 𝐴𝑖 and 𝐵𝑖 are components of vector A and B respectively [15]:

31

Figure 3-6: Cosine similarity measurement [15]

Fig. 3-7 shows the coherence scores of LDA and GSDMM by topic numbers in range

(start=2, limit=30). Picking the high topic number merely to get the higher coherence

score is not a recommended approach. It is recommended to pick the one where there is a

change of slope from steep to shallow (an elbow). Here, K=12 seems to be a good pick for

both LDA and GSDMM, which has the score of 0.634 and 0.3292 respectively.

Figure 3-7: Coherence Scores per topic number (K) of LDA and GSDMM

32

3.3.2 Transformer-based Topic Modeling

A shortcoming of bag-of-words based topic modeling is that it cannot capture contextual

information as it solely relies on the probability distributions of words. To overcome this

problem, we implemented a transformer-based topic modeling using BERT embedding

and DBSCAN clustering algorithm. This can reflect contextual information in the topic

modeling process. The process is composed of four main stages as illustrated in Fig. 3-8.

Figure 3-8: Workflow of transformer-based topic modeling

Sentence Embedding

Sentences must be transformed into an embedding representation for the text clustering.

These embeddings can then be compared with, e.g., consine-similarity to find the sentences

with a similar meaning. The sentence-level embedding is conducted using a pre-trained

BERT model from Huggingface6. We selected the model ’sentence-transformers/all-MiniLM-

L12-v1’ which is bases on PyTorch and Transformers. The model is trained on over 1 bil-

lion sentences and maps sentences to a 384 dimensional vector space. This model shows

the highest accuracy in clustering texts over other available models . Please see Section 4

for the details of performance evaluations.

6Huggingface: https://huggingface.co/models

33

Data Normalization

By normalizing the inputs we can bring all the input features to the same scale. This is

an important process because the input features are often presented in significantly dif-

ferent ranges. This leads to the uneven distribution of weights, consequently increasing

the oscillating of the learning algorithm and, hence, the training time before it finds the

global minima. To avoid this issue, we used Batch Normalization, which fixes the distri-

bution of the hidden layer values as the training progresses. It makes sure that the values

of hidden units have standardised mean and variance. You can implement this by using

torch.nn.BatchNorm1d() in PyTorch7.

𝑦 =
𝑥 − 𝐸[𝑥]√︀
𝑉 𝑎𝑟[𝑥] + 𝜖

× 𝛾 + 𝛽 (3.4)

The mean and standard-deviation are calculated per-dimension over the mini-batches.

By default, the elements of 𝛾 are set to 1 and the elements of 𝛽 are set to 0 8.

Dimensionality Reduction

The dimension reduction is an important step before performing the clustering as the

curse of dimensionality could prohibit the proper use of clustering algorithms in the high-

dimensional space [39]. Uniform Manifold Approximation and Projection (UMAP) [33] is

used to reduce the dimensionality of embedding. It is fast and scalable, while preserving

the global structure of the data. In this process the dimension is reduced to 5 dimensions

down from the original 384 dimensions.

Clustering

The DBSCAN (Density-based spatial clustering of application with noise) clustering algo-

rithm is used to perform the clustering of the text embeddings. DBSCAN is an unsuper-

vised learning algorithm that groups together data points that are closely packed together.

It can cluster non-linear groups of data points with high accuracy, which cannot be ade-

7PyTorch: https://pytorch.org/
8Batch normalization: https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html

34

quately performed by k-means or Gaussian Mixture EM clustering [52]. See Fig. 3-9 for

an example image. There are three main hyperparameters to configure:

• metric determines the type of distance to use to measure the similarity between in-

stances. It is set to metric=’euclidean’.

• eps specifies how close points should be to each other to be considered a part of a

cluster. If the distance between two points is lower or equal to this value, they are

considered neighbors. It is set to eps=0.5.

• min_sample is the minimum number of points to form a cluster. It is set to the default

value of 5.

DBSCAN was chosen for this task as it outperformed other clustering algorithms; OP-

TICS (Ordering points to identify the clustering structure) and HAC (Hierarchical Ag-

glomerative Clustering) competed against DBSCAN. DBSCAN consistently showed high

accuracies throughout the tests. The detailed test results are described in Fig. 4-5.

Figure 3-9: DBSCAN can find non-linearly separable clusters, which cannot be done by
k-means or Gaussian Mixture EM clustering. [52]

Topic Creation

This is the last stage of transformer-based topic modeling process, where we used a class-

based TF-IDF (c-TF-IDF) [22] to extract the topic modeling keywords from the generated

topic clusters. The equation of c-TF-IDF is described below. TF-IDF is based on the impor-

tance of words that each document is composed of, whereas c-TF-IDF treats all documents

35

clustered in the common topic as a single document – the result can be a long series of

documents per topic – and then applies TF-IDF. In this way, c-TF-IDF can demonstrate the

important words in a topic rather than a document.

𝑐-𝑇𝐹 -𝐼𝐷𝐹𝑖 =
𝑡𝑖

𝑤𝑖

× 𝑙𝑜𝑔
𝑚∑︀𝑛
𝑗 𝑡𝑗

(3.5)

Where,
𝑡𝑖
𝑤𝑖

is the frequency of each word 𝑡 extracted for each class 𝑖 and divided by the total

number of words 𝑤. It is a form of regularization of frequent words in the class,
𝑚∑︀𝑛
𝑗 𝑡𝑗

is the total number of documents 𝑚 divided by the total frequency of word 𝑡

across all classes 𝑛 [22]

3.3.3 Topic Modeling Measurement

The performance of topic modeling is measured by the accuracy of the text clustering;

how well the model groups the text inputs into a correct set of topics. In total five mod-

els are evaluated, namely LDA, GSDMM, DBSCAN, OPTIC, and HAC. To evaluate any

clustering output, you need gold-standard data (a.k.a ground-truth data), which serve as an

answer sheet to compare with the output of the model. To create the gold-standard data,

685 responses were randomly sampled from the collected survey responses and manually

clustered by humans according to their problem-solving methods. The clustering result

from the model is then evaluated by the B-cubed clustering evaluation metrics [4].

B-cubed precision of an item is the proportion of items in its cluster which have the

item’s category (including itself). The overall B-cubed precision is the averaged precision

of all items in the distribution. Since the average is calculated over items, it is not necessary

to apply any weighting according to the size of clusters or categories. The B-cubed recall

is analogous, replacing “cluster” with “category”.

36

Figure 3-10: Example of computing the B-Cubed precision and recall [4]

3.4 Generating Readable Text Summarization

The text summarization model is integrated in the last phase of the pipeline to generate

narrative summaries of the identified topics. By creating the summaries, the end-users is

informed with rich contextual information of the identified problem-solving methods. Fig.

3-11 shows the process of text summarization.

Figure 3-11: Workflow of text summarization

3.4.1 Input Data

The inputs for the summarization are created by merging five most representative sentences

from each topic. The representativeness of a sentence is calculated by summing the c-

37

TF-IDF scores of all the words present in the sentence. In this way, we could identify

the sentences that hold more important keywords representing the topic. Considering that

unimportant words are scored significantly low and the length of a single sentence is short,

it was unnecessary to normalize the summing of words. Fig. 3-12 below is an example of

an input text created by merging the sentences. The generated summary of this example is

"I try to step through the problem by writing the code on the piece of paper." Please see all

the results in Table 5.2.

Figure 3-12: A paragraph of top five sentences from a topic that is fed into the text sum-
marization model for summarization.

3.4.2 Text Summarization Model

The text summarization can be done in two methods; Abstractive and Extractive. Abstrac-

tive summarization attempts to generate an entirely novel reconstruction of a summary

based on the key topics discussed in the text input. Extractive seeks to select a subset of

important words or sentences from the existing document, then combines all of them to

create the summary.

Here, we used the Pre-training with Extracted Gap-sentences for Abstractive Summa-

rization (PEGASUS) model [55] to perform the text summarization. It demonstrates a state-

of-the-art performance on low-resource summarization, which is suitable for our dataset.

Based on the quantitative and qualitative evaluations conducted in Section 4.4.1, tuner007/

pegasus_paraphrase is selected to perform the summarization as it showed the best perfor-

mance in summarizing the texts.

3.4.3 Summarization Evaluation

The quality of generated summaries are evaluated in two ways. Firstly, ROUGE metrics are

used to evaluate the summaries. ROUGE stands for Recall-Oriented Understudy for Gist-

38

ing Evaluation. It determines the quality of a summary (candidate summary) by comparing

it to an ideal summary created by humans (reference summary) [34]. The score is measured

by counting the number of overlapping text units, such as n-gram and word sequences be-

tween the human-generated and computer-generated summaries. The ROUGE evaluation

package offers different measures such as ROUGE-N and ROUGE-L. ROUGE-N measure

the matching of ’n-grams’ between the two summaries.

Here, three measures are used. (1) A unigram (ROUGUE-1) measures the match rate of

a single word between the summaries. (2) A bigram (ROUGE-2) measures the match rate of

two consecutive words. (3) Lastly, ROUGE-L measures the longest common subsequence

(LCS), meaning that it counts the longest sequence of units that is shared between the

summaries. Below is the equation of this metrics.

𝑅𝑂𝑈𝐺𝐸-𝑁 =

∑︀
𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}

∑︀
𝑔𝑟𝑎𝑚𝑛∈𝑆 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)∑︀

𝑆∈{𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠}
∑︀

𝑔𝑟𝑎𝑚𝑛∈𝑆 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)
(3.6)

Where, 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑢𝑚𝑚𝑎𝑟𝑖𝑒𝑠 is the human-generated (gold standard) summaries

𝑆 is a sentence

𝑁 is the length of the n-gram (word sequence)

𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛) is the number of common n-grams in candidate (model generated)

and reference (human generated) summaries

The second method of evaluation is to measure the length of generated summaries.

Some models were producing excessively long summaries. Therefore, I included this eval-

uation criteria to recognize the summaries of adequate length. The baseline of length (an

ideal length) is set by the human-generated summaries, which is 64.1 characters. Based on

the heuristic judgement, any summary that exceeds over 100 characters are considered too

long. See Table 4.5 for details.

3.5 Educational Theories

Two educational theories are selected to guide the interpretation of findings in the educa-

tional perspective; task-structure and active/passive learning frameworks.

39

3.5.1 Task-structure Framework

The general practice of task-structure formulation is to first decompose a task into subtasks

then determine the problem-solving methods for tackling each subtask. However, in this

research, the problem-solving methods are first identified, then formulated into subtasks

backwards. Considering that students come up with novel ways to approach problems in

the online learning setting, constructing the task-structure from bottom to up makes it more

sensible to capture the students’ approaches.

Figure 3-13: An example of bottom-up formulation of a task-structure. Subtasks are for-
mulated based on identified methods

3.5.2 Active/Passive Learning Framework

Active learning is "a method of learning in which students are actively or experientially

involved in the learning process" [9]. Examples of Active Learning includes online discus-

sion/debates, group projects, and worksheets encouraging the application of new knowl-

edge [18]. Passive Learning is a process where students passively receive information

from the learning environment and internalize it in a form of memorization [37]. Examples

of passive learning includes reading, listening to a lecture, watching a video, and looking

at picture or powerpoints. Students learn by merely taking in the given information [18].

We use these definitions to categorize the problem-solving methods into active or passive

learning.

40

Chapter 4

NLP Pipeline Sensitivity Analysis and

Tuning

There are a number of NLP techniques and models included in the NLP pipeline. To

produce the best output, the pipeline needs to go through a tuning process to find the optimal

configuration. This chapter discusses the types and processes of tests conducted to find the

best configuration of each NLP component. Fig. 4-1 below shows an overview of the

performed tests.

4.1 Data Labeling

The text clustering accuracy is used as one of measurements for the NLP pipeline’s perfor-

mance; how accurately it can separate and group similar texts into corresponding (problem-

solving) clusters. Ensuring a high-level of clustering quality is extremely important as both

topic modeling and text summarization rely on the clustering output to perform their own

tasks.

To conduct the performance tests, a total of 685 responses are randomly sampled from

the 7,482 survey responses, as shown in Fig. 4-2 and labeled (clustered) manually in ac-

cordance to their problem-solving methods. This labeled dataset serves as a gold standard

dataset to measure the accuracy of text clustering. We created 15 problem-solving clusters

41

Figure 4-1: Descriptions of test components, parameters, and evaluation approaches

Figure 4-2: Data setup for the performance test. 685 responses were sampled from the
entire dataset and labeled for the performance testing

42

from the sampled responses as shown in Fig. 4-3. IDE1 (119; 17.4%) and Video lectures

(108; 15.8%) are two most frequently mentioned problem-solving methods, followed by

Pen and paper (63; 9.2%), Instructions (62; 9.1%), and so on. Contrarily, Lecture slides

(13; 1.9%), Mental process (25; 3.6%), and Problem breakdown (25; 3.6%) are some of

relatively less mentioned methods. To validate the accuracy and consistency of labeling,

two individuals cross-reviewed the labels and went through 4 rounds of revision.

Figure 4-3: Count of clustered responses by problem-solving methods

4.2 Preprocessing

The preprocessing techniques applied in the pipeline can be largely divided into two cate-

gories: basic and advanced techniques. The basic ones are popularly used techniques, such

as stopwords removal, spelling correction, lemmatization, and so on. The advanced ones,

i.e. POS filtering and key phrase extraction, are particularly included for this research,

given that the noise level of text data was high. The preprocessing test was designed to

measure the impact of different configuration of preprocessing techniques on the clustering

accuracy.

1IDE: Integrated Development Environment

43

With that said, the following three setups, as shown in Table 4.1, were used to conduct
the performance tests:

1. Original data: No preprocessing is applied except for the sentence tokenization

2. Basic preprocessing: Stopwords removal, expansion of contraction, spellchecking,
lemmatization, and collocation detection are applied

3. Full preprocessing: In addition to Basic preprocessing (Setup 2), POS filtering and
key phrases extraction are applied

Table 4.1: Preprocessing Performance Test Setup

Original data Basic preprocessing Full preprocessing
Sentence tokenization ✓ ✓ ✓

Stopwords removal ✓ ✓
Expansion of contraction ✓ ✓

Spellchecking ✓ ✓
Lemmatization ✓ ✓

Collocation detection ✓ ✓
POS filtering ✓

Key phrase extraction ✓

Table 4.2: Clustering Accuracy (F1 Score)

Original data Basic preprocessing Full preprocessing Increase
LDA 0.18 0.19 0.23 5%

GSDMM 0.29 0.29 0.30 1%
OPTICS 0.40 0.38 0.37 -3%

DBSCAN 0.63 0.73 0.78 15%
HAC 0.57 0.68 0.75 18%

Mean 0.414 0.454 0.486 7.2%

Table 4.4 shows the test results. The full preprocessing setup showed the highest clus-

tering accuracy for all algorithms except for OPTICS. In average, the accuracy increased

by 7.2 %. HAC shows the biggest increase of 18%. In terms of overall performance,

DBSCAN shows the best performance, marking 78% accuracy.

Fine-tuning Key Phrase Extraction

Tuning max N-gram of key phrase extraction has a substantial influence on the cluster-

ing performance. Fig 4-4 shows the result of the performance tests, which illustrates the

44

changes in the clustering accuracies based on the different max N-gram values. The combi-

nation of Max N-gram = 11 and DBSCAN clustering algorithm marked the highest accuracy

of 0.76%.

Figure 4-4: Clustering accuracy (F1 Score) by algorithms with different max N-gram values

4.3 Topic Modeling

4.3.1 Text Clustering Test

To produce the best topic modeling result, its pipeline has to be equipped with a high-

performing clustering algorithm. With the optimal configuration identified in the prior

chapters, a series of text clustering tests were conducted to find the best performing cluster-

ing algorithm. We configured the setting around the best accuracy performed by DBSCAN.

The test setup is configured as below:

• Test iteration: 20

• Preprocessing: Full preprocessing setup as described in Section 4.2

• Max N-gram of key phrase extraction: 11

• Testing algorithms: LDA, GSDMM, OPTICS, HAC, DBSCAN

45

(a) Visualization of DBSCAN’s result (b) Clustering accuracy by algorithm

Figure 4-5: (a) Visualization of problem-solving approaches clustered by DBSCAN; (b)
Clustering accuracy by algorithms with 20 test iterations and max N-gram of key phrase
extraction set to 11

The test result is shown in Fig. 4-5 (b). DBSCAN consistently shows the best perfor-

mance among the algorithms. Its mean accuracy (𝜇) is 75%, while LDA shows the lowest

mean accuracy (𝜇) of 16%. The result of DBSCAN is visualized in the vector space in Fig.

4-5 (a).

Fig. 4-6 shows the result of topic modeling conducted with the optimal configuration.

Y axis shows the topic clusters and their top 3 keywords. X axis is the number of docu-

ments (sentences) assigned to that specific topic, in another word the topic frequency. The

model generated 16 topics from the sampled 685 responses, with one topic {defined, meth-

ods, previously} clustered as an outlier (topic number 16); which means it does not belong

to any topic. The result indicates that {video, lecture, watching} is the most frequently men-

tioned problem-solving method by the students, followed by {ide, code, test} and {write,

pen_paper, steps}.

The model was able to capture all the topics that were created during the data labeling.

However, there is a slight discrepancy between the human and the model’s perception of

text information. The model recognizes ’read questions’ and ’read instructions’ as different

topics, whereas we (humans) labeled them as a common topic, considering that ’instruc-

tions’ was given as part of ’questions’. You can see the model created two separate topics

46

Figure 4-6: Topic clusters and keywords generated by Topic Modeling

{read_question, carefully, think} and {instructions, reading, followed}.

Furthermore, the model sometimes pick up popular (frequently appeared) words more

sensitively than the important keywords. For example, the model grouped ’Youtube videos’

and ’lecture videos’ as a common topic {video, lecture, watching}. Because they are two

different behaviors exploiting different learning resources, they need to be differentiated.

But this could be challenging for the computer to understand. Such cases are some limita-

tions of topic modeling observed during the tests.

4.3.2 Keywords Interpretations

Table 4.3 shows how problem-solving methods are interpreted based on the keywords.

We were able to interpret 14 topics, but the rest 2 topics (Topic 15 and 16) were difficult to

understand. Nevertheless, the overall quality of keywords is satisfactory with high accuracy

and interpretability.

47

Table 4.3: Interpretation of Topic Modeling Keywords

Topic Top 3 words Interpretation
1 videos, lecture, watching Watch lecture video
2 ide, code, test Test code on IDE
3 write, pen_paper, steps Write on paper
4 discussion, forum, check Check discussion forum
5 read_questions, carefully, think Re-read questions
6 answers, try, look Look at answers
7 step_by_step, code, tried Try code step by step
8 python_tutor, used, visualize Use python tutor
9 notes, make, referencing Make notes for reference

10 break, smaller, parts Breakdown parts
11 head, code, run Run code mentally
12 trial_error, using, lots Trial and error
13 knowledge, previous, programming Use previous knowledge
14 instructions, reading, followed Follow instructions
15 exercise, previous, analogy N/A
16 defined, methods, previously N/A

4.3.3 Method’s Sensitivity Analysis

This sensitivity analysis is conducted to identify how much variations in the input data

will impact the results for the proposed NLP pipeline. This is to test the robustness of

the method’s results and increase the understanding of the relationships between input and

output. In this analysis, we mainly looked into three areas:

1. Robustness of the NLP method: We looked into whether the method produces

reasonable results with different input data. We wanted to reduce the uncertainty of

the method by examining how the method behaves on different datasets

2. Types of problem-solving methods: We took this opportunity to observe the types

of problem-solving methods used by students in different years

3. Comparison of problem-solving methods: We compared the identified methods for

2020 and 2021 to find their commonalities. We compared by counting the common

keywords occurrences between the methods of 2020 and 2021

First, we ran the topic modeling model using the survey responses from year 2020

and a combined responses of 2020 and 2021. As for the combined dataset, we got 3,655

48

(a) Survey responses of 2020 (b) Survey responses of 2021

(c) Combined responses of 2020 and 2021

Figure 4-7: Topic modeling results of survey responses from year 2020, 2021, and com-
bined dataset

49

data points after the preprocessing, down from originally 11,096 points. The results of

topic modeling are shown in Fig. 4-7. The topic modeling model performed very well on

both datasets. It produced a reasonable number of problem-solving methods with sensible

keywords and cluster groups.

Table 4.4: The properties of the datasets

Year Number of
responses

After
preprocessing

Avg. number of
sentences per

response

Avg. number of
words per
response

2020 3,614 2,032 1.52 4.61
2021 7,482 1,644 1.16 4.80

Combined 11,096 3,655 1.33 4.71

Next, we used heatmaps to visualize the similarity between the identified problem-

solving methods. The similarity is measured by the occurrences of common keywords. We

used top 10 keywords from each method to compare. For this analysis, we created three

versions of heatmap: (1) 2020 vs 2021, (2) Combined vs 2020, (3) Combined vs 2121.

The heatmaps are shown in Fig. 4-8. For both X and Y axises of the heatmap, the

most frequent topics (problem-solving methods) are laid in sequence from the lower-left.

In the image (a), as the bright space indicates, popular topics in both 2020 and 2021 seem

to be talking about similar methods, contrarily, while least popular topics hardly have any

similarity (dark space). The image (b) and (c) also shows a tendency of high frequency,

high similarity, but there are random bright dots scattered along the diagonal. We believe

these dots indicate the topics that are preserved through the topic modeling process of the

combined dataset.

4.4 Text Summarization

4.4.1 Quantitative and Qualitative Evaluations

We used ROUGE metrics to evaluate the quality of the generated summaries. As shown

in Table 4.5, three models from each Extractive and Abstractive summarization models

from Huggingface are selected to perform the tests. The selection was made based on the

50

(a) Year 2020 vs. Year 2021

(b) Combined dataset vs. Year 2020

51

(a) Combined dataset vs. Year 2021

Figure 4-8: Heatmap of common keywords occurrences between problem-solving methods

52

most download counts and the highest user rates. The human-generated baseline is used to

calculate the ROUGE scores of model-generated summaries.

One of ROUGE score’s weaknesses is that it tends give higher scores for longer sum-

maries as the score is calculated based on the overlapping words and the length of the

longest common subsequences. Based on the human baseline measured by the human gen-

erated summaries, it is recommended that the length of summaries is around 65 characters.

We selected pegasus_paraphrase model as it showed the best performance and an adequate

length of summaries.

Table 4.5: ROUGE F1 results

Model R-1 R-2 R-L Avg. length (char)
Extractive

cnn_dailymail 0.20 0.06 0.18 169.5
pegasus-large 0.23 0.10 0.22 78.7

pegasus-wikihow 0.18 0.05 0.16 319.8
Abstractive

pegasus-xsum 0.23 0.07 0.20 85.3
pegasus_paraphrase 0.29 0.12 0.27 61.9
pegasus-reddit_taifu 0.69 0.59 0.69 322.9

Baseline
Human - - - 64.1

Table 4.6 is the result of text summarization performed by pegasus_paraphrase. The

generated summaries provide contextual information compared to the keywords from the

topic modeling, helping the end-users to better understand the context of students’ problem-

solving methods. The quality of the summaries is satisfying except for the last two sum-

maries, which are grammatically sound but hard to understand the meaning.

4.5 Task-Structure Formulation

Fig 4-9 illustrates the task-structure of programming formulated based on the identified

problem-solving methods. Putting together problem-solving methods that work towards

the same goal helps reverse-engineer the types of tasks that students are working on.

The diagram shows that students are using diverse methods to tackle tasks like ’Strengthen

53

Table 4.6: Topic summarization generated by PEGASUS model

Keywords Generated summaries

video, lecture, watching
The lecture videos gave me most of the information I

needed for the exercises.

ide, code, test
I use reverse engineering to try to understand the correct

answers by running the code in the ide.

write, pen_paper, steps
I need to write down the steps I need to take in order to get

the desired result.

discussion, forum, check
I read the discussion board to understand why I missed the

question.

read_questions, carefully, think
The way I used to correct my mistake was to read more

carefully the question.

answers, try, look
When I was wrong, I looked at the answers if I didn’t get

it right.
step_by_step, code, tried I tried to find errors with a step by step approach.

python_tutor, used, visualize I used python tutor to understand the code.
notes, make, referencing I look at my notes and make a program from them.

break, smaller, parts
To see how python calculates, I broke the problem down

into the most basic parts.
head, code, run I think about how the code will run and do it in my head.

trial_error, using, lots
It was difficult to find the problems in my code during the

trial and error process.
knowledge, previous,

programming
I have used previous programming knowledge to create

programs.
instructions, reading, followed I just followed the instructions.

exercise, previous, analogy
I have run into a lot of errors while writing solutions to

previous exercises.
defined, methods, previously I looked at methods before they were defined.

knowledge’ and ’Clarify code logic’ in order to solve programming problems. We can also

learn that students engage in other task activities such as ’Coding & degugging’, ’Under-

stand problems’, and ’Social/peer learning’.

54

Task-Structure
of Programming

Construction
of knowledge

Social/peer
learning

Understanding
the problem

Clarification
of code logic

Coding &
debugging

Watch
lecture
videos

Take notes

Use previous
knowledge

Write on
paper

Check
discussion

forum

Re-read
questions

Follow
instructions

Try code
step by step

Breakdown
parts

Run code
mentally

Use python
tutor

Test code
on IDE

Trial and
error

Look
answers

Figure 4-9: Task-structure of programming formulated based on identified problem-solving
methods

55

Chapter 5

Experiments

This chapter describes the research setup and presents the results of each research com-

ponent. Firstly, the experimental setup is described, specifically on how the NLP libraries

and models are configured based on the performance test conducted in Chapter 5. Then it

discusses and evaluates the results obtained, followed by their educational implications.

Each of the section in this chapter aims to address the overarching and sub research

questions as follows:

• Overall research results: RQ 1. (Overarching question) Can we capture the students’

problem-solving methods carried out both inside and outside the MOOC platform?

• Section 5.2, 5.3, and 5.4: RQ 2. (Technical question) Do NLP-driven methods iden-

tify accurate problem-solving information?

1. Section 5.2 elaborates the process of data cleaning and the impact of NLP tech-

niques on the accuracy of text clustering. It addresses the question "Can they

maintain high accuracy with extremely noisy, large-scale text data?"

2. Section 5.3 and 5.4 present the problem-solving methods extracted from the

text data. They address the question "Can topic modeling accurately discover

the problem-solving methods?"

• Section 5.5: RQ 3. (Educational question) What are the educational implications of

identified problem-solving methods?

56

1. Section 5.5 discusses the interpretation of findings using the educational theo-

ries, such as task-structure and active/passive learning frameworks.

Lastly, Section 5.6 discusses important discussion points and limitations of the research.

5.1 Experimental Setup

The entire data of 7,482 survey responses from 2021 is used to run the optimized NLP

pipeline. Results from Chapter 5 served as a foundation for configuring the NLP pipeline.

In total, about 16 NLP libraries and models are used to build the pipeline. The hyperparam-

eter tuning of models is also conducted during the optimization process in Chapter 5, which

are already reflected in the experiment setup. You can see the specification of optimal NLP

configuration in Table 5.1 below.

Phases Components Library / Model Func / Param

Preprocessing

Sentence tokenization nltk.tokenize sent_tokenize()
Spelling correction symspellpy SymSpell()

Stopwords removal
gensim.utils simple_preprocess()
nltk.corpus stopwords.words()

Contraction expansion nltk.tokenize.treebank TreebankWordDetokenizer()

Lemmatization nltk.stem WordNetLemmatizer()
Collocation detection gensim.models Phrases()

POS filtering SpaCy spacy.load(’en’)
Key phrase extraction keybert KeyBERT()

Topic Modeling

Sentence embedding Sentence transformers all-MiniLM-L12-v1
Normalization torch.nn BatchNorm1d()

Dimension reduction umap UMAP()
Clustering algorithm sklearn.cluster DBSCAN()

Topic creation sklearn.feature_extraction CountVectorizer()

Text summarization Summarization transformers
PegasusTokenizer

PegasusForCondition-
alGeneration

Table 5.1: Types of libraries and models used to perform NLP tasks in this research. Each
of the setting is optimized based on the performance test results described in Chapter 4

57

5.2 Preprocessing

Fig. 5-1 shows the preprocessing steps and the number of remaining responses after each

step. In total, 7,482 responses were fed into the preprocessing pipeline. As a result, merely

1,644 responses were selected; approximately 78% of data is discarded from the original

dataset, which are considered poorly structured or irrelevant to work with. Fig. 5-1 below

shows the preprocessing steps and the number of remaining responses.

Figure 5-1: Flowchart of the preprocessing steps and the number of remaining responses

5.3 Topic Modeling

Table 5.2 shows the result of topic modeling in “Freq.” and “Keywords” columns. The

model generated 18 topics from 1,644 responses, with one topic showing irrelevant infor-

mation; ID-16 {possible, relax, feeling}. The result indicates that ID-01 {code, step, try}

is the most frequently mentioned problem-solving approach by the students, followed by

ID-02 {video, look, lecture} and ID-03 {answer, check, question}.

5.4 Text Summarization

Table 5.2 shows the summaries of topics generated by the text summarization model in the

“Generated summaries” column. Generated summaries give more contextual information

than the keywords, supplementing the limited readability of the keyword outputs of topic

modeling.

58

Figure 5-2: Topic Modeling result of 1,644 responses

5.5 Educational Implications

5.5.1 Task-structure Framework

Five tasks are formulated based on the identified 18 problem-solving approaches, which

are Knowledge construction, Social/peer learning, Understanding the problem, Clarifying

code logic, and Coding and debugging. One approach below is excluded from the task-

structure due to its irrelevance.

• ID-16: I am moving this week across the country so I need to be calm and methodical

59

5.5.2 Active/Passive Learning Framework

We created a matrix to categorize the problem-solving approaches in the two-dimensional

space; Task-structure vs. Active/Passive Learning. We placed the approaches in the matrix

ID Freq. Keywords Generated summaries Examples (highest c-TF-IDF)

01 899 code, step,
try

I try to step through the problem by writing the
code on the price of paper.

i write the code with pen and paper and try to
step through the problem.

02 307 video, look,
lecture

Use the knowledge from the video to answer
the question.

make good note from the video and look at
discussion thread.

03 106
answer,
check,

question

If I get the question wrong, I will use my ide
and the discussion thread to correct it.

for true false question i answer with the inverse
of my wrong answer after identify why i be

incorrect.

04 51 try, error,
time

I try to understand the error by using try and
error method.

i try to understand the error for example with
google stack overflow.

05 49
python,

python_tutor,
pythontutor

I use python tutor to help me understand my
code.

in that case i run the code with python tutor
and read the discussion to understand the try

except else finally flow.

06 46
print_

statement,
expect, print

I use auxiliary print statement to check if the
program works as I expect.

mainly i use auxiliary print statement to check
if the different iteration work as i expect.

07 35
read,

carefully,
instruction

Carefully read the instruction. read the instruction very carefully.

08 26 ide, use,
check

I would use the ide shell if I didn’t know an
answer.

if i do not know an answer i would try different
thing use the ide shell.

09 18 figure, try,
answer

To figure out a graceful solution to the cube
root video, use stack overflow.

use stack overflow to figure out a graceful
solution to the cube root video cliffhanger

negative fraction.

10 17
pseudo_code,
pseudocode,

logic

Prepare pseudocode to understand the logic
flow and then code.

pseudocode and reading on blog to see the
thinking that be involve.

11 16 apply, wife,
know

I use what I know about programming and trial
and error to fine tune my solution.

i mostly apply what i know about
programming and then fine tune the result

through trial and error.

12 15
go_back,
material,

come_back

I would go back to the lecture and try to find a
solution to the problem.

i would go back through the example problem
give in the handout in the lecture and try to

adopt that code for these situation.

13 14 ide_reach,
solution, try I try on ide until I reach the solution. try on ide until reach the solution.

14 13

previous_
programme,
knowledge,
experience

I have used previous programming knowledge. by use previous knowledge skill from another
programming language.

15 12 ask, friend,
help I have to ask my friend for help. i have to ask for help from my friend at these

exercise.

16 9 possible,
relax, feeling

I am moving this week across the country so I
need to be calm and methodical.

i be move this week across country so honestly
it be just panic and desperation.

17 6
get_stuck,

deduce,
manually

If I am stuck and can’t see any way out, I check
the resource online.

first i try to deduce with what i know and if i be
stuck really hard and cannot see any way out i

check the resource online.

18 5
idle,

compare,
estimate

If it doesn’t work, I try it in my idle and
compare it to what I’m suppose to get.

i do it in my idle and if it do not work i debug it
and compare it with be correct.

Table 5.2: Results of topic modeling and text summarization. Column (1) ID is used as an
identifier in Table 5.3, (2) frequency of topic, (3) topic keywords from topic modeling, (4)
generated summaries by the summarization model, and (5) examples of input sentences to
the summarization model

60

Knowledge
construction

Social/peer
learning

Understanding the
problem Clarifying code logic Coding and debugging

A
ct

iv
e

L
ea

rn
in

g

• Check online
resources (ID-17)

• Ask a friend
(ID-15)

• Use discussion
forum (ID-03)

• Write down steps
(ID-01)

• Use python tutor
(ID-05)

• Write pseudo code
(ID-10)

• Use print statement
(ID-06)

• Trial and error (ID-11)
• Try on IDE (ID-8,

ID-13, ID-18)
• Use stack overflow

(ID-09)

Pa
ss

iv
e

L
ea

rn
in

g • Watch lecture videos
(ID-02)

• Look lecture material
(ID-12)

• Use previous
knowledge (ID-14)

• Read instructions
(ID-07)

• Understand error
(ID-04)

Table 5.3: Categorization of methods by Active/Passive Learning (row) and Subtasks (col-
umn). ID is the identifier that helps locate the topic in Table 5.2. Underlines indicate the
methods that took place outside the platform.

according to their corresponding tasks and activeness of learning. Table 5.3 shows how

approaches are placed across the matrix. In Knowledge construction, we can see that stu-

dents engage more with the passive learning methods, focusing on consuming the learning

resources from the course or relying on the previous knowledge. Contrarily, in Coding &

Debugging, students engage more with the active learning methods. It seems like a natural

outcome as the coding and debugging requires students to actually write codes and fix er-

rors. Students also use Python tutor and pseudo-code to Clarify code logic. To Understand

the problem, students write down the steps of problem and carefully read the instructions.

Lastly, students also try to Learn from their Peers by asking friends and using discussion

forum.

5.6 Discussion and Limitation

While this methodology successfully identified students’ problem-solving methods from

the large-scale text data, there are some important discussion points and limitations to dis-

cuss:

61

5.6.1 Preprocessing

(1) Improved Accuracy vs. Data Loss

Preprocessing plays a significant role in improving the quality of topic modeling; we ob-

served accuracy improvements in all clustering algorithms, except for OPTICS. The best

performing algorithm, DBSCAN, improved its accuracy from 63% to 78%. However, we

also had to suffer approx. 78% of data being discarded during the preprocessing process.

This can play as a constraint for data of small size with a high level of noise.

(2) Multi-methods Problem Solving Approach

Another point to discuss is how we can capture students who using multiple problem-

solving methods. This research tokenizes all the responses by sentences to avoid conflicting

topics in the same data entry. However, the shortcoming of this approach is that it can only

capture one topic per data entry (single sentence). This approach cannot detect how many

methods are used by a single students.

5.6.2 Topic Modeling

(1) Enhanced Performance through Transformer

The transformer-based topic modeling model significantly outperforms the “bag-of-words”

models, such as LDA and GSDMM. The topic modeling performed most accurately with

the combination of BERT sentence-embedding representations and DBSCAN clustering

algorithm, which achieved the highest clustering accuracy of 78% compared to 16% by

LDA and 24% by GSDMM.

(2) Considering FP and FN in the Performance Measurement

In this research, we only used F1 Score to measure the accuracy of clustering as shown

in Table 4.4. It is because we thought the impact of FP (False Positive) and FN (False

Negative) to the topic modeling result is not significant. However, in the future research,

we can explore using FP and FN to evaluate the clustering result. It can provide us with

62

insights on what types of similar documents are assigned to different clusters (FN) and,

vice versa, dissimilar documents are assigned to the same cluster (FP).

5.6.3 Text Summarization

(1) Improved Readability and Importance of Pre-trained Model Selection

Integrating the text summarization model into the topic modeling pipeline provided a novel

solution to improving the limited readability of keyword-based results of topic modeling.

However, as shown in Table 4.5, the quality of summaries highly depends on the pre-trained

model you chose to use. If you are not fine-tuning the model with your data, it is highly

recommended that you test different models before selecting one.

5.6.4 Educational Implications

(1) Identified Tasks through Task-structure Framework

Based on the formulated task-structure, we learned that students focus on five learning tasks

to solve programming problems: (1) Knowledge construction, (2) Social/peer learning, (3)

Understanding the problem, (4) Clarifying code logic, and (5) Coding & debugging. Many

problem-solving approaches focused on tackling Coding & debugging. This shows that

the selection of problem-solving approach is highly task-dependent (programming) and

demonstrates the “tool” importance as the problem-solving is very reliant on using the

tools.

(2) Active/Passive Learning by Tasks

The Active/Passive Learning framework also provided insights on the types of learning

student use to tackle certain tasks. For example, Knowledge construction mainly relied on

passive learning, such as watching lecture videos, look lecture material, etc. Contrarily,

Coding & debugging relied on active learning, such as Try on IDE, Trial and error, Use

print statement, etc. A previous study suggests that there is a strong correlation between

doing and learning outcome, called “doer effect” [31]. With the method we proposed, we

63

can further analyze whether “doer effect” exist in the learning behaviors carried out outside

the platform, such as use stack overflow, use pythontutor, and so on.

(3) MOOC’s Possible Constraints for Some Methods

Another thing to notice is the empty or less-populated cells in Table 5.3. It can be an in-

dication of learning constraints in the MOOC environment, which hinder students from

using the methods in those cells. For example, as an Active Learning method for Knowl-

edge Construction, students can carry out a group project to apply knowledge in different

contexts to earn a new one. However, due to the nature of MOOC, such coordination is

difficult for instructors to accommodate.

5.7 Use Case Diagrams

This section describes an overview of how the proposed NLP system fits into the existing

MOOCs learning environment and interacts with the stakeholders involved in the operation

of MOOCs.

5.7.1 Boundary and Architecture of the System

Object Process Methodology (OPM) is a conceptual modeling methodology for designing

systems. We used this system design method to describe and specify the functions, struc-

tures, and values offered by the system. Fig. 5-3 shows the OPM of MOOCs and proposed

NLP system’s architecture. The system’s function, what it does, consists of an operand and

a process. The process is an action or transformation taken on the operand to create values.

The system has five operands.

• External operands: Students and Enhanced LXD (Learning Experience Design)

• Internal operands: User data, Survey responses, and Insights

These operands are transformed by Value Processes, which changes the states of operands

to create the system values. For example, the operand of Students is transformed into

64

Learning Experience as it goes through the process of Learning, and again Learning Expe-

rience is transformed into Survey Responses through the process of Surveying. This process

repeats until it reaches the ultimate goal of Enhanced LXD.

For each of processes, there is a single or multiple Value Instruments that enables the

process. For example, the process of Learning is enabled by Course material and Learning

features. Likewise, Fig. 5-3 shows the relationships of other Value Processes and Value

Instruments. The last two layers (from the right) of Supporting Processes and Supporting

Instruments work towards supporting Value Instruments.

Figure 5-3: OPM of MOOCs and NLP system’s architecture

5.7.2 Stakeholder Needs and Relationships

Here, we used a stakeholder map to illustrate the relevant stakeholders and their exchanges

of mutual needs. We identified four stakeholders involved in the operation of MOOCs and

NLP system:

1. Students: Students are anyone enrolled in MOOCs to use the learning content and

features.

65

2. Instructors: Instructors deliver courses and facilitate the learning of students based

on the instructional design developed by educators.

3. Educators: Educators are responsible for contributing to students’ learning by cre-

ating learning modules and developing instructional designs, while an instructor is

the one who teaches; a teacher. Often educators act as an instructor as well.

4. Admins: Admins provide administrative and technical supports to instructors and

students. Their job includes the customization of online survey questionnaires. For

some courses, this task is done by the instructors.

The priority of needs is indicated by three types of arrows: (1) Must meet, (2) Should

meet, and (3) Might meet. Please refer to the Needs priority box located in the upper-right

side of Fig. 5-4.

Figure 5-4: Stakeholder map for MOOCs and suggested NLP system with characterization
of the needs illustrated

There are several important needs in the loop that are key to our research. First of all,

the loop among MOOCs, NLP System, and Admins serves as a foundation of this research,

which enables data collection, data processing, and customization of survey based on the

data needs. Therefore, their needs must be met, hence, indicated as Must meet. The needs

in the loop among MOOCs, NLP System, and Instructors are also essential and must be

met to achieve the objective of this research. It enables Instructors to better understand

66

the students’ problem-solving approaches and reflect that in their course delivery to im-

prove the learning quality. The instructional design must be provided from Educators to

Instructors for them to deliver courses accordingly, therefore, the need priority is indicated

as Might meet. The summaries of problem-solving approaches from the NLP system can

help Educators to enhance the instructional design, but not necessarily have to happen dur-

ing the course as that could cause disruption and confusion to students. It could happen

after the course only if it is considered necessary. Given that MOOCs are delivered with or

without live instructors, the needs of user data for Instructors and guidance for Students are

indicated as Should meet, necessary but not essential. Lastly, but perhaps most importantly,

the mutual needs between Students and MOOCs (Engagement and Education) must be met

to have the fundamental ground to initiate this research.

67

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the present work, we suggested a NLP-driven methodology around utilizing topic mod-

eling and text summarization, which successfully captured the students’ problem-solving

methods carried out in the MOOC’s learning setting. By applying an effective set of prepro-

cessing techniques, we were able to secure a high-quality data with a cost of approximately

78% loss of data; in return of 15% increase in the DBSCAN’s clustering accuracy. The

transformer-based clustering method using BERT’s sentence-level embedding and DB-

SCAN clustering algorithm contributed significantly to improving the topic modeling’s

performance; using this approach the clustering accuracy increased to a mean accuracy of

75% from LDA’s 16%. Furthermore, we integrated the text summarization model into the

final step of pipeline to transform the keyword-based results into well-structured narrative

summaries, which contributed to improving the readability of the final outputs.

As much as we focused on the computer science aspect of the research, we wanted

to stretch the realm of this research to the education domain as well. Two existing edu-

cational frameworks were used to draw educational implications from the findings. The

task-structure framework provided a guidance in formulating types of tasks that students

were tackling, inferring from the identified problem-solving methods. We observed that

students heavily rely on “tools”, such as IDE, Pythontutor, etc., for solving programming

problems and can expect that such selection of methods can vary noticeably depending on

68

the given task.

The current approach allows the capability to process large-scale text data to gain rich

conclusions of students’ behaviors while studying on the MOOC platform. This informa-

tion can provide a good guidance to MOOCs instructors for improving their instructional

designs and teaching strategies. Hopefully this research can open new opportunities for

future research. Below is a recap of key conclusions of this research:

1. Preprocessing played a significant role in improving the quality of topic modeling;

DBSCAN’s clustering accuracy improved from 63% to 78% (Table 4.4)

2. Topic modeling performed most accurately with the combination of BERT sentence-

level embedding and DBSCAN clustering algorithm, achieving a mean accuracy of

75% compared to 16% by LDA (Figure 4-5)

3. Integrating text summarization with topic modeling suggested a solution to improv-

ing the poor readability of keyword-based output of topic modeling by generating

narrative summaries (Table 5.2)

4. Based on the formulated task-structure, we learn that students focus on five tasks to

solve programming problems: (1) Knowledge Construction, (2) Social/peer learn-

ing, (3) Understanding the problem, (4) Clarification of code logic, and (5) Coding

debugging (Table 5.3)

5. Based on the active/passive learning framework, among the identified 18 problem-

solving methods, 12 are active learning methods, 5 are passive ones, and one out-

lier. Furthermore, for Knowledge Construction, students mainly relied on the passive

learning methods, whereas for Clarifying code logic and Coding and debugging, they

more relied on active learning methods (See Table 5.3)

69

6.2 Future Work

6.2.1 Addressing Research Limitations

There are areas to improve in this research. Firstly, in terms of computer science domain,

the current preprocessing pipeline is highly selective considering that only 22% of the data

is preserved after the preprocessing. Although it is understandable as user-generated data

are often very noisy, it would be interesting to further delve into what are the characteristics

of data that are causing such a huge data loss and explore other preprocessing techniques

that can reduce the data loss while maintaining a high-level of data quality. Furthermore,

examining whether different survey questionnaire design can help minimize the noise in

the responses can be an interesting area to look into.

Secondly, in terms of educational domain, although two educational frameworks used

in this research provided useful information and an interesting guidance to the interpreta-

tion of findings, we can explore more available educational frameworks that can potentially

help us draw interesting insights from the discovered problem-solving methods. In partic-

ular, it would be interesting to find an educational framework that can help improve the

instructional design of online courses based on the students’ problem-solving strategies.

6.2.2 Building on the Findings of Research

We can use the NLP method proposed in this research to find answers to other interest-

ing questions in online education. For example, we can examine whether the students’

problem-solving methods are time-sensitive, differ every year, whether students have dif-

ferent strategies for solving problems of different course subjects, whether there is a de-

mographic pattern in the use of methods, and so on. Below I elaborated some of potential

areas for the future research.

(1) Year-over-Year Analysis

Yearly observation of students’ problem-solving methods can common or time-specific

methods used over the years can be an interesting research topic. For example, watching

70

video lectures and try on IDE are some of popularly used methods in both 2020 and 2021,

please see Section 4.3.3. We can observe for a longer time period to see how consistently

they appear through the years and what are the newly adopted methods among the students.

Furthermore, considering that the pandemic had a significant impact on the people’s lives,

looking into pre and post pandemic periods can provide an insight on whether the pandemic

has altered the types of problem-solving methods students use.

(2) Comparison with other courses

Observing how students’ learning behaviors and methods vary across different course sub-

jects can provide interesting insights to educators. We learned from this research that stu-

dents rely on tool-based methods to solve programming problems. But students may adopt

different problem-solving strategies for problems of different course subjects, e.g. art, lin-

iguistics, etc.

(3) Academic Performance

The correlation between the level of knowledge and the student’s choice of problem-solving

strategies can be an interesting area to explore. For example, students proficient in coding

might focus more on methods like coding and debugging, whereas students of beginner’s

level might focus more on the construction of knowledge. We can use students’ perfor-

mance information, such as grades, participation level, etc., to conduct the correlations

analysis.

(4) Demographic Analysis

The learning engagement and use of problem-solving methods may differ based on the stu-

dents’ demographic information. Depending on the countries or the communities they are

part of, students may experience connectivity or social barriers for learning. These factors

could influence the types of tools or methods students use to solve problems. For exam-

ple, students with limited connectivity may prefer text-based or document-based learning

methods, which are less data-consuming, over methods like watching videos. It would be

71

interesting to research on this topic to see whether there are demographic patterns in the

problem-solving methods.

72

Appendix A

List of Generated Bigrams

Table A.1: Examples of created bigrams

Bigram Words
use_ide, sketch_step, lecture_video, videos_previously, read_slide,

google_help, keep_trying, read_book, python_tutor, trial_error,
step_step, discussion_point

73

Appendix B

Survey Analysis: Multiple-choice

Questions

B.1 Background

An online survey was conducted on students enrolled in a MOOC for the spring term of

2021. Survey participants were asked about their learning experiences, considering diffi-

culties, motivation levels, and self-reflections. The questions were consisted of 5 free-text

questions and 6 multiple-choice questions.

• Course name: Introduction to Computer Science and Programming Using Python

• Survey location: The survey was conducted during the period of Week 1, 2 and 4.

It was placed at the end of each section

B.1.1 Survey questions

The survey questions were consisted of 5 free-text questions and 6 multiple-choice ques-

tions. Survey participants were asked mainly about their learning experiences, particularly

related to the course difficulties and the self-reflections. The list of questions asked in the

survey is shown in Table B.2.

74

Table B.1: Time and locations of survey conducted on students in a MOOC. The course
has total 9 weeks of units.

Time Unit Section

Week 1

Unit 1: Python Basics
1. Introduction to Python
2. Core Elements of Programs
Problem Set 1

Unit 2: Simple Program
3. Simple Algorithms
4. Functions
Problem Set 2

Week 2

Unit 3: Structured Types
5. Tuples and Lists
6. Dictionaries
Problem Set 3

Unit 4: Good Programming Practices
7. Testing and Debugging
8. Exceptions
Problem Set 4

Week 4

Unit 5: Object Oriented Programming
9. Classes and Inheritance
10. An Extended Example
Problem Set 5

Unit 6: Algorithmic Complexity
11. Computational Complexity
12. Searching and Sorting Algorithms
Problem Set 6

B.2 Multiple-choice Questions Analysis

B.2.1 Responses - Rating

Fig. B-1 shows the area charts of Q3, Q4, Q7, and Q8. In each question, students are asked

to answer the question in the scale of Extremely, Very, Moderately, Slightly, and Not at all.

These questions were asked from Unit 1 to Unit 6, so we can observe the changing trend

over the time.

According to the Q3 graph, the students thought that Unit 2 and 5 were particularly

challenging as indicated by the peaks in both Unit 2 and 5. These peaks correlate with the

drops in the Q4 graph which asks about how prepared the students feel for the exercises.

However, the increase in the difficulty level does not seem to have a significant impact on

the students’ motivation levels and perception of usefulness. As shown in the graphs of Q7

and Q8, both graphs maintain steady trends throughout the units, although there are slight

increases in the negative responses (‘Slightly’ and ‘Not at all’) in Unit 5 and 6.

75

Table B.2: Multiple-choice questions in the survey

No. Questions Format
Q3 How challenging were these exercises? MCQ
Q4 How prepared did you feel for these exercises? MCQ

Q5
What previous/external resources were helpful for these exercises?

Select all that apply
MCQ

Q7 How motivated are you to continue this course? MCQ
Q8 Do you find these exercises useful? MCQ

Q10 Please choose 2 or 3 values that are most important to you MCQ

B.2.2 Responses - Multi-selection

As shown in Fig. B-5, students selected the video lectures to be the most helpful learning

resources among the given options. It leads the second place by a huge margin, which is

followed by previous programming knowledge / skills, discussion threads, and so on.

Here, we used a Bump Chart to explore the changes in Rank of a value over a time

dimension (Unit 1 Unit 6). The overall rank maintains the same throughout the progress of

the course, except there was a single switch between the last two resource types, ‘discussion

thread from outside this course’ and ‘exercises from outside this course’.

‘Personal and intellectual growth’, ‘Graining broad skills and knowledge’, and ‘Rela-

tionships with family or friends’ are among the most valued items by the students, followed

by ‘Health and well-being’ and ‘Compassion and kindness’. Contrarily, ‘Religion and spir-

ituality’ and ‘Athletics and sports’ are among the least valued items by the students.

The importance of values did not change substantially during the progress of the course,

except for minor switches of order that occurred within the top-tier and low-tier groups.

76

(a) Q3. How challenging were these exercises? (b) Q4. How prepared did you feel for these exercises?

(c) Q7. How motivated are you to continue this
course?

(d) Q8. Do you find these exercises useful?

Figure B-1: Area graphs of multiple-choice questions

Figure B-2: Q5. What previous/external resources were helpful for these exercises? Select
all that apply

77

Figure B-3: Bump chart showing the rank of Helpful Resources by Unit

Figure B-4: Q10. Please choose 2 or 3 values that are most important to you (there is no
right answer)

78

Figure B-5: Bump chart showing the rank of Important Values by Unit

79

Bibliography

[1] Ashwaq Al-Musharraf and Mona Alkhattabi. An educational data mining approach
to explore the effect of using interactive supporting features in an lms for overall per-
formance within an online learning environment. International Journal of Computer
Science and Network Security, 16(3):1–2.

[2] Valentina Alto. Understanding pointwise mutual information in nlp. medium, 2020.

[3] Amina Amara, Mohamed Ali Hadj Taieb, and Mohamed Ben Aouicha. Multilingual
topic modeling for tracking covid-19 trends based on facebook data analysis. Springer
Science+Business Media, 2021.

[4] Enrique Amigó, Julio Gonzalo, Javier Artiles, and M. Felisa Verdejo. Comparison
of extrinsic clustering evaluation metrics based on formal constraints. Information
Retrieval, 12(4):14–16, 2009.

[5] Ercan Atagün, Bengisu Hartoka, and Ahmet Albayrak. Topic modeling using lda
and bert techniques: Teknofest example. In 2021 6th International Conference on
Computer Science and Engineering (UBMK), pages 660–664, 2021.

[6] David Paul Ausubel. The psychology of meaningful verbal learning. New York, Grune
Stratton, 1963.

[7] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[8] Fernanda Cesar Bonafini. The effects of participants’ engagement with videos
and forums in a mooc for teachers’ professional development. Open Praxis,
vol.9(issue.4):p.433–447, 2017.

[9] J. Bonwell, C.; Eison. Active learning: Creating excitement in the classroom. EHE-
ERIC Higher Education Report, A(1), 1991.

[10] B. Chandrasekaran. Task-structures, knowledge acquisition and learning. Machine
Learning, 4:p.339–345, 1989.

[11] B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine Volume,
(Number 4), 1990.

80

[12] Xieling Chen, Gary Cheng, Haoran Xie, Guanliang Chen, and Di Zou. Understanding
MOOC reviews: Text mining using structural topic model. Human-Centric Intelligent
Systems, vol.1(Issue 3-4):p.55–65, 2021.

[13] Matthieu Cisel. Interactions in MOOCs: The hidden part of the iceberg. International
Review of Research in Open and Distributed Learning, vol. 19(5), 2018.

[14] Wikipedia contributors. List of english contractions, 2020. Retrieved July 30, 2020
from https://en.wikipedia.org/wiki/Wikipedia:List_of_English_contractions.

[15] Pratap Dangeti. Statisticss for Machine Learning. O’Reilly, 2017.
https://www.oreilly.com/library/view/statistics-for-machine/9781788295758/.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2018.

[17] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based al-
gorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, page 226–231. AAAI Press, 1996.

[18] Center for Instructional Technology and University of Florida. Training. Adopting
active learning approaches.

[19] Galeopsi. Keyword extraction with bert. medium, 2020.

[20] Wolf Garbe. Spelling correction fuzzy search: 1 million times faster through sym-
metric delete spelling correction algorithm.

[21] Anna Glazkova. Identifying topics of scientific articles with bert-based approaches
and topic modeling. Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing, Trends and Applications in Knowledge Discovery and Data Mining:pp 98–105.

[22] Maarten Grootendorst. c-tf-idf. 2020.

[23] Maarten Grootendorst. Keybert, 2021. https://github.com/MaartenGr/KeyBERT.

[24] Philip J. Guo, Juho Kim, and Rob Rubin. How video production affects student
engagement: An empirical study of mooc videos. Conference: Proceedings of the
first ACM conference on Learning @ scale conference, 2014.

[25] Elisa Grande Elena Colomina Clara hamizo Gonzalez, Julian Cano. Educational
data mining for improving learning outcomes in teaching accounting within higher
education. International Journal of Information and Learning Technology, 32:272–
285.

[26] Robert Han, Feifei Ellis. Predicting students’ academic performance by their online
learning patterns in a blended course: To what extent is a theory-driven approach and
a data-driven approach consistent? Educational Technology Society, 24(1):191–204.

81

[27] Khe Foon Hew. Promoting engagement in online courses: What strategies can we
learn from three highly rated moocs. British Journal of Educational Technology,
vol.47(no.2):p.320–341, 2016.

[28] Roya Hosseini, Peter Brusilovsky, Michael Yudelson, and Arto Hellas. Stereo-
type modeling for problem-solving performance predictions in moocs and traditional
courses. Conference: User Modeling Adaptation and PersonalizationAt: Bratislava,
Slovakia, 2017.

[29] Sonia Pamplona Javier Bravo-Agapito, Sonia J. Romero. Early prediction of under-
graduate student’s academic performance in completely online learning: A five-year
study. Computers in Human Behavior, 115, 2021.

[30] Aviva Aiden Adrian Veres Matthew Gray Joseph Pickett Dale Hoiberg Dan Clancy
Peter Norvig Jon Orwant Steven Pinker Martin Nowak Jean-Baptiste Michel,
Yuan Shen and Erez Aiden. Quantitative Analysis of Culture Using Millions of
Digitized Books. Science (New York, N.Y.), 331 (01 2011), 176–82. edition, 2011.
https://doi.org/10.1126/science.1199644.

[31] Ana Bell Erik Hemberg Jitesh Maiyuran1, Ayesha Bajwa1 and Una-May O’Reilly.
How student background and topic impact the doer effect in computational thinking
moocs. 2019.

[32] Youngjin Lee. Using self-organizing map and clustering to investigate problemsolv-
ing patterns in the massive open online course: An exploratory study. Journal of
Educational Computing Research, vol.57(2):p.471–490, 2019.

[33] James Melville Leland McInnes, John Healy. UMAP: Uniform Manifold Approxima-
tion and Projection for Dimension Reduction. arXiv, 1802.03426v3 edition, 2020.
https://arxiv.org/pdf/1802.03426.pdf.

[34] Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. ACL,
post-conference workshop of acl 2004 edition, 2004. https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/07/was2004.pdf.

[35] Sannyuya Liu, Xian Peng, Hercy N. H. Cheng, Zhi Liu, Jianwen Sun, and Chongyang
Yang. Unfolding sentimental and behavioral tendencies of learners’ concerned top-
ics from course reviews in a mooc. Journal of Educational Computing Research,
vol.57(Issue 3):p.670–696, 2018.

[36] Lara J. A. Romero C. López-Zambrano, J. Improving the portability of predicting
students’ performance models by using ontologies. Advance online publication, pages
1–19.

[37] Cater III J.J. Varela O. Michel, N. Active versus passive teaching styles: an empirical
study of student outcomes. Human Resource Development Quarterly, 20(4):397–418.

82

[38] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. Curran
Associates Inc., 2013.

[39] Vladimir Molchanov and Lars Linsen. Overcoming the curse of dimensionality when
clustering multivariate volume data. Scitepress, page 1, 2018.

[40] Jasmine Paul and Felicia Jefferson. A comparative analysis of student performance in
an online vs. face-to-face environmental science course from 2009 to 2016. Frontiers
in Computer Science, vol. 1, 2019.

[41] Xian Peng and Qinmei Xu. Investigating learners’ behaviors and discourse content in
mooc course reviews. ELSEVIER Computers Education, vol.143, 2020.

[42] Zhang G. Sheng X. et al. Qiu, F. Predicting students’ performance in e-learning using
learning process and behaviour data. Sci Rep, 12(453), 2022.

[43] Radhika Santhanam, Sharath Sasidharan, and Jane Webster. Using self-regulatory
learning to enhance e-learning-based information technology training. Information
Systems Research, vol.19(no.1):p.26–47, 2008.

[44] Dhawal Shah. By the numbers: Moocs in 2021. Class Central, 2021.

[45] Alexander Shashkov, Robert Gold, Erik Hemberg, ByeongJo Kong, Ana Bell, and
Una-May O’Reilly. Analyzing student reflection sentiments and problem-solving pro-
cedures in moocs. L@S ’21: Proceedings of the Eighth ACM Conference on Learning
@ Scale, pages p.247–250, 2021.

[46] Stephen Silverman, Raj Subramaniam, and Amelia Mays Woods. Task structures, stu-
dent practice, and skill in physical education. The Journal of Educational Research,
vol.91:p.298–307, 1998.

[47] Eleni Stroulia and Ashok K. Goel. Task structures: What to learn? AAAI Technical
Report, 4:p.339–345, 1994.

[48] Vicki Trowler. Student engagement literature review. The higher education academy,
pages p.1–15, 2010.

[49] George Veletsianos, Amy Collier, and Emily Schneider. Digging deeper into learners’
experiences in MOOCs: Participation in social networks outside of MOOCs, notetak-
ing and contexts surrounding content consumption. British journal of educational
technology, Vol. 46(3):p.570–587, 2015.

[50] Jovita M. Vytasek, Alyssa Friend Wise, and Sonya Woloshen. Topic models to sup-
port instructors in MOOC forums. Conference: the Seventh International Learning
Analytics Knowledge Conference, page p.610–611, 2017.

[51] Miaomiao Wen, Diyi Yang, and C.P. Rosé. Sentiment analysis in MOOC discussion
forums: What does it tell us? Proceedings of the 7th International Conference on
Educational Data Mining, EDM:p.1–8, 2014.

83

[52] Wikipedia. Dbscan. 2022.

[53] Xiao Yang-cai and Wang Rui. A study of mooc course review topics mining based
on lda topic model. 3rd Africa-Asia Dialogue Network International Conference on
Advances in Business Management and Electronic Commerce Research, 2021.

[54] Jianhua Yin and Jianyong Wang. A dirichlet multinomial mixture model-based ap-
proach for short text clustering. Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014.

[55] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training
with extracted gap-sentences for abstractive summarization, 2020.

84

