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1 Introduction
A fundamental difference between ordinary commutative algebra and higher algebra
is the difficulty of constructing quotient algebras. As an example, the quotient of
Z by 2 is the commutative algebra F2, while the quotient of the sphere spectrum
by 2 does not even admit a unital multiplication.1 At odd primes S/𝑝 admits a
unital multiplication, but Toda showed in 1968 that there is no homotopy associative
multiplication on S/3 [22]. The issues continue at larger primes too; work of Kraines
[14] and Kochman [13] implies2 that S/𝑝 admits an A𝑝−1-algebra structure, but no
A𝑝-algebra structure. In particular, S/𝑝 is never an E1-algebra.

The situation improves somewhat if we look at the quotient by a power of 𝑝 instead.
In 1984, Oka constructed homotopy associative multiplications on S/4 and S/9 [18]
and much more recently, Bhattacharya and Kitchloo constructed an A𝑝𝑞−1-algebra
structure on S/𝑝𝑞 for 𝑝 odd (on S/𝑝𝑞+1 for 𝑝 = 2) [4, 5]. Ultimately, the paucity of
positive results has led to a rather negative outlook on the issue of quotient algebras—
an outlook which led Mark Mahowald to conjecture that for 𝛼 ∈ 𝜋*S the quotient
S/𝛼 admits an E1-algebra structure if and only if 𝛼 = 0. In this article we show that
this conjecture is completely false.

Theorem 1.1. The Moore spectrum S/8 admits an E1-algebra structure.
At odd primes S/𝑝2 admits an E1-algebra structure.

With an E1-algebra structure on S/8 in hand we are led to ask for more. Could
there be Moore spectra which are E2-algebras? The answer, rather shockingly, is yes.

Theorem 1.2. Moore spectra admit the following multiplicative structures:

• S/2𝑞 admits an E𝑛-algebra structure for 𝑞 ≥ 3
2
(𝑛 + 1) and

• S/𝑝𝑞 admits an E𝑛-algebra structure for 𝑞 ≥ 𝑛 + 1 and 𝑝 odd.

The Moore spectra we have considered up to now are only the first examples of
the generalized Moore spectra obtained by inductively taking quotients by higher
chromatic self-maps and multiplicative structures on these objects have received a
certain amount of attention (see [17, 19, 9, 8]). Here too we are able to exceed all
expectations.

Theorem 1.3. For each ℎ and 𝑛 there exist generalized Moore spectra of type ℎ which
admit an E𝑛-algebra structure.

Each of the theorems we have stated up to this point is proved as a corollary3 of
the next theorem which allows us to construct quotient algebras in great generality.

Theorem 1.4. Suppose we are given an E𝑚+1-algebra 𝐴 ∈ Sp with 𝑚 ≥ 2 and a
class 𝑣 ∈ 𝜋2*(𝐴) such that

1A unital multiplication on S/2 can be ruled out by considering the Cartan formula for Steenrod
squares.

2See [2, Example 3.3] for an explanation of this implication.
3Except for the 2-primary parts of Theorems 1.1 and 1.2 which are proved separately in Section 3.
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• 𝑄1(𝑣) ≡ 0 (mod 𝑣)4 or equivalently

• the cofiber 𝐴/𝑣 admits a unital multiplication.

Then, 𝐴/𝑣𝑞 admits an E𝑛-𝐴-algebra structure as long as 𝑛 ≤ 𝑚 and 𝑞 > 𝑛.

This theorem too follows from an even more general result on quotients in higher
algebra where we allow the category in which we work to vary.

Theorem 1.5. Suppose we are given a stably E𝑚-monoidal5 category 𝒞 with 𝑚 ≥ 2
an object ℐ ∈ 𝒞 and a map 𝑣 : ℐ → 1𝒞 such that the cofiber 1𝒞/𝑣 admits a right
unital multiplication. Then for each 𝑛 ≤ 𝑚 there exists a tower of E𝑛-algebras and
E𝑛-algebra maps

· · · −→ 1𝒞/𝑣
𝑛+3 −→ 1𝒞/𝑣

𝑛+2 −→ 1𝒞/𝑣
𝑛+1.

Moreover, each 1𝒞/𝑣
𝑞 has a unique 𝑣-compatible (in the sense of Definition 5.1 below)

E𝑛-algebra structure.

Remark 1.6. If we let 𝒞 ′ denote the full subcategory of 𝒞 generated by 1𝒞 and ℐ
under tensor products and finite (co)limits, then there is an E𝑚-monoidal left adjoint
Ind(𝒞 ′)→ 𝒞 which is fully faithful on 𝒞 ′.

This allows us to reduce the proof of Theorem 1.5 to the case where 𝒞 is stable,
presentably E𝑚-monoidal and 1𝒞 and ℐ are compact ⊗-generators. ▷

The proof of Theorem 1.5 has two main inputs: An obstruction theory for con-
structing E𝑛-algebra structures on quotients which we develop in Section 2 and a
categorification of the Adams spectral sequence constructed by Patchkoria and Pstrą-
gowski in [20] which we review in Section 4. The proof of Theorem 1.5 is then quite
direct: We construct a deformation of 𝒞 which categorifies the 1𝒞/𝑣-Adams spectral
sequence and an object 𝜈1𝒞/̃︀𝑣𝑞 lying over 1𝒞/𝑣

𝑞. Then we compute that the groups in
which the obstructions to constructing an E𝑛-algebra structure on 𝜈1𝒞/̃︀𝑣𝑞 live vanish!

The proofs of the 2-primary parts of Theorems 1.1 and 1.2 are simpler than (and
somewhat different from) the proof of Theorem 1.5 and are given in Section 3. In
Appendix A, which may be of independent interest, we discuss bar-cobar duality
for graded E𝑛-algebras and use this duality to make the key construction used in
Section 2.

The reader might naturally wonder whether our results are sharp. The following
example shows that Theorem 1.4 at least cannot be too far from sharp.

Example 1.7. Let 𝑅 be the free commutative F2-algebra on a class 𝑥 in degree zero.
From Theorem 1.4 we know that 𝑅/𝑥2(2𝑘−1) admits an E2𝑘−2-algebra structure. On

4Here 𝑄1 is the power operation carried by the second cell of DE𝑚
2 on an even sphere. Note that

since 2𝑄1(𝑣) = 0 this condition is automatic if 2 is invertible in 𝑅. Similarly, 𝑄1 satisfies a Cartan
formula and therefore this condition is satisfied by squares of even degree classes (see Remark 5.5).

5Meaning that we ask that the binary tensor product −⊗− on 𝒞 commutes with finite (co)limits
separately in each variable.
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the other hand

𝑄2𝑘(𝑥2𝑘+1−2) ≡ 𝑥2(2𝑘−2)𝑄1(𝑥)2
𝑘 ̸≡ 0 (mod 𝑥2𝑘+1−2),

which implies that 𝑅/𝑥2(2𝑘−1) is not an E2𝑘+1-𝑅-algebra. ▷

The issue of whether Theorem 1.2 is sharp is more delicate. We suspect it is sharp
at odd primes, but that at 𝑝 = 2 the function 3

2
(𝑛 + 1) can be replaced by 𝑛 + 𝑂(1).

Conventions

1. We fix three nested universes, referring to objects as small, large or huge de-
pending on their size.

2. We write 1ℰ for the unit of a monoidal category ℰ .

3. We write 1ℰ{𝑋} for the free E𝑛-algebra on an object 𝑋 ∈ ℰ .

4. Throughout the body of the paper 𝒞 will be a fixed stable, presentably E𝑚-
monoidal category with compact generators {ℐ⊗𝑘}𝑘≥0 and 𝑚 ≥ 2.

5. We write 𝒞Gr for the E𝑚-monoidal category of graded objects in 𝒞. In 𝒞Gr we
write 𝑋(1) for the shift of 𝑋 by 1 and 𝑋𝑘 for the degree 𝑘 component of 𝑋.

6. We write 𝒞Fil for the E𝑚-monoidal category of filtered objects in 𝒞 and we take
the convention that all filtrations are increasing. We write 𝜏 for the shift map
𝜏 : 𝑋(1)→ 𝑋 on a filtered object.

7. We view graded objects as modules over the cofiber of the shift map 𝜏 in filtered
objects and identify the associated graded functor with taking the cofiber by 𝜏 .

8. We say an E𝑛-algebra or coalgebra in 𝒞Gr (or 𝒞Fil) is positively graded if it
vanishes in negative gradings and is given by the unit in degree 0.

9. Part of the data of a E𝑛-monoidal structure on 𝒞 includes a 𝑘-fold tensor product
functor E𝑛(𝑘) ×Σ𝑘

𝒞×𝑘 → 𝒞. Precomposing with the diagonal gives a functor
𝒞 → Fun(E𝑛(𝑘)ℎΣ𝑘

, 𝒞) and we write D𝑐E𝑛
𝑘 (−) for the functor 𝒞 → 𝒞 obtained by

taking the limit over E𝑛(𝑘)ℎΣ𝑘
(the space of unorderd configurations of 𝑘 points

in R𝑛).

10. When working with F2-synthetic spectra we use the convention that the 𝑘 index
of Σ𝑘,𝑠 is the topological degree and the 𝑠-index is Adams filtration. This has the
pleasant feature that (𝑘, 𝑠) corresponds to (𝑥, 𝑦)-coordinates in Adams spectral
sequence charts.
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2 An obstruction theory for quotients

In order to motivate the developments of this section let us consider an example.

Example 2.1. Suppose we are given an object ℐ in 𝒞 and a map 𝑣 : ℐ → 1𝒞 and we
want to give the cofiber 1𝒞/𝑣 an E1-algebra structure.

A natural first step in constructing such an E1-algebra is to consider the E1-cofiber
of 𝑣 which we write 1𝒞//𝑣.6 What we would like to do is continue attaching further
E1-cells to 1𝒞//𝑣 in order to eliminate the difference between 1𝒞/𝑣 and 1𝒞//𝑣. In
order to organize this procedure we pass to the filtered setting where we consider the
E1-cofiber 1𝒞Fil//𝜏𝑣 which we depict below

· · · −→ 0 −→ 1𝒞 −→ 1𝒞/𝑣 −→ (?) −→ (?) −→ · · · .

Through degree 1 this is what we would expect to see in an E1-algebra structure on
1𝒞Fil/𝜏𝑣, but 1𝒞Fil//𝜏𝑣 begins to deviate from 1𝒞Fil/𝜏𝑣 in degree 2. To analyze this de-
viation we note that since the associated graded functor is E𝑚-monoidal gr∙ (1𝒞Fil//𝜏𝑣)
is a free graded E1-algebra on a copy of Σℐ in degree 1. This means that in degree
2 our algebra 1𝒞Fil//𝜏𝑣 has an extra copy of Σ2ℐ⊗2 which we would like to eliminate.
To do this we need to produce a lift

1𝒞Fil//𝜏𝑣

Σ2ℐ⊗2(2) (1𝒞Fil//𝜏𝑣)/𝜏

which we can use to take a further E1-cofiber. In this manner we encounter our first
obstruction:

𝑄1(𝑣) ∈ [Σ1ℐ⊗2,1𝒞/𝑣].7

If 𝑄1(𝑣) vanishes, then upon taking the E1-cofiber of the associated lift we obtain a
filtered E1-algebra 𝑅 which agrees with 1𝒞/𝜏𝑣 in degrees 0, 1 and 2, but begins to
deviate in degree 3. ▷

Our goal in this section is to extend the manipulations of Example 2.1 into an
obstruction theory for constructing an E𝑛-algebra structure on 1𝒞/𝑣. Before that we
make a short digression on A2-structures.

Lemma 2.2 (cf. [21, p.27-28], [11] and [17]). In the situation described above, if
𝑄1(𝑣) vanishes, then 1𝒞/𝑣 admits a unital multiplication.

Proof. The desired unital multiplication appears as the degree ≤ 2 component of the
multiplication on the filtered E1-algebra 𝑅 constructed in Example 2.1.

6By this we mean the pushout of the span 1𝒞 ← 1𝒞{ℐ} → 1𝒞 where ℐ maps to the unit by 𝑣 on
the left and by zero on the right.

7The reader can take this as the definition of 𝑄1(𝑣).
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Lemma 2.3. Given an 𝑋 ∈ 𝒞 there exists a sequence of E𝑛-algebras in 𝒞Gr converging
to the trivial square zero extension of 1𝒞Gr by a copy of Σ𝑋 placed in degree 1

1𝒞Gr = 𝑅0 𝑟1−→ 𝑅1 𝑟2−→ 𝑅2 → · · · → 1𝒞Gr ⊕ Σ𝑋(1)

such that

1. 𝑅𝑘 is equivalent to 1𝒞Gr ⊕ Σ𝑋(1) through degree 𝑘.

2. The map 𝑟𝑘 fits into a pushout square of E𝑛-algebras

1𝒞Gr

{︀
Σ−1−𝑛D𝑐E𝑛

𝑘 (Σ𝑛+1𝑋(1))
}︀

1𝒞Gr

𝑅𝑘−1 𝑅𝑘.

aug

𝑠𝑘

𝑟𝑘 p

Proof. In proving this lemma we make heavy use of the material from Appendix A.
The resolution is from Construction A.20. Lemma A.21 identifies the objects 𝑋𝑘

from this construction with Σ−1−𝑛Bar(𝑛)(1 ⊕ Σ𝑋(1))𝑘. Then, the combination of
Theorem A.6 and Lemma A.19 give us equivalences

Bar(𝑛)(1⊕ Σ𝑋(1))𝑘 ≃ coFree(Σ𝑛+1𝑋(1))𝑘 ≃ D𝑐E𝑛
𝑘 (Σ𝑛+1𝑋).

Proposition 2.4. Given a map 𝑟 : 𝑋 → 1𝒞 in 𝒞 there exists a sequence of inductively
defined obstructions

𝜃𝑘 ∈ [Σ−2−𝑛D𝑐E𝑛
𝑘 (Σ𝑛+1𝑋), 1𝒞/𝑟] for 𝑘 ≥ 2

whose vanishing allows us to inductively construct a sequence of E𝑛-algebras

1𝒞 = 𝑅
0 𝑟1−→ 𝑅

1 𝑟1−→ 𝑅
2 → · · · → 1𝒞/𝑟

converging to an E𝑛-algebra structure on 1𝒞/𝑟, where each map 𝑟𝑘 sits in a pushout
square

1𝒞
{︀

Σ−1−𝑛D𝑐E𝑛
𝑘 (Σ𝑛+1𝑋(1))

}︀
1𝒞

𝑅
𝑘−1

𝑅
𝑘
.

aug

𝑠𝑘

𝑟𝑘 p

Proof. In order to construct an E𝑛-algebra structure on 1𝒞/𝑟 we will construct an E𝑛-
algebra structure on the filtered object cof(𝑋(1)

𝜏𝑟−→ 1𝒞Fil) whose associated graded
is equipped with an equivalence with the square zero E𝑛-algebra 1𝒞Gr ⊕Σ𝑋(1). The
desired E𝑛-algebra is then obtained by inverting the filtration parameter 𝜏 .
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Let 𝑅𝑘 denote the graded E𝑛-algebra from Lemma 2.3. We will inductively pro-
duce filtered E𝑛-algebras ̃︀𝑅𝑘 whose associated graded is 𝑅𝑘 and whose underlying
E𝑛-algebra is the desired 𝑅

𝑘. For our base case we let ̃︀𝑅1 be the E𝑛-cofiber of the
map 𝜏𝑟 : 𝑋(1)→ 1𝒞Fil . On associated graded this is a free algebra on Σ𝑋(1) and we
pick an identification of it with 𝑅1. Meanwhile, in degree 1 we have ( ̃︀𝑅1)1 ≃ 1𝒞/𝑟 as
desired.

Examining the pushout square from Lemma 2.3(2) we see that given a choice of̃︀𝑅𝑘−1 and a lift

̃︀𝑅𝑘−1

1𝒞Fil

{︀
Σ−1−𝑛D𝑐E𝑛

𝑘 (Σ𝑛+1𝑋(1))
}︀

𝑅𝑘−1𝑠𝑘

̃︀𝑠𝑘

we can construct an ̃︀𝑅𝑘 as the pushout of ̃︀𝑠𝑘 with the augmentation. Since we are
mapping out of a free algebra and 𝑅𝑘−1 ∼= ̃︀𝑅𝑘−1/𝜏 the obstruction to constructing
the lift ̃︀𝑠𝑘 is the composite of 𝑠𝑘 with the 𝜏 -Bockstein

𝜃𝑘 : Σ−1−𝑛D𝑐E𝑛
𝑘

(︀
Σ𝑛+1𝑋(1)

)︀ 𝑠𝑘−→ 𝑅𝑘−1 𝛿𝜏−→ Σ ̃︀𝑅𝑘−1(1).

Now we note that since 𝑅𝑘−1 vanishes in degrees 2, . . . , 𝑘− 1 by Lemma 2.3(1) we
can identify ( ̃︀𝑅𝑘−1)𝑘−1 with 1𝒞/𝑟. Consequently, the obstruction 𝜃𝑘 lives in

[Σ−2−𝑛D𝑐E𝑛
𝑘

(︀
Σ𝑛+1𝑋

)︀
, 1𝒞/𝑟].

Remark 2.5. The obstruction 𝜃𝑘 depends upon a choice of nullhomotopy of each
of the previous obstructions. In particular, if [Σ−1−𝑛D𝑐E𝑛

𝑘 (Σ𝑛+1𝑋), 1𝒞/𝑟] = 0, then
there is at most one such nullhomotopy and therefore Proposition 2.4 produces at
most one E𝑛-algebra structure on the quotient. ▷

As computing maps out of D𝑐E𝑛
𝑘 (Σ𝑛+1𝑋) can be unwieldy in general, we end

the section by noting that there is a simple resolution which lets us subdivide the
obstruction 𝜃𝑘 into a collection of obstructions 𝜃𝑘,𝛼 whose sources are suspensions of
𝑋⊗𝑘.

Lemma 2.6. D𝑐E𝑛
𝑘 (𝑌 ) has a resolution by finitely many copies of Σ−𝑐𝑌 ⊗𝑘 where

0 ≤ 𝑐 ≤ (𝑛− 1)(𝑘 − 1).

Proof. We can describe D𝑐E𝑛
𝑘 (𝑌 ) as the limit over the diagram

𝐹 : E𝑛(𝑘)ℎΣ𝑘
→ 𝒞

describing all ways of taking the 𝑘th power of 𝑌 . The space E𝑛(𝑘)ℎΣ𝑘
is equivalent

to the space of unordered configurations of 𝑘 points in R𝑛 and we can put a finite
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cellular filtration on this object whose cells lie in the range 0, . . . , (𝑛− 1)(𝑘− 1).8 On
the limit of the diagram 𝐹 of shape E𝑛(𝑘)ℎΣ𝑘

this induces a finite filtration whose
associated graded is given by copies of Σ−𝑐𝑌 ⊗𝑘 where 0 ≤ 𝑐 ≤ (𝑛− 1)(𝑘 − 1).

Corollary 2.7. In the situation of Proposition 2.4 we can use the filtration on
D𝑐E𝑛

𝑘 (−) from Lemma 2.6 to refine the obstructions 𝜃𝑘 to obstructions

𝜃𝑘,𝛼 ∈ [Σ−2−𝑛−𝑐𝛼(Σ𝑛+1𝑋)⊗𝑘, 1𝒞/𝑟]

where 𝑘 ≥ 2 and 0 ≤ 𝑐𝛼 ≤ (𝑛− 1)(𝑘 − 1).

Remark 2.8. In the case 𝑛 = 1 the space E1(𝑘)ℎΣ𝑘
is a single point and therefore

we have obstructions
𝜃𝑘 ∈ [Σ−3(Σ2𝑋)⊗𝑘, 1𝒞/𝑟].

▷

3 E𝑛-algebra Moore spectra

The key idea in applying Proposition 2.4 to construct multiplicative structures on
Moore spectra is that while the obstruction groups do not vanish in Sp, they do
vanish in certain deformations of Sp. In this section we apply this idea using the
category of F2-synthetic spectra as our deformation.

Theorem 3.1. S/8 admits the structure of an E1-algebra.

Proof. In order to prove that S/8 admits an E1-algebra structure we will show that
in the F2-synthetic category 𝜈S/̃︀23 admits an E1-algebra structure and then invert 𝜏 .

Applying the obstruction theory from Proposition 2.4 with the simplification from
Remark 2.8 to the map ̃︀23 : S0,3 → 𝜈S we a obtain sequence of inductively defined
obstructions

𝜃𝑘 ∈ [Σ−3,3(S2,1)⊗𝑘, 𝜈S/̃︀23] for 𝑘 ≥ 2

whose vanishing implies 𝜈S/̃︀23 admits an E1-algebra structure. On the other hand,
the vanishing line from [7, Prop. 15.8]9 10 says that

[S𝑤,𝑠, 𝜈S/̃︀23] = 0

when 𝑠 > 1
2
𝑤 + 3. In particular, this implies that 𝜃𝑘 is zero because it lies in a zero

group!

8For an explicit presentation of this space as a finite simplicial set of dimension (𝑛 − 1)(𝑘 − 1)
one can take the quotient of the (free) Σ𝑘 action on the nerve of the poset of Fox–Neuwirth cells
(see [3]).

9For the interested reader we note that the part of this proposition we use is essentially equivalent
to Adams’ vanishing line in the cohomology of the Steenrod algebra from [1].

10We warn the reader that our convention for the indexing of bigraded spheres (see convention
(6)) differs from that used in loc. cit.
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The F2-synthetic homotopy groups of 𝜈S/̃︀23.

0 2 4 6 8 10 12

0

2

4

6

8

𝜃2

𝜃3

𝜃4

𝜃5

𝜃6

Figure 0-1: A picture of the F2-synthetic homotopy groups of 𝜈S/̃︀23. Black dots indicate non-𝜏 -
torsion classes and we suppress all 𝜏 -multiples. The green line is the vanishing line above which the
bigraded homotopy groups are zero. The red classes are the obstructions 𝜃𝑘.
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Building on the proof of Theorem 3.1 we prove the more complicated Theorem 3.2
in an almost identical way.

Theorem 3.2. S/2𝑞 admits the structure of an E𝑛-algebra for every 𝑞 ≥ 3
2
(𝑛 + 1).

Proof. This time we will show that in the F2-synthetic category S/̃︀2𝑞 admits an E𝑛-
algebra structure. Applying the obstruction theory from Proposition 2.4 to the map̃︀2𝑞 we a obtain sequence of inductively defined obstructions

𝜃𝑘,𝛼 ∈ [Σ−2−𝑛−𝑐𝛼,2+𝑛+𝑐𝛼(S1+𝑛,𝑞−1−𝑛)⊗𝑘, S/̃︀2𝑞]

where 𝑘 ≥ 2 and 0 ≤ 𝑐𝛼 ≤ (𝑛 − 1)(𝑘 − 1) whose vanishing implies S/̃︀2𝑞 admits an
E𝑛-algebra structure. Comparing the bidegree of 𝜃𝑘,𝛼 to the vanishing region from
Lemma 3.3 below we again find that 𝜃𝑘,𝛼 lies in a zero group since

((𝑞 − 1− 𝑛)𝑘 + 2 + 𝑛 + 𝑐𝛼) >
1

2
((𝑛 + 1)𝑘 − 2− 𝑛− 𝑐𝛼) + 𝑞.

Lemma 3.3. If 𝑠 > 1
2
𝑤 + 𝑞, then 𝜋𝑤,𝑠(𝜈S/̃︀2𝑞) = 0.

Proof. In this lemma we invoke the machinery of vanishing lines from [7, §11] and
our proof is patterned on the proof of [7, Prop. 15.8].

We proceed by induction with 𝑞 = 1 as our base case (which is already covered
by loc. cit.). For the inductive step we apply [7, Lem. 11.11] to the cofiber sequence

Σ0,1𝜈S/̃︀2𝑞−1 → 𝜈S/̃︀2𝑞 → 𝜈S/̃︀2.

4 Deforming 𝒞
In this section we use the machinery of [20] to construct a deformation of 𝒞 in which
we can run the arguments of the previous section in order to prove Theorem 1.5.

Recollection 4.1. Given an epimorphism class 𝑄 on a stable category ℰ such that
ℰ has enough 𝑄-injectives Patchkoria and Pstrągowski define a prestable category
𝒟𝜔

≥0(ℰ ; 𝑄) with associated stable category 𝒟𝜔(ℰ ; 𝑄) which fits into a diagram

𝒟𝜔
≥0(ℰ ; 𝑄)

ℰ ℰ

(−)𝜏=1
𝜈

Id

such that

1. 𝒟𝜔
≥0(ℰ ; 𝑄) has finite limits and colimits.
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2. 𝜈 is fully faithful.

3. 𝒟𝜔
≥0(ℰ ; 𝑄) is generated under finite colimits by the image of 𝜈.

4. 𝜈 preserves those cofiber sequences 𝑎→ 𝑏→ 𝑐 for which 𝑏→ 𝑐 is 𝑄-epi.

5. 𝒟𝜔
≥0(ℰ ; 𝑄) is equipped with an automorphism [1] and an equivalence

𝜈(−)[1] ≃ 𝜈(Σ−).

6. (−)𝜏=1 is the localization of 𝒟𝜔(ℰ ; 𝑄) at (integer suspensions of) the assembly
maps

𝜏𝑋 : Σ𝜈𝑋[−1]→ 𝜈𝑋.

7. If ℐ is 𝑄-injective and 𝑋 ∈ ℰ , then [Σ−𝑠𝜈𝑋, 𝜈ℐ] = 0 for 𝑠 > 0.

For these claims see [20, §5], specifically 5.32, 5.34, 5.37, 5.47 and 5.60. ▷

For the proof of our main theorem we will also need an E𝑚-monoidal structure on
our deformation of 𝒞. Although [20] only considers monoidal structures in the case
of Sp, as it turns out the general case is no more difficult and our treatment follows
[20, §5.5] closely.

Definition 4.2. We say that an epimorphism class 𝑄 on a stably E𝑚-monoidal cat-
egory ℰ (with 𝑚 ≥ 2) is ⊗-compatible if for every 𝑄-epi map 𝑋 → 𝑌 and 𝑍 ∈ ℰ the
map 𝑋 ⊗ 𝑍 → 𝑌 ⊗ 𝑍 is 𝑄-epi as well.11 ▷

Proposition 4.3. If 𝑄 is a ⊗-compatible epimorphism class on a stably E𝑚-monoidal
category ℰ with 𝑚 ≥ 2, then 𝒟𝜔(ℰ ;𝑄) admits an exact E𝑚-monoidal structure, com-
patible with the prestable structure, such that 𝜈 and (−)𝜏=1 are E𝑚-monoidal.

Proof. The construction of the E𝑚-monoidal structure, compatibility with the prestable
structure and the E𝑚-monoidality of 𝜈 are proved in the same way as in [20, Prop.
5.69]. Using the fully-faithfulness of 𝜈 we can identify 𝜏𝑋 with 𝜏1 ⊗ 𝜈𝑋 (and conse-
quently we drop the subscript from 𝜏1 going forward). The E𝑚-monoidality of (−)𝜏=1

now follows from describing this localization as inverting the map 𝜏 in a monoidal
way.

We are now ready to introduce the specific deformation of interest to us.

Definition 4.4. Let 𝒬 denote the epimorphism class of maps 𝑋 → 𝑌 ∈ 𝒞𝜔 which
are split epi upon tensoring with 1𝒞/𝑣.12 ▷

Lemma 4.5. The epimorphism class 𝒬 enjoys the following properties:
11Note that because 𝑚 ≥ 2 it doesn’t matter whether 𝑍 is on the left or right in this definition.

The potential discrepancy between left ⊗-compatible and right ⊗-compatible in the E1-monoidal
case is the root of our restriction to 𝑚 ≥ 2.

12That these maps form an epimorphism class follows from [20, Examples 3.4 and 3.6].
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1. Every object of the form 1𝒞/𝑣 ⊗𝑋 is 𝒬-injective.

2. The map 𝑋 → 1𝒞/𝑣 ⊗𝑋 is 𝒬-mono.

3. 𝒞𝜔 has enough 𝒬-injectives.

4. 𝒬 is ⊗-compatible.

Proof. Using the right unital multiplication on 1𝒞/𝑣 conclusions (1) and (2) follow
from the same argument as in the proof of [20, Lem. 5.67]. (3) follows from (1) and
(2). Again using the right unital multiplication on 1𝒞/𝑣, conclusion (4) follows from
the same argument as in [20, Lem. 5.68].

There is one more modification we need to make in order to link up with the
material from Section 2: We want to have a presentable category deforming 𝒞.

Construction 4.6. Recall that we have already arranged in Remark 1.6 that 1 and
ℐ are compact and 𝒞 is generated under tensor products and finite (co)limits by
these generators. We let Def(𝒞; 𝒬) denote the ind-completion of 𝒟𝜔(𝒞𝜔;𝒬). This
renormalization fits into a diagram of presentably E𝑚-monoidal categories and E𝑚-
monoidal, filtered colimit preserving functors

Def(𝒞; 𝒬)

𝒞 𝒞

(−)𝜏=1
𝜈

Id

which agrees with the one from 4.1 on compact objects. ▷

We end the section by proving a vanishing lemma which serves as the analog of
Lemma 3.3 in Def(𝒞; 𝒬).

Construction 4.7. Since 1𝒞 → 1𝒞/𝑣 is (1𝒞/𝑣)-split mono we have a cofiber sequence

𝜈1𝒞 → 𝜈(1𝒞/𝑣)→ 𝜈(Σℐ).

We write ̃︀𝑣 for the associated boundary map

̃︀𝑣 : Σ−1𝜈ℐ[1]→ 𝜈1𝒞.

▷

Lemma 4.8. The cofiber of the map ̃︀𝑣𝑞 : (Σ−1𝜈ℐ[1])⊗𝑞 → 𝜈1𝒞 in Def(𝒞; 𝒬) has

[Σ−𝑠𝜈𝑋, 𝜈1𝒞/̃︀𝑣𝑞] = 0

for every 𝑋 ∈ 𝒞𝜔 and 𝑠 ≥ 𝑞.
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Proof. The restriction to 𝑋 ∈ 𝒞𝜔 lets us move back to 𝒟𝜔(𝒞𝜔; 𝒬). We proceed by
induction on 𝑞 using the cofiber sequence

(Σ−1𝜈ℐ[1])⊗𝑞−1 ⊗ 𝜈1𝒞/̃︀𝑣 → 𝜈1𝒞/̃︀𝑣𝑞 → 𝜈1𝒞/̃︀𝑣𝑞−1.

Using the equivalence between 𝜈(1𝒞/𝑣) and 𝜈1𝒞/̃︀𝑣 from Construction 4.7 and the fact
that 𝜈 is monoidal we have an equivalence

(𝜈ℐ[1])⊗𝑞−1 ⊗ 𝜈1𝒞/̃︀𝑣 ≃ 𝜈(Σ𝑞−1ℐ⊗𝑞−1 ⊗ 1𝒞/𝑣).

Since Σ𝑞−1ℐ⊗𝑞−1 ⊗ 1𝒞/𝑣 is 𝒬-injective (see Lemma 4.5) we then have that

[Σ−𝑠𝜈𝑋, (Σ−1𝜈ℐ[1])⊗𝑞−1 ⊗ 𝜈1𝒞/̃︀𝑣] = 0

(see 4.1(7)) for every 𝑋 ∈ 𝒞𝜔 and 𝑠 ≥ 𝑞.

5 E𝑛-algebra quotients

With all the preparation finished we are now ready to prove the main theorem. Our
proof follows the pattern established in Section 3 with the key difference being that we
use the stable, presentably E𝑛-monoidal deformation Def(𝒞;𝒬) of 𝒞 from the previous
section in place of SynF2

.

Definition 5.1. We say that an E𝑛-algebra structure on 1𝒞/𝑣
𝑞 is 𝑣-compatible if it

equivalent to (𝜈1𝒞/̃︀𝑣𝑞)𝜏=1 for some E𝑛-algebra structure on the quotient 𝜈1𝒞/̃︀𝑣𝑞 in
Def(𝒞;𝒬). ▷

Theorem 5.2 (Theorem 1.5). If 1𝒞/𝑣 admits a right unital multiplication, then there
exists a unique up to equivalence 𝑣-compatible E𝑛-algebra 1/𝑣𝑞 for each 𝑞 > 𝑛 and
these E𝑛-algebras fit into a tower

· · · −→ 1/𝑣𝑛+3 −→ 1/𝑣𝑛+2 −→ 1/𝑣𝑛+1.

Proof. We begin by producing an E𝑛-algebra structure on 𝜈1𝒞/̃︀𝑣𝑞 for 𝑞 > 𝑛. Applying
the obstruction theory from Proposition 2.4 and Corollary 2.7 to the map ̃︀𝑣𝑞 we a
obtain sequence of inductively defined obstructions

𝜃𝑘,𝛼 ∈ [Σ−2−𝑛−𝑐𝛼(Σ𝑛+1(Σ−1𝜈ℐ[1])⊗𝑞)⊗𝑘, 𝜈1𝒞/̃︀𝑣𝑞]
where 𝑘 ≥ 2 and 0 ≤ 𝑐𝛼 ≤ (𝑛− 1)(𝑘 − 1) whose vanishing implies 𝜈1𝒞/̃︀𝑣𝑞 admits an
E𝑛-algebra structure. Since 𝜈 is E𝑛-monoidal we can rewrite the source of 𝜃𝑘,𝛼 as

Σ(𝑛+1−𝑞)𝑘−𝑛−2−𝑐𝛼𝜈
(︀
(Σℐ)⊗𝑞𝑘

)︀
.

Since 𝑞 ≥ 𝑛 + 1 and 𝑛 + 2 + 𝑐𝛼 ≥ 𝑛 + 1, Lemma 4.8 now tells us that the group in
which 𝜃𝑘,𝛼 lives is trivial.

19



In order to prove the uniqueness statement and produce the desired tower we
now examine the space of maps from the E𝑛-algebra 𝜈1𝒞/̃︀𝑣𝑞 constructed above to
any other E𝑛-algebra 𝑅 with the underlying object 𝜈1𝒞/̃︀𝑣𝑤. The pushout squares
from Proposition 2.4 can be interpreted as providing an obstruction theory for pro-
ducing E𝑛-algebra maps 𝜈1𝒞/̃︀𝑣𝑞 → 𝑅. Using Corollary 2.7 we can sub-divide these
obstructions into obstructions

𝛾𝑘,𝛼 ∈ [Σ(𝑛+1−𝑞)𝑘−𝑛−1−𝑐𝛼𝜈
(︀
(Σℐ)⊗𝑞𝑘

)︀
, 𝜈1𝒞/̃︀𝑣𝑤]

where 𝑘 ≥ 1 and 0 ≤ 𝑐𝛼 ≤ (𝑛− 1)(𝑘− 1). When 𝑞 ≥ 𝑤 Lemma 4.8 tells us that these
groups are trivial and therefore we obtain the desired map. In the case 𝑞 = 𝑤 the
obstruction 𝛾1 is the composite

Σ−𝑞𝜈((Σℐ)⊗𝑞)
̃︀𝑣𝑞−→ 𝜈1𝒞 → 𝜈1𝒞/̃︀𝑣𝑞

and if we pick the nullhomotopy of 𝛾1 to be one which makes this into a cofiber
sequence, then we will obtain an equivalence of E𝑛-algebras 𝜈1𝒞/̃︀𝑣𝑞 → 𝑅, proving the
uniqueness assertion.

We conclude by deducing the remaining theorems from the introduction as corol-
laries of the main theorem.

Corollary 5.3 (Theorem 1.4). Suppose we are given an E𝑚+1-algebra 𝐴 ∈ Sp with
𝑚 ≥ 2 and a class 𝑣 ∈ 𝜋*(𝐴) such that 𝐴/𝑣 admits a unital multiplication. Then
𝐴/𝑣𝑞 admits an E𝑛-𝐴-algebra structure for each 𝑛 ≤ 𝑚 and 𝑞 > 𝑛.

Proof. Since 𝐴 is an E𝑚+1-algebra it has an E𝑚-monoidal category of left modules in
which we can apply Theorem 1.5 to 𝑣.

Note that the statement proved here is slightly different from the one which ap-
peared in the introduction. In order to bridge the gap we include the next lemma,
which is likely well known to experts, but for which we could not find a reference in
the literature.

Lemma 5.4. Given an E𝑚+1-algebra 𝐴 ∈ Sp with 𝑚 ≥ 2 and a class 𝑣 ∈ 𝜋2𝑤(𝐴) we
can identify the obstruction 𝑄1(𝑣) to 𝐴/𝑣 admitting a unital multiplication with the
reduction mod 𝑣 of 𝑄1(𝑣).

Proof. In proving this lemma we pick up where Lemma 2.2 left off, passing to the
filtered setting. We write 𝑋[𝜏 ] for the image of 𝑋 ∈ Sp under the unit map Sp →
SpFil.13

The E1-cofiber 𝐴[𝜏 ]//𝜏𝑣 admits a second description as the relative tensor product
of 𝐴[𝜏 ] with S[𝜏 ] over a free filtered E2-algebra on a class 𝑥 in degree 2𝑤 and filtration
1 which maps to 𝜏𝑣 in 𝐴[𝜏 ] and to zero in S[𝜏 ]. The arity 2 component of the free
E2-algebra on S2𝑤 is given by S4𝑤 ⊕ S4𝑤+1 where the bottom cell is 𝑥2 and the top

13This notation is meant to evoke that the underlying graded object of 𝑋[𝜏 ] looks like a free
module over S[𝜏 ] on a copy of 𝑋 placed in degree 0.
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cell is 𝑄1(𝑥). Thus, through filtration 2, we can replace the free E2-algebra with a
free E1-algebra on two classes 𝑥 and 𝑄1(𝑥) such that 𝑥 maps to 𝜏𝑣 and 𝑄1(𝑥) maps
to 𝜏 2𝑄1(𝑣). This lets us identify the filtration 2 component of 𝐴[𝜏 ]//𝜏𝑣 with

cof
(︁

Σ2𝑤𝐴⊕ Σ4𝑤+1𝐴
(𝑣, 𝑄1(𝑣))−−−−−−→ 𝐴

)︁
.

Unrolling the definition we see that the attaching map of the top cell to the copy of
𝐴/𝑣 is the obstruction 𝑄1(𝑣) of Lemma 2.2 and we can thereby identify 𝑄1(𝑣) with
the reduction mod 𝑣 of 𝑄1(𝑣).

Remark 5.5. The Cartan formula from [6, Prop. V.1.10]14 tells us that for an E𝑚+1-
algebra 𝐴 with 𝑚 ≥ 2 and 𝑥, 𝑦 ∈ 𝜋2*(𝐴) we have

𝑄1(𝑥𝑦) ≡ 𝑄1(𝑥)𝑦2 + 𝑥2𝑄1(𝑦) + 𝑐𝜂𝑥2𝑦2

for some integer 𝑐. In particular we find that

𝑄1(𝑥
2) ≡ 𝑄1(𝑥

2) ≡ 2𝑥2𝑄1(𝑥) + 𝑐𝜂𝑥4 ≡ 0 (mod 𝑥2).

Thus, the square of an even dimensional class always satisfies the conditions of The-
orem 1.4. ▷

Corollary 5.6 (Theorem 1.2, odd primes). Applying Theorem 1.4 with 𝒞 = Sp and
𝑣 = 𝑝 we obtain an E𝑛-algebra structure on S/𝑝𝑛+1.

Remark 5.7. Although S/2 does not admit a unital multiplication, 𝑄1(4) = 0 and
therefore S/4 admits a unital multiplication. If we apply Theorem 1.4 with 𝑣 = 4,
then we obtain an E𝑛-algebra structure on S/22(𝑛+1). Note that this is less structure
than is provided by Theorem 3.2. This discrepancy suggests that there is still room
for improvement at the prime 2. Specifically, we suspect that the optimal value of 𝑞
for which S/2𝑞 is an E𝑛-algebra is not much larger than 𝑛 in general. ▷

Corollary 5.8 (Theorem 1.3). For each ℎ and 𝑛 there exists a generalized Moore
spectrum S/(𝑝𝑖0 , . . . , 𝑣

𝑖ℎ−1

ℎ−1 ) of type ℎ which admits an E𝑛-algebra structure.

Proof. We proceed by induction on ℎ. Suppose, by induction, that we have an E𝑛+1-
algebra structure on a type ℎ − 1 generalized Moore spectrum 𝑀 . The periodicity
theorem of [12] guarantees we can find a 𝑣ℎ−1-self map 𝑣 ∈ 𝜋*𝑀 . To conclude we
apply Theorem 1.4 to 𝑣2 (see Remark 5.5).

A Bar-cobar duality for graded E𝑛-algebras
In this appendix we show that Lurie’s bar-cobar duality for E𝑛-algebras in an E𝑛-
monoidal category can be upgraded to an equivalence in the positively graded setting.
Our proof follows [10, §4] closely enough that it is worth pointing out why a simple
citation is insufficient.

14Here we are using that we are in the stable range where E∞ and E𝑚+1 power operations agree.
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(a) In [10] the underlying category ℰ is symmetric monoidal.

(b) In [10] Koszul duality has target divided power coalgebras over the Koszul dual
operad.

By contrast, Lurie’s (iterated) bar-cobar duality has the advantage that it is defined
for E𝑛-monoidal categories, but the disadvantage that it is not immediate that this
duality is the same one one would expect to obtain using operadic Koszul duality
(together with the Koszul self-duality of the E𝑛-operad).

Remark A.1. In the long-run the author would like to see this appendix supplanted
by an extension of operadic Koszul duality to algebras in categories which are not
symmetric monoidal. ▷

Convention A.2. Throughout this appendix ℰ will denote a stable, presentably
E𝑛-monoidal category. ▷

As in the body of the paper ℰGr denotes the category of graded objects in ℰ and
this category is also stable and presentably E𝑛-monoidal. Crucially for this appendix,
in ℰGr limits and colimits are computed component-wise. In particular we have the
following lemma:

Lemma A.3. Given a collection of objects {𝑋𝛼}𝛼∈𝐴 in ℰGr such that only finitely
many of the 𝑋𝛼 are non-zero in each degree, the natural map⨁︀

𝐴 𝑋𝛼 →
∏︀

𝐴𝑋𝛼

is an equivalence.

We will also need several variants of ℰGr

Definition A.4.

• ℰGr
≥0 is the full subcategory of ℰGr on objects which vanish in negative degrees.

• ℰGr
+ is the full subcategory of ℰGr

1/−/1 on the objects which vanish in negative
degrees and are equivalent to the unit in degree 0. We say that the objects of
ℰGr
+ are positively graded.

• Given an object 𝑋 ∈ ℰGr
1/−/1 we write 𝑋 for the object obtained by splitting off

the copy of the unit.15

• We say an object in ℰGr is thin if it vanishes in all but finitely many degrees.
We write (ℰGr)thin, (ℰGr

≥0 )thin and (ℰGr
+ )thin for the respective subcategories of

thin objects.

▷

15The functor which sends 𝑋 ∈ ℰGr
+ to 𝑋 gives an equivalence between ℰGr

+ and the category of
graded objects concentrated in positve degrees. Note however, that this equivalence is not monoidal.
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Recollection A.5. In [16, §5.2.3] Lurie constructs a bar-cobar adjunction

Bar(𝑛) : Algaug
E𝑛

(ℰGr)
 coAlgaug
E𝑛

(ℰGr) : Cobar(𝑛)

(see [16, 5.2.3.6 and 5.2.3.9] specifically). Since ℰGr
+ is a full subcategory of ℰGr

1/−/1

closed under tensor products, limits and colimits, the bar-cobar adjunction restriction
to an adjunction between these subcategories

Bar(𝑛) : AlgE𝑛
(ℰGr

+ )
 coAlgE𝑛
(ℰGr

+ ) : Cobar(𝑛)

(see [16, 5.2.3.11]). In the case 𝑛 = 1, Bar (resp. Cobar) is computed by a bar (cobar)
construction [16, 5.2.2.17]. ▷

The main theorem of this appendix is that in the positively graded setting we can
upgrade Lurie’s bar-cobar adjunction to an equivalence.

Theorem A.6. The bar-cobar adjunction

Bar(𝑛) : AlgE𝑛
(ℰGr

+ )
 coAlgE𝑛
(ℰGr

+ ) : Cobar(𝑛)

is an equivalence.

Remark A.7. Similar ideas were considered in [15] where, following [10], Krause
proves the 𝑛 = 1, ℰ = Mod(Z) case of Theorem A.6. ▷

A.1 The proof of Theorem A.6

The proof of Theorem A.6 will proceed by induction on 𝑛 and the bulk of the
work lies in handling the base-case 𝑛 = 1. The preparation for this proof will occupy
us for the next couple pages.

Construction A.8. Given a positively graded E1-algebra 𝐴 in ℰ we can consider
the bar filtration on the underlying object of Bar(𝐴),

colim
Δop

≤0

𝐴⊗∙ colim
Δop

≤1

𝐴⊗∙ colim
Δop

≤2

𝐴⊗∙ · · · Bar(𝐴)

1 Σ𝐴 (Σ𝐴)⊗2

≃

which is an 𝜔-indexed filtration of the underlying object of Bar(𝐴) with associated
graded given by (Σ𝐴)⊗𝑘.

Dually, given a positively graded E1-coalgebra 𝐶 in ℰ we can consider the cobar
filtration of Cobar(𝐶), which is an 𝜔-indexed tower with limit the underlying object
of Cobar(𝐶) and associated graded given by (Σ−1𝐶)⊗𝑘. ▷
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Remark A.9. The key observation in this appendix is that (Σ−1𝐶)⊗𝑘 is concentrated
in degrees ≥ 𝑘, therefore in any fixed degree Cobar(𝐶) is computed by a finite limit.

▷

Lemma A.10. The functor Cobar : coAlg(ℰ)→ Alg(ℰ) commutes with sifted colim-
its.

Proof. Since the underlying object functor Alg(ℰ)→ ℰ is conservative and commutes
with sifted colimits it will suffice to show that the composite of Cobar with this
functor commutes with sifted colimits.

Suppose we have a sifted diagram 𝐹 : 𝐷 → coAlg(ℰ). Using that fact that Cobar
is computed by a cobar construction we have equivalences(︂

colim
𝑑∈𝐷

Cobar(𝐹 (𝑑))

)︂
𝑘

≃ colim
𝑑∈𝐷

lim←−
𝑠

(︂
lim
Δ≤𝑠

𝐹 (𝑑)⊗∙
)︂

𝑘

≃ lim←−
𝑠

colim
𝑑∈𝐷

(︂
lim
Δ≤𝑠

𝐹 (𝑑)⊗∙
)︂

𝑘

≃ lim←−
𝑠

lim
Δ≤𝑠

(︂
colim
𝑑∈𝐷

𝐹 (𝑑)⊗∙
)︂

𝑘

where the key step is using the fact that the cobar filtration stabilizes in finitely
many steps (see Remark A.9) to commute the colimit and infinite limit. Using the
assumption that 𝐷 is sifted and the fact that the tensor product on ℰGr commutes
with colimits seperately in each variable we have

colim
𝑑∈𝐷

𝐹 (𝑑)⊗𝑠 ≃ colim
(𝑑1,...,𝑑𝑠)∈𝐷×𝑠

𝐹 (𝑑1)⊗ · · · ⊗ 𝐹 (𝑑𝑠) ≃
(︂

colim
𝑑∈𝐷

𝐹 (𝑑)

)︂⊗𝑠

.

Feeding this into the previous equivalence we obtain the desired equivalence(︂
colim
𝑑∈𝐷

Cobar(𝐹 (𝑑))

)︂
𝑘

≃ lim←−
𝑠

lim
Δ≤𝑠

(︃(︂
colim
𝑑∈𝐷

𝐹 (𝑑)

)︂⊗∙
)︃

𝑘

≃ Cobar

(︂
colim
𝑑∈𝐷

𝐹 (𝑑)

)︂
𝑘

.

Lemma A.11. A map of postively graded E1-algebras 𝐴→ 𝐵 in ℰ is an equivalence
through degree 𝑘 iff the map of postively graded E𝑛-coalgebras Bar(𝐴) → Bar(𝐵) is
an equivalence through degree 𝑘.

Dually, a map of postively graded E1-coalgebras 𝐶 → 𝐷 in ℰ is an equivalence
through degree 𝑘 iff the map of postively graded E𝑛-algebras Cobar(𝐶) → Cobar(𝐷)
is an equivalence through degree 𝑘.

In particular this implies that both Bar and Cobar are conservative.

Proof. Suppose the map 𝐴 → 𝐵 is an equivalence through degree 𝑘, but is not an
equivalence in degree 𝑘 + 1. Examining the bar filtration we see that the cofiber of
the map 𝐴→ 𝐵 has a filtration with associated graded given by

𝑋𝑠,𝑗 := cof
(︁

(Σ𝑠𝐴
⊗𝑠

)𝑗 → (Σ𝑠𝐵
⊗𝑠

)𝑗

)︁
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in degree 𝑗. Using the fact that 𝐴 and 𝐵 are concentrated in degrees ≥ 1 and the
map between them is an equivalence in degrees ≤ 𝑘 we can read off that 𝑋𝑠,𝑗 = 0 for
𝑗 ≤ 𝑠 + 𝑘 − 1 and 𝑋1,𝑘+1 ≃ cof(Σ𝐴𝑘+1 → Σ𝐵𝑘+1). In particular, this implies that

(a) the map Bar(𝐴)→ Bar(𝐵) is an equivalence through degee 𝑘 and

(b) in degree 𝑘 + 1 we have

cof(Bar(𝐴)→ Bar(𝐵))𝑘+1 ≃ cof(Σ𝐴𝑘+1 → Σ𝐵𝑘+1) ̸≃ 0.

The argument for Cobar is dual to the argument for Bar.

Construction A.12. After passing to categories of large pro-objects the natural
inclusion (ℰGr)thin → ℰGr picks up a left adjoint and we write 𝑒 for the composite

𝑒 : ℰGr → Pro(ℰGr)→ Pro((ℰGr)thin)

of this left adjoint with the Yoneda embedding. Similarly, we have functors 𝑒≥0 and
𝑒+ in the positively graded setting. ▷

Lemma A.13. There is a natural E𝑛-monoidal equivalence

Pro((ℰGr)thin) ≃ Pro(ℰ)Gr

which restricts to a similar equivalence in the positively graded setting. In particular
this means every object in Pro((ℰGr)thin) is both the coproduct and the product of its
components in each degree.

Proof. The key point in this lemma is that both of these catgories are the opposite of
a huge presentable category with a large collection of compact objects. To prove the
lemma it therefore suffices to argue that the full subcategory of compact objects in
Ind(ℰop)Gr is equivalent to ((ℰGr)thin)op. For this we observe that since Ind(ℰop)Gr ≃
SpGr ⊗ Ind(ℰop) the compact objects are generated under finite colimits by objects
of the form 𝑋(𝑘) with 𝑋 ∈ ℰop.

The second conclusion follows from Lemma A.3 which applies since the category
in question is now the opposite of a category of graded objects in a (huge) presentable
category.

Lemma A.14. The functor 𝑒+ of Construction A.12 is fully faithful, E𝑛-monoidal
and colimit preserving.

Proof. The Yoneda embedding ℰGr
+ → Pro(ℰGr

+ ) is E𝑛-monoidal and preserves colim-
its. The functor

Pro(ℰGr
+ )→ Pro((ℰGr

+ )thin)

is the left adjoint of an E𝑛-monoidal functor and is therefore oplax monoidal.16 In
order to show that 𝑒+ is actually E𝑛-monoidal we use the fact that 𝑒+ is E𝑛-monoidal

16It is easier to think in terms of opposite categories here, since they are presentable and then this
a lax monoidal right adjoint.
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after restricting to thin objects and Lemma A.3 which lets us convert between sums
and product.

𝑒(𝑋 ⊗ 𝑌 ) ≃ 𝑒

(︃(︃⨁︁
𝑗≥0

𝑋𝑘(𝑗)

)︃
⊗

(︃⨁︁
𝑘≥0

𝑌𝑘(𝑘)

)︃)︃
≃ 𝑒

(︃⨁︁
𝑗,𝑘≥0

𝑋𝑘(𝑗)⊗ 𝑌𝑘(𝑘)

)︃
≃
⨁︁
𝑗,𝑘≥0

𝑒 (𝑋𝑘(𝑗)⊗ 𝑌𝑘(𝑘)) ≃
⨁︁
𝑗,𝑘≥0

𝑒(𝑋𝑘(𝑗))⊗ 𝑒(𝑌𝑘(𝑘)) ≃
∏︁
𝑗,𝑘≥0

𝑒(𝑋𝑘(𝑗))⊗ 𝑒(𝑌𝑘(𝑘))

≃

(︃∏︁
𝑗≥0

𝑒(𝑋𝑘(𝑗))

)︃
⊗

(︃∏︁
𝑘≥0

𝑒(𝑌𝑘(𝑘))

)︃
≃

(︃⨁︁
𝑗≥0

𝑒(𝑋𝑘(𝑗))

)︃
⊗

(︃⨁︁
𝑘≥0

𝑒(𝑌𝑘(𝑘))

)︃

≃ 𝑒

(︃⨁︁
𝑗≥0

𝑋𝑘(𝑗)

)︃
⊗ 𝑒

(︃⨁︁
𝑘≥0

𝑌𝑘(𝑘)

)︃

The key step in these manipulations is the point where we converted the sum over
𝑗, 𝑘 ≥ 0 into a product over 𝑗, 𝑘 ≥ 0 and it is at this point that we used our restriction
to the positively graded setting. Note also that in pro-objects it is products and not
sums which distribute over the tensor product. The manipulations used to prove that
𝑒 (and therefore 𝑒+) is fully faithful are similar.

MapℰGr

(︁⨁︀
𝑗 𝑋𝑗(𝑗),

⨁︀
𝑘 𝑌𝑘(𝑘)

)︁
MapPro(ℰ)Gr

(︁
𝑒
(︁⨁︀

𝑗 𝑋𝑗(𝑗)
)︁
, 𝑒 (
⨁︀

𝑘 𝑌𝑘(𝑘))
)︁

MapPro(ℰ)Gr

(︁⨁︀
𝑗 𝑒(𝑋𝑗(𝑗)),

⨁︀
𝑘 𝑒(𝑌𝑘(𝑘))

)︁
MapℰGr

(︁⨁︀
𝑗 𝑋𝑗(𝑗),

∏︀
𝑘 𝑌𝑘(𝑘)

)︁
MapPro(ℰ)Gr

(︁⨁︀
𝑗 𝑒(𝑋𝑗(𝑗)),

∏︀
𝑘 𝑒(𝑌𝑘(𝑘))

)︁
∏︀

𝑗,𝑘 MapℰGr (𝑋𝑗(𝑗), 𝑌𝑘(𝑘))
∏︀

𝑗,𝑘 MapPro(ℰ)Gr (𝑒(𝑋𝑗(𝑗)), 𝑒(𝑌𝑘(𝑘)))

∏︀
𝑖 Mapℰ (𝑋𝑖, 𝑌𝑖)

∏︀
𝑖 Mapℰ (𝑋𝑖, 𝑌𝑖)

≃

≃

≃

≃ ≃

≃ ≃
≃

Lemma A.15. Bar and Cobar each send objects in the image of 𝑒+ to objects in the
image of 𝑒+.

Proof. For Bar this follows from Lemma A.14 since the bar construction is composed
of tensor products and a colimit. For Cobar this follows from the fact that because
we are in the positively graded setting the tot tower in Construction A.8 is finite in
each degree and therefore Cobar(𝐶) is a constant pro-object in each degree (i.e. it is
in the image of 𝑒+).

Lemma A.16. Suppose we are given a monoidal left adjoint

𝑓 : ((ℰ1)Gr
+ )thin → ((ℰ2)Gr

+ )thin,
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then there is a right adjointable square

Alg((ℰ1)Gr
+ ) Alg((ℰ2)Gr

+ )

coAlg((ℰ1)Gr
+ ) coAlg((ℰ2)Gr

+ ).

̃︀𝑓
Bar Bar̃︀𝑓

Proof. Kan extending 𝑓 to all of ℰGr
+ we obtain a monoidal left adjoint,

̃︀𝑓 : (ℰ1)Gr
+ → (ℰ2)Gr

+ .

From [16, 5.2.3.11] we now obtain the desired square. In order to show this square is
right adjointable we use the embedding into pro-thin objects of Construction A.12.

The functor Pro(𝑓) : Pro(ℰ1)Gr
+ → Pro(ℰ2)Gr

+ is an E𝑛-monoidal left adjoint which
preserves all limits. Consequently we can apply [16, 5.2.3.11] to obtain a right ad-
jointable square

Alg(Pro(ℰ1)Gr
+ ) Alg(Pro(ℰ2)Gr

+ )

coAlg(Pro(ℰ1)Gr
+ ) coAlg(Pro(ℰ2)Gr

+ ).

Pro(𝑓)

Bar Bar

Pro(𝑓)

Using Lemma A.14 and [16, 5.2.3.11] we can extend this square to a cube via the
colimit preserving, fully faithful embeddings into pro-thin objects. At this point right
adjointability follows from Lemma A.15 which says that Cobar and Bar send objects
in the image of 𝑒+ to objects in the image of 𝑒+.

Lemma A.17. In SpGr the unit map 1{S0(1)} → Cobar(Bar(1{S0(1)})) is an equiv-
alence.

Proof. Applying Lemma A.16 to the map Sp→ Mod(Z) and using the fact that the
bar and cobar produce objects which are levelwise finite (see Construction A.8) it
suffices to observe that the unit is an equivalence in the graded Z-linear case where
this is the usual Koszul duality between polynomial and exterior algebras.

Lemma A.18. Given an 𝑋 ∈ ℰGr concentrated in positive degrees the unit map
1{𝑋} → Cobar(Bar(1{𝑋})) is an equivalence.

Proof. We begin by handling the case where 𝑋 is thin. Using the fact that SpGr
≥0 is

the free E1-monoidal category on an object S0(1) we can construct a monoidal left
adjoint ̃︀𝑓 * : SpGr

≥0 → ℰ≥0

which sends S0(1) to 𝑋 whose right adjoint ̃︀𝑓* sends 𝑌 ∈ ℰGr
≥0 to

(︁
𝑘 ↦→ MapSp

ℰGr(𝑋
⊗𝑘, 𝑌 )

)︁
.

Since 𝑋 is thin and concentrated in positive degrees ̃︀𝑓 * and ̃︀𝑓* restrict to an adjunction

𝑓 * : (SpGr
+ )thin 
 (ℰGr

+ )thin : 𝑓*.
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Since 𝑓 * is a monoidal left adjoint we have 𝑓 *(1{𝑌 }) ≃ 1{𝑓 *𝑌 }. Lemma A.16
now allows us to reduce showing that the unit map 1{𝑋} → Cobar(Bar(1{𝑋})) is an
equivalence to Lemma A.17. The general case now follows by writing 𝑋 as a filtered
colimit of thin objects and appealing to Lemma A.10.

Proof (of Theorem A.6). We proceed by induction on 𝑛 with 𝑛 = 1 as our base case.
In order to prove that Bar : Alg(ℰGr

+ ) → coAlg(ℰGr
+ ) is an equivalence we will

show that it is fully faithful and its right adjoint is conservative. Recall that we
already proved Cobar is conservative in Lemma A.11. We prove Bar is fully faithful
by showing that the unit map

𝐴→ Cobar(Bar(𝐴))

is an equivalence for every 𝐴 ∈ Alg(ℰGr
+ ). From Lemma A.18 we know the unit is

an equivalence when 𝐴 is a free algebra. We also know that both Bar and Cobar
commute wtih geometric realizations (see Lemma A.10), therefore it suffices to argue
that every 𝐴 can be written as a geometric realization of a simplicial diagram of free
algebras. This, in turn, follows from the fact that the free–underlying adjunction on
Alg(ℰGr

+ ) is monadic.
Now we handle the inductive step. Applying [16, 5.2.3.12 and 5.2.3.14] we are

able to construct the following diagram where we have indicated the maps which are
equivalences based on our inductive hypothesis.

Alg/E𝑎+𝑏
(ℰGr

+ ) coAlg/E𝑎+𝑏
(ℰGr

+ )

Alg/E𝑎

(︁
AlgE𝑏/E𝑎+𝑏

(ℰGr
+ )
)︁

coAlg/E𝑎

(︁
AlgE𝑏/E𝑎+𝑏

(ℰGr
+ )
)︁

coAlg/E𝑎

(︁
coAlgE𝑏/E𝑎+𝑏

(ℰGr
+ )
)︁

Alg/E𝑎
(ℰGr

+ ) coAlg/E𝑎
(ℰGr

+ )

Bar(𝑎+𝑏)

≃ ≃

̃︂Bar
(𝑎)

Bar(𝑏)

≃

Bar(𝑎)

≃

In order to complete the proof we must show that ̃︂Bar
(𝑎)

is an equivalence. The
underlying object functor AlgE𝑏/E𝑎+𝑏

(ℰGr
+ )→ ℰGr

+ preserves both limits and geometric
realizations, therefore by [16, 5.2.3.11] the bottom square is right adjointable. The
vertical arrows in the square are conservative, therefore the (co)unit map of thẽ︂Bar

(𝑎)
–C̃obar

(𝑎)

adjunction is an equivalence at an object 𝑋 iff it is an equivalence on
underlying. This follows from the inductive assumption that Bar(𝑎) is an equivalence.

A.2 Using bar-cobar duality

We end the appendix with a couple lemmas focused on exposing the consequences
of bar-cobar duality necessary for Section 2.
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Lemma A.19. The underlying object functor coAlgE𝑛
(ℰ)→ ℰ has a right adjoint

coFree : ℰ → coAlgE𝑛
(ℰ)

whose composite with Cobar(𝑛) sends an object 𝑋(𝑘) to the square-zero algebra 1 ⊕
Σ−𝑛𝑋(𝑘). The underlying object of coFree(𝑌 ) is given by

∏︀
𝑘 𝐷

𝑐E𝑛
𝑘 (𝑌 ).

Proof. Pro(ℰ)Gr
+ is the opposite of a presentably E𝑛-monoidal category and therefore

by [16, 3.1.3.13] we have an underlying–cofree adjunction

coAlgE𝑛

(︀
Pro(ℰ)Gr

+

)︀

 Pro(ℰ)Gr

+ : ĉoFree

where ĉoFree(𝑋) is given by
∏︀

𝑘 𝐷
𝑐E𝑚
𝑘 (𝑋).

The underlying object functors commutes with the E𝑛-monoidal embedding 𝑒+ of
Construction A.12 giving us a square

coAlgE𝑛

(︀
ℰGr
+

)︀
ℰGr
+

coAlgE𝑛

(︀
Pro(ℰ)Gr

+

)︀
Pro(ℰ)Gr

+ .

𝑒+ 𝑒+

As the two vertical maps are fully faithful, the underlying object functor will admit
a right adjoint if the cofree E𝑛-coalgebra functor on Pro(ℰ)Gr

+ sends objects in the
image of 𝑒+ to objects in the image of 𝑒+. In order to check this we observe that if
𝑋 is concentrated in positive degrees, then the infinite product

∏︀
𝑘 𝐷

𝑐E𝑛
𝑘 (𝑒(𝑋)) is a

finite product in any fixed degree and the limit used to compute 𝐷𝑐E𝑛
𝑘 (𝑒(𝑋)) is finite.

In order to compute Cobar(𝑛)(coFree(𝑋(𝑘))) we again observe that it we compute
what this object is in pro-thin objects and the result is in the image of 𝑒+, then this
is the correct answer. In pro-thin objects we can use [16, 5.2.3.15] to conclude that
the underlying object of Cobar(𝑛)(ĉoFree(𝑒(𝑋(𝑘)))) is 1⊕Σ−𝑛𝑒(𝑋(𝑘)). In particular,
this is in the image of 𝑒+ as desired.

In order to identify the algebra structure on Cobar(𝑛)(coFree(𝑋(𝑘))) we observe
that all augmented E𝑛-algebras with underlying object 1⊕Σ−𝑛𝑒(𝑋(𝑘)) are equivalent,
as they can all be obtained by truncating a free algebra to lie in degrees ≤ 𝑘.

Construction A.20. Given a postively graded E𝑛-algebra 𝑅 in ℰ we can inductively
produce a filtration

1ℰGr = 𝑅0 𝑟1−→ 𝑅1 𝑟2−→ 𝑅2 → · · · → 𝑅

converging to 𝑅 such that

1. the map 𝑅𝑘 → 𝑅 is an equivalence through degree 𝑘 and

2. the map 𝑟𝑘 fits into a pushout square of positively graded E𝑛-algebras

1ℰGr

{︀
𝑋𝑘(𝑘)

}︀
1ℰGr

𝑅𝑘−1 𝑅𝑘.

aug

𝑠𝑘

𝑟𝑘 p
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for some object 𝑋𝑘 ∈ ℰ .

via the following procedure: Given 𝑅𝑘−1 we let 𝑋𝑘 := fib((𝑅𝑘−1)𝑘 → (𝑅𝑘)𝑘) this choice
of 𝑋𝑘 naturally comes equipped with a map 𝑋𝑘 → (𝑅𝑘−1)𝑘 and a nullhomotopy of
the composite 𝑋𝑘 → (𝑅𝑘−1)𝑘 → (𝑅𝑘)𝑘 which allows us to define the map 𝑠𝑘 and the
factorization of the map 𝑅𝑘−1 → 𝑅 through 𝑟𝑘. Since the free algebra we used started
in grading 𝑘 we have a cofiber sequence

𝑋𝑘 → (𝑅𝑘−1)𝑘 → (𝑅𝑘)𝑘

from which (1) follows. Convergence of the 𝑅𝑘 to 𝑅 follows from condition (1). ▷

Lemma A.21. Let 𝑅 be a positively graded E𝑛-algebra in ℰ. We can identify the
object 𝑋𝑘 from Construction A.20 with Σ−1−𝑛Bar(𝑛)(𝑅)𝑘.

Proof. Upon applying Bar(𝑛) to the resolution of Construction A.20 we obtain a res-
olution of Bar(𝑛)(𝑅) which at its 𝑘th term is a pushout under the square-zero E𝑛-
coalgebra 1⊕Σ𝑛𝑋𝑘(𝑘) (see Lemma A.19). Since pushouts of coalgebras are computed
on underlying, this allows us to read off that

Bar(𝑛)(𝑅)𝑘 ≃ Σ𝑛+1𝑋𝑘.
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