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Discovery of microenvironment drivers of cell states, plasticity and drug response 

 
by 
 

Andrew Warren Navia 
 

Submitted to the Department of Chemistry 
On March 17, 2022 in Partial Fulfillment of the 

Requirements of the Degree of Doctor of Philosophy in Chemistry 
 
Abstract 
 
Cell state can be influenced by both intrinsic and extrinsic factors with functional 
consequences. Illustratively, in cancer, intrinsic genome level alterations or extrinsic 
microenvironmental immune cell activity can drive tumorigenesis. Similarly, in viral 
infections like COVID-19, the responses of infected and uninfected cells can impact 
clinical course. The recent emergence of single-cell genomic technologies like single-cell 
RNA sequencing (scRNA-seq) now enable us to characterize systematically and 
comprehensively the roles of intrinsic versus extrinsic responses in driving disease 
sequalae. Here, we apply these technologies to identify tumor cell states and their 
microenvironmental dependences, as well as to define infected cells and their supportive 
peripheral cells. Further, we establish new model systems based on in vivo interactions to 
nominate potential therapeutic targets.  
 
Specifically, in pancreatic cancer, we refine a previously established basal and classical 
phenotype dichotomy and build on it by describing an intermediate state with a distinct 
supportive microenvironment. By understanding in vivo secreted factors from tumor and 
peripheral cells, we more accurately recapitulate cell-cell interactions ex vivo, allowing us 
to establish RNA state specific models. These ex vivo models suggest tumor cell plasticity 
that may play a role evasion of therapeutic pressure. Collectively, this work uncovers novel 
cancer biology, improves modeling of said biology and nominates therapeutic targets 
informed by system level interactions. Meanwhile, in COVID-19, we identify cell types 
prone to infection and tie disease severity to intrinsic epithelial immune responses. We 
associate clinical course with distinct immune environments, with severe cases harboring 
inflammatory macrophage populations and equivalent or elevated viral RNA load. We also 
identify viral targets, nominate mechanisms of viral entry, and find immune response 
trends in patients with severe disease.  
 
Thesis Supervisor: Alex K. Shalek 
 
Title: Core Member, IMES; Associate Professor, Chemistry; and, Extramural Member of 
the Koch Institute 
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Lay summary 
 
Humans are composed of trillions of cells working together to maintain organ health. Each 
cell reacts to those around it to maintain homeostasis and perform macroscopic functions. 
For example, white blood cells like T helper cells can recognize foreign pathogens in the 
body. This ability is made more influential given these cells' ability recruit other immune 
cells and mount a coordinated immune response to the invasion. When this synergy is 
disrupted however, the body becomes sick. These disruptions can arise from within cells, 
intrinsically, or from an outside source. Internal diseases can arise from mutation like ones 
that cause cancer and autoimmune diseases. External diseases are caused by viruses, like 
COVID-19, bacteria, and fungi among others. These can cause significant changes to the 
cells they infect and those surrounding. Regardless of mechanism, diseased cell states must 
be studied and their drivers identified. 
 
Individual cells are incredibly complex; a single cell can dramatically influence its 
surrounding and propagate disease. As such, measuring cells individually can be incredibly 
powerful, revealing disease states and response mechanisms by surrounding cells. Until 
recently these sorts of single-cell measurements were often biased, needing a 
predetermined panel of markers to screen for. Recently however, single-cell RNA 
sequencing (scRNA-seq) methods have empowered comprehensive, unbiased single cell 
measurements. Measuring RNA is useful because it has numerous functions in the body. 
mRNA specifically draws from sections of the universal DNA script to code for proteins, 
the machinery of cells. scRNA-seq methods enrich for mRNA in an unbiased manner and 
shed light on acute cellular decision-making. In this document, we use scRNA-seq tools to 
identify novel cell states, interactions, and modeling methods in pancreatic ductal 
adenocarcinoma (PDAC) and COVID-19 infection samples. 
 
PDAC is a devastating form of cancer with a 5-year survival of about 7%. Many therapeutic 
innovations successful in other cancers, like immune and genotype directed therapies, have 
been unsuccessful in PDAC. As such, researchers have shifted focus from traditional DNA 
profiling of PDAC tumor cells to RNA state profiling. These studies have discovered two 
prognostically distinct RNA states: basal, the more dire, and classical. While these studies 
were groundbreaking, their results were limited. Our team further investigates these states, 
measuring RNA expression within single tumor cells and associating particular phenotypes 
with surrounding non-malignant support structures. Critically, we find a third RNA state 
that suggests these tumor cells are plastic and can potentially escape drug pressure by 
changing phenotype. To probe these cells further we refine organoid model systems to 
better represent a patient’s tumor. Here, we apply different small molecules to shift states 
in a controlled manner. Lastly, in these high-fidelity models, we identify drug classes more 
suited to treat each tumor state. Moving forward, we plan to continue identifying PDAC 
therapies based on RNA expression and believe RNA state may be a critical component of 
drug evasion in cancer broadly.  
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As COVID-19 shut down the Institute and the world, I shifted my focus to studying viral 
infection. COVID-19 causes respiratory symptoms that can be fatal. Given the severity of 
the disease, with hundreds of millions of infections to date, there were concerted efforts 
across the scientific and medical communities to understand SARS-CoV-2, the virus that 
causes COVID-19. Fortunately, past coronaviruses like SARS (2002) and MERS (2012) 
offers a glimpse into COVID-19 biology. Early studies in the Shalek Lab and beyond 
identify exploitable similarities between SARS, MERS and COVID-19. Specifically, we 
use knowledge of how the virus enters human cells to predict likely target cells and 
examine how other diseases such as HIV might intersect with COVID-19. While these 
studies were important, relying on old datasets is limiting; as such, we carefully began to 
collect data using scRNA-seq on infected and control patient samples. Our data identifies 
which cell types were actually prone to infection and monitors how surrounding cells 
compensate for infection. Critically, we identify trends in patients with severe and mild 
COVID-19 infection. Here, patients with mild COVID-19 symptoms tend to have more a 
robust intrinsic immune response to the virus within the epithelial cells that line the nose. 
Moving forward, we hope to apply these lessons to emergent viral strains and model our 
findings in systems that accurately recapitulate infection severity.  
 
In sum, our research uniquely leverages scRNA-seq protocols to probe critically important 
disease areas. In PDAC and COVID-19, understanding not only the diseased cells, but the 
way the surrounding microenvironment responds, has shed light on confounding factors 
regarding drug evasion (PDAC) and clinical course (COVID-19). This research 
emphasizes the importance of high-resolution methods that probe systems in an unbiased 
manner to translate academic research into clinical findings.   
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Chapter 1: Introduction 

 

1.1 Importance of Cells 

Cells have evolved to specialize based on the organ and microenvironment that they exist in. 

Multicellular organisms thrive due to synergistic interactions that allow for macroscopic function 

and system homeostasis. Normally, cell function is well regulated, cell reproduction is controlled, 

and intercellular interactions are productive.  

Disease arises from dysregulation of native homeostasis. This can be intrinsically driven by DNA 

mutations that lead to detrimental gain or loss of function. They can also be extrinsically driven 

by external insults such as viral, bacterial or fungal infection, toxic substances, and radiation, 

among others. The body can respond to these perturbations by sequestering and destroying affected 

cells via an immune response. In certain cases, however, an immune response intended to return 

the system to normalcy can exacerbate illness. To understand the difference between health and 

disease and what drives productive versus unproductive immune response, precise tools capable 

of comprehensive cellular measurements are needed. 

 

1.2 Towards Comprehensive measurements 

Cells are complex systems and, as such, identifying cell types and measuring their function can 

take many forms1-5. Historically, cellular measurements have required compromise; either by 

averaging cellular expression in an unbiased manner across a whole tissue, or by isolating single 

cells and probing for specific features of interest, introducing biases5-8. These compromises 

extended across multiple measurable analytes like DNA, RNA and protein. Measurements of DNA 

expression require an average over many cells in order to reach a statistically meaningful signal 

threshold. This is due to the limited amount of DNA present per cell5. 

Messenger RNA (mRNA) and protein are more plentiful in cells and can describe cell type and 

state. Measurements of both have been developed to elucidate the mechanisms driving specific 

cell function and cellular interactions. Until recently however, these measurements also required 

compromise. Bulk level measurements, capable of measuring large quantities of RNA or protein 

from a tissue of interest, can mask an individual cell’s role in either normal or disease states. In 

contrast, targeted probes, capable of measuring RNA or protein expression in single cells, are 

biased towards predetermined markers5-8. Despite limitations, these tools have been invaluable in 
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defining human health and disease at the molecular level. Groundbreaking studies have utilized 

bulk RNA sequencing (RNA-seq) to profile cell types in tissues, finding previously unappreciated 

cell states. For example, in pancreatic ductal adenocarcinoma (PDAC) Moffitt et. al. and others 

defined prognostically distinct RNA states independent of tumor cell genotype9-11. While this 

pioneering research draws a clear connection between RNA state and clinical outcome, the 

molecular structures that support these states and interactions between tumor and non-tumor cells 

remain elusive. Indeed, in these PDAC studies, RNA-seq is limited in its ability to assign a 

measured gene to a particular cell or cell type due to the bulk nature of the measurements. 

Assigning gene expression to single cells can clarify symbiotic interactions between cells and 

potentially describe how to therapeutically intervene in disease causing states. Performing these 

experiments on single cells to comprehensively measure these mediators of cellular function was 

not possible until recently12-16. The development of single cell RNA sequencing (scRNA-seq) 

methods has fundamentally changed how we characterize the role of individual cells in normal 

and disease states through the more focused and comprehensive measurements made possible by 

this technology. 

 

1.3 Comprehensive scRNA-seq measurements 

Isolating and measuring cells individually by scRNA-seq significantly improves data resolution. 

Today, dissociated tissue can be measured without enriching for specific cells of interest based on 

predetermined markers17-19. This not only allows for de novo identification of cell states but 

empowers identification and characterization of surrounding cells as well. As such, scRNA-seq 

methods have developed rapidly, but largely follow a similar pipeline. Broadly, mRNA is initially 

enriched by using a poly-adenylation targeting bait to pull down expressed genes. The mRNA is 

next reverse transcribed into a more stable cDNA and then amplified via PCR before being 

sequenced13,14,20,21.  

The first scRNA-seq protocol was published in 2009 by Tang et. al., who hand-picked individual 

mouse embryonic cells (blastomeres) and captured nearly twice as many genes from a single cell 

as compared to the output from entire datasets utilizing bulk methods12. Over the past decade 

scRNA-seq technologies have further improved throughput, while lowering costs, and reagent and 

cell input requirements. The next major technique developed was SMRT-seq (Switching 

Mechanism at the 5’end of RNA Templates), in which single cells are flow sorted for processing, 
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into 96 or 384 well plates filled with lysis buffer. This technique significantly increased cell 

throughput and began to automate scRNA-seq protocols15. Two years after SMRT-seq was 

developed it was further improved (SMRT-seq2), delivering better gene detection, stability, and 

cDNA yields16.  

To dramatically increase throughput, some new methods moved away from 96 and 384 well plates 

to microfluidic systems and custom fabricated pico-well chips. Fluidics based protocols like 10X 

and Drop-seq rely on microfluidic systems to isolate cells and pair them with barcoded RNA 

capture beads13,22,23. While fluidics-based protocols are relatively expensive, due to the cost of the 

required fluids and the dead volume assigned per cell, they provide a more streamlined and user-

friendly means of sequencing single cells than is possible in a plate format. Seq-well, the primary 

method employed in Chapters 2 and 3 of this document, is significantly cheaper than the 10X and 

Drop-seq methods, since it uses gravity and size exclusion to isolate cells into pico-wells14. When 

sealed with a semipermeable membrane, cells can be lysed and their mRNA can be captured on 

barcoded mRNA capture beads.  

Most of these high throughput methods rely on bead-based mRNA capture13,14,20. This strategy has 

been in place for a number of years and is an area of comparatively slow innovation. The oligo 

strands on these beads are often built around a plastic core, with oligos added sequentially using a 

dedicated oligosynthsizer13. This process is cumbersome and requires extremely high yield 

reactions as well as technical precision. Moreover, bead loss in all these bead-based scRNA-seq 

protocols is high after the mRNA capture step. In response, I led projects that improve mRNA 

capture and enrichment as well as bead retention prior to sequencing. This work focuses on four 

areas: 1) developing a synthesis quality control pipeline, 2) building beads from a magnetic 

scaffold, 3) diversifying capture baits beyond poly-A and 4) generally increasing RNA captured 

and barcode diversity. These efforts have been ongoing but were unfortunately halted during the 

pandemic. 

As cell recovery and throughput has improved so too has the statistical power of scRNA-seq 

datasets. These data have been used to infer interactions, identify putative tumor cells, and have 

been used extensively to atlas tissues in health18,24-26. An improved understanding of healthy 

tissues provides a robust comparator to benchmark the effect of disease. Given the comprehensive 

nature of scRNA-seq measurements, studies on disease can now move beyond a sole focus on 

infected or mutated cells, to characterize the surrounding environment and its possible role in 
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exacerbating dysfunction. In this work, the team and I apply these tools and concepts to profile 

direct and indirect cellular response to pancreatic cancer and SARS-CoV-2.  

 

1.4 Using scRNA-seq to identify SARS-CoV-2 viral targets 

SARS-CoV-2 the virus responsible for COVID-19 has become a generation-defining public health 

emergency. In March of 2020, our lab, the Institute, and much of the world shut down to curb the 

spread of this emergent virus. Unlike previous coronavirus outbreaks in 2002 (SARS) and 2012 

(MERS), SARS-CoV-2 has spread worldwide, infecting hundreds of millions. While discrepancies 

between SARS, MERS and SARS-CoV-2 exist, the biology of those earlier viruses has proven 

vital in our understanding of the life cycle of SARS-CoV-227-29. In particular, our understanding 

of viral entry has been informed by the body of research done on coronaviruses over the past two 

decades. 

The infectivity of a virus is multifaceted, but partially informed by the mechanism utilized by the 

virus to enter a cell. Early SARS-CoV-2 research mined older datasets on viral entry to further 

infer the biology of  the nascent virus30. These studies showed both SARS-CoV-2 and SARS use 

the protein ACE2, normally a regulator of blood pressure, as a mediator of cell entry through an 

interaction with the viral spike protein. Despite these early findings, many critical questions remain 

unanswered and require SARS-Cov-2 specific datasets for more thorough investigation.  

To best understand the lifecycle of SARS-CoV-2 we must accurately identify cellular targets of 

the virus. Viral RNA is distinct from human RNA, creating a high-resolution flag when using 

scRNA-seq methods. The RNA expression of infected cells can be determined, quantified, and 

compared against uninfected cells. Differences can point to perturbed cellular functions and can 

narrow our focus on mechanisms of viral entry, replication, cell morbidity and death. Entry co-

receptors, viral proteins, or native proteins that empower viral replication can also be identified as 

potential therapeutic targets. However, focusing strictly on infected cells ignores the potentially 

devastating compensatory response of the uninfected surroundings. 

scRNA-seq can also define the role of uninfected cells in the microenvironment. Identifying 

secreted factors and surface receptors on un-infected cells may suggest intercellular interactions 

between immune and infected cells to further clarify the body’s response to infection. Capturing 

and studying these surrounding cells may shed light on the discrepancies between a productive 

and unproductive immune response, leading to better therapeutics.  
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scRNA-seq is uniquely capable of measuring the state and activity of many cells comprehensively 

and in an unbiased manner. This is critical when dealing with a novel virus, since it can identify 

cellular interactions, system level responses and molecular differences tied to clinical outcome. 

Chapter 2 of this document draws from patient samples to answer these questions and others.  

 

1.5 Measuring malignant and surrounding cells in PDAC 

Collectively, cancer continues to be a leading cause of death world-wide. While survival rates have 

extended tremendously in certain cancers, pancreatic ductal adenocarcinoma (PDAC) in particular 

remains a bleak prognosis.31 Genotype defined stratification schemes that have been clinically 

relevant in classifying and treating other cancers have had limited utility in PDAC32. Moreover, 

the relative lack of tumor cells and complex, stromal microenvironment common in PDAC make 

research and treatment difficult. 

However, over the past ten years research teams have identified prognostically relevant RNA 

markers that distinguish clinical course9-11. These studies have been groundbreaking but limited in 

their description and precision, due to the bulk RNA methods they relied on. scRNA-seq, 

specifically Seq-Well, should provide a clearer and more detailed picture of tumor cell expression 

and possible cell state plasticity. This may clarify the nature of tumor states and their dependencies, 

despite tumor cell sparsity. Though mRNA markers have not been explicitly used in the clinic, 

they may yet provide a new lens with which to better understand and treat disease.  

Microenvironmental heterogeneity has been another hurdle in profiling PDAC tumors. These 

tumors are characterized by dense stromal invasion, which might be involved in limiting 

therapeutic diffusion throughout the tumor33. Further, cutting edge immune therapies that have 

successfully directed an immune response against other tumor types, have shown little effect in 

PDAC. Some studies even show evidence that immune invasion can be counterproductive in 

treating these tumors34. This counterproductive immune response, along with diverse non-

malignant populations justify deep profiling of tumor adjacent cells. 

While RNA-base states have been proposed as a PDAC benchmark, our understanding of state 

dependencies and drivers have thus far been limited. Bulk RNA seq methods have blurred critical 

metrics of plasticity and intercellular interactions. Robust model system that accurately represent 

relevant phenotypes may shed light on tumor cell plasticity. However, while we can benchmark 

patient tumors in vivo, our ability to probe tumor cells ex vivo is blunted by biased model systems34. 
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As such, there is a critical need for high fidelity model systems that recapitulate a patient’s biology 

to test for plasticity, critical support structures and therapeutic efficacy. Experiments pursuing 

these goals and others are examined in Chapter 3. 

 

1.6 Summary 

scRNA-seq technologies have significantly changed the way scientists and clinicians measure 

causes of disease driven dysregulation. Fortunately, while biological applications continue to 

expand, technological innovation progresses as well13,14,20,23-25. Emergent protocols are continuing 

to improve throughput and sensitivity while lowering costs. The next major development may 

marry imaging— recording a cell’s spatial coordinates—with scRNA-seq21,35. While these 

protocols and their associated computational tools are in their infancy, we plan to employ some of 

them in our research pipelines moving forward. 

This thesis highlights both clinical translation and rapid exploratory research empowered by 

scRNA-seq while proposing future experiments that may encourage the use of the RNA state as a 

more clinically actionable biomarker. In summary, scRNA-seq is a critical tool in translating 

academic discovery into advancements in personalized medicine.  
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2.1 Abstract 

Infection with SARS-CoV-2, the virus that causes COVID-19, can cause severe lower respiratory 

illness including pneumonia and acute respiratory distress syndrome, which can lead to profound 

morbidity and mortality. Many infected individuals are either asymptomatic or have isolated upper 

respiratory symptoms, suggesting that the upper airways represent the initial site of viral infection, 

and that some individuals are able to largely constrain viral pathology to the nasal and 

oropharyngeal tissues. Despite major advances in understanding peripheral correlates of immunity 

and pathogenesis in COVID-19, which cell types in the human nasopharynx are the primary targets 

of SARS-CoV-2 infection, and how infection influences the cellular organization of the respiratory 

epithelium remains incompletely understood. Here, we present a cohort of nasopharyngeal samples 

from individuals with COVID-19, representing a wide spectrum of disease states from ambulatory 

to critically ill, as well as healthy and intubated patients without COVID-19. Using standard 

nasopharyngeal swabs, we collected viable cells and performed single-cell RNA-sequencing 

(scRNA-seq), simultaneously profiling both host and viral RNA. We find that following infection 

with SARS-CoV-2, the upper respiratory epithelium undergoes massive expansion and 

diversification of secretory cells and preferential loss of mature ciliated cells following infection 

with SARS-CoV-2. Active repopulation of lost ciliated cells appears to occur through secretory 

cell differentiation via deuterosomal cell intermediates. Epithelial cells from participants with 
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mild/moderate COVID-19 show extensive induction of genes associated with anti-viral and type I 

interferon responses. In contrast, cells from participants with severe lower respiratory symptoms 

appear globally stunted in their anti-viral capacity, despite substantially higher local inflammatory 

myeloid populations and equivalent nasal viral loads. This suggests an essential role for intrinsic, 

local, epithelial immunity in curbing and constraining viral infection. Using a custom 

computational pipeline, we characterized cell-associated SARS-CoV-2 RNA and identified rare 

cells with RNA intermediates strongly suggestive of active replication. We found remarkable 

diversity and heterogeneity among SARS-CoV-2 RNA+ host cells, both within and across 

individuals, including developing/immature and interferon-responsive ciliated cells, KRT13+ 

“hillock”-like cells, and unique subsets of secretory, goblet, and squamous cells. Finally, SARS-

CoV-2 RNA+ cells, as compared to uninfected bystanders, were enriched for genes involved in 

either the cell-intrinsic response (e.g., MX1, IFITM3, EIF2AK2) or susceptibility to infection (e.g., 

CTSL, TMPRSS2). Together, this work defines both protective and detrimental host responses to 

SARS-CoV-2, determines the direct viral targets of infection, and suggests that failed cell-intrinsic 

anti-viral epithelial immunity in the nasal mucosa may underlie the progression to severe COVID-

19.  

 

2.2 Introduction 

The novel coronavirus clade SARS-CoV-2 emerged in late 2019 and has quickly led to one of the 

most devastating global pandemics in modern history. Similar to other successful respiratory 

viruses, high replication within the nasopharynx1,2 and viral shedding by asymptomatic or 

presymptomatic individuals contributes to high transmissibility3,4 and rapid community spread5-7. 

COVID-19, the disease caused by SARS-CoV-2 infection, occurs in a fraction of those infected 

by the virus, and carries profound morbidity and mortality. The clinical pictures of COVID-19 

vary widely – from some individuals who experience few mild symptoms to some with prolonged 

and severe disease characterized by pneumonia, acute respiratory distress syndrome, and diverse 

systemic effects impacting a variety of other tissues8,9. To facilitate effective preventative and 

therapeutic strategies for COVID-19, differentiating the host protective mechanisms that support 

rapid viral clearance and limit disease severity from those that drive severe and fatal outcomes is 

essential. 
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Rapid mobilization of the scientific community and a commitment to open data sharing early in 

the COVID-19 pandemic enabled researchers across the globe to study SARS-CoV-2 and build 

initial models of disease pathogenesis10-12. By analogy to related human betacoronaviruses13, we 

currently understand viral tropism and disease progression to begin with SARS-CoV-2 entry 

through the mouth or nares where it initially replicates within epithelial cells of the human 

nasopharynx, generating an upper respiratory infection over several days14. A subset of patients 

develop symptoms of lower respiratory infection associated with viral replication in the distal 

airways, where a combination of inflammatory immune responses and direct viral-mediated 

pathogenesis can lead to diffuse damage to distal airways, alveoli, and vasculature15,16. Recent 

studies have mapped the host immune profiles associated with different stages along the COVID-

19 disease trajectory. Reproducible immune correlates of severe COVID-19 include prolonged 

detection of proinflammatory cytokines such as IL-6, TNFa, and IL-8, diminished type I and type 

III interferon, and marked lymphopenia, as well as evidence for immune exhaustion and abnormal 

myeloid populations17-23. These reports have relied on host inflammatory and immune signatures 

from the peripheral blood, which may only partially reflect the immune status within virally 

targeted tissues24,25. To date, no large-scale studies have directly addressed the impact of SARS-

CoV-2 infection on the respiratory epithelium of the human upper airways, nor assessed how this 

may relate to aberrant immune or anti-viral signaling described in the periphery. 

 

A question central to understanding SARS-CoV-2 induced disease pathology is the precise identity 

of the direct cellular targets of viral infection within human respiratory tissues. Early in the 

pandemic, multiple groups conducted meta-analyses of existing single-cell transcriptomic datasets 

from diverse host tissues to map SARS-CoV-2 tropism based on ACE2 expression and co-

expression of host proteases required for spike protein cleavage26-30. Across these studies, the most 

likely SARS-CoV-2 targeted cells within the oropharyngeal, nasal, and upper airway tissues 

include subsets of ciliated, secretory, and goblet cells, while type II pneumocytes represent the 

most likely targets within the lung parenchyma. Indeed, a study using primarily bronchoalveolar 

lavage samples from a small cohort of COVID-19 patients identified rare SARS-CoV-2 RNA-

containing cells assigned to ciliated and secretory cell types31. Further work using human tissues 

at autopsy found infected ciliated cells lining the trachea and distal airways within the lungs32-34. 

However, the precise early targets for SARS-CoV-2 in the nasopharynx, as well as the scope of 
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potential host cells and the variance in viral tropism across patients and disease courses have yet 

to be defined. A clearer understanding of viral tropism, how the airway epithelium responds to 

infection, and the relationship to disease outcome may critically inform therapeutic or prophylactic 

strategies. 

 

In addition to cellular tropism, we currently lack a clear understanding of the host factors 

responsible for susceptibility vs. resistance to viral infection. Researchers have employed a variety 

of in vitro systems to assess induction of anti-viral defenses following SARS-CoV-2 infection. 

Compared to other common respiratory viruses, SARS-CoV-2 appears to poorly elicit type I 

interferon responses in cultured human epithelial cells, and instead skews towards 

proinflammatory cytokine profiles, in line with observations from human peripheral studies 17,35,36. 

To directly assay virally-targeted cell types or tissues in vivo, researchers have relied on emerging 

animal models, including non-human primates37-39, hamsters40,41, mice42-45, and ferrets46,47. Animal 

models vary widely in the severity of SARS-CoV-2-driven disease and associated 

immunopathology, and incompletely reflect the diversity of viral infection outcomes and natural 

immune responses within the human population48. Indeed, recent work has identified enrichment 

of both inborn errors of type I interferon signaling and the presence of auto-antibodies directed 

against type I interferons among patients with severe COVID-19, providing potential explanations 

for failed or insufficient anti-viral immunity within a subset of severe cases, and further supporting 

the need for studies of human cohorts that represent the breadth of host-viral interactions49-51.  

 

Here, we present a comprehensive analysis of the cellular phenotypes of the nasal mucosa during 

SARS-CoV-2 infection. To achieve this, we developed tissue handling protocols that enabled high-

quality single-cell RNA-sequencing (scRNA-seq) from frozen nasopharyngeal swabs collected 

from a large patient cohort (n = 59), and created a detailed map of epithelial cell diversity and co-

resident mucosal immune populations. We found that SARS-CoV-2 infection leads to a dramatic 

loss of mature ciliated cells, which is associated with secretory cell expansion, differentiation, and 

the accumulation of deuterosomal cell intermediates – potentially involved in the compensatory 

repopulation of damaged ciliated epithelium. Severe COVID-19 is characterized by mucosal 

recruitment of highly inflammatory myeloid populations which represent the primary sources of 

tissue pro-inflammatory cytokines including TNF, IL1B, and CXCL8,  while type I and type III 
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interferons remain undetectable within resident immune or nasal epithelial cell types. Further, we 

identified profound differences in the induction of innate anti-viral pathways, genes involved in 

antigen processing and presentation, the acute inflammatory response, and pathways elicited by 

type I interferon between participants with mild/moderate vs. severe COVID-19. Finally, using 

unbiased whole-transcriptomic amplification, we were able to map not only host cellular RNA, 

but also cell-associated SARS-CoV-2 RNA, allowing us to trace viral tropism to specific epithelial 

subsets and identify host pathways associated with susceptibility or resistance to viral infection. 

Together, we identify an intrinsic failure of anti-viral immunity among nasal epithelial cells 

responding to SARS-CoV-2 infection, which predicts progression to severe COVID-19.  

 

2.3 Results 

2.3.1 Defining cellular Diversity in the Human Nasopharynx  

Nasopharyngeal swabs were collected from 59 individuals from the University of Mississippi 

Medical Center between April and September 2020. This cohort consisted of 38 individuals who 

had a positive SARS-CoV-2 PCR nasopharyngeal (NP) swab on the day of hospital presentation. 

A Control cohort consisted of 15 individuals who were asymptomatic and had a negative SARS-

CoV-2 NP PCR, and 6 intubated individuals in the intensive care unit without a recent history of 

COVID-19 and negative SARS-CoV-2 NP PCR (Table 2.1, see Methods for full inclusion and 

exclusion criteria). For the purposes of this study a second NP swab was collected within 3 days 

of presentation. Using the 2020 World Health Organization (WHO) guidelines for stratification 

and classification of COVID-19 severity based on the level of maximum required respiratory 

support, 16 of the individuals were considered COVID-19 mild/moderate (WHO score 1-5) and 

22 had severe COVID-19 (WHO score 6-8, see Methods, Table 2.1, Supplementary Figures 

2.1A, 2.1B). Nasopharyngeal samples were obtained by a trained healthcare provider and rapidly 

cryopreserved to maintain cellular viability (Figure 2.1A, Supplementary Figure 2.1C). Swabs 

were later processed to recover single-cell suspensions (mean +/- SEM: 57,000 +/- 15,000 total 

cells recovered per swab), before generating single-cell transcriptomes using the Seq-Well S3 52,53. 
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Among all COVID-19 and Control samples, we recovered 32,871 genes across 32,588 cells 

(following filtering and quality control), with an average recovery of 562 +/- 69 cells per swab 

(mean +/- SEM). We found roughly equivalent transcriptomic quality following uniform 

preprocessing steps between COVID-1ry between participants (Supplementary Figures 2.1D, 

2.1E). Following dimensionality reduction and clustering approaches to resolve individual cell 

types and cell states, we annotated 18 clusters corresponding to distinct cell types across immune 

Table 2.1. Participant characteristics 

 

Control 

(WHO score 0)

Intubated Control 

(WHO score 7-8)

COVID-19 m/m 

(WHO score 1-5)

COVID-19 severe 

(WHO score 6-8)

COVID-19 conv. 

(WHO score 0)

Case number 25.9% (15/58) 10.3% (6/58) 24.1% (14/58) 36.2 (21/58) 3.4% (2/58)

Age (years)

Minimum 27 33 19 28 20

Median (IQR) 58 (16) 65.5 (31) 49.5 (17.8) 62 (13) N/A

Maximum 73 71 69 84 57

Sex

Female 60% (9/15) 16.7% (1/6) 42.9% (6/14) 47.6% (10/21) 50% (1/2)

Male 40% (6/15) 83.3% (5/6) 57.1% (8/14) 52.4% (11/21) 50% (1/2)

Ethnicity

Hispanic 0% (0/15) 0% (0/6) 0% (0/14) 4.8% (1/21) 0% (0/2)

Not Hispanic 100% (15/15) 100% (6/6) 100% (14/14) 95.2% (20/21) 100% (2/2)

Race

Black/African American 66.7% (10/15) 66.7% (4/6) 71.4% (10/14) 61.9% (13/21) 50% (1/2)

White 33.3% (5/15) 33.3% (2/6) 28.6% (4/14) 23.8% (5/21) 50% (1/2)

American Indian 0% (0/15) 0% (0/6) 0% (0/14) 14.3% (3/21) 0% (0/2)

BMI

Median (IQR) 37.5 (14.4) 30.5 (18.1) 23.0 (11.6) 31.9 (14.2) 40.7

Pre-existing conditions

Diabetes 40% (6/15) 33.3% (2/6) 28.6% (4/14) 71.4% (15/21) 0% (0/2)

Chronic kidney disease 6.7% (1/15) 0% (0/6) 7.1% (1/14) 19.0% (4/21) 0% (0/2)

Congestive heart failure 6.7% (1/15) 16.7% (1/6) 0% (0/14) 4.8% (1/21) 0% (0/2)

Lung disorder 6.7% (1/15) 16.7% (1/6) 28.6% (4/14) 38.1% (8/21) 0% (0/2)

Hypertension 86.7% (13/15) 50% (3/6) 42.9% (6/14) 81.0% (17/21) 0% (0/2)

IBD 13.3% (2/15) 0% (0/6) 0% (0/14) 0% (0/21) 50% (1/2)

Treatment

Corticosteroids N/A 33.3% (2/6) 42.9% (6/14) 66.7% (14/21) N/A

Remdesivir N/A 0% (0/6) 42.9% (6/14) 85.7% (18/21) N/A

28-day mortality 0% (0/15) 33.3% (2/6) 0% (0/14) 76.2% (16/21) 0% (0/2)

Table 1

m/m: mild/moderate        conv: convalescent        IQR: inter-quartile range        BMI: body mass index        IBD: inflammatory bowel disease
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and epithelial identities (Figure 2.1B-E, Supplementary Table 2.1). Consistent with the use of 

nasal swabs for cell collection, we did not recover stromal cell populations such as endothelial 

cells, fibroblasts, or pericytes, which were found in previous scRNA-seq datasets from nasal 

epithelial surgical samples54-56. Among epithelial cell types, we readily identified basal cells by 

their expression of canonical marker genes including TP63, KRT15, and KRT5, as well as mitotic 

basal cells based on the added expression of genes involved in the cell cycle such as MKI67 and 

TOP2A (Figure 2.1F). We resolved large populations of both secretory cells and goblet cells, 

identified by expression of KRT7, CXCL17, F3, AQP5, and CP. Despite strong transcriptional 

similarity between secretory and goblet cells, we distinguished between both cell types based on 
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expression of MUC5AC, which defines goblet cells, and BPIFA1, which we found primarily 

expressed within secretory cell types and diminished in MUC5AC high cells. We also designated 

a small population of cells “developing secretory and goblet cells” based on their lower expression 

of classic secretory/goblet cell genes, as well as persistent expression of some basal cell markers 

(e.g., persistent COL7A1 and DST expression, but diminishing KRT5, KRT15 expression). We also 

resolved a population of ionocytes, a recently-identified specialized subtype of secretory cell 

involved in regulating mucus viscosity within respiratory epithelia, defined by expression of 

FOXI1, FOXI2, and CFTR57,58. Squamous cells were identified by their expression of SCEL, as 

well as multiple SPRR- genes, and potentially derive from the squamous epithelium of the anterior 

nose or posterior pharynx. We also recovered a very small population of cells we term 

“enteroendocrine cells”, based on unique expression of gastric inhibitory polypeptide (GIP), which 

is typically produced by intestinal and gastric enteroendocrine cells and LGR5, which classically 

marks stem cell populations in the gastrointestinal mucosa59. 

 

Ciliated cells were the most numerous epithelial cell type recovered in this dataset, defined by 

expression of transcription factor FOXJ1 as well as numerous genes involved in the formation of 

cilia, e.g., DLEC1, DNAH11, and CFAP43. Similar to intermediate/developing cells of the 

Figure 2.1: Cellular composition of nasopharyngeal swabs 

(A) Schematic of method for viable cryopreservation of nasopharyngeal swabs, cellular isolation, and scRNA-seq 

using the Seq-Well S3 platform (created with BioRender). (B)UMAP of 32,588 single-cell transcriptomes from all 

participants, colored by cell type (following iterative Louvain clustering). (C)UMAP as in B, colored by SARS-CoV-

2 PCR status at time of swab. (D)UMAP as in B, colored by peak level of respiratory support (WHO COVID-19 

severity scale). (E)UMAP as in B, colored by participant. (F)Violin plots of cluster marker genes (FDR < 0.01) for 

coarse cell type annotations (as in B). (G)Proportional abundance of coarse cell types by participant (ordered within 

each disease cohort by increasing Ciliated cell abundance). (H)Proportional abundance of participants by coarse cell 

types. Shades of red: COVID-19. Shades of blue: Control. (I)Expression of entry factors for SARS-CoV-2 and other 

common upper respiratory viruses. Dot size represents fraction of cell type (rows) expressing a given gene (columns). 

Dot hue represents scaled average expression. (J)Proportion of Ciliated Cells by sample. Statistical test above graph 

represents Kruskal-Wallis test results across all cohorts (following Bonferroni-correction). Statistical significance 

asterisks within box represent significant results from Dunn’s post-hoc testing. * FDR-corrected p-value  < 0.05, ** q 

< 0.01, *** q < 0.001. (K)Proportion of Developing Ciliated Cells by sample.  (L)Proportion of Deuterosomal Cells 

by sample. (M)Proportion of Secretory Cells by sample. (N)Proportion of Goblet Cells by sample. (O)Simpson’s 

Diversity index across epithelial cell types in COVID-19 vs. Control. Significance by Student’s t-test. 
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secretory and goblet lineage, we also identified two populations of precursor ciliated cells. One, 

termed “developing ciliated cells”, which expressed canonical ciliated cell genes such as FOXJ1, 

CAPSL, and PIFO at lower levels than mature ciliated cells and lacked expression of cilia-forming 

genes. We also identified a cluster defined by expression of DEUP1, which is critical for centriole 

amplification as a precursor to cilium assembly. Together with co-expression of CCNO, CDC20B, 

FOXN4, and HES6, these cells match a recently-defined cell type termed deuterosomal cells, 

which represent a ciliated cell precursor cell type arising from secretory cell/goblet cell 

differentiation55.  

 

Immune cells represent a minority of recovered cells, yet we resolved multiple distinct clusters 

and cell types, representing major myeloid and lymphoid populations. Among lymphoid cells, we 

recovered T cells, identified by CD3E, CD2, and TRBC2 expression, and B cells, identified by 

MS4A1, CD79A, and CD79B expression. Among myeloid cell types, we recovered a large 

population of macrophages (CD14, FCGR3A, VCAN), dendritic cells (CCR7, CD86), and 

plasmacytoid DCs (IRF7, IL3RA). Relative to true tissue-resident abundances, we under-recovered 

granulocyte populations, likely due to the intrinsic fragility of these cell types and the 

cryopreservation methods required in our sample pipeline. We recovered a very small population 

of mast cells, defined by expression of GATA2, TPSB2, and PTGS2. Among two samples, we 

recovered erythroblast-like cells, defined by expression of hemoglobin subunits including HBB 

and HBA2. With the exception of erythroblasts, each cell type was represented by cells from 

numerous participants, and from each participant we recovered a diversity of cell types and states, 

though the cellular composition was highly variable between distinct individuals (Figure 2.1G, 

2.1H).  

 

We directly tested whether cell types collected from nasal swabs following cryopreservation were 

representative of cellular composition extracted from a freshly swabbed nasal epithelium, or if 

certain cell types were lost during freezing (Supplementary Figure 2.1F-2.1K). Recovery of 

viable cells, technical metrics of single-cell library quality, and cellular proportions after clustering 

and analysis were all largely stable between matched fresh and cryopreserved swabs taken from 

the same individual. Importantly, no “new” cell types were recovered from the freshly processed 

samples (from healthy participants), suggesting that the on-swab cryopreservation technique 
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employed herein does not significantly alter the composition of cells available for downstream 

analysis. 

 

We interrogated each cell type for the expression of host factors utilized by common respiratory 

viruses to facilitate cellular entry (Figure 2.1I)29, 60-64. We found ACE2 expression highest among 

secretory cells and goblet cells, and to a lesser extent on ciliated cells, developing ciliated cells, 

deuterosomal cells, and squamous cells – suggesting these cells are likely targets for SARS-CoV-

2 (and other betacoronaviruses that use ACE2 as their primary cellular entry factor). SARS-CoV-

2 spike protein requires “priming” or cleavage by host proteases to enable membrane fusion and 

viral release into the cell – since early 2020, researchers have determined that proteases TMPRSS2, 

TMPRSS4, CTSL, and FURIN are capable of spike protein cleavage and are potentially critical for 

viral entry60. TMPRSS2, likely the principal host factor for SARS-CoV-2 S cleavage, is found in 

highest abundance on squamous cells, followed by modest expression on all other epithelial cell 

types. Similarly, CTSL (and other cathepsins) was found across diverse epithelial and myeloid cell 

types. ANPEP and DPP4, host receptors targeted by other human coronaviruses causing upper 

respiratory diseases, are found primarily on goblet cells and secretory cells65,66. As expected, 

CDHR3, the receptor utilized by Rhinovirus C, is found primarily on ciliated cells and developing 

ciliated cells67. 

 

Next, we grouped both SARS-CoV-2+ and SARS-CoV-2- participants by their level of respiratory 

support according to the WHO scoring system: Control WHO 0 (comprising healthy SARS-CoV-

2 PCR negative participants, n = 15), Control WHO 7-8 (SARS-CoV-2 PCR negative, incubated 

participants treated in the ICU for non-COVID-19 diagnoses, n = 6), COVID-19 WHO 1-5 (SARS-

CoV-2 PCR positive, mild/moderate disease, n = 14), and COVID-19 WHO 6-8 (SARS-CoV-2 

PCR positive, intubated, severe disease, n = 21). We compared proportional cell type abundances 

across these four groups (Figure 2.1J-2.1N). We found that the abundance of ciliated cells (all, 

coarse annotation) was significantly impacted by group (Kruskal-Wallis test with Dunn’s post-hoc 

testing, Bonferroni-corrected p = 0.025), and were significantly reduced among COVID-19 WHO 

6-8 participants compared to healthy controls (mean +/- SEM 17.1 +/- 3.6 % of COVID-19 WHO 

6-8 samples were ciliated cells, compared to 46.7 +/- 7.4 % of Control WHO 0, p < 0.01) (Figure 

2.1J). Deuterosomal cells, which represent a developmental intermediate as secretory/goblet cells 
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differentiate into ciliated cells, were significantly increased among samples obtained from Control 

WHO 7-8, COVID-19 WHO 1-5, and COVID-19 WHO 6-8 samples, with the strongest increases 

observed among samples obtained from participants with severe COVID-19 compared to Control 

WHO 0 (Figure 2.1L). Likewise, developing ciliated cells were significantly increased among 

participants with severe COVID-19 (Figure 2.1K). The percentage of secretory cells was also 

dramatically increased among all COVID-19 participants compared to both the WHO 0 and WHO 

7-8 control groups – 20.4 +/- 5.0% (mean +/- SEM) of all epithelial cells were secretory cells 

within severe COVID-19 participants, while mild/moderate COVID-19 participants contained 8.3 

+/- 2.8% secretory cells, and on average, fewer than 4% of cells per participant were secretory 

among either Control WHO 0 and Control WHO 7-8 samples (Figure 2.1M). The average 

percentage of goblet cells was higher in both groups of participants with COVID-19 compared to 

controls, but this difference did not reach significance (Figure 2.1N). Intriguingly, expansion of 

secretory cells and loss of ciliated cells resulted in a net gain in epithelial diversity, calculated by 

Simpson’s index which calculates the richness of the epithelial “ecosystem” (Figure 2.1O).  

 

2.3.2 Epithelial Diversity and Remodeling Following SARS-CoV-2 Infection  

Next, we sought to more completely delineate the diversity of epithelial cells through iterative 

clustering and sub-clustering among epithelial cell types (see Methods). This enabled us to divide 

the 10 “coarse” epithelial cell types into 25 “detailed” cell types/states (Figures 2.2A-2.2E, 

Supplementary Figure 2.2A, full differentiating gene lists for epithelial subtypes found in 

Supplementary Table 2.1). Among some cell types, we did not find additional within-type 

diversity, and thus the “coarse” annotations (Figure 2.2A) are equivalent to the “detailed” 

identities (Figure 2.2D). This applied to ionocytes, deuterosomal cells, developing secretory and 

goblet cells, basal cells, mitotic basal cells, and developing ciliated cells. We split goblet cells 

(coarse annotation) into 4 distinct detailed subtypes, each named by a representative defining 

marker or marker set. Likewise, secretory cells, squamous cells, and ciliated cells were all divided 

into multiple specialized subtypes. Some cellular subsets were similar to previously-described 

entities – including “KRT24highKRT13high secretory cells”, which are highly similar to KRT13+ 

“hillock” cells, thought to be involved in airway epithelial responses to remodeling and 

inflammatory challenge54,57. Further, some cell types are defined by canonical cellular activation 

pathways, such as “interferon responsive” genes (e.g., IFITM3, IFI6, MX1) or “early response” 
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factors (e.g., JUN, EGR1, FOS). Finally, some cell types contained specialized transcriptomic 

profiles, which, to our knowledge, had not been previously characterized. This included a subset 

of squamous cells expressing markers classically associated with vascular endothelial cells 

including VWF and VEGFA, as well as secretory populations expressing high abundances of 

multiple inflammatory cytokines, such as “BPIFA1highchemokinehigh secretory cells” (chemokines 

include CXCL8, CCL2, CXCL1, and CXCL3) (Figures 2.2D, 2.2E).  
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We again examined the epithelial subtypes for their expression of host entry factors which facilitate 

viral entry among common upper respiratory pathogens (Supplementary Figure 2.2B). ACE2 

was previously identified as highest among secretory, goblet, and ciliated cells29,30 – here we 

observe substantial within-cell type heterogeneity in ACE2 expression among each of these cell 

types. Notably, among goblet cells, AZGP1high goblet cells express the highest abundance of ACE2 

mRNA, suggesting this cell type may be a preferential target for SARS-CoV-2 infection. Likewise, 

early response secretory cells, KRT24highKRT13high secretory cells, and interferon responsive 

secretory cells, all express elevated abundances of ACE2. Many other secretory and goblet cell 

types express detectable ACE2, but lower levels. Similarly, multiple detailed subsets of ciliated 

cells expressed ACE2, however ciliahigh and BEST4highciliahigh ciliated cells notably did not appear 

to contain detectable levels of ACE2 mRNA.  

Figure 2.2: Altered epithelial cell composition and recovery in the nasopharynx during COVID-19 

(A)UMAP of 28,948 epithelial cell types following re-clustering, colored by coarse cell types. Lines represent 

smoothed estimate of cellular differentiation trajectories (RNA velocity estimates via scVelo using intronic:exonic 

splice ratios). (B)UMAP as in A, colored by SARS-CoV-2 PCR status at time of swab. (C)UMAP as in A, colored 

by peak level of respiratory support (WHO illness severity scale). (D)UMAP as in A, colored by detailed cell 

annotations. (E)Violin plots of cluster marker genes (FDR < 0.01) for detailed epithelial cell type annotations (as in 

D). (F)UMAP of 9,209 Basal, Goblet, and Secretory Cells, following sub-clustering and resolution of detailed cell 

annotations. (G)UMAP of only Basal, Goblet, and Secretory Cells as in F, colored by SARS-CoV-2 PCR status at 

time of swab. (H)UMAP of only Basal, Goblet, and Secretory Cells as in F, colored by inferred velocity pseudotime 

(darker blue shades: precursor cells, lighter yellow shades: more terminally differentiated cell types). (I)Plot of gene 

expression by Basal, Goblet, and Secretory Cell velocity pseudotime for select genes. Points colored by detailed cell 

type annotations. (J)Proportion of Secretory Cell subtypes (detailed annotation) by sample, normalized to all 

epithelial cells. (K)UMAP of 13,913 Ciliated Cells, following sub-clustering and resolution of detailed cell 

annotations. (L)UMAP of Ciliated Cells as in J, colored by SARS-CoV-2 PCR status at time of swab. (M)UMAP 

of Ciliated Cells as in J, colored by inferred velocity pseudotime (darker blue shades: precursor cells, lighter yellow 

shades: more terminally differentiated cell types). (N)Plot of gene expression by Ciliated Cell velocity pseudotime 

for select genes (all significantly correlated with velocity expression. Points colored by detailed cell type annotations. 

(O)Proportion of Ciliated Cell subtypes (detailed annotation) by sample, normalized to all epithelial cells. (P)UMAP 

of 13,210 epithelial cells (using UMAP embedding from A) from SARS-CoV-2 PCR negative participants (Control). 

Lines represent smoothed estimate of cellular differentiation trajectories (via RNA velocity) calculated using only 

cells from Control participants. (Q)UMAP of 15,738 epithelial cells (using UMAP embedding from A) from SARS-

CoV-2 PCR positive participants (COVID-19). Lines represent smoothed estimate of cellular differentiation 

trajectories (via RNA velocity) calculated using only cells from COVID-19 participants. Named cell types highlight 

those significantly altered between disease cohorts. 
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To map the differentiation trajectories and lineage relationships between epithelial cell types, we 

analyzed single-cell RNA velocity (scVelo) across all epithelial cells68,69. RNA velocity analysis 

leverages the dynamic relationships between expression of unspliced (intron-containing) and 

spliced (exonic) RNA across thousands of variable genes, enabling 1) estimation of the 

directionality of transitions between distinct cells and cell types, and 2) identification of putative 

driver genes behind these transitions. Overlaying the UMAPs of cell type identities and associated 

metadata in Figures 2.2A-2.2D, vector fields (black lines and arrows) represent a smoothed 

estimate of cellular transitions based on RNA velocity. Globally, RNA velocity appropriately 

places basal cells and mitotic basal cells as the “root” or “origin” of cellular transitions, which then 

progress through the developing secretory and goblet cells to the secretory cells and goblet cells. 

Developing ciliated cells and ciliated cells are placed “later” in the differentiation trajectory, distal 

to development of both secretory and deuterosomal cells, which is consistent with current models 

where ciliated cells represent a terminally differentiated state and may arise from these precursor 

cell types55. By analyzing spliced and unspliced forms of representative markers underlying 

ciliated cell development, we can visualize the transition from secretory cells to deuterosomal cells 

to developing ciliated cells, and finally mature ciliated cells (Supplementary Figure 2.2C). 

Together, this analysis enables us to map the developmental relationships between major epithelial 

cell compartments discussed above, and connect the loss of “terminally differentiated” or “mature” 

cell types in COVID-19, e.g., ciliated cells, with the concurrent expansion of their apparent 

precursors: secretory, deuterosomal, and developing ciliated cells (Figure 2.1J-2.1N).  

 

We next analyzed developmental transitions among detailed epithelial cell subtypes (as presented 

in Figure 2.2D) to better trace the relationships between finer-resolved subsets, and map 

alterations in cellular behavior and development during COVID-19. When considering only basal, 

goblet, and secretory cell subtypes, we found TP63, KRT5, and LGR6 expression gradually decline 

across basal and developing secretory and goblet cells, while expression of secretory and goblet 

cell specific markers such as KRT7 and AQP5 progressively increase (Figure 2.2F-2.2I). The 

majority of secretory and goblet clusters are represented by cells from SARS-CoV-2+ individuals 

(as observed previously, Figure 2.1K, 2.2G), with significant expansion of SERPINB11high 

secretory cells (which represent a “generic” or un-differentiated secretory subtype), BPIFA1high 
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secretory cells, and KRT24highKRT13high secretory cells (which resemble KRT13+ “hillock” cells) 

among cells from individuals with severe COVID-19 (Figure 2.2J). Notably, transitions between 

detailed secretory and detailed goblet cells are substantially less linear than among the coarse cell 

types or as seen in ciliated cell subsets (discussed below). RNA velocity curves predict multiple 

routes for development between different secretory and goblet subtypes (Figure 2.2F), which 

suggests maintained capacity for differentiation and de-differentiation even among this “mature” 

cell type, and is consistent with the current understanding of respiratory secretory cell plasticity70. 

 

Ciliated cell subtypes were analyzed by their RNA velocity and pseudotemporal ordering in the 

same manner (Figures 2.2K-2.2N). The velocity pseudotime predicts progression from 

developing ciliated cells, to FOXJ1high ciliated cells, to BEST4highciliahigh ciliated cells, and 

terminating in ciliahigh ciliated cells. (Figure 2.2M). Interferon responsive ciliated cells and early 

response FOXJ1high ciliated cells represent phenotypic deviations from this ordered progression, 

and therefore appear collapsed/unresolved along this trajectory with the same pseudotime range as 

FOXJ1high ciliated cells. Among COVID-19 participants, we observed decreased proportions of 

both ciliahigh and BEST4highciliahigh ciliated cells, two cell subsets which represent the most 

terminally differentiated ciliated cell subtypes (Figure 2.2O). This effect was particularly 

pronounced among individuals with severe disease, and suggests that the overall reduction in upper 

airway ciliated cells during COVID-19 (Figure 2.1J) preferentially affects terminally 

differentiated subsets, potentially due to delayed replenishing from secretory/deuterosomal 

precursors, or enhanced susceptibility to viral-mediated pathogenesis. Among individuals with 

mild/moderate COVID-19, we found a substantial increase in the proportion of interferon 

responsive ciliated cells – averaging 15.9% of all epithelial cells among mild/moderate COVID-

19 participants, compared to < 1% among healthy controls (Figure 2.2O). 

 

Finally, we directly mapped the developmental transitions among nasal epithelial cells within 

Control (Figure 2.2P), or COVID-19 participants only (Figure 2.2Q). Confirming our above 

analysis, cells from Control participants poorly populated the intermediate regions that bridge 

secretory and goblet cell types to mature ciliated cells. Conversely, regions annotated as multiple 

secretory cell subsets and developing ciliated cells were uniquely captured from COVID-19 

participants. Together, our analysis defines both the cellular diversity among cells collected from 
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nasopharyngeal swabs, as well as the nuanced developmental relationships between epithelial cells 

of the upper airway. Further, we observe substantial expansion of immature/intermediate and 

specialized subtypes of secretory, goblet, and ciliated cells during COVID-19, presumably as a 

result of direct viral targeting and pathology, as well as part of the intrinsic capacity of the nasal 

epithelium to regenerate and repopulate following damage. 

 

2.3.3 Alterations to Nasal Mucosal Immune Populations in COVID-19 

As with epithelial cells, we further clustered and annotated detailed immune cell populations. 

Multiple cell types could not be further subdivided from their coarse annotation (Figure 2.1B, 

Supplementary Figure 2.3A-2.3E), including mast cells, plasmacytoid DCs, B cells, and 

dendritic cells. Among macrophages (coarse annotation), we resolved 5 distinct subtypes 

(Supplementary Figure 2.3B). FFAR4high macrophages were defined by expression of FFAR4, 

MRC1, CHIT1, and SIGLEC11, as well as chemotactic factors including CCL18, CCL15, genes 

involved in leukotriene synthesis (ALOX5, ALOX5AP, LTA4H), and toll-like receptors TLR8 and 

TLR2 (Supplementary Figure 2.3F, full differentiating gene lists for immune subtypes found in 

Supplementary Table 2.1). Interferon responsive macrophages were distinguished by elevated 

expression of anti-viral genes such as IFIT3, IFIT2, ISG15, and MX1, akin to the epithelial subsets 

labeled “interferon responsive”, along with CXCL9, CXCL10, CXCL11, which are likely indicative 

of IFNg stimulation. MSR1highC1QBhigh macrophages are defined by cathepsin expression (CTSD, 

CTSL, CTSB) and elevated expression of complement (C1QB, C1QA, C1QC), and lipid binding 

proteins (APOE, APOC, and NPC2). The fourth “specialized” subtype of macrophage we found 

was termed “inflammatory macrophages”, which uniquely expressed inflammatory cytokines such 

as CCL3, CCL3L1, IL1B, CXCL2, and CXCL3. The remaining “ITGAXhigh” macrophages were 

distinguished from other immune cell types by ITGAX, VCAN, PSAP, FTL, FTH1 and CD163 

(though these genes are shared by other specialized macrophages subsets). T cells were largely 

CD69 and CD8A positive, consistent with a T resident memory-like phenotype, and we were not 

able to resolve a separate cluster of CD4 T cells. Two specialized subtypes of CD8 T cells were 

annotated from this dataset: one defined by exceptionally high expression of early response genes 

(FOSB, NR4A2, and CCL5), and the other termed “interferon responsive cytotoxic CD8 T cells”, 

defined by granzyme and perforin expression (GZMB, GZMA, GNLY, PRF1, GZMH), anti-viral 
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genes (ISG20, IFIT3, APOBEC3C, GBP5) and genes associated with effector CD8 T cell function 

(LAG3, IL2RB, IKZF3, TBX21). 
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Among immune cells, macrophages were markedly increased relative to other immune cell types 

during severe COVID-19 (Supplementary Figure 2.3G, 2.3H). Multiple specialized myeloid cell 

types were uniquely detected and enriched among COVID-19 participants, albeit in a subset of 

participants, and biased to severe COVID-19 cases: ITGAXhigh macrophages, FFAR4high 

macrophages, inflammatory macrophages, and interferon responsive macrophages 

(Supplementary Figure 2.3H). Through rare, plasmacytoid DCs and mast cells were only 

recovered as > 1% of immune cells among COVID-19 participants. Somewhat surprisingly, T cells 

and T cell subtypes were not dramatically altered between disease cohorts. Finally, we assessed 

the correlation between distinct cell types across all participants. When samples from all disease 

cohorts were considered, we found that proportional abundance of dendritic cells, mast cells, and 

macrophages were highly-correlated with one another (p < 0.01), likely indicative of the 

coordinated recruitment of these immune subtypes during inflammation. Among detailed immune 

cell types, interferon responsive macrophages were highly correlated with interferon responsive 

cytotoxic CD8 T cells (p < 0.01), suggesting direct communication between IFNG-expressing 

tissue resident T cells and CXCL9/10/11 expressing myeloid cells.  

Figure 2.3: Cell-type specific and shared transcriptional responses to SARS-CoV-2 infection. 
(A)Abundance of significant differentially expressed (DE) genes by detailed cell type between Control WHO 0 vs. 
COVID-19 WHO 1-5 samples (left), Control WHO 0 and COVID-19 WHO 6-8 samples (middle), COVID-19 WHO 
1-5 and COVID-19 WHO 6-8 samples (right). Restricted to genes with FDR-corrected p < 0.001, log2 fold change > 
0.25. ø = comparison not tested due to too few cells in one group. (B) Top: Volcano plots of average log fold change 
vs. -log10(FDR-adjusted p-value) for Ciliated cells (coarse annotation). Left: Control WHO 0 vs. COVID-19 WHO 1-
5 (mild/moderate). Middle: Control WHO 0 vs. COVID-19 WHO 6-8 (severe). Right: COVID-19 WHO 1-5 
(mild/moderate) vs. COVID-19 WHO 6-8 (severe). Horizontal red dashed line: FDR-adjusted p-value cutoff of 0.05 
for significance. Bottom: gene set enrichment analysis plots across shared, type I interferon specific, and type II 
interferon specific stimulated genes. Genes are ranked by their average log fold change (FC) between each comparison. 
Black lines represent the ranked location of genes belonging to the annotated gene set. Bar height represents running 
enrichment score (NES: Normalized Enrichment Score). P-values following Bonferroni-correction: *** corrected p < 
0.001, ** p < 0.01, * p < 0.05. (C) Heatmap of significantly DE genes between Interferon Responsive Ciliated Cells 
from different disease cohorts. (D) Top: Volcano plots related to C. Average log fold change vs. -log10(FDR-adjusted 
p-value) for Interferon Responsive Ciliated cells. Horizontal red dashed line: 0.05 cutoff for significance. Bottom: gene 
set enrichment analysis across shared, type I, and type II interferon stimulated genes. (E) Heatmap of significantly DE 
genes between MUC5AChigh Goblet Cells from different disease cohorts. (F) Top: Volcano plots related to E. Average 
log fold change vs. -log10(FDR-adjusted p-value) for MUC5AChigh Goblet Cells. Horizontal red dashed line: 0.05 cutoff 
for significance. Bottom: gene set enrichment analysis across shared, type I, and type II interferon stimulated genes. 
(G) Top: Dot plot of IFNGR1/2 and IFNAR1/2 gene expression by selected cell types. Bottom: Violin plots of gene 
module scores across selected cell types, split by Control WHO 0 (blue), COVID-19 WHO 1-5 (red), and COVID-19 
WHO 6-8 (pink). Gene modules represent transcriptional responses of human basal cells from the nasal epithelium 
following in vitro treatment with IFNA or IFNG. Significance by Wilcoxon signed-rank test. P-values following 
Bonferroni-correction: * p< 0.05, ** p < 0.01, *** p < 0.001. (H) Common DE genes across detailed cell types. Left 
(red): genes upregulated in multiple cell types when comparing COVID-19 WHO 1-5 vs. Control WHO 0. Right 
(pink): genes upregulated in multiple cell types when comparing COVID-19 WHO 6-8 vs. Control WHO 0.  
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These analyses demonstrate how the epithelial and immune compartments are dramatically altered 

during COVID-19, likely reflecting both protective anti-viral and regenerative responses, as well 

as pathologic changes underlying progression to severe disease. 

 

2.3.4 Cellular Behaviors Associated with COVID-19 Severity 

Thus far, we have characterized how severe COVID-19 elicits major cell compositional changes 

within the nasopharyngeal mucosa, including expansion of the secretory cell/deuterosomal cell 

compartments associated with lost mature ciliated cells, and recruitment of highly inflammatory 

myeloid cells. Next, we examined how each individual cell type responds across the full spectrum 

of disease severity. Here, we analyzed pairwise comparisons between Control WHO 0, COVID-

19 WHO 1-5 (mild/moderate), and COVID-19 WHO 6-8 (severe), and compared both high-level 

“coarse” cell types, and “detailed” cell subsets (Figure 2.3A, Supplementary Figure 2.4A, 

Supplementary Tables 2.2-2.4). Among all coarse cell types, the largest magnitude 

transcriptional changes (measured by the number of differentially expressed (DE) genes with FDR 

< 0.001, and log fold change > 0.25) were observed primarily within the epithelial compartment, 

most strikingly within ciliated cells, developing ciliated cells, secretory cells, goblet cells, and 

ionocytes (Supplementary Figure 2.4A). Among detailed cell types, we observed the largest 

transcriptional changes among AZGP1high goblet cells, early response FOXJ1high ciliated cells, 

FOXJ1high ciliated cells, MUC5AChigh goblet cells, SERPINB11high secretory cells, early response 

secretory cells, and interferon responsive ciliated cells. Broadly, major differences were observed 

in the identity of cell types with large transcriptional responses – with mild/moderate COVID-19 

driving differences principally in MUC5AChigh goblet cells and ionocytes, while severe COVID-

19 included major perturbations among basal cells, AZGP1high goblet cells. Ciliated subsets were 

profoundly altered in both mild/moderate and severe COVID-19 compared to cells from Control 

WHO 0 participants. Finally, when we directly compared mild/moderate to severe COVID-19, 

multiple cell types showed robust transcriptional changes, most drastically among ciliated cell 

subtypes (interferon responsive ciliated cells, FOXJ1high ciliated cells, early response FOXJ1high 

ciliated cells, developing ciliated cells), ionocytes, SERPINB11high secretory cells, early response 

secretory cells, and AZGP1high goblet cells. 
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We next examined the specific DE genes among ciliated cells (all, coarse annotation) between 

each cohort (Figure 2.3B, Supplementary Tables 2.2-2.4). Compared to ciliated cells from 

Control WHO 0 participants, cells from both mild/moderate COVID-19 and severe COVID-19 

robustly upregulated genes involved in the host response to virus, including IFI27, IFIT1, IFI6, 

IFITM3, and GBP3, and both cohorts induced expression of MHC-I and MHC-II genes (including 

HLA-A, HLA-C, HLA-F, HLA-E, HLA-DRB1, HLA-DRA) and other factors involved in antigen 

processing and presentation (Supplementary Figures 2.4B, 2.4C). Notably, large sets of 

interferon-responsive and anti-viral genes were exclusively induced among ciliated cells from 

COVID-19 WHO 1-5 participants when compared to Control WHO 0 participants. In a direct 

comparison of ciliated cells from mild/moderate to severe COVID-19, the cells from individuals 

with mild/moderate disease showed strong upregulation of diverse anti-viral factors, including 

IFI44L, STAT1, IFITM1, MX1, IFITM3, OAS1, OAS2, OAS3, STAT2, TAP1, HLA-C, ADAR, 

XAF1, IRF1, CTSS, CTSB, and many others (Supplementary Figure 2.4C). Ciliated cells from 

severe COVID-19 uniquely upregulated IL5RA and NLRP1 (compared to both control and 

mild/moderate COVID-19). Together, these DE gene sets are suggestive of exposure to secreted 

inflammatory factors and type I/II/III interferons, as well as direct cellular sensing of viral 

products. Using previously published data from human nasal basal cells treated in vitro with either 

type I (IFNg) or type II (IFNg) interferon30, we created gene sets that represented the “shared” gene 

responses to type I and type II interferon, and the cellular responses specific to either type (Figure 

2.3B). Using gene set enrichment analysis, we tested whether the genes that discriminate ciliated 

cells from different groups (e.g., mild/moderate COVID-19 vs. severe COVID-19) imply exposure 

to specific interferon types. We found that ciliated cells in mild/moderate COVID-19 robustly 

induced type I interferon-specific gene signatures, both compared to cells from healthy controls, 

as well cells from severe COVID-19. Further, when compared to cells from healthy individuals, 

ciliated cells from individuals with severe COVID-19 did not significantly induce type I or type II 

interferon responsive genes, potentially underlying poor control of viral spread.  

 

We next investigated whether these effects were observed among other cell types and subsets. 

Surprisingly, even among cells defined as “interferon responsive” ciliated cells, cells from 

mild/moderate COVID-19 participants expressed higher fold changes of interferon-responsive 

genes compared to cells from COVID-19 WHO 6-8 participants or Control WHO 0 (Figures 2.3C, 
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2.3D, Supplementary Tables 2.2-2.4). Other detailed epithelial cell types displayed a similar 

pattern: broad interferon-responsive genes (largely type I specific) were strongly upregulated 

among cells from mild/moderate COVID-19 participants, while cells from severe COVID-19 

upregulated few shared markers with mild/moderate COVID-19 participants, and instead skewed 

towards inflammatory genes such as S100A8 and S100A9 instead of anti-viral factors (Figures 

2.3E-2.3H, Supplementary Figure 2.4D). In some cases, cells from individuals with severe 

COVID-19 expressed levels of interferon responsive or anti-viral genes indistinguishable from 

healthy controls. Strongest induction of type I specific interferon responses among mild/moderate 

COVID-19 cases was observed in MUC5AChigh goblet cells, SCGB1A1high goblet cells, early 

response secretory cells, deuterosomal cells, interferon responsive ciliated cells, and 

BEST4highciliahigh ciliated cells (Figure 2.3G). Rare cell types from severe COVID-19 individuals 

induced comparable type I interferon responses to their mild/moderate counterparts, including 

AZGP1highSCGB3A1highLTFhigh goblet cells, interferon responsive secretory cells, and VEGFAhigh 

squamous cells. Expression of type II specific genes were globally blunted across all cell types 

from COVID-19 samples when compared to type I module scores (Figure 2.3G, Supplementary 

Figures 2.3K, 2.4D). Further, the absence of a transcriptional response to secreted interferon could 

not be explained by a lack of either interferon alpha receptor (IFNAR1, IFNAR2) or interferon 

gamma receptor (IFNGR1, IFNGR2) expression. Previous work has identified ACE2, the host 

receptor for SARS-CoV-2, as among the interferon-induced genes in nasal epithelial cells, with 

uncertain significance for SARS-CoV-2 infection30, 71-73. Indeed, we observe modest upregulation 

of this gene among cells from COVID-19 participants compared to healthy controls. Further, some 

of the cell subtypes identified as expanded during COVID-19 (e.g., interferon responsive ciliated 

cells, BPIFA1high secretory cells, BPIFA1highChemokinehigh secretory cells, and 

KRT24highKRT13high secretory cells) express relatively high abundances of ACE2 (Supplementary 

Figure 2.4E). 

 

Here, we discover that cells from individuals with mild/moderate COVID-19 recurrently 

upregulate interferon-responsive factors including STAT1, MX1, HLA-B, HLA-C, among others 

(compared to matched cell types among Control WHO 0 participants), while cells from individuals 

with severe COVID-19 repeatedly induced a distinct set of genes, including S100A9, S100A8 and 

stress response factors (HSPA8, HSPA1A, DUSP1, Figure 2.3H).  
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We were curious as to whether depressed interferon and anti-viral responses could be explained 

by higher rates of steroid treatment among the severe COVID-19 group (Table 2.1). We therefore 

stratified our groups further into Steroid-Treated vs. Untreated, and assessed expression of genes 

previously identified as DE between Control WHO 0, COVID-19 WHO 1-5, and COVID-19 WHO 

6-8. For some genes, steroid treatment partially suppressed the interferon response within each 

cohort – for instance, ciliated cells from Untreated COVID-19 WHO 1-5 participants showed 

higher abundances of IFITM1, OAS2, IFI6, and IFI27 than their Steroid-Treated counterparts – 

while still maintaining strong differences in expression between groups (with abundance in 

COVID-19 WHO 1-5 > COVID-19 WHO 6-8 > COVID-19 WHO 0, see annotations on 

Supplementary Figure 2.4C). Interestingly, induction of FKBP5 expression among ciliated cells 

from severe COVID-19 participants was fully explained by steroid treatment, which is consistent 

with the role for this protein in modulating glucocorticoid receptor activity. Other sets of anti-viral 

genes were equivalently expressed within each cohort, independent of steroid treatment, including 

STAT1, STAT2, IFI44, and ISG15. For many anti-viral factors in multiple cell types, we observed 

no effect of steroid treatment on the intrinsic anti-viral response during COVID-19.  

 

Together, these data demonstrate global blunting of the anti-viral/interferon response among 

nasopharyngeal epithelial cells during severe COVID-19. We next attempted to query the source 

of local interferon, particularly in the COVID-19 WHO 1-5 samples where cell types appeared to 

be maximally responding to interferon stimulation. Notably, we expect many of the tissue-resident 

immune cells to reside principally within the deeper lamina propria and submucosal spaces, and 

are therefore are poorly represented in our dataset due to sampling type (swabbing of surface 

epithelial cells)54. Accordingly, we found exceedingly few immune cell types producing 

interferons: IFNA and IFNB were absent, rare IFNL1 UMI were observed among T cells and 

Macrophages, and IFNG was robustly produced from Interferon Responsive Cytotoxic CD8 T 

cells, despite limited evidence for type II responses among epithelial cells (Supplementary Figure 

2.4F). Further, we could not detect expression of any interferon types among epithelial cells, which 

is dramatically different from previous observations of robust type I/III interferon expression 

among nasal ciliated cells during influenza A and B infection74 (Supplementary Figure 2.4G). 

Rather, we found robust induction of other inflammatory molecules from both immune and 
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epithelial cell types. CXCL8 was produced by several specialized secretory cell types, including 

those uniquely expanded in COVID-19. Inflammatory macrophages and interferon responsive 

macrophages represent the primary sources of local TNF, IL6, and IL10, and uniquely express high 

abundances of chemoattractant molecules such as CCL3, CCL2, and CXCL8. Interestingly, 

interferon responsive macrophages appear to be a unique source of CXCL9, CXCL10, and CXCL11 

(Supplementary Figures 2.4F). 

 

2.3.5 Targets of SARS-CoV-2 Infection in the Nasopharynx 

Given a comprehensive picture of host cell biology during COVID-19 and across the spectrum of 

disease severity, we next tested whether the observed epithelial phenotypes were associated with 

altered local viral abundance. scRNA-seq protocols utilize poly-adenylated RNA capture and 

reverse transcription to generate snapshots of the transcriptional status of each individual cell. As 

other pathogens and commensal microbes also utilize poly-adenylation for RNA intermediates, or 

contain poly-adenylated stretches of RNA within their genomes, they may also be represented 

within scRNA-seq libraries. First, to perform an unbiased search for co-detected viral, bacterial, 

and fungal genomic material, we used metatranscriptomic classification to assign reads according 

to a comprehensive reference database75,76 (previously described, see Methods). As expected, the 

majority (28/38) of swabs from individuals with COVID-19 contained reads classified as SARS 

coronavirus species (Figure 2.4A, Supplementary Figures 2.5A-2.5C). Among samples 

containing SARS coronavirus genomic material, the read abundance ranged from 2e0 to 8.8e6 

reads (1.8e-3 to 1.9e4 reads/M total reads). We found little evidence for co-occurring respiratory 

viruses, which may be partially explained by the season when many of the swabs were collected 

(April-September 2020) and concurrent social distancing practices. Swabs from two individuals 

were found to contain rare reads classified as Influenza A virus species (maximum 5 reads per 

donor, within range for spurious classification), and we found no evidence for other seasonal 

human coronaviruses, Influenza B virus, metapneumovirus, or orthopneumovirus. Swabs from two 

individuals with mild/moderate COVID-19 were found to contain exceptionally high abundances 

of reads classified as Rhinovirus A (2.1e5 and 2.4e5 reads). Finally, we recovered low abundances 

of SARS coronavirus assigned reads from two participants from the Control WHO 0 cohort.  
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Next, we analyzed all SARS-CoV-2-aligned UMI following alignment to a joint genome 

containing both human and SARS-CoV-277. We took the sum of all SARS-CoV-2 aligning UMI 

from a given participant – both from high-quality single-cell transcriptomes and low-

quality/ambient RNA – as a representative measure of the total SARS-CoV-2 burden within the 

tissue microenvironment. As observed using metatranscriptomic classification, we found 

relatively low/spurious alignments to SARS-CoV-2 among Control participants, while swabs from 

 
Figure 2.4: Co-detection of human and SARS-CoV-2 RNA 
(A) Metatranscriptomic classification of all single-cell RNA-seq reads using Kraken2. Results shown from selected 
respiratory viruses. Only results with greater than 5 reads are shown. (B) Normalized abundance of SARS-CoV-2 
aligning UMI from all single-cell RNA-seq reads (including those derived from ambient/low-quality cell barcodes). 
P < 0.0001 by Kruskal-Wallis test. Pairwise comparisons using Dunn’s post-hoc testing. ** p < 0.01, *** p < 0.001. 
(C) Proportional abundance of Secretory cells (all) vs. total SARS-CoV-2 UMI (normalized to M total UMI). (D) 
Proportional abundance of FOXJ1highCiliated cells vs. total SARS-CoV-2 UMI (normalized to M total UMI). (E) 
SARS-CoV-2 UMI per high-quality cell barcode. Results following correction for ambient viral reads. (F) Schematic 
for SARS-CoV-2 genomic features annotated in the custom gtf. (G) Schematic for SARS-CoV-2 genome and 
subgenomic RNA species. (H) Heatmap of SARS-CoV-2 genes expression among SARS-CoV-2 RNA+ single cells 
(following correction for ambient viral reads). Top color bar indicates disease and severity cohort (red: COVID-19 
WHO 1-5, pink: COVID-19 WHO 6-8, black: COVID-19 convalescent, blue: Control WHO 0). Top heatmap: SARS-
CoV-2 genes and regions organized from 5’ to 3’. Bottom heatmap: alignment to 70-mer regions directly surrounding 
viral transcription regulatory sequence (TRS) sites, suggestive of spliced RNA species (joining of the leader to body 
regions) vs. unspliced RNA species (alignment across TRS). 
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COVID-19 participants contained a wide range of SARS-CoV-2 aligning reads (Figure 2.4B, 

Supplementary Figures 2.5D, 2.5E). Samples from COVID-19 WHO 6-8 participants contained 

significantly higher abundances of SARS-CoV-2 aligning reads than both control cohorts, with an 

average of 1.1e2 +/- 2.8e0 (geometric mean +/- SEM) UMI per million aligned UMI (ranging from 

0 to 1.5e5 per sample). Swabs from participants with mild/moderate COVID-19 contained slightly 

fewer SARS-CoV-2 aligning UMI, with an average of 1.1e1 +/- 4.3e0 (geometric mean +/- SEM) 

UMI per M.  

 

Given the large diversity in SARS-CoV-2 abundance across all COVID-19 participants, we 

interrogated whether cell composition correlated with total SARS-CoV-2 (NB: contemporaneous 

work by our group has evaluated the accuracy of single-cell RNA-seq derived estimates of total 

SARS-CoV-2 abundance with more established protocols such as Real-Time RT-PCR). Among 

all cell types, we found that secretory cells were significantly positively correlated with the total 

viral abundance (Spearman’s rho = 0.49, Bonferroni-corrected p = 0.0015), while FOXJ1high 

ciliated cells were significantly negatively correlated (Spearman’s rho = -0.43, Bonferroni-

corrected p = 0.020, Figures 2.4C, 2.4D). This observation is in line with findings outlined in 

Figures 1 and 2 where epithelial cell destruction during SARS-CoV-2 infection drives loss of 

mature ciliated cell types, which likely stimulates secretory cells to expand and repopulate lost 

epithelial cell types, although direct virally-mediated effects on secretory cell expansion have not 

been ruled out. Next, we binned the samples from COVID-19 participants into “Viral Low” and 

“Viral High” groupings (based on an arbitrary cutoff of 1e3 SARS-CoV-2 UMI per M, our findings 

were robust to a range of partition choices, Supplementary Figures 2.5E, 2.5F). Interferon 

responsive ciliated cells were expanded among “Viral High” COVID-19 samples and 

plasmacytoid DCs were absent from “Viral High” samples. 

 

Next, we aimed to differentiate SARS-CoV-2 UMI derived from ambient or low-quality cell 

barcodes from those likely reflecting intracellular RNA molecules74,78,79. First, we filtered to only 

viral UMIs associated with cells presented in Figure 2.1, thereby removing those associated with 

low-quality or ambient-only cell barcodes (Supplementary Figure 2.5G). Using a combination 

of computational tools to 1) estimate the proportion of ambient RNA contamination per single cell 

and 2) estimate the abundance of SARS-CoV-2 RNA within the extracellular/ambient environment 
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(i.e., not cell-associated), we were able to test whether the amount of viral RNA associated with a 

given single-cell transcriptome was significantly higher than would be expected from ambient 

spillover. Together, this enabled us to identify cell barcodes whose SARS-CoV-2 aligning UMI 

were likely driven by spurious contamination, and annotate single cells that contain probable cell-

associated or intracellular SARS-CoV-2 RNA (Figure 2.4E, Supplementary Figure 2.5G). 

Across all single cells, this analysis recovered 413 high-confidence SARS-CoV-2 RNA+ cells 

across 21 participants, and we confirmed that cell assignment as “SARS-CoV-2 RNA+” was not 

driven by technical factors such as sequencing depth or cell complexity (Supplementary Figure 

2.5H). 262 cells were from participants with severe COVID-19 and 150 from mild/moderate 

COVID-19. We found one SARS-CoV-2 RNA+ cell from a participant with negative SARS-CoV-

2 PCR. Among participants with any SARS-CoV-2 RNA+ cell, we found 20 +/- 7 (mean +/- SEM) 

SARS-CoV-2 RNA+ cells per sample (range 1-119), amounting to 4 +/-1.3% (range 0.1-24%) of 

the total recovered cells per sample. Within a given single cell, the abundance of SARS-CoV-2 

UMI ranged from 1 to 12,612, corresponding to 0.01-98% of all human and viral UMI per cell.  

 

To further understand the biological significance behind SARS-CoV-2 aligning UMI within a 

single cell, and to better identify cells with the highest-likelihood of actively supporting viral 

replication, we analyzed the specific viral sequences and their alignment regions in the viral 

genome77,80,81. During SARS-CoV-2 infection, viral uncoating from endosomal vesicles releases 

the positive, single-stranded, 5’ capped, poly-adenylated genome into the host cytosol (Figure 

2.4F, 2.4G). Here, translation of non-structural proteins proceeds first by templating directly off 

of the viral genome, generating a replication and transcription complex. The viral replication 

complex then produces both 1) negative strand genomic RNA intermediates, which serve as 

templates for further positive strand genomic RNA and 2) nested subgenomic mRNAs which are 

constructed from a 5’ leader sequence fused to a 3’ sequence encoding structural proteins for 

production of viral progeny (e.g., Spike, Envelope, Membrane, Nucleocapsid). Generation of 

nested subgenomic mRNAs relies on discontinuous transcription occurring between pairs of 6-

mer transcriptional regulatory sequences (TRS), one 3’ to the leader sequence (termed leader TRS, 

or TRS-L), and others 5’ to each gene coding sequence (termed body TRS, or TRS-B)82. We 

reasoned that short SARS-CoV-2 aligning UMI could be readily distinguished by their 

strandedness (aligning to the negative vs. positive strand) and whether they fell within coding 
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regions, across intact TRS (indicating RNA splicing had not occurred for that RNA molecule at 

that splice site) or across a TRS with leader-to-body fusions (corresponding to subgenomic RNA, 

Figure 2.4F, 2.4G, Supplementary Figure 2.6A). Single cells containing higher abundances of 

spliced TRS or negative strand aligning reads are therefore more likely to represent truly virally-

infected cells with a functional viral replication and transcription complex. Critically, the co-

detection of host transcriptomic and viral genomic material associated with a single cell barcode 

cannot definitively establish the presence of intracellular virus and/or productive infection. Rather, 

below we integrate these and other aspects of the host and viral transcriptomes to refine and 

contextualize our confidence in “SARS-CoV-2 RNA+” cells.  

 

The majority of SARS-CoV-2 aligning UMI among SARS-CoV-2 RNA+ cells was found heavily 

biased towards the 3’ end of the genome, attributed to the 3’ UTR, ORF10, and N gene regions, 

as expected due to poly-A priming (Figure 2.4H). A majority (68.7%) of SARS-CoV-2 RNA+ 

cells contained reads aligning to the viral negative strand, increasing the likelihood that many of 

these cells represent true targets of SARS-CoV-2 virions in vivo. In addition to negative strand 

alignment, we find roughly ~ 1/4 of the SARS-CoV-2 RNA+ cells contain at least 100 UMI that 

map to more than 20 distinct viral genomic locations per cell. Finally, comparing spliced to 

unspliced UMI, we found a minor fraction of cells with reads mapping directly across a spliced 

TRS sequence (4.6%), while 35% of SARS-CoV-2 RNA+ cells contained reads mapping across 

the equivalent 70mer window around an unspliced TRS. Notably, single cells containing reads 

aligning to spliced (subgenomic) RNA were heavily skewed toward those cells that contained the 

highest overall abundances of viral UMI – this may be an accurate reflection of coronavirus 

biology, wherein subgenomic RNA are most frequent within cells robustly producing new virions 

and total viral genomic material, but also points to inherent limitations in the detection of low-

frequency RNA species by single-cell RNA-seq technologies. 

 

Next, we integrated 1) the strand and splice information among SARS-CoV-2 aligning UMIs, 2) 

participant-to-participant diversity and 3) cell type annotations to gain a comprehensive picture of 

the identity and range of SARS-CoV-2 RNA+ cells within the nasopharyngeal mucosa (Figure 

2.5A-2.5D, Supplementary Figure 2.6A-2.6E). We found incredible diversity in both the identity 

of SARS-CoV-2 RNA+ cells, as well as the distribution of SARS-CoV-2 RNA+ cells within and 
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across participants. The majority of SARS-CoV-2 RNA+ cells were ciliated, goblet, secretory, or 

squamous. Highest-confidence SARS-CoV-2 RNA+ cells (spliced TRS UMI, negative strand 

UMI, > 100 SARS-CoV-2 UMI) tended to be found among MUC5AChigh goblet cells, AZGP1high 

goblet cells, BPIFA1high secretory cells, KRT24highKRT13high secretory cells, CCL5high squamous 

cells, developing ciliated cells, and each ciliated cell subtype. A high proportion of interferon 

responsive macrophages contained SARS-CoV-2 genomic material, and rare ITGAXhigh 

macrophages were found to contain UMI aligning to viral negative strand or spliced TRS regions 

– likely representing myeloid cells that have recently engulfed virally-infected epithelial cells or 

free virions. We did not find major differences in the presumptive cellular tropism by COVID-19 

severity. A few cell types were commonly found to be SARS-CoV-2 RNA+ across all participants 

 
Figure 2.5: Cellular targets of SARS-CoV-2 in the nasopharynx 
(A) Summary schematic of top SARS-CoV-2 RNA+ cells. (created with BioRender). (B) SARS-CoV-2 RNA+ cell 
abundance (top) and percent (bottom) per participant. Results following correction for ambient viral reads. (C) 
Abundance of SARS-CoV-2 RNA+ cells by detailed cell type, bars colored by participant. Results following 
correction for ambient viral reads. (D) Dot plot of SARS-CoV-2 RNA presence by sample (columns) and detailed cell 
types (rows). Dot size reflects fraction of a given participant and cell type containing SARS-CoV-2 RNA (following 
viral ambient correction). Dot color reflects fraction of aligned reads corresponding to the SARS-CoV-2 positive strand 
(yellow) vs. negative strand (black). Dot plot across columns: alignment of viral reads by participant, separated by 
RNA species type. Dot plot across rows: alignment of viral reads by detailed cell type, separated by RNA species type. 
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(including participants with only rare viral RNA+ cells): most frequently, participants had at least 

one developing ciliated or squamous cell with SARS-CoV-2 RNA, followed by MUC5AChigh 

goblet cells, ciliahigh ciliated cells, and FOXJ1high ciliated cells (Figure 2.5C). However, among 

the individuals with the highest abundances of SARS-CoV-2 RNA+ cells, viral RNA was spread 

broadly across many different cell types, including those outside of the expected tropism for 

SARS-CoV-2 (e.g., also found within basal cells, ionocytes). Further, the cell types harboring the 

highest proportions of SARS-CoV-2 RNA+ cells represent the same cell types uniquely expanded 

or induced within COVID-19 participants, such as KRT24highKRT13high secretory cells, AZGP1high 

goblet cells, and interferon responsive ciliated cells, and contain the highest abundances of ACE2-

expressing cells (Figure 2.5C, Supplementary Figure 2.6F. Whether these cell types represent 

specific phenotypes elicited by intrinsic viral infection (potentially alongside induction of anti-

viral genes) or are uniquely susceptible to SARS-CoV-2 entry (e.g., enhanced entry factor 

expression) will require further investigation. Finally, we compared the relative abundance of viral 

RNA within each cell type, and found developing ciliated cells contain significantly higher SARS-

CoV-2 RNA molecules per-cell, including positive strand, negative strand-aligning reads, and 

spliced TRS reads (Supplementary Figure 2.6G). Intriguingly, among ciliated cell subtypes, 

interferon responsive ciliated cells, despite representing one of the most frequent “targets” of viral 

infection, contain the lowest per-cell abundances of SARS-CoV-2 RNA, potentially reflecting the 

impact of elevated anti-viral factors curbing high levels of intracellular viral replication 

(Supplementary Figure 2.6H).  

 

2.3.6 Cell Intrinsic Responses to SARS-CoV-2 Infection 

Above, we carefully mapped the specific cell types and states harboring SARS-CoV-2 RNA+ cells, 

identifying the subsets of epithelial cells that appear to actively support viral replication in vivo 

across distinct individuals (Figure 2.5). Further, we have characterized robust and cell-type-

specific host responses among cells from COVID-19 participants, ostensibly representing both the 

bystander cell response to local virus and an inflammatory microenvironment, as well as the 

intrinsic response to intracellular SARS-CoV-2 RNA (Figure 2.3). Here, by directly comparing 

single cells containing SARS-CoV-2 RNA to their matched bystanders, we aimed to map both the 

cell-intrinsic response to direct viral infection, as well as the host cell identities that may potentiate 

or enable SARS-CoV-2 tropism and replication.  
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To control for variability among different SARS-CoV-2 RNA+ cell types and individuals, we 

compared SARS-CoV-2 RNA+ cells to bystander cells of the same cell type and participant. 

Among cell types with at least 5 SARS-CoV-2 RNA+ cells, we observed robust and specific 

transcriptional changes compared to both matched bystander cells as well as cells from healthy 

individuals (Figures 2.6A, 2.6B). Notably, many of the genes previously identified as increased 

within all cells from COVID-19 participants, e.g., anti-viral factors IFITM3, IFI44L, were also 

upregulated among SARS-CoV-2 RNA+ cells compared to matched bystanders within multiple 

 
Figure 2.6: Intrinsic and bystander responses to SARS-CoV-2 infection 
(A) Violin plot of selected genes upregulated in SARS-CoV-2 RNA+ cells in at least 3 individual cell type 
comparisons. Dark red: SARS-CoV-2 RNA+ cells, red: bystander cells from COVID-19 participants, blue: cells 
from Control participants. (B) Enriched gene ontologies among genes consistently up- or down-regulated among 
SARS-CoV-2 RNA+ cells across cell types. (C) Heatmap of genes consistently higher in SARS-CoV-2 RNA+ cells 
across multiple cell types. Colors represent log fold changes between SARS-CoV-2 RNA+ cells and bystander cells 
(SARS-CoV-2 RNA- cells, from COVID-19 infected donors) by cell type. Restricted to cell types with at least 5 
SARS-CoV-2 RNA+ cells. Yellow: upregulated among SARS-CoV-2 RNA+ cells, blue: upregulated among 
bystander cells. (D) Heatmap of genes consistently higher in bystander cells across multiple cell types. 
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cell types. SARS-CoV-2 RNA+ cells from participants with mild/moderate COVID-19 showed 

stronger induction of anti-viral and interferon responsive pathways compared to those from 

participants with severe COVID-19, despite equivalent abundances of cell-associated viral UMI 

(Supplementary Figure 2.7A). EIF2AK2, which encodes protein kinase R and drives host cell 

apoptosis following recognition of intracellular double-stranded RNA, was among the most 

reliably expressed and upregulated genes among SARS-CoV-2 RNA+ cells compared to matched 

bystanders across diverse cell types, suggesting rapid activation of this locus following intrinsic 

PAMP recognition of SARS-CoV-2 replication intermediates83. Therefore, direct sensing of 

intracellular viral products amplifies interferon-responsive and anti-viral gene upregulation, 

though these pathways are also elevated within bystander cells. 

 

The majority of genes induced within SARS-CoV-2 RNA+ cells were shared across diverse cell 

types, suggesting a conserved anti-viral response, as well as common features that facilitate or 

restrict infection (Figure 2.6B-2.6D). SARS-CoV-2 RNA appeared to robustly stimulate 

expression of genes involved in anti-viral sensing and defense (e.g., MX1, IRF1, OAS1, OAS2), as 

well as genes involved in antigen presentation via MHC class I (Figure 2.6C, Supplementary 

Table 2.5). SARS-CoV-2 RNA+ cells expressed significantly higher abundances of multiple 

proteases involved in the cleavage of SARS-CoV-2 spike protein, a required step for viral entry 

(TMPRSS4, TMPRSS2, CTSS, CTSD). This suggests that within a given cell type, natural 

variations in the abundance of genes which support the viral life cycle partially account for which 

cells are successfully targeted by the virus. Among the core anti-viral/interferon-responsive gene 

sets induced within SARS-CoV-2 RNA+ cells, we found repeated and robust upregulation of 

IFITM3 and IFITM1. Multiple studies have demonstrated that while these two interferon-inducible 

factors can disrupt viral release from endocytic compartments among a wide diversity of viral 

species, IFITMs can instead facilitate entry by human betacoronaviruses80,84. Therefore, 

enrichment of these factors within presumptive infected cells may reflect viral hijacking of a 

conserved host anti-viral responsive pathway. Genes involved in cholesterol and lipid biosynthesis 

were also upregulated among SARS-CoV-2 RNA+ cells, including FDFT1, MVK, FDPS, ACAT2, 

HMGCS1, all enzymes involved in the mevalonate synthesis pathway. In addition, SARS-CoV-2 

RNA+ cells showed increased abundance of low-density lipoprotein receptors LDLR and LRP8 

compared to matched bystanders. Intriguingly, various genes involved in cholesterol metabolism 
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were recently identified as critical host factors for SARS-CoV-2 replication via CRISPR screens 

from multiple independent research groups85,86. Further, these groups found that direct inhibition 

of cholesterol biosynthesis decreased SARS-CoV-2 (as well as coronavirus strains 299E and 

OC43) replication within cell lines, and suggest S-mediated entry relies on host cholesterol. We 

queried the full collections of presumptive replication factors identified by four published CRISPR 

screens85-88, and found significant enrichment among SARS-CoV-2 RNA+ cells for RAB GTPases 

(e.g. RAB9A, RHOC, RASEF), vacuolar ATPase H+ pump subunits, as well as transcriptional 

modulators such as SPEN, SLTM, CREBBP, SMAD4 and EGR1 (Supplementary Figure 2.7B).  

 

Finally, we found multiple previously-unappreciated genes implicated in susceptibility and 

response to SARS-CoV-2 infection, including S100/Calbindin genes such as S100A6, S100A4, and 

S100A9, which may directly play a role in leukocyte recruitment to infected cells. IFNAR1 was 

substantially increased in many bystander cells compared to both cells from SARS-CoV-2 

negative participants as well as matched SARS-CoV-2 RNA+ cells (Figure 2.6D). Blunting of 

interferon alpha signaling via downregulation of IFNAR1 within SARS-CoV-2 RNA+ cells may 

partially explain high levels of viral replication compared to neighboring cells. Finally, bystander 

cells expressed significantly higher abundances of MHC-II molecules compared to SARS-CoV-2 

RNA+ cells, including HLA-DQB1, HLA-DRB1, HLA-DRB5, HLA-DRA, and CD74.  

 

2.4 Discussion 

We have created a comprehensive map of SARS-CoV-2 infection of the human nasopharynx using 

scRNA-seq. We hypothesize that the host response at the site of initial infection, the nasal mucosa, 

is an essential determinant of overall COVID-19 disease trajectory. By dissecting the nature of 

host-pathogen interactions at this primary viral target across the spectrum of disease outcomes, we 

can characterize both protective and pathogenic responses to SARS-CoV-2 infection. Here, we 

begin to untangle the myriad factors that may restrict viral infection to the upper respiratory tract 

or support the development of severe lower respiratory tract disease.  

 

First, we find that mature ciliated cells decline dramatically within the nasopharynx of COVID-19 

samples, directly correlated with the tissue abundance of SARS-CoV-2 RNA at the time of 

sampling. Conversely, secretory cell populations expand among samples with high viral loads, 
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which potentially represents a conserved response for epithelial re-population of lost mature 

ciliated cells through a recently-identified mechanism of secretory/goblet differentiation, using 

deuterosomal cells as intermediates54,55. Accordingly, deuterosomal cells and 

immature/developing ciliated cells were considerably expanded among COVID-19 samples, 

suggesting interdependence between each of these compartments in maintaining epithelial 

homeostasis during viral challenge. SARS-CoV-2 infection also induced dramatic increases in the 

diversity of epithelial cell types, both with respect to shifted compositional balance among major 

cell identities, and also via expansion of specialized secretory and goblet cell subsets, including a 

subset termed KRT24highKRT13high secretory cells, which closely match the recently-identified 

KRT13+ “hillock” cell, previously associated with epithelial regions experiencing rapid cellular 

turnover and inflammation54,57,58. Other specialized subsets of secretory and goblet cells, such as 

early response secretory cells, AZGP1high goblet cells, and SCGB1A1high goblet cells, are expanded 

among COVID-19 participants. However, expansion of these cells is observed within discrete 

subsets of individuals and is not homogenous across the disease groups we sampled here. Indeed, 

understanding whether heterogeneous responses in the epithelial compartment between individuals 

with COVID-19 underscores differences in disease manifestations will require larger cohort 

studies, with a focus on longitudinal responses following initial infection. Indeed, further work is 

required to understand how the epithelial responses to SARS-CoV-2 infection within the nasal 

mucosa relates to epithelial responses in other common upper respiratory viral infections and 

inflammatory states. 

 

Beyond cellular compositional changes during COVID-19, our study identified marked variability 

in the induction of anti-viral gene expression that was associated with disease severity. We found 

robust upregulation of interferon stimulated genes among epithelial and immune cells isolated 

from individuals with mild/moderate COVID-19, and this was particularly evident in cells that 

contained SARS-CoV-2 RNA. Surprisingly, despite strong induction of anti-viral gene expression, 

we found little to no mRNA corresponding to type I or type III interferons amongst any recovered 

cell types. In a related study mapping the nasal epithelium during influenza infection, we and our 

colleagues found extensive upregulation of IFNA, IFNB1, and IFNL1-3 within ciliated cells and 

goblet cells, both highlighting the capacity of superficial nasal epithelial cells to secrete local 

interferons during viral infection, but also the technical capacity of the scRNA-seq platform used 
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in both studies to capture interferon mRNA74. The precise sources and signals which motivate a 

broad anti-viral response among mild COVID-19 cases in our study remains unknown –  they may 

originate from immune cells contained deeper within the respiratory mucosa (therefore 

inaccessible through the superficial sampling used here), from sparse, highly transient interferon 

expression from superficial epithelial or immune cells, or may derive from direct PAMP/DAMP 

sensing or alternative inflammatory signals. 

 

Remarkably, in comparison to individuals with mild/moderate disease, we found that anti-viral 

gene expression was profoundly blunted in cells isolated from individuals with severe disease, 

even in cells containing SARS-CoV-2 RNA. This effect was observed among diverse cell types, 

including those thought to represent direct targets of viral infection, such as ciliated cells and 

secretory cells, and also bystanders and co-resident immune cells. Notably, individuals with severe 

COVID-19 disease had equivalent or even elevated levels of nasal SARS-CoV-2 RNA at the time 

of sampling, and contained expanded inflammatory and type II-interferon responsive macrophages 

compared to mild/moderate cases. Indeed, published peripheral immune studies comparing mild 

and severe COVID-19 also observe diminished type I and type III interferon abundances in severe 

cases, and note restricted interferon stimulated gene expression among circulating immune 

cells17,18,22. Other human betacoronaviruses including MERS and SARS-CoV exhibit multiple 

strategies to avoid triggering pattern recognition receptor pathways, including degradation of host 

mRNA within infected cells89,90, sequestration of viral replication intermediates (e.g., double 

stranded RNA) from host sensors91, and direct inhibition of immune effector molecules80,83,92, 

thereby leading to diminished induction of anti-viral pathways and blunted autocrine and paracrine 

interferon signaling. Strategies to avoid innate immune recognition have now been extended to 

SARS-CoV-2 as well, indicating that avoiding host recognition is likely an essential aspect of viral 

success93-95. The close association we observe between disease severity and weak anti-viral gene 

expression among nasal epithelial cells is intriguing given recent observations of inborn defects in 

TLR3, IRF7, IRF9, and IFNAR1, or antibody-mediated neutralization of type I interferon 

responses within individuals who develop severe COVID-1949-51. Further, we found that lower 

nasal viral loads were associated with elevated detection of tissue plasmacytoid DCs, suggesting 

diminished or delayed recruitment of these cells may partially explain how local viral replication 

proceeds to such high abundances. Taken together, these findings strongly suggest that severe 
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infection can arise in the setting of an intrinsic impairment of epithelial anti-viral immunity, and 

that timely induction of anti-viral responses are an essential aspect of successful viral control. We 

surmise that the combined effects of a viral strain with naturally poor interferon induction and 

intrinsic defects in immune or epithelial anti-viral responses within the nasal mucosa may 

predispose to severe disease via prolonged viral replication in the upper airway, eventually leading 

to immunopathology characteristic of severe COVID-19. 

 

Critically, our work does not address the dynamics of nasal epithelial anti-viral responses during 

SARS-CoV-2 infection in individual patients, nor does it directly relate intrinsic mucosal 

responses in the nasopharynx to potential interferon or anti-viral responses in the lung or distal 

airways. Indeed, related work suggests type III interferons are present in the lungs, but not the 

nasopharynx, during SARS-CoV-2 infection, and may contribute to tissue damage late in disease 

course96. Further, as the individuals in our cohort were intentionally sampled as early within their 

disease course as possible and the majority have elevated viral levels within their nasopharynx, 

our findings have an unclear relation to the tissue response during hyper-inflammatory “late” 

stages of COVID-19. However, among individuals who develop severe COVID-19, we observe 

unique recruitment of highly inflammatory macrophages that represent the major tissue sources of 

proinflammatory cytokines including IL1B, TNF, CXCL8, CCL2, CCL3 and CXCL9/10/11 – of 

likely relation to the immune dysregulation characterized by elevation of the same factors in the 

periphery in late, severe disease. In addition, we note specific upregulation of alarmins 

S100A8/S100A9 (i.e., calprotectin) among epithelial cells in severe COVID-19 compared to mild 

and control counterparts, and even higher expression of S100A9 within SARS-CoV-2 RNA+ cells 

from those same individuals. A recent study identified these as potential biomarkers of severe 

COVID-19, and proposed that these factors directly drive excessive inflammation and precede the 

massive cytokine release characteristic of late disease97. Our work suggests that severe COVID-

19-specific expression of calprotectin may originate instead within the virally-infected nasal 

epithelia, and suggests that further work to understand the epithelial cell regulation of S100A8/A9 

gene expression may help clarify maladaptive responses to SARS-CoV-2 infection.  

 

Finally, we provide a direct investigation into the host factors that enable or restrict SARS-CoV-2 

replication within epithelial cells in vivo. Here, we recapitulate expected “hits” based on well-
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described host factors involved in viral replication – e.g., TMPRSS2, TMPRSS4 enrichment among 

presumptive virally infected cells. We similarly observed expression of anti-viral genes which 

were globally enriched among cells from mild/moderate COVID-19 participants, with even higher 

expression among the viral RNA+ cells themselves. In accordance with previous studies into the 

nasal epithelial response to influenza infection74, we observed bystander epithelial cell 

upregulation of both MHC-I and MHC-II family genes; however, we found that SARS-CoV-2 

RNA+ cells only expressed MHC-I, and uniformly downregulated MHC-II genes compared to 

matched bystanders. To our knowledge, downregulation of host cell pathways for antigen 

presentation by coronaviruses has not been previously described. A recent study found that CIITA 

and CD74 can intrinsically block entry of a range of viruses (including SARS-CoV-2) via 

endosomal sequestration, and therefore cells that upregulate these (and other) components of 

MHC-II machinery may naturally restrict viral entry98.  

 

Together, our work demonstrates that many of the factors associated with the clinical trajectory 

following SARS-CoV-2 infection stem from initial host-viral encounters in the nasopharyngeal 

epithelium. Further, it suggests that there may be a clinical window in which severe disease can 

be subverted by focusing preventative or therapeutic interventions early within the nasopharynx, 

thereby bolstering anti-viral responses and curbing pathological inflammatory signaling prior to 

development of severe respiratory dysfunction or systemic disease. 

 

2.5 Methods 

2.5.1 Study Participants and Design 

Eligible participants were recruited from to the University of Mississippi Medical Center (UMMC) 

outpatient clinics, medical surgical units, Intensive Care Units (ICU), or endoscopy units between 

April 2020 and September 2020. The UMMC Institutional Review Board approved the study 

under IRB#2020-0065. All participants, or their legally authorized representative provided written 

informed consent. Participants were eligible for inclusion in the COVID-19 cohort if they were at 

least 18 years old, had a positive nasopharyngeal swab for SARS-CoV-2 by PCR, had COVID-19 

related symptoms including fever, chills, cough, shortness of breath, and sore throat, and weighed 

more than 110 lb. Participants were eligible for the Control cohort if they were at least 18 years 

old, had a current negative SARS-CoV-2 test (PCR or rapid antigen test), and weighed more than 
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110 lb. Exclusion criteria for both cohorts included a history of blood transfusion within 4 weeks 

and subjects who could not be assigned a definitive COVID-19 diagnosis from nucleic acid testing. 

38 individuals with COVID-19 were included, both male (n = 20) and female (n = 18). For the 

Control cohort, 21 participants were included – 11 identified as male, 10 as female. The median 

age of COVID-19 participants was 56.5 years old; the median age of Control participants was 62 

years old. Among hospitalized participants, samples were collected between Day 1 to Day 3 of 

hospitalization. COVID-19 participants were classified according to the 8-level ordinal scale 

proposed by the WHO representing their peak clinical severity and level of respiratory support 

required.  

 

2.5.2 Sample Collection and Biobanking 

Nasopharyngeal samples were collected by trained healthcare provider using FLOQSwabs (Copan 

flocked swabs) following the manufacturer’s instructions. Collectors would don personal 

protective equipment (PPE), including a gown, non-sterile gloves, a protective N95 mask, a 

bouffant, and a face shield. The patient’s head was then tilted back slightly, and the swab inserted 

along the nasal septum, above the floor of the nasal passage to the nasopharynx until slight 

resistance was felt. The swab was then left in place for several seconds to absorb secretions and 

slowly removed while rotating swab. The swabs were then placed into a cryogenic vial with 900 

µL of heat inactivated fetal bovine serum (FBS) and 100 µL of dimethyl sulfoxide (DMSO). The 

vials were then placed into a Thermo Scientific Mr. Frosty Freezing Container for optimal cell 

preservation. The Mr. Frosty containing the vials was then placed in cooler with dry ice for 

transportation from patient area to laboratory for processing. Once in the laboratory, the Mr. Frosty 

was placed into the -80°C freezer overnight and then on the next day, the vials were moved to the 

liquid nitrogen storage container. 

 

2.5.3 Dissociation and Collection of Viable Single cells from Nasal Swabs 

Swabs in freezing media (90% FBS/10% DMSO) were stored in liquid nitrogen until immediately 

prior to dissociation. A detailed sample protocol can be found here: 

https://protocols.io/view/human-nasopharyngeal-swab-processing-for-viable-si-bjhkkj4w.html.99. 

This approach ensures that all cells and cellular material from the nasal swab (whether directly 

attached to the nasal swab, or released during the washing and digestion process), are exposed first 
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to DTT for 15 minutes, followed by an Accutase digestion for 30 minutes. Briefly, nasal swabs in 

freezing media were thawed, and each swab was rinsed in RPMI before incubation in 1 mL 

RPMI/10 mM DTT (Sigma) for 15 minutes at 37ºC with agitation. Next, the nasal swab was 

incubated in 1 mL Accutase (Sigma) for 30 minutes at 37ºC with agitation. The 1 mL RPMI/10 

mM DTT from the nasal swab incubation was centrifuged at 400 g for 5 minutes at 4ºC to pellet 

cells, the supernatant was discarded, and the cell pellet was resuspended in 1 mL Accutase and 

incubated for 30 minutes at 37ºC with agitation. The original cryovial containing the freezing 

media and the original swab washings were combined and centrifuged at 400 g for 5 minutes at 

4ºC. The cell pellet was then resuspended in RPMI/10 mM DTT, and incubated for 15 minutes at 

37ºC with agitation, centrifuged as above, the supernatant was aspirated, and the cell pellet was 

resuspended in 1 mL Accutase, and incubated for 30 minutes at 37ºC with agitation. All cells were 

combined following Accutase digestion and filtered using a 70 µm nylon strainer. The filter and 

swab were washed with RPMI/10% FBS/4 mM EDTA, and all washings combined. Dissociated, 

filtered cells were centrifuged at 400 g for 10 minutes at 4ºC, and resuspended in 200 µL 

RPMI/10% FBS for counting. cells were diluted to 20,000 cells in 200 µL for scRNA-seq. For the 

majority of swabs, fewer than 20,000 cells total were recovered. In these instances, all cells were 

input into scRNA-seq.  

 

2.5.4 scRNA-seq 

Seq-Well S3 was run as previously described52,53,100. Briefly, a maximum of 20,000 single cells 

were deposited onto Seq-Well arrays preloaded with a single barcoded mRNA capture bead per 

well. cells were allowed to settle by gravity into wells for 10 minutes, after which the arrays were 

washed with PBS and RPMI, and sealed with a semi-permeable membrane for 30 minutes, and 

incubated in lysis buffer (5 M guanidinium thiocyanate/1 mM EDTA/1% BME/0.5% sarkosyl) for 

20 minutes. Arrays were then incubated in a hybridization buffer (2M NaCl/8% v/v PEG8000) for 

40 minutes, and then the beads were removed from the arrays and collected in 1.5 mL tubes in 

wash buffer (2M NaCl/3 mM MgCl2/20 mM Tris-HCl/8% v/v PEG8000). Beads were resuspended 

in a reverse transcription master mix, and reverse transcription, exonuclease digestion, second 

strand synthesis, and whole transcriptome amplification were carried out as previously described. 

Libraries were generated using Illumina Nextera XT Library Prep Kits and sequenced on NextSeq 
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500/550 High Output v2.5 kits to an average depth of 180 million aligned reads per array: read 1: 

21 (cell barcode, UMI), read 2: 50 (digital gene expression), index 1: 8 (N700 barcode).  

 

2.5.5 Data Preprocessing and Quality Control 

Pooled libraries were demultiplexed using bcl2fastq (v2.17.1.14) with default settings 

(mask_short_adapter_reads 10, minimum_trimmed_read_length 10, implemented using Cumulus, 

snapshot 4, https://cumulus.readthedocs.io/en/stable/bcl2fastq.html)101. Libraries were aligned 

using STAR within the Drop-Seq Computational Protocol 

(https://github.com/broadinstitute/Drop-seq) and implemented on Cumulus 

(https://cumulus.readthedocs.io/en/latest/drop_seq.html, snapshot 9, default parameters)102. A 

custom reference was created by combining human GRCh38 (from cellRanger version 3.0.0, 

Ensembl 93) and SARS-CoV-2 RNA genomes. The SARS-CoV-2 viral sequence and GTF are as 

described in Kim et al. 2020 (https://github.com/hyeshik/sars-cov-2-transcriptome, 

BetaCov/South Korea/KCDC03/2020 based on NC_045512.2)77. The GTF includes all CDS 

regions (as of this annotation of the transcriptome, the CDS regions completely cover the RNA 

genome without overlapping segments), and regions were added to describe the 5’ UTR 

(“SARSCoV2_5prime”), the 3’ UTR (“SARSCoV2_3prime”), and reads aligning to anywhere 

within the Negative Strand (“SARSCoV2_NegStrand”). Trailing A’s at the 3’ end of the virus 

were excluded from the SARS-CoV-2 FASTA, as these were found to drive spurious viral 

alignment in pre-COVID19 samples. Finally, additional small sequences were appended to the 

FASTA and GTF that differentiate reads that align to the 70-nucleotide region around the viral 

TRS sequence – either across the intact, unspliced genomic sequences (e.g. named 

“SARSCoV2_Unspliced_S” or “SARSCoV2_Unspliced_Leader”) or various spliced RNA 

species (e.g. “SARSCoV2_Spliced_Leader_TRS_S”), see schematics in Figures 2.4F, 2.4G, 

Supplementary Figures 2.6A. Alignment references were tested against a diverse set of pre-

COVID-19 samples and in vitro SARS-CoV-2 infected human bronchial epithelial cultures36 to 

confirm specificity of viral aligning reads. Aligned cell-by-gene matrices were merged across all 

study participants, and cells were filtered to eliminate barcodes with fewer than 200 UMI, 150 

unique genes, and greater than 50% mitochondrial reads. Of the 59 nasal swabs thawed and 

processed, 3 contained no high-quality cell barcodes after sequencing (NB: these samples 

contained < 5,000 viable cells prior to Seq-Well array loading).This resulted in a final dataset of 
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32,871 genes and 32,588 cells across 56 study participants (35 COVID-19 individuals, 21 control 

individuals). Preprocessing, alignment, and data filtering was applied equivalently to samples from 

the fresh vs. frozen cohort. For analysis of RNA velocity, we also recovered both exonic and 

intronic alignment information using DropEst (Cumulus 

(https://cumulus.readthedocs.io/en/latest/drop_seq.html, snapshot 9, dropest_velocyto true, 

run_dropest true)103.  

 

2.5.6 Cell Clustering and Annotation 

Dimensionality reduction, cell clustering, and differential gene analysis were all achieved using 

the Seurat (v3.1.5) package in R programming language (v3.0.2)104. Dimensionality reduction was 

carried out by running principal components analysis over the 3,483 most variable genes with 

dispersion > 0.8 (tested over a range of dispersion > 0.7 to dispersion > 1.2; dispersion > 0.8 was 

determined as optimal based on number of variable genes, and general stability of clustering results 

across these cutoffs was confirmed). Only variable genes from human transcripts were considered 

for dimensionality reduction and clustering. Using the Jackstraw function within Seurat, we 

selected the first 36 principal components that described the majority of variance within the 

dataset, and used these for defining a nearest neighbor graph and Uniform Manifold 

Approximation and Projection (UMAP) plot. Cells were clustered using Louvain clustering, and 

the resolution parameter was chosen by maximizing the average silhouette score across all clusters. 

Differentially expressed genes between each cluster and all other cells were calculated using a 

likelihood ratio test, implemented with Seurat’s FindAllMarkers function, test.use set to 

“bimod”105. Clusters were merged if they failed to contain sets of significantly differentially 

expressed genes. We proceeded iteratively through each cluster and subcluster until “terminal” 

cell subsets/cell states were identified – we defined “terminal” cell states when principal 

components analysis and Louvain clustering did not confidently identify additional sub-states, as 

measured by abundance of differentially expressed genes between potential clusters. For 

visualization in Figure 2.2, we pooled all cells determined to be of epithelial origin, and using the 

methods for dimensionality reduction as above (dispersion cutoff > 1, 30 principal components). 

We applied similar approaches for immune cell types (Supplementary Figure 2.3), including 

iterative subclustering to resolve and annotate all constituent cells types and subtypes. Gene 

module scores were calculated using the AddModuleScore function within Seurat. 
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We annotated epithelial subtypes according to the following groups and representative markers: 

goblet cells were split into 4 distinct sets: MUC5AChigh goblet cells, which lacked additional 

specialized markers beyond classic goblet cell identifiers, SCGB1A1high goblet cells, AZGP1high 

goblet cells, and AZGP1highSCGB3A1 highLTFhigh goblet cells. Secretory cells were divided into 6 

distinct detailed subtypes: SERPINB11high secretory cells (which, similar to MUC5AChigh goblet 

cells, represented a more “generic” or un-differentiated secretory cell phenotype), BPIFA1high 

secretory cells, early response secretory cells (which expressed genes such as JUN, EGR1, FOS, 

NR4A1), KRT24highKRT13high secretory cells, BPIFA1highChemokinehigh secretory cells 

(chemokines include CXCL8, CXCL2, CXCL1, and CXCL3), and interferon responsive secretory 

cells (defined by higher expression of broad anti-viral genes including IFITM3, IFI6, and MX1). 

Subsets of squamous cells were also found – detailed squamous cell subtypes include CCL5high 

squamous cells, VEGFAhigh squamous cells (which express multiple vascular endothelial genes 

including VEGFA and VWF), SPRR2Dhigh squamous cells (which, in addition to SPRR2D, express 

the highest abundances of multiple SPRR- genes including SPRR2A, SPRR1B, SPRR2E, and 

SPRR3), and HOPXhigh squamous cells. Finally, ciliated cells could be further divided into 5 

distinct subtypes: interferon responsive ciliated cells (expressing anti-viral genes similar to other 

“interferon responsive” subsets, such as IFIT1, IFIT3, IFI6), FOXJ1high ciliated cells, early 

response FOXJ1high ciliated cells (which, in addition to high FOXJ1, also express higher 

abundances of genes such as JUN, EGR1, FOS than other ciliated cell subtypes), ciliahigh ciliated 

cells (which broadly express the highest abundances of structural cilia genes, such as DLEC1 and 

CFAP100), and BEST4highciliahigh ciliated cells (in addition to cilia components, also express the 

ion channel BEST4).  

 

2.5.7 RNA Velocity and Pseudotemporal Ordering of Epithelial cells 

RNA velocity was modeled using the scVelo package, version 0.2.368,69. Using cluster annotations 

previously assigned from iterative clustering in Seurat, cells from epithelial cell types were pre-

processed according to the scVelo pipeline: genes were normalized using default parameters 

(pp.filter_and_normalize), principal components and nearest neighbors in PCA space were 

calculated (using defaults of 30 PCs, 30 nearest neighbors), and the first and second order moments 

of nearest neighbors were computed, which are used as inputs into velocity estimates 
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(pp.moments). RNA velocity was estimated using the scVelo tool tl.recover_dynamics with 

default input parameters, which maps the full splicing kinetics for all genes and tl.velocity, with 

mode=’dynamical’. Top velocity transition “driver” genes were identified by high “fit_likelihood” 

parameters from the dynamical model, and are used for visualization in Supplementary Figure 

2.2C. The same approaches were used for modeling RNA velocity among only Basal, secretory, 

and goblet cells (Figures 2.2F-2.2I), only ciliated cells (Figures 2.2J-2.2M), and only COVID-

19 or only Control cells (Figures 2.2P, 2.2Q). For RNA velocity analysis of ciliated cells or Basal, 

secretory and goblet cells, the velocity pseudotime was calculated using the tl.velocity_pseudotime 

function with default settings. 

 

2.5.8 Metatranscriptomic Classification of Reads from Single-cell RNA-Seq  

To identify co-detected microbial taxa present in the cell-associated or ambient RNA of 

nasopharyngeal swabs, we used the Kraken2 software implemented using the Broad Institute viral-

ngs pipelines on Terra (https://github.com/broadinstitute/viral-pipelines/tree/master)76. A 

previously-published reference database included human, archaea, bacteria, plasmid, viral, fungi, 

and protozoa species and was constructed on May 5, 2020, therefore included sequences belonging 

to the novel SARS-CoV-2 virus75. Inputs to Kraken2 were: kraken2_db_tgz = ”gs://pathogen-

public-dbs/v1/kraken2-broad-20200505.tar.zst”, krona_taxonomy_db_kraken2_tgz = 

”gs://pathogen-public-dbs/v1/krona.taxonomy-20200505.tab.zst”, ncbi_taxdump_tgz = 

”gs://pathogen-public-dbs/v1/taxdump-20200505.tar.gz”, trim_clip_db = ”gs://pathogen-public-

dbs/v0/contaminants.clip_db.fasta” and spikein_db = ”gs://pathogen-public-

dbs/v0/ERCC_96_nopolyA.fasta”. Species with fewer than 5 reads were considered spurious and 

excluded.  

 

2.5.9 Correction for Ambient Viral RNA 

Single-cell data from high-throughput single-cell RNA-seq platforms frequently experience low-

levels of non-specific RNA assigned to cell barcodes that does not represent true cell-derived 

transcriptomic material, but rather contamination from the ambient pool of RNA. To safeguard 

against spurious assignment of SARS-CoV-2 RNA to cells without true intracellular viral material, 

i.e., viral RNA non-specifically picked up from the microenvironment as a component of ambient 

RNA contamination, we employed the following corrections and statistical tests to control for 
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ambient viral RNA and enable confident assignments for SARS-CoV-2 RNA+ cells. Similar to 

approaches previously described, we tested whether the abundance of viral RNA within a given 

single cell was significantly higher than expected by chance given the estimate of ambient RNA 

contaminating that cell, as well as the proportion of viral RNA of the total ambient RNA 

pool74,78,79. First, this required modeling and estimating the ambient RNA fraction associated with 

each individual swab. Here, we employed CellBender 

(https://github.com/broadinstitute/CellBender), a software package built to learn the ambient RNA 

profile and provide an ambient RNA-corrected output78. Input UMI count matrices contained the 

top 10,000 cell barcodes, therefore including at least 70% cell barcodes sampling the ambient RNA 

of low-quality cell pool. CellBender’s remove-background function was run with default 

parameters and --fpr 0.01 --expected-cells 500 --low-count-threshold 5. Using the corrected output 

from each sample’s count matrix following CellBender, we calculated the proportion of ambient 

contamination per high-quality cell by comparing to the single-cell’s transcriptome pre-correction, 

and summed all UMI from background/low-quality cell barcodes to recover an estimate of the total 

ambient pool. Next, we tested whether the abundance of viral RNA in a given single cell was 

significantly above the null abundance given the ambient RNA characteristics using an exact 

binomial test (implemented in R (binom.test): 

 

𝑃(𝑥) = !!
(!$%)!%!

𝑝%𝑞!$% where n = SARS-CoV-2 UMI per cell, x = total UMI per cell 

p = (ambient fraction per cell)*(SARS-CoV-2 UMI fraction of all ambient UMI), and q = 1-p 

 

P-values were FDR-corrected within sample, and cells whose SARS-CoV-2 UMI abundance with 

FDR < 0.01 were considered “SARS-CoV-2 RNA+”.  

 

2.5.10 Differential Expression by Cohort, Cell Type, or Viral RNA Status 

To compare gene expression between cells from distinct donor cohorts we employed a negative 

binomial generalized linear model. Cells from each cell type belonging to either COVID-19 WHO 

1-5 (mild/moderate), COVID-19 WHO 6-8 (severe), or Control WHO 0 were compared in a 

pairwise manner, implemented using the Seurat FindAllMarkers function (test.use = “negbinom”). 

We considered genes as differentially expressed with an FDR-adjusted p value < 0.001 and log 

fold change > 0.25. To compare gene expression between SARS-CoV-2 RNA+ cells and bystander 
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cells (from COVID-19 participants, but without intracellular viral RNA) we again used a negative 

binomial generalized linear model, but instead implemented using DESeq2106. We only tested cell 

types containing at least 15 SARS-CoV-2 RNA+ cells, and for each cell type, we restricted our 

bystander cells to the same participants as the SARS-CoV-2 RNA+ cells. Next, given the large 

discrepancies in cell number between SARS-CoV-2 RNA+ and bystander groups among most cell 

types, we randomly sub-sampled the bystander cells to at most 4x the number of SARS-CoV-2 

RNA+ cells. Further, we selected bystander cell subsets that matched the cell quality distribution 

of the SARS-CoV-2 RNA+ cells, based on binned deciles of UMI/cell. DESeq2 was run with 

default parameters and test = “Wald”. Gene ontology analysis was run using the Database for 

Annotation, Visualization, and Integrated Discovery (DAVID)107. Gene set enrichment analysis 

(GSEA) was completed using the R package fgsea over genes ranked by average log foldchange 

expression between each cohort, including all genes with an average expression > 0.5 UMI within 

each respective cell type108. Gene lists corresponding to “Shared IFN Response”, “Type I IFN 

Specific Response” and “Type II IFN Specific Response” are derived from previously-published 

population RNA-seq data from nasal epithelial basal cells treated in vitro with 0.1 ng/mL – 10 

ng/mL IFNa or IFNg for 12 hours30. Module scores were calculated using the Seurat function 

AddModuleScore with default inputs. 

 

2.5.11 Statistical Testing 

All statistical tests were implemented either in R (v4.0.2) or Prism (v6) software109. Comparisons 

between cell type proportions by cohort were tested using a Kruskal-Wallis test with bonferroni-

correction, implemented in R using the kruskal.test, and p.adjust functions. Post-tests for between-

group pairwise comparisons used Dunn’s test. Spearman correlation was used where appropriate, 

implemented using the cor.test function in R. All testing for differential expression was 

implemented in R using either Seurat, scVelo, or DESeq2, and all results were FDR-corrected as 

noted in specific Methods sections. P-values, n, and all summary statistics are provided either in 

the results section, figure legends, figure panels, or supplementary tables.  

 

2.5.12 Data and Code Availability 

Prism (v6), R (v4.0.2) packages ggplot2 (v3.3.2110), Seurat (v3.2.2111), ComplexHeatmap 

(v2.7.3112), and Circlize (0.4.11113), fgsea (v.1.16.0108) and Python (v3.8.3) package scVelo 
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(v0.3.068) were used for visualization. All raw, normalized, and annotated data is available for 

download and visualization via the Single cell Portal: 

https://singlecell.broadinstitute.org/single_cell/study/SCP1289/impaired-local-intrinsic-

immunity-to-sars-cov-2-infection-underlies-severe-covid-19. Interim data was also deposited in a 

single-cell data resource for COVID-19 studies: https://www.covid19cellatlas.org114. Custom 

reference FASTA and GTF for SARS-CoV-2 is available for download: 
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3.1 Abstract 

Bulk transcriptomic studies have defined classical and basal-like gene expression subtypes in 

pancreatic ductal adenocarcinoma (PDAC) that correlate with survival and response to 

chemotherapy; however, the underlying mechanisms that govern these subtypes and their 

heterogeneity remain elusive. Here, we performed single-cell RNA-sequencing of 23 metastatic 

PDAC needle biopsies and matched organoid models to understand how tumor cell-intrinsic 

features and extrinsic factors in the tumor microenvironment (TME) shape PDAC cancer cell 

phenotypes. We identify a novel cancer cell state that co-expresses basal-like and classical 

signatures, demonstrates upregulation of developmental and KRAS-driven gene expression 

programs, and represents a transitional intermediate between the basal-like and classical poles. 

Further, we observe structure to the metastatic TME supporting a model whereby reciprocal 

intercellular signaling shapes the local microenvironment and influences cancer cell transcriptional 

subtypes. In organoid culture, we find that transcriptional phenotypes are plastic and strongly skew 

toward the classical expression state, irrespective of genotype. Moreover, we show that patient-

relevant transcriptional heterogeneity can be rescued by supplementing organoid media with 

factors found in the TME in a subtype-specific manner. Collectively, our study demonstrates that 
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distinct microenvironmental signals are critical regulators of clinically relevant PDAC 

transcriptional states and their plasticity, identifies the necessity for considering the TME in cancer 

modeling efforts, and provides a generalizable approach for delineating the cell-intrinsic versus -

extrinsic factors that govern tumor cell phenotypes.  

 

3.2 Introduction 

Classification of human malignancies by genotype has provided important insights into tumor 

biology as well as a framework to guide therapeutic selection in many cancers1. However, tumors 

also exhibit clinically relevant transcriptional variation that can influence malignant progression 

and therapeutic response. The application of single-cell RNA-sequencing (scRNA-seq) to tumor 

specimens has afforded a means to characterize the malignant and non-malignant cellular 

components of the tumor microenvironment (TME) and their heterogeneity at unprecedented 

resolution2-9. These analytical approaches have further enabled the re-examination of existing 

transcriptional taxonomies, revealing structured heterogeneity within malignant populations and 

reframing our understanding of bulk measurements in multiple cancers3,9,10-13.  

The phenotypic variability observed in human tumors often reflects the underlying cancer 

cell genetics. Specific mutations can program cancer cell states and, in some cases, serve as 

biomarkers for treatment8-11. Yet, in other instances, transcriptional phenotypes are not strongly 

associated with specific mutational patterns14. In these tumors, cell-extrinsic TME interactions 

may influence malignant cellular attributes, but our understanding of reciprocal signaling between 

malignant cells and the TME is rudimentary. Mapping the cell-intrinsic and -extrinsic factors that 

impact tumor cell states and determining which ones drive phenotypic transitions would yield 

important insights into the biologic basis for clinical disease phenotypes and drug resistance.  

For pancreatic ductal adenocarcinoma (PDAC), bulk RNA-seq profiling has defined two 

major transcriptional programs, basal-like/squamous (hereafter referred to as basal) and classical. 

The basal subtype is strongly associated with a poorer prognosis and greater treatment resistance15-

25, but the roles of cell-intrinsic and -extrinsic factors in determining these cell states and their 

sensitivity to different therapies are not well understood. A limited number of genomic alterations, 

including TP53 mutational status and c-MYC or KRAS amplifications, have been associated with 

the more therapy-resistant basal state17-19,26,27. Recent studies have also suggested that high levels 

of KRAS expression and signaling can induce the basal state, but others have demonstrated that 
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basal PDAC cells exhibit RAS-independence19,20,28,29. These findings suggest that while genomic 

activation of KRAS plays an important role in oncogenesis, other non-genetic and 

microenvironmental factors may also be critical in regulating downstream cellular states.  

Although the majority of patients with PDAC present with and succumb to metastatic 

disease30, our current understanding of PDAC is largely derived from resected primary 

tumors15,18,30. While several recent studies have described the desmoplastic stromal 

microenvironment and immune infiltration in primary PDAC31-36, we lack a detailed 

characterization of the immune and stromal cells that constitute metastatic PDAC lesions. The 

local TME in the pancreas is likely different from metastatic sites in other organs37, and given the 

strong association of transcriptional subtype with survival and drug resistance15-25, understanding 

whether specific inputs from the metastatic niche can specify transcriptional phenotype is of great 

importance to targeting therapeutic resistance in PDAC. 

 To better understand the interplay between genetics, transcriptional state, and the 

metastatic TME, we developed and employed an optimized translational workflow to perform both 

high-resolution profiling of PDAC patient tissue using scRNA-seq38,39 and derivation of matched 

organoid models26,40 from the same metastatic core needle biopsy. Using matched in vivo 

observations and ex vivo experimental studies, we describe a tumor cell atlas of metastatic PDAC, 

identify a new intermediate transitional PDAC cancer cell state, uncover distinct site- and subtype-

specific TMEs, and demonstrate that microenvironmental signals are critical regulators of 

transcriptional subtypes and their plasticity. 

 
3.3 Results 

3.3.1 A clinical pipeline for matched single-cell profiling and organoid model generation 

We established a pipeline for collecting core needle biopsies from patients with metastatic PDAC 

(n=23) to generate matched scRNA-seq profiles and organoid models (Figure 3.1A; 

Supplemental Figure S3.1A; Supplemental Table S3.1). Most samples were obtained from 

metastatic lesions residing in the liver (19/23), and the majority (21/23) were analyzed by targeted 

DNA-sequencing, yielding the expected mutational pattern for this disease (Figure 3.1B) 15,17,18. 
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Our pipeline generated approximately 1,000 high-quality single cells per biopsy (n=23,042 total 

cells) and successful early-passage organoid cultures from 70% of patient tumor samples (16/23 

 
Figure 3.1: A clinical pipeline for matched single-cell RNA-seq and organoid generation from metastatic PDAC 

biopsies.  

(A) Pipeline for collecting patient samples, and dissociation and allocation for scRNA-seq and parallel organoid 

development. (B) Clinical and molecular features for all patients included in the dataset (Rx = Therapy; Other = 

Adrenal (PANFR0637), Omentum (PANFR0635, PANFR0598), Peritoneum (PANFR0588); Org. at P2 = Organoid 

measured at passage 2). Mutations were determined by bulk targeted DNA-seq (Red, Altered; White, wildtype; 

Grey, Data not available). Number of single cells captured per biopsy and their malignant and non-malignant fraction 

is visualized at the right. (C) Example bulk targeted DNA-seq (top) and single-cell inferred CNV profiles (rows, 

bottom) arranged by chromosome (columns) from PANFR0575. (D-E) t-distributed stochastic neighbor embedding 

(t-SNE) visualization for non-malignant (D) and malignant (E) single cells in the biopsy cohort. Cells are colored 

by patient as in B. Endo, Endothelial; Mes, Mesenchymal; B, B-cell; Hep, Hepatocyte; DC, Dendritic cell; pDC, 

Plasmacytoid dendritic cell; Mac, Macrophage; T, T-cell; NK, Natural killer cell.  
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samples reaching at least passage 2; Figure 3.1B; Supplemental Figure 3.1A,B). Dimensionality 

reduction and shared nearest neighbor (SNN) clustering of the biopsy cells revealed substantial 

heterogeneity at the single-cell level (Supplemental Figure S3.1C,D; Methods). Consistent with 

other studies of human cancer, we observed patient-specific and admixed clusters of single cells 

suggesting the presence of both malignant and non-malignant cells in each biopsy2,4,5,7,8. To 

confirm which clusters were comprised of malignant cells, we inferred transcriptome-wide CNVs 

from our single-cell data as previously described3,13. CNV alteration scores separated putative 

cancerous and non-cancerous cells in each biopsy and demonstrated high concordance with 

reference targeted DNA-seq (Figure 3.1C; Supplemental Figure S3.1E,F). CNV analysis paired 

with manual inspection of expression patterns for known markers across single cells supported the 

identification of cancerous cells as well as 11 unique non-cancerous cell types (Figure 3.1D,E; 

Supplemental Figure S3.1D-I; Supplemental Table S3.2). Thus, we established a robust 

workflow capable of recovering high quality malignant (n=7,740) and non-malignant (n=15,302) 

populations from metastatic PDAC needle biopsies while also enabling simultaneous generation 

of matched organoid models.     

 

3.3.2 Tumor cell transcriptional subtypes in metastatic PDAC include an intermediate transitional 

state 

We applied principal component analysis (PCA) to examine transcriptional variation across cancer 

cells from all biopsy samples. CNV-altered cells from one biopsy, PANFR0580, separated from 

the rest of the samples (Figure 3.1B; Supplemental Figure S3.2A). Based on expression of 

known neuroendocrine markers (TTR, CHGA) and subsequent pathology review we reclassified 

this sample as a pancreatic neuroendocrine tumor (PanNET) and used it as a non-PDAC reference 

cell population. Among the remaining 7,078 PDAC cells, we found that genes driving the first 3 

PCs were enriched for signatures of epithelial/mesenchymal transition [EMT, PC141], 

basal/classical state [PC222], and cell cycle [PC37] (Supplemental Figure S3.2B). When we 

scored all malignant cells within our cohort for basal and classical gene expression, we observed 

that they inhabited a graded continuum of expression states from strongly basal to strongly 

classical (Figure 3.2A). Correlation analysis across malignant cells revealed 1,909 genes 

significantly associated with either basal or classical expression scores (Supplemental Figure 

S3.2C; Supplemental Table S3.3; Methods). Inspection of these genes revealed that basal cells 
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are defined by squamous and mesenchymal features and co-express programs associated with 

transforming growth factor beta (TGF-b) signaling, WNT signaling, and cell cycle 

progression2,7,41. Conversely, epithelial and pancreatic lineage programs are enriched in classical 

subtype PDAC cells (Supplemental Figure S3.2D,E).  
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 Strikingly, we observed that the basal and classical programs were not mutually exclusive; 

rather, we identified a large population of cells that co-expressed features of both programs to 

varying degrees (Figure 3.2A; Supplemental Figure S3.3A,B). In developmental contexts, cell 

state commitment is often a continuous process where mixing/co-expression of state markers 

indicates state transitions14. Similarly, the large fraction of intermediate co-expressing cells 

identified in our single-cell snapshots suggests state transitions may be an ongoing and frequent 

process in human PDAC tumors. We identified 115 genes whose expression was correlated with 

this co-expressor intermediate state and enriched for developmental, Ras signaling, and 

inflammation/stress response gene sets (Figure 3.2B; Supplemental Figure S3.3C,D; 

Supplemental Table S3.3; Methods). Signatures of RAS signaling were enriched in the 

intermediate state even compared with basal and classical programs, and, by contrast, classical 

phenotypes were enriched for Akt-associated gene sets and showed little evidence of EMT or RAS 

enrichments (Figure 3.2A-B; Supplemental Figure S3.2E).  

 Since this intermediate signature showed enrichment for developmental gene programs, 

we next assessed whether this signature overlapped with any phenotypes recently reported in the 

normal pancreas progenitor niche42. We found that both basal and classical gene expression 

Figure 3.2: An intermediate transitional state bridges basal and classical phenotypes.  

(A) Heatmaps depict the expression of basal and classical expression programs and highlight the co-expressing 

intermediates (n=30 genes each).  (B) Gene set enrichment analysis for the 115 genes specific to the co-expressing 

intermediate state. (C) The intermediate transitional (“IT”) expression program (n = 30 genes) is enriched by co-

expressing cells. Enrichment adjusted P-values (hypergeometric test) for EMT, KRAS, and AKT gene sets are 

indicated at right for each gene expression program in A and C. (D) Cross-correlation between new and previously 

proposed expression signatures (rows and columns; text color = source, below) in our PDAC single-cells. Average 

expression for each signature (rows) is shown at the right for cells in the malignant subtypes from our cohort and the 

normal pancreatic progenitor cells from Qadir et al., 2020. White dot indicates the subset with the highest average 

significant expression for each signature (Kruskal-Wallis test); no white dot indicates no significant expression. (E) 

Malignant cell state diagram for PDAC. Basal-classical commitment score (x axis) and IT score (y axis) for all 7,078 

malignant cells (Methods). (F) Multiplex immunofluorescence analysis (mIF) identifies co-expressing IT cells in 

matched metastatic samples. Top are representative images from two cases (white box indicates region for co-

expression insets at right), and bottom indicates marker detection patterns for mIF and matched scRNA-seq data 

(Methods). Scale bar represents 10 µm. (G) Frequency of co-expressing IT cells is correlated with balanced 

representation of pure basal and classical phenotypes by mIF within individual samples. Log ratio of % basal and 

classical cells in each sample (x axis) versus their % co-expressing / IT cells (y axis).  (H) Co-expressing IT cells are 

also identified in primary PDAC samples by mIF. Scale bar represents 10 µm. 
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signatures were expressed by pro-ductal progenitor cells, while the intermediate gene expression 

program was enriched in an undifferentiated, stress-responsive progenitor population 

(Supplemental Figure S3.3E,F)42. Thus, based on its enrichment for developmental and stress-

responsive gene sets, overlap with populations in the normal progenitor niche, and co-expression 

of basal and classical programs suggestive of a transitional state, we termed this phenotype 

“Intermediate transitional” (IT) (Figure 3.2C).  

To further contextualize this cell state, we compared signatures proposed by prior bulk 

RNA-sequencing studies to clarify potential inter-relationships15,17,19,20,22. Pairwise correlation of 

all established signatures in malignant cells revealed that many contribute overlapping information 

and reflect similar underlying biology within either basal or classical clades, but that the IT 

signature is unique and not well described by established bulk RNA-seq signatures (Figure 3.2D). 

Taken together, these findings suggest that malignant PDAC cells organize in a tripartite cell state 

framework that spans committed basal and classical phenotypes, with considerable signature co-

expression in single cells (Figure 3.2E). Similar to the variation in EMT scores observed in basal 

tumor cells (Supplemental Figure S3.3A)19,21, we noted heterogeneity among co-expressing cells 

for the IT program. 

 

3.3.3 Multiplex immunofluorescence confirms co-expressing IT cells in metastatic and primary 

PDAC 

To compare to bulk RNA-seq studies, we clustered pseudo-bulk averages of the malignant cells 

from each biopsy and observed separation of tumors into those that expressed predominantly basal, 

classical, or IT signatures (Supplemental Figure S3.3G-I). However, individual tumors exhibited 

significant heterogeneity at the cellular level, with mixing of malignant cell populations expressing 

at least two and frequently all three cell states within the same patient specimen (Supplemental 

Figure S3.3J). To validate the extensive heterogeneity and the presence of co-expressing IT cells 

in our metastatic cohort, we used a subtype-specific multiplex immunofluorescence (mIF) panel 

to categorize single tumor cells by their patterns of marker detection in 10 matched cases from our 

single cell study (Supplemental Figure S3.4A; Supplemental Table S3.4; Methods). We 

observed extensive overlap of basal and classical markers within single cells at the protein level, 

corroborating the existence of co-expressing IT cells using an orthogonal method (Figure 3.2F; 

Supplemental Figure S3.4B). Encouragingly, we observed significant correlation within subtype 
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(average r = 0.52) as compared to between subtypes (average r = 0.06, P < 10-7, Student’s T test) 

using this orthogonal method. We also observed high concordance between the two methods, 

giving confidence that we are accurately sampling the distribution of states present in each sample 

(average r = 0.45; Supplemental Figure S3.4C, white dots).  As with scRNA-seq, we observed 

mixing of basal, classical, and IT cells within individual patient specimens by mIF subtyping. The 

frequency of co-expressing cells was correlated with balanced representation of pure basal and 

classical phenotypes within individual samples, consistent with the co-expressing IT phenotype as 

a transitional state (Figure 3.2G). Indeed, none of the tumors evaluated with mIF contained a mix 

of pure basal and classical phenotypes in the absence of co-expressing IT cells. We also identified 

co-expressing cells in primary tumor samples which suggests that IT phenotypes may be a general 

feature of PDAC tumors in both the localized and metastatic settings (Figure 3.2H; Supplemental 

Figure S3.4D).  

 

3.3.4 Microenvironment is dominant to KRAS amplifications in determining transcriptional 

subtype  

We next searched for potential molecular regulators of the observed tumor cell transcriptional 

heterogeneity. In PDAC, the vast majority of tumors harbor clonal KRAS point mutations, 

including all of the PDAC samples in our cohort (Figure 3.1B). While point mutations in KRAS 

amplifications in KRAS associate with more basal features19,28, while amplifications of lineage do 

not appear to determine transcriptional subtype, several studies have suggested that  transcription 

factors like GATA6 associate with classical phenotypes19. To assess for such genotype-phenotype 

relationships in our single-cell cohort, we inferred copy number variation for common PDAC 

alterations (KRAS, TP53, SMAD4, and CDKN2A) and lineage-associated transcription factors 

(HNF4G and GATA6) from scRNA-seq expression data using a previously established Hidden 

Markov model workflow (Methods)3,13,43. Encouragingly, we observed a significant association 

between single-cell inferred KRAS copy number gain and basal phenotypes (P<0.03 Fisher’s exact 

test), and also between inferred CDKN2A copy loss and IT phenotypes (P<0.003 Fisher’s exact 

test; Figure 3.3A). While we found that cells derived from samples with inferred KRAS 
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amplifications had a strong preference for the basal subtype, these cells could still span all three 

phenotypic categories or be predominantly classical within an individual tumor (Figure 3.3B-D).  

 
Figure 3.3: Figure 3. Microenvironment dictates phenotype in KRAS-amplified tumor cells.  

(A) Single-cell inferred copy number alterations for each sample in the biopsy cohort (Methods). Tumors are grouped 

by expression of their dominant subtype based on the clustering in Supp. Fig. S2.3G, P-values comparing presence 

of each alteration among the groups (Basal, Classical, IT) are determined by Fisher’s exact test. (B) Malignant cell 

state diagram as in Figure 2.2E but highlighting all in vivo KRAS-amplified tumor cells (black border) across the 

states. (C) Similar to B, but highlighting PANFR0552 KRAS-amplified malignant cell heterogeneity. White and black 

borders correspond to separate CNV sub-clones (both KRAS amplified) and color fill denotes transcriptional subtype. 

(D) Similar to B, but highlighting PANFR0557 KRAS-amplified malignant cell heterogeneity. Color fill denotes 

transcriptional subtype. (E) t-SNE visualization of all biopsy (grey and black) and matched organoid cells (red and 

dark red) from iterative passages. KRAS-amplified tumor cells from in vivo specimens (black) and organoid models 

(dark red) are highlighted with distinct colors. (F) Cell state diagram for all cells with inferred KRAS amplifications in 

biopsy (grey) and organoid (red) microenvironments. P-value compares biopsy versus early passage organoid score 

distributions (top density) and was determined by student’s T test. (G) Clonal fractions (pie charts) from the KRAS-

amplified PANFR0575 sample in biopsy and organoid conditions. Heatmap shows the relative expression in single 

cells from plastic clone A (bright green) in both conditions. 
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 To further examine this genotype-to-phenotype association, we tested if KRAS 

amplification was sufficient to specify the basal phenotype in an ex vivo environment. We initiated 

patient-derived organoid cultures from matched PDAC biopsies and serially sampled them over 

time with scRNA-seq (Figure 3.1A). CNV-confirmed “early” organoid cells (first passage 

measured, n=2,117 cells) derived from KRAS-amplified biopsies maintained this genetic alteration 

in culture (Figure 3.3E, dark red). Despite their genetic stability, cells with inferred KRAS 

amplifications exhibited a profound phenotypic shift from basal in vivo to classical ex vivo (Figure 

3.3F). Although selection of specific clones could play a role in this process, most of these models 

maintained high CNV similarity to their parent tumor at the early time point. For example, we 

observed that a CNV-defined clone from PANFR0575 with both KRAS and GATA6 amplifications 

was plastic and shifted from strongly basal in vivo to classical in early organoid culture (Figure 

3.3G). These observations provide strong evidence that phenotypic plasticity is an inherent feature 

of malignant PDAC cells and demonstrate that KRAS amplification alone is not sufficient to lock 

the basal state. Furthermore, they suggest that the tumor microenvironment can influence 

phenotype independent of genotype in this context.  

 

3.3.5 Transcriptional heterogeneity is shaped by the microenvironment 

Given this strong phenotypic shift even for genetically similar samples, we next examined how ex 

vivo transcriptional phenotypes differed across our larger organoid cohort relative to their cognate 

patient samples. Globally, unbiased comparison of all malignant biopsy (7,078 cells) and organoid 

cells (n=14 models, 24,789 cells) revealed unique clusters for each sample and only two clusters 

that were admixed by donor. These admixed cells exhibited expression programs consistent with 

non-malignant stromal cells, had low overall CNV scores, and dissipated by later passages 

(Supplemental Figure S3.5A-D; Methods). Overall, samples with high tumor-averaged basal or 

IT phenotypes exhibited lower rates of long-term organoid propagation beyond passage 2 than 

models derived from classical tumors, where the majority established long-term cultures (Figure 

3.4A). When comparing early passage CNV-confirmed organoids to their cognate patient tissue, 

culture in an ex vivo microenvironment caused greater deviation in transcriptional phenotype than 

CNV-defined genotype (Figure 3.4A, P < 10-6 Student’s T test; Methods).  
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We next assessed which specific tumor cell attributes contributed to phenotypic divergence 

in the ex vivo microenvironment. As with the KRAS-amplified samples, we observed a striking 
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decrease in basal gene expression (P < 0.000001) and, to a lesser but still significant extent (P < 

0.001), the IT program (Figure 3.4B, top). By contrast, aggregate classical gene expression 

remained largely unchanged in organoid conditions (Figure 3.4B, top). This loss of basal 

expression was surprising, given the more clinically aggressive and proliferative nature of basal 

tumors in vivo (Supplemental Figure S3.3A)21,22. Organoid-specific gene expression features that 

were not present in vivo also emerged, including markers of epithelial identity, oxidative stress 

response pathways (e.g., NRF2 target genes), and amino acid metabolism (hereafter collectively 

referred to as “organoid-specific” gene expression; Figure 3.4B, bottom; Supplemental Table 

S3.5). In general, models assumed a more classical or organoid-specific phenotype over time in 

culture regardless of their parent tumor’s transcriptional identity (Figure 3.4C). Most models 

derived from basal or IT tumors exhibited early phenotypic deviation and cessation of growth 

within 100 days of initiation (e.g., PANFR0552; Supplemental Figure S3.5E) or outgrowth of 

only a sub-clone in culture (e.g., PANFR0489R; Supplemental Figure S3.5F). Classical tumors, 

Figure 3.4:  Organoid culture microenvironment selects against the basal state with phenotypic evolution over time.   

(A) Sampling from each model initiated as an organoid. Red fill represents measurements at an Early time point and 

if that biopsy established a long-term culture (Estab.). Right grey scale heat indicates the distance (Methods) between 

each biopsy-early organoid pair for CNVs (Geno.) or transcriptional subtype (Pheno.). P-value for Geno. vs Pheno. 

differences determined by student’s T test. (B) Relative expression for the malignant programs (top) and organoid-

specific genes (bottom) in biopsy cells (left) and their matched, early passage organoid cells (n=13 models; right). 

Parenthetical P-values (left) indicate hypergeometric test for enrichment of pathways in the indicated gene clusters. 

Far right heat is average expression for all genes in each group, P-values determined by student’s T test. (C) 

Swimmer’s plot shows the evolution of organoid phenotype in the culture microenvironment. Each point indicates a 

passage when organoids were sampled with scRNA-seq, and pie chart fill indicates the fraction of single cells binned 

as each transcriptional subtype. (D) Schematic for matched tumor-organoid differential expression analysis. (E) Top 

differentially expressed genes in vivo (143 genes) are TME-associated and enrich for TME-associated pathways. All 

top enrichments shown are highly significant (P-value < 10-12). (F) Hierarchical clustering in biopsy cells (columns) 

of the relative expression for the 143 TME-associated genes preferentially expressed in vivo (rows). Cells are binned 

in the single-cell heatmap and the averages at right by their originating tumor’s average transcriptional subtype. Gene-

level averages are split by biopsy (left) and organoid cells (right). Parenthetical P-values (left) indicate hypergeometric 

test for enrichment of pathways in the indicated gene clusters. For within-group differences in expression for biopsy 

averages, P-values are computed by one-way ANOVA followed by Tukey’s HSD and compare averaged expression 

of each gene cluster between cells from different biopsy subsets (middle heatmap; *P-value < 10-8; **P-value < 10-

16). Overall biopsy versus organoid average expression difference for all 143 genes is determined by Student’s T test. 
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meanwhile, tended to maintain their genotype and phenotype both early in culture and at later 

passages (e.g., PANFR0631; Figure 3.4C; Supplemental Figure S3.5G, clone A).   

To better understand the contribution of clonal selection to this process, we performed 

linked genotype and phenotype assessment from iterative passages. We identified CNV-defined 

subclones in the parental biopsy and its associated serial organoid samples, and then assessed how 

the distribution of transcriptional states within each subclonal population evolved over time in 

culture (Methods). In both PANFR0489R and PANFR0575, KRAS amplification status remained 

invariant over time, but we observed significant phenotypic plasticity and clonal selection in both 

cases. In PANFR0489R, the predominantly basal clones in vivo rapidly decreased in abundance 

while other rarer clones with classical or organoid-specific phenotypes emerged as the dominant 

ones (Supplemental Figure S3.5H). In contrast, in vivo dominant clones from PANFR0575 were 

largely maintained at early passages but diverged significantly in their phenotype, transiently 

expressing more classical and organoid-specific phenotypes at passages 2 and 3 before eventually 

regaining basal transcriptional expression after >100 days in culture (Supplemental Figure 

S3.5I). Notably, the clones that came to dominate in PANFR0575 organoid culture (clones D and 

E, Supplemental Figure S3.5I) carried inferred TP63 amplifications, a squamous-specifying 

transcription factor44, suggesting that certain genotypes, though rare, may still exert a strong effect 

despite opposing signals from the microenvironment. Taken together, these findings emphasize 

the importance of optimizing culture conditions and performing deep molecular characterization 

of patient-derived model systems to ensure faithful representation of the tumor.  

Divergence from in vivo phenotype, despite relative similarity in genotype, suggested that 

the TME has a strong influence in determining PDAC cellular state. For each biopsy-organoid 

pair, we used differential expression to nominate transcriptional programs that were present in vivo 

but missing from ex vivo culture (Figure 3.4D; Methods). Broadly, genes preferentially expressed 

by malignant cells in vivo were related to soluble cytokine signaling, cell-cell communication, and 

tumor-microenvironment interactions, highlighting the absence of this crosstalk in organoid 

culture (Figure 3.4E). Hierarchical clustering revealed subtype-dependent expression patterns for 

these in vivo-specific genes (Figure 3.4F; Supplemental Table S3.5). For example, interferon 

response and EMT genes were significantly upregulated in basal and IT malignant cells in vivo 

(clusters 1 and 2, Figure 3.4F), while genes associated with cell-cell interactions and surface 

glycoproteins were more strongly expressed in IT and classical cells (cluster 3, Figure 3.4F). 
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Genes related to biological adhesion were more uniform in their expression across the subtypes 

(cluster 4, Figure 3.4F). The relative absence of these TME-crosstalk genes in organoid culture 

and their differences in expression across transcriptional subtypes in vivo suggest that TME signals 

may play a role in specifying tumor cell phenotypes. 

 

3.3.6 Non-malignant composition of the metastatic microenvironment  

The presence of TME-associated expression patterns in cancer cells in vivo suggested there may 

be subtype-dependent structure to, and instructive signaling from, the metastatic TME; however, 

relatively little is known about the structure and composition of the metastatic microenvironment 

in PDAC. We first analyzed the non-malignant cells (n=14,811) in the metastatic niche to further 

subclassify cell types and provide a more complete picture of the immune/stromal composition of 

metastatic disease (Figure 3.5A). Sub-clustering of T/NK cells revealed 4 cell types—CD4+ T, 

CD8+ T, NK, and CD16+ (FCGR3A+) NK cells—each expressing the corresponding established 

markers (Supplemental Figure S3.6A,B; Methods). Similarly, an unsupervised examination 

within the monocyte/macrophage compartment revealed a tripartite continuum for tumor 

associated macrophages (TAMs), similar to one recently described in colorectal cancer, comprised 

of inflammatory FCN1+ “monocyte-like” TAMs, C1QC+ phagocytic TAMs, and SPP1+ 

angiogenesis-associated TAMs (Supplemental Figure S3.6C,D; Supplemental Table S3.2)45,46. 

Representative marker expression across all previously described non-malignant cells is 

summarized in Supplemental Figure S3.6E.  

 Although most samples in our cohort were taken from liver metastases (19/23), several 

originated from other sites including the omentum, adrenal gland, and peritoneum (Figure 3.1B, 

“other”). Interestingly, while we found equal distribution of immune cells among the anatomical 

sites, mesenchymal cell populations clustered predominantly by the location of the metastatic 

lesion (Figure 3.5B,C). Excluding adrenal-specific endocrine cells (Figure 3.4C; subset 4, 40 

cells), we identified 3 mesenchymal subclusters with relatively uniform expression for canonical 

cancer-associated fibroblast (CAF) markers (Figure 3.5C; Supplemental Figure S3.6F). PCA of 

these cells revealed a continuum of states along PC2, with uniform expression of the previously 

described myofibroblast (myCAF) signature34,36 but further separating into cells favoring high 

expression of dermal fibroblast-like genes (PC2 low, FAP, PRXX1, SFRP2) or pericyte-like genes 

(PC2 high, RGS5, MCAM, TBX2; Supplemental Figure S3.6G-I; Supplemental Table S3.2)47-



89 
 

52. PC3 described a small subset of cells, derived largely from a single tumor (PANFR0489R), that 

were highly consistent with the previously established inflammatory fibroblast (iCAF) program 

(Supplemental Figure S3.6H-J)34,36.  

 
Figure 3.5. Immune heterogeneity and distinct fibroblast phenotypes exist in the liver metastatic microenvironment.  

(A) t-SNE visualization of non-malignant cells identified in the metastatic microenvironment, abbreviations are the 

same as in Figure 3.1D (TAM, tumor associated macrophage; NK, natural killer). (B) Same visualization as in A, 

but cells are colored by sampling site (Liver, grey; Other, red). Only the mesenchymal cells (dotted circle, Mes.) 

have appreciable separation by anatomical site. (C) t-SNE visualization of sub-clustering (SNN) performed on 

mesenchymal cells colored by their anatomical site. Cell subsets (1-4) determined by SNN clustering. (D) Frequency 

of CAFs (y axis, cell count) across PC2 scores, colored by site of biopsy tissue. P-value determined by student’s T 

test. (E) Heatmap for relative expression of the Dermal Fibroblast-like (PC2 low) and Pericyte-like (PC2 high) 

programs. Anatomical site is shown for each cell (top). (F) Density plots for CAF phenotype score in single cells 

from our metastatic cohort (top) or previously published PDAC bulk RNA-seq profiles (bottom)15,18, fill indicates 

anatomical site. P-value determined by student’s T test (top) or by ANOVA followed by Tukey’s HSD (bottom).  

 



90 
 

 While tumors from each location contained both mesenchymal subsets, we noted a strong 

organ-specific skewing along PC2 with pericyte-like phenotypes being preferentially associated 

with liver biopsies (Figure 3.5D,E; Supplemental Figure S3.6K). To validate these observations 

in larger cohorts, we assessed bulk RNA-seq datasets using these dermal fibroblast- and pericyte-

like CAF signature scores and observed a similar predilection for the pericyte-like expression 

program in liver metastases (Figure 3.5F; Methods). Interestingly, tumors in the pancreas (n = 

153 samples) favored expression of the dermal fibroblast-like program, suggesting a substantially 

different mesenchymal microenvironment in primary versus liver metastatic PDAC (Figure 3.5F). 

Thus, we observed diverse immune and stromal cell types in the metastatic TME and identified 

site specific mesenchymal features unique to the liver metastatic niche compared with primary 

disease.  

 

3.3.7 Transcriptional subtypes associate with distinct immune microenvironments 

After cataloging the cell types in the metastatic TME, we searched for associations between 

malignant subtype and the immune microenvironment. For each tumor sample, we first computed 

the fractional representation of each non-malignant cell type per biopsy. Five tumors were 

excluded from this analysis based on low cell counts (<200 cells) or indeterminant transcriptional 

subtype (PanNET or no tumor cells captured; Supplemental Figure S3.6L). To describe the 

overall microenvironmental composition for each tumor, we applied Simpson’s diversity index, a 

measure of biodiversity commonly used in ecology to describe the number of species (cell types) 

present in an ecosystem (tumor) and their relative abundance. We observed that tumors with more 

classical or IT phenotypes exhibited greater microenvironmental diversity, while strongly basal 

tumors had a more homogeneous TME (Figure 3.6A). Hierarchical clustering over the relative 

abundance of each non-malignant subset across the biopsy cohort revealed the specific cell types 

driving these overall diversity differences (Figure 3.6B,C). Specifically, C1QC+ TAMs 

dominated the microenvironments of strongly basal tumors, and both CD8+ and CD4+ T cells 

were significantly depleted in basal contexts compared to the rest of the samples in the cohort 

(Figure 3.6C,D). T cells most often originated from biopsies with higher IT malignant fractions 

(Figure 3.6B,C) and their abundance was positively correlated with this malignant phenotype in 

our cohort (Figure 3.6E). We also broadly observed these patterns within TCGA bulk RNA-

sequencing data of other epithelial malignancies53, where we observed evidence for reduced levels 
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of immune-related gene expression in tumors with high basal/squamous gene expression 

(Supplemental Figure S3.6M, cluster 4). Taken together, these findings suggest coordinated 

interactions between malignant phenotypes and the local TME with decreased immune cell 

diversity and a greater degree of immune exclusion associated with basal contexts (Figure 3.6F). 

 
Figure 3.6: Transcriptional subtypes associate with distinct metastatic microenvironments.  

(A) Correlation between microenvironment diversity (Simpson’s Index, x axis) and the average malignant basal-

classical commitment score for each biopsy (y axis). (B) Dot plot indicates the Simpson’s Index calculated for each 

biopsy and heat bars indicate each tumor’s average malignant cell expression for each of the malignant 

transcriptional programs. (C) Fraction of each non-malignant cell type (heat, rows) in each biopsy sample 

(columns). Dots indicate top statistically significant cell type frequency differences calculated using Kruskal-Wallis 

test with multiple hypothesis correction. Samples are ordered as in B. (D) Box plots compare cell type fraction 

between the basal polarized tumors with low diversity (PANFR0593, 575, 545) and all others. P-value determined 

by student’s T test. (E) Correlation between T cell fraction and IT malignant score. (F) Schematic summarizing 

associations between microenvironmental diversity, non-malignant infiltrates, and tumor subtype. 
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3.3.8 The soluble microenvironment shapes PDAC cellular phenotypes 

Based on our observations that: 1) the microenvironment influences malignant phenotype 

independent of genotype; 2) gene expression programs associated with cytokine signaling, EMT, 
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and cell-cell interaction are enriched in vivo but missing from cells cultured as organoids; and, 3) 

malignant states and immune cell infiltration are coordinated in a subtype-specific manner, we 

hypothesized that incorporation of soluble factors specific to the TME of each transcriptional 

subtype may drive tumor cell state shifts (Figure 3.7A). Complete PDAC organoid media 

(Supplemental Table S3.6)25,40 contains various growth factors that could skew malignant 

transcriptional state, so we first tested the effects of withdrawing various soluble factors. We 

cultured four organoid models in media without any additives (“Minimal” media, containing only 

Glutamax, anti-microbials, HEPES buffer, and Advanced DMEM/F12 media; Figure 3.7B; 

Figure 3.7: Tumor subtype-specific secreted microenvironmental factors rescue malignant transcriptional 

heterogeneity.  

(A) Schematic describing microenvironmental inputs in vivo (“Metastatic environment”) versus ex vivo (“Organoid 

environment”) to tumor phenotype. Right panel (“Subtype-supportive environment”) describes an overall strategy to 

recover malignant transcriptional heterogeneity by removing organoid factors (B, C) and adding state-specific 

autocrine (D, E) or paracrine (F-H) factors. (B) Tied dot plot represents the sample average basal score (left) and 

organoid-specific score (right) in the indicated conditions. Lines tie samples and color outlines indicate sample 

identity as in Figure 3.1B. P-value compares respective single cell distributions within models and was calculated 

by student’s T test. (C) Cell state diagrams for organoid cells cultured in complete medium or at 3 time points in 

minimal media. P-values for group differences between B/C commitment (top) and IT scores (right) were calculated 

by ANOVA followed by Tukey’s HSD. P-values displayed are for that timepoint vs. the complete media 

condition.(D) Differential expression (Wilcoxon rank sum test) for known secreted factors by in vivo tumor cells 

(autocrine) between basal and classical (x axis) and IT malignant cells and the rest (y axis). Subtype-specific genes 

that pass significance after multiple hypothesis correction (P < 0.05) are colored by their group association. (E) Cell 

state diagrams with marginal density plots for organoid cells cultured in control medium (OWRNA, reduced organoid 

medium) or at 2 time points in control media with TGF-b. P-values for group differences between B/C commitment 

(top) and IT scores (right) were calculated by ANOVA followed by Tukey’s HSD. P-values displayed are for that 

timepoint vs. the control media condition. (F) Differential expression (Wilcoxon rank sum test) for known secreted 

factors by all non-malignant cells (paracrine) found in basal and classical (x axis) and IT biopsies and the rest (y axis). 

Subtype-specific genes expressed by non-malignant cells that pass significance after multiple hypothesis correction 

(P < 0.05) are colored by their group association. (G) Dot plot for the subtype-specific significant differentially 

expressed paracrine factors. Subtype-specific non-malignant cell types (columns) and significant genes (rows) are 

binned by subtype association as in Figure 3.6C and Figure 3.7F. Dot size represents that cell type’s fraction within 

tumors of each subtype, and fill color indicates average expression. Only cell types with a fractional representation 

>5% from each subtype are visualized. (H) Cell state diagrams with marginal density plots for organoid cells cultured 

in control medium (OWRNA, reduced organoid medium, as in E) or at 2 time points in control media with IFNg. P-

values for group differences between B/C commitment (top) and IT scores (right) were calculated by ANOVA 

followed by Tukey’s HSD. P-values displayed are for that timepoint vs. the control media condition. 
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Supplemental Table S3.6; Methods). We observed a robust increase in basal gene expression 

and a decrease in organoid-specific gene expression in specimens cultured for 6 days in minimal 

media relative to those in complete organoid media (“Complete”, Figure 3.7B). Although we 

found that the fraction of cycling cells in minimal media decreased, the organoids continued to 

grow under these conditions and exhibited stable CNV profiles, indicating that these responses 

were unlikely to be driven by acute selection (Supplemental Figure S3.7A,B). We cultured one 

model, PANFR0562, in minimal media for a longer duration and observed that the phenotypic 

distribution shifted even further toward IT and basal phenotypes (Figure 3.7C), demonstrating 

that recovery of all three states is possible ex vivo. Since minimal medium lacks both serum and 

mitogens to support prolonged cell growth, we also tested whether culturing organoids in a reduced 

organoid media formulation (“OWRNA”, complete organoid media with removal of WNT3A, 

RSPONDIN-1, NOGGIN, and A83-01; Supplemental Table S3.6; Methods) supported 

proliferation while allowing expression of basal and IT phenotypes. We found that organoids 

maintained under OWRNA conditions began to express basal and IT features while also 

strengthening classical gene expression and continuing to proliferate (Supplemental Figure 

S3.7C). 

To assess whether these microenvironment-driven effects on transcriptional states were 

specific to organoid models or also observed in other cell culture models, we examined PDAC cell 

lines, as these are also commonly used to study PDAC biology but are grown in different culture 

conditions. We compared bulk RNA expression data from patient tumors (n=219)15,18, our own 

organoid cohort (n=44), and established cell lines (n=49, CCLE)54,55 and observed strong culture 

method-dependent phenotypic skews wherein most organoid models expressed classical 

phenotypes while cell lines exhibited basal phenotypes (Supplemental Figure S3.7D,E). This 

observation suggests neither platform accurately represents the full repertoire of transcriptional 

states seen in patients and provides additional evidence that environmental conditions can 

profoundly influence transcriptional state. We ruled out the effects of extracellular matrix 

dimensionality from media formulation by culturing established 3-dimensional (3D) organoid 

models as 2-dimensional (2D) cell lines on tissue culture plastic in the same organoid media—this 

had little effect on transcriptional subtype across the models tested (Supplemental Figure S3.7F). 

Next, we took each model type (cell lines and organoids) and cultured it in the reciprocal media 

condition to ask whether media alone could influence transcriptional subtype. Organoid cells 
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grown in standard cancer cell line medium (“RP10”, RPMI-1640 with 10% fetal bovine serum) 

gained expression of basal programs (Supplemental Figure S3.7C), while CFPAC1 (an 

established PDAC cell line) lost basal and classical features and gained organoid-specific gene 

expression when grown in complete organoid media (“Complete media”, Supplemental Figure 

S3.7G). Taken together, these findings demonstrate that the microenvironment is an instrumental 

contributor to shaping malignant phenotypes in PDAC. Moreover, the cell state plasticity suggests 

the possibility of testing subtype-specific conditions to support the full repertoire of in vivo 

phenotypes. 

 

3.3.9 Applying subtype-specific TME signals drives patient-relevant subtype heterogeneity  

Finally, we hypothesized that specific factors from subtype-specific TMEs could recover clinically 

relevant transcriptional heterogeneity ex vivo (Figure 3.7A). In vivo, the secreted factor milieu 

surrounding tumor cells originates from at least two sources that may influence malignant 

phenotype: tumor cells themselves (“autocrine” factors) and non-tumor cells (“paracrine” factors, 

Figure 3.7A). First, to nominate possible autocrine signals, we identified tumor cell secreted 

factors specific to the three subtypes and noted distinct cytokines expressed by each (Figure 3.7D; 

Supplemental Table S3.7; Methods). Since malignant cells derived from predominantly basal 

and IT tumors lose their phenotype in organoid culture, we first tested factors specific to IT and 

basal states in vivo. TGFB2 was the top differentially expressed secreted factor shared by tumor 

cells in both basal and IT TMEs (Figure 3.7D). Organoids cultured with TGF-b ligands exhibited 

a loss of classical expression programs and a near complete shift toward IT and basal phenotypes, 

matching what we observed in vivo (Figure 3.7E). Reemergence of basal phenotypes in both 

minimal media (Figure 3.7C), and TGF-b conditions (Figure 3.7E) suggest that different types 

of microenvironmental pressure can lead to the basal phenotype. Moreover, they suggest that 

culture conditions can be tuned to achieve compositional differences spanning pure classical, 

heterogenous, and pure basal phenotypes, akin to those seen in vivo. 

 Using a similar approach, we next searched for differentially expressed paracrine factors 

supplied by the non-tumor cells in the TME from each subtype. Here, we noted an increasing 

number of differentially expressed factors in IT and basal contexts, likely reflecting the specific 

immune cell type enrichments: TAM and T cell dominant in basal and IT TMEs, respectively 

(Figure 3.6A-C; Figure 3.7F; Supplemental Table S3.7). We then mapped each subtype-specific 
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paracrine factor to its cognate cell type to summarize the overall cell type and secreted factor 

combinations that shape the subtype-specific TMEs in metastatic PDAC (Figure 3.7G). 

Interestingly, we found that IFNG originating from CD8+ T cells was most highly expressed in 

the IT TME (Figure 3.7F,G). This was consistent with a relatively higher T cell fraction in IT 

tumors (Figure 3.6B,F) and the relative increase in IFN responsive gene expression in IT and basal 

tumor cells (Figure 3.4E,F). Given these corroborating correlative data, we directly tested whether 

exogenous IFNg could induce transcriptional plasticity towards an IT state. Cells exposed to IFNg 

showed a dramatic shift toward the IT state with concomitant decrease in expression of classical 

signatures (Figure 3.7H). In contrast with exogenous TGF-b (Figure 3.7E), microenvironmental 

IFNg seemed to more specifically induce an IT state, as these cells did not fully transition to basal 

phenotypes at later timepoints (Figure 3.7H). These findings demonstrate that the 

microenvironment plays a critical role in specifying tumor transcriptional phenotypes and provide 

evidence for significant PDAC tumor cell plasticity in response to microenvironmental cues.   

 

3.4 Discussion 

Here, by linking single-cell profiling of in vivo patient specimens to matched organoid models, we 

have built an essential comparative dataset to disentangle the contributions of cell-intrinsic versus 

-extrinsic factors to cancer cell transcriptional states in metastatic PDAC. We leveraged the 

precision afforded by scRNA-seq to identify a new PDAC cell state that co-expresses the basal 

and classical programs and behaves as a transitional intermediate between the basal and classical 

subtypes. Importantly, the identification of large fractions of co-expressing IT cells in human 

tumor biopsies using both mIF and scRNA-seq suggests interconversion between the classical and 

basal subtypes occurs frequently in response to various cues in vivo and implies that this 

intermediate state may be a hallmark of intratumoral plasticity and tumor cell transcriptional 

evolution. In fact, in contrast to prior reports19, all tumors that had mixed but discrete populations 

of basal and classical cells also exhibited proportional fractions of co-expressing IT cells. Our 

matched organoid studies provide strong evidence that this extensive transcriptional heterogeneity 

is heavily influenced by the microenvironment, a finding that is further reinforced by the 

identification of subtype-dependent TME structure. As such, this work provides a detailed 

description of the PDAC metastatic niche, critical insight into the role of the microenvironment in 
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determining cancer cell phenotype in PDAC, and a general framework for discovering and 

manipulating these relationships across cancer contexts. 

 Although mutations in KRAS play a critical role in pancreatic oncogenesis, PDAC cells 

have also been shown to adopt more RAS-independent phenotypes as a mechanism of resistance 

to KRAS suppression29. Our findings help to reconcile these opposing observations by suggesting 

that KRAS target gene expression is more strongly associated with the IT cell state than either 

basal or classical extremes. This finding suggests that while upregulation of KRAS signaling by 

amplification or other mechanisms may play an important role in the transition toward the basal 

state19,28, it may become less functionally important once this state transition is complete. 

Furthermore, the presence of IT cells enriched for KRAS and inflammatory response gene 

expression is reminiscent of phenotypes seen in mouse models that suggest inflamed progenitor-

like cells as those that tolerate KRAS mutations and initiate tumorigenesis56,57.  

Our single-cell data support the association between KRAS amplifications and the basal 

state in vivo; however, when we compared our matched KRAS amplified biopsy and organoid cells, 

we saw that this genotype did not lock cells into the basal state, and that microenvironmental 

conditions were a dominant factor in determining tumor cell transcriptional subtype. Serial 

sampling of organoid models across successive passages demonstrated both phenotypic drift and 

sub-clonal outgrowth, mirroring the genetic evolution of PDXs and cell lines in culture58,59, and 

highlighting the complex interplay between genetics and microenvironmental influences on 

transcriptional plasticity and clonal selection. This facile transition between subtypes has 

important implications for drug treatment, and future studies using lineage tracing approaches are 

needed to better understand the evolutionary dynamics in this system and how to track and exploit 

these processes therapeutically. Additional studies into the epigenetic regulatory mechanisms 

underlying PDAC state transitions will also be a critical next step in further delineating the 

relationships between genotype, microenvironment, and phenotype.  

Although we have identified co-expressing IT cells in both primary and metastatic tumors, 

the transcriptional programs associated with co-expression may differ between these contexts. We 

hypothesize that the basal state may be a common phenotypic endpoint for PDAC tumor cells in 

response to microenvironmental stress, with superimposed transcriptional variation depending 

upon the specific stressors a given tumor cell must overcome to reach this state. Supporting this 

concept is the observation that cells exhibiting basal phenotypes show concomitant expression of 
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EMT, IFN response, or hypoxia response signatures, and these expression patterns may be driven 

by the specific microenvironment29,60. In addition, our finding that diverse microenvironmental 

signals, including nutrient deprivation (“Minimal media”), autocrine and stromal signals (TGF-b), 

and immune signals (IFNg), induce the transition away from the classical subtype further supports 

this conclusion. We postulate that IT intermediates likely house similar context-dependent 

complexity depending on the tissue of residence. 

Similar to malignant cells, the non-malignant cell types in the metastatic TME were varied 

in phenotype and overall composition. Although we mainly sampled liver metastases, we 

identified strong differences between mesenchymal populations from different biopsy sites. We 

observed that the liver metastatic niche was enriched for pericyte-like myofibroblasts48-51, while 

other sites of metastasis and primary disease were enriched for dermal fibroblast-like phenotypes. 

Given the pivotal role that has been suggested for the fibrotic TME in primary disease37,61, these 

findings carry important implications for targeting the stromal compartment in primary versus 

metastatic PDAC. For example, inhibitors targeting FAP have recently shown preclinical 

efficacy62, but we observe FAP expression favors dermal fibroblast-like cells but not pericyte-like 

myofibroblasts which are more prevalent in liver metastases. As such, examination of these 

fibroblast phenotypes across larger sample sets may help to identify additional clinically relevant 

variation in tumor-fibroblast crosstalk, and site-specific combinatorial strategies may be needed to 

effectively target the PDAC tumor stroma.  

We show how scRNA-seq can be employed to define the structure of the metastatic niche 

and uncover formerly unappreciated relationships between tumor transcriptional phenotype and 

the local TME. Although traditionally thought of as a uniformly “immune-cold” tumor, our 

findings highlight that the immune microenvironment in metastatic PDAC harbors a layer of 

complexity closely linked to tumor cell transcriptional subtype that may provide new avenues for 

therapeutic targeting. Notably, we observed high levels of IFNG expression by CD8+ T cells and 

coordinated elevation in IFN response gene expression in IT and basal malignant cells. We 

recapitulated this shift from a classical to a more IT state in organoid models exposed to IFNg, 

suggesting that malignant adaptation to signals from the TME may contribute to driving IT and 

basal phenotypes. Similar to the relationship between inflammation and tumorigenesis56,57, we 

speculate that as tumors become inflamed and immune-activated, malignant cells display enhanced 

plasticity, transition to an IT state in response, and then progress to a fully basal phenotype with 
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concomitant immune evasion and exclusion. These relationships may have implications for PDAC 

response to immunotherapy given that a productive immune response may promote more 

aggressive basal phenotypes57,60. Notably, we observed evidence for basal expression signatures 

with a corresponding paucity of immune cell type signatures in multiple other epithelial cancers, 

suggesting that coordination of malignant and immune responses in basal contexts may be a 

broadly relevant phenomenon across many cancer types. Additional studies with co-culture, mouse 

models, or serial samples from patients on active immunotherapy may further clarify these 

coordinated and reciprocal tumor-immune interactions.  

More generally, our approach using matched in vivo malignant populations as a reference 

for ex vivo perturbations and model generation provides a critical framework for understanding the 

signals that drive clinically relevant phenotypes but are missing from organoid and cell line 

cultures. The genetic evolution of ex vivo models is a well-established phenomenon which carries 

functional consequences59,63. Our study highlights similar ex vivo evolution for transcriptional 

variation, but also provides a strategy to rescue malignant phenotypes by re-introduction of soluble 

signals needed for their support in vivo. This approach may offer a more tractable system for state-

specific high throughput screening compared with more complex heterotypic co-cultures or PDX 

systems. With a catalogue of matched in vivo phenotypes as a reference, this workflow empowers 

not only model fidelity, but enhances our ability to learn the phenotypic boundary conditions for 

individual tumors. For example, we can begin to define whether certain pressures induce cell state 

transitions in specific subsets of ex vivo models and identify which combinations of factors impede 

or synergistically enhance these transitions. Furthermore, these studies highlight how model 

generation in different growth contexts—organoids, cell lines, spheroids—may lead to the 

identification of emergent tumor cell properties. Learning these rules across different tumor 

contexts and understanding which non-malignant cell types participate in vivo would allow for the 

full appreciation of the symbiotic relationships within tumor ecosystems and provide a valuable 

foundation for leveraging microenvironmental manipulation to control tumor cell phenotype and 

behavior.  

In sum, our data demonstrate coordinated phenotypic evolution driven by reciprocal 

interactions between malignant cells and the TME in PDAC. Just as we consider therapeutic 

combinations to target tumor cell intrinsic properties, paracrine interactions with the TME may 

equally drive tumor cell phenotype and thus require consideration in designing combination 
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strategies. We provide a framework for relating malignant cells, the TME, and patient-derived 

model systems that may be applicable in other tumor types with clinically relevant transcriptional 

variation across the malignant and microenvironmental compartments.   

 

3.5 Methods 

3.5.1 Tissue collection and dissociation. Investigators obtained written, informed consent from 

patients with pancreatic cancer for Dana-Farber/Harvard Cancer Center Institutional Review 

Board (IRB)-approved protocols 11-104, 17-000, 03-189, and/or 14-408 for tissue collection, 

molecular analysis, and organoid generation. Core needle biopsy specimens were collected and 

the first core was sent for pathologic analysis. One or more additional cores were then allocated 

for scRNA-seq and organoid generation. 

Samples were minced into small portions using a scalpel and then digested at 37°C for 15 

minutes using digest medium that consisted of human complete organoid medium (see below), 1 

mg/mL collagenase XI (Sigma Aldrich), 10 µg/mL DNase (Stem Cell Technologies), and 10 µM 

Y27632 (Selleck)25. In our initial process optimization, we found that dissociation times below 30 

minutes, while not always completely digesting all biopsy material and potentially affecting the 

representation of difficult to dissociate cell types (e.g., fibroblasts), resulted in greater cell viability 

and improved RNA quality downstream. After digestion, cells were washed, treated with ACK 

lysing buffer (Gibco) to lyse red blood cells, washed again, and counted using a hemocytometer 

with 0.4% Trypan blue (Gibco) added at 1:1 dilution for viability assessment. We allowed residual 

tissue chunks to settle before selecting a predominance of single cells for counting and Seq-Well 

processing. We allocated between 10,000 and 15,000 viable cells per Seq-Well array based upon 

total cell counts, and where possible we prepared two arrays per sample. Most samples were 

processed and loaded onto Seq-Well arrays within 2-3 hours of biopsy acquisition.  

 

3.5.2 Organoid generation and sampling. Cells remaining after scRNA-seq allocation were 

initiated and maintained as patient-derived organoid cultures as previously described25,40. In brief, 

digested cells were seeded in 3-dimensional (3D) Growth-factor Reduced Matrigel (Corning) and 

fed with human complete organoid medium containing advanced DMEM/F12 (Gibco), 10 mM 

HEPES (Gibco), 1x GlutaMAX (Gibco), 500 nM A83-01 (Tocris), 50 ng/mL mEGF (Peprotech), 

100 ng/mL mNoggin (Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 
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1.25 mM N-acetylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (Gibco), 

R-spondin1 conditioned media 10% final, Wnt3A conditioned media 50% final, 100 U/mL 

penicillin/streptomycin (Gibco), and 1x Primocin (Invivogen) (Supplemental Table S3.6). 10 µM 

Y27632 (Selleck) was included in the culture medium of newly initiated samples until the first 

media exchange. For propagation, organoids were dissociated with TrypLE (Gibco) before re-

seeding into fresh Matrigel and culture medium. 

After initial processing of fresh tissue specimens, we monitored samples closely for 

organoid growth. We did not passage organoids at set time intervals, as there was significant 

variability in the time needed to establish relatively robust growth of organoids (Figure 3.4C). 

Instead, we maintained early passage organoids until they reached relative confluence, and then 

passaged them at low split ratios (1:1, 1:1.5, or 1:2 dilutions) in complete organoid medium to 

promote continued growth. In one case, PANFR0489R, cells persisted as individuals and small 

organoids after initiation in complete organoid medium, but did not grow and expand cell numbers 

significantly. Approximately 15 weeks after initiation, we switched a portion of the surviving cells 

to organoid medium without A83-01 or mNoggin, and observed renewed growth of organoids 

under these media conditions but not of those that remained in complete organoid medium. 

Consequently, we expanded this sample in media without A83-01 or mNoggin, including 

performing early passage scRNA-seq. After several additional passages, once the organoids were 

robustly growing, we were able to transition back to complete organoid medium with no apparent 

change in growth rate, morphology, or transcriptional phenotype. All other serially sampled 

organoids were maintained and assessed by scRNA-seq in complete medium.  

For scRNA-seq of organoid samples, we passaged organoids and allowed them to grow for 

6 days before then dissociating, counting, and allocating 15,000 viable cells for Seq-Well. By 

standardizing the collection of organoid scRNA-seq samples at 6 days after passaging, we tried to 

minimize bias arising from cell cycle differences in samples at different degrees of confluence.  

 

3.5.3 Testing organoid phenotypes under different matrix and media conditions. For adaptation of 

patient-derived organoids onto 2-dimensional (2D) culture surfaces as patient-derived cell lines, 

tissue culture plates were pre-coated with 100 µg/mL Matrigel dissolved in basal media for 2 hours 

at 37°C before washing with PBS. Established organoid models were dissociated and seeded onto 

these Matrigel-coated culture wells in complete organoid media. In parallel, a portion of these 
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passage-matched organoid cells were re-seeded into Matrigel droplets as above. Cells were 

cultured in both matrix conditions in complete organoid media until they were confluent, 

approximately 2-3 weeks. Cells were collected and lysed using Trizol before snap freezing. RNA 

was isolated and purified as described below (“Bulk RNA-sequencing of organoids” section) using 

chloroform extraction, aqueous phase isolation, and processing using the Qiagen AllPrep 

DNA/RNA/miRNA Universal kit before being submitted for sequencing. 

For scRNA-seq assessment of organoid phenotypes when cultured under different media 

conditions, established organoid models were passaged as above by dissociating and reseeding 

into Matrigel droplets. A portion of the cells were cultured with complete organoid media 

(“Complete media”), while a distinct portion of passage-matched cells were cultured in “Minimal” 

media, which consisted of advanced DMEM/F12 (Gibco), 10 mM HEPES (Gibco), 1x GlutaMAX 

(Gibco), 100 U/mL penicillin/streptomycin (Gibco), and 1x Primocin (Invivogen) (Supplemental 

Table S3.6). Cells were cultured for 6 days before being collected, dissociated, and aliquoted for 

scRNA-seq. Images were taken with an Olympus XM10 camera mounted to an Olympus CKX41 

microscope 1 day after seeding and again after 11 days in culture to assess organoid growth in both 

conditions. The portion of cells cultured in minimal media were maintained in the same conditions 

for a longer duration and harvested again for scRNA-seq at 27 days and 59 days after the initial 

introduction of minimal media. To mirror the standard scRNA-seq workflow, the cells harvested 

at the 27- and 59-day timepoints were collected 6 days after passaging. 

In addition to the minimal media experiment, organoid cells were also cultured in standard 

cell line media (“RP10”), which contains RPMI-1640 (Gibco) and 100 U/mL 

penicillin/streptomycin (Gibco) with 10% fetal bovine serum (Sigma), or in reduced organoid 

media “OWRNA”, which consists of advanced DMEM/F12 (Gibco), 10 mM HEPES (Gibco), 1x 

GlutaMAX (Gibco), 50 ng/mL mEGF (Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM 

hGastrin I (Sigma), 1.25 mM N-acetylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 

supplement (Gibco), 100 U/mL penicillin/streptomycin (Gibco), and 1x Primocin (Invivogen) (i.e. 

complete organoid medium with removal of WNT3A, RSPONDIN-1, NOGGIN, and A-8301; 

Supplemental Table S3.6). Furthermore, OWRNA reduced organoid medium served as the 

baseline control medium when assessing the effect of specific factors (IFNGg and TGF-�1) from 

the TME on transcriptional phenotypes. Cells were cultured for 6 days before being collected, 

dissociated, and aliquoted for scRNA-seq in each of the following conditions: RP10, OWRNA, 
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OWRNA with 50 ng/mL IFNGg (Peprotech), and OWRNA with 5 ng/mL TGFB1 (Peprotech) 

(Supplemental Table S3.6). The cells cultured under the IFNGg and TGF-b1 conditions were 

maintained in culture and harvested again for scRNA-seq 38 days after being introduced to these 

new media conditions. For these longer duration timepoints, cells were again passaged 6 days 

before collecting for scRNA-seq. 

 

3.5.4 Testing transcriptional phenotype changes in an established cell line under organoid media 

conditions. 

For scRNA-seq assessment of transcriptional phenotypes of the established pancreatic cancer cell 

line CFPAC1 under different media conditions, CFPAC1 cells were cultured in parallel in either 

standard cell line medium RP10 or complete organoid medium. Cells were cultured for 6 days 

before being collected, dissociated, and aliquoted for scRNA-seq. Additionally, the CFPAC1 cells 

cultured under complete organoid medium were maintained in the same conditions and harvested 

again for scRNA-seq 33 days after the initial introduction of complete organoid medium. CFPAC1 

cells grown in complete media for the later 33-day timepoint were collected 6 days after passaging, 

and media was refreshed 3 days after this final passage. 

 

3.5.5 Single-cell RNA-seq (scRNA-seq) data library generation, sequencing, and alignment. 

ScRNA-seq processing followed the Seq-Well protocol, uniquely compatible with low-input 

samples38,39. Briefly, arrays were preloaded with RNA capture beads (ChemGenes) and stored in 

quenching buffer until used. Prior to cell loading, arrays were resuspended in 5 mL RPMI-1640 

medium with 10% fetal bovine serum (both from Gibco, hereafter referred to as RP10). After 

dissociation, single-cell suspensions were manually counted and diluted to 15,000 cells per 200 

µL of RP10 when cell numbers allowed. Excess RP10 was aspirated from the array and cells were 

loaded onto arrays. Excess cells were washed off with PBS (4x5 mL, Gibco), briefly left in RPMI 

(5 mL) and cell+bead pairs were sealed for 40 minutes at 37°C using a polycarbonate membrane 

(Fisher Scientific NC1421644). Arrays were rocked in lysis buffer for 20 minutes and RNA was 

hybridized onto the beads for 40 minutes. Beads were removed and reverse transcription was 

performed overnight using Maxima H Minus Reverse Transcriptase (Thermo Fisher EP0753). 

Prior to sequencing, the beads underwent an exonuclease treatment (NewEngland Biolabs 

M0293L) and second strand synthesis en masse followed by whole transcriptome amplification 
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(WTA, Kapa Biosystems KK2602) in 1,500 bead reactions (50 µL). cDNA was isolated using 

Agencourt AMPure XP beads (Beckman Coulter, A63881) at 0.6X SPRI (solid-phase reversible 

immobilization) followed by a 1X SPRI and quantified using a Qubit dsDNA High Sensitivity 

assay kit (Thermo Fisher Q32854). Library preparation was performed using Nextera XT DNA 

tagmentation (Illumina FC-131-1096) and N700 and N500 indices specific to a given sample. 

Tagmented and amplified sequences were purified with a 0.6X SPRI. cDNA was loaded onto 

either an Illumina Nextseq (75 Cycle NextSeq500/550v2 kit) or Novaseq (100 Cycle 

NovaSeq6000S kit, Broad Institute Genomics Platform) at 2.4 pM. Regardless of platform, the 

paired end read structure was 21 bases (cell barcode and UMI) by 50 bases (transcriptomic 

information) with an 8 base pair (bp) custom read one primer. The demultiplex and alignment 

protocol was followed as previously described64. While Novaseq data were directly output as 

FASTQs, Nextseq BCL files were converted to FASTQs using bcl2fastq2. The resultant Nextseq 

and Novaseq FASTQs were demultiplexed by sample based on Nextera N700 and N500 indices. 

Reads were then aligned to the hg19 transcriptome using the cumulus/dropseq_tools pipeline on 

Terra maintained by the Broad Institute using standard settings.   

 

3.5.6 Bulk RNA-sequencing of organoids.  RNA was obtained for bulk RNA-sequencing from 

established organoids using one of two approaches. Dissociated organoids were resuspended into 

cold Matrigel, added as droplets to tissue culture plates (Greiner BioOne), and allowed to 

polymerize for 30 minutes before addition of media. Organoids were grown for 14-21 days (until 

confluent) under these conditions with regular media changes. At the time of harvest, cells were 

washed with cold phosphate buffered saline (PBS) at 4°C, then lysed with Trizol (Invitrogen) 

before snap-freezing. To isolate RNA, we performed chloroform extraction with isolation of the 

aqueous phase before processing RNA as per protocols outlined in the Qiagen AllPrep 

DNA/RNA/miRNA Universal kit. 

In the second approach, dissociated organoids were resuspended in a solution of 10% 

Matrigel in complete organoid media (volume/volume) and cultured in ultra-low-attachment 

culture flasks (Corning). Organoids were grown for 14-21 days (until confluent) before pelleting, 

washing with cold PBS at 4°C until most Matrigel was dissipated, and then snap frozen. For RNA 

isolation, cell pellets were homogenized using buffer RLT Plus (Qiagen) and a Precellys 

homogenizer. Samples were then processed for both DNA extraction and RNA isolation as per the 
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Qiagen AllPrep DNA/RNA/miRNA Universal kit. Purified RNA was then submitted for 

sequencing by the Broad Institute Genomics Platform. 

In brief, total RNA was quantified using the Quant-iT RiboGreen RNA Assay Kit (Thermo 

Fisher R11490) and normalized to 5 ng/µL. Following plating, 2 µL of a 1:1000 dilution of ERCC 

RNA controls (Thermo Fisher 4456740) were spiked into each sample.  An aliquot of 200 ng for 

each sample was transferred into library preparation which uses an automated variant of the 

Illumina TruSeq Stranded mRNA Sample Preparation Kit.  This method preserves strand 

orientation of the RNA transcript, and uses oligo dT beads to select mRNA from the total RNA 

sample followed by heat fragmentation and cDNA synthesis from the RNA template. The resultant 

400 bp cDNA then goes through dual-indexed library preparation: ‘A’ base addition, adapter 

ligation using P7 adapters, and PCR enrichment using P5 adapters. After enrichment, the libraries 

were quantified using Quant-iT PicoGreen (1:200 dilution; Thermo Fisher P11496). After 

normalizing samples to 5 ng/µL, the set was pooled and quantified using the KAPA Library 

Quantification Kit for Illumina Sequencing Platforms. The entire process was performed in 96-

well format and all pipetting was done by either Agilent Bravo or Hamilton Starlet.  

Pooled libraries were normalized to 2 nM and denatured using 0.1 N NaOH prior to 

sequencing. Flowcell cluster amplification and sequencing were performed according to the 

manufacturer’s protocols using the NovaSeq 6000. Each run was a 101 bp paired-end with an 

eight-base index barcode read. Data were analyzed using the Broad Picard Pipeline which includes 

de-multiplexing and data aggregation (https://broadinstitute.github.io/picard/). FASTQ files were 

then processed as described below (see Bulk RNA-sequencing analysis). 

 

3.5.7 Multiplex immunofluorescence imaging. A multi-marker panel was developed to characterize 

tumor cell subtype in formalin-fixed paraffin-embedded (FFPE) 4µm tissue sections using 

multiplex immunofluorescence. The panel comprises markers associated with either a basal 

(Keratin-17: Thermo Fisher MA513539 and s100a2: Abcam 109494) or classical (cldn18.2: 

Abcam 241330, GATA6: CST 5851 and TFF1: Abcam 92377) subtype. Additionally, DAPI 

(Akoya Biosciences FP1490) was included for identification of nuclei and pan-cytokeratin 

(AE1/AE3: DAKO M3515; C11: CST 4545) for identification of epithelial cells. Secondary Opal 

Polymer HRP mouse and rabbit (ARH1001EA), Tyramide signal amplification and Opal 

fluorophores (Akoya Biosciences) were used to detect primary antibodies (Keratin-17, Opal 520; 
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s100a2, Opal 650; GATA6, Opal 540; cldn18.2, Opal 570; TFF1, Opal 690; panCK, Opal 620). 

Prior to use in multiplex staining, primary antibodies were first optimized via 

immunohistochemistry on control tissue to confirm contextual specificity. Monoplex 

immunofluorescence and iterative multiplex fluorescent staining were then used to optimize 

staining order, antibody-fluorophore assignments and fluorophore concentrations.  Multiplex 

staining was performed using a Leica BOND RX Research Stainer (Leica Biosystems, Buffalo, 

IL) with sequential cycles of antigen retrieval, protein blocking, primary antibody incubation, 

secondary antibody incubation, and fluorescent labeling. Overview images of stained slides were 

acquired at 10X magnification using a Vectra 3.0 Automated Quantitative Imaging System (Perkin 

Elmer, Waltham, MA) and regions of interest (ROIs) were selected for multispectral image 

acquisition at 20X. After unmixing using a spectral library of single-color references, each image 

was inspected to ensure uniform staining quality and adequate tumor representation. 

 

3.6 Data analysis 

3.6.1 Mutation and CNV identification from bulk DNA-sequencing.  

For targeted DNA-sequencing of clinical samples, next-generation sequencing using a custom-

designed hybrid capture library preparation was performed on an Illumina HiSeq 2500 with 2x100 

paired-end reads, as previously described (Garcia et al., 2017; Sholl et al., 2016). Sequence reads 

were aligned to reference sequence b37 edition from the Human Genome Reference Consortium 

using bwa, and further processed using Picard (version 1.90, http://broadinstitute.github.io/picard/) 

to remove duplicates and Genome Analysis Toolkit (GATK, version 1.6-5-g557da77) to perform 

localized realignment around indel sites. Single nucleotide variants were called using MuTect 

v1.1.45, insertions and deletions were called using GATK Indelocator. Copy number variants and 

structural variants were called using the internally-developed algorithms RobustCNV and 

BreaKmer followed by manual review65. RobustCNV calculates copy ratios by performing a 

robust linear regression against a panel of normal samples. The data were segmented using circular 

binary segmentation, and event identification was performed based on the observed variance of 

the data points (Bi et al., 2017). 

 We computed the cytoband-level copy number calls and weighted (by length) average 

segment means across the covered regions of each cytoband using ASCETS (Spurr et al., 2020). 

Briefly, cytobands were considered amplified/deleted if more than 70% of the covered regions had 



107 
 

a log2 copy ratio of greater than 0.2/less than -0.2, and were considered neutral if more than 70% 

of the covered regions had a log2 copy ratio between -0.2 and 0.2. 

 

3.6.2 Single-cell data quality pre-processing and initial cell type discovery.  

All single-cell data analysis was performed using the R language for Statistical Computing 

(v3.5.1). Each biopsy sample’s digital gene expression (DGE) matrix (cells x genes) was trimmed 

to exclude low quality cells (<400 genes detected; <1,000 UMIs; >50% mitochondrial reads) 

before being merged together (preserving all unique genes) to create the larger biopsy dataset. The 

merged dataset was further trimmed to remove cells with >8,000 genes which represent outliers 

and likely doublet cells. We also removed genes that were not detected in at least 50 cells. The 

same metrics were applied to the organoid single-cell cohort (see below). On a per cell basis, UMI 

count data was divided by total transcripts captured and multiplied by a scaling factor of 10,000. 

These normalized values were then natural log transformed for downstream analysis (i.e. log-

normalized cell x gene matrix). Initial exploration of the data was performed using the R package 

Seurat (v2.3.4) and followed two steps: 1) SNN-guided quality assessment and 2) cell type 

composition determination. In step 1, we intentionally left cells in the DGE matrix of dubious 

quality (e.g. % mitochondrial reads >25% but <50%), performed principal component analysis 

(PCA) over the variable genes (n = 1,070 genes), and input the first 50 PCs (determined by 

Jackstraw analysis implemented through Seurat) to build an SNN graph and cluster the cells (res 

= 1; k.param = 40). The inclusion of poor-quality cells essentially acts as a variance “sink” for 

other poor-quality cells and they cluster together based on their shared patterns in quality-

associated gene expression. This method helped to nominate additional low quality (e.g. defined 

exclusively by mitochondrial genes) or likely doublet cells (e.g. clusters defined by co-expression 

of divergent lineage markers) which were removed from the dataset (n=1,678 cells). This led to an 

overall high-quality dataset of single-cells with a low overall faction of mitochondrial reads 

(median = 0.09) for downstream analysis (Supplemental Figure S3.1B)  

 Using the trimmed dataset, we proceeded to step 2 using a very similar workflow as above 

but with slightly altered input conditions for defining clusters. Here we used PCs 1-45 and their 

associated statistically significant genes for building the SNN graph and determining cluster 

membership (resolution = 1.2; k.param = 40). This identified the 36 clusters shown (visualized 

using t-SNE; perplexity, 40; iterations, 2,500) in Supplemental Figure S3.1C. The expression of 
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known markers was used to collapse clusters containing shared lineage information. For example, 

clusters 1, 2, and 4 all express high levels of macrophage markers—CD14, FCGR3A (CD16), 

CD68—and were accordingly collapsed for this first pass analysis (Supplemental Figure 

S3.1C,G). To aid our cell type identification, we performed a ROC test implemented in Seurat to 

confirm the specificity (power > 0.6) of the top marker genes used to discern the cell types. 

Combined with inferred CNV information (see below), this analysis confirmed the presence of 11 

broad non-malignant cell types in our biopsy dataset (Supplemental Table S3.2). Variation in the 

SNN graph parameters above did not strongly affect cell type identification.  

  

3.6.3 Single-cell CNV identification.  

To confirm the identity of the putative malignant clusters identified in Supplemental Figure 

S3.1D, we estimated single-cell CNVs as previously described by computing the average 

expression in a sliding window of 100 genes within each chromosome after sorting the detected 

genes by their chromosomal coordinates3,13. We used all T/NK, Fib, Hep, and Endo cells identified 

above as reference normal populations for this analysis. Complete information on the inferCNV 

workflow used for this analysis can be found here 

https://github.com/broadinstitute/inferCNV/wiki. To compare with bulk targeted DNA-

sequencing, we collapsed individual probes to cytoband-level information (weighted average of 

log2 ratios across each cytoband, see above) within each sample. ScRNA-seq-inferred CNVs 

showed high concordance across samples with the bulk measurements and suggests that, at least 

by this metric, we are likely sampling the same dominant clones within sequential but distinct 

cores from each needle biopsy procedure (Supplemental Figure S3.1E). For plotting CNV 

profiles in putative malignant versus normal cells (Supplemental Figure S3.1F), we computed 

the average CNV signal for the top 5% of altered cells in each biopsy and correlated all cells in 

that biopsy to the averaged profile as has been previously described7. Relation of this correlation 

coefficient to the CNV score (mean square deviation from diploidy) in the single cells from each 

biopsy shows consistent separation of malignant from non-malignant cells, and, combined with 

membership in patient-specific SNN clusters, substantiates the identification of malignant cells in 

our dataset.  

 

3.6.4 Subclonal analysis with single-cell inferred CNVs.  
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The inferCNV workflow can be used to call subclonal genetic variation with high sensitivity and 

is comprehensively outlined here https://github.com/broadinstitute/inferCNV/wiki 3,13,43. Briefly, 

we used a six-state Hidden Markov Model (i6-HMM) to predict relative copy number status 

(complete loss to >3x gain) across putative altered regions in each cell. A Bayesian latent mixture 

model then evaluated the posterior probability that a given copy number alteration is a true 

positive. We set a relatively stringent cutoff for this step (BayesMaxPNormal = 0.2) to only include 

high probability alterations for downstream clustering. The results of this filtered i6-HMM output 

were then used to cluster the single cells using Ward’s method. We used inferCNV’s “random 

trees” method to test for statistical significance (P < 0.05, 100 random permutations for each split) 

at each tree bifurcation and only retained subclusters that had statistical evidence underlying the 

presumed heterogeneity. To track subclonal heterogeneity between biopsy and matched organoid 

cells in Figure 3.3G and Supplemental Figure S3.5E-I, the above workflow was implemented 

within each biopsy and the relevant matched organoid samples, essentially treating all cells as the 

same “tumor” and allowing the CNVs to determine cell sorting agnostic to sample-of-origin. The 

results of the HMM output can be used to infer gene-level information based on which genes are 

in the affected window. This (like the rest of the HMM workflow) is computed over groups of 

cells (e.g. samples or sub-clones) and used to map KRAS and other alterations to samples (Figure 

3.3A-F) or sub-clones (Figure 3.3G, Supplemental Figure S3.5E-I).  

 

3.6.5 Subclustering of malignant and non-malignant cells. 

Detailed phenotyping required splitting the dataset into malignant and non-malignant fractions. 

After subsetting to only the malignant cells, we re-scaled the data and ran PCA including the first 

35 PCs for SNN clustering and t-SNE visualization. This PCA was used to determine the PanNET 

identity for PANFR0580 (Supplemental Figure S3.2A). After removing PANFR0580, we 

repeated the steps above and used this new PCA for the remainder of PDAC malignant cell 

analysis.  Subsequent phenotyping for malignant cells is discussed below (Generation of 

expression signatures/scores). A similar approach was used for calling the non-malignant subsets 

in Figure 3.5A. To determine the specific phenotypes within T/NK, macrophage, and 

mesenchymal populations, we separately subclustered these groups using PCs 1-20 and a 

resolution of 0.6 in each case. Of note, subclustering within the macrophages revealed a distinct 

cluster of cells co-expressing markers of both T/NK cells and macrophages (n=491 cells). We 
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discarded these cells as likely doublets, as have others, and re-ran the macrophage PCA and 

clustering45,46. These cells are included in the full dataset in case they are of interest to others. Each 

unbiased analysis helped to define the non-malignant phenotypes summarized in Figures 3.5 & 

3.6 and Supplemental Figure S3.6.  

 

3.6.6 Generation of expression signatures/scores.  

All expression scores were computed as previously described by taking a given input set of genes 

and comparing their average relative expression to that of a control set (n=100 genes) randomly 

sampled to mirror the expression distribution of the genes used for the input13. While all scores 

were computed in the same way, choosing the genes for input varied. We have outlined the relevant 

approaches below. Where correlations (Pearson’s r) are performed over genes, we used the log-

transformed UMI count data for each case. Unless otherwise noted, we selected the top 30 

statistically significant genes for each signature (>3 s.d. above the mean for shuffled data) for 

visualization and scoring. 

 Cell cycle. We utilized previously established signatures for G1/S (n=43 genes) and G2/M 

(n=55 genes) to place each cell along this dynamic process (Tirosh et al., 2016a). After inspecting 

the distribution of scores in the complete dataset, we considered any cell >1.5 s.d. above the mean 

for either the G1/S or the G2/M scores to be cycling8. 

 Basal and classical programs. We started by scoring each malignant single cell for the 

basal-like and classical genes identified by Moffitt et al., 2015 as these were well described by 

unbiased analysis in our data (PCA, Supplemental Figure S3.2B). To determine programs 

associated with basal and classical phenotypes, we correlated the aforementioned basal and 

classical scores to the entire gene expression matrix containing malignant cells and selected the 

1,909 genes significantly associated with either subtype (r > 0.1; >3 s.d. above the mean for 

shuffled data, full data in Supplemental Table S3.3). Biological pathway correlates for basal and 

classical mirrored previous work, and are summarized in Supplemental Figure S3.3D,E. For 

visualization, we use the “scCorr” basal and classical genes (top 30 correlated genes for each). We 

used these basal and classical scores to order the cells by their polarization or “score difference”, 

simply the difference of the two scores, and revealed a significant fraction of cells co-expressing 

intermediate levels of both phenotypes (Supplemental Figure S3.3A,B). 
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 Intermediate transitional program. Intermediate cells showed associations with features 

across several additional PCs, but lacked a single dominant axis. To define a consensus set of genes 

that are preferentially expressed by cells in this intermediate state, we computed the Euclidean 

distance to the line representing equal basal and classical co-expression for each cell. To limit the 

influence of cell quality on this analysis and to specifically identify genes related to co-expression, 

we used cells from each group (basal, intermediate, and classical) with fractionally low 

mitochondrial genes (<0.2) and non-zero basal or classical expression (basal or classical score > 

0) and correlated their Euclidean distance (Supplemental Figure S3.3C) to the entire gene 

expression matrix of malignant cells. Next, for each gene positively associated with this 

intermediate state (Pearson’s r >0), we subtracted the second highest correlation coefficient for 

each subtype-associated gene (basal and classical), and then re-ranked the matrix by this corrected 

value. This enriched for genes more specific to the intermediate state by excluding those that were 

also associated with basal or classical programs. We then selected the 115 genes with a corrected 

correlation value >0.1 (P< 0.00001, shuffled data) as our intermediate transitional (IT) signature 

(Supplemental Figure S3.3D, Supplemental Table S3.3). Single cells were classified based on 

Euclidian distance where <0.2 are defined as intermediate transitional and the remainder 

(Euclidian distance >0.2) by their maximal of either basal or classical scores. We binned each 

organoid cell (e.g. Figure 3.4B,C) by its maximal expression for one of the 3 in vivo scores (basal, 

classical, or IT). Here a cell must be within 1 s.d. of the mean expression for a given subtype in 

vivo, else it was considered “organoid-specific” as this program was superimposed on all organoid 

cells, regardless of their subtype identity (Figure 3.4B). We used these classifications to 

summarize overall tumor composition and visualize the groups. Tumor heterogeneity measures 

were not significantly affected by changing these cutoffs.    

 Non-Malignant programs. TAM signatures were determined similar to above and previous 

work3,45,46. Using PCA as an anchor (Supplemental Figure S3.6C), we correlated expression 

within the TAM compartment to either FCN1, SPP1, or C1QC (top loaded genes on each relevant 

PC) and merged the resultant correlation coefficients for every detected gene to the 3 subtypes into 

one matrix (i.e. a 16,920 x 3 matrix). For each TAM type (i.e.  vector of correlation coeffects to 

each marker), we first ranked the matrix by decreasing correlation coefficient, selected only the 

most significantly associated genes to that type (r > 0.1; >3 s.d. above the mean for shuffled data), 

subtracted the second highest correlation coefficient for each subtype-associated gene, and then 
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re-ranked the matrix by this corrected value. We repeated this procedure for each TAM subtype 

independently. This ensures that the genes selected are specific to a given TAM subset and do not 

describe general TAM features. The top 30 genes for each were used for scoring and visualization 

(Supplemental Table S3.2; Supplemental Figure S3.6D).  

 CAF phenotypes were determined using a similar workflow. To examine fibroblast 

heterogeneity, we removed a subset of adrenal endocrine cells (cluster 4, 40 cells; Figure 3.5C) 

and then performed PCA of mesenchymal cells. PC1 was driven by spillover genes (likely 

contributed from ambient RNA) and lacked any coherent biological program and was not 

considered further. PCs 2 and 3 by contrast where consistent with variable mesenchymal (PC2) 

and inflammatory (PC3) CAF phenotypes. All these cells scored highly for previous myCAF gene 

expression programs so this phenotype did not fully explain the heterogeneity in mesenchymal 

cells, but did suggest their identity as CAFs. Again, using correlation, we determined the genes 

driving low PC2 scores (Dermal-like), and high PC2 scores (Pericyte-like), as well as those 

associated with the high PC3 scores (Inflammatory). As before, we used the top 30 genes for each 

subset scoring and visualization. These same genes (Dermal-like and Pericyte-like) were used to 

examine bulk RNA-seq profiles and their difference in each sample quantifies which phenotype is 

favored in the bulk averages (Figure 3.5F).  

 

3.6.7 TME associations.  

We determined the transcriptional-subtype-dependent composition of the TME (Figure 3.6A-C) 

following two steps. First, we computed the Simpson’s Index (measure of ecological diversity) 

using the count of each non-malignant cell type captured from each sample as input (Figure 

3.6A,B) and correlated each biopsy’s diversity score to its basal vs. classical commitment score. 

Importantly, the number of non-malignant cells captured from each biopsy was not associated with 

basal vs. classical commitment score (r = 0.09). Next, to understand which cell types drive these 

differences, we computed the fractional representation for every non-malignant cell type in each 

core needle biopsy and determined their pairwise correlation distance (Pearson’s r) followed by 

hierarchical clustering using Ward’s method (dendrogram in Figure 3.6B). For both of these 

analyses we only used samples with >200 non-malignant cells captured (Supplemental Figure 

S3.6L).  
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3.6.8 Matched organoid clustering and cell-typing.  

After applying similar quality metrics as above, we performed PCA, SNN clustering, and t-SNE 

embedding for 31,867 cells including organoid cells and all malignant cells from primary PDAC 

biopsies (PCs 1-50; resolution=1.2; k.param=45; perplexity=45; max_iter=2,500), and identified 

39 total clusters. Organoids clustered separately from their matched biopsies, suggesting 

expression and/or CNV related drift in culture. Only two SNN clusters—clusters 4 and 32—were 

admixed by sample. We determined the specific gene expression programs in these two clusters 

via differential expression testing by Wilcoxon rank sum test (P < 0.05, Bonferroni correction; 

log(fold change) > 0.5). These comparisons were done in a “1 versus rest” fashion, testing for 

genes defining each cluster (4 or 32) compared to the entire dataset. Their expression profiles were 

consistent with fibroblasts (cluster 32) and epithelial cells (cluster 4; Supplemental Figure 

S3.5B,C).  

 

3.6.9 Correlation distances for genotype and phenotype.  

To generate correlation distances for genotype and phenotype, each single cell in a biopsy-

organoid pair was represented by two vectors of information: (i) a phenotype vector containing 

expression values for basal and classical genes (scCorr basal and classical genes, n = 60 genes) 

and (ii) a genotype vector containing the average CNV score for each cytoband. The phenotype 

and genotype distances between every single cell within a biopsy/early organoid pair was 

computed from these vectors using a correlation-based (Pearson’s r) distance metric of the form d 

= (1-r)/2. This resulted in two distance matrices of n x n dimension where n is the total number of 

cells from each biopsy/early organoid sample pair. Values in Figure 3.4A are computed by 

averaging the values for d between only early organoid and matched biopsy cells.  

 

3.6.10 Matched biopsy vs. organoid malignant cell comparison.  

For CNV-confirmed malignant cells from each biopsy and its matched organoid (earliest passage), 

we used differential expression (Wilcoxon rank sum test; P < 0.05, Bonferroni correction; log(fold 

change) > 0.3) to understand the features lost from malignant cells in the in vivo setting and gained 

when transitioning into growth in organoid culture. We required any gene to be significantly 

differentially expressed in at least 3 model-biopsy comparisons to summarize the consistent 
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changes. We repeated this same workflow for both organoid- and biopsy-specific genes 

(Supplemental Table S3.5) outlined in Figure 3.4B and Figure 3.4D-F, respectively.  

 

3.6.11 Biopsy paracrine and autocrine subtype-specific factor analysis.  

Factors present in the TME but absent from organoid culture could originate from at least two 

sources, the tumor cells themselves (autocrine) or non-tumor cells in the local microenvironment 

(paracrine). We examined any gene with gene ontology annotations related to “cytokines”, 

“chemokines”, or “growth factors” and took the union of these lists, yielding 321 genes, 218 of 

which were detected in our dataset. For “autocrine” factors we performed differential expression 

between malignant cells binned as basal and classical, and then IT vs rest. A gene was considered 

differentially expressed if it passed a P < 0.05 with Bonferroni correction and a log(fold change) 

> 0.2 in one of these comparisons. Genes were then assigned to subtypes based on the log fold 

change direction (Figure 3.7D, Supplemental Table S3.7). Paracrine factors were determined in 

a similar manner with slight modifications. We grouped non-tumor cells into basal, classical or IT 

based on the average expression and clustering for malignant programs from their respective tumor 

samples (Supplemental Figure S3.3G,H). We then assessed for differential expression between 

all cells from a given group and the rest using the same cutoffs as above and sorted factors into 

subtypes based on their log fold change directionality (Figure 3.7F, Supplemental Table S3.7). 

We then visualized which cell type contributed the highest average expression for each factor in 

the cell types from the respective TMEs (Figure 3.7G). 

 

3.6.12 Bulk RNA-sequencing analysis.  

FASTQs for bulk RNA expression profiles were downloaded from the relevant repository (TCGA, 

https://toil.xenahubs.net; PDAC Cell lines, https://portals.broadinstitute.org/ccle), available in-

house (Panc-Seq, metastatic PDAC), or generated for this study (organoid cohort)15,18,53,55. All 

were processed using the same pipeline. Briefly, each sample's sequences were marked for 

duplicates and then mapped to hg38 using STAR. After running QC checks using RNAseqQC, 

gene-level count matrices were generated using RSEM. Instructions to run the pipeline are given 

in the Broad CCLE github repository https://github.com/broadinstitute/ccle_processing. Length-

normalized values (TPM) were then transformed according to log2(TPM+1) for downstream 

analysis. The entire dataset was scaled and centered to allow relative comparisons across sample 
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types (e.g. tumors, organoids, and cell lines). Signature scores were computed as above (e.g. basal 

and classical; see Generation of expression signatures/scores above)4.  

 

3.6.13 Tumor phenotyping from mIF data.  

Supervised machine learning algorithms were applied for tissue and cell segmentation (inForm 

2.4.1, Akoya Biosciences). Single-cell-level imaging data were exported and further processed and 

analyzed using R (v3.6.2). To assign phenotypes to individual tumor epithelial cells, mean 

expression intensity in the relevant subcellular compartment was first used to classify cells as 

positive or negative for each of the 5 markers. Combinatorial expression patterns for the five 

markers were then used to phenotypically classify cells as basal, classical, co-expressing / IT or 

marker negative (3 combinations of 2 basal markers, 7 combinations of 3 classical markers, 1 pan-

marker negative, 21 combinations of co-expression of basal and classical markers, Supplemental 

Figure S3.4A, Supplemental Table S3.4). Tumor subtype composition was assessed by 

calculating the fraction of total tumor cells positive for each cell phenotype (Supplemental Figure 

S3.4B, excluding pan-marker negative cells).     
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Chapter 4: Conclusions 

 

4.1 Motivations 

I joined the Shalek Lab with the goal of collaborating with clinicians on projects with medically 

meaningful outcomes. Chapters 2 and 3 in this thesis outline the two projects that fulfilled that 

goal during my graduate studies. The unifying technology, scRNA-seq, has powered my work to 

draw high-resolution, biological insights across diverse disease contexts1,2,3,4. Based on our 

COVID-19 and PDAC results, we hope to build upon and disseminate these novel clinical research 

pipelines beyond the scope of our lab5. To this end, I discuss several alternative research areas 

where the utility and breadth of our findings can be demonstrated. Below, I summarize the broad 

conclusions of my work, future biological directions, and where technology is limiting, but ripe 

for innovation. 

 

4.2 Building on the PDAC study 

Our PDAC research used a novel clinical pipeline to define some of the rules governing tumor cell 

plasticity, and how malignant cells respond to specific perturbations in the microenvironment. 

Based on these findings, we tested drug efficacy in an isogenic, state-specific manner. In the future 

we intend to apply the principles outlined here to other tumor environments. Indeed, we are already 

processing banked tissues samples from diverse tumor types (some with basal-classical-like axes, 

others without) to expand on our hypotheses about RNA-state-dependent drug response more 

broadly. Early results suggest similar state-specific microenvironments that will hopefully show 

distinct therapeutic vulnerabilities akin to our initial PDAC findings3. Ultimately, the purpose of 

these high-fidelity models is to empower accurate drug discovery pipelines in PDAC and other 

intractable diseases. To that end, we continue to refine our organoid growth protocols to model 

tumor states beyond PDAC. 

Our most mature effort inspired by our PDAC findings looks at tumor cell plasticity at minimal 

residual disease (MRD) in acute lymphoblastic leukemia (ALL). MRD poses a vexing barrier to 

cures across a range of human cancers, and its sparsity in situ makes its characterization 

challenging6,7,8. We sought to overcome the limitations of this low-input heterogeneous tissue to 

define cellular adaptations to oncogene withdrawal in vivo using a platform, analogous to that 

applied in PDAC, that links the single-cell functional and molecular profiling of primary human 
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tumors1,2,9,10. We tested this approach in the context of BCR-ABL-rearranged ALL, an archetype 

of oncogene-addicted tumors against which targeted kinase inhibitors with progressively increased 

potency and breadth of activity have improved complete response rates, but ultimately fail to 

eradicate MRD and cure patients11. Using our pipeline, we observed recurrent transcriptional 

adaptations in human leukemia cells that had survived sustained oncogene withdrawal, including 

stress response via p38 MAPK, upregulation of pre-B cell receptor (pre-BCR) signaling, and 

TNFα/NF-κB-mediated quiescence. These cellular programs enabled the eventual expansion of 

subclones harboring high-level single and compound resistance mutations that reactivated 

divergent oncogenic signaling through either STAT5 or ERK. While mutations in both pathways 

were detected at MRD, outgrowth of these clones in progression was associated with B-cell 

differentiation states, whose precise classification was enhanced through whole transcriptome-

derived single-cell analysis. Incorporation of inhibitors of individual tumor’s  cellular adaptations 

within MRD improved the depth of in vivo responses compared to regimens targeting common 

resistance mutations alone. These data justify further preclinical development of MRD-targeted 

therapy and warrant further application of these pre-clinical pipelines more broadly. 

 

4.3 Building models in SARS-CoV-2  

Our research into the SARS-CoV-2 infection identified gene expression patterns in severe disease 

but was not powered to comprehensively test nominated avenues for therapeutic intervention. 

Given those data, and our experience in developing and benchmarking model systems, we aim to 

establish in vivo and ex vivo model systems that represent a spectrum of disease severity and allow 

for tractable, productive drug screening. 

Going forward we have expanded our research to include non-human primates (NHPs), hamsters 

and organ-on-chip models5. Our NHP models generate a human-like immune response, though we 

see a less severe disease burden than that found in our patient cohort in Chapter 2. As such, in 

tandem, we are working with a hamster system that tends to be more representative of severe 

disease to better match our existing dataset. Finally, organ-on-chip models allow for tractable drug 

screening experiments to precede and rationally direct in vivo drug studies5. By experimenting in 

and benchmarking diverse model systems, we can study a broad range of disease severity, identify 

useful scenarios for each and explore therapeutic interventions to expedite the end of this 

pandemic.  
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4.4 Improving scRNA-seq capture and method dissemination 

All the projects described here rely on scRNA-seq as a tool to probe clinical samples and 

benchmark resulting models. Indeed, RNA sequencing technologies have revolutionized our 

understanding of cell states and tissue homeostasis1,2,12,13. Much progress has been made in 

increasing cell throughput, resulting in protocols that can isolate and process thousands of cells 

from a given tissue14,15. Seq-Well, Drop-Seq and many other scRNA-seq protocols, rely on bead 

bound oligos to capture and barcode RNA. mRNA is specifically enriched with a capture bait that 

targets the polyadenylation region. Barcoding is done at the cell (cell barcode) and transcript 

(unique molecular identifier, UMI) level. While these plastic capture beads perform their function 

adequately, innovation in this area has stagnated over the last half decade, and has not kept up with 

the capture and processing needs of next-generation clinical pipelines. In our research we have 

improved these RNA capture beads in five distinct ways by 1) developing a quality control 

pipeline, 2) building from a magnetic scaffold, 3) diversifying capture baits, 4) generally 

increasing the quantity of RNA captured and barcode diversity and 5) ensure beads are capable of 

RNA capture after freezing, to ensure compatibility with more user-friendly Seq-Well protocols. 

Combined, these improvements will boost yield from clinical samples and allow for better 

throughput when modeling tissues and drug-testing distinct cell states. 

To improve bead quality, we established a flow cytometry-based quality control pipeline. By 

reversibly binding fluorescent oligos tailored to a bead’s capture bait we aim to FACS sort and 

utilize only beads capable of capturing the most mRNA. Additionally, by incorporating 

photocleavable sequences we can enumerate full length oligos and assess the diversity of the 

barcodes and UMIs  from a given bead batch. Next, experiments building from magnetic scaffolds 

have shown improvement in bead recovery and retention through the whole Seq-Well protocol. 

This is critical when working with precious clinical samples. Third, to diversify capture baits, we 

synthesize a universal sequence capable of binding and extending oligos of interest in concert with 

poly-A sequences. This greatly broadens the utility of Seq-Well allowing for enrichment of viral 

transcripts, TCR/BCR sequences, or phenotype defining tumor cell genes at the RNA capture step. 

Next, by improving the efficiency of our oligo synthesis method we can increase the number of 

full-length capture sequences on each bead. Lastly, we established a truncated array freezing Seq-

Well protocol. This is specifically compatible with our beads and allows us to collect and store 
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more cells at the tissue dissociation step by delaying downstream processing. This last technique 

has already been adopted widely in time sensitive or sample limited experiments. Collectively, 

these improvements have already increased cell, gene, and sample recovery from our Seq-Well 

experiments and will play a critical role in the adaptation of scRNA-seq pipeline in the clinic.  

 

4.5 Summary 

scRNA-seq has already changed our understanding of many tissues and the onset and progress of 

disease3,4,16-18. Technological innovations in single-cell measurements will continue to couple 

multimodal information with RNA expression (e.g. spatial, protein etc.) into increasingly powered 

datasets to further disentangle cellular interactions19-21. However, thus far there are still large gaps 

between academic discovery and clinical translation.  

This body of work aims to bridge that gap in several ways: 1) by benchmarking patient samples 

we can assess ex vivo model fidelity and incorporate native extrinsic- and intrinsic-state specific 

factors to maintain the in vivo phenotype. 2) By serially sampling ex vivo and animal model 

systems we can track natural drift in RNA state, infection-induced phenotype changes, or drug 

response at the system-wide level. Lastly, 3) we have improved accessibility and approachability 

of these tools by developing quality control benchmarks and ease-of-use improvements to the 

widely used Seq-Well platform.  

While the above work has been critical in applying scRNA-seq technology in novel clinical ways, 

true patient-facing applications will require further refinement of these models and pipelines. To 

date, much of our work has focused on model fidelity and disease profiling, with drug efficacy 

benchmarking a secondary focus. Ideally, as our understanding of disease-induced changes in the 

RNA state matures and our models become more representative, scRNA-seq experiments on 

patient derived models will focus more on matching drugs to patients (as genotype directed therapy 

does now), in well-vetted models of tumor cell state or viral infection22. Together we hope this 

work builds to new personalized medicine pipelines, applicable in PDAC, COVID-19, and beyond. 
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Supplementary Table S5.1. Cell Type Marker Genes 

Due to its size, this table will be made available upon request. Related to Figures 1, 2, Supplementary Figure 

3 

 

Supplementary Table S5.2. Differentially Expressed Genes Between Cell Types from Control WHO 0 vs. 

COVID-19 WHO 1-5 (mild/moderate) 

Due to its size, this table will be made available upon request. Related to Figure 3 

 

Supplementary Table S5.3. Differentially Expressed Genes Between Cell Types from Control WHO 0 vs. 

COVID-19 WHO 6-8 (severe) 

Due to its size, this table will be made available upon request. Related to Figure 3 

 

Supplementary Table S5.4. Differentially Expressed Genes Between Cell Types from COVID-19 WHO 1-

5 (mild/moderate) vs. COVID-19 WHO 6-8 (severe) 

Due to its size, this table will be made available upon request. Related to Figure 3 

 

Supplementary Table S5.5. Common Differentially Expressed Genes between SARS-CoV-2 RNA+ cells 

and Bystander Cells 

Due to its size, this table will be made available upon request. Related to Figure 6 
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Supplementary Figure 1. Cohort and Cellular Composition of Nasopharyngeal Swabs  

Related to Figure 1, Table 1 

(A) Cohort composition and participant demographics (see also Table 1). (B) SARS-CoV-2 serology: IgM 

(left) and IgG (right) titers from a subset of Control WHO 0 (blue circles, n=13) and COVID-19 (red circles, 

mild/moderate: n=8; pink squares, severe: n=15) participants. Plasma samples taken on same day of 

nasopharyngeal swab. Statistical testing by Kruskal-Wallis test with Dunn’s post hoc testing. Asterisks 

represent results from Dunn’s test: ** p < 0.01, *** p < 0.001. Dashed lines: lower limit of detection: 100; 

upper limit of detection: 100,000; positive threshold: 5,000. (C) Detailed schematic of sample preparation 

and cell processing from nasal swabs (created with BioRender). (D) Single-cell quality metrics by group 

(after filtering for low-quality cells, see Methods). (E) Single-cell quality metrics by participant (after 

filtering for low quality cells). (F) Flow cytometry and gating scheme of cells from a representative fresh 

nasopharyngeal swab from a healthy participant. Bottom right: quantification of cellular proportions. (G) 

Quality metrics for matched fresh vs. frozen nasal swabs from two healthy participants (P1 and P2). (H) 

Percent composition of each cell type by processing type: fresh (grey circles) or frozen (black squares). (I) 

UMAP of cell types from P1. (J) UMAP from P1 as in I, colored by fresh (grey) vs. frozen (black). (K) 

UMAP of cell types from P2. (L) UMAP from P2 as in K, colored by fresh (grey) vs. frozen (black).  
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Supplementary Figure S5.2. COVID-19-induced changes to epithelial diversity and differentiation 

Related to Figure 5.2 

(A) Proportional abundance of detailed epithelial cell types by participant. (B) Expression of entry factors 

for SARS-CoV-2 and other common upper respiratory viruses among detailed epithelial cell types. Dot size 

represents fraction of cell type (rows) expressing a given gene (columns). Dot hue represents average 

expression.  (C) Plot of gene expression by epithelial cell velocity pseudotime. Select genes significantly 

associated with ciliated cell pseudotime. Points colored by coarse cell type annotations. Top: alignment to 

unspliced (intronic) regions. Bottom: alignment to spliced (exonic) regions. (D) Proportion of Goblet Cell 

subtypes (detailed annotation) by sample, normalized to all epithelial cells. Statistical test above graph 

represents Kruskal-Wallis test results across all cohorts (following Bonferroni-correction). 
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Supplementary Figure S5.3. COVID-19-induced changes to nasopharynx-resident immune cells 

Related to Figures 5.1 and 5.3 
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(A) UMAP of 3,640 immune cells following re-clustering, colored by coarse cell types. (B) UMAP as in 

A, colored by detailed cell annotations. (C) UMAP as in A, colored by level of respiratory support (WHO 

illness severity scale). (D) UMAP as in A, colored by SARS-CoV-2 PCR status at time of swab. (E) UMAP 

as in A, colored by participant. (F) Violin plots of cluster marker genes (FDR < 0.01) for detailed immune 

cell type annotations (as in B). (G) Proportional abundance of detailed immune cell types by participant. 

(H) Proportion of immune cell subtypes by sample and cohort, normalized to all immune cells. Statistical 

test above graph represents Kruskal-Wallis test results across all cohorts (following Bonferroni-correction). 

(I) Heatmap of significantly DE genes between Macrophages (all, coarse annotation) from different disease 

cohorts. (J) Heatmap of significantly DE genes between T Cells (all, coarse annotation) from different 

disease cohorts. (K) Top: Dot plot of IFNGR1/2 and IFNAR1/2 gene expression among all detailed immune 

subtypes. Bottom: Violin plots of gene module scores, split by Control WHO 0 (blue), COVID-19 WHO 

1-5 (red), and COVID-19 WHO 6-8 (pink). Gene modules represent transcriptional responses of human 

basal cells from the nasal epithelium following in vitro treatment with IFNA or IFNG. Significance by 

Wilcoxon signed-rank test. P-values following Bonferroni-correction: * p< 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Figure S5.4. Cell-type specific and shared transcriptional responses to SARS-CoV-2 

infection 

Related to Figure 5.3 

(A) Abundance of significant differentially expressed genes by coarse cell type between Control WHO 0 

and COVID-19 WHO 1-5 samples (left), Control WHO 0 and COVID-19 WHO 6-8 samples (middle) and 

COVID-19 WHO 1-5 vs. COVID-19 WHO 6-8 samples (right). FDR-corrected p < 0.001, log2 fold change 

> 0.25. (B) Heatmap of significantly DE genes between Ciliated Cells (all, coarse annotation) from different 

disease cohorts. (C) Venn diagram of significantly upregulated genes among Ciliated Cells between 

COVID-19 WHO 1-5 vs Control WHO 0 (red) and COVID-19 WHO 6-8 vs. Control WHO 0 (pink). 

Asterisk: genes impacted by steroid treatment within each cohort. (D) Interferon gene module scores across 

all detailed epithelial cell types, split by Control WHO 0 (blue), COVID-19 WHO 1-5 (red), and COVID-

19 WHO 6-8 (pink). Gene modules represent transcriptional responses of human basal cells from the nasal 

epithelium following in vitro treatment with IFNA or IFNG. (E) Dot plot of ACE2 expression across select 

coarse and detailed epithelial cell types and subsets. (F) Dot plot of interferon and cytokine expression 

among detailed epithelial and immune cell types. 
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Supplementary Figure S5.5. Detection of SARS-CoV-2 RNA from single-cell RNA-seq data  

Related to Figures 5.4 and 5.5 

(A) Metatranscriptomic classification of all single-cell RNA-seq reads using Kraken2: reads per sample 

annotated as unclassified. (B) Metatranscriptomic classification of all single-cell RNA-seq reads using 

Kraken2: reads per sample annotated as Homo sapiens. (C) Metatranscriptomic classification of all single-

cell RNA-seq reads using Kraken2: reads per sample annotated as SARS-related coronaviruses. (D) Total 

recovered cells per sample vs. normalized abundance of SARS-CoV-2 aligning UMI from all single-cell 

RNA-seq reads (including those derived from ambient/low-quality cell barcodes). (E) Normalized 

abundance of SARS-CoV-2 aligning UMI from all single-cell RNA-seq reads across all COVID-19 

participants. Dashed line represents partition between “Viral High” vs “Viral Low” samples. (F) 

Proportional abundance of selected cell types according to total SARS-CoV-2 abundance among COVID-

19 samples. Statistical test above graph represents Kruskal-Wallis test statistic across all cohorts. Statistical 

significance asterisks within box represent significant results from Dunn’s post-hoc testing. Bonferroni-

corrected p-value: * p < 0.05, ** p < 0.01, *** p < 0.001. (G) Abundance of SARS-CoV-2 aligning 

UMI/cell by participant prior to (top) and following (bottom) ambient viral RNA correction. (H) Quality 

metrics among 415 SARS-CoV-2 RNA+ cells (associated with high-quality cell barcodes and following 

ambient viral RNA correction). Left: abundance of SARS-CoV-2 aligning UMI vs. percent of all aligned 

reads (per cell barcode) aligning to SARS-CoV-2. Middle: abundance of human (GRCh38)-aligning UMI 
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vs. abundance of SARS-CoV-2 aligning UMI. Right: abundance of human (GRCh38) aligning UMI vs. 

percent of all aligned reads (per cell barcode) aligning to human genes. 
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Supplementary Figure S5.6. SARS-CoV-2 RNA species and cell types containing viral reads 

Related to Figures 5.4 and 5.5 



141 
 

(A) Schematic of method to distinguish unspliced from spliced SARS-CoV-2 RNA species by searching 

for reads which align across a spliced or genomic Transcription Regulatory Sequence (TRS). (B) 

Abundance of SARS-CoV-2 aligning UMI/Cell per detailed cell type (following ambient viral RNA 

correction), split by UMI aligning to the viral positive strand, negative strand, 70-mer region across an 

unspliced TRS, and 70-mer region across a spliced TRS. (C) Abundance of SARS-CoV-2 aligning 

UMI/Cell per participant (following ambient viral RNA correction), split by UMI aligning to the viral 

positive strand, negative strand, 70-mer region across an unspliced TRS, and 70-mer region across a spliced 

TRS. (D) Dot plot of SARS-CoV-2 unspliced TRS aligning UMI by participant (columns) and detailed cell 

type (rows). (E) Dot plot of SARS-CoV-2 spliced TRS aligning UMI by participant (columns) and detailed 

cell type (rows). (F) Percent ACE2+ cells vs. percent SARS-CoV-2 RNA+ (after ambient correction) by 

detailed cell type. Including only cells from COVID-19 participants. Statistical testing using spearman’s 

correlation. (G) Abundance of SARS-CoV-2 negative strand aligning reads by coarse epithelial cell types. 

Statistical significance by Kruskal-Wallis test (p-value outside box). Asterisks within box: pairwise wilcox 

post test, Bonferroni-corrected: *** p < 0.001, ** p < 0.01, * p < 0.05. (H) Abundance of SARS-CoV-2 

negative strand aligning reads by detailed Ciliated Cell subtypes. Statistical significance by Kruskal-Wallis 

test (p-value outside box). Asterisks within box: pairwise wilcox post test, Bonferroni-corrected: *** p < 

0.001, ** p < 0.01, * p < 0.05 
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Supplementary Figure S5.7. Intrinsic and bystander responses to SARS-CoV-2 infection 

Related to Figure 5.6 

(A) Violin plots of select genes upregulated in SARS-CoV-2 RNA+ Cells when compared to matched 

bystanders. Plotting only SARS-CoV-2 RNA+ Cells from COVID-19 WHO 1-5 participants (red) and 

COVID-19 WHO 6-8 participants (pink). Top row: SARS-CoV-2 RNA expression by alignment type. (B) 

Heatmaps of log fold changes between SARS-CoV-2 RNA+ cells and bystander cells by cell types. Gene 

sets derived from four CRISPR screens for important host factors in the SARS-CoV-2 viral life cycle. 

Restricted to cell types with at least 5 SARS-CoV-2 RNA+ cells. Yellow: upregulated among SARS-CoV-

2 RNA+ cells, blue: upregulated among bystander cells. 
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Appendix B: The tumor microenvironment drives transcriptional phenotypes and their 

plasticity in metastatic pancreatic cancer 
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Supplemental Table S2.1. Cohort patient characteristics. 

Due to its size, this table will be made available upon request. Related to Figure 1 

 

Supplemental Table S2.2. Normal cell type markers. 

Due to its size, this table will be made available upon request. Related to Figures 1, 5 & 6 

 

Supplemental Table S2.3. Malignant phenotype single-cell gene correlates.  

Due to its size, this table will be made available upon request. Related to Figure 2 

 

Supplemental Table S2.4. mIF marker combinations and cell counts. 

Due to its size, this table will be made available upon request. Related to Figure 2 

 

Supplemental Table S2.5. Organoid- and in vivo malignant-specific gene expression features.  

Due to its size, this table will be made available upon request. Related to Figure 4 

 

Supplemental Table S2.6. Organoid and cell line models and media formulations for perturbation 

experiments. 
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Due to its size, this table will be made available upon request. Related to Figure 7 

 

Supplemental Table S2.7. Subtype-specific autocrine and paracrine secreted factors.  

Due to its size, this table will be made available upon request. Related to Figure 7  
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Supplemental Figure S2.1. Quality metrics, unsupervised cell type identification, and malignant cell 

confirmation across the biopsy cohort.  

Related to Figure 2.1 

(A)Distribution of unique molecules and genes captured in quality cells per biopsy, median values are 

indicated for each metric (dotted line) and violin plots are colored by patient (top, Log10(UMIs); bottom, 

number of genes). (B) Distribution of fraction mitochondrial reads across the entire trimmed biopsy dataset 

(n = 23,042 cells). Red dotted line denotes the median. (C) t-SNE visualization of the entire single-cell 

biopsy dataset colored by the SNN clusters identified (inset numbers). (D) Distribution of single cells 

captured per biopsy across the identified SNN clusters. In general, a patient’s malignant cells are expected 

to form unique clusters driven by CNVs. Owing to this feature, the data are split into putative malignant 

and non-malignant groups of clusters. (E) Heatmaps represent select scRNA-seq-derived copy number 

profiles where expression across the transcriptome is organized by chromosome (columns) for each single 

putative malignant cell (rows) from a given biopsy. Top bar indicates reference bulk targeted DNA-seq for 

the same patient and shows strong concordance with the single-cell derived profiles. (F) CNV correlation 

(averaged top 5% of altered cells per biopsy) versus CNV score (mean square of modified expression) for 

each single putative malignant (colored points) and reference normal cell (empty black circles) within a 

given biopsy. Only a single sample, PANFR0604, did not contain any malignant cells. (G) Overview of 

cell-typing for all cells in the biopsy dataset. Cells are ordered by SNN cluster and separated by cell types. 

Top heatmap represent expression levels for a subset of select markers (n=73 genes) used to identify cell 

types. Color bar indicates cell types and binarized cell cycle phenotypes are labeled (black, cycling; white, 

not). CNV scores (mean square of alterations per cell) used to parse malignant from non-malignant are 

shown using T/NK, endothelial, fibroblasts, and hepatocytes as reference; grey boxes denote normal cell 

types where we did not compute reference CNV scores. Bottom panel shows biopsy of origin for each cell. 

The data are split by non-malignant (n = 15,302) and malignant (7,740) identity. (H) t-SNE visualization 

as in S2.1C but colored by cell types identified, abbreviations as in Figure 2.1D. (I) Fraction of each cell 

type contributed by each biopsy sample (color fill, patient ID; as in Figure 2.1B), cell type totals are noted 

at the top of each bar. 
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Supplemental Figure S2.2. Identifying and contextualizing basal and classical associated biology.  

Related to Figures 2.1 & 2.2 

(A) Principal component analysis (PCA) and scatter plot for PC1 and PC2 across all malignant cells 

(n=7,740) separates PANFR0580’s malignant cells (n=662) from the rest of the samples. Cells are colored 

by patient ID (as in Figure 2.1B). Heatmap for genes with the strongest negative loading on PC1 (n=30) 

denote a neuroendocrine identity (TTR, CHGB). This tumor was later classified by histology as a pancreatic 

neuroendocrine tumor (PanNET). (B) Principal component (PC) elbow plot showing the standard deviation 

for the first 20 components calculated over the verified PDAC malignant cell variable genes (Methods). 

Line is drawn at the putative “elbow” (black versus grey points) as inclusion of additional PCs described 

overlapping information or quality metrics. Cross-correlational analysis for each single-cell’s embeddings 

across first 9 PCs (black points) and scores for literature curated gene sets describing EMT, classical and 

basal, and cell cycle phenotypes. PC1 positively correlates with EMT, basal, and to a degree, cell cycling. 

Cells with positive embeddings on PC2 are correlated with classical phenotypes and anti-correlated with 

basal and EMT phenotypes, suggesting these phenotypes are anti-correlated across a continuum of 

expression. PC3 and PC8 describe cells with high cell cycle scores. The other PCs do not associate 

significantly with these phenotypes. (C) Pairwise correlation of genes significantly associated with basal 

(PC1/negative PC2) or classical (PC2) expression states. Left bar indicates the subtype association of each 

gene (orange, basal; blue, classical). (D) Tied dot plots depicting the correlation coefficient for each gene 

(points) to either basal or classical phenotypes from select literature-derived gene sets, indicated at the top 

of each plot, which summarize aspects of subtype associated biology. Dotted lines represent significance 

threshold (3 SD above the mean of shuffled data), points and lines are colored if that gene passes the 

threshold and select genes are indicated. (E) GSEA pathway enrichments for top 100 genes correlated to 

either basal or classical expression scores. 
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Supplemental Figure S2.3. Cells with intermediate co-expressing phenotypes express a distinct gene 

program.   

Related to Figure 2.2 

(A) Expression of basal and classical gene programs, with cells ordered by their basal-classical score 

difference. Quality metrics, EMT scores and the binarized cell cycle program are shown for each single cell 

below the heatmap. (B) PC1 and 2 difference (top) and Classical – Basal score difference (bottom) are 

shown. Cells with equal basal and classical expression are associated with intermediate PC scores and cells 

are ordered as in S2.3A. (C) Euclidian distance for each cell to co-expression (y = x) of basal (x) and 

classical (y) expression scores. Bottom track indicates the score derived from the genes specific to the 

intermediate state shown in S2.3D and explained in Methods. (D) Gene correlation to either basal or 

classical score (x axis) or the corrected intermediate correlation (Euclidean distance in S2.3C, Methods). 

Green highlighted genes have corrected intermediate correlation >0.1 (P<0.00001 above shuffled). P-value 

for binarized cycling group differences in S2.3A was calculated using Fisher’s Exact test. P-values for EMT 

score in S2.3A and group differences in S2.3B and S2.3C were calculated by Kruskal-Wallis test with 

multiple hypothesis correction. (E) t-SNE visualization after dimensionality reduction and re-clustering for 

the normal progenitor populations identified in Qadir et al., 2020. Cell types are collapsed to those favoring 

Acinar (Pro Ac.), Ductal (Pro Duct.), or Undifferentiated (Undiff.) subsets. Mesenchymal cells (Mes.) are 

included as a non-epithelial reference and the small subset of immune cells was excluded from the 

comparisons. (F) Averaged expression of all three malignant programs in normal pancreatic progenitor 

niche subsets and mesenchymal cells defined in Qadir et al., 2020. P-values for each set of genes are 

computed by Kruskal-Wallis test with multiple hypothesis correction. (G) Pairwise correlation for biopsies 

with malignant cells (n = 22). Data are correlation coefficients for the average expression of all signature 

genes in the malignant cells from a given biopsy. EMT genes are from Groger et al., 2012. Clade identities 

are at left with the one PanNET tumor (PANFR0580) included for comparison and PANFR0604 not 

included due to lack of malignant cells captured. (H) Average expression for the 184 genes used for 

clustering in S2.3G. Clade identity colors match text color in S2.3G and individual samples (columns) are 

ordered as in S2.3G and sample ID numbers are provided below. (I) Scores for the expression of genes in 

S2.3H (grey scale heat) across the 4 main cell types found in the pancreatic progenitor niche (Qadir et al., 

2020). White dot indicates the normal subset with the highest average expression for each malignant 

program (Kruskal-Wallis test), none of the normal subsets significantly express the Neuroendocrine gene 

signature. (J) t-SNE visualization for malignant single cells in the biopsy cohort demonstrates intratumoral 

transcriptional heterogeneity at the single-cell level. Cells are colored by patient (left) or by transcriptional 

subtype (right).   
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Supplemental Figure S2.4. Multiplex immunofluorescence is concordant with scRNA-seq and 

demonstrates intratumoral heterogeneity with the presence of IT cells.  

Related to Figure 2.2 

(A) Schematic for comparison of the matched datasets by combinatorial marker phenotypes. (B) Marker 

detection in each single cell from the 10 samples in the mIF (top, 130,784 cells) and matched scRNA-seq 

datasets (bottom, 3,062 cells). Cells are sorted by their combinatorial phenotype outlined in S2.4A. (C) 

Comparison within and between modalities on matched samples. Samples are sorted by the dendrogram in 

Supplemental Figure S2.3G and labeled with their pseudo-bulk RNA subtype identity. Correlation is 

performed over the fractional representation of each mIF phenotype (S2.4A) in each biopsy. Despite 

measuring different molecules (protein vs mRNA), the two approaches were highly concordant within RNA 

subtypes and on a case-by-case basis (white dots). (D) mIF marker detection in each single cell from two 

primary PDAC samples shown in Figure 2.2H. Cells are sorted by their combinatorial phenotype outlined 

in S2.4A. 
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Supplemental Figure S2.5. Quality metrics, cell type identification, and serial sampling across the 

patient-matched organoid cohort.  

Related to Figure 2.4 

(A) Distribution of unique molecules and genes captured in quality cells per organoid sample, median 

values are indicated for each metric (dotted line) and violin plots are colored by patient ID (top, 

Log10(UMIs); bottom, number of genes). (B) t-SNE visualization of all biopsy and matched organoid cells 

from iterative passages, colored by patient ID. Dotted circles indicate the only two SNN clusters (4 and 32) 

with appreciably admixed clusters and low CNV scores, the rest were patient-specific. Bar chart shows 

number of organoid cells recovered per matched sample (right). (C) Relative expression for genes defining 

cluster 4 (top) and cluster 32 (bottom; 1 versus rest DE with the cells in S2.5B). Cluster 4 had an ambiguous 

epithelial identity while cluster 32 cells were defined by canonical fibroblast genes and low to absent 

detection of CNVs. (D) Fraction of cluster 4 cells at each passage. These cells did not survive iterative 
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passaging suggesting that they were either untransformed or unfit in organoid culture. (E-G) Heatmaps 

show inferred CNV copy number status for every cell in each of three biopsy/early passage organoid pairs. 

Cells are ordered by hierarchical clustering of their CNV profiles and letters on the far left indicate 

subclones that have significant statistical evidence for tree-splitting (Methods). Each cell’s origin (biopsy 

tissue, grey; early passage organoid, red) is also noted (“Source” column). Right metadata bars indicate if 

that cell came from an admixed SNN cluster (4 or 32 in S2.5B). (H, I) Matched phenotype and genotype 

evolution at each passage in PANFR0489R (S2.5H) and PANFR0575 (S2.5I). Frequencies of individual 

CNV clones at each time point (Methods, y axis) are tied by colored lines. Fill represents the transcriptional 

phenotype fraction for each CNV clone. In sample PANFR0575 (S2.5I), clones D and E had inferred TP63 

amplifications which expanded over time.   
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Supplemental Figure S2.6. Identification of T/NK, macrophage, and fibroblast heterogeneity in the 

metastatic microenvironment.  

Related to Figures 2.5 & 2.6 

(A) t-SNE visualization of sub-clustering (SNN) performed on T/NK cells in the metastatic cohort. Cells 

are colored by their type identity based on shared SNN cluster membership (Methods). (B) Select cell type 

marker expression overlaid on the t-SNE visualization from S2.6A. (C) PCA identifies 3 major subsets of 

TAMs in the metastatic niche. PC1 largely separates FCN1+ monocyte-like TAMs from more committed 

macrophage phenotypes. PC2 separates SPP1+ from C1QC+ macrophage phenotypes. (D) Heatmap 

visualization of the gene expression programs specific to each TAM subset identified by the PCA in S2.6C 
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(Methods). Top metadata indicate SNN cluster as in S2.6C. (E) Heatmap shows the relative expression for 

select cell type markers. Top bar indicates the binarized cell cycle program (black, cycling) and the bottom 

color bar corresponds to the cell type colors noted in Figure 2.6A.  (F) Dot plots for average expression of 

the indicated CAF and adrenal endocrine marker genes in each of the cell subsets (1-4) identified in Figure 

2.5C. Size of the dot indicates fraction of cells expressing a given gene. (G) PCA over fibroblasts in the 

cohort (excluding Adrenal endocrine cells; subset 4, Figure 2.5C). Scatter plot of PC2 vs PC3 defines 3 

states for CAFs in our cohort (Methods). (H) Same visualization in S2.6B, but cells are colored by 

previously identified myCaf or iCaf signature scores. myCaf is evenly distributed across PC2 and iCaf 

associates with higher PC3 scores. (I) Expression for select markers overlaid on the PCA from S2.6B. (J) 

Cross-correlation of fibroblast signatures in single-cells. New dermal- vs. pericyte-like signatures provide 

non-overlapping information. PC3 inflammatory phenotypes are similar to the previously reported iCaf 

phenotype (Elyada et al., 2019) and our PC3-derived inflammatory fibroblast signature. (K) Distribution 

across the CAF continuum comparing site differences as groups (top) or individual tumors (bottom). Heat 

indicates the fraction of CAFs in that score bin. (L) Bar plot shows the number of non-malignant cells in 

each biopsy, color fill indicates the number of each cell type captured in that sample. Five biopsies were 

excluded from the analysis in Figure 2.6A-C because they either had low cell capture or were from a tumor 

with indeterminant malignant transcriptional subtype. Relevant samples are organized as in Figure 2.6A. 

(M) Cross TCGA analysis for basal and immune cell type markers in epithelial tumors with known basal 

subtypes (Cancer Genome Atlas Research et al., 2013). Tumors with strong basal gene expression do not 

associate with strong immune infiltrates. Clusters were determined by dendrogram splitting and disease 

type for each sample is indicated below.   
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Supplemental Figure S2.7. Alterations to organoid media, but not matrix dimensionality, shift 

transcriptional phenotype. 

Related to Figure 2.7  
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(A) Inferred CNVs for each cell from the PANFR489R samples cultured in either Minimal (grey) or 

Complete (red) organoid media conditions in Figure 2.7B. (B) Brightfield images were obtained for 

organoids grown in standard organoid media (“Complete”) or in media without any growth factors 

(“Minimal”) at days 1 and 11 after seeding. (C) Single organoid cells from model PANFR0562 (columns) 

cultured for 6 days in Complete medium, Minimal medium, OWRNA medium, or in RP10 (“cell line” 

medium, RPMI-1640 with 10% fetal bovine serum) and scored for basal, IT, and classical hierarchy 

phenotypes (rows). P-values for group differences were calculated by ANOVA followed by Tukey’s HSD. 

(D) Relative expression for 90 genes representing PDAC state programs across bulk RNA-seq samples 

from primary resections (TCGA) and metastatic biopsies (Panc-Seq), as well as organoid and cell line 

(CCLE) models (Aguirre et al., 2018; Barretina et al., 2012; Cancer Genome Atlas Research Network, 

2017; Ghandi et al., 2019). (E) PDAC malignant state diagrams for average Basal-classical commitment 

score (x axis) and IT score (y axis) for bulk RNA-seq samples in S2.7D. (F) Four established models were 

adapted to 2-dimensional culture in complete organoid media and measured via bulk RNA-seq. Rows 

indicate expression levels of basal-classical commitment score genes. (G) Single cells from the established 

PDAC cell line CFPAC1 (columns) sampled in RP10 (standard “cell line” medium, RPMI-1640 with 10% 

fetal bovine serum) or at 2 timepoints in Complete organoid medium and scored for basal, IT, and classical 

phenotypes (rows). Bottom row indicates single cell organoid-specific gene expression (as described in 

Figure 2.4B) across all three conditions. P-values for group differences were calculated by ANOVA 

followed by Tukey’s HSD.  

 
 


