
Essays on the Role of Metrics in Innovation

by

Jane Yajie Wu
B.Com., Queen’s University (2012)
B.A., Queen’s University (2012)

S.M., Massachusetts Institute of Technology (2018)

Submitted to the Department of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Management

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

©2022 Massachusetts Institute of Technology. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Management

April 8, 2022

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scott Stern

David Sarnoff Professor of Management of Technology
Thesis Supervisor

Accepted by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Catherine Tucker

Sloan Distinguished Professor of Management
Professor, Marketing

Faculty Chair, MIT Sloan PhD Program



2
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by

Jane Yajie Wu

Submitted to the Department of Management
on April 8, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Management

Abstract

This dissertation consists of three essays studying the role of metrics in the process
of innovation. Scientific and technical metrics are trusted as objective and consistent
arbiters of knowledge, and as a result, are typically taken as given without much
question. Yet at the same time, these metrics are chosen at a given point in time
under imperfect information. The motivation of this work is to understand how such
metrics influence the ideas production process, and ultimately, who benefits from
innovative effort. In the first essay, I define and delineate the role of metrics in inno-
vation from other forms of quantification in organizations. I synthesize prior work to
develop a typology of mechanisms that metrics can involve, highlighting how metrics
are used at different junctures in the innovation process. The second essay explores
the impact of introducing a new metric on the rate and direction of innovation. I
study the setting of US automotive safety, finding that the introduction of the side
impact dummy as a metric reduced overall fatalities but also led to disproportionate
benefits for occupants similar to the metric itself. Moreover, firms responded hetero-
geneously, suggesting that metrics can profoundly affect the innovation trajectories
of firms. In the third essay, I analyze whether it is possible to move firms away from
a metric that has become a key focusing device for R&D within an industry. I use a
policy shock to estimate the effects of the “removal” of watts as a metric within the
domestic vacuum cleaner industry. I find that rather than investing in new metrics,
firms reduced their R&D in the focal area and shifted efforts to adjacent, unregulated
product areas.

Thesis Supervisor: Scott Stern
Title: David Sarnoff Professor of Management of Technology
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Chapter 1

Introduction

From the Ancient Egyptian cubit to the Académie des Sciences mètre to the quan-

tum qubit, metrics seem like a common thread throughout scientific and technolog-

ical progress. Metrics can facilitate the diffusion, comparison, and recombination

of ideas, across greater distances in geographic and domain space than otherwise

would be possible. The use of metrics allows innovation to be centered on experi-

ments rather than experience, expanding who can participate in the process. Put

differently, metrics have become a prerequisite for understanding in modern scien-

tific and technological innovation. Yet despite this level of importance, metrics have

not always been endemic to ideas production. In fact, for many periods through-

out human history, knowledge relied on qualitative reasoning rather than numeric

measures.1 What this suggests is that although scientific and technical metrics have

unlocked significant progress in innovation, the entwinement of metrics with knowl-

1Scholars such as Aristotle and Plato for instance, reasoned that while the human mind was
highly capable, the five senses were simply too mortal to accurately gauge the heterogeneous and
evolving qualities of Nature. Instead during this period, knowledge was formed through qualitative
observations and inductive reasoning, with a skepticism towards quantitative measures (Crosby,
1997).
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edge is a social construct that has become the norm relatively recently.

This dissertation is motivated by this simple realization: scientific and technical

metrics have become tethered with knowledge, yet these metrics are not given, but

rather chosen —by imperfect humans often under imperfect information. Because

we have become largely socialized to trust numbers in the realms of science and

technology, these metrics are typically taken as given without much question or even

attention. This dissertation aims to fill this gap, by studying the role of metrics in

influencing which ideas get developed, how research and development resources get

allocated, and ultimately, who benefits from innovative effort. This dissertation con-

sists of three essays studying the role of metrics at different stages of the innovation

process: the conception of using a metric for innovation purposes, the introduction of

such a metric into an industry, and the consequences of when such a metric becomes

entrenched.

In the first essay, I explore what defines and delineates the role of metrics in ideas

production from other settings with less uncertainty. Prior work in the social sciences

is largely dichotomous is its assessment of metrics, either emphasizing the benefits

of metrics in facilitating comparisons and validating new knowledge, or warning

that metrics eliminate the richness of context and homogenize effort. Because these

studies draw upon a wide range of metrics and settings, it is challenging to interpret

these contrasting perspectives. This paper synthesizes prior literature, identifying

two key dimensions that metrics can vary along in how they are utilized. I then

use these two dimensions as building blocks for a proposed organizing framework

for understanding the different types of mechanisms that metrics can have. This is

then used to structure a discussion of the ways in which metrics can be applied to

different junctures in the innovation process.

In the second essay, I hone in on one of these junctures, when a new metric
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is introduced to an industry. Specifically, I study the impact of the Side Impact

Dummy (SID) on US automotive safety innovation. SID was developed in response

to growing policy and consumer demand for improvements in automotive safety,

but for cost minimization and convenience purposes, was based on parts used for

military dummies. This resulted in SID being modeled on the 1960s US average

male, despite being introduced over three decades later. My data indicate that the

introduction of SID as a metric led to meaningful changes in safety outcomes but also

to disproportionate improvements for drivers similar to the metric. Furthermore, I

find that this is moderated by different responses from firms depending on their prior

strategic investments in safety so while metrics can accelerate innovation, they can

also overly focus the attention of some firms in the narrow region of what is being

measured.

Finally, in the third essay, I examine metrics at the other end of the innovation

process when they have become widely accepted as the dominant metric. In partic-

ular, I seek to understand whether such metrics can be displaced when they have

stopped serving a useful purpose and are generating negative externalities. Specifi-

cally, I study the impact of a EU policy intervention designed to limit the incentives

of building upon watts through a ‘cap’ in the domestic vacuum cleaner industry.

Although policymakers intended for the cap to shift innovative effort towards im-

provements in energy efficiency, I find that there was no discernible change in this

direction. Instead, results show that rather than achieving the latter, there was a

severe crowding out effect, with firms reducing their R&D in the focal area affected

by the policy and channeling their efforts towards adjacent, unregulated product

areas. Ultimately, this paper shows that dominant metrics can become entrenched

in the R&D approaches of firms, and that a straightforward cap will not necessarily

induce meaningful change, and opens questions for future experiments and research

17



on more effective solutions.

Taken together, these essays form the beginning of a broader agenda to under-

stand how scientific and technical metrics can impact innovation outcomes. Metrics

have evolved to underpin modern knowledge, not only in the domains of natural

sciences, but other areas of science, technology, social sciences and more. While they

are certainly ubiquitous and treated as important, metrics are not given by Nature.

Ddespite our high levels of trust and elevation of them as arbiters of knowledge,

metrics are susceptible to our foibles and limitations. Understanding how metrics

are developed and diffuse, how they operate in different phases of ideas production,

and the consequences of their reification are therefore important questions that this

dissertation only begins to pull the thread on and hopes future work will continue

to uncover.
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Chapter 2

What Do Metrics Do? A Review and

Proposed Typology

Abstract

Metrics focus attention, and attention is typically scarce within modern life and
organizations. Prior work is largely dichotomous in its treatment of metrics. On the
one hand, some emphasize the benefits of metrics in augmenting human cognition,
facilitating comparisons, and validating knowledge. On the other, others warn that
metrics eliminate the richness of context, applies homogenization pressures and can
distort their measurand in unintended ways. Because these studies draw upon a wide
range of metrics operating in different settings, it is challenging to interpret these
contrasting perspectives. Furthermore, despite their prevalence in the laboratory and
in R&D departments, the role of metrics in scientific and technological innovation is
largely overlooked in prior work. This paper aims to grapple with these two gaps in
the literature by synthesizing extant work in management, sociology and economics
to identify two dimensions that metrics can vary along in their use. Intersecting
these yields a simple typology of four mechanisms that metrics can take on, and
highlights when metrics might deviate from their intended purpose. This framework
also allows for a structured exploration of the role of metrics in innovation.
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2.1 Introduction

Consider an individual driving her children to school before heading to work herself.

This mundane sequence of tasks actually involves several choices that are influenced

by metrics. The vehicle may have been purchased for its high safety performance in

crash tests (Liu et al., 2020), the school district may have been selected for its above

average test scores (Gibbons et al., 2013; Hasan & Kumar, 2019), and the driving

route may have been determined by a software application optimizing for minimal

travel time (Graaf, 2018; Vasserman et al., 2015). This vignette illustrates that met-

rics have become enmeshed in modern life from large decisions to everyday minutia.

This has only increased in relevance in recent years as the exponential growth of soft-

ware has made it possible to measure more aspects of our lives, on an increasingly

granular and frequent basis (Kellogg et al., 2020; Burrell & Fourcade, 2021). While

this phenomenon has drawn attention from both social scientists and practitioners,

prior work is largely dichotomous, either emphasizing the benefits of metrics in fa-

cilitating comparisons and validating new knowledge (Taylor, 1911; Drucker, 1965;

Hubbard, 2000), or warning that metrics eliminate the richness of context and lead

to homogenization (Espeland, 1993; Strathern, 1997, 2000; Muller & Muller, 2018).

Because these studies draw upon a wide range of metrics and settings —ranging

from corporate firms to the military to hospitals to academia—it is challenging to

interpret these contrasting perspectives.

Furthermore, while prior studies have explored different aspects of metrics in

modern life and work, it has left one area relatively unexplored: the role that met-

rics can have in shaping innovation. Metrics can provide an objective way to compare

outcomes, and to validate those comparisons through replication. In other words,

metrics are tightly entwined with the scientific method that scientific and techno-
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logical norms. Coupled with the cumulative nature of innovation, this implies that

metrics can influence the direction that science or technology progresses, often for sus-

tained periods of time. For instance, continuing from the opening example, metrics

used for crash tests can influence the research and development process for vehicular

safety innovation, affecting the types of vehicles that ultimately become available

on the market (Wu, 2022). Similarly, the types of education technology software

that get developed will be determined by the metrics used to evaluate their efficacy,

and routing software engineers will prioritize travel time over innovating along other,

noisier dimensions such as neighborhood safety and environmental emissions.

The objective of this paper is to grapple with these two gaps in the extant liter-

ature —the disparate and contrasting perspectives on the impact of metrics, as well

as the interplay between metrics and innovation. To start, in Section 2.2, this paper

synthesizes related but siloed work across management, sociology and economics on

metrics. This identifies two underlying dimensions that metrics vary upon. These

two dimensions are intersected in Section 2.3 to give rise to four distinct mechanisms

that metrics can play within organizations. In Section 2.5 this paper then uses this

proposed typology as an anchor in exploring the influence of metrics in different

phases of the innovation process. This highlights the role of scientific and techni-

cal metrics in the junctures of exploration and exploitation, leading to several open

questions of future work. Section 2.6 concludes.

2.2 Towards a Typology

To ground ideas, metrics are provisionally defined in this paper as a method of map-

ping an object into a lower-dimensional representation. This definition encompasses

both a measurement approach (a system of transformation the object interacts with)
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and the result that such an approach yields (typically a number but also a symbol or

category) (Stevens, 1946). Therefore, this paper uses metrics to encompass cognate

terms across different literature such as quantification, commensuration, and mea-

surement. Metrics therefore involve condensing the amount of information about an

object into a subset of dimensions to focus upon. This process lowers the cost of

comparison through simplification of the objects and prioritization of what to fo-

cus on. This also makes it easier to validate these comparisons through replication,

and to document and communicate these comparisons across distances in geography,

knowledge domain and even time.

Prior scholars studying the effect of metrics on individuals and organizations have,

by and large, focused on either the benefits that metrics can provide through simpli-

fication (“metric optimists”), or the negative consequences of that process (“metric

pessimists”). Metric optimists tend to follow the canonical Taylor (1911); Drucker

(1965), and place emphasis on the value of metrics in increasing transparency (Holm-

strom & Milgrom, 1991; Gibbons et al., 2013), establishing trust (Crosby, 1997), and

enabling optimization. By reducing the complexity of objects or agents, metrics can

also augment limited human cognition and increase rationality (Zelizer, 1989; Kellogg

et al., 2020), making it possible to increase managerial scope (Hubbard, 2000; Ich-

niowski & Shaw, 2003). Breaking down complex concepts into simple metrics makes

it easier to understand and analyze the phenomenon (Martin, 1868; Weyl, 1947;

Kleinert, 2009). This also allows for a shift from experience-based knowledge —in

which individuals with intellectual authority have amassed reputation and access to

large quantities of experience —to experiments-based (Lin, 1995), which lowers the

barriers to entry for contributing ideas. Metric pessimists instead warn that metrics

are often granted significant and unfounded levels of trust and objectivity by indi-

viduals and organizations (Porter, 1995). This can lead to negative externalities as
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metrics are found to alter incentives, engender strategic gaming, and lead to devia-

tions from the intended objective (Kerr, 1975; Sauder & Espeland, 2009; Muller &

Muller, 2018; Baker & Hubbard, 2003). Furthermore, metrics eliminate the richness

of context. This can homogenize ex ante diverse objects, individuals or organizations

into one (Espeland, 1993; Espeland & Sauder, 2007; Berman & Hirschman, 2018).

Metrics are also cautioned as they allow for control and discipline at a larger and

fine-grained scale, which can curb experimentation and autonomy (Foucault, 1977;

Espeland et al., 2016; Mazmanian & Beckman, 2018).

Across these studies, a common theme is that the impact of a given metric will

depend on its application. Yet with only a few recent exceptions (Christin, 2018;

Ranganathan & Benson, 2020), prior work has largely bundled metrics and their

applications together, rather than considering them separately. In fact, a single

metric can serve heterogeneous roles in different application contexts. To unpack

this further, the following subsections will focus on the different types of problems

and intended objectives that metrics can be used for.

2.2.1 Known versus Unknown Problems

One dimension that metrics can differ upon in their application is the degree of

structure of the problem or task at hand. Some metrics will be applied towards

problems that have little to no rules or references, while others will be used for tasks

that are clear and defined. While problems will exist along a continuum, a useful

way to approach this is to draw upon the seminal classification of problems as being

well-structured versus ill-structured (Simon, 1973).

A well-structured problem will have (1) a clear initial state, (2) a clear desired end

state, and (3) defined and legal moves between them. An individual, organization or
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firm (herein, agent) facing the problem is aware of and can access full information

about each of these three facets. These well-structured problems, referred to as tasks

in some fields, have an optimal path for agents to follow, making the focus of the

analysis on providing sufficient incentives for agents to exert effort towards that path,

rather than which steps to take. For example, in canonical agency models such as

Holmstrom (1979) and Holmstrom & Milgrom (1991), the agent has full information

about the task(s) at hand, and the choice is the degree of effort allocation (between

a single task and shirking, or between multiple tasks).

In contrast, ambiguous or ill-structured problems will lack one or more facets of

the problem space. Sometimes referred to as the “residuals” of what well-structured

problems are not (Simon, 1973; Reed, 2016), these types of problems have multiple

solution paths as well as uncertainty surrounding the rules, constraints and con-

cepts that matter for the solution (Johanssen, 1997). This can be due to limited

information (Holmstrom 1989), conflicting or irrelevant information, or fundamental

uncertainty (Aghion and Tirole, 1994; Knight, 1921). For example, in models of

agents under uncertainty, agents have to choose between multiple divergent, poten-

tially irreversible paths without full information on which one is optimal (Manso,

2011; Gans et al, 2019).

Problems typically do not fall cleanly into one category or another, but rather

somewhere on a continuum of problem structure. With the caveat that this will

depend on the agent, examples of problems that fall on the well-structured side of

the continuum are solving a quadratic equation, assembling a piece of furniture,

playing a game of chess, or solving a cryptarithmetic puzzle (Goel, 1992). In such

settings, metrics are typically used to allow principals and agents themselves to better

observe the output of a given problem. Examples on the other end of the continuum

include designing a piece of furniture, solving a crisis, or mitigating the effects of a
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pandemic (Reed, 2016). Under these types of conditions, the agent not only needs

to grapple with how much effort to apply to a given problem, but also how to define

the core of the problem in the first place. Metrics in this instance, are often used not

only to observe output, but also as a way to add structure and define the problem.

Understanding the implications of a metric on agents’ choices and behavior there-

fore, requires consideration of the degree of structure that a problem has. Problems

can also, over time, move from being ill-structured to well-structured (e.g. additional

information about a problem space is revealed as search effort increases), and vice

versa (e.g. a shock disrupts the previously stable rules governing the solution). This

means that a metric applied to one problem can still take on different mechanisms

as the underlying problem evolves.

2.2.2 Signal versus Coordination

Another dimension that metrics can vary along in their application is the intended

objective for developing or using the metric. In other words, this is the planned

function that a given metric will play in the market (Bothner et al, 2022). This will

depend on the level of information available, and the ways in which agents affect one

another.

On the one hand, metrics can serve as information mechanisms by reducing noise

and signaling progress on a problem. In settings where there is asymmetric informa-

tion and noise, it may be challenging to discriminate among agents, objects or ideas.

Metrics, because they are universal, non-rivalrous in their application and relatively

more objective than qualitative information, can be perceived as credible ways to un-

derstand the relationship between the resulting outcome and the inputs (e.g. ability,

effort, fit) (Holmstrom & Milgrom, 1991). For example, firms often have multiple
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candidate objects (individiduals or ideas) that appear equally promising. This can

be mitigated by using a metric that can distinguish between candidates that per-

form better versus poorer than others (e.g. through a pre-employment test, years of

education) (Spence, 1978). Relatedly, firms could be assessing different technologies

that each have their own advocates and introducing a metric (e.g. performance on a

benchmark test) could inform decision-making (Vinokurova & Kapoor, 2020). This

reduction in noise between the initial inputs and the resulting outcome means that

an agent can more clearly distinguish themselves from competitors, or a principal

might be better able to identify progress, shirking and bottlenecks more easily.

On the other hand, metrics can act as coordination mechanisms by lowering the

costs of aligning different objects or agents with each other. In settings where there

are frictions to the adoption of a new idea (e.g. due to interdependencies, high

fixed costs), or agents have uncertainty towards one anothers’ incentives, it can be

challenging to coordinate even when it is optimal to do so. Metrics, because they

are easy to communicate and non-rivalrous and transparent in their usage, offer an

effective means for communicating and enforcing a common objective or norm by

identifying deviations efficiently. Moreover, relative to a setting without metrics,

agents can coordinate with a greater number of parties, and to do so across domain,

time and geographic distance. In contrast to signaling, in which a metric creates

value by allowing agents to distance themselves from one another, in such instances,

a metric allows agents to minimize that distance and ensure compatibility with an

agreed upon threshold. For instance, firms may benefit from product interoperability,

but due to strategic uncertainty and frictions in assessing one anothers’ products,

there is reluctance to invest the costs to modify their existing products to meet a

standard (David and Greenstein, 1990; Hemenway, 1975). Introducing a metric can

reduce the communication costs between firms by creating a common “language” as
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they come to agreement, and then assess one anothers’ compliance.

Taken together, metrics do not exist in a vacuum, but rather can be applied

towards a wide range of problems and objectives. This next section will intersect

these two dimensions of application to propose four different types of mechanisms

that metrics can exhibit.

2.3 Four Quadrants

A given metric can enact distinct mechanisms depending on how and where it is

applied. Even if developed to solve a specific problem, a metric can be employed

towards alternative, unplanned use cases. To make this concrete, consider dry matter

content, a metric that measures the soluble fibers and starches that remain in food

after water is fully extracted. The initial key use case for dry matter content (here

in DMC) was to assess the water content of livestock feed for herd health, but has

recently been applied towards several problems in fruit production. First, DMC

has been used to rank different pruning methods against one another in terms of

the quality of fruit that is produced (Goke et al., 2020). It can also be used to

ensure that fruit meet a certain quality threshold when grown at farms under variable

environmental conditions (Chagné et al., 2014). DMC also offers scientists a way to

jointly explore novel prediction models of fruit yield (Maeda & Ahn, 2021). Finally,

DMC has been employed as a target for engineers developing new varieties of fruit

with wide consumer appeal in taste (Kaczmarska et al., 2016). This example of

DMC shows that single metric can exhibit contrasting mechanisms with some use

cases that require distinguishing between different objects, and others that prioritize

homogeneity; as well as some use cases that deal with relatively known methods, and

others that involve exploring nascent technologies.
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Figure 2-1: A simple typology of metric mechanisms

In an effort to organize these different mechanisms, the two dimensions that met-

rics vary upon in their application —known versus unknown problems, and signaling

versus coordination —can be intersected to yield a simple typology. Figure 2-1 classi-

fies four types ways in which metrics can be utilized: (1) to produce a rank ordering,

(2) to normalize, (3) to conduct joint search, and (4) to set a target.

2.3.1 Metrics for Ranking

In the upper left quadrant, metrics can be used to produce a ranking of different

agents, objects or ideas against one another. In such settings, the problem is known

and well structured, and the objective for using the metric is to reduce noise and

lower the costs of comparison. On the one hand, this can generate a better signal

of which agent, object or idea is better than others along the dimension of the met-

ric, making it easier to choose how to allocate resources (Holmstrom & Milgrom,
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1991). This can also improve the visibility that a principal or even agents themselves

have on their relative performance, which can increase incentives for improvements

(Baker & Hubbard, 2003). At the same time, rankings enhance surveillance and con-

trol capabilities, which can reduce variation and autonomy (Berman & Hirschman,

2018). This consequence is further exacerbated by the fact that a ranking necessi-

tates prioritizing some dimensions over others, abstracting away potentially valuable

heterogeneity. In addition to the example of using dry matter content to rank differ-

ent pruning methods against one another, other examples of metrics that result in

rankings include school ratings (Hasan & Kumar, 2019), using RFID tags to measure

employees’ garment production productivity (Ranganathan & Benson, 2020), Yelp

scores to gauge the quality of a restaurant (Luca, 2016) and news media click-through

rates to assess the success of an article (Christin, 2018).

2.3.2 Metrics for Normalizing

In the upper right quadrant, metrics can be used to enforce a norm across diverse

agents. As with rank metrics, these types of metrics are applied to known problems.

In contrast however, the focus is not on producing a rank order, but rather on coor-

dinating across multiple agents or objects. Metrics lower the cost of communication,

allowing a common understanding to be achieved more efficiently. Furthermore, by

making comparisons easier to replicate, they also lower the costs of monitoring and

auditing for compliance with the agreed upon measures. This allows for normal-

ization across a greater number of agents or objects, over organizational, domain or

geographic boundaries. Normalization allows for interchangeability, which can gener-

ate positive network externalities such as scale economies in production (Hemenway,

1975) and supplier networks (Basker & Simcoe, 2021). At the same time, such met-
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rics can generate increasing returns to adoption that ‘lock in’ agents and objects

onto a suboptimal metric (David, 1985; David & Greenstein, 1990). The dry matter

example of an application for normalization is using the metric to ensure a consistent

quality across different farms. Other examples of these types of metrics include the

number of violations prohibited in food safety regulations (Ibanez & Toffel, 2020),

weight thresholds of newborns in clinical guidelines (Almond et al., 2010), and the

major diameter and pitch in screw thread standards (Hemenway, 1975; Yates &

Murphy, 2019).

2.3.3 Metrics for Joint Search

In the bottom right quadrant, there are metrics that unite agents or objects together

for a joint search for advances on a problem. In contrast to metrics used to normalize,

problems in such settings are generally ill structured with many facets of the solution

space that are unknown. Metrics allow for a coordinated approach to the problem

by providing an anchor to explore the problem space, and providing a definition of

what meaningful progress means to the broader community or field. Metrics in such

applications create a common language for discussing and evaluating different ideas,

which not only lowers redundant or incompatible efforts, but can also facilitate an

improved exchange of ideas (Arora & Gambardella, 1994) and learning spillovers. In

addition, by providing a common cognitive frame for an ill structure problem, this

makes it easier to establish trust under uncertainty (Gibbons et al., 2021), shifting

the need for different individuals or organizations to trust one another towards trust

in the metric. Metrics can thus enable collaborations that previously would not have

occurred such as those without prior history, or operating in nascent markets. This

is similar to the concept of gestalt, in which a simplified and holistic approach can
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facilitate sense-making in nascent problems, and allow the whole is able to achieve

more than the sum of the individual agents’ efforts (Rindova et al., 2010). Dry

matter being used as a novel metric for modelling fruit yield is one example of a

metric being used for joint exploration. Other examples of these metrics include

the use of millisecond latency to create consensus in 5G Ultra-Reliable Low-Latency

Communication (Gupta et al., 2019), the astronomical unit (au) in astronomy as a

metric that harmonized the field in how to quantify astronomical distances (Luque

& Ballesteros, 2019), and cases per 100 thousand people as a unified policy approach

to deal with COVID-19 containment for public health.

2.3.4 Metrics as a Target

In the bottom left quadrant, metrics can provide a target for agents. Similar to joint

search metrics, these are settings where there is a problem that has many elements

that are uncertain and unknown. In contrast however, rather than focusing on estab-

lishing a coordinated approach to solving the problem, the objective of such metrics

is to offer a meaningful target for agents, objects and ideas to work towards. In

these applications, advancing along a metric allows agents to signal their success in

pushing out the scientific or technological frontier, which can attract greater effort

and talent to solving the problem. Metrics shift progress on an ill-structured problem

from being driven by “soft” information to “hard,” lowering the barriers to entry for

novices and outsiders by substituting reputational gatekeeping with performance on

the metric. At the same time, although these metrics are chosen as targets under

limited information, they have a tendency to persist because they are trusted, ob-

jective norms (Porter, 1995). Returning to the dry matter example, an application

where it serves as a target is in the genetic engineering of new fruit varietals. Other
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examples of target metrics include thoracic trauma as a metric for vehicle manu-

facturers to focus on lowering (Wu, 2022), floating operating points per second in

supercomputers (Dongarra et al., 1979; Dongarra, 2006), progression free survival in

oncology clinical trials of therapeutics (Booth & Eisenhauer, 2012), and emissions

ratings of firms (Chatterji & Toffel, 2010; Sharkey & Bromley, 2015).

2.4 Framing Metric Mishaps

Putting metrics into these four quadrants of potential mechanisms helps clarify the

dynamics of metrics, and the consequences that can arise in their usage. These four

applications of metrics —to rank, normalize, jointly search and target —are not

necessarily static. A metric applied to a given problem may over time, shift from

one quadrant to another depending on the dynamics of the problem. For instance,

as additional effort is applied to a problem over time, much of the uncertainty may

be reduced such that the problem becomes more structured. In such cases, what

might have start out as a “joint search” or “target” metric might become applied as

a “normalize” or “rank” metric instead.

Issues or challenges however can arise, as these quadrants can be rather porous

in their interpretation, and a metric developed or chosen for one mechanism may

unintentionally end up being utilized as another. While the four mechanisms can

mathematically lead to several potential ‘misuses’, the two that are most common in

prior work are (1) metrics that were intended for ranking individuals, organizations

or objects that become targets, (2) those intended for ranking that become used to

normalize.
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2.4.1 Rank to Target

Metrics intended for ranking assume that the structure of the solution is known and

stable (i.e. there is a consistent set of steps from the initial state to the desired end

state), and that the individuals, objects or organizations being measured are immune

to the knowledge of the metric. For instance, if one were to evaluate different schools

by introducing a metric for ranking them, a key assumption is that the educational

practices, hiring decisions and admissions policies of the school will remains stable

regardless of the use of the metric.

Sociologists have highlighted that this is inconsistent with many settings in prac-

tice. In fact, metrics will often engender a behavior labelled ‘reactivity’ in which the

individuals or organizations being measured will change their behavior to accord with

the metric (Espeland & Stevens, 2008; Espeland et al., 2016). Critiques of a simi-

lar vein from economics and accounting include the Lucas Critique (Brunner et al.,

1983) and Goodhart’s Law (Goodhart, 1984; Strathern, 1997). This reactive desire

to advance along the metric could be driven by financial incentives, status rewards,

identity or discipline avoidance (Ranganathan & Benson, 2020). Expressed using

the framework, these are metrics that were intended to be used for ranking that end

up becoming targets for those that are being measured. For instance, the intention

of introducing a school ranking may have been to increase accountability and en-

courage the faculty and leadership at schools that were falling behind to apply more

effort towards their educational practices. Instead, what might occur is that even

high performing schools might be destabilized by the metric, and induced to rethink

their well-structured pedagogical approach in efforts to maximize their position on

the new metric. Other examples include viewership metrics in YouTube for helping

creators understand consumer demand that end up becoming treated as a sign of
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social status (Christin & Lewis, 2021); or click rates in news media that cause some

journalists to change the articles they pursue towards “click bait” (Christin, 2018).

Therefore, the metric that was intended to gauge the performance of individuals or

organizations, will end up affecting what performance even means in the first place

(Kerr, 1975; Mau, 2019).

2.4.2 Rank to Normalize

In addition to the above, metrics that are applied to produce a ranking can also

have another unintended reactive consequence. The process of transforming multi-

dimensional individuals, organizations, and objects into a metric (i.e. commensura-

tion) involves prioritizing certain dimensions over others. This creates information

loss which can erase contextual features, eliminate authenticity (Zelizer, 1989) and

reify one dimension as the ‘gold standard’ (Espeland, 1993; Fourcade, 2011). This

can create pressures to conform with what is being measured, losing ex ante hetero-

geneity in the process. For example, as reviewed in Espeland et al. (2016), school

leaders can start to mold their organizations towards the metric such that hetero-

geneous goals get lost. This means that whereas some schools may have admitted

non-traditional students before, the homogenizing pressures introduced by the metric

eliminate opportunities for such students. Whereas the introduction of the metric

was intended to distinguish between different individuals, organizations or objects,

the interpretation of the metric as the ideal, can have the opposite effect of normal-

izing them to be the same.
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2.5 Metrics in Innovation

While scientific and technological innovation will necessitate the use of metrics for

known, routine tasks —for instance to calibrate a microscope using micrometers,

or ranking tools based on their precision tolerance —this next section will abstract

away from these functions, and focus on the role of metrics in unknown and uncertain

problem spaces. The scientific and technological innovation process involves periods

of stable development interspersed with periods of revolution as new paradigms dis-

place the old (Kuhn, 1962; Dosi, 1982; Henderson & Clark, 1990; Christensen, 1997).

These distinct phases can be characterized using the canonical exploration versus

exploitation framing (March, 1991). During phases of exploration, there is a wide

search within the uncertain problem space, with relatively high risk-taking and ex-

perimentation as scientists and engineers search for the optimal solution. During

phases of exploitation, this becomes more focused on refinement, improvement and

execution along a particular solution path (March, 1991; Levinthal & March, 1981).

Metrics play important roles at the junctures between these two phases.

2.5.1 Exploration to Exploitation

During phases of exploration, there are often multiple, potential paths forward that

can get surfaced. Because these paths are equally attractive and involve uncertainty,

it can lead to inertia. Resolving uncertainty to understand which path to pursue

would necessitate making commitments towards one over the others, which could be

an irreversible action (Gans et al., 2019). This suggests that there can be a point

where the nature of exploration reaches a stalling point for making progress on the

problem at hand. Furthermore, multiple individuals may pursue different paths with

no means to adjudicate which one is more promising to invest in.
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Figure 2-2: Metrics throughout the innovation process

Metrics can be applied to mitigate this problem by using them as a joint search

mechanism. Metrics provide a heuristic that decomposes a complex and uncertain

problem into several smaller sub-problems. This requires the organization or field

to come together to clarify what is considered a desired direction of progress, and

can bound the initial search space. Providing a joint search metric also allows for

different paths (and scientists’ work) to be assessed using this mutually agreed upon

metric to collect data. Metrics are a core input into the scientific method, allowing

for hypotheses to be expressed in an experimental way such that evidence can be

gathered. Put more eloquently, metrics provide “a quantitative representation of

your subject, however simplified, even in its errors and omissions, precise. You can

think about it rigorously. You can manipulate it and experiment with it” (Latour,

1986; Crosby, 1997).
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2.5.2 Exploitation to Exploration

As uncertainty about a problem space is resolved through the use of joint search

metrics, a particular path tends to emerge as the scientific or technological frontier.

To exploit this path, a metric can be used as a target to encourage advancements

that push out the frontier. Because the path forward is relatively defined, metrics

in such instances, can propel improvements by providing a means for benchmarking

progress. Even without pecuniary incentives attached, this reward of being at the

frontier or top of ‘leader board’ can attract increased effort and participation.

At the same time, metrics can not only encourage the exploitation of a given path,

but can also lead to discoveries that lead to the transition to the exploration stage.

Much like a compulsive sequence (Rosenberg, 1969), advancing towards a target

requires gathering data and conducting experiments. This can lead to incongruencies

in which stylized evidence does not accord with or is poorly captured by existing

metrics. This can move innovation into a phase of exploration, to understand how to

reconcile prior theories or develop new ones, and potentially to develop new metrics

as well. Kuhn (1961) characterized this as metrics fomenting “scientific crises” that

can lead to new paradigms.”

2.5.3 Known Unknowns?

Although metrics in innovation are generally operating within uncertain and am-

biguous problem domains, they often become treated as if they are known facets of

Nature or some other ground truth. This is because, as Thomas Kuhn observed,

most people first encounter innovation metrics in a science textbook or lecture hall

Kuhn (1961). These pedagogical settings generally frame metrics in scientific and

technological innovation as objective, law-like truths. As science historian Porter
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(1995) explains, within modern science norms “measurement means nothing if not

precision and objectivity.” This implies that metrics have the potential to define the

knowledge space itself. For instance, in a traditional technology S-curve plot, the Y-

axis used for assessing progress on the problem endogenously reflects the metric that

was initially selected. This suggests the choice of metric is crucial for individuals and

organizations, as it can come to be the dominant lens for thinking about a problem

and may not be challenged as readily in the future.1 Specifically, a metric can exhibit

path dependence due to scale economies where the marginal benefit for adopting a

metric increases along with the total number of inventors that utilize it, as well as

the number of complementary measurement tools or skills that get developed (David

(1985). Metrics can end up exhibiting similar characteristics to that of a dominant

design as they become widely accepted as characteristics of a given knowledge space

(Utterback & Abernathy (1975); Anderson & Tushman (1990); Utterback (1994)).

To draw upon the four quadrants, the concern in these cases is that a metric

intended for ‘joint search’ of an unfamiliar problem space may end up prematurely

being treated as if it were a metric intended to ‘normalize.’ Rather than recognizing

that this was an ex ante specified metric for guiding innovation, it can become treated

as an approach that must be conformed with, stifling the experimental activity it

was meant to unleash. Similarly for metrics that were intended to serve as ‘targets’

being treated as ‘rank’ metrics before uncertainty has been resolved. Rather than

1This also has the implication that metrics can have strategic importance, in terms of whether
and how to disclose a metric to the market. To clarify with anecdotes from practice, firms have
been observed to take different approaches to innovation metrics. On the one hand, some firms
such as Intel share a metric (transistor count) widely with their competitors (Moore’s Law). Intel
may have found it advantageous to shape innovation in the domain to be in line with its own
strategic advantage. In contrast, other firms such as Bose have intentionally rejected using industry
metrics and have kept their own metrics proprietary. This may be because revealing the metric
could disclose to others how Bose is approaching the problem of improving audio quality, and could
lead to competitive imitation. This suggests that metrics can be innovations in and of themselves.
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encouraging experimentation and risk taking to progress along the target, scientists

or engineers could be dissuaded from such high variance activities out of fear that

failure would disrupt their rank order (Manso, 2011; Azoulay et al., 2011). Taken

together, metrics can persist within a domain, even if alternative metrics are proposed

or the metric becomes obsolete. This is important to highlight because given that

they are developed or chosen to grapple with unknown problem spaces, it is limited

and endogenous to what a particular scientist, engineer, manager or even policymaker

might be familiar with at a given point in time. Rather than being revised as more

information about a problem becomes available, these metrics can end up being

counterproductive as they get treated as facts of knowledge rather than the best

guesses for confronting the unknown.

2.6 Conclusion

“What gets measured, gets managed” is a commonly expressed piece of management

wisdom: we can only improve the performance of what we measure, and choosing

what to measure is a key strategic decision that can deeply shape the performance

of individuals, organizations and institutions. This paper suggests that this popular

adage captures only one mechanism of several that metrics can enact. By synthesiz-

ing prior work studying a range of metrics in different settings, this paper shows that

metrics can take on different mechanisms depending on their application context. A

given metric can be used in addressing problems that have varying levels of struc-

ture, ranging from highly structured and well-known tasks to ambiguous, nascent

problems that are open-ended. They can also be utilized to achieve different objec-

tives, from using them as a means to differentiate between the individuals, objects

or organizations being measured to the other end of the spectrum, where the goal
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is to minimize any discrepancies. Putting these two dimensions together shows that

beyond just being a managerial tool, there are four nuanced roles that metrics can

play. Whereas they can certainly be used as a mechanism for ranking that increases

visibility and identifies inefficiencies, they can also be used as a way to normalize

to a certain standard or threshold, allowing for compatibility, economies of scale,

and quality control. A relatively less explored area is when metrics are applied in

contexts where uncertainty is high and there is the possibility to innovate along mul-

tiple diverging paths. In such settings, metrics are not only managerial tools, but can

also define the overall idea space for joint search to occur within. Metrics can also

provide a target for innovators to work towards, influencing not only the direction

but also the rate of innovation. Framing metrics as having four potential mecha-

nisms clarifies where the consequences outlined in prior work can arise (reviewed in

Espeland et al. (2016), Muller & Muller (2018), and Mau (2019)). It also clarifies

the role that metrics play during different phases of the innovation process, offering

a means for overcoming inertia and redundancy through collaborative exploration,

and a benchmark for propelling the frontier during phases of exploitation.

The simple typology proposed in this paper leaves many open questions for fu-

ture work. While this paper explores two ways that metric slippage can occur that

are common in the examples cited in extant work —when a metric intended to form

a ranking becomes used as a target, or when it becomes interpreted as a standard

to normalize to —there are several other cases of metric misuse that could occur.

In addition, future work could focus on the factors can affect how a metric is in-

terpreted relative to its intended use. Recently, Christin (2018) identified national

cultural contexts, Ranganathan & Benson (2020) found task complexity, and Wu

(2022) found prior domain knowledge to be moderators for how individuals and or-

ganizations react to metrics. Another fruitful direction is to further explore the role
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of metrics in innovation and knowledge, especially how they come to be created and

gain traction. Metrics in such settings, can be an innovation in and of itself, and also

one that can unlock further measurement. Practically, metrics can be traced through

papers, patents, popular articles, syllabi, and in some fields, benchmark competitions

serving as a paper trail for the study of innovation dynamics and the evolution of

technological opportunity in a field (Cohen, 2010).

Ultimately, measurement is attention, and attention is typically scarce within

modern life and organizations. On the one hand, metrics can augment human cog-

nition, breaking down complex problems into penetrable and salient units. This

allows for improved comparison, prediction, management, and collaboration. At the

same time, metrics are not applied in a vacuum, and what may start as an objective

definition of merit or desired norm can deviate away from intention as individuals

or organizations react to a metric (intentionally or not). This can result in met-

rics distorting or exerting control over the very objects, individuals or organizations

they were were intended to help. Understanding when and why the use of metrics

can lead to one outcome over the other is an important area of significant scholarly,

management and policy importance.
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Chapter 3

Innovation for Dummies? Exploring

the Role of Metrics in Automotive

Safety

Abstract

Metrics permeate our daily lives, firm R&D, and scientific and technological progress
—yet because we often take them as given, we have little understanding of their
impact on innovation. This paper explores how metrics shape the rate and direction
of innovation. By taking advantage of a unique change in the US automobile industry,
I estimate how the introduction of a novel metric for automotive safety, the Side
Impact Dummy (SID), influenced safety outcomes and firm performance. Using rich
data on US vehicular accidents and car specifications, I find that the new metric
significantly reduced fatalities, but did so disproportionately for occupants similar to
SID in body size. These results were driven by two types of firms: while firms with
pre-existing strategic investments and knowledge in safety made improvements that
benefited everyone, those without a history in safety ended up narrowly focusing on
the metric. Taken together, these findings show that metrics can profoundly affect
the innovation trajectories of firms, and that firms without ex-ante domain expertise
may suffer from “metric myopia.” Moreover, the choices firms make in response to a
metric can, consciously or not, determine who benefits from innovation.
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3.1 Introduction

A long-distance colleague asks “how warm is it over there?” The response for most

people would be to state the temperature in Celsius or Fahrenheit, rather than go

into a lengthy description of individual sensations. After all, this is an effective and

succinct way to convey information. Scientific and technological metrics are how

we, as modern society, define what it means to know something (Kelvin, 1889).1

As a result, these metrics permeate our lives —yet we often take them for granted.

This extends to management research, where there has been surprisingly little work

on how scientific and technological metrics impact firms and individuals. Across

industries, metrics are generally viewed as law-like, objective representations of the

truth, but this perception may need further scrutiny (Kuhn, 1961).2 After all, metrics

often stem from haphazard choices and idiosyncratic circumstances.3 Moreover, once

adopted, they can persist and influence the rate and direction of innovation for

centuries. For instance, while developing his eponymous steam engine, James Watt

introduced a metric to compare his invention against the main alternative at the

time, factory horses (Scherer, 1965).4 The resulting horsepower metric ended up

1As Lord Kelvin stated: “when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind” (Kelvin, 1889).

2As Thomas Kuhn stated: “our most prevalent notions about the function of [such] measurement
and about the source of its special efficacy are derived largely from myth” (Kuhn, 1961).

3For example, skin color balance is a metric that was created at Kodak, and based on a random
female Caucasian employee named Shirley out of convenience. This metric went on to shape film
innovation such that many decades later, film photography did a poor job of capturing people of
color (Roth, 2009). As another example, a Xerox engineer hastily created a test document as a
metric for evaluating different printer prototypes during an “informal demonstration of laser printers
for [executive] taskforce” which went on to “redefine the meaning of computer printing” (Vinokurova
& Kapoor, 2020).

4James Watt was responsible for the technical breakthroughs and the actual invention of the
steam engine, but his business partner, Matthew Boulton supplied the insight that a commercially
attractive opportunity would be to apply it as a replacement for draft horses in manufacturing
factories (Scherer, 1965).
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defining progress and forming the basis of competition among firms not only for

steam engines, but also for trains, turbines, automobiles, and more;5 outliving the

use of factory horses by centuries.

This paper is a first step towards understanding the role metrics play within

the innovation process of firms. At a fundamental level, metrics lower the costs of

comparing objects against one another. This however, is achieved by simplifying

an object into a few key dimensions, and therefore, involves abstracting away some

information and context. While prior work has highlighted how such loss of informa-

tion may distort incentives for individuals or organizations, this paper surfaces how

in the innovation process, this is also a valuable feature. In innovation, metrics help

reduce uncertainty by allowing for a concrete definition of progress (whether it is op-

timal or not). The use of a metric can therefore accelerate the innovative output of

firms by giving them a clear target to align their resources and R&D efforts towards.

Metrics, by helping to quantify progress, are also a crucial input into the scientific

method where they are used to set baselines, evaluate experimental outcomes against

each other, and create a common understanding.

The entwinement of metrics and the scientific method within R&D can lead to

the perception of metrics as fact. Firms and individuals may therefore overlook the

subjective choices that are involved in the early development of a metric, and solely

focus on it without considering the broader problem underlying it. Taken together,

metrics present a trade-off to firms: on the one hand, metrics can summarize complex,

uncertain problems into clear targets. On the other hand, their reification can lead

5Horsepower is not unique, as metrics exist across a number of industry contexts and shape
innovation within them. Consider for instance, FLOPS driving innovation within supercomputers
(Dongarra et al., 1979; Dongarra, 2006), watts within domestic vacuum cleaners (Wu, 2021), and
progression-free survival as a metric within cancer clinical trials (Booth & Eisenhauer, 2012; Prasad
et al., 2015)
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to an overly narrow focus on the metrics themselves.

Understanding how the benefit of focusing innovation with a target weighs against

the cost of potentially influencing it in a subjective direction is an important em-

pirical question. From an inference perspective however, it is often impossible to

credibly identify alternative ways a metric could have been defined. So while horse-

power clearly propelled the development of increasingly powerful steam engines, it

is difficult to know what other valuable dimensions of progress were ignored as a

result. Furthermore, a firm’s choice to adopt a metric is not necessarily random,

which makes it challenging to separate out the impact of a metric from a firm’s se-

lection into adopting it. An ideal setting would therefore, offer both an exogenous

introduction of a metric to firms, as well as involve a metric with a clearly defined

set of alternatives.

The introduction of the Side Impact Dummy (SID) as a new metric for automotive

safety not only provides the right variation to estimate the causal impact of the

introduction of a new metric on firm performance and innovation, but also does so

for outcomes that are economically and socially significant.6 SID was developed by

the U.S. Department of Transportation (DOT) and introduced in 1994 to automotive

firms as a metric for occupant protection in side impact crashes. At the time, vehicle

models were at different stages in their R&D life cycle: while some models had

to wait for their next major redesign to incorporate SID, others could incorporate

the new metric immediately into their R&D process. The setting therefore provides

quasi-experimental variation in the timing of adoption of a new metric. Furthermore,

although there was a known distribution of body sizes for the US population, SID

could only be modeled after one body type. For cost and convenience purposes,

the DOT re-purposed parts from older crash dummies to build SID, resulting in
6The automobile industry is estimated to account for over 3-5% of global economic output.
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it inheriting the height and weight of the average US male in the 1960s (5’8" and

169 lbs). This setting therefore is unique in providing a bounded set of alternative

body sizes SID could have been based upon, and variation in how representative the

selected metric was for different vehicle occupants.

I rely on these two sources of variation in a differences-in-differences framework to

estimate the impact of SID on automotive safety and firm innovation. Using rich data

covering US vehicular accidents, I leverage the variation in the timing of adoption

of SID in different vehicle models to examine the impact of the metric on safety

outcomes. Because these vehicles were on the road and involved in similar types of

crashes at the same time, this specification allows me to control for differences in

safety between different vehicle models through vehicle model fixed effects, in the

market over time through vehicle production year fixed-effects, and any firm-level

shocks through firm and vehicle production year fixed-effects.

Results show that the new metric drastically reduced the likelihood of occupants

dying in an accident by 48-50%. Using comprehensive car specifications data, I also

find that firms made meaningful and costly changes to their vehicles in response to

SID, increasing the width, length and curb weight to improve side protection. That

said, not everyone benefited equally from these improvements. Using granular data

on occupant characteristics, I find that occupants with a body type close to SID in

height and weight were the ones with the greatest reduction in fatality risk.

These results suggest that introducing a metric can raise the overall level of

innovation and performance within a problem space, but can also disproportionately

channel effort towards improving along the definition of the metric itself.

When I explore outcomes at the firm level, I find that these aggregate results

were largely driven by different types of firms. To understand firm heterogeneity, I

collected data on patent applications and defects investigations to measure the level
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of pre-existing knowledge in safety firms had before the introduction of SID. I use

patents to proxy for the safety R&D capabilities of the firm, and defects investigations

to capture the ability of a firm to produce vehicles without safety issues once on the

road.

Across both of these dimensions, two types of firm responses were visible in the

data. While firms with prior domain knowledge in safety responded to the new

metric by accelerating innovation benefiting all occupants, firms that were new to

safety only improved outcomes for SID-like occupants. This suggests that firms with

pre-existing knowledge may be less susceptible to “metric myopia” and realize that

the metric involves information loss and captures only part of a problem. Possibly,

when using the metric, they may be able to leverage their broader understanding of

automotive safety to innovate in a way that is not constrained by the metric itself.

Firms without that pre-existing knowledge instead, may use the metric as their only

lens on the problem. This finding suggests that in the process of innovation, a metric

is a complement to broader problem understanding rather than an actual substitute.

Lastly, in this setting, the metric was introduced by the DOT to all firms. This

meant that both ex-ante safety-oriented firms as well as those that had not prioritized

safety, suddenly had access to a common metric. This could have created a tension for

firms with prior strategic commitments to safety as the new metric also allowed firms

to be benchmarked more easily against one another. Ranking at the top could make

their strategic advantage more salient in the market. At the same time, the metric

provided all firms with a common lens for decomposing the problem, potentially

lowering the barriers for imitation. In order to examine how this might affect the

firms’ responses to SID, I collected textual data from annual shareholder reports and

media coverage of new vehicle launches. I applied machine learning tools to analyze

the text for safety content, which allowed me to measure the pre-existing level of
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firms’ strategic commitments to safety. Across both measures, I find that firms with

a relatively lower safety orientation focused narrowly on SID, while those that had

made safety a strategic priority focused on all occupants. This is consistent with

safety-oriented firms being more cautious about fully embracing SID and continuing

to maintain their own alternative metrics in automotive safety innovation.

Overall, these findings show that metrics exist not only within R&D departments,

but also can significantly influence the broader innovation strategies of firms. Fur-

thermore, it can generate a heterogeneous response across firms, depending on their

level of prior knowledge and strategic commitments to the area of the metric. These

findings offer contributions to three main areas of research.

First, it extends the work on performance measurement and its impact on firms

and individuals (Kerr, 1975; Holmstrom & Milgrom, 1991; Espeland, 1993; Sauder &

Espeland, 2009; Muller & Muller, 2018) by considering metrics in innovation, where

tasks are not defined ex-ante, and there can be multiple paths forward. In such

settings, individuals and firms do not necessarily react in the same way to a metric.

This paper finds that prior knowledge and strategic commitments can be a mech-

anism that generates heterogeneous responses, and highlights the need for future

study of how widespread this effect can be. Second, it contributes to the literature

on standards (Bresnahan & Yao, 1985; Yao, 1988; Greenstein, 1993; Simcoe, 2012;

Lerner & Tirole, 2014). Whereas prior work has focused on metrics as part of stan-

dards (e.g. as a reference or outcome standard), this paper surfaces that metrics can

involve their own, unique mechanisms for innovation.7 Last, I also expand work in

innovation examining sources of technological opportunity (Rosenberg, 1969, 1982;

7This is especially relevant in settings when a standard or threshold is challenging to specify
ex-ante, when compliance is costly to enforce, or when the objective is to lower the costs that firms
face in innovating along a new dimension.
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David, 1985; Farrell & Saloner, 1985; David & Greenstein, 1990; Arora & Gam-

bardella, 1994). This paper contributes to this rich literature (see Cohen (2010) for

a review) by proposing scientific and technological metrics as a mechanism that can

induce and shape innovation. The setting of this paper also relates to research ex-

ploring the impact of regulatory and technological mechanisms on automotive safety

outcomes (Grabowski et al., 2004; Levitt & Porter, 2001a,b; Dee, 1999; Graham,

1984; Peltzman, 1975), including recent work by Liu et al. (2020) on the effect of

crashworthiness ratings design.

The layout of the remainder of the paper is as follows. Section 3.2 explores the

role of metrics in the innovation process, and develops a conceptual framework of

how such metrics can impact firms’ innovation strategies. Section 3.3 describes the

empirical setting of automotive safety. Section 3.4 outlines the data and empirical

strategy. Section 3.5 summarizes the main findings from the causal estimates of

the impact of introducing a metric on innovation in aggregate and at the firm level.

Section 3.6 concludes.

3.2 Conceptual Framework

3.2.1 What is a Metric?

At a fundamental level, a metric summarizes an object into a lower dimensional

representation. As a basic example, an apple, a pear and an orange are multi-

dimensional objects that can be mapped onto a number of different metrics such as

calories, mass, pH level, harvest time, and so on. I define a metric as encompassing

both a measurement approach (i.e. a system that the object interacts with) and

the resulting measure that such an approach yields (i.e. a number or category). To
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continue the example from above, calories as a metric refers to both the Atwater

system and the numeric value of calories generated by the system.

Use of a metric, therefore, can significantly lower the costs of comparison, as well

as validating and communicating the outcomes of such comparisons. At the same

time however, by construction, the development of a metric will involve some loss of

information and context.

Recent research, perhaps in response to widespread adoption of Taylorism and

scientific management (Taylor, 1911; Drucker, 1965), has largely focused on the costs

that loss of information can create when metrics are used. Across management, soci-

ology and economics, scholars have raised concerns about metrics as homogenization

mechanisms that can eliminate valuable context when transforming objects into com-

parable numbers. Because a metric rewards effort with a clear signal, it can elicit

individuals or firms to engage in strategic behavior to advance along it (Espeland,

1993; Berman & Hirschman, 2018; Espeland & Sauder, 2007; Kerr, 1975; Goodhart,

1984; Strathern, 1997; Sauder & Espeland, 2009; Mazmanian & Beckman, 2018; Es-

peland et al., 2016). Individuals and firms will be inclined to over-invest in the met-

ric, and therefore, managers and policymakers need to use low-powered incentives to

combat this tendency (Holmstrom & Milgrom, 1991). Otherwise, metrics can, over

time, create a “tyranny,” shaping individuals and organizations in the image of the

metric itself (Strathern, 2000; Muller & Muller, 2018; Choi et al., 2012, 2013). For

instance, Espeland & Sauder (2007) find that when a metric gained traction among

law schools, it led to persistent, reinforcing changes (in admissions requirements) to

excel on the metric that came to redefine the institution and opportunity structure

itself.

Yet this assessment of metrics does not fully capture the role that they can play in

the innovation process. While metrics certainly can promote homogeneity and exert
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power as tools for assessment among R&D departments, metrics can also function

much like a technology within innovation. In such contexts, metrics become part of

the innovation process or ‘production function,’ helping to both define the task and

also to assess performance in that task itself. In the next sections, I will explore this

further by considering how metrics function within the process of innovation, and

how such functions translate to firms with different ex-ante characteristics.

3.2.2 What Do Metrics Do in Innovation?

Innovation involves a high degree of uncertainty, and often, the challenge of choosing

between multiple attractive but incompatible paths forward (Knight, 1921; Rosen-

berg & Nathan, 1994; Kerr et al., 2014; Gans et al., 2019). In addition to uncertainty,

individuals and organizations also suffer from limits in attention (March & Simon,

1958; Simon, 1955; Cohen & Levinthal, 1990). Technological change therefore has of-

ten relied on mechanisms that can focus attention in a specific direction (Rosenberg,

1969). Metrics are one such mechanism as they can reduce extraneous information

and reformulate a complex, multi-dimensional problem into one succinct target. In-

dividuals and firms seeking to innovate can therefore align and focus R&D efforts

towards a compelling and clear target, and overcome the inertia that uncertainty can

create. Metrics, therefore have the potential to be inducement mechanisms for inno-

vation (Cohen, 2010), raising the overall levels of innovative output in areas related

to it.

The production of new ideas also faces a friction in terms of the costs of accessing

knowledge, such as comprehension, communication and validation costs (Rosenberg,

1982; Rosenberg & Nathan, 1994; Arora & Gambardella, 1994). Metrics address

this by allowing ideas to be compared against one another, creating a lingua franca
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and acting as a type of “arbiter” of scientific progress (Kuhn, 1961; Porter, 1995).

Put differently, metrics are a key input in the scientific method and help quantify

progress towards achieving a target.

Taken together, metrics serve a dual purpose in innovation by offering a target to

align attention and resources towards, while also providing a means to quantify the

advancement towards that very target. Potentially because of this latter role, metrics

related to scientific and technological innovation tend to be perceived as objective,

inherent features of knowledge (Porter, 1995). Yet, given that metrics are also used

to set targets, they involve, at one point in time, a choice of what information

to prioritize and what to lose. Rather than being facts, metrics are the product

of subjective choices are made under idiosyncratic circumstances and constraints.

Therefore metrics can persist with little scrutiny, even when they involve targets

that are obsolete or generate negative externalities (Kuhn, 1961).

3.2.3 How Do Metrics Impact Firms’ Innovation Strategies?

Shifting attention to firms, metrics are a crucial part of the R&D process that break

down high-level innovation strategies into functional objectives and align resources

towards them (Roth, 2009; Iansiti, 1995; Clark et al., 1987; Steen, 2017). Metrics

also allow managers to evaluate different innovation approaches in a transparent and

efficient manner, using progress along the metric as a decision factor (Vinokurova &

Kapoor, 2020). But metrics can also have an impact on firms beyond their functional

utility in R&D management within a firm.

Metrics, especially those related to scientific and technological innovation, can

affect firms’ broader innovation strategies when considering how they might be avail-

able to multiple firms. Whether it is due to influential firms disclosing their own
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metrics, or academics and regulators developing metrics, when multiple firms have

access to a metric, is effectively creates a new dimension of competition upon which

firms can be ranked against one another. Firms therefore face a strageic choice of

whether to adopt a metric, and to what degree to focus their efforts upon it. Un-

packing this question requires factoring in a firms’ ex-ante domain knowledge and

strategic positioning.

Firms will have different types and levels of prior knowledge (Henderson & Clark,

1990; Rosenkopf & Nerkar, 2001), which will lead them to interpret the metric dif-

ferent. Some with pre-existing knowledge in an area may be able to recognize that a

metric is only one way to summarize a broader problem at hand (i.e. an “analogy” or

“mental model”) (Cohen & Levinthal, 1990; Gavetti et al., 2005; Menon & Yao, 2017),

and be able to clearly see the linkages between the summary metric and the broader

problem space (Helfat, 1994; Stuart & Podolny, 1996; Katila & Ahuja, 2002; Cohen

& Levinthal, 1990). Firms without those ex-ante strategic investments in contrast,

might interpret the metric as the main way to hone in on where to focus (Arrow,

1974; Henderson & Clark, 1990; Clark et al., 1987). Such firms risk relying on the

metric as the only lens on the problem at hand and be at risk of “metric myopia.”

Relatedly, firms’ prior strategic commitments to the area related to a metric

could also influence their response. A metric offers firms with a common lens for

decomposing a problem. While this may boost overall innovation in an industry

or domain by increasing knowledge flows (Mokyr, 2002, 2005), this also lowers the

barriers for firms to understand and learn from each others’ innovation approaches.

Firms with prior strategic commitments to safety may therefore be concerned about

information leakage and potential imitation. As such they may be less inclined to

fully adopt the metric relative to those without such commitments.

At the same time, metrics create a tension for firms strategically oriented in a
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related area as they also provide a way for customers and investors to compare firms.

Ranking poorly on the metric could therefore be costly to such firms. One way to

reconcile this with the potential costs of imitation, is to introduce competing metrics

(see Oberholzer-Gee et al. (2006) for an example). Together, this implies that firms

with prior domain knowledge and strategic commitments in the area related to the

metric can be expected to be relatively less inclined to adopt a new metric, compared

to firm without such ex-ante investments.

3.3 Setting

To explore the impact of the introduction of an innovation metric on firms, I needed

a setting that could overcome the core impediments to empirical research in the area:

First, the metrics that come to be known are typically those that have successfully

diffused and gained wide adoption. It is therefore, difficult to trace back to the

original creation of the metric, and determine a credible set of alternative ways in

the which the metric could have been defined. An ideal metric would therefore

provide a bounded set of alternative areas that innovation could have developed in

instead. Second, in order to study the impact of metrics on firms, it is necessary

to be able to separate it from choice of the organization to adopt the metric in the

first place. This required some exogenous party that introduced the metric to firms.

Finally, there is limited empirical data that can link together meaningful innovation

or performance outcomes to a metric over time.

This paper leverages a unique setting the addresses these empirical challenges,

and allows for the estimation of the causal effect of the introduction of a metric on

firms’ innovation strategies: the introduction of the side impact dummy (SID) by

the US government as a new metric within automotive setting. The following section
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provides a summary of the history of automotive safety and crash test dummies.

3.3.1 Automotive Safety

Throughout the 1960s, the US public became increasingly vocal about their discon-

tents regarding the lack of automotive safety. 8 This led to the passage of the De-

partment of Transportation (DOT) Act through Congress in 1967, and the creation

of the National Highway Traffic Safety Administration (NHTSA) with the mandate

to “save lives, prevent injuries, reduce vehicle-related crashes.”9 Today, NHTSA is

the main institution charged with developing and enforcing regulations for vehicular

safety in the US.

Two key NHTSA policies related to crash test dummies are the Federal Motor

Vehicle Safety Standards (FMVSS) and the New Car Assessment Program (NCAP).

FMVSS are compliance standards, setting the minimum thresholds for the design,

construction, and performance of vehicles that can operate within the US. 10

The NCAP runs tests that are based on FMVSS, but in contrast, they do not

set minimum compliance thresholds, but rather optional targets for improvements in

safety performance. NCAP tests are intended to incentivize improvements beyond

the FMVSS thresholds. The NCAP also publishes the test results allowing firms,

investors, and customers to assess the relative safety of vehicle models. For instance,

8Two figures are credited for being instrumental in mobilizing public demand for improvements in
automotive safety: consumer activist Ralph Nader, who wrote Unsafe at Any Speed: The Designed-
In Dangers of the American Automobile, and automobile entrepreneur Preston Tucker, who spear-
headed the development of safety innovations citing a lack of will on the part of the “Big Three”
(General Motors, Ford, and Chrysler).

9This was under the National Traffic and Motor Vehicle Safety Act that was enacted. NHTSA
was initially named the National Highway Safety Bureau. See https://www.nhtsa.gov/ for more
information.

10FMVSS consist of (1) a performance requirement for a given component/system, and (2) a test
procedure with specific metrics and testing equipment for assessment of compliance.
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whereas FMVSS 208 specifies (in section S4.1.1.3.1) that vehicles must meet safety

thresholds when crashed perpendicularly against a fixed collision barrier at 30 miles

per hour, the associated NCAP test requires 35 miles per hour which is a meaningful

difference in velocity of impact.11

3.3.2 Crash Test Dummies

The first crash test subjects were not anthropomorphic test devices, but rather hu-

man volunteers and donor cadavers. Early biomechanical engineers outfitted bodies

with sensors and accelerometers to measure the impact on the body of being crashed

against a barrier. There were a number of limitations to this approach. For safety

reasons, volunteer crashes could only be conducted at low speeds and the instrumen-

tation had to be non-invasive. Moreover, there were issues of volunteers anticipating

the crash and adjusting their body positions in ways that were unrepresentative of

real-life crashes. Cadavers instead had other sorts of constraints. For one, the bod-

ies donated for scientific research generally skewed towards elderly men with a wide

heterogeneity in body types, cadaver condition, and cause of death. Because each ca-

daver could only be used once before degradation, the data generated was difficult to

compare against one another. Furthermore, public sentiment was negative towards

this use of donated cadavers.12 Animals (including pigs and primates) have also

been used in crash tests, but are not a standard approach as they face challenges in
11The focus of this paper is on the time period when SID was introduced by NHTSA. Though

beyond the scope of this study, since 2003, a non-governmental organization, the Insurance In-
stitute for Highway Safety (IIHS) started conducting additional crashworthiness tests based on
the FMVSS/NCAP but with additional contingencies such as offset barriers and higher traveling
speeds. The IIHS is a non-profit organization funded by auto insurers and insurance associations.
See https://www.iihs.org/about-us for more information.

12See https://www.latimes.com/archives/la-xpm-1993-11-25-mn-60691-story.html for additional
details. Cadaver testing does continue today, but mainly to calibrate and inform the design of new
dummies and computer simulation software.
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approximating human anthropometry, as well as being seated in the upright position

within vehicles.

To advance the field forward, a replicable, standardized metric that could approx-

imate humans traveling in vehicles was required. The automotive safety industry

turned to the military, which had developed the first dummy “Sierra Sam” to test

pilot ejection seats since the mid-1900s. At the time, the Air Force had centered on

using the 50th percentile US male to develop crash dummies.13 Following this prac-

tice, the automotive industry ended up developing their first dummy, Hybrid II for

testing passive restraints in frontal crashes (seatbelts, airbags).1415 The development

of crash test dummies in the US continued to follow this cumulative approach, when

it progressed from frontal towards side impact crashworthiness.

To economize on costs and learning, SID was constructed using parts from Hybrid

II by removing the arm structures and reconfiguring the thoracic cavity. Therefore,

SID inherited its dimensions as a 1960s median US civilian male with a sitting height

of 35" (89.9cm), a standing height of 5’8" (172 cm) and a weight of 169 lbs (76.5 kg)

(AGARD, 1996; Janssen & Wismans, 1987; Searle & Haslegrave, 1969; Schneider,

1983).16 The focus of SID was on measuring thoracic trauma as injuries to the

13The first-generation Sierra Sam had been engineered to model a 95th percentile US military
male at the US Air Force Aerospace Medical Research Laboratory. At the time, it was a radical idea
to use “a dummy that will test equipment to its maximum in all parameters” (Hertzberg, 1970),
and Sierra Sam was heavily criticized for being too abstract for its intended purpose (Searle &
Haslegrave, 1969). Afterwards, subsequent dummies were ‘engineered to the average” of the most
relevant population at the time, the average US male.

14Several dummies were proposed including dummies such as the VIP series, Sierra Stan, Sophisti-
cated Sam and Dynamic Dan. These were proposed by a mixture of aircraft dummy manufacturers,
medical equipment firms, government, automotive firms, universities and research institutes, and
joint public-private collaborations.

15Hybrid II was designed by Alderson Research Laboratories and modified by GM and NHTSA
for FMVSS 208.

16Data for the definition of the US civilian male population anthropometry came mainly from
the National Center for Health Statistics survey data, under the US Department of Health, Edu-
cation and Welfare’s Public Health Service; and was supplemented with military data; as well as
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thorax were one of the primary reasons for fatalities in side impact crashes. Injuries

to other regions (e.g. neck, femur), while life-altering, were less likely to be life-

ending. Thoracic trauma is composed of a measure of chest acceleration (g-force)

and deflection (mm). This is calibrated using reference body sizes (height, weight)

to determine thresholds for critical injury. This is because the chest acceleration and

deflection that a person of a taller, broader stature can withhold before suffering

injury is higher than a person of a relatively smaller stature. In summary, SID was a

chosen measurement approach that yielded a measure of thoracic trauma calibrated

on the 1960s median US civilian male.

3.3.3 Introduction of SID

Motivated by the significant number of fatalities arising from side impact collisions,

NHTSA introduced SID as a key new measure of a vehicle’s ability to protect an

occupant from side impact as part of the “FMVSS 214 - Side Impact Protection

Dynamic Performance Requirement” amendment.

Beginning in September 1994, all new vehicle models were required to undergo a

crash test simulating a side impact collision. The vehicle would need to seat a SID in

the front driver seat, and another SID in the rear passenger seat while crashing the

vehicle at a speed of 30 mph (48 km/h) at a nearly right angle into a 1360 kg moving

deformable barrier traveling at 15 mph (24.2 km/h) (Samaha & Elliott (2003)).

Although discussions of the need for improved side impact protection had been

documented from at least the early 1980s, the ability for NHTSA to introduce new

testing requirements was contingent on Congressional budget approval. Thus, the

exact timing of when NHTSA would have the resources to implement SID in a

experimental data collected by Alderson Research Laboratories on volunteer subjects between ages
16-70 for variables otherwise unavailable. See Starkey et al. (1969) for full details.
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FMVSS was difficult to anticipate, even for NHTSA Directors themselves (NHTSA

(1995)). NHTSA also communicated its intent to launch a concurrent side impact

test using SID as in the FMVSS with a higher impact speed of 35 mph. This was

publicly available information so firms were aware that SID was going to be used not

only to assess the minimum threshold of side impact protection, but also the relative

performance.17

To supplement the data collected from reports and studies relating to automotive

safety and crash test dummy development, I also interviewed program administra-

tors, researchers contracted by regulators, senior engineering leaders at automotive

firms, and consumer advocates who provided additional context. Two key aspects to

highlight are that first, the US DOT was a leader at the time among global regulators

for automotive safety. Therefore, even firms headquartered abroad or with mainly

non-US revenue streams were still responsive to SID:

In the US, regulators are fairly transparent...The US led the way with

crash dummies and passing regulations. This was very effective and

flushed out all the problems with the dummies, then Europe, Japan,

China would follow... They would adopt the same dummies and by then,

they would be very well vetted.

A dummy is designed to gauge how safe a vehicle is based on the [US]

FMVSS ...Tons of money and time go into getting a dummy ready...Other

countries like China use the same dummies and just tweak thresholds to

their speed limits.
17Congress however, rejected its allowance when proposed for the budget in 1994 and 1995, so it

was SID did not debut in the NCAP until September 1996. Taken together, vehicles entering the
market after September 1994, or in other words, with production years 1995 onwards were affected
by the new measurements captured by SID.
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A second aspect of the setting the interviews surfaced was that SID was not a com-

pliance issue for firms. While SID was incorporated in the mandatory FMVSS, it was

intentionally designed to be met by all the vehicles in the market. The incorporation

of SID into the other NHTSA program, NCAP, instead, was designed to be at a level

that could generate a discernable difference between vehicles in safety performance.

Therefore the regulatory goal was to incentivize improvements in safety by ranking

firms against one another rather than through compliance. Firms therefore had the

autonomy to choose whether or not, and to what degree, to focus their innovative

efforts in improving along the metric:

From NHTSA’s perspective, it was worthwhile to set the level of [FMVSS]

regulations lower. This gave newer cars a chance to get in the market

as they just needed to get through the minimum regulation thresholds ...

essentially all vehicles meet the FMVSS.

3.3.4 Research Design

The use of SID as a new metric for side-impact crashworthiness protection in the US

automotive industry provides two sources of variation that allow for estimation of

the causal effect of introducing a metric on firm safety performance and innovation

outcomes.

First, when SID was introduced, not every vehicle model could adopt SID into

its design immediately. Instead, there was significant variation in the stage of the

product life cycle that each vehicle model was in. At a basic level, a vehicle model

follows three phases in its product life cycle: (a) it is introduced as an all-new

design, (b) it undergoes several mid-cycle refreshes with minor styling updates, and

(c) it undergoes a major redesign (i.e. a “generation”) and eventually is retired.
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Automotive firms (commonly referred to as “makes”) usually have multiple vehicle

models in the market at a time, but plan for them such that not all of the models are

due for a redesign at once. This allows them to spread out risk and avoid straining

attention and resources. On average, a model will stay in production with only

minor refreshes for 4-5 years before undergoing a major redesign (Hill et al. (2007)).

Therefore, at the time that SID was introduced, there were some vehicles in the

process of being redesigned or introduced (herein, referred together as redesigned)

that could respond more quickly, and others that had recently completed a redesign

and were not able to adopt SID into their designs until later.

Second, in addition to the quasi-experimental variation in the timing of adoption

of SID by vehicles, the study also leverages differences in the body type of occupants

in the driver and rear left passenger seat from that of SID. While SID was designed

based on the 50th percentile civilian male in the 1960s – the most common vehicular

occupant on US roads at the time – by the time SID was introduced, the demograph-

ics of drivers and passengers on the road had become much more diverse: in 1994,

men only represented 50.85% of licensed drivers.18 Moreover, even the average US

civilian male was undergoing changes during that time, with a roughly 10% increase

in weight to 182.4 lbs (82.9 kg) and 1.5% increase in height to 5’9" (175.8 cm).19

Therefore, at the time of introduction, there was natural variation in how represen-

tative SID was for a given occupant in a driver or front rear passenger seat. This

allows for the empirical exploration of whether the metric had a focusing effect in

terms of safety performance improvements. Furthermore, the setting is ideal in that

there is rich data that can link together the metric with innovative and performance

18This percentage dipped below half in states such as Alabama, Delaware, Georgia, and Michigan
among others. See https://www.fhwa.dot.gov/ohim/1994/section3/dl1a.pdf

19https://www.cdc.gov/nchs/data/ad/ad347.pdf
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outcomes as described in the next section.

3.4 Data and Empirical Strategy

Broadly, I needed several types of data to explore the relationship between SID as

a new metric for safety, and the subsequent firm responses. First, I needed to ob-

serve the safety performance outcomes of vehicles in side impact accidents before

and after the introduction of SID. Second, relatedly, I needed to collect covariates

for such accidents to control for omitted variable bias. Third, to quantify the timing

variation in the incorporation of SID into a vehicle model, I needed to collect data

on major redesigns by model and production year. Fourth, to assess variation in the

occupants’ distance from SID in terms of body type, I was interested in collecting

occupants’ height and weight data. Finally, to understand differences in the impact

of SID on firms, it was also essential to collect measures of the level of strategic in-

vestments and domain knowledge in safety ex-ante of SID across different firms. Note

that in this study, firms are defined as makes. This is because although makes are

typically owned by larger parent companies, in practice, parent company ownership

varies over time with makes typically setting and following their own strategies. For

example, Toyota, Lexus and Daihatsu are separate makes, that are controlled by the

same parent company, Toyota Motor Corporation. This section below describes the

primary sources of data in detail and summarized in Table 3.11. Further information

on firm safety investment variables are discussed in Section 3.5.4.
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3.4.1 Crashes

The main data source for this study is the NHTSA National Automotive Sampling

System (NASS) - Crashworthiness Data System (CDS) data set for years 1991-2007.

The CDS data is compiled such that the primary unit of analysis is the accident-

vehicle-occupant level. Two features of the CDS make it ideal for understanding the

impact of SID. First, the CDS is a representative and random sample of all police-

reported vehicle crashes in the US involving property or personal damage (i.e. a

hazardous event). Second, unique to the CDS, there are field research teams based

at 24 geographic sites that collect data from police reports, on-sight expert inves-

tigations, and occupant interviews. This produces detailed information on vehicle

characteristics, accident conditions, and occupants including demographics and driv-

ing impairments. Importantly, because of the occupant interviews, the CDS includes

data on the height and weight for all occupants involved.

The full dataset is restricted in three ways to hone in on the main sample affected

by SID. First, the sample is limited to accidents involving passenger cars, dropping

trucks, motorcycles, recreational vehicles (e.g. ATVs, mopeds, dirt bikes), buses and

unknown vehicles (e.g. hit and run). Second, the sample is limited to those involved

side-impact crash accidents. Third, it is limited to occupants in the front driver and

left rear passenger seats as these are the occupant positions where the FMVSS and

NCAP required SID to be seated during testing.

Alternative Crash Data

Two additional data sets on vehicular accidents in the US are used to assess the

robustness of the main findings. Additional details about the alternative data sets,

and how the trade-offs they involve relative to the main CDS data set are summarized
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in Table 3.23.

The first data set is the Fatality Accident Reporting System (FARS) database

which is the primary source used in prior social sciences research (Levitt & Porter,

2001a,b; Grabowski & Morrisey, 2004). The advantage of this data is that it cap-

tures the full population of vehicular accidents in the US that involve a fatality.

At the same time, there are concerns about sample selection as vehicles involved in

potentially fatal accidents that do not result in a death are excluded. To mitigate

this issue in part, I employ the strategy proposed in Levitt & Porter (2001b) when

using the FARS data for testing robustness by restricting the sample to occupants

in vehicles involved in accidents where there is a death in the other vehicle. This

approach results in a subsample where incurring a fatality is not the sole selection

criterion. Another limitation is that the height and weight are only collected for the

drivers, leaving out rear left-side passengers that were also affected by SID.

The second data set is the General Estimates System (GES) database. Similar

to the CDS, it is a representative sample of police-reported motor vehicle crashes

across the US, however it is larger in quantity of observations. This is because it

only draws information from police reports without additional follow-up or on-site

data collection. As the name implies, the intention is to estimate the number of

accidents of different types. A key limitation for the purposes of this study is that

the heights and weights of occupants are not collected. To ameliorate this, data

from the US CDC Behavioral Risk Factor Surveillance System (BRFSS) was used

to impute occupant height and weight. The BRFSS collects survey data to get a

representative sample of US residents and their health behaviors and conditions.20

The imputation was conducted using the occupant location, age, gender, year, and

whether their zip code corresponds to a low-income area.
20https://www.cdc.gov/brfss/index.html
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3.4.2 Vehicles Specifications and Redesign Timing

To collect data on major redesign timing for vehicle models, I used the Wards Au-

tomotive Yearbooks. Wards, now owned by Informa, publishes industry trade in-

formation and magazines covering the US automotive industry since the mid-1920s.

The Wards Automotive Yearbooks contain summaries of every new and majorly re-

designed vehicle models launched in the US (as well as Canada and Mexico). This

was non-trivial because for the time period of study, the Yearbooks are only available

in hardcopy, and the information was contained in free-form, non-standard text. As

such this data on new vehicle model launches and redesign timing were hand col-

lected. To verify and supplement this data, web searches were conducted for each

vehicle make and model appearing in the CDS using Wikipedia, Edmund’s and

KellyBlueBook.

The Wards Automotive Yearbook also contains detailed information on vehicle

specifications and the corresponding manufacturer suggested retail price. For some of

the vehicles in the CDS and FARS datasets, the vehicle identification number (VIN)

was available. These were run through the NHTSA Product Information Catalog

and Vehicle Listing (vPIC) VIN Decoded API to collect basic information (e.g. curb

weight, number of doors). This is a sparse manufacturer-provided dataset, but where

available, it was used to validate the specifications data from WARD’s Automotive

Yearbooks.

3.4.3 Summary Statistics

Table 3.1 presents descriptive statistics of the sample: The average accident occurred

in June-July 2000 in an area with a speed limit of 51 miles per hour under dry, light

daytime conditions with no alcohol or drug involvement. The average occupant was
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a 39 year old male with a height of 170.4 cm and 76.3 kg. The average vehicle was

worth $25,073 at the time of purchase and had a production year of 1993.

Taken together, the main sample for analysis is composed of 22,715 accident-

vehicle-occupant observations that are randomly and representatively drawn from

police-reported motor vehicle side impact crashes occurring in the US from 1991 to

2007. 16,573 unique occupant types (age, height, weight, gender,race) and 3,308

unique vehicles (make, model, model year) were involved in these accidents. The

vehicles involved in these accidents are produced by 46 unique firms.

3.4.4 Estimating Equations and Identifying Assumptions

The main estimating equation uses a difference-in-differences specification:

E[Fatali|Xik,PostMetricjt] = �0 + �1PostMetricjt + �2Xik

+�j + �t + ⌘m(j),t + ✏ijtk
(3.1)

where Fatali equals 1 when occupant i traveling in vehicle model j produced in year

t(j) involved in accident k(i, j) dies (expressed as t and k respectively for clarity of

notation), and 0 otherwise. PostMetricjt equals 1 when vehicle model j undergoes

its first major redesign after the introduction of SID in year t and thereafter, and

the key coefficient of interest is �1. The controls include Xik, a vector of accident

and occupant controls described in Table 3.1; and vehicle model fixed effects (�j),

production year fixed effects (�t), and vehicle make and production year fixed effects

(⌘m(j),t).

In this specification, I am comparing the difference in likelihood of fatality when

getting into a side impact accident in a vehicle model that has incorporated SID into

a major redesign, with vehicle models that have not yet incorporated SID into its
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design. If vehicle models that incorporate SID have a lower (higher) fatality rate,

then the estimate of �1 will be negative (positive). The vehicle model fixed effects

included in this specification account for the non-random sorting of vehicles into

accident conditions. The vehicle make and production year fixed effects account for

any shocks or changes among makes in certain production years. The production

year fixed effects absorb variation in the costs of incorporating safety innovation and

design over time.

To understand how the relationship between safety outcomes and SID varies

depending on its distance from the occupant body type, the study estimates:

E[Fatali|Xik,PostMetricjt] = �0 + �1PostMetricjt + �2SIDOcci

+�3PostMetricjt ⇥ SIDOcci

+�4Xik + �j + �t + ⌘m(j),t + ✏ijtk

(3.2)

where SIDOcci is an indicator equal to 1 when occupant i is close in height and

weight to SID; and the other variables are defined as above in Equation 3.1.

For both models, a key identifying assumption is that conditional on the included

controls, changes in the independent variable (PostMetricjt and SIDOcci) are not cor-

related with unobserved determinants of safety and that the composition of treated

and control groups are stable. Exploration of the data supports these assumptions:

While unlikely given the industry cost structure of a vehicle redesign, one potential

concern could be that firms shorten their redesign time to respond to SID. Figures

3-2 (a) and (b) reduce this concern as both the average vehicle model redesign time

and the average time between a new vehicle launch or major redesign being launched

by a firm are stable, and in fact, slightly increase after SID. Similarly, another con-

cern could be if the demographics of drivers shift such that the number of SID-like

68



vehicle occupants is inconsistent. Figure 3-3 (a) and (b) show that the distribution

of height and weight of occupants in the driver and rear passenger seat have no sig-

nificant differences before and after SID, though the mean weight is slightly lower

in the post-period. Finally, as presented in Table 3.27, fatality rates from frontal

and rear-end crashes see no statistically significant change related to a major re-

design following SID suggesting that there is no confounding, omitted variable that

is increasing safety at the same time.

3.5 Results

3.5.1 Did the Metric Increase Performance?

Using only the raw data, there is a correlation between vehicle models incorporating

the metric SID into their design (i.e. either a new model or having had a major

redesign after the introduction of SID), and a decline in the number of side fatalities.

This is presented in Figure 3.6 which is a binned scatterplot where the mean occupant

fatality is plotted against 30 equal-sized bins of vehicle production year.

Table 3.2 presents the estimates from formalizing this in a regression (Equation

3.1). Column 1 is a baseline regression including only a dummy that equals 1 when

a vehicle undergoes its first major redesign after the introduction of SID, as well as

vehicle model, and production year fixed effects. The following columns progressively

adds controls listed in Table 3.1. Column 2 adds occupant characteristics as controls.

Column 3 includes vehicle controls. Column 4 adds accident controls and a dummy

for each accident year.

In Column 5, post-double-selection LASSO is used to augment the regressions

in Columns 1 to 4 by using the LASSO method to optimally select regression con-
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trol variables. PDS-Lasso helps mitigate potential bias in the selection of control

variables, both in terms of overfitting, omitted variable bias and potential author-

introduced bias in the selection of controls, given the high-dimensional accident data

(Belloni et al., 2014). This involves three steps where first, LASSO is used to estimate

and select controls for:

Fatali|Xik = �1xi,1 + �2xi,2 + ...+ �pxi,p + ✏ijtk

Where xi,1, . . . , xi,p are all potential control variables (excluding the independent

variable of interest, PostMetricjt). In this analysis, I used 102 variables including

all of those listed in Table 3.1, the squares of those variables, as well as additional

controls such as the number of vehicles involved in the accident, number of occupants

in a vehicle, whether the occupant is pregnant, the day of the week of the accident,

speed limit, occupant race dummies, weather condition dummies, impact angle, ve-

hicle body type, other vehicle’s curb weight, number of lanes, etc. Second, LASSO

was used to estimate and select controls for:

PostMetricjt = �1xi,1 + �2xi,2 + ...+ �pxi,p + ✏ijtk

Then finally, the superset of controls selected in the first two steps (i.e. had non-

zero coefficients for both regressions) used in a linear regression with Fatali|Xik as

the outcome variable, and PostMetricjt is the focal independent variable for causal

inference.

The resulting controls selected by PDS-Lasso, presented in Table 3.13, were oc-

cupant age squared, occupant height and height squared, the number of vehicles

involved, whether the occupant was wearing a seat belt, whether there was alcohol

involvement, and whether there was drug involvement. Vehicle model, production
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year, and accident year fixed effects were included as unpenalized regressors through-

out.

Overall, the estimates are quite similar in magnitude across all specifications with

standard errors clustered at the make level. Focusing on Column (4) with all acci-

dent, vehicle and occupant controls; and Column (5) with PDS-Lasso controls shows

a sharp and significant decrease in side impact fatalities by 48-50% after the intro-

duction of SID. This estimate is similar in magnitude to the estimated improvements

from seat belts (45-60%) 2122 along with airbags (61%) 23.

To test for violation of parallel trends, in Figure 3-5 I plotted the estimates from

an event study specification in which occupant fatality is regressed onto 10 interaction

terms between the treatment status and the number of years before and after the

first major redesign after the introduction of SID. Visual inspection finds that the

pre-treatment trends are not statistically significant from zero. See Appendix 3.6 for

additional analyses of the pre-trends using Roth (2020).

The relationship between the introduction of SID and the reduction in side-impact

fatalities is robust to using a probit regression specification as presented in Table

3.14. The results are also present when analyzing the alternative accident data sets

of FARS and GES as presented in Table 3.25.

Taken together, the introduction of SID as an innovation metric within automo-

tive safety led to an improvement in in vehicles’ safety performance in the direction of

the measure on average. This is in line with the conceptual framework in that intro-

ducing an innovation metric provides firms with a target to align resources around,

and the ability to quantify progress and compare actions against one another. At the

21https://www.cdc.gov/transportationsafety/seatbeltbrief/index.html
22https://injuryfacts.nsc.org/motor-vehicle/occupant-protection/seat-belts/
23https://www.iihs.org/topics/airbags
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same time, given the loss of information and context that comes with this process,

it raises the question of whether occupants being close versus far in body type from

SID had any effect on their likelihood of incurring a fatality in a side-impact crash.

3.5.2 Did the Metric Focus Effort?

To probe whether safety performance outcomes vary for occupants whose body types

more closely match that of SID, I estimate Equation 3.2 which separates out those

occupants that are relatively close to SID from those more distant.

Table 3.3 presents the results with Columns (1) through (4) following a progressive

addition of the controls in Table 3.1, and Column (5) including PDS-Lasso selected

control variables as in Table 3.2. In the main analysis, SID-like occupants are defined

as a dummy which is equal to 1 when the occupant is within 0.5 standard deviations in

height and weight from SID. Columns (4) and (5) find that SID-like occupants (who

start from higher baseline fatality rates) benefit from an disproportionate, additional

decrease in fatality rates relative to those for whom SID is less precise.

This result is robust to different definitions of SID-like occupants as shown in

Table 3.18 which tests the sensitivity of the results to the definition of SID-like

occupants by relaxing and restricting the thresholds of height and weight (e.g. 0.6 ⇥

1 standard deviation in height and weight, etc.). The results also hold using a probit

specification in Table 3.15, and two alternative datasets in Table 3.26.

Moreover, the results in Table 3.3 do not hinge on gender. Table 3.16 splits the

sample into males and females, finding that the additional improvement in safety

outcomes for SID-like occupants is present across both genders. The number of

female SID-like occupants is however, lower than male SID-like occupants as females

in general tend to be smaller in stature than males. This reconciles this with recent
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studies (Perez, 2019; Linder & Svensson, 2019) documenting that females tend to

have higher fatality rates than males: metrics and the focusing effect they can create

(and loss of information) in the upstream innovation process can lead to gender (and

other sources of minority group) bias in downstream markets.

In addition, I estimate a model that interacts the treatment dummy with all the

occupant, vehicle and accident controls. I employ the sorted partial effects method

(SPE) developed by Chernozhukov et al. (2018) to visualize and conduct a classi-

fication analysis of the partial effects. This allows me to explore heterogeneity in

the partial effects beyond the average treatment effect. Details and the full analysis

are in Appendix Section 3.6. I find, using the SPE approach, that there is a wide

heterogeneity in the returns to SID: some occupants benefit significantly more than

others, whereas others are worse off. Looking at the characteristics of the group with

the largest gains from the introduction of the metric, I find that the median height

and weight track closely to that of SID. This suggests that even with relaxing the

assumption of linearity and an exploration of the partial effects, there is evidence

that occupants close in body type to SID gained a disproportionate reduction in

fatality rates. The introduction of an innovation metric led firms to target efforts

towards it, but perhaps because of a loss of information and context, resulted in a

focusing effect around the narrow definition of the metric.

3.5.3 Did These Improvements Require Meaningful Changes

to R&D?

One question these findings may raise is whether the improvements in safety per-

formance required firms to innovate in meaningful ways in their vehicle design and

development. To test this, I employed car specifications data to estimate the impact
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of SID on the physical structure of vehicles. I find that firms had to make meaningful

changes to the structure of their vehicles to improve side crash protection.

Table 3.5 presents estimates using OLS regressions of the following estimating

equation:
SPECjt = �0 + �1Postt + �2Redesignj

+�3Postt ⇥ Redesignj + �4Xj + ✏jt
(3.3)

where SPECjt corresponds to the car specification (e.g. vehicle height) for vehicle

model j produced in year t; Postt equals 1 when the production year of vehicle j

is after the introduction of SID; Redesignj equals 1 when the vehicle model j has

undergone a major redesign or is newly launched; Xj is a vector of vehicle controls

including model fixed effects; and ✏jt is an error term.

Column (1) shows that when a vehicle undergoes a major redesign after the intro-

duction of SID, it increases slightly in width by 0.3%. Similarly, Column (2) shows

that there was an increase in weight by 1.3%. Columns (3) and (4) finds no change

in the overall height and wheelbase of the vehicle. Column (5) finds a slight 0.4%

increase in length which may reflect design changes in tandem with the adjustments

to width and weight. Column (6) finds no change in the horsepower of the vehicle in

response to SID. Column (7) finds that the miles per gallon of the vehicles actually

decreased by 1.2% in major redesigns occurring after the introduction of SID. This

points to a potential costly design trade-off to prioritize safety through increasing

the size of the vehicle structure to minimize intrusion, and curb weight through the

use of more crash-resistant materials, at the cost of fuel economy. All regressions

in Table 3.5 control for the retail price, number of doors, as well as vehicle type

(hatchback, convertible) and vehicle model fixed effects.

This is consistent with qualitative interviews with industry experts who described
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how firms had to rethink the door padding and materials, structural stiffness, and

passenger compartment size in response to SID to protect occupants. This corre-

sponded in many cases to an increase in width, length and weight of the vehicles:24

If you are looking at way to transport people safely it’s exactly the same

way you ship fragile china. . . You must start with a strong box. . . in

early side crash tests, structural collapse was very common. . . There

were too many weak boxes.

[Post-SID], the focus was on making sure compartments stay intact. . .

There was a huge difference in car performance on intrusion than before,

and the development of crumple zones.

Table 3.6 validates the qualitative interview suggestions, finding that increases

in width, weight and length reduced fatalities in side impact crashes, while improve-

ments in fuel economy (miles/gallon) are associated with worse fatality rates.

Taken together, these findings suggest that the new metric, SID, required firms

to make changes to their vehicles, including some that are significant enough to

observe in the overall vehicle structure. Moreover, these changes in width, weight

and length associated with the introduction of SID came at the cost of worse fuel

economy, pointing to the metric necessitating meaningful innovation and product

design trade-offs.

3.5.4 How Did Firms Respond Differently to SID?

The results thus far have found that in aggregate, the introduction of an innovation

metric in automotive safety led to improvements in side impact protection, as well
24Figure 3-8 illustrates the structural changes in the Mercury Grand Marquis before and after

the introduction of SID.
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as an additional, disproportionate benefit for occupants that were more close to the

narrow definition of the metric SID itself. Furthermore, these performance outcomes

were the result of significant innovation and changes.

Firms however, as highlighted in Section 3.2, are expected to respond differently

to metrics depending on their prior strategic commitments and domain knowledge

related to the metric. This is particularly applicable to the automotive industry

where firms have historically prioritized saliently different strategic areas: for in-

stance, some firms emphasize cutting-edge design, some firms focus on affordability,

while others prioritize safety as a source of strategic advantage.

To explore this empirically, I needed to separate out leading firms that had made

strategic commitments and possessed domain knowledge in safety prior to the in-

troduction of the metric, from those that had not. To understand firms’ strategic

positioning in safety, I collected data on management’s intended strategic position-

ing (shareholders reports), and the publicly perceived strategic positioning (news).

To understand firms’ domain knowledge, I collected data on their internal R&D

capabilities (patents) and product engineering and production capabilities (defect

investigations).

Firms’ Safety Positioning

To understand a firm’s external positioning in regards to safety, I collected data on

how it positions itself to its current and potential shareholders, and how it is perceived

by the media. I used the Mergent Archives data and Dow Jones Factiva database

as sources for measuring how a firm positions itself and its perceived positioning,

respectively.

Annual shareholders reports data for the three years preceding the introduction
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of SID were collected from Mergent Archives for each parent firm. Mergent Archives

is a database of scanned annual reports with wide coverage of corporate annual

reports from 1909. Once digitized, I extracted the text from the reports excluding

the text related to the financial statements and auditor reports. Then I used text

classification techniques described in Appendix Section 3.6 to determine the fraction

of words in the shareholders report that are safety-related language.

Media coverage on each firm (make) was collected from the Dow Jones Factiva

platform. Because the objective was to capture the publicly perceived strategic

positioning of a firm, I focused on new vehicle launches using the Factiva filter of

“New Products/Services” and “New Product Approvals” rather than all articles (that

could include policy or broader industry issues, etc.). All such articles published in a

newspaper outlet in the US in 1990 to 1993 with a vice-president or president/CEO

mentioned or quoted were included. The text was then classified to determine the

fraction of words across all the articles that are safety-related. These data were then

used to develop measures of whether a firm was above the median versus below the

median in terms of ex-ante strategic commitments to safety.

Firms’ Safety Knowledge

To understand a firm’s prior knowledge in safety, I collected data on its innovation

outcomes in safety, and its product safety performance outcomes. I used the US

Patents and Trademark Office PatentsView data and the Office of Defects Investiga-

tions data as paper trails of firm’s innovation and product development capabilities

in safety, respectively.

The PatentsView database is a joint initiative from the USPTO providing data on

all patents applications and grants in the US. To build a sample I needed to link each
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firm to its patent assignee ids. This was aggregated at the parent level for consistency

(e.g. Toyota Motor Company rather than Lexus). To do so, I first collected all the

patent assignees of patents under CPC code B60 (Vehicles, Vehicle Fittings, Vehicle

Parts). For firms publicly listed in the US, I linked the assignees to firms using the

Compustat bridge developed by Autor et al. (2020a). For other firms, I used fuzzy

name matching between the assignee name and the firm name. To ensure I captured

all the permutations of a firm’s name I collected all the subsidiary names for each

firm using the NHTSA vPIC API.25 For instance, using vPIC I found that Honda

Motors Company also did business as Honda of America Manufacturing, Honda

Manufacturing of Alabama, Honda of Canada Manufacturing, Honda Manufacturing

of Indiana, etc. Then the bridge between firms and assignees was used to collect the

universe of patents granted to each automotive firm. To assess the safety orientation

of each patent I extracted the patent summary text, which includes the title and

a condensed description of the invention, and used text classification techniques

to determine if a patent is safety-related or not. Appendix Section 3.6 provides a

detailed description on this method.

While patents represent safety capabilities in upstream innovation, firms must

also invest in translating such innovations into safe products. To measure this engi-

neering and production capability, I needed a dataset that could capture the safety

quality of vehicles produced by the firms. I drew upon a comprehensive defects inves-

tigations dataset from the DOT Office of Defect Investigations database. A defect,

as defined by the ODI, is any issue “in performance, construction, a component, or

material of a motor vehicle or motor vehicle equipment” that affects the ability of a

vehicle to “protect against unreasonable risk of death or injury in an accident.” These

defect investigations are precursors to recalls (which can involve strategic decisions
25https://vpic.nhtsa.dot.gov/
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from regulators and firms), and are initiated after a sufficient number of consumer

complaints and petitions are made to NHTSA alleging a safety defect; and the ODI

has made a technical analysis that corroborates the need for further information.26

For each firm, I use the ODI to collect the number of vehicle models that have ever

had a defect investigation opened up about it; and took the ratio of defective vehicle

models to total vehicle models.

Firm-Level Results

To unpack how firms with strategic commitments in safety responded to the in-

troduction of SID relative to firms without I estimated Equation 3.2 splitting the

sample into firms with below versus above the median investments in positioning

themselves as leaders in safety. These results are presented in Tables 3.7. Columns 1

and 2 look at firms with lower orientation around safety versus those with higher as

measured by the ratio of their annual reports text that contained safety-related lan-

guage. Columns 3 and 4 splits the sample into firms with a lower versus higher ratio

of safety-related language in the media news coverage of their new product launches.

Given the level of measurement, standard errors are clustered at the parent level

for shareholders reports, and clustered at the make level for media coverage. Firms

that position themselves as less safety-focused in their text to shareholders, as well

as those perceived by the media as placing less emphasis on safety, mainly improved

in safety performance within the narrow definition of the metric.

Shifting to the prior knowledge of the firm, Table 3.8 presents estimates splitting

the sample into firms with below versus above the median prior knowledge in the

space of automotive safety. Columns 1 and 2 explore how firms with relatively

26https://www-odi.nhtsa.dot.gov/recalls/recallprocess.cfm
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lower safety patents compare to those with higher. In Column 1 I find that those

with lower innovation capabilities in safety focus primarily on the metric, and make

improvements that largely reduce fatality rates for SID-like occupants. In Column

2, in contrast, those with higher safety innovation capabilities are less focused on

the metric, and make improvements that benefit all types of occupants beyond just

SID-like ones. Columns 3 and 4 splits firms into those that have relatively lower

product engineering capabilities in terms of safety versus higher. Column 3 finds

that firms with more defect investigations, consistent with those with lower patents,

focus their improvements on the metric SID. Column 4 finds that those with fewer

defect investigations are less inclined to focus solely on SID in their products.

Taken together, Tables 3.7 and 3.8 suggest that there is a dichotomy in the

responses that firms have to the introduction of an innovation metric. Whereas some

firms make changes that lead to improvements in the broad direction of the metric,

leading to lower fatality rates for occupants of all body types, others concentrated

their efforts – perhaps overly so – only on the metric itself. This response seems to

be moderated by the degree of strategic positioning and knowledge in safety a firm

had invested in prior to the introduction of the metric.

Table 3.9 extends the analysis by examining the intersection of strategic posi-

tioning and knowledge. The first two columns look at firms with below the median

safety positioning in their annual reports, while latter two examine above the median

firms. The sample is further split into those with below (Columns 1 and 3) versus

above the median safety-related patents (Columns 2 and 4). I find that firms with

low knowledge are driving the significant focusing effect on SID. This suggests that

having prior knowledge is the key mechanism that mitigates metric myopia. This

may be because given the loss of information inherent in developing a metric, SID

can not fully capture the nuances of the problem of side impact safety. Firms that
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use SID without prior knowledge in safety may find that while it can be a useful

target to accelerate innovation and quantify progress with, they are more susceptible

to overfocusing on the narrow definition of the metric itself.

3.6 Conclusion and Future Research

“Man is the measure of all things: of those that are, that they are; and of

those that are not, that they are not.” (Protagoras, 490–420 BCE)

This insight, traced back to at least Protagoras’ time, surfaces that all metrics

are born from some individuals’ choices of what to measure and how to define it.

Over time however, as metrics become more widely adopted, the initial subjective

choices can be abstracted away. This leaves metrics to be perceived as objective

arbiters of knowledge. Given that metrics are ubiquitous within firm R&D and

science, and can sometimes persist for decades or even centuries, it is important

to understand how they shape innovation. This paper provides some of the first

empirical evidence examining the role that the introduction of a metric can have in

shaping firm innovation.

I start by proposing a conceptual framework to understand how metrics might

impact the process of innovation. By reducing dimensionality and providing con-

sensus on what constitutes meaningful progress, a metric allows firms to overcome

uncertainty when pursuing innovation. Firms can align their resources towards a

common target, and accelerate their innovative output. At the same time, the very

simplification that make metrics useful for innovation can also raise a potential cost.

Because the process of using a metric in and of itself involves a loss of information,

metrics that become reified as fact can lead some firms towards an overly narrow
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focus and innovation trajectory. This can lead to heterogeneous effects for firms

depending on their ex-ante characteristics. Firms that possess knowledge or have

made strategic commitments to the area related to the metric are less likely to suffer

from “metric myopia,” instead using the metric to accelerate overall innovation while

still maintaining their own thesis on how to improve the problem. Firms without

such prior investments are more at risk of relying too much on the metric to de-

fine the problem, which could lead them to pursuing an overly narrow trajectory of

innovation.

To explore this empirically, I use rich data on vehicle accidents in the US com-

bined with hand-collected data on car specifications to estimate the impact of the

introduction of a new metric (SID) on firm innovation in automotive safety. I ex-

ploit quasi-experimental variation in the timing of adoption in vehicle models, and

differences in how representative the metric was for different occupants to establish a

causal estimate of the impact on fatality risk in aggregate and across different occu-

pants. Results show that SID led to significant improvements in protection against

fatalities, but also to disproportionate benefits for occupants similar to SID. Further-

more, these changes were driven by heterogeneous innovative responses from firms.

Consistent with the framework, firms that made prior strategic investments and do-

main knowledge in safety R&D made improvements for all occupants. In contrast,

firms that did not possess this prior experience with the problem were focused solely

on making improvements for SID-like occupants and made costly trade-offs in their

vehicle R&D to achieve this.

Taken together, this paper offers three main contributions. First, it documents

the empirical relationship between the introduction of a metric and firm innovation

outcomes in a quasi-experimental setting that allows for a causal interpretation. This

setting is economically significant and relevant for policy and social welfare. Second,
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this paper highlights that while metrics can induce innovation output to increase

and can also shape the direction of innovation effort, these average effects do not

translate to every firm. In fact, this study highlights that metrics can have quite

a different impact across different firms. Some firms are better placed to leverage

the benefits of a metric while others are at a disadvantage based on their prior

characteristics. This emphasizes the impact that metrics —even those that may

appear to predominantly exist within scientific or technological domains —can have

for firms’ broader strategy and management decisions. Third, while previous work

has focused on metrics as part of standards, the paper highlights that metrics involve

their own, unique mechanisms for innovation, and are an important area of focus for

future work.

More broadly, this paper also offers implications for diversity and inclusion. Bias

in product design has been documented in a number of settings, ranging from con-

sumer goods to safety to health care (Goldberg, 2002; Perez, 2019; Liu & Mager,

2016; Linder & Svensson, 2019). This paper highlights metrics as a potential source

of this bias. Metrics chosen out of convenience or idiosyncratic conditions may end up

shaping innovation, even without any intention of bias, in a way that excludes people

more distant from the metric definition (e.g. women, visible minorities, elderly). Fur-

thermore, because such metrics are situated upstream in the R&D process, they may

be commonly overlooked and difficult to trace back to. Managers and policymakers

seeking to use metrics to shape innovation should consider mitigating this risk by

introducing multiple metrics at once, launching metrics in tandem with resources on

the broader problem to be solved, and fostering a culture of iteration in the metrics

that are used.

Future research can also explore how metrics shape innovation depending on the

stage of maturity. The findings in this paper imply that in the earlier stages of a
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problem space when innovation involves uncertainty, a metric is a complement to

problem understanding. Potentially, as an area matures and a shared understanding

of the problem is developed, a metric may be able to substitute for deeper domain

expertise. In such cases, a metric would no longer be a dimension of competitive

advantage but rather a standard prerequisite for participation in that area. This

suggests a potential dynamic interplay between metrics and problem understanding

in firms. Another area for future work is to examine settings when there are nu-

merous metrics available to firms. While this setting focused on the introduction

of one metric, the growing proliferation of software-driven R&D and lower costs of

collecting “big data” raises questions of how multiple metrics might influence innova-

tion, whether there is an optimal number to introduce, and what the benefits versus

costs are of providing more frequent and higher precision metrics in the innovation

process.

In summary, this research suggests that metrics in science and technology, al-

though not typically considered part of strategy formulation, are powerful mech-

anisms that can shape the rate and direction of innovation for individuals, firms,

and industries, sometimes for centuries. This paper provides empirical evidence in

line with this, and highlights this as an exciting area for future work to further our

understanding of this overlooked, important lever for innovation.
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Tables and Figures

Table 3.1: Descriptive statistics for the main crash sample

Variable Mean Std. Dev. Min. Max.

Accident Controls
Accident Year 2000 4.978 1991 2007
Accident Month 6.797 3.434 1 12
Speed Limit 51.659 10.461 15 80
Wet Conditions 0.148 0.355 0 1
Dark Conditions 0.233 0.422 0 1
Daytime 0.811 0.391 0 1
Alcohol Involved 0.109 0.311 0 1
Drugs Involved 0.043 0.203 0 1

Occupant Controls
Age 39.255 18.111 18 97
Male 0.503 0.5 0 1
Height (cm) 170.416 10.168 119 220
Weight (kg) 76.291 17.855 36 136.078
BMI 26.264 5.871 15.036 69.822
Pregnant 0.014 0.118 0 1
No Seat Belt 0.151 0.358 0 1

Vehicle Controls
MSRP 25073.03 13018.78 6907.5 129697.5
Car Age 6.546 4.949 0 22
Model year 1993 6.765 1970 2008

Note: The unit of analysis is the accident-occupant-vehicle level. The
main sample is constructed by restricting the CDS to (1) occupants
seated in the front left and second left position, (2) in passenger cars,
(3) in side crash accidents. The data source is the NHTSA National
Automotive Sampling System (NASS) Crashworthiness Data System
(CDS) for years 1991-2007. The CDS is a representative and random
sample of thousands of police-reported crashes. Field research teams
based at 24 geographic sites collect data from police reports, on-sight
investigations and occupant interviews. The raw number of accident-
vehicle-occupants is 22,715. This corresponds to 16,573 unique occu-
pant types (age, height, weight, gender, race) and 3,308 unique vehicle
types (make, model, model year). This corresponds to 494 major gen-
erational redesigns. These vehicle types represent 46 unique makes
(e.g. Toyota, Lexus, Daihatsu) owned by 24 unique parent firms (e.g.
Toyota Motor Corporation).
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Figure 3-1: Overview of the side impact dummy (SID)

Introduction 09/1994
Seat Position Driver, Front Rear
Manufacturer Humanetics
Reference Pop. Civilian Male
Reference Size 50th Percentile
Reference Data 1960s
Weight (kg) 76.5
Height (cm) 172
Seated Height (cm) 89.9

Figure 3-2: No significant change in vehicle redesign time

(a) Mean time between model-specific re-
designs

(b) Mean time between firms’ new/redesign
models
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Figure 3-3: Height and weight remain stable

(a) Kernel density of occupant height (b) Kernel density of occupant weight

Figure 3-4: Correlation between fatality rates and vehicle production year

The figure above presents a binned scatterplot that shows the correlation between the production
year of the vehicle an occupant is traveling in when a crash occurs, and the probability of dying
from the incident in the raw data. To construct the plot, the mean occupant fatality is plotted
against 25 equal-sized bins of vehicle production year. The dashed line represents the introduction
of SID in 1994.
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Figure 3-5: Event study of introduction of SID on fatalities

The figure above plots estimates from a linear probability specification where fatality is regressed
onto 10 interaction terms between treatment status and the number of years before/after the first
post-metric major redesign. The black dots are the coefficient estimates, and the shaded grey bars
are the 95% confidence interval, clustered at the make level.

88



Table 3.2: The introduction of the SID metric on fatalities

1(Fatality)

(1) (2) (3) (4) (5)

Post-Metric Car -0.0186*** -0.0192*** -0.0184*** -0.0183*** -0.0178***
(0.0067) (0.0060) (0.0063) (0.0063) (0.0063)

Mean 0.036 0.036 0.036 0.036 0.036
Make⇥ Model FE Yes Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes Yes
Make⇥ Model Year FE Yes Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes
Accident Controls Yes Yes Yes
Occupant Controls Yes Yes
Vehicle Controls Yes
PDS-Lasso Controls Yes

Observations 22,472 22,472 22,472 22,472 22,472

This table presents estimates of �1 from equation 3.1, with the progressive addition of the
controls outlined in Table 3.1. Column (1) has only make ⇥ model fixed effects, model year
fixed effects, make ⇥ model year fixed effects and accident year fixed effects. Column (2) adds
additional accident controls. Column (3) adds occupant controls. Column (4) adds vehicle
controls. Column (5) uses the controls selected by the post-double-selection Lasso (PDS Lasso)
method: occupant age squared, height, height squared, number of vehicles involved, whether
the occupant was wearing a seat belt, whether there was alcohol involvement, and whether
there was drug involvement, along with make-model fixed effects, make-year fixed effects, and
model year fixed effects. The PDSLasso method using tools developed by Ahrens et al. (2020)
based on Belloni et al. (2014). See Table 3.13 more details on the method and selected variables.
Standard errors are clustered at the make level. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.3: The SID metric is a focusing device

1(Fatality)

(1) (2) (3) (4) (5)

Post-Metric Car -0.0159** -0.0166** -0.0160** -0.0159** -0.0155**
(0.0070) (0.0062) (0.0065) (0.0066) (0.0065)

Post-Metric Car -0.0580*** -0.0577*** -0.0550*** -0.0550*** -0.0537***
⇥ SID-like Occupant (0.0127) (0.0125) (0.0121) (0.0120) (0.0125)

Mean 0.036 0.036 0.036 0.036 0.036
Make⇥ Model FE Yes Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes Yes
Make⇥ Model Year FE Yes Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes
Accident Controls Yes Yes Yes
Occupant Controls Yes Yes
Vehicle Controls Yes
PDS-Lasso Controls Yes

Observations 22,472 22,472 22,472 22,472 22,472

This table presents estimates of �1,�3 from equation 3.2, with a progressive addition of the
controls outlined in Table 3.1. SID-like Occupant is defined to be within a 0.5 standard deviation
in height and weight from the Side Impact Dummy (SID) dimensions (as outlined in Figure 3-1).
This is robust to more narrow and broad definitions of distance from SID dimensions as reported
in Table 3.18. Column (1) has only make ⇥ model fixed effects, model year fixed effects, make
⇥ model year fixed effects and accident year fixed effects. Column (2) adds additional accident
controls. Column (3) adds occupant controls. Column (4) adds vehicle controls. Column (5)
uses the controls selected by the post-double-selection Lasso (PDS Lasso) method: occupant age
squared, height, height squared, number of vehicles involved, whether the occupant was wearing
a seat belt, whether there was alcohol involvement, and whether there was drug involvement,
along with make-model fixed effects, make-year fixed effects, and model year fixed effects. The
PDSLasso method using tools developed by Ahrens et al. (2020) based on Belloni et al. (2014).
See Table 3.13 more details on the method and selected variables. Standard erros are clustered
at the make level. Table 3.16 further splits Column 4 and 5 by gender and finds that the focus
on SID-like Occupants exists in both genders. Standard errors are clustered at the make level.
*p<0.1, **p<0.05, ***p<0.01.
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Table 3.4: Descriptive statistics for vehicle specifications sample

Variable Mean Std. Dev. Min. Max.

Wheelbase (in) 103.94 6.39 66.30 144.6
Length (in) 182.13 13.2 103.1 225.1
Width (in) 69.55 3.31 48.7 83.0
Height (in) 55.34 3.86 43.5 90.0
Curb Weight (lbs) 3097.88 534.28 1620.0 5413.0
Net Horsepower 175.296 68.45 49 605
Miles Per Gallon 29.14 5.43 12 68
Model Year 1998 4.85 1991 2006
Price 25551.75 17602.10 4825 443000
Major Redesign 0.3 0.458 0 1

Note: The unit of analysis is the vehicle make-model-model
year level. The data source is the WARD’s Automotive Year-
book for year 1991-2006. The sample restricts the Yearbook
data to passenger cars without optional upgrades. Major Re-
design is equal to 1 if the model has just undergone a major
redesign or is being launched in that year. Data on major re-
designs were hand-collected from the industry summary sec-
tions of WARD’s Automotive Yearbooks, and supplemented
with web searches on Wikipedia and KellyBlueBook.
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Table 3.5: Improving on SID required meaningful changes

(1) (2) (3) (4) (5) (6) (7)
Width Weight Height Wheelbase Length Horsepower Miles/Gallon

Post ⇥ Redesign 0.169** 38.956*** 0.062 -0.024 0.771** 0.201 -0.305**
(0.084) (9.283) (0.081) (0.132) (0.320) (0.981) (0.151)

Make-Model FE Yes Yes Yes Yes Yes Yes Yes
Car Type FE Yes Yes Yes Yes Yes Yes Yes

Observations 6,573 6,552 6,573 6,573 6,575 6,572 6,524

This table presents estimates of the impact of undergoing a major redesign after the introduction of
SID on vehicle design choices. Vehicle make-model fixed effects and car type (e.g. 4-door sedan, 3-door
hatchback, etc.) are included. Robust standard errors are reported. *p<0.1, **p<0.05, ***p<0.01
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Table 3.6: Increasing vehicular width and weight is cor-
related with lower fatalities

1(Fatality)

(1) (2)
Accid-Occ-Veh PDS-Lasso

Width (in) -0.0015*** -0.0014***
(0.0004) (0.0005)

Weight (10 lbs) -0.0010*** -0.0011***
(0.0002) (0.0003)

Length (in) -0.0004*** -0.0004***
(0.0001) (0.0001)

Miles/Gallon 0.0009** 0.0009***
(0.0003) (0.0003)

Make⇥ Model FE Yes Yes
Model Year FE Yes Yes
Make⇥ Model Year FE Yes Yes
Observations 22,530 22,530

This table presents estimates of the relationship between
vehicle design characteristics, and the likelihood of incur-
ring a fatality in a side impact crash. Column 1 presents
estimates using the accident, occupant, and vehicle con-
trols listed in Table 3.1. Column 2 uses the controls
selected by the post-double-selection lasso method de-
tailed in Table 3.13. Standard errors are clustered at the
vehicle make level. *p<0.1, **p<0.05, ***p<0.01
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Table 3.7: Firms with safety positioning have broader focus

1(Fatality)

(1) (2) (3) (4)
Annual Reports Media News
Low High Low High

Post-Metric Car -0.0089 -0.0240*** -0.0084 -0.0238***
(0.0074) (0.0031) (0.0072) (0.0057)

Post-Metric Car -0.0530*** -0.0579** -0.0524*** -0.0585***
⇥ SID-like Occupant (0.0115) (0.0215) (0.0147) (0.0187)

Mean 0.036 0.037 0.034 0.037
Make ⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes

Observations 9,023 12,278 9,546 13,005

This table presents estimates of �1�3 from the equation 3.2 split by subsam-
ples. Columns 1 and 2 split the sample by firms with below and above the
median fraction of safety-related language in their annual shareholders reports
in the years preceding SID respectively. Columns 3 and 4 split the sample by
firms with below and above the median fraction of safety-related language in
the media coverage of the new product launches. All regression include the
controls outlined in Table 3.1. SID-like Occupant is defined to be within a 0.5
standard deviation in height and weight from the Side Impact Dummy (SID)
dimensions (as outlined in Figure 3-1). Standard errors are clustered at the
parent level for shareholder reports, and make level for media news coverage.
*p<0.1, **p<0.05, ***p<0.01.
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Table 3.8: Firms with prior knowledge have broader focus

1(Fatality)

(1) (2) (3) (4)
Safety Patents Safety Defects

Low High More Less

Post-Metric Car -0.0099 -0.0208*** -0.0113 -0.0227***
(0.0070) (0.0011) (0.0067) (0.0049)

Post-Metric Car -0.0642*** -0.0414** -0.0680*** -0.0498**
⇥ SID-like Occupant (0.0164) (0.0087) (0.0116) (0.0179)

Mean 0.037 0.034 0.037 0.036
Make ⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes

Observations 10,252 10,911 10,432 12,233

This table presents estimates of �1,�3 from the equation 3.2 split by sub-
samples. Columns 1 and 2 split the sample by firms with below and above
the median number of patents that have safety-related language respectively.
Columns 3 and 4 split the sample by firms with above and below the me-
dian proportion of defects investigations opened relative to their total vehicle
models on the road respectively. All regression include the controls outlined
in Table 3.1. SID-like Occupant is defined to be within a 0.5 standard devi-
ation in height and weight from the Side Impact Dummy (SID) dimensions
(as outlined in Figure 3-1). Standard errors are clustered at the parent level
for patents, and make level for defects investigations. *p<0.1, **p<0.05,
***p<0.01.
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Table 3.9: Prior knowledge mitigates metric myopia

1(Fatality)

(1) (2) (3) (4)
Low Safety Positioning High Safety Positioning

Low Knowledge High Knowledge Low Knowledge High Knowledge

Post-Metric Car -0.0051 -0.0205 -0.0263* -0.0201**
(0.0071) (0.0119) (0.0114) (0.0005)

Post-Metric Car -0.0514** -0.0455 -0.0912** -0.0358
⇥ SID-like Occupant (0.0159) (0.0106) (0.0259) (0.0093)

Make ⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes

Observations 6,742 2,330 3,508 8,580

This table presents estimates of �1,�3 from the equation 3.2 split by subsamples. Columns 1 and 2
examine firms with below the median safety-related language in their annual reports, further split into
those with low and high safety patents respectively. Columns 3 and 4 examine firms with above the
median safety-related language, and similarly splits it into low and high safety patents. All regression
include the controls outlined in Table 3.1. SID-like Occupant is defined to be within a 0.5 standard
deviation in height and weight from the Side Impact Dummy (SID) dimensions. Standard errors are
clustered at the parent level. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.10: Prior knowledge overcomes the trade-off

Miles/Gallon

(1) (2) (3) (4)
Safety Patents Safety Defects
Low High More Less

Post ⇥ Redesign -0.955*** -0.017 -0.871*** 0.300
(0.207) (0.197) (0.237) (0.197)

Make-Model FE Yes Yes Yes Yes
Car Type FE Yes Yes Yes Yes

Observations 2,868 3,998 3,836 3,031

This table presents estimates of the impact of undergoing a
major redesign after the introduction of SID on miles per gal-
lon. Vehicle make-model fixed effects and car type (e.g. 4-
door sedan, 3-door hatchback, etc.) are included. Columns
1 and 2 split the sample by firms with below and above the
median number of patents that have safety-related language
respectively. Columns 3 and 4 split the sample by firms with
above and below the median proportion of defects investiga-
tions opened relative to their total vehicle models on the road
respectively. Robust standard errors are reported. *p<0.1,
**p<0.05, ***p<0.01
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Sorted Partial Effects Analysis

The main analysis (presented in Table 3.2) reports the average partial effect (i.e.

treatment effect) from a linear probability model of the introduction of SID to a

vehicle model on the likelihood of occupant fatality, holding production year, vehicle

model, occupant, and accident characteristics constant. While this is the best linear

predictor of the treatment effect, by collapsing the full range of marginal partial

effects into one summary statistic, a lot of potentially informative heterogeneity is

lost.

To explore this heterogeneity, I relax the assumption of linearity to explore how

SID, as a new metric for side impact safety, may have impacted some occupants

differently from others as a complement to my main analysis. To do so I estimate a

model that fully interacts a dummy for the introduction of SID to a vehicle model

—the treatment —with all the occupant, vehicle and accident characteristics as out-

lined in Table 3.1:

E[Fatali|Xik,PostMetricjt] = �0 + �1PostMetricjt ⇥ (Xik, �j, �t) + ✏ijtk (3.4)

I employ the sorted partial effects method (SPE) for interactive linear models to

summarize the results following Chernozhukov et al. (2018). SPE involves comput-

ing the partial effects of SID on the likelihood of fatality at different quantiles of

the partial effect, sorting them in order from lowest to highest, and plotting them.

This supplements the main analysis by visualizing the full range of heterogeneity in

partial effects, and identifying which occupant, vehicle and accident characteristics
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are associated with the most strong or least strong effects.

Figure 3-6 plots the estimated partial effects from the fully interacted model in

Equation 3.4, sorted and indexed by quantiles. The sorted effects are plotted in blue

while the average partial effect is in black. In this case, the conditional quantile is

estimated for the 0.02 to 0.98 quantiles. The quantiles are plotted along the X-axis

and the predicted impact on fatalities is on the Y-axis, such that for example, at x =

0.2 there is a 20% chance the actual decline in fatalities is larger than the prediction,

and an 80% chance it is smaller. This shows the probability of fatality ranges from

-0.072 to +0.0043. In other words, there exists a subgroup of occupants for whom

the introduction of the metric decreased their likelihood of fatality approximately

twice as much as the average, and a subgroup for whom they are actually worse off

after the introduction of SID.

The table in Figure 3-6 summarizes the corresponding classification analysis

which presents the mean and standard error for the characteristics of control vari-

ables in the 10% most and least affected groups in terms of post-SID fatality rate

reductions. This finds that relative to accident characteristics, occupant character-

istics drive this gap. The group with the largest gains from the introduction of the

metric, have a median height and weight that tracks closely to that of SID. I also

find that occupants in this group tend to me older and male which corresponds to

the fact that SID was developed based on data from earlier cadaver crash tests.
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Figure 3-6: Sorted effects of Post-SID cars on probability of fatality

Variable 10% Least Improved SE 10% Most Improved SE

Age 21.17 1.49 59.79 5.12
Height 167.70 2.12 172.73 1.50
Weight 71.52 5.66 77.37 2.60
Male 0.29 0.11 0.66 0.08
Alcohol 0.01 0.01 0.05 0.17
Drug 0.00 0.05 0.09 0.09
No Seatbelt 0.29 0.15 0.14 0.07

This above figure depicts the estimated partial effects, sorted and indexed by
percentiles, from a regression model where an indicator variable for Post-Metric
vehicle model is fully interacted with all accident, occupant and vehicle controls as
outlined in Table 3.1. The blue line plots the level of heterogeneity in the improve-
ments from Post-Metric car, and the dotted black line plots the average partial
effects. 95% bootstrap uniform confidence bands are shaded in blue. Below, the
table summarizes the corresponding classification analysis which summarizes the
characteristics of the most versus least affected groups. The analysis and figure
were implemented using the spe package in R developed by Chen et al. (2019)
based on Chernozhukov et al. (2018).
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Supervised ML for Text Classification

In order to understand the degree to which firms had developed safety-oriented po-

sitioning and capabilities, several different data sources were used as paper trails for

these strategic investments: shareholders reports, media coverage, and patent text.

Given that these are sources of text data it was necessary to classify text as being

safety-oriented versus not.

I employed a standard approach to text pre-processing by normalizing it to low-

ercase, lemmatizing, and remove special characters, HTML tags, and extra white

space. Then, I used two different approaches to classify the text, which generated

similar classification outcomes.

The first was a straightforward frequency count of the number of safety-related

keywords in the text. Safety keywords were obtained from the NHTSA Glossary Of

Highway Safety Terms and Definitions, excluding those related to NHTSA-specific

acronyms or programs (e.g. FAIN, final financial reconciliation; Hatch Act, etc.)

or broad non-safety terms (e.g. internal controls, countermeasure).27 This was

also compared with the keywords extracted by Giorgi & Edward (2019), which em-

ployed topic modeling analysis on automotive safety legislation texts from 1965-1980

(including congressional hearings, advertising copy, recordings of meetings between

President Nixon and automotive firm executives, NHTSA analyses and letters, con-

gressional reports) to ensure sufficient coverage of safety-related keywords. This was

then weighted against the total number of words in the text to generate the fraction

of words in the text that are safety keywords, allowing for the creation of an indicator

variable for being above the median in safety frequency.

27See https://www.nhtsa.gov/resources-guide/glossary-highway-safety-terms-and-definitions for
the full glossary.
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The second approach was to train a supervised machine learning model using the

scikit-learn and nltk libraries in Python. To train and test the model, data from

the Society of Automotive Engineers (SAE) ground vehicle articles were used. The

SAE is a trade association that publishes technical articles, best practices and recom-

mended voluntary standards covering mobility engineering in aerospace, commercial

and motor vehicles. To date, it has published over 10,000 documents regarding pro-

posed standards that are written and maintained by 9,000 volunteer engineers.28.

To create the sample, all ground vehicle proposed standards and technical reports

published in the years 1970 to 1993 from SAE Mobilus were collected. Those tagged

as safety related, issued by the Vehicle Safety Systems subcommittees, or reference

by NHTSA policies29 were classified as being safety-related.

Preprocessed text was converted into numerical features using the bag of words

model. The values outputted from this model were then converted into term frequency-

inverse document frequency (TF-IDF) values. The sample was then randomly split

into a training set (67%) and a test set (33%) to build and assess the accuracy of the

binary text classification model in determining if text was safety-related or not. A

naïve Bayes classifier, decision tree classifier, and maximum entropy classifier were

evaluated against one another. The naïve Bayes generated the highest accuracy at

0.80 and was the classification approach used.

28https://www-sae-org.libproxy.mit.edu/servlets/works/customer.do
29A list of documents that were referenced by different US government departments was provided

to the author by the SAE.
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Additional Difference-in-Differences Analyses

This section employs recent advances in econometrics to conduct additional analyses

of the difference-in-differences (DiD) approach used in the main analysis of the paper.

The lack of pre-trends —“parallel trends” —is a core assumption of the DiD

approach, and in the main analysis, I employ the standard approach of using an

event study plot to visually inspect for pre-trends in Figure 3-5. I find that for the

periods leading up to the treatment, the introduction of the SID metric, the estimated

coefficients are statistically insignificant from zero. Recent research however, finds

that this approach may be low powered and unable to detect violations of the parallel

trends assumption (Freyaldenhoven et al., 2019; Roth, 2020). For instance, a key

concern could be that there are pre-trends that fit within the confidence interval

(and are similarly powered to evidence of no pre-trends).

To mitigate this concern, I employ a diagnostic approach following Roth (2020)

in which I visualized different hypothesized linear violations of pre-trends, and com-

puted the chance that it would be detected as significant. The general approach

was to hypothesize the case where fatality rates were on the decline even absent

the introduction of SID, and modifying the parameters (e.g. slope) to get closer

to the estimates in the event study plot until power had been minimized. Figure

3-7 presents the hypothesized trend with the case with the lowest power found in

my analysis (in red). The blue dashed line plots the expected estimates conditional

on passing the pre-trends test under the hypothesized trend. In this extreme case,

the probability that the event study analysis would detect a significant pre-trend is

0.325.
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Figure 3-7: Analysis of event study versus potential, hypothesized pre-trends

104



Appendix Tables and Figures

Table 3.11: Summary of main data sources

Data Source Provider Data Type

Crashworthiness Data System NHTSA Representative, random sample
of US passenger vehicle crashes

Ward’s Automotive Yearbook WardsAuto Industry publication covering
specifications for US-sold vehicles

Mergent Archives FTSE Russell Historical data on public companies
including annual report filings

PatentsView USPTO US patent applications and grants,
inventors, organizations and locations

Factiva Dow Jones US media news articles
covering new products and product launches
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Table 3.12: Characteristics of the main crash sample

Variable Raw Count

Number of accidents-vehicle-occupants 22,715
Number of accidents 17,216
Number of unique occupant types 16,573
(age, height, weight, male, race)

Number of unique vehicle types 3,308
(make, model, model year)

Number of unique makes 46
(e.g. Toyota, Lexus, Daihatsu )

Number of unique parent firms 24
(e.g. Toyota Motor Corporation)

Note: The data source is the NHTSA National Auto-
motive Sampling System (NASS) Crashworthiness Data
System (CDS) for years 1991-2007. The CDS is a rep-
resentative and random sample drawn from all crashes
in the United States that (1) are police-reported, (2) in-
volve a harmful event of property damage or personal
injury, (3) involve a towed passenger car, light truck,
or van on a traffic way. Field research teams with
trained crash investigators at 24 geographic sites collect
data from police reports, and conduct on-sight investi-
gations and occupant interviews. For the main analysis,
the sample restricts the full CDS data to (1) occupants
seated in the front left and second left position, (2) in
passenger cars, (3) in side crash accidents.
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Table 3.13: Post double selection lasso variables

Double-selected Variables Post-Lasso OLS Coefficient

Age2 0.00001
(0.00000)

Height2 -0.000001
(0.00000)

Height 0.00036
(0.00019)

Number of Vehicles -0.01760
(.00276)

Alcohol Involved 0.04707
(0.00796)

Drugs Involved 0.07950
(0.01357)

No Seat Belt 0.03516
(0.00589)

To supplement the analysis using accident, vehicle and oc-
cupant controls selected by the author, the post double
selection lasso (PDS-Lasso) method developed by Belloni
et al. (2014) was used. PDS-Lasso uses lasso to optimally
select regression control variables to mitigate over-fitting
and omitted variable bias. This involves three steps: (1)
a lasso regression with the dependent variable, Fatality, as
the outcome of interest, and all potential control variables;
(2) a lasso regression with the focal independent variable,
Post-SID Car, as the outcome of interest and all poten-
tial controls; and (3) a linear regression with Fatality on
Post-SID Car including the control variables in the lasso re-
gressions that had non-zero coefficients. The potential set
of regressors included 102 variables, including all of those
listed in Table 3.1 and the squares of those variables, as well
as additional controls such as the number of vehicles, num-
ber of occupants, pregnancy, day of the week, speed limit,
drive race dummies, weather condition dummies, impact
angle, vehicle body type, other vehicle’s weight, number of
lanes, etc.
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Table 3.14: Estimates for Equation 3.1 using probit regression

1(Fatality)

(1) (2) (3) (4)

Post-Metric Car -0.2927*** -0.3308*** -0.3193*** -0.3194***
(0.0807) (0.0760) (0.0847) (0.0849)

Make ⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes
Accident Controls Yes Yes Yes
Occupant Controls Yes Yes
Vehicle Controls Yes

Observations 20,523 20,523 20,523 20,523

This table presents estimates of �1 from equation 3.1 using a probit regres-
sion, with the progressive addition of the controls outlined in Table 3.1.
Column 1 has make-model fixed effects, model year fixed effects and acci-
dent year fixed effects. Column 2 adds accident controls. Column 3 adds
occupant controls. Column 4 adds occupant controls. Standard errors clus-
tered at the make level are reported. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.15: Estimates for Equation 3.2 using probit regression

1(Fatality)

(1) (2) (3) (4)

Post-Metric Car -0.2672*** -0.3062*** -0.2990*** -0.2991***
(0.0821) (0.0780) (0.0851) (0.0853)

Post-Metric Car -0.5499*** -0.5207*** -0.4323** -0.4327**
⇥ SID-like Occupant (0.1783) (0.1857) (0.1926) (0.1927)

Make ⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes
Accident Controls Yes Yes Yes
Occupant Controls Yes Yes
Vehicle Controls Yes

Observations 20,523 20,523 20,523 20,523

This table presents estimates of �1,�3 from equation 3.2 using a probit re-
gression, with the progressive addition of the controls outlined in Table 3.1.
Column 1 has make-model fixed effects, model year fixed effects and accident
year fixed effects. Column 2 adds accident controls. Column 3 adds occupant
controls. Column 4 adds occupant controls. Standard errors clustered at the
make level are reported. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.16: SID-like Occupants results are present for both genders

1(Fatality)

(1) (2) (3) (4)
Controls Accid-Occ-Veh PDSLasso

Sample Male Female Male Female

Post-Metric Car -0.0212* -0.0142 -0.0225* -0.0138
(0.0112) (0.0141) (0.0120) (0.0139)

Post-Metric Car⇥ SID-like Occupant -0.0274* -0.1192*** -0.0252* -0.1162***
(0.0145) (0.0282) (0.0144) (0.0283)

Mean 0.040 0.0327 0.040 0.0327
Make⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Make⇥ Model Year FE Yes Yes Yes Yes
Accident Year FE X X
Observations 11,228 11,109 11,228 11,109

This table presents estimates of �1,�3 in equation 3.2 in subsamples split by gender.
Columns (1) and (2) include accident, occupant, and vehicle controls. Columns (3) and
(4) includes the PDSLasso controls described in Table 3.13. Vehicle make ⇥ model, vehicle
make⇥ model year and model year fixed effects are included in all regressions. Standard
errors are clustered at the vehicle make level. *p<0.1, **p<0.05, ***p<0.01
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Table 3.17: Estimates for Equations 3.1 and 3.2 using injury severity

1(Fatality)

(1) (2) (3) (4)

Post-Metric Car -0.0857*** -0.0781*** -0.0797*** -0.0732***
(0.0294) (0.0287) (0.0289) (0.0284)

Post-Metric Car -0.1629** -0.1360*
⇥ SID-like Occupant (0.0714) (0.0714)

Make ⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accid-Occ-Veh Controls Yes No Yes No
PDS-Lasso Controls No Yes No Yes

Observations 22,435 22,435 22,435 22,435

This table presents estimates of Equations 3.1 and 3.2 using ordered probit re-
gressions. Columns 1 and 3 include the controls outlined in Table 3.1. Columns
2 and 4 use post-double selection LASSO controls. Standard errors clustered at
the make level are reported. Injury severity is an ordinal variable ranging from 0
to 4 based on police reports. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.18: Equation 3.2 using alternative definitions of SID-like Occupant

1(Fatality)

(1) (2) (3) (4) (5)
SID-like Occupant 0.7xSD 0.6xSD 0.5xSD 0.4xSD 0.3xSD

Post-Metric Car -0.0160** -0.0156** -0.0158** -0.0158** -0.0160**
(0.0067) (0.0066) (0.0066) (0.0066) (0.0066)

Post-Metric Car ⇥SID-like Occupant -0.0312*** -0.0516*** -0.0547*** -0.0547*** -0.0507***
(0.0110) (0.0099) (0.0122) (0.0122) (0.0127)

Mean 0.036 0.036 0.036 0.036 0.036
Make⇥ Model FE Yes Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes Yes
Make⇥ Model Year FE Yes Yes Yes Yes Yes
Accident Year FE Yes Yes Yes Yes Yes
Observations 22,551 22,551 22,551 22,551 22,551

This table presents estimates of �1, �3 in equation 3.2 using alternative definitions of an occupant
being SID-like. Columns (1) through (5) define SID-like Occupant as X ⇥ � where X varies from 0.3
to 0.7. The standard deviation, �, of occupant height is 10.168 cm and occupant weight is 17.855 kg
(as summarized in Table 3.1).
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Table 3.19: CEM estimates for Equations 3.1 and 3.2

1(Fatality)

(1) (2)

Post-Metric Car -0.0188*** -0.0175**
(0.0054) (0.0054)

Post-Metric Car -0.0419**
⇥ SID-like Occupant (0.0156)

Observations 21,604 21,604

This table presents estimates of Equations 3.1
and 3.2 using coarsened exact matching. *p<0.1,
**p<0.05, ***p<0.01.
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Table 3.20: Results robust to narrowing sample period by vehicle age

1(Fatality)

(1) (2) (3) (4) (5) (6)
 15 years  10 years  5 years

Post-Metric Car -0.0198*** -0.0176*** -0.0195*** -0.0177*** -0.0120* -0.0108
(0.0044) (0.0045) (0.0047) (0.0046) (0.0071) (0.0072)

Post-Metric Car -0.0600*** -0.0487*** -0.0349*
⇥ SID-like Occupant (0.0117) (0.0163) (0.0198)

Make⇥ Model FE Yes Yes Yes Yes Yess Yes
Model Year FE Yes Yes Yes Yes Yes Yes

Observations 21,471 21,471 17,504 17,504 11,028 11,028

This table presents estimates of Equations 3.1 and 3.2 with the sample being progressively restricted
further by vehicle age (computed as Accident Year - Model Year). All regressions include the controls
outlined in Table 3.1. Standard errors are clustered at the make level. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.21: Results robust to narrowing sample by model years

1(Fatality)

(1) (2) (3) (4)
1985-2005 1990-2000

Post-Metric Car -0.0188*** -0.0171*** -0.0198*** -0.0187***
(0.0048) (0.0048) (0.0055) (0.0055)

Post-Metric Car -0.0475*** -0.0358**
⇥ SID-like Occupant (0.0125) (0.0161)

Make ⇥ Model FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Observations 19,616 19,616 11,341 11,341

This table presents estimates of Equations 3.1 and 3.2 with the sample being
progressively restricted further by the model years of the vehicles. All regres-
sions include the controls outlined in Table 3.1. Standard errors are clustered
at the make level. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.22: Results robust to narrowing sample to major redesigns

1(Fatality)

(1) (2) (3) (4)

Post-Metric Car -0.0249*** -0.0236*** -0.0256*** -0.0244***
(0.0066) (0.0067) (0.0078) (0.0079)

Post-Metric Car -0.0431* -0.0404*
⇥ SID-like Occupant (0.0241) (0.0237)

Make ⇥ Model FE Yes Yes Yes Yes
Observations 5,062 5,062 5,062 5,062

This table presents estimates of Equations 3.1 and 3.2 narrowing the subsam-
ple to only vehicles in the produced in the year they are redesigned. Columns
1 and 3 include the controls outlined in Table 3.1. Columns 2 and 4 use post-
double selection LASSO controls. Standard errors clustered at the make level
are reported. Injury severity is an ordinal variable ranging from 0 to 4 based
on police reports. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.23: Summary of main and alternative samples

Sample Sampling Method Type of Accidents Occ Height/Weight Avail Primary Data Source
NASS-CDS Random within Police-reported, Harmful event, All Occupants On-site investigations,

representative stratum Passenger/Van/Light Vehicle interviews, police reports

FARS Universe 1+ Fatality Occurs Driver Only (1998-) Police reports, coroner/death
certificates, state DOT data

FARS-LP Fatality in other vehicle

GES Random within Police-reported, Harmful event None Police reports
representative stratum

GES-BRFSS Imputed for drivers
NASS-CDS, FARS and GES are abbreviations for the National Automotive Sampling System - Crashworthiness Data System, Fatality
Analysis Reporting System, and General Estimates Survey System respectively. All three data sources are compiled and distributed
by the National Highway Traffic Safety Administration, part of the US Department of Transportation. NASS-CDS is the main sample
used in this study. FARS-LP refers to the sample restriction approach developed by Levitt and Porter (2001) to mitigate selection
issue of fatality-only accidents bering recorded in the FARS sample: focusing only on 2-passenger car accidents in which a fatality
occurs in the other vehicle. GES+BRFSS refers to the use of the Behavioral Risk Factor Surveillance System (BRFSS) compiled and
distributed by the Centres for Disease Control and Prevention. The BRFSS was used to impute the height and weight of the driver
based on the accident year and the age, region, race and sex of the driver using the mi package in Stata.
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Table 3.24: Descriptive statistics for the FARS and GES sample

Sample FARS (N= 28065) GES (N = 393918)

Variable Mean Std. Dev. Min. Max. Mean Std. Dev. Min. Max.

Accident Controls
Accident Year 2003 3.053 1998 2008 2000 4.621 1990 2006
Accident Month 6.711 3.401 1 12 6.573 3.469 1 12
Speed Limit 49.339 11.252 0 75 40.674 11.219 0 75
Wet Conditions 0.174 0.379 0 1 0.204 0.403 0 1
Dark Conditions 0.308 0.461 0 1 0.142 0.349 0 1
Daytime 0.692 0.461 0 1 0.858 0.349 0 1
Alcohol Involved 0.079 0.269 0 1 0.013 0.114 0 1
Drugs Involved 0.014 0.118 0 1 0.002 0.043 0 1

Occupant Controls
Age 37.845 16.141 2 96 38.033 16.773 1 102
Male 0.704 0.457 0 1 0.601 0.49 0 1
Height (cm) 174.033 10.006 91.44 213.36 172.279 10.135 140.619 213.973
Weight (kg) 78.932 18.402 25.397 225.85 78.407 18.32 22.693 168.686
No Seat Belt 0.156 0.363 0 1 0.067 0.25 0 1

Vehicle Controls
Model year 1995 6.293 1966 2009 1993 6.521 1974 2007
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Table 3.25: Estimates for Equation 3.1 using alternative samples

1(Fatality)

(1) (2) (3)
FARS-LP FARS-S GES-BRFSS

Post-Metric Car -0.0131*** -0.0140** -0.0015***
(0.0024) (0.0064) (0.0002)

Mean 0.0362 0.0656 0.0042
Make ⇥ Model FE Yes Yes Yes
Accident Year FE Yes Yes Yes

Years Covered 1998-2007 1998-2007 1991-2007
Observations 28,055 7,754 39,3918

The table presents estimates of �1 in equation 3.1 both
in the main sample and alternative data sources. Column
1 uses the FARS sample following the Levitt and Porter
(2001) approach. Column 2 further restricts the FARS
sample to vehicles that are struck in a side crash. Column
3 uses the GES sample with occupant heights and weights
generated using multiple imputation using BRFSS data.
Standard errors are clustered at the make level.
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Table 3.26: Estimates for Equation 3.2 using alternative samples

1(Fatality)

(1) (2) (3)
FARS-LP FARS-S GES-BRFSS

Post-Metric Car -0.0127*** -0.0127** -0.0010***
(0.0023) (0.0064) (0.0002)

Post-Metric Car -0.0313* -0.1123* -0.0048***
⇥ SID-like Occupant (0.0172) (0.0666) (0.0018)

Mean 0.0362 0.0656 0.0042
Make ⇥ Model FE Yes Yes Yes
Accident Year FE Yes Yes Yes

Years Covered 1998-2007 1998-2007 1991-2007
Observations 28,055 7,754 39,3918

The table presents estimates of �1, �3 from equation 3.2 both
in the main sample and alternative data sources. Column 1
uses the FARS sample following the Levitt and Porter (2001)
approach. Column 2 further restricts the FARS sample to
vehicles that are struck in a side crash. Column 3 uses the
GES sample with occupant heights and weights generated
using multiple imputation using BRFSS data. Standard er-
rors are clustered at the make level.
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Table 3.27: Falsification test with frontal and rear accidents

1(Fatality)

(1) (2) (3) (4)

Post-Metric Car -0.0000 -0.0000 -0.0020 -0.0020
(0.0120) (0.0118) (0.0121) (0.0119)

Post-Metric Car 0.0004 -0.0011
⇥ SID-like Occupant (0.0233) (0.0231)

Make ⇥ Model FE Yes Yes Yes Yes
Make ⇥ Model Year FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accid-Occ-Veh Controls Yes No Yes No
PDS-Lasso Controls No Yes No Yes

Observations 20,514 20,514 20,514 20,514

This table presents a falsification test that estimates Equations 3.1 and
3.2 on a sample of non-side (frontal and rear-end) accidents. Columns
1 and 3 include the controls outlined in Table 3.1. Columns 2 and 4
use post-double selection LASSO controls. Standard errors clustered
at the make level are reported. *p<0.1, **p<0.05, ***p<0.01.
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Table 3.28: Falsification test with seats unaffected by SID

1(Fatality)

(1) (2) (3) (4)

Post-Metric Car 0.0004 0.0001 0.0002 -0.0001
(0.0153) (0.0154) (0.0162) (0.0163)

Post-Metric Car 0.0184 0.0163
⇥ SID-like Occupant (0.0316) (0.0317)

Make ⇥ Model FE Yes Yes Yes Yes
Make ⇥ Model Year FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accid-Occ-Veh Controls Yes No Yes No
PDS-Lasso Controls No Yes No Yes

Observations 20,514 20,514 20,514 20,514

This table presents a falsification test that estimates Equations 3.1 and
3.2 on a sample of occupants in seats unaffected by SID. Columns 1
and 3 include the controls outlined in Table 3.1. Columns 2 and 4
use post-double selection LASSO controls. Standard errors clustered
at the make level are reported. *p<0.1, **p<0.05, ***p<0.01.

122



Table 3.29: Falsification test using non-fatal injury as the outcome

1(Fatality)

(1) (2) (3) (4)

Post-Metric Car -0.0199 -0.0203 -0.0210 -0.0218
(0.0135) (0.0135) (0.0138) (0.0138)

Post-Metric Car 0.0253 0.0294
⇥ SID-like Occupant (0.0268) (0.0285)

Make ⇥ Model FE Yes Yes Yes Yes
Make ⇥ Model Year FE Yes Yes Yes Yes
Model Year FE Yes Yes Yes Yes
Accid-Occ-Veh Controls Yes No Yes No
PDS-Lasso Controls No Yes No Yes

Observations 22,551 22,551 22,551 22,551

This table presents a falsification test that estimates Equations 3.1 and
3.2 using non-fatal major injury as the dependent variable. Columns
1 and 3 include the controls outlined in Table 3.1. Columns 2 and 4
use post-double selection LASSO controls. Standard errors clustered
at the make level are reported. *p<0.1, **p<0.05, ***p<0.01.
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Figure 3-8: Example of Grand Marquis specifications

Car Specification Pre-SID Post-SID
Width (in) 77.8 78.2
Weight (lb) 3796 3958
Length (in) 212 212
Height (in) 56.8 56.8
Liter 4.6 4.6
Number of Doors 4 4
Model Year 1996 2000
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Chapter 4

Nothing Happens in a Vacuum: Can

a Dominant Metric be Shifted?

Abstract

Metrics and measurement standards play an important role in shaping the pace and
direction of innovation. Yet in some cases, the dominant metric an industry orients
itself around may lose, over time, some of its original ability to advance a field, or
even introduce negative externalities. This paper studies whether it is possible to
move firms away from a metric that has become a key focusing device for R&D
and competition within their industry, and channel investments in R&D towards a
new policy direction. To address this question, the paper takes advantage of a policy
shock to estimate the effects of the "removal" of a metric (watts) within the European
vacuum cleaner industry. While the objective of policymakers was to shift firms away
from focusing on watts and improve energy efficiency, results show that there was
no discernible change in the latter. Instead, the paper finds a severe crowding out
effect, with firms reducing their R&D investment in the focal area affected by the
policy. This relationship is larger in magnitude when accounting for patent quality,
suggesting that this reduction is not simply driven by a lower number of fringe
patents. Moreover, firms are not simply stopping their R&D investments but rather
moving their effort towards adjacent product categories that are still unregulated.
Taken together, the paper introduces the idea that removing a dominant metric in
a given industry is not sufficient, possibly because of strong path dependency, to
induce meaningful investments in a novel, desired direction. Combining the removal
of a metric with additional support for lowering the costs of adopting an alternative
metric is more likely to lead to meaningful, long term changes in innovation.
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4.1 Introduction

In 1912, a pharmaceutical chemist in Detroit was working on a challenge: a popular

muscle salve needed to scale in production, but some batches causing burns. His

solution was to propose a novel measurement approach to standardize the amount

of capsicum content in the salve formulation (Scoville, 1912). This chemist was

Wilbur Scoville, and his Scoville Heat Units (SHU) became the dominant metric

for gauging chili pepper pungency. SHU diffused widely within pharmacology as

well as other domains such as agriculture, food sciences and culinary arts (Gmyrek,

2013). Despite its issues of human subjectivity and sensory sensitivity,1 SHU evolved

to become not only a unit for assessing existing peppers, but also a key target in

the development of new pepper varietals. Furthermore, although alternative, more

accurate measures of capsicum content have been developed (e.g. high performance

liquid chromatography), SHU has persisted through the years, continuing to be the

predominant approach for pepper pungency (Collins et al., 1995). This SHU example

highlights that metrics can improve both understanding and execution of scientific

innovation. Yet at the same time, there is a path dependent nature of measurement,

in which a ‘dominant’ metric can persist in an industry for sustained periods of time

(Anderson & Tushman, 1990; Utterback, 1994). Furthermore, in some cases, the

metric may misdirect attention and effort towards continually improving upon it,

potentially generating negative externalities (Kerr, 1975; Espeland & Sauder, 2007;

Sauder & Espeland, 2009). This raises the question of whether it is possible to move

1SHU is measured through a ortholeptic test in which the pepper extracts are diluted until a
panel of experts no longer taste spiciness.
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innovation away from a metric that has become a key focusing device for R&D within

an area?

This paper explores this question by estimating the impact of a unique policy

intervention intended to shift an industry away from its dominant metric. In the

early 2010s, European Union policymakers examined the state of domestic energy

consumption and made a perceptive observation: while the watt was heavily used

within the domestic vacuum cleaner industry to define performance, the actual abil-

ity of a vacuum cleaner to clean dust was poorly approximated by this de facto

measurement standard. Moreover, in theory, the industry had access to alternative,

less energy-consuming metrics (such as airflow and air watts) that would have been

better able to capture cleaning performance. This led to a policy intervention tar-

geted at eliminating any incentives for improving on watts by setting a cap on the

input power that a vacuum cleaner manufactured or traded in Europe could have.

Importantly, this was a meaningfully low cap that surprised those in the industry:

at the time the cap was proposed, over 40% of the vacuum cleaners on the mar-

ket exceeded the cap. Moreover, the regulators planned to introduce a further 44%

reduction in the cap within 3 years from the first policy change. This regulatory

intervention however, did not fully account for the dual role that the watts metric

served in the industry: (1) on the one hand, it was driving firms towards producing

end products with higher energy consumption, but (2) on the other hand, it was

also a figure of merit that the industry had organized its innovation strategies and

invested its R&D capabilities around. As a result, while the policy focused on ad-

dressing the former, it was not clear whether it could have additional side effects on
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the long run innovative behavior of the firms involved. In particular, because the

cap essentially removed the ability to rely on watts to differentiate their products,

it left industry participants in a state where they either had to search for and adopt

a new metric, or otherwise adapt their product strategy to an alternative source of

differentiation in the changed market conditions.

Using the universe of domestic cleaning granted patent applications (2005-2019),

the paper shows that while the policy did reduce the wattage of end product vacuum

cleaners available on the market, this did not translate into more firm innovation

using energy efficient, alternative metrics. In other words, there is no discernible

difference in the number of efficiency-related patents before versus after the shock.

Instead, the policy is followed by a sharp drop in the number of vacuum cleaner-

related patents, and this result is driven by firms that heavily rely on metrics in

their patent applications (as defined before the policy is introduced). This relation-

ship is larger in magnitude when accounting for patent quality, suggesting that this

reduction is not simply driven by a lower number of fringe patents. Moreover, firms

exhibit a shift from patenting in vacuum cleaners (the category affected by the policy)

towards unregulated non-vacuum floor cleaning categories. This evidence suggests

that rather than investing in search for and adapting to a new metric to organize

innovation within vacuum cleaners, the affected firms sought out related areas where

they could still make progress along the dominant metric they were accustomed to.

Taken together, the paper suggests that while removing a dominant metric within

an industry may induce changes in the end product market, this is mainly out of

compliance. This type of cap-based policy does not necessarily shift innovative be-
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havior in the desired direction in the long term. Instead, firms can avoid searching for

an alternative metric to orient innovation around by simply switching to an adjacent

domain where they are able to retain the existing metric and continue innovating

within their familiar structures. Policymakers or other principals seeking to induce

an actual shift in innovation must therefore account for the costs of these two choices

to firms, and identify ways in which the former can be made more attractive than

the latter.

4.2 Related Literature

This paper relates to the literature on standards and innovation. Specifically, dom-

inant metrics are cognate with de facto standards as they are non-rivalrous goods

that arise without an explicit originator or sponsoring agency (David & Greenstein,

1990). Despite substantial theoretical attention to the determinants of these stan-

dards —such as path dependence (David, 1985), increasing returns to adoption (Far-

rell & Saloner, 1985; Katz & Shapiro, 1994), inertia (Katz & Shapiro, 1986), and

invisibility in downstream markets (Bowker & Star, 1999; Timmermans & Epstein,

2010) —there has been relatively little empirical attention on whether and how pol-

icymakers or managers might endeavor to change them once ensconced.2 Assuming

the conditions the literature identifies exist, how can they be ameliorated? If the

dominant metric is obsolete or a suboptimal standard, can simple simple external

2While this paper focuses on an informal measurement standard, the findings in this article
complement that of Blind et al. (2017) which finds that in cases with uncertainty, regulations can
have a negative impact on innovation relative to formal standards; as well as Simcoe (2012) which
finds that politicization and distributional conflicts can interfere with standards development.
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interventions be leveraged to shift the field away from it?

This paper also relates to the commensuration and reactivity literature, where

the introduction of measurement can distort incentives, induce strategic behavior,

and eliminate diversity (Sauder & Espeland, 2009; Mazmanian & Beckman, 2018; Es-

peland et al., 2016; Berman & Hirschman, 2018; Muller & Muller, 2018). Introducing

quantification to a domain can cause the individuals or organizations that constitute

the measurand to react in response to the metric itself, distorting the information

that measurement can provide. As Espeland & Sauder (2007) find for instance, in

the setting of law school rankings, the reactive behavior to progress along the met-

ric led to persistent, reinforcing changes in who would get admitted and what was

prioritized in teaching, shaping what law schools defined themselves as. Relatively

less explored in this literature are later-stage settings when a quantitative metric

is already in place, and participants within the domain have already invested time,

resources and in some cases, their identities around the metric. Exploring settings

with a long-term, dominant metric can shed light on how the consequences of com-

mensuration might weigh against the stability in competition dynamics and identity

that it creates. It also allows for the exploration of whether there is heterogeneity in

how individuals or organizations respond towards efforts to move away from it.

More broadly, this paper contributes to our understanding of the determinants of

the direction of scientific and technological innovation (reviewed in Cohen (2010) and

Di Stefano et al. (2012)). Dominant metrics can moderate technological opportu-

nity, influencing an organization’s ability to understand, assimilate and exploit new

information (Cohen & Levinthal, 1989). Dominant metrics can also be interpreted
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as a microfoundation of incumbent inertia, leading to rigidity in how organizations

approach research and development (Leonard-Barton, 1992; Nelson, 1985; Gilbert,

2006).

4.3 Setting

4.3.1 Vacuum Cleaner Technology

Since the first horse-drawn vacuum cleaners trotted through the streets of England

at the turn of the century, they attracted great interest and demand for automating

a laborious and pervasive domestic cleaning task. Since that time, this demand has

fueled countless iterations in product design and distribution, leading to it being

along with refrigerators and microwaves, one of the most commonly owned home

appliances. For instance, the stock of vacuum cleaners in EU households was 279.5

million in 2010, or roughly 2 vacuums for every 3 people, with annual sales in the

range of 35 million new vacuum cleaners per year (Viegand Maagoe (2018)). Simi-

larly, in the United States the stock was 113.4 million (roughly 1 vacuum for every

3 people), with annual sales of 26 million units (Energy EPA (2011)).

As a basic primer, modern consumer vacuum cleaners can generally be classified

as (1) corded (in an upright or cylinder form factor) or (2) cordless (in an upright

and/or handheld, and more recently, robotic form factor). At the basic level, vac-

uum cleaners consist of an intake nozzle, an electric motor and fan, a dust receptacle

(bagged or bagless) and an exhaust port. Air and debris is pulled in through the

intake nozzle by the suction pressure created by the motor and fan as it spins. As
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this passes through the dust receptacle, the debris is contained and clean air then

continues to be pulled through, exiting through a filtered exhaust port.3 The perfor-

mance of a vacuum cleaner, in terms of how effectively it is able to clean particulate

debris from a surface, therefore is a function of multiple factors and can be gauged

by different metrics: the input power of the motor (e.g. watts is common to Europe,

amps is more frequently used in the US, horsepower and joules are sometimes used);

airflow (e.g. cubic feet per minute, air watts, metres per second); suction (e.g. water

lift); bag filtration efficiency (e.g. particulate micron size). 45 In addition, there is a

measure of dust pick-up performance which can be derived from running evaluations

of vacuum cleaners in a controlled environment with a set mass of artificial partic-

ulates. Dust pick-up is computed as the ratio of the mass of particulates picked

up in the vacuum cleaner relative to the total particulates. For this metric to be

used beyond small samples however requires within-firm or industry standards on

the characteristics of the test environment.6

While the exact path is unclear, watts emerged as a key metric upon which vac-

uum cleaners were and largely continue to be compared against one another despite

the fact that it represents only the amount of power input that goes into the vacuum

cleaner motor.7 While the average vacuum cleaner had an input power of 500W in

3https://news.samsung.com/global/a-look-inside-your-vacuum-how-it-works
4In addition is portability (e.g. weight), maneuverability (e.g. nozzle width, hose and cable

length), and noise (e.g. decibels) that are more secondary factors in overall vacuum cleaner perfor-
mance.

5https://www.ristenbatt.com/xcart/Vacuum-Cleaner-Performance-Aspects.html
6See International Electrotechnical Commission 60312 for further details
7One possible channel is that the earliest versions of vacuum cleaners relied on steam engines

for which horsepower is the standard performance metric. Another channel is that vacuum cleaner
marketers amplified a “marketing war” centered on input power that fueled the emphasis on im-
provements along watts.
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the 1960s, this had increased to 2000W in the 2010s (Reisch et al. (2010)). More-

over, this pace of watts improvements followed an upwards trend: a study of retail

catalogues found that within only a 5 year period from 2003 to 2008, the maxi-

mum wattage increased by 200W for bagged upright and 700W for cylinder vacuums

(Reisch et al. (2010)). Emphasis on watts was strong enough such that European

advertising regulators clarified in 2010 that “the product with the highest input watt

motor may not have the best suction power. ‘Power’ claims that refer to a product’s

motor size e.g. ‘powerful 1500W suction’, should not be based on input wattage, be-

cause consumers are unlikely to interpret such claims in terms of power input only

(CAP (2010)).8

4.3.2 Vacuum Cleaner Industry

Although the vacuum cleaner industry originated at the turn of the century from

firms solely focused on producing vacuums —for instance, Kirby, The Hoover Com-

pany, The Eureka Company initially only produced household upright and canis-

ter vacuum cleaners —as the industry matured, diversification became the strate-

gic norm especially after World War II as household appliance purchases increased

(Gantz, 2012). This has continued to this day where the modern vacuum cleaner

industry is made up of firms that produce other home appliances, most commonly

those with technological overlap such as floor care devices or implements for different

surfaces (e.g. carpets, linoleum), air purifiers, and small motor-powered appliances
8The US EnergyStar had a similar analysis that “Many [vacuum cleaner] brands feature amper-

age rating prominently on product packaging and associate it with cleaning performance prompting
consumers to pick models that have the highest amperage rating. Wattage ratings are more frequently
used in European markets.” See EPA (2011) for more details.
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such as hair dryers, blenders, and food processors.

There is a mixture of firms types including original equipment manufacturers

(OEMs) that design, manufactures and assembles their products and components

in facilities under their ownership (e.g. Miele fully owns its vacuum cleaner man-

ufacturing plants in Germany, China, and the Czech Republic9), OEMs that sub-

contract with contract manufacturers (e.g. Bissell and others design their products

and then contract with Flextronics, a leading contract manufacturer for floor care

products10), and ODMs which design and develop vacuum cleaners and sell them

as white labeled products to marketing distributors (e.g. KingClean). The vacuum

cleaner industry has seen several contract manufacturers transition into becoming

ODMs, joint ventures and some OEMs as well (e.g. LEXY). Intellectual property is

generally developed and owned by OEMs and ODMs.

4.3.3 European Union policy

Motivated by a desire to decrease energy consumption within domestic appliances

and consumer electronics, the European Union created the Ecodesign and Energy

Labelling Regulations task force for proposing new regulations to encourage more

energy-efficient product designs and information disclosures to consumers, and more

broadly, reduce Europe’s household energy consumption. Specific to vacuum cleaners

in 2013, the task force passed directive No 666/2013 (commonly referred to as the

“Ecodesign power limit”) which set limits on the number of watts a vacuum cleaner

9See a full description of each factory here: https://www.miele.com/en/com/production-sites-
2157.htm

10https://origin-sc.flex.com/industries/consumer-home-and-lifestyle/floor-care
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manufactured, traded and sold in the EU could employ for its input power: within 1

year, the maximum power would be set at 1600 watts; and within 3 years, it would

be set at 900 watts.11

While improvements in the environmental-friendliness of domestic appliances

could have been anticipated,12 the timing and the magnitude of the decrease was

not. In particular the maximum wattage threshold was a significant reduction from

the industry norms. When this directive was proposed, roughly 40% of vacuum

cleaners on the market exceeded 1800W. This spurred lobbying from vacuum cleaner

firms, and negative media coverage in affected European countries.

A subsequent report commissioned by the EU to evaluate the policy found that

firms did comply and wattage decreased accordingly in vacuum cleaners on the mar-

ket: “in only a few years, the Ecodesign and Energy Labelling Regulations have rev-

olutionised the vacuum cleaner market...it is seen from the available market data

that the energy consumption of all regulated types of vacuum cleaners have decreased

around 40% from introduction of the Ecodesign and Energy Labelling Regulations in

2013 to 2016.” (Viegand Maagoe (2018)). The policy evaluation relied exclusively

on retail market data to compare the average input power on the market against

projected counterfactuals. This was then translated into overall European vacuum

cleaner energy consumption, finding an overall decline from 78 kWh/year in 2010

11There was also a cap on the noise level of the vacuum in terms of decibles emitted in operation,
however this was labeled a “second tier” requirement and was not significantly lower than industry
offerings at the time. In addition, there was additional non-metric requirements for a set minimum
level for dust pick up, the vacuum hose durability and operational motor life time (Viegand Maagoe
(2018)).

12Given the 2007 European Union commitment to reduce domestic carbon emissions by at least
20% by 2020, and the passing of similar regulations with maximum wattage caps in incandescent
light bulbs and standby power wattage for plasma televisions
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to 34 kWh/year in 2016 for domestic cylinder vacuum cleaners. It bears mention

that the derivation of energy consumption relies on a constant set of assumptions

including on a more macro level (e.g. constant purchasing behavior in terms of unit

replacement, average number of vacuums purchased per household); and more micro

such as the number of strokes vacuumed over a surface (2 double strokes) and num-

ber of cleaning events per year (50 cycles per year). This suggests that any changes

in consumer vacuuming behavior for lower wattage vacuums are not accounted for

(e.g. increasing strokes out of perceived need to do so even if cleaning effectiveness

is unchanged).

The official policy evaluation report centers on the end products available in the

retail market for consumers. This is consistent with the mission to reduce domestic

energy consumption in Europe, but it does not consider the broader impact of curbing

a dominant metric on firms’ innovation trajectories. The focus of this study is to

fill that void, and explore how the policy impacted not just end products, but more

upstream innovation as well.

4.4 Data and Methods

This section describes the data and sample construction used to examine the impact

of the metric cap on firm innovation between 2005 and 2019. To unpack how firms

respond, the analysis is conducted the firm-year level, with treatment determined by

the concentration of patenting activity prior to the policy intervention. This section

describes the main data set used, outlining the approach to treatment assignment
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and variable construction.

4.4.1 Patent Applications Data

The primary data set used for this study comes from the full corpus of patent appli-

cations that were filed with the US Patent and Trademark Office (USPTO) between

2005 and 2019. These are applications that eventually were granted a patent, and

capture innovations that have reached a level where they could be produced or com-

mercialized as a corporate invention or product.

The USPTO uses the Cooperative Patent Classification (CPC) Scheme to assign

patents to the most relevant technology class(es). The CPC taxonomy is made of

5 levels consisting of a section (e.g. A -“ Human Necessities”), class (A47- “Furni-

ture; Domestic Articles or Appliances; Coffee Mills; Spice Mills; Suction Cleaners in

General”), subclass (A47L-“Domestic Washing and Cleaning”), main group (A47L5-

“Structural features of vacuum cleaners”), and subgroup (A47L5/02-“User-driven air

pumps or compressors”). The main sample focuses on the 533 subgroups within the

subclass A47L “Domestic Washing or Cleaning; Suction Cleaners in General” which

covers machines or implements used for household cleaning. Patents were assigned

based on their primary subgroup classification. The subgroup definitions were used

to classify patents as being related to domestic upright and canister vacuum clean-

ers. These patent subgroups are referred to as “domestic vacuums” in this paper and

cover innovations that are treated by the policy. Two examples are A47L9/2831 -

“Motor parameters e.g. motor load or speed” and A47L9/2842 - “Suction motors or

blowers.”
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Subgroups were also used to further classify patents into two additional categories.

This included those related to floor care that were not domestic upright or canister

vacuum cleaners such as A47L 7/0004 - “Suction cleaners adapted to take up liquids,

e.g. wet or dry vacuum cleaners” and A47L11/28 - “Floor-scrubbing machines, motor-

driven”. Patents were also classified into domestic cleaning that did not involve floor

care or vacuum cleaners (e.g. A47L 1/05-“Cleaning windows, Hand apparatus with

built-in electric motors”). The full list of subgroups classified into each of these

categories is in the Appendix.

4.4.2 Treatment Assignment

Given that firms in the vacuum industry largely hold innovation portfolios of sev-

eral different products, treatment assignment was identified based on their ex ante

concentration of innovative effort. To measure this, patent applications filed in the

years preceding the policy were collected for all firms. This was used to identify

the subgroups that each firm was patenting in prior to the policy. The average firm

in this period patented in 3.95 different subgroups. Firms that patented the most

frequently in domestic vacuums prior to the cap were identified as treated by the

policy. These are firms that had heavily invested in innovation in domestic vacuum

cleaners before the unexpectedly strict cap was announced. The main control group

in the analysis are firms where the most frequently patented subgroup prior to the

cap was within A47L, but was not in domestic vacuum cleaners. These are firms with

innovation capabilities that are related to domestic vacuums, but were relatively less

affected by the cap as it did not affect their area of focus. To make this concrete with
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examples following this approach, Bissell, Miele and the Hoover Company are firms

that are assigned to the treated group as domestic vacuums make up their highest

share of prior patents. Kaercher, Bosch and Rug Doctor are firms assigned to the

control group as they patent in related subgroups, but allocated relatively less of

their ex ante innovative effort to domestic vacuums.

4.4.3 Variable Construction

To understand more about the quality and content of the patents in the applications

data, patent citations and summary text for each patent were collected. In order

to gauge firms’ responses against the policymakers intentions, the text data was

analyzed to determine the extent to which a patent involved the use of watts (or a

cognate metric), as well as the extent to which it contributed to energy efficiency.

These classifications of the patents then allowed for the firms’ orientation towards

metrics, watts and energy efficiency in their innovation portfolios.

The patent summary text was then processed using the text classifier Quantulum

to parse and identify all written and numeric quantities (e.g. ‘20’ or ‘twenty’). This

also allowed for the extraction of the associated metric (e.g. ‘watt’ or ‘W’) and the

broader entity the metric is linked to on Wikipedia (e.g. ‘watt’ and ‘ampere’ both

belong to the entity ‘power’.) To hone in on scientific and technical metrics related to

innovation, time, count, percentage, and financial metrics were excluded. Together,

this analysis of the patent summary text was used to create two variables. First, a

simple indicator variable was used to classify whether the patent had an above the

median number of uses of metrics in its summary text. Second, an indicator was
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used to classify whether the patent directly referenced watts (or its associated plural

and unit representations), or a related power measure in the summary text (e.g. volt,

ampere, horsepower or joule). Finally, the summary text was used to measure the

number of keywords related to improvements in energy efficiency.13 This was used to

code a dummy indicating whether a patent had above the median energy efficiency

related text. Together, the summary text provided an indication of whether a patent

was measurement-focused, involved the use of watts, and whether it was related to

improvements in energy efficiency.

The classification of patents based on their metric content was also used to de-

termine if firms had invested in developing metrics-driven innovation capabilities or

not. An variable for whether a firm is a publicly traded firm covered in Compustat

was created to proxy for firm size and resources following the approach in Autor

et al. (2020b).

4.4.4 Summary Statistics

Together, the sample used in the analysis is a panel spanning 2005 to 2019 in patent

application years (Table 1). There are 492 firms observed (132 treated) resulting

in 7,380 firm-year observations. Of the 492 firms in the sample, about 41% were

producing relatively more metrics-focused patents, and 9% were public or econom-

ically significant private firms that were covered by Compustat. The average firm

applied for 6.4 patents per year (that eventually were granted), corresponding to 24%

patents that were related to domestic vacuums, 16% patents related to non-vacuum
13This was a straightforward search for the the word stems of improved and efficiency, along with

synonyms; as well as ratio metrics related to the policy intention such as cubic feet per metre.

140



floor care per year, and the remainder towards other domestic cleaning.

4.4.5 Empirical Strategy

The analysis relies on a standard difference-in-differences approach to estimate the

impact of the policy on firm innovation:

Patentsi,t = ↵ + �Treatedi ⇥ Postt + �i + �t + ✏i,t (4.1)

where Patentsit captures the patent innovation activity from firm i in year t. Given

the skewed nature of patent output, the dependent variables are log transformations

of patent counts. To understand whether innovation could be shifted from a dominant

metric through a cap, the analysis examined the impact on three types of innovation

outcomes: energy efficiency-related patents, domestic vacuum patents, and watts-

related patents. As discussed above, Treatedi represents the treated group of firms

that are expected to respond to the cap on watts. The dummy Postt equals 1 for

each year after the passing of the policy in 2013. As such, � is the main coefficient

of interest. �i and �t are firm and year fixed effects respectively. Standard errors are

clustered at the firm level in all regressions.
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4.5 Results

4.5.1 Energy Efficiency Innovation

As a first step of the analysis, the data was used to understand whether the policy

achieved its intended objective of increasing investments in energy efficiency-related

innovation. Table 2 presents the difference-in-differences estimates in equation 1

where Patentsit is the logged count of energy efficiency-related (herein EE) patents

from firm i in year t. Column 1 begins with examining any changes to EE patenting

within domestic vacuum cleaner patent subgroups. Column 2 follows by expanding

this to examine changes to EE patenting in all domestic cleaning patent subgroups,

including vacuum cleaners, other floor care, and other household cleaning. Column 3

takes into account firms’ full patenting activity. Across these three levels, there is no

discernible change to energy-efficiency related patenting. This suggests that in the

short term (within 6 years) following the introduction of the cap, the policy did not

induce the desired shift in innovation effort towards energy efficiency among domes-

tic vacuum firms, relative to the control group of non-vacuum household cleaning

firms. Column 4 presents an estimate of the effect on overall patenting and finds

no statistically significant change. Together, these estimates suggest that firms did

not shift on the extensive margin towards energy efficiency innovation, nor did they

change their level of overall patenting. This raises the question of whether there was

a discernible firm response to the cap in terms of innovation.
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4.5.2 Domestic Vacuum Cleaners

To examine this question, the analysis hones in on domestic vacuum cleaning patents.

Column 1 of Table 3 presents estimates of equation 1 where Patentsit is the logged

count of domestic vacuum cleaner patents from firm i in year t. It shows that after

the introduction of the cap in 2013, domestic vacuum cleaner patents in treated firms

experienced an average decrease of 7.8% per year relative to control firms. Column

2 presents an estimate that is similar in magnitude and direction (-9.9%) when

the dependent variable is transformed using the inverse hyperbolic sine function

rather than logged (allowing it to retain zeroes). To understand if this decline is

driven by low-impact, excess patenting, Column 3 employs a proxy for patent quality

using patent citations. The observed decline of 20.3% in citation-weighted patents

provides confidence in the interpretation that patenting activity in domestic vacuums

underwent a meaningful decline after the policy.

To unpack the year-specific differences between treatment and control firms after

the cap, the following equation was estimated:

Patentsi,t = ↵ +
X

t

�tTreatedi ⇥ Yeart + �i + �t + ✏i,t (4.2)

where the treated group is interacted with a set of indicator variables, Yeart corre-

sponding to a particular year relative to the introduction of the policy in 2013.

Figure 4-1 presents the estimates of �t in a graph, along their 95-percent confi-

dence intervals. Before the cap, the estimated coefficients are not statistically dif-

ferent from those in 2013. After, the estimate is lower in the two years following
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the cap (than the preceding period), with the magnitude of the decline increasing

and becoming statistically significant after two years. This suggests that there was

a lag period between the policy and the firms’ innovation response. This might have

happened if firms had some patents in the pipeline and took some time to adjust.

Running the baseline regression in Table 3 dropping the observations in 2013, 2014

and 2015 finds a large and significant decline of 12.1% in domestic vacuum patents

(-24.4% in citation-weighted) in the years 2016 and after relative to the pre-period.

To understand if this decline was observed across all firms, or if there were hetero-

geneous firm responses, the sample was split into firms that had ex ante higher level

of measurement incorporated into their innovation approaches. Firms that have

a metrics-orientation may have specific incentive schemes, equipment, and human

capital for making progress along the dominant metric, making it more difficult for

them to engage in exploratory activities or pivot towards a different direction. Table

4 presents the estimates from this approach, essentially splitting Column 1 and 3

of Table 3 into firms that were relatively more measurement-oriented versus less so

prior to the policy. Column 1 shows that metric-oriented firms reduced their do-

mestic vacuums patents by 10.7%. In contrast, firms that were less oriented around

measurement experienced a smaller, and statistically insignificant decline of 5.2%.

Using logged citation-weighted patents as the dependent variable in columns 3 and

4 finds a consistent pattern in which metrics-oriented firms see a larger decline in

domestic vacuums. This suggests it is not simply low-quality firms that drop out

because of the costs of switching from watts, but meaningful innovation contributors

that are affected as well. Together, this suggests that the cap on watts reduced
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domestic vacuum cleaner patents for all firms, but had a greater effect on those

that demonstrated a greater ex ante emphasis on measurement in their patenting

approach.

Table 5 replicates the above analysis with a more narrowly defined dependent

variable as domestic vacuum patents that explicitly mention watts or a related power

metric in their patent summary text. Column 1 replicates Table 3 Column 1, finding a

3% reduction in watts-related domestic vacuum patents. Columns 2 and 3 replicate

Table 4 Columns 1 and 2 respectively, similarly finding that there is a decline in

patents among all treated firms, with a higher decrease among metric-oriented firms

(-4.3%) versus less measurement focused firms (-1.9%). The estimates are smaller in

magnitude, which is in line with the use of the more conservative variable, but follow

the general pattern of a decrease that is driven mainly by metric-oriented firms. The

overall stability of the observed decline in patents increases the confidence in the

interpretation of these estimates as responses to the cap.

4.5.3 Alternative Adjacent Areas

The previous sections find that there is a decline in domestic vacuum cleaner patents,

yet at the same time, overall patent rates remain stable. This suggests that firms are

not simply pausing and reassessing their innovation strategies, but rather potentially

substituting their efforts in a different direction. For instance, a low cost way to

respond to the policy would be to continue the extant innovation approach with the

dominant metric in an adjacent, unregulated area.

To examine this, equation 1 was estimated with a focus on understanding the
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impact on innovation in in floor care excluding domestic upright and canister vac-

uum cleaners. Floor care technologies and products such as wet dry vacuums, floor

scrubbers and buffers, handheld vacuums, steam mops, and sweepers constitute an

adjacent area of innovation, with significant overlap in many facets of design and

engineering but are not affected by the cap on watts. Table 6 presents the findings

from this analysis. Column 1 finds that there is a positive, statistically significant

increase in (non-vacuum) floor care patents by 2.9% from treated firms after the

policy intervention. Column 2 finds that the estimate is stable when using the in-

verse hyperbolic sine function instead of a log transformation. Column 3 shows that

there is a positive but statistically insignificant increase when patents are weighted

by citations.

Finally, to explore whether these are the same types of firms that are driving

this switch towards unregulated, adjacent floor cleaning, Table 7 splits the sample

into metric-oriented firms versus non-metric firms (following the approach in Table

4). The estimates in Columns 1 and 2 show that as with the decrease in vacuum

cleaner patents, it is primarily metric-focused firms that are driving the increase.

Columns 3 and 4 show that metric-oriented firms produce high impact, high quality

patents in the floor care space (+7.9%) relative to those that rely less explicitly on

measurement.

To summarize the overall results, after the cap on watts was introduced for domes-

tic vacuum cleaners in 2013: (1) innovation in energy efficiency remained unchanged;

(2) firms decreased innovation both in terms of quantity and quality in the target area

of the policy: domestic vacuum cleaners; and (3) firms shifted innovation towards
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the adjacent area of floor care that was unaffected by the policy. Taken together,

this suggests that setting a cap on a dominant metric does not engender exploration

of new, alternative metrics. It is possible that it is too soon to observe a change

in innovation towards energy efficiency and/or for a new ‘figure of merit’ to emerge

in the vacuum cleaner industry. With this caveat in mind, in the short term, the

entrenched metric can continue to shape innovation as firms find ways to circumvent

the constraints introduced by the policy.

4.6 Conclusion

Convergence on a measurement can determine how innovation is produced, rewarded

and defined. At the same time, these dominant metrics can, possibly because of

incentives and path dependency, lead to settings in which firms and individuals

become entrenched in focusing their attention and resources on the metric. This

can be of concern when the metric becomes obsolete or is found to create negative

externalities. This raises the question of whether it is possible to redirect innovative

effort away from the dominant metric?

This paper studies this question by examining the impact of a simple and un-

expected policy intervention, the use of a cap on the prevailing metric of watts,

on domestic vacuum cleaners in 2013. This paper finds that shifting the dominant

metric using such an approach is not straightforward, and a cap may not induce

meaningful change. Within the domestic vacuum cleaner industry, the cap on led to

no significant change in innovation towards energy efficiency improvements, which
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was the intention of the policy. Instead, the cap significantly decreased patenting

activity within domestic vacuum cleaners by 7.8-9.9% (and a 20% decrease when

considering patent quality). This had a larger effect on firms that placed a greater

emphasis on measurement in their innovation approach prior to the cap. Moreover,

without a clear incentive to bear the costs of adopting an alternative metric, these

types of interventions may lead firms towards strategic behaviors. A policy that only

targets one area may simply shift innovative effort to continue advancement along

the dominant metric in adjacent and unregulated areas. This paper finds evidence

in support of such a channel, with firms increasing their innovative output in the

unregulated area of non-vacuum cleaner floor care.

Overall, this paper introduces the idea that dominant metrics can be entrenched

in an industry. While in principle, reducing the rewards to advancing along a domi-

nant metric could lead firms to reducing effort in that realm, considering the costs of

exploring a new domain makes the reallocation of innovative effort more ambiguous.

In settings such as this one, in which a metric has become a key dimension of strate-

gic competition, removing the metric through an external cap did reduce effort in

the targeted area but rather than shifting it in line with the intentions of the policy,

it led to skirting of the cap.

While this paper examines only one policy lever, it suggests that policymakers

or managers seeking to displace a dominant metric should carefully consider the

scope of any interventions they introduce. Because dominant metrics are often the

main frame that innovators use to define progress, even in the absence of pecuniary

incentives, there can be inertia in moving away from it. Potential strategies that
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can be explored include combining a cap with concerted efforts to lower the costs of

exploring alternative metrics, for example through research, forums for collaboration

across firms, and funding for managing the transition. Another approach would be

to forgo the cap, and instead, increase the incentive to work on alternative metrics

by mandating their disclosure. This effectively elevates a metric to a dominant one

through external intervention. At the time of writing, EU policymakers seem to be

moving in this direction and is in the process of passing a standardized label with

multiple metrics related to vacuum cleaner energy efficiency that must be disclosed.

If passed, future research on whether this ameliorates the effects of the cap could

be a worthwhile endeavor. This paper leaves several other open question for future

research. Because this paper explores an understudied facet in prior work of exploring

metrics as a type of informal standard, it would be valuable to understand whether

the findings hold in less mature industries where firms may be more experimental.

In addition, understanding whether consumers become similarly entrenched in using

dominant metrics in their valuation of products could shed light on the mechanisms

behind policy circumvention. Ultimately, deepening our understanding on dominant

metrics in firms is fruitful as it can allow for active management of this driver of

innovation.
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Tables

Table 1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N
Patent Count 6.392 42.199 0 1,185 7,380
Domestic Vacuum Patents 0.236 1.796 0 58 7,380
Floor Cleaning Patents 0.158 0.825 0 19 7,380
Treated 0.254 0.435 0 1 7,380
Post 0.4 0.49 0 1 7,380
Year 2012 4.321 2005 2019 7,380
Metric Firm 0.413 0.492 0 1 7,380
Large Firm 0.09 0.286 0 1 7,380

This table provides information on the main sample. The unit of analysis is
the firm-year level. The data source is the USPTO PatentsView dataset on
patent applications in the CPC subclass A47L (Domestic Washing or Clean-
ing; Suction Cleaners in General) for years 2005-2019. Vacuum and Floor
Cleaning patents are assigned based on the subgroup definitions. The treated
group is defined as firms who patented primarily in vacuum cleaners before
the policy intervention. This is defined as A47L being among the most fre-
quent subclass the firm patented in. Post-treatment is defined as the years
after 2013. Metric firms are defined as those that patent an above-median
amount of metric-focused patents ex-ante. Metric-focused patents are those
for whom their patent summary referenced an above-median number of sci-
entific or technical metrics. Large firms are defined as those that are publicly
listed and covered by Compustat.
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Table 2: Energy efficiency-related patents do not see change

(1) (2) (3) (4)
DV: Log(EE Vacuums) Log(EE Floor Care) Log(EE All) Log(All Patents)

Post x Treated -0.005 -0.004 -0.011 -0.003
(0.004) (0.004) (0.020) (0.041)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 7,380 7,380 7,380 7,380

This table shows the relationship between being treated by the policy and energy efficiency-related
patents. The dependent variable is the logged count of vacuum patents in that are energy efficiency
related in domestic vacuum cleaners (Column 1), floor care (Column 2) and domestic cleaning over-
all (Column 3). Column 4 examines the impact on the logged count of overall patents. Post refers
to years after the policy was passed in 2013, and Treated are the firms that were patenting dispro-
portionately ex ante in the affected patent subclasses. The equations are estimated using a fixed
effects regression model. Standard errors clustered at the firm level are reported in parentheses.
(*=p < 0.10, **=p < 0.05 ,***=p < 0.01)

Table 3: Vacuum patents decline after the removal of the metric

(1) (2) (3)
Log(Vacuum Patents) asinh(Vac) Log(CW Vac)

Post x Treated -0.080*** -0.103*** -0.233***
(0.024) (0.030) (0.055)

Firm FE Yes Yes Yes
Year FE Yes Yes Yes
N 7,380 7,380 7,380

This table shows the relationship between being treated by the policy
and vacuum cleaner patents. The dependent variable is a measure of
innovation in vacuum cleaners and is defined as the logged count of vac-
uum patents, the inverse hyperbolic sine of patent count, and the logged
citation-weighted patents in Columns 1, 2, and 3 respectively. The equa-
tions are estimated using a fixed effects regression model. Standard errors
clustered at the firm level are reported in parentheses. (*=p < 0.10, **=p
< 0.05 ,***=p < 0.01)
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Figure 4-1: Effect of removing watts on patenting in vacuums

The dots in the above plots are the coefficient estimates from the regression of logged vacuum
cleaner patent counts on interaction terms between being a treated firm times the distance in years
from the policy along with year and firm fixed effects. The shaded bars are the 95 percent confidence
intervals.
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Table 4: Metric-focused firms driving the decline in vacuum patents

(1) (2) (3) (4)
DV Log(Vacuum Patents) Log(Cite-wgt Vac Pat)

Metric Non-Metric Metric Non-Metric

Post x Treated -0.113*** -0.053 -0.276*** -0.197***
(0.034) (0.034) (0.095) (0.063)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 3,045 4,335 3,045 4,335

This table shows the relationship between being treated by the pol-
icy and vacuum cleaner patents split by metric focused firms versus
non-metric focused firms. A metric-focused firm is defined as having
an above the median number of patents with scientific and technical
metrics mentioned in its patent summary text ex ante of the policy.
The equations are estimated using a fixed effects regression model.
Standard errors clustered at the firm level are reported in parentheses.
(*=p < 0.10, **=p < 0.05 ,***=p < 0.01)
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Table 5: Decline persists to only looking at watts-related vacuum patents

(1) (2) (3)
DV: Log(Watts-related Vacuum Patents)

All Metric Firms Non-Metric Firms

Post x Treated -0.030*** -0.044*** -0.019*
(0.009) (0.015) (0.011)

Firm FE Yes Yes Yes
Year FE Yes Yes Yes
N 7,380 3,045 4,335

This table shows the relationship between being treated by the pol-
icy and watts-related vacuum cleaner patents. The dependent vari-
able is a measure of metric-driven innovation in vacuum cleaners
and is defined as the logged count of watts-related vacuum patents.
Columns 2 and 3 split by metric focused firms versus non-metric fo-
cused firms respectively. A metric-focused firm is defined as having
an above the median number of patents with scientific and tech-
nical metrics mentioned in its patent summary text ex ante of the
policy. The equations are estimated using a fixed effects regression
model. Standard errors clustered at the firm level are reported in
parentheses. (*=p < 0.10, **=p < 0.05 ,***=p < 0.01)

Table 6: Shift in innovation towards related, unregulated floor cleaning category

(1) (2) (3)
Log(Floor Cleaning Patents) asinh(Floor Pat) Log(CW Floor Pat)

Post x Treated 0.029*** 0.038*** 0.028
(0.009) (0.012) (0.026)

Firm FE Yes Yes Yes
Year FE Yes Yes Yes
N 7,380 7,380 7,380

This table shows the relationship between being treated by the policy and non-vacuum, floor
cleaning cleaner patents. The dependent variable is a measure of innovation and is defined
as the logged count of floor cleaning patents, the inverse hyperbolic sine of patent count, and
the logged citation-weighted patents in Columns 1, 2, and 3 respectively. The equations are
estimated using a fixed effects regression model. Standard errors clustered at the firm level
are reported in parentheses. (*=p < 0.10, **=p < 0.05 ,***=p < 0.01)
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Table 7: Metric-specialized firms driving the shift

(1) (2) (3) (4)
DV Log(Floor Cleaning Patents) Log(Cite-wgt Floor Pat)

Metric Non-Metric Metric Non-Metric

Post x Treated 0.044*** 0.019 0.076*** -0.009
(0.014) (0.013) (0.026) (0.043)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 3,045 4,335 3,045 4,335

This table shows the relationship between being treated by the policy and
non-vacuum floor cleaning patents split by metric focused firms versus non-
metric focused firms. A metric-focused firm is defined as having an above the
median number of patents with scientific and technical metrics mentioned in
its patent summary text ex ante of the policy. The equations are estimated
using a fixed effects regression model. Standard errors clustered at the firm
level are reported in parentheses. (*=p < 0.10, **=p < 0.05 ,***=p < 0.01)
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