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Abstract

Using the earth’s magnetic anomaly field for navigation of aircraft has shown promise
as a viable alternative to the Global Positioning System (GPS) and other navigation
systems. An airborne magnetic anomaly navigation (MagNav) system collects real-
time magnetic field data and uses predetermined magnetic anomaly maps of the earth
to estimate location by aiding an inertial navigation system (INS), which continually
drifts. MagNav has the benefits of being passive, globally available at all times and
in all weather, and not reliant on sight of land or stars. Since the magnetic field
strength of a dipole decreases with the inverse cube of distance, MagNav is also
nearly unjammable. A corrupting magnetic source must be flying alongside or in the
aircraft to be effective.

This magnetic physics has other implications, though. In particular, the magnetic
components of the aircraft itself interfere with the desired magnetic measurements
that are required to navigate. Magnetic measurements are a linear superposition of
multiple magnetic fields. When the measured data contains magnetic signals from
both the (desired) earth field and (undesired) aircraft field, it is difficult to separate
the two signals. Previous work has proven the viability of MagNav using exceedingly
clean magnetic measurements taken by geo-survey aircraft. The most significant
outstanding challenge for real-world, operational MagNav is handling corruption of
the measured magnetic signal by magnetic sources from aircraft components.
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In this thesis, several approaches to enable high-accuracy MagNav, despite receiving
corrupted magnetic field measurements, are explored. These approaches can be split
into four groups: linear aeromagnetic compensation, nonlinear aeromagnetic com-
pensation, online aeromagnetic compensation, and covariance-adaptive filtering. The
first two approaches evaluate different models that aim to improve on the state-of-
the-art linear model used for removing aircraft interference. The last two approaches
focus on making adjustments within the navigation algorithm in real-time based on
the (corrupted) data provided. Performance is compared against the state-of-the-art
compensation and navigation approach, which show that these advanced linear and
nonlinear models can benefit MagNav when only corrupted magnetic field measure-
ments are available. Each model and additional tools for aeromagnetic compensation
and airborne magnetic anomaly navigation are publicly available in the MagNav.jl
Julia software package.

Thesis Supervisor: Alan S. Edelman
Title: Professor of Mathematics
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Nomenclature

Acronyms and Abbreviations

AGL above ground level

DFT discrete Fourier transform

DRMS distance root mean square

EKF extended Kalman filter

FFT fast Fourier transform

FOGM first-order Gauss-Markov

GPS Global Positioning System

HAE height above ellipsoid

IGRF International Geomagnetic Reference Field

IMU inertial measurement unit

INS inertial navigation system

IR improvement ratio

L-BFGS limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm

LLA latitude, longitude, and altitude

LSTM long short-term memory

MAD magnetic anomaly detection

MagNav airborne magnetic anomaly navigation
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ML machine learning

MPF marginalized particle filter

MSE mean squared error

NAMAD North American Magnetic Anomaly Database

NN (artificial) neural network

PLSR partial least squares regression

RBPF Rao-Blackwellized particle filter

RLS recursive least squares

RNN recurrent neural network

SciML scientific machine learning

SGL Sanders Geophysics Ltd.

SLAM simultaneous localization and mapping

SNR signal-to-noise ratio

UKF unscented Kalman filter

USAF United States Air Force

USGS United States Geological Survey

UTM Universal Transverse Mercator

WDMAM World Digital Magnetic Anomaly Map

WGS World Geodetic System

WMM World Magnetic Model
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Chapter 1

Introduction

Using local variations in the earth’s magnetic anomaly field for navigation of aircraft

has shown promise as a viable alternative to the Global Positioning System (GPS)

and other navigation systems. The intent is not to replace GPS entirely, which is

often accurate to less than 10 m and available worldwide [1], but to instead have an

alternative navigation method in case GPS becomes unavailable. Airborne magnetic

anomaly navigation (MagNav) has been shown to achieve accuracies on the order of

10’s of meters, which almost reaches typical GPS position accuracy [2]. MagNav has

the benefits of being passive, globally available at all times and in all weather, and

not reliant on sight of land or stars.

Furthermore, MagNav is nearly unjammable, which is particularly important for

military applications, such as United States Air Force (USAF) missions in GPS-

denied environments [3]. GPS jamming is done by simply overpowering the GPS

signal with an adversarial signal at the same frequency as GPS. The jam-proof ability

of MagNav stems from the basic physics of a magnetic dipole. The strength of a

magnetic field decreases proportionally with the inverse cube of the distance from
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the magnetic source [4]. This means a corrupting magnetic field would have to be

near an aircraft to be effective. This physics has other implications – the magnetic

components on an aircraft itself can interfere with the desired magnetic measurement.

An airborne magnetic anomaly navigation system collects real-time magnetic field

data and uses predetermined magnetic maps of the earth to estimate location by aid-

ing an inertial navigation system (INS). However, the received magnetic measurement

is actually a linear superposition of multiple magnetic fields. The most significant

outstanding challenge for operational MagNav is handling corruption of the earth’s

magnetic signal by magnetically active aircraft components. When the measured

data contains magnetic signals from both the (desired) earth field and (undesired)

aircraft field it is difficult to separate the two signals. This work explores several

approaches for high-accuracy navigation despite receiving corrupted magnetic field

measurements.

This chapter provides background on the earth’s magnetic field and how it is

measured. The central challenge this thesis aims to address is then discussed. Finally,

the thesis contributions and outline are presented.

1.1 Earth’s Magnetic Field

The total geomagnetic field of the earth is a linear superposition of fields from several

sources. For this work, the three sources considered are the core field, anomaly field,

and temporal variations, each of which are discussed individually in this section.
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1.1.1 Core Field

The dominant source is the core field, or main field, which is shown in Figure 1-1.

Typical values at the surface of the earth are between 20,000 and 60,000 nT – more

than 95% of the total geomagnetic field. Thus, the magnetic north direction that a

compass points is almost entirely due to the core field. The core field is caused by

the rotation of conductive fluids deep within the earth. This fluid rotation generates

electrical fields, which in turn generates magnetic fields.

Figure 1-1: Earth’s core field. Modified from [5].

A widely used model of the core field is the International Geomagnetic Reference

Field (IGRF) [6]. More specifically, the IGRF represents a set of coefficients that are

used in a spherical harmonic model. The spherical harmonic coefficients span from

degree 1 to 13, indicating that the model covers the first 13 wavenumbers and is only

able to model long wavelengths of over 3000 km. Thus, the frequency content of the

core field is not suitable for MagNav with 10’s or even 100’s of meters of accuracy.
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Note that the core field changes on timescales of months to millions of years, so the

IGRF is typically revised every five years to account for this variation. Using the

IGRF model, the core field is known to a high degree of accuracy for a given position

and time. An alternative to the IGRF is the World Magnetic Model (WMM), which

is used by the United States Department of Defense and other government agencies.

Only the IGRF is used in this work.

1.1.2 Anomaly Field

The second geomagnetic source is the anomaly field, also known as the crustal field.

The magnetic fields generated in the anomaly field are due to permanent or induced

magnetization of rocks in the earth’s crust, which is the upper portion of the litho-

sphere, the rigid outer layer of Earth [7]. Portions of the crust at a temperature less

than the Curie point of magnetite or other magnetic minerals can be magnetized by

the core field through induction. This is the primary source of magnetization in the

crust [8]. Permanent magnetization, otherwise known as remanent magnetization,

results when minerals are magnetized by induction and then cool below the Curie

temperature, but remain magnetized.

Local variations in the anomaly field, as shown in Figure 1-2, can provide posi-

tional information. The anomaly field is also stable over geologic time spans, only

varying by 1 nT or so per year. Thus, the anomaly field may be used for navigation,

even at high altitudes of more than 10 km, though navigation accuracy is decreased.

However, it is important to note that the anomaly field is approximately 2 orders

of magnitude weaker than the core field, which must be accounted for along with

temporal variations.

22



Figure 1-2: Magnetic anomaly field over the continental United States. Modified
from [9].

1.1.3 Temporal Variations

While the core and anomaly geomagnetic fields are generated internally, temporal

variations are generated externally. This component of the total magnetic field is due

to contributions from the ionosphere, magnetosphere, and coupling currents between

the two, as shown in Figure 1-3. These three contributions are often collectively

termed “space weather.”

When the ionosphere is ionized by solar radiation, an electrically conducting

plasma (charged particles) is created in which electrical currents can flow [4]. At-

mospheric tidal winds, mostly caused by day-night differential solar heating or the

gravitational attraction of the moon, cause the plasma to move relative to earth’s

magnetic field. This movement creates electrical currents, which creates magnetic

fields. Additional electrical currents are caused by equatorial and polar electrojets,

which are discussed in [11] in greater depth.
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Figure 1-3: Upper atmosphere magnetic sources. Modified from [10].

The magnetosphere is a region in space where plasma (i.e. solar wind from the

sun) interacts with the earth’s magnetic field. This interaction causes aurora near

the northern or southern poles. A high amount of interaction is referred to as a

geomagnetic storm. Similar to the ionosphere, relative movement of the plasma

and earth’s magnetic field creates flowing electrical currents, which creates magnetic

fields. Electrical currents, and thus additional magnetic fields, are also created by

the coupling of the ionosphere and magnetosphere.

Temporal variations are often called the “diurnal” component of the total mag-

netic field, as they change from day to day. This component can be estimated at

a given position and time using ground-based reference measurements taken at a

stationary base station within the flight region [11]. Alternatively, if base station

measurements are unavailable, temporal variations can be modeled within the navi-

gation algorithm itself, which is discussed in section 5.3.

24



1.1.4 Summary of Components

Table 1.1: Nominal magnitudes of earth’s magnetic field components. These values
were estimated from flight data recorded near Ottawa, Ontario, Canada during the
summer of 2020 at an altitude of 800 m. The spatial variation is 2𝜎 during a 1 hr
flight covering 240 km (150 mi).

Component Magnitude Spatial Variation Temporal Variation
Core field 50,000 nT 100 nT 1 nT/week
Anomaly field 100 nT 200 nT 1 nT/year
Temporal variations 10 nT 5 nT 10 nT/day

Shown in Table 1.1 are nominal values for each of the components of the earth’s

magnetic field. Clearly any measurement of the total field is dominated by the core

field. However, there is a high amount of spatial variation from anomaly field sources.

Not shown is the spatial frequency content of each component, which is generally

much greater for the anomaly field than the temporal variations or core field. The

anomaly field is also stable over time, while the core field and temporal variations vary

on shorter time scales, though these can be accounted for, as discussed in section 5.3.

1.2 Magnetic Measurements

Magnetic instruments were first used in the mid-1800s to discover (magnetic) ore de-

posits [12]. Later during World War II, magnetic anomaly detectors were developed

for aerial use in detecting submarines [4]. Geologists adapted these geomagnetic

survey instruments to map magnetic fields in the earth’s crust as an aid for un-

derstanding sub-surface geology and providing guidance for mineral exploration and

mining, magnetic anomaly detection (MAD), which continues to be done today. This

has led to the creation of magnetic anomaly maps of various sizes with various cell

spacings in areas across the world, which is discussed in section 2.3.
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This work considers two types of magnetic measurements and their associated mea-

surement sensors, scalar and vector, which are described in this section. There are

advantages and disadvantages to each, and together they make high-accuracy Mag-

Nav possible.

1.2.1 Vector Magnetometers

The earth’s total magnetic field �⃗�𝑡 is a vector field,

�⃗�𝑡 = 𝐵𝑥�̂�+𝐵𝑦 �̂� +𝐵𝑧𝑘 (1.1)

where 𝐵𝑥, 𝐵𝑦, and 𝐵𝑧 are magnitudes in the �̂�, �̂�, and 𝑘 orthogonal directions of

the chosen reference frame. Typically north, east, and down are used for airborne

navigation. A measurement of the total field vector is made by a vector magnetome-

ter. For airborne applications, fluxgate magnetometers are used, such as that shown

in Figure 1-4a. These instruments have absolute accuracies of ±100 nT or worse

typically [13]. The absolute error is due to the combined effect of calibration, tem-

perature, orthogonality, and alignment errors. Due to their low accuracy, fluxgate

magnetometers are not suitable as the primary magnetic measurement for naviga-

tion. However, they are important for MagNav since they are used for aeromagnetic

compensation, as discussed in section 3.1.
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(a) Goodrich 2801 fluxgate (vector)
magnetometer [14].

(b) Geometrics Model G-823A scalar
magnetometer [15].

Figure 1-4: Examples of vector and scalar magnetometers.

1.2.2 Scalar Magnetometers

The magnitude of the total magnetic field is

|�⃗�𝑡| =
√︁
𝐵2

𝑥 +𝐵2
𝑦 +𝐵2

𝑧 . (1.2)

A measurement of the total field magnitude |�⃗�𝑡| is made by a scalar magnetome-

ter. This measurement has lost some information, namely the direction of the total

field. However, modern atomic scalar magnetometers are sensitive and accurate.

Airborne geomagnetic surveys, along with MAD, extensively use optically pumped,

split-beam cesium vapor magnetometers [16, 17], such as that shown in Figure 1-4b.

These scalar magnetometers have high sensitivity, high absolute accuracy, and rapid

reading capability. For example, the Geometrics Model G-823A has a sensitivity of

approximately 0.02 nT at a 10 Hz sample rate and an absolute accuracy of ±3 nT

or less at any sample rate [15].
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1.3 Thesis Contributions and Outline

Airborne measurements made by scalar and vector magnetometers contain a linear

superposition of the earth field magnetic components (core field, anomaly field, and

temporal variations). However, they also contain magnetic interference from the

aircraft itself, which acts as corruption. The goal of aeromagnetic compensation,

discussed in detail in Chapter 3, is to remove this undesired magnetic source. This

is the central topic of this work.

Moreover, operational MagNav requires compensation of sources that have not

traditionally been compensated, such as control surfaces, lights, radios, etc. Measur-

ing small fluctuations in the magnetic anomaly field, which is used for navigation,

becomes difficult when nonlinear and non-stationary magnetic noise is caused by the

platform. There have been some recent attempts to use machine learning to improve

aeromagnetic compensation [18, 19]. Additionally, online aeromagnetic compensa-

tion has recently been introduced [20], but not fully explored, especially with machine

learning. With this in mind, the overall objective of this thesis is to evaluate multiple

approaches for dealing with moderate to heavily corrupted magnetic measurements.

Two overarching strategies are presented in this work, which are shown in Figure 1-5.

The first, a pre-processing strategy, is to improve the aeromagnetic compensation

model. The state-of-the-art linear model does not adequately handle stochastically

corrupted magnetic data as well as necessary for operational MagNav. This strat-

egy does not require a navigation algorithm, though one is still useful to see the

resulting navigation performance with a compensated magnetic signal. The second,

an end-to-end strategy, modifies the baseline navigation algorithm and possibly the

aeromagnetic compensation model as well.
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Figure 1-5: Two high-level strategies.

The overall research question is, “Which aeromagnetic compensation models and/or

navigation algorithms enable an operational aircraft to perform high-accuracy air-

borne magnetic anomaly navigation while using corrupted magnetic field measure-

ments?” The specific contributions of this work toward answering this question are:

1. MagNav.jl: a full suite of open-source tools for aeromagnetic compensation and

airborne magnetic anomaly navigation implemented in the high-performance

Julia programming language.

2. Development of linear aeromagnetic compensation models that outperform the

classical model in compensating magnetic sources that have traditionally not

been compensated.

3. Formation of neural network-based aeromagnetic compensation models that

outperform the classical model in compensating magnetic sources that have

traditionally not been compensated. This includes an assessment of which non-
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magnetometer sensors provide useful additional compensation information.

4. Introduction of online neural network-based aeromagnetic compensation mod-

els with integrated machine learning-based online learning.

5. Evaluation of the performance impact of using adaptive filtering for real-time

measurement noise covariance updating.

The remainder of this thesis follows the order of the contributions defined above.

Chapter 2 provides an overview of the publicly available Julia-based MagNav soft-

ware package, which was the primary software package used for this work. The

flight data and magnetic anomaly maps used in this work are also described here,

which are available in the package as well. Chapter 3 describes in detail the classical

aeromagnetic compensation model, then introduces additional linear aeromagnetic

compensation models. Chapter 4 presents multiple neural network-based aeromag-

netic compensation models. Additionally, multiple analyses of neural network design

and feature selection for these models are discussed. The models in both Chapters 3

and 4 are pre-processing strategies. Chapter 5 covers online aeromagnetic compen-

sation and adaptive filtering, both of which are end-to-end strategies. The effect of

specific aircraft maneuvers on filter observability is also evaluated. Finally, Chap-

ter 6 compares navigation performance across the different approaches, summarizes

the thesis findings and limitations, and proposes future work.
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Chapter 2

MagNav.jl and Data Sources

This chapter first describes the primary software package used for this work. This

is followed by a description of the flight data and magnetic anomaly maps used for

this work, which includes a description of the required map processing – an essential

step for high-accuracy airborne magnetic anomaly navigation (MagNav).

2.1 MagNav.jl

MagNav.jl is an open-source [21] software package for aeromagnetic compensation

and airborne magnetic anomaly navigation written in the Julia programming lan-

guage. It was the primary package used for this work. It was developed almost

entirely by the author, but it was largely based on work by Aaron Canciani at the

Air Force Institute of Technology [13]. This section describes the high-level func-

tionalities of the package, then provides a brief performance comparison with the

original MATLAB-based software from which it was developed.
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2.1.1 Functionalities

MagNav.jl contains a full suite of open-source aeromagnetic compensation and air-

borne magnetic anomaly navigation tools, which were developed out of necessity.

At the time of writing, no other open-source package of this type is available in any

programming language. It is largely designed to be robust for different flight datasets

and magnetic anomaly maps, though it is based on the dataset and maps described

in sections 2.2 and 2.3.

Figure 2-1: Four essential components of MagNav.

The MagNav.jl functionalities can be divided into the four essential components re-

quired for MagNav, which are repeated from Figure 1-5 in Figure 2-1. The first

essential component, sensors, is essentially obtaining high-quality flight data, includ-

ing magnetic and inertial data. This is largely well-established, though even higher

performing hardware, such as NV-based diamond magnetometers, are actively being

developed [22]. The flight data contained within MagNav.jl is described in sec-

tion 2.2. Likewise, the magnetic anomaly maps and navigation algorithms available

within MagNav.jl are described in sections 2.3 and 2.4, respectively. Finally, the aero-

magnetic compensation models, the primary contribution of this work, are described
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in detail in Chapters 3 and 4.

MagNav.jl also includes unit tests, which use the SafeTestsets Julia package [23].

This puts each set of tests into a separate module so that they do not effect each

other. Each test set can be evaluated completely independently.

2.1.2 Performance

Many of the functionalities in MagNav.jl are unable to be compared to the original

MATLAB-based software from which it was developed in a fair comparison, as the

structure of the packages have substantially diverged. However, some of the basic

functions are essentially the same, and compared in Table 2.1.

Table 2.1: Benchmark runtime comparison between MagNav.jl and MATLAB-based
software functions.

MagNav.jl
Function Function Description MagNav.jl

Runtime [s]
MATLAB
Runtime [s]

𝑚𝑎𝑝_𝑖𝑡𝑝 create linear map interpolation 0.19 0.19
𝑚𝑎𝑝_𝑖𝑡𝑝 create cubic map interpolation 0.73 0.19
𝑐𝑟𝑒𝑎𝑡𝑒_𝑖𝑛𝑠 create simulated INS data 5.2 6.6
𝑐𝑟𝑙𝑏 compute Cramér–Rao lower bound 5.9 14.4
𝑒𝑘𝑓 run extended Kalman filter 6.3 15.8

These timing benchmarks were determined with the @𝑏𝑡𝑖𝑚𝑒 function in Julia and

the 𝑡𝑖𝑚𝑒𝑖𝑡 function in MATLAB using a 64 GB 2019 MacBook Pro. The data

used is simulated flight data with 144668 samples (instances) and a 3195 × 7279

magnetic anomaly map. The function to create a cubic map interpolation takes

longer in MagNav.jl, but this is typically only used once prior to evaluating navigation

performance. When evaluating the more computationally-intensive functions, the

high performance of Julia shows with approximately 50% lower runtimes. Note that

neither package was particularly optimized for speed.
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2.2 Flight Data

This work uses data from two sets of data collections by Sanders Geophysics Ltd.

(SGL) using a Cessna 208B Grand Caravan, which is typically used by SGL for

geophysical surveys [24]. The first data collection occurred during the summer of

2020 near Ottawa, Ontario, Canada. This is the primary data source used in this

work, and the majority of the data is available within MagNav.jl via data artifact.

A total of 34 hr and 46 min of flight data was collected over the course of 9 flights.

Due to differences in available data fields, only 18 hr and 49 min of data from flights

1003-1007 is used. The second data collection occurred during the winter of 2021,

again near Ottawa with another Cessna 208B Grand Caravan. Some of this data is

used to test model performance on a different aircraft as well as for an analysis of the

effect of using specific aircraft maneuvers for filter observability in section 5.8. This

section provides more details on the flight data, which is followed by a description of

the training and testing data splits used in this work.

2.2.1 Flight Data Details

The flight data itself is rather unique, in that it contains a nearly perfect mag-

netic signal (minimal aircraft interference) from tail stinger measurements, as well as

four noisy magnetic signals (varying degrees of aircraft interference) from in-aircraft

measurements. These scalar measurements of the total field were generated from

five optically pumped, split-beam cesium vapor magnetometers. Four fluxgate mag-

netometers, one at the base of the tail stinger and three inside the aircraft, were

also used for vector measurements of the total field. The specific locations of the

magnetometers for flights 1003-1007 are listed in Table 2.2. The tail stinger scalar

measurement with classical Tolles-Lawson compensation, which is described in detail
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in section 3.1, is considered to be the truth magnetic signal. This is essentially the

value that would be used to generate a magnetic anomaly map during a geomagnetic

survey. Additionally, many portions of the flight data have a corresponding magnetic

anomaly map, which can be used with the Global Positioning System (GPS) position

data to form an alternative truth magnetic signal. These values are typically very

close (within 5 nT), since the anomaly field only changes roughly 1 nT/year.

Table 2.2: Flights 1003-1007 magnetometer locations. The reference point is the front
seat rail. 𝑥 is positive in the aircraft forward direction, 𝑦 is positive to port (left facing
forward), and 𝑧 is positive upward. Geometrics optically pumped, split-beam cesium
vapor scalar magnetometers are used. Bartington Mag-03 and Billingsley TFM100
fluxgate vector magnetometers are used.

Sensor Name Location 𝑥 [m] 𝑦 [m] 𝑧 [m]
Scalar Magnetometers

Mag 1 Tail stinger -12.01 0 1.37
Mag 2 Front cabin, aft of cockpit -0.60 -0.36 0
Mag 3 Mid cabin, near INS -1.28 -0.36 0
Mag 4 Rear cabin, floor -3.53 0 0
Mag 5 Rear cabin, ceiling -3.79 0 1.20

Vector Magnetometers
Flux A Mid cabin, near fuel tank -3.27 -0.60 0
Flux B Tail, base of stinger -8.92 0 0.96
Flux C Rear cabin, port -4.06 0.42 0
Flux D Rear cabin, starboard -4.06 -0.42 0

To provide a sense of the magnitude of corruption in the available scalar magne-

tometers listed in Table 2.2, an example of the uncompensated (raw) measurements

is shown in Figure 2-2. Mag 1 has nearly no corruption, and Mag 5 follows the trend

of Mag 1 well. Mag 4 is worse than Mag 5, but still largely matches the trend of

Mag 1. Both Mags 2 and 3 have significant corruption and could not be used for

MagNav without aeromagnetic compensation.
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Figure 2-2: Uncompensated scalar magnetometers from flight line 1007.02. Due
to their positions, the decreasing order of corruption of the uncompensated scalar
magnetometers is: Mag 1, Mag 5, Mag 4, Mag 3, Mag 2.

The scalar magnetometers can of course be compensated using a vector magne-

tometer, which is shown in Figure 2-3. Here, classical Tolles-Lawson aeromagnetic

compensation (described in section 3.1) was performed on each scalar magnetometer

using Flux A and the first calibration box of flight line 1006.04. Now Mags 3, 4,

and 5 follow Mag 1 quite well, but decreasingly significant errors still remain for the

respective magnetometers. Mag 2 performs worse after compensation, and is thus

not shown for clarity.

To emphasize the magnitude of corruption for each scalar magnetometer, the

standard deviations of the magnetic errors are provided in Table 2.3. These errors

are in reference to the magnetic anomaly map values along the flight path to give a
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Figure 2-3: Compensated scalar magnetometers from flight line 1007.02. Due to
their positions, the decreasing order of corruption of the compensated scalar mag-
netometers is: Mag 1, Mag 5, Mag 4, Mag 3, Mag 2. Mag 2 is not shown due to
significant corruption, more so than in Figure 2-2.

sense of the errors that would be fed into the navigation algorithm. Comparing to

the map values is not done in most of this work, since the tail stinger measurement

is considered to be a better “truth” measurement as it was measured at the same

time and avoids map errors. Mag 1 needs minimal compensation, while Mag 2

performs worse with compensation. The magnetic signal errors for Mags 3, 4, and

5 significantly decrease with compensation. Note that compensation performance is

fairly insensitive to which vector magnetometer is used.

The flight data also contains supplemental sensor data from the inertial navigation

system (INS), GPS position data, and auxiliary data from additional sensors, such

as voltages and currents. This additional data reflects some of the temporal changes
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Table 2.3: Aeromagnetic compensation errors for flight line 1007.02. The Tolles-
Lawson model is applied to each scalar magnetometer with each available vector
magnetometer. Errors [nT] are in reference to the map values along the flight path.

Scalar Mag Uncompensated Flux A Flux B Flux C Flux D
Mag 1 6.2 5.8 5.8 5.8 5.8
Mag 2 1389 46109 46038 45316 45330
Mag 3 1032 102 108 111 102
Mag 4 203 54 53 52 52
Mag 5 104 13 12 12 13

in the virtual magnetic dipole of the aircraft, which causes error in the magnetic

data that is not removed with classical Tolles-Lawson compensation. Currents were

measured using induction sensors (placed around wiring) rather than inline sensors

due to additional approvals that would be required. This means the currents sensors

may have picked up induced changes to wires’ electromagnetic fields that could have

been caused by other sources. The full listing of the available data fields is shown

in Appendix A. Note that when fitting or training any model, some data should

not be used, especially GPS position and tail stinger measurements. In general the

following data fields may be used: in-cabin magnetometer measurements and their

gradients, diurnal and IGRF magnetic estimates, INS data, voltages, and currents.

During the data collection flights, various events were purposely carried out to

cause temporal magnetic field disturbances during some flight lines. This included

control surface movements (e.g. flaps up/down), fuel pump on/off, radio use, and

movement of magnetic materials within the cabin. The flight patterns and altitudes

were also varied from flight to flight to provide a diverse dataset. The flight altitudes

were generally either at constant height above ellipsoid (HAE) or constant height

above ground level (AGL), otherwise known as flying “on drape.” The former uses

the altitude above an assumed perfect ellipsoid model of earth, while the latter uses
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the altitude on a drape surface above surface features, such as hills.

2.2.2 Fitting/Training Flight Data

As previously mentioned, primarily data from flights 1003-1007 is used in this work.

Up to approximately 11 hr and 52 min of this data was used for model training, which

is shown in Figure 2-4. This includes all flight data from flights 1003-1006, with the

exception of flight line 1003.05, which had a data anomaly, and the held out testing

data, which is discussed in section 2.2.3. For the neural network-based approaches,

typically 3/17 of the training data was used for validation check-pointing.

Figure 2-4: SGL training data flight lines. The total flight time was approximately
11 hr and 52 min.

However, not all of the flight data used for training is available for evaluating nav-

igation performance, which is shown in Figure 2-5. This is due to some flight por-

tions occurring outside of the available magnetic anomaly map areas, transitioning
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between the available magnetic anomaly maps, and significant (50 m or greater)

altitude variations. These issues can be resolved by expanding the map areas with

further geomagnetic surveying, merging the maps, and using a 3D map grid, respec-

tively. However, given that 7 hr and 23 min of the flight data used for training

remained navigation-capable, these solutions were not pursued and are considered

out of scope for this work. Note that merging magnetic anomaly maps is not neces-

sarily straightforward. The geomagnetic surveys carried out to create the maps were

likely at different altitudes, and upward continuation causes errors, which are largest

near the map edges, as explained in section 2.3.

Figure 2-5: Navigation-capable SGL training data flight lines. The total flight time
was approximately 7 hr and 23 min. Some flight data may not be used for navigation
due to the lack of a map, crossing between maps, or large altitude variations.

Note that there are occasional dropped magnetic signals within the training data. It

was determined that these did not have a significant impact on performance, except

for flight line 1003.05, and were kept in the training data for this work. Additionally,
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a large portion of the training data contains straight and level flight lines from a

mini-survey that was conducted during flights 1004 and 1005. It was thought that

the training data may be biased, but performance was typically better keeping all

available flight data.

2.2.3 Testing Flight Data

As previously mentioned, some data was held out of the training data for testing.

This includes flights lines 1003.10, 4014.00, 4013.00, 4006.00, 4005.00, 1006.02, and

1007.04, which totalled 3 hr and 39 min. All of these are navigation-capable, except

1006.02, which was flown outside of the available map areas. The standard testing

data in this work, a total of 3 hr and 23 min, does not include 1006.02. The flight

data for these flight lines is not publicly released within MagNav.jl or otherwise,

as this data is used for evaluation of performance for the Signal Enhancement for

Magnetic Navigation Challenge Problem [25, 26, 27]. Thus, these flights lines are

purposely not shown here, but it is worth noting they were all flown at nominally

constant altitudes of less than 1000 m HAE.

For reproducibility, an alternative publicly released flight line, 1007.06, is used in

various parts of this work, which is shown in Figure 2-6. This 1 hr and 27 min flight

line is navigation-capable and was flown at nominally 400 m HAE in the Renfrew

flight area, which is described in section 2.3.3.
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Figure 2-6: 1007.06 flight line.

2.3 Magnetic Anomaly Maps

A high-quality magnetic anomaly map is essential for high-accuracy MagNav. Many

commercial and government organizations have performed geomagnetic surveys to

varying degrees of precision and created magnetic anomaly maps. For example, a

combination of magnetic data from near-surface, oceanic, and satellite measurements

was used to create the World Digital Magnetic Anomaly Map (WDMAM), which was

first published in 2007 [28]. Another publicly available map is the North American

Magnetic Anomaly Database (NAMAD) [9]. However, both of these maps have a 1

km or greater cell spacing, which is not sufficient for high-accuracy MagNav. Instead,

smaller maps with a tighter cell spacing are required.

The magnetic field strength decreases with the inverse cube of the distance from

the magnetic source to the measurement location. At higher altitudes, magnetic
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features in the crust tend to blur together, which is analogous to low-pass filtering

the magnetic anomaly field. Thus, to detect small magnetic variations in the crust,

geo-surveys are typically flown as close to the ground as possible [4]. This also means

navigation performance is altitude dependent due to physics that cannot be avoided

[29, 30]. Similarly, faster flights generally perform better, since magnetic information

is received at a higher rate.

After a low-altitude geomagnetic survey is completed, the data is compiled into

a “drape” map, which contains the measurements at the survey altitude for each

sample point, possibly with additional smoothing. It is often desirable to have the

magnetic anomaly map at a higher, possibly constant, altitude where a flight would

take place. This is possible using upward continuation, which is described next. This

is followed by a description of downward continuation and a discussion of the maps

available in MagNav.jl and used for this work.

2.3.1 Upward Continuation

Magnetic anomaly fields are potential fields, which obey Laplace’s equation [31].

Using upward continuation, a potential field can be transformed from the measured

surface to a potential field that would be measured on another surface at a higher

altitude, further from the underlying magnetic sources [32]. Using Green’s Identities,

the upward continuation integral can be derived as

𝑈(𝑥, 𝑦, 𝑧0 − ∆𝑧) =
∆𝑧

2𝜋

∫︁ ∞

−∞

∫︁ ∞

−∞

𝑈(𝑥′, 𝑦′, 𝑧0)

[(𝑥− 𝑥′)2 + (𝑦 − 𝑦′)2 + ∆𝑧2]3/2
𝑑𝑥′𝑑𝑦′ (2.1)

where 𝑈 is the potential field, 𝑥 and 𝑦 are horizontal position (typically east and

north directions, respectively), and 𝑧 is vertical position in the downward direction.
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See [32] for the full derivation. For upward continuation, ∆𝑧 is positive. (2.1) is only

valid for a constant vertical offset ∆𝑧. Recall that the surveyed magnetic anomaly

map data is not at a constant altitude, but instead on a drape over the earth’s surface.

The Cordell-Hildenbrand “chessboard” method may be used to obtain a level map at

a higher altitude [33]. This is done by first upward continuing the original map to

a series of maps at successively higher altitudes. Downward continuation, described

in the next section, may also be needed for a series of maps at successively lower

altitudes. The map at the desired altitude is then found by interpolating the series

of maps in the vertical direction at each point on the horizontal grid.

The double two-dimensional (2D) integral in (2.1) indicates that each point on

an upward-continued 2D map is dependent on each point from the original 2D map.

This can be computationally-intensive for even small maps, so instead a more efficient

frequency domain approach is used in practice. The Fourier-domain representation

of (2.1) is

ℱ [𝑈𝑧0−Δ𝑧] = ℱ [𝑈𝑧0 ] ℱ [𝜓] (2.2)

where ℱ [𝑈 ] is the Fourier transform of the potential field and ℱ [𝜓] is an upward

continuation (frequency) filter given by

ℱ [𝜓] = 𝑒−Δ𝑧|𝑘| (2.3)

where |𝑘| is the magnitude of the radial wavenumber (spatial frequency),

|𝑘| =
√︁
𝑘2𝑥 + 𝑘2𝑦. (2.4)

Thus, an upward-continued map is determined by Fourier transforming the original
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map, multiplying by the upward continuation filter, and inverse Fourier transforming

the product. Typically a discrete Fourier transform (DFT), or more specifically a

fast Fourier transform (FFT) is used. From (2.3), it is apparent that the upward

continuation filter attenuates high frequency (short wavelength) features more so

than low frequency (long wavelength) features, acting similar to a low-pass filter.

As indicated by (2.1), upward continuation makes the assumption that the map

is infinite in each of the horizontal directions. This assumption is clearly violated

in practice when a finite size map is used. This results in errors, particularly along

the edges of the map, which are dependent on unavailable data from outside the

map area during upward continuation. Additionally, the Fourier transform assumes

a periodic map, which is violated by the abrupt edge discontinuities of the map.

Both of these edge effects can be partially mitigated by carefully padding the

original map prior to upward continuation. More specifically, each edge of the map

is appended with interpolated data between each edge so that it “wraps-around.”

This is shown in Figure 2-7, where the original map is outlined in the center and the

contours fan outward. The appended map can be interpolated to an arbitrary size,

since the padded data is only used during upward continuation then discarded. The

padding of each horizontal direction should be at least 10× the upward continuation

distance to limit edge effects. It is computationally beneficial to pad the map in

each direction to a smooth number (highly composite) size, allowing the use of the

Cooley–Tukey FFT [34], which is done in MagNav.jl by default.
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Figure 2-7: Magnetic anomaly map with padded edges.

2.3.2 Downward Continuation

Unlike upward continuation, which is a smoothing operation, downward continua-

tion is an “unsmoothing” operation and is mathematically unstable [35]. This can be

understood from (2.3), where negative ∆𝑧 (for downward continuation) causes ex-

tremely high filter values for large radial wavenumbers |𝑘|. Rather than attenuating,

downward continuation amplifies high frequency features (i.e. noise) and leads to a

non-unique solution.

One approach to reduce this instability issue is to use a low-pass filter during

downward continuation. However, care must be taken when low-pass filtering to

prevent unnecessarily removing too much of the higher frequency content. Tikhonov
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regularization [36], also known as ridge regression, is one commonly used approach

for creating a low-pass filter. Modifying (2.2) and (2.3), the downward continuation

Fourier transform is

ℱ [𝑈𝑧0−Δ𝑧] = ℱ [𝑈𝑧0 ]
𝑒−Δ𝑧|𝑘|

1 + 𝛼𝑘2𝑒−Δ𝑧|𝑘| (2.5)

where 𝛼 is a regularization parameter and ∆𝑧 is negative for downward continuation

[37]. The optimal 𝛼 can be found with an L-curve approach [36]. First, downward

continuation is performed for a geometric sequence of 𝛼. The optimal 𝛼 is the lo-

cal minimum on the characteristic curve of the 𝐿∞ norm of the difference between

successive downward continuations at each 𝛼. An extension of this is using a cut-

off wavenumber that divides the potential field into low-pass filtered and unfiltered

portions [38].

Figure 2-8: Upward and downward continuation. Some constant altitude (HAE)
maps only require upward continuation, while others may require both upward and
downward continuation.

Note that most geomagnetic surveys are performed near the minimum flying altitude

that is able to maintain terrain clearance [39]. Any magnetic anomaly map needed

for MagNav should be at or above the survey altitude, so there is limited need for
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downward continuation. The primary use of downward continuation is to generate

a low-altitude constant altitude map where portions of the map need to be slightly

downward continued as part of the Cordell-Hildenbrand “chessboard” method, which

is shown in Figure 2-8. For this purpose, 𝛼 = 200 is appropriate for downward

continuation of 10’s of meters for the maps used in this work. Finally, in addition

to the errors introduced with upward and/or downward continuation, other maps

errors may be present due to under-sampling and/or smoothing.

2.3.3 Ottawa Area Maps

The flights described in section 2.2 were flown in three different regions, which are

shown in Figure 2-9. The northernmost region is the figure of merit (FOM) flight

area, which is the typical location for SGL calibration flights. The easternmost region

is known as the Eastern Ontario flight area, while the westernmost region is known as

the Renfrew flight area. The magnetic anomaly maps for the Renfrew and Eastern

Ontario regions were obtained from publicly available Ontario Geological Survey

data, with some further processing by SGL [40, 41]. In particular, SGL re-sampled

these maps from approximately 400 m (Eastern Ontario) and 200 m (Renfrew) to 30

m cell spacing using minimum curvature interpolation.

However, as previously discussed, “drape” maps were provided by SGL. Many

processing steps were required to prepare these maps, Eastern Ontario and Renfrew,

for MagNav. All of these steps were completed using MagNav.jl. First, the edges of

the map without any data were removed for less memory use and faster upward con-

tinuation. Next, the IGRF (core field) was subtracted off, based on the original map

survey date (October 20, 2013), leaving only the nearly static anomaly field (tempo-

ral variations were previously subtracted off during geomagnetic survey processing).
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Figure 2-9: Magnetic anomaly maps near Ottawa, Ontario, Canada. The western
region is the Renfrew flight area. The eastern region is the Eastern Ontario flight
area. The northern region is the figure of merit (FOM) flight area.

Missing data areas (i.e. gaps) were filled using a k-nearest neighbors (KNN) algo-

rithm. This results in better upward continuation and interpolation performance.

The Cordell-Hildenbrand “chessboard” method was then carried out, which included

upward and slightly downward continuing the maps to multiple levels and then ver-

tically interpolating. During upward (and downward) continuation, the map was

temporarily padded using the process described in section 2.3.1 to limit edge ef-

fects. Finally, the map was re-gridded from Universal Transverse Mercator (UTM)

to latitude, longitude, and altitude (LLA) coordinates.
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Table 2.4: Ottawa area maps. The WGS-84 coordinate system is used.

Name Description
Eastern_395 Eastern Ontario at 395 m HAE
Eastern_drape Eastern Ontario on drape
Eastern_plot Eastern Ontario on drape, no fill
Renfrew_395 Renfrew at 395 m HAE
Renfrew_555 Renfrew at 555 m HAE
Eastern_drape Renfrew on drape
Eastern_plot Renfrew on drape, no fill

The end result is several magnetic anomaly maps, which are used for this work and

available in MagNav.jl. These maps, listed in Table 2.4, are suitable for MagNav

with any of the flight data discussed in section 2.2. As with GPS, these maps use

the World Geodetic System (WGS) coordinate system, specifically WGS-84. Note

that the highest available map should be used when possible, such as Renfrew_555

rather than Renfrew_395, as Renfrew_395 was generated using mild downward con-

tinuation and is slightly less accurate. Renfrew_555 only used upward continuation.

It may be of interest to understand how well these maps work with the available

flight data. Shown in Figure 2-10 are the magnetic anomaly field errors plotted

against the altitude errors for each navigation-capable flight line in the 2020 SGL

flight dataset. Each flight line is compared to the corresponding map that would be

used for navigation. For the HAE flight lines, the map was upward continued to the

mean flight line altitude. The pilot was able to keep the aircraft at constant altitude

or on the drape surface within approximately 10 m in most cases. This resulted in

roughly 5 nT of error for the HAE flights and 10 nT of error for the drape flights. Of

course, the drape flights were at lower altitudes, where the magnetic field strength

is larger and thus the errors are larger.
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Figure 2-10: HAE and drape map error comparison.

Note that, again due to edge effects, there is a general rule of thumb that magnetic

anomaly maps should only be upward continued approximately 1/50× the map size.

The maps used in this work were created from flight data measured at nominally

275 m (Eastern Ontario) and 314 m (Renfrew). The map areas are approximately

1.24 × 1010 m2 and 6.16 × 109 m2 for Eastern Ontario and Renfrew, respectively.

Together, this means the highest altitude for reliable map data is approximately

2500 m for the Eastern Ontario map and 1900 m for the Renfrew map.
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2.4 Navigation Algorithms

A magnetic navigation system collects magnetic field data using a magnetometer

and uses magnetic anomaly maps to determine the current location by correcting

the drift from an INS. MagNav.jl contains multiple navigation algorithms for this

purpose. The simplest is an extended Kalman filter (EKF), which is described in

section 5.2.2. A Rao-Blackwellized particle filter (RBPF), a type of marginalized

particle filter (MPF), developed by Canciani [13] is also available, but is not used in

this work. Multiple recently introduced and still in development algorithms are also

available. These include an EKF with online learning of Tolles-Lawson coefficients

(section 5.5), an EKF with online learning of neural network weights (section 5.6),

and a measurement noise covariance-adaptive neural extended Kalman filter (sec-

tion 5.9.3).
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Chapter 3

Linear Aeromagnetic Compensation

Magnetic measurements are only capable of measuring the total magnetic field. The

desired magnetic anomaly field must be extracted from the total magnetic field mea-

surement, which contains four main components,

�⃗�measured = �⃗�core + �⃗�anomaly + �⃗�tv + �⃗�aircraft. (3.1)

As previously discussed, the earth field components (core field, anomaly field, and

temporal variations) of the total field measurement are approximately known for a

given position and time. However, the total field measurement is also corrupted with

an aircraft interference field. The goal of aeromagnetic compensation is to remove

this undesired magnetic source.

This chapter first describes the classical Tolles-Lawson aeromagnetic compensa-

tion model in detail. This is followed by the discussion of two variations of the Tolles-

Lawson model and two additional linear aeromagnetic compensation approaches.

The available fitting or training output targets and compensation performance met-

rics are then introduced. This chapter concludes with a comparison of the compensa-
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tion performance of these five models using only data from a single scalar and vector

magnetometer pair.

3.1 Classical Tolles-Lawson Aeromagnetic

Compensation

Figure 3-1: Magnetometer measurements on a tail stinger.

State-of-the-art aeromagnetic compensation is performed using the Tolles-Lawson

model [42, 43, 44], which is a linear model that uses measurements from a vector

magnetometer to remove aircraft magnetic field contributions to scalar magnetome-

ter measurements, which are used for navigation. For a geo-survey aircraft, such as

that shown in Figure 3-1, this compensation procedure is sufficient to remove nearly

all of the corruption due to the aircraft magnetic field if the aircraft is flying in a

“magnetically quiet” mode (i.e. limited control surface movements, radio transmis-

sions, etc.). Additionally, a geo-survey aircraft often uses magnetic noise reduction

methods, including coil or ring compensation, magnetic shielding, degaussing, and/or

optimal placement or removal of magnetic sources [45, 46, 47, 48]. The measurements

on a geo-survey aircraft are taken on a tail stinger, far away (nominally at least 3 m)
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from the greatest corruption sources [49]. Flights using this type of aircraft and the

Tolles-Lawson model are able to obtain navigation accuracies of 10’s of meters [2].

However, using tail stinger measurements on operational aircraft is impractical,

as is having the navigation system impose a “magnetically quiet” flight limitation.

The magnetic dynamics of operational aircraft exceed the capabilities of the Tolles-

Lawson model, meaning this model does not produce a compensated signal with

sufficiently accurate results when the magnetometer is close to the aircraft inter-

ference sources (e.g. engine), as shown in Figure 3-2. Thus, the largest remaining

challenge for operational airborne magnetic anomaly navigation is the compensation

of magnetic measurements on operational aircraft.

Figure 3-2: Magnetometer measurements within the cabin.

Though the Tolles-Lawson model is not sufficient for aeromagnetic compensation

on operational aircraft, it is useful to understand how the model works in order to

improve on it. In particular, the vector magnetometer (𝐴 matrix) terms are heavily

used in the later chapters of this work as features for various models. The remainder

of this section describes the origin of the Tolles-Lawson model and how the model

coefficients are determined.
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3.1.1 Derivation of the Tolles-Lawson Model

Tolles and Lawson first reported their linear aeromagnetic compensation model for

scalar magnetometers in 1950 [42], though it was developed earlier during World War

II. Tolles was later issued patents for the hardware involved in airborne magnetome-

ter compensation and the primary initial use case was magnetic anomaly detection

(MAD) [43, 44]. Leliak later proposed performing sinusoidal maneuvers during a

calibration flight to increase observability of the terms in the Tolles-Lawson model

[45]. This has been the state-of-the-art for decades, though numerous improvements

to this method have been proposed over the years, as discussed in section 3.5. The

basic idea of the Tolles-Lawson model [50] is to use magnetic measurements from

a vector magnetometer to calibrate a scalar magnetometer, the latter of which is

used for navigation. This model provides a means for removing a corrupting aircraft

magnetic field from a scalar total magnetic field measurement, yielding the earth

magnetic field used for navigation.

An airborne vector magnetometer measures the vector sum of two primary mag-

netic fields,

�⃗�𝑡 = �⃗�𝑒 + �⃗�𝑎 (3.2)

where �⃗�𝑡 is the total field, �⃗�𝑒 is the earth (external) field and �⃗�𝑎 is the unknown

aircraft (interference) field. Note that here earth field refers to all components – core

field, anomaly field, and temporal variations. A vector magnetometer measures �⃗�𝑡,

but for navigation the unknown, desired signal is |�⃗�𝑒|, the magnitude of �⃗�𝑒. A scalar

magnetometer measures |�⃗�𝑡|, the magnitude of �⃗�𝑡. These terms can be related as

follows:
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|�⃗�𝑒|2 = �⃗�𝑒 · �⃗�𝑒 = (�⃗�𝑡 − �⃗�𝑎) · (�⃗�𝑡 − �⃗�𝑎) (3.3)

|�⃗�𝑒|2 = �⃗�𝑡 · �⃗�𝑡 − 2�⃗�𝑡 · �⃗�𝑎 + �⃗�𝑎 · �⃗�𝑎 (3.4)

|�⃗�𝑒| =

√︁
|�⃗�𝑡|2 − 2�⃗�𝑡 · �⃗�𝑎 + |�⃗�𝑎|2 (3.5)

|�⃗�𝑒| = |�⃗�𝑡|

√︃
1 − 2

�⃗�𝑡 · �⃗�𝑎

|�⃗�𝑡|2
+

|�⃗�𝑎|2

|�⃗�𝑡|2
(3.6)

To get the Tolles-Lawson model, it is assumed that |�⃗�𝑎|2/|�⃗�𝑒|2 is negligible, i.e. the

aircraft field is small compared to the earth field. This leaves

|�⃗�𝑒| ≈ |�⃗�𝑡|

√︃
1 − 2

�⃗�𝑡 · �⃗�𝑎

|�⃗�𝑡|2
(3.7)

which can be linearized using the series expansion

√
1 + 𝑥 = 1 +

𝑥

2
− 𝑥2

8
+
𝑥3

16
− . . . (3.8)

to first order to get

|�⃗�𝑒| ≈ |�⃗�𝑡| −
�⃗�𝑡 · �⃗�𝑎

|�⃗�𝑡|
. (3.9)

The magnetic field components from the vector magnetometer are used to compute

the total field direction cosines,

�̂�𝑡 =
�⃗�𝑡

|�⃗�𝑡|
. (3.10)
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Using this definition, (3.9) becomes

|�⃗�𝑒| ≈ |�⃗�𝑡| − �⃗�𝑎 · �̂�𝑡 (3.11)

where |�⃗�𝑒| is the magnitude of the earth field (desired signal for navigation), |�⃗�𝑡|

is the (measured) total field, and |�⃗�𝑎| is the aircraft field. Note that �⃗�𝑎 · �̂�𝑡 is a

corruption term, i.e. the effect of the aircraft field projected onto the total field.

This can be visualized as in Figure 3-3.

(a)

(b)

Figure 3-3: Total, earth, and aircraft magnetic field vectors. The same aircraft
magnetic field (magnitude) can be (a) additive or (b) subtractive when projected
onto the total magnetic field, depending on the relative orientation between the
aircraft and earth magnetic fields during aircraft maneuvers.

Up to this point, no physics knowledge has been incorporated. The derivation comes

solely from manipulating vectors and making an assumption about the magnitude

of those vectors. In order to get to the final model, Tolles and Lawson [42] assumed

that the aircraft field is comprised of permanent, induced, and eddy current magnetic
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moments

�⃗�𝑎 = �⃗�perm + �⃗�ind + �⃗�eddy (3.12)

which is further assumed to take the form of

�⃗�𝑎 = 𝑎 + 𝑏�⃗�𝑡 + 𝑐
˙⃗
𝐵𝑡 (3.13)

where coefficient vector 𝑎 and coefficient matrices 𝑏 and 𝑐 are all unknown. The

permanent magnetic moment terms,

�⃗�perm = 𝑎 =
[︁
𝑎1 𝑎2 𝑎3

]︁𝑇
, (3.14)

contain 3 unknown coefficients. These permanent magnetic moment terms represent

nearly constant, permanent magnetization of various ferromagnetic aircraft compo-

nents, including both the aircraft itself and items within the aircraft [50]. These

terms do not change unless the aircraft configuration or contents are modified. The

induced magnetic moment terms,

�⃗�ind = 𝑏�⃗�𝑡 = |�⃗�𝑡|

⎡⎢⎢⎢⎣
𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

⎤⎥⎥⎥⎦ �̂�𝑡, (3.15)

contain 9 unknown coefficients. These induced magnetic moment terms represent

the earth field inducing a secondary magnetic field in magnetically susceptible air-

craft components. The relative orientation of the aircraft and earth field determines

the magnitude and direction of the induced magnetization. Since much of the air-

craft structure is comprised of non-magnetic aluminum alloys, the primary source of
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induced magnetic fields are the aircraft engines [17]. The eddy current terms,

�⃗�eddy = 𝑐
˙⃗
𝐵𝑡 = |�⃗�𝑡|

⎡⎢⎢⎢⎣
𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

⎤⎥⎥⎥⎦ ˙̂
𝐵𝑡, (3.16)

contain 9 unknown coefficients. These eddy current terms represent electrical current

loops caused by the time-varying earth field (relative to the aircraft) interacting with

electrically conductive aircraft components. Unlike the permanent and induced fields,

eddy currents depend on the time rate of change of earth’s magnetic flux through

these components, such as the aircraft skin [42, 45]. Magnetic fields created by eddy

currents obey Lenz’s Law, opposing the magnetic field that created them [13]. This is

similar to how current is produced in a coil rotating in a uniform magnetic field [50].

The form of the aircraft generated moments (corruption term) in (3.11) becomes

�⃗�𝑎 · �̂�𝑡 = (𝑎 + |�⃗�𝑡| 𝑏 �̂�𝑡 + |�⃗�𝑡| 𝑐 ˙̂
𝐵𝑡) · �̂�𝑡. (3.17)

There are a total of 21 coefficients in 𝑎, 𝑏, and 𝑐, but due to symmetry in the induced

magnetic moment matrix 𝑏, the repeated off-diagonal terms are removed resulting

in 3 fewer coefficients. Thus, there are 18 total unknown coefficients in the standard

Tolles-Lawson model,

|�⃗�𝑒| ≈ |�⃗�𝑡| −

⎛⎜⎜⎜⎝�̂�𝑇
𝑡

⎡⎢⎢⎢⎣
𝛽1

𝛽2

𝛽3

⎤⎥⎥⎥⎦+ |�⃗�𝑡| �̂�𝑇
𝑡

⎡⎢⎢⎢⎣
𝛽4 𝛽5 𝛽6

· 𝛽7 𝛽8

· · 𝛽9

⎤⎥⎥⎥⎦ �̂�𝑡 + |�⃗�𝑡| �̂�𝑇
𝑡

⎡⎢⎢⎢⎣
𝛽10 𝛽11 𝛽12

𝛽13 𝛽14 𝛽15

𝛽16 𝛽17 𝛽18

⎤⎥⎥⎥⎦ ˙̂
𝐵𝑡

⎞⎟⎟⎟⎠ ,

(3.18)

which has unknowns on both sides of the equation, |�⃗�𝑒| and 𝛽, since only the total

60



field �⃗�𝑡 and |�⃗�𝑡| can be directly measured. However, using a “trick” (3.18) can be

modified into a solvable form [50].

3.1.2 Solving for the Tolles-Lawson Model Coefficients

Rewriting (3.18), first a length 18 row vector of direction cosine terms, which are

calculated from a vector magnetometer measurement, is created as

�⃗� =

⎡⎢⎢⎢⎣
�̂� 3×1

vec(|�⃗�| �̂��̂�𝑇 )6×1

vec(|�⃗�| �̂� ˙̂
𝐵𝑇 )9×1

⎤⎥⎥⎥⎦
𝑇

(3.19)

where again only 6 of induced magnetic moment terms are taken from |�⃗�| �̂��̂�𝑇 due

to symmetry. Explicitly, the 18 direction cosine terms are
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�⃗� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̂�𝑥

�̂�𝑦

�̂�𝑧

|�⃗�|�̂�𝑥�̂�𝑥

|�⃗�|�̂�𝑥�̂�𝑦

|�⃗�|�̂�𝑥�̂�𝑧

|�⃗�|�̂�𝑦�̂�𝑦

|�⃗�|�̂�𝑦�̂�𝑧

|�⃗�|�̂�𝑧�̂�𝑧

|�⃗�|�̂�𝑥
˙̂
𝐵𝑥

|�⃗�|�̂�𝑥
˙̂
𝐵𝑦

|�⃗�|�̂�𝑥
˙̂
𝐵𝑧

|�⃗�|�̂�𝑦
˙̂
𝐵𝑥

|�⃗�|�̂�𝑦
˙̂
𝐵𝑦

|�⃗�|�̂�𝑦
˙̂
𝐵𝑧

|�⃗�|�̂�𝑧
˙̂
𝐵𝑥

|�⃗�|�̂�𝑧
˙̂
𝐵𝑦

|�⃗�|�̂�𝑧
˙̂
𝐵𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑇

(3.20)

where �̂�𝑥, �̂�𝑦, and �̂�𝑧 are the direction cosines. A time series of �⃗� can be composed

into an 𝑁 × 18 matrix
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𝐴 =

⎡⎢⎢⎢⎣
�⃗�1
...

�⃗�𝑁

⎤⎥⎥⎥⎦ (3.21)

where each row is one of 𝑁 time steps. The column vector of Tolles-Lawson coeffi-

cients to learn is 𝛽, as taken from (3.18). Rearranging and substituting,

𝐵scalar − |�⃗�𝑒| = 𝐴𝛽 (3.22)

where |�⃗�𝑒| and 𝛽 are both still unknown and 𝐵scalar is scalar magnetometer measure-

ments that represent |�⃗�𝑡|. The “trick” is to use a bandpass finite impulse response

filter (bpf) on (3.22) [51],

bpf(𝐵scalar − |�⃗�𝑒|) = bpf(𝐴𝛽). (3.23)

Figure 3-4: Typical aeromagnetic calibration flight pattern. A box-like flight path
with tight turns is flown with pitch, roll, and yaw maneuvers (in any order) performed
along each leg [52].
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The passband frequency range for the bandpass filter is carefully selected in order

to remove nearly all of the earth field while keeping much of the aircraft field. In

practice, a passband of 0.1-0.9 Hz has been found to perform well, since in this

range the frequency content of the aircraft dominates the magnetic signal. The

measurements themselves are taken during a specific set of roll, pitch, and yaw

aircraft maneuvers during a calibration flight, as shown in Figure 3-4. Roll, pitch,

and yaw, as shown in Figure 3-5, are the Euler angles that describe the aircraft

orientation in reference to the earth.

Figure 3-5: Euler angles. Modified from [53].

These maneuvers, are meant to “inject” aircraft magnetic field content into the pass-

band frequency range. The calibration flight is performed at a high altitude over a

region with a small magnetic gradient, as shown in Figure 3-6, to reduce the uncer-

tainty imparted by the earth field [54, 52].
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Figure 3-6: SGL calibration flight region. A magnetic anomaly map from [9] is
shown with an enlarged region that contains a relatively small magnetic gradient.
This is where Sanders Geophysics Ltd. (SGL) typically conducts calibration flights
at 10,000 ft (3048 m), an example of which is illustrated with a black flight path.

With bpf(|�⃗�𝑒|) ≈ 0, (3.23) becomes

bpf(𝐵scalar) = bpf(𝐴)𝛽 (3.24)

where 𝐵scalar is known from scalar magnetometer measurements and 𝐴 is known from

vector magnetometer measurements, as previously described. The Tolles-Lawson

coefficients 𝛽 can then be solved for with linear least squares regression,

𝛽 = (𝐴𝑇
𝑓 𝐴𝑓 )−1𝐴𝑇

𝑓 𝑦 (3.25)

or ridge regression,

𝛽 = (𝐴𝑇
𝑓 𝐴𝑓 + 𝜆𝐼)−1𝐴𝑇

𝑓 𝑦 (3.26)

where 𝑦 = bpf(𝐵scalar), 𝐴𝑓 = bpf(𝐴), and 𝜆 is a ridge parameter. Ridge regression is

useful when 𝐴𝑇
𝑓 𝐴𝑓 is poorly conditioned due to correlations among the Tolles-Lawson

coefficients [55]. A ridge parameter of 𝜆 = 0.00025 is appropriate for this type of

problem [56]. For the calibration flights used in this work, 𝜆 = 0.025 is appropriate, as
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discussed in the next section. Though the coefficients are determined using bandpass

filtered measurements, they can be applied to unfiltered measurements. During a

measurement or navigation (non-calibration) flight, compensation is then performed

as

|�⃗�𝑒| = 𝐵scalar −𝐴𝛽 (3.27)

where the 𝛽 Tolles-Lawson coefficients represent the average aircraft magnetic field

contributions predetermined during a calibration flight and 𝐵scalar and 𝐴 come from

real-time scalar and vector magnetometer measurements, respectively.

3.2 Tolles-Lawson Ridge Parameter and Calibration

Flight Selection

As mentioned in the previous section, ridge regression is commonly used with the

Tolles-Lawson model, but the ridge parameter must be determined. Fortunately, the

flight dataset used in this work has 22 calibration flight lines that can be leveraged to

determined an appropriate ridge parameter. However, two of these flight lines were

flown at low altitude with a high magnetic gradient and are excluded. An example

of this real calibration flight data is shown in Figure 3-7.
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Figure 3-7: Flight line 1002.02 calibration maneuvers. The maneuver amplitudes are
approximately 4.5° pitch, 9° roll, and 5° yaw. The period of each is around 6 sec.

Table 3.1: Comparison of Tolles-Lawson coefficients without ridge regression. Only
the permanent and induced terms are used here for simplicity.

Flight
Line

Box
# cosX cosY cosZ cosXX cosXY cosXZ cosYY cosYZ cosZZ

1001.01 4 1974 111 -1223 -1013 32 -167 -1177 -18 -1564
1002.02 2 1798 -159 -964 -787 -189 -137 -656 180 -1024
1006.04 1 1243 424 -937 -1132 348 147 -317 190 -921

As shown in Table 3.1, the Tolles-Lawson coefficients without ridge regression can

vary widely. One approach to determine an appropriate ridge parameter is to use

the coefficient of variation,

𝑐𝑣 =
𝜎

𝜇
(3.28)

where 𝜎 is the standard deviation and 𝜇 is the mean. The coefficient of variation
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for each Tolles-Lawson coefficient across the various calibration flights can be calcu-

lated using (3.28). The average absolute value of these is plotted against the ridge

parameter used to calculate the Tolles-Lawson coefficients in Figure 3-8. Here it can

be seen that large ridge parameters are very stable, while small ridge parameters can

be unstable, depending on the Tolles-Lawson terms that are included. The spikes

in Figure 3-8 are due to some Tolles-Lawson coefficients, particularly eddy current Z

terms, switching signs. Note that Flux D is used here, while Flux A is used in most

other sections of this work. Flight 1002 had a technical issue with Flux A. Flight 1002

also contained eight calibration flight lines, so it was decided to use Flux D instead

so that more calibration flight lines could be used. As explained in section 2.2.1,

compensation performance is similar for all available vector magnetometers.

Figure 3-8: Coefficient of variation of Tolles-Lawson coefficients vs ridge parameter.
Mag 4 and Flux D are used here with 20 calibration flight lines. “9-term T-L” uses
permanent and induced terms, “18-term T-L” further includes eddy current terms,
and “19-term T-L” further includes a bias term.
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Now looking at the compensation error, as shown in Figure 3-9, using too large of

a ridge parameter can result in excessive compensation errors as well. Thus, there

is a sweet spot for the ridge parameter at around 10−1. Specifically, 𝜆 = 0.025

was selected as the baseline ridge parameter in this work. As shown in Table 3.2,

the Tolles-Lawson coefficients still vary with 𝜆 = 0.025, but the magnitudes have

decreased and the values across the flight lines are more similar than in Table 3.1.

Figure 3-9: Compensation error vs ridge parameter. Mag 4 and Flux D are used here
with 20 calibration flight lines. “9-term T-L” uses permanent and induced terms, “18-
term T-L” further includes eddy current terms, and “19-term T-L” further includes
a bias term.

Navigation is not covered until Chapters 5 and 6, but for completion, using different

sets of Tolles-Lawson coefficients (determined using ridge regression) results in only

small changes in performance for a well-tuned navigation filter. For example, using

the coefficients in Table 3.2 results in navigation errors of 43-49 m DRMS on flight

line 1007.06. Similarly, there was no change (1 m or less) in navigation performance
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Table 3.2: Comparison of Tolles-Lawson coefficients with ridge regression. Only the
permanent and induced terms are used here for simplicity. A ridge parameter of
𝜆 = 0.025 was used.

Flight
Line

Box
# cosX cosY cosZ cosXX cosXY cosXZ cosYY cosYZ cosZZ

1001.01 4 150 74 -832 -341 23 275 322 0 -19
1002.02 2 305 -48 -865 -462 -56 261 392 178 42
1006.04 1 333 84 -857 -600 41 255 514 168 55

when decreasing the ridge parameter from 𝜆 = 0.025 to 𝜆 = 0.00025, as was done in

[56], while holding all other parameters constant. Increasing the ridge parameter to

𝜆 = 0.25 marginally increased the navigation error by 2-3 m. As a final related note,

typically the magnetometer data is downsampled to 10 Hz, as shown in Figure 3-

10. This can introduce smoothing errors, particularly in the vector magnetometer

components (e.g. 10 nT in 𝐵𝑥). Using the raw, downsampled data without smoothing

had a negligible impact on compensation and navigation performance and is not

considered further.

Figure 3-10: 10 Hz vs 160 Hz uncompensated scalar magnetometer data.
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3.3 Modified Tolles-Lawson Aeromagnetic

Compensation

The first variation of the classical Tolles-Lawson model is termed modified Tolles-

Lawson aeromagnetic compensation [20]. The small change from the original model

is the scaling of the total field direction cosines,

�̂�𝑡 =
�⃗�𝑡

𝐵scalar

(3.29)

where the magnetic field components from a vector magnetometer, �⃗�𝑡, are now scaled

by a scalar magnetometer measurement, 𝐵scalar, rather than the vector norm shown

in (1.2), which would typically come from a vector magnetometer. Again, these

direction cosines are used to form the 𝐴 matrix, an essential part of the Tolles-

Lawson model(s).

3.4 Map-Based Tolles-Lawson Aeromagnetic

Compensation

The second, more involved variation of the classical Tolles-Lawson model is termed

map-based Tolles-Lawson aeromagnetic compensation [20]. Here, rather than using

a bandpass filter, the earth field “truth” is determined from a magnetic anomaly map.

With the earth field known, (3.22) can be modified as

𝐵scalar −𝐵map = 𝐴𝛽 (3.30)

where 𝐵scalar is scalar magnetometer measurements, 𝐵map is magnetic anomaly map
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values at known positions, 𝐴 is formed from vector magnetometer measurements, and

only 𝛽 is unknown. (3.30) can be solved with linear least squares regression or ridge

regression as with the classical model, as shown in (3.25) and (3.26), respectively.

The map-based Tolles-Lawson model allows for direction computation of the aircraft

field by using the known total and earth fields. This is only an approximation, as the

magnetic anomaly (earth) field may have changed, albeit slightly, between when the

map was created and when the calibration flight occurred. Note that the modified

Tolles-Lawson variation can also be used here.

3.5 Elastic Net-Based Aeromagnetic Compensation

Due to multicollinearity, the Tolles-Lawson model is often ill-conditioned. Various

approaches have been put forth to resolve this, including the use of ridge regres-

sion [55], singular value decomposition [57], and principal component analysis [58].

Ridge regression has been the dominant method to resolve multicollinearity, though

the optimal ridge parameter must be determined [58]. As previously discussed in

section 3.2, a ridge parameter of 0.025 has been found to be appropriate for the

flight data in this work. Chen et al. used the ridge regression approach with two

boom-mounted magnetometers. Using a transfer function to relate the two signals,

the magnetometers were compensated simultaneously [59]. Given the improvements

made by these approaches, two linear models are explored in this section and the

next, namely elastic net and PLSR.

The elastic net is another regularized regression method that uses both the 𝐿1

and 𝐿2 penalties [60]. Using only the 𝐿2 penalty is ridge regression, which was

previously described in section 3.1.2. The 𝐿2 norm is useful for generalization, i.e.

to avoid overfitting. Using only the 𝐿1 penalty corresponds to the least absolute
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shrinkage and selection operator (Lasso). The 𝐿1 norm is useful for sparsity, i.e.

variable selection [61]. The elastic net linearly combines these two penalties,

�̂� = argmin
𝛽

(||𝑦 −𝑋𝛽||22 + 𝜆2||𝛽||22 + 𝜆1||𝛽||1) (3.31)

where 𝛽 is the regression coefficients, 𝑦 is the output (observed) data, 𝑋 is the

input data, 𝜆2 is the 𝐿2 or ridge parameter, and 𝜆1 is the 𝐿1 or Lasso parameter.

Specifically for aeromagnetic compensation the elastic net takes the form of

�̂� = argmin
𝛽

(||𝐵target −𝐴𝛽||22 + 𝜆2||𝛽||22 + 𝜆1||𝛽||1) (3.32)

where 𝐴 is formed from a vector magnetometer measurement as previously described,

and 𝐵target can be one of multiple magnetic field options, as explained in section 3.7.

The elastic net-based aeromagnetic compensation model was implemented using the

GLMNet and MLJLinearModels Julia packages [62, 63, 64]. More specifically, cross-

validation is performed using GLMNet to determine the best ridge and Lasso parame-

ters, followed by determining the final elastic net coefficients using MLJLinearModels,

as this was found to result in the best performance.

3.6 PLSR-Based Aeromagnetic Compensation

A more advanced linear model is partial least squares regression (PLSR). The general

idea is to find low-dimensional latent variables that are the most correlated with the

output (observed) data [65]. To start, the input (and output) data is typically

standardized,

�̃� =
𝑋 − 𝜇

𝜎
(3.33)
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where 𝑋 is the input data, 𝜇 is the mean for each column (i.e. feature), 𝜎 is the

standard deviation for each column (i.e. feature), and �̃� is the standardized (Z-

score normalized) input data. Similarly, 𝑌 is the standardized output data. Using

the singular value decomposition (SVD), a matrix factorization technique,

(𝑈 ,𝑆,𝑉 ) = svd(𝐶𝑋𝑌 ), (3.34)

the left singular vectors 𝑈 , singular values 𝑆, and right singular vectors 𝑉 of the

input-output covariance matrix 𝐶𝑋𝑌 can be determined. The first left singular

vector, 𝑢, and right singular, 𝑣, are then used to determine the input score

𝑧 = �̃�𝑢 (3.35)

and output score

𝑟 = 𝑌 𝑣. (3.36)

Next, the input loading vector

𝑝 =
𝐶𝑋𝑋 𝑢

𝑢𝑇 𝐶𝑋𝑋 𝑢
(3.37)

and output loading vector

𝑞 =
𝐶𝑌 𝑋 𝑢

𝑢𝑇 𝐶𝑋𝑋 𝑢
(3.38)

are determined, where 𝐶𝑋𝑋 is the input covariance matrix. At this point, the first

left singular vector 𝑢, input loading vector 𝑝, and output loading vector 𝑞 can be used

to make output predictions 𝑌 . However, only the first most significant component of
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the input-output covariance matrix has been used and there is likely more information

that can provide better predictions. To use the next most significant components, the

input and output data and covariance matrices must be “deflated,” which removes

the component already used, leaving a residual. The input covariance matrix, input-

output covariance matrix, input data, and output data are deflated as

𝐶𝑋𝑋 = (𝐼 − 𝑝𝑢𝑇 )𝐶𝑋𝑋 , (3.39)

𝐶𝑌 𝑋 = 𝐶𝑌 𝑋 (𝐼 − 𝑢𝑝𝑇 ), (3.40)

�̃� = �̃� − 𝑧 𝑝𝑇 , (3.41)

and

𝑌 = 𝑌 − 𝑧 𝑞𝑇 . (3.42)

This process is repeated up to the desired number of components, which is limited

by the number of columns (features) in the input data. For each iteration, the left

singular vector 𝑢, input loading vector 𝑝, and output loading vector 𝑞 are stored as

columns in �̃� , �̃� , and �̃�, respectively. The regression coefficients of the standardized

data, �̃�, can then be calculated as

�̃� = �̃�(�̃�
𝑇
�̃�)−1�̃�

𝑇
. (3.43)

These regression coefficients are used with standardized input data to predict stan-

dardized output data, which are then de-standardized for true output predictions.
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3.7 Fitting or Training Output Target Options

There are multiple options for the output target 𝐵target, as shown in Figure 3-11.

Figure 3-11: Fitting or training output target options.

All of these are some sort of magnetic value. More specifically, the options are:

(a) Anomaly field #1: compensated tail stinger total field scalar magnetometer

measurements

(b) Anomaly field #2: interpolated magnetic anomaly map values

(c) Aircraft field #1: difference between uncompensated in-cabin total field scalar

magnetometer measurements and interpolated magnetic anomaly map values

(d) Aircraft field #2: difference between uncompensated in-cabin and compensated

tail stinger total field scalar magnetometer measurements

(e) BPF’d total field: bandpass filtered uncompensated in-cabin or tail stinger

total field scalar magnetometer measurements

The first option (anomaly field #1) requires tail stinger data, while the second option

(anomaly field #2) is a direct way to get the magnetic anomaly field, though error is

potentially introduced due to position inaccuracy (both GPS measurement and map

76



interpolation). Also, the magnetic anomaly map was generated using data collected

at a different time than when the flight data was collected, which also may introduce

error. The third option (aircraft field #1) attempts to isolate the aircraft field by

removing the anomaly field component from a raw magnetometer measurement. The

fourth option (aircraft field #2) isolates the aircraft field by finding the difference

between uncompensated cabin and compensated tail stinger measurements. The

third and fourth options are representative of typical aeromagnetic compensation,

which represents the aircraft corruption that is removed. Finally, the fifth option

(BPF’d total field) bandpass filters total field scalar measurements, as in the typical

Tolles-Lawson procedure. Optionally, the core field (i.e. IGRF) and/or temporal

variations (i.e. diurnal) can be removed from the total field scalar magnetometer

measurements to truly isolate the anomaly or aircraft field.

3.8 Compensation Performance Metrics

When the ability to compensate a magnetic signal is being quantified, it is appropri-

ate to use the standard deviation of the magnetic signal error,

𝜎Δmag =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑘=1

∆mag,k − 𝜇Δmag (3.44)

where ∆mag is the error between the compensated magnetic signal and truth (tail

stinger or map) magnetic signal and 𝜇Δmag is the mean of these errors over 𝑁 samples

(instances). Per-flight standard deviation rather than root mean square (RMS) is

used here, since the mean (DC) offset of the magnetic signal has negligible impact

on the filter-produced position estimates. Mild bias errors can be accounted for in

the temporal variation filter state. Two signals can be compared using a common
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metric for evaluation of aeromagnetic compensation, the improvement ratio,

IR =
𝜎1
𝜎2

(3.45)

where 𝜎1 and 𝜎2 are two standard deviations being compared [52]. Typically for

aeromagnetic compensation, 𝜎1 is the uncompensated magnetic signal and 𝜎2 is the

compensated magnetic signal. In general, 𝜎1 is some baseline and 𝜎2 is some modi-

fication to the baseline. Similarly, the signal-to-noise ratio,

SNR =
𝜎magtruth

𝜎Δmag

(3.46)

can be used to quantify the quality of the expected magnetic measurements, magtruth,

in comparison to the magnetic measurement errors, ∆mag. An SNR of greater than

10 often results in accuracies of 10’s of meters with a high-quality map, data, etc.

3.9 Linear Model Performance Comparison

Five different linear aeromagnetic compensation models have been presented in this

chapter. There are many comparisons that could be made with the various magne-

tometer options (see Table 2.2) and Tolles-Lawson terms (permanent, induced, eddy

current, and/or bias). The comparison made here uses Mag 4, the third noisiest

scalar magnetometer, and Flux A. The standard permanent, induced, and eddy cur-

rent terms are used to create the Tolles-Lawson 𝐴 matrix, which is an input to all

linear models. For the elastic net-based and PLSR models, Mag 4 is an additional

input feature. The fitting output target for the Tolles-Lawson models is as previ-

ously described, while for the elastic net-based and PLSR models, the fourth option,

(aircraft field #2) is used.
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Table 3.3: Linear aeromagnetic compensation performance using a single calibration
flight pattern. The first calibration box of flight line 1006.04 with Mag 4 and Flux A
is used here. The typical value of 𝜆 = 0.025 for the Tolles-Lawson ridge parameter
was used, and 𝑘 = 2 (of 19) components was found to work best for PLSR. Testing
dataset errors [nT] are reported in comparison to the compensated tail stinger.

Flight Flight
Line

Classical
Tolles-Lawson

Modified
Tolles-Lawson

Elastic
Net PLSR

1003 1003.10 125 123 125 110
1004 4014.00 51 50 242 79
1004 4013.00 54 53 264 101
1005 4006.00 38 38 161 65
1005 4005.00 30 30 156 62
1007 1007.04 105 101 283 137
1007 1007.06 94 91 153 98

Looking at Table 3.3, it can be seen that the best performing linear aeromagnetic

compensation model is modified Tolles-Lawson. However, this model only performs

marginally better than classical Tolles-Lawson. Both the elastic net-based and PLSR-

based models perform worse, significantly worse for some flight lines. Thus, Tolles-

Lawson works best when using a typical limited calibration flight dataset. Note that

changing the number of PLSR components used can significantly change the per-

flight line performance. For the results in Table 3.3, 2 of 19 components were used,

as this resulted in the lowest overall error. Using 18 or 19 components resulted in

significantly lower error for the 1003, 1004, and 1005 flight lines, but significantly

higher error for the 1007 flight lines. This may be due to the training data containing

flight data from flights 1003-1006, but not flight 1007. Specifically, the respective

PLSR errors with 18 components are: 34, 53, 58, 35, 36, 173, and 118 nT.

In Table 3.4 the linear aeromagnetic compensation results have completely changed

when using a large training dataset compared to Table 3.3, which only used a typ-

ical calibration flight. Now, the elastic net-based and PLSR-based models perform
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Table 3.4: Linear aeromagnetic compensation performance using a larger training
dataset. A Tolles-Lawson ridge parameter of 𝜆 = 0.25 and 𝑘 = 17 (of 19) PLSR
components were found to work best for this dataset. Testing dataset errors [nT] are
reported in comparison to the compensated tail stinger.

Flight Flight
Line

Classical
Tolles-Lawson

Modified
Tolles-Lawson

Elastic
Net PLSR

1003 1003.10 123 109 74 73
1004 4014.00 62 58 32 32
1004 4013.00 57 51 36 37
1005 4006.00 39 34 25 26
1005 4005.00 31 28 24 23
1007 1007.04 97 74 42 41
1007 1007.06 90 72 44 44

significantly better than the Tolles-Lawson models. The improvement of modified

Tolles-Lawson over classical Tolles-Lawson is now more evident, while the elastic net

and PLSR perform similarly. Using more data generally improved classical Tolles-

Lawson aeromagnetic compensation performance, but not nearly as much as with

the elastic net-based and PLSR-based models. Tolles-Lawson works well for model-

ing maneuvering magnetic interference, especially with small amounts of calibration

flight data. Elastic net and PLSR seem to better model non-maneuvering magnetic

interference with larger amounts of flight data. These models effectively use the

additional data to learn better compensation coefficients than Tolles-Lawson.

Note that map-based Tolles-Lawson is not compared in Tables 3.3 or 3.4, since

flight line 1006.04 and many of the flight lines in the standard training dataset (see

section 2.2.2) were flown over areas without map coverage. Additionally note that

the results presented here only include magnetic data from a single scalar and vector

magnetometer pair. The elastic net and PLSR models can readily include additional

data, which is explored in detail in section 4.9 in comparison with nonlinear models.
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Chapter 4

Neural Network-Based Aeromagnetic

Compensation

Coupling together machine learning-based data-driven models and physics-based

models has the potential for better performance than either individually. This com-

bination can allow for lower data requirements and smaller models (e.g. neural net-

works), thus greater computational efficiency.

In 1993, Williams first proposed using a neural network for aeromagnetic com-

pensation of geo-survey aircraft [66]. The model was trained to predict the total

magnetic field, which was assumed to be a linear combination of 3 components,

namely local (earth/crustal), diurnal (temporal variations), and aircraft interference

effects. These components correspond with 6 position, 2 time, and 12 attitude input

features, respectively. Williams showed that the high frequency portion of the mag-

netic field was dependent almost entirely on attitude terms. It was also suggested to

use a fluxgate vector magnetometer to directly measure the earth to aircraft direction

cosines and use these as input features, as in the Tolles-Lawson model. Performance
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was similar to the classical Tolles-Lawson model.

More recently, Ma et al. used a variational Bayesian neural model to predict

the standard deviation of the aeromagnetic compensation error in addition to the

compensation magnitude itself [67]. Yu et al. used a denoising autoencoder with

a single hidden layer to resolve the previously mentioned multicollinearity issue in

estimating the aeromagnetic compensation coefficients for a rotary-wing UAV [68].

Xu et al. used deep learning for MAD, primarily through simulations [69].

Hezel trained 240 different neural network models using magnetometer, accelerom-

eter, gyroscope, and voltage data from a Geometrics micro-fabricated atomic mag-

netometer development kit (MFAM) [18]. The best performing model was able to

decrease the RMSE from approximately 47 nT to 5 nT on a validation dataset.

Emery developed a neural network-based aeromagnetic compensation model for an

F-16 that used the Tolles-Lawson 𝐴 matrix terms from (3.19)–(3.21), along with

additional voltage and current sensor data, as input features [19]. The hyperparame-

ters from [18] were mostly used without further consideration, though extremely deep

neural networks of 7 to 97 layers were examined. None of the models outperformed

classical Tolles-Lawson aeromagnetic compensation, which was attributed to a lack

of model experimentation and optimization. Evaluating shallower neural network

models was recommended.

This chapter first provides background on neural networks, then introduces five

neural network-based aeromagnetic compensation models. These models vary from

a standard neural network, similar to Hezel and Emery [18, 19], to more involved sci-

entific machine learning (SciML) approaches that combine the Tolles-Lawson model

with a neural network. An evaluation of neural network size and feature selection is

then discussed. Finally, compensation performance is compared against the Tolles-

Lawson and PLSR-based models for a variety of magnetometer selections.
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4.1 Neural Networks

An (artificial) neural network (NN) is a collection of connected nodes or units called

(artificial) neurons, which is analogous to biological neurons in the brain. The nodes

are put into layers to build the neural network, as shown in Figure 4-1. Here, a

single-layer neural network is illustrated, but more hidden layers can be used to

create a composition of functions. When a multi-layer approach is used, it is called

a deep neural network.

Figure 4-1: Neural network.

A neural network with even just a single hidden layer is a universal approximator

[70]. This means that, with enough nodes and proper selection of model parameters,

an accurate approximation can be constructed for any arbitrary nonlinear function.

There are other universal approximators, but neural networks have additional “order

of approximation” properties, meaning that the error can be significantly less for a

given number of nodes [71].
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Figure 4-2: Individual node within a neural network.

An individual neural network node is shown in Figure 4-2. Input 𝑥 from nodes in

the previous layer is fed into the node and multiplied by weights 𝑤 with an added

bias 𝑏, also known as offset or threshold. The resulting value is the pre-activation

𝑧𝑗 =
𝑛∑︁

𝑖=1

𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗 (4.1)

which passes through a nonlinear activation function 𝑓 to produce the node’s output

𝑦𝑗 = 𝑓𝑗(𝑧𝑗). (4.2)

There are many options for the activation, with the primary requirement being dif-

ferentiability. A few commonly used activation functions are shown in Figure 4-3,

along with their derivatives in Figure 4-4. Note that the derivatives are important

for training the neural network to learn 𝑤 and 𝑏, which is explained next.
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Figure 4-3: Common activation functions. The standard slope parameter of 1 is used
for sigmoid and Swish.

The activation functions shown in Figure 4-3 and Figure 4-4 are provided by (4.3)–(4.6).

A rectified linear unit (ReLU) is a type of ramp function, taking only the positive

part of its argument.

ReLU(𝑧) = max(0, 𝑧) (4.3)

The sigmoid function 𝜎, a logistic function specifically, uses a slope parameter 𝛽

(typically 1) and varies between 0 and 1.

𝜎(𝑧, 𝛽) =
1

1 + 𝑒−𝛽𝑧
(4.4)

Swish is a relatively new activation function that has been shown to outperform

ReLU and others on multiple neural network models [72]. Similar to ReLU, it uses a
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Figure 4-4: First derivatives of common activation functions. The standard slope
parameter of 1 is used for sigmoid and Swish.

slope parameter 𝛽 that is typically 1. This is the primary activation function used in

this work, as it was found to perform best compared to the other options mentioned

here, as discussed further in section 4.7.

Swish(𝑧, 𝛽) = 𝑧 𝜎(𝑧, 𝛽) =
𝑧

1 + 𝑒−𝛽𝑧
(4.5)

The hyperbolic tangent function tanh varies between -1 and 1.

tanh(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
(4.6)

The squared loss for input data 𝑥 with output target data 𝑦 is

𝐿(𝑥, 𝑦|𝑤, 𝑏) =
1

2
(𝑦 − 𝑦(𝑥|𝑤, 𝑏))2 (4.7)
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where 𝑦 is the neural network estimated output. Using the error backpropagation

algorithm, the weights of the neural networks can then be updated with

∆𝑤𝑗𝑖 = 𝜌 𝑓 ′
𝑗(𝑧𝑗) (𝑦 − 𝑦(𝑥|𝑤, 𝑏)) 𝑥𝑖 (4.8)

where 𝜌 is the learning rate, which controls how much to update the weights of

the neural network in response to the calculated loss. It is a small, positive value,

typically between 0 and 1.

4.2 Neural Network-Based Aeromagnetic

Compensation, Model 1

One of the goals of this work was to determine if nonlinear aeromagnetic compensa-

tion was able to outperform Tolles-Lawson with tail stinger and/or in-cabin magnetic

measurements. Thus, the goal of neural network-based aeromagnetic compensation

is to use machine learning in order to create a nonlinear aeromagnetic compensa-

tion model. Additionally, it was questioned if additional sensors, beyond a single

scalar and vector magnetometer, could improve compensation performance. On-

board electronics, such as strobe lights, are largely not able to be compensated using

the classical Tolles-Lawson model, so it has been previously suggested to specifically

model them [73, 74].

The approach taken here is to include additional data along with the typical

magnetometer data. An example of possible data fields is provided in Appendix A

and discussed in section 2.2.1. The idea here is that this additional data allows for

greater observability of the aircraft magnetic field, and machine learning can learn the

relationship between the data and aircraft field. A baseline model for this approach
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is to use a neural network (described in section 4.1) to represent the compensation

model in a pure data-driven approach, as shown in Figure 4-5.

Figure 4-5: Neural network-based aeromagnetic compensation, model 1.

Here, the input data 𝑑𝑎𝑡𝑎aux, also known as features, can be raw measurements

and/or the Tolles-Lawson 𝐴 matrix terms from (3.19)–(3.21). Using the Tolles-

Lawson terms is a form of scientific machine learning (SciML), as these terms rep-

resent prior scientific knowledge. This can potentially reduce the amount of data

required for training. Note that during training, the mean squared error (MSE)

of the aeromagnetic compensation output is compared with the output target, as

described section 3.7. During testing (evaluation), the aeromagnetic compensation

output just prior to the “loss MSE” in Figure 4-5 is used for navigation.

4.3 Neural Network-Based Aeromagnetic

Compensation, Model 2a

Model 1 can be extended into even more of a SciML approach using the physics of

aeromagnetic compensation. Model 2a, shown in Figure 4-6, more closely resembles

the classical Tolles-Lawson model, now with
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Figure 4-6: Neural network-based aeromagnetic compensation, model 2a.

𝐵target = 𝐴 𝛽NN (4.9)

where 𝐵target is some target magnetic value, 𝐴 is the Tolles-Lawson 𝐴 matrix, and

𝛽NN is a vector of varying coefficients.

Rather than directly determining some magnetic value, the output of the neural

network is instead a set of varying coefficients. These are then multiplied by the

Tolles-Lawson 𝐴 matrix to produce a magnetic value. The general idea here is

that this model is easier to train and more interpretable, since the coefficients have

meaning related to the permanent, induced, and eddy-current terms in the Tolles-

Lawson model. This model uses the same input data 𝑑𝑎𝑡𝑎aux as previously described,

but also separately requires vector magnetometer measurements (𝐵𝑥, 𝐵𝑦, 𝐵𝑧). The

output target 𝐵target can again be any of those listed in section 3.7. Note that if

the fifth option (BPF’d total field) for the output target is used, the 𝐴 matrix in

Figure 4-6 (or any of the models in sections 4.3–4.6) must also be bandpass filtered.
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4.4 Neural Network-Based Aeromagnetic

Compensation, Model 2b

Another SciML approach that uses the physics of aeromagnetic compensation is

model 2b, which is shown in Figure 4-7. Rather than predicting the Tolles-Lawson

coefficients with a neural network, the Tolles-Lawson coefficients for this approach

are pre-determined, using any of the classical, modified, or map-based Tolles-Lawson

models. Tolles-Lawson aeromagnetic compensation is then carried out, but large

errors still remain for compensation of in-cabin magnetometers. An additive cor-

rection is then made to the Tolles-Lawson compensated value to further reduce the

errors. This additive correction is the output of a neural network, similar to model

1 presented in section 4.2, except now the neural network does not need to learn the

Tolles-Lawson (linear) portion of the desired compensation and instead primarily

learns the higher-order nonlinear portion.

Figure 4-7: Neural network-based aeromagnetic compensation, model 2b.
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4.5 Neural Network-Based Aeromagnetic

Compensation, Model 2c

An immediate extension of model 2b is model 2c, which is shown in Figure 4-8.

These models look very similar, but there is one key, subtle difference. In model 2c,

the Tolles-Lawson coefficients are updated by including them as parameters during

training of the neural network, rather leaving them as static values. The Tolles-

Lawson coefficients are not actually part of the neural network, but the Flux machine

learning library [75, 76] and Julia programming language [77] provide the flexibility to

backpropagate the error to the Tolles-Lawson coefficients just as with the weights of

the neural network. This would be difficult to implement in many other programming

languages, but it was rather straightforward with Julia.

Figure 4-8: Neural network-based aeromagnetic compensation, model 2c.
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4.6 Neural Network-Based Aeromagnetic

Compensation, Model 2d

The final neural network-based approach is model 2d, which is shown in Figure 4-9.

This model combines the general idea behind model 2a and model 2b in sections 4.3

and 4.4, respectively. An additive correction is now made to each individual (static)

Tolles-Lawson coefficient. This model was developed as it was thought that mak-

ing the additive correction in a higher dimensional space may improve performance

further.

Figure 4-9: Neural network-based aeromagnetic compensation, model 2d.

92



4.7 Neural Network Size Evaluation

A key unknown for the models presented in sections 4.2–4.6 was the neural network

design, including the number of hidden layers, number of nodes per hidden layer, and

activation function. To gain insight into these unknowns, the design of experiments

(DOE) shown in Table 4.1 was completed. One, two, and three hidden layer neural

networks with up to 128 nodes per hidden layer were evaluated. To a lesser extent,

the Swish and ReLU activation functions were compared as well. Initial testing

prior to this DOE indicated that other activation functions, namely sigmoid and

tanh performed consistently worse than Swish and ReLU and were not considered

further. For this DOE, batch sizes of 2048, 500 training epochs, the ADAM optimizer

(optimizing algorithm) [78], and a mean squared error (MSE) loss function were

used. The number of training epochs was held at 500, as this was found to prevent

early stopping in preliminary analysis. The batch sizes of 2048 and the ADAM

optimizer were also previously found to work well. The training data was split into

a true training portion and a validation portion in a 14:3 ratio. Check-pointing,

based on validation loss, was used to save the neural network weights during training

when a new minimum loss was found. Using this method prevents the model from

overtraining and allows for better generalization.
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Table 4.1: Initial Neural Network Design of Experiments.

Hidden
Layers Nodes Activation Training

Error [nT]
Testing

Error [nT]
1 4 Swish 3.7 4.1
1 8 Swish 3.5 4.6
1 16 Swish 3.1 5.5
1 16 ReLU 3.2 6.2
1 32 Swish 2.9 5.9
1 64 Swish 2.7 6.8
1 128 Swish 2.6 8.1
2 4, 4 Swish 3.8 4.0
2 8, 4 Swish 3.4 5.2
2 8, 8 Swish 3.3 5.6
2 16, 8 Swish 3.0 5.9
2 16, 16 Swish 2.9 6.0
2 16, 16 ReLU 3.4 9.1
2 32, 16 Swish 2.5 7.7
2 32, 32 Swish 2.4 9.4
2 64, 32 Swish 2.0 11
2 64, 64 Swish 2.0 10
2 128, 64 Swish 1.7 12
2 128, 128 Swish 1.8 11
3 4, 4, 4 Swish 3.8 4.4
3 8, 8, 8 Swish 3.3 5.4
3 16, 16, 16 Swish 2.7 7.7
3 16, 16, 16 ReLU 3.5 16
3 32, 32, 32 Swish 2.4 8.0

Model 1, presented in section 4.2, was trained on flight data with some of the fields

listed in Appendix A using the Flux machine learning library [75, 76], which uses

the Julia programming language [77]. More specifically, the in-cabin magnetometers

(four scalar and three vector), INS data, barometer reading, and all available current

and voltage sensors were used. The vector magnetometer data was transformed

into the Tolles-Lawson 𝐴 matrix terms from (3.19)–(3.21), and the INS roll, pitch,
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and yaw data was transformed into direction cosine matrix terms. Both of these

provide orientation information. A total of 108 features were used. The output

target 𝐵target, as in Figures 4-5 and 4-6, was the compensated tail stinger total field

scalar measurements (anomaly field #1 in section 3.7) with temporal variations and

the core field removed, though using the interpolated magnetic anomaly map values

resulted in similar performance. The training data itself was selected from flights

1003-1006 (of the available 9 flights performed by SGL), as described in section 2.2.2.

The DOE results, shown in Table 4.1, are fairly consistent across the variety of

neural network sizes. In general, larger neural networks have larger out-of-sample

(testing) errors, which indicates overfitting to the training data. The Swish activation

function clearly has superior performance compared to the ReLU activation function.

With this in mind, 5 neural networks were chosen for further evaluation, which are

shown in bold in Table 4.1. These were selected based on the tradeoff between model

size, training error, and testing error.

A secondary DOE was carried out with a reduced feature set for a preliminary

look at feature importance and the impact on compensation performance. Iterative

hard thresholding (IHT) was carried out using the MendelIHT Julia package [79, 80].

IHT is a method to develop a sparse approximation to a linear system of equations,

thus it is not the best approach for nonlinear feature importance, which is explored in

detail in section 4.8. Cross-validation IHT was performed on the training data, which

indicated that the best sparse, linear solution used 20 of the 108 features for linear

compensation. Among these features were several terms from the Tolles-Lawson 𝐴

matrices, one term from the direction cosine matrix, the barometer reading, multiple

magnetometer readings, one INS acceleration, and 5 current and voltage sensors.

The most important current sensors were: cur_ac_hi (air conditioner fan high),

cur_strb (strobe lights), and cur_heat (INS heater). The most important voltage
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sensors were: vol_bat_1 (battery 1) and vol_block (block). Based on these features

being selected, it was decided to keep several other related features, including the

cur_com_1 (aircraft radio 1), cur_ac_lo (air conditioner fan low), cur_tank (cabin

fuel pump), and cur_flap (flap motor) current sensors and the vol_bat_2 (battery

2) voltage sensor. Additionally, only one eddy current term from the Tolles-Lawson 𝐴

matrices was present in the IHT results, which also had a relatively small coefficient.

With this in mind, it was decided to only keep the permanent and induced terms.

Other work has observed the relative unimportance of the eddy current terms and

ignored them as well [81]. In summary, only 10 of the 31 current and voltage sensors

and 27 of the 54 terms from the Tolles-Lawson 𝐴 matrices were kept, reducing the

feature count from 108 to 60.

Table 4.2: Secondary Neural Network Design of Experiments. All runs used the
Swish activation function, batch sizes of 2048, and 500 training epochs.

Hidden
Layers Nodes Model 1

Train [nT]
Model 2a
Train [nT]

Model 1
Test [nT]

Model 2a
Test [nT]

1 8 3.9 5.5 4.8 4.7
1 16 3.6 6.8 4.5 5.7
2 8, 4 3.9 6.1 5.2 6.9
2 8, 8 3.8 7.6 4.7 6.0
2 16, 8 3.4 6.4 4.7 8.0

The results of the secondary DOE with the reduced feature set are shown in Table 4.2.

Batch sizes of 2048, 500 training epochs, and a mean squared error loss function were

again used. The ADAM optimizer was again used for model 1. However, model 2 used

5 epochs with the ADAM optimizer for initialization of the neural network weights,

then 500 epochs with the limited memory Broyden–Fletcher–Goldfarb–Shanno algo-

rithm (L-BFGS) [82] to test the impact of a different optimizer. This decision was

based on previous testing and performance of various optimizers with the models.
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The output target 𝐵target, as in Figures 4-5 and 4-6, was the compensated tail stinger

total field scalar measurements with temporal variations and core field removed. The

shallow model with only a single hidden layer containing eight nodes was selected for

further analysis as it retained low error (approximately 5 nT) on both the training

and testing datasets despite being relatively small and fast. Note that both DOEs

were evaluated using an older version of MagNav.jl. Thus, these results are unable

to be exactly replicated, but the overall results should be similar.

4.8 Feature Selection

The importance of the individual data fields within 𝑑𝑎𝑡𝑎aux was generally unknown

for all of the neural network-based approaches. The linear approach (IHT) previously

discussed in section 4.7 may not agree with nonlinear approaches for feature selec-

tion. To potentially develop simpler, more interpretable, and faster models, feature

(data field) selection was evaluated in-depth. It was anticipated that some of the

features, particularly some of the current and voltage sensors, were not providing use-

ful information for neural network-based aeromagnetic compensation. Eliminating

these features from the models increases interpretability and decreases the training

and evaluation runtimes. To fully explore feature selection, also known as feature

importance or reduction, several approaches were taken. These are explained in the

remainder of this section, followed by feature selection results.
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4.8.1 Drop-Column Feature Importance

The first feature selection approach is drop-column feature importance. This is a

“wrapper” type of feature selection. For this approach, the model is trained with

each individual feature excluded (i.e. the feature column is dropped) one at a time.

This means the model must be trained for as many times as the number of features.

For a large number of features, this is computationally expensive. Additionally,

as seen in section 4.8.5, the feature importance results are not meaningful if the

features are highly correlated, since no individual feature is particularly important.

Relative performance of the trained models indicates feature importance, i.e. lower

performance without a given feature corresponds to higher feature importance and

vice versa.

4.8.2 Permutation Feature Importance

The second feature selection approach is permutation feature importance. This is

also a “wrapper” type of feature selection. First, a model is trained with all features

included. The model is then evaluated with the data for each individual feature

shuffled (i.e. the feature column is randomly permutated) one at a time. Similar

to drop-column feature importance, relative performance of the evaluated model

indicates feature importance, i.e. lower performance with a given feature shuffled

corresponds to higher feature importance and vice versa. This approach has the

benefit of only requiring the model to be trained once, and then simply evaluated

for as many times as the number of features.
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4.8.3 Sparse Group Lasso

The third feature selection approach uses the sparse group Lasso penalty,

𝜆

𝑝∑︁
𝑗=1

(1 − 𝛼) ||𝜃1,·,𝑗||1 + 𝛼 ||𝜃1,·,𝑗||2 (4.10)

where 𝜆 is the sparse group Lasso parameter, 𝛼 is a Lasso (𝛼 = 0) vs group Lasso

(𝛼 = 1) balancing parameter, and 𝜃1,·,𝑗 are the first-layer neural network weights for

each input feature 𝑗 among 𝑝 total features [83]. Sparse group Lasso is a nonlinear

sparse-input regularization approach. The penalty uses the 𝐿1 and/or 𝐿2 penalties,

similar to the elastic net presented in section 3.5. Again, the 𝐿1 is useful for sparsity,

while the 𝐿2 norm is useful for generalization.

To carry out this feature selection approach, a neural network model is trained

with the above penalty included in the loss function (alongside the standard MSE).

Thus, this is an “embedded” feature selection approach, different from the others

discussed in this section. The trained model should have features with small first-

layer weights, the number of which is dependent on the 𝜆 and 𝛼 hyperparameters.

These hyperparameters and the Lasso portion of (4.10), ||𝜃1,·,𝑗||1, drive sparsity and

appropriately scale the penalty. The ranking of features is based solely on the group

Lasso portion of (4.10), ||𝜃1,·,𝑗||2, after training.

4.8.4 Shapley Values

The fourth and final feature selection approach used in this work is to determine

stochastic Shapley values for each feature, another “wrapper” type of feature selec-

tion. This approach comes from cooperative game theory and determines how much

each feature contributes to a prediction in comparison to the average prediction
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[84]. Shapley values are a model-agnostic way to quantify global feature importance,

meaning they are valid for any model, linear or nonlinear. Shapley values were

determined using the ShapML Julia package [85].

4.8.5 Feature Selection Result Comparison

Note that prior to the feature selection results presented here, many different features

were examined with the various neural network-based models. In some cases, the

“same” data can be included in multiple ways. For example, the aircraft attitude can

be included with the raw values, i.e. roll, pitch, and yaw, or the sine and/or cosine

of each value. Alternatively, the individual terms from the 3 × 3 direction cosine

matrix (formed from the roll, pitch, and yaw values) can be used, which was found

to perform best after examining all three options mentioned. This is called feature

engineering or feature extraction – creating features from functions of the original

data using domain knowledge. Additional features that were examined, but not

included here due to worse performance, include INS accelerations in the navigation

frame (rather than the body frame), yaw, pitch, and roll rates, and lagged scalar

magnetometer measurements.

Similarly, for these neural network-based models, there are more than 20 hy-

perparameters that can be selected. Clearly an exhaustive search for each optimal

hyperparameter is not practical. Additionally, the best hyperparameters are not nec-

essarily the same for every flight data subset. Instead, various trials were carried out

prior to the results presented here to find well-performing, but not overly optimized,

hyperparameters. Slightly better performance could result by further optimizing the

hyperparameters, but not enough of an improvement to invalidate the takeaways

formed here. The selected hyperparameters are shown in Table 4.3.
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Table 4.3: Feature selection hyperparameters.

Hyperparameter Value Description
y_type a 𝑦 output target option (see section 3.7)
use_mag mag_4_uc scalar mag to use with y_type = c, d, or e
use_vec flux_d vector mag to use for “external” Tolles-Lawson 𝐴
terms [p,i,e] terms for Tolles-Lawson 𝐴 within 𝑑𝑎𝑡𝑎aux

terms_A [p,i,e] terms for “external” Tolles-Lawson 𝐴
sub_diurnal true if true, subtract diurnal from scalar mag meas
sub_igrf true if true, subtract IGRF from scalar mag meas
bpf_mag false if true, bpf scalar mag meas in 𝑑𝑎𝑡𝑎aux

norm_type_A none normalization for “external” Tolles-Lawson 𝐴
norm_type_x standardize normalization for 𝑑𝑎𝑡𝑎aux

norm_type_y standardize normalization for 𝑦
TL_coef TL_d_4 Tolles-Lawson coefficients
𝜂_adam 0.001 learning rate for ADAM optimizer
epoch_adam 500 number of epochs for ADAM optimizer
epoch_lbfgs 0 number of epochs for L-BFGS optimizer
hidden [8] nodes per hidden layer
activation swish activation function
batchsize 2048 mini-batch size
frac_train 14/17 training data fraction (remainder for validation)
𝛼_sgl 1 Lasso (0) vs group Lasso (1) balancing parameter
𝜆_sgl 0 sparse group Lasso parameter
k_pca -1 # components for PCA + whitening, -1 to ignore

Looking at Table 4.3, the first hyperparameter is y_type, which is discussed in

section 3.7. For this analysis, the first option (anomaly field #1) was selected, though

the first four options generally performed similarly. use_mag was not relevant for this

analysis, and use_vec = flux_d was selected arbitrarily among the three non-stinger

options. The standard Tolles-Lawson terms, permanent (p), induced (i), and eddy

current (e), were selected for both the Tolles-Lawson 𝐴 matrices within 𝑑𝑎𝑡𝑎aux

and the “external” matrix used with models 2a-2d. sub_diurnal and sub_igrf

were both set to true, meaning the scalar magnetometer measurements had the
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core field and temporal variations removed. This may be thought to be “cheating”

since these are position dependent, but even with the position uncertainty during

navigation, these are known to within approximately 0.1 nT. No normalization was

performed on the “external” Tolles-Lawson 𝐴 matrix, while standardization (Z-score

normalization) was found to work well on the input and output data. Note that

min-max normalization and scaling by the maximum absolute value (no bias) were

also evaluated on the input and output data, and both were found to provide similar

or worse results. The selected Tolles-Lawson coefficients, TL_coef = TL_d_4 were

calculated using the classical Tolles-Lawson model with Mag 4 and Flux D flight

data from two calibration boxes performed during flight line 1002.02. Performance

was similar using a different calibration flight line.

As far as neural network-specific parameters, 500 epochs with the ADAM opti-

mizer were used, with a learning rate of 𝜂_adam = 0.001. Various optimizers were

evaluated, and stochastic gradient descent generally performed poorly with a noisy,

oscillating solution. L-BFGS, a quasi-Newton method, works as well, but was found

to often overfit as MagNav.jl is currently unable to use validation check-pointing

with L-BFGS. Thus, the commonly used optimizer, ADAM was exclusively used for

generating the results in the remainder of this work. A single hidden layer with 8

nodes and the swish activation function were used, as these were found to work well,

as described in section 4.7. Similarly, batchsize = 2048 and frac_train = 14/17

were again used. The sparse group Lasso parameters, 𝛼_sgl and 𝜆_sgl, as described

in section 4.8.3, were set as to not use sparse group Lasso. Similarly, k_pca = –1

does not use PCA with whitening by default. This is an optional pre-processing step

for highly correlated input data that can reduce computation time, as discussed in

section 4.9.
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With the setup explained, the results can now be examined. Two neural network-

based aeromagnetic compensation models were examined, models 1 and 2c. These

were selected as model 1 is the least SciML-like approach, while model 2c, with

the “external” Tolles-Lawson 𝐴 matrix and updating Tolles-Lawson coefficients, was

deemed the most SciML-like approach and it performed the best at the time of

this analysis. The standard training dataset described in section 2.2.2 was used for

training here.

103



Table 4.4: Top 25 features for model 1. “Drop” is drop-column feature importance,
“Perm” is permutation feature importance, “SGL” is sparse group Lasso, and “Shap”
is for Shapley values, as described in sections 4.8.1–4.8.4. “Train” and “Test” are
the standard training and testing datasets described in sections 2.2.2 and 2.2.3,
respectively. Sorted by the average of the four right columns.

Feature Drop
Train

Drop
Test

Perm
Test

SGL
Train

Shap
Train

Shap
Test

TL_A_flux_d_Z 4 79 2 1 3 1
TL_A_flux_c_Z 94 26 1 2 1 2
TL_A_flux_d_XZ 45 22 3 3 2 3
mag_5_uc 36 60 4 5 5 5
TL_A_flux_c_XZ 33 11 5 6 4 4
TL_A_flux_a_YY 40 97 9 4 16 6
TL_A_flux_d_ZZ 14 52 7 7 7 8
TL_A_flux_a_XX 108 18 6 11 9 7
mag_4_uc 34 15 8 8 6 9
mag_4_5_uc 53 53 10 9 8 11
TL_A_flux_c_ZZ 57 81 12 10 26 10
mag_3_uc 52 89 11 18 10 12
TL_A_flux_a_YZ 82 33 14 15 11 13
TL_A_flux_c_X 10 106 17 14 29 14
TL_A_flux_d_XX 29 10 15 13 20 17
dcm_1 63 27 16 22 13 16
TL_A_flux_a_XY 35 78 23 20 23 20
mag_3_5_uc 9 94 21 24 18 19
TL_A_flux_d_X 38 107 24 16 34 24
TL_A_flux_c_XY 44 48 22 23 19 22
TL_A_flux_c_XX 77 8 29 12 32 26
TL_A_flux_c_YZ 69 32 13 44 12 15
TL_A_flux_d_YZ 72 40 19 32 17 21
TL_A_flux_d_YY 47 9 20 29 14 25
TL_A_flux_d_XY 32 59 31 19 22 27
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Table 4.5: Top 25 features for model 2c. “Drop” is drop-column feature importance,
“Perm” is permutation feature importance, “SGL” is sparse group Lasso, and “Shap”
is for Shapley values, as described in sections 4.8.1–4.8.4. “Train” and “Test” are
the standard training and testing datasets described in sections 2.2.2 and 2.2.3,
respectively. Sorted by the average of the four right columns.

Feature Drop
Train

Drop
Test

Perm
Test

SGL
Train

Shap
Train

Shap
Test

TL_A_flux_c_Z 12 49 1 2 1 1
mag_5_uc 35 53 3 1 6 4
TL_A_flux_c_XZ 1 1 2 5 2 2
TL_A_flux_d_Z 6 6 4 6 3 3
TL_A_flux_d_XZ 101 89 6 7 5 6
mag_4_uc 16 78 5 8 4 7
TL_A_flux_d_ZZ 2 11 7 10 8 5
mag_4_5_uc 45 62 8 9 7 10
TL_A_flux_c_ZZ 17 33 9 11 12 8
TL_A_flux_a_YY 34 85 16 3 30 11
TL_A_flux_a_YZ 68 90 11 15 9 9
TL_A_flux_c_XX 102 24 13 4 11 19
TL_A_flux_c_X 14 16 12 14 19 12
TL_A_flux_d_YZ 72 67 10 21 10 13
TL_A_flux_a_XY 3 2 15 17 14 14
TL_A_flux_a_XX 60 48 17 18 20 17
TL_A_flux_a_XZ 57 87 14 28 13 15
dcm_1 49 84 19 22 15 16
TL_A_flux_c_XY 74 3 18 24 17 18
TL_A_flux_c_YZ 36 96 20 20 16 20
TL_A_flux_d_XY 77 99 22 16 21 23
TL_A_flux_d_XX 24 22 26 12 31 27
TL_A_flux_d_Y 27 10 21 27 26 21
TL_A_flux_c_YY 28 45 23 25 18 24
TL_A_flux_a_X 99 70 29 19 25 25
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Tables 4.4 and 4.5 show the top 25 features for models 1 and 2c, and the full results

are in Appendix B. There are multiple clear trends visible in these results. First,

the most important features are the magnetometers, which is not at all surprising.

The best available scalar magnetometers, Mag 4 and 5, and their differences appear

in both Tables 4.4 and 4.5. Additionally, many of the Tolles-Lawson terms from

Flux A, C, and D appear. Note that only permanent (e.g. _Z) and induced (e.g.

_XZ) terms are present among the top 25 features. Additionally, the direction cosine

terms seem to provide some information, especially dcm_1 = cos(pitch) cos(yaw).

Just outside of the top 25 features dcm_4 = cos(pitch) sin(yaw) also appears. One

additional thing to note is the dissimilarity of the drop-column feature importance

results compared to the others. When a single feature is dropped, the overall impact

on model performance is minor, since many of the features are correlated. This

produces spurious results, as the best performing model during drop-column feature

importance is only marginally better than the worst performing model.

Tables 4.6 and 4.7 show the bottom 25 features for both models, and the full re-

sults are again available in Appendix B. Contrary to the top 25 features in Tables 4.4

and 4.5, there are nearly no magnetometer features here, the only exceptions being

some Tolles-Lawson eddy current terms (e.g. _YZ_dot). Nearly all of the unimpor-

tant features are INS accelerations, currents, and voltages. This is not necessarily

surprising, as some of these are nearly static values. This can be quantified, by look-

ing at Table 4.8. As an example, vol_res_n has both a low standard deviation and

low skew, and it appears near the bottom of the feature selection lists. However,

this introduces a potential issue. A feature may not be important a majority of the

time, but particularly important for short periods. For this reason, a feature such

as cur_flap should be kept, as the skew indicates this may be an “on/off” type of

feature. Again note the dissimilarity of the drop-column feature selection results
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compared to the others. In this case, some of the most important features accord-

ing to drop-column feature importance are completely unimportant for the other

approaches.

Table 4.6: Bottom 25 features for model 1. “Drop” is drop-column feature impor-
tance, “Perm” is permutation feature importance, “SGL” is sparse group Lasso, and
“Shap” is for Shapley values, as described in sections 4.8.1–4.8.4. “Train” and “Test”
are the standard training and testing datasets described in sections 2.2.2 and 2.2.3,
respectively. Sorted by the average of the four right columns.

Feature Drop
Train

Drop
Test

Perm
Test

SGL
Train

Shap
Train

Shap
Test

TL_A_flux_a_XZ_dot 97 43 75 82 82 74
vol_back_n 30 77 95 56 80 85
TL_A_flux_c_YY_dot 74 16 68 92 73 79
vol_block 71 42 89 62 96 88
cur_acpwr 78 21 76 94 58 70
vol_acc_p 16 105 100 46 78 95
TL_A_flux_a_ZX_dot 61 93 73 88 71 82
TL_A_flux_d_ZX_dot 3 100 74 87 94 84
cur_com_1 1 38 88 65 90 94
cur_ac_hi 7 49 94 47 88 106
TL_A_flux_a_ZY_dot 106 44 72 108 77 68
TL_A_flux_c_YZ_dot 104 61 71 102 72 78
TL_A_flux_d_YX_dot 6 101 78 89 76 90
vol_res_p 102 66 98 63 104 100
vol_gyro_2 26 51 107 57 101 97
vol_back 88 39 96 67 97 99
vol_fan 58 13 99 69 102 98
vol_gyro_1 51 1 108 74 93 87
cur_ac_lo 60 57 109 59 99 101
cur_strb 80 4 97 68 108 108
cur_srvo_m 107 45 101 78 107 102
vol_res_n 85 12 106 80 100 103
cur_srvo_i 79 34 104 91 105 104
ins_acc_z 73 55 105 96 103 107
cur_srvo_o 56 68 102 105 106 105
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Table 4.7: Bottom 25 features for model 2c. “Drop” is drop-column feature impor-
tance, “Perm” is permutation feature importance, “SGL” is sparse group Lasso, and
“Shap” is for Shapley values, as described in sections 4.8.1–4.8.4. “Train” and “Test”
are the standard training and testing datasets described in sections 2.2.2 and 2.2.3,
respectively. Sorted by the average of the four right columns.

Feature Drop
Train

Drop
Test

Perm
Test

SGL
Train

Shap
Train

Shap
Test

cur_tank 107 88 109 46 91 77
vol_gyro_2 44 81 101 53 95 80
TL_A_flux_a_ZY_dot 85 23 60 102 73 74
vol_cabt 65 100 85 67 90 84
TL_A_flux_d_ZY_dot 52 65 72 97 84 68
vol_acc_n 84 25 89 51 80 97
vol_acc_p 73 52 94 45 74 98
TL_A_flux_c_XY_dot 94 79 64 103 61 71
TL_A_flux_d_YY_dot 79 60 63 100 70 78
TL_A_flux_d_YX_dot 26 15 73 94 78 79
TL_A_flux_d_YZ_dot 19 58 77 82 75 87
cur_com_1 4 13 92 63 96 99
cur_flap 93 4 96 54 105 105
vol_res_p 21 20 93 68 97 96
TL_A_flux_a_XY_dot 98 94 78 92 86 89
vol_fan 63 54 97 75 98 91
vol_back 75 39 98 71 99 95
vol_gyro_1 53 76 99 72 100 101
vol_block 92 106 102 80 104 104
cur_strb 46 64 108 70 108 108
cur_srvo_m 100 93 106 81 103 100
cur_srvo_i 66 77 100 85 106 103
cur_srvo_o 76 14 107 87 102 102
ins_acc_z 95 66 104 90 107 107
vol_res_n 104 69 105 98 101 106
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Table 4.8: Standard deviation and skew of current and voltage features.

Features Std. Dev. Skew
cur_flap 0.019 21.93
cur_ac_lo 0.041 8.863
vol_bat_1 0.243 6.553
cur_strb 0.037 5.231
cur_com_1 0.016 4.731
cur_ac_hi 0.102 3.275
cur_bat_1 0.003 1.799
cur_tank 0.040 1.352
vol_block 0.026 0.726
vol_res_p 0.014 0.717
vol_cabt 0.307 0.645
vol_back 0.002 0.553
vol_fan 0.014 0.546
vol_acc_p 0.012 0.481
cur_outpwr 1.798 0.476
vol_back_n 0.008 0.473
cur_acpwr 1.784 0.467
vol_outpwr 0.163 0.384
vol_acpwr 0.147 0.323
vol_back_p 0.009 0.311
cur_bat_2 0.004 0.273
vol_res_n 0.012 0.258
vol_gyro_1 0.033 0.193
vol_acc_n 0.006 0.158
cur_srvo_o 0.124 0.132
vol_bat_2 0.264 0.129
cur_srvo_i 0.062 0.098
vol_srvo 0.085 0.095
cur_srvo_m 0.038 0.073
vol_gyro_2 0.029 0.054
cur_heat 1.330 0.021
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4.9 Linear and Nonlinear Model Performance

Comparison

Following the feature selection analysis in section 4.8.5, the full 108 feature set was

down-selected. The features that were removed were entirely based on the fea-

ture selection rankings, with the exception of a select few current and voltage fea-

tures that were kept based on the standard deviation and skew statistics presented

in Table 4.8. The specific removed current features were cur_tank, cur_srvo_o,

cur_srvo_m, cur_srvo_i, cur_bat_1, and cur_bat_2. All of the voltage features ex-

cept vol_bat_1 were removed, as were the INS accelerations (ins_acc_x, ins_acc_y,

ins_acc_z). Other than the magnetometer terms, this only left the direction cosine

matrix terms (dcm_1 – dcm_9), barometer reading (baro), vol_bat_1, and the fol-

lowing current features: cur_com_1, cur_ac_hi, cur_ac_lo, cur_flap, cur_strb,

cur_heat, cur_acpwr, and cur_outpwr.

A few features were also added based on further independent trials. These in-

clude scalar magnetometer derivatives and 4𝑡ℎ order central differences, which is

based on an aeromagnetic compensation noise metric used in industry [86]. An

IGRF (core field) term and INS latitude, longitude, and altitude were also added.

The Tolles-Lawson terms were modified to use the 3 permanent, 6 induced, and 3

derivative terms, which are similar to the typical eddy current terms, but reduce the

feature count. In general, the eddy current terms were shown to be unimportant, so

this choice was based on the desire to retain derivative information, but reduce the

(unimportant) feature count. The final 77 feature set used in the following results

comparisons is listed in Appendix C.
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Table 4.9: Down-selected hyperparameters.

Hyperparameter Value Description
y_type d 𝑦 output target option (see section 3.7)
use_mag mag_4_uc scalar mag to use with y_type = c, d, or e
use_vec flux_d vector mag to use for “external” Tolles-Lawson 𝐴
terms [p,i,d] terms for Tolles-Lawson 𝐴 within 𝑑𝑎𝑡𝑎aux

terms_A [p,i,e,b] terms for “external” Tolles-Lawson 𝐴
sub_diurnal false if true, subtract diurnal from scalar mag meas
sub_igrf false if true, subtract IGRF from scalar mag meas
bpf_mag false if true, bpf scalar mag meas in 𝑑𝑎𝑡𝑎aux

norm_type_A none normalization for “external” Tolles-Lawson 𝐴
norm_type_x standardize normalization for 𝑑𝑎𝑡𝑎aux

norm_type_y standardize normalization for 𝑦
TL_coef TL_d_4 Tolles-Lawson coefficients
𝜂_adam 0.001 learning rate for ADAM optimizer
epoch_adam 500 number of epochs for ADAM optimizer
epoch_lbfgs 0 number of epochs for L-BFGS optimizer
hidden [8] nodes per hidden layer
activation swish activation function
batchsize 2048 mini-batch size
frac_train 14/17 training data fraction (remainder for validation)
𝛼_sgl 1 Lasso (0) vs group Lasso (1) balancing parameter
𝜆_sgl 0 sparse group Lasso parameter
k_pca -1 # components for PCA + whitening, -1 to ignore

In addition to down-selection of the features, the hyperparameters were modified

based on further analysis. The updated set of hyperparameters are shown in full in

Table 4.9. It was determined that y_type = d performed the same or better than

y_type = a with sub_diurnal = false and sub_igrf = false. This is the fourth

output target option (aircraft field #2), as discussed in section 3.7. sub_diurnal

and sub_igrf refer to removing the diurnal and IGRF magnetic fields from the

scalar magnetometer measurements, respectively. Using this combination is similar

to conventional compensation, where the total field is used and the desired output
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is the compensation, which represents the aircraft magnetic field. Additionally, the

Tolles-Lawson 𝐴 matrices within 𝑑𝑎𝑡𝑎aux used a derivative (d) term instead of an

eddy current (e) term, as previously explained, while the “external” Tolles-Lawson

𝐴 matrix used with models 2a-2d added a bias (b) term.

With the down-selected feature set and updated hyperparameters explained, the

performance of each neural network aeromagnetic compensation model is compared

in Figure 4-10. There are a few takeaways that can be formed. First, 500 epochs is

adequate for all models to prevent early stopping and overfitting. As few as approxi-

mately 200 epochs could have been used without a significant change in performance.

Next, the models perform similarly overall, but model 2c had the slight edge over

the others at fewer epochs, prior to slight overfitting. As a reminder, model 2c adds

an additive correction to updating Tolles-Lawson coefficients. Finally, all models are

able to achieve around 4 nT of error (standard deviation, as defined in section 3.8)

on held out testing data.

Despite the large training dataset used, the models in Figure 4-10 were trained

quickly, approximately 5-6 min each using a 64 GB 2019 MacBook Pro. However,

it may be of interest to decrease the training time even further, without decreasing

performance significantly. One method to do so is by pre-processing the standardized

data using principal component analysis (PCA) with whitening [87]. PCA is a way to

do a change of basis on the data by finding the principle components, i.e. directions of

maximum variance [88]. Whitening involves re-standardizing the PCA-transformed

data. The results after performing these two steps are shown in Figure 4-11.

Comparing Figure 4-11 to Figure 4-10, the curves corresponding to the training data

are again overlapped, but stabilize at a slightly lower error (roughly 2 nT instead of

2.3 nT). Model 2c performs better than the others on held out testing data, though

model 1 reaches a similar performance at 500 epochs. Note that model 2c also
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Figure 4-10: Neural network-based model comparison.

tended to perform better than the other models in additional evaluations that are

not included in this work. Model 2c (as well as model 2b) additionally has the benefit

of containing both a linear and a nonlinear portion, which provides reliability and

interpretability. Thus, model 2c is deemed the marginally best neural network-based

aeromagnetic compensation approach. Approximately 200 epochs are appropriate

for model 2c when using PCA with whitening.

Using the PCA with whitening approach, 200 epochs, and the down-selected

feature set, a large sweep of magnetometer combinations was performed. Three

approaches are compared here, classical Tolles-Lawson, PLSR-based, and neural

network-based (model 2c) aeromagnetic compensation. For classical Tolles-Lawson,
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Figure 4-11: Neural network-based model comparison using PCA with whitening.
The number of components kept with PCA was 68 (of 77), which retained 99.99%
of the input data variance.

the first calibration box of flight line 1006.04 was again used, as in section 3.9. This

was done to provide a baseline for the state-of-the-art method. For PLSR and model

2c (the marginally best performing linear and nonlinear aeromagnetic compensation

models) the standard training dataset, described in section 2.2.2, was used. The

results from using Mag 3, 4, or 5 with up to two of Flux A, C, or D are shown in

Table 4.10. This sweep was actually performed three separate times. In the first

sweep, the goal was to see which vector magnetometer(s) performed best in combi-

nation with which scalar magnetometer(s). In the second sweep, the best available

vector magnetometer was used to determine the classical Tolles-Lawson coefficients,

114



which are also used with model 2c. During the first two sweeps the number of PCA

components was set to not lose any information, i.e. 100% of the input data variance

was retained. In the third sweep, the number of PCA components was reduced to

retain at most 99.99% of the input data variance, which was 1 to 3 less than the

total number of components. This final sweep is reported here.

Table 4.10: Single scalar magnetometer sweep performance on testing data. Mag 2
is evaluated separately.

Scalar
Mag

Vector
Mag(s)

Tolles-Lawson
Error

PLSR
Error

Model 2c
Error

3 A,C 91 25 22
3 A,D 91 18 16
3 C,D 87 39 24
3 A 91 57 30
3 C 103 68 44
3 D 87 57 49
4 A,C 102 10 8.6
4 A,D 105 16 15
4 C,D 102 16 13
4 A 105 23 26
4 C 102 70 43
4 D 106 54 32
5 A,C 18 4.7 5.4
5 A,D 19 5.3 4.9
5 C,D 18 5.3 5.7
5 A 19 9.5 4.9
5 C 18 26 13
5 D 20 13 12

Looking at Table 4.10, first note that the results with Mag 5 are better than all

of the results without Mag 5 (for the same vector magnetometers), which is clearly

the best choice for MagNav. However, Mags 3 and 4 also show promising results

with Flux A at around 30 nT of error, less than a third of the error from the state-
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of-the-art approach. It appears that PLSR and model 2c are more sensitive to the

vector magnetometer selection than classical Tolles-Lawson. Additionally, classical

Tolles-Lawson is worse than PLSR or model 2c in nearly all cases. Finally, model 2c

outperforms PLSR in most, but not all, cases. The cases of worse performance for

model 2c may potentially be due to the PCA approach taken here, where the results

are sensitive to the last included or excluded component. However, the goal here was

not to rigorously optimize each model of the sweep, but to instead see the trends

across the magnetometer combinations. Note that using the PCA with whitening

approach decreased the training time by over 50%, yet sub-5 nT out-of-sample testing

errors are still achieved.

The results from using up to two of Mag 3, 4, or 5 with up to two of Flux A,

C, or D are shown in Table 4.11. Again note that the performance when Mag 5 is

included is consistently better than when Mag 5 is excluded (for the same vector

magnetometers). However, a somewhat surprising result is that Mag 5 alone, as seen

in Table 4.10, often performs approximately the same or better than in combination

with another scalar magnetometer. Thus, getting the least corrupted magnetic signal

possible should be the top priority, rather than using multiple noisier magnetometers.

However, without Mag 5, 15 nT or less error can be achieved if two scalar and/or two

vector magnetometers are used. This could be applied in an operational scenario, in

which a scalar and vector magnetometer pair is placed in a pod on each wing. PLSR

and model 2c again outperform classical Tolles-Lawson in nearly all cases. With two

scalar magnetometers, model 2c outperforms PLSR overall.
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Table 4.11: Dual scalar magnetometers sweep performance on testing data. Mag 2
is evaluated separately.

Scalar
Mag

Vector
Mag(s)

Tolles-Lawson
Error

PLSR
Error

Model 2c
Error

3,4 A,C 102 9.9 10
3,4 A,D 105 16 18
3,4 C,D 102 16 14
3,4 A 105 23 21
3,4 C 102 67 34
3,4 D 106 46 31
3,5 A,C 18 4.7 5.9
3,5 A,D 19 5.4 7.0
3,5 C,D 18 5.3 5.6
3,5 A 19 8.9 5.5
3,5 C 18 19 11
3,5 D 20 13 9.8
4,5 A,C 18 4.4 4.2
4,5 A,D 19 5.3 4.3
4,5 C,D 18 5.1 4.0
4,5 A 19 9.5 4.8
4,5 C 18 17 10
4,5 D 20 11 8.4

The results from using Mag 2 (the worst scalar magnetometer) and/or Mag 5 (the

best scalar magnetometer) with up to two of Flux A, C, or D are shown in Table 4.12.

Mag 2 alone performs poorly, and is unsuitable for airborne magnetic anomaly nav-

igation unless multiple vector magnetometers are used. When used in combination

with Mag 5, the performance can be worse than Mag 5 alone. In general, Mag 2 is

too corrupted to be used as a source of magnetic information.
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Table 4.12: Magnetometer 2 sweep performance on testing data.

Scalar
Mag

Vector
Mag(s)

Tolles-Lawson
Error

PLSR
Error

Model 2c
Error

2,5 A,C 18 4.7 3.9
2,5 A,D 19 5.4 5.0
2,5 C,D 18 5.3 4.6
2,5 A 19 9.5 4.6
2,5 C 18 26 19
2,5 D 20 13 7.0
2 A,C 33281 29 41
2 A,D 33281 18 34
2 C,D 32957 58 56
2 A 33281 132 118
2 C 32749 82 156
2 D 32957 129 143
5 A,C 18 4.7 5.4
5 A,D 19 5.3 4.9
5 C,D 18 5.3 5.7
5 A 19 9.5 4.9
5 C 18 26 13
5 D 20 13 12

To set the stage for online neural network-based aeromagnetic compensation, as

described in section 5.6, it is worthwhile to look at even smaller feature sets. The

reason for this is that an online neural network stores each weight (and bias) as a

state in the navigation algorithm, so a large feature set becomes a computational

burden. In an operational scenario, it would also be beneficial to not rely on many

sensors, any of which could experience signal dropouts. Two small feature sets are

examined with each of Mags 3, 4, and 5. Mag 2 is not analyzed here or in the

remainder of this work, since it is not suitable for MagNav, as shown by the results

in Table 4.12. Flux A is solely used, as it provided the best overall performance with

these scalar magnetometers. A reminder from section 2.2.1 that Flux A was located
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in the middle of the cabin near the fuel tank, a location that would be expected to

have significant magnetic corruption from the aircraft itself.

Small feature set 1 uses the reduced set of currents and one voltage, as described

at the beginning of this section. To repeat, this includes cur_com_1, cur_ac_hi,

cur_ac_lo, cur_flap, cur_strb, cur_heat, cur_acpwr, cur_outpwr, and vol_bat_1.

It also includes the most important direction cosine matrix terms, specifically dcm_1

= cos(pitch) cos(yaw) and dcm_4 = cos(pitch) sin(yaw). For the scalar mag-

netometer, the measurement itself, the derivative, and the 4𝑡ℎ order central difference

are used. For the vector magnetometer, the typical permanent and induced Tolles-

Lawson terms and the derivative terms are used. Small feature set 2 includes only

the magnetometer terms. Small feature set 1 contains a total of 26 features, while

small feature set 2 contains a total of 15 features.

Prior to evaluating the small feature sets, it was wondered if the neural network

size could also be decreased from 8 nodes to even fewer nodes. First, the full 77-

term version of model 2c was re-evaluated to see the sensitivity of performance due

to neural network size and epochs, which is shown in Figures 4-12 and 4-13. First

looking at the training results in Figure 4-12, it can be seen that training performance

improves with more nodes. However, the improvement diminishes with size, i.e.

there is a substantial improvement between 1 and 2 nodes, but only a marginal

improvement between 32 and 64 nodes. Beyond 750 epochs, there is no improvement

in training performance for any neural network size.
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Figure 4-12: Model 2c training performance with neural network size, 77 features.
1, 2, 4, 8, 16, 32, and 64 nodes in a single hidden layer are compared. The feature
set is listed in Appendix C. Mag 4 and Flux A are used here.

Now looking at the testing results in Figure 4-13, it can be seen that testing perfor-

mance does not necessarily improve with more nodes. The lowest compensation error

is achieved with 16 nodes at around 500 epochs. However, 8 nodes also performs well

at 500 epochs, confirming the decision to use 8 nodes and 500 epochs for much of the

previously discussed work. Significantly worse performance occurs with 1 node, and

the second worst performance occurs with 64 nodes (which also took more than 2×

as long to train). 2, 4, 8, 16, and 32 nodes all have similar performance at around 4

nT of compensation error. With the exception of 1 node, 500 epochs is appropriate

for model 2c. Note that previous work in this chapter used a larger feature set with

108 features, which may have benefited from using 8 nodes rather than 2 or 4 nodes.
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Figure 4-13: Model 2c testing performance with neural network size, 77 features. 1,
2, 4, 8, 16, 32, and 64 nodes in a single hidden layer are compared. The feature set
is listed in Appendix C. Mag 4 and Flux A are used here.

Using small feature set 2, an additional analysis of neural network size and number

of epochs was completed, as shown in Figure 4-14. Different from the results with

the larger feature set, approximately 750 epochs is more appropriate. Using 2 or 4

nodes resulted in similar performance to 8 nodes, while clearly 1 node should not

be used. The overall performance was far worse compared to the results with 77

features, with approximately 37 nT of error on held out testing data when using 2,

4, or 8 nodes. This was expected, since far less information, especially magnetometer

measurements, was provided to the neural network. Given these results, 2 nodes was

deemed the best choice for the small feature sets.

121



Figure 4-14: Model 2c performance with neural network size, small feature set 2.
Small feature set 2 includes only scalar and vector magnetometer data for a total of
15 features. Mag 4 and Flux A are used here.

Similar to Figures 4-10 and 4-11, small feature set 2 was evaluated with each neu-

ral network-based aeromagnetic compensation model, as shown in Figure 4-15. As

before, the models perform fairly similarly, with the exception of model 2d, which

clearly performed worse in this case. Model 2c achieves the lowest compensation

error at 750 epochs, while models 1, 2a, and 2b achieve similar performance at 1000

epochs. This further confirms the choice to evaluate model 2c in greater depth.
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Figure 4-15: Neural network-based model comparison, small feature set 2. Small
feature set 2 includes only scalar and vector magnetometer data for a total of 15
features. Mag 4 and Flux A are used here.

Using 2 nodes, 750 epochs, and Flux A, but otherwise using the hyperparameters

listed in Table 4.9, the small feature sets were evaluated. PCA with whitening was

not used here, since there is uncertainty in the best number of components to include

and training runtime was not a concern. As can be seen in Tables 4.13 and 4.14,

the neural network-based aeromagnetic compensation, model 2c, performs best for

each magnetometer. Using the classical Tolles-Lawson model can only achieve 19

nT of error, while both the PLSR and model 2c can achieve under 10 nT with

Mag 5. The more corrupted magnetometers, Mags 3 and 4, can achieve around 50

nT of error with PLSR and/or model 2c, which can still be used for MagNav, as
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explained in section 6.1. Model 2c performs the same or better than PLSR is all

cases. Finally, feature set 1 outperforms feature set 2, indicating that the two terms

from the direction cosine matrix and limited current and voltage sensor data does

indeed improve aeromagnetic compensation.

An interesting side result is the effect of including the 4𝑡ℎ order central difference

term in small feature set 2. Without this term, the PLSR results are nearly exactly

the same. However, the model 2c results are noticeably worse with errors of 74, 57,

and 12 nT for Mags 3, 4, and 5, respectively. The neural network may be using

this term, which represents the magnitude of magnetic noise, effectively when the

magnetometer has high levels of corruption.

Table 4.13: Single magnetometer testing performance, small feature set 1. Small
feature set 1 includes magnetometer data, two terms from the direction cosine matrix,
and limited current and voltage sensor data for a total of 26 features.

Scalar
Mag

Vector
Mag

Tolles-Lawson
Error

PLSR
Error

Model 2c
Error

3 A 91 60 45
4 A 105 26 22
5 A 19 9.7 5.5

Table 4.14: Single magnetometer testing performance, small feature set 2. Small
feature set 2 includes only scalar and vector magnetometer data for a total of 15
features.

Scalar
Mag

Vector
Mag

Tolles-Lawson
Error

PLSR
Error

Model 2c
Error

3 A 91 65 52
4 A 105 54 38
5 A 19 11 11
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Chapter 5

Magnetic Navigation

A magnetic navigation system collects magnetic field data using a magnetometer

and uses magnetic anomaly maps to determine the current location by correcting

the drift from an inertial navigation system (INS). Magnetic navigation is enabled by

variations in earth’s magnetic anomaly field. However, magnetic measurements can

only measure the total field and thus contain the core field and temporal variations

in addition to the anomaly field. In practice, the core field at a given (estimated)

position and time can be accurately estimated using a core field model, such as the

IGRF model [6]. The temporal variations can also be estimated at a given (estimated)

position and time using ground-based reference measurements taken at a stationary

base station within the flight region [11]. Alternatively, the temporal variations can

be modeled within the navigation algorithm, which is described in section 5.3.

Magnetic navigation relies on an INS, which uses accelerometers and gyroscopes

to measure specific forces and angular velocities, respectively [89]. The INS provides

position, velocity, and attitude estimates. However, velocity is calculated with a

single integral and position is calculated with a double integral. Thus, small errors
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in the specific force and angular velocity measurements are integrated into progres-

sively larger errors in velocity and even larger errors in position. Matching magnetic

measurements to a magnetic anomaly map is one method to correct this drift.

Recall that the strength of a static magnetic dipole field decays with the inverse

of cubic distance from the source [4]. This high drop-off rate in magnetic fields means

that it is difficult for disturbances to affect magnetic sensors from a distance without

exhorting a significant amount of power, making it difficult to jam the magnetic

signal from ground stations or anywhere other than near the measurement location.

However, this also means that magnetic measurements are extremely sensitive to

nearby magnetic disturbances. The predominant issue with magnetic navigation

comes from magnetic interference generated by the aircraft itself, which is typically

handled through aeromagnetic compensation.

The end goal of this work is improving aeromagnetic compensation to enable

high-accuracy airborne magnetic anomaly navigation. Thus, understanding, evalu-

ating, and possibly improving the magnetic navigation algorithm is essential. To

this end, this section describes previous work on magnetic navigation, then provides

background on navigation algorithms and the baseline model used for airborne mag-

netic anomaly navigation. This is followed by a description of two approaches for

improving the navigation algorithm, namely online aeromagnetic compensation and

covariance-adaptive filtering. The effect of specific aircraft maneuvers on filter ob-

servability is also evaluated. Finally, navigation performance with various navigation

algorithms is compared on a common flight line.
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5.1 Previous Work on Magnetic Navigation

Magnetic navigation is an active area of research for not only aircraft, but also un-

derwater, space, ground, and indoor vehicles. These other platforms have been more

thoroughly investigated than airborne magnetic anomaly navigation over the past

decades and can provide insight on the general capabilities of magnetic navigation.

Thus, this section describes previous work in the area of magnetic navigation for

different types of vehicles.

5.1.1 Underwater Magnetic Navigation

One of the earliest to report on the potential for magnetic anomaly navigation was

Tyren in 1987 [90]. Tyren discussed the use of magnetic measurements to calculate

submarine ground speed using two offset magnetometers, as well as the superpo-

sition of vehicle magnetic field onto the earth magnetic field of the earth. Also

mentioned was the potential to use the magnetic anomalies from underwater struc-

tures as natural beacons for navigation. Jie used a Kalman Filter for underwater

magnetic navigation and found that navigation is improved with mean diurnal cor-

rection compared to using no diurnal correction at all [91]. This has applicability for

airborne magnetic anomaly navigation, where only an estimate of the diurnal may

be known rather than the specific value for the entire flight line.

5.1.2 Space Magnetic Navigation

Shorshi and Bar-Itzhack [92] and Psiaki et al. [93] used an extended Kalman Filter

(EKF) to relate magnetometer measurements taken on a satellite to the International

Geomagnetic Reference Field (IGRF) core magnetic field model. Both were able to
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obtain accuracies of less than 10 km. Note that at satellite altitudes the magnetic

anomaly field is negligible. Using a batch filter with both magnetometer and sun

sensor data, Psiaki was able to achieve 500 m accuracy for inclined low Earth orbits

[94]. These examples provide an approximate upper bound on the navigation errors

than can be obtained using airborne magnetic anomaly navigation, assuming a clean

magnetic signal can be received.

5.1.3 Ground Magnetic Navigation

Shockley was able to show the viability of road navigation using magnetic field vari-

ations with a ground vehicle [95, 96]. Magnetometer measurements were used to

estimate position using three different likelihood functions. Additionally, a mag-

netic map-matching particle filter was used to correct INS drift. Meter-level position

accuracy was demonstrated when sufficient magnetic field features were available.

However, different from airborne magnetic anomaly navigation is the availability of

local magnetic field perturbations from roadways, buildings, and other structures.

Road-based vehicles also have the benefit of navigating in a “road reference frame”

that has fewer degrees of freedom than a world reference frame [97].

5.1.4 Indoor Magnetic Navigation

Similar to road navigation, indoor navigation is able to use magnetic signals from of-

ten known, man-made magnetic sources. Li et al. discuss the use of these local anoma-

lies, referred to as a magnetic “fingerprint,” as well as the challenges posed by moving

magnetic objects and electronic devices [98]. Successful global self-localization for

both a mobile robot and human with a wearable magnetometer was demonstrated us-

ing Monte Carlo Localization (MCL) by Haverinen and Kemppainen [99]. Sub-meter
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accuracy was demonstrated for a mobile robot using multiple magnetic sensors, three

magnetic field maps, and a particle filter system [100]. Storms was able to obtain

sub-meter position errors in a laboratory hallway environment using an INS with

aiding from three-axis magnetometer data and a Kalman filter [101, 102].

5.1.5 Airborne Magnetic Anomaly Navigation

In 2006, Goldenberg reviewed terrain navigation efforts (using land topography and

geomagnetic maps) and suggested that magnetic sensing technologies were accurate

enough for airborne magnetic anomaly navigation as well [14]. Goldenberg also

provided one of the first in-depth descriptions of an INS system aided with a best

fit between real-time magnetic measurements and a corresponding magnetic map.

Finally, Goldenberg addressed issues in obtaining good magnetic measurements in an

aircraft environment, as well as the limitation of magnetic anomaly map availability.

Airborne magnetic anomaly navigation is relatively unexplored and there is not

a considerable amount of experimental results. Wilson et al. were able to obtain

position accuracies of 600-1200 m for 1 hr or longer flights using United States Geo-

logical Survey (USGS) maps in 2006 [103]. In this case, the magnetic measurements

were used to aid an airspeed dead-reckoning system. A key limitation was the use of

a less accurate vector magnetometer as the primary magnetic sensor.

More recently, Canciani achieved 13 m distance root mean square (DRMS) error

during a 1 hr flight near Louisa, Virginia, demonstrating the viability of airborne

magnetic anomaly navigation [13, 11, 2]. A marginalized particle filter (MPF), more

specifically a Rao-Blackwellized particle filter (RBPF) [104, 105], was used as the

navigation algorithm. However, the aircraft used was a magnetically optimized geo-

survey aircraft, which used magnetic measurements from a tail stinger. Lee used a
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simultaneous localization and mapping (SLAM) approach to resolve the issue of map

availability [106, 107]. Less than 20 m DRMS error was demonstrated for flights at

150 m above ground level (AGL), though again a geo-survey aircraft was used for

data collection. Finally, Canciani achieved 59 m DRMS errors on 1.5 hr flights with

an F-16 aircraft using online Tolles-Lawson aeromagnetic compensation [20]. This

approach is described in section 5.5.

5.2 Navigation Algorithms

The goal in navigation is to move from a start to an end location. Knowing the

position at any given time is not necessarily required, but it is often desired. The

ability to obtain accurate navigation state estimates, such as position, facilitates

accurate navigation [108]. A navigation filter processes measurements and prior

information into navigation states.

5.2.1 Kalman Filters

One of the most widely used navigation filters is the Kalman filter [109]. A Kalman

filter is analogous to the recursive least squares algorithm in that state estimates are

updated recursively based on the prediction error between the previous state and

new input data [110]. The Kalman filter is an optimal estimator for a linear system

with zero-mean white Gaussian noise. The discrete state dynamics equation for a

Kalman filter is

𝑥𝑘+1 = Φ𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘 (5.1)

where 𝑥 is the state vector, Φ is the state transition matrix, 𝐵 is a matrix that
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determines the change in the state based on the system input 𝑢, and 𝑤 is Gaussian

noise with 𝑤 ∼ 𝒩 (0,𝑄). Thus, the process is corrupted by process noise 𝑤 with

covariance 𝑄. The measurement update equation is

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (5.2)

where 𝑧 is the measurement, 𝐻 is a matrix that determines the change in the

measurement based on the state, and 𝑣 is Gaussian process noise with 𝑣 ∼ 𝒩 (0,𝑅)

that is uncorrelated with 𝑤. Thus, the measurement is corrupted by measurement

noise 𝑣 with covariance 𝑅. The time-varying prediction (a priori) equations for the

Kalman filter are

�̂�𝑘|𝑘−1 = Φ𝑘�̂�𝑘−1 + 𝐵𝑘𝑢𝑘 (5.3)

𝑃 𝑘|𝑘−1 = Φ𝑘𝑃 𝑘−1Φ
𝑇
𝑘 + 𝑄𝑘 (5.4)

where �̂� and 𝑃 are the state (mean) vector and covariance matrix, respectively.

Note that �̂� represents a state estimate, while 𝑥 represents the true state. An initial

condition must first be provided for both the state vector and covariance matrix.

After a new measurement is received, the state vector and covariance matrix are

updated using the time-varying update (a posteriori) equations for the Kalman filter,

𝐾𝑘 = 𝑃 𝑘|𝑘−1𝐻
𝑇
𝑘 (𝐻𝑘𝑃 𝑘|𝑘−1𝐻

𝑇
𝑘 + 𝑅𝑘)−1 (5.5)

�̂�𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 −𝐻𝑘�̂�𝑘|𝑘−1) (5.6)
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𝑃 𝑘 = (𝐼 −𝐾𝑘𝐻𝑘)𝑃 𝑘|𝑘−1 (5.7)

where 𝐾 is the Kalman gain, which represents the level of trust in the measurement

𝑧. If the Kalman gain 𝐾 is small (e.g. due to a large measurement noise covariance

𝑅), then the measurement is largely ignored and the state vector is highly dependent

on the prediction equations. Conversely, if the Kalman gain 𝐾 is large, then the

state vector is updated such that the estimated measurement approaches the actual

measurement.

5.2.2 Extended Kalman Filters

The Kalman filter algorithm may be extended to systems with nonlinear dynamics

via the extended Kalman filter (EKF) [111, 112]. The basic idea is to linearize the

state-space model at the most recent state estimate. The state update equation

becomes

�̂�𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝑧𝑘|𝑘−1) (5.8)

where

�̂�𝑘|𝑘−1 = 𝑓(�̂�𝑘−1,𝑢𝑘, 𝑘) (5.9)

and

𝑧𝑘|𝑘−1 = ℎ(�̂�𝑘|𝑘−1, 𝑘) (5.10)

which are nonlinear state transition and measurement models. Additionally,

132



Φ𝑘 =
𝜕𝑓

𝜕𝑥

⃒⃒⃒⃒
�̂�𝑘−1,𝑢𝑘

(5.11)

and

𝐻𝑘 =
𝜕ℎ

𝜕𝑥

⃒⃒⃒⃒
�̂�𝑘|𝑘−1

(5.12)

are the state transition and measurement Jacobian matrices, respectively.

5.3 Baseline Model

The baseline navigation algorithm used for this work is an extended Kalman fil-

ter (EKF), as shown in Figure 5-1. Here, there is no system input 𝑢, as magnetic

navigation is passive. However, INS position (latitude, longitude, altitude), veloci-

ties (north, east, down), specific forces (north, east, down), and attitude (direction

cosine matrix) are required for the dynamics model. The INS by itself allows for

dead-reckoning, but it drifts over time unless corrected via some measurement. The

measurement 𝑧 is the compensated total field measurement from a scalar magne-

tometer. The baseline aeromagnetic compensation is performed using the classical

Tolles-Lawson model, described in section 3.1.

Other than an initial state vector 𝑥0 and initial covariance matrix 𝑃 0, in general

the required components for the EKF are the process noise covariance 𝑄, measure-

ment noise covariance 𝑅, nonlinear state transition model 𝑓 and its Jacobian matrix

Φ, and nonlinear measurement model ℎ and its Jacobian matrix 𝐻 . However, for

this particular application, only the measurement equation is nonlinear, not the lin-

earized state dynamics. The state transition model is based on a 9-state Pinson error

model, which is a standard 1st-order dynamics model for an INS-based system [113].
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Figure 5-1: Extended Kalman filter.

The state vector for this model is

�̂� =

⎡⎢⎢⎢⎣
𝛿𝑝

𝛿𝑣

𝜖

⎤⎥⎥⎥⎦ (5.13)

where 𝛿𝑝, 𝛿𝑣, and 𝜖 are the three-dimensional INS position (latitude, longitude,

altitude), velocity (north, east, down), and tilt (north, east, down) errors, respec-

tively. However, additional states are added to this model for improved performance.

The accelerometer bias 𝑎 and gyroscope bias 𝑔 can be estimated with six additional

states, one for each dimension. Two barometer states, aiding altitude error 𝛿ℎ𝑎 and

vertical acceleration error 𝛿�̂�, constrain the vertical channel, which is otherwise un-

stable for an INS [13]. Generally the barometer is precise, but not accurate, which

is why this aiding is necessary. Finally, a world-frame time-correlated magnetic bias

state 𝑆 models temporal variations (e.g. space weather) and the map bias via a first-

order Gauss-Markov (FOGM) random process. This final state is only effective if

the frequency of temporal variations is outside the magnetic anomaly field frequency

band, which is often the case for low frequency space weather effects (or a map bias).
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This results in an 18-state model with the state vector

�̂� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝑝

𝛿𝑣

𝜖

𝑎

𝑔

𝛿ℎ𝑎

𝛿�̂�

𝑆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.14)

The remainder of this section describes the dynamics and measurement models in

more detail.

5.3.1 Dynamics Model

The continuous state transition model uses a 18 × 18 matrix, which can be broken

down by block as

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹 𝑝𝑝 𝐹 𝑝𝑣 03×3 03×3 03×3 𝐹 𝑝𝑏 03×1

𝐹 𝑣𝑝 𝐹 𝑣𝑣 𝐹 𝑣𝜖 𝐹 𝑣𝑎 03×3 𝐹 𝑣𝑏 03×1

𝐹 𝜖𝑝 𝐹 𝜖𝑣 𝐹 𝜖𝜖 03×3 𝐹 𝜖𝑔 03×2 03×1

03×3 03×3 03×3 𝐹 𝑎𝑎 03×3 03×2 03×1

03×3 03×3 03×3 03×3 𝐹 𝑔𝑔 03×2 03×1

𝐹 𝑏𝑝 02×3 02×3 02×3 02×3 𝐹 𝑏𝑏 02×1

01×3 01×3 01×3 01×3 01×3 01×2 𝐹 𝑠𝑠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
18×18

. (5.15)

135



The eight blocks in the upper left corner of 𝐹 in (5.15) form the state transition

matrix for the original 9-state Pinson error model with the states in (5.13). These

relate position to position errors

𝐹 𝑝𝑝 =

⎡⎢⎢⎢⎣
0 0 − 𝑣𝑛

𝑅2

𝑣𝑒 tan𝐿
𝑅 cos𝐿

0 − 𝑣𝑒
𝑅2 cos𝐿

0 0 −𝑘1

⎤⎥⎥⎥⎦
3×3

(5.16)

velocity to position errors

𝐹 𝑝𝑣 =

⎡⎢⎢⎢⎣
1
𝑅

0 0

0 1
𝑅 cos𝐿

0

0 0 −1

⎤⎥⎥⎥⎦
3×3

(5.17)

position to velocity errors

𝐹 𝑣𝑝 =

⎡⎢⎢⎢⎣
−𝑣𝑒(2Ω cos𝐿+ 𝑣𝑒

𝑅 cos2𝐿
) 0 𝑣2𝑒 tan𝐿−𝑣𝑛𝑣𝑑

𝑅2

2Ω(𝑣𝑛 cos𝐿− 𝑣𝑑 sin𝐿) + 𝑣𝑛𝑣𝑒
𝑅 cos2𝐿

0 −𝑣𝑒 𝑣𝑛 tan𝐿+𝑣𝑑
𝑅2

2Ω𝑣𝑒 sin𝐿 0 𝑣2𝑛+𝑣2𝑒
𝑅2 + 𝑘2

⎤⎥⎥⎥⎦
3×3

(5.18)

velocity to velocity errors

𝐹 𝑣𝑣 =

⎡⎢⎢⎢⎣
𝑣𝑑
𝑅

−2(Ω sin𝐿+ 𝑣𝑒 tan𝐿
𝑅

) 𝑣𝑛
𝑅

2Ω sin𝐿+ 𝑣𝑒 tan𝐿
𝑅

𝑣𝑛 tan𝐿+𝑣𝑑
𝑅

2Ω cos𝐿+ 𝑣𝑒
𝑅

−2𝑣𝑛
𝑅

−2(Ω cos𝐿+ 𝑣𝑒
𝑅

) 0

⎤⎥⎥⎥⎦
3×3

(5.19)

tilt to velocity errors
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𝐹 𝑣𝜖 =

⎡⎢⎢⎢⎣
0 −𝑓𝑑 𝑓𝑒

𝑓𝑑 0 −𝑓𝑛
−𝑓𝑒 𝑓𝑛 0

⎤⎥⎥⎥⎦
3×3

(5.20)

position to tilt errors

𝐹 𝜖𝑝 =

⎡⎢⎢⎢⎣
−Ω sin𝐿 0 − 𝑣𝑒

𝑅2

0 0 𝑣𝑛
𝑅2

−Ω cos𝐿− 𝑣𝑒
𝑅 cos2𝐿

0 𝑣𝑒 tan𝐿
𝑅2

⎤⎥⎥⎥⎦
3×3

(5.21)

velocity to tilt errors

𝐹 𝜖𝑣 =

⎡⎢⎢⎢⎣
0 1

𝑅
0

− 1
𝑅

0 0

0 − tan𝐿
𝑅

0

⎤⎥⎥⎥⎦
3×3

(5.22)

and tilt to tilt errors

𝐹 𝜖𝜖 =

⎡⎢⎢⎢⎣
0 −(Ω sin𝐿+ 𝑣𝑒 tan𝐿

𝑅
) 𝑣𝑛

𝑅

Ω sin𝐿+ 𝑣𝑒 tan𝐿
𝑅

0 Ω cos𝐿+ 𝑣𝑒
𝑅

−𝑣𝑛
𝑅

−(Ω cos𝐿+ 𝑣𝑒
𝑅

) 0

⎤⎥⎥⎥⎦
3×3

(5.23)

where the variables in (5.16)–(5.23) are listed in Table 5.1. Beyond the eight blocks

forming the nine-state Pinson state transition matrix are nine additional blocks that

include the accelerometer, gyroscope, barometer, and temporal variation errors.
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Table 5.1: State transition matrix variables.

Variable Units Description
𝐿 rad latitude
𝑣𝑛 m/s north velocity
𝑣𝑒 m/s east velocity
𝑣𝑑 m/s down velocity
𝑓𝑛 m/s2 north specific force
𝑓𝑒 m/s2 east specific force
𝑓𝑑 m/s2 down specific force
𝐶𝑛

𝑏 - direction cosine matrix (body to navigation)
𝜏𝑏 s barometer time constant
𝜏𝑎 s accelerometer time constant
𝜏𝑔 s gyroscope time constant
𝜏tv s temporal variation time constant
𝑘1 1/s barometer aiding constant
𝑘2 1/s2 barometer aiding constant
𝑘3 1/s3 barometer aiding constant
𝑅 m WGS-84 radius of Earth (6378137)
Ω rad/s rotation rate of Earth (7.2921151467 × 10−5)

The accelerometer to velocity errors are related using the body to navigation direction

cosine matrix,

𝐹 𝑣𝑎 = 𝐶𝑛
𝑏 . (5.24)

The accelerometer errors are governed by a time constant 𝜏𝑎,

𝐹 𝑎𝑎 =

⎡⎢⎢⎢⎣
− 1

𝜏𝑎
0 0

0 − 1
𝜏𝑎

0

0 0 − 1
𝜏𝑎

⎤⎥⎥⎥⎦
3×3

. (5.25)

138



The gyroscope to tilt errors are related using the direction cosine matrix,

𝐹 𝜖𝑔 = −𝐶𝑛
𝑏 . (5.26)

The gyroscope errors are governed by a time constant 𝜏𝑔,

𝐹 𝑔𝑔 =

⎡⎢⎢⎢⎣
− 1

𝜏𝑔
0 0

0 − 1
𝜏𝑔

0

0 0 − 1
𝜏𝑔

⎤⎥⎥⎥⎦
3×3

. (5.27)

The barometer is used for third order altitude aiding with

𝐹 𝑝𝑏 =

⎡⎢⎢⎢⎣
0 0

0 0

𝑘1 0

⎤⎥⎥⎥⎦
3×2

, (5.28)

𝐹 𝑣𝑏 =

⎡⎢⎢⎢⎣
0 0

0 0

−𝑘2 1

⎤⎥⎥⎥⎦
3×2

, (5.29)

𝐹 𝑏𝑝 =

⎡⎣0 0 0

0 0 𝑘3

⎤⎦
2×3

, (5.30)

and

𝐹 𝑏𝑏 =

⎡⎣− 1
𝜏𝑏

0

−𝑘3 0

⎤⎦
2×2

. (5.31)
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The temporal variation errors are governed by a time constant 𝜏tv,

𝐹 𝑠𝑠 = − 1

𝜏tv
. (5.32)

The continuous state transition model may then be put into a discrete form as

𝑓(�̂�) = Φ�̂� (5.33)

with

Φ = 𝑒𝐹Δ𝑡 (5.34)

where ∆𝑡 is the time step between measurements. The process noise covariance 𝑄 is

𝑄 = diag(
[︁
01×3 VRW1×3 ARW1×3 𝐷𝑎 1×3 𝐷𝑔 1×3 𝐷𝑏 0 𝐷tv

]︁
)18×18

(5.35)

where VRW = 𝜎2
VRW is zero-mean velocity random walk, ARW = 𝜎2

ARW is zero-

mean angular (tilt) random walk, 𝐷𝑎 = 2𝜎2
𝑎/𝜏𝑎 is accelerometer driving noise, 𝐷𝑔 =

2𝜎2
𝑔/𝜏𝑔 is gyroscope driving noise, 𝐷𝑏 = 2𝜎2

𝑏/𝜏𝑏 is barometer driving noise, and 𝐷tv =

2𝜎2
tv/𝜏tv is temporal variation driving noise.
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5.3.2 Measurement Model

As previously described in section 1.2, a magnetometer can only measure the to-

tal magnetic field, which contains multiple magnetic sources. The actual magnetic

measurements (𝑧 in (5.6), (5.8), and Figure 5-1) are compensated to remove air-

craft interference. The classical model for this is again Tolles-Lawson, which uses

a set of 18 coefficients and vector magnetometer measurements to compensate the

scalar measurements. Ideally, after compensation the measurements only contain

earth-related magnetic signals. The nonlinear measurement model is thus

ℎ(�̂�) = 𝑓IGRF(𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡, 𝑡) + 𝑓map(𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡) + 𝑆 (5.36)

where 𝑓IGRF is the IGRF core field model, 𝑓map is a predetermined magnetic anomaly

map interpolation, and 𝑆 is the temporal variation filter state. The position 𝑙𝑎𝑡,

𝑙𝑜𝑛, and 𝑎𝑙𝑡 is the filter-estimated (INS-corrected) latitude, longitude, and altitude,

respectively. As described in section 1.1.4, the spatial magnetic variation that allows

for navigation is contained in the magnetic anomaly field. The measurement Jacobian

matrix is

𝐻(�̂�) =
[︁
𝛿ℎ(�̂�)
𝛿𝑙𝑎𝑡

𝛿ℎ(�̂�)
𝛿𝑙𝑜𝑛

𝛿ℎ(�̂�)
𝛿𝑎𝑙𝑡

01×15

]︁𝑇
(5.37)

which is simply the gradient of the IGRF core field model and magnetic anomaly

map. Note that the gradient of the core field is much smaller than that of the

magnetic anomaly map.
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5.4 Online Aeromagnetic Compensation

The aeromagnetic compensation models in Chapters 3 and 4 follow the pre-processing

strategy described in section 1.3. This means that compensation is completed inde-

pendent of navigation. However, these may be more tightly integrated using online

aeromagnetic compensation as an end-to-end strategy. This is not a new idea. It

was previously suggested to use a recursive algorithm for adaptively updating com-

pensation coefficients en-route to a geo-survey area [114, 73]. Additionally, online

compensation of a vector magnetometer was described by Beravs et al. [115] and

Siebler et al. [116] using an unscented Kalman filter (UKF) and Rao-Blackwellized

particle filter (RBPF), respectively. This section describes two approaches to online

aeromagnetic compensation.

5.5 Online Tolles-Lawson Aeromagnetic

Compensation

Recently a navigation algorithm with integrated aeromagnetic compensation has

been introduced by Canciani [20]. Instead of compensation pre-processing of the

scalar magnetic measurements, the raw, uncompensated values are brought directly

into the navigation filter. More specifically, an EKF with additional Tolles-Lawson

coefficient and vector magnetometer states is used, which allows for the tracking

of and adapting to the changing aircraft magnetic field. The original state vector,

shown in (5.14), is modified to become
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�̂� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝑝

𝛿𝑣

𝜖

𝑎

𝑔

𝛿ℎ𝑎

𝛿�̂�

𝑆

𝛽TL

𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.38)

where 𝛽TL is the Tolles-Lawson coefficient vector and 𝑉 is a three-dimensional vector

magnetometer measurement. The Tolles-Lawson coefficients are length 19, which

includes the typical 18 terms and a bias term. This results in a total of 40 states.

Note that in the formulation presented by Canciani [20], the 𝛿ℎ𝑎 and 𝛿�̂� terms are

not included, resulting in 38 states.

To use this augmented EKF, the dynamics and measurement models must both

be modified. The continuous state transition matrix is nearly the same as (5.15),

except for additional −∞ terms on the diagonal for the vector magnetometer states,

𝐹 40×40 =

⎡⎢⎢⎢⎣
𝐹 18×18 018×19 018×3

019×18 019×19 019×3

03×18 03×19 −∞𝐼3×3

⎤⎥⎥⎥⎦
40×40

(5.39)

where 𝐹 18×18 is the baseline state transition matrix and 𝐹 40×40 is the augmented

version. Conceptually, the −∞ terms represent overriding the vector magnetometer

measurements every time step. This overriding is done through use of
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𝐵 =

⎡⎣037×3

𝐼3×3

⎤⎦
40×3

(5.40)

where 𝐵 is a matrix that determines the change in the state based on the system

input, which is a vector magnetometer measurement in this case. This is used as

shown in (5.3). The process noise covariance 𝑄 also has additional diagonal terms

for the added states, which are modeled as Brownian motion (integrated white noise)

with linearly growing variances. The Tolles-Lawson variances can be estimated by

observing how much the coefficients change when calibrating the classical Tolles-

Lawson model at multiple points in time. The vector magnetometer measurement

variances are highly dependent on the magnetometer used and the level of aircraft

interference, but should in general be greater than 100 nT. The measurement model

is similar to (5.36), but now includes a compensation term,

ℎ(�̂�) = 𝑓IGRF(𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡, 𝑡) + 𝑓map(𝑙𝑎𝑡, 𝑙𝑜𝑛, 𝑎𝑙𝑡) + 𝑆 + 𝑓TL(𝛽TL,𝑉 ) (5.41)

where 𝑓TL is the Tolles-Lawson model using coefficients 𝛽TL and vector magnetometer

measurement 𝑉 . The measurement Jacobian matrix is similar to (5.37), except

derivatives of the Tolles-Lawson coefficient and vector magnetometer states must

be included. The derivatives for the Tolles-Lawson coefficient states are simply the

Tolles-Lawson 𝐴 matrix terms, while the derivatives for the vector magnetometer

states are more involved. See [20] for details of these derivatives.
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5.6 Online Neural Network-Based Aeromagnetic

Compensation

An extension of the online Tolles-Lawson aeromagnetic compensation approach de-

scribed in section 5.5 is online neural network-based aeromagnetic compensation.

Instead of learning 19 varying Tolles-Lawson coefficient states, weights of a neural

network are learned. The state vector in this case is

�̂� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿𝑝

𝛿𝑣

𝜖

𝑎

𝑔

𝛿ℎ𝑎

𝛿�̂�

𝑆

𝑤NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.42)

where 𝑤NN are the neural network weights and biases. This model allows a nonlinear

compensation model, as discussed in Chapter 4, to be integrated into the online

compensation approach.

It was unknown prior to this work if this approach would provide improved per-

formance compared to the classical Tolles-Lawson or online Tolles-Lawson models.

It was also unknown if this approach is computationally tractable. Thus, a simple

version of online “neural network-based” aeromagnetic compensation was first im-

plemented, which is shown in Figure 5-2. This is essentially the same as the online

Tolles-Lawson approach if a linear activation function is used. However, using this

145



model verified that online neural network-based compensation can be implemented.

The results are nearly identical to that of online Tolles-Lawson compensation, as

expected. Differences in performance are seemingly due to different initializations of

navigation filter parameters for the two model types.

Figure 5-2: Simple online “neural network-based” aeromagnetic compensation.

146



Figure 5-3: Online neural network-based aeromagnetic compensation. The weights
(and biases) of the neural network are states in the EKF.

The complexity of the neural network can of course be increased, as shown in Fig-

ure 5-3, by using auxiliary data and/or a nonlinear activation function. As described

in [110], the neural network can be trained directly within the EKF using weights

(and biases) as states. This is similar to online Tolles-Lawson compensation, as pre-

viously described, with the notable difference being the use of backpropagation for

the neural network weights in the measurement Jacobian 𝐻 calculation.

A key aspect for implementation is initializing the covariance matrix correspond-

ing to the neural network weights (and biases). The approach taken by Canciani [20]

for online Tolles-Lawson aeromagnetic compensation does not work for online neural

network-based aeromagnetic compensation. Instead, a recursive least squares (RLS)

algorithm can be used with the weights and biases flattened into a coefficient vector.

In the RLS algorithm, the coefficient vector 𝛽 is updated as

𝛽𝑡 = 𝛽𝑡−1 + 𝐾𝑡 (𝑦𝑡 − 𝑦(𝑡|𝛽𝑡−1)) (5.43)

with

𝐾𝑡 =
𝑃 𝑡−1 𝛽𝑡

1 + 𝛽𝑇
𝑡 𝑃 𝑡−1 𝛽𝑡

(5.44)
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and

𝑃 𝑡 = 𝑃 𝑡−1 −
𝑃 𝑡−1 𝛽𝑡 𝛽

𝑇
𝑡 𝑃 𝑡−1

1 + 𝛽𝑇
𝑡 𝑃 𝑡−1 𝛽𝑡

(5.45)

where 𝑦 is the output target, as in section 3.7, and 𝑦 is the model output. The initially

unknown covariance matrix 𝑃 can be initialized with the identity matrix. Using

the RLS algorithm with a small subset of training data (e.g. 100 samples), a fairly

steady state covariance matrix can be determined and used for initialization within

the online neural network-based aeromagnetic compensation algorithm. Similarly,

the differences between successive RLS coefficient (weight and bias) updates can be

used to estimate the standard deviations for the weights and biases, which are used

for the driving noise of the respective states.

5.7 2021 SGL Flight Data

Though the primary data used in this work was collected during the summer of 2020

by SGL, an additional flight dataset was collected during the winter of 2021, again by

SGL. For this work, the primary use of this secondary dataset is to look at the effect of

specific aircraft maneuvers on filter observability, which is covered in the next section.

First, there are some higher-level questions about the data itself and the applicability

of models across different aircraft of the same type that this section addresses. Note

that both sets of data collection flights used a Cessna 208B Grand Caravan, but it

was not the same aircraft, i.e. a different “tail.” Different magnetometers were also

used, but they were the same types and placed in approximately the same locations,

as described in Table 2.2.
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As in section 2.2.1, first an example of the uncompensated (raw) scalar magnetometer

measurements is shown in Figure 5-4. Note that flight line 2005.36 has nominally

the same flight path and altitude as flight line 1007.02, data from which is shown

in Figures 2-2 and 2-3. Once again, Mag 1 has nearly no corruption, but now

Mag 4 follows the trend of Mag 1 very well instead of Mag 5. Mags 2 and 5 are

noticeably worse than Mag 4, but both still largely match the trend of Mag 1. Mag 3

has significant corruption and could not be used for MagNav without aeromagnetic

compensation. Overall, Mag 1 performs as before, while Mags 3 and 5 have much

more corruption and Mags 2 and 4 have much less corruption, which is quantified in

Tables 2.3 and 5.2.

Figure 5-4: Uncompensated scalar magnetometers from flight line 2005.36. Due
to their positions, the decreasing order of corruption of the uncompensated scalar
magnetometers is: Mag 1, Mag 4, Mag 2, Mag 5, Mag 3.
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The compensated scalar magnetometers from flight line 2005.36 are shown in Fig-

ure 5-5. Here, classical Tolles-Lawson aeromagnetic compensation with Flux A was

again performed on each scalar magnetometer, but now using calibration flight line

2001.22. For flight line 2005.36, Mags 4 and 5 follow Mag 1 quite well, though slight

errors remain. Mags 2 and 3 are improved with compensation, but still retain signif-

icant error compared to the others. Overall, Mags 1 and 5 perform as before, while

Mag 3 has much more corruption and Mags 2 and 4 have much less corruption, which

is again quantified in Tables 2.3 and 5.2.

Figure 5-5: Compensated scalar magnetometers from flight line 2005.36. Due to
their positions, the decreasing order of corruption of the compensated scalar mag-
netometers is: Mag 1, Mag 5, Mag 4, Mag 2, Mag 3. Mag 3 is not shown due to
significant corruption.
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The standard deviations of the scalar magnetometer errors from flight line 2005.36

are provided in Table 5.2. Mag 1 needs minimal or no compensation. The magnetic

signal errors for Mags 2, 3, 4, and 5 significantly decrease with compensation. Note

that, as in Table 2.3, compensation performance is fairly insensitive to which vector

magnetometer is used.

Table 5.2: Aeromagnetic compensation errors for flight line 2005.36. The Tolles-
Lawson model is used with each available vector magnetometer. Errors [nT] are in
reference to the map values along the flight path.

Scalar Mag Uncompensated Flux A Flux B Flux C Flux D
Mag 1 7.3 7.3 7.4 7.4 7.3
Mag 2 272 124 124 126 125
Mag 3 12077 7559 7443 7678 7460
Mag 4 37 22 22 22 22
Mag 5 370 11 11 11 10

Based on the scalar magnetometer differences between the two SGL datasets, it seems

clear that aeromagnetic compensation models developed using the 2020 dataset do

not readily work on the 2021 dataset. This has important implication for real-world,

operational use. A model developed using a specific aircraft is not immediately

applicable to another aircraft of the same type. Nonetheless, it is worthwhile to

evaluate and quantify performance, first while attempting to use the same model

and then from using a re-fitted or re-trained model.

Shown in Table 5.3 is a comparison of aeromagnetic compensation performance on

flight line 1007.02 from the 2020 SGL dataset, and flight lines 2005.36, 2005.18, and

2005.38 from the 2021 SGL dataset. As previously explained, flight line 2005.36 fol-

lows the same nominal flight path at the same nominal altitude as flight line 1007.02.

Additionally, flight lines 2005.18 and 2005.38 follow the same nominal flight path, but

at different altitudes, than flight line 1007.02. All flight lines are evaluated using the
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models presented at the end of section 4.9. Specifically, the classical Tolles-Lawson,

PLSR-based, and neural network-based (model 2c, small feature set 2) aeromagnetic

compensation models were used with Mag 4 and Flux A. Model 2c was first trained

an additional 250 epochs on the 2020 SGL training data (for a total of 1000 epochs),

as this resulted in better performance on the 2021 SGL testing data. As expected,

the flight lines from the 2021 SGL dataset perform extremely poorly, since this was

a different aircraft with a different magnetic field. The performance here on the 2021

flight lines is absolutely not suitable for MagNav. This has important operational

implications – each aeromagnetic compensation model must be aircraft-specific.

Table 5.3: Compensation performance on repeated flight line, no re-training.

SGL
Dataset

Flight
Line

Flight
Altitude [m]

Tolles-Lawson
Error [nT]

PLSR
Error [nT]

Model 2c
Error [nT]

2020 1007.02 800 54 32 34
2021 2005.36 800 170 268 228
2021 2005.18 2000 184 288 305
2021 2005.38 drape 170 271 242

However, these models can be re-trained using flight data from the 2021 SGL dataset,

which is a form of transfer learning. Typically, transfer learning involves only re-

training (i.e. tuning) the final couple of layers of a neural network [117]. How-

ever, for the single hidden layer models in this work, that is clearly not possible.

Instead the entire neural network is re-trained using new flight data. The origi-

nal neural network model weights completely change, so this is similar to starting

with randomly initialized weights. Specifically, the following flight lines are used for

re-training: 2001.00, 2001.01, 2001.02, 2001.03, 2001.04, 2001.05 (flight 2001, 13-

Dec-2021), 2002.00, 2002.01, 2002.02, 2002.03, 2002.04 (flight 2002, 14-Dec-2021),

2001.06, 2001.07, 2001.08, 2001.09, 2001.10, 2001.11, 2001.12, 2001.13, 2001.14,
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2001.15, 2001.16, 2001.17 (flight 2004, 19-Dec-2021). However, several different sub-

datasets are used to evaluate the effect of reduced flight data availability.

First, all of the listed flight lines for flights 2001, 2002, and 2004 were used

to re-train the models, the results from which are shown in Table 5.4. For the

classical Tolles-Lawson model, only calibration flight line 2001.22 was used. The

best performance for PLSR resulted when all components were kept. Model 2c from

section 4.9 (trained 750 epochs) was retrained 1000 epochs. Here it can be seen that

both PLSR and model 2c can achieve around 10 nT of error per flight line.

Table 5.4: Compensation performance on repeated flight line, re-training with 3
flights from the 2021 SGL dataset. Flight data from flights 2001, 2002, and 2003.

Flight
Line

Flight
Altitude [m]

Tolles-Lawson
Error [nT]

PLSR
Error [nT]

Model 2c
Error [nT]

2005.36 800 21 5.8 8.4
2005.18 2000 25 13 8.3
2005.38 drape 22 8.3 11

The results from re-training with flight data from only flights 2001 and 2002 are

shown in Table 5.5. Model 2c from section 4.9 (trained 750 epochs) was again

retrained 1000 epochs with the 2021 SGL training data. Both PLSR and model 2c

still outperform classical Tolles-Lawson, but the performance on flight line 2005.18

is of concern. The training data in this case not only contained less data, but also

less data at higher altitudes, which may have resulted in worse performance with

the higher altitude flight line. The performance on the drape flight line noticeably

improved, which may have been for a similar reason – a larger portion of the training

data was at lower altitudes.
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Table 5.5: Compensation performance on repeated flight line, re-training with 2
flights from the 2021 SGL dataset. Flight data from flights 2001 and 2002.

Flight
Line

Flight
Altitude [m]

Tolles-Lawson
Error [nT]

PLSR
Error [nT]

Model 2c
Error [nT]

2005.36 800 21 8.1 6.4
2005.18 2000 25 23 17
2005.38 drape 22 6.8 5.7

The results from re-training with flight data from only flight 2001 are shown in

Table 5.6. In this case, the best performance for model 2c resulted from first training

an additional 250 epochs on the 2020 SGL training data (for a total of 1000 epochs)

then re-training for significantly longer epochs. Similar to the previously discussed

results in Table 5.5, performance is worse overall when less training data is used.

In particular, the performance on flight line 2005.18 is roughly the same for all of

the models. This indicates that the classical model should not be abandoned when

very limited flight data is available. Additionally, embedding the classical model in

a SciML approach, such as model 2c, may help it remain accurate.

Table 5.6: Compensation performance on repeated flight line, re-training with 1
flight from the 2021 SGL dataset. Flight data from flight 2001.

Flight
Line

Flight
Altitude [m]

Tolles-Lawson
Error [nT]

PLSR
Error [nT]

Model 2c
Error [nT]

2005.36 800 21 11 13
2005.18 2000 25 26 22
2005.38 drape 22 11 15

In generating the model 2c results shown in Table 5.6, it was noticed that sub-

stantially more training epochs were required. This could have been mitigated by

increasing the learning rate, but it was left unchanged for consistency with all of the

other results in this work. Shown in Figure 5-6 are the training and testing errors
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at each epoch. It can be seen that the best results are not achieved until around

10000 epochs. Beyond this point there is negligible improvement, then over-training.

However, there is noticeable benefit, for both training and testing, in initializing

the neural network weights with the model 2c weights that were determined when

originally training on the 2020 SGL data rather than a random initialization.

Figure 5-6: Model 2c comparison with different neural network weight initializations.
Using the weights that were previously determined when training on the 2020 SGL
training data resulted in better performance than randomly initialized weights.

5.8 Aircraft Maneuvers for Filter Observability

Unlike traditional aeromagnetic compensation, the concept of operations for online

compensation is to have the filter compensation states updated in real-time. Thus,

it may be beneficial to perform specific aircraft maneuvers that increase filter ob-

servability of the aircraft magnetic field, potentially en-route to the primary mission.
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There may be a more optimal manner in which a pilot should fly for online compensa-

tion and thus navigation performance. For online applications, the aim should be to

have as few calibration maneuvers as possible to avoid unnecessary pre-mission flight

requirements. The goal here is to determine if some maneuvers are more important

than others for online compensation.

Table 5.7: Aircraft maneuver sets for filter observability. Quick maneuvers, similar
to the typical calibration box shown in Figure 3-4, were flown. Different maneuver
types, counts, and amplitudes per leg were evaluated.

Number Maneuvers Amplitude [deg]
1 pitch ×2 box 2.5
2 pitch ×2 box 5
3 pitch ×2 box 10
4 pitch ×6 box 2.5
5 pitch ×6 box 5
6 pitch ×6 box 10
7 pitch, roll ×2 box 2.5, 5
8 pitch, roll ×2 box 5, 10
9 pitch, roll ×2 box 10, 20
10 pitch, roll ×6 box 2.5, 5
11 pitch, roll ×6 box 5, 10
12 pitch, roll ×6 box 10, 20
13 pitch, roll, yaw ×2 box 2.5, 5, 2.5
14 pitch, roll, yaw ×2 box 5, 10, 5
15 pitch, roll, yaw ×2 box 10, 20, 10
16 pitch, roll, yaw ×6 box 2.5, 5, 2.5
17 pitch, roll, yaw ×6 box 5, 10, 5
18 pitch, roll, yaw ×6 box 10, 20, 10

Within the 2021 SGL dataset are a variety of aircraft maneuver sets specifically

chosen for filter observability, which are shown in Table 5.7. This is a similar idea

to the sinusoidal aircraft maneuvers proposed by Leliak [45] for observability while

performing a calibration flight, as shown in Figures 3-4 and 3-7. These maneuvers
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have the potential to be used for better determining the Tolles-Lawson coefficients (or

neural network weights) during online compensation. All maneuvers were performed

twice – once at a high altitude over a region with a small magnetic gradient and once

at a low altitude over a region with a large magnetic gradient, as shown in Figure 5-7.

Overall, the goal was to provide a set of maneuvers that can be individually analyzed

in respect to compensation and navigation performance.

Figure 5-7: 18 boxes with aircraft maneuvers. Each box was completed with different
aircraft maneuvers, as listed in Table 5.7.

The flight plan included a nominally straight and level flight portion between each

maneuver in order to isolate the effect of the maneuver on filter observability. These

nominally straight and level flight portions between maneuvers ended up being short

in duration, meaning the overall flight length for each set of maneuvers only lasted

approximately 10 min. This was generally not enough time for significant INS drift,

so in many cases less than 50 m DMRS position error could be achieved per maneu-
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ver set without any magnetic measurement aiding. Additionally, before each set of

maneuvers, a controlled, repeatable change in the aircraft magnetic field (e.g. moving

a magnetic object within the cabin) was supposed to be completed, but this did not

occur. Together these limit the analysis that can be performed here.

Furthermore, the magnitudes of the magnetic errors in the provided data limit

which scalar magnetometers can be examined. This is shown in Table 5.2 and holds

true for other flight lines. Mags 1 and 5 are very clean signals at approximately 10

nT of post-compensation error each. Mag 3 is completely unusable with over 1000

nT of post-compensation error. Mag 2 has over 100 nT of post-compensation error,

which may be reasonable to examine, except Mag 2 also contains signal dropouts

in over half of the maneuver sets listed in Table 5.7. Thus, this leaves Mag 4 to

examine more closely, which typically has around 20 nT of post-compensation error.

As before, Flux A is used.

The first thing to consider is treating each maneuver set in Table 5.7 as an actual

calibration flight line. Tolles-Lawson model coefficients can then be determined and

applied to flight lines for evaluation. The results of this are listed in Table 5.8. Flight

lines 2005.36, 2005.18, and 2005.38 were all evaluated, but only 2005.36 is shown, as

the trends are very similar for each flight line. The first thing to note is that overall

the compensation performance is fairly consistent for each set of maneuvers. For

reference, the uncompensated error is 37 nT, and the compensated error is 22 nT

using calibration flight line 2001.22, as listed in Table 5.2. In all cases, there is benefit

in performing compensation. However, in particular it appears that large roll and/or

yaw amplitudes should be avoided. The standard set of calibration maneuvers, #17,

performs well, which may be expected. Since the high altitude maneuvers were

flown in a region with less of a magnetic gradient, those results are likely more

reliable. Additionally, it may be desirable for an operational aircraft to do calibration
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maneuvers at higher altitude, where it would be flying anyways. In either case, a

single pair of pitch and roll maneuvers (#7-9) shows promise for good calibration

with limited flight requirements. These maneuvers took approximately 7 min to

perform at 120 kts (62 m/s). Note that these maneuver sets were not flown on

exactly the same path at exactly the same altitude, so there is error and uncertainty

introduced by these discrepancies.

Table 5.8: Magnetic errors on flight line 2005.36 using aircraft maneuver sets. “Low”
and “High” refer to using the low or high altitude sets of maneuvers to create Tolles-
Lawson coefficients, respectively. Errors are compared to the SGL-compensated tail
stinger magnetometer.

Number Maneuvers Amplitude [deg] Low [nT] High [nT]
1 pitch ×2 box 2.5 19 22
2 pitch ×2 box 5 24 20
3 pitch ×2 box 10 17 24
4 pitch ×6 box 2.5 27 24
5 pitch ×6 box 5 32 18
6 pitch ×6 box 10 20 22
7 pitch, roll ×2 box 2.5, 5 24 11
8 pitch, roll ×2 box 5, 10 19 16
9 pitch, roll ×2 box 10, 20 21 18
10 pitch, roll ×6 box 2.5, 5 18 23
11 pitch, roll ×6 box 5, 10 22 23
12 pitch, roll ×6 box 10, 20 27 23
13 pitch, roll, yaw ×2 box 2.5, 5, 2.5 24 19
14 pitch, roll, yaw ×2 box 5, 10, 5 20 19
15 pitch, roll, yaw ×2 box 10, 20, 10 18 21
16 pitch, roll, yaw ×6 box 2.5, 5, 2.5 18 17
17 pitch, roll, yaw ×6 box 5, 10, 5 16 20
18 pitch, roll, yaw ×6 box 10, 20, 10 26 26
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The aircraft maneuver sets are now looked at in respect to navigation performance.

Only the low altitude maneuvers are examined, since the high altitude maneuvers

occurred at nominally 2760 m. This altitude requires too much upward continuation

for the Eastern Ontario magnetic anomaly map to be reliable, as explained at the

end of section 2.3.3. The navigation results using Tolles-Lawson with an EKF and

online Tolles-Lawson are compared in Table 5.9. As stated earlier, the flight paths

were nominally the same, but not exactly the same. The INS-only performance (“No

Mag” in Table 5.9) varies between 11 and 85 m for exactly the same navigation filter

parameters. It appears to vary randomly, as in there is no correlation with the types

or amplitudes of the maneuvers. The calibrated stinger does have fairly consistent

performance, with navigation errors between 21 and 33 m for all except 2 maneuver

sets. For most, but not all, cases, the stinger magnetometer measurement improves

navigation accuracy. Navigation performance likely could have been improved if

the filter parameters were hand-tuned for each maneuver set, but that was viewed as

“cheating” and instead consistent values were used, specifically: 𝑅 = 52 nT2 measure-

ment noise covariance, 𝜎FOGM = 10 nT first-order Gauss-Markov (FOGM) catch-all

bias, and 𝜏FOGM = 50 s FOGM catch-all time constant.

Now looking at the columns of real interest, “T-L EKF” for Tolles-Lawson with

an EKF and “Online T-L” for online Tolles-Lawson, the navigation errors are higher.

For about half of the maneuver sets, the navigation performance is improved with

the Mag 4 magnetometer measurements. However, the INS would continue to drift

after completing each maneuver set, while the navigation error may remain con-

stant or even decrease due to aiding from the magnetic measurements. Looking

closer at the values, online Tolles-Lawson does better than offline Tolles-Lawson

overall, particularly for large amplitude maneuvers. However, it does not appear

that any specific types or amplitudes of the maneuvers result in clearly the best
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Table 5.9: Navigation performance using aircraft maneuver sets. Mag 4 and Flux A
are used here. DRMS navigation errors [m] are shown. “T-L” refers to the Tolles-
Lawson model. “p,” “r,” and “y” refer to pitch, roll, and yaw, respectively.

Number Maneuvers Amplitude
[deg]

T-L Mag
[nT]

T-L
EKF

Online
T-L Stinger No Mag

1 p ×2 box 2.5 17 45 43 55 85
2 p ×2 box 5 15 64 53 25 38
3 p ×2 box 10 14 50 37 22 11
4 p ×6 box 2.5 15 40 31 45 39
5 p ×6 box 5 13 48 47 24 62
6 p ×6 box 10 13 73 38 21 39
7 p, r ×2 box 2.5, 5 14 43 27 27 16
8 p, r ×2 box 5, 10 11 30 21 24 36
9 p, r ×2 box 10, 20 12 111 101 24 44
10 p, r ×6 box 2.5, 5 12 34 43 27 44
11 p, r ×6 box 5, 10 16 56 29 30 23
12 p, r ×6 box 10, 20 18 55 36 27 21
13 p, r, y ×2 box 2.5, 5, 2.5 17 37 29 28 43
14 p, r, y ×2 box 5, 10, 5 19 60 50 23 58
15 p, r, y ×2 box 10, 20, 10 21 95 52 21 44
16 p, r, y ×6 box 2.5, 5, 2.5 15 56 32 25 12
17 p, r, y ×6 box 5, 10, 5 18 48 56 33 54
18 p, r, y ×6 box 10, 20, 10 17 32 36 33 57

navigation performance, though with the exception of the extreme outlier (#9),

the pitch and roll maneuvers (#7-12) arguably perform the best overall. As with

the tail stinger, consistent filter parameters were used. For Tolles-Lawson with an

EKF: 𝑅 = 402 nT2 measurement noise covariance, 𝜎FOGM = 30 nT FOGM catch-all

bias, and 𝜏FOGM = 50 s FOGM catch-all time constant. For online Tolles-Lawson:

𝑅 = 402 nT2 measurement noise covariance, 𝜎FOGM = 50 nT FOGM catch-all bias,

and 𝜏FOGM = 30 s FOGM catch-all time constant. These were set based on the auto-

correlation of the magnetic signal errors as well as trial and error with multiple flight

lines in the 2021 SGL dataset.
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Though these sets of maneuvers do provide some insights, they could have been

carried out differently for better usability of the flight data. There are several rec-

ommendations for a future repeat of this type of flight plan. First, it would be useful

to have more usable magnetometer data. Only Mag 4 was used for this analysis, as

Mags 1 and 5 had very low corruption, while Mags 2 and 3 had very high corruption

and/or dropouts. The placement of the magnetometers in the cabin was purposely

carried over from the previous 2020 SGL data collection, during which the magne-

tometer placements were selected by SGL. It is recommended to do more analysis

prior to the first set of maneuvers to achieve magnetometers with approximately

the following compensated errors without dropouts : 5 nT (Mag 1), 25 nT (Mag 4),

50 nT, 100-150 nT (Mag 2), 200-300 nT. Several test flights may be necessary to

achieve these magnetometer corruption levels, but this would be a worthwhile cost,

especially if more documentation on how the corruption and dropouts change with

magnetometer placement is provided.

Second, either a larger and/or higher magnetic anomaly map should be acquired,

or the high altitude sets of maneuvers should be lowered from 2760 m to 2000 m at

most. This would allow for navigation performance to be evaluated with the higher

altitude maneuver sets. Next, to both better separate the maneuver sets and to

allow for more INS drift, a longer nominally straight and level flight portion should

be completed between each set of maneuvers. This could be an additional box on the

other half of a “boxy figure 8.” This would increase the overall flight length for each

set of maneuvers to approximately 20 min. There should also be a clear, repeatable

change in the aircraft magnetic field (e.g. moving a magnetic object within the cabin).

This change should be recorded by the flight crew (e.g. SGL pilot comments) and

obvious in all of the in-cabin scalar magnetometers with a goal of 10-50% changes in

the aircraft magnetic field (compensation magnitude). A good time during the flight
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to make the repeatable change would be at the “cross” of the “boxy figure 8.”

Finally, it may be desirable to reduce the number of maneuvers sets to evaluate.

This is due to the additional flight time for the “boxy figure 8” and a goal to complete

all sets of maneuvers in one day to reduce uncertainty in the flight data. In this case,

it is recommended to exclude some or all of the pitch, roll, and yaw maneuver sets

(#13-18), with #16-18 being the first choice to exclude. The calibration box itself

already includes yaw at each corner of the box, and to a lesser extent during roll,

as shown in Figure 3-7. The results here show that pitch and roll alone may be

adequate, which would reduce the overall pre-mission flight requirements.

5.9 Covariance-Adaptive Filtering

An additional end-to-end model that may improve navigation performance is covariance-

adaptive filtering. Here, the noise covariance used by the navigation filter is updated

in real-time, rather than using a static value. In this section, first covariance-adaptive

Kalman filters are discussed, followed by recurrent neural networks and covariance-

adaptive neural filters.

5.9.1 Covariance-Adaptive Kalman Filters

As indicated by (5.1)–(5.5), Kalman filters require knowledge of the process noise

covariance matrix 𝑄 and the measurement noise covariance matrix 𝑅. Mehra demon-

strated that both covariance matrices can be estimated using covariance-matching

techniques [118, 119]. The idea is to make the actual residuals consistent with the

theoretical covariances. The covariance matrices 𝑄 and 𝑅 are adapted as measure-

ments are provided. An innovation-based adaptive technique uses
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�̂�𝑘 = 𝐶𝑣𝑘 −𝐻𝑘𝑃 𝑘|𝑘−1𝐻
𝑇
𝑘 (5.46)

and

�̂�𝑘 = 𝐾𝑘𝐶𝑣𝑘𝐾
𝑇
𝑘 (5.47)

with

𝐶𝑣𝑘 =
1

𝑁

𝑘∑︁
𝑗=𝑗0

𝑣𝑗𝑣𝑗
𝑇 (5.48)

where 𝐶𝑣𝑘 is the innovation measurement noise covariance matrix at epoch 𝑘, which

uses a moving window of length 𝑁 starting at 𝑗0 = 𝑘 −𝑁 + 1 [120]. The innovation

sequence at epoch 𝑘 is

𝑣𝑘 = 𝑧𝑘 − 𝑧𝑘|𝑘−1 (5.49)

where the predicted measurement 𝑧𝑘|𝑘−1 is given by (5.10) for an EKF or is equal to

𝐻𝑘�̂�𝑘|𝑘−1 for a normal Kalman filter. A similar set of equations can be created for

a residual-based adaptive technique, which uses the residual sequence instead of the

innovation sequence. For this approach, 𝑃 𝑘, 𝑧𝑘, and �̂�𝑘 are used instead of 𝑃 𝑘|𝑘−1,

𝑧𝑘|𝑘−1, and �̂�𝑘|𝑘−1

Notice that the adaptive approach depends on a chosen window length, as shown

in (5.48). The optimal window length is not obvious, and may vary in time. For

this reason, neural network aided adaptive EKF approaches have been introduced

[121, 122, 112]. Here a neural network, described further in the next section, is

trained offline using 𝐶𝑣𝑘 as input data to predict 𝑄 and/or 𝑅. Variations of this
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idea use additional measurements as training data [123, 124]. It may also be possible

to use marginalized particle filter (MPF) if differentiable resampling is used [125].

5.9.2 Recurrent Neural Networks

A recurrent neural network (RNN) is an extension of a neural network that has

internal feedback loops within the layers, as shown in Figure 5-8. For clarity, standard

neural networks are often referred to as feedforward neural networks, since they do

not have feedback loops. Recurrent neural networks, as well as feedforward neural

networks, were previously used in the field of navigation by Ellis for pedestrian

navigation [126].

Figure 5-8: Individual node within a recurrent neural network.

The recurrent neural network can be “unrolled,” as shown in Figure 5-9 to more

clearly illustrate what is happening. The hidden state from one time step is fed back

into the same, or potentially different, hidden layer at a later time step.

Long short-term memory (LSTM), shown in Figure 5-10, is a more complex type of

recurrent neural network that uses gating for an increased ability to store information

over long time intervals [127]. A detailed explanation can be found in [128].
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Figure 5-9: Recurrent neural network.

Figure 5-10: Long short-term memory. Modified from [128].

5.9.3 Covariance-Adaptive Neural Filters

As discussed in section 5.9.1, another approach for filtering with uncertain noise

covariances is using an adaptive filter. Though the process and measurement noise

covariance matrices can generally be well estimated for magnetic navigation using

tail stinger measurements, when highly corrupted data is used the covariances are

less static. For example, when the aircraft control surfaces move during a maneuver,

the measurement noise covariance 𝑅 can increase substantially compared to straight
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and level flight. Preliminary results using a measurement noise covariance-matching

technique have shown marginally increased navigation performance depending on

the window length and measurement noise covariance bounds. Both of these were

hand-tuned, which is clearly not ideal for a real-time application.

For magnetic navigation, a machine learning aided adaptive filter may have some

benefit. For this approach, a neural network is trained offline using auxiliary data, as

shown in Figure 5-11. More specifically, an LSTM-type recurrent neural network, as

described in section 5.9.2, with an EKF is used to learn how the measurement noise

covariance should vary with the measurements for better navigation performance.

The loss function in this case directly uses position (latitude and longitude) rather

than a magnetic field value.

Figure 5-11: Measurement noise covariance-adaptive neural EKF.

As far as implementation, this model would be difficult to implement in any program-

ming language other than Julia. The use of the Flux machine learning library and

reverse-mode algorithmic differentiation (AD) with Zygote allows for straightforward

backpropagation and differentiable programming [129, 76]. It was not necessary, but

custom adjoints can be implemented as well [130].
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A similar idea for the process noise is shown in Figure 5-12, where specifically the

temporal variation filter state noise covariance and/or time constant are learned.

However, this approach is not currently implemented in MagNav.jl or evaluated in

this work and is only presented for completion.

Figure 5-12: Process noise covariance-adaptive neural EKF.

5.9.4 End-to-End Strategy Performance Comparison

To compare these end-to-end approaches, flight line 1007.06 is examined. As men-

tioned in section 2.2.3, this flight line was both held out and is publicly available. The

end-to-end approaches are generally newer and less developed than the pre-processing

approaches, and further improvement is likely possible. Specifically, Mags 4 and 5

(independently) and Flux A are used here without any additional non-magnetometer

features (as in small feature set 2, described at the end of section 4.9). This allows a

fair comparison between the online Tolles-Lawson and online neural network-based

aeromagnetic compensation models.
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For the (linear) covariance-adaptive EKF, the measurement noise covariance was

allowed to vary within a lower and upper bound. This was found to result in bet-

ter performance than allowing any measurement noise covariance to be set by the

algorithm. In particular, the measurement noise covariance was bounded between

302 nT2 and 1202 nT2 for Mag 4 and 52 nT2 and 302 nT2 for Mag 5, which was based

on their levels of corruption. The scalar magnetometer measurement in this case is

Mag 4 or 5 compensated using model 2c.

For the covariance-adaptive neural EKF, due to computational constraints, the

LSTM-based model was trained on only flight line 1003.08. This flight line was se-

lected because it contained a significant amount of in-flight “events” (i.e. purposely

caused magnetic disturbances), and it was flown in the same region at the same alti-

tude (Renfrew at 400 m HAE) as flight line 1007.06. This means better performance

is unlikely to be found using a different flight line for training. Testing performance

did not improve if more than 5 epochs were used for the cases that were examined.

Various feature sets were looked at, including small feature set 2 and different model

2c output combinations (i.e. neural network and/or Tolles-Lawson portions). Mul-

tiple feature sets had similar performance, the simplest being the (map to model 2c

prediction) measurement error, which is reported in Table 5.10.

Table 5.10: End-to-end navigation performance comparison on flight line 1007.06.
Mag 4, Flux A, and small feature set 2 (only magnetometer-related features) are
used here. DRMS navigation errors [m] are shown. “T-L” refers to the Tolles-Lawson
model. Model 2c with an EKF is shown for reference. Online Tolles-Lawson does
not use the model 2c compensated values, while the others do.

Scalar
Mag

Model 2c
(EKF)

Cov-Adapt
(linear)

Cov-Adapt
(neural)

Online
Model 2c

Online
T-L Stinger No Mag

4 51 48 51 37 51 19 300
5 21 22 21 18 21 19 300
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As can be seen in Table 5.10 there is little to no benefit to the measurement noise

covariance-adaptive EKF models. Both require tuning to have even marginal per-

formance benefits. Specifically, the bounds for the (linear) covariance-adaptive EKF

must be set, otherwise the filter often underestimates the measurement noise covari-

ance for this nonlinear problem. For the covariance-adaptive neural EKF, the LSTM

sequence length must be set. A sequence length of 500 was used, though 10, 50,

and 100 were also examined and had similar or worse results. Note that the lack

of performance improvement here assumes that an appropriate measurement noise

covariance is set for the baseline, which in this case was model 2c (pre-processing

aeromagnetic compensation) with an EKF (navigation algorithm) using a measure-

ment noise covariance of 602 nT2. If an unsuitable measurement noise covariance

is set and/or it is completely unknown, both of the covariance-adaptive approaches

could provide some benefit. For example, with Mag 4 (and Flux A), if the baseline

uses an improper measurement noise covariance of 52 nT2, the navigation error is 124

m. The (linear) covariance-adaptive EKF still achieves 48 m (with the previously

discussed bounds) and the covariance-adaptive neural EKF now achieves 86 m. This

may have some future use, however in this work the approximate corruption mag-

nitudes are known from the training data, and thus the benefit is minimal. Online

Tolles-Lawson performs exactly the same in this case (by coincidence) as the base-

line, model 2c with an EKF. However, the online version of model 2c is clearly able

to improve navigation, which is further explored in Chapter 6.
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Chapter 6

Conclusion

This chapter first compares the navigation performance of the various approaches

presented in this work. This is followed by a summary of the thesis contributions

and limitations. Finally, suggested future work is described.

6.1 Navigation Performance

This section describes the navigation performance metric then compares the naviga-

tion performance of the various approaches on the same flight lines.

6.1.1 Navigation Performance Metric

For navigation, position is the target rather than a compensated magnetic signal. In

this work, the distance root mean square (DRMS) metric is used, which is valid for

all approaches. The DRMS is calculated as
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DRMS =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑘=1

(𝑥GPS,k − 𝑥filter,k)2 + (𝑦GPS,k − 𝑦filter,k)2 (6.1)

where 𝑥 and 𝑦 are Universal Transverse Mercator (UTM) coordinates for epochs

𝑘 =1:𝑁 . UTM 𝑥 and 𝑦 coordinates correspond to longitude and latitude in the

LLA coordinate system, respectively. Here, GPS position data is considered truth

and filter output data is an estimate. Relating performance between two models is

simply the difference or fraction of two DRMS values.

6.1.2 Navigation Performance Comparison

This work presented 5 linear and 5 nonlinear pre-processing approaches, and 4 end-

to-end approaches for aeromagnetic compensation. The best performing of each

group, along with the state-of-the-art model, are compared. The overall system block

diagram for the neural network-based approaches is shown in Figure 6-1. Here, the

neural network weights (and biases) are determined from during training, and either

static or updated online.

Presented in Table 6.1 is compensation performance for the classical Tolles-

Lawson, PLSR-based, and neural network-based (model 2c) aeromagnetic compen-

sation models. Each row in Table 6.1 is a flight line with unobserved (held out) data,

with the last two rows being flight 1007, which was not used at all during training.

These flight lines were selected among the held out testing data as each is over 1

hr in length, which resembles an operational scenario. The first calibration box of

flight line 1006.04 was used for classical Tolles-Lawson, while the standard training

dataset, described in section 2.2.2, was used for PLSR and model 2c. PLSR and

model 2c used the small feature set 1 with only current, voltage, and 2 direction
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Figure 6-1: MagNav system block diagram using neural network-based aeromagnetic
compensation and an extended Kalman filter.

cosine matrix features (in addition to the magnetometer terms), as explained at the

end of section 4.9.

The magnetic signal error, which compares the model output to the target value

(compensated stinger), is around 100 nT for classical Tolles-Lawson, 60 nT for PLSR,

and 40 nT for model 2c. These correspond to signal-to-noise ratios, defined in sec-

tion 3.8, of approximately 2.2, 3.7, and 5.8, respectively. Due to these high levels of

corruption and nonlinearities, the measurement noise covariance was set to 1202 nT2,

though other values were evaluated. For reference, the stinger measurement noise

covariance was 102 nT2. As expected, the corresponding navigation performance is

best for model 2c (among the three pre-processing models), as can be seen in Ta-

ble 6.2. Further navigation performance can be achieved by using online neural

network-based aeromagnetic compensation with model 2c. In this case, the neural

network weights (and biases) of model 2c are used as initial states in the online

EKF, and then they are updated during navigation. Note that the Tolles-Lawson

coefficients used in model 2c were first initialized with classical Tolles-Lawson, then
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updated during the initial model 2c training. During online learning they are now

static, similar to model 2b. Online neural network-based aeromagnetic compensa-

tion can result in significant navigation accuracy improvements, up to ∼ 2x lower

navigation error. This performance, which again uses a noisy, in-cabin scalar magne-

tometer, approaches the performance of the Tolles-Lawson-compensated tail stinger

magnetometer. For reference, the INS-only (no magnetometer) performance is also

shown in Table 6.2. This can be determined by simply setting the measurement noise

covariance to infinity.

Table 6.1: Compensation performance comparison with Mag 3, Flux A, and small
feature set 1. Only current, voltage, and 2 direction cosine matrix features are used
here (in addition to the magnetometer terms), as explained at the end of section 4.9.
“T-L” refers to the Tolles-Lawson model.

Flight Flight
Line

T-L
[nT]

PLSR
[nT]

Model 2c
[nT]

1003 1003.10 83 60 34
1007 1007.04 113 69 40
1007 1007.06 102 48 44

Table 6.2: Navigation performance comparison with Mag 3, Flux A, and small feature
set 1. Only current, voltage, and 2 direction cosine matrix features are used here (in
addition to the magnetometer terms), as explained at the end of section 4.9. DRMS
navigation errors are shown. “T-L” refers to the Tolles-Lawson model.

Flight Flight
Line

T-L
[m]

PLSR
[m]

Model 2c
[m]

Online 2c
[m]

Stinger
[m]

No Mag
[m]

1003 1003.10 271 296 122 83 32 350
1007 1007.04 88 88 68 25 25 88
1007 1007.06 71 58 48 25 19 300
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As a reference point, previous work by the author achieved 3.5 nT and 6.3 nT

compensation errors and 42 m and 23 m navigation errors on flight lines 1003.10

and 1007.04, respectively [131]. Clearly, the compensation performance here is far

worse, but the work in [131] used all available in-cabin magnetometers, i.e. Mags 2,

3, 4, and 5 and Flux A, C, and D. This would be a challenge to implement in an

operational aircraft. Despite worse compensation, navigation accuracies are still less

than 100 m when using the online approach, which would provide some benefit in an

operational scenario.

Table 6.3: Compensation performance comparison with Mag 3, Flux A, and small
feature set 2. Only magnetometer-related features are used here. “T-L” refers to the
Tolles-Lawson model.

Flight Flight
Line

T-L
[nT]

PLSR
[nT]

Model 2c
[nT]

1003 1003.10 83 70 55
1007 1007.04 113 72 58
1007 1007.06 102 52 55

Table 6.4: Navigation performance comparison with Mag 3, Flux A, and small feature
set 2. Only magnetometer-related features are used here. DRMS navigation errors
are shown. “T-L” refers to the Tolles-Lawson model.

Flight Flight
Line

T-L
[m]

PLSR
[m]

Model 2c
[m]

Online 2c
[m]

Stinger
[m]

No Mag
[m]

1003 1003.10 247 187 120 122 32 350
1007 1007.04 88 88 70 34 25 88
1007 1007.06 71 57 53 32 19 300

Presented in Table 6.3 is compensation performance with small feature set 2. This

feature set only contains magnetometer terms, as explained at the end of section 4.9.

Again the first calibration box of flight line 1006.04 was used for classical Tolles-

Lawson, while the standard training dataset, described in section 2.2.2, was used for
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PLSR and model 2c. The magnetic signal error, which compares the model output

to the target value (compensated stinger), is now around 100 nT for classical Tolles-

Lawson, 70 nT for PLSR, and 55 nT for model 2c. These correspond to signal-to-

noise ratios, defined in section 3.8, of approximately 2.2, 3.5, and 4.0, respectively.

Similar to Table 6.1, the corresponding navigation performance is best for model

2c (among the three pre-processing models), as can be seen in Table 6.4. Further

navigation performance can again be achieved by using online neural network-based

aeromagnetic compensation with model 2c. However, the overall performance here is

worse than with the current, voltage, and 2 direction cosine matrix terms included.

Figure 6-2: Flight line 1007.06 INS drift.
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Looking closer at the performance of flight line 1007.06, first notice the INS drift

shown in Figure 6-2. This is the navigation performance without any magnetic

measurements. Now looking at Figures 6-3 and 6-4, the navigation performance

greatly improves when compensated magnetic measurements are used. The online

neural network-based aeromagnetic compensation (model 2c) clearly has the best

performance, as it avoids the “spikey” behavior seen with the other pre-processing

approaches. This would be good for an operational scenario, where the model does

not abruptly give extremely poor position estimates. Once again, only a noisy, in-

cabin scalar magnetometer is used here.

Figure 6-3: Flight line 1007.06 northing error comparison with Mag 3.
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Figure 6-4: Flight line 1007.06 easting error comparison with Mag 3.

However, it is worth noting that the benefit of online neural network-based aero-

magnetic compensation (model 2c) diminishes if a scalar magnetometer with less

corruption is used. Table 6.5 shows the compensation performance as before, but

with Mag 5 instead of Mag 3. As can be seen in Table 2.3 in section 2.2.1, Mag 5

has nearly an order of magnitude less corruption. In this case, the classical Tolles-

Lawson model performs fairly well, and PLSR or model 2c perform comparably. As

shown in Table 6.6, navigation performance is fairly consistent when using classical

Tolles-Lawson, PLSR, or model 2c for typical pre-processing. The online version of

model 2c does still perform better than any of these, but not significantly. As shown

in Figures 6-5 and 6-6, the navigation errors for each of the different models are very

similar and often overlap.
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Table 6.5: Compensation performance comparison with Mag 5, Flux A, and small
feature set 2. Only magnetometer-related features are used here. “T-L” refers to the
Tolles-Lawson model.

Flight Flight
Line

T-L
[nT]

PLSR
[nT]

Model 2c
[nT]

1003 1003.10 13 12 15
1007 1007.04 26 12 9.5
1007 1007.06 19 8.9 9.4

Table 6.6: Navigation performance comparison with Mag 5, Flux A, and small feature
set 2. Only magnetometer-related features are used here. DRMS navigation errors
are shown. “T-L” refers to the Tolles-Lawson model.

Flight Flight
Line

T-L
[m]

PLSR
[m]

Model 2c
[m]

Online 2c
[m]

Stinger
[m]

No Mag
[m]

1003 1003.10 58 70 58 57 32 350
1007 1007.04 33 23 23 21 25 88
1007 1007.06 20 21 21 18 19 300
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Figure 6-5: Flight line 1007.06 northing error comparison with Mag 5.

Figure 6-6: Flight line 1007.06 easting error comparison with Mag 5.
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6.2 Summary of Findings and Limitations

Airborne magnetic anomaly navigation has the potential to serve as a valuable

backup navigation system to GPS. However, dealing with the corruption in the mag-

netic measurements is a long-standing and difficult problem. This work explored

many approaches to aeromagnetic compensation with magnetic field measurements

that contained various levels of corruption in an effort to resolve this problem. These

models have been shown to improve on the state-of-the-art aeromagnetic compensa-

tion model, which resulted in improved navigation performance. More specifically,

the findings and limitations of this work by chapter are as follows.

In Chapter 2, the open-source MagNav.jl Julia package was described. This

software package provides a full suite of open-source aeromagnetic compensation and

airborne magnetic anomaly navigation tools. No publicly available software package

of this type current exists at the time of writing. The package was designed to handle

new flight datasets and new magnetic anomaly maps. MagNav.jl may be valuable

to both other MagNav researchers and for implementing compensation models and

navigation algorithms in future real-time demonstrations. However, the package has

only been used by a small team of people thus far. It may suffer from a usability

standpoint, though each function is documented and some examples are provided.

All of the models described next are available within MagNav.jl.

In Chapter 3, the classical Tolles-Lawson aeromagnetic compensation model was

described in detail. Two variations of the Tolles-Lawson model were then detailed.

Finally, two additional linear aeromagnetic compensation models were introduced,

which were shown to outperform the classical model when a large flight dataset is

available. An unresolved research question would be what is a “large” flight dataset,

though this was somewhat evaluated in section 5.7. In this work, 11 hr and 52 min
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of flight data was typically used to fit or train models, however, this is likely not

necessary to improve on the classical model.

In Chapter 4, five neural network-based approaches were introduced. Extensive

neural network design and feature selection evaluations were performed to determine

what form the models should take. It was determined that no more than 16 nodes in a

single hidden layer are necessary, and as few as 2 nodes are adequate when only mag-

netometer terms are used. Some features, other than magnetometers, did improve

performance. In particular, including some current sensors and terms from the di-

rection cosine matrix in the feature set consistently reduced the compensation error.

Model 2c was marginally the best performing neural network-based aeromagnetic

compensation. This model contains both a linear and nonlinear portion, allowing

for greater reliability and interpretability. The performance of small feature sets was

evaluated, which showed consistent improvement over linear aeromagnetic compen-

sation models. Though model 2c was deemed the best model, performance was often

close between the various neural network-based approaches. Deciding which model

to incorporate in an operational scenario could depend on additional factors, such as

implementation complexity and runtime, which were not explored in this work.

In Chapter 5, multiple end-to-end approaches were explored. These models are

generally less developed that the previously discussed models, but navigation per-

formance could still be improved compared to the baseline EKF. The measurement

noise covariance-adaptive filtering approaches were shown to have marginal or no

benefit in typical use cases. The online Tolles-Lawson model was able to decrease

the navigation error on nearly all of the maneuver sets that were examined. Finally,

the online neural network-based model was able to further reduce the navigation

error. However, though navigation performance was shown to improve on multiple

flight lines, it has not been proven to work on additional aircraft types.
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With these findings and limitations explained, it may be beneficial to describe the

overall recommended procedure for using these results with different flight data or

in an operational setting. First, some sort of initial training data should be col-

lected, which should include at least one calibration flight segment. If tail stinger

measurements are not possible, the flight should occur over an area with an available

magnetic anomaly map. During the flight data collection, it is desirable to replicate

the aircraft magnetic field for future testing (or missions) as close as possible. As

shown in section 5.7, even an aircraft of the same type can have a dramatically dif-

ferent magnetic field. A new configuration results in worse performance when using

a previously developed model.

Next, evaluate the magnetometer measurements, both with and without classical

Tolles-Lawson aeromagnetic compensation. This gives a sense of how corrupted the

magnetic signal is and how well the state-of-the-art model performs on it, i.e. this

is a measure of the nonlinearities present in the data. Using the determined Tolles-

Lawson coefficients, train and then evaluate model 2c on split portions of the flight

data. Additional sensor data may be included here, such as current measurements.

The value of additional data can be determined using the feature selection approaches

described in section 4.8 and/or by looking at the data itself, as in Table 4.8.

Finally, evaluate the navigation performance using an EKF with both the Tolles-

Lawson and model 2c compensated data, as well as the online versions of both models.

From a risk and to a lesser degree, computational, standpoint it may be better to

implement the simplest model that still performs adequately. However, in general

the online Tolles-Lawson model may offer navigation improvement on less corrupted

data, while the online neural network-based model offer navigation improvement on

more corrupted data.
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6.3 Recommendations for Future Work

Airborne magnetic anomaly navigation has many complexities, and it has only been

seriously investigated in the past decade or so. Much more research needs to be done

in order to use MagNav in an operational situation. First and foremost, MagNav is

completely reliant on having a high-quality magnetic anomaly map. The navigation

results presented in this thesis was only possible due to having the maps near Ot-

tawa, Ontario, Canada. However, given the small size of these maps and the limits

imposed by upward continuation, flights over approximately 2000 m were unable

to be evaluated in respect to navigation performance. Additionally, in many areas

of the world no high-resolution magnetic anomaly maps exist at all. Further flight

surveys and methods to collect vast amounts of magnetic anomaly data are recom-

mended. This may include using commercial or military flights. These flights would

not collect data in the conventional manner with a tail stinger and gridded flight

path, but instead collect unsystematic magnetic anomaly data. There may be a way

to use this data to better downward continue wide-coverage, large-cell, high-altitude

maps, such as NAMAD [9], to typical flight altitudes.

Next, this research used flight data from a Cessna 208B Grand Caravan. Mag-

netometers were placed in the cabin so that the magnetic signal was corrupted to

various degrees based on the placement location. However, in an operational sce-

nario, the magnetometers may be placed on the wing. It is recommended to research

how the magnetic corruption differs between these placement locations, as well as

how well the models presented here work on other aircraft. Furthermore, the flight

data used here was collected at fairly low speeds and altitudes, and it would be

valuable to evaluate performance at higher speeds and altitudes. The relationship

between post-compensation magnetometer errors and map values, and the effect on
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navigation performance, should be investigated. This would be suitable for simula-

tion using MagNav.jl.

Online aeromagnetic compensation shows promise based on the results presented

here and by Canciani [20]. To tune the compensation states in the navigation filter,

specific aircraft maneuvers may be beneficial, as explored in section 5.8. However,

the available flight data had limitations, and the recommended modifications should

be used during a future flight data collection.

For the neural network-based approaches, there are several potential improve-

ments that should be explored. As shown in Figure 5-6, there is potential to use

transfer learning for improved performance. For this purpose, a two or three layer

neural network may be more appropriate, allowing for some layers to remain static

during retraining. For less than 100 features, layers with 2, 4, 8, or 16 nodes are

recommended to be evaluated. Additionally, though Swish was found to work best

for the pre-processing approach, for the online (end-to-end) approach, a different

activation function may perform better and this should be investigated. Model 2d

was implemented much later than the other neural network-based models, and thus

should be experimented with further, especially examining the additive corrections

applied to the various Tolles-Lawson coefficients. Finally, the relative scaling be-

tween the neural network and Tolles-Lawson portions of models 2b and 2c, both

within the loss function and the resulting compensation, should be further investi-

gated to understand when the neural network is most “active” and the linear model

is insufficient.
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The models presented here vary from only using a single scalar and vector magne-

tometer pair up to using many magnetometers and auxiliary data. Reliance on more

sensors introduces more risk, which is why this work investigated small feature sets.

Due to different maneuvers performed by an aircraft, signal dropouts can occur.

More research should be conducted to evaluate performance and to find mitigation

solutions to this potential issue. This may include having redundant magnetometers,

so multiple models could be used, e.g. one with both magnetometers, one with only

the first magnetometer, and one with only the second magnetometer. Additionally,

the models available in MagNav.jl are not immediately capable of being used in real-

time. Further work must be conducted to allow for a real-time implementation and

evaluation of MagNav.
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Appendix A

SGL Flight Data Fields

In addition to scalar and vector magnetometer measurements, various auxiliary sen-
sor data from the SGL flights is included in the datasets. Below is a description of
each available data field. (WGS-84) indicates elevation above the WGS-84 ellipsoid.

Table A.1: SGL 2020 flight data fields.

Field Units Description
tie_line - line number

flight - flight number
year - year
doy - day of year

tt s fiducial seconds past midnight UTC
utmX m x-coordinate, WGS-84 UTM zone 18N
utmY m y-coordinate, WGS-84 UTM zone 18N
utmZ m z-coordinate, GPS altitude (WGS-84)

msl m z-coordinate, GPS altitude above EGM2008 Geoid
lat deg latitude, WGS-84
lon deg longitude, WGS-84

baro m barometric altimeter
radar m filtered radar altimeter
topo m radar topography (WGS-84)
dem m digital elevation model from SRTM (WGS-84)

drape m planned survey drape (WGS-84)
ins_pitch deg INS-computed aircraft pitch

ins_roll deg INS-computed aircraft roll
ins_yaw deg INS-computed aircraft yaw
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diurnal nT measured diurnal
mag_1_c nT Mag 1: compensated magnetic field

mag_1_lag nT Mag 1: lag-corrected magnetic field
mag_1_dc nT Mag 1: diurnal-corrected magnetic field

mag_1_igrf nT Mag 1: IGRF & diurnal-corrected magnetic field
mag_1_uc nT Mag 1: uncompensated magnetic field
mag_2_uc nT Mag 2: uncompensated magnetic field
mag_3_uc nT Mag 3: uncompensated magnetic field
mag_4_uc nT Mag 4: uncompensated magnetic field
mag_5_uc nT Mag 5: uncompensated magnetic field
mag_6_uc nT Mag 6: uncompensated magnetic field

flux_a_x nT Flux A: fluxgate x-axis
flux_a_y nT Flux A: fluxgate y-axis
flux_a_z nT Flux A: fluxgate z-axis
flux_a_t nT Flux A: fluxgate total
flux_b_x nT Flux B: fluxgate x-axis
flux_b_y nT Flux B: fluxgate y-axis
flux_b_z nT Flux B: fluxgate z-axis
flux_b_t nT Flux B: fluxgate total
flux_c_x nT Flux C: fluxgate x-axis
flux_c_y nT Flux C: fluxgate y-axis
flux_c_z nT Flux C: fluxgate z-axis
flux_c_t nT Flux C: fluxgate total
flux_d_x nT Flux D: fluxgate x-axis
flux_d_y nT Flux D: fluxgate y-axis
flux_d_z nT Flux D: fluxgate z-axis
flux_d_t nT Flux D: fluxgate total
ogs_mag nT OGS survey diurnal-corrected, levelled, magnetic field

ogs_alt m OGS survey, GPS altitude (WGS-84)
ins_acc_x m/s2 INS x-acceleration
ins_acc_y m/s2 INS y-acceleration
ins_acc_z m/s2 INS z-acceleration

ins_wander rad INS-computed wander angle (ccw from north)
ins_lat rad INS-computed latitude
ins_lon rad INS-computed longitude
ins_alt m INS-computed altitude (WGS-84)
ins_vn m/s INS-computed north velocity
ins_vw m/s INS-computed west velocity
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ins_vu m/s INS-computed vertical (up) velocity
pitch_rt deg/s avionics-computed pitch rate

roll_rt deg/s avionics-computed roll rate
yaw_rt deg/s avionics-computed yaw rate
lon_acc g avionics-computed longitudinal (forward) acceleration
lat_acc g avionics-computed lateral (starboard) acceleration
alt_acc g avionics-computed normal (vertical) acceleration
true_as m/s avionics-computed true airspeed
pitot_p kPa avionics-computed pitot pressure
static_p kPa avionics-computed static pressure
total_p kPa avionics-computed total pressure

cur_com_1 A current sensor: aircraft radio 1
cur_ac_hi A current sensor: air conditioner fan high
cur_ac_lo A current sensor: air conditioner fan low
cur_tank A current sensor: cabin fuel pump
cur_flap A current sensor: flap motor
cur_strb A current sensor: strobe lights

cur_srvo_o A current sensor: INS outer servo
cur_srvo_m A current sensor: INS middle servo
cur_srvo_i A current sensor: INS inner servo

cur_heat A current sensor: INS heater
cur_acpwr A current sensor: aircraft po wer

cur_outpwr A current sensor: system output power
cur_bat_1 A current sensor: battery 1
cur_bat_2 A current sensor: battery 2
vol_acpwr V voltage sensor: aircraft power

vol_outpwr V voltage sensor: system output power
vol_bat_1 V voltage sensor: battery 1
vol_bat_2 V voltage sensor: battery 2
vol_res_p V voltage sensor: resolver board (+)
vol_res_n V voltage sensor: resolver board (-)

vol_back_p V voltage sensor: backplane (+)
vol_back_n V voltage sensor: backplane (-)
vol_gyro_1 V voltage sensor: gyroscope 1
vol_gyro_2 V voltage sensor: gyroscope 2
vol_acc_p V voltage sensor: INS accelerometers (+)
vol_acc_n V voltage sensor: INS accelerometers (-)
vol_block V voltage sensor: block
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vol_back V voltage sensor: backplane
vol_servo V voltage sensor: servos
vol_cabt V voltage sensor: cabinet
vol_fan V voltage sensor: air conditioner fan

Table A.2: SGL 2021 flight data fields.

Field Units Description
tie_line - line number

flight - flight number
year - year
doy - day of year

tt s fiducial seconds past midnight UTC
utmX m x-coordinate, WGS-84 UTM zone 18N
utmY m y-coordinate, WGS-84 UTM zone 18N
utmZ m z-coordinate, GPS altitude (WGS-84)

msl m z-coordinate, GPS altitude above EGM2008 Geoid
lat deg latitude, WGS-84
lon deg longitude, WGS-84

baro m barometric altimeter
ins_pitch deg INS-computed aircraft pitch

ins_roll deg INS-computed aircraft roll
ins_yaw deg INS-computed aircraft yaw
diurnal nT measured diurnal

mag_1_c nT Mag 1: compensated magnetic field
mag_1_lag nT Mag 1: lag-corrected magnetic field
mag_1_dc nT Mag 1: diurnal-corrected magnetic field

mag_1_igrf nT Mag 1: IGRF & diurnal-corrected magnetic field
mag_1_uc nT Mag 1: uncompensated magnetic field
mag_2_uc nT Mag 2: uncompensated magnetic field
mag_3_uc nT Mag 3: uncompensated magnetic field
mag_4_uc nT Mag 4: uncompensated magnetic field
mag_5_uc nT Mag 5: uncompensated magnetic field

flux_a_x nT Flux A: fluxgate x-axis
flux_a_y nT Flux A: fluxgate y-axis
flux_a_z nT Flux A: fluxgate z-axis
flux_a_t nT Flux A: fluxgate total
flux_b_x nT Flux B: fluxgate x-axis
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flux_b_y nT Flux B: fluxgate y-axis
flux_b_z nT Flux B: fluxgate z-axis
flux_b_t nT Flux B: fluxgate total
flux_c_x nT Flux C: fluxgate x-axis
flux_c_y nT Flux C: fluxgate y-axis
flux_c_z nT Flux C: fluxgate z-axis
flux_c_t nT Flux C: fluxgate total
flux_d_x nT Flux D: fluxgate x-axis
flux_d_y nT Flux D: fluxgate y-axis
flux_d_z nT Flux D: fluxgate z-axis
flux_d_t nT Flux D: fluxgate total

ins_acc_x m/s2 INS x-acceleration
ins_acc_y m/s2 INS y-acceleration
ins_acc_z m/s2 INS z-acceleration

ins_wander rad INS-computed wander angle (ccw from north)
ins_lat rad INS-computed latitude
ins_lon rad INS-computed longitude
ins_alt m INS-computed altitude (WGS-84)
ins_vn m/s INS-computed north velocity
ins_vw m/s INS-computed west velocity
ins_vu m/s INS-computed vertical (up) velocity

cur_com_1 A current sensor: aircraft radio 1
cur_ac_hi A current sensor: air conditioner fan high
cur_ac_lo A current sensor: air conditioner fan low
cur_tank A current sensor: cabin fuel pump
cur_flap A current sensor: flap motor
cur_strb A current sensor: strobe lights

vol_block V voltage sensor: block
vol_back V voltage sensor: backplane
vol_cabt V voltage sensor: cabinet
vol_fan V voltage sensor: air conditioner fan
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Appendix B

Full Feature Selection Results

Table B.1: Feature selection for neural network-based aeromagnetic compensation,
model 1. “Drop” is drop-column feature importance, “Perm” is permutation feature
importance, “SGL” is sparse group Lasso, and “Shap” is for Shapley values, as de-
scribed in sections 4.8.1–4.8.4. “Train” and “Test” are the standard training and
testing datasets described in sections 2.2.2 and 2.2.3, respectively. Sorted by the
average of the four right columns.

Feature Drop
Train

Drop
Test

Perm
Test

SGL
Train

Shap
Train

Shap
Test

TL_A_flux_d_Z 4 79 2 1 3 1
TL_A_flux_c_Z 94 26 1 2 1 2
TL_A_flux_d_XZ 45 22 3 3 2 3
mag_5_uc 36 60 4 5 5 5
TL_A_flux_c_XZ 33 11 5 6 4 4
TL_A_flux_a_YY 40 97 9 4 16 6
TL_A_flux_d_ZZ 14 52 7 7 7 8
TL_A_flux_a_XX 108 18 6 11 9 7
mag_4_uc 34 15 8 8 6 9
mag_4_5_uc 53 53 10 9 8 11
TL_A_flux_c_ZZ 57 81 12 10 26 10
mag_3_uc 52 89 11 18 10 12
TL_A_flux_a_YZ 82 33 14 15 11 13
TL_A_flux_c_X 10 106 17 14 29 14
TL_A_flux_d_XX 29 10 15 13 20 17
dcm_1 63 27 16 22 13 16
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TL_A_flux_a_XY 35 78 23 20 23 20
mag_3_5_uc 9 94 21 24 18 19
TL_A_flux_d_X 38 107 24 16 34 24
TL_A_flux_c_XY 44 48 22 23 19 22
TL_A_flux_c_XX 77 8 29 12 32 26
TL_A_flux_c_YZ 69 32 13 44 12 15
TL_A_flux_d_YZ 72 40 19 32 17 21
TL_A_flux_d_YY 47 9 20 29 14 25
TL_A_flux_d_XY 32 59 31 19 22 27
mag_3_4_uc 91 17 25 34 21 23
dcm_4 70 31 33 30 25 28
TL_A_flux_a_ZZ 19 95 36 42 24 33
TL_A_flux_a_X 21 104 47 21 55 43
dcm_2 103 63 42 40 49 32
TL_A_flux_d_Y 49 96 26 60 30 29
dcm_8 96 36 44 41 39 40
TL_A_flux_a_XZ 42 29 27 72 27 30
dcm_3 15 80 45 50 59 36
TL_A_flux_a_YX_dot 41 47 37 71 36 31
cur_heat 43 25 61 31 45 48
TL_A_flux_c_Y 105 37 18 107 15 18
mag_2_uc 18 83 48 54 37 44
vol_acpwr 90 54 52 39 54 55
dcm_9 39 69 55 53 87 41
dcm_5 75 23 65 25 47 60
cur_outpwr 50 72 69 28 53 54
mag_2_3_uc 92 87 59 27 46 67
TL_A_flux_c_XZ_dot 25 82 39 75 52 42
mag_2_4_uc 55 14 67 17 38 72
vol_outpwr 93 91 53 38 48 66
dcm_7 2 76 63 37 43 57
TL_A_flux_a_XX_dot 28 103 30 100 40 34
TL_A_flux_c_ZZ_dot 24 71 43 70 50 53
TL_A_flux_a_YY_dot 98 28 28 101 42 38
mag_2_5_uc 68 90 49 73 31 46
TL_A_flux_c_YY 20 98 35 99 28 37
TL_A_flux_a_Y 48 88 32 103 33 39
TL_A_flux_a_Z 5 92 34 106 35 35
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TL_A_flux_d_ZZ_dot 65 67 41 84 63 50
TL_A_flux_c_XX_dot 87 108 40 79 41 58
TL_A_flux_d_XZ_dot 8 50 54 66 51 59
TL_A_flux_c_ZY_dot 13 84 50 86 68 45
vol_srvo 83 73 79 36 57 69
TL_A_flux_a_ZZ_dot 62 30 46 93 70 47
TL_A_flux_d_XX_dot 12 58 38 98 67 52
TL_A_flux_a_YZ_dot 31 70 56 76 74 56
dcm_6 86 41 66 61 62 63
vol_bat_1 64 64 80 35 61 77
TL_A_flux_c_XY_dot 46 85 51 95 65 49
TL_A_flux_d_ZY_dot 95 56 64 81 81 51
baro 11 2 90 26 44 81
cur_bat_2 67 6 83 48 75 71
TL_A_flux_a_XY_dot 76 74 62 83 66 62
TL_A_flux_c_YX_dot 59 5 60 90 60 61
ins_acc_y 22 3 84 58 86 76
cur_bat_1 84 24 81 52 91 86
TL_A_flux_d_YZ_dot 66 19 70 77 83 73
ins_acc_x 37 62 86 55 95 80
cur_flap 81 7 92 33 98 96
vol_bat_2 89 65 85 49 64 91
TL_A_flux_c_ZX_dot 27 102 58 104 69 64
TL_A_flux_d_XY_dot 99 99 77 85 79 65
cur_tank 23 35 87 51 89 89
vol_acc_n 100 20 93 43 92 92
TL_A_flux_d_YY_dot 54 86 57 97 56 75
vol_cabt 17 75 82 64 85 83
vol_back_p 101 46 91 45 84 93
TL_A_flux_a_XZ_dot 97 43 75 82 82 74
vol_back_n 30 77 95 56 80 85
TL_A_flux_c_YY_dot 74 16 68 92 73 79
vol_block 71 42 89 62 96 88
cur_acpwr 78 21 76 94 58 70
vol_acc_p 16 105 100 46 78 95
TL_A_flux_a_ZX_dot 61 93 73 88 71 82
TL_A_flux_d_ZX_dot 3 100 74 87 94 84
cur_com_1 1 38 88 65 90 94
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cur_ac_hi 7 49 94 47 88 106
TL_A_flux_a_ZY_dot 106 44 72 108 77 68
TL_A_flux_c_YZ_dot 104 61 71 102 72 78
TL_A_flux_d_YX_dot 6 101 78 89 76 90
vol_res_p 102 66 98 63 104 100
vol_gyro_2 26 51 107 57 101 97
vol_back 88 39 96 67 97 99
vol_fan 58 13 99 69 102 98
vol_gyro_1 51 1 108 74 93 87
cur_ac_lo 60 57 109 59 99 101
cur_strb 80 4 97 68 108 108
cur_srvo_m 107 45 101 78 107 102
vol_res_n 85 12 106 80 100 103
cur_srvo_i 79 34 104 91 105 104
ins_acc_z 73 55 105 96 103 107
cur_srvo_o 56 68 102 105 106 105

Table B.2: Feature selection for neural network-based aeromagnetic compensation,
model 2c. “Drop” is drop-column feature importance, “Perm” is permutation fea-
ture importance, “SGL” is sparse group Lasso, and “Shap” is for Shapley values, as
described in sections 4.8.1–4.8.4. “Train” and “Test” are the standard training and
testing datasets described in sections 2.2.2 and 2.2.3, respectively. Sorted by the
average of the four right columns.

Feature Drop
Train

Drop
Test

Perm
Test

SGL
Train

Shap
Train

Shap
Test

TL_A_flux_c_Z 12 49 1 2 1 1
mag_5_uc 35 53 3 1 6 4
TL_A_flux_c_XZ 1 1 2 5 2 2
TL_A_flux_d_Z 6 6 4 6 3 3
TL_A_flux_d_XZ 101 89 6 7 5 6
mag_4_uc 16 78 5 8 4 7
TL_A_flux_d_ZZ 2 11 7 10 8 5
mag_4_5_uc 45 62 8 9 7 10
TL_A_flux_c_ZZ 17 33 9 11 12 8
TL_A_flux_a_YY 34 85 16 3 30 11
TL_A_flux_a_YZ 68 90 11 15 9 9
TL_A_flux_c_XX 102 24 13 4 11 19
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TL_A_flux_c_X 14 16 12 14 19 12
TL_A_flux_d_YZ 72 67 10 21 10 13
TL_A_flux_a_XY 3 2 15 17 14 14
TL_A_flux_a_XX 60 48 17 18 20 17
TL_A_flux_a_XZ 57 87 14 28 13 15
dcm_1 49 84 19 22 15 16
TL_A_flux_c_XY 74 3 18 24 17 18
TL_A_flux_c_YZ 36 96 20 20 16 20
TL_A_flux_d_XY 77 99 22 16 21 23
TL_A_flux_d_XX 24 22 26 12 31 27
TL_A_flux_d_Y 27 10 21 27 26 21
TL_A_flux_c_YY 28 45 23 25 18 24
TL_A_flux_a_X 99 70 29 19 25 25
TL_A_flux_d_X 71 71 27 23 32 29
dcm_4 48 43 30 26 24 26
mag_3_uc 15 21 31 36 23 28
TL_A_flux_c_Y 11 95 32 33 22 30
mag_3_5_uc 89 72 37 31 28 34
TL_A_flux_a_ZZ 78 75 36 34 34 43
TL_A_flux_a_Y 20 36 33 50 36 33
dcm_5 86 38 39 49 37 32
TL_A_flux_a_Z 62 55 41 42 33 44
TL_A_flux_d_YY 82 41 46 41 39 41
TL_A_flux_c_ZZ_dot 10 18 25 73 38 31
mag_3_4_uc 97 31 38 55 42 36
dcm_2 105 108 28 89 27 22
TL_A_flux_c_XX_dot 7 44 24 83 45 35
vol_acpwr 13 29 50 43 44 49
vol_outpwr 33 105 51 39 48 54
TL_A_flux_a_YX_dot 42 9 40 69 50 38
dcm_8 69 74 48 48 52 56
dcm_7 9 7 65 37 40 52
TL_A_flux_c_XZ_dot 88 82 43 64 51 48
TL_A_flux_a_YY_dot 25 8 34 84 46 40
mag_2_5_uc 91 83 44 76 29 39
dcm_3 31 37 59 47 69 65
TL_A_flux_d_XZ_dot 61 63 57 65 55 50
TL_A_flux_a_XX_dot 64 101 35 105 41 37
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cur_outpwr 43 47 71 40 63 66
TL_A_flux_a_YZ_dot 38 28 54 77 65 53
mag_2_3_uc 23 73 56 74 49 55
TL_A_flux_a_ZX_dot 83 103 45 96 54 46
vol_bat_1 39 61 90 13 82 88
TL_A_flux_c_YZ_dot 47 46 42 108 43 42
vol_bat_2 55 26 82 29 64 81
mag_2_4_uc 96 107 66 66 47 61
mag_2_uc 37 12 49 101 35 45
TL_A_flux_d_XY_dot 67 17 70 78 67 51
baro 5 5 87 30 53 83
TL_A_flux_c_YY_dot 106 35 47 107 58 47
ins_acc_x 32 30 86 56 93 59
TL_A_flux_d_ZZ_dot 90 97 53 88 56 62
cur_heat 70 68 83 35 71 86
dcm_6 30 57 76 59 77 73
vol_srvo 103 102 75 52 62 82
cur_ac_lo 58 92 79 61 76 70
dcm_9 51 104 74 60 83 76
cur_acpwr 54 40 69 86 57 57
TL_A_flux_c_YX_dot 56 42 55 91 59 67
TL_A_flux_a_ZZ_dot 22 86 58 93 68 64
TL_A_flux_d_ZX_dot 29 32 68 79 88 69
vol_back_p 40 50 91 32 85 93
TL_A_flux_d_XX_dot 18 27 52 95 60 72
cur_bat_2 108 59 84 62 94 75
TL_A_flux_c_ZY_dot 8 34 61 104 81 58
cur_bat_1 80 98 81 57 89 85
vol_back_n 59 56 95 38 87 90
cur_ac_hi 81 19 88 44 92 92
TL_A_flux_a_XZ_dot 41 91 62 106 66 60
TL_A_flux_c_ZX_dot 50 51 67 99 72 63
ins_acc_y 87 80 80 58 79 94
cur_tank 107 88 109 46 91 77
vol_gyro_2 44 81 101 53 95 80
TL_A_flux_a_ZY_dot 85 23 60 102 73 74
vol_cabt 65 100 85 67 90 84
TL_A_flux_d_ZY_dot 52 65 72 97 84 68
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vol_acc_n 84 25 89 51 80 97
vol_acc_p 73 52 94 45 74 98
TL_A_flux_c_XY_dot 94 79 64 103 61 71
TL_A_flux_d_YY_dot 79 60 63 100 70 78
TL_A_flux_d_YX_dot 26 15 73 94 78 79
TL_A_flux_d_YZ_dot 19 58 77 82 75 87
cur_com_1 4 13 92 63 96 99
cur_flap 93 4 96 54 105 105
vol_res_p 21 20 93 68 97 96
TL_A_flux_a_XY_dot 98 94 78 92 86 89
vol_fan 63 54 97 75 98 91
vol_back 75 39 98 71 99 95
vol_gyro_1 53 76 99 72 100 101
vol_block 92 106 102 80 104 104
cur_strb 46 64 108 70 108 108
cur_srvo_m 100 93 106 81 103 100
cur_srvo_i 66 77 100 85 106 103
cur_srvo_o 76 14 107 87 102 102
ins_acc_z 95 66 104 90 107 107
vol_res_n 104 69 105 98 101 106
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Appendix C

Down-Selected Feature Set

Table C.1: Down-Selected Feature Set.

dcm_1 TL_A_flux_a_X
dcm_2 TL_A_flux_a_Y
dcm_3 TL_A_flux_a_Z
dcm_4 TL_A_flux_a_XX
dcm_5 TL_A_flux_a_XY
dcm_6 TL_A_flux_a_XZ
dcm_7 TL_A_flux_a_YY
dcm_8 TL_A_flux_a_YZ
dcm_9 TL_A_flux_a_ZZ
baro TL_A_flux_a_X_dot

cur_com_1 TL_A_flux_a_Y_dot
cur_ac_hi TL_A_flux_a_Z_dot
cur_ac_lo TL_A_flux_c_X
cur_flap TL_A_flux_c_Y
cur_strb TL_A_flux_c_Z
cur_heat TL_A_flux_c_XX

cur_acpwr TL_A_flux_c_XY
cur_outpwr TL_A_flux_c_XZ
vol_bat_1 TL_A_flux_c_YY

igrf TL_A_flux_c_YZ
ins_lat TL_A_flux_c_ZZ
ins_lon TL_A_flux_c_X_dot
ins_alt TL_A_flux_c_Y_dot
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mag_2_uc TL_A_flux_c_Z_dot
mag_3_uc TL_A_flux_d_X
mag_4_uc TL_A_flux_d_Y
mag_5_uc TL_A_flux_d_Z

mag_2_uc_dot TL_A_flux_d_XX
mag_2_uc_dot4 TL_A_flux_d_XY
mag_3_uc_dot TL_A_flux_d_XZ
mag_3_uc_dot4 TL_A_flux_d_YY
mag_4_uc_dot TL_A_flux_d_YZ
mag_4_uc_dot4 TL_A_flux_d_ZZ
mag_5_uc_dot TL_A_flux_d_X_dot
mag_5_uc_dot4 TL_A_flux_d_Y_dot

mag_2_3_uc TL_A_flux_d_Z_dot
mag_2_4_uc
mag_2_5_uc
mag_3_4_uc
mag_3_5_uc
mag_4_5_uc
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