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Abstract

Data-driven approaches are increasingly being used to identify and remove structural biases
in dynamical models for real-world systems. However, because model updates alter the
dependency of a model on its free parameters, evidence about structural biases is often
muddied by the variable influences of inadequately-tuned parameters on the model solution.
We elaborate a framework for model development that combines calibration, sensitivity
analysis, and uncertainty quantification of free parameters to shed light on where structural
biases are likely to exist in a model, and where the model may be unnecessarily complex.
The approach is useful for general applications because it is easy to implement, derivative-
free, robust against model instabilities, and computationally inexpensive, requiring a modest
number of model evaluations. A diffusive closure for turbulence penetrated by air-sea fluxes
of the ocean surface, presently called the “Convective Turbulent Kinetic Parameterization,"
is developed as a testbed for and proof-of-concept for the approach. Modifications to the
traditional Ensemble Kalman Inversion [1] algorithm are devised to improve convergence
during the calibration phase of this process. Further, the Calibrate Emulate Sample [2]
framework for uncertainty quantification is validated with modifications.
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From the spread of tumor cells to the swirls of a tornado, real-world systems whose

laws are time-invariant can be represented mathematically as sets of differential equations

that relate unresolved variables and resolved variables by unknown constants called free

parameters. Dynamical models can be integrated forward in time to reveal future states

of the system—a task that, when taken up by computers, lends the ability to preview and

probe possible futures sooner than they may arrive. However, most dynamical models are

approximate, due not only to the numerical error implicit in the scheme used to integrate

them, but because they are structurally biased in that they reflect incomplete knowledge,

often assuming false relationships between the relevant variables and the uncertain free

parameters. Additionally, whether the parameters reflect universal constants or summarize

the collective contributions of many local conditions, there will almost inevitably be error

due to the parameters being improperly chosen. As such, accurate models can take years to

develop by hand.

This project leverages computational tools to expedite model development, specifically

for applications in which model gradient information is unavailable and uncertainty quan-

tification is needed. It begins with the formulation of the development problem as one of

supervised learning of free parameters in a Bayesian inverse problem framework, combining

sensitivity analysis and parametric uncertainty quantification to identify where uncertainty

is being introduced into the model, and where the model can be simplified. We focus on

a particular model development application in climate modeling: developing a sub-grid pa-

rameterization for vertical turbulent fluxes in the Ocean Surface Boundary Layer, (OSBL)

i.e. a mathematical model that captures the physics of turbulence that develops in the upper

ocean in response to blowing winds, heat loss, and evaporation.

We propose several modifications to the traditional Ensemble Kalman Inversion algo-

rithm [1] that were found to enable automatic tuning of the free parameters of the afore-

mentioned sub-grid parameterization. We demonstrate that introducing these changes leads

to improved in- and out-of-sample performance of the model when calibrated against high-

resolution numerical simulations. Following parameter optimization with EKI, the samples

generated by EKI are used to perform a variance-based sensitivity analysis on the parameters

to gauge how uncertainty in the model output is partitioned among the input parameters.
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Lastly, parametric uncertainty is quantified using Markov Chain Monte Carlo (MCMC) in

accordance with the Emulate and Sample steps of a Calibrate Emulate Sample framework.

0.1 Background

Developing accurate numerical models is a problem at the intersection of many domains.

On the one hand, it is a problem of understanding the laws of the system, extrapolating

relationships between variables and conforming to known universal constraints, and on the

other it is a problem of assimilating observational data to exploit observed patterns that are

as yet unexplained by theory-based models. Historically, development of parameterizations

of vertical mixing in the OSBL has been purely theory-driven. As yet, these have been lim-

ited in fidelity by the potentially problematic assumptions that they rely on—for example,

that diffusion is purely down-gradient (i.e. that turbulence only moves against concentration

gradients), or that the mixed layer is perfectly mixed (i.e. that the temperature profile is

exactly vertical). It is well understood that existing models are biased and fail to reproduce

real climate dynamics over large time windows. This may be attributed to a historical lack

of available data for robust evaluation or calibration; observational data was usually lim-

ited in spatial or temporal resolution. As such, ocean parameterizations have typically been

tuned by hand or designed to be simple, to allow physics-informed guessing of a few rather

than many different parameter values. All said, the complexity of the problem has thus far

eluded precise analytic descriptions from modelers. Meanwhile, as high-resolution simula-

tions and experimental observations become easier to obtain and faster to process, the field

has opened to data-driven approaches to model discovery as an alternative to theory-based

modeling. Sub-grid parameterizations are being discovered by neural networks to replace

physics-based parameterizations altogether [3], [4]. Using a physics-informed approach that

directly addresses the boundary layer problem under investigation, Ramadhan et al. embed

and train neural networks within fluid dynamical equations averaged over patches of ocean

attempting to express unresolved turbulence at scales smaller than the patch without having

to guess at pencil-to-paper equations as the existing models do [5]. Meanwhile, attempts are

being made to “discover" governing equations of fluid dynamics using a sparsity-enforcing
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modification of ridge regression to identify and match coefficients to individual terms in a

library of candidate linear and nonlinear terms that might appear in the governing equations

[6].

Although machine learning models can be constrained to obey physical principles such

as conservation laws, these models tend to have a large memory footprint and, because they

can only memorize patterns in the data they are trained on, likely need to be re-trained

any time they are introduced to new climatological settings (or whenever the spatial and/or

temporal resolution is adjusted). Such models promise neither to extrapolate nor to offer

insight into parametric uncertainty. This project takes the perspective that outsourcing

model development entirely to machines is risky and therefore ought to be reserved, at

least for now, for model evaluation or residual models. Theory-based parameterizations,

on the other hand, because they are tethered to the known physics and involve only a few

rather than many degrees of freedom (parameters), should theoretically be generalizable and

robust against overfitting compared to data-dependent approaches. A parameterization that

comprises a comfortable number of degrees of freedom in the form of free parameters can

be theory-based–and therefore computationally inexpensive, faithful to known physics, and

interpretable–while still taking advantage of the existing wealth of observational data by

being optimized against it. In any case, the data assimilation problem is one of learning

parameters.

To make the assimilation problem explicit, certain uncertainty-permitting assumptions

need to be made about the relationship between the model and data. A common model for

this relationship is provided by the Bayesian inverse problem, where the forward model 𝒢

is modeled as reproducing the data 𝑦 when applied to some optimal parameters 𝜃*, taking

into account some uncertainty on the data, 𝜂: [7]

𝑦 = 𝒢(𝜃*) + 𝜂 (1)

Typically the forward model 𝒢 will depend on several variables other than the free parameters

𝜃*, such as initial and boundary conditions; however, for the purposes of a single experiment,

these variables do not vary and indeed, the forward map output can include a combination
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of results from various settings of these other variables. When the parameters and observa-

tion noise in (0.3) are modeled as parameterized distributions, this relationship becomes an

explicit framework within which we can apply Bayesian inference to infer model parameters

from experimental data. For parameter estimation, it provides a natural least-squares loss

function with which to assess model performance; for uncertainty quantification, it provides

a natural closure for the conditional likelihood of a parameter given the data.

0.1.1 Parameter Estimation

Tuning is an often-overlooked step in the model development process [8]–[10]. It can be ex-

tremely challenging in high-dimensional settings given that robust parameter estimates can

usually only be achieved if parameters are tuned jointly rather than in isolation. However,

this step cannot be ignored, as apparent model biases are easily misattributed to structural

errors if model parameters have not been optimally tuned, sometimes driving unnecessary

and wasteful structural changes to the parameterization scheme or increases in model resolu-

tion [11]. If qualitative evidence of model-data misfit is to be used to glean evidence about a

model’s current structural deficiencies and streamline improvements to the model’s physical

formulation, such evidence ought to be minimally corrupted by the influence of improperly

tuned parameters.

Traditional gradient descent methods for parameter tuning iteratively update a param-

eter estimate 𝜃 from an initialization 𝜃0 so that it moves down-gradient toward a local

loss minimum according to a time-discretized version of �̇� = −∇Φ(𝜃), where Φ(𝜃) is the

model-data misfit function to be minimized. Variants of gradient descent use momentum-

augmented methods, or adaptive learning rate algorithms, to accelerate convergence. Alter-

native gradient-based methods such as Quasi-Newton and Gauss-Newton methods improve

convergence in convex regions of parameter space by taking into account estimated second

derivatives of the objective. The two main problems with such methods are that (1) they

rely on the gradient information, or adjoints, of the forward map 𝐺, which is often difficult

or costly to compute, and (2) it can be hard to find a good starting point 𝜃0 for the dy-

namic. It is therefore desirable to find computationally cheap approaches that don’t require

adjoints. Several such derivative-free (“zeroth-order") optimization approaches are already
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being applied to infer unknown parameters from noisy observations in a climate modeling

context. Williamson et al. propose history matching (“iterative refocusing") as an approach

to whittle down the parameter space to regions where the model solution meets a certain

plausibility threshold. However, this method relies on repeated reuse of an emulator for the

forward map, which is often unreliable or costly to obtain. In a very similar approach arising

from a very similar philosophy of model development to that adopted in this thesis, Golaz et

al. used ensemble-based Nelder–Mead optimization to calibrate the parameters of a sub-grid

closure for the cloud boundary layer, with the observations provided by a suite of six LES

[12]. Other derivative-free approaches include population-based meta-heuristic algorithms

such as particle swarm optimization, genetic algorithms, and differential evolution, as well as

single-solution meta-heuristic algorithms like simulated annealing. This thesis concerns itself

with a class of interacting agent-based Bayesian parameter estimation algorithms adapted

from the Ensemble Kalman (EK) filter originally used for state estimation [1]. Ensemble

Kalman Inversion (EKI) is a derivative-free optimization algorithm whereby an ensemble

of particles is distributed throughout the parameter space through random sampling from

Gaussian priors and then iteratively updated until the particles converge toward a loss min-

imum. The individual particles perform an approximate form of gradient descent in which

the derivatives are approximated by ensemble differences [1]. In addition to being gradient-

free, EKI is advantageous compared to alternative approaches for several reasons. First, it’s

an ensemble method, which means it’s inherently parallelizable and has convergence advan-

tages for when the loss landscape is noisy. It can also be easily modified to accommodate

the occurrence of parameters that cause the model to go numerically unstable, where other

algorithms might be stopped in their tracks. A second advantage is that EKI’s numerical

cost is known ahead of computation, given the number of algorithm iterations is not contin-

gent on some inherent stop condition. A final advantage, subject to approximations, is that

the regularized variant of EKI can be leveraged for uncertainty quantification.

Although the EKI algorithm is superficially quite simple and has been characterized the-

oretically at length [1], [13]–[15], there remain a large number degrees of freedom available

to users to improve EKI’s performance. We elaborate a practical approach to using EKI for

general applications, where CATKE (short for convective adjustment turbulent eddy kinetic
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energy) is used a testbed for the approach. CATKE is a model representing the rates of mix-

ing induced by turbulence arising from winds, cooling or precipitation at the ocean surface.

The model depends on 17 free parameters whose values are not known a priori. Developing

a general approach for EKI amounts to detailing and validating suggested solutions for such

questions as how to choose and constrain EKI priors, how to characterize the uncertainty in

synthetic observations, in order to estimate a covariance matrix for observational noise, how

to handle numerical instabilities in the model solution, and how to optimize the EKI time

step size for performance in nonlinear settings.

0.1.2 Uncertainty Quantification via CES

In applications such as embedded control systems, epidemic forecasting and climate model-

ing that seek to outpace the relevant time scales of evolution of the dynamics of interest, data

assimilation tasks must often be carried out in real time or “online." In such applications it

is not feasible or robust to repeatedly re-calibrate the model on all evidence accumulated

thus far; we instead seek to estimate probability distributions over possible parameter values

providing a natural way to incorporate new observational evidence into an existing model.

While EKI is not constructed to learn uncertainty but rather to reach consensus around a

single parameter value that makes the model-data misfit small, EK methods are currently

being applied for uncertainty quantification within the recently proposed Calibrate Emulate

Sample (CES) framework [2]. A noisy variant of EKI known as Ensemble Kalman Sampling

constitutes the first step (“Calibrate") in the CES procedure–to zero in on the neighbor-

hood of optimal parameter values and produce samples of the parameter-data map 𝒢(𝜃)

in that neighborhood. In the second stage (“Emulate"), a Gaussian Process is trained to

interpolate the parameter-data pairs generated from the EKS sampling so that further calls

to the expensive forward map are not needed. In the final stage (“Sample"), MCMC is used

to approximate the parameter posteriors by sampling in the general region of the optimal

parameters, where the parameter-to-data map is replaced by the Gaussian Process emula-

tor evaluated on the given parameter input. Replacing the parameter-to-data map in the

sampling stage makes the otherwise expensive uncertainty quantification computationally

tractable for large problems. The interpolation function provided by the Gaussian Process is
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also potentially smoother than the actual data that it interpolates, facilitating the MCMC

traversal of the loss landscape, hopefully leading to more accurate posterior estimates. To

validate the approach, Dunbar et al. [16] apply CES to calibrating and estimating posteriors

on the parameters of an idealized general circulation model of the atmosphere in a perfect-

model setting, where the model used to generate truth data is identical to the model to be

tuned, but is blind to the true parameter values during the tuning procedure.
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In this thesis we focus on a climate application for model development, elaborated in

section 0.2. In section 0.2.2, we describe the set of high-resolution numerical simulations used

as reference “ground truth" data against which model accuracy is assessed. The simulations

capture a diversity of physical settings plausibly encountered in the real world. In section 0.3,

the model and observations are construed in the Bayesian inverse problem context. In section

0.4, the tuning algorithm is described at length. Implementation details and modifications

to the algorithm are motivated in the context of the climate modeling problem at hand.

Finally, the procedure for estimating parametric uncertainty using Gaussian processes and

MCMC is described in section 0.5.

0.2 Model and Observations

0.2.1 Ocean Surface Boundary Layer Column Models

Climate models are inherently approximate in that they rely on subgrid-scale models to

approximate dynamics that occur at scales finer than the model grid. For grid cells in

the topmost 100 to 500 meters of the ocean, also known as the ocean surface boundary

layer (OSBL), the collective effects of subgrid-scale turbulent motions, from the smallest

micro scales of dissipation to the length of the cell, are typically approximated within one-

dimensional “column" models that attempt to capture the time evolutions of horizontally-

averaged quantities within the cell without explicitly resolving the flow in three dimensions,

given only initial and boundary conditions (Figure 0-1). The resolved variables are typically

momentum and tracers such as temperature, salinity, carbon, and dissolved chemicals. The

turbulent processes responsible for the vertical redistribution of tracers within the OSBL

also regulate the rates at which these tracers are exchanged with the ocean interior be-

low and drawn down from the atmosphere above. In order to exhibit strong extrapolation

ability, these models should be able to reproduce dynamics in patches of ocean with var-

ied combinations of boundary conditions, including arbitrary amounts of convective mixing

(due to heating/cooling and evaporation/precipitation), shear-driven mixing (due to wind),

and rotation. We consider column model configurations that solve the horizontally averaged

16



Boussinesq equations,

𝜕𝑡𝑢− 𝑓𝑣 = −𝜕𝑧 𝑤′𝑢′ (2)

𝜕𝑡𝑣 + 𝑓𝑢 = −𝜕𝑧 𝑤′𝑣′ (3)

𝜕𝑡𝑐𝜃 = −𝜕𝑧 𝑤′𝑐′𝜃 (4)

where 𝑢 is east-west velocity, 𝑣 is north-south velocity, and 𝑐𝜃 is conservative temperature.

Overlined variables represent averages over the horizontal domain while primed variables

represent turbulent fluctuations about the average. Note that in equation (4) the diffusive

term, 𝜅𝜕2
𝑧𝑐𝜃 where 𝜅 is the molecular thermometric diffusivity, is omitted, leaving just the

unresolved advective term, 𝜕𝑧𝑤′𝑐′𝜃, because the advective term dominates. Equations 2 -

4 are unclosed because the stress terms 𝑤′𝑢′, 𝑤′𝑣′ and 𝑤′𝑐′𝜃, also referred to as vertical

turbulent fluxes, are unresolved. The modeling problem therefore amounts to providing a

closure for these unresolved fluxes. The parameterization developed in this thesis models

these fluxes as down-gradients of the mean profiles of the respective variables, with the con-

stant of proportionality being an eddy diffusivity which is itself parameterized in terms of

resolved variables and free parameters. This closure is presently called the Convective Ad-

justment Turbulent Kinetic Energy Equation, or “CATKE," and is currently being developed

by Gregory Wagner at MIT.

0.2.2 Observations

Optimal values for CATKE’s free parameters cannot be derived from first principles and are

inferred from data. Depending on the goals of the developers and stage of model development,

the data could come in the form of interpolated field observations or high-resolution, idealized

numerical simulations, sometimes referred to in this thesis as synthetic observations. In this

thesis reference data is provided by a set of three dimensional Large Eddy Simulations (LES)

that provide high-fidelity time evolutions of horizontally-averaged velocity and temperature

profiles for simulated cells of ocean that are subjected to constant heat (𝑤′𝑐′𝜃𝑧=0) and wind

surface forcings (𝑤′𝑢′
𝑧=0) over the course of several days. Such high-resolution LES are

believed to be sufficiently accurate and permit long enough integration times to be useful

17



Figure 0-1: Ocean Surface Boundary Layer parameterizations aim to capture unresolved
dynamics within 3-D grid cells (e.g. the cell shaded in blue) from the ocean’s top-most layer.
The dynamics within each given cell are summarized by one-dimensional column models
(right), which track the “horizontally-averaged" (averaged over x- and y- across the cell)
profiles of velocity and temperature within the cell as they evolve from time 𝑡 = 0. In
the example, constant wind stress and cooling at the ocean surface over a course of 6 days
manifest in the column model representation as non-zero velocities and gradually-decreasing
temperature.

for parameter inference.

In previous work, synthetic observational data was generated in the form of three suites

of five high-resolution large eddy simulations–a 2-day suite, a 4-day suite, and a 6-day suite.

The five simulations of each suite capture various combinations of surface momentum flux,

surface buoyancy flux (positive values indicate cooling), and Coriolis parameter (rotation)

values, with a uniform initial condition as summarized in Table 1. The LES parameter

values were chosen so that the mixed layer depth reaches 100-150 meters by the end of the

simulation (that is, approximately 50% of the vertical domain) so that interactions with

the artificial bottom of the cell are inconsequential. In all simulations, the model domain is

512x512x256 meters with 256 grid points in the horizontal and 128 grid points in the vertical,

giving 2-meter isotropic grid spacing. The initial condition has three layers, where in each

layer the temperature increases linearly with proximity to the surface, and the gradient is

smallest in the middle layer. A constant Anisotropic Minimum Dissipation (AMD) closure

is used to model the molecular dissipation of tracer fluctuations and dissipation of kinetic

energy. To achieve high temporal resolution we set the simulation time step to 10 minutes,
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giving 144 snapshots of the model solution per physical day.

0.2.3 Implementation

Fluid flow simulations are carried out in the open-source Julia software package Oceanani-

gans.jl [17], which solves fluid flow simulations in 1-, 2- and 3 dimensions using a finite volume

discretization on an Arakawa-C staggered grid, where values are located at cell centers and

fluxes are located at cell faces [18]. For the single column model with CATKE, Oceananigans

implements a semi-implicit backward Euler time discretization scheme to evolve the relevant

variables according to (2), (3), and (4). We fix the CATKE model time step at ∆𝑡 = 5

minutes while 10-second time steps were used to compute the LES solution. Further, we

limit the vertical resolution of the CATKE solution to 8 meters and accordingly coarse-grain

the LES solution wherever comparison is needed. CATKE is one of several subgrid closure

options implemented in Oceananigans. Fluxes are imposed at the grid surface (𝑧 = 0m,

i.e. the interface between the ocean and atmosphere) and set to zero at the lower boundary

(𝑧 = 256m, i.e. the ocean interior). For the LES, horizontally periodic boundary condi-

tions are enforced. A fifth-order Weighted Essentially Non-Oscillatory (WENO) advection

scheme for tracers (temperature) is used along with a 3rd order Runge-Kutta scheme for

time stepping. Further details on simulation numerics can be found in the documentation

for Oceananigans.jl [17].

0.3 Bayesian Inverse Problem

To recapitulate the previous section, CATKE’s parameters are to be inferred via quantitative

comparison between the solutions of a low-resolution (32 vertical grid points) single column

model simulation that use CATKE and the horizontally-averaged solutions of high-resolution

(256x256x128) LES. The LES solutions, taken together, are treated as the “synthetic obser-

vation" that the coarse simulation “model" is calibrated to, where all of the parameters of

the coarse “model" are contained within the constituent sub-grid closure, CATKE.

The inverse problem is to find the unknown parameters 𝜃* that bring the model into

agreement with the truth in the sense of (1). The specific statistics that the forward model 𝒢
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computes have to be selected for each use case to provide a concise and unbiased summary of

the complex model solution, containing a balanced set of features most relevant for assessing

the model-data discrepancy. In the OSBL context, this summary could be, for example,

a vector of concatenated velocity and temperatures profiles at all or some time steps of

the CATKE solution. In this work, the observation is obtained by normalizing all of the

1-D spatial time series data from days 1, 2, 3 and 4 of the 4-day observation suite and

concatenating it into a single column vector. The corresponding forward map output for a

given parameter set 𝜃 is obtained by initializing variables 𝑢, 𝑣, 𝑤, 𝑐𝜃 and 𝑒–the turbulent

kinetic energy 𝑒 = 1/2(𝑢′2 + 𝑣′2 +𝑤′2)–in the column model to the LES solution at 0.5

days and evolving the model to day 4, then applying an identical procedure to obtain a

single column vector from the model solution. Identical boundary conditions, such as surface

forcings 𝑤′𝑐′𝜃𝑧=0 and 𝑤′𝑢′
𝑧=0, are imposed on the model domain as were imposed to generate

the reference LES solutions. In the strong cooling scenario, the trivial velocity information

is omitted from the forward map and observation; in the rotation-free scenario, the north-

south velocity information is ignored. This leaves 17 variables to be recorded across the 5

simulations; thus the forward map contains 2176 = 4 × 17 × 32 entries representing 4 time

snapshots of 17 length-32 profiles across 5 simulations. Thus 𝑦, 𝒢(𝜃), and 𝜂 all inhabit the

space R2176. Importantly, because CATKE does not explicitly set out to resolve 𝑒 to a high

degree of physical accuracy but rather as a proxy for the useful information that 𝑒 contains,

the normalized profiles 𝑒 are re-scaled by a factor of 0.01 when incorporated into the forward

map.

Statistical descriptions of 𝜃 and 𝜂 are the two design parameters not yet specified in

our articulation of the Bayesian inverse problem. To be motivated in section 0.4.1, several

simplifying assumptions are made: that the observation noise 𝜂 is drawn from a Gaussian

distribution 𝒩 (0,Γ𝑦), that the prior distribution of 𝜃 is also Gaussian 𝒩 (𝜇𝜃,Γ𝜃), and that

𝜃 and 𝜂 are a priori independent. The choice of Γ𝜃 will be explained in 0.4.2. In order

to estimate Γ𝑦, we trilinearly interpolate LES solutions with 2 meter, 4 meter and 8 meter

vertical resolutions to the desired 16 meters (32 grid points) and compute the Bessel-corrected

covariance of the observation vectors obtained from the respective solutions. Alternative

formulations could represent Γ𝑦 as a scaled Identity matrix or use the scale of turbulent
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fluctuations computed in the LES solutions as a proxy for the uncertainty of the mean states

for the relevant variables. In the upcoming section Ensemble Kalman Inversion is described

with application to minimizing the model-data misfit for CATKE.

0.4 Ensemble Kalman Inversion

The purpose of calibration is to bring a model into agreement with observational data of

some kind. In its present formulation, CATKE is formulated with 17 scalar parameters. In

this section we describe how we employ Ensemble Kalman Inversion (EKI) to tune these

parameters. As we will see in section 0.4.1, the EKI process aims to minimize the following

regularized least-squares objective [15]

Φ𝑅(𝜃) =
1

2

⃦⃦⃦
Γ𝑦

− 1
2 (𝑦 − 𝒢(𝜃))

⃦⃦⃦2

+
1

2

⃦⃦⃦
Γ𝜃

− 1
2 (𝜃 − 𝜇𝜃)

⃦⃦⃦2

(5)

The first term measures the distance from the CATKE solution to the truth, down-weighted

by the uncertainty on the truth. The second term implements Tikhonov regularization [1].

From a Bayesian optimization perspective, Tikhonov regularization is a natural consequence

of incorporating prior information with likelihood data; from a classical optimization perspec-

tive, it is warranted by the ill-posed nature of the problem: multiple equally-good solutions

might exist, and penalizing parameters that stray far from the estimated priors allows for

more efficient parameter search, at the cost of possible overfitting to the priors.

EKI’s grand limitation as an optimization approach is that the ensemble mean is only

guaranteed to converge by theory if the forward map is linear and the Gaussian assumptions

hold [13], which is almost never the case. Improving EKI’s convergence in nonlinear settings

is an active area of research [19]. However, there is evidence that EKI already succeeds in

nonlinear settings in practice. For example, EKI has demonstrated some success in opti-

mizing the weights of a neural network [15]. Chada et al. draw comparisons between EKI

parameter updates and Gauss-Newton optimization to show that EKI can converge in finite

iterations given appropriate adjustments to the noise covariance matrix at each step, even

when the objective is non-convex [19].
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0.4.1 Detailed Formulation

Parameter Estimation as a Bayesian Inverse Problem

The inverse problem as outlined by (1) is to find the unknown 𝜃* that permit this equality

between the model output and the truth. Given the aforementioned normality assumptions,

the density of 𝜂 and the prior density are multivariate normal distributions.

𝜋𝜂(𝜂) ∝ 𝑒−
1
2
(𝜂−𝜇𝜂)𝑇Γ−1

𝑦 (𝜂−𝜇𝜂) = 𝑒
− 1

2
||𝜂−𝜇𝜂 ||2Γ𝑦 (6)

𝜋0(𝜃) ∝ 𝑒−
1
2
(𝜃−𝜇𝜃)

𝑇Γ−1
𝜃 (𝜃−𝜇𝜃) = 𝑒

− 1
2
||𝜃−𝜇𝜃 ||2Γ𝜃 (7)

where we have used the notation ‖𝑥‖2𝐴 :=
⃦⃦⃦
𝐴− 1

2𝑥
⃦⃦⃦2

= (𝐴− 1
2𝑥)𝑇 (𝐴− 1

2𝑥) = 𝑥𝑇𝐴−1𝑥 for the

Mahalanobis norm given symmetric, positive definite 𝐴. The posterior density, 𝜋(𝜃|𝑦), is

proportional to the product of the likelihood 𝜋(𝑦|𝜃) and prior 𝜋0(𝜃). Note that 𝑦 conditioned

on 𝜃 is distributed as 𝜂 = 𝑦 − 𝒢(𝜃). Therefore

𝜋(𝑦|𝜃) = 𝜋𝜂(𝑦 − 𝒢(𝜃)) (8)

Combining equations 7 and 8, we have, by Bayes’ theorem,

𝜋(𝜃|𝑦) ∝ 𝜋𝜂(𝑦|𝜃)𝜋0(𝜃) (9)

∝ 𝑒
− 1

2
||𝑦−𝒢(𝜃)||2Γ𝑦 𝑒

− 1
2
||𝜃−𝜇𝜃 ||2Γ𝜃

= 𝑒−Φ𝑅(𝜃)

where Φ𝑅(𝜃) is the negative log density

Φ𝑅(𝜃) =
1

2
||𝑦 − 𝒢(𝜃)||2Γ𝑦

+
1

2
||𝜃 − 𝜇𝜃||2Γ𝜃

(10)

also known as the regularized least-squares objective, where the subscript 𝑅 denotes regu-

larization. Note that maximizing the posterior density (9) is the same as minimizing (10);

the minimizer of the objective is the MAP estimator of (9).
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Ensemble Kalman Filtering (EnKF)

EKI has its roots in an algorithm called Ensemble Kalman Filtering (EnKF). Innovations

meant to overcome the shortcomings of EKI are often first derived in the context of the

EnKF, which continues to see widespread use in fields such as numerical weather prediction

that seek to forecast the trajectories of large state variables. The EnKF is designed for

sequential data assimilation problems, whereby a state 𝑥 evolves in time according to some

ODE

𝜕𝑡𝑥 = 𝑓(𝑥, 𝑡) (Dynamic) (11)

starting from an initial condition 𝑥(𝑡0) that is uncertain and is therefore modeled as a

random variable with PDF 𝜋0(𝑥). Because the initial condition is uncertain, all subsequent

realizations of the state are also uncertain and have some PDF 𝜋(𝑥, 𝑡) associated with them.

Absent any further information about 𝑥, there is an analytical relation for how the PDF

evolves in time and it is given by the continuity equation 𝜕𝑡𝜋 = −div(𝜋𝑓). However, there

is new information that arrives at various discrete time steps in this evolution so that 𝜋 has

to be modified at each iteration. This information comes in the form of “observations" 𝑦(𝑡)

that are assumed to be linearly transformed measurements of 𝑥, taking into account some

Gaussian measurement error 𝜂 ∼ 𝒩 (0,Γ𝑦).

𝑦(𝑡𝑞) = 𝐻𝑥(𝑡𝑞) + 𝜂 for 𝑞 = 1, 2, ...,𝑀 (Observation)

where 𝐻 ∈ R𝑑𝑦×𝑑𝑥 is a linear operator and M is the number of observations. This new

data has to be assimilated into the projection of 𝜋(𝑥, 𝑡) each time a new observation is

made, hence the description of the problem as one of ‘sequential data assimilation’. The

solution amounts to iteratively evolving 𝜋(𝑥, 𝑡𝑞) to 𝜋(𝑥, 𝑡𝑞+1) according to the continuity

relation but with adjustments to 𝜋(𝑥, 𝑡𝑞+1) that incorporate 𝑦(𝑡𝑞+1) at each step. The

former updates, where the underlying dynamics are evolved, constitute the “evolution" or

“forecast" stage of the algorithm, while the iterative, measurement-informed adjustments

constitute the “update" or “analysis" stage. To make the problem tractable 𝜋(𝑥, 𝑡) usually
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needs to be approximated with some parameterized statistical model 𝜌(𝑥|𝑧(𝑡)). Then the

problem is reduced one of tracking the parameters 𝑧(𝑡) ∈ R𝑑𝑧 ; that is, 𝑧(𝑡) replaces 𝜋(𝑥, 𝑡)

as the variable which is explicitly evolved.

Consider the special case that the ODE (11) is linear and 𝜌(𝑥|𝑧(𝑡)) is Gaussian with

the parameters 𝑧(𝑡) representing the mean 𝜇𝑥(𝑡) and covariance 𝑃 (𝑡). Then the mean and

covariance updates at each time 𝑡𝑞 during the prediction stage would be readily given in

closed form by the Kalman filter, representing the result of an application of Bayes’ rule to

the forecasted priors on 𝑥 based on the new evidence. The update for time 𝑡𝑞 to 𝑡𝑞+1 is:

𝜇𝑥(𝑡𝑞+1) = 𝜇𝑥(𝑡𝑞) +𝐾(𝑡𝑞)(𝑦 −𝐻𝜇𝑥(𝑡𝑞)) (KF analysis) (12)

𝑃 (𝑡𝑞+1) = (𝐼 −𝐾(𝑡𝑞)𝐻)𝑃 (𝑡𝑞) (KF analysis) (13)

where 𝐾(𝑡𝑞) is the Kalman gain defined as 𝐾(𝑡𝑞) = 𝑃 (𝑡𝑞)𝐻
𝑇 (𝐻𝑃 (𝑡𝑞)𝐻

𝑇 + Γ𝑦)
−1. This

can be rewritten to impart the intuition that the update gives lower or higher priority to

the measurement compared to the forecast depending on the relative uncertainty Γ𝑦 of the

observation and that of the dynamic (11). Though the Kalman filter is an unbiased estimator

in the present context (meaning it is accurate in expectation), its applicability is limited by

the linearity assumption on (11). Additionally, if the state is many-dimensional, storing the

covariance matrices and carrying out the necessary matrix inversions in the Kalman updates

can become intractable [20]. The EnKF was developed to partially address both of these

issues.

For each snapshot 𝑞 in time, EnKF uses an ensemble of 𝐽 state particles {𝑥(𝑗)
𝑞 }𝐽𝑗=1 that

constitute independent solutions to (11) and together stand in for a true analytic Gaussian

description of the distribution over possible states. The resulting statistical model is then

formulated no longer as 𝒩 (𝜇𝑥,𝑃 ) but rather as a sum of Dirac delta functions

𝜋𝐽
𝑞 (𝑥) =

𝐽∑︁
𝑗=1

𝛿(𝑥− 𝑥(𝑗)
𝑞 (𝑡)) (14)

parameterized by particle locations {𝑥(𝑗)
𝑞 }. It is in this sense that the EnKF is a Monte

Carlo implementation of the Bayesian update problem. The empirical mean and covariance
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of the ensemble distribution are given by

𝑥𝑞 =
1

𝐽

𝑁∑︁
𝑗=1

𝑥(𝑗)
𝑞 𝐶𝑥𝑥 =

1

𝐽 − 1

𝐽∑︁
𝑗=1

(𝑥(𝑗)
𝑞 − 𝑥𝑞)(𝑥

(𝑗)
𝑞 − 𝑥𝑞)

𝑇 (15)

During the forecast stage, the EnKF particles are evolved according to (11). The magic of

the algorithm is in how the analysis step is carried out; how does one update the particles

such that their resulting distribution resembles that which the Kalman filter would have

projected? There are stochastic and a deterministic solutions to this problem [20]–[22]. In

the stochastic formulation, the particles are updated as

𝑥
(𝑗)
𝑞+1 = 𝑥(𝑗)

𝑞 +𝐾emp(𝑦𝑞 + 𝜂(𝑗)
𝑞 −𝐻𝑥(𝑗)

𝑞 ) (EnKF analysis) (16)

where 𝐾emp is the estimated (empirical) Kalman gain,

𝐾emp = 𝐶𝑥𝑥𝐻*(𝐻𝐶𝑥𝑥𝐻* + Γ𝑦)
−1 (17)

with 𝐻* denoting the adjoint of 𝐻 . The “stochasticity" in (16) comes from the additive ob-

servation perturbation 𝜂. Compared to the deterministic alternative, this approach has been

suggested to be more stable against Gaussianity violations in the underlying state [21]. The

artificial perturbation can also help break the subspace property and potentially counteract

a known artefact [23] of EnKF that the empirical covariance tends to underestimate the true

covariance. However, the approach has the potential to exacerbate sampling error for small

ensembles, and is thus sometimes abandoned in favor of deterministic approaches, including

more complicated Sequential Monte Carlo approaches that incorporate adjustable weights

into the ensemble distribution formulation 𝜋𝐽
𝑞 (𝑥), turning it into a weighted sum [24], [25].

One such approach is directly contrasted with the EnKF for inverse problems (EKI) in [26].

EnKF to EKI: from State Estimation to Parameter Estimation

The idea to reinterpret the EnKF method as an approach to solve inverse problems came

from the oil industry. The underlying state 𝑥 which we seek to recover is formulated as one

which evolves according to a discrete dynamic [1]
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𝑥𝑛+1 =

⎛⎝ 𝜃𝑛

𝒢(𝜃𝑛)

⎞⎠ (Dynamic) (18)

where 𝑛 ∈ Z+. Each realization of the state is assumed to have a Gaussian PDF associated

with it, and as before the distribution at time 𝑛 is approximated by an ensemble {𝑥(𝑗)
𝑛 }𝐽𝑗=1.

The empirical mean and covariance of the ensemble can be decomposed into their constituent

parts,

𝑥𝑛 =
1

𝐽 − 1

𝐽∑︁
𝑗=1

𝑥(𝑗)
𝑛 =

⎛⎝𝜃𝑛

𝑔𝑛

⎞⎠ , 𝐶𝑥𝑥
𝑛 =

⎛⎝ 𝐶𝜃𝜃
𝑛 𝐶𝜃𝑔

𝑛

𝐶𝜃𝑔
𝑛

𝑇
𝐶𝑔𝑔

𝑛

⎞⎠ (19)

where 𝐶𝑎𝑏
𝑛 = 1

𝐽−1

∑︀𝐽
𝑗=1(𝑎

(𝑗)
𝑛 − 𝑎𝑛)(𝑏

(𝑗)
𝑛 − 𝑏𝑛)

𝑇 for general 𝑎, 𝑏, and superscript 𝑔 represents

the collection of forward map outputs {𝒢(𝜃(𝑗)
𝑛 )}𝐽𝑗=1. As before, the observations are modeled

as a noisy linear transformation of the state [1],

𝑦𝑛 = 𝐻𝑥𝑛 + 𝜂𝑛 (Observation) (20)

where 𝐻 =
(︁
0 𝐼

)︁
is a linear projection operator that picks out the second component

of 𝑥𝑛 thus mapping R𝑑𝑦+𝑑𝜃 to R𝑑𝑦 , and {𝜂𝑛}𝑛∈Z+ are i.i.d. realizations of the observation

uncertainty variable 𝜂 ∼ 𝒩 (0,Γ𝑦). Applying (19) the empirical Kalman gain (17) becomes

𝐾emp,𝑛 =

⎡⎣𝐶𝜃𝑔
𝑛

𝐶𝑔𝑔
𝑛

⎤⎦ (𝐶𝑔𝑔
𝑛 + Γ𝑦)

−1 (21)

leading to the state update analogous to (16), [1]

𝜃
(𝑗)
𝑛+1 = 𝜃(𝑗)

𝑛 +𝐶𝜃𝑔
𝑛 (𝐶𝑔𝑔

𝑛 + Γ𝑦)
−1(𝑦 + 𝜂(𝑗)

𝑛 − 𝒢(𝜃(𝑗)
𝑛 )) (EKI Analysis) (22)

which using the definition of 𝐶𝜃𝑔 can be rewritten to convey that the updated ensemble

remains confined to the linear span of the initial ensemble despite that the update coefficients

may be nonlinear, [1]
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𝜃
(𝑗)
𝑛+1 = 𝜃(𝑗)

𝑛 +
1

𝐽

𝐽∑︁
𝑘=1

⟨𝒢(𝜃(𝑘)
𝑛 )− g, (𝐶𝑔𝑔

𝑛+1 + Γ𝑦)
−1(𝑦 + 𝜂(𝑗)

𝑛 − 𝒢(𝜃(𝑗)
𝑛 )⟩ 𝜃(𝑘)

𝑛 (23)

Connection to Sequential Monte Carlo

Note that time in the sense of 𝑡𝑞 in (0.4.1) has no meaning for EKI because observations

for EKI are not chronologically evolving. EKI adopts a new interpretation of pseudo-time

corresponding not to when new measurements are made but rather when particle updates

are made given the fixed observation 𝑦. Equation (9) carries the prior to the posterior in a

single application of Bayes’ rule, based exclusively on information from a single forward run

for each ensemble member. A more incremental approach, known in the Sequential Monte

Carlo (SMC) literature [7], [22], [25], [26] as likelihood tempering, can be taken so that 𝑁 > 1

updates are taken to arrive at the posterior:

𝜋(𝜃|𝑦) ∝ 𝜋0(𝜃)
𝑁∏︁

𝑛=1

[𝜋𝜂(𝑦|𝜃)]
1
𝑁 (24)

∝ 𝜋0(𝜃)
𝑁∏︁

𝑛=1

𝑒−
1

2𝑁
||Γ

− 1
2

𝑦 (𝑦−𝒢(𝜃))||2 (25)

= 𝜋0(𝜃)
𝑁∏︁

𝑛=1

𝑒−
1
2
||( 1

𝑁
Γ𝑦)

− 1
2 (𝑦−𝒢(𝜃))||2 (26)

Intuitively, this interpretation is more useful for EKI because it means that when several

Kalman updates are applied, information from several forward model ensembles can be

incorporated in the process of reaching the approximated posterior. Additionally, it leads to

a continuous-time interpretation of EKI that yields theoretical results and permits adaptive

time-stepping schemes that allow one to tune the rate of convergence of the ensemble. There

is an intuitive justification of (26): applying Bayes’ rule 𝑁 times with the same data entails

repeated re-use of data, and the accompanying variance adjustment Γ𝑦 ↦→ 1
𝑁
Γ𝑦 compensates

for this re-use. Observe that if the product in (25) does not stop at 𝑁 and is taken to infinity,

the posterior will concentrate on the parameters that minimize Φ𝑅. This is essentially the

strategy that EKI takes to pursue the loss-minimizing parameters. We use an EKI variant
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where a flexible “time-step" parameter ℎ replaces 1
𝑁

as the variance inflation parameter

so that an adaptive algorithm can be used where the ensemble distribution approximates

the posterior following 𝑁iter iterations satisfying
∑︀𝑁iter

𝑛=1 ℎ𝑛 = 1. The associated variance

adjustment is thus Γ𝑦 ↦→ ℎ−1Γ𝑦. Thus the EKI update formula (22) becomes

𝜃
(𝑗)
𝑛+1 = 𝜃(𝑗)

𝑛 +𝐶𝜃𝑔
𝑛 (𝐶𝑔𝑔

𝑛 + ℎ−1
𝑛 Γ𝑦)

−1(𝑦 + 𝜉(𝑖)𝑛 − 𝒢(𝜃(𝑗)
𝑛 )) (27)

where each 𝜉
(𝑗)
𝑛 is an independent realization of 𝜉 ∼ 𝒩 (0,Γ𝑦) for time step 𝑛 and particle 𝑗.

This can be re-arranged to be interpreted as Euler Mayurama discretized coupled It𝑜 SDEs

[13], [14],

�̇�(𝑗) = 𝐶𝜃𝑔Γ−1
𝑦 (𝑦 − 𝒢(𝜃(𝑗))) +𝐶𝜃𝑔Γ

− 1
2

𝑦 �̇� (𝑗) (28)

obtained by taking the limit ℎ → 0. This is equivalently obtained by taking the ℎ → 0 limit

of (23),

�̇�(𝑗) = − 1

𝐽

𝐽∑︁
𝑘=1

⟨𝒢(𝜃(𝑘)
𝑛 )− g𝑛, Γ

−1
𝑦 (𝑦 − 𝒢(𝜃(𝑗)

𝑛 ) +
√︀
Γ𝑦�̇�

(𝑗))⟩ 𝜃(𝑘)
𝑛 (29)

For inversion applications omission of the stochastic term admits the simple Euler discretiza-

tion

𝜃
(𝑗)
𝑛+1 = 𝜃(𝑗)

𝑛 − ∆𝑡𝑛
𝐽

𝐽∑︁
𝑘=1

⟨𝒢(𝜃(𝑘)
𝑛 )− g𝑛, Γ

−1
𝑦 (𝒢(𝜃(𝑗)

𝑛 )− 𝑦)⟩ 𝜃(𝑘)
𝑛 (30)

with time step ∆𝑡𝑛. Note that (30) is not empirically equivalent to (27) as the information

of 𝐶𝑔𝑔
𝑛 was lost when taking ℎ to 0 as (𝐶𝑔𝑔

𝑛 + ℎ−1
𝑛 Γ𝑦)

−1 ↦→ Γ−1
𝑦 . The first step in the

EKI algorithm is to construct an initial ensemble by randomly sampling from the parameter

priors 𝐽 times. For sake of understanding we can imagine that for each sample that is

taken, a “particle" is placed in the parameter space at the coordinates corresponding to
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that sample, forming a system {𝜃(𝑗)
0 }𝐽𝑗=1 of 𝐽 interacting particles. Then, 𝑁 iterations of

updates are performed. At each iteration the 𝑗𝑡ℎ ensemble member is updated according

to equation (27) or equation (30). Equation (30) in particular makes sense intuitively if we

interpret the update on particle 𝑗 as a sum of contributions from the remaining particles

to an approximation of the gradient of the loss with respect to 𝜃(𝑗), which is then negated

so that 𝜃(𝑗) moves in the (approximate) direction of decreasing loss. The 𝑘𝑡ℎ particle’s

relative contribution to this approximate gradient is scaled by an inner product capturing,

firstly, how far the 𝑘𝑡ℎ parameter’s corresponding prediction 𝒢(𝜃(𝑘)) falls from the average

prediction 𝑔. If this first quantity is large, 𝜃(𝑗) will be persuaded to leap away from 𝜃(𝑘).

The second term in the inner product is just the error on the 𝑗𝑡ℎ parameter’s corresponding

prediction, down-scaled by the uncertainty on the observation. If the error is very small or

the observation is very uncertain, 𝜃(𝑗) will be relatively uninfluenced by the other particles

and will shift only slightly in parameter space. The overall update dynamic can be thought of

as inducing parameters to perform an approximate form of gradient descent where gradients

are approximated by ensemble differences.

0.4.2 Optimization: Overcoming Convergence Obstacles

In this section, I will first describe several optimizations to the previously described “vanilla"

EKI algorithm that were originally derived for the EnKF to address the poor statistics of

small ensembles. I will then describe several more recent optimizations to EKI that have

been inspired by gradient descent approaches for neural networks. Lastly I will discuss op-

timizations employed to address challenges arising from the occasional numerical instability

of our prototype model.

MAP Estimators and Tikhonov Regularization

Assuming a linear forward model 𝒢, EKI provably optimizes the least-squares loss function

𝐿(𝜃) =
1

2

⃦⃦⃦
Γ𝑦

− 1
2 (𝑦 − 𝒢(𝜃))

⃦⃦⃦2

(31)

over the subspace defined by the initial ensemble, in the continuous time limit [13]. However,
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we typically wish for EKI to optimize the regularized loss function (10) whose minimizer, as

mentioned previously, corresponds to the MAP estimator argmax𝜃𝜋(𝜃|𝑦) of the conditional

posterior on 𝜃. This can achieved using a clever trick laid out in [27] based on state augmen-

tation. In a modified formulation of the inverse problem (1), we define augmented variables

𝑧, ℱ and 𝜂 as

𝑧 =

⎡⎣𝑦
0

⎤⎦ , ℱ(𝜃) =

⎡⎣𝒢(𝜃)
𝜃

⎤⎦ , 𝜂 =

⎡⎣ 𝜂

𝜂𝜃

⎤⎦ ∼ 𝒩

⎛⎝⎡⎣ 0

−𝜇𝜃

⎤⎦ ,

⎡⎣Γ𝑦 0

0 Γ𝜃

⎤⎦⎞⎠ (32)

which tracks two systems 𝑦 = 𝒢(𝜃) + 𝜂 and 0 = 𝜃 + 𝜂𝜃. Replacing the terms in (31) with

the corresponding augmented variables and taking into account the non-zero mean of 𝜂, the

reformulated inverse problem 𝑧 = ℱ(𝜃) + 𝜂 optimizes the desired objective. Φ𝑅(𝜃),

Φ𝑅(𝜃) =
1

2

⃦⃦⃦⃦
⃦⃦⃦
⎡⎣Γ𝑦 0

0 Γ𝜃

⎤⎦− 1
2

(𝑧 −ℱ(𝜃)−

⎡⎣ 0

−𝜇𝜃

⎤⎦)
⃦⃦⃦⃦
⃦⃦⃦
2

(33)

=
1

2

[︁
(𝑦 − 𝒢(𝜃))𝑇Γ−1

𝑦 (𝜇𝜃 − 𝜃)𝑇Γ−1
𝜃

]︁⎡⎣𝑦 − 𝒢(𝜃)

𝜇𝜃 − 𝜃

⎤⎦ (34)

=
1

2
||𝑦 − 𝒢(𝜃)||2Γ𝑦

+
1

2
||𝜃 − 𝜇𝜃||2Γ𝜃

(35)

Overcoming Sampling Error and the Subspace Property

The move from analytic distributions to ensemble-approximated distributions (14) for the

EnKF can be thought of as a dimensionality reduction [20]. A drawback is that if the

number of particles does not comfortably exceed the dimensionality of the state (e.g. if

the state represents a large vector field collapsed into one dimension), then the PDF that

the ensemble is supposed to approximate will be critically under-sampled. There comes the

risk that the approximate covariance matrix (15) will be rank deficient, forging correlations

between particles that don’t actually exist and causing a compounding sampling bias. This

is problematic in that it might lead to the true state not actually existing in the linear span

of the ensemble, which is the only space eventually explored by the algorithm, as proven for
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EKI in [13], thus removing all possibility of the algorithm meeting its objective of capturing

the true underlying state 𝑥 of the system. To ameliorate this issue, transformations to the

empirical covariance can be introduced to try to remove spurious correlations in a technique

known as covariance localization, where problem-specific assumptions about the covariance

structure (e.g. short-range correlations) can be imposed to reduce the bias in the estimated

covariance matrices. Covariance localization is explored for EKI in [28].

In this project, the rank deficiency problem is not of concern because we deal with

small numbers of parameters. However, the sampling error and spurious correlations remain

issues. A second technique known as covariance inflation is also used to address the poor

statistics of small ensembles [13], [29]. Inspired by the observation that under-sampling leads

to systematic underestimates of the posterior ensemble covariance, the simplest version of

covariance inflation applies multiplicative or additive adjustments to the ensemble covariance

following each analysis iteration by pushing each particle away from the ensemble mean. This

prevents filter divergence, the phenomenon that occurs when the ensemble variance collapses

so quickly that the filter effectively ignores observations, leading to under-fitting [30]. This

is why covariance inflation is said to increase algorithm stability [19]. Schillings et al. [13]

provide preliminary empirical evidence that covariance inflation and localization lead to more

accurate state estimates given noise-ridden, nonlinear dynamics. However, as discussed in

[30] and [31], incorporating these corrections brings new degrees of freedom to the filtering

setup in the form of hyperparameters that can be expensive to tune. Lunderman et al. note

that the hyperparameters for these two techniques need to be tuned jointly and suggest an

adaptive localization [31]. In the work of [19] it is suggested that adaptive time stepping can

be used to the same effect as covariance inflation.

Optimizations Inspired by Gradient Descent for Convergence Control

EKI and the EnKF are biased in that they are inconsistent for nonlinear forward maps,

meaning the ensemble does not converge in expectation to the true posterior at pseudo-

time one [32]. Moreover, the deleterious consequences of under-sampling raise doubts about

EKI’s applicability to problems where huge ensembles are infeasible. However, there is

empirical evidence that EKI can perform well both in high-dimensional parameter spaces
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and for nonlinear forward maps. In a 2018 paper by Kovachki et al., an ensemble of 2000

particles was successfully used to pursue optimal values for more than 500,000 parameters

in a convolutional neural network. The neural network was tuned to classify images of

handwritten digits from the MNIST dataset, a popular and respected toy dataset used in

computer vision. A relatively ad hoc form of randomization was used to try to overcome the

subspace property. In particular, the particles were randomly perturbed about the ensemble

mean at each iteration. With this optimization, after 50 epochs of training were performed

using EKI on mini-batches of 600 images, the network correctly classified 97% of 10,000

images that it hadn’t seen before, barely falling short of the 98% correctly classified by the

same network trained using the traditional method of stochastic gradient descent with a

learning rate of 0.1.

Curiously, the EKI dynamic follows a gradient flow in the linear setting. In [13] it is

shown that by locally linearizing the forward map, the continuous-time approximation of

EKI (29) degenerates to a preconditioned gradient descent,

�̇�(𝑗) = −𝐶𝜃𝜃∇𝜃Φ(𝜃
(𝑗)) (36)

where the preconditioning helpfully buffers the sensitivity of the descent to correlations and

scale discrepancies in the parameter space. With particular attention to this result, in the

works of [15] and [19] it is emphasized that techniques developed in the gradient descent

literature might carry over to nonlinear optimization with EKI. For example, mini-batching

can potentially be used to overcome memory constraints when the observations are large

or many, e.g. in the case of [15]. Momentum-augmented approaches also explored in [15]

may be useful for setting a search direction that is informed by the aggregated history of

search directions. If the parameter space is high-dimensional, overfitting can occur where

the predictive burden falls on a small subset of parameters or array features. Dropout, the

strategy of randomly zeroing individual parameters or intermediate computed values during

each training iteration, can help discourage such underutilization of parameters.

Arguably the most crucial insights to be borrowed from gradient descent relate to adaptive

step size schemes. A generally effective strategy is to increase the time step as the iterations
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progress to compensate for the gradual shallowing out of the loss landscape, both to prevent

convergence deceleration and to escape suboptimal minima at possible expense of stability.

The approach of [15] is to rewrite the EKI discrete update (30) in terms of a matrix 𝐷 as

𝑋𝑛+1 = 𝑋𝑛 −
∆𝑡𝑛
𝐽

𝑋𝑛𝐷𝑛

where 𝑋𝑛 =
[︁
𝜃
(1)
𝑛 . . . 𝜃

(𝐽)
𝑛

]︁
𝐷𝑛,𝑖𝑗 = ⟨𝒢(𝜃(𝑗)

𝑛 )− g, Γ𝑦
−1(𝒢(𝜃(𝑖)

𝑛 )− 𝑦)⟩

and let the adaptive time step for a given iteration be computed as

∆𝑡𝑛 =
∆𝑡0

‖𝐷𝑛‖𝐹 + 𝜖
, ‖𝐷𝑛‖𝐹 =

√︃∑︁
𝑖

∑︁
𝑗

|𝐷𝑛,𝑖𝑗|2

where 𝜖 is a small value to prevent division by zero and ∆𝑡0 is a reference time step which

the authors suggest should be made as large as possible up before stability is compromised.

This approach was used by Garbuno-Inigo et al. [33] and Chada et al. [27] and referenced

in the work of [34]. An alternative idea is to use the determinant of the ensemble covariance

matrix at each iteration as a proxy for the volume of the ensemble and to use fixed point

iteration to set a step size that achieves a prescribed rate of collapse of this volume measure.

A third approach, proposed by Iglesias et al. [34], is inspired by the adaptive-tempering

Sequential Monte Carlo interpretation of EKI and attempts to control a “level of information"

between successive intermediate densities as gauged by a metric called Jeffreys’ divergence.

Without going into detail about how the various methods were implemented and how the

hyperparameters for each were tuned, Figure 0-2 demonstrates that the choice of adaptive

step size algorithm is pivotal for achieving a desired rate of convergence of the EKI ensemble

mean estimate. Ultimately, EKI is an iterative solver for Bayesian inverse problems that first

attempts to reconstruct a probability distribution of 𝜃 that combines prior knowledge with

the information from the collected data 𝑦, then pursues the optimizer of this distribution.

The rate of ensemble convergence affects the accuracy of this search.
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Optimizations Specific to the Modeling Application at Hand

Uncalibrated dynamical models are prone to numerical instability. Occasionally an EKI

particle will cause the model solution to explode, causing some entries to outgrow a 64 bit

floating point representation, rendering the EKI update incalculable. We call such parti-

cles “failed"; all particles that successfully lead to finite numerical solutions are “successful".

Sometimes particle failures can be prevented simply by decreasing the model integration

time or increasing the time step size used for the integration. A strategy of gradually in-

creasing model integration time or decreasing time step size as the EKI ensemble collapses

might be fruitful. However, approaches for dealing with particle failures once they have

occurred are still warranted. Following each given ensemble update, all failed particles can

simply be removed from the ensemble and EKI can proceed with the reduced ensemble size.

Alternatively, the failed particles can be re-sampled from a multivariate normal distribution

parameterized by the ensemble mean and covariance computed either (i) among all particles,

or (ii) among only the successful particles, under the condition that all re-sampled particles

are successful. A third idea is to ignore the failed particles and update only the successful

particles, then recover the original ensemble size by re-sampling from the mean and covari-

ance of the updated ensemble. We chose to pursue this latter approach, where the algorithm

terminates if the fraction of all particles that fail on a given iteration exceeds a specified

threshold; we chose 20%. Tolerating a reasonable fraction of particle failures affords the flex-

ibility to use wide parameter priors for thorough exploration of parameter space, at possible

risk of incurring bias and non-Gaussianity to the failure-adjusted ensembles.

Particle failures occur as particles wander into unlikely regions of parameter space. Un-

fortunately, EKI requires Gaussian priors which are inherently unconstrained. One way to

remedy this situation is to artificially impose bounds on the parameter space by employ-

ing constrained priors whose constituent samples can be one-to-one mapped to samples of

unconstrained, Gaussian distributions. The “unconstrained" EKI particles, then, are just

transformed versions of the true particles which can be confined to arbitrary intervals while

obeying the normality requirement for EKI. We use scaled logit-normal priors that are con-

fined to a specified interval [𝑎, 𝑏]. Each “constrained" scalar sample 𝜃𝑖 can be mapped to a

34



standard normal, “unconstrained" counterpart 𝜃𝑖 by way of an analytic transformation,

𝜃𝑖 = log(
𝜃𝑖−𝑎
𝑏−𝑎

1− 𝜃𝑖−𝑎
𝑏−𝑎

) = log
𝜃𝑖 − 𝑎

𝑏− 𝜃𝑖

and conversely, the samples 𝜃𝑖 dealt with by EKI can be returned to the constrained space

by the following inverse transformation.

𝜃𝑖 =
exp(𝜃𝑖)𝑏+ 𝑎

1 + exp(𝜃𝑖)

Importantly the use of constrained logit-normal distributions has implications for how the

uncertainty quantification is eventually carried out.

0.5 Uncertainty Quantification

Understanding how parameter uncertainty propagates from input to output allows model

developers to concentrate their efforts on making structural improvements where improve-

ments are the most needed. Using the Calibrate Emulate Sample [2] framework as a starting

point, approximate posteriors can be generated for each parameter to gauge parametric un-

certainty. Parameters that exhibit high levels of uncertainty can be considered for removal.

Then, using variance-based sensitivity analysis, individual parameters can be characterized

in terms of how much of the uncertainty in the model solution they account for. The greatest

offenders can be prioritized as targets for future development. In turn, those parameters that

exhibit high uncertainty and low sensitivity can be retired from the model.

0.5.1 Emulation via Gaussian Process Regression

To enable efficient sampling of parameter posteriors, we train a Gaussian Process emulator to

stand in for the true forward model. In the original CES paper [2], a multi-output emulation

approach is used where, for an output in R𝑑𝑦 , 𝑑𝑦 independent Gaussian processes are trained

to emulate each coordinate in the output. A key challenge is that the various components
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of the model output are inevitably correlated, meaning that if the GPs are to produce

accurate uncertainty estimates needed for sampling, the outputs must be decorrelated prior

to emulation. The authors suggest that the decorrelation can be achieved based on the

observation noise covariance matrix or by projecting the output data into an output space

with linearly uncorrelated dimensions, e.g. an orthonormal basis computed by Principal

Component Analysis (PCA) via singular vector decomposition (SVD). We adopt the SVD

approach and additionally perform a dimensionality reduction by preserving only the first

20 principal components in order to save on GP training and evaluation time in an otherwise

2176-dimensional output space. Given 𝑁 training samples {𝜃(𝑛)}𝑁𝑛=1 and corresponding

forward map outputs {𝒢(𝜃(𝑛))}𝑁𝑛=1, PCA is executed on the column space of a matrix 𝐺 of

zero-centered outputs as follows [2]

𝐺 = �̂�Σ 𝑉 𝑇 (37)⎡⎢⎢⎢⎣
(𝒢(𝜃(1))−m)𝑇

...

(𝒢(𝜃(𝑁))−m)𝑇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
(𝑔(1))𝑇

...

(𝑔(𝑁))𝑇

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜎1 . . . 0
... . . . ...

0 . . . 𝜎𝑑𝑦

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
(𝑣(1))𝑇

...

(𝑣(𝑑𝑦))𝑇

⎤⎥⎥⎥⎦ (38)

where 𝑑𝑦 is the length of the forward map output and m =
∑︀𝑁

𝑛=1 𝒢(𝜃(𝑛)). Then the rows

(𝑔(𝑛))𝑇 of �̂� are the rows of 𝐺 unscaled and projected onto the output space defined by

the right-singular vectors 𝑣(1), . . . ,𝑣(𝑑𝑦). To dimensionality-reduce the transformed outputs

we eliminate all but the first 𝑟 < 𝑑𝑦 principal components by preserving only dimensions

corresponding to the 𝑟 largest singular values, yielding a new decomposition in terms of

truncated matrices distinguished with the subscript 𝑟,

�̂�𝑟 Σ𝑟 𝑉
𝑇
𝑟 =

⎡⎢⎢⎢⎣
𝑔
(1)
1 . . . 𝑔

(1)
𝑟

... . . . ...

𝑔
(𝑁)
1 . . . 𝑔

(𝑁)
𝑟

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜎1 . . . 0
... . . . ...

0 . . . 𝜎𝑟

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
(𝑣(1))𝑇

...

(𝑣(𝑟))𝑇

⎤⎥⎥⎥⎦ (39)

Because we have transformed the forward map outputs we correspondingly transform the
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observation 𝑦 and associated uncertainty as

𝑦 = Σ−1
𝑟 𝑉 𝑇

𝑟 (𝑦 −m)

Γ̂𝑦 = Σ−1
𝑟 𝑉 𝑇

𝑟 Γ𝑦 𝑉𝑟 (Σ
−1
𝑟 )𝑇

where the latter transformation assumes that 𝑦 ≈ m. To construct an emulator that maps

from R17 to R20, we utilize 20 Gaussian Processes, one for each grid point in the transformed

outputs and each one mapping R17 to R along with estimated uncertainties. Each Gaussian

process computes a Gaussian probability distribution over functions that interpolate the

training data, where the form of the interpolation functions is dictated by the choice of

kernel function. If the training observations are noise-ridden the associated uncertainty can

be incorporated into the GP typically leading to imperfect interpolation of the training data

by the GP; here, we assume perfect data. Certain performance considerations are worth

noting. Given a set Θ = {𝜃(𝑛)}𝑛=𝑁
𝑛=1 of training inputs and vector f𝑖 = [𝑔

(1)
𝑖 , . . . , 𝑔

(𝑁)
𝑖 ] of

corresponding training targets representing the 𝑖th component of the transformed forward

map outputs, the GP predictive mean and variance for a test input 𝜃* are given by

𝑚𝑖(𝜃*) = E[𝑓𝑖*|Θ, f𝑖,𝜃*] = k*(L
𝑇∖(L∖f𝑖)) (40)

v𝑖(𝜃*) = V[𝑓𝑖*|Θ, f𝑖,𝜃*] = 𝑘(𝜃*,𝜃*)− v𝑇v (41)

where k*𝑛 = 𝑘(𝜃*,𝜃
(𝑛)) is an 𝑁 -length vector of evaluations of the covariance function 𝑘 on

the test point and the 𝑁 training inputs, and L = Cholesky(K) where K𝑖𝑗 = 𝑘(𝜃(𝑖),𝜃(𝑗)) is

the Cholesky factorization of the 𝑁 ×𝑁 matrix of evaluations of the covariance function on

the training inputs and themselves, and v is L∖k* [35]. The distribution over possible values

of 𝑓𝑖* as described by the GP is 𝒩 (𝑚𝑖(𝜃*), v𝑖(𝜃*)). Taking all components together, we have

that the overall predictive distribution over possible values of the transformed forward map

output vector f = [𝑔(1), . . . , 𝑔(𝑁)] for a given parameter set 𝜃 is

𝒢(𝜃) ∼ 𝒩 (�̂�(𝜃), Γ̂𝐺𝑃 (𝜃)) (42)

where �̂�(𝜃) = [𝑚1(𝜃), . . . ,𝑚𝑟(𝜃)] and Γ̂𝐺𝑃 (𝜃) = diag([𝑣1(𝜃), . . . , 𝑣𝑟(𝜃)]. Inspecting Equa-
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tion (40) reveals that predicting a transformed forward map output for a single test input

𝜃* involves evaluating the kernel function 20𝑁 times, which can be computationally taxing

if 𝑁 is large. Additionally, carrying out the necessary matrix inversions can be both speed-

and memory-intensive again for large 𝑁 . Thus GPR does not scale well to large training

datasets. In advanced applications, this would likely necessitate strategic subsampling of

the available observations to procure a representative training set. Otherwise, an alternative

universal function approximator such as a neural network might make for a more effective

emulator.

For each constituent GP in the emulator, we non-dimensionalize the inputs and outputs

using the mean and standard deviations of the training inputs and outputs. We impose a

zero mean function and an ARD squared exponential kernel to model the decay of output

correlations with respect to parameter distance,

𝑘(𝜃,𝜃′) = 𝜎2 exp

(︂
−1

2
(𝜃 − 𝜃′)𝑇diag(ℓ)−2(𝜃 − 𝜃′)

)︂
where the noise hyperparameter 𝜎 and all length-scale hyperparameters in ℓ ∈ R17 are ini-

tialized to 1 prior to optimization. Intuitively, the length-scale hyperparameters ℓ modulate

how the distances between two inputs in each dimension scale the covariance between the

associated predictive outputs; the noise hyperparameter 𝜎 modulates the overall scale of

these covariances. These kernel hyperparameters are optimized jointly on a log scale using

BFGS gradient-based optimization, where the loss function is obtained by negating the log

likelihood, log 𝜋(y|Θ) = −1
2
f𝑖(L

𝑇∖(L∖f𝑖))−
∑︀

𝑛 L𝑛𝑛− 𝑁
2
log(2𝜋), of the training targets given

the training inputs.

0.5.2 Sampling

Following emulation, sampling is performed using the random walk Metropolis-Hastings algo-

rithm in parallel chains initialized at the locations of the particles in the EKI initial ensemble.

At each algorithm iteration for each given chain, the sample is randomly perturbed by an

independent draw from a Gaussian distribution with mean zero and covariance computed as

the collective covariance of all EKI samples, yielding a perturbed ‘proposal‘ sample. Then,
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with some probability the proposal sample is ‘accepted‘ and added to the chain; otherwise

the original unperturbed sample is appended to the chain and carried over to the next iter-

ation. Conceptually speaking, the samples should spend time at each location in proportion

to the likelihood that the true parameters exist at that point. Accordingly, for a current

sample 𝜃 and proposal 𝜃′, the acceptance probability 𝑎(𝜃,𝜃′) is a function of the ratio of the

posterior probabilities �̂�(·|𝑦) associated with each sample,

𝑎(𝜃,𝜃′) = min{1, �̂�(𝜃′|𝑦)
�̂�(𝜃|𝑦)

} = min{1, exp(Φ̂(𝜃)− Φ̂(𝜃′))}

If the sampler relies on evaluations of the true forward map, 𝒢, then Φ̂(𝜃) is readily given

by the regularized objective (10) as derived in section 0.4.1. As for the emulated forward

map, Φ̂(𝜃) needs to take into account the predictive uncertainty (41) of the emulator. In

particular, when 𝒢 replaces 𝒢 as the forward model, we can reinterpret the inverse problem

as

𝑦 = 𝒢(𝜃*) + 𝜂 + 𝜂𝐺𝑃 (𝜃)

where 𝜂 ∼ 𝒩 (0, Γ̂𝑦) and 𝜂𝐺𝑃 (𝜃) ∼ 𝒩 (0, Γ̂𝐺𝑃 (𝜃)). Taking into account the previously

nonexistent 𝜃-dependence of the noise, we write equation (8) in terms of the transformed

variables from the previous section,

𝜋(𝑦|𝜃) = 1

(2𝜋)
𝑟
2 |Γ̂𝐺𝑃 (𝜃) + Γ̂𝑦|

1
2

𝑒
− 1

2

⃦⃦⃦
(Γ̂𝐺𝑃 (𝜃)+Γ̂𝑦)

− 1
2 (𝑦−𝒢(𝜃))

⃦⃦⃦2

leading to a revised regularized objective function, [2]

Φ̂𝐺𝑃 (𝜃) =
1

2

⃦⃦⃦
(Γ̂𝐺𝑃 (𝜃) + Γ̂𝑦)

− 1
2 (𝑦 − �̂�(𝜃))

⃦⃦⃦2

+
1

2

⃦⃦⃦
Γ𝜃

− 1
2 (𝜃 − 𝜇𝜃)

⃦⃦⃦2

+
1

2
log det(Γ̂𝐺𝑃 (𝜃) + Γ̂𝑦)

(43)

0.5.3 Sensitivity Analysis

Sensitivity estimates reveal the extent to which a given parameter’s associated uncertainty is

problematic for the model. Highly uncertain parameters can be inconsequential for a model
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if they exhibit low sensitivity. It is therefore helpful to supplement parametric uncertainty

information with sensitivity information. Local sensitivity analysis approaches measure the

effects of local parameter perturbations on the model output. We pursue a global approach

called Sobol or “variance-based" sensitivity analysis. Ilya Sobol found that the variance of a

model’s output can be decomposed into a sum of contributions from the various individual

inputs and combinations thereof: [36]

𝑉 (Φ̂) =
∑︁
𝑖

𝑉𝑖 +
∑︁
𝑖

∑︁
𝑗>𝑖

+ · · ·+ 𝑉12...𝑑𝜃

where Φ̂ is the model, 𝑉 (Φ̂) is the model variance, and the various indices are parameter

indices ranging from 1 to the number of parameters, 𝑑𝜃. For a parameter 𝜃𝑖 the first-order

variance 𝑉𝑖 = V𝜃𝑖(E𝜃∼𝑖
(Φ̂|𝜃𝑖)) measures the contribution to the output variance of 𝜃𝑖 alone,

averaging over the other inputs 𝜃∼𝑖; the second-order variances 𝑉𝑖𝑗 = V𝜃𝑖𝑗(E𝜃∼𝑖𝑗
(Φ̂|𝜃𝑖,𝜃𝑗))−

𝑉𝑖 − 𝑉𝑗 measure the contribution to the output variance of only the interactions between 𝜃𝑖

and 𝜃𝑗; and so on. The total order sensitivity index for 𝜃𝑖 takes the contribution of 𝜃𝑖 to the

output variance together with those of all interactions involving 𝜃𝑖 for an overall interaction-

inclusive sensitivity measure on 𝜃𝑖. The variance decomposition comes from viewing the

model as a sum of constituent models each with a unique combination of the inputs,

Φ̂(𝜃) = 𝑓0 +
∑︁
𝑖

𝑓𝑖(𝜃𝑖) +
∑︁
𝑖

∑︁
𝑗>𝑖

𝑓𝑖𝑗(𝜃𝑖,𝜃𝑗) + · · ·+ 𝑓12...𝑑𝜃(𝜃)

where the parameters 𝜃 inhabit a parameter space that has been shrunk or stretched along

each dimension to fit a unit hypercube, i.e. 𝜃𝑖 ∈ [0, 1] ∀ 𝑖. By applying Sobol analysis to

the GP-emulated objective Φ̂𝐺𝑃 we can gauge how the variance in the loss is apportioned

among the various parameters. To enable unit hypercube sampling, we impose bounds on the

parameter space spanning the range of ±2 standard deviations from the means approximated

through MCMC sampling of the Φ̂𝐺𝑃 . We then take approximate i.i.d. samples using Quasi-

Monte Carlo sampling and finally apply the Jansen’s method [37] to estimate the first- and

total-order sensitivity indices.
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Tikhonov-regularized EKI (0.4.2) was run for 10 iterations with 128 ensemble members

in pursuit of a solution to the Bayesian inverse problem described in section 0.3. 1408 calls

to the forward model 𝒢 were made in this process and the outputs for the first 768 were

saved for eventual use as training samples for emulation. Adaptive time steps were computed

so as to prescribe a linearly decreasing rate of ensemble collapse, as measured by the ratio

|𝐶𝜃𝜃
𝑛+1|/|𝐶𝜃𝜃

𝑛 | of the ensemble covariance matrix determinants at subsequent iterations, start-

ing with 0.2 at iteration 0 to 0.01 at iteration 10. Figure 0-3 summarizes the parameter-wise

evolution of the ensemble distribution. The ensemble variance for each parameter decreases

near-monotonically as the iterations progress, indicating that the ensemble members col-

lapsed toward a consensus in every dimension of the parameter space. Figure 0-4 shows

the model-data misfit
⃦⃦
𝒢(𝜃𝑛)− 𝑦

⃦⃦2 associated with the ensemble mean at each iteration,

both for the calibration suite responsible for the ensemble mean values and for 2- and 6-day

suites which represent unfamiliar physical scenarios. The error plateaus around iteration 4

in all cases, indicating that essentially 640 calls to the forward model were needed to arrive

at near-optimal parameters. Figures 0-6, 0-7 and 0-8 demonstrate the interpolation and

extrapolation quality of the model, showing temperature and velocity profiles predicted by

the calibrated model and LES for each suite of LES simulations.

Following calibration, 20 independent Gaussian processes were trained to emulate a

dimensionality-reduced version of the forward map with linearly uncorrelated output dimen-

sions. 98.4% of the variance in the original training samples was preserved in the process of

dimensionality reducing the output space from R2176 to R20, as measured by the ratio of the

traces of the full (2176× 2176) and truncated (20× 20) singular value matrices. 745 samples

representing the ensemble members from iterations 0 to 5 of EKI were used as training data

for the emulator; the remaining 23 samples were held out to assess the quality of the GP fit

for each component of the output, as shown in Figure 0-9. For the most part, the GP mean

predictions interpolate the validation targets well, and those samples which a GP predicts

poorly are typically associated with high uncertainty as desired. The Pearson correlation

coefficients between the true and predicted validation targets are either close to 1 or other-

wise biased by a small number of uncertain outliers. Using Gaussian processes sped up the

forward map evaluation 71-fold.
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Following emulation, sampling was performed in 128 parallel chains using the random

walk Metropolis-Hastings procedure described in section 0.5.2. The chain length for emulator

sampling was 2000 with the first 200 assumed to represent transient samples and removed;

the chain length for MCMC sampling was 1000 with a burn-in duration of 100. Figure 0-10

shows the superimposed marginal densities obtained by sampling the emulated objective Φ̂𝐺𝑃

as compared to those obtained by sampling the true objective Φ𝑅. The considerable overlap

between these densities, including of the sample means, suggests that EKI adequately sam-

pled the true posteriors for each parameter and that the GP emulator successfully captured

the likelihood information necessary for approximating parametric uncertainty to a reason-

able degree of accuracy. Finally, in a departure from the purely Bayesian framework, Sobol

sensitivity analysis was applied to 76,000 Quasi-Monte Carlo samples from a 17-dimensional

unit hypercube scaled to span ±2 standard deviations from the means of the dimension-wise

marginal distributions approximated by MCMC on the emulated likelihoods. The result

as shown in Figure 0-12 shows considerable correlation between the normalized first- and

total-order sensitivity indices suggesting that first-order effects take the most responsibility

for the variability in the loss, and in particular the effects of parameters 𝐶𝐾𝑐− and 𝐶𝐾𝑒−.
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Given sufficient computational resources and an adequate Bayesian formulation of the

model-data relationship, data-driven approaches for systematic parameter inference and un-

certainty quantification can be used to automate the tuning of parameterized dynamical

models and provide empirical feedback to inform future model development. We have shown

that Ensemble Kalman Inversion can be used successfully to tune the 17 parameters of a

sub-grid closure within an OSBL column model to bring the model into close agreement with

in- and out-of-sample horizontally averaged solutions of high-fidelity idealized numerical sim-

ulations. We then used the parameter-output pairs generated by EKI to train a Gaussian

process emulator as a computationally inexpensive surrogate for the true forward model,

and showed that the marginal distributions and parameter correlations estimated through

sampling the emulated likelihoods successfully approximated those estimated by sampling

the true likelihoods.

In spite of the linearity and normality assumptions inherited by EKI from the Kalman

filter, to say nothing of the finite sampling and discrete time approximations required for

use of EKI in practice, we have added to the limited body of empirical evidence that EKI

can succeed in nonlinear settings. With EKI we have obtained a calibration result that we

believe provides an accurate qualitative sense of how CATKE can perform when operating

at its full potential, subject to the given model resolution and other such fixed settings. Our

procedure’s demonstrated success in uncertainty quantification has important implications

for EKI as well. First, it suggests that EKI is a suitable replacement for Ensemble Kalman

Sampling in the Calibrate Emulate Sample framework. Ensemble Kalman Sampling has the

disadvantage that the theoretical derivation of the algorithm prescribes a natural time step

for the dynamic, and the number of iterations required for the dynamic to reach equilibrium

at the posterior can be prohibitively large, precluding the use of expensive forward models.

Second, we suggest that EKI is better than a last resort meant for situations where forward

model derivatives are unobtainable; many gradient-based approaches seek only to optimize

and cannot offer any semblance of a Bayesian description of the distribution over possible

parameter values. The use of EKI enables subsequent likelihood emulation, removing the

barrier to state-of-the-art MCMC methods for expensive forward models. In the same vein,

Gaussian processes have a distinct advantage over many alternative emulation approaches in

45



that they can provide information about emulator uncertainty which enables a more faithful

MCMC sampling of the true parameter posteriors and as well as a more stable MCMC

dynamic. In addition to being useful for facilitating model development, the ability to

derive posterior estimates was in our work an end in and of itself, and the posterior estimates

obtained via MCMC can be repurposed as priors when CATKE is eventually embedded into

a global model.

There are many possible directions for future work pertaining to every aspect of the CES

procedure. Training and evaluation time for the GP emulator can be prohibitive if many sam-

ples are available for training. Such restrictions may warrant further work on robust adaptive

time stepping schemes that promise to cater a minimally redundant and high-discrepancy set

of input-output pairs. Work on fine-tuning the time stepping procedures may also be fruitful

for addressing other shortcomings of GP emulation. For example, if the ensemble converges

too quickly along a given dimension, the GP will tend to underestimate the uncertainty for

that parameter as the GP predictive uncertainty will be highly inflated outside the narrow

domain of data for that parameter. Emulation may be improved by use of alternative kernel

functions, new methods of decorrelating and compressing output coordinates, or alternative

multi-output emulation approaches. Analytical methods for deriving first- and second-order

Sobol sensitivity indices directly from tuned GP models [38] may eventually be useful if a

single GP is able to be trained to interpolate the objective function directly. Crucially, in

this work, access to gradient information of the GP emulator has only been used for kernel

hyperparameter optimization, but may also be exploited to improve the sampling procedure,

for example by replacing the random walk sampling scheme with a Hamiltonian Monte Carlo

sampler.
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Figures
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Table 1. Large Eddy Simulation Constants
Momentum flux Buoyancy flux Coriolis parameter
𝑈 ′𝑊 ′

𝑧=0 /m
2 s−2 𝑊 ′𝑇 ′

𝑧=0 /ms−1K 𝑓 /s−1

Scenario
Length (days) 2 4 6 2 4 6 2 4 6

Strong cooling 0 0 0 1.2E-7 7E-8 5E-8 -1E-4 -1E-4 -1E-4
Strong wind -1E-3 -8E-4 -7E-4 0 0 0 -1E-4 -1E-4 -1E-4
Strong wind, weak cooling -7E-4 -6.5E-4 -5.5E-4 6E-8 4E-8 3E-8 -1E-4 -1E-4 -1E-4
Weak wind, strong cooling -3.3E-4 -3E-4 -2.2E-4 1.1E-7 7E-8 5E-8 -1E-4 -1E-4 -1E-4
Strong wind, no rotation -2E-4 -1E-4 -7E-5 0 0 0 0 0 0

Table 1: Simulation-specific constants for the 2-day, 4-day and 6-day suites of high-resolution
large eddy simulations used to provide the ground truth data for the profile evolutions of
𝑢, 𝑣, 𝑐𝜃, and 𝑒 over a course of 2, 4 and 6 days, respectively. CATKE is calibrated against
the 4-day simulations; the 2- and 6-day simulations are reserved for validation. The five
simulations within each suite differ in the surface momentum flux, surface buoyancy flux
(positive values indicate cooling and negative values heating), and rotation. The particular
values were chosen so that the temperature mixed layer depth reaches about 50% of the
vertical domain (100-120 meters) by the end of each simulation. The simulations begin at
rest (𝑢|𝑡=0 = 𝑣|𝑡=0 = 0) and with an identical temperature initial condition that has three
layers, where in each layer the temperature increases linearly with proximity to the surface,
and the stratification is the steepest at the extremes.
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Figure 0-2: (Left) Evaluations of Φ𝑅(𝜃𝑛) (10) as a function of 𝑛 for the 6-day “testing"
suite of observations, where 𝜃𝑛 is the ensemble mean obtained by running EKI on the 4-day
“training" suite. Iglesias 2021 is the hyperparameter-free approach of [34]; Kovachki 2018 is
the approach of [15]; Constant Convergence is the strategy of using fixed point iteration to
achieve a prescribed ratio of determinants of the ensemble covariance at subsequent itera-
tions; Constant is the strategy of using a fixed step size. Hyperparameters were chosen via
grid search to minimize the error Φ𝑅(𝜃10) of the final ensemble mean on the 2-day “valida-
tion" suite. (Right) EKI pseudo-time step as a function of iteration, where the time step is
understood in the sense of equation (27). Because we are unconfident in the hyperparameter
optimization for each of these methods we do not consider the result a performance compari-
son between adaptive step size schemes but rather empirical proof of the significant influence
that the step size trajectory has on the properties of the ensemble convergence. Thus details
about algorithm implementations are beyond the scope of this report and we refer interested
readers to ParameterEstimocean.jl [17] where the various schemes are implemented.
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Figure 0-3: Marginal ensemble mean and variance of each parameter at each EKI iteration.
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Figure 0-4: Model-data misfit
⃦⃦
𝒢(𝜃𝑛)− 𝑦

⃦⃦2 by iteration given in-sample and out-of-sample
observations where 𝜃𝑛 is the ensemble mean of the EKI ensemble evolved based on the 4-day
calibration suite of observations. The forward map outputs for the 2-day validation suite
represent the model solution captured at days 1, 1.5 and 2; the forward map outputs for the
6-day testing suite represent the model solution captured at days 3 and 6.

Figure 0-5: Forward map output 𝒢(𝜃) superimposed on the observation 𝑦 where 𝜃 is the
ensemble mean at iteration 0 (top) or iteration 10 (bottom). Evidently calibration brings
the model into close agreement with the observation.
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Figure 0-6: Predictive performance of the calibrated model compared to the LES truth at
representative time snapshots from the 4-day suite of observations. 𝑄𝑏 is surface buoyancy
flux, 𝑄𝑢 is surface momentum flux, and 𝑓 is the Coriolis parameter.
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Figure 0-7: Predictive performance of the calibrated model compared to the LES truth at
representative time snapshots from the 2-day suite of observations not employed for calibra-
tion.
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Figure 0-8: Predictive performance of the calibrated model compared to the LES truth at
representative time snapshots from the 6-day suite of observations not employed for calibra-
tion.
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Figure 0-9: Performance of GP emulator components on 23 held-out training samples rep-
resenting 3% of the overall training set. For given input 𝜃(𝑛) in the held-out samples, “true"
denotes the true value 𝑔

(𝑛)
𝑖 of the 𝑖th component of the transformed output generated by the

true forward model 𝒢(𝜃(𝑛)) applied to 𝜃(𝑛); “predicted" denotes the emulator mean prediction
𝑚𝑖(𝜃

(𝑛)). The error bars represent the GP predictive uncertainty 𝑣𝑖(𝜃
(𝑛)). Validation sam-

ples were selected not at random but by sampling at even intervals within the inter-quartile
range of the sorted training targets for each given GP.
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Figure 0-10: Marginal density distribution for samples generated by MCMC on the emulated
objective (blue) and true objective (yellow).

Figure 0-11: Pearson correlations between model parameters as estimated based on the sam-
ples generated by MCMC on the emulated objective (left) and the true objective (middle),
along with the subtracted coefficients (right).
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Figure 0-12: Min-max normalized Sobol sensitivity indices estimated based on 76,000 Quasi-
Monte Carlo samples of the emulated objective function Φ̂𝐺𝑃 .
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